

COMP1406
Introduction to Computer Science II

Course Notes

Notes maintained by Mark Lanthier (2014 version)

 ii

Table of Contents

 1 Programming in JAVA…..............
1.1 Object-Oriented Programming and JAVA……………...........................
1.2 Writing Your First JAVA Program ……………………………………………….........................
1.3 Python vs. Processing vs. JAVA…………...…………....…..................
1.4 Getting User Input ………………………………………......................………….......................
1.5 Formatting Text ...

1
2
5
7
11
15

 2 Creation and Storage of JA VA Objects….............……………………
2.1 Using Existing JAVA Objects …………………...……......…………............………..................
2.2 Creating Your Own Objects in JAVA ...………...……......…………............……….................
2.3 Memory Allocation and Object Storage …………...………………............………...................

 3 Defining Object Behavior ..…………………….............……………………

3.1 Object Constructors (Re-Visited) …………………...………………............………..................
3.2 Defining Methods ………………………………………………...
3.3 Null Pointer Exceptions …………………….……………......................................…................
3.4 Overloading ….……………………………………..…………...........
3.5 Instance vs. Class (i.e., static) Methods………………………..
3.6 Encapsulation - Protecting An Object's Internals ..
3.7 Changing How Objects Look When Printed ..
3.8 A Bank Example ..

21
22
24
27

39
40
44
52
54
56
60
69
73

 4 Class Hierarchies and Inheritance ..……………………………………… …
4.1 Organizing Classes ………………………...………………….......................…………..……....
4.2 Inheritance ……..……………………………….........…………………………...........................
4.3 Abstract Classes & Methods ……………………………………………....................................
4.4 JAVA Interfaces ..
4.5 Polymorphism ...

85
86
91
109
116
121

 5 Graphical User Inter faces……………………...
5.1 User Interfaces ………………………………………………………….......................................
5.2 Components and Containers .………………………………………………...............................
5.3 Grouping Components Together .……………………………………………….........................
5.4 Event Handling .………………………………………………..

135
136
139
150
157

 6 Proper Coding Style Using MVC …..……........................……………… …
6.1 Separate Model, View and Controller Components …………………………………………....
6.2 Preparing Your Model Classes for the GUI……………………………………..........
6.3 Developing a Proper View…………………………………………………………....
6.4 Developing a Proper Controller ...

173
174
175
179
184

 7 User Interface Exten sions ……………………………….…………………..
7.1 Automatic Resizing Using Layout Managers ……………..
7.2 Adding Menus …...…………………………………..
7.3 Standard Dialog Boxes ……………………..............………………………………………….....
7.4 Making Your Own Dialog Boxes ………………................……………………………………...

191
192
209
214
221

 iii

 8 Abstract Data Types …...…………………………..…………………...........
8.1 Common Abstract Data Types ..………........………………………………………………….....
8.2 The List ADT ………………………………….....……….…………………………......................
8.3 The Queue ADT .………………………………………………………………….........................
8.4 The Deque ADT ……...................……………………………………………………..................
8.5 The Stack ADT ……...................……………………………………………………....................
8.6 The Set ADT ……...................…………………………………………………….......................
8.7 The Dictionary / Map ADT ……...................……………………………………………………...
8.8 Collections Class Tools ……...................…………………………………………………….......
8.9 Implementing an ADT (Doubly-Linked Lists) .…………………………………………………...

237
238
240
261
268
270
276
284
295
298

 9 Recursion With Data Structures ………………………..………………… …
9.1 Recursive Efficiency …..…………………………………………….....……...............................
9.2 Examples With Self-Referencing Data Structures ……………………………………………...
9.3 A Maze Searching Example ………………………………………………....…..........................

307
308
310
330

10 Exception Handling ………………………..…………..…………............…
10.1 Simple Debugging ……………………………………………..
10.2 Exceptions ………………………………………………....…...
10.3 Examples of Handling Exceptions …..…………………………………………….....……........
10.4 Creating and Throwing Your Own Exceptions …..…………………………………………......

339
340
342
352
359

11 Saving and Loading In formation ………………………..………………… .
11.1 Introduction to Files and Streams ……………………………………………...........................
11.2 Reading and Writing Binary Data ……………………………....…...
11.3 Reading and Writing Text Data …..…………………………………………….....…….............
11.4 Reading and Writing Whole Objects …..…………………………………………….................
11.5 Saving and Loading Example …..……………………………………………...........................
11.6 The File Class …..……………………………………………...

367
368
370
376
379
383
390

12 Network Programmi ng ……...…………………..……………………….......
12.1 Networking Basics ……………………………………………..
12.2 Reading Files From the Internet (URLs) ..…..
12.3 Client/Server Communications …..……………………………………….................................
12.4 Datagram Sockets …..……………………………………………..

395
396
400
404
411

13 Other Interesting JA VA Classes ……………………........…..…………… .
13.1 The String Class ……………………………....…...
13.2 The StringBuilder & Character Classes …..………………………………………...................
13.3 The Date and Calendar Classes …..…………………………………………….......................

417
418
424
427

14 Graphics …………………….......................…..………………………..........
14.1 Doing Simple Graphics…………………………………..
14.2 Repainting Components…...
14.3 Displaying Images …..………………………….....................……………...............................
14.4 Graph Editor Example…………………………………………..
14.5 Adding Features to the Graph Editor ...

435
436
440
442
445
466

 iv

This page has been intentionally left blank.

Chapter 1

Programming in Java

What is in This Chapter ?

This first chapter introduces you to programming JAVA applications. It assumes that you are
already familiar with programming and that you have taken either Processing or Python in the
previous course. You will learn here the basics of the JAVA language syntax. In this chapter,
we discuss how to make JAVA applications and the various differences between JAVA
applications and the Processing/Python applications that you may be used to writing.

COMP1406 - Chapter 1 - Programming in JAVA Winter 2014

 - 2 -

 1.1 Object-Oriented Programming and JAVA

Object-oriented programming (OOP) is a way of programming in which your code is organized
into objects that interact with one another to form an application. When doing OOP, the
programmer (i.e., you) spends much time defining (i.e., writing code for) various objects by
specifying the attributes (or data) that make up the object as well as small/simple functional
behaviors that the object will need to respond to (e.g., deposit, withdraw, compute interest, get
age, save data etc...)

There is nothing magical about OOP. Programmers have been coding for years in traditional
top/down structured programming languages. So what is so great about OO-Programming ?
Well, OOP uses 3 main powerful concepts:

Inheritance

• promotes code sharing and re-usability
• intuitive hierarchical code organization

Encapsulation

• provides notion of security for objects
• reduces maintenance headaches
• more robust code

Polymorphism

• simplifies code understanding
• standardizes method naming

We will discuss these concepts later in the course once we are familiar with JAVA .

Through these powerful concepts, object-oriented code is typically:

• easier to understand (relates to real world objects)
• better organized and hence easier to work with
• simpler and smaller in size
• more modular (made up of plug-n’-play re-usable pieces)
• better quality

This leads to:

• high productivity and a shorter delivery cycle
• less manpower required
• reduced costs for maintenance
• more reliable and robust software
• pluggable systems (updated UI’s, less legacy code)

COMP1406 - Chapter 1 - Programming in JAVA Winter 2014

 - 3 -

JAVA is a very popular object-oriented programming language from SUN Microsystems. In
the previous course you may have used a language called Processing which is written "on top
of" JAVA. That is, Processing uses the same syntax as JAVA. However Processing
simplifies the process required to get a program "up and running" in that some of the overhead
code is hidden from the programmer. In addition, some of the functionality in Processing has
been simplified such as graphics and event handling ... which are just a little more complicated
in JAVA.

JAVA has become a basis for new technologies such as: Enterprise Java Beans (EJB’s),
Servlets and Java Server Pages (JSPs) , etc. In addition, many packages have been added
which extend the language to provide special features:

• Java Media Framework (for video streaming, webcams, MP3 files, etc) • Java 3D (for 3D graphics) • Java Advanced Imaging (for image manipulation) • Java Speech (for dictation systems and speech synthesis) • Java FX (for graphics, web apps, charts/forms, etc..) • J2ME (for mobile devices such as cell phones) • Java Embedded (for embedding java into hardware to create smart devices)

JAVA is continually changing/growing. Each new release fixes bugs and adds features. New
technologies are continually being incorporated into JAVA. Many new packages are available.
Just take a look at the www.oracle.com/technetwork/java/index.html website for the latest
updates. There are many reasons to use JAVA:

• architecture independence
o ideal for internet applications
o code written once, runs anywhere
o reduces cost $$$

• distributed and multi-threaded
o useful for internet applications
o programs can communicate over network

• dynamic
o code loaded only when needed

• memory managed
o automatic memory allocation / de-allocation
o garbage collector releases memory for unused objects
o simpler code & less debugging

• robust
o strongly typed
o automatic bounds checking
o no “pointers” (you will understand this in when you do C language programming)

COMP1406 - Chapter 1 - Programming in JAVA Winter 2014

 - 4 -

The JAVA programming language itself (i.e., the SDK (Software
Development Kit) that you download from SUN) actually
consists of many program pieces (or object class definitions)
which are organized in groups called packages (i.e., similar to
the concept of libraries in other languages) which we can use in
our own programs.

When programming in JAVA, you will usually use:

• classes from the JAVA class libraries (used as tools)
• classes that you will create yourself
• classes that other people make available to you

Using the JAVA class libraries whenever possible is a good idea since:

• the classes are carefully written and are efficient.
• it would be silly to write code that is already available to you.

We can actually create our own packages as well, but this will not be discussed in this course.

How do you get started in JAVA?

When you download and install the latest JAVA SDK , you will not see any particular
application that you can run which will bring up a window that you can start to make programs
in. That is because the SUN guys, only supply the JAVA SDK which is simply the compiler
and virtual machine. JAVA programs are just text files, they can be written in any type of text
editor. Using a most rudimentary approach, you can actually open up windows NotePad and
write your program ... then compile it using the windows Command Prompt window. This can
be tedious and annoying since JAVA programs usually require you to write and compile
multiple files.

A better approach is to use an additional piece of application software called an Integrated
Development Environment (IDE). Such applications allow you to:

• write your code with colored/formatted text
• compile and run your code
• browse java documentation
• create user interfaces visually
• and use other java technologies (e.g. Java Beans, EJB's, Servlet programming etc...)

There are many IDE's that you can use. You may choose whatever you wish. Here are a few:

• JCreator LE (Windows) - download from www.jcreator.com • JGrasp (Windows, Mac OS X, Linux) - download from www.jgrasp.com • Eclipse (Windows, Mac OS X, Linux) - download from www.eclipse.org • Dr. Java (Windows, Mac OS X) - download from drjava.sourceforge.net

COMP1406 - Chapter 1 - Programming in JAVA Winter 2014

 - 5 -

 1.2 Writing Your First JAVA Program

 The process of writing and using a JAVA program is as follows:

1. Writing: define your classes by writing what is called .java files (a.k.a. source code).
2. Compiling: send these .java files to the JAVA compiler, which will produce .class files
3. Running: send one of these .class files to the JAVA interpreter to run your program.

The java compiler: • prepares your program for running • produces a .class file containing byte-codes (which is a program that is ready to run).

If there were errors during compiling (i.e., called "compile-time" errors), you must then fix
these problems in your program and then try compiling it again.

The java interpreter (a.k.a. Java Virtual Machine (JVM)): • is required to run any JAVA program • reads in .class files (containing byte codes) and translates them into a language that

the computer can understand, possibly storing data values as the program executes.

Just before running a program, JAVA uses a class loader to put the byte codes in the
computer's memory for all the classes that will be used by the program. If the program
produces errors when run (i.e., called "run-time" errors), then you must make changes to the
program and re-compile again.

COMP1406 - Chapter 1 - Programming in JAVA Winter 2014

 - 6 -

Our First Program

The first step in using any new programming language is to understand how to write a simple
program. By convention, the most common program to begin with is always the "hello world"
program which when run ... should output the words "Hello World" to the computer screen.
We will describe how to do this now. When compared to Processing, you will notice that
JAVA requires a little bit of overhead (i.e., extra code) in order to get a program to run.

All of your programs will consist of one or more files called classes. Last term we defined
classes only to represent a data structure with some variables in it. However, in JAVA, each
time you want to make any program, you need to define a class. That means, each program
requires us to define a data structure (or object), although sometimes we will not even define
any data (or variables) for the object.

Here is the first program that we will write:

public class HelloWorldProgram {
 public static void main(String[] args) {
 System.out.println("Hello World");
 }
}

Here are a few points of interest in regards to ALL of the programs that you will write in this
course:

• The program must be saved in a file with the same name as the class name (spelled the
same exactly with upper/lower case letters and with a .java file extension). In this
case, the file must be called HelloWorldProgram.java .

• The first line beings with words public class and then is followed by the name of the
program (which must match the file name, except not including the .java extension).
The word public indicates that this will be a "publically visible" class definition that we
can run from anywhere. We will discuss this more later.

• The entire class is defined within the first opening brace { at the end of the first line and
the last closing brace } on the last line.

• The 2nd line (i.e., public static void main(String args[]) {) defines the starting place
for your program and will ALWAYS look exactly as shown. In Processing, the starting
place for our program was simply the top line of the program and then setup() was
called, followed by an infinite loop that called the draw() procedure. There are NO
setup() or draw() procedures in JAVA. Instead, the program always starts running by
calling this main() procedure which takes a String array as an incoming parameter.
This String array represents what are called "command-line-arguments" which allows
you to start the program with various parameters. However, we will not use these
parameters in the course and so we will not discuss it further.

• The 2nd last line will be a closing brace }.

COMP1406 - Chapter 1 - Programming in JAVA Winter 2014

 - 7 -

So … ignoring the necessary "template" lines, the actual program consists of only one line:
System.out.println("Hello World"); which actually prints out the characters Hello World to
the screen. You may recall that this was a little simpler in Processing since we simply did
println("Hello World");

So ... to summarize, every java program that you will write will have the following basic format:

public class {
 public static void main(String[] args) {
 ;
 ;
 ;
 }
}

Just remember that YOU get to pick the program name (e.g., MyProgram) which should
ALWAYS start with a capital letter. Also, your code MUST be stored in a file with the same
name (e.g., MyProgram.java). Then, you can add as many lines of code as you would like in
between the inner { } braces. You should ALWAYS line up ALL of your brackets using the
Tab key on the keyboard.

In Processing, all applications ran with a graphical window that allowed us to display graphics
and text as well as get user input via the keyboard and mouse. In JAVA however, there is no
such window that pops up. Instead, any program output simply appears in a System console,
which is usually a pane in the IDE's window.

Later in the course, we will create our own windows. For now, however, we will simply use the
System console to display results. This will allow us to focus on understanding what is going
on "behind the scenes" of a windowed application. It is important that we first understand the
principles of Object-Oriented Programming.

 1.3 Python vs. Processing vs. Java

Although Processing is based on JAVA syntax, it uses simplified names for functions and
procedures. Python code differs even more in regards to syntax. Provided here is a brief
explanation of a few of the differences (and similarities) between the three languages:

Commenting Code:

Python Processing & JAVA (i.e., they are the same)
single line comment

""" a multiline comment
 which spans more
 than one line.
"""

// single line comment

/* a multiline comment
 which spans more
 than one line.
*/

COMP1406 - Chapter 1 - Programming in JAVA Winter 2014

 - 8 -

Displaying Information To the System Console:

Python

print 'The avg is ' , avg
print 'All Done'

Processing

println ("The avg is " + avg);
println ("All Done");

Java

System.out.println("The avg is " + avg);
System.out.println("All Done");

Math Functions:

Python Processing Java

min (a, b)
max(a, b)
round (a)
pow(a, b)
sqrt (a)
abs (a)
sin (a)
cos (a)
tan (a)
degrees (r)
radians (d)
random.random ()

min (a, b)
max(a, b)
round (a)
pow(a, b)
sqrt (a)
abs (a)
sin (a)
cos (a)
tan (a)
degrees (r)
radians (d)
random (n)

Math. min (a, b)
Math. max(a, b)
Math. round (a)
Math. pow(a, b)
Math. sqrt (a)
Math. abs (a)
Math. sin (a)
Math. cos (a)
Math. tan (a)
Math. toDegrees (r)
Math. toRadians (d)
Math. random ()

Variables:

Python Processing Java

hungry = True ;
days = 15;
age = 19;
years = 3467;
seconds = 1710239;
gender = 'M' ;
amount = 21.3;
weight = 165.23;

boolean hungry = true ;
int days = 15;
byte age = 19;
short years = 3467;
long seconds = 1710239;
char gender = 'M' ;
float amount = 21.3;
double weight = 165.23;

boolean hungry = true ;
int days = 15;
byte age = 19;
short years = 3467;
long seconds = 1710239;
char gender = 'M';
float amount = 21.3 f ;
double weight = 165.23;

COMP1406 - Chapter 1 - Programming in JAVA Winter 2014

 - 9 -

Constants:

Python Processing Java

do not make our
own by default

math.pi

final int DAYS = 365;
final float RATE = 4.923;

PI

final int DAYS = 365;
final float RATE = 4.923 f ;

Math.PI

Type Conversion:

Python Processing Java

d = 65.237898546;
f = float (d);
i = int (f);
g = long (i);
c = chr (i);

double d = 65.237898546;
float f = (float)d;
int i = int (f);
float g = float (i);
char c = char (i);

double d = 65.237898546;
float f = (float)d;
int i = (int)f;
float g = (float)i;
char c = (char)i;

Arrays:

Python Processing & Java (i.e., they are the same)

days = zeros(30, Int)
weights = zeros(100, Float)
names = [] ;
rentals = [] ;
friends = [] ;

ages = [34, 12, 45]
weights = [4.5,2.6,1.5]
names = ['Bill' , 'Jen']

int [] days = new int [30];
double [] weights = new double [100];
String[] names = new String[3];
Car[] rentals = new Car[500];
Person[] friends = new Person[50];

int [] ages = {34, 12, 45};
double [] weights = {4.5,2.6,1.5};
String[] names = { "Bill" , "Jen" };

FOR loops:

Python Processing Java

total = 0
for i in range (1, n):
 total += i

print total

int total = 0;
for (int i=1; i<=n; i++) {
 total += i;
}
println (total);

int total = 0;
for (int i=1; i<=n; i++) {
 total += i;
}
System.out.println (total);

COMP1406 - Chapter 1 - Programming in JAVA Winter 2014

 - 10 -

WHILE loops:

Python Processing Java

speed = 0
x = 0
while x <= width:
 speed = speed + 2
 x = x + speed

int speed = 0;
int x=0;
while (x <= width) {
 speed = speed + 2;
 x = x + speed;
}

int speed = 0;
int x=0;
while (x <= width) {
 speed = speed + 2;
 x = x + speed;
}

IF statements:

Python

if (grade >= 80) and (grade <=100):
 print 'Super!'

if grade >= 50:
 print grade
 print 'Passed!'
else :
 print 'Grade too low.'

Processing

if ((grade >= 80) && (grade <=100))
 println ("Super!");

if (grade >= 50) {
 println (grade);
 println ("Passed!");
}
else
 println ("Grade too low.");

Java

if ((grade >= 80) && (grade <=100))
 System.out.println ("Super!");

if (grade >= 50) {
 System.out.println (grade);
 System.out.println ("Passed!");
}
else
 System.out.println ("Grade too low.");

COMP1406 - Chapter 1 - Programming in JAVA Winter 2014

 - 11 -

Procedures & Functions:

Processing Processing and Java

def procName(x, c):
 // Write code here

def funcName(h):
 result =
 // Write code here
 return result

void procName(int x, char c) {
 // Write code here
}

double funcName(float h) {
 result =;
 // Write code here
 return result;
}

As the course continues, you will notice other differences between Python , Processing and
JAVA . However, the underlying programming concepts remain the same. As we do coding
examples throughout the course, you will get to know the some of the other intricate details of
basic JAVA syntax. Therefore, we will not discuss this any further at this point.

 1.4 Getting User Input

In Processing , all applications ran with a graphical window that allowed us to display graphics
and text as well as get user input via the keyboard and mouse. In JAVA however, there is no
such window that pops up automatically.

In addition to outputting information to the console window, JAVA has the capability to get
input from the user. Unfortunately, things are a little "messier/uglier" when getting input. The
class is called Scanner and it is available in the java.util package (more on packages later).

To get input from the user, we will create a new Scanner object for input from the System
console. Here is the line of code that gets a line of text from the user:

new Scanner(System.in).nextLine();

This line of code will wait for the user (i.e., you) to enter some text characters using the
keyboard. It actually waits until you press the Enter key. Then, it returns to you the
characters that you typed (not including the Enter key). You can then do something with the
characters, such as print them out.

COMP1406 - Chapter 1 - Programming in JAVA Winter 2014

 - 12 -

Here is a simple program that asks users for their name and then says hello to them:

import java.util.Scanner; // More on this later

public class GreetingProgram {
 public static void main(String[] args) {
 Scanner keyboard = new Scanner(System.in);

 System.out.println("What is your name ?");
 System.out.println("Hello, " + keyboard.nextLine());
 }
}

Notice the output from this program if the letters Mark are entered by the user (Note that the
blue text (i.e., 2nd line) was entered by the user and was not printed out by the program):

What is your name ?
Mark
Hello, Mark

As you can see, the Scanner portion of the code gets the input from the user and then
combines the entered characters by preceding it with the "Hello, " string before printing to the
console on the second line.

Interestingly, we can also read in integers from the keyboard as well by using the nextInt()
function instead of nextLine() . For example, consider this calculator program that finds the
average of three numbers entered by the user:

import java.util.Scanner; // More on this later

public class CalculatorProgram {
 public static void main(String[] args) {
 int sum;

 Scanner keyboard = new Scanner(System.in);
 System.out.println("Enter three numbers:");
 sum = keyboard.nextInt() + keyboard.nextInt() + keyboard.nextInt();
 System.out.println("The average of these numbers is " + (sum/3.0));
 }
}

COMP1406 - Chapter 1 - Programming in JAVA Winter 2014

 - 13 -

Here is the output when the CalculatorProgram is run with the numbers 34, 89 and 17
entered:

Enter three numbers:
34
89
17
The average of these numbers is 46.666666666666664

There is much more we can learn about the Scanner class. It allows for quite a bit of
flexibility in reading input. In place of nextLine() , we could have used any one of the following
to specify the kind of primitive data value that we would like to get from the user:

nextInt(), nextShort(), nextLong(), nextByte(), nextFloat(),
nextDouble(), nextBoolean(), next()

Notice that there is no nextChar() function available. The next() function actually returns a
String of characters, just like nextLine() . If you wanted to read a single character from the
keyboard (but don't forget that we still need to also press the Enter key), you could use the
following: next().charAt(0) . We will look more into this later when we discuss String
functions. It is important to use the correct function to get user input. For example, if we were
to enter 10, 20 into our program above, followed by some "junk" characters ... an error will
occur telling us that there was a problem with the input as follows:

java.util. InputMismatchException
 ...
 at java.util.Scanner.nextInt(Unknown Source)
 at BetterCalculatorProgram.main(BetterCalculatorProgram.java:11)
 ...

This is JAVA's way of telling us that something bad just happened. It is called an Exception.
We will discuss more about this later. For now, assume that valid integers are entered.

Example:

Let us write a program that displays the following menu.

Luigi's Pizza

 S(SML) M(MED) L(LRG)
1. Cheese 5.00 7.50 10.00
2. Pepperoni 5.75 8.63 11.50
3. Combination 6.50 9.75 13.00
4. Vegetarian 7.25 10.88 14.50
5. Meat Lovers 8.00 12.00 16.00

The program should then prompt the user for the type of pizza he/she wants to order (i.e., 1 to
5) and then the size of pizza 'S', 'M' or 'L'. Then the program should display the cost of the
pizza with 13% tax added.

COMP1406 - Chapter 1 - Programming in JAVA Winter 2014

 - 14 -

To begin, we need to define a class to represent the program and display the menu:

public class LuigisPizzaProgram {
 public static void main(String args[]) {
 System.out.println("Luigi's Pizza ");
 System.out.println("---");
 System.out.println(" S(SML) M(MED) L(LRG)");
 System.out.println("1. Cheese 5.00 7.50 10.00 ");
 System.out.println("2. Pepperoni 5.75 8.63 11.50 ");
 System.out.println("3. Combination 6.50 9.75 13.00 ");
 System.out.println("4. Vegetarian 7.25 10.88 14.50 ");
 System.out.println("5. Meat Lovers 8.00 12.00 16.00 ");
 }
}

We can then get the user input and store it into variables. We just need to add these lines
(making sure to put import java.util.Scanner; at the top of the program):

Scanner keyboard = new Scanner(System.in);

System.out.println("What kind of pizza do you want (1-5) ?");
int kind = keyboard.nextInt();

System.out.println("What size of pizza do you want (S, M, L) ?");
char size = keyboard.next().charAt(0);

Now that we have the kind and size , we can compute the total cost. Notice that the cost of a
small pizza increases by $0.75 as the kind of pizza increases. Also, you may notice that the
cost of a medium is 1.5 x the cost of a small and the cost of a large is 2 x a small. So we can
compute the cost of any pizza based on its kind and size by using a single mathematical
formula. Can you figure out the formula ?

A small pizza would cost: smallCost = $4.25 + (kind x $0.75)
A medium pizza would cost: mediumCost =smallCost * 1.5
A large pizza would cost: largeCost =smallCost * 2.

Can you write the code now ?

float cost = 4.25f + (kind * 0.75f);
if (size == 'M')
 cost *= 1.5f;
else if (size == 'L')
 cost *= 2;

And of course, we can then compute and display the cost before and after taxes. Here is the
completed program:

COMP1406 - Chapter 1 - Programming in JAVA Winter 2014

 - 15 -

import java.util.Scanner;

public class LuigisPizzaProgram {
 public static void main(String args[]) {
 System.out.println("Luigi's Pizza ");
 System.out.println("---");
 System.out.println(" S(SML) M(MED) L(LRG)");
 System.out.println("1. Cheese 5.00 7.50 10.00 ");
 System.out.println("2. Pepperoni 5.75 8.63 11.50 ");
 System.out.println("3. Combination 6.50 9.75 13.00 ");
 System.out.println("4. Vegetarian 7.25 10.88 14.50 ");
 System.out.println("5. Meat Lovers 8.00 12.00 16.00 ");

 Scanner keyboard = new Scanner(System.in);

 System.out.println("What kind of pizza do you want (1-5) ?");
 int kind = keyboard.nextInt();

 System.out.println("What size of pizza do you want (S, M, L) ?");
 char size = keyboard.next().charAt(0);

 float cost = 4.25 f + (kind * 0.75 f);
 if (size == 'M')
 cost *= 1.5 f ;
 else if (size == 'L')
 cost *= 2;

 System.out.println("The cost of the pizza is: $" + cost);
 System.out.println("The price with tax is: $" + cost*1.13);
 }
}

The above program displays the price of the pizza quite poorly. For example, here is the
output of we wanted a Large Cheese pizza:

The cost of the pizza is: $5.0
The price with tax is: $5.6499999999999995

It would be nice to display money values with proper formatting (i.e., always with 2 decimal
places). The next section will cover this.

 1.5 Formatting Text

Consider the following similar program which asks the user for the price of a product, then
displays the cost with taxes included, then asks for the payment amount and finally prints out
the change that would be returned:

COMP1406 - Chapter 1 - Programming in JAVA Winter 2014

 - 16 -

import java.util.Scanner;

public class ChangeCalculatorProgram {
 public static void main(String[] args) {
 // Declare the variables that we will be using
 double price, total, payment, change;

 // Get the price from the user
 System.out.println("Enter product price:");
 price = new Scanner(System.in).nextFloat();

 // Compute and display the total with 13% tax
 total = price * 1.13;
 System.out.println("Total cost:$" + total);

 // Ask for the payment amount
 System.out.println("Enter payment amount:");
 payment = new Scanner(System.in).nextFloat();

 // Compute and display the resulting change
 change = payment - total;
 System.out.println("Change:$" + change);
 }
}

Here is the output from running this program with a price of $35.99 and payment of $50:

Enter product price:
35.99
Total cost:$40.66870172505378
Enter payment amount:
50
Change:$9.33129827494622

Notice all of the decimal places. This is not pretty. Even worse …if you were to run the
program and enter a price of 8.85 and payment of 10, the output would be as follows:

Enter product price:
8.85
Total cost:$10.0005003888607
Enter payment amount:
10
Change:$-5.003888607006957E-4

The E-4 indicates that the decimal place should be moved 4 units to the left…so the resulting
change is actually -$0.0005003888607006957. While the above answers are correct, it would
be nice to display the numbers properly as numbers with 2 decimal places.

COMP1406 - Chapter 1 - Programming in JAVA Winter 2014

 - 17 -

JAVA’s String class has a nice function called format() which will allow us to format a String in
almost any way that we want to. Consider (from our code above) replacing the change output
line to:

System.out.println("Change:$" + String. format("%,1.2f" , change));

The String.format() always returns a String object with a format that we get to specify. In our
example, this String will represent the formatted change which is then printed out. Notice
that the function allows us to pass-in two parameters (i.e., two pieces of information separated
by a comma , character). Recall that we discussed parameters when we created constructors
and methods for our own objects.

The first parameter is itself a String object that specifies how we want to format the resulting
String. The second parameter is the value that we want to format (usually a variable name).
Pay careful attention to the brackets. Clearly, change is the variable we want to format.
Notice the format string "%,1.2f" . These characters have special meaning to JAVA. The %
character indicates that there will be a parameter after the format String (i.e., the change
variable). The 1.2f indicates to JAVA that we want it to display the change as a floating point
number with at least 1 digit before the decimal and exactly 2 digits after the decimal. The ,
character indicates that we would like it to automatically display commas in the money amount
when necessary (e.g., $1,500,320.28). Apply this formatting to the total amount as well:

import java.util.Scanner;

public class ChangeCalculatorProgram2 {
 public static void main(String[] args) {
 double price, total, payment, change;

 System.out.println("Enter product price:");
 price = new Scanner(System.in).nextFloat();

 total = price * 1.13;
 System.out.println("Total cost:$" + String. format("%,1.2f" , total));

 System.out.println("Enter payment amount:");
 payment = new Scanner(System.in).nextFloat();

 change = payment - total;
 System.out.println("Change:$" + String. format("%,1.2f" , change));
 }
}

Here is the resulting output for both test cases:

Enter product price:
35.99
Total cost:$40.67
Enter payment amount:
50
Change:$9.33

Enter product price:
8.85
Total cost:$10.00
Enter payment amount:
10
Change:$-0.00

COMP1406 - Chapter 1 - Programming in JAVA Winter 2014

 - 18 -

It is a bit weird to see a value of -0.00, but that is a result of the calculation. Can you think of a
way to adjust the change calculation of payment - total so that it eliminates the - sign ? Try it.

The String.format() can also be used to align text as well. For example, suppose that we
wanted our program to display a receipt instead of just the change. How could we display a
receipt in this format:

 Product Price 35.99
 Tax 4.68

 Subtotal 40.67
Amount Tendered 50.00
=========================
 Change Due 9.33

If you notice, the largest line of text is the “Amount Tendered” line which requires 15
characters. After that, the remaining spaces and money value take up 10 characters. We
can therefore see that each line of the receipt takes up 25 characters. We can then use the
following format string to print out a line of text:

System.out.println(String.format("%15s%10.2f" , aString, aFloat));

Here, the %15s indicates that we want to display a string which we want to take up exactly 15
characters. The %10.2f then indicates that we want to display a float value with 2 decimal
places that takes up exactly 10 characters in total (including the decimal character). Notice
that we then pass in two parameters: which must be a String and a float value in that order
(these would likely be some variables from our program). We can then adjust our program to
use this new String format as follows …

import java.util.Scanner;

public class ChangeCalculatorProgram3 {
 public static void main(String[] args) {
 double price, tax, total, payment, change;

 System.out.println("Enter product price:");
 price = new Scanner(System.in).nextFloat();

 System.out.println("Enter payment amount:");
 payment = new Scanner(System.in).nextFloat();

 tax = price * 0.13;
 total = price + tax;

 change = payment - total;

 System.out.println(String.format("%15s%10.2f","Product Price" , price));
 System.out.println(String.format("%15s%10.2f","Tax" , tax));
 System.out.println("-------------------------");
 System.out.println(String.format("%15s%10.2f" , "Subtotal" , total));
 System.out.println(String.format("%15s%10.2f" , "Amount Tendered" , payment));
 System.out.println("=========================");
 System.out.println(String.format("%15s%10.2f","Change Due" , change));
 }
}

COMP1406 - Chapter 1 - Programming in JAVA Winter 2014

 - 19 -

The result is the correct formatting that we wanted. Realize though that in the above code, we
could have also left out the formatting for the 15 character strings by manually entering the
necessary spaces:

System.out.println(String.format(" Product Price%10.2f" , price));
System.out.println(String.format(" Tax%10.2f" , tax));
System.out.println("-------------------------");
System.out.println(String.format(" Subtotal%10.2f" , total));
System.out.println(String.format("Amount Tendered%10.2f" , payment));
System.out.println("=========================");
System.out.println(String.format(" Change Due%10.2f" , change));

However, the String.format function provides much more flexibility. For example, if we used
%-15S instead of %15s, we would get a left justified result (due to the -) and capitalized letters
(due to the capital S) as follows:

PRODUCT PRICE 34.99
TAX 4.55

SUBTOTAL 39.54
AMOUNT TENDERED 50.00
=========================
CHANGE DUE 10.46

There are many more format options that you can experiment with. Just make sure that you
supply the required number of parameters. That is, you need as many parameters as you
have % signs in your format string.

For example, the following code will produce a MissingFormatArgumentException since one of the
arguments (i.e., values) is missing (i.e., 4 % signs in the format string, but only 3 supplied
values:

System.out.println(String.format("$%.2f + $%.2f + $%.2f = $%.2f" , x, y, z));

Also, you should be careful not to miss-match types, otherwise an error may occur (i.e.,
IllegalFormatConversionException).

The next page shows a table of a few other format types that you may wish to use in the
future. You are not responsible for knowing or memorizing anything in that table ... it is just for
your own personal use.

Hopefully, you now feel confident enough to writing simple one-file JAVA programs to interact
with the user, perform some computations and solve some relatively simple problems. It
would be a VERY good idea to see if you can convert some of your simpler Processing/Python
programs into JAVA.

COMP1406 - Chapter 1 - Programming in JAVA Winter 2014

 - 20 -

Supplemental Information (Other String.format Flags)

There are a few other format types that may be used in the format string:

Type Description of What it Displays Example Output
%d a general integer 4096

%x an integer in lowercase hexadecimal ff

%X an integer in uppercase hexadecimal FF

%o an integer in octal 377

%f a floating point number with a fixed number of spaces 83.43

%e an exponential floating point number 7.869877e-03

%g a general floating point number with a fixed number of significant digits 0.008

%s a string as given "Hello"

%S a string in uppercase "HELLO"

%n a platform-independent line end <CR><LF>

%b a boolean in lowercase true

%B a boolean in uppercase FALSE

There are also various format flags that can be added after the % sign:

Format Flag Description of What It Does Example Output
- numbers are to be left justified 2378.348 followed by

any necessary spaces

0 leading zeros should be shown 000244.87

+ plus sign should be shown if positive number +67.34

(enclose number in round brackets if negative (439.67)

, show decimal group separators 2,347,892.99

There are many options for specifying various formats including the formatting of Dates and Times, but
they will not be discussed any further here. Please look at the java documentation.

Chapter 2

Creation and Storage of JAVA Objects

What is in This Chapter ?

When beginning object-oriented programming, students often have difficulty understanding
how objects interact. As a result, students sometimes struggle to write code in an object-
oriented manner. In this chapter we discuss how objects are created, stored and used in
JAVA. In order to properly understand object-oriented programming, it is important for you to
understand where data is being stored and how to access the data that is within another
object. Once you understand this simple concept, your life as an object-oriented programmer
will be easier. We will also discuss memory allocation so that you fully understand what an
object actually is. This will help you in 2nd year when you have to allocate memory on your
own.

COMP1406 - Chapter 2 - Creation and Storage of JAVA Objects Winter 2014

 - 22-

 2.1 Using Existing JAVA Objects

Until now, we have discussed creating programs by creating a class and inserting all of our
code into a main() procedure/method. This means that our programs are
considered procedural. Object-Oriented Programming (OOP) is similar to
that of procedural programming in that it also involves executing a set of
instructions in some specified order. However, it differs from procedural
programming in the way that your code is organized.

Programming using object-oriented style, involves organizing your code in
"chunks" that logically correspond to real-world objects. For example, you
may group all of your code related to a person into one file (called a class) while code related
to a car or a bank account would be grouped together in separate files (i.e., classes).

JAVA actually has a lot of pre-defined objects that are all organized into various packages. A
package is essentially equivalent to a folder that contains your .java files. There are many
standard packages in JAVA, each with many classes.

Here are just some of the standard packages that you will likely use in this course:

java.lang Basic classes and interfaces required by many JAVA programs. It is
automatically imported into all programs.

java.util Utility classes and interfaces such as date/time manipulations, random numbers,
string manipulation, collections ...

java.io Classes that enable programs to input and output data.

java.text Classes and interfaces for manipulating numbers, dates, characters and strings.
Provides internationalization capabilities as well.

When you want to make use of some of these classes, you will use the import keyword to tell
JAVA that you want to use a class so that it knows where to find it:

import < packageName>.*;

We did this already when we used the Scanner class, which is in the java.util package.
Basically, the import statement is used to tell the compiler which package (i.e., directory) the
class files are sitting in. You can always replace the * by a class name (where the class name
is in the package) so that the readers of your code are more clear on which classes you are
actually using. Keep in mind though that the import statement does not load any classes, it
merely instructs the compiler where to find them when you run your code. The code is only
imported/loaded by the JVM from those libraries as it is needed.

Here is a simple example that makes use of the pre-defined Object , String , Date, Point and
Rectangle object classes in JAVA, making sure to import the correct package:

COMP1406 - Chapter 2 - Creation and Storage of JAVA Objects Winter 2014

 - 23-

import java.lang.Object;
import java.lang.String;
import java.util.Date;
import java.awt.Point;
import java.awt.Rectangle;

public class ObjectTestProgram {
 public static void main(String[] args) {
 System.out.println(new Object ()); // general object
 System.out.println(new String ()); // blank string
 System.out.println(new Date ()); // date object
 System.out.println(new Point (50, 75)); // point object
 System.out.println(new Rectangle (5,10,20,30)); // rectangle
 }
}

If we do not specify where to find the objects via the import statement, JAVA will become
confused when compiling our code and will generate compile errors such as this:

 Error: C:\...\ObjectTestProgram.java:12: cannot find symbol class Date

In fact, all classes in the java.lang package are automatically imported so we do not need the
first two import statements. Also, when we have multiple classes being imported from the
same package (e.g., Point , Rectangle), we can use a single import statement with the *
wildcard character to tell JAVA to import any needed classes from that package. So here is
the simplest form of the code:

import java.util.*;
import java.awt.*;

public class ObjectTestProgram2 {
 public static void main(String[] args) {
 System.out.println(new Object()); // general object
 System.out.println(new String()); // blank string
 System.out.println(new Date()); // date object
 System.out.println(new Point(50, 75)); // point object
 System.out.println(new Rectangle(5,10,20,30)); // rectangle object
 }
}

In this example, we are simply creating the objects and then displaying them. Notice how
these objects are displayed in the output:

java.lang.Object@14led7ac

Wed Apr 06 15:18:05 EDT 2011
java.awt.Point[x=50,y=75]
java.awt.Rectangle[x=5,y=10,width=20,height=30]

COMP1406 - Chapter 2 - Creation and Storage of JAVA Objects Winter 2014

 - 24-

Each object displays itself differently. Notice that the Date object that was created actually
corresponds to today’s date and time (i.e., on April 6, 2011 when I ran the code). Also, notice
that the String object was actually an empty string (i.e., no characters were displayed).

 2.2 Creating Your Own Objects in JAVA

In the previous course, you should have already
gained experience in defining your own data
structures (a.k.a. data types, objects) that you
used within your program in order to group various
data elements together. For example, you may
have created a data structure that represents
someone's address as shown here.

class Address {
String name;
int streetNumber;
String streetName;
String city;
String province;
String postalCode;

}

In JAVA, we create this object by defining a class. Each class that we define represents a
new type (or category) of object. So, the above class represents an Address object that we
have defined. Here is a simple definition of an object as we know it so far:

A object represents multiple pieces of information that are grouped together.

A primitive data type (e.g., integer, float, character)
represents a single simple piece of information. An object,
however, is a bundle of data, which can be made up of
multiple primitives or possibly other objects as well. You
can think of an object as a bunch of small pieces of
information with an elastic around it å

Once we define this class/object, then we were allowed to create Address objects and use
them within our programs. For example, here is how we can create a new Address object
and fill in its values:

Address addr;

addr = new Address();
addr .name = "Patty O'Lantern" ;
addr .streetNumber = 187;
addr .streetName = "Oak St." ;
addr .city = "Ottawa" ;
addr .province = "ON" ;
addr .postalCode = "K6S8P2" ;

System.out.print(addr .name + " lives at ");
System.out.println(addr .streetNumber + " " + addr .streetName);

The code above prints out: "Patty O'Lantern lives at 187 Oak St." .

COMP1406 - Chapter 2 - Creation and Storage of JAVA Objects Winter 2014

 - 25-

public class Car {

}

public class House {

}

public class MyProgram {
 public static void main(String[] args) {
 ...
 }
}

In Processing , each object that we made was
created in the same Processing source code file
and we were able to create variables of those
types and use them within our program (as shown
here on the right). However, we cannot do this in
JAVA for two reasons:

1. JAVA requires ALL of our code to be
defined within a class . So, we cannot
define any variables at the top of the
program like this.

2. Unlike Processing , there is no setup() or
draw() procedure in JAVA, a main()
procedure is used instead.

Car myCar;
Car yourCar;
House aHouse;

class Car {

…
}
class House {

…
}

void setup() {
 …
}
void draw() {
 …
}

In JAVA, we generally define all of our own
objects in separate .java files which will reside
in the same folder as the main program class:

Even though the Car and House objects are
defined in their own individual .java files, they
cannot be run as programs. You can only
run classes that have the public static void
main(…) method defined. So, a JAVA
program will typically consist of multiple .java
files ... many of them being object definitions, and one of them being the actual program itself.

For example, we can define very simple Car and Person objects along with a test program as
follows (remember that each class is defined in its own file):

public class Car {
 String make;
 String model;
 int year;
}

public class Person {
 String name;
 String phoneNumber;
}

public class MyObjectTestProgram {
 public static void main(String[] args) {
 System.out.println(new Car());
 System.out.println(new Person());
 }
}

COMP1406 - Chapter 2 - Creation and Storage of JAVA Objects Winter 2014

 - 26-

Notice now the output from the program:

Car@19821f
Person@42e816

This is what objects look like by default. It shows the name of the class, then an @ symbol,
and finally a strange combination of numbers and letters.
This is what objects look like by default. They show the
name of the class, then an @ symbol, and finally a
strange combination of numbers and letters.

This number/letter combination represents the location
(or address) of the object in the computer’s memory.
We call this the reference, because this memory
address “refers to” the object. The actual value of the
address is unimportant to us, however, it is important for
you to understand that each time we make an object, it
“uses up” a portion of the computer’s memory.

Later we will see how to change the appearance of our
objects so that they show more meaningful information
when displayed.

The next section of notes will clarify in more detail
exactly how these objects are stored in memory.

000000000 0
000000000 1
000000000 2

 …

…
999999999 7
999999999 8
999999999 9

1GB RAM
(memory)

a
Car
object

a
Person
object reference

reference

COMP1406 - Chapter 2 - Creation and Storage of JAVA Objects Winter 2014

 - 27-

 2.3 Memory Allocation and Object Storage

In order to understand how objects are stored, it is first necessary to understand how your
computer's memory gets "used-up" as your program runs. The Java Virtual Machine (JVM)
is allotted a certain amount of memory space on your computer when your program begins to
run. This amount of memory allotted is adjustable via command-line arguments.

Upon start-up, some of this allotted memory is used up by the JVM. The remaining memory
that is available for your program is denoted as "free memory". As your program runs, it will
allocate (i.e., use up) some of this free memory at various times throughout the runtime of the
program. Your program will also return (i.e., free up) this used memory at various times as it
completes portions of your program. Hence the amount of available free memory will shrink
and grow throughout the execution of the program.

If we consider a snapshot at any time, the memory is broken up into 4 main logical portions as
shown here:

1. The Static Area of memory is memory that is used by the global & static variables
that are defined by your program. This memory usage is fixed and does not change as
the program runs.

2. The Free Memory is the memory that is not currently being used by your program. If
this memory ever gets used up during your program, you will get an "Out Of Memory"
error and your program will stop running.

3. The Stack memory is the memory that is used to store local variables . It also gets
used up a little each time you call a method or run code within a block of code (i.e., a
block is any code within braces). The amount of memory used during a method call
depends on the number and size of the local variables defined in the method as well as
its parameters.

4. The Heap memory is the memory that stores all the objects that you create. Each
time that you call a constructor by using the new keyword, the Heap memory will
increase.

COMP1406 - Chapter 2 - Creation and Storage of JAVA Objects Winter 2014

 - 28-

The following diagram shows how the Stack and Heap memory grows and shrinks over time:

Interestingly, in JAVA, there is no way explicitly to free up heap memory from objects that you
no longer want to use. The garbage collector handles this for you. You can "suggest" that
the garbage collector free up memory at any time in your program by using System.gc() .
However, this does not ensure that garbage collection will take place immediately. It is often
suggested to set object-type (i.e., non primitive type) variables to null so that the garbage
collector will realize that you are no longer holding on to an object and can free it sooner.
Ultimately, the success of this strategy depends on how the garbage collector has been
implemented.

For now, let us try to understand how data is stored in the stack memory.

COMP1406 - Chapter 2 - Creation and Storage of JAVA Objects Winter 2014

 - 29-

Recall the 8 primitive data types in JAVA and the amount of memory that each requires:

Type Bytes Used Can Store Values Within This Range

byte 1 -128 to +127

short 2 -32,768 to +32,767

int 4 -2,147,483,648 to +2,147,483,647

long 8 -9,223,372,036,854,775,808 to +9,223,372,036,854,775,807

float 4 -1038 to +1038

double 8 -10308 to +10308

char 2 any ASCII or UNICODE character (e.g., 'A','a','1','*','>', etc..)

boolean 1 true or false

Each time we declare a variable within a method, it reserves enough space in the STACK
memory to store the data.

For example, consider the following
variables declared within a method (i.e.,
these are NOT object attributes) and
notice the amount of memory that it
consumes in the stack memory:

byte age;
int id;
double weight;
boolean retired;
char gender;

JAVA automatically reserves this space
for us when we declare these variables.
Each variable begins at a unique address
in the computer's memory (i.e., the
number shown on the left side).
When using the variables, in our program,
the value for the variable is obtained by
simply looking at the address location to
obtain the information. Similarly, when
assigning values to the variables, the
address is used to know where to start
storing the information.

COMP1406 - Chapter 2 - Creation and Storage of JAVA Objects Winter 2014

 - 30-

Consider now a Person object that stores only
primitive data type attributes as follows:

public class Person {
 byte age;
 int id;
 double weight;
 boolean retired;
 char gender;
}

Notice how the object would be stored in memory on 32-bit and 64-bit machines if we were to
declare a few variables of type Person as follows:

Person mySister;
Person myMom;
Person myDad;

COMP1406 - Chapter 2 - Creation and Storage of JAVA Objects Winter 2014

 - 31-

Notice that on a 32-bit machine each variable requires just 4 bytes ... and requires 8 bytes on
a 64-bit machine. These bytes represent pointers to the location in memory that the object
will actually reside. A 32-bit machine has a 32-bit address space ... and so 4 bytes are
required to store each address reference (i.e., just the variable that holds the object … not the
object’s contents). A 64-bit machine has a 64-bit address space ... and so each object
variable requires an extra 4 byte overhead (i.e., double the space). So 64-bit machines,
although they may be faster for CPU-related operations, may require more space allocation by
default (there are ways to "compress" the pointer references...but this is not discussed here).
From this point onwards in the notes, unless otherwise stated explicitly, we will assume that we
are using a 32-bit machine in order to simplify the discussion.

You will also notice that the space is not reserved for storing any of the actual data inside the
object. Storing the data inside the object would require 16 bytes of storage to store the
age (1 byte), id (4 bytes), weight (8 bytes), retired (1 byte) and gender (2 bytes) information.
However, this space is not reserved until the object is created by calling its constructor.

By declaring the variable: Person mySister; we get a reference
(or pointer) to the location of the object in memory. Since we have yet to
create the object ... the value of the pointer is null .

So, null actually represents an undefined memory address which requires 4 bytes of storage
at all times (64-bit machines require 8 bytes to store each pointer). That means, each time
that we will use objects in java, there is always a 4-byte overhead (8-byte for 64-bit machines)
to store the reference to the object.

Now what about the object itself ? Consider what happens when we create the object via a
constructor as follows:

mySister = new Person();

This is now a constructor call, so the memory that will be used to store the object's data will be
the HEAP memory :

The amount of memory used up depends on the object's data values. Looking at the class
definition of the Person object, you will notice that it contains only primitive data types ... each
of which has a fixed size.

public class Person {
 byte age; // 1 byte
 int id; // 4 bytes
 double weight; // 8 bytes
 boolean retired; // 1 byte
 char gender; // 2 bytes
}

COMP1406 - Chapter 2 - Creation and Storage of JAVA Objects Winter 2014

 - 32-

The object requires 16 bytes to store your
data. However, each created object in JAVA
requires an additional storage overhead of 8
bytes to store an object header. The data
contained in the header is implementation-
specific ... so it depends on the particular java
implementation that you are using. In fact, it
is possible that other java implementations
may even vary the amount of space used in
the header.

Also, in some cases, additional bytes are
allocated in memory to ensure that the entire
object uses a multiple of 8 bytes . That is,
our current Person object stores 16 bytes of
data ... a nice multiple of 8. However, if we
were to add an additional boolean attribute to
the Person object definition, for example,
then it would take up 17 bytes . In that case,
java will probably reserve an additional 7
bytes more to bring the total up to 24 bytes
so that the entire object again uses a multiple
of 8 bytes . These extra 7 bytes would be
unused, but nevertheless allocated.

So, each Person object that we create will
require (16 + 8 = 24) bytes of storage as
shown in the diagram here. Notice that the
mySister variable now points to the location
where the Person object is being stored (i.e.,
address 0008237846 in our example). So,
the integer value of 0008237846 will be stored
as the pointer at address location
0000024389. Whenever we therefore use
the mySister variable, JAVA just looks at its
value and follows the pointer to find the
object.

COMP1406 - Chapter 2 - Creation and Storage of JAVA Objects Winter 2014

 - 33-

What happens when we access the
internals of the Person object by using the
dot operator ?

mySister . age = 15;
if (mySister . weight > 150) {
 ...
}

The code above requires us to go inside
the object to modify its internal age
variable/attribute and also to access the
internal weight variable/attribute:

In order to do this, JAVA needs to
determine the memory location of the age
and weight attributes relative to the
location of the mySister Person object.

JAVA begins with the address stored
in the mySister variable (i.e., 008237846)
and then adds to that value the fixed offset
that the .age portion of the object is with
respect to the start of the object (i.e., adds
8 bytes more to bypass the header). The
result is 0008237846 + 8 = 0008237854.
Once it has this location computed, it can
then change the byte value there to 15 as
the code instructed.

Similarly, when accessing the .weight
portion of the object, the offset from the
start of the object is 8 + 1 + 4 = 13 bytes.
Hence the weight value is found at
address location 0008237846 + 13 =
0008237859. Accessing the double at
this address requires the 8 bytes from
address 0008237859 to 0008237866 to be interpreted as a double value.

COMP1406 - Chapter 2 - Creation and Storage of JAVA Objects Winter 2014

 - 34-

Now what happens when an object is contained
within another object ? Consider two simple
objects defined as follows:

public class GPSLocation {
 float latitude;
 float longitude;
}

public class University {
 short opened;
 String name;
 GPSLocation location;
}

Now consider the following code:

GPSLocation herzberg;
University carleton;

herzberg = new GPSLocation();
herzberg.latitude = 45.382149;
herzberg.longitude = -75.697304;

carleton = new University();
carleton.opened = 1942;
carleton.name = "Carleton" ;
carleton.location = herzberg;

Notice what the memory allocation will look like
for this example (the picture is condensed a little
vertically to fit onto the page) ---->

COMP1406 - Chapter 2 - Creation and Storage of JAVA Objects Winter 2014

 - 35-

You can see that there are three objects involved:
 • the String literal "Carleton" • the GPSLocation • the University

The carleton variable points to the University object … which itself contains pointers to the
String object … and the GPSLocation object. The herzberg variable also points to the
GPSLocation object and so the address value stored at locations 0000024389 and
0508237842 are the same ... which is 0508237846.

String literals (i.e., String created using double quotes in your code) not stored in the Heap
memory but are actually stored in the STATIC AREA as constants. Any other created Strings
are stored in the Heap memory.

Example:

Consider writing a program that simulates a diving competition. The program will keep track
of various athletes who perform dives. Assume that the following objects have been defined,
each in their own files:

public class Dive {
 String name;
 int difficulty;
}

public class Performance {
 Dive dive;
 float [] scores;
}

public class Athlete {
 String name;
 String country;
 Performance [] performances;
}

Notice that each Performance object contains a Dive object. That means,
each performance corresponds to a single dive (i.e., an athlete performs one dive at a time).
Also, you will notice that the Athlete keeps an array of Performance objects. That is, as the
athlete performs dives over time, new performances will be added to this array ... each
performance representing a particular dive.

In order to make sure that we understand how objects are stored inside of one another, let us
see if we can write code that constructs a particular arrangement of these objects. Here is a
diagram showing the arrangement of objects that we would like to construct. Try to write the
code that will produce this picture.

COMP1406 - Chapter 2 - Creation and Storage of JAVA Objects Winter 2014

 - 36-

Looking at the picture, there are 3 Athlete objects, 6 Performance objects and 4 Dive objects.
The remaining objects are Strings and arrays. Since the Dive objects don't contain the other
objects that we created (i.e., neither Athlete nor Performance) we should start by making
those first. We can store them into variables d1, d2, d3 and d4 for later use.

Dive d1, d2, d3, d4;

d1 = new Dive();
d1.name = "reverse pike" ;
d1.difficulty = 3;

d2 = new Dive();
d2.name = "cannon ball" ;
d2.difficulty = 1;

d3 = new Dive();
d3.name = "reverse triple twist" ;
d3.difficulty = 4;

d4 = new Dive();
d4.name = "forward pike" ;
d4.difficulty = 2;

COMP1406 - Chapter 2 - Creation and Storage of JAVA Objects Winter 2014

 - 37-

Now, we should create the Performance objects, making sure to point them to the correct
Dive objects.

Performance p1, p2, p3, p4, p5, p6;

p1 = new Performance();
p1.dive = d1;
p1.scores = new float [8];

p2 = new Performance();
p2.dive = d2;
p2.scores = new float [8];

p3 = new Performance();
p3.dive = d3;
p3.scores = new float [8];

p4 = new Performance();
p4.dive = d3;
p4.scores = new float [8];

p5 = new Performance();
p5.dive = d4;
p5.scores = new float [8];

p6 = new Performance();
p6.dive = d4;
p6.scores = new float [8];

Finally, we create the Athlete objects:

Athlete art, dan, jen;

art = new Athlete();
art.name = "Art Class" ;
art.country = "Canada" ;
art.performances = new Performance[3];

dan = new Athlete();
dan.name = "Dan Druff" ;
dan.country = "Germany" ;
dan.performances = new Performance[3];

jen = new Athlete();
jen.name = "Jen Tull" ;
jen.country = "U.S.A." ;
jen.performances = new Performance[3];

Of course, we need to simulate these athletes doing their performances. So we need to add
the performances for each athlete:

art.performances[0] = p1;
art.performances[1] = p2;
art.performances[2] = p3;
dan.performances[0] = p4;
dan.performances[1] = p5;
jen.performances[0] = p6;

It seems like a lot of code, but we will see later how to shorten it. For now, it is just important
that you understand how various objects are stored inside others.

COMP1406 - Chapter 2 - Creation and Storage of JAVA Objects Winter 2014

 - 38-

As a further test of your understanding, see if you can write code to access and print out the
following:

1. the difficulty level of Art's 2nd performance
2. the object representing Dan's 2nd performance
3. the 6th judge's score for Jen's first performance

Here are the solutions:

1. System.out.println(art.performances[1].dive.difficulty);
2. System.out.println(dan.performances[1]);
3. System.out.println(jen.performances[0].scores[5]);

Can you write code to determine the average judges' score for Art (consider all performances)
? Assume that there are interesting scores stored in the data, because at the moment they are
all 0.

float sum = 0;

for (int p=0; p<3; p++) {
 for (int s=0; s<8; s++) {
 sum = sum + art.performances[p].scores[s];
 }
}
System.out.println(sum/24);

Do you understand this now ? If not, you may want to come for further help during office
hours. It is VERY important that you understand how to do this stuff.

Chapter 3

Defining Object Behavior

What is in This Chapter ?

This chapter discusses the basic idea behind object-oriented programming... that of defining
objects in terms of their state and behavior. It revisits the notion of constructors and then
explains how functions and procedures (also called methods) can be implemented and
associated with an object's definition. The difference between instance methods and
static/class methods is discussed. The notion of encapsulation is introduced as well as the
toString() method that affects how an object appears when printed. The chapter concludes
with a Bank example that makes use of 4 different objects.

COMP1406 - Chapter 3 – Defining Object Behavior Winter 2014

 - 40 -

 3.1 Object Constructors (Re-Visited)

A constructor is a special chunk of code that we can write in our object classes that will allow
us to hide the ugliness of setting all of the initial values for our objects each time we use
them. The main advantage of making a constructor is that it will allow us to reduce the
amount of code that we need to write each time we make a new object.

Consider, for example, a Person which is defined as shown below with 6 attributes:

public class Person {
 String firstName;
 String lastName;
 int age;
 char gender;
 boolean retired;
 Address address;
}

We can create a new Person object as follows: new Person()
However, to set the values for the person, we would need multiple lines of code:

Person p1 ;

p1 = new Person();

p1 .firstName = "Bobby" ;
p1 .lastName = "Socks" ;
p1 .age = 24;
p1 .gender = 'M';
p1 .retired = false ;
p1 .address = new Address("5 Elm St.");

Recall that we can write a constructor for this class that
allows us to provide initial values for all of the object's
attributes since a constructor is a special kind of function:

public Person(String f , String l , int a, char g, boolean r , Address d) {
 firstName = f ;
 lastName = l ;
 age = a;
 gender = g;
 retired = r ;
 address = d;
}

COMP1406 - Chapter 3 – Defining Object Behavior Winter 2014

 - 41 -

Notice in JAVA, we usually indicate that a constructor is public by placing the public keyword
in front of it. By defining the above constructor, we are thus able to specify the initial
parameters for any newly-created Person objects as follows:

Person p1 , p2 , p3 ;

p1 = new Person("Bobby" , "Socks" , 24, 'M', false, anAddress);
p2 = new Person("Holly" , "Day" , 72, 'F', true, anotherAddress);
p3 = new Person("Hank" , "Urchif" , 19, 'M', false , yetAnotherAddress);

Certainly, constructors allow us to greatly simplify our code when we need to create objects in
our program.

Suppose though, that we do not know the initial parameter values to
use. This would be analogous to the situation in real life where
someone fills out a form but leaves some information blank. What do
we do when the person leaves out information ? We have two
possible choices. Either (1) do not let them leave out any
information, or (2) choose some kind of “default” values for the blank
parts (i.e., make some assumptions by filling in something
appropriate).

Up until now, we have chosen to force the user of our objects to supply parameters for ALL of
the instance variables when they use (i.e., call) our constructor. So, we have taken approach
number (1) above. However, in JAVA, we are allowed to create more than one constructor as
long as the constructors each have a unique list of parameter types.

What if, for example, we did not know the person’s age, nor their address.

Person p1, p2 ;

p1 = new Person("Hank" , "Urchif" , , 'M', false,);

p2 = new Person(" Holly " , " Day" , , 'F', true,);

For this situation, we can actually define a second constructor that leaves out these two
parameters:

public Person(String f , String l , char g, boolean r) {
 firstName = f ;
 lastName = l ;
 gender = g;
 retired = r ;
 age = 0;
 address = null ;
}

COMP1406 - Chapter 3 – Defining Object Behavior Winter 2014

 - 42 -

Notice that there are two less parameters now (i.e., no age and no address). However, you
will notice that we still set the age and address to some default values of our choosing. What
is a good default age and address ? Well, we used 0 and null. Since we do not have an
Address object to store in the address instance variable, we leave it undefined by setting it to
null. Alternatively, we could have created a “dummy” Address object with some kind of
values that would be recognizable as invalid such as:

 address = new Address();

It is entirely up to you to decide what the default values should be. Make sure not to pick
something that may be mistaken for valid data. For example, some bad default values for
firstName and lastName would be “John” and “Doe” because there may indeed be a real
person called “John Doe”.

Here is one more constructor that takes no parameters. It has a special name and is known
as the zero-parameter constructor, the zero-argument constructor or the default
constructor. This time there are no parameters at all, so we need to pick default values for
all the attributes:

public Person() {
 firstName = "UNKNOWN";
 lastName = "UNKNOWN";
 gender = '?' ;
 retired = false ;
 age = 0;
 address = null ;
}

You can actually create as many constructors as you want. You just need to write them all one
after each other in your class definition and the user can decide which one to use at any time.
Here is our resulting Person class definition showing the four constructors …

public class Person {
 String firstName;
 String lastName;
 int age;
 char gender;
 boolean retired;
 Address address;

 // This is the zero - parameter constructor
 public Person() {
 firstName = "UNKNOWN";
 lastName = "UNKNOWN";
 gender = '?' ;
 retired = false ;
 age = 0;
 address = null ;
 }

COMP1406 - Chapter 3 – Defining Object Behavior Winter 2014

 - 43 -

 // This is a 4- parameter constructor
 public Person(String f, String l, int a, char g) {
 firstName = f;
 lastName = l;
 age = a;
 gender = g;
 retired = false ;
 address = null ;
 }

 // This is another 4- parameter constructor
 public Person(String f, String l, char g, boolean r) {
 firstName = f;
 lastName = l;
 gender = g;
 retired = r;
 age = 0;
 address = null ;
 }

 // This is a 6 - parameter constructor
 public Person(String f, String l, int a, char g, boolean r, Address d) {
 firstName = f;
 lastName = l;
 age = a;
 gender = g;
 retired = r;
 address = d;
 }
}

At any time we can use any of these constructors:

Person p1 , p2 , p3 , p4 ;

p1 = new Person();
p2 = new Person(" Sue" , " Purmann " , 58, 'F');
p3 = new Person("Holly" , "Day" , 'F', true);
p4 = new Person("Hank" , " Urchif" , 19, 'M', false, new Address(...));

Note that it is always a good idea to ensure that you have a zero-parameter constructor. As it
turns out, if you do not write any constructors, JAVA provides a zero-parameter constructor for
free. That is, we can always say new Car(), new Person(), new Address(), new
BankAccount() etc.. without even writing those constructors. However, once you write a
constructor that has parameters, the free zero-parameter constructor is no longer available.
That is, for example, if you write constructors in your Person class that all take one or more
parameters, then you will no longer be able to use new Person(). JAVA will generate an
error saying:

cannot find symbol constructor Person()

COMP1406 - Chapter 3 – Defining Object Behavior Winter 2014

 - 44 -

In general, you should always make your own zero-parameter constructor along with any
others that you might like to use because others who use your class may expect there to be a
zero-parameter constructor available.

 3.2 Defining Methods

At this point you should understand that objects are used to group variables together in order
to represent something called a data structure. Each object therefore has a set of attributes
(also called instance variables) that represent the differences between members of the same
class. For example, a Vehicle object may define a color attribute ... that is ... each vehicle
has a color. However, that color value can vary from vehicle to vehicle:

However, in real life, vehicles also vary in terms of their performance characteristics, their
functionality, their abilities and their features/options:

Likewise, in object-oriented programming, in addition to defining attributes, we can also define
how one particular kind of object's performance and behaviors differ from another's. Defining
an object's behavior is as simple as deciding what kind of functionality that the object should
have. This is nothing more than deciding which functions or procedures are required to
access, modify or compute information based on the object's attributes.

Simply put ... when we define an object, we

(1) define its attributes
(2) define the functions and procedures that work on/with the object

Object =

STATE

+

BEHAVIOR

COMP1406 - Chapter 3 – Defining Object Behavior Winter 2014

 - 45 -

What does all of this mean ? Instead of writing a single program with a list of
functions/procedures, we will now be associating some of the functions/procedures with
various objects. So, we will actually move some of the functions/procedures into our various
class definitions.

For example, consider the Processing code
shown here that causes two cars to
accelerate across the screen. Notice how
the Car class is used to define & maintain a
car's location and speed. The drawCar() and
moveCar() procedures are used to draw and
move a car across the screen. The setup()
and draw() procedures are essentially the
code that runs the program ... showing that
the two cars are continuously drawn and then
moved.

Clearly, as a car moves, its location will
change ... and perhaps its speed and direction
... depending on what we are really trying to
simulate. Notice that the drawCar() and
moveCar() procedures take (as an incoming
parameter) the Car object that is to be drawn
or moved. This is the object that gets
affected by the procedure call. So, in a way,
the procedure represents a behavior for the
car, as it will affect/modify the Car object that
is passed in.

Car myCar, yourCar ;

class Car {
 int x, y;
 float speed;
}

void drawCar(Car aCar) {
 ...
}

void moveCar(Car aCar) {
 ...
}

void setup () { ... }
void draw () {
 ...
 drawCar(myCar);
 drawCar(yourCar);

 moveCar(myCar);
 moveCar(yourCar);
}

Here is how we would define the procedures
in JAVA. The drawCar() and moveCar()
procedures are now written in the Car class ...
that is ... each Car object now knows how to
move and draw itself.

Then the main application program simply has
the setup() and draw() procedures in it. Note
however, that this JAVA code cannot be run,
as there is no main() method.

Notice how the parameter is not used
anymore but instead we "call" the procedure
by using the car object itself, followed by the
dot operator. This is similar to what we did to
access an object's attributes ... because the
procedures are now "inside" the Car object's
class definition just like the attributes are
defined inside there as well.

public class Car {
 int x, y;
 float speed;

 public void drawCar() { ... }
 public void moveCar() { ... }
}

public class AccelProgram {
 Car myCar, yourCar ;

 void setup() { ... }
 void draw() {
 ...
 myCar.draw();
 yourCar .draw();

 myCar.move();
 yourCar .move();
 }
}

COMP1406 - Chapter 3 – Defining Object Behavior Winter 2014

 - 46 -

We will write most of our functions and
procedures (now referred to as

methods) within our class definitions
along with the attributes. So we can
think of an object as being a set of
attributes (i.e., representing the object's
state) as well as a set of methods (i.e.,
representing the object's behavior) all
included "inside" the class:

Example:

Consider the Person class. Assume that we want to write a function that computes and
returns the discount for a person who attends the theatre on “Grandma/Granddaughter Night”.
Assume that the discount should be 50% for women who are retired or to girls who are 12 and
under. For all other people, the discount should otherwise be 0%. If we had the Person
passed in as a parameter to the function, we could write this code:

int computeDiscount(Person p) {
 if ((p.gender == 'F') && (p.age < 13 || p.retired))
 return 50;
 else
 return 0;
}

To write this as a method in JAVA, we would place this method in the Person class after the
instance variables and constructors are defined:

public class Person {
 // Define attributes first
 ...
 // Now define the constructors
 ...

 // Finally, write your methods here
 public int computeDiscount() {
 if ((this .gender == 'F') &&
 (this .age < 13 || this .retired))
 return 50;
 return 0;
 }
}

COMP1406 - Chapter 3 – Defining Object Behavior Winter 2014

 - 47 -

Notice that the Person parameter is no longer there and that the word this is now being used
in place of that parameter. The word this is a special word in JAVA that can be used in
methods (and constructors) to represent the object that we are applying the behavior to. That
is, whatever object that we happen to call the method on, that object is represented by the
word this within the method's body. You can think of the word this as being a nickname for
the object being "worked on" within the method. Outside of the method, the word this is
actually undefined (and therefore unusable outside of the method) .

So, if we called the computeDiscount() method for different Person objects, this would
represent the different objects p1, p2 and p3, each time the method is called, respectively:

Person p1 , p2 , p3 ;

p1 = new Person("Hank" , "Urchif" , 19, 'M');
p2 = new Person("Holly" , "Day" , 67, 'F', true , null);
p3 = new Person(" Bobby " , " Socks " , 12, 'F');

System.out.println(" p1's discount = " + p1 . computeDiscount ());
System.out.println(" p2's discount = " + p2 . computeDiscount ());
System.out.println(" p3's discount = " + p3 . computeDiscount ());

As it turns out, if you leave off the keyword this, JAVA will "assume" that you meant the object
that received the method call in the first place and will act accordingly. Therefore, the
following code is equivalent and often preferred since it is shorter:

public class Person {

 public int computeDiscount() {
 if ((gender == 'F') && (age < 13 || retired))
 return 50;
 else
 return 0;
 }
}

COMP1406 - Chapter 3 – Defining Object Behavior Winter 2014

 - 48 -

It is important for you to understand that the gender, age and retired attributes are obtained
from the Person object on which we called the computeDiscount() method.

You may have also noticed that the method was declared as public. This allows any code
outside of the class to use the method.

When we test the method using p3 . computeDiscount () ... this is a picture of what is
happening inside the object:

Consider writing another method that determines whether one person is older than another
person. We can call the method isOlderThan(Person x) and have it return a boolean value:

public boolean isOlderThan(Person x) {
 if (this .age > x.age)
 return true ;
 else
 return false ;
}

... or the more efficient version:

COMP1406 - Chapter 3 – Defining Object Behavior Winter 2014

 - 49 -

public boolean isOlderThan(Person x) {
 return (this .age > x.age);
}

Here is a portion of a program that determines the oldest of 3 people:

Person p1, p2, p3, oldest ;

p1 = new Person("Hank" , "Urchif" , 19, 'M');
p2 = new Person("Holly" , "Day" , 67, 'F', true, null);
p3 = new Person(" Bobby " , " Socks " , 12, 'F');

if (p1.isOlderThan(p2) && p1.isOlderThan(p3))
 oldest = p1;
else if (p2.isOlderThan(p1) && p2.isOlderThan(p3))
 oldest = p2;
 else
 oldest = p3;

Consider what happens inside p1 as we call p1.isOlderThan(p2) :

The method accesses the age that is stored within both Person objects this and x.

How could we write a similar method called oldest() that returns the oldest of the two Person
objects, instead of just returning a boolean ?

COMP1406 - Chapter 3 – Defining Object Behavior Winter 2014

 - 50 -

public Person oldest(Person x) {
 if (this .age > x.age)
 return this ;
 else
 return x ;
}

Notice how the code is similar except that it now returns the Person object instead. Now we
can simplify our program that determines the oldest of 3 people:

Person p1, p2, p3, oldest ;

p1 = new Person("Hank" , "Urchif" , 19, 'M');
p2 = new Person("Holly" , "Day" , 67, 'F', true, null);
p3 = new Person(" Bobby " , " Socks " , 12, 'F');

oldest = p1.oldest(p 2. oldest(p3)) ;

Do you understand how this code works ? Notice how the innermost oldest() method returns
the oldest of the p2 and p3. Then this oldest one is compared with p1 in the outermost
oldest() method call to find the oldest of the three.

In addition to writing such functions, we could write procedures that simply modify the object.
For example, if we wanted to implement a retire() method that causes a person to retire, it
would be straight forward as follows:

public void retire() {
 this .retired = true ;
}

Notice that the code simply sets the retired status of the person and that the method has a void
return type, indicating that there is no "answer" returned from the method's computations.

How about a method to swap the names of two people ?

public void swapNameWith(Person x) {
 String tempName;

 // Swap the first names
 tempName = this .firstName;
 this .firstName = x .firstName;
 x .firstName = tempName;

 // Swap the last names
 tempName = this . lastName;
 this .lastName = x .lastName;
 x .lastName = tempName;
}

Notice how the temporary variable is required to store the String that is being replaced.

COMP1406 - Chapter 3 – Defining Object Behavior Winter 2014

 - 51 -

At this point lets step back and see what we
have done. We have created 5 interesting
methods (i.e., behaviors) for our Person object
(i.e., computeDiscount(), isOlderThan(),
oldest(), retire() and swapNameWith()).
All of these methods were written one after
another within the class, usually after the
constructors. Here, to the right, is the
structure of the class now as it contains all the
methods that we wrote (the method code has
been left blank to save space).

Now although these methods were defined in the
class, they are not used within the class. We wrote
various pieces of test code that call the methods in
order to test them. Here is a more complete test
program that tests all of our methods in one shot:

public class FullPersonTestProgram {
 public static void main(String args[]) {
 Person p1, p2, p3;

 p1 = new Person("Hank" , "Urchif" , 19, 'M');
 p2 = new Person("Holly" , "Day" , 67, 'F', true , null);
 p3 = new Person(" Bobby " , " Socks " , 12, 'F');

 System.out.println("The discount for Hank is " +
 p1. computeDiscount ());
 System.out.println("The discount for Holly is " +
 p2. computeDiscount ());
 System.out.println("The discount for Bobby is " +
 p3. computeDiscount ());

 System.out.println("Is Hank older than Holly ? ..." +
 p1. isOlderThan (p2));
 System.out.println("The oldest person is " +
 p1. oldest (p2. oldest (p3)) .firstName);

 System.out.println("Holly is retired ? ... " + p 2.retired);
 p2. retire ();
 System.out.println("Holly is retired ? ... " + p 2.retired);
 p2. swapNameWith (p3);
 System.out.println("Holly’s name is now: " +
 p2.firstName + " " + p2.lastName);
 System.out.println("Bobby’s name is now: " +
 p3.firstName + " " + p3.lastName);
 }
}

public class Person {
 // These are the instance variables
 String firstName;
 String lastName;
 int age;
 char gender;
 boolean retired;
 Address address;

 // These are the constructors
 public Person() { ... }
 public Person(String fn, ...) { ... }

 // These are our methods
 int computeDiscount() { ... }
 boolean isOlderThan(Person x) { ... }
 Person oldest(Person x) { ... }
 void retire() { ... }
 void swapNameWith(Person x) { ... }
}

COMP1406 - Chapter 3 – Defining Object Behavior Winter 2014

 - 52 -

Here is the output:

The discount for Hank is 0
The discount for Holly is 50
The discount for Bobby is 50
Is Hank older than Holly ? ... false
The oldest person is Holly
Holly is retired ? ... false
Holly is retired ? ... true
Holly’s name is now: Bobby Socks
Bobby’s name is now: Holly Day

 3.3 Null Pointer Exceptions

In regards to calling methods, we must make sure that the object whose method we are trying
to call has been through the construction process. For example, consider the following code:

Person p;

System.out.println(p. computeDiscount());

This code will not compile. JAVA will give a compile error for the second line of code saying:

variable p might not have been initialized

JAVA is trying to tell you that you forgot to give a value to the variable p. In this case, we
forgot to create a Person object.

Lets assume then that we created the Person as follows and then tried to get the streetName:

Person p;

p = new Person("Hank" , "Urchif" , 'M', false);
System.out.println(p.address.streetName);

This code will now compile. Assume that the Person class was defined as follows:

public class Person {
 String firstName;
 String lastName;
 int age;
 char gender;
 boolean retired;
 Address address;

COMP1406 - Chapter 3 – Defining Object Behavior Winter 2014

 - 53 -

 public Person(String fn, String ln, char g, boolean r) {
 this .firstName = fn;
 this .lastName = ln;
 this .gender = g;
 this .retired = r;
 this .age = 0;
 this .address = null ;
 }
 ...
}

Here the address attribute stores an Address object which is assumed to have an instance
variable called streetName.

What will happen when we do this:

p.address.streetName

The code will generate a java.lang.NullPointerException. That means, JAVA is telling you
that you are trying to do something with an object that was not yet defined. Whenever you get
this kind of error, look at the line of code on which the error was generated. The error is

always due to something in front of a dot . character being null instead of being an actual
object. In our case, there are two dots in the code on that line. Therefore, either p is null or
p.address is null, that is the only two possibilities. Well, we are sure that we assigned a
value to p on the line above, so then p.address must be null. Indeed that is what has
happened, as you can tell from the constructor.

To fix this, we need to do one of three things:

1. Remove the line that attempts to access the streetName from the address, and access
it late in the program after we are sure there is an address there.

2. Check for a null before we try to print it and then don’t print if it is null … but this may
not be desirable.

3. Think about why the address is null. Perhaps we just forgot to set it to a proper value.
We can make sure that it is not null by giving it a proper value before we attempt to use
it.

NullPointerExceptions are one of the most common errors that you will get when
programming in JAVA. Most of the time, you get the error simply because you forgot to
initialize a variable somewhere (i.e., you forgot to create a new object and store it in the
variable).

COMP1406 - Chapter 3 – Defining Object Behavior Winter 2014

 - 54 -

 3.4 Overloading

When we write two methods in the same class with the same name, this is called
overloading. Overloading is only allowed if the similar-named methods have a different set
of parameters. Normally, when we write programs we do not think about writing methods with
the same name … we just do it naturally. For example, imagine implementing a variety of
eat() methods for the Person class as follows:

public void eat(Apple x) { … }
public void eat(Orange x) { … }
public void eat(Banana x, Banana y) { … }

Notice that all the methods are called eat(), but that there is a variety of parameters, allowing
the person to eat either an Apple, an Orange or two Banana objects. Imagine the code below
somewhere in your program that calls the eat() method, passing in anObject of some type:

Person p;

p = new Person();
p.eat(z);

How does JAVA know which of the 3 eat() methods to call ? Well, JAVA will look at what kind
of object z actually is. If it is an Apple object, then it will call the 1st eat() method. If it is an

Orange object, it will call the 2nd method. What if z is a Banana ? It will NOT call the 3rd

method … because the 3rd method requires 2 Bananas and we are only passing in one. A call
of p.eat(z, z) would call the 3rd method if z was a Banana. In all other cases, the JAVA

compiler will give you an error stating:

 cannot find symbol method eat(...)

where the ... above is a list of the types of parameters that you are trying to use.

JAVA will NOT allow you to have two methods with the same name AND parameter types
because it cannot distinguish between the methods when you go to use them. So, the
following code will not compile:

public double calculatePayment (BankAccount account){... }
public double calculatePayment (BankAccount x){... }

You will get an error saying:

calculatePayment(BankAccount) is already defined in Person

Recall our method called isOlderThan() that returns a boolean indicating whether or not a
person is older than the one passed in as a parameter:

COMP1406 - Chapter 3 – Defining Object Behavior Winter 2014

 - 55 -

public boolean isOlderThan(Person x) {
 return (this .age > x.age);
}

We could actually write another method in the Person class that took two Person objects as
parameters:

public boolean isOlderThan(Person x, Person y) {
 return (this .age > x.age) && (this .age > y.age);
}

... and even a third method with 3 parameters:

public boolean isOlderThan(Person x, Person y, Person z) {
 return (this . age > x.age) && (this .age > y.age) && (this .age > z.age);
}

As a result, we could use any of these methods in our program:

Person p1, p2, p3, p4, oldest ;

p1 = new Person("Hank" , "Urchif" , 19, 'M');
p2 = new Person("Holly" , "Day" , 67, 'F');
p3 = new Person("Bobby" , "Socks" , 12, 'M');
p4 = new Person("Sue" , "Purmann" , 58, 'F');

if (p1.isOlderThan(p2 , p3 , p4))
 oldest = p1;
else if (p2.isOlderThan(p 3, p4))
 oldest = p2;
else if (p3.isOlderThan(p 4))
 oldest = p3;
 else
 oldest = p4;

Keep in mind, however, that the parameters need not be the same type. You can have any
types of parameters. Remember as well that the order makes a difference. So these would
represent unique methods:

public int computeHealthRisk(int age, int weight, boolean smoker) { ... }
public int computeHealthRisk(boolean smoker , int age, int weight) { ... }
public int computeHealthRisk(int weight, boolean smoker , int age) { ... }

But these two cannot be defined together in the same class because the parameter types are
in the same order:

public int computeHealthRisk(int age, int weight, boolean smoker) { ... }
public int computeHealthRisk(int weight, int age, boolean smoker) { ... }

COMP1406 - Chapter 3 – Defining Object Behavior Winter 2014

 - 56 -

 3.5 Instance vs. Class (i.e., static) Methods

The methods that we have written so far have defined behaviors that worked on specific object
instances. For example, when we used the computeDiscount() method, we did this:

Person p1 , p2 ;

p1 = new Person("Hank" , "Urchif" , 19, 'M');
p2 = new Person("Holly" , "Day" , 67, 'F');

System.out.println(" p1's discount = " + p1 . computeDiscount ());
System.out.println(" p2's discount = " + p2 . computeDiscount ());

In this example, p1 and p2 are variables that store instances of the Person class (i.e., specific
individual Person objects). Therefore, the computeDiscount() method is considered to be
an instance method of the Person class, since it operates on a specific instance of the
Person class.

Instance methods represent behaviors (functions and procedures) that are to be

performed on the particular object that we called the method for (i.e., the receiver of the
method).

Instance methods typically access the inner parts of the receiver object (i.e., its attributes) and
perform some calculation or change the object’s attributes in some way.

A method that does not require an instance of an object to work is called a class method:

Class methods represent behaviors (functions and procedures) that are

performed on a class ... without a particular object in mind.

Therefore, class methods do not represent a behavior to be performed on a particular receiver
object. Instead, a class method represents a general function/procedure that simply happens
to be located within a particular class, but does not necessarily have anything to do with
instances of that class. Generally, class methods are not used to modify a particular instance
of a class, but usually perform some computation.

For example, recall the code for the computeDiscount() method:

public int computeDiscount() {
 if ((this .gender == 'F') && (this .age < 13 || this .retired))
 return 50;
 else
 return 0;
}

COMP1406 - Chapter 3 – Defining Object Behavior Winter 2014

 - 57 -

We could have re-written the computeDiscount() method by supplying the appropriate
Person object as a parameter to the method as follows:

public int computeDiscount(Person p) {
 if ((p.gender == 'F') && (p.age < 13 || p.retired))
 return 50;
 else
 return 0;
}

Notice how the method now accesses the person p that is passed in as the parameter, instead
of the receiver this. If we do this, the code result is now fully-dependent on the attributes of
the incoming parameter p, and hence independent of the receiver altogether. To call this
method, we would need to pass in the person as a parameter:

Person p1 , p2 ;

p1 = new Person("Hank" , "Urchif" , 19, 'M');
p2 = new Person("Holly" , "Day" , 67, 'F', true , null);

System.out.println(" p1's discount = " + p1 . computeDiscount (p1));
System.out.println(" p2's discount = " + p2 . computeDiscount (p2));

We would never do this, however, since within the computeDiscount() method, the parameter
p and the keyword this both point to the same Person object. So, the extra parameter is not
useful since we can simply use this to access the person. Instead, what we probably wanted
to do is to make a general function that can be written anywhere (i.e., in any class) that allows
a discount to be computed for any Person object that was passed in as a parameter.
Consider this class for example:

public class Toolkit {
 ...
 public int computeDiscount(Person p) {
 if ((p.gender == 'F') && (p.age < 13 || p.retired))
 return 50;
 else
 return 0;
 }
 ...
}

Now to call the method, we would need to make an instance of Toolkit as follows:

new Toolkit(). computeDiscount (p1);

But this seems awkward. If we wanted to use this "tool-like" function on many people, we
could do this:

COMP1406 - Chapter 3 – Defining Object Behavior Winter 2014

 - 58 -

Person p1, p2, p3;
Toolkit toolkit ;

toolkit = new Toolkit();
p1 = ...;
p2 = ...;
p3 = ...;
System.out.println(toolkit . computeDiscount(p1));
System.out.println(toolkit . computeDiscount(p2));
System.out.println(toolkit . computeDiscount(p3));

Now we can see that toolkit is indeed a separate class from Person and that it acts as a
container that holds on to the useful computeDiscount() function. However, we can simplify
the code.

Anytime that we write a method that does not modify or access the attributes of an instance of
the class that it is written in, the method functionality does not change. In other words, the
code is not changing from instance to instance ... and is therefore considered static.
In our example, the code inside of the computeDiscount() method does not access or modify
and attributes of the Toolkit class...it simply accesses the attributes of the Person passed in
as a parameter as performs a computation. Therefore this method should be made static.

How do we do this ? We simply add the static keyword in front of the method definition:

public class Toolkit {
 ...
 public static int computeDiscount(Person p) {
 if ((p.gender == 'F') && (p.age < 13 || p.retired))
 return 50;
 else
 return 0;
 }
 ...
}

Now we do not need to make an new Toolkit object in order to call the method. Instead, we
simply use the Toolkit class name to call the method. Here is how the code changes. Notice
how much simpler it is to use the method once it has been made static. (to save space,
System.out.println has been written as S.o.p below):

Using it as an instance method Using it as a class method
Person p1, p2, p3;
Toolkit toolkit ;
toolkit = new Toolkit();
p1 = ...;
p2 = ...;
p3 = ...;
S.o.p(toolkit . computeDiscount(p1));
S.o.p(toolkit . computeDiscount(p2));
S.o.p(toolkit . computeDiscount(p3));

Person p1, p2, p3;
p1 = ...;
p2 = ...;
p3 = ...;
S.o.p(Toolkit . computeDiscount(p1));
S.o.p(Toolkit . computeDiscount(p2));
S.o.p(Toolkit . computeDiscount(p3));

COMP1406 - Chapter 3 – Defining Object Behavior Winter 2014

 - 59 -

This is the essence of a class/static method … the idea that the method does not necessarily
need to be called by using an instance of the class.

Hopefully, you will have noticed that the main difference between an instance method and a
class/static method is simply in the way in which it is called. To repeat … instance methods
are called by supplying a specific instance of the object in front of the method call (i.e., a
variable of the same type as the class in which the method is defined in), while class methods
supply a class name in front of the method call:

// calling an instance method...
variableOfTypeX . instanceMethodWrittenInClassX(…);

// calling a class method...
ClassNameY . staticMethodWrittenInClassY(…);

Often, we use class methods to write functions that may have nothing to do with objects at all.
For example, consider methods that convert a temperature value from centigrade to fahrenheit
and vice-versa:

public static double centigradeToFa hrenheit(double t emp) {
 return t emp * (9.0 /5.0) + 32.0;
}
public static double fah renheitToCentigrade (double t emp) {
 return 5.0 * (temp - 32.0) / 9 .0;
}

Where do we write such methods since they only deal with primitives, not objects ? The
answer is … we can write them anywhere. We can place them at the top of the class that we
would like to use them in. Or … if these functions are to be used from multiple classes in our
application, we could make another tool-like class and put them in there:

public class ConversionTools {
 ...
}

Then we could use it as follows:

double f = ConversionTools.centigradeToFahrenheit(18.762);

As you browse through the JAVA class libraries, you will notice that there are some useful
static methods, however ... most methods that you will write for your own objects will be
instance methods.

COMP1406 - Chapter 3 – Defining Object Behavior Winter 2014

 - 60 -

 3.6 Encapsulation - Protecting An Object's Internals

When creating and defining an object it is a good idea to keep it simple so that anybody who
uses that object in the future (including yourself) can remember how to use it. Often, there are
details about an object that we don’t need to know about in order to use the object. For
example, when we drive a car, we need to know simple things such as:
 • starting/ stopping • steering • changing gears • braking, etc..

However, we do not need to worry about things such as:
 • assembling the carburetor • adjusting the spark plug timing • installing gas lines • changing the muffler, etc..

Cars are clearly designed to be easy to drive, requiring a simple and easy-to-understand
interface. Similarly, it is important that we make our code easy to use and easy to
understand. Otherwise, making changes to the code, debugging it and extending it with new
features can quickly become very difficult and time consuming.

In order to keep our code simple, we need to make the interface (or
"outside view") of our objects as simple as possible. That means,
we need to “hide the details” of our object that most people
would not need to worry about. That is, we need to hide some of
the attributes (complicated parts) and methods (complicated
procedures) for our object “under the hood”, so to speak.

In addition to simplicity, there is another reason to hide some of the
details of our object. We would like to prevent outsiders from "messing
around with" the inner details of an object. For example we lock our car
doors and trunk so that people don't get in there are take things away or
damage them etc.. Similarly, for example, if we allow anyone to access
the attributes of our object and perform behaviors on it in the wrong
order, then this could lead to corrupt data and/or various types of errors
in our code.

The idea of hiding the unnecessary details of an object and
protecting inner parts of that object from general users is called
encapsulation:

Encapsulation involves enclosing an object with a

kind of “protective bubble” so that it cannot be accessed or
modified without proper permission.

COMP1406 - Chapter 3 – Defining Object Behavior Winter 2014

 - 61 -

In JAVA, we protect and hide attributes and behaviors by using something called an access
modifier.

An access modifier is a permission setting for our attributes

and methods so that they will be visible/modifiable/usable from some
places in our code but not from other places.

Access modifiers are like access levels in a high security building (e.g., no
access, level 1 access, level 2 access, etc..)

By using access modifiers properly, when working with a team of software developers on a
large program, some developers will have the freedom to access or modify attributes or
methods from various objects, while others will not be allowed such freedom to view or change
portions the objects as they would like to.

We have already been using an access modifier called public when we wrote our classes,
constructors and various methods:

public class Person { … }
public Person(String firstName, ...) { … }
public static void main(String[] args) { … }
public int computeDiscount() { … }
public void deposit() { … }

The keyword public at the front of a method declaration means that the method is publicly
available to everyone, so that these methods may be called from anywhere.
For most classes, constructors and methods, we do not need to write public. If we leave off
this access modifier, then the class/constructor/method will have what is known as default
access … meaning that the methods may be called from any code that is in the same package
or folder that this method’s class is saved into. If we write all of our code in the same folder,
then default and public access means the same thing.

There are two other access modifier options available called private and protected. When
we declare a method as private, we would not be able to use this method from any class other
than the class in which it is defined. Protected methods are methods that may be called from
the method’s own class or from one of its subclasses (more on this soon). So here is a
summary of the access modifiers for methods:

• none - can be called from any class in the same folder • public - can be called from anywhere

• private - can only be called from this class

• protected - can be called from this class or any subclasses (discussed later)

In this course, most of the methods that we write are public methods which allows the most
freedom to access and modify our objects. Usually, private methods are known as helper
methods since they are often created for the purpose of helping to reduce the size of a larger
public method or when a piece of code is shared by several methods.

COMP1406 - Chapter 3 – Defining Object Behavior Winter 2014

 - 62 -

For example, consider bringing in your car for repair. The publicly available method would be
called to repair() the car. However, many smaller sub-routines are performed as part of the
repair process (e.g., runDiagnostics(), disassembleEngine() etc...). From the point of view
of the user of the class, there is no need to understand the inner workings of the repair
process. The user of the class may simply need to know that the car can be repaired,
regardless of how it is done. Here is an example of breaking up the repair problem into helper
methods that do the sub-routines as part of the repair …

public class Car {
 public void repair() {
 this . runDiagnostics();
 this . disassembleEngine();
 this . repairBrokenParts();
 this . reassembleEngine();
 this . runDiagnostics();
 }
 private void runDiagnostics() { /*...*/ }
 private void disassembleEngine() { /*...*/ }
 private void repairBrokenParts() { /*...*/ }
 private void reassembleEngine() { /*...*/ }
}

Notice that the helper methods are private since users of this class probably do not need to
call them. Here is an example showing how we might attempt to call these methods from
some other class:

public class SomeCarApplicationProgram {
 public static void main(String[] args) {
 Car c = new Car();
 c. repair() ; // OK to call this method
 c. disasse mbleEngine() ; // Won’t compile, since it is private
 c. repairBrokenParts() ; // Won’t compile, since it is private
 }
}

Now what about protecting an object’s attributes ? Well, the public/private/protected and
default modifiers all work the same way as with behaviors. When used on instance variables,
it allows others to be able to access/modify them according to the specified restrictions.

So far, we have never specified any modifiers for our attributes, allowing them all default
access from classes within the same package or folder.

However, in real world situations, it is often best NOT to allow outside users
to modify the internal private parts of your object. The reason is that results
can often be disastrous. It is easy to relate to this because we well
understand how we hide our own private parts .

As an example, consider the following code, which may appear in any class. It shows that we
can directly access the balance of a BankAccount.

COMP1406 - Chapter 3 – Defining Object Behavior Winter 2014

 - 63 -

This is clearly undesirable since there is little protection. Could you imagine if anyone could
modify the balance of your bank account directly ?

BankAccount myAccount = new BankAccount("Mine");

myAccount.balance = 1000000.00f; // YAY

myAccount.balance = - 1000000.00f; // WHY ...

In order to prevent direct access to important information we would need to prevent the code
above from compiling/running. If we were to declare the balance instance variable as private
within the BankAccount class, then the above code would not compile, thus solving the issue.

In general, while freedom to access/modify anything from anywhere seems like a friendly thing
to do, it is certainly dangerous. Anyone could "stomp" all over our instance variables
changing them at will. A general "rule-of-thumb" that should be followed is to declare ALL of
your instance variables as private as follows:

public class Patient {
 private String name;
 private int age;
 private float height;
 private char gender ;
 private boolean retired;

 ...
}

Once we do this, then the following code will not work (when written in a class other than the
Patient class):

public class SomeApplicationProgram {
 public static void main(String[] args) {
 Patient p = new Patient();
 p.name = "Sandy Beach" ; // will NOT compile
 p.age = 15; // will NOT compile
 p.height = 5.85f; // will NOT compile
 p.gender = 'M'; // will NOT compile
 p.retired = false ; // will NOT compile
 System.out.println(p.name); // will NOT compile
 System.out.println(p.age); // will NOT compile
 System.out.println(p.height); // will NOT compile
 System.out.println(p.gender); // will NOT compile
 System.out.println(p.retired); // will NOT compile
 }
}

COMP1406 - Chapter 3 – Defining Object Behavior Winter 2014

 - 64 -

What we have essentially done is to erect a wall around the object ... like
the wall around a city. We have encapsulated it with a protective bubble.
Although we are still able to create the object, we are prevented from
accessing or modifying its internals now from outside the class. By doing
this, we have protected the object so much that we cannot get information
neither into it nor out from it. We have kind of secluded the object from the
rest of the world by doing this. However, just as a walled city has gates or doors to allow
access, we too have a form of gated access by means of any publicly available methods.

We will grant access to "some" of our object's attributes (i.e., instance variables) by creating
methods known as get and set methods (also called getters and setters). The idea of
creating these gateways to our object’s data is common practice and is considered to be a
robust strategy when creating classes to be used in a large software application.
In this course, since we are only creating a few classes and since we are the only code writers,
we may not immediately see the benefits of declaring private attributes and then creating
these methods. However, in a larger/complicated system with hundreds of classes, the
benefits become quite clear:
 • object attributes are easier to understand and use • attributes are protected from external/unknown changes • we are following proper and robust coding style

Let us first consider get methods. They let us look at information that is within the object by
getting the object’s attribute values (i.e., get the values of the instance variables). Get
methods have:
 • public access • return type matching attribute’s type • name matching attribute’s name • code returning attribute’s value

Here is how we would write the standard get methods
for a Patient class:

public class Patient {
 private String name;
 private int age;
 private float height;
 private char gender ;
 private boolean retired;

 // Get method s for name, age, height, gender and retired attributes
 public String getName() { return this. name; }
 public int getAge() { return this. age; }
 public float getHeight() { return this. height; }
 public char getGender() { return this. gender; }
 public boolean isRetired() { return this. retired; }
}

COMP1406 - Chapter 3 – Defining Object Behavior Winter 2014

 - 65 -

Notice that all the methods look the same in structure. They are all public, all have return
types and names that match the attribute type, all have no parameters and all are one line
long.

When we call the method to get the attribute value, the method simply returns the attribute
value to us. It’s quite simple. By convention, all get methods start with “get” followed by the
attribute name, with the exception of attributes that are of type boolean. In that case, we
usually use “is” followed by the attribute name, as it makes the method call more natural.

Now let us examine the set methods. Set methods allow us to put values into the instance
variables (i.e., to set the object's attributes). Set methods have:
 • public access • void return type • name matching attribute’s name

• a parameter matching attribute’s type • code giving the attribute a value

Here is how we would write the standard set methods for the Patient class:

 // Set method for name attribute
 public void setName(String n) {
 this. name = n;
 }
 // Set method for age attribute
 public void setAge(int a) {
 this. age = a;
 }
 // Set method for height attribute
 public void setHeight(float h) {
 this. height = h;
 }
 // Set method for gender attribute
 public void setGender(char g) {
 this. gender = g;
 }
 // Set method for retired attribute
 public void setRetired(boolean r) {
 this. retired = r;
 }

The single line of code in a set method is quite simple also.

When we call the method to give the attribute a new value (i.e., we supply the new value as a
parameter to the method), the method simply takes that new attribute value and sets the
attribute to it by using the = operator.

Normally, we write all the get and set methods together, and sometimes shorten them onto
one line. Also, they are often listed in the code right after the public constructors as follows:

COMP1406 - Chapter 3 – Defining Object Behavior Winter 2014

 - 66 -

public class Patient {
 private String name;
 private int age;
 private float height;
 private char gender ;
 private boolean retired;

 // Constructor
 public Patient() {
 name = "Unknown" ;
 age = 0;
 height = 0;
 gender = '?';
 retired = false ;
 }

 // Get methods
 public String getName() { return this. name; }
 public int getAge() { return this. age; }
 public float getHeight() { return this. height; }
 public char getGender() { return this. gender; }
 public boolean isRetired() { return this. retired; }

 // Set methods
 public void setName(String n) { this. name = n; }
 public void setAge(int a) { this. age = a; }
 public void setHeight(float h) { this. height = h; }
 public void setGender(char g) { this. gender = g; }
 public void setRetired(boolean r) { this. retired = r; }
}

Here is how the get method works:

Notice that primitive attribute values are returned as simple values but object attribute values
are returned as pointers/references to the object. The Patient object remains unchanged as a
result of a get method call.

COMP1406 - Chapter 3 – Defining Object Behavior Winter 2014

 - 67 -

Here is how the set method works:

Notice that primitive attribute values are simply replaced with the new value. For object
attribute values, after the set call, the attribute will point to the new object. The previous
object that the attribute used to point to is discarded (i.e., garbage collected) if no other objects
are holding on to it. Once we create these get/set methods, we can then access and modify
the object from anywhere in our program as before:

public class TestPatientProgram {
 public static void main(String[] args) {
 Patient p = new Patient();

 System.out.println("Before Setting ...");
 System.out.println(p.getName()); // was println(p.name);
 System.out.println(p.getAge()); // was println(p.age);
 System.out.println(p.getHeight()); // was println(p.height);
 System.out.println(p.getGender()); // was println(p.gender);
 System.out.println(p.isRetired()); // was println(p.retired);

 p.setName("Sandy Beach") ; // was p.name = "Sandy Beach";
 p.setAge(15) ; // was p.age = 15;
 p.setHeight(5.85f) ; // was p.height = 5.85f;
 p.setGender('F') ; // was p.gender = 'F';
 p.setRetired(true) ; // was p.retired = true;

 System.out.println("\ nAfter Setting ...");
 System.out.println(p.getName()); // was println(p.name);
 System.out.println(p.getAge()); // was println(p.age);
 System.out.println(p.getHeight()); // was println(p.height);
 System.out.println(p.getGender()); // was println(p.gender);
 System.out.println(p.isRetired()); // was println(p.retired);
 }
}

COMP1406 - Chapter 3 – Defining Object Behavior Winter 2014

 - 68 -

Here is what the output would be (however, initial values depend on the Patient constructor):

Before Setting ...
Unknown
0
0.0
?
false

After Setting ...
Sandy Beach
15
5.85
F
true

Now if we think for a moment ... what did we really do by making all the get and set methods
? Really, we wrote a lot of code (e.g., 5 get methods and 5 set methods for the Patient class)
but did not gain anything new. The code does the same thing as before. In fact, the test
code seems longer and perhaps slower (since we are calling a method to get/set the instance
variables for us instead of accessing them directly). So why did we do this ? Let us review
the advantages again:

1. First, get/set methods actually make life simpler for users of your
class because the user does not have to understand the “guts” of
the object being used. It allows them to treat the object as a “black
box”. The user does not need to know about all the instance
variables. Some are used to hold data that is temporary or
private. You should only create public get methods for the
instance variables that the user of the class would need to know
about.

2. Second, it prevents the users of a class from directly modifying the
object's internals. Recall, for example, that we should never be
able to directly change the balance of our bank account without
going through the proper transaction procedures such as
depositing and withdrawal. Of course, if we always create public
get/set methods for all our attributes, then we still would have no
such protection. So, it is important to create set methods only for the attributes that
you want the user of the class to be able to change directly. Therefore, you do not
always need to make set methods.

COMP1406 - Chapter 3 – Defining Object Behavior Winter 2014

 - 69 -

 3.7 Changing How Objects Look When Printed

As just described, properly-designed model classes will use encapsulation to hide any
unnecessary information from those who will make use of those classes and to keep things
simple. Sometimes however, it is desirable to be able to visually distinguish one object from
another. For example, consider the following code:

public class MyObjectTestProgram {
 public static void main(String[] args) {
 System.out.println(new Patient()); // a patient object
 System.out.println(new Patient()); // another patient object
 }
}

The result on the screen is as follows:

Patient@7d8a992f
Patient@164f1d0d

By default, JAVA displays all of the objects that you make in this manner, showing you the type
of object (i.e., the class name) followed by something that represents the object's location in
memory. This format for displaying objects is not very useful for debugging. If we had a
dozen or so Patient objects displayed in this manner, we would not be able to "pick out" one
that we may be looking form. It would be more advantageous if we had something a little
more descriptive ... perhaps showing the patient's name.

What JAVA happens to be doing here is converting the
Patient object to a String object first and then displaying
the resulting characters to the screen. In fact, every object
in JAVA has, by default, a method called toString() which
will convert the object to a String.

The Strings returned from the call to toString() have the
exact same characters that are displayed when we just
display the objects directly using System.out.println(). That is because whenever JAVA
attempts to display anything to the console, it automatically calls the toString() method for the
object to convert it to characters before displaying. So, the two lines shown below do exactly
the same thing:

Patient p = new Patient() ;

System.out.println(p); // displays Patient@7d8a992f
System.out.println(p.toString()); // displays Patient@7d8a992f

COMP1406 - Chapter 3 – Defining Object Behavior Winter 2014

 - 70 -

Why do we care ? Well, we can actually replace the default toString() behavior by writing our
own toString() method for all of our own objects that defines exactly how to convert our object
to a String. That is, we can control the way our object “looks” when we print it on the screen
or when we display it in our User Interface.

Suppose that we want our Patient object to display something like this when printed:

Patient named Hank

You should notice that the first two words of this output are fixed and it is only the last part (i.e.,
the first name of the Patient) that varies from patient to patient. We can make this to be the
standard output format for all Patient objects simply by writing the following method in the
Patient class:

public String toString() {
 return ("Patient named " + this .name);
}

This method overrides the default toString() method, essentially replacing it. Notice that the
method is called toString() with no parameters and that it has a return type of String. This is
important in order for the method to properly override the one inherited from the Object class.

Consider the output of the following code:

Patient p1 , p2 , p3 ;

p1 = new Patient(); // assume first name is se t to "" within constructor
p2 = new Patient();
p2 .setName("Holly");
p3 = new Patient();
p3 .setName("Hank");

System.out.println(p1);
System.out.println(p2);
System.out.println(p3);

Here is the output …

Patient named
Patient named Holly
Patient named Hank

Now what if we wanted the output to be in this format instead:

19 year old Patient named Hank

COMP1406 - Chapter 3 – Defining Object Behavior Winter 2014

 - 71 -

To write an appropriate toString() method, we need to understand what is fixed in this output
and what will vary. The number 19 should vary for each patient as well as the first and last
names. Here is how we could write the code (replacing our previous toString() method):

public String toString() {
 return (this .age + " year old Patient named " + this .name);
}

Notice that the basic idea behind creating a toString() method is to simply keep joining
together String pieces to form the resulting String. Now here is a harder one. Let us see if
we can make it into this format:

19 year old non - retired patient named Hank

Here we have the age and names being variable again but now we also have the added
variance of their retirement status.

Here is one attempt:

public String toString() {
 return (this .age + " year old " + t his .retired + " patient named "
 + this .name);
}

However, this is not quite correct. This would be the format we would end up with:

19 year old false patient named Hank

Notice that we cannot simply display the value of the retired attribute but instead need to write
“retired” or “non-retired” for the retired status.

To do this then, we will need to use an IF statement. However, in JAVA, we cannot write an IF
statement in the middle of a return statement. So we will need to do this using more than one
line of code. We can make an answer variable to hold the result and then break down our
method into logical pieces that append to this answer:

public String toString() {
 String answer ;

 answer = this .age + " year old " ;
 answer = answer + t his .retired;
 answer = answer + " patient named " + this .name);

 return answer ;
}

COMP1406 - Chapter 3 – Defining Object Behavior Winter 2014

 - 72 -

Now we can insert the appropriate IF statements as follows:

public String toString() {
 String answer ;

 answer = this .age + " year old " ;

 if (this .retired)
 answer = answer + "retired" ;
 else
 answer = answer + "non - retired" ;
 answer = answer + " patient named " + t his .name;

 return answer ;
}

The result is what we wanted. Note however, that we can simplify this code a little further:

public String toString() {
 String answer = this .age + " year old " ;

 if (! this .retired)

 answer = answer + "non -" ;

 return (answer + "retired patient named " + this .name);
}

COMP1406 - Chapter 3 – Defining Object Behavior Winter 2014

 - 73 -

 3.8 A Bank Example

Consider implementing some software for a bank. Likely we need a Bank object that will
contain BankAccount objects where each account is owned by a bank Customer. So, we
will need a few interacting objects. Let's begin with a Customer object. We can define it as
a simpler version to a Person object with get/set methods and a toString() method as follows:

public class Customer {
 private String firstName ;
 private String lastName;
 private Address address ;
 private String phoneNumber ;

 // This is the zero - parameter constructor
 public Customer() {
 firstName = "UNKNOWN";
 lastName = "UNKNOWN";
 address = null ;
 phoneNumber = "(???)??? - ????" ;
 }

 // This is a 4- parameter constructor
 public Customer (String f, String l, Address a, String p) {
 firstName = f;
 lastName = l;
 address = a;
 phoneNumber = p;
 }

 // These are the get/set methods
 public String getFirstName() { return firstName; }
 public String getLastName() { return lastName; }
 public Address getAddress() { return address; }
 public String getPhoneNumber() { return phoneNumber; }
 public void setFirstName(String s) { firstName = s; }
 public void setLastName(String s) { lastName = s; }
 public void setAddress(Address a) { address = a; }
 public void setPhoneNumber(String p) { phoneNumber = p; }

 // This returns a String representation of the cust omer
 public String toString() {
 return " Customer: " + firstName + " " + lastName +
 " living at " + address ;
 }
}

Of course, we will need to make the Address object too. We can make something quite
simple like this (we will leave off city/province/postal code to keep things simple):

COMP1406 - Chapter 3 – Defining Object Behavior Winter 2014

 - 74 -

public class Address {
 private String streetNumber ;
 private String streetName ;

 // This is the 2- parameter constructor
 public Address (String number, String name) {
 streetNumber = number;
 streetName = name;
 }

 // These are the get/set methods
 public String getStreetNumber() { return streetNumber; }
 public String getStreetName() { return streetName; }
 public void setStreetName(String s) { streetName = s; }
 public void setStreetNumber(String s) { streetNumber = s; }

 // This returns a String representation of the addr ess
 public String toString() {
 return streetNumber + " " + streetName ;
 }
}

Now, let us define a BankAccount with the following attributes and constructors as follows:

public class BankAccount {
 private Customer owner ;
 private int accountNumber ;
 private float balance ;
}

Likely, when someone makes a new BankAccount, they DO NOT get to choose their own
account number, as this is usually assigned by the bank itself. Let us assume that the first
created account is assigned the account number 100001, the second gets 100002, the third
100003 and so on. In this scenario, we can simply keep a counter that starts at 100001 and
increases each time a new account is created.

To do this, we can create a static/class variable in the BankAccount class to represent this
counter. We can call it LAST_ACCOUNT_NUMBER which will store the account number that
was last given out. We can give this variable an initial value of 100000 as follows …

private static int LAST_ACCOUNT_NUMBER = 100000;

Then, when a new BankAccount is created, we can give it an
accountNumber which is one more than the
LAST_ACCOUNT_NUMBER and then increment this counter to get it
ready for the next time. This counter of ours will work exactly like one
of those ticket dispensers when you wait in line at a store.

This can be done by adjusting all of the BankAccount constructors so
that they do not allow the user to "specify" the accountNumber. But

COMP1406 - Chapter 3 – Defining Object Behavior Winter 2014

 - 75 -

rather set it to the next available number and then increment the counter. Here is the code
that we would need to write:

public class BankAccount {
 private static int LAST_ACCOUNT_NUMBER = 100000;

 private Customer owner ;
 private int accountNumber ;
 private float balance ;

 // This is the zero - parameter constructor
 public BankAccount() {
 owner = null ;

 accountNumber = ++ LAST_ACCOUNT_NUMBER;
 balance = 0;
 }

 // This is a 1- parameter constructor
 public BankAccount (Customer c) {
 owner = c;
 balance = 0 ;

 accountNumber = ++ LAST_ACCOUNT_NUMBER;
 }

 // These are the get methods
 public Customer getOwner() { return owner; }
 public int getAccountNumber() { return accountNumber; }
 public float getBalance() { return balance; }
}

Notice that each bank account will always get a new number because all available
constructors increment the global counter before assigning the bank account number to the
new account. Also, notice that there are no set methods. That is because an account
should never be allowed to change its owner nor its account number once it has been created.
Also, there should not be any permission to directly modify (i.e., set) the balance ... there
should be deposit and withdrawal procedures that must be followed.

Now, what about a toString() method ? What should a bank account look like when printed ?
That is up to us. Perhaps we want it to look like this:

Bank Account #100001 with balance $1765.92

The above does not display the account owner. Here is how we would write the code:

 public String toString() {
 return " Bank Account # " + accountNumber + " with balance $ " +
 String . format("%,1.2f" , balance);
 }

Of course, we need a way of depositing and withdrawing money:

COMP1406 - Chapter 3 – Defining Object Behavior Winter 2014

 - 76 -

 public void deposit (float amount) {
 balance += amount;
 }

 public boolean withdraw (float amount) {
 if (amount <= balance) {
 balance - = amount;
 return true ;
 }
 return false ;
 }

Notice that the withdraw() method returns a boolean that will inform us as to whether or not
there was enough money in the account. Both of these methods would need to be added to
the account.

Here is a test program to see if it all works:

public class AccountTestProgram {
 public static void main(String args[]) {
 BankAccount b1 , b2, b3;

 b1 = new BankAccount(new Customer(" Tim" , " Foil " ,
 new Address("12" , "Elm St.") , "613 - 555- 5555"));
 b2 = new BankAccount(new Customer(" Dan" , " Sing " ,
 new Address("1267A" , "Oak St.") , "613 - 555- 5556"));
 b3 = new BankAccount(new Customer(" Fran " , " Tick " ,
 new Address("4761" , "Pine Cres.") , "613 - 555- 5557"));

 b 1.deposit(125);
 b 2.deposit(3245.02f);
 b 2.withdraw(1000);
 b 3.withdraw(20);

 System.out.println(b1);
 System.out.println(b2);
 System.out.println(b3);
 }
}

Here is the expected output:

Bank Account #100001 with balance $125.00
Bank Account #100002 with balance $2,245.02
Bank Account #100003 with balance $0.00

COMP1406 - Chapter 3 – Defining Object Behavior Winter 2014

 - 77 -

Notice that the account numbers assigned are consecutive (i.e., 100001, 100002 and 100003).
Of course, each time we run the program, the account numbers start over at 100001 again. If
we wanted to ensure that our code assigned new numbers even when we restart the program,
we would have to store the last account number counter in a file and then re-save the changed
counter each time to the file. We will discuss file I/O later on in the course.

Finally, we need a way of keeping the accounts all together. We can do this by making a
Bank class which keeps an array of BankAccount objects. Since we are using arrays, we
will also want to define a fixed size for the array ... perhaps defined as a constant. Here is
what we can do:

public class Bank {
 private static final int ACCOUNT_CAPACITY = 100;

 private String name;
 private BankAccount[] accounts;
 private int numberOfAccounts;

 public Bank(String n) {
 name = n;
 numberOfAccounts = 0;
 accounts = new BankAccount[ACCOUNT_CAPACITY];
 }

 // These are the get methods (set methods are not allowed)
 public String getName() { return name; }
 public BankAccount[] getAccount s() { return account s; }
 public int getNumberOfAccounts() { return numberOfAccounts; }

 // This returns a string representation of the bank
 public String toString() {
 return name + " with " + numberOfAccounts + " accounts " ;
 }
}

Of course, we need a way of opening accounts at the bank:

 // Add an account to the bank
 private void addAccount(BankAccount b){
 if (numberOfAccounts < ACCOUNT_CAPACITY)
 accounts[numberOfAccounts++] = b;
 }

Notice that the method is private. That is because we don't want others passing in accounts
that may be invalid or ones that belong to different banks. Instead, we will make a public
method as a means of creating a new account, given a Customer:

COMP1406 - Chapter 3 – Defining Object Behavior Winter 2014

 - 78 -

 // Open a bank account for this customer
 public void openAccount(Customer c){
 addAccount(new BankAccount(c));
 }

We will want to also probably allow depositing and withdrawals from the accounts based on an
account number:

 // Deposit an amount of money into account with giv en accountNumber
 public boolean deposit(int accNum, float amount) {
 for (int i=0; i<numberOfAccounts; i++) {
 if (accounts[i].getAccountNumber() == accNum) {
 accounts[i].deposit(amount);
 return true ;
 }
 }
 return false ;
 }

 // Withdraw an amount of money from account with gi ven accountNumber
 public boolean withdraw(int accNum, float amount) {
 for (int i=0; i<numberOfAccounts; i++) {
 if (accounts[i].getAccountNumber() == accNum)
 return accounts[i].withdraw(amount);
 }
 return false ;
 }

We can then write any interesting methods that we want such as these:

 // Determine total of all account balances
 public float totalOfAllBalances() {
 float answer = 0;

 for (int i=0; i<numberOfAccounts; i++) {
 answer += accounts[i].getBalance() ;
 }
 return answer;
 }

COMP1406 - Chapter 3 – Defining Object Behavior Winter 2014

 - 79 -

 // List all accounts
 public void listAccounts() {
 for (int i=0; i<numberOfAccounts; i++)
 System.out.println(accounts[i]);
 }

We can test it all out using the following program:

public class BankTestProgram {
 public static void main(String[] args) {
 // Make a Bank
 Bank myBank = new Bank("Mark's Bank");

 // Make some bank accounts with customers
 myBank.openAccount(new Customer("Tim" , "Foil" ,
 new Address("12" , "Elm St."), "613 - 555- 5555"));
 myBank.openAccount(new Customer("Dan" , "Sing" ,
 new Address("1267A" , "Oak St."), "613 - 555- 5556"));
 myBank.openAccount(new Customer("Fran" , "Tick" ,
 new Address("4761" , "Pine Cres."), "613 - 555- 5557"));

 myBank.deposit(100001, 125);
 myBank.deposit(100002, 3245.02f);
 myBank.withdraw(100002, 1000);
 myBank.withdraw(100003, 20);

 System.out.println("\ nHere are the bank accounts:");
 myBank.listAccounts();

 System.out.println("\n\ nThe bank has this much money: $" +
 String.format("%,1.2f" , myBank.totalOfAllBalances()));
 }
}

Here is the expected output:

Here are the bank accounts:
Bank Account #100001 with balance $125.00
Bank Account #100002 with balance $2,245.02
Bank Account #100003 with balance $0.00

The bank has this much money: $2,370.02

COMP1406 - Chapter 3 – Defining Object Behavior Winter 2014

 - 80 -

As you can see, object-oriented programming requires you to define and
implement many objects and to get them to work together in
meaningful ways. Often, the object class definitions that you write
can be re-used in many applications. It is therefore a good idea to
ensure that these objects are robust and that their methods provide
proper results. To do this, you should perform proper testing of your
objects.

Unfortunately, testing is often tedious. It is therefore poorly done and
ignored by many programmers. Companies that hire programmers
do not like laziness … and even worse … they hate code with bugs
or errors in it. To avoid disappointing your boss, possibly losing your
job, and just to feel good about the quality of your work … you should properly test your code.

Normally, it is not common to test your constructors nor get/set methods, but it is certainly
important to test methods that perform computations, search, sort, etc… For problems that
require numerical parameters, it is a good idea to test different values that could potentially
cause problems. For example, if we were to fully test the deposit() method for the
BankAccount class, we would want to test depositing the following amounts:

• 0.0 // deposit nothing
• 0.67 // a cents amount
• 100.57 // a typical positive amount
• 100.2234343 // an amount with many decimal places
• - 34 // an invalid amount

We could create a simple test program to do this, making sure that we properly display the
results to confirm that they are correct as follows …

public c lass DepositTestProgram {
 public static void main(String args[]) {
 BankAccount acc;

 acc = new BankAccount(new Customer("Rusty" , "Can" ,
 new Address("33" , "Birch Ave."), "613 - 555- 5558"));
 System.out.println("Account at start: " + acc);
 acc.deposit(0.0f);
 System.out.println("Account after depositing $0.00: " + acc);
 acc.deposit(0.67f);
 System.out.println("Account after depositing $0.67: " + acc);
 acc.deposit(100.57f);
 System.out.println("Account after depositing $100.57: " + acc);
 acc.deposit(100.2234343f);
 System.out.println("Account after depositing $100.2234343:" + acc);
 acc.deposit(- 34);
 System.out.println("Account after depositing $ - 34: " + acc);
 }
}

COMP1406 - Chapter 3 – Defining Object Behavior Winter 2014

 - 81 -

Here is the output:

Account at start: Account #1000 00 with $0.0 0
Account after depositing $0.00: Account #1000 00 with $0.0 0
Account after depositing $0.67: Account #1000 00 with $0.67
Account after depositing $100.57: Account #1000 00 with $101.24
Account after depositing $100.2234343:Account #1000 00 with $201.46
Account after depositing $ - 34: Account #100000 with $167.46

Notice the careful use of System.out.println() in the program to provide a kind of “log”
showing exactly what we tested and the order that things were tested in. If you were to read
the output, you should be able to follow along as the deposit transactions were made to
confirm the correct balance each time.

From the output, you may notice something that needs changing. For example, you may
decide to prevent depositing negative amounts of money. You might do this by changing the
code to generate an exception (more on this later) or perhaps simply perform a check and
ignore deposits of negative amounts.

It really depends on the application and whether or not it is tied-in with the user interface. For
example, at a bank machine, it is impossible to deposit a negative amount of money because
the machine does not allow you to enter a negative sign. In such a situation, you may choose
simply to ignore the problem altogether, since it would never occur. However, a simple check
may be best, in case you port your code into a different program:

public void deposit(float amount) {
 if (amount > 0)
 balance += amount;
}

Then we would re-run the same test code to see whether or not it worked:

Account at start: Account #1000 00 with $0.00
Account after depositing $0.00: Account #1000 00 with $0.00
Account after depositing $0.67: Account #1000 00 with $0.67
Account after depositing $100.57: Account #1000 00 with $101.24
Account after depositing $100.2234343:Account #1000 00 with $201.46
Account after depositing $ - 34: Account #100000 with $201.46

Now this was a simple test program which is often known as a “Test Unit”. In larger, more
complicated, real-world programs, in order to keep organized, it would be necessary to create
multiple simple test units that test particular aspects of the program. For example,

COMP1406 - Chapter 3 – Defining Object Behavior Winter 2014

 - 82 -

public class BankAccountTestUnit1 {
 public static void main(String args[]) {
 BankAccount acc = new BankAccount(new Customer("Rusty" , "Can" ,
 new Address("33" , "Birch Ave."), "613 - 555- 5558"));

 System.out.println("Account before depositing $100.57: " + acc);
 acc . deposit (100.57f);
 System.out.println("Account after depositing $100.57: " + acc);
 }
}

public class BankAccountTestUnit2 {
 public static void main(String args[]) {
 BankAccount acc = new BankAccount(new Customer("Rusty" , "Can" ,
 new Address("33" , "Birch Ave."), "613 - 555- 5558"));

 System.out.println("Account before withdrawing $100: " + acc);
 acc . withdraw (100);
 System.out.println("Account after withdrawing $100: " + acc);
 }
}

In fact, it is often the case that we would like to perform transactions and test cases on a
particular bank account. In this case, we can break down the separate test units as test
methods in a larger test program:

public class BankAccountTestUnit3 {
 public static void deposit1(BankAccount acc) {
 System.out.println("Account before depositing $100.57: " + acc);
 acc.deposit(100.57f);
 System.out.println("Account after depositing $100.57: " + acc);
 }
 public static void deposit2(BankAccount acc) {
 System.out.println("Account before depositing $0.01: " + acc);
 acc.deposit(0.01f);
 System.out.println("Account after depositing $0.01: " + acc);
 }
 public static void withdraw1(BankAccount acc) {
 System.out.println("Account before withdrawing $100.57: " + acc);
 acc . withdraw (100.57f);
 System.out.println("Account after withdrawing $100.57: " + acc);
 }
 public static void withdraw2(BankAccount acc) {
 System.out.println("Account before withdrawing $0.01: " + acc);
 acc . withdraw (0.01f);
 System.out.println("Account after withdrawing $0.01: " + acc);
 }

COMP1406 - Chapter 3 – Defining Object Behavior Winter 2014

 - 83 -

 public static void main(String args[]) {
 BankAccount acc;

 acc = new BankAccount(new Customer("Rusty" , "Can" ,
 new Address("33" , "Birch Ave."), "613 - 555- 5558"));
 acc.deposit (0);

 deposit1(acc);
 deposit2(acc);
 withdraw1(acc);
 withdraw2(acc);

 acc = new BankAccount(new Customer(" Ann" , " Tenna " ,
 new Address(" 84" , " Maple Ave."), "613 - 555- 5559"));
 acc.deposit(10);

 deposit1(acc);
 deposit2(acc);
 withdraw1(acc);
 withdraw2(acc);

 acc = new BankAccount(new Customer(" Ella " , " Vator " ,
 new Address(" 873" , " Spruce Dr."), "613 - 555- 5560 "));
 acc.deposit(200);

 deposit1(acc);
 deposit2(acc);
 withdraw1(acc);
 withdraw2(acc);
 }
}

There are actually principles and guidelines for writing test cases for large systems. However,
it is beyond the scope of this course. You will learn more about proper testing next year.

COMP1406 - Chapter 3 – Defining Object Behavior Winter 2014

 - 84 -

This page was intentionally left blank.

Chapter 4

Class Hierarchies and Inheritance

What is in This Chapter ?

This chapter discusses how objects are organized into a class hierarchy and then explains
the notion of inheritance as a means of sharing attributes and behaviors among classes. It
also explains the notion of abstract classes and java interfaces that allow seemingly
unrelated classes to share common behavior.

COMP1406 - Chapter 4 - Class Hierarchies and Inheritance Winter 2014

 - 86 -

 4.1 Organizing Classes

As we have already seen, defining objects as a new kind of data structure simply involves
created new classes, each in their own file (e.g., Car.java, Person.java, Address.java,
House.java, etc..). In fact, a definition of the word ‘class’ in English is:

"A collection of things sharing a common attribute".

So, for example, when we create a Person class, we are implying that all Person objects have
some attributes in common. Similarly, a Car class would define the common attributes that all
Car objects have. In general, since Person and Car are different classes, their list of
attributes will differ.

In real life, however, there are some objects that “share” attributes in common. For example,
Person objects may have name and phoneNumber attributes, but so can Employee,
Manager, Customer and Company objects. Yet, there may be additional attributes of these
other objects that Person does not have. For example, an Employee object may maintain
employeeID information or a Company object may have a clientList attribute, whereas
Person objects in general do not keep such information:

In addition to commonality between attributes, classes may also share common behavior.
That is, two or more objects may have the ability to perform the same function or procedure.
For example, if a Person, Car and Company are all insurable, then they may all have a
function called calculateInsurancePremium() that determines the pricing information for their
insurance plan.

COMP1406 - Chapter 4 - Class Hierarchies and Inheritance Winter 2014

 - 87 -

All object-oriented languages (e.g., JAVA) allow you to organize your classes in a way that
allows you to take advantage of the commonality between classes. That is, we can define a
class with certain attributes (and/or behaviors) and then specify which other classes share
those same attributes (and/or behaviors). As a result, we can greatly reduce the amount of
duplicate code that we would be writing by not having to re-define the common attributes
and/or behaviors for all of the classes that share such common features.

JAVA accomplishes this task by arranging all of its classes in a "family-tree”-
like ordering called a class hierarchy. A class hierarchy is often
represented as an upside down tree (i.e., the root of the tree at the top).
The more “general” kinds of objects are higher up the tree and the more
“specific” (or specialized) kinds of objects are below them in the hierarchy.
So, a child object defined in the tree is a more specific kind of object than its
parent or ancestors in the tree. Hence, there is an "is a" (i.e., "is-a-kind-of")
relationship between classes:

Each class is a subclass (i.e., a specialization) of some other class which is called its
superclass (i.e., a generalization). The direct superclass is the class right “above” it:

Here, Snake, and Lizard are subclasses of Reptile (i.e., they are special kinds of reptiles).
Also Whale and Dog are subclasses of Mammal. All of the classes are subclasses of Animal
(except Animal itself). Animal is a superclass of all the classes below it, and Mammal is a

Whale Dog Lizard Snake

Mammal Reptile

Animal

Iguana Gecko direct subclass

of Reptile

direct superclass

of Whale & Dog

subclass of Animal,

Reptile & Lizard

superclass of
Lizard, Snake,

Iguana & Gecko

Whale Dog Lizard Snake

Mammal Reptile

Animal

Iguana Gecko

Reptile
is an

Animal

Snake
is a

Reptile

Gecko is a
Lizard which

is a Reptile

more

general

more

specific

COMP1406 - Chapter 4 - Class Hierarchies and Inheritance Winter 2014

 - 88 -

superclass of Whale and Dog. As we can see, we can go even deeper in the hierarchy by
creating subclasses of Lizard. Usually, when we use the term superclass, we are referring to
the class that is directly above a particular class (i.e., the direct superclass).

The Animal hierarchy above represents a set of classes that we may define ourselves. But
where do they fit-in with all the other pre-made JAVA classes like String, Date, Rectangle
etc... ? Well, all objects have one thing in common ... they are all Objects. Hence, at the very
top of the hierarchy is a class called Object. Therefore, all classes in JAVA are subclasses of
Object:

All of the classes that we created so far have been direct subclasses of Object. That means
that they did not share attributes with one another, but that they shared attributes only with
Object. However, we have the freedom to re-arrange our classes in a manner that will allow
them to share attributes with one other.

The way in which we arrange our classes will depend on how similar our objects are with
respect to their attributes. For example, a Car and a Truck have something in common ...
they are both drivable. Whereas an MP3Player and a BankAccount have little or nothing in
common with Car or Truck objects. So, intuitively, Car and Truck classes should somehow
be grouped together (i.e., placed nearby) in the hierarchy.

As an example, consider creating many kinds of bank accounts. We might arrange them in a
hierarchy like this:

SuperSavings PowerSavings BusinessChecking PowerChecking

SavingsAccount CheckingAccount

BankAccount

Object

Object

COMP1406 - Chapter 4 - Class Hierarchies and Inheritance Winter 2014

 - 89 -

Here are a few more examples of hierarchies of classes that we may create:

We will talk more about how and why we arrange these classes as above. But remember, a
class should only be a subclass of another class if it "is a kind of" its superclass.

Sometimes, students misunderstand the class hierarchy,
thinking that a class becomes a subclass
of another one if the superclass
"is made of" the subclasses.

That is, they mistakenly assume that
it is a "has a" relationship instead of
an "is a" relationship. Therefore, the
following hierarchies would be wrong

Apple Orange Potato Carrot

Fruit Vegetable

Food

HomeImprovementLoan

Lease Mortgage

Loan

TownHome SingleFamilyHome Warehouse Office

Residential Commercial

BuildingStructure

Factory

Object Object

Object

Distributor SparkPlug Hood Door

Engine Body

Car

Employee Office Customer

Company

COMP1406 - Chapter 4 - Class Hierarchies and Inheritance Winter 2014

 - 90 -

In JAVA, in order to create a subclass of
another class, use the extends keyword in
our class definition. For example, assume
that we wanted to ensure that class A was
placed in the hierarchy as a subclass of class
B as shown here.

To make this happen, we simply write
extends B immediately after we specify name
of class A as follows:

public class A extends B {
 ...
}

If the extends keyword is not used (i.e., as we left it out from all our previous class definitions),
it is assumed that the class being defined extends the Object class. So, all the classes that
we defined previously were direct subclasses of Object.

How do we know how deep we should make the class hierarchy (i.e., tree) ?

Most of the time, any “is a” relationship between objects should
certainly result in subclassing. Object-oriented code usually involves
a lot of small classes as opposed to a few large ones.

It is often the case that our class hierarchies become rearranged
over time, because we often make mistakes in deciding where to
place the classes. We make such mistakes because it is not always
easy to choose a hierarchy ... it depends on the application.

For example, hierarchies of classes representing students in a university may be arranged in
many different ways ... here are just 3 possibilities …

 A

 B

COMP1406 - Chapter 4 - Class Hierarchies and Inheritance Winter 2014

 - 91 -

How do we know which one to use ? It will depend on the state (i.e., attributes) and behavior
(i.e., methods) that is common between the subclasses. If we find that the main differences in
attributes or behavior are between full time and part time students (e.g., fee payment rules),
then we may choose the top hierarchy. If however the main differences are between graduate
and undergraduate (e.g., privileges, requirements, exam styles etc..), then we may choose the
middle hierarchy. The bottom hierarchy further distinguishes between full and part time
graduate and undergraduate students, if that needs to be done. So ... the answer is ... we
often do not know which hierarchy to choose until we thought about which hierarchy allows
the maximum sharing of code.

 4.2 Inheritance

You may have heard the term inherit before which has various meanings in English such as:
 • “to receive from a predecessor” or • “to receive by genetic transmission”

Through birth, all of us have inherited traits and behaviors
from our parents. Something similar happens in JAVA with
regards to the class hierarchy. A subclass (i.e., child)
inherits the attributes (i.e., instance variables) and
behavior (i.e., methods) from all of its superclasses (i.e.,
ancestors in the class hierarchy). So as a general
definition, in Object-Oriented Programming:

Inheritance is the act of receiving shared

attributes and behavior from more general
types of objects up the hierarchy.

This means that a subclass has the same "general" attributes/behaviors as its superclasses as
well as possibly some new additional attributes/behaviors which are specific for the subclass.
There are many advantages of using Inheritance:

• allows code to be shared between classes
... promotes software re-usability

• saves programming time since code is shared
...less code needs to be written

• helps keep code simple since inheritance is natural in real life

COMP1406 - Chapter 4 - Class Hierarchies and Inheritance Winter 2014

 - 92 -

Some languages (e.g., C++) allow Multiple Inheritance, which means that a class
can inherit state and behavior from more than one class. However, JAVA does not support
multiple inheritance. We can however, partially "fake" it (with respect to methods) through the
use of interfaces (which we will discuss later).

Consider making an object to represent an Employee in a company which maintains: name,
address, phoneNumber, employeeNumber and hourlyPay. We may make a single class:

public class Employee {
 String name;
 Address address;
 String phoneNumber;
 int employeeNumber;
 float hourlyPay;
 …
}

Assume now that we have many employees in a company in which a few of them are
managers. If the managers are all essentially the same as employees, except perhaps that
they have a higher hourlyPay, then there is no need to create any new classes. The
Employee class is sufficient to represent them.

However, what if there were some more significant differences between managers and
employees ? Perhaps it would be beneficial to create a separate class for them. We would
need to determine what is different between these two classes with respect to their attributes
and behaviors. For example, a Manager may have:

• additional attributes (e.g., a list of duties, a list of employees that work for them, etc...)

• additional (or different) behavior (e.g., they may compute their pay differently, or have

different benefit packages, etc...)

In these situations, a Manager may be considered as a special “kind of” Employee. It would
therefore make sense for the Manager to be a subclass of Employee as follows:

public class Employee {
 String name;
 Address address;
 String phoneNumber;
 int employeeNumber;
 float hourlyPay;
 …
}

public class Manager extends Employee {
 String[] duties;
 Employee[] subordinates;
 …
}

COMP1406 - Chapter 4 - Class Hierarchies and Inheritance Winter 2014

 - 93 -

Notice here that Manager would inherit all of the attributes of the Employee class, so that
Employees have 5 attributes, while Managers have 7. All Employee behaviors would also
be inherited by Managers.

Now, what if we wanted to represent a Customer as well in our application ? Our application
may require keeping track of a customer’s name, address and phoneNumber. But these
attributes are also being used for our Employee objects. We could make two separate
unrelated classes ... one called Customer ... the other called Employee. We could define
Customer as follows:

public class Customer {
 String name;
 Address address;
 String phoneNumber;
 …
}

This would work fine. However, you will notice that both
Employee and Customer have some attributes in
common. So, if we defined the Customer class in this
manner, we would need to repeat the same definitions, and
perhaps some of the behaviors. It would be better if we
could somehow use inheritance to allow Customers to
share attributes and behaviors that are in common with
Employees. So, we should perhaps have Customer
inherit from something. We have a few choices. We can
have Customer inherit from Manager, Employee inherit
from Customer or Customer inherit from Employee as
follows …

However, neither of these hierarchies will work according to the "is a" relationship because (1)
a Customer is not always a Manager, (2) an Employee is not always a Customer, and (3) a
Customer is not always an Employee.

One possible solution is to change the name Customer to Person. In this way, a customer is
simply represented by a Person object and we can use the following hierarchy:

public class Person {
 String name;
 Address address;
 String phoneNumber;
}
public class Employee extends Person {
 int employeeNumber;
 float hourlyPay;
}
public class Manager extends Employee {
 String[] duties;
 Employee[] subordinates;
}

COMP1406 - Chapter 4 - Class Hierarchies and Inheritance Winter 2014

 - 94 -

Now Employee inherits 3 attributes from Person, so it has 5 altogether, while Manager
inherits 3 from Person and 2 from Employee, making 7 altogether. Customers, are then
represented simply as Person objects.

This is a good solution as long as ALL of the attributes (e.g., name, address, phone number)
for a customer (i.e., Person object) is also shared with Employee and Manager. Also, there
must not be any attributes or behaviors in the Person class that do not apply to an Employee
and a Manager. For example, if the application required us to keep track of a list of items
purchased by the customer or perhaps even a purchase history, then such attributes may not
make sense for an Employee or Manager. So, if there is different behavior or attributes that is
unique to customers, then we must create a separate Customer class to define these
differences. In this case, we can still share the name, address and phoneNumber by
creating an extra Person class to hold the common attributes. We can create the following
hierarchy:

public class Person {
 String name;
 Address address;
 String phoneNumber;
}

public class Employee extends Person {
 int employeeNumber;
 float hourlyPay;
}

public class Customer extends Person {
 String[] itemsPurchased;
 Date[] purchaseHistory;
}

public class Manager extends Employee {
 String[] duties;
 Employee[] subordinates;
}

This will allow all common attributes (i.e., name, address, phoneNumber) to be shared by all
the classes while allowing Customer objects to have their own attributes and behaviors.

At this point, we should clarify the advantages of the attribute-related inheritance that is
occurring within our hierarchy. Here is a simple example piece of code showing the attributes
that are readily available to each type of object defined in our example …

COMP1406 - Chapter 4 - Class Hierarchies and Inheritance Winter 2014

 - 95 -

Person p = new Person();
Employee e = new Employee();
Customer c = new Customer();
Manager m = new Manager();

p.name = "Hank Urchiff" ; // own attribute
p.address = new Address(); // own attribute
p.phoneNumber = "1 - 613- 555- 2328" ; // own attribute

e.name = " Minnie Mumwage" ; // attribute inherited from Person
e.address = new Address(); // attribute inherited from Person
e.phoneNumber = "1- 613- 555- 1231 " ; // attribute inherited from Person
e. employeeNumber = 232867; // own attribute
e. hourlyPay = 8.75f; // own attribute

c.name = "Jim Clothes" ; // attribute inherited from Person
c.address = new Address(); // attribute inherited from Person
c.phoneNumber = "1- 613- 555- 5675" ; // attribute inherited from Person
c. itemsPurchased[0] = " Pencil Case " ; // own attribute
c. purchaseHistory[0] = Date.today() ; // own attribute

m.name = " Max E. Mumwage " ; // attribute inherited from Person
m.address = new Address(); // attribute inherited from Person
m.phoneNumber = "1 - 613- 555- 8732 " ; // attribute inherited from Person
m.employeeNumber = 232867; // attribute inherited from Employee
m.hourlyPay = 8.75f; // attribute inherited from Employee
m.duties[0] = "Phone Clients" ; // own attribute
m.subordinates[0] = e; // own attribute

Notice that we use the inherited attributes just as if they were defined as part of that class
directly. For example, the Employee object e, Customer object c and Manager object m, all
access the name attribute as if it was defined in their class … even though it is actually defined
in the Person class … written in a different .java file!! You can see that through inheritance,
we do not have to re-define the name attribute in each of these classes. The same holds true
for the address and phoneNumber attributes, as well as any other inherited attributes in the
subclasses.

At this point, we only examined how to decide upon a class hierarchy based on the differences
in attributes. However, we would have to think in the same manner by examining the
behaviors of the individual classes. For example, even if managers did not have the duties
and subordinates attributes shown above, we may still want to make a separate class for
managers if there are behaviors that differ (e.g., different computePay() method).

Now, we will consider an example that shows how inheritance applies to behaviors within a
simple hierarchy of BankAccount objects.

Consider creating an application for a bank that maintains account information for its
customers. All bank accounts at this bank must maintain 3 common attributes (the owner’s
name, the account number and the balance of money remaining in the account).

COMP1406 - Chapter 4 - Class Hierarchies and Inheritance Winter 2014

 - 96 -

Also, an account, by default, should have simple behaviors to deposit and withdraw from the
account. So, in its simplest form, a BankAccount object can be defined and used as follows:

public class BankAccount {
 String owner; // person who owns the account
 int accountNumber; // the account number
 float balance; // amount of money currently in the account

 // Some constructors
 public BankAccount() {
 this .owner = "" ;
 this .accountNumber = 0;
 this .balance = 0;

}
 public BankAccount(String ownerName) {
 this .owner = ownerName;
 this .accountNumber = 0;
 this .balance = 0;
 }

 // Deposit money into the account
 public void deposit(float amount) {
 this .balance += amount;
 }

 // Withdraw money from the account
 public void withdraw(float amount) {
 if (this .balance >= amount)
 this .balance - = amount;
 }
}

Now assume that the bank wants to distinguish between “savings” accounts and
“non-savings” accounts in that the customer cannot withdraw money from a
“savings” account once it has been deposited (i.e., to get the money out of the
account, the customer must close the account).

We would need to have a way of disabling the withdraw behavior for savings accounts. We
could do this through inheritance by creating a subclass of BankAccount to represent a
special “kind of” account … we will call it SavingsAccount:

public class SavingsAccount extends BankAccount {
}

Just by writing this simple “virtually empty” class definition in which
SavingsAccount extends BankAccount, we have “invented” a new type of
bank account that inherits all 3 attributes from BankAccount as well as the
deposit() and withdraw() methods.

BankAccount

Object

COMP1406 - Chapter 4 - Class Hierarchies and Inheritance Winter 2014

 - 97 -

We could verify this by writing a simple piece of test code:

SavingsAccount s = new SavingsAccount() ;

System.out.println(s.balance); // displays 0.0

s. deposit (120);
System.out.println(s.balance); // displays 120.0

s. withdraw (20);
System.out.println(s.balance); // displays 100.0

Something important to know, however, is that a subclass does not automatically inherit the
constructors in its superclass. So, SavingsAccount does not inherit the two constructors in
BankAccount … but it does get to use its own default constructor (i.e., zero-parameter
constructor) for free. We can verify this by altering the first line in our test code so read:

SavingsAccount s = new SavingsAccount("Bob");

If we made such an alteration to the code, our test code would no longer compile. We would
receive the following compile error:

cannot find symbol constructor SavingsAccount(java. lang.String)

which is telling us that we don’t have a constructor in our SavingsAccount class that takes a
single String parameter. How then did our new SavingsAccount() code work previously
since it seems to have properly initialized the account number ? Well, as it turns out, the
default constructor that we get for free actually looks as follows:

public SavingsAccount() {
 super ();
}

What does this mean ? What does the keyword super do ? The keyword
super is actually a special word that represents the superclass of this class.
In our case, the super class is BankAccount. So, it is essentially doing a
call to BankAccount() … which means it is calling the superclass
constructor.

Therefore, if we want to make use of the attribute initialization code that is
in a constructor in a superclass, we can call the superclass constructor from
our own by using super(…) along with the appropriate parameters.

COMP1406 - Chapter 4 - Class Hierarchies and Inheritance Winter 2014

 - 98 -

Hence we can write the following constructor in our SavingsAccount class:

public class SavingsAccount extends BankAccount {
 public SavingsAccount(String aName) {
 super (aName);
 }
}

If we do this, then we can use the following code without
compile errors:

SavingsAccount s = new SavingsAccount("Bob");

Keep in mind, however, that the list of parameters (i.e., the types) supplied within the
super(…) call, must match the list of parameters (i.e., the types) of one of the constructors in
the superclass. In order to see the advantage of using constructor inheritance, here is what
the code would look like with and without using inherited constructors:

Without Inheritance (need to re-write code) With Inheritance

public SavingsAccount() { {
 this .owner = "" ;
 this .accountNumber = 0;
 this .balance = 0;
}

public SavingsAccount(String ownerName) {
 this .owner = ownerName;
 this .accountNumber = 0;
 this .balance = 0;
}

public SavingsAccount() {
 super ("");
}

public SavingsAccount(String aName) {
 super (aName);
}

Again … the amount of code that needs to be written is reduced when using inheritance. So,
we have SavingsAccount properly inheriting from BankAccount, however, the
SavingsAccount class still allows withdrawals. In order to disable this behavior, we need to
somehow “prevent” the withdraw method code from being used by savings accounts. The
simplest and most common way of doing this is to write a new withdraw() method in the
SavingsAccount class that simply does nothing as follows …

public class SavingsAccount extends BankAccount {
 // Constructor to call the superclass constructor
 public SavingsAccount(String aName) { super (aName); }
 public SavingsAccount() { super (""); }

// Prevent the withdrawal of money from the account
 public void withdraw (float amount) {
 // Do nothing
 }
}

BankAccount

Object

SavingsAccount

COMP1406 - Chapter 4 - Class Hierarchies and Inheritance Winter 2014

 - 99 -

Once we re-compile, we can test it out by running our test code again:

SavingsAccount s = new SavingsAccount() ;

System.out.println(s.balance); // displays 0.0

s. deposit (120);
System.out.println(s.balance); // displays 120.0

s. withdraw (20); // this will do nothing now
System.out.println(s.balance); // displays 1 20.0

Notice that the test code remains the same but now it no longer performs the withdrawal
calculation. What is actually happening here ? By writing the withdraw() method in the
SavingsAccount class, we are actually overriding the one that is in the BankAccount class.
That is, we are replacing the inherited behavior with our own unique behavior. So, we are
preventing or disabling the inheritance for this behavior.

At this point, we now have SavingsAccounts that cannot be withdrawn from and normal
BankAccounts that can be withdrawn from. Let us see another way that we can use
overriding … to modify inherited behavior.

Assume that the bank also wants to encourage depositing to savings accounts by
giving $0.50 to the customer for each $100 that they deposit into their
SavingsAccount (i.e., not for regular BankAccounts). For example, if they
deposit $354.23, then their account balance should immediately increase by
$354.73 … showing the extra $0.50 applied to the deposit amount.

To do this, we can completely override the deposit method from BankAccount
by writing the following method in SavingsAccount …

// Deposit money into the account
public void deposit(float amount) {
 this .balance += amount;

 // Now add the bonus 50 cents per $100
 int wholeDollars = (int) (amount/100);
 this .balance += wholeDollars * 0.50f;
}

This method of overriding would work fine and would properly add the extra bonus deposit
incentive. However, the first line is a duplication of the BankAccount class’s deposit()
method. This duplication may seem insignificant in this simple example, but in a real bank
application there may actually be much more code devoted to the deposit process (e.g.,
logging the transaction). Hence, it would be better to make use of inheritance.

COMP1406 - Chapter 4 - Class Hierarchies and Inheritance Winter 2014

 - 100 -

How though, can we inherit the deposit() method in BankAccount, while also incorporating
the additional bonus deposit behavior necessary for SavingsAccounts ? The answer makes
use of the super keyword again. Here is the solution:

// Deposit money into the account
public void deposit(float amount) {
 // Call the deposit() method in the superclass
 super .deposit(amount);

 // Now add the bonus 50 cents per $100
 int wholeDollars = (int) (amount/100);
 this .balance += wholeDollars * 0.50f;
}

Notice that this time we use a dot . after the super keyword, followed by the method that we
want to call in the superclass. Here, the word super is used to tell JAVA to look for the
deposit() method in the superclass. JAVA will go and evaluate the superclass deposit()
method (which performs the “normal” depositing process) and then return here and complete
the behavior by adding the 50 cent bonus incentive. This method is still considered to
override the deposit() method in BankAccount. It is an example of a situation in which we
want to “borrow” a superclass’s behavior, but then add some additional behavior as well.

Alternatively, we could have combined the deposit amount with the 50 cent bonus incentive
before calling the superclass method as follows:

// Deposit money into the account
public void deposit(float amount) {
 int wholeDollars = (int) (amount/100);
 super .deposit(amount + (wholeDollars * 0.50f));
}

or even simpler:

// Deposit money into the account
public void deposit(float amount) {
 super .deposit(amount + (int) (amount/100)* 0.50f);
}

I’m sure you will agree that the overriding can be quite powerful tool to save coding time.

Just so you understand … what would happen if we used this instead of super as follows:

COMP1406 - Chapter 4 - Class Hierarchies and Inheritance Winter 2014

 - 101 -

// Deposit money into the account
public void deposit(float amount) {
 this .deposit(amount + (int) (amount/100)* 0.50f);
}

Well, we would be asking JAVA to call the deposit() method in this class, not the one in
BankAccount. Furthermore, since this code is written inside the deposit() method, we are
telling JAVA to call the method that we are actually trying to write! So the method will keep
calling itself forever … an infinite loop! We would get a pile of runtime error messages that
says something like this:

Exception in thread "main" java.lang.StackOverflowE rror
 at SavingsAccount.deposit(SavingsAccount.java:1 3)
 at SavingsAccount.deposit(SavingsAccount.java:1 3)
 at SavingsAccount.deposit(SavingsAccount.java:1 3)
 ...
 at SavingsAccount.deposit(SavingsAccount.java:1 3)

OK. Now assume that the bank application needs to further distinguish
between accounts in that it also has a special “power savings” account that is
a special type of savings account that allows withdrawals, but there is a $1.25
service fee each time a withdrawal is made. As before, this new type of
account should also have the 50 cent incentive for each $100 deposited.

Assuming that we call the new class PowerSavings, where do we put it in the hierarchy ?
We need it to inherit the deposit() method from SavingsAccount but the withdraw() method
from BankAccount. If we make PowerSavings a subclass of SavingsAccount, we will
inherit the deposit() behavior that we want, but would then need to write a new withdraw()
method, since the one in SavingsAccount does nothing. We could do this …

public class PowerSavings extends SavingsAccount {
 // Constructor to call the superclass constructor
 public PowerSavings(String aName) { super (aName); }
 public PowerSavings() { super (""); }

// Withdraw money from the account
 public void withdraw(float amount) {
 if (this .balance >= (amount + 1.25f))
 this .balance - = (amount + 1.25f);
 }
}

This code would work fine.

BankAccount

Object

SavingsAccount

Power Savings

COMP1406 - Chapter 4 - Class Hierarchies and Inheritance Winter 2014

 - 102 -

Again, we are using overriding by having the withdraw() method in PowerSavings override
the default behavior in SavingsAccount. We can test our new class with the following test
code:

PowerSavings s = new PowerSavings() ;

System.out.println(s.balance); // displays 0.0

s. deposit (3 20);
System.out.println(s.balance); // displays 321.50

s. withdraw (20);
System.out.println(s.balance); // displays 300.25

Notice that the withdraw() method properly deducts the $1.25 fee.

However, again we are duplicating code. The code here is small, however in a large system,
there may be more complicated code for withdrawing money (e.g., transaction logging,
overdraft allowances, etc…). So, we do not want to duplicate this code. In fact, it would be
nice if we could do something like this to call the withdraw() method code up in
BankAccount:

public class PowerSavings extends SavingsAccount {
 // Constructor to call the superclass constructor
 public PowerSavings(String aName) { super (aName); }
 public PowerSavings() { super (""); }

// Withdraw money from the account
 public void withdraw(float amount) {
 super .withdraw(amount + 1.50f);
 }
}

But this won’t work. Why not ? Because super refers to the SavingsAccount class here,
and so it calls the withdraw() method in SavingsAccount that does nothing. In a way, what
we want to do is something like this:

super . super .withdraw(amount + 1.50f); // super - duper does not work

Unfortunately, we cannot skip over a class when looking up the class hierarchy for a method.
What can we do then ? The solution is to re-organize our hierarchy. We seem to need
common deposit behavior for savings accounts, but then differing withdrawal behavior. In
reality, we actually need to distinguish between the two kinds of savings accounts. We will
rename SavingsAccount to SuperSavings which will represent the previous savings account
behavior. Then we will create a new SavingsAccount class that will contain the shared
deposit behavior between the two types of savings accounts.

COMP1406 - Chapter 4 - Class Hierarchies and Inheritance Winter 2014

 - 103 -

Here is the new hierarchy:

Here is the code:

public class SavingsAccount extends BankAccount {
 public SavingsAccount(String aName) { super (aName); }
 public SavingsAccount() { super (""); }

public void deposit(float amount) {

 super .deposit(amount + (int) (amount/100)* 0.50f);
}

}

public class SuperSavings extends SavingsAccount {
 public SuperSavings(String aName) { super (aName); }
 public SuperSavings() { super (""); }

public void withdraw (float amount) { /* Do nothing */ }
}

public class PowerSavings extends SavingsAccount {
 public PowerSavings(String aName) { super (aName); }
 public PowerSavings() { super (""); }

public void withdraw(float amount) {
 super .withdraw(amount + 1.50f);
 }
}

The code will work as we expect it to now, taking full advantage of inheritance.

SuperSavings PowerSavings

SavingsAccount

BankAccount

Object

COMP1406 - Chapter 4 - Class Hierarchies and Inheritance Winter 2014

 - 104 -

To properly understand method calling and overriding when dealing with class hierarchies, we
need to consider how JAVA "finds" a method in the class hierarchy when you try to call it. It
can be confusing if there are many "overridden" methods (i.e., all with the same name and
parameter lists), because we may not know which one JAVA will use. Fortunately, there is a
simple way to figure this out.

Whenever you call a method from a class directly (e.g., this.myMethod()), JAVA looks first to
see whether or not you have such a method in the class that you are calling it from. If it finds
it there, it evaluates the code in that method. Otherwise, JAVA tries to look for the method up
the hierarchy (never down the hierarchy) by checking the superclass. If not found there, JAVA
continues looking up the hierarchy until it either finds the method that you are trying to call, or
until it reaches the Object class at the top of the tree.

Here is the general strategy for all instance method lookup:

• If method myMethod()

exists in class H, then
it is evaluated.

• Otherwise, JAVA

checks the superclass
of H for myMethod (in
this case class F).

• If not found there,

JAVA continues looking
up the hierarchy until
Object is reached,
visiting additional
classes C, A and Object.

If not found at all during this search up to the Object class, the compiler will catch this and
inform you that it cannot find method myMethod() for the object you are trying to sending it to:

C: \ Test.java:20: cannot resolve symbol
symbol : method myMethod ()

If there were many implementations of myMethod() along the path in the hierarchy
(e.g., classes F, C, and A all implement myMethod()), then JAVA will execute the first one that
it finds during its bottom-up search.

Notice the use of the keyword this in the picture. That tells JAVA to start looking for the
method in "this" class. Alternatively, we can also use the keyword super here (i.e.,,
super.myMethod()) to tell JAVA to start its search for the method in the superclass. If we
used super in the example above, JAVA would start looking for myMethod() in class F first.
If not found, it would then continue on up the tree looking for the method as usual.

COMP1406 - Chapter 4 - Class Hierarchies and Inheritance Winter 2014

 - 105 -

In fact if there was an implementation of myMethod() in the H class, it would not be called if
we used super, since the search begins in the superclass, not in this class. So, the use of
super merely specifies "where the method lookup should begin the search" ... nothing more.

How Are Access Modifiers Affected By Inheritance ?

It would be good to consider the effects that access modifiers have on attributes and methods
within the class hierarchy. When an inherited attribute is declared as private, the subclasses
still inherit it, but they cannot access it directly from within their own "local" code. For example,
recall our previous example with Customer, Manager and Employee objects. Consider that
all attributes are declared as private:

public class Person {
 private String name;
 private Address address;
 private String phoneNumber;
}
public class Employee extends Person {
 private int employeeNumber;
 private float hourlyPay;
}
public class Customer extends Person {
 private String[] itemsPurchased;
 private Date[] purchaseHistory;
}
public class Manager extends Employee {
 private String[] duties;
 private Employee[] subordinates;
}

COMP1406 - Chapter 4 - Class Hierarchies and Inheritance Winter 2014

 - 106 -

Now consider the following code in this method written in the Manager class which determines
whether or not a Manager has seniority. Assume that a manager has seniority if their
employee number is less than 100 and they have more than 5 employees working for them.

public boolean hasSeniority() {
 return (employeeNumber < 100) && (subordinates.length > 5);
}

The code will NOT compile because the code is written in the Manager class but the inheritted
attribute employeeNumber is declared private within the Employee class. The
subordinates attribute can be accessed without problems because it is defined in the same
class as this method is written (i.e., the Manager class).

Since we need to access the employeeNumber attribute from the method ... how do we fix
this ? There are two solutions:

(1) write a public getEmployeeNumber() method in the Employee class and use it:

public class Employee extends Person {
 private int employeeNumber;
 private float hourlyPay;

 public int getEmployeeNumber() { return employeeNumber; }
}

public class Manager extends Employee {
 private String[] duties;
 private Employee[] subordinates;

 public boolean hasSeniority() {
 return (getEmployeeNumber() < 100) && (subordinates.length > 5);
 }
}

(2) declare all attributes that may need to be inherited as protected instead of private. By
using protected, all subclasses can access the attribute directly, but no other classes may.

public class Employee extends Person {
 protected int employeeNumber;
 protected float hourlyPay;
}

public class Manager extends Employee {
 private String[] duties;
 private Employee[] subordinates;

 public boolean hasSeniority() {
 return (employeeNumber < 100) && (subordinates.length > 5);
 }
}

COMP1406 - Chapter 4 - Class Hierarchies and Inheritance Winter 2014

 - 107 -

Now how do private and protected modifiers affect methods ? Consider four methods within
the Employee class with various access modifiers as follows:

Now consider some code within the Manager class that attempts to access these methods:

public class Manager extends Employee {
 public void tryThingsOut() {
 System.out.println(this . getEmployeeNumber()); // access allowed
 System.out.println(this . getPhoneNumber()); // access allowed
 System.out.println(this . changePassword("12345678")); // compile error
 System.out.println(this . jobsCompleted()); // access allowed
 }
}

Notice that the only method not allowed to be accessed is the private method, since the
tryThingsOut() method is written in the Manager class, not in Employee.

Consider now the Customer class restrictions:

public class Customer extends Person {
 public void buyFrom (Employee emp) {
 System.out.println(emp . getEmployeeNumber()); // access allowed
 System.out.println(emp . getPhoneNumber()); // access allowed
 System.out.println(emp . changePassword("12345678")); // compile error
 System.out.println(emp . jobsCompleted()); // compile error
 }
}

Now we can no longer call the jobsCompleted() method, since it has been declared
protected and Customer is not a subclass of Employee.

Manager

Employee

Customer

Person

 String getEmployeeNumber();
public String getPhoneNumber();
private String changePassword(String newOne);
protected ArrayList<String> j obsCompleted();

COMP1406 - Chapter 4 - Class Hierarchies and Inheritance Winter 2014

 - 108 -

There is one more "protective" keyword that can be used with methods. We can declare a
method as final to prevent subclasses from modifying the behavior. That is, when we declare
a method as being final, JAVA prevents anyone from overriding that method. Hence no
subclasses can have a method with that same name and signature:

public final void withdraw(float amount) {
 ...
}

Why would we want to do this ? Perhaps the behavior defined in the method is very critical
and overriding this behavior "improperly" may cause problems with the rest of the program.
__

Restricting Class Access

In regards to class definitions, we are also allowed to indicate either default or public access
to the class. So far, all of our classes have had public access, but we can have default
access by leaving off the keyword public:

public class Manager { // public access from classes anywhere
 ...
}

class Employee { // default access from classes within package/folde r
 ...
}

Interestingly, we can also declare a class as final. This means that it CANNOT have
subclasses:

public final class Manager {
 ...
}

Why would we want to do this ? Perhaps the class has very weird code that the author does
not want you to inherit ... maybe because it is too complicated and may easily be misused.
Many of the JAVA classes (e.g., ArrayList) are declared as final which means that we cannot
make any subclasses of them. It is a kind of security issue to prevent us from "messing up"
the way those classes are meant to be used. It’s a shame, because often we would like to
have special types of ArrayLists and other similar objects.

COMP1406 - Chapter 4 - Class Hierarchies and Inheritance Winter 2014

 - 109 -

 4.3 Abstract Classes & Methods

Recall our example in the previous section pertaining to the various types of bank accounts.
We had two types of accounts: SuperSavings and PowerSavings, which both inherited from
a more general class called SavingsAccount and indirectly from BankAccount a little further
up the hierarchy. Assume further that we distinguished between savings
accounts and chequing accounts … where chequing accounts allow their
owners to write cheques.

Assume that the real bank actually has exactly 4 types of accounts so that
when someone goes to the bank teller to open a new account, they specify
whether or not they want to open a SuperSavings, PowerSavings,
BusinessChequing or PowerChequing account. Here is a revised hierarchy …

In our class hierarchy however, there are 7 account-related classes. The four classes
representing the accounts that we can actually open are called concrete classes.

A concrete class in JAVA is a class that we can make instances of directly by using

the new keyword.

That is, throughout our code, we will find ourselves creating one of these 4 classes. For
example:

account1 = new SuperSavings(…);
account2 = new PowerSavings(…);
account3 = new BusinessChequing(…);
account4 = new PowerChequing(…);

However, we will likely never need to create instances of the other 3 account-related classes:

account 5 = new BankAccount(…);
account 6 = new SavingsAccount(…);
account 7 = new ChequingAccount(…);

SuperSavings PowerSavings

SavingsAccount

BankAccount

Object

BusinessChequing PowerChequing

ChequingAccount

COMP1406 - Chapter 4 - Class Hierarchies and Inheritance Winter 2014

 - 110 -

Why not ? Well, put simply, these types of objects are not specific enough because they
cause ambiguity. For example, if you went to the bank teller and asked to open just “a bank
account”, the teller does not know which of the 4 types of accounts you actually want. The
teller would likely ask you questions to help you narrow down your choices, but ultimately, the
type of account that is opened (i.e., the account that is actually created) MUST be one of the 4
accounts that the bank offers. Likewise, in our program, if we were to create instances of
BankAccount, SavingsAccount and ChequingAccount, then these objects would not be
specific enough to define account behavior that matches one of the 4 real account types.

So in a sense, the BankAccount, SavingsAccount and ChequingAccount classes are not
concrete, they are more abstract in that they don’t exactly match the real-life objects.
In JAVA, we actually use the term abstract class to define a class that we do not want to
make instances of. So, BankAccount, SavingsAccount and ChequingAccount should all
be abstract classes. We will draw abstract classes with dotted lines as follows …

So, in JAVA ...

An abstract class is a class for which we cannot create instances.

That means, we can never call the constructor to make a new object of this type.

new BankAccount(…) // does not compile
new SavingsAccount(…) // does not compile
new ChequingAccount(…) // does not compile

All of the classes that we created so far in this course were concrete classes, although some
could have been easily made abstract. We define a class to be abstract simply by using the
abstract keyword in the class definition:

public abstract class BankAccount {
 ...
}

SuperSavings PowerSavings

SavingsAccount

BankAccount

Object

BusinessChequing PowerChequing

ChequingAccount

COMP1406 - Chapter 4 - Class Hierarchies and Inheritance Winter 2014

 - 111 -

public abstract class SavingsAccount extends BankAccount {
 ...
}

public abstract class ChequingAccount extends BankAccount {
 ...
}

That is all that is involved in creating an abstract class. There really is nothing more to it. In
fact, the remainder of the code in that class definition may remain as is.

So, in fact, by making a class abstract, all we have done is to prevent the user of the class
from calling any of its constructors directly. This may raise an interesting question. If we
cannot ever create new objects of the abstract class, then why would we ever want to create
an abstract class in the first place ?

Well why did we create the BankAccount and SavingsAccount classes in the first place ?
Inheritance was the key reason. These classes still contain the common attributes and
shared behavior for all of their subclasses. The BankAccount class, for example, contains
the 3 instance variables common to all accounts (owner, accountNumber and balance).

Also, the SavingsAccount, for example, contains the deposit() method that is shared
between SuperSavings and PowerSavings. Hence, you can see that even though a class
may be declared as abstract it is still useful and important in keeping our code organized
properly in our class hierarchy. Their attributes and behaviors are still being used by their
concrete subclasses.

How do we know which classes to make abstract and which ones to leave as concrete ? If
we are not sure, it is better to leave them as concrete. However, if we discern that a particular
class has subclasses that cover all of the possible concrete classes that we would ever need
to create in our application, then it would be reasonable to make the superclass abstract.

Is there any advantage of making a class abstract rather than simply leaving it concrete ?
Yes. By making a class abstract, you are informing the users of that class that they should
not be creating instances of that class. In a way, you are telling them “If you want to use
this class, you should make your own concrete subclass of it.”. You are actually forcing
them to create a subclass if they want to use your abstract class. It forces the user of your
class to be more specific in their object creation, thereby reducing ambiguity in their code.

Here are a few more examples of class hierarchies that we already discussed, showing how
we could make some classes abstract:

COMP1406 - Chapter 4 - Class Hierarchies and Inheritance Winter 2014

 - 112 -

Abstract Methods:

In addition to having abstract classes, JAVA allows us to make abstract methods:

An abstract method is a method with no code for which all concrete subclasses

are forced to implement the method.

So, an abstract method is merely a specification of a method’s signature (i.e., return type,
name and list of parameters), but the body of the code remains blank. To define an abstract
method, we use the abstract keyword at the beginning of the method’s signature.

Here are a couple of examples:

public abstract void deposit (float amount);
public abstract void withdraw (float amount);

Notice that there are no braces { } to specify the method body … the method signature simply

ends with a semi-colon ;.

At this point you should be wondering: “Why would any sane person would write
a method that has no code in it ?”. That is certainly a reasonable question since,
after all, methods are called so that we can evaluate the code that is in them.

Abstract methods are actually never called, so JAVA never attempts to evaluate
their code. Just as an abstract class is used to force the user of that class to have
subclasses, an abstract method forces the subclasses to implement (i.e., to write

COMP1406 - Chapter 4 - Class Hierarchies and Inheritance Winter 2014

 - 113 -

code for) that method. So, by defining an abstract method, you are really just informing
everyone that the concrete subclasses must write code for that method. All concrete
subclasses of an abstract class MUST implement the abstract methods defined in their
superclasses, there is no way around it.

When JAVA compiles an abstract method for a class (e.g., class A), it checks to see whether
or not all the subclasses of A have implemented the method (i.e., that they have written a
method with the same return type, name and parameters). That is really all that happens in
regard to the abstract methods.

For example, if we make deposit(float amount) and withdraw(float amount) methods
abstract in the BankAccount class, then, all of its concrete subclasses (SuperSavings,
PowerSavings, BusinessChequing and PowerChequing) would be forced to implement
those methods … complete with code as follows …

Each of the 4 concrete subclasses would implement their deposit() and withdraw() code
according to the bank's rules for that type of account (i.e., apply certain fees, limit amount,
etc...).

COMP1406 - Chapter 4 - Class Hierarchies and Inheritance Winter 2014

 - 114 -

Alternatively, we can take advantage of inheritance. If, for example, the SuperSavings and
PowerSavings accounts both deposit() in the same manner, instead of duplicating the code
we can implement a non-abstract deposit() method in the SavingsAccount class that
performs the required behavior. This method would then be shared (i.e., used) by both the
SuperSavings and PowerSavings subclasses through inheritance.

In this case, the SuperSavings and PowerSavings classes would NOT need to implement
the deposit() method, since it is inherited …

Only abstract classes are allowed to have such abstract methods. However, as you know, an
abstract class may have regular methods as well.

If we were to find that all 4 types of concrete accounts did the exact same thing when a
deposit() was made, then we would likely simply write the shared deposit() method in the
BankAccount class, INSTEAD OF making the abstract deposit() method in the first place.
This allows a kind of default deposit() behavior for all subclasses to inherit, not forcing any
classes to implement this method.

It is often the case that we define more than one abstract method in a class. This allows us to
specify a set of “standard” behavior that ALL of its subclasses MUST have.

COMP1406 - Chapter 4 - Class Hierarchies and Inheritance Winter 2014

 - 115 -

HomeImprovementLoan

Lease Mortgage

Loan

Object

For example, assume that we have the following
hierarchy in which an abstract Loan class has 3
specific subclasses as shown here:

We may decide on some particular behavior
that all types of loans must exhibit. For
example, we may want to ensure that we have
a way to calculate a monthly payment for the
loan, a way to make payments on the loan, a
way to re-finance the loan and perhaps a way to
extract the client’s information that pertains to
the loan.

If this is the case, perhaps some of the behavior is similar for all loans (e.g., getting the client’s
information), while other behaviors may be unique depending on the type of loan (e.g., leases
and mortgages may be re-financed differently). Here is how we might define the Loan class:

public abstract class Loan {
 public abstract float calculateMonthlyPayment();
 public abstract void makePayment(float amount);
 public abstract void renew(int numMonths);

 public Client getClientInfo() { // a non - abstract method
 ...
 }

}

Notice that the getClientInfo() method is non-abstract, so that we can write code in there that
is shared by all the subclasses. The other 3 methods shown are abstract … so the Lease,
Mortgage and HomeImprovementLoan classes MUST implement all 3 of these methods,
with the appropriate code. Remember … an abstract class is just like any other class in
regards to its attributes and behaviors. So there may be many more methods (abstract or
non-abstract) and/or attributes defined in the Loan class.

Do you see the benefit of defining abstract methods ? They allow you to define a set of
behaviors that all your subclasses must have while giving them the flexibility to specify their
own unique code for those behaviors. What would happen if we did not make any of the
methods abstract ?:

public abstract class Loan {
 public float calculateMonthlyPayment(){ return 0;}
 public void makePayment(float amount){ }
 public void renew(int numMonths) { }
 public Client getClientInfo() { ... }

}

COMP1406 - Chapter 4 - Class Hierarchies and Inheritance Winter 2014

 - 116 -

Two things would be different. First, the methods would need to have a body. We could
leave the code body blank or we could put in some default code of our choosing.

Second, the subclasses would not be “forced” to write these methods. So if the subclass did
not supply the method, then these methods here would be inherited. This is not such a “big
deal”, but if we simply forgot to implement these methods, then the inherited behavior may be
unexpected and in some cases undesirable. By making the 3 methods abstract, the compiler
will force us to write the methods, eliminating the possibility of us forgetting to implement them.

 4.4 JAVA Interfaces

Inheritance allows all classes along the same path in the class hierarchy to share attributes
and behaviors. The structure of the class hierarchy helps to identify common behavior that
subclasses have with their superclasses. How though, would we define (and perhaps force)
common behavior between seemingly unrelated classes in different parts of the class
hierarchy ?

There is a mechanism in JAVA for doing this:

An interface is a specification (i.e., a list) of a set of methods such that any classes

implementing the interface are forced to write these methods.

Using an interface is similar to the idea of having a set of abstract methods, except that the
interface exists on its own, that is, it is defined by itself in its own file.

We define such a list of methods as if we were defining a new class, except that we use the
keyword interface instead of class:

public interface InterfaceName {
 ...
}

Just like classes, interfaces are types and are defined in their own .java files. So, the above
interface would be saved into a file called InterfaceName.java.

Here is an example of an interface that defines a Loanable object:

public interface Loanable {
 public float calculateMonthlyPayment();
 public void makePayment(float amount);
 public void renew(int numMonths);
}

The methods themselves are defined like abstract methods, but without the word abstract.
For comparison purposes, recall the similar abstract class called Loan with abstract methods:

COMP1406 - Chapter 4 - Class Hierarchies and Inheritance Winter 2014

 - 117 -

public abstract class Loan {
 public abstract float calculateMonthlyPayment();
 public abstract void makePayment(float amount);
 public abstract void renew(int numMonths);

 public Customer getClientInfo() { // a non - abstract method
 //...
 }
 //....
}

There are some similarities between the two:
 • both define three similar methods with no code.

 • like abstract classes, we cannot create instances of interfaces. So,
we cannot use this code anywhere in our code: new Loan() nor new Loanable()

There are also some differences between the two:
 • We cannot declare/define any attributes nor static constants in

an interface, whereas an abstract class may have them
 • We can only declare “empty” methods in an interface, we cannot supply code for them.

In contrast, an abstract class can have non-abstract methods with complete code.
 • All methods in an interface must be declared public

Since interfaces are defined by themselves in their own files (i.e., the interface does not
"belong" to any particular class), we must have a way to inform JAVA which objects will be
implementing the methods that are defined in the interface.

Consider defining an interface called Insurable that defined the common behavior that all
insurable objects MUST have as follows:

public interface Insurable {
 public int getPolicyNumber() ;
 public int getCoverageAmount() ;
 public double calculatePremium(int days);
 public java.util.Date getExpiryDate() ;
}

The code above would need to be saved and compiled before we can use it.

COMP1406 - Chapter 4 - Class Hierarchies and Inheritance Winter 2014

 - 118 -

Assume now that we want to have some classes in our hierarchy that are considered to be
insurable. Perhaps Person, Car and Company objects in our application are all considered
to be Insurable objects.

We would want to make sure that they all implement the methods defined in the Insurable
interface as shown here:

To do this in JAVA, we simply add the keyword implements in the class definition, followed by
the name of the interface that the class will implement as follows:

public class Person implements Insurable {
 ...
}

public class Company implements Insurable {
 ...
}

public class Car implements Insurable {
 ...
}

By adding this to the top of the class definition, we are informing the whole world that these
objects are insurable objects. It represents a "stamp of approval" to everyone that these
objects are able to be insured. It provides a "guarantee" that these classes will have all the

Company Car

Insurable
Object

Employee

Manager

Person

COMP1406 - Chapter 4 - Class Hierarchies and Inheritance Winter 2014

 - 119 -

methods required for insurable items (i.e., getPolicyNumber(), getCoverageAmount(),
calculatePremium() and getExpiryDate()). So then, for each of the implementing classes,
we must go and write the code for those methods:

public class Car implements Insurable {
 //...
 public int getPolicyNumber() { /* write code here */ }
 public double calculatePremium(int days) { /* write code here */ }
 public java.util.Date getExpiryDate() { /* write code here */ }
 public int getCoverageAmount() { /* write code here */ }
 //...
}

public c lass Person implements Insurable {
 //...
 public int getPolicyNumber() { /* write code here */ }
 public double calculatePremium(int days) { /* write code here */ }
 public java.util.Date getExpiryDate() { /* write code here */ }
 public int getCoverageAmount() { /* write code here */ }
 //...
}

public class Company implements Insurable {
 //...
 public int getPolicyNumber() { /* write code here */ }
 public double calculatePremium(int days) { /* write code here */ }
 public java.util.Date getExpiryDate() { /* write code here */ }
 public int getCoverageAmount() { /* write code here */ }
 //...
}

Remember that these classes may define their own attributes and methods but somewhere in
their class definition they must have ALL 4 methods listed in the Insurable interface.
Interestingly, a class may implement more than one interface:

Insurable

Object

Sellable

Drivable

Car Company Product

COMP1406 - Chapter 4 - Class Hierarchies and Inheritance Winter 2014

 - 120 -

Here the Car object implements 3 interfaces. To allow this in our code, we just need to specify
each implemented interface in our class definition (in any order), separated by commas:

public class Car implements Insurable , Drivable , Sellable {
 ...
}

Of course, the Car class would have to implement ALL of the methods defined in each of the
three interfaces. Like classes, interfaces can also be organized in a hierarchy:

As with classes, we form the interface hierarchy by using the extends keyword:

public interface Insurable { ...
 public int getPolicyNumber() ;
 public int getCoverageAmount() ;
 public double calculatePremium(int days) ;
 public java.util.Date getExpiryDate() ;
}

public interface Depre ci atingInsurable extends Insurable {
 public double computeFairMarketValue();
 public void amortizePayments();
}

public interface FixedInsurable extends Insurable {
 public int getEvaluationPeriod();
}

Insurable Object

Company Person Car

Fixed
Insurable

Depreciating
Insurable

COMP1406 - Chapter 4 - Class Hierarchies and Inheritance Winter 2014

 - 121 -

Classes that implement an interface must implement its "super" interfaces as well. So
Company and Person would need to implement the method in FixedInsurable as well as the
four in Insurable, while Car would have to implement the two methods in
DepreciatingInsurable and the four in Insurable as well.

In summary, how do interfaces help us ? They provide us with a way in which we can specify
common behavior between arbitrary objects so that we can ensure that those objects have
specific methods defined. There are many pre-defined interfaces in JAVA and you will see
them used often when we discuss user interfaces.

 4.5 Polymorphism

Recall that we can convert (or type-cast) primitives to convert a value from one
type to another:

(int) 871.34354; // results in 871
(char) 65; // results in 'A'
(long) 453; // results in 453L

Some type-casting is done automatically by JAVA when we assign a value of one particular
type to a variable of a different type. However, we can also explicitly type-cast in order to
simplify the data (e.g., from float to int) or for display purposes (e.g., from byte to char).

In JAVA, we can also type-cast objects from one type to another type. However, type-casting
objects is different from type-casting primitives in that the objects are not converted or
modified in any way. Instead, when we type-cast an object variable, it is simply restricted with
respect to the kinds of behaviors that it is capable of doing from then on in our program.

Why would we want to do type-casting if all that we are doing is restricting the object in some
way. Would it not be better (i.e., more flexible) to simply allow the object’s methods to be used
at any time ? These are valid questions. However, there are reasons for type-casting.

Perhaps the main advantage of type-casting is that it allows for:

Polymorphism is the ability to use the same

behavior for objects of different types.

That is, it allows different objects to respond to the exact "same"
methods. The result is that we have much less to remember
when we go to use the object. That is, by using polymorphism,
we just need to understand a few commonly used methods that
all these objects understand. For example:

• We can ask all Person objects what their name is. This is independent as to whether
or not they are instances of Employees, Managers, Customers etc...

• We can deposit to any BankAccount, independent of its type.

COMP1406 - Chapter 4 - Class Hierarchies and Inheritance Winter 2014

 - 122 -

And so … by treating an object more generally (i.e., type-casting it), we are simplifying the way
that we will use the object by restricting its usage to a few well understood methods. As a
result, our code becomes

• easier to understand • more intuitive and • quicker to write since the programmer does not need to remember as many methods.

It is important to understand the type-casting of objects because JAVA often type-casts objects
automatically. Therefore, we must understand how to type-cast and when it is done
automatically. The type-casting of objects is done the same way (i.e., with the round
brackets) as with primitives. Here are a few examples:

p = (Person) anEmployee ;
c = (Customer) anArray[i] ;
b = (SavingsAccount) aBankAccount;

Notice that there is an object type (i.e., class name) within the round brackets.

When we type-cast an object to another type we are not modifying it in any way.
Rather, we are simply causing the object to be “treated” more generally from then on
in the program. As a result, the object will then be less flexible in that we can no
longer call some of the methods that we used to call on it. In a way, we are ignoring
some of the behavior that is available to the object.

This may sound strange, but we do this in real life. Let us consider a couple of examples.

Consider meeting your professor with his family outside of class, perhaps
at a local shopping mall. Likely, you would “treat” your professor as a
general/normal Person ... not as your "professor". So, you might ask him
questions that you would ask anyone such as: “Is this your family?” or
“What are you shopping for today?”. However, you would likely not ask
him a question like “What kind of questions will be on the final exam?” and
hopefully you would not pull out a laptop and ask him to help you debug
the code on your assignment. So, in a sense, you have type-casted the
Professor to a more general Person object by restricting the available
behaviors to those that are applicable to more general people, avoiding
any professor-specific behavior.

As another example, consider an Apple …
normally you may polish, peel or eat it ... but in a
food fight, you may type-cast (i.e., treat) your apple
as a general throwable projectile. Then, the apple
takes on different behavior such as throw, catch,
splatter, etc... The fact is ... it is still an Apple, but
it is being treated differently. You may even type-
cast other objects to be projectiles such as grapes,
sandwiches, pineapples (ouch), chairs, etc...

COMP1406 - Chapter 4 - Class Hierarchies and Inheritance Winter 2014

 - 123 -

getName()
getAddress()

getPhoneNumber()

getEmployeeNumber()
getHourlyPay()

getItemsPurchased()
getPurchaseHistory()

getDuties()
getSubordinates()

Manager

Employee
Customer

Person

Object

…

“Earl”

address

name

employee variable

Employee object

person variable

phoneNumber

employeeNumber 10012

hourlyPay 8.50f

…

Now let us look at a real coding example. Consider the following class hierarchy of Employee,
Person, Manager and Customer objects with some instance methods belonging to each
class as shown:

Consider what happens when we create a single Employee object and then type-cast it to a
Person. Take note of the methods that are available for use and those which will not compile.
Note that we create 2 variables, yet both point to the same object …

Person person;
Employee employee ;

employee = new Employee ("Earl");
employee.getName();
employee.getAddress();
employee.getPhoneNumber ();
employee.getEmployeeNumber ();
employee.getHourlyPay();

// now treat Earl like a person
person = (Person) employee ;
person.getName();
person.getAddress ();
person.getPhoneNumber ();

// these two will not compile
person.getEmployeeNumber ();
person.getHourlyPay();

// type - cast back and all is ok
((Employee) person).getEmployeeNumber ();
((Employee) person).getHourlyPay();

You will notice that once the type-cast to (Person) occurs, we are no longer able to use the
getEmployeeNumber() and getHourlyPay() methods since they are Employee-specific

COMP1406 - Chapter 4 - Class Hierarchies and Inheritance Winter 2014

 - 124 -

methods and we are now treating Earl as simply a Person. However, the person variable is
still pointing to Earl … the exact same object.

When we type-cast the person variable back to (Employee) again, and then try the same two
methods, they work fine because we are now treating Earl as an Employee again.

Notice what we are not able to do:

Employee employee ;
Manager manager ;
Customer customer ;

employee = new Employee ("Earl");
manager = (Manager) employee ; // Type - cast is not allowed
customer = (Customer) employee ; // Type - cast is not allowed

We are only allowed to use class type-casting to generalize an object. Therefore we can only
type-cast to classes up the hierarchy (e.g., Person and Object) but not down the hierarchy
(e.g., Manager) or across the hierarchy (e.g., Customer) from the original object class (e.g.,
Employee). In summary, objects may ONLY be type-casted to:

• a type which is one of its superclasses
• an interface which the class implements
• or back to their own class again

In the following example, an Employee object can only be type-casted to (or stored in a
variable of type) Employee, Person, Object or Insurable:

Attempts to type-cast to anything else will generate a ClassCastException. So Employees
CANNOT be type-casted to Manager, Customer, Company or Car. Such restrictions make
sense, after all, why would we "treat" a Manager as a Company or a Car.

Some coding advantages arise through implicit or automatic type-casting. Sometimes JAVA
will automatically type-cast an object, even if we do not explicitly do so with the brackets ().

Employee Customer

Insurable

Object

Manager

Person

Company Car

COMP1406 - Chapter 4 - Class Hierarchies and Inheritance Winter 2014

 - 125 -

Circle Triangle

Shape

Rectangle

Object

There are two main situations in which automatic type-casting occurs:

1. when we assign an object to a variable with a more general type:

Person person;
Employee employee;

employee = new Employee ("Earl");
person = employee; // same as person = (Person)employee;

2. when we pass in the object as a parameter to a method which has a more general type:

Employee employee;

employee = new Employee ("Earl");
doStandardHiringProcess(employee);
...

public void doStandardHiringProcess(Person p) {
 // employee object is type - casted to Person upon entering method
 ...
}

In both cases, you should be aware that an automatic type-cast has taken place. In fact, it
usually does not matter if you “know” that the type-casting is taking place, because the
compiler will tell you. However, it tells you this by means of a compile error … which is
somewhat unpleasant, as you well know. Also, sometimes the compiler message is not
straightforward to understand.

Let us now look at a simple example to see how
much we can reduce our code through the use
of automatic type-casting. Consider a hierarchy
of shape-related objects as shown here. We
can create a Circle, a Triangle and a
Rectangle and all three can be stored into a
variable of type Shape:

Shape s;
Circle c = new Circle (20);
Triangle t = new Triangle(10, 20, 30);
Rectangle r = new Rectange (10, 10, 20, 20);
s = c; // s points to object c
s = t; // s points to object t
s = r; // s points to object r

COMP1406 - Chapter 4 - Class Hierarchies and Inheritance Winter 2014

 - 126 -

Notice that we did not make any explicit type-cast to Shape (although we
could have done so). Here we simply re-assigned variable s to have three
different values corresponding to three different types of objects. The
example code itself is pointless, but it helps us to see how we can use
automatic type-casting.

Assume now that we want to draw a shape and that the Circle, Triangle
and Rectangle classes all have an appropriate method for drawing themselves called draw():

public class Circle extends Shape {
 ...
 public void draw() { ... }
}

public class Triangle extends Shape {
 ...
 public void draw() { ... }
}

public class Rectangle extends Shape {
 ...
 public void draw() { ... }
}

Consider now our Shape variable s which can hold any kind of shape:

 Shape s = ... ;

At any given time, we may not know exactly which kind of shape is currently stored in the
aShape variable. How then do we know which draw() method to call ? Well, we could check
the type of the object, perhaps with the instanceof keyword and then use some if statements
as follows:

if (s instanceof Circle)
 s .draw();

if (s instanceof Triangle)
 s .draw();

if (s instanceof Rectangle)
 s .draw();

However, looking at the code, it is clear that regardless of the type of shape we have, we just
need to call draw(). Since we called all of the methods draw(), this is an example of
polymorphism … that is … all shape objects understand the draw() method. For this to
compile though, there should also be a draw() method defined in the Shape class, which may
be blank.

COMP1406 - Chapter 4 - Class Hierarchies and Inheritance Winter 2014

 - 127 -

As a result, because of polymorphism and the explicit type-cast, we don't even need the IF
statements. Our code can be simplified to:

s.draw();

Incredible!!! What a reduction in code! But why does this work ? How does JAVA know
which draw() method to call ? Well, remember, whatever we store in the Shape variable s
does not change its type. The compiler will look at the kind of object that we put in there and
call the appropriate method accordingly by starting its method lookup in the class
corresponding to that object type (i.e., either Circle, Triangle or Rectangle, depending on
what was stored in s). As you can see, polymorphism can be quite powerful.

Now consider a Pen object which is capable of drawing shapes. We would like to use code
that looks something like this:

Pen aPen = new Pen();

aPen. draw (aCircle);
aPen. draw (aTriangle);
aPen. draw (aRectangle);

However, this is not so straight forward. We would have to define a draw() method in the Pen
class for each kind of shape in order to satisfy the compiler with regards to the particular type
of the parameter:

public class Pen {
 ...
 public void draw (Circle aCircle) {
 // code that draw s a Circle
 }
 public void draw (Triangle aTriangle) {
 // code that draw s a Triangle
 }
 public void draw (Rectangle aRectangle) {
 // code that draw s a Rectangle
 }
}

Since the drawing code is likely different for all 3 shapes we will need the 3 different pieces of
code to do the drawing. However, all of the shape-drawing code must appear here in the
Pen class. This is somewhat intuitive in regards to real life, since Pen’s draw shapes.

However, if we had other drawing classes such as Pencil, Marker or Chalk, we would need to
go to all these classes and insert shape-specific code for each kind of shape. Even worse, if
we wanted to add shapes (e.g., Ellipse, Diamond, Parallelogram, Rhombus, etc..) then we
would have to go to the Pen, Pencil, Marker and Chalk classes to add the appropriate shape-
drawing code.

COMP1406 - Chapter 4 - Class Hierarchies and Inheritance Winter 2014

 - 128 -

This is quite terrible since our code is not modular … the adding of one simple Shape class
would require us to recompile 4 other classes.

There must be a better way to do this! The answer is to use a technique known as double-
dispatching. When we call a method in JAVA, this is the same notion as sending a message
to the object. The idea behind double-dispatching is to dispatch a JAVA message two times.
Through double dispatching, we force a second message to be sent (i.e., we call another
method) in order to accomplish the task.

Before we do the double-dispatch, we need to adjust our code a little. We can simplify the
draw() methods in the Pen, Pencil, Marker and Chalk classes by combining them all in one
method. The new method will take a single parameter of type Shape. Hence, through type-
casting, we can pass in any subclass of Shape to the method. Here is the code …

public class Pen {
 ...
 public void draw(Shape anyShape) {
 if (anyShape instanceof Circle)
 // Do the drawing for circles
 if (anyShape instanceof Triangle)
 // Do the drawing for triangles
 if (anyShape instanceof Rectangle)
 // Do the drawing for rectangles }
 }
}

public class Pencil {
 ...
 public void draw (Circle
aCircle) {
 // code that draws a Circle
 }
 public void draw (Triangle
aTriangle
 // code that draws a
Triangle
 }
 public void draw (Rectangle
aRectangl
 // code that draws a

public class Chalk {
 ...
 public void draw (Circle
aCircle
 // code that draws a
Circle
 }
 public void draw (Triangle
aTriangle
 // code that draws a
Triangle
 }
 public void draw (Rectangle
aRectangle) {

public class Marker {
 ...
 public void draw (Circle aCir
 // code that draws a
Circle
 }
 p ublic void draw (Triangle
aTriangle) {
 // code that draws a
Triangle
 }
 public void draw (Rectangle
aRectangle) {
 // code that draws a

public class Pen {
 ...
 public void draw (Circle aCircle){
 // code that draws a Circle
 }
 public void draw (Triangle aTriangle){
 // code that draws a Triangle
 }
 public void draw (Rectangle aRectangle){
 // code that draws a Rectangle
 }

 public void draw (Ellipse anEllipse) {
 // code that draws an Ellipse
 }

}

class Ellipse {
 ...
}

COMP1406 - Chapter 4 - Class Hierarchies and Inheritance Winter 2014

 - 129 -

At this point, we still have to decide how to draw the different Shapes. So then when new
Shapes are added, we still need to come into the Pen class and make changes. However,
we can correct this problem by shifting the drawing responsibility to the individual shapes
themselves, as opposed to it being the Pen's responsibility. This "shifting" (or flipping) of
responsibility is where the notion of double dispatching comes in. It is similar to the
expression "passing-the-buck" in English. In other words, we are saying: "I'm not going to
do it ... you do it yourself".

We perform double-dispatching by making a method in each of the specific Shape subclasses
that allows the shape to draw itself using a given Pen object:

public class Circle extends Shape {
 ...
 public void drawWith(Pen aPen) { ... }
}

public class Triangle extends Shape {
 ...
 public void drawWith(Pen aPen) { ... }
}

public class Rectangle extends Shape {
 ...
 public void drawWith(Pen aPen) { ... }
}

Then, we do the double dispatch itself by calling the drawWith() method from the Pen class:

public class Pen {
 ...
 public void draw(Shape aShape) {
 aShape. drawWith(this) ;
 }
}

Notice that the code is incredibly simple. When the Pen is asked to draw a Shape, it basically
says: "No way! Let the shape draw itself using ME!". That is the second message call, which
itself does the real drawing work. We would write a similar one-line method in the Pencil,
Chalk and Marker classes. In order for this to compile, you must also have a
drawWith(Pen aPen) method declared in class Shape even if that method does nothing.

Do you see the tremendous advantages here ? Regardless of the kind of Shape that we may
add in the future, we NEVER have to go into the Pen, Pencil, Marker or Chalk classes to
make changes. This code remains intact. Instead, we simply write a drawWith() method in
the new Shape class to do the drawing of itself. And who would know better how to draw the

COMP1406 - Chapter 4 - Class Hierarchies and Inheritance Winter 2014

 - 130 -

shape than itself. The code is much more modular and has a nice clean separation.
Furthermore, the code is logical and easy to understand.

Type-casting also provides advantages when multiple unrelated classes implement the same
interface. Objects can be type-casted to an interface type, provided that the class implements
that interface. In the hierarchy below, we can type-cast any instances of Car, Company,
Customer, Employee or Manager to Insurable.

Assume that Insurable has a method defined called getPolicyNumber() and that the Car
class has a getMileage() method. Notice the type-casting as follows:

Car jetta = new Car();
Insurable item = (Insurable) jetta;

item. getPolicyNumber() ; // OK since Insurable
jetta.getMileage(); // OK (assuming it is a Car method)
item.getMileage(); // Compile Error
((Car) item).getMileage(); // OK now

Notice the compile error when calling getMileage() on item. Even though item is actually a
Car object, it has been type-casted to Insurable, and so only methods that are defined in the
Insurable interface can be used on it.

What is the advantage of type-casting to an interface ? Well, we can treat “seemingly
unrelated” objects the same way. This is often useful when we have a collection of such
items.

Consider an Array of a variety of Insurable items and then trying to list all of the policies and
totaling the amounts of all the policies:

Employee Customer

Insurable

Object

Manager

Person

Company Car

COMP1406 - Chapter 4 - Class Hierarchies and Inheritance Winter 2014

 - 131 -

float total = 0;
Insurable [] insurableItems;

insurableItems = new Insurable [5] ;
insurableItems[0] = new Car("Porshce" , "Carerra" , "Red" , 340) ;
insurableItems[1] = new Customer("Guy Rich");
insurableItems[2] = new Company("Elmo’s Edibles" , 2009) ;
insurableItems[3] = new Employee("Jim Socks");
insurableItems[4] = new Manager("Tim Burr");

System.out.println("Here are the policies:");
for (int i=0; i<insurableItems.length; i++) {
 System.out.println(" " + insurableItems[i] . getPolicyNumber());
 total += insurableItems[i] . getPolicyAmount() ;
}
System.out.println("Total policies amount is $" + total);

In the above example, all 5 unique objects are automatically type-casted to Insurable when
added to the array. Then when listing the policies, we simply use the common
getPolicyNumber() method (which must be defined in Insurable and implemented by all the
classes). Similarly, we total all the policy amounts by using the common getPolicyAmount()
method.

What would the code look like without having the Insurable interface ? Well, in order to store
the items in the same array we would still need to know what they have in common.
Without the Insurable interface, the only other thing that all the objects have in common is that
they are subclasses of Object. So we would have to make an Object[5] array of general
objects: Object [] insurableItems = new Object [5] ;

Once we make these changes, then the compiler will prevent us from calling the
getPolicyNumber() or getPolicyAmount() methods because it assumes that the item
extracted in the FOR loop is a general Object … but general objects do not have such
methods. Therefore, we would be forced to check the type of every object, beforehand …
implying that we knew all the different types that would ever be placed in the array. Our code
would be longer, more complicated, messier and non-modular:

...
for (int i=0; i<insurableItems.length; i++) {
 if (insurableItems[i] instanceof Car)
 System.out.println(" " + ((Car)insurableItems[i]) .getPolicyNumber());
 total += ((Car)insurableItems[i]) .getPolicyAmount();
 }
 else if (insurableItems[i] instanceof Employee)
 System.out.println(" " + ((Employee)insurableItems[i]) .getPolicyNumber());
 total += ((Employee) insurableItems[i]) .getPolicyAmount();
 }
 else if (...)

 ...
}

COMP1406 - Chapter 4 - Class Hierarchies and Inheritance Winter 2014

 - 132 -

Of course, an alternative to using the shared interface would be to have all insurable objects
extend (i.e., inherit from) a common abstract class, perhaps called Insurable as well. We
could then define the getPolicyNumber() and getPolicyAmount() methods as abstract
methods, forcing all subclasses to implement them. Then, we could use the same identical
code that worked with the Insurable interface.

However, the big disadvantage of doing things this way, is that we are restricting the
inheritance of Insurable objects to be insurable-related. That means, we cannot take
advantage of other kinds of inherited attributes and behaviors.

Here is a diagram showing how we could get such shared behavior either with interfaces or
with abstract methods …

As another more tangible example, consider defining a Controllable interface for objects that
can be controlled via remote control. The interface may look as follows:

abstract int getPolicyNumber();
abstract float getPolicyAmount();

int getPolicyNumber();
float getPolicyAmount();

Employee Customer

Insurable

Object

Manager

Person

Company Car

Employee Customer

Insurable

Manager

Person

Company Car

Object

Shared Behavior Using Abstract Methods

Shared Behavior Using a Common Interface

COMP1406 - Chapter 4 - Class Hierarchies and Inheritance Winter 2014

 - 133 -

public interface Controllable {
 public void turnLeft();
 public void turnRight();
 public void moveForward();
 public void moveBackward();
}

Now, consider a Robot object which is Controllable and implements this interface:

public class Robot implements Controllable {
 private int batteryLevel;
 private Behavior[] behaviors;

 // These are the Controllable - related methods
 public void turnLeft() { ... }
 public void turnRight() { ... }
 public void moveForward() { ... }
 public void moveBackward() { ... }

 // There will likely also be some other methods
 // which are robot - specific
 public Behavior computeDesiredBehavior() { ... }
 public int readSensor(Sensor x) { ... }
 ...
}

Now, what about a ToyCar, or even a Lawnmower ? We can implement the
Controllable interface for each of these as well. In fact, suppose that we
want to set up a handheld remote control for Controllable objects. We can
then treat all of the objects (Robots, ToyCars, Lawnmowers, etc...) as a
single type of object ... a Controllable object:

public class RemoteControl {
 private Controllable machine;

 public RemoteControl(Controllable m) {
 machine = m;
 }

 public void handleButtonPress(int buttonNumber) {
 if (buttonNumber == 1)
 m.moveForward();
 else if (buttonNumber == 2)
 m.moveBackward();
 else if (buttonNumber == 3)
 m.turnLeft();
 else
 m.turnRight();
 }
 ...
}

COMP1406 - Chapter 4 - Class Hierarchies and Inheritance Winter 2014

 - 134 -

Notice that the remote control constructor is supplied with any object that is of type
Controllable (i.e., a Robot, ToyCar, Lawnmower, etc..) Therefore, as can be seen in the
handleButtonPress() method, the code for controlling the machine from the remote is
independent of the type of object being controlled.
This is a nice clean separation of code in that any new Controllable object that is developed in
the future can be controlled by this RemoteControl object. The programmer would not need
to make any changes to the RemoteControl class code whatsoever:

ToyPlane aPlane = new ToyPlane();
ToyBoat aBoat = new ToyBoat();

RemoteControl planeRemote = new RemoteControl(aPlane);
RemoteControl boatRemote = new RemoteControl(aBoat);

Chapter 5

Graphical User Interfaces

What is in This Chapter ?

This chapter discusses developing JAVA applications that bring up windows that the user can
interact with. It discusses Graphical User Interfaces and how we can develop our own to
represent main windows for our JAVA applications.

COMP1406 - Chapter 5 - Graphical User Interfaces Winter 2014

 - 136 -

 5.1 User Interfaces

All applications require some kind of user interface which allows the user to interact with the
underlying program/software. Most user interfaces have the ability to take-in information from
the user and also to provide visual or audible information back to the user.

In the real world, an interface often has physical interactive components . For example, there
are two obvious ways to interact with (or interface with) our bank account. We may go up to a
teller at the bank and perform some transactions, or we may use an ATM.

In the virtual world, we may interact with our bank account electronically by using a web
browser, or phone app or dedicated stand-alone software from the bank.

In this case, the interaction is through software menus, buttons, text fields, lists, etc..

In this course, we will consider software-based user interfaces such as those shown above.
We will concentrate on stand-alone applications that do not require the use of a browser.

Up until this point, our programs/applications did not really have any interactive user
interface. That is, we defined classes, wrote programs and then simply ran them inside of the
IDE that we were using. The results of our program were displayed as graphics (in the case
of Processing) or as text output (as in the case of the JAVA console window).

COMP1406 - Chapter 5 - Graphical User Interfaces Winter 2014

 - 137 -

When writing programs that bring up a main interactive window (or those that run on a phone
or in a browser), it is important to understand that more is "going on behind the scenes". That
is, when we use an ATM machine, there is actually quite a bit "going on" in the way that our
actions at the machine affect the current state of the bank and of our bank account. For
example, the bank account changes, transaction logs are updated and security/error-checking
is taking place. The ATM machine was simply making use of these underlying entities (i.e.,
the bank and the account) in order to complete the transaction. It is necessary at this point
to bring up some definitions:

The model of an application consists of all classes that represent the "business logic"

part of the application ... the underlying system on which a user interface is attached.

The model is always developed separately from the user interface. In fact, it should not
assume any knowledge about the user interface at all (e.g., model classes should not assume
that System.out.println() is available).

The user interface is the part of the application that is attached to the model

which handles interaction with the user and does NOT deal with the business logic.

The user interface always makes use of the model classes and often causes the model to
change according to user interaction. The changes to the model are often reflected back
(visually) on the user interface as a form of immediate feedback.

A graphical user interface (GUI) is a user interface that makes use of one

or more windows to interact with the user.

A GUI is often preferred over text-based user interfaces because it is more natural ... more like
real-world applications that we are used to using. Imagine, for example, if the internet was
only text-based with no buttons, text fields, drop-down lists, images, etc..

COMP1406 - Chapter 5 - Graphical User Interfaces Winter 2014

 - 138 -

So, it is important to understand that there should always be a separation in your code
between the model classes and the user interface classes. That will allow you to share the
same model classes with different interfaces.

In JAVA, all of our main windows for our applications will be instances of the JFrame class. A
JFrame will be the main starting place for our user interface-based programs. The JFrame
window will contain window components that will allow us to interact with the user, such as
buttons, text fields, lists etc...

Example:

The following code creates a simple window in JAVA. You can use this program as a
template for all of your window-based applications:

import javax.swing.JFrame;

public class MyApplication extends JFrame {

 public MyApplication(String title) {

 super(title); // Set title of window
 setDefaultCloseOperation(EXIT_ON_CLOSE); // allow window to close

 setSize(300, 100); // Set size of window

 }

 public static void main(String[] args) {

 MyApplication frame;

 frame = new MyApplication("My Window"); // Create window

 frame.setVisible(true); // Show window

 }

}

Although this code for bringing up a new window
can appear anywhere, we typically designate a
whole class to represent the window (that is, the
JAVA application). This also helps to separate
the model and the user interface. So here are the
steps involved with creating your own JAVA application that uses a main window (frame):

1. Create a new class (separate from model classes) to represent your application. In this
case we created a MyApplication.java file to represent our window-based application.

2. Have this class extend JFrame. Make sure to import the javax.swing.JFrame
package. This will allow us to inherit all of the JFrame's attributes and methods.

3. Create a constructor that sets the window title (specified as a parameter). In the
constructor, set the size of the window using JFrame's setSize() method by specifying
the width and height of the window (in pixels ... includes the frame around the window).
If you do not set the size, the window will show up so small that you will only see part of
the title bar.

COMP1406 - Chapter 5 - Graphical User Interfaces Winter 2014

 - 139 -

4. Include a main() method as a starting point for the application that calls your constructor
to make the window and then call the frame's setVisible() method with a value of true
to make the window appear. When frames are created, by default they do not appear on
the screen unless we call this method with a value of true.

Note as well that we specified for the application to EXIT_ON_CLOSE. This is necessary
since we want the application to stop running when the window is closed. This is typical
behavior for all applications that run under windowing operating system environments. What
other choices do we have when the window is closed ? b We could have used:

 // window is not closed
 setDefaultCloseOperation(DO_NOTHING_ON_CLOSE);

 // window is hidden...the program keeps running
 setDefaultCloseOperation(HIDE_ON_CLOSE);

 // window is hidden and disposed of (more later)
 setDefaultCloseOperation(DISPOSE_ON_CLOSE);

To test the application, just compile and run it as you normally do.

 5.2 Components and Containers

In order for a window to be useful, it must contain various components.

A window component is an object with a visual representation that is placed on

a window and usually allows the user to interact with it.

Typical window components are things such as buttons, text fields, drop down lists, scroll bars,
tabbed panes, menus, etc..

Components may also be grouped together, much like adding elements to an array. In fact,
most components in JAVA can contain other components as their sub-parts. This brings up
the notion of a Container.

A container is an object that contains components and/or other containers.

The most easily understood container in JAVA is the JFrame, since windows generally contain
many components on them. However, as you will see, there are other useful containers such
as a JPanel. Containers are actually components as well. That is, you can have containers
which contain other containers.

This allows for arrangements such as a JFrame containing two JPanels, each of which
contains two JLabels etc.. So, a container of components is conceptually "like" an array of
objects:

COMP1406 - Chapter 5 - Graphical User Interfaces Winter 2014

 - 140 -

In the original versions of JAVA, all components were stored in the java.awt package. This
package, and its sub-packages were known as the Abstract Windowing Toolkit (AWT).
Soon after, the JAVA guys developed a more platform-independent version in the javax.swing
package. This package, and its sub-packages were known as the Swing packages. We will
be making use of these newer Swing components.

Here is just a portion of the component
hierarchy →

The red classes are classes in the
swing packages, while the yellow ones
are classes from the AWT packages:

Notice that a JFrame is a Window as
well as a Container. JPanels are
also Containers in that they too can
contain many components.

In fact, Containers themselves are
Components and all JComponents
are also Containers. So, in Swing,
everything is a Container ... even a
button!

All components actually keep pointers to
their parent container (i.e., the component
that contains it). Parents of nested
components are stored recursively:

Component aComponent;
Container parent;
Container parentOfParent;

aComponent = ... ;
parent = c.getParent();
parentOfParent = p.getParent();

COMP1406 - Chapter 5 - Graphical User Interfaces Winter 2014

 - 141 -

Containers themselves keep pointers to their components (i.e., an array) and we can access
these using the container's getComponent() and getComponents() methods:

Container aParent = ... ;
Component c1 = aParent.getComponent(0);
Component c2 = aParent.getComponent(1);
Component c3 = aParent.getComponent(2);

Component[] c = aParent.getComponents(); // get them all

One of the most commonly used containers is called a JPanel:

A JPanel is a frameless area on a window that usually

contains a laid-out arrangement of other components.

Think of a panel as a bulletin board that you can fill with components and then
you can place the bulletin board anywhere as a component itself.

All JFrames have a JPanel at the top level to which all of our window components added. For
simple "single-panel" windows, we can simply access this panel by sending the
getContentPane() method to our JFrame, and then call add() to put components onto it:

Component c1 = ...;
Component c2 = ...;
Component c3 = ...;

JFrame frame = new JFrame("MyApplication");
frame.getContentPane().add(c1);
frame.getContentPane().add(c2);
frame.getContentPane().add(c3);

Note that the component hierarchy diagram shown earlier does not list all available
components. We can expand the JCompoment hierarchy in more detail.

The three pictures on the next page (note that there was too much to show on one picture so it has been

split into multiple pictures) show just some of the JComponent subclasses that represent
commonly used components (shown in yellow) that are placed onto windows. Notice that all
these JComponents start with a "J". Also notice that there are different kinds of buttons and
text-based components.

COMP1406 - Chapter 5 - Graphical User Interfaces Winter 2014

 - 142 -

There are even more subclasses ... those
dealing with menus will be shown later.

You will get to know more about these
components as we use them in our
examples. For now, it is a good idea to
understand the common properties and
functionality that all components have.

All JComponents have an (x, y) location as well as a width and height. The location is the
(x,y) coordinate of the top/left of the component. It is a coordinate within the coordinate
system defined by the top left corner of the parent container (which is often a JPanel):

COMP1406 - Chapter 5 - Graphical User Interfaces Winter 2014

 - 143 -

We can access or modify these values for the component at any time using the methods
shown in the code below:

JComponent c = ... ;

// ask a component for its location, its width and its height
int x = c.getX();
int y = c.getY();
int w = c.getWidth();
int h = c.getHeight();

// change a component's location
c.setLocation(new Point(100, 200));

// change a component's width and height
c.setSize(100, 50);

There is a problem with changing sizes and locations of components by default. JAVA has
"Layout Managers" (more on this later) that automatically compute component locations and
sizes. If we decide to use layout managers, we can "suggest" sizes for our components using
the following methods:

c.setMaximumSize(new Dimension(width, height));
c.setMinimumSize(new Dimension(width, height));
c.setPreferredSize(new Dimension(width, height));

In addition to setting the size and dimensions of our components, we can also set the
background and foreground colors of the component. The background color is the color that
fills in the background of the component which is behind any text that appears on the
component. The foreground color is the text color. Here, for example is a window with 4
JButtons on it, each with different background and foreground colors:

COMP1406 - Chapter 5 - Graphical User Interfaces Winter 2014

 - 144 -

The code for setting the color of a component is simple:

JComponent c = ... ;

c.setBackground(Color.red);

c.setForeground(Color.black);

There are a few "standards" colors definitions. Here are some of them:

Color.black
Color.blue
Color.cyan
Color.darkGray
Color.gray

Color.green
Color.lightGray
Color.magenta
Color.orange

Color.pink
Color.red
Color.white
Color.yellow

To use the above constants, you need to import the Color class which is located within the
java.awt package using: import java.awt.Color;

However, these are not usually the best colors to use for a nice user interface, as they may
"clash", resulting in an "ugly" user interface. You will usually want to define your own colors.
The Color class provides constructors that allow you to create your own colors by specifying
the amount of Red, Green and Blue that makes up the color. This can be done by either using
integers (between 0 and 255) or floats (between 0.0 and 1.0) to represent a percentage of
RGB values:

new Color(int r, int g, int b);
new Color(float r, float g, float b);

Here is an example:

JComponent c = ... ;

c.setBackground(new Color(100, 50, 0)); // brown

c.setForeground(new Color(70, 0, 70)); // dark purple

In addition to setting the color, you may also choose the Font type (i.e., type of text) and Font
size that appears on your component (e.g., button, text field, etc..). The setFont() method is
used to do this. You need to supply a Font object.

JComponent c = ... ;
Font f = ...;

c.setFont(f);

You can create a Font object by calling a constructor in the Font class (located in the java.awt
package). Here is one constructor that requires you to supply the name of the font, the style
and the point size:

f = new Font(String name, int sytle, int size);

COMP1406 - Chapter 5 - Graphical User Interfaces Winter 2014

 - 145 -

So, as an example, here is what you could write:

 c.setFont(new Font("SansSerif", Font.BOLD, 12));

For the font name, you can supply any font that your system has available such as:

"Times", "Arial", "SansSerif" or "Courier"

To get a list of all fonts available on your computer, you can run the following code:

java.awt.GraphicsEnvironment ge;
java.awt.Font[] fonts;

ge = java.awt.GraphicsEnvironment.getLocalGraphicsEnvironment();
fonts = ge.getAllFonts();
for(int i=0; i<fonts.length; i++) {
 System.out.println(fonts[i].getName());
}

Here are possible styles (notice that we can "OR" them together using JAVA's bitwise OR
operator |):

Font.BOLD, Font.ITALIC, Font.PLAIN, Font.BOLD|Font.ITALIC

Here is an example showing buttons with various font names, style and size. The rows show
font sizes 8, 12, 18 and 18, respectively. The first 3 rows have PLAIN style while the last row
had BOLD style. The columns (from left to right) show font types: Script MT Bold, Arial
Narrow, Courier and Times New Roman, respectively:

In addition to these visual parameters, we can also enable and disable components. A
component that is disabled is "grayed out" and not able to be controlled by the user. A
disabled button, for example, cannot be pressed. A disabled text field, for example, does not
allow the user to type text into it.

COMP1406 - Chapter 5 - Graphical User Interfaces Winter 2014

 - 146 -

We can enable and disable components at any time in our program by using the setEnabled()
method as follows:

JComponent c = ... ;

c.setEnabled(false);
...
c.setEnabled(true);

By default, all components are enabled and will remain that way unless you disable them.

Components can actually also be completely hidden from view. A setVisible() method is
used to show or hide a component:

JComponent c = ... ;

c.setVisible(false);
...
c.setVisible(true);

By default, all newly created components are visible (i.e., not hidden). However, JFrames are
NOT automatically made visible ... you MUST do setVisible(true) to have your window
appear.

There are many more attributes that we can set for components and we will investigate some
more of them throughout the course.

Example:

Consider writing a program that creates the window
shown in this rough diagram →

The top/left component is a JTextField. The
bottom/left component is a JList and the right two
components are JButtons to add and remove items to
the list.

It is always a good idea to draw out a rough version of
your user interface, identifying the top/left corner or all
components as well as their dimensions and the width
or all margins around the window border and between
the components.

To write the code, we begin with a basic class definition. Notice the line that says
setLayout(null). This allows us to manually place the components wherever we want to on
the screen. Notice as well that we set the size of the window according to the dimensions in
the picture with an extra 10 pixels wide to account for the window frame and an extra 25 pixels

COMP1406 - Chapter 5 - Graphical User Interfaces Winter 2014

 - 147 -

high to account for the title bar of the window. We also made use of the setResizable(false)
so that the window cannot be resized after we create it.

import javax.swing.*;

public class FruitListApp extends JFrame {
 public FruitListApp(String name) {
 super(name);

 // Choose to lay out components manually
 getContentPane().setLayout(null);

 // ... Add components here (see below) ...

 // Set program to stop when window closed
 setDefaultCloseOperation(EXIT_ON_CLOSE);
 setSize(290, 230); // manually computed sizes
 setResizable(false);
 }

 public static void main(String[] args) {
 JFrame frame = new FruitListApp("My Fruit List");
 frame.setVisible(true);
 }
}

Now, we need to place our components on the window. Just insert the following code into the
middle of the above constructor:

 // Add the text field
 JTextField newItemField = new JTextField("Grapes");
 newItemField.setLocation(10,10);
 newItemField.setSize(150,25);
 getContentPane().add(newItemField);

 // Add the ADD button
 JButton addButton = new JButton("Add");
 addButton.setLocation(175, 10);
 addButton.setSize(100,25);
 getContentPane().add(addButton);

 // Add the REMOVE button
 JButton removeButton = new JButton("Remove");
 removeButton.setLocation(175,45);
 removeButton.setSize(100,25);
 getContentPane().add(removeButton);

 // Add the JList
 String[] fruits = {"Apples", "Oranges", "Bananas"};
 JList fruitList = new JList(fruits);
 fruitList.setLocation(10,45);
 fruitList.setSize(150,150);
 getContentPane().add(fruitList);

COMP1406 - Chapter 5 - Graphical User Interfaces Winter 2014

 - 148 -

Here is what the window will look like when we
run the code →

You will notice that the text supplied in the
JTextField constructor is the initial text that will
appear in the text field when the window opens.

Also, the text supplied for the JButtons is the
text that will appear on the button itself.

Lastly, notice that we can supply a list of items to
place in the JList initially as an array of String
objects. In fact, we can supply any objects for
this list, but for now we will simply use Strings.

The code above adds a list with 3 items in it initially. If, however, the list had many items in it,
the items cannot all be shown. For example, here is what the list would look like if we added
these fruits:

 String[] fruits = {
 "Apples", "Oranges", "Bananas",
 "Cherries", "Lemons", "Pears",
 "Strawberries", "Peaches",
 "Pomegranates", "Nectarines",
 "Apricots"};

Notice that the list cannot display more than 8
items due to its small size. In such as situation,
we need scroll bars on our list so that the user
can scroll to find particular items.

JAVA has a JScrollPane class that allows us to
place components within it such that scroll bars
are automatically placed in a way that allows scrolling in both the horizontal and vertical
directions.

To use the scroll pane, we call the JScrollPane constructor with 3 parameters. The first
parameter is the JList that we want to be able to scroll through (e.g., fruitList in our example).
The next two parameters are the scroll policies for the vertical and horizontal scroll bars. For
each scroll bar we must choose one of the following three policies for the vertical scroll bar:

ScrollPaneConstants.VERTICAL_SCROLLBAR_NEVER
ScrollPaneConstants.VERTICAL_SCROLLBAR_ALWAYS
ScrollPaneConstants.VERTICAL_SCROLLBAR_AS_NEEDED

... and choose one of these for the horizontal scroll bar:

ScrollPaneConstants.HORIZONTAL_SCROLLBAR_NEVER
ScrollPaneConstants.HORIZONTAL_SCROLLBAR_ALWAYS
ScrollPaneConstants.HORIZONTAL_SCROLLBAR_AS_NEEDED

The VERTICAL_SCROLLBAR_AS_NEEDED option will show no scroll bar unless one is needed.

COMP1406 - Chapter 5 - Graphical User Interfaces Winter 2014

 - 149 -

That means, if there are not enough items in the list to require scrolling, the vertical scroll bar
will not appear. Similarly, for horizontal scrolling, if all our items are short strings, the

HORIZONTAL_SCROLLBAR_AS_NEEDED option will not show the scroll bar unless a longer item

appeared in the list that cannot fit horizontally in the list.

As a result here is the new code:

 String[] fruits = {"Apples", "Oranges", "Bananas", "Cherries",
 "Lemons", "Pears", "Strawberries", "Peaches",
 "Pomegranates", "Nectarines", "Apricots"};
 JList fruitList = new JList(fruits);

 JScrollPane scrollPane = new JScrollPane(fruitList,
 ScrollPaneConstants.VERTICAL_SCROLLBAR_ALWAYS,
 ScrollPaneConstants.HORIZONTAL_SCROLLBAR_AS_NEEDED);

 scrollPane.setLocation(10,45);
 scrollPane.setSize(150,150);
 getContentPane().add(scrollPane);

And here is the resulting window:

COMP1406 - Chapter 5 - Graphical User Interfaces Winter 2014

 - 150 -

 5.3 Grouping Components Together

It is a very good idea to keep your window components organized. It is often the case that an
arrangement of components
may be similar (or duplicated)
within different windows.

For example, an application
may require a name, address
and phone number to be
entered at different times in
different windows →

It is a good idea to share
component layouts among the
similar windows within an
application so that the amount
of code you write is reduced.

To do this, we often lay out components onto a JPanel and then place the JPanel on our
window. We can place the created panel on many different windows with one line of code ...
this can dramatically reduce the amount of GUI code that you have to write.

So, you will often want to
create separate JPanels to
contain groups of
components so that you can
move them around (as a
group) to different parts of a
window or even be shared
between different windows.
The code to do this simply
involves creating our JPanel
with its appropriate
component arrangement and
then adding the JPanel to the
JFrame.

On the next page is an
example that takes two
JPanels with 2 components
each on them and then adds
them to a JFrame. Note that some coding details have been left out purposely:

COMP1406 - Chapter 5 - Graphical User Interfaces Winter 2014

 - 151 -

Component c1, c2, c3, c4, c5;
JPanel p1, p2;

/* ... code omitted for creating the components and panels ... */

JFrame frame = new JFrame("MyApplication");
p1.add(c1);
p1.add(c2);
p2.add(c3);
p2.add(c4);
frame.getContentPane().add(p1);
frame.getContentPane().add(p2);
frame.getContentPane().add(c5);

Notice how components c1 and c2 are added to panel p1 and then c3 and c4 are added to
panel p2. Then these panels are simply added to the frame's content pane as if they were
simply components. The following example is more specific.

Example:

Consider another example in which a JPanel is
used in more than one window. We will create a
simple panel called AddressPanel that contains
5 labels and 5 text fields for allowing the user to
enter a name and address as shown here →

The panel contains 5 JTextField objects that
allow the user to fill-in an address. It also has 5
JLabel objects (which are simply pieces of text)
to indicate the kind of data expected for each
text field. Lastly, there is a nice border around
the JPanel which has the title CONTACT ADDRESS. This panel will not be its own window.
Instead, it will be a panel inside of two other windows that look as shown here. Notice that
each application has the same kind of AddressPanel, except that the border's title varies.

COMP1406 - Chapter 5 - Graphical User Interfaces Winter 2014

 - 152 -

We will need to compute the locations and
sizes for each component. Note that the
CONTACT ADDRESS is not a JLabel but is
actually part of the panel's border, as you will
soon see. Here are the dimensions →

To begin the code, we will want to define an
AddressPanel class. It will be a special kind
of JPanel, and so it should be a subclass of
JPanel. The code should have the following
framework:

import javax.swing.*;

public class AddressPanel extends JPanel {
 public AddressPanel(String title) {
 // Choose to lay out components manually
 setLayout(null);

 // Make a border around the outside with the given title
 setBorder(BorderFactory.createTitledBorder(title));

 // ... Add components here (see below) ...

 setSize(410, 200);
 }
}

You may notice that the AddressPanel takes a constructor that allows the user to pass in a
String to be the title on the border. This title is used in the call to setBorder() in order to make
the appropriate border with that title. The components are then added to the window one-by-
one as follows:

 // Add the Name, Street, City, Province and PostalCode labels
 JLabel aLabel = new JLabel("Name:");
 aLabel.setLocation(10, 20);
 aLabel.setSize(80,30);
 add(aLabel);

 aLabel = new JLabel("Street:");
 aLabel.setLocation(10, 55);
 aLabel.setSize(80,30);
 add(aLabel);

 aLabel = new JLabel("City:");
 aLabel.setLocation(10, 90);
 aLabel.setSize(80,30);
 add(aLabel);

 aLabel = new JLabel("Province:");
 aLabel.setLocation(10, 125);
 aLabel.setSize(80,30);
 add(aLabel);

COMP1406 - Chapter 5 - Graphical User Interfaces Winter 2014

 - 153 -

 aLabel = new JLabel("Postal Code:");
 aLabel.setLocation(10, 160);
 aLabel.setSize(80,30);
 add(aLabel);

 // Add the name textfield
 JTextField nameField = new JTextField();
 nameField.setLocation(100, 20);
 nameField.setSize(300,30);
 add(nameField);

 // Add the street textfield
 JTextField streetField = new JTextField();
 streetField.setLocation(100, 55);
 streetField.setSize(300,30);
 add(streetField);

 // Add the city textfield
 JTextField cityField = new JTextField();
 cityField.setLocation(100, 90);
 cityField.setSize(300,30);
 add(cityField);

 // Add the province textfield
 JTextField provinceField = new JTextField();
 provinceField.setLocation(100, 125);
 provinceField.setSize(300,30);
 add(provinceField);

 // Add the postal code textfield
 JTextField postalField = new JTextField();
 postalField.setLocation(100, 160);
 postalField.setSize(300,30);
 add(postalField);

The AddressPanel itself is not a runable
application (i.e., there is no main
method). So we will now make our
App1 application to test it out. Here are
the dimensions for the application →

Notice that the AddressPanel is now
"treated" as a single component and is
placed on the main window by specifying
its location. We do not need to specify
the size of the AddressPanel, since this
was defined within the AddressPanel
constructor and is fixed.

The topmost component is called a
JComboBox and it represents what is
known as a drop-down list. It is similar to a JList, except that only the selected item is shown
and the remaining items can be show by pressing the black arrow.

COMP1406 - Chapter 5 - Graphical User Interfaces Winter 2014

 - 154 -

A JComboBox can be created by specifying an array of objects that are to appear in the list
and passing this in as a parameter to the constructor as follows:

 String[] addresses = {"Home Address", "Work Address", "Alternate Address"};
 JComboBox addressBox1 = new JComboBox(addresses);

Here is the code to create the application. Take note of how the AddressPanel is now used
as if it were a single, simple component:

import javax.swing.*;

public class OneApp extends JFrame {
 public OneApp(String name) {
 super(name);

 // Choose to lay out components manually
 getContentPane().setLayout(null);

 // Add the drop-down list
 String[] addresses = {"Home Address", "Work Address",
 "Alternate Address"};
 JComboBox addressBox1 = new JComboBox(addresses);
 addressBox1.setLocation(10,10);
 addressBox1.setSize(410,30);
 getContentPane().add(addressBox1);

 // Now add an AddressPanel
 AddressPanel myPanel = new AddressPanel("CONTACT ADDRESS");
 myPanel.setLocation(10,50);
 getContentPane().add(myPanel);

 // Set program to stop when window closed
 setDefaultCloseOperation(EXIT_ON_CLOSE);
 setSize(435, 290); // manually computed sizes
 setResizable(false);
 }

 public static void main(String[] args) {
 JFrame frame = new OneApp("App1");
 frame.setVisible(true);
 }
}

And here is the finished product →

COMP1406 - Chapter 5 - Graphical User Interfaces Winter 2014

 - 155 -

Here are the dimensions for the 2nd application:

Here is the code. Again, notice how the AddressPanel is used twice in the same window with
a different title:

import javax.swing.*;
public class TwoApp extends JFrame {
 public TwoApp(String name) {
 super(name);

 // Choose to lay out components manually
 getContentPane().setLayout(null);

 // Add the list of names
 String[] names = {"Bob E. Pins", "Sunny Day", "Jen Tull",
 "Bea Keeper", "Ivona Pass"};
 JList aList = new JList(names);
 JScrollPane scrollPane = new JScrollPane(aList,
 ScrollPaneConstants.VERTICAL_SCROLLBAR_ALWAYS,
 ScrollPaneConstants.HORIZONTAL_SCROLLBAR_AS_NEEDED);
 scrollPane.setLocation(10,10);
 scrollPane.setSize(150,420);
 getContentPane().add(scrollPane);

 // Now add an AddressPanel
 AddressPanel myPanel1 = new AddressPanel("HOME ADDRESS");
 myPanel1.setLocation(170,10);
 getContentPane().add(myPanel1);

 // Now add an another AddressPanel
 AddressPanel myPanel2 = new AddressPanel("ALTERNATE ADDRESS");
 myPanel2.setLocation(170,230);
 getContentPane().add(myPanel2);

COMP1406 - Chapter 5 - Graphical User Interfaces Winter 2014

 - 156 -

 // Set program to stop when window closed
 setDefaultCloseOperation(EXIT_ON_CLOSE);
 setSize(590, 470); // manually computed sizes
 setResizable(false);
 }

 public static void main(String[] args) {
 JFrame frame = new TwoApp("App2");
 frame.setVisible(true);
 }
}

And ... the result:

COMP1406 - Chapter 5 - Graphical User Interfaces Winter 2014

 - 157 -

 5.4 Event Handling

Now that we understand the basics of laying out various components on our graphical user
interfaces, we need to discuss how to allow the user to interact with the window and make
things happen.

Recall these definitions from the previous course:

An event is something that happens in the program based on some kind of

triggering input which is typically caused (i.e., generated) by user interaction
such as pressing a key on the keyboard, moving the mouse, or pressing a mouse
button.

An event handler is a procedure that specifies the code to be executed

when a specific type of event occurs in the program.

In the previous course, you may have written event handlers for handling events for when the
mouse button was pressed, released or clicked as well as when the mouse was moved or
dragged or when a key on the keyboard was pressed, released or clicked. As an example you
may have written event handlers like this:

void mousePressed() {
 if (dist(x,y,mouseX,mouseY) < RADIUS)
 grabbed = true;
}

void mouseReleased() {
 if (grabbed) {
 direction = atan2(mouseY - pmouseY, mouseX - pmouseX);
 speed = int(dist(mouseX, mouseY, pmouseX, pmouseY));
 }
 grabbed = false;
}

When writing GUIs we need to write specific event handlers in order for our application to
respond to button clicks, allow selecting items from a list, allow typing into a text field etc...

There are two terms that we need to define:

The source of an event is the component for which the event was generated

(i.e., when handling button clicks, the Button is the source).

A listener is an event handler (i.e., also known as a callback procedure).

COMP1406 - Chapter 5 - Graphical User Interfaces Winter 2014

 - 158 -

In JAVA, all Events are represented by a distinct class.
There are many kinds of events, each having its own
unique class. Here is a partial hierarchy showing some of
the events that we will use in the course →

You do not need to memorize these, but you will become
familiar with them during the course.

These events are generated when the user interacts with
the user interface as follows:

1. The user causes an event by clicking a button,
entering text, selecting a list item etc..

2. JAVA calls the appropriate event handler.

3. The event handling code changes the model in
some way.

4. The user interface is updated to reflect these
changes in the model.

COMP1406 - Chapter 5 - Graphical User Interfaces Winter 2014

 - 159 -

Therefore, to perform event handling in JAVA, you must first identify the event that you want to
handle. Then you need to write the appropriate event handlers. For each event, there is a
corresponding interface in JAVA with a list of methods that you can write in order to handle the
appropriate event in a meaningful way.

Below is a table of commonly-used events along with their Listener interfaces. This list
basically tells you which methods need to be written in order to handle the kind of event that
you are interested in. For a more complete description of these (and other) events, listeners
and their methods, see the JAVA API specifications.

Event Interface to Implement
ActionEvent - generated when
button pressed, menu item selected,
enter key pressed in a text field or
from a timer event

public interface ActionListener {
 public void actionPerformed(ActionEvent e);
}

DocumentEvent - generated when
changes have been made to a text
document such as insertion,
removal in an editor

public interface DocumentListener {
 public void changedUpdate(DocumentEvent e);
 public void insertUpdate(DocumentEvent e);
 public void removeUpdate(DocumentEvent e);
}

ListSelectionEvent - generated
when selecting (i.e., click or double
click) a list item

public interface ListSelectionListener {
 public void valueChanged(ListSelectionEvent e);
}

WindowEvent - generated when
open/close, activate/deactivate,
iconify/deiconify a window

public interface WindowListener {
 public void windowOpened(WindowEvent e);
 public void windowClosed(WindowEvent e);
 public void windowClosing(WindowEvent e);
 public void windowActivated(WindowEvent e);
 public void windowDeactivated(WindowEvent e);
 public void windowIconified(WindowEvent e);
 public void windowDeiconified(WindowEvent e);
}

KeyEvent - generated when
pressing and/or releasing a key
while within a component

public interface KeyListener {
 public void keyPressed(KeyEvent e);
 public void keyReleased(KeyEvent e);
 public void keyTyped(KeyEvent e);
}

MouseEvent - generated when
pressing/releasing/clicking a mouse
button, moving a mouse onto or
away from a component

public interface MouseListener {
 public void mouseClicked(MouseEvent e);
 public void mouseEntered(MouseEvent e);
 public void mouseExited(MouseEvent e);
 public void mousePressed(MouseEvent e);
 public void mouseReleased(MouseEvent e) ;
}

MouseEvent - generated when
moving mouse within a component
while button is up or down

public interface MouseMotionListener {
 public void mouseDragged(MouseEvent e);
 public void mouseMoved(MouseEvent e);
}

COMP1406 - Chapter 5 - Graphical User Interfaces Winter 2014

 - 160 -

So what does all of this mean ? It means, for example, that if you want to handle a button
press in your program, you need to write an actionPerformed() method:

 public void actionPerformed(ActionEvent e) {
 //Do what needs to be done when the button is clicked
 }

If you want to have something happen when the user presses a particular key on the
keyboard, you need to write a keyPressed() method:

 public void keyPressed(KeyEvent e) {
 //Do what needs to be done when a key is pressed
 }

Once we decide which events we want to handle and then write our event handlers, we then
need to register the event handler. This is like
"plugging-in" the event handler to our window. In
general, many applications can listen for events on the
same component. So when the component event is
generated, JAVA must inform everyone who is
listening. We must therefore tell the component that
we are listening for (or waiting for) an event. If we do
not tell the component, it will not notify us when the
event occurs (i.e., it will not call our event handler).
So, when a component wants to signal/fire an event, it
sends a specific message to all listener objects that
have been registered (i.e., anybody who is "listening"). For every event, therefore, that we
want to handle, we must not only write the listener (i.e., event handler) but also register that
listener.

To help you understand this notion of registering, imagine
signing up on a webpage somewhere to receive an email
notification when some event occurs (e.g., when something
goes on sale, or getting an email bill-statement at the end of the
month). When we sign up, we are essentially registering for (or
listening to) any updates that may occur as a result of the event.

To register for an event (i.e., enable it), we need to merely add
the listener (i.e., your event handler) to the component by using an addXXXListener()
method (where XXX depends on the type of event to be handled). Here are some examples:

aButton.addActionListener(anActionListener);
aJPanel.addMouseListener(aMouseListener);
aJFrame.addWindowListener(aWindowListener);

Here anActionListener, aMouseListener and aWindowListener can be instances of any
class that implements the specific Listener interface.

So, for example, if you wanted to have your application handle a button press, you can make
your application itself be the ActionListener as follows:

COMP1406 - Chapter 5 - Graphical User Interfaces Winter 2014

 - 161 -

 import java.awt.event.*; // Need this for ActionEvent and ActionListener
 import javax.swing.*; // Need this for JFrame and JButton

 public class SimpleEventTest extends JFrame implements ActionListener {

 public SimpleEventTest(String name) {
 super(name);

 getContentPane().setLayout(null);

 JButton aButton = new JButton("Press Me");
 aButton.setLocation(20,10);
 aButton.setSize(100, 30);

 getContentPane().add(aButton);

 // Plugin button event handler using THIS class as the listener
 // (i.e., tell JAVA to call the actionPerformed() in THIS class)

 aButton.addActionListener(this);

 setDefaultCloseOperation(EXIT_ON_CLOSE);

 setSize(250, 90);
 }

 // Must write this method now since SimpleEventTest
 // implements the ActionListener interface

 public void actionPerformed(ActionEvent e) {
 System.out.println("I have been pressed");
 }

 public static void main(String[] args) {

 JFrame frame = new SimpleEventTest("Making a Listener");
 frame.setVisible(true);
 }
}

Sometimes it is necessary to remove a listener (i.e., disable it). As we will see later, we often
disable a listener while we are making changes to update the user interface so that additional
events do not get generated automatically.

You can "unregister" from an event (i.e., disable the listener), by merely removing it using a
removeXXXListener() method. Here are some examples:

aButton.removeActionListener(anActionListener);
aJPanel.removeMouseListener(aMouseListener);
aJFrame.removeWindowListener(aWindowListener);

It is important that you remove the listener that was previously added. Therefore, it is often
necessary to store the listener in a variable so that it can be removed later:

ActionListener buttonHandler = this;
...
aButton.addActionListener(buttonHandler);
...
aButton.removeActionListener(buttonHandler);
...

COMP1406 - Chapter 5 - Graphical User Interfaces Winter 2014

 - 162 -

In some situations, we only want to handle one or two types of user interactions and therefore
want to only write the event handlers needed to deal with that type of interaction. For example
we may want to handle a windowOpened() event handler to do something when the window
is first opened, but we may not care about when the window is closed, activated, iconified, etc..

Unfortunately, if we write code in the style as we did above by implementing the
WindowListener interface, we would be forced to write 7 event handlers (since JAVA forces
you to write ALL the methods defined in an interface that we implement):

 public class WindowEventTest extends JFrame implements WindowListener {
 public WindowEventTest (String name) {

 ...
 // Plugin window event handler
 this.addWindowListener(this);
 ...
 }

 // Unfortunately, we now have to write 7 methods as follows,
 // (even though we really only want to write one):

 public void windowOpened(WindowEvent e) {
 System.out.println("Window has been opened");
 }

 public void windowClosed(WindowEvent e) { /* leave blank */ }
 public void windowClosing(WindowEvent e) { /* leave blank */ }
 public void windowActivated(WindowEvent e) { /* leave blank */ }
 public void windowDeactivated(WindowEvent e) { /* leave blank */ }
 public void windowIconified(WindowEvent e) { /* leave blank */ }
 public void windowDeiconified(WindowEvent e) { /* leave blank */ }

 public static void main(String[] args) { ... }

}

Writing these extra "empty" event handling methods is a lot of extra code writing that just
wastes time and makes the code more confusing. It does seem a little silly to have to write 6
blank methods when we do not even want to handle these other kinds of events. The JAVA
guys recognized this inconvenience and solved it using the notion of Adapter classes.

An adapter class is a class that is used to implement an

interface having a set of dummy methods.

For each listener interface that has more than one method
specified, there exists an adapter class with a corresponding
name:

• MouseListener has MouseAdapter
• MouseMotionListener has MouseMotionAdapter
• DocumentListener has DocumentAdapter
• WindowListener has WindowAdapter
• ...and so on.

ActionListener and ListSelectionListener do NOT have an

COMP1406 - Chapter 5 - Graphical User Interfaces Winter 2014

 - 163 -

adapter class since they only define one method each.

Here, for example is the WindowAdapter class:

 public abstract class WindowAdapter implements WindowListener {
 public void windowOpened(WindowEvent e) {};

 public void windowClosed(WindowEvent e) {};
 public void windowClosing(WindowEvent e) {};
 public void windowActivated(WindowEvent e) {};
 public void windowDeactivated(WindowEvent e) {};
 public void windowIconified(WindowEvent e) {};
 public void windowDeiconified(WindowEvent e) {};

 }

Adapter classes are provided for convenience sake to help us avoid writing empty methods.
We can write subclasses that extend adapter classes, thereby inheriting the blank methods.
Therefore, we would only need to write the event handlers that we are interested in, allowing
the dummy methods to be inherited.

Unfortunately, looking at our previous WindowEventTest program, we cannot simply extend
WindowAdapter since the code extends JFrame already and JAVA only allows us to extend a
single class.

As a solution, we could create a new inner class just for the event handler and then use that:

 import java.awt.event.*; // Need this for WindowEvent and WindowListener
 import javax.swing.*; // Need this for JFrame

 public class WindowEventTest2 extends JFrame {

 public WindowEventTest2 (String name) {
 super(name);

 // Plugin window event handler by creating a separate class
 // that extends WindowAdapter so that only one method needs
 // to be written. This is called an "inner class", which
 // must have default access (e.g., not public nor private).
 class MyWindowHandler extends WindowAdapter {

 public void windowOpened(WindowEvent event) {
 System.out.println("Window has been opened");
 }
 }

 this.addWindowListener(new MyWindowHandler());

 setDefaultCloseOperation(EXIT_ON_CLOSE);
 setSize(400, 300);
 }
 public static void main(String[] args) {
 JFrame frame = new WindowEventTest2("Inner Class Example");
 frame.setVisible(true);
 }

}

COMP1406 - Chapter 5 - Graphical User Interfaces Winter 2014

 - 164 -

This is the first time that we created a class within another class explicitly.

An inner class is a class declared entirely within the body of another class or interface.

Interestingly, when you create an inner class, the JAVA compiler will create an additional class
file (in this case it is called WindowEventTest2$1MyWindowHandler.class). As you write
more user interfaces, you will find many such class files created... each identified by a $
character in the name.

To reduce clutter in your program, JAVA allows another shorter syntax for creating inner
classes. It is a way of defining a class without specifying a name for the class. Here is the
syntax:

 import java.awt.event.*; // Need this for WindowEvent and WindowListener
 import javax.swing.*; // Need this for JFrame

 public class WindowEventTest3 extends JFrame {

 public WindowEventTest3 (String name) {
 super(name);

 // Plugin window event handler by creating an anonymous class
 // that extends WindowAdapter.
 this.addWindowListener(new WindowAdapter() {
 public void windowOpened(WindowEvent event) {
 System.out.println("Window has been opened");
 }
 });
 setDefaultCloseOperation(EXIT_ON_CLOSE);
 setSize(250, 90);
 }
 public static void main(String[] args) {
 JFrame frame = new WindowEventTest3("Anonymous Class Example");
 frame.setVisible(true);
 }

}

This syntax actually creates and makes an instance of an inner class as a subclass of

WindowAdapter. The class has no name, it is considered to be an anonymous class.

This code actually creates an instance of the anonymous class and returns it to us. It is weird
syntax. The .class file produced from this anonymous class will be titled:
WindowEventTest3$1.class

This idea of using anonymous classes is the simplest and most compact code for adding event
handlers when only one method from a listener interface is needed. We will use adapter
classes often in our examples.

COMP1406 - Chapter 5 - Graphical User Interfaces Winter 2014

 - 165 -

Example:

How could we write a program that was
able to distinguish between two different
buttons on the window ?

Adding the buttons to the window is
easy. To connect their event handlers, we have two choices. We can either:

1) write separate event handlers for each button, or
2) write a single event handler for both buttons.

In this example, we will choose the first option. Here is the code with separate event handlers:

import java.awt.event.*; // Needed for ActionListener and ActionEvent
import javax.swing.*; // Needed for JFrame and JButton

public class TwoButtonsApp extends JFrame {
 public TwoButtonsApp(String title) {
 super(title);
 getContentPane().setLayout(null);

 JButton button1 = new JButton("Press Me");
 button1.setLocation(20,10); button1.setSize(150, 30);
 getContentPane().add(button1);

 JButton button2 = new JButton("Don't Press Me");
 button2.setLocation(190,10); button2.setSize(150, 30);
 getContentPane().add(button2);

 // Add the first button's event handler
 button1.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 System.out.println("That felt good!");
 }});

 // Add the second button's event handler
 button2.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 System.out.println("Ouch! Stop that!");
 }});

 setDefaultCloseOperation(EXIT_ON_CLOSE);
 setSize(370,90);
 }

 public static void main(String args[]) {
 TwoButtonsApp frame = new TwoButtonsApp("Two Buttons");
 frame.setVisible(true);
 }
}

COMP1406 - Chapter 5 - Graphical User Interfaces Winter 2014

 - 166 -

Example:

The previous example showed a good solution if we only have a small
number of buttons. However, if we have more buttons, it is often good
to have them share the same event handler. One way to do this is to
have the JFrame implement ActionListener and then point all the
buttons to it. We will create the following keypad using one event
handler →

To do this, we will have the main application implement ActionListener
and point all buttons to that same listener. The event handler will be
written as a separate method (i.e., outside of the constructor), so we will
need to store the buttons as instance variables (i.e., object attributes) so
that we can access the buttons from both the constructor AND the event
handler:

import java.awt.event.*; // Needed for ActionListener and ActionEvent
import javax.swing.*; // Needed for JFrame and JButton

public class MultipleButtonsApp extends JFrame implements ActionListener {
 // This stores all buttons
 JButton[][] buttons;

 public MultipleButtonsApp(String title) {
 super(title);
 getContentPane().setLayout(null);

 buttons = new JButton[4][3];
 String[] buttonLabels = {"1","2","3","4","5","6","7","8","9","*","0","#"};
 for(int row=0; row<4; row++) {
 for (int col=0; col<3; col++) {
 buttons[row][col] = new JButton(buttonLabels[row*3+col]);
 buttons[row][col].setLocation(10+col*55, 10+row*55);
 buttons[row][col].setSize(50,50);
 buttons[row][col].addActionListener(this);
 getContentPane().add(buttons[row][col]);
 }
 }

 setDefaultCloseOperation(EXIT_ON_CLOSE);
 setSize(195,275);
 }

 // This is the single event handler for all the buttons
 public void actionPerformed(ActionEvent e) {
 System.out.println("Button " + e.getActionCommand() + " was pressed.");
 }

 public static void main(String args[]) {
 MultipleButtonsApp frame = new MultipleButtonsApp("Keypad");
 frame.setVisible(true);
 }
}

COMP1406 - Chapter 5 - Graphical User Interfaces Winter 2014

 - 167 -

You may notice that we have called the getActionCommand() method for the ActionEvent
that is passed in as a parameter in the event handler. This method retrieves the text from the
button that was pressed.

Example:

Another way of determining the button that was pressed is to use
the getSource() method for the ActionEvent. This will return
the component that generated the event (i.e., the actual JButton
object representing the button that was pressed). This is
particularly useful if we have a grid of buttons that have no labels
on them. Consider this application where there are 12 buttons
arranged again in a grid as shown here, such that all go to the
same event handler →

Now when a button is pressed, we cannot look at the text on the
button since there is no text ... just different background colors.
We will use the getSource() method and compare the pressed
button with each button in the array. Once we find the button
that matches, we will know its row and column and will be able to
toggle the background of that button accordingly. Here is the
code:

import java.awt.*; // Needed for Color
import java.awt.event.*; // Needed for ActionListener and ActionEvent
import javax.swing.*; // Needed for JFrame and JButton

public class ToggleButtonsApp extends JFrame implements ActionListener {
 JButton[][] buttons; // This stores all buttons

 public ToggleButtonsApp (String title) {
 super(title);
 getContentPane().setLayout(null);

 buttons = new JButton[4][3];
 for(int row=0; row<4; row++) {
 for (int col=0; col<3; col++) {
 buttons[row][col] = new JButton();
 buttons[row][col].setLocation(10+col*55, 10+row*55);
 buttons[row][col].setSize(50,50);
 buttons[row][col].addActionListener(this);

 // Pick a random color for the button
 if (Math.random() < 0.5)
 buttons[row][col].setBackground(Color.black);
 else
 buttons[row][col].setBackground(Color.white);
 getContentPane().add(buttons[row][col]);
 }
 }

COMP1406 - Chapter 5 - Graphical User Interfaces Winter 2014

 - 168 -

 setDefaultCloseOperation(EXIT_ON_CLOSE);
 setSize(195,275);
 }

 // This is the single event handler for all the buttons
 public void actionPerformed(ActionEvent e) {
 // Find the row and column of the pressed button
 for(int row=0; row<4; row++) {
 for (int col=0; col<3; col++) {
 if (e.getSource() == buttons[row][col]) {
 System.out.println("You pressed the button at row: " +
 row + ", column: " + col + ".");
 // Now toggle the button's color
 if (buttons[row][col].getBackground() == Color.black)
 buttons[row][col].setBackground(Color.white);
 else
 buttons[row][col].setBackground(Color.black);
 }
 }
 }
 }

 public static void main(String args[]) {
 ToggleButtonsApp frame = new ToggleButtonsApp("Toggle");
 frame.setVisible(true);
 }
}

Example:

Now let us consider an example
of an application that makes use
of JTextFields. We will create a
simple application that allows the
user to type in a number into one
text field, then press a button and

have the "square" of that number appear in another
text field and the "square root" of the number appear in
yet another text field as shown here →

In this example, we will only be handling one event ...
that of the user pressing the Compute button. We
will need to extract the text data from the Value field.
The getText() method in the JTextField class allows us to get the text (as a String object) that
lies in the field. We will need to convert this String into a number, such as a float, in order to
perform computations with it.

In JAVA, we can extract a float from a String by using the following strategy:

float x = Float.parseFloat(aString);

COMP1406 - Chapter 5 - Graphical User Interfaces Winter 2014

 - 169 -

This code will convert the String (called aString in the example) into a float (called x in the
example). There are actually similar ways to convert to other types. Here are some more:

int x = Integer.parseInt(aString);
double x = Double.parseDouble(aString);
boolean x = Boolean.parseBoolean(aString); // "true" to true

 Once we have the value as a number, we can compute the square and root and then we
simply need to put the results into the other two text fields. We do that using setText() where
we supply a String with the result in it. The simplest way to convert a number into a String is
to append the number to an empty String object in JAVA as follows:

aTextField.setText("" + x);

This will work for any number x, regardless of whether it is an int, float, double , etc..

One last point ... we will probably want to disable editing in the last two text fields so that the
user cannot type into them, since they are "output only" fields. We use the setEditable(false)
method to do this. Here is the completed code:

import java.awt.event.*; // Needed for ActionListener and ActionEvent
import javax.swing.*; // Needed for JFrame, JButton and JTextField

public class CalculatorApp extends JFrame {
 // Text fields to hold the user data and the computed data
 JTextField valueField, squareField, rootField;

 public CalculatorApp(String title) {
 super(title);
 getContentPane().setLayout(null);

 // Add the value label and text field
 JLabel label = new JLabel("Value:");
 label.setLocation(10,10); label.setSize(100, 30);
 getContentPane().add(label);

 valueField = new JTextField();
 valueField.setLocation(100,10); valueField.setSize(150, 30);
 getContentPane().add(valueField);

 // Add the compute button
 JButton computeButton = new JButton("Compute");
 computeButton.setLocation(10,50); computeButton.setSize(240, 30);
 getContentPane().add(computeButton);

 // Add the square label and text field
 label = new JLabel("Square:");
 label.setLocation(10,100); label.setSize(100, 30);
 getContentPane().add(label);

 squareField = new JTextField();
 squareField.setLocation(100,100); squareField.setSize(150, 30);
 squareField.setEditable(false);

COMP1406 - Chapter 5 - Graphical User Interfaces Winter 2014

 - 170 -

 getContentPane().add(squareField);

 // Add the square root label and text field
 label = new JLabel("Square Root:");
 label.setLocation(10,150); label.setSize(100, 30);
 getContentPane().add(label);

 rootField = new JTextField();
 rootField.setLocation(100,150); rootField.setSize(150, 30);
 rootField.setEditable(false);
 getContentPane().add(rootField);

 // Handle the button click
 computeButton.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 if (valueField.getText().length() > 0) {
 float value = Float.parseFloat(valueField.getText());
 squareField.setText("" + value * value);
 rootField.setText("" + Math.sqrt(value));
 }
 }});

 setDefaultCloseOperation(EXIT_ON_CLOSE);
 setSize(275,230);
 }
 public static void main(String args[]) {
 CalculatorApp frame = new CalculatorApp("Simple Calculator");
 frame.setVisible(true);
 }
}

You may have noticed that we did an error-check for the case where no text was in the text
field. That is because the parseFloat() method generates an ugly error message if the String
passed in is empty.

Example:

Here is another example of a
calculator that can do more
operations. It has been set up using
a set of JRadioButtons which work
exactly as JButtons do, except that
we will add them to a ButtonGroup

so that only one of the buttons is able to be selected at a
time... just like an old-fashioned radio.

To make this work, we will add similar text fields as we
did in the previous example. We will also create an
array of JRadioButtons and have all of them go to the
same event handler. Once again, we will search

COMP1406 - Chapter 5 - Graphical User Interfaces Winter 2014

 - 171 -

through the button array to find out which button was pressed and then perform a computation
accordingly. In JAVA, a ButtonGroup object is used to group buttons together so that only
one is on in the group at a time. We simply add JRadioButtons to the same button group to
get this desired behavior. Here is the code:

import java.awt.event.*; // Needed for ActionListener and ActionEvent
import javax.swing.*; // Needed for JFrame, JRadioButton and JTextField

public class CalculatorTwoApp extends JFrame implements ActionListener {
 JTextField valueField, answerField;
 JRadioButton[] buttons;

 public CalculatorTwoApp(String title) {
 super(title);

 getContentPane().setLayout(null);

 // Add the value label and text field
 JLabel label = new JLabel("Input X:");
 label.setLocation(10,10); label.setSize(100, 30);
 getContentPane().add(label);

 valueField = new JTextField();
 valueField.setLocation(80,10); valueField.setSize(140, 30);
 getContentPane().add(valueField);

 // Add the "operation type" radio buttons to the window
 // and to a ButtonGroup so that one is on at a time
 label = new JLabel("Operation:");
 label.setLocation(10,55); label.setSize(100, 30);
 getContentPane().add(label);

 ButtonGroup operations = new ButtonGroup();
 buttons = new JRadioButton[4];
 String[] buttonLabels = {"X + X", "X * X", "X ^ 0.5", "1 / X"};
 for (int i=0; i<4; i++) {
 buttons[i] = new JRadioButton(buttonLabels[i], false);
 buttons[i].setLocation(80, 60 + i*20);
 buttons[i].setSize(150, 20);
 getContentPane().add(buttons[i]);
 operations.add(buttons[i]);
 buttons[i].addActionListener(this);
 }

 // Add the answer label and text field
 label = new JLabel("Answer:");
 label.setLocation(10,150); label.setSize(100, 30);
 getContentPane().add(label);

 answerField = new JTextField();
 answerField.setLocation(80,150);
 answerField.setSize(140, 30);
 answerField.setEditable(false);
 getContentPane().add(answerField);

COMP1406 - Chapter 5 - Graphical User Interfaces Winter 2014

 - 172 -

 setDefaultCloseOperation(EXIT_ON_CLOSE);
 setSize(255,230);
 }

 // Handle a radio button click
 public void actionPerformed(ActionEvent e) {
 int value = Integer.parseInt(valueField.getText());

 // Find the number of the button that was clicked
 int buttonNumber = 0;
 for (buttonNumber=0; buttonNumber<4; buttonNumber++) {
 if (buttons[buttonNumber] == e.getSource())
 break;
 }

 // Perform the calculation
 double result=0;
 switch (buttonNumber) {
 case 0: result = value + value; break;
 case 1: result = value * value; break;
 case 2: result = Math.sqrt(value); break;
 case 3: result = 1 / (double)value; break;
 }

 // Show the answer
 answerField.setText("" + result);
 }

 public static void main(String args[]) {
 CalculatorTwoApp frame = new CalculatorTwoApp("Calculator Two");
 frame.setVisible(true);
 }
}

Note as well that the JCheckBox works similar to the
JRadioButton, except that normally JRadioButtons
should have only one on at a time, while
JCheckBoxes may normally have many on at a time.
Here is how the window would look if JCheckBoxes
were used instead (although keep in mind that in this
application, it doesn't make sense to have more than
one button on at a time). For JCheckBoxes, you
should NOT add them to a ButtonGroup.

Chapter 6

Proper Coding Style Using MVC

What is in This Chapter ?

In this chapter, we will discuss proper coding style. We begin with an explanation of the
Model/View/Controller paradigm and then show how these can be incorporated together
cleanly with a modular coding style. We discuss how to prepare your model classes for use in
a GUI. We will then discuss how the view and controller code of the user interface can be
separated cleanly. As a result, this chapter gives a template that you should follow for all of
your Graphical User Interface applications.

COMP1406 - Chapter 6 - Proper Coding Style Using MVC Winter 2014

 - 174 -

 6.1 Separating Model, View and Controller Components

In the previous chapter, we discussed the difference between model classes and those
classes that are part of the user interface. The model classes deal with the business logic
aspects of the application and the user interface is the "front end" which allows the user to
interact with the model classes.

We can further split the user interface classes into two portions called the view and the
controller:

The view displays the necessary information from the model into a form suitable for

interaction, typically a user interface element.

The controller accepts input from the user, modifies the model accordingly.

The idea is depicted in the picture below. The user sees the view of the application and then
interacts with the controller. Such interaction usually results in the model being modified in
some way. Then these model changes are reflected back to the view of the user interface
and the user often gets visual feedback that the model has changed:

So far, in our examples in the last chapter, we did not have a really useful model and the
notion of a view and a controller was not identifiable as all our GUI code was lumped together
into one JFrame class, with perhaps an extra JPanel class.

Now we will discuss the "proper" way of splitting up the model, the view and the controller
into a nice & clean modular style that allows us to modify and replace any of the three
components cleanly. This arrangement represents what is called the MVC software
architecture and sometimes referred to as a software design pattern. There are 3 main
advantages of using the MVC architecture:

COMP1406 - Chapter 6 - Proper Coding Style Using MVC Winter 2014

 - 175 -

1. it decouples the models and views,
2. it reduces the complexity of the overall architectural design and
3. it increases flexibility and maintainability of code.

There are many ways to implement the MVC architecture in your programs. In this course we
will consider just one specific way of writing the code. In industry, however, you will see
various other ways of implementing the same architecture.

In order to create a well-structured, stable, reliable and maintainable application ... it is
necessary to have a properly working model that is designed nicely so that the user interface
can connect to it in a simple and safe way. In the next section, we will discuss what is
necessary to create this "proper" kind of model.

 6.2 Preparing Your Model Classes for the GUI

You already know how to build model classes ... they are the classes that make up your
application apart from the user interface components. It is a good idea to prepare your model
so that you can interact with it in a simple and clean manner from your user interface. A bank
machine, for example, is somewhat pointless unless the underlying Bank model is fully
operational.

To finalize our model classes, we should decide what kinds of methods should be publically
available so that the main application's user interface can access, modify and manipulate the
model in meaningful ways.

For example, suppose that we wanted to develop the application that we described earlier that
allowed us to make a list of things to purchase at the grocery store. What is the model in this
application ?

To figure this out, we just have to understand what "lies
beneath" the user interface.

What is it that we are displaying and changing ?

It is the list of items.

Let us develop a proper model for this interface.

We can call it ItemList and it can keep track of an array
of Strings that represent the list.

COMP1406 - Chapter 6 - Proper Coding Style Using MVC Winter 2014

 - 176 -

Here is the basic code for this simple model:

public class ItemList {
 public final int MAXIMUM_SIZE = 100;

 private String[] items;
 private int size;

 public ItemList() {
 items = new String[MAXIMUM_SIZE];
 size = 0;
 }

 public int getSize() { return size; }
 public String[] getItems() { return items; }
}

Looking back at the user interface, it is likely that we will want to add items to the list based on
the text that is entered through the text field. The item to be added will likely go at the bottom
of the list. So, we should make a public method to do this:

public void add(String item) {
 // Make sure that we do not go past the limit
 if (size < MAXIMUM_SIZE)
 items[size++] = item;
}

Likewise, the remove button will likely cause the currently selected item in the list to be
removed from the list. We will probably remove it according to its index into the list. Here is a
public method to do this:

public void remove(int index) {
 // Make sure that the given index is valid
 if ((index >= 0) && (index < size)) {
 // Move every item after the deleted one up in the list
 for (int i=index; i<size; i++) {
 items[i] = items[i+1];
 }
 // Reduce the list size by 1
 size--;
 }
}

Therefore, here is our completed model:

COMP1406 - Chapter 6 - Proper Coding Style Using MVC Winter 2014

 - 177 -

public class ItemList {
 public final int MAXIMUM_SIZE = 100;

 private String[] items;
 private int size;

 public ItemList() {
 items = new String[MAXIMUM_SIZE];
 size = 0;
 }

 public int getSize() { return size; }
 public String[] getItems() { return items; }

 public void add(String item) {
 // Make sure that we do not go past the limit
 if (size < MAXIMUM_SIZE)
 items[size++] = item;
 }
 public void remove(int index) {
 // Make sure that the given index is valid
 if ((index >= 0) && (index < size)) {
 // Move every item after the deleted one up in the list
 for (int i=index; i<size; i++)
 items[i] = items[i+1];
 size--; // Reduce the list size by 1
 }
 }
}

Once we have the model implemented with useful methos, it is always a good idea to test it!
The easiest way to do this is to write a simple test program to try out the various methods.
We should write a test program that does a thorough testing. We should at least try to add a
few items to the list, remove one, remove too many and add too many:

public class ItemListTestProgram {
 public static void main(String[] args) {
 // Make a new list
 ItemList groceryList = new ItemList();
 System.out.println("List has " + groceryList.getSize() + " items");

 // Add a few items
 System.out.println("\nAdding Apples, Oranges and Bananas ...");
 groceryList.add("Apples");
 groceryList.add("Oranges");
 groceryList.add("Bananas");
 System.out.println("List has " + groceryList.getSize() + " items");
 System.out.println("Here are the items in the list:");

 for (int i=0; i<groceryList.getSize(); i++)

COMP1406 - Chapter 6 - Proper Coding Style Using MVC Winter 2014

 - 178 -

 System.out.println(groceryList.getItems()[i]);

 // Remove an item
 System.out.println("\nRemoving Apples ...");
 groceryList.remove(0);
 System.out.println("List has " + groceryList.getSize() + " items");
 System.out.println("Here are the items in the list:");
 for (int i=0; i<groceryList.getSize(); i++)
 System.out.println(groceryList.getItems()[i]);

 // Try to remove too many items
 System.out.println("\nTrying to remove too many items ...");
 groceryList.remove(0);
 groceryList.remove(0);
 groceryList.remove(0);
 groceryList.remove(0);
 System.out.println("List has " + groceryList.getSize() + " items");
 System.out.println("Here are the items in the list:");
 for (int i=0; i<groceryList.getSize(); i++)
 System.out.println(groceryList.getItems()[i]);

 // Try to add too many items
 System.out.println("\nTrying to add too many items ...");
 for (int i=0; i<200; i++)
 groceryList.add("Item# " + i);

 System.out.println("List has " + groceryList.getSize() + " items");
 System.out.println("Here are the items in the list:");

 for (int i=0; i<groceryList.getSize(); i++)
 System.out.println(groceryList.getItems()[i]);
 }
}

Notice how the test program is nicely formatted with comments indicating what is being tested.
Also, notice that there are descriptive print statements that explains what is happening. You
should follow a similar style and approach when writing your test programs.

COMP1406 - Chapter 6 - Proper Coding Style Using MVC Winter 2014

 - 179 -

 6.3 Developing a Proper View

Once you have developed and properly tested the model for your application, you can then
begin to write the user interface. Sometimes, however, it may be beneficial to have a rough
idea as to what your user interface will do before you
develop the model. For example, we did not write the
add() and remove() methods in the ItemList class until
we realized that we needed them based on what we want
our completed application to do.

The next step will be to develop the view for the
application. In general, there may be many views in an
application, just as there may be many models and
controllers. However, we will assume for now that we
have a single view.

To keep things simple, we will develop our views as
JPanels that can be placed onto our JFrame windows.
Looking back at the chapter on Graphical User Interfaces,
you will recall that we made a similar window in our FruitListApp. The following code should
therefore be easily understood (refer back to chapter 4 if you do not recall):

import javax.swing.*;

public class GroceryListView extends JPanel {
 public GroceryListView() {
 // Choose to lay out components manually
 setLayout(null);

 // Add the text field
 JTextField newItemField = new JTextField();
 newItemField.setLocation(10,10);
 newItemField.setSize(150,25);
 add(newItemField);

 // Add the ADD button
 JButton addButton = new JButton("Add");
 addButton.setLocation(175, 10);
 addButton.setSize(100,25);
 add(addButton);

 // Add the REMOVE button
 JButton removeButton = new JButton("Remove");
 removeButton.setLocation(175,45);
 removeButton.setSize(100,25);
 add(removeButton);

 // Add the JList
 JList aList = new JList();
 JScrollPane scrollPane = new JScrollPane(aList,
 ScrollPaneConstants.VERTICAL_SCROLLBAR_ALWAYS,

COMP1406 - Chapter 6 - Proper Coding Style Using MVC Winter 2014

 - 180 -

 ScrollPaneConstants.HORIZONTAL_SCROLLBAR_AS_NEEDED);
 scrollPane.setLocation(10,45);
 scrollPane.setSize(150,150);
 add(scrollPane);

 setSize(290, 230); // manually computed sizes
 }
}

For the purposes of a quick test to make sure that our view is
properly formatted, we can create and run a simple program
like this:

import javax.swing.*;

public class GroceryListViewTestProgram {
 public static void main(String[] args) {
 JFrame frame = new JFrame("View Test");
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 frame.setSize(290, 230); // manually computed sizes
 frame.setResizable(false);

 frame.getContentPane().add(new GroceryListView());
 frame.setVisible(true);
 }
}

Now, for the view to work properly it must refresh its look based on the most up-to-date
information in the model. Therefore, we need a way of having the view update itself given a
specific model. There are many ways to do this, but a simple way is to write a method called
update() that will refresh the "look" of the view whenever it is called. Of course, to be able to
update, the view must have access to the model. We can pass the model in as a parameter
to the view constructor and store it as an attribute of the view:

public class GroceryListView extends JPanel {
 private ItemList model; // The model to which this view is attached

 public GroceryListView(ItemList m) {
 model = m; // Store the model for access later

 ...
 }
}

Since the model attribute is simply a reference (i.e., a pointer in memory) to the ItemList, then
any changes to the ItemList will also affect the model stored in this model instance variable.

COMP1406 - Chapter 6 - Proper Coding Style Using MVC Winter 2014

 - 181 -

Our update() method may be as simple as replacing the entire
JList with the new items currently stored in the model. So,
regardless of what changes take place in the ItemList model, we
simply read the list of items and re-populate the JList with the
latest items. To be able to do this, we will need access to that
JList. However, the JList is defined as a local variable in the constructor.
In order to be able to access it from the update() method, we will need to define
the variable outside of the constructor as an instance variable. Then, to change
the contents of the JList, a quick search in the JAVA API informs us that there is a
setListData() method which will allow us to pass in an array of items to show in the list.

Here is the view code now:

public class GroceryListView extends JPanel {
 private ItemList model; // The model to which this view is attached
 private JList aList; // The visible list representing the model

 public GroceryListView(ItemList m) {
 model = m; // Store the model for access later

 ...
 aList = new JList();
 ...
 }
 public void update() {
 aList.setListData(model.getItems());
 }
}

Notice how the JList is now easily accessible in the update() method. One problem,
however, is that our model's array is always of size 100 regardless of how many items have
been placed in it. The setListData() method will end up making a list of 100 items in it ...
leaving many blanks. Looking at the API again, there is another setListData() method ... but
one that takes a Vector as a parameter. We will discuss this later in the course. For now,
we can add additional code here to make a new array (for display purposes) which has a
length exactly equal to the size of the items array. Change the update() method to this:

 public void update() {
 // Create and return a new array with the
 // exact size of the number of items in it
 String[] exactList = new String[model.getSize()];
 for (int i=0; i<model.getSize(); i++)
 exactList[i] = model.getItems()[i];

 aList.setListData(exactList);
 }

COMP1406 - Chapter 6 - Proper Coding Style Using MVC Winter 2014

 - 182 -

Thinking ahead a little, we know that eventually the application will need to respond to user
input through pressing the Add or Remove button, typing in the text field or selecting from the
list. This will be part of the controller. However, in order to accomplish this, as you will soon
see, we need to allow the controller to access the JButtons, the JList and the JTextField.

We can allow such access by making instance variables for all four window components and
then provide get methods to access them.

As a final programming aspect of the view class, it is a good idea to call the update() method
at the end of the constructor. That way, when the view is first created, it can be refreshed
right away to show the true state of the model upon startup.
You should follow this same standard approach when designing your views:

import javax.swing.*;

public class GroceryListView extends JPanel {
 private ItemList model; // The model to which this view is attached

 // The user interface components needed by the controller
 private JList aList;
 private JButton addButton;
 private JButton removeButton;
 private JTextField newItemField;

 // public methods to allow access to JComponents
 public JList getList() { return aList; }
 public JButton getAddButton() { return addButton; }
 public JButton getRemoveButton() { return removeButton; }
 public JTextField getNewItemField() { return newItemField; }

 public GroceryListView(ItemList m) {
 model = m; // Store the model for access later

 // Choose to lay out components manually
 setLayout(null);

 // Add the text field
 newItemField = new JTextField();
 newItemField.setLocation(10,10);
 newItemField.setSize(150,25);
 add(newItemField);

 // Add the ADD button
 addButton = new JButton("Add");
 addButton.setLocation(175, 10);
 addButton.setSize(100,25);
 add(addButton);

 // Add the REMOVE button
 removeButton = new JButton("Remove");
 removeButton.setLocation(175,45);
 removeButton.setSize(100,25);

COMP1406 - Chapter 6 - Proper Coding Style Using MVC Winter 2014

 - 183 -

 add(removeButton);

 // Add the JList
 aList = new JList();
 JScrollPane scrollPane = new JScrollPane(aList,
 ScrollPaneConstants.VERTICAL_SCROLLBAR_ALWAYS,
 ScrollPaneConstants.HORIZONTAL_SCROLLBAR_AS_NEEDED);
 scrollPane.setLocation(10,45);
 scrollPane.setSize(150,150);
 add(scrollPane);

 setSize(290, 230); // manually computed sizes

 // Call update() to make sure model contents are shown
 update();
 }

 // Update the view to show the model's state
 public void update() {
 // Create and return a new array with the
 // exact size of the number of items in it
 String[] exactList = new String[model.getSize()];
 for (int i=0; i<model.getSize(); i++)
 exactList[i] = model.getItems()[i];
 aList.setListData(exactList);
 }
}

We can run a quick test to make sure that this is working...

import javax.swing.*;

public class GroceryListViewTestProgram2 {
 public static void main(String[] args) {
 ItemList groceryList = new ItemList();
 groceryList.add("Apples");
 groceryList.add("Oranges");
 groceryList.add("Bananas");

 GroceryListView aView = new GroceryListView(groceryList);

 JFrame frame = new JFrame("View Test");
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 frame.setSize(290, 230); // manually computed sizes
 frame.setResizable(false);
 frame.getContentPane().add(aView);
 frame.setVisible(true);
 }
}

The window should come up now with some fruits listed in the list. We will add some more
functionality to the View later, but for now, we need to understand how to complete the final
portion of our MVC application... the controller ...

COMP1406 - Chapter 6 - Proper Coding Style Using MVC Winter 2014

 - 184 -

 6.4 Developing a Proper Controller

The final piece of our application is the controller. The controller is responsible for taking in
user input and making changes to the model accordingly. These changes can then be
refreshed with a simple call to update() in the view class.

The controller will be our JFrame class, representing the
whole application. It will tie together the model and the
view. In addition the controller is where we "hook up"
our event handlers to handle the user interaction. It will
handle all user input and then change the model
accordingly ... updating the view afterwards.

To begin, we can define the class such that it creates a
new view and a new model. Here is the basic structure ... we will be adding the event
handlers one by one. Take note of how cleanly separated the model and the view are ... as
they are stored separately as attributes of the controller:

import javax.swing.*; // Needed for JFrame
import java.awt.event.*; // Need soon for ActionListener
import javax.swing.event.*; // Need soon for ListSelectionListener, DocumentListener

public class GroceryListApplication extends JFrame {
 private ItemList model; // The model to which this view is attached
 private GroceryListView view; // The view that shows the state of the model

 public GroceryListApplication(String title) {
 super(title); // Sets the title of the window

 // Create the model and view
 model = new ItemList();
 view = new GroceryListView(model);

 // Add the view
 getContentPane().add(view);

 // Add the event handlers
 // ... coming soon ...

 // Manually computed size
 setSize(290, 230);
 setResizable(false);
 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 }

 // This is where the program begins
 public static void main(String[] args) {
 JFrame frame = new GroceryListApplication("My Grocery List");
 frame.setVisible(true);
 }
}

COMP1406 - Chapter 6 - Proper Coding Style Using MVC Winter 2014

 - 185 -

Now it is time to get everything working. We will approach this slowly by adding functionality
as we go along. Make sure you understand where the new pieces of code will "fit" into the
three classes that we already have.

Adding Items

To add an item to the Grocery List, we will require the user to type the item into the text field
and then press the Add button. Let us write an event handler for when the Add button is
pressed. It will need to get the contents of the text field and then insert that string as a new
item in the model. Then the view should be updated. So we should add this method to the
controller (i.e., the main application):

 // The Add Button event handler
 private void handleAddButtonPress() {
 model.add(view.getNewItemField().getText());
 view.update();
 }

Notice that this method is private, since no external classes should be calling it. The code
does two main things that ALL of your event handlers should do:

1. Change the Model
2. Update the View

Now, we need to "plug it in" to the JButton. We will need to add an ActionListener to the
button. Insert the following into the controller's constructor:

 view.getAddButton().addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 handleAddButtonPress();
 }});

Notice how the JButton is accessed from the view. The listener is added and points to the
event handler method that we just wrote. The code should now
work and allow new items to be added to the list.

However, a slight problem occurs when the user does not have
anything typed into the text field and then presses the Add button.
A "blank" item is added to the list. This is not pleasant.

COMP1406 - Chapter 6 - Proper Coding Style Using MVC Winter 2014

 - 186 -

We can ensure that no blank items are added by altering our code a little:

 private void handleAddButtonPress() {
 String text = view.getNewItemField().getText().trim();
 if (text.length() > 0) {
 model.add(text);
 view.update();
 }
 }

You may have noticed the trim() method added here. This is a String method that removes
any leading and trailing space and tab characters. That will ensure that we do not add any
items consisting of only spaces or tab characters.

Removing Items

Similarly, to remove an item from the Grocery List, we will require the user to select the item
from the list and then press the Remove button. Let us write an event handler for when the
Remove button is pressed. It will need to get the index of the selected item from the list and
call the model's remove() method using this index. Then the view should be updated. To
get the selected item from the list, we can look in the JAVA API and determine that the JList
method we need to call is getSelectedIndex(). This method returns -1 if nothing is selected,
so we should handle that. So we should add this method to the controller (i.e., the main
application):

 // The Remove Button event handler
 private void handleRemoveButtonPress() {
 int index = view.getList().getSelectedIndex();
 if (index >= 0) {
 model.remove(index);
 view.update();
 }
 }

Of course, to get it to work, we need to insert the following into the controller's constructor:

 view.getRemoveButton().addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 handleRemoveButtonPress();
 }});

We are now done with the basic functionality of our program. We could stop here. However,
we will continue with some additional fine-tuning...

COMP1406 - Chapter 6 - Proper Coding Style Using MVC Winter 2014

 - 187 -

Disabling the Remove Button

It would be a good idea to disable the Remove button when
nothing has been selected in the list. That way the user knows
visually that the Remove operation is now valid until something is
selected. It is a good form of feedback to the user and it makes
the user interface more intuitive to use.

Since this is simply a visual change, we could simply add a line to
the update() method in the view class:

 public void update() {
 // Create and return a new array with the
 // exact size of the number of items in it
 String[] exactList = new String[model.getSize()];
 for (int i=0; i<model.getSize(); i++)
 exactList[i] = model.getItems()[i];
 aList.setListData(exactList);

 // enable/disable the remove button accordingly
 removeButton.setEnabled(aList.getSelectedIndex() >= 0);
 }

Notice that if the list has something in it, then the selected index will be 0 or more. We can
use this boolean result to set the button to be enabled or disabled. If we start up the
application, the Remove button will be disabled properly. When should it be re-enabled ?
According to our update() method, whenever something is selected from the list it will be
enabled. However, we need to ensure that the update() method is called when the user
selects something from the list. Whenever the user clicks in the list, we can simply update the
view to ensure that the Remove button is re-enabled. Here is the simple event handler to put
into the controller class:

 // The List click event handler
 private void handleListSelection() {
 view.update();
 }

There are a few ways to cause this to occur. The simplest is to add a mousePressed event
handler to the JList. Again, we plug it in by adding this to the constructor:

 view.getList().addMouseListener(new MouseAdapter() {
 public void mousePressed(MouseEvent e) {
 handleListSelection();
 }});

COMP1406 - Chapter 6 - Proper Coding Style Using MVC Winter 2014

 - 188 -

A minor issue is that when we update the list, the currently selected item becomes unselected.
We can fix this by remembering what is selected before we update the list and then re-select
that item again afterwards. In the view, we can alter the update() method to do this:

 // Update the view to show the model's state
 public void update() {
 //Remember what was selected
 int selectedItem = aList.getSelectedIndex();

 // Now re-populate the list
 String[] exactList = new String[model.getSize()];
 for (int i=0; i<model.getSize(); i++)
 exactList[i] = model.getItems()[i];
 aList.setListData(exactList);

 // Reselecte the selected item
 aList.setSelectedIndex(selectedItem);

 removeButton.setEnabled(aList.getSelectedIndex() >= 0);
 }

Disabling the Add Button

Finally, it would also be a good idea to disable the Add button
when nothing is typed in the text field.

To do this, we need to add a single line to the update() method
in the view that is similar to the one we added to enable/disable
the Remove button. However, this time we look at the text in
the text field:

 public void update() {
 ...
 addButton.setEnabled(newItemField.getText().trim().length() > 0);
 }

Of course, once again we need to have the button re-enabled when the user starts typing into
the text field. We need an event that occurs when the user types into a text field. Again the
event handler is simple:

 // The text field typing event handler
 private void handleTextEntry() {
 view.update();
 }

COMP1406 - Chapter 6 - Proper Coding Style Using MVC Winter 2014

 - 189 -

Plugging this in to the controller, however, is a little trickier. Modifying the contents of the text
field can be done via single character typing or pasting some text or selecting/deleting text
etc... Because of the complexity, JAVA decided to create a Document object for each
JTextField. So we will need to implement a DocumentListener. Each JTextField has a
method called getDocument() that gets the document that belongs to the text field. We add
the listener to that document as follows:

 view.getNewItemField().getDocument().addDocumentListener(new DocumentListener() {
 public void changedUpdate(DocumentEvent theEvent) { handleTextEntry(); }
 public void insertUpdate(DocumentEvent theEvent) { handleTextEntry(); }
 public void removeUpdate(DocumentEvent theEvent) { handleTextEntry(); }
 });

Notice that we need to implement three methods to handling inserting, removing and changing
of the text in any way. In our situation, we do not care to distinguish between these three
since any changes in the text field should generate an update().

Clearing the Text Field

One final alteration to the program would be to clear the text field after an item has been
added. Otherwise, after each item has been added, the user will have to delete the text
before adding the next item. This can be tedious.

To accomplish this, we simply add one more line to the Add button event handler to clear the
text:

 // The Add Button event handler
 private void handleAddButtonPress() {
 String text = view.getNewItemField().getText().trim();
 if (text.length() > 0) {
 view.getNewItemField().setText("");
 model.add(text);
 view.update();
 }
 }

Finally, our application works as desired. We are done.

COMP1406 - Chapter 6 - Proper Coding Style Using MVC Winter 2014

 - 190 -

This page was intentionally left blank.

Chapter 7

User Interface Extensions

What is in This Chapter ?

This chapter discusses additional features that can be used to improve and extend your
Graphical User Interfaces. It discusses the notion of Layout Managers in java which allow
automatic resizing of components on the window. The chapter also shows how to add
menus to your user interfaces as well as develop your own dialog boxes.

COMP1406 - Chapter 7 - User Interface Extensions Winter 2014

 - 192 -

 7.1 Automatic Resizing Using Layout Managers

As you may know ... JAVA was developed for the internet and JAVA applications were initially
meant to run as applets within an internet browser. Since browsers are often resized, the
application's components need to be rearranged so that they ALL fit on the browser window at
all times. In fact, JAVA provides a mechanism called a Layout Manager that allows the
automatic arrangement (i.e., layout) of the components of an application as the window is
resized.

Why should we use a Layout Manager ?

• we would not have to compute locations and sizes for our components
• our components will resize automatically when the window is resized
• our interface will appear "nicely" on all platforms

In JAVA, each layout manager defines methods necessary for a class to be able to arrange
Components within a Container. There are 6 commonly used layout manager classes that
implement the LayoutManager interface:

FlowLayout, BoxLayout, BorderLayout, CardLayout, GridLayout, and GridBagLayout

Layouts are set for a panel using the setLayout() method. If set to null, then no layout
manager is used. This is what we have been doing up until this point.

Let us now look at each of these layout managers in turn.

Example (FlowLayout):

The simplest layout manager is the FlowLayout. It is commonly
used to arrange just a few components on a panel. With this
manager, components on the window (e.g., buttons, text fields,
etc..) are arranged horizontally from left to right ... like lines of
words in a paragraph written in English. If no space remains on
the current line, components flow (or wrap around) to the next
"line". The height of each line is the maximum height of any
component on that line. By default, components are centered

horizontally on each line, but this can be changed.

There are three constructors that can be used to create a FlowLayout manager:

public FlowLayout();
public FlowLayout(int align);
public FlowLayout(int align, int hGap, int vGap);

Here, align specifies how the components are to be justified horizontally. It may be any one
of three constants:

COMP1406 - Chapter 7 - User Interface Extensions Winter 2014

 - 193 -

 FlowLayout.LEFT, FlowLayout.RIGHT or FlowLayout.CENTER

Also, hGap and vGap specify the horizontal and vertical margin (in pixels) between
components. Here is a simple example that adds 6 buttons (3 with icons) to a panel which
uses a FlowLayout.

import java.awt.*;
import javax.swing.*;

public class FlowLayoutExample extends JFrame {
 public FlowLayoutExample(String title) {
 super(title);
 getContentPane().setLayout(new FlowLayout(FlowLayout.CENTER, 5, 5));
 getContentPane().add(new JButton("one"));
 getContentPane().add(new JButton("two"));
 getContentPane().add(new JButton("three"));
 getContentPane().add(new JButton("play", new ImageIcon("GreenButton.jpg")));
 getContentPane().add(new JButton("stop", new ImageIcon("RedButton.jpg")));
 getContentPane().add(new JButton(new ImageIcon("Progress.gif")));
 setDefaultCloseOperation(EXIT_ON_CLOSE);
 setSize(500, 200);
 }
 public static void main(String[] args) {
 new FlowLayoutExample("Flow Layout Example").setVisible(true);
 }
}

Notice that we can place an image onto a component as an ImageIcon object, passing in the
name of the gif or jpg file ... provided that it is in the same directory that this code is running in.
Even animated gif files can be used. Here is the result obtained when the application window
is resized in different ways ... take notice of how the components wrap around to the next
"line":

COMP1406 - Chapter 7 - User Interface Extensions Winter 2014

 - 194 -

Keep in mind that the above example just places JButtons as the components, however any
components can be used here.

Example (BoxLayout):

The BoxLayout is also very simple to use. It is similar to the
FlowLayout in that it arranges components one after another.
However, it does not have a wrap around effect. Instead, any
components that do not fit on the line are simply not shown. Also,
a BoxLayout allows you to arrange the components horizontally
or vertically.

There is one constructor that can be used to create a BoxLayout manager:

public BoxLayout(Container panel, int axis);

Here, axis specifies how the components are to be justified ... either horizontally by using
BoxLayout.X_AXIS or vertically by using BoxLayout.Y_AXIS. The panel parameter is the
panel that contains the components (i.e., the panel on which we are applying this layout
manager). Here is a similar example to that from the FlowLayout example:

import java.awt.*;
import javax.swing.*;

public class BoxLayoutExample extends JFrame {
 public BoxLayoutExample(String title) {
 super(title);
 getContentPane().setLayout(new BoxLayout(this.getContentPane(),
 BoxLayout.X_AXIS));
 getContentPane().add(new JButton("one"));
 getContentPane().add(new JButton("two"));
 getContentPane().add(new JButton("three"));
 getContentPane().add(new JButton("play", new ImageIcon("GreenButton.jpg")));
 getContentPane().add(new JButton("stop", new ImageIcon("RedButton.jpg")));
 getContentPane().add(new JButton(new ImageIcon("Progress.gif")));
 setDefaultCloseOperation(EXIT_ON_CLOSE);
 setSize(500, 200);
 }
 public static void main(String[] args) {
 new BoxLayoutExample("Box Layout Example").setVisible(true);
 }
}

COMP1406 - Chapter 7 - User Interface Extensions Winter 2014

 - 195 -

Here is the result obtained when the application window is resized in different ways ... take
notice of how the components DO NOT wrap around to the next "line". The first two
snapshots below represent an X_AXIS layout while the bottom and right one represent a
Y_AXIS layout:

Example (BorderLayout):

 The BorderLayout is a useful layout manager. Instead of re-
arranging components, it allows you to place components at one
of 5 anchored positions on the window (i.e., north, south, east,
west or center). As the window resizes, components stay
"anchored" to the side of the window or to its center. The
components will grow accordingly. You may place at most one
component in each of the 5 anchored positions ... but this one
component may be a container such as a JPanel that contains

other components inside of it. Typically, you do NOT place a component in each of the 5
areas, but choose just a few of the areas.

COMP1406 - Chapter 7 - User Interface Extensions Winter 2014

 - 196 -

There are two constructors that can be used to create a BorderLayout manager:

public BorderLayout()
public BorderLayout(int hgap, int vgap);

As with the FlowLayout, the hGap and vGap specify the horizontal and vertical margin (in
pixels) between components. When adding components, the add() method requires a 2nd
parameter indicating the area to add to which must be one of BorderLayout.NORTH,
BorderLayout.SOUTH, BorderLayout.EAST, BorderLayout.WEST or
BorderLayout.CENTER. Here is a simple example that adds a JTextField to the CENTER
and a JPanel with buttons to the SOUTH.

import java.awt.*;
import javax.swing.*;

public class BorderLayoutExample extends JFrame {
 public BorderLayoutExample(String title) {
 super(title);

 getContentPane().setLayout(new BorderLayout(2,2));

 JPanel buttonPanel = new JPanel();
 buttonPanel.add(new JButton("Add"));
 buttonPanel.add(new JButton("Remove"));
 buttonPanel.add(new JButton("Insert"));
 buttonPanel.add(new JButton("Edit"));
 buttonPanel.add(new JButton("Details"));
 getContentPane().add(BorderLayout.SOUTH, buttonPanel);
 getContentPane().add(BorderLayout.CENTER, new JTextArea());

 setDefaultCloseOperation(EXIT_ON_CLOSE);
 setSize(500, 300);
 }
 public static void main(String[] args) {
 new BorderLayoutExample("Border Layout Example").setVisible(true);
 }
}

Here is the result:

COMP1406 - Chapter 7 - User Interface Extensions Winter 2014

 - 197 -

We can also make some buttons on the right hand side. Here is an example with a status
pane at the bottom as well as a JPanel of buttons on the right:

import java.awt.*;
import javax.swing.*;

public class BorderLayoutExample2 extends JFrame {
 public BorderLayoutExample2(String title) {
 super(title);

 getContentPane().setLayout(new BorderLayout(2,2));

 JPanel buttonPanel = new JPanel();
 buttonPanel.setLayout(new GridLayout(6,1,10,10));
 buttonPanel.add(new JButton("New"));
 buttonPanel.add(new JButton("Open"));
 buttonPanel.add(new JButton("Save"));
 buttonPanel.add(new JButton("Compile"));
 buttonPanel.add(new JButton("Run"));
 buttonPanel.add(new JButton("Quit"));
 getContentPane().add(BorderLayout.EAST, buttonPanel);

 JTextField statusPane = new JTextField("This is like a status pane");
 statusPane.setBackground(Color.gray);
 statusPane.setForeground(Color.white);
 getContentPane().add(BorderLayout.SOUTH, statusPane);
 getContentPane().add(BorderLayout.CENTER, new JTextArea());

 setDefaultCloseOperation(EXIT_ON_CLOSE);
 setSize(500, 300);
 }
 public static void main(String[] args) {
 new BorderLayoutExample2("Border Layout Example 2").setVisible(true);
 }
}

Here is the output as the window is resized ... the resizing behavior may not be nice:

COMP1406 - Chapter 7 - User Interface Extensions Winter 2014

 - 198 -

Example (GridLayout):

A GridLayout is excellent for arranging a 2-dimensional grid of
components (such as buttons on a keypad). It automatically
aligns the components neatly into rows and columns. Typically,
the components are all of the same size, however you can add
different sized components as well. Components are added in
sequence one after another until the grid has been filled.

There are two constructors that can be used to create a GridLayout manager:

public GridLayout(int rows, int columns)
public GridLayout(int rows, int columns, int hGap, int vGap)

The rows and columns parameters tell JAVA how many rows and columns to use for the grid.
Again, the hGap and vGap specify the horizontal and vertical margin (in pixels) between
components. When adding components, the add() method does not allow you to specify
which row and column the component will reside in. Instead, JAVA forces you to add the
components one by one and it automatically places them in the grid starting at the top left and
moving horizontally until a row is completed ... then moving down to the next row. Here is a
simple example that adds some buttons with random background colors of white or black:

import java.awt.*;
import javax.swing.*;
public class GridLayoutExample extends JFrame {

 public GridLayoutExample(String title) {
 super(title);

 getContentPane().setLayout(new GridLayout(6,8,5,5));

 for (int row=1; row<=6; row++)
 for (int col=1; col<=8; col++) {
 JButton b = new JButton();
 if (Math.random() < 0.5)
 b.setBackground(Color.black);
 else
 b.setBackground(Color.white);
 getContentPane().add(b);
 }

 setDefaultCloseOperation(EXIT_ON_CLOSE);
 setSize(300, 250);
 }
 public static void main(String[] args) {
 new GridLayoutExample("Grid Layout Example").setVisible(true);
 }
}

Here is the result showing a few different resizings:

COMP1406 - Chapter 7 - User Interface Extensions Winter 2014

 - 199 -

Example (CardLayout):

The CardLayout manager is a little different from the others. It is
used to simulate a kind of slideshow because it allows you to have
many components in the container but to show only one at a time.
A typical application would be to place
ImageIcons on a set of labels and have
the user click buttons to cycle through
the images like a slideshow. In
addition to image swapping, you can

actually have entire panels swap in and out to completely alter the
user interface at the "drop of a hat" as the expression goes.

There are two constructors that you can use:

public CardLayout()
public CardLayout(int hgap, int vgap)

Once the layout manager has been created, it allows you to jump around to various cards (i.e.,
slides) like a slide projector. Here are the various methods available (the owner container is
the panel that this layout manager has been applied to):

COMP1406 - Chapter 7 - User Interface Extensions Winter 2014

 - 200 -

public void first(Container owner)
public void next(Container owner)
public void previous(Container owner)
public void last(Container owner)
public void show(Container owner, String name)

Notice that the last method allows you to jump to a specific card/slide, which is uniquely
identified by a name. Therefore, when we add cards/slides to the layout, we will supply a
unique name for each one.

Here is an example that cycles through 5 images as the user clicks on forward and reverse
buttons:

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
import javax.swing.plaf.basic.BasicArrowButton;

public class CardLayoutExample extends JFrame {
 JPanel slides;
 CardLayout layoutManager;

 public CardLayoutExample(String title) {
 super(title);

 getContentPane().setLayout(new FlowLayout(FlowLayout.CENTER, 5, 5));

 // Create a JPanel with a CardLayout manager for the slides
 slides = new JPanel();
 slides.setBackground(Color.WHITE);
 slides.setBorder(BorderFactory.createLineBorder(Color.BLACK));
 slides.setLayout(layoutManager = new CardLayout(0,0));
 slides.add("1", new JLabel(new ImageIcon("smallDog.jpg")));
 slides.add("2", new JLabel(new ImageIcon("dog1.jpeg")));
 slides.add("3", new JLabel(new ImageIcon("polarBear.jpg")));
 slides.add("4", new JLabel(new ImageIcon("hamsterweights.jpg")));
 slides.add("5", new JLabel(new ImageIcon("catSwim.jpg")));
 getContentPane().add(slides);

 // Now add some slide show buttons for forward and reverse
 JButton rev = new BasicArrowButton(JButton.WEST);
 getContentPane().add(rev);
 JButton fwd = new BasicArrowButton(JButton.EAST);
 getContentPane().add(fwd);

 // Set up the listeners using anonymous classes
 rev.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 layoutManager.previous(slides);
 }
 });

 fwd.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 layoutManager.next(slides);
 }
 });

COMP1406 - Chapter 7 - User Interface Extensions Winter 2014

 - 201 -

 setDefaultCloseOperation(EXIT_ON_CLOSE);
 setSize(500,500);
 }

 public static void main(String[] args) {
 new CardLayoutExample("Simple Slide Show").setVisible(true);
 }
}

Here is the result showing a few slides in sequence:

Example (GridBagLayout):

The GridBagLayout manager is absolutely the most flexible of all
the layout managers. It allows you to be very specific in the
placement of all components and to indicate exactly how each
component is to resize as the window shrinks or grows. However,
due to the flexibility of this layout manager, it is MUCH more
complicated to use than any of the other layout managers.

The GridBagLayout also arranges components in a grid, but the

grid rows and columns are not explicitly defined. Also, the rows and columns may have
variable heights and widths. Each component can occupy (i.e., span) multiple
rows and columns.

Since there are so many parameters for each component, JAVA supplies a
GridBagConstraints object that is like a blank form that we must fill-out.

The GridBagConstraints objects are used to package together a set of
constraints (i.e. parameters) for a particular component. Once the constraints
are chosen, they must be set using the setConstraints() method for the component. Each
constraint has a default which is automatically used if the constraint is not specified.

COMP1406 - Chapter 7 - User Interface Extensions Winter 2014

 - 202 -

We will now take a look at the many constraints which we can use for each component. The
first step when using a GridBagLayout is to determine the lines that separate the rows and
the columns. We can do this by drawing horizontal and vertical lines whenever there is a
change in components in that row or column. Then, we number the rows and columns starting
at 0. Here is an example of a window showing the breakdown of the components onto such a
grid:

Once we do this, we are ready to specify the parameters for each component. In the above
example, there are 11 components (including the text components which are JLabels). For
each of these components, we need to determine which grid cell (i.e., row and column
numbers) that the top left corner of the component lies in as follows:

This value represents the first parameter that we must set for each component. They are
called the gridx and gridy parameters.

Consider the items box (above) with the topleft corner at (1,1). Here is how we would begin to
set the constraints for that single component. Notice that we set the layout manager for the

COMP1406 - Chapter 7 - User Interface Extensions Winter 2014

 - 203 -

window's panel and then we start filling in the constraints object parameters gridx and gridy.
Afterwards, we apply this to the component by using setConstraints().

public class GridBagLayoutExample extends JFrame {
 public CardLayoutExample(String title) {
 super(title);

 GridBagLayout layout = new GridBagLayout();
 getContentPane().setLayout(layout);

 GridBagConstraints constraints = new GridBagConstraints();

 JList aList = new JList();
 constraints.gridx = 1;
 constraints.gridy = 1;
 ...

 layout.setConstraints(aList, constraints);
 getContentPane().add(aList);

 ...
 }
 ...
}

The next step is to determine how many rows and columns each component spans (i.e., takes
up). Here are the values for some of the components:

Notice that some of the components take up only 1 row and 1 column (i.e., one grid cell).
However, our list takes up space across 3 rows and 3 columns. We set this constraint as the
gridWidth and gridHeight parameters as follows:

 JList aList = new JList();
 constraints.gridx = 1;
 constraints.gridy = 1;
 constraints.gridwidth = 3;
 constraints.gridheight = 3;
 ...

COMP1406 - Chapter 7 - User Interface Extensions Winter 2014

 - 204 -

Now ... when the window is enlarged, we need to indicate whether or not the component is to
stretch horizontally or vertically to fill up the extra space that becomes available. We can
either specify not to fill in the extra space (i.e., NONE), to take up only the horizontal (i.e.,
HORIZONTAL) or vertical (i.e., VERTICAL) space ... or to take up all space vertically and
horizontally (i.e., BOTH). Here is what will happen:

We need to set the fill parameter to one of these constants. In our list, we perhaps want the
list to grow both vertically and horizontally when t he window grows, so we can set it to
GridBagConstraints.BOTH as follows:

 JList aList = new JList();
 constraints.gridx = 1;
 constraints.gridy = 1;
 constraints.gridwidth = 3;
 constraints.gridheight = 3;
 constraints.fill = GridBagConstraints.BOTH;
 ...

For components that do not have their fill
set to BOTH, we need to indicate how the
component will move around (or not move)
within its cell when the window is resized.
We do this by anchoring (i.e., tying) the
component to the NORTH, NORTHEAST,
EAST, SOUTHEAST, SOUTH,
SOUTHWEST, WEST, NORTHWEST or
CENTER of the cell using the anchor
parameter→

COMP1406 - Chapter 7 - User Interface Extensions Winter 2014

 - 205 -

For our list, since we have the fill set to BOTH, it does not matter what anchor we set.
However, for something like the top/left label, we would want to anchor it using:

constraints.anchor = GridBagConstraints.NORTHWEST;

Now, for each component, we can fatten it by supplying a margin around it. There are
parameters called ipadx and ipady that represent the internal padding (i.e., margin in pixels)
around the inside of the component:

Here is how we can set this for our list:

 JList aList = new JList();
 constraints.gridx = 1;
 constraints.gridy = 1;
 constraints.gridwidth = 3;
 constraints.gridheight = 3;
 constraints.fill = GridBagConstraints.BOTH;
 constraints.ipadx = 5;
 constraints.ipady = 5;
 ...

Next, we can specify the margins around
the outside of the components. That is,
we can specify the margins between
components in the same row and
column. We do this using the insets
parameter which is an Insets object
which specifies the top, left, bottom and
right margins (in pixels) that will offset
this component within its cell. Here is
how to set it for our list→

 JList aList = new JList();
 constraints.gridx = 1;
 constraints.gridy = 1;
 constraints.gridwidth = 3;
 constraints.gridheight = 3;
 constraints.fill = GridBagConstraints.BOTH;
 constraints.ipadx = 5;
 constraints.ipady = 5;

constraints.insets = new Insets(10, 10, 10, 10);
 ...

COMP1406 - Chapter 7 - User Interface Extensions Winter 2014

 - 206 -

Lastly, we can allow components to resize at different rates with respect to one another. To
do this, we use the weightx and weighty parameters which specify the rate at which the
component grows with respect to other components in the same row and column.

The weight can be sometimes difficult to set as it depends on the fill values of the other
components in the same row and column. To begin, it is often best to start all components off
with a weightx and weighty of 1, then adjust them as necessary. It is recommended not to
have any row or column where all the weights are set to 0, as this is unpredictable. For our
list, perhaps we could set the weights to 10:

 JList aList = new JList();
 constraints.gridx = 1;
 constraints.gridy = 1;
 constraints.gridwidth = 3;
 constraints.gridheight = 3;
 constraints.fill = GridBagConstraints.BOTH;
 constraints.ipadx = 5;
 constraints.ipady = 5;

constraints.insets = new Insets(10, 10, 10, 10);
 constraints.weightx = 10;
 constraints.weighty = 10;
 ...

The GridBagLayout manager can be very complicated.
It is best to follow the steps shown above by setting the
value for each component individually.

Recall our FruitList example shown here →
How can we us a GridBagLayout so that the window
is resizable ?

COMP1406 - Chapter 7 - User Interface Extensions Winter 2014

 - 207 -

Here is the code:

import java.awt.*;
import javax.swing.*;

public class GridBagLayoutExample extends JFrame {
 public GridBagLayoutExample(String name) {
 super(name);

 GridBagLayout layout = new GridBagLayout();
 GridBagConstraints constraints = new GridBagConstraints();
 getContentPane().setLayout(layout);

 JTextField newItemField = new JTextField();
 constraints.gridx = 0;
 constraints.gridy = 0;
 constraints.gridwidth = 1;
 constraints.gridheight = 1;
 constraints.fill = GridBagConstraints.BOTH;
 constraints.insets = new Insets(12, 12, 3, 3);
 constraints.weightx = 10;
 constraints.weighty = 0;
 layout.setConstraints(newItemField, constraints);
 getContentPane().add(newItemField);

 JButton addButton = new JButton("Add");
 addButton.setMnemonic('A');
 constraints.gridx = 1;
 constraints.gridy = 0;
 constraints.gridwidth = 1;
 constraints.gridheight = 1;
 constraints.fill = GridBagConstraints.HORIZONTAL;
 constraints.insets = new Insets(12, 3, 3, 12);
 constraints.anchor = GridBagConstraints.NORTHWEST;
 constraints.weightx = 0;
 constraints.weighty = 0;
 layout.setConstraints(addButton, constraints);
 getContentPane().add(addButton);

 String[] stuff = {"Apples","Oranges","Grapes","Pineapples","Cherries"};
 JList itemsList = new JList(stuff);
 JScrollPane scrollPane = new JScrollPane(itemsList,
 ScrollPaneConstants.VERTICAL_SCROLLBAR_ALWAYS,
 ScrollPaneConstants.HORIZONTAL_SCROLLBAR_AS_NEEDED);
 constraints.gridx = 0;
 constraints.gridy = 1;
 constraints.gridwidth = 1;
 constraints.gridheight = 1;
 constraints.fill = GridBagConstraints.BOTH;
 constraints.insets = new Insets(3, 12, 12, 3);
 constraints.anchor = GridBagConstraints.CENTER;
 constraints.weightx = 10;
 constraints.weighty = 1;
 layout.setConstraints(scrollPane, constraints);
 getContentPane().add(scrollPane);

COMP1406 - Chapter 7 - User Interface Extensions Winter 2014

 - 208 -

 JButton removeButton = new JButton("Remove");
 removeButton.setMnemonic('R');
 constraints.gridx = 1;
 constraints.gridy = 1;
 constraints.gridwidth = 1;
 constraints.gridheight = 1;
 constraints.fill = GridBagConstraints.HORIZONTAL;
 constraints.insets = new Insets(3, 3, 0, 12);
 constraints.anchor = GridBagConstraints.NORTH;
 constraints.weightx = 0;
 constraints.weighty = 0;
 layout.setConstraints(removeButton, constraints);
 getContentPane().add(removeButton);

 setDefaultCloseOperation(EXIT_ON_CLOSE);
 setSize(400,300);
 }

 public static void main(String[] args) {
 new GridBagLayoutExample("GridBag Layout Example").setVisible(true);
 }
}

Here is the result as the window is resized in various ways:

COMP1406 - Chapter 7 - User Interface Extensions Winter 2014

 - 209 -

 7.2 Adding Menus

A menu is a list of commands presented to the user at his/her
request. Menus can be attached to a menu bar at the top of an
application or they may be pop-up menus that appear anywhere on
the screen.

In JAVA, menus are as easy to use as buttons. There are several
component classes that may be used including JMenuBar, JMenu,
JPopupMenu, JMenuItem, JSeparator and
JRadioButtonMenuItem. The diagram below shows how these
components are connected together:

Notice that the JMenuBar is attached to the main JFrame as well as the JPopupMenu. The
JMenus are then added to the JMenuBar, or to another menu to form a cascaded menu
(e.g., the Search menu here). The JMenuItems are simply added to the JMenus.

COMP1406 - Chapter 7 - User Interface Extensions Winter 2014

 - 210 -

Example:

Consider writing a program to produce the menu hierarchy in the above diagram. We will
make a simple JFrame with nothing inside it except for the menu bar attached to the top.

A JMenuBar is added to a JFrame by doing the following in the JFrame constructor:

JMenuBar myMenuBar = new JMenuBar();
this.setJMenuBar(myMenuBar);

Once a menu bar has been created, then JMenus can be added to it in a simple manner:

JMenu fileMenu = new JMenu("File");
myMenuBar.add(fileMenu);

Optionally, we can set the keyboard accelerators (i.e., quick keys) for the menu as well:

fileMenu.setMnemonic('F');

Once a menu has been created we can add JMenuItems and/or JSeparators to it. The
menus will appear in the order that we add them:

JMenuItem newItem = new JMenuItem("New");
JSeparator sepItem = new JSeparator();

fileMenu.add(newItem);
fileMenu.add(sepItem);

We can also set the keyboard accelerators for the JMenuItems if desired:

// This could have been done in the
// constructor: new JMenuItem("New", 'N');
newItem.setMnemonic('N');

To get it working, we then add an ActionListener to each JMenuItem:

// they may all go to the same event handler or to separate ones
newItem.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 // Handle the selection of this item from the menu
 }
});

We can also add JRadioButtonMenuItems to our JMenus:

JRadioButtonMenuItem rbItem1 = new JRadioButtonMenuItem("Apples");

JRadioButtonMenuItem rbItem2 = new JRadioButtonMenuItem("Oranges");

JRadioButtonMenuItem rbItem3 = new JRadioButtonMenuItem("Bananas");

settingsMenu.add(rbItem1);

settingsMenu.add(rbItem2);

settingsMenu.add(rbItem3);

COMP1406 - Chapter 7 - User Interface Extensions Winter 2014

 - 211 -

rbItem1.addActionListener(this);
rbItem2.addActionListener(this);
rbItem3.addActionListener(this);

// Add them to a button group so that only one is on at a time
ButtonGroup fruits = new ButtonGroup();

fruits.add(rbItem1);

fruits.add(rbItem2);

fruits.add(rbItem3);

We can add cascading menus simply by adding a JMenu to another JMenu:

JMenu searchMenu = new JMenu("Search");
JMenuItem findItem = new JMenuItem("Find");
JMenuItem replaceItem = new JMenuItem("Replace");
searchMenu.add(findItem);
searchMenu.add(replaceItem);

We then add the cascaded menu to some other JMenu:

fileMenu.add(searchMenu);

Finally, we add a JPopupMenu to the JFrame:

JPopupMenu popupMenu = new JPopupMenu();

JMenuItem helpItem = new JMenuItem("help");

JMenuItem inspectItem = new JMenuItem("inspect");
popupMenu.add(helpItem);

popupMenu.add(inspectItem);

To bring up a popup menu, we have to do a bit more work. On a PC, the right mouse button
is usually used to bring up a popup menu. This is different on a Mac. JAVA has a method
that can determine whether or not the "popup trigger" action (e.g., right mouse click) has just
occurred. We can make use of this in our mouseReleased() event handler. When we
determine that we really do want to bring up the menu, the show() method is used … which
lets us specify the component (e.g., panel) on which to pop up the menu along with the x, y
position within that component that we want the menu to appear at:

myFrame.addMouseListener(new MouseAdapter() {
 public void mouseReleased(MouseEvent e) {
 if (e.isPopupTrigger())
 popupMenu.show(e.getComponent(), e.getX(), e.getY());
 }
 });

Keep in mind that there are other settings for our JMenus and MenuItems. To set the Color
we can do this:

 anItem.setBackground(Color.red);
 anItem.setForeground(Color.yellow);

Or to Enable/Disable various items we can do this:
 anItem.setEnabled(true);
 anItem.setEnabled(false);

COMP1406 - Chapter 7 - User Interface Extensions Winter 2014

 - 212 -

Here is the completed code:

import java.awt.event.*;
import javax.swing.*;

public class MenuExample extends JFrame implements ActionListener {

 // Store menu items and popup menu for access from event handlers
 JMenuItem thinkItem, copyItem, newItem, openItem, saveAsItem,
 findItem, replaceItem, appleItem, orangeItem,
 bananaItem, helpItem, inspectItem;

 JPopupMenu popupMenu;

 public MenuExample(String title) {
 super(title);

 // Create the menu bar
 JMenuBar menuBar = new JMenuBar();
 this.setJMenuBar(menuBar); // call on JFrame, not on getContentPane()

 // Create and Add the File menu to the Menu Bar
 JMenu fileMenu = new JMenu("File");
 fileMenu.setMnemonic('F');
 fileMenu.add(newItem = new JMenuItem("New", 'N'));
 fileMenu.add(new JSeparator());
 fileMenu.add(openItem = new JMenuItem("Open", 'O'));
 fileMenu.add(saveAsItem = new JMenuItem("Save As"));
 menuBar.add(fileMenu); // Don't forget to do this
 newItem.addActionListener(this);
 openItem.addActionListener(this);
 saveAsItem.addActionListener(this);

 // Create and Add the Edit menu to the Menu Bar
 JMenu editMenu = new JMenu("Edit");
 editMenu.setMnemonic('E');
 editMenu.add(thinkItem = new JMenuItem("Think", new ImageIcon("brain.gif")));
 editMenu.add(copyItem = new JMenuItem("Copy"));
 menuBar.add(editMenu);
 thinkItem.addActionListener(this);
 copyItem.addActionListener(this);

 // Create and Add the Settings menu to the Menu Bar
 JMenu settingsMenu = new JMenu("Settings");
 settingsMenu.setMnemonic('S');
 settingsMenu.add(appleItem = new JRadioButtonMenuItem("Apples"));
 settingsMenu.add(orangeItem = new JRadioButtonMenuItem("Oranges"));
 settingsMenu.add(bananaItem = new JRadioButtonMenuItem("Bananas"));
 menuBar.add(settingsMenu);

 // Ensure that only one radio button is on at a time
 ButtonGroup fruits = new ButtonGroup();
 fruits.add(appleItem);
 fruits.add(orangeItem);
 fruits.add(bananaItem);

COMP1406 - Chapter 7 - User Interface Extensions Winter 2014

 - 213 -

 // Create the cascading Search menu on the Settings menu
 JMenu searchMenu = new JMenu("Search");
 searchMenu.add(findItem = new JMenuItem("Find"));
 searchMenu.add(replaceItem = new JMenuItem("Replace"));
 editMenu.add(searchMenu);
 findItem.addActionListener(this);
 replaceItem.addActionListener(this);

 // Create and Add items to the popup menu. Notice
 // that we do not add the popup menu to anything.
 popupMenu = new JPopupMenu();
 popupMenu.add(helpItem = new JMenuItem("help"));
 popupMenu.add(inspectItem = new JMenuItem("inspect"));
 helpItem.addActionListener(this);
 inspectItem.addActionListener(this);

 // Register the event handler for the popup menu
 addMouseListener(new MouseAdapter() {
 public void mouseReleased(MouseEvent e){
 if (e.isPopupTrigger())
 popupMenu.show(e.getComponent(), e.getX(), e.getY());
 }
 });

 setDefaultCloseOperation(EXIT_ON_CLOSE);
 setSize(300, 300);
 }

 // Handle all menu selections accordingly
 public void actionPerformed(ActionEvent e){
 if (e.getSource() == newItem)
 System.out.println("reacting to NEW selection from menu");
 else if (e.getSource() == openItem)
 System.out.println("reacting to OPEN selection from menu");
 else if (e.getSource() == saveAsItem)
 System.out.println("reacting to SAVE AS selection from menu");
 else if (e.getSource() == copyItem)
 System.out.println("reacting to COPY selection from menu");
 else if (e.getSource() == thinkItem)
 System.out.println("reacting to THINK selection from menu");
 else if (e.getSource() == findItem)
 System.out.println("reacting to FIND selection from menu");
 else if (e.getSource() == replaceItem)
 System.out.println("reacting to REPLACE selection from menu");
 else if (e.getSource() == helpItem)
 System.out.println("reacting to HELP selection from popup menu");
 else if (e.getSource() == inspectItem)
 System.out.println("reacting to INSPECT selection from popup menu");
 }

 public static void main(String[] args) {
 new MenuExample("Menu Example").setVisible(true);
 }
}

Here are the resulting screen snapshots showing the various menus:

COMP1406 - Chapter 7 - User Interface Extensions Winter 2014

 - 214 -

A standard menu A cascaded menu

A menu with radio buttons A popup menu

 7.3 Standard Dialog Boxes

If a main application window has too many components on it, it will look cluttered and it will not
be simple and easy to use. It is a good idea not to display components on your window if they
are not needed at that time. For example, a main application may not want to display name,
address and phone number fields until the user has selected some action that requires that
information to be entered. Usually, this information is placed in a different window that "pops
up" when needed.

A Dialog Box is a secondary window (i.e., not the main application window) that is

used to interact with the user ... usually to display or obtain additional information.

So ... a dialog box is another window that can be brought up at any time in your application to
interact with the user.

COMP1406 - Chapter 7 - User Interface Extensions Winter 2014

 - 215 -

There are various types of commonly used dialog boxes in JAVA:

1. Message Dialog - displays a message indicating information, errors, warnings etc...
2. Confirmation Dialog - asks a question such as yes/no
3. Input Dialog - asks for some kind of input
4. Option Dialog - asks the user to select some option

JAVA has a class called JOptionPane that can bring up one of these standard dialog boxes.
There are many parameters and JAVA allows you to be very flexible in the way that you use
them. For instance, there are standard icons that are displayed on these dialog boxes, but you
can also make your own.

When using one of these standard dialog boxes, you may specify:

• the frame (owner)
• the title on the dialog box
• the message or question to be asked
• the icon displayed
• the buttons to be shown on the dialog box (i.e. OK, CANCEL, YES, NO)
• a set of options to be asked

Example:

Instead of describing ALL the options and all combinations here, I have decided to just give
you a few templates that you can use. Here is some code that tests various standard dialog
boxes. It brings up an interface with 9 buttons that allow you to "try out" the boxes. The
interface looks as follows:

Here is the code for our test application. Notice the output that appears in the console when
running the code. You should be able to figure out how to get information easily from your
dialog boxes from this example.

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

public class StandardDialogTestProgram extends JFrame {
 public StandardDialogTestProgram(String title) {
 super(title);

COMP1406 - Chapter 7 - User Interface Extensions Winter 2014

 - 216 -

 // Make a grid layout for the 9 buttons
 getContentPane().setLayout(new GridLayout(3, 3));
 JButton aButton;

 // Create the button and event handler for the Plain Message Box
 getContentPane().add(aButton = new JButton("Plain Message Box"));
 aButton.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 JOptionPane.showMessageDialog(null, "This is a plain message !!!",
 "Read This", JOptionPane.PLAIN_MESSAGE);
 }});

 // Create the button and event handler for the Warning Message Box
 getContentPane().add(aButton = new JButton("Warning Message Box"));
 aButton.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 JOptionPane.showMessageDialog(null, "Don't eat yellow snow.",
 "Warning", JOptionPane.WARNING_MESSAGE);
 }});

 // Create the button and event handler for the Error Message Box
 getContentPane().add(aButton = new JButton("Error Message Box"));
 aButton.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 JOptionPane.showMessageDialog(null, "Your program stopped working !",
 "Error", JOptionPane.ERROR_MESSAGE);
 }});

 // Create the button and event handler for the Information Message Box
 getContentPane().add(aButton = new JButton("Information Message Box"));
 aButton.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 JOptionPane.showMessageDialog(null,
 "You better pass the final exam or else ...",
 "Information", JOptionPane.INFORMATION_MESSAGE);
 }});

 // Create the button and event handler for the Confirmation Dialog Box
 getContentPane().add(aButton = new JButton("Confirmation Dialog Box"));
 aButton.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 int result = JOptionPane.showConfirmDialog(null,
 "Do you want me to erase your hard drive ?",
 "Answer this Question",
 JOptionPane.YES_NO_OPTION);
 if (result == 0)
 System.out.println("OK, I'm erasing it now ...");
 else
 System.out.println("Fine then, you clean it up!");
 }});

 // Create the button & event handler for Confirmation Dialog Box With Cancel
 getContentPane().add(aButton = new JButton("Confirm. Dialog with Cancel"));
 aButton.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 int result = JOptionPane.showConfirmDialog(null,
 "Do you want to overwrite the file ?",

COMP1406 - Chapter 7 - User Interface Extensions Winter 2014

 - 217 -

 "Answer this Question", JOptionPane.YES_NO_CANCEL_OPTION);
 switch(result) {
 case 0: System.out.println("OK, here goes..."); break;
 case 1: System.out.println("Then choose a new name..."); break;
 case 2: System.out.println("I will ask you later..."); break;
 }
 }});

 // Create the button & event handler for Multiple Option Dialog Box
 getContentPane().add(aButton = new JButton("Multiple Option Dialog Box"));
 aButton.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 Object[] options = {"Outstanding","Excellent","Good","Fair","Poor"};
 int result = JOptionPane.showOptionDialog(null,
 "How would you rate your vehicle's performance ?",
 "Pick an Option", JOptionPane.DEFAULT_OPTION,
 JOptionPane.QUESTION_MESSAGE,
 null, options, options[0]);
 if (result > 0) {
 System.out.print("You have rated your vehicle's performance as "
 + options[result]);
 if (result < 3)
 System.out.println("We are glad you are pleased.");
 else
 System.out.println("Please explain why.");
 }}});

 // Create the button & event handler for Chooser Dialog Box
 getContentPane().add(aButton = new JButton("Chooser Dialog Box"));
 aButton.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 Object[] options = {"Apple", "Orange", "Strawberry", "Banana"};
 Object selectedValue = JOptionPane.showInputDialog(null,
 "Choose your favorite fruit",
 "Fruit Information",
 JOptionPane.INFORMATION_MESSAGE,
 null, options, options[1]);
 System.out.println(selectedValue + "s sure do taste yummy.");
 }});
 // Create the button & event handler for Input Dialog Box
 getContentPane().add(aButton = new JButton("Input Dialog Box"));
 aButton.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 String in = JOptionPane.showInputDialog("Please input your name");
 System.out.println("Your name is " + in);
 }});

 setDefaultCloseOperation(EXIT_ON_CLOSE);
 pack(); //chooses reasonable window size based on component prefered sizes
 }

 public static void main(String[] args) {
 new StandardDialogTestProgram("Standard Dialog Tester").setVisible(true);
 }
}

Here are the dialog boxes that will appear.

COMP1406 - Chapter 7 - User Interface Extensions Winter 2014

 - 218 -

 Plain Message Box Warning Message Box

 Error Message Box Information Message Box

Confirmation Dialog Box Confirmation Dialog Box with Cancel

Multiple Option Dialog Box

 Input Dialog Box Option Dialog Box

COMP1406 - Chapter 7 - User Interface Extensions Winter 2014

 - 219 -

There is another useful standard dialog box in JAVA that is used for selecting files. It is called
a JFileChooser. Here is what it looks like:

Here is some code that opens up a JFileChooser box and displays the filename (no path)
that the user selects.

import javax.swing.*;

public class FileChooserTestProgram {
 public static void main(String[] args) {
 JFileChooser chooser = new JFileChooser();
 int returnVal = chooser.showOpenDialog(null);
 if (returnVal == JFileChooser.APPROVE_OPTION) {
 System.out.println("You chose to open this file: " +
 chooser.getSelectedFile().getName());
 }
 }
}

In the above code, the null parameter in the showOpenDialog() represents the parent
window that will bring up this dialog box. Since there are no other windows in this example, it
has been set to null. There are more options available that allow you to set the filters and
starting directories. Take a look at the Swing API. Here, for example, is how to set some
filters:

 FileNameExtensionFilter filter = new FileNameExtensionFilter(
 "JPG & GIF Images", "jpg", "gif");
 chooser.setFileFilter(filter);

Try adding it to the above code ... you will need to add this to the top of your program:

import javax.swing.filechooser.FileNameExtensionFilter;

COMP1406 - Chapter 7 - User Interface Extensions Winter 2014

 - 220 -

There is also a JColorChooser class in JAVA that can be used to bring up a dialog box that
allows you to select a color. Here is what it looks like:

You create and add a JColorChooser just as you would any other component:

import javax.swing.JColorChooser;
import java.awt.Color;

public class ColorChooserTestProgram {
 public static void main(String[] args) {
 Color newColor = JColorChooser.showDialog(
 null, // The parent window
 "Choose a Color", // Title on Dialog Box
 Color.RED); // Initial color selected

 System.out.println("You selected this color: " + newColor);
 }
}

Notice that the dialog box returns the color selected when the window is closed.

COMP1406 - Chapter 7 - User Interface Extensions Winter 2014

 - 221 -

 7.4 Making Your Own Dialog Boxes

There are two modes that a dialog box may be brought up in:

• modal: the application window will not respond until this dialog box is closed. This
mode forces the user to "deal with" the dialog box information before continuing.

• non-modal: the dialog box can remain open while the user works in other windows.

Dialog boxes have an owner which is the window that caused it to appear. This allows the
dialog box to be closed automatically when the user quits the application from the main
window (i.e., all windows belonging to the same application are closed when the application
shuts down). Also, when the owner window is minimized, the dialog boxes are also
minimized.

There are two important terms pertaining to dialog boxes:

• Dialog client: the application that caused the dialog box to appear.
• Dialog model: the object(s) that the dialog box should affect.

Normally, an application communicates with its dialog box through a model of some kind.
That is, the owner opens up a dialog box, passing model-specific information to it. The user
may then change this information from the dialog box, which in turn modifies the model.
When the dialog box is closed, then the main application continues with the modified model
objects.

The next page shows a diagram of how everything should work. Notice that the model is used
as the "middle-man" between the two windows. That is, when the dialog box is first opened,
the model contents are used to populate the components (i.e., fill in the text fields, button
selections etc...). The user then makes appropriate changes to the components. When the
dialog box is closed with the OK button, the model is updated with these new changes. When
the dialog box is closed with the CANCEL button, the model remains unchanged. When
either button is clicked, the dialog box closes. The closing of the dialog box using the
standard "close" (i.e., X at the top corner) should be treated as a cancel operation.

COMP1406 - Chapter 7 - User Interface Extensions Winter 2014

 - 222 -

The dialog box itself is easy to make. It is simply another window. To create your own,
simply make it a subclass of JDialog:

public class MyDialogBox extends JDialog {
 ...
}

COMP1406 - Chapter 7 - User Interface Extensions Winter 2014

 - 223 -

Then, you can add components and event handlers to this dialog box as if it were a JPanel.
Typically, you will ensure that there is some combination of ok/apply and cancel/close buttons
which are usually located at the bottom right or bottom center of a dialog box.

There are many constructors in the JDialog class. We will use the following format for our
constructors:

public MyDialog(Frame owner, String title, boolean modal, ...) {
 super(owner, title, modal);
 ...

 // Ensure that the dialog box appears close to the main window
 setLocationRelativeTo(owner);
}

The owner parameter is the client application. In our examples, the owner will also need to
be a class that implements the DialogClientInterface (described soon below). The title
parameter is what will appear on the dialog box title bar. The modal parameter is a boolean
indicating whether or not the dialog box should be modal. Notice the call to the superclass
constructor (this is a standard JDialog constructor being called).

We may also want to supply additional model-related parameters to pass information into the
dialog box. Often the model itself is passed in as a parameter so that we can (1) fill in the
dialog box information based on the current model data, and (2) then we can modify the model
as necessary after the user makes changes to the data and presses OK.

In some cases, we may not want the user of the dialog box to decide whether or not it should
be modal, nor may we want them to specify the title. We can simply hard-code these into the
dialog box if we wish:

public MyDialog(Frame owner, ...) {
 super(owner, "Mt Cool Dialog Box", true);
 ...

 // Ensure that the dialog box appears close to the main window
 setLocationRelativeTo(owner);
}

In addition to this, we will use the dispose() method to dispose of (i.e., close and delete) the
dialog box from within our code once we press OK, CANCEL or close the window from the top
X.

So dialog boxes are easy to create ... but how do we coordinate the interaction with the main
application window and its dialog box ?

The dialog box is defined in a separate class than its owner application. As a result, the client
(i.e., the application that brought up the dialog box) has no idea what is going on within the
dialog box class (nor should it need to know). The client, however, usually needs to know
whether or not the interaction with the dialog box was accepted or whether or not it was
cancelled. That is, it may need to know whether or not changes were made to the model.

COMP1406 - Chapter 7 - User Interface Extensions Winter 2014

 - 224 -

Since the client application does not have access to the internal dialog box classes, the dialog
box will need to inform the client application as to whether or not the user pressed OK or
CANCEL. That means, the dialog box must call one or more methods in the client class.

In order to do this cleanly, the dialog box should not need to know who exactly the client is.
That is, a dialog box in general should allow any application to bring it up and then interact with
it. Therefore, we need a general way of communicating with an arbitrary client class.

JAVA interfaces are perfect for this situation. We can define the following general interface:

public interface DialogClientInterface {
 public void dialogFinished();
 public void dialogCancelled();
}

Then, we can have the client application implement this interface:

public class MyApplication implements DialogClientInterface {
 ...
 public void dialogFinished() {
 ...
 }
 public void dialogCancelled() {
 ...
 }
 ...
}

Now, since the client application implements the interface, the dialog box has a guarantee that
it will have dialogFinished() and dialogCancelled() methods available to call.

Therefore, in the dialog class, when the OK button is pressed, we can call the client's
dialogFinished() method before closing the dialog box. That will tell the client that the model
has been changed. Similarly, when CANCEL is pressed (or when the window is closed from
the top right X), we can tell the client that the dialog was cancelled. Here is the structure of
the dialog box code:

public class SomeDialog extends JDialog {
 // A constructor that takes the model and client as parameters
 public SomeDialog(Frame owner, ...){
 ...
 }

 private void okButtonPressed() {
 ...
 ((DialogClientInterface)getOwner()).dialogFinished();
 }
 private void cancelButtonPressed() {
 ...
 ((DialogClientInterface)getOwner()).dialogCancelled();
 }
}

COMP1406 - Chapter 7 - User Interface Extensions Winter 2014

 - 225 -

Notice how the owner (which is a JFrame) is type-casted to a DialogClientInterface so that
the dialogFinished() and dialogCancelled() methods can be called.

The last piece of information that you will need is that of making the dialog box appear. To
have a dialog box appear, you simply create an instance of it and make it visible. Here is
some code that would appear in the main application client:

 public void bringUpDialogBox() {
 MyDialog dialog = new MyDialog (this, "My Dialog", true, model);

 System.out.println("This appears before Dialog box is opened.");

 dialog.setVisible(true); // Open the dialog box

 System.out.println("This appears after Dialog box is closed...");
 System.out.println("unless the dialog box was non-modal.");
 }

Example:

Consider having many "buddies" (i.e., friends) that you send e-mails to regularly. You would
like to make a nice little electronic address book that you can store the buddy's names along
with his/her e-mail addresses. Perhaps you even want to categorize the buddies as being
"hot" (i.e., you talk to them often), or not-so-hot.

What exactly is an e-mail buddy ? Well we can easily develop a simple model of an
EmailBuddy as follows:

public class EmailBuddy {
 private String name;
 private String address;
 private boolean onHotList;

 // Here are some constructors
 public EmailBuddy() {
 name = "";
 address = "";
 onHotList = false;
 }
 public EmailBuddy(String aName, String anAddress) {
 name = aName;
 address = anAddress;
 onHotList = false;
 }

 // Here are the get methods
 public String getName() { return name; }
 public String getAddress() { return address; }
 public boolean onHotList() { return onHotList; }

COMP1406 - Chapter 7 - User Interface Extensions Winter 2014

 - 226 -

 // Here are the set methods
 public void setName(String newName) { name = newName; }
 public void setAddress(String newAddress) { address = newAddress; }
 public void onHotList(boolean onList) { onHotList = onList; }

 // The appearance of the buddy
 public String toString() {
 return(name);
 }
}

As you may have noticed, there is nothing difficult here ... just your standard "run-of-the-mill"
model class. However, this class alone does not represent the whole model for our GUI since
we will have many of these EmailBuddy objects. So we will need a class to represent the list.
We can do this in the same way that we created our grocery item list with an array of
EmailBuddy objects

public class EmailBuddyList {

 public final int MAXIMUM_SIZE = 100;

 private EmailBuddy[] buddies;
 private int size;

 public EmailBuddyList() {
 buddies = new EmailBuddy[MAXIMUM_SIZE];
 size = 0;
 }

 // Return the number of buddies in the whole list
 public int getSize() { return size; }

 // Return all the buddies
 public EmailBuddy[] getEmailBuddies() { return buddies; }

 // Get a particular buddy from the list, given the index
 public EmailBuddy getBuddy(int i) { return buddies[i]; }

 // Add an email buddy to the list unless it has reached its capacity
 public void add(EmailBuddy buddy) {
 // Make sure that we do not go past the limit
 if (size < MAXIMUM_SIZE)
 buddies[size++] = buddy;
 }

 // Remove the buddy with the given index from the list
 public void remove(int index) {
 // Make sure that the given index is valid
 if ((index >= 0) && (index < size)) {
 // Move every item after the deleted one up in the list
 for (int i=index; i<size-1; i++)
 buddies[i] = buddies[i+1];
 size--; // Reduce the list size by 1
 }
 }

COMP1406 - Chapter 7 - User Interface Extensions Winter 2014

 - 227 -

 // Return the number of buddies on the hot list
 public int getHotListSize() {
 int count = 0;
 for (int i=0; i<size; i++)
 if (buddies[i].onHotList())
 count++;
 return count;
 }

 // Get a particular "hot" buddy from the list, given the hot list index
 public EmailBuddy getHotListBuddy(int i) {
 int count = 0;
 for (int j=0; j<size; j++) {
 if (buddies[j].onHotList()) {
 if (count == i)
 return buddies[j];
 count++;
 }
 }
 return null;
 }
}

Notice that there is a getSize() method that is a simple "get" method and there is also a
getHotListSize() method that returns the number of buddies on the hot list. Notice as well
that there are methods to get a buddy at a given index in the array. The method
getHotListBuddy() will find the ith buddy that is on the hot list. You will see soon why these
methods will be useful.

The task now is to design a nice interface for the main application. To start, we must decide
what the interface should do. Here is a possible interface:

• A list of all buddies is shown (names only)
• We should be able to

o Add and Remove buddies from the list
o Edit buddies when their name or email changes
o Show only those buddies that are "hot" or perhaps show all of them

Assume that we have decided upon the following view for the interface:

COMP1406 - Chapter 7 - User Interface Extensions Winter 2014

 - 228 -

Notice that the interface does not show the e-mail addresses in the list. It may look cluttered,
but we could certainly have done this. Perhaps we could have made a second list box or
something that would show the e-mail addresses. Here is a good exercise: make a
JTextField just beneath the list that will show the e-mail address of the currently selected
EmailBuddy in the list. This is not hard to do. Nevertheless, it is not necessary for the
purposes of explaining this dialog box example.

How can we build the view for this interface ? We will start with a JPanel. We will use
GridBagLayout to allow nice resizing.

import java.awt.*;
import javax.swing.*;

public class EmailBuddyPanel extends JPanel {
 private EmailBuddyList model; // This is the list of buddies

 private JButton addButton;
 private JButton removeButton;
 private JList buddyList;
 private JCheckBox hotListButton;

 // These are the get methods that are used to access the components
 public JButton getAddButton() { return addButton; }
 public JButton getRemoveButton() { return removeButton; }
 public JCheckBox getHotListButton() { return hotListButton; }
 public JList getBuddyList() { return buddyList; }

 // This is the default constructor
 public EmailBuddyPanel(EmailBuddyList m){
 super();

 model = m; // Store the model so that he update() method can access it

 // Use a GridBagLayout (lotsa fun)
 GridBagLayout layout = new GridBagLayout();
 GridBagConstraints layoutConstraints = new GridBagConstraints();
 setLayout(layout);

 // Add the buddy list
 buddyList = new JList();
 JScrollPane scrollPane = new JScrollPane(buddyList,
 ScrollPaneConstants.VERTICAL_SCROLLBAR_ALWAYS,
 ScrollPaneConstants.HORIZONTAL_SCROLLBAR_AS_NEEDED);
 layoutConstraints.gridx = 0; layoutConstraints.gridy = 0;
 layoutConstraints.gridwidth = 1; layoutConstraints.gridheight = 3;
 layoutConstraints.fill = GridBagConstraints.BOTH;
 layoutConstraints.insets = new Insets(10, 10, 10, 10);
 layoutConstraints.anchor = GridBagConstraints.NORTHWEST;
 layoutConstraints.weightx = 1.0; layoutConstraints.weighty = 1.0;
 layout.setConstraints(scrollPane, layoutConstraints);
 add(scrollPane);

 // Add the Add button
 addButton = new JButton("Add");
 layoutConstraints.gridx = 1; layoutConstraints.gridy = 0;
 layoutConstraints.gridwidth = 1; layoutConstraints.gridheight = 1;

COMP1406 - Chapter 7 - User Interface Extensions Winter 2014

 - 229 -

 layoutConstraints.weightx = 0.0; layoutConstraints.weighty = 0.0;
 layout.setConstraints(addButton, layoutConstraints);
 add(addButton);

 // Add the Remove button
 removeButton = new JButton("Remove");
 layoutConstraints.gridx = 1; layoutConstraints.gridy = 1;
 layout.setConstraints(removeButton, layoutConstraints);
 add(removeButton);

 // Add the ShowHotList button
 hotListButton = new JCheckBox("Show Hot List");
 layoutConstraints.gridx = 1; layoutConstraints.gridy = 2;
 layout.setConstraints(hotListButton, layoutConstraints);
 add(hotListButton);

 // Now update the components by filling them in
 update();
 }
}

Of course, we will need to write the update() method as well here. Recall that the update
method should read from the model and then refresh the "look" of the components. The only
components that need their appearance updated is the list and the remove button. The
remove button is easily updated as we simply disable it when there is nothing selected in the
list:

removeButton.setEnabled(buddyList.getSelectedIndex() >= 0);

The list is more complicated. First of all, we need to populate the list with the most recent
data. Recall that we did something similar in the grocery list example. We need to create an
appropriate sized array and then fill it up with email buddies and then set the list data:

 EmailBuddy[] exactList;

 exactList = new EmailBuddy[model.getSize()];
 for (int i=0; i<model.getSize(); i++)
 exactList[i] = model.getBuddy(i);
 buddyList.setListData(exactList);

However, things are a little more difficult now. If we have the hot list button selected, then we
do not want all the buddies ... instead we want only those on the hot list:

 exactList = new EmailBuddy[model.getHotListSize()];
 for (int i=0; i<model.getHotListSize(); i++)
 exactList[i] = model.getHotListBuddy(i);
 buddyList.setListData(exactList);

We can use an IF statement to select the appropriate code:

 EmailBuddy[] exactList;
 if (hotListButton.isSelected()) {
 exactList = new EmailBuddy[model.getHotListSize()];

COMP1406 - Chapter 7 - User Interface Extensions Winter 2014

 - 230 -

 for (int i=0; i<model.getHotListSize(); i++)
 exactList[i] = model.getHotListBuddy(i);
 }
 else {
 exactList = new EmailBuddy[model.getSize()];
 for (int i=0; i<model.getSize(); i++)
 exactList[i] = model.getBuddy(i);
 }
 buddyList.setListData(exactList);

We will also need to ensure that we select the selected item each time we make an update.
That is, if we were to select an item from the list and then update ... we want to make sure that
the item remains selected. At this point, when we refresh the list contents, the selected item
does not remain selected. So, we will need to remember which item was selected and then
reselect it again after the list is re-populated. Here is the final update() method that must be
added to the view code:

 // Update the components so that they reflect the contents of the model
 public void update() {
 //Remember what was selected
 int selectedItem = buddyList.getSelectedIndex();

 // Now re-populate the list by creating and returning a new
 // array with the exact size of the number of items in it.
 EmailBuddy[] exactList;
 if (hotListButton.isSelected()) {
 exactList = new EmailBuddy[model.getHotListSize()];
 for (int i=0; i<model.getHotListSize(); i++)
 exactList[i] = model.getHotListBuddy(i);
 }
 else {
 exactList = new EmailBuddy[model.getSize()];
 for (int i=0; i<model.getSize(); i++)
 exactList[i] = model.getBuddy(i);
 } buddyList.setListData(exactList);

 // Reselect the selected item
 buddyList.setSelectedIndex(selectedItem);

 // enable/disable the remove button accordingly
 removeButton.setEnabled(buddyList.getSelectedIndex() >= 0);
 }

At this point, the view is complete and we just have to create the controller. The controller will
keep track of the view as well as the model. We will be handling events for the pressing of the
Add button, Remover button, Hot List button as well as List Selection. Here is the basic
framework for the controller:

import java.awt.event.*;
import javax.swing.*;

public class EmailBuddyApp extends JFrame implements DialogClientInterface {

 private EmailBuddyList model; // The model
 private EmailBuddyPanel view; // The view

COMP1406 - Chapter 7 - User Interface Extensions Winter 2014

 - 231 -

 // Here is the default constructor
 public EmailBuddyApp(String title){
 super(title);

 // Initially, no buddies
 model = new EmailBuddyList();

 // Make a new viewing panel and add it to the pane
 view = new EmailBuddyPanel(model);
 getContentPane().add(view);

 // Make a listener for the add button
 view.getAddButton().addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent event) {
 addBuddy();
 }});

 // Make a listener for the remove button
 view.getRemoveButton().addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent event){
 removeBuddy();
 }});

 // Make a listener for the hot list checkbox
 view.getHotListButton().addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent event){
 view.update();
 }});

 // Make a double-click listener
 view.getBuddyList().addMouseListener(new MouseAdapter() {
 public void mouseClicked(MouseEvent event){
 if (event.getClickCount() == 2)
 editBuddy();
 view.update();
 }});

 setDefaultCloseOperation(EXIT_ON_CLOSE);
 setSize(600,300);
 setLocation(800,400);
 }

 ...

 // This is called when the user clicks the add button
 private void addBuddy() { ... }

 // This is called when the user clicks the remove button
 private void removeBuddy() { ... }

 // This is called when the user double clicks a buddy
 private void editBuddy() { ... }

 // Code that starts the application
 public static void main(String[] args) {
 new EmailBuddyApp("Email Buddy Application").setVisible(true);
 }
}

COMP1406 - Chapter 7 - User Interface Extensions Winter 2014

 - 232 -

Notice that the code is straight forward. The hot list button event handler only requires a
refreshing of the list, so the view's update() method is called.

Now let us examine the helper methods in turn. The addBuddy() method is called when the
user clicks the Add button. This method should bring up the dialog box for adding a new
buddy. We have not created this dialog box, but we will do so soon. The adding of the new
email buddy should only occur if the user presses the OK button. If the CANCEL button is
pressed, or the dialog box is closed down, then no email buddy should be added.

To make the code simpler, it is a good idea to create the new email buddy when the Add
button is pressed so that we can pass this buddy into the dialog box so that its contents can be
set. We can go ahead and add it to the model. Of course, if the user cancels the adding of
the new buddy, we will have to remove this newly added buddy. In the addBuddy() event
handler, we will just need to create the buddy, add it to the model and then open up the dialog
box (which we have not yet created, but will do so soon):

 private void addBuddy() {
 EmailBuddy aBuddy = new EmailBuddy();
 model.add(aBuddy); // Add the buddy to the model

 // Now bring up the dialog box
 BuddyDetailsDialog dialog = new BuddyDetailsDialog(this,
 "New Buddy Details", true, aBuddy);
 dialog.setVisible(true);
 }

This code will bring up the dialog box. Remember, that this main application implements the
DialogClientInterface. Therefore, the BuddyDetailsDialog will be trying to call the
dialogFinished() and dialogCancelled() methods, so we will need to write these:

 // Called when dialog box is closed with OK button
 public void dialogFinished() {
 view.update();
 }
 // Called when dialog box is closed with CANCEL button or manually closed
 public void dialogCancelled() {
 // Remove the latest buddy that was added
 model.remove(model.getSize()-1);
 }

The methods are simple. Since we added the buddy when in the addBuddy() method, when
the user presses OK, there is nothing left to do except update the view. However, when the
user presses CANCEL, we need to remove the last added buddy from the model ... which is
done in the dialogCancelled() method here.

The removeBuddy() event handler is also easy to write. We just need to determine which
buddy is selected from the list and then as long as there is someone selected ... we just
remove the buddy by calling the model's remove() method and then update the view:

 // This is called when the user clicks the remove button
 private void removeBuddy() {
 int index = view.getBuddyList().getSelectedIndex();
 if (index >= 0) {

COMP1406 - Chapter 7 - User Interface Extensions Winter 2014

 - 233 -

 model.remove(index);
 view.update();
 }
 }

The editBuddy() event handler is a little more involved. First, we need to determine which
buddy was selected ... we can grab the index in the list. Then, as long as there was a buddy
selected, we can bring up the dialog box for that buddy. Unfortunately, however, the index in
the list will be different from the index into the model's list if the hot list button is enabled. So
we will need to handle these cases separately.

Likely, we will want to use the same dialog box as we did with the add button, but with the
selected buddy's information as opposed to adding a new buddy. Here is the basic idea:

 private void editBuddy() {
 EmailBuddy selectedBuddy;

 int selectedIndex = view.getBuddyList().getSelectedIndex();
 if (selectedIndex >= 0) {
 if (view.getHotListButton().isSelected())
 selectedBuddy = model.getHotListBuddy(selectedIndex);
 else
 selectedBuddy = model.getBuddy(selectedIndex);
 if (selectedBuddy == null)
 return;
 BuddyDetailsDialog dialog = new BuddyDetailsDialog(this,
 "Edit Buddy Details", true, selectedBuddy);
 dialog.setVisible(true);
 }
 }

Of course, there will be a problem when the user cancels the editing since the
dialogCancelled() method removes the last buddy in the list! We do not want to do this
removal if we are merely editing. To avoid this, we can add a new instance variable to the
class to determine whether or not we are in "add" mode or "edit" mode:

 // This is set to true if the dialog box was opened to add a new buddy
 // and is set to false if it was opened to edit a buddy
 private boolean inAddMode;

Then, we can set this value to true in the addBuddy() event handler (i.e., inAddMode = true;)

and false in the editBuddy() event handler (i.e., inAddMode = false;). The

dialogCancelled() method will need to change as well:

 public void dialogCancelled() {
 // Remove the latest buddy that was added if in add mode
 if (inAddMode)
 model.remove(model.getSize()-1);
 }

That is it! Now, we need to create the dialog box itself. It should allow the user to set the
name, address and hot list status for the buddy that it is working on (i.e., either a newly added
buddy or one being edited).

COMP1406 - Chapter 7 - User Interface Extensions Winter 2014

 - 234 -

Here is what the dialog box will look like:

Here is the code:

import java.awt.event.*;
import javax.swing.*;

public class BuddyDetailsDialog extends JDialog {
 // This is a pointer to the email buddy that is being edited
 private EmailBuddy aBuddy;

 // These are the components of the dialog box
 private JLabel aLabel;
 private JTextField nameField;
 private JTextField addressField;
 private JCheckBox hotListButton;
 private JButton okButton;
 private JButton cancelButton;

 public BuddyDetailsDialog(JFrame owner, String title, boolean modal,
 EmailBuddy bud){
 super(owner,title,modal);
 aBuddy = bud;

 // Put all the components onto the window and given them initial values
 buildDialogWindow(aBuddy);

 // Add listeners for the Ok and Cancel buttons as well as window closing
 okButton.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent event){
 okButtonClicked();
 }});

 cancelButton.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent event) {
 cancelButtonClicked();
 }});

 addWindowListener(new WindowAdapter() {
 public void windowClosing(WindowEvent event) {
 cancelButtonClicked();
 }});

 setSize(526, 214);

COMP1406 - Chapter 7 - User Interface Extensions Winter 2014

 - 235 -

 setLocationRelativeTo(owner);
 }

 private void buildDialogWindow(EmailBuddy aBuddy) {
 setLayout(null);

 // Add the name label
 aLabel = new JLabel("Name:");
 aLabel.setLocation(10,10);
 aLabel.setSize(80, 30);
 add(aLabel);
 // Add the name field
 nameField = new JTextField(aBuddy.getName());
 nameField.setLocation(110, 10);
 nameField.setSize(400, 30);
 add(nameField);
 // Add the address label
 aLabel = new JLabel("Address:");
 aLabel.setHorizontalAlignment(JLabel.LEFT);
 aLabel.setLocation(10,50);
 aLabel.setSize(80, 30);
 add(aLabel);
 // Add the address field
 addressField = new JTextField(aBuddy.getAddress());
 addressField.setLocation(110, 50);
 addressField.setSize(400, 30);
 add(addressField);
 // Add the onHotList button
 hotListButton = new JCheckBox("On Hot List");
 hotListButton.setSelected(aBuddy.onHotList());
 hotListButton.setLocation(110, 100);
 hotListButton.setSize(120, 30);
 add(hotListButton);
 // Add the Ok button
 okButton = new JButton("Ok");
 okButton.setLocation(300, 130);
 okButton.setSize(100, 40);
 add(okButton);
 // Add the Cancel button
 cancelButton = new JButton("Cancel");
 cancelButton.setLocation(410, 130);
 cancelButton.setSize(100, 40);
 add(cancelButton);
 }

 private void okButtonClicked(){
 aBuddy.setName(nameField.getText());
 aBuddy.setAddress(addressField.getText());
 aBuddy.onHotList(hotListButton.isSelected());
 if (getOwner() != null)
 ((DialogClientInterface)getOwner()).dialogFinished();
 dispose();
 }

 private void cancelButtonClicked(){
 if (getOwner() != null)
 ((DialogClientInterface)getOwner()).dialogCancelled();
 dispose();
 }
}

COMP1406 - Chapter 7 - User Interface Extensions Winter 2014

 - 236 -

This page was intentionally left blank.

Chapter 8

Abstract Data Types

What is in This Chapter ?

In this chapter we discuss the notion of Abstract Data Types (ADTs) as they pertain to storing
collections of data in our programs. There are many common ADTs used in computer
science. We will discuss here some of the common ones such as Lists, Queues, Deques,
Linked-Lists, Stacks, Sets and Dictionaries. You will understand the differences between
these various ADTs in terms of the operations that you can perform on them. Lastly, we will
implement a Doubly-Linked Lists data structure to help you understand how pointers can be
used to define a recursive data structure.

COMP1406 - Chapter 8 - Abstract Data Types Winter 2014

 - 238-

 8.1 Common Abstract Data Types

Every time we define a new object, we are actually defining a new data type. That is, we are
grouping attributes and behaviors to form a new type of data (i.e., object) we can use
throughout our programs as if it were a single piece of data. There are actually some
commonly used models for defining similar types of data:

An abstract data type (ADT) is a mathematical model for a

certain class of data structures that have similar behavior. (Wikipedia)

The word abstract here means that we are discussing data types in a general manner, without
having a particular practical purpose or intention in mind. There are different types of ADTs,
each with their own unique way for storing, accessing and modifying the data. Typically, an
ADTs will store general data of any kind, although usually the data inside the ADT is all of the
same kind ... or at least has something in common.

ADTs are a vital part of any programming language since they are used to collect data
together in an "easy-to-use" way. We often use the term collection to represent these data
types. There are advantages of using ADTs:

1. They help to simplify descriptions of abstract algorithms, thereby allowing us to write
simplified pseudocode with less details (e.g., we can write pseudocode such as "Add x
to the list" instead of "Put x at position size in the array and then let size = size+1").

2. They allow us to classify and evaluate data structures in regards to the common
behaviors between data types (e.g., one ADT may have a more efficient remove
operation while another may have a more efficient add or search operation. We could
choose the ADT that best fits our needs).

As we have already seen with Arrays, collections allow many objects to be collected together,
stored and passed around as one object (i.e., the array itself is an object). Just about every
useful application of any kind requires collections for situations such as:

• storing products on shelves in a store
• maintaining information on customers
• keeping track of cars for sale, for rental or for servicing
• a personal collection of books, CDs, DVDs, cards, etc...
• maintaining a shopping cart of items to be purchased from a website

COMP1406 - Chapter 8 - Abstract Data Types Winter 2014

 - 239-

In JAVA, there are a variety of ADT-related classes that can be used to represent these
various programming needs. These ADTs are located in the java.util.Collection package,
along with some other useful tools. In this set of notes, we investigate (very briefly) some of
these JAVA collections in a way that will help a programmer understand which ADT is best for
their particular programming application.

ADTs in JAVA are organized into a “seemingly complicated” hierarchy of JAVA interfaces and
classes. There are two sub-hierarchies ... one is rooted at Collection, the other is rooted at
Map. Here is a diagram showing part of this hierarchy:

In the above hierarchy, the red and dark blue represent java interfaces, the white classes
represent abstract class and the yellow represent concrete classes. The solid arrows
indicate inheritance while the dashes lines indicate that a class implements an interface. We
will be discussing some of these classes in detail. You may want to refer back to this diagram
once in a while to ensure that you understand how the classes differ and how they are similar.

COMP1406 - Chapter 8 - Abstract Data Types Winter 2014

 - 240-

Notice that there are 11 concrete classes, and that all of them indirectly implement the
Collection or Map interface. Recall that an interface just specifies a list of method signatures
... not any code. That means, all of the concrete collection & map classes have something in
common and that they all implement a common set of methods.

The main commonality between the collection classes is that they all store objects called their
elements, which may be heterogeneous objects (i.e., the elements may be a mix of various
(possibly unrelated) objects). Storing mixed kinds of objects in a Collection is allowed, but
not often done unless there is something in common with the objects (i.e., they extend a
common abstract class or implement a common interface).

The Collection interface defines common methods for querying (i.e., getting information from)
and modifying (i.e., changing) the collection in some way. However, there are also various
restrictions for each of the collection classes in terms of what they are allowed and not allowed
to do when adding, removing and searching for data. We will look at the various classes that
implement the Collection and Map interfaces.

It is not the purpose of this course to describe in-depth details on various kinds of collections
and data structures. You will gain a deeper understanding of the advantages and
disadvantages between data structures in your second year data structures course.

 8.2 The List ADT

In real life, objects often appear in simple lists. For example,
Companies may maintain a list of Employees, Banks may keep a
list of BankAccounts, a Person may keep a list of "Things to Do".
etc..

A List ADT allows us to access any of its elements at any time as

well as insert or remove elements anywhere in the list at any time.
The list will automatically shift the elements around in memory to
make the needed room or reduce the unused space. The general
list is the most flexible kind of list in terms of its capabilities.

A list is an abstract data type that implements an ordered collection of values, where

the same value may occur more than once.

We use a general List whenever we have elements coming in and being removed in a random
order. For example, when we have a shelf of library books, we may need to remove a book
from anywhere on the shelf and we may insert books back into their proper location when they
are returned.

The elements in a general list are stored in a particular position in the list. As with arrays,
elements in a general list are accessed according to their index position in the list.

COMP1406 - Chapter 8 - Abstract Data Types Winter 2014

 - 241-

The basic methods for inserting, removing, accessing and modifying items from a List are as
follows:

add(int index, Object x)

Insert object x at position index in the list.
Objects at positions index + 1 through n-1
move to the right by one position, increasing
the size of the list by 1.

e.g., aList.add(2, x) will do this →

remove(int index)

Remove and return the object at position
index in the list. Objects at positions index +
1 through n-1 move to the left by one position,
decreasing the size of the list by 1.

e.g., aList.remove(2) will return 9 →

set(int index, Object x)

Replace the object at position index in the list
with the new object x. Objects at all other
positions remain in their original position.

e.g., aList.set(2, x) will do this →

get(int index)

Return the object at position index in the list.
The list is not changed in any way.

e.g., x = aList.get(2) will return 9 →

size()

Return the number of elements in the list.

e.g., n = aList.size() will return n →

COMP1406 - Chapter 8 - Abstract Data Types Winter 2014

 - 242-

clear()

Remove all elements from the list.

e.g., aList.clear() will do this →

There are additional methods often available for convenience sake. Here are some:

add(Object x)

Insert object x at the end of the list,
increasing the size of the list by 1.

e.g., aList.add(x) will do this →

remove(Object x)

Remove the first occurrence of object x from
the list. Assuming x was found at position i,
then objects at positions i + 1 through n-1
move to the left by one position, decreasing
the size of the list by 1.

e.g., aList.remove(9) will do this →

indexOf(Object x)

Return the position of the first occurrence of
object x in the list.

e.g., i = aList.indexOf(9) will return 2 →

isEmpty()

Return true if the number of elements in
the list is 0, otherwise return false.

does the same as this:

return (aList.size() == 0);

contains(Object x)

Return true if x is contained in the list,
otherwise return false.

does the same as this:

for (int i=0; i<aList.size(); i++)
 if (aList.get(i).equals(x))
 return true;
return false;

COMP1406 - Chapter 8 - Abstract Data Types Winter 2014

 - 243-

an ArrayList
myList

"Hello"
25

0 1 2 3

In JAVA, the List ADT is called an ArrayList and it is located in the java.util package, which
must be imported in order to use this data type.

To create an ArrayList, we can simply call a constructor from the ArrayList class. Here is an
example of creating an ArrayList and storing it in a variable so that we can use it:

ArrayList myList;
myList = new ArrayList();

The above code allows us to store any kind of object in the ArrayList. We can then use the
ArrayList’s add() method to add objects to the end of the list in sequence as follows:

import java.util.ArrayList;

public class ArrayListTestProgram {

public static void main(String[] args) {
 ArrayList myList;

 myList = new ArrayList();
 myList.add("Hello");
 myList.add(25);
 myList.add(new Person());
 myList.add(new Truck());
 System.out.println(myList);

 }
}

Notice in the above code that we are
adding a String, an int, a Person object
and a Truck object. Notice as well that
at the top of the program we imported
java.util.ArrayList. This is necessary in
order for JAVA to know where to find the
ArrayList class and its methods.

The output for the program is as follows
(assuming that Person and Truck are
defined classes that do not have
toString() methods):

[Hello, 25, Person@addbf1, Truck@42e816]

Did you notice how ArrayLists look when you print them out ? They show all the
elements/items in the list separated by commas , in between square brackets [].

This is the general format for an ArrayList that can hold any kinds of objects. However, it is
"highly recommended" that we specify the type of objects that will be stored in the ArrayList.

We do this by specifying the type between < and > characters just before the round brackets (
) as follows:

COMP1406 - Chapter 8 - Abstract Data Types Winter 2014

 - 244-

The linked image cannot be displayed. The file may have been moved, renamed, or deleted. Verify that the link points to the correct file and location.

ArrayList<Object> myList;
myList = new ArrayList<Object>();

If we know, for example, that all of the objects in the ArrayList will be Strings (e.g., names of
people), then we should declare and create the list as follows:

ArrayList<String> myList;
myList = new ArrayList<String>();
...

Similarly, if the objects to be stored in the list were of type Person, BankAccount or Car …
then we would specify the type as <Person>, <BankAccount> or <Car>, respectively.

Here is an example that uses the get() and size() methods:

ArrayList<Object> myList;

myList = new ArrayList<Object>();
System.out.println(myList.size()); // outputs 0
myList.add("Hello");
myList.add(25);
myList.add(new Person());
myList.add(new Car());
System.out.println(myList.get(0)); // outputs "Hello"
System.out.println(myList.get(2)); // outputs Person@addbf1
System.out.println(myList.get(4)); // an IndexOutOfBoundsException
System.out.println(myList.size()); // outputs 4

Since Lists are perhaps the most commonly used data structure in computer science, we will
do a couple of larger examples so that we get a full understanding of how to use them
properly.

Example:

Consider a realistic use of the ArrayList object by creating classes
called Team and League in which a League object will contain a
bunch of Team objects. That is, the League object will have an
instance variable of type ArrayList to hold onto the multiple Team
objects within the league.

Consider first the creation of a Team class that will represent a single
team in the league. For each team, we will maintain the team’s name
as well as the number of wins, losses and ties for the games that

COMP1406 - Chapter 8 - Abstract Data Types Winter 2014

 - 245-

they played. Here is the basic class (review the previous chapters in the notes if any of this is
not clear):

public class Team {
 private String name; // The name of the Team
 private int wins; // The number of games that the Team won
 private int losses; // The number of games that the Team lost
 private int ties; // The number of games that the Team tied

 public Team(String aName) {
 this.name = aName;
 this.wins = 0;
 this.losses = 0;
 this.ties = 0;
 }

 // Get methods
 public String getName() { return name; }
 public int getWins() { return wins; }
 public int getLosses() { return losses; }
 public int getTies() { return ties; }

 // Modifying methods
 public void recordWin() { wins++; }
 public void recordLoss() { losses++; }
 public void recordTie() { ties++; }

 // Returns a text representation of a team
 public String toString() {
 return("The " + this.name + " have " + this.wins + " wins, " +
 this.losses + " losses and " + this.ties + " ties.");
 }

 // Returns the total number of points for the team
 public int totalPoints() {
 return (this.wins * 2 + this.ties);
 }

 // Returns the total number of games played by the team
 public int gamesPlayed() {
 return (this.wins + this.losses + this.ties);
 }
}

We can test out our Team object with the following test code, just to make sure it works:

COMP1406 - Chapter 8 - Abstract Data Types Winter 2014

 - 246-

name

Senators”“Ottawa

wins 1

losses 0

ties 1

teamA

name

“Montreal Canadians”

wins 0

losses 1

ties 1

teamB

public class TeamTestProgram {
 public static void main(String[] args) {
 Team teamA, teamB;

 teamA = new Team("Ottawa Senators");
 teamB = new Team("Montreal Canadians");

 // Simulate the playing of a game in which teamA beat teamB
 System.out.println(teamA.getName()+" just beat "+teamB. getName());
 teamA.recordWin();
 teamB.recordLoss();

 // Simulate the playing of another game in which they tied
 System.out.println(teamA.getName()+" just tied "+teamB.getName());
 teamA.recordTie();
 teamB.recordTie();

 //Now print out some statistics
 System.out.println(teamA);
 System.out.println(teamB);
 System.out.print("The " + teamA.getName() + " have ");
 System.out.print(teamA.totalPoints() + " points and played ");
 System.out.println(teamA.gamesPlayed() + " games.");
 System.out.print("The " + teamB.getName() + " have ");
 System.out.print(teamB.totalPoints() + " points and played ");
 System.out.println(teamB.gamesPlayed() + " games.");
 }
}

Here is what the Team objects look like after playing the two games:

Here is the output from our little test program:

Ottawa Senators just beat Montreal Canadians
Ottawa Senators just tied Montreal Canadians
The Ottawa Senators have 1 wins, 0 losses and 1 ties.
The Montreal Canadians have 0 wins, 1 losses and 1 ties.
The Ottawa Senators have 3 points and played 2 games.
The Montreal Canadians have 1 points and played 2 games.

COMP1406 - Chapter 8 - Abstract Data Types Winter 2014

 - 247-

Now let us implement the League class. A league will also have a name as well as an
ArrayList (called teams) of Team objects. Here is the basic class structure (notice the import
statement at the top):

import java.util.ArrayList;

public class League {
 private String name;
 private ArrayList<Team> teams;

 public League(String n) {
 this.name = n;
 this.teams = new ArrayList<Team>(); // Doesn’t make any Team objects
 }

 // This specifies the appearance of the League
 public String toString() {
 return ("The " + this.name + " league");
 }

 // Add the given team to the League
 public void addTeam(Team t) {
 teams.add(t);
 }
}

Notice that the ArrayList is created within the constructor and that it is initially empty. That
means, a brand new league has no teams in it. It is important to note also that there are no
Team objects created at this time.

At this point, we have defined two objects: Team and League. One thing that we will need to
do is to be able to add teams to the league. Here is an example of how we can create a
league with three teams in it:

League nhl;

nhl = new League("NHL");
nhl.addTeam(new Team("Ottawa Senators"));
nhl.addTeam(new Team("Montreal Canadians"));
nhl.addTeam(new Team("Toronto Maple Leafs"));

In order to add the team to the league, we simply add it to the league's teams by using the
addTeam() method which makes use of the add() method that is defined in the ArrayList
class. Here is a diagram showing how the League object stores the 3 Teams …

COMP1406 - Chapter 8 - Abstract Data Types Winter 2014

 - 248-

Suppose now that we wanted to print out the teams in the league. We will write a method in
the League class called showTeams() to do this. The method will need to go through each
team in the teams ArrayList and display the particular team’s information … perhaps using the
toString() method from the Team class.

Hopefully, you “sense” that printing out all the teams involves repeating some code over and
over again. That is, you should realize that we need a loop of some type. We have already
discussed the for and while loops, but there is a special kind of for loop in JAVA that is to be
used when traversing through a collection such as an ArrayList. This loop is called the “for-
each” loop, and its structure is a little simpler than the traditional for loop. Below is how we
can use the typical FOR loop as well as the "better" FOR-EACH loop to write the
showTeams() method.

Using a Typical FOR Loop Using a FOR-EACH Loop

public void showTeams() {
 for (int i=0; i<teams.size(); i++) {
 System.out.println(teams.get(i));
 }
}

public void showTeams() {
 for (Team t: teams) {
 System.out.println(t);
 }
}

Notice that the for-each loop starts with for again, but this time the information within the

round () brackets is different. The format of this information is as follows. First we specify the

type of object that is in the ArrayList … in this case Team. Then we specify a variable name

nhl

name

teams

“NHL”

name “Ottawa

wins 0

losses 0

ties 0

name “Montreal Canadians”

wins 0

losses 0

ties 0

name “Toronto Maple Leafs”

wins 0

losses 0

ties 0

0 1 2
nhl.teams ArrayList

COMP1406 - Chapter 8 - Abstract Data Types Winter 2014

 - 249-

which will be used to represent the particular team as we loop through them all … in this case
we called it simply t.

Then we use a colon : character followed by the name of the ArrayList that we want to loop

through … in this case teams. So, if we were to translate the for-each loop into English, it
would sound something like this: “For each team t in the teams array list do the loop”.

Notice that within the loop, we simply use t as we would use any other variable. In our
example, t is the Team object that we are examining during that round through the loop. So t
points to the 1st team in the league when we begin the loop, then it points to the 2nd team the
next time through the loop, then the 3rd team etc..

Let us test our method out using the following test program:

public class LeagueTestProgram {
 public static void main(String[] args) {
 League nhl;

 nhl = new League("NHL");

 //Add a pile of teams to the league
 nhl.addTeam(new Team("Ottawa Senators"));
 nhl.addTeam(new Team("Montreal Canadians"));
 nhl.addTeam(new Team("Toronto Maple Leafs"));
 nhl.addTeam(new Team("Vancouver Cannucks"));
 nhl.addTeam(new Team("Edmonton Oilers"));
 nhl.addTeam(new Team("Washington Capitals"));
 nhl.addTeam(new Team("New Jersey Devils"));
 nhl.addTeam(new Team("Detroit Red Wings"));

 //Display the teams
 System.out.println("\nHere are the teams:");
 nhl.showTeams();
 }
}

Here is the output so far:

Here are the teams:
The Ottawa Senators have 0 wins, 0 losses and 0 ties.
The Montreal Canadians have 0 wins, 0 losses and 0 ties.
The Toronto Maple Leafs have 0 wins, 0 losses and 0 ties.
The Vancouver Cannucks have 0 wins, 0 losses and 0 ties.
The Edmonton Oilers have 0 wins, 0 losses and 0 ties.
The Washington Capitals have 0 wins, 0 losses and 0 ties.
The New Jersey Devils have 0 wins, 0 losses and 0 ties.
The Detroit Red Wings have 0 wins, 0 losses and 0 ties.

Notice that all the teams have no recorded wins, losses or ties. Lets write a method that will
record a win and a loss for two teams that play together, and another method to record a tie
when the two teams play and tie.

COMP1406 - Chapter 8 - Abstract Data Types Winter 2014

 - 250-

public void recordWinAndLoss(Team winner, Team loser) {
 winner.recordWin();
 loser.recordLoss();
}

public void recordTie(Team teamA, Team teamB) {
 teamA.recordTie();
 teamB.recordTie();
}

If we wanted to test these methods now, we could write test code like this:

League nhl;
Team team1, team2, team3;

nhl = new League("NHL");
nhl.addTeam(team1 = new Team("Ottawa Senators"));
nhl.addTeam(team2 = new Team("Montreal Canadians"));
nhl.addTeam(team3 = new Team("Toronto Maple Leafs"));

nhl.recordWinAndLoss(team1, team2);
nhl.recordTie(team1, team2);
nhl.recordWinAndLoss(team3, team2);
// ... etc ...

You should now notice something tedious. We would have to make variables for each team if
we want to record wins, losses and ties among them. Why ? Because the recording methods
require Team objects ... the same Team objects that we added to the League ... so we would
have to remember them ... hence requiring us to store them in a variable. Perhaps a better
way to record wins, losses and ties would be to do something like this:

League nhl;

nhl = new League("NHL");
nhl.addTeam(new Team("Ottawa Senators"));
nhl.addTeam(new Team("Montreal Canadians"));
nhl.addTeam(new Team("Toronto Maple Leafs"));

nhl.recordWinAndLoss("Ottawa Senators", "Montreal Canadians");
nhl.recordTie("Ottawa Senators", "Montreal Canadians");
nhl.recordWinAndLoss("Toronto Maple Leafs", "Montreal Canadians");

// ... etc ...

This way, we do not need to create extra variables. However, we would have to make new
recording methods that took Strings (i.e., the Team names) as parameters instead of Team
objects. Here are the methods that we would need to implement (notice the difference in the
parameter types):

COMP1406 - Chapter 8 - Abstract Data Types Winter 2014

 - 251-

public void recordWinAndLoss(String winnerName, String loserName) {
 …
}

public void recordTie(String teamAName, String teamBName) {
 …
}

To make this work, however, we still need to get into the appropriate Team objects and update
their wins/losses/ties. Therefore, we will have to take the incoming team names and find the
Team objects that correspond with those names. We would need to do this 4 times: once for
the winnerName, once for the loserName, once for teamAName and once for teamBName.
Rather than repeat the code 4 times, we will make a method to do this particular sub-task of
finding a team with a given name. Here is the method that we will write:

private Team teamWithName(String nameToLookFor) {
 Team answer;
 ...
 return answer;
}

Notice that it will take the team’s name as a parameter and then return a Team object. How
would we complete this method ? We can use the for-each loop to traverse through all the
teams and find the one with that name as follows:

private Team teamWithName(String nameToLookFor) {
 Team answer = null;
 for (Team t: teams) {
 if (t.name.equals(nameToLookFor))
 answer = t;
 }
 return answer;
}

Notice a few points. First, we set the answer to null. If we do not find a Team with the given
name, the method returns null … which is the only appropriate answer. Next, notice that for
each team t, we compare its name with the incoming string aName and if these two strings are
equal, then we have found the Team object that we want, so we store it in the answer variable
to be returned at the completion of the loop.

This method can be shortened as follows:

COMP1406 - Chapter 8 - Abstract Data Types Winter 2014

 - 252-

private Team teamWithName(String nameToLookFor) {
 for (Team t: teams)
 if (t.getName().equals(nameToLookFor))
 return t;

return null;
}

Now that this method has been created, we can use it in our methods for recording wins/losses
and ties as follows:

public void recordWinAndLoss(String winnerName, String loserName) {
 Team winner, loser;

 winner = this.teamWithName(winnerName);
 loser = this.teamWithName(loserName);
 winner.recordWin();
 loser.recordLoss();
}

public void recordTie(String teamAName, String teamBName) {
 Team teamA, teamB;

 teamA = this.teamWithName(teamAName);
 teamB = this.teamWithName(teamBName);
 teamA.recordTie();
 teamB.recordTie();
}

The methods work as before, but there are potential problems. What if we
cannot find the Team object with the given names (e.g., someone spelt the name
wrong) ? In this case, perhaps winner, loser, teamA or teamB will be null and
we will get a NullPointerException when we try to access the team’s attributes.
We can check for this with an if statement.

public void recordWinAndLoss(String winnerName, String loserName) {
 Team winner, loser;

 winner = this.teamWithName(winnerName);
 loser = this.teamWithName(loserName);
 if ((winner != null) && (loser != null)) {
 winner.recordWin();
 loser.recordLoss();
 }
}

COMP1406 - Chapter 8 - Abstract Data Types Winter 2014

 - 253-

public void recordTie(String teamAName, String teamBName) {
 Team teamA, teamB;

 teamA = this.teamWithName(teamAName);
 teamB = this.teamWithName(teamBName);
 if ((teamA != null) && (teamB != null)) {
 teamA.recordTie();
 teamB.recordTie();
 }
}

Now the games are only recorded when we have successfully identified the two Team objects
that need to be updated as a result of the played game. Interestingly though, the same
problem may occur in our previous recording methods … that is … the Team objects passed in
may be null. Also, in our code, we already have method for recording the wins/losses/ties in
the case where we have the Team objects, so we should call those methods from here. We
can simply call the previous recording methods from these two new ones and move the null-
checking in there instead as follows:

private Team teamWithName(String nameToLookFor) {
 for (Team t: teams)
 if (t.name.equals(nameToLookFor))
 return t;
 return null;
}
public void recordWinAndLoss(Team winner, Team loser) {
 if ((winner != null) && (loser != null)) {
 winner.recordWin();
 loser.recordLoss();
 }
}
public void recordTie(Team teamA, Team teamB) {
 if ((teamA != null) && (teamB != null)) {
 teamA.recordTie();
 teamB.recordTie();
 }
}
public void recordWinAndLoss(String winnerName, String loserName) {
 Team winner, loser;

 winner = this.teamWithName(winnerName);
 loser = this.teamWithName(loserName);
 this.recordWinAndLoss(winner, loser);
}
public void recordTie(String teamAName, String teamBName) {
 Team teamA, teamB;

 teamA = this.teamWithName(teamAName);
 teamB = this.teamWithName(teamBName);
 this.recordTie(teamA, teamB);
}

COMP1406 - Chapter 8 - Abstract Data Types Winter 2014

 - 254-

In fact, we can even shorten the last two methods by noticing that the variables are not really
necessary:

public void recordWinAndLoss(String winnerName, String loserName) {
 this.recordWinAndLoss(this.teamWithName(winnerName),
 this.teamWithName(loserName));
}

public void recordTie(String teamAName, String teamBName) {
 this.recordTie(this.teamWithName(teamAName),
 this.teamWithName(teamBName));
}

Consider a method called totalGamesPlayed() which is supposed to return the total number
of games played in the league. All we need to do is count the number of games played by all
the teams (i.e., we will need some kind of counter) and then divide by 2 (since each game was
played by two teams, hence counted twice). Here is the format:

public int totalGamesPlayed() {
 int total = 0;
 …
 return total/2;
}

We will also need a for-each loop to go through each team:

public int totalGamesPlayed() {
 int total = 0;
 for (Team t: teams) {
 …
 }
 return total/2;
}

Now, if you were to look back at the Team class, you would notice a method in there called
gamesPlayed(). That means, we can ask a team how many games they played by simply
calling that method. We should be able to make use of this value as follows:

public int totalGamesPlayed() {
 int total = 0;
 for (Team t: teams)
 total += t.gamesPlayed();

 return total/2;
}

COMP1406 - Chapter 8 - Abstract Data Types Winter 2014

 - 255-

Notice that the method is quite simple, as long as you break it down into simple steps like we
just did. For more practice, let us find the team that is in first place (i.e., the Team object that
has the most points). We can start again as follows:

public Team firstPlaceTeam() {
 Team teamWithMostPoints = null;
 ...
 return teamWithMostPoints;
}

Notice that it returns a Team object. Likely, you realize that we also need a for-each loop
since we need to check all of the teams:

public Team firstPlaceTeam() {
 Team teamWithMostPoints = null;

 for (Team t: teams) {
 ...
 }
 return teamWithMostPoints;
}

Again, we can make use of a pre-defined method in the Team class called totalPoints() which
returns the number of points for a particular team:

public Team firstPlaceTeam() {
 int points;
 Team teamWithMostPoints = null;

 for (Team t: teams) {
 points = t.totalPoints();
 }
 return teamWithMostPoints;
}

But now what do we do ? The current code will simply grab each team’s point values one at
a time. We need to somehow compare them. Many students have trouble breaking this
problem down into simple steps. The natural tendency is to say to yourself “I will compare the
1st team’s points with the 2nd team’s points and see which is greater”. If we do this however,
then what do we do with that answer ? How does the third team come into the picture ?

Hopefully, after some thinking, you would realize that as we traverse through the teams, we
need to keep track of (i.e., remember) the best one so far.

Imagine for example, searching through a basket of apples to find the best one.
Would you not grab an apple and hold it in your hand and then look through the

COMP1406 - Chapter 8 - Abstract Data Types Winter 2014

 - 256-

other apples and compare them with the one you are holding in your hand ?
If you found a better one, you would simply trade the one currently in your
hand with the new better one. By the time you reach the end of the basket,
you are holding the best apple.

Well we are going to do the same thing. The teamWithMostPoints
variable will be like our good apple that we are holding. Whenever we find
a team that is better (i.e., more points) than this one, then that one becomes
the teamWithMostPoints. Here is the code:

public Team firstPlaceTeam() {
 Team teamWithMostPoints = null;

 for (Team t: teams) {
 if (t.totalPoints() > teamWithMostPoints.totalPoints())
 teamWithMostPoints = t;
 }
 return teamWithMostPoints;
}

Does it make sense ? There is one small issue though. Just like we need to begin our apple
checking by picking up a first apple, we also need to pick a team (any Team object) to be the
“best” one before we start the search. Currently the teamWithMostPoints starts off at null so
we need to set this to a valid Team so start off. We can perhaps take the first Team in the
teams ArrayList:

public Team firstPlaceTeam() {
 Team teamWithMostPoints = teams.get(0);

 for (Team t: teams) {
 if (t.totalPoints() > teamWithMostPoints.totalPoints())
 teamWithMostPoints = t;
 }
 return teamWithMostPoints;
}

We are not done yet! It is possible, in a weird scenario, that there are no teams in the league!
In this case teams.get(0) will return null and we will get a NullPointerException again when
we go to ask for the totalPoints().

So, we would need to add a special case to return null if the teams list is empty. Here is the
new code …

COMP1406 - Chapter 8 - Abstract Data Types Winter 2014

 - 257-

public Team firstPlaceTeam() {
 Team teamWithMostPoints;

 if (teams.size() == 0)
 return null;

 teamWithMostPoints = teams.get(0);
 for (Team t: teams) {
 if (t.totalPoints() > teamWithMostPoints.totalPoints())
 teamWithMostPoints = t;
 }
 return teamWithMostPoints;
}

What would we change in the above code if we wanted to write a method called
lastPlaceTeam() that returned the team with the least number of points ? Try to do it.

How could we write a method called undefeatedTeams() that returned an ArrayList<Team>
of all teams that have never lost a game ? We would begin by specifying the proper return
type:

public ArrayList<Team> undefeatedTeams() {
 ArrayList<Team> undefeated = new ArrayList<Team>();

 for (Team t: teams) {
 ...
 }
 return undefeated;
}

Now we would check each team that has not lost any games and add them to the result list:

public ArrayList<Team> undefeatedTeams() {
 ArrayList<Team> undefeated = new ArrayList<Team>();

 for (Team t: teams) {
 if (t.getLosses() == 0)
 undefeated.add(t);
 }
 return undefeated;
}

Another interesting method would be one that removes all teams from the league that have
never won a game. Intuitively, here is what we may do:

COMP1406 - Chapter 8 - Abstract Data Types Winter 2014

 - 258-

public void removeLosingTeams() {
 for (Team t: teams) {
 if (t.getWins() == 0)
 teams.remove(t);
 }
}

However, this code will not work since it will generate a ConcurrentModificationException in
JAVA. That is, we need to be careful not to remove items from a list that we are iterating
through. As it turns out, the FOR EACH loop does not allow us to remove while iterating
through the list. Using a standard FOR loop, however, we can make it work. The following
code "almost works" ... in that it does not produce an exception ... but something is still wrong.

public void removeLosingTeams() {
 for (int i=0; i<teams.size(); i++) {
 Team t = teams.get(i);
 if (t.getWins() == 0)
 teams.remove(t);
 }
}

The code above may not remove all teams that
have no wins. Why not ? Consider what
happens if two teams in a row have no wins.

In the picture to the right, imagine that these
values represent the number of wins for the
teams in the teams list. Notice how the index
i is moved along through the loop as shown by
the yellow square. When the team at position
1 is encountered, it has no wins, so it is
removed ... and all other teams are moved
back one position in the list.

Then, we continue with the loop as usual.
However, the next time through the loop the i
has moved to position 2. However, a 0-win
team (shown red) has just been shifted into
position 1 but never checked. Thus, by the
time the loop has ended we never checked the
team in position 1 and therefore it remains in
the list.

How can we fix this ? It is simple. Just
ensure that we do not move the index to the
next position in the case that we are doing a
remove operation. We can accomplish this by

COMP1406 - Chapter 8 - Abstract Data Types Winter 2014

 - 259-

subtracting 1 from the index i, so that when the for loop increments i, it cancels out the
increment and i remains in the same position.

public void removeLosingTeams() {
 for (int i=0; i<teams.size(); i++) {
 Team t = teams.get(i);
 if (t.getWins() == 0) {
 teams.remove(t);
 i--;
 }
 }
}

Now the code should work properly. Here is a program that can be used to test our methods:

public class LeagueTestProgram2 {
 public static void main(String[] args) {

 League nhl = new League("NHL");

 // Add a pile of teams to the league

 nhl.addTeam(new Team("Ottawa Senators"));
 nhl.addTeam(new Team("Montreal Canadians"));
 nhl.addTeam(new Team("Toronto Maple Leafs"));
 nhl.addTeam(new Team("Vancouver Cannucks"));
 nhl.addTeam(new Team("Edmonton Oilers"));
 nhl.addTeam(new Team("Washington Capitals"));
 nhl.addTeam(new Team("New Jersey Devils"));
 nhl.addTeam(new Team("Detroit Red Wings"));

 // Now we will record some games
 nhl.recordWinAndLoss("Ottawa Senators", "New Jersey Devils");
 nhl.recordWinAndLoss("Edmonton Oilers", "Montreal Canadians");
 nhl.recordTie("Ottawa Senators", "Detroit Red Wings");
 nhl.recordWinAndLoss("Montreal Canadians", "Washington Capitals");
 nhl.recordWinAndLoss("Ottawa Senators", "Edmonton Oilers");
 nhl.recordTie("Washington Capitals", "Edmonton Oilers");
 nhl.recordTie("Detroit Red Wings", "New Jersey Devils");
 nhl.recordWinAndLoss("Vancouver Cannucks", "Toronto Maple Leafs");
 nhl.recordWinAndLoss("Toronto Maple Leafs", "Edmonton Oilers");
 nhl.recordWinAndLoss("New Jersey Devils", "Detroit Red Wings");

 // This one will not work
 nhl.recordWinAndLoss("Mark's Team", "Detroit Red Wings");

 // Now display the teams again
 System.out.println("\nHere are the teams after recording the " +

 "wins, losses and ties:\n");
 nhl.showTeams();

COMP1406 - Chapter 8 - Abstract Data Types Winter 2014

 - 260-

 // Here are some statistics
 System.out.println("\nThe total number of games played is " +
 nhl.totalGamesPlayed());
 System.out.println("The first place team is " +
 nhl.firstPlaceTeam());
 System.out.println("The last place team is " +
 nhl.lastPlaceTeam());
 System.out.println("The undefeated teams are " +
 nhl.undefeatedTeams());
 System.out.println("Removing teams that never won ... ");
 nhl.removeLosingTeams();
 System.out.println("The teams are: ");
 nhl.showTeams();
 }
}

Here would be the output (make sure that it makes sense to you) …

Here are the teams after recording the wins, losses and ties:

The Ottawa Senators have 2 wins, 0 losses and 1 ties.
The Montreal Canadians have 1 wins, 1 losses and 0 ties.
The Toronto Maple Leafs have 1 wins, 1 losses and 0 ties.
The Vancouver Cannucks have 1 wins, 0 losses and 0 ties.
The Edmonton Oilers have 1 wins, 2 losses and 1 ties.
The Washington Capitals have 0 wins, 1 losses and 1 ties.
The New Jersey Devils have 1 wins, 1 losses and 1 ties.
The Detroit Red Wings have 0 wins, 1 losses and 2 ties.

The total number of games played is 10
The first place team is The Ottawa Senators have 2 wins, 0 losses and 1 ties.
The last place team is The Washington Capitals have 0 wins, 1 losses and 1 ties.
The undefeated teams are [The Ottawa Senators have 2 wins, 0 losses and 1 ties.,
The Vancouver Cannucks have 1 wins, 0 losses and 0 ties.]
Removing teams that never won ...
The teams are:
The Ottawa Senators have 2 wins, 0 losses and 1 ties.
The Montreal Canadians have 1 wins, 1 losses and 0 ties.
The Toronto Maple Leafs have 1 wins, 1 losses and 0 ties.
The Vancouver Cannucks have 1 wins, 0 losses and 0 ties.
The Edmonton Oilers have 1 wins, 2 losses and 1 ties.
The New Jersey Devils have 1 wins, 1 losses and 1 ties.

 Supplemental Information

There is an additional class called Vector which has the same functionality as the ArrayList
class. In fact, in most situations, you can simply replace the word ArrayList by Vector and
your code will still compile. There is a small difference between ArrayLists and Vectors.
They have the same functionality, but ArrayLists are faster because they have methods that
are not synchronized. Vectors allow multiple processes (or multiple "programs") to
access/modify them at the same time, so they have extra code in the methods to ensure that
the Vector is shared properly and safely between the processes. We will not talk any more
about this in this course. You should always use ArrayLists when creating simple programs.

COMP1406 - Chapter 8 - Abstract Data Types Winter 2014

 - 261-

 8.3 The Queue ADT

Consider the Queue ADT.

A queue is an abstract data type that stores

elements in a first-in-first-out order. Elements are
added at one end and removed from the other.

Hence, the first element to be added to the queue is the
first element to be taken out of the queue. This is
analogous to a line-up that we see every day. The first
person in line is the first person served (i.e., first-come-first-
served). When people arrive, they go to the back of the line. People get served from the front
of the line first. Therefore, with a queue, we add to the back and remove from the front. We
are not allowed to insert or remove elements from the middle of the queue. Why is this
restriction a good idea ? Well, depending on how the queue is implemented, it can be more
efficient (i.e., faster) to insert and remove elements since we know that all such changes will
occur at the front or back of the queue. Removing from the front may then simply require
moving the “front-of-the-line pointer” instead of shifting elements over. Also, adding to the
back may require extending the “back-of-the-line pointer”. Typical methods for Queues are:

add(Object x)

Insert object x at the end of the queue. This
operation is sometimes called push(x) or
enqueue(x).

e.g., aQueue.add(x) will do this →

remove()

Remove and return the object at the front of the
queue. The next item in the queue becomes
the front item. This operation is sometimes
called pop() or dequeue().

e.g., x = aQueue.remove() will return 23 →

peek()

Return (but do not remove) the object at the
front of the queue. This operation is
sometimes called front().

e.g., x = aQueue.peek() will do this →

COMP1406 - Chapter 8 - Abstract Data Types Winter 2014

 - 262-

size(), isEmpty() and clear() Does the same as with lists

Another more specialized type of queue is the PriorityQueue:

A PriorityQueue is a queue in which the elements also maintain a priority.

That is, we still add to the back of the queue and remove from the front, but elements with
higher priority are automatically shifted closer to the front before lower priority elements.

As a real life example, when we go to the hospital for an
“emergency”, we wait in line (6 to 8 hours typically). We normally get
served in the order that we came in at. However, if someone comes
in after us who is bleeding or unconscious, they automatically get
bumped up ahead of us since their injuries are likely more serious
and demand immediate attention. We may think of a PriorityQueue
as a sorted queue.

The PriorityQueue is used in the same way as a regular Queue,
except that we must ensure that each element added to the queue is
given a priority. Hence, we are sometimes required to specify the
priority of an item when we add it to the queue:

add(int priority, Object x)

However, in JAVA, we simply include the priority of an object as part of the object itself, and so
we just use add(Object x) for priority queues in JAVA.

Example:

Consider the following Person class definition:

public class Person {
 private String name;
 private int age;

 public Person(String n, int a) {
 name = n;
 age = a;
 }

 public int getAge() { return age; }
 public String getName() { return name; }

 public String toString() {
 return age + " year old " + name;
 }
}

How could we simulate some people getting in a lineup and being served on a first-come-first-
served basis ? We can use a Queue to do this. In JAVA, there are a few different

COMP1406 - Chapter 8 - Abstract Data Types Winter 2014

 - 263-

implementations of the Queue ADT. We will use the one called ArrayBlockingQueue which
is in the java.util.concurrent package. Here is a simple test program that creates a lineup
and then serves the people one at a time by taking the first person in line each time. Notice
how the code is arranged so that a nice log output is obtained that we can follow along with to
see if our program does what it is supposed to be doing.

import java.util.concurrent.ArrayBlockingQueue;

public class QueueTestProgram {
 public static void main(String[] args) {
 ArrayBlockingQueue<Person> lineup;
 lineup = new ArrayBlockingQueue<Person>(10);

 System.out.print("Adding three customers to the line ... ");
 lineup.add(new Person("Bob", 12));
 lineup.add(new Person("Mary", 6));
 lineup.add(new Person("Steve", 10));

 System.out.println("Here is who is in line at the moment:");
 System.out.println(lineup);

 System.out.print("Serving next customer ... ");
 System.out.println(lineup.remove());
 System.out.println("Here is who is in line now:");
 System.out.println(lineup);

 System.out.print("Serving another customer ... ");
 System.out.println(lineup.remove());
 System.out.println("Here is who is in line now:");
 System.out.println(lineup);

 System.out.print("Adding three more customers to the line ... ");
 lineup.add(new Person("Ralph", 16));
 lineup.add(new Person("Jen", 13));
 lineup.add(new Person("Max", 18));
 System.out.println("Here is who is in line now:");
 System.out.println(lineup);

 System.out.print("Serving next customer ... ");
 System.out.println(lineup.remove());
 System.out.println("Here is who is in line now:");
 System.out.println(lineup);

 System.out.print("Adding four customers to the line ... ");
 lineup.add(new Person("Dave", 4));
 lineup.add(new Person("Sam", 17));
 lineup.add(new Person("Lyn", 8));
 lineup.add(new Person("Betty", 9));
 System.out.println("Here is who is in line now:");
 System.out.println(lineup);
 System.out.print("Here is who is at the front of the line ...");
 System.out.println(lineup.peek());
 System.out.print("Serving next customer ... ");
 System.out.println(lineup.remove());
 System.out.println("Here is who remains in the line:");
 System.out.println(lineup);
 System.out.println("Serving all remaining customers ... ");

COMP1406 - Chapter 8 - Abstract Data Types Winter 2014

 - 264-

 while(!lineup.isEmpty()) {
 System.out.print("Serving next customer ... ");
 System.out.println(lineup.remove());
 }
 System.out.println("Here is who remains in the line:");
 System.out.println(lineup);
 }
}

Here is the output that is produced:

Adding three customers to the line ... Here is who is in line at the moment:
[12 year old Bob, 6 year old Mary, 10 year old Steve]
Serving next customer ... 12 year old Bob
Here is who is in line now:
[6 year old Mary, 10 year old Steve]
Serving another customer ... 6 year old Mary
Here is who is in line now:
[10 year old Steve]
Adding three more customers to the line ... Here is who is in line now:
[10 year old Steve, 16 year old Ralph, 13 year old Jen, 18 year old Max]
Serving next customer ... 10 year old Steve
Here is who is in line now:
[16 year old Ralph, 13 year old Jen, 18 year old Max]
Adding four customers to the line ... Here is who is in line now:
[16 year old Ralph, 13 year old Jen, 18 year old Max, 4 year old Dave, 17
year old Sam, 8 year old Lyn, 9 year old Betty]
Here is who is at the front of the line ...16 year old Ralph
Serving next customer ... 16 year old Ralph
Here is who remains in the line:
[13 year old Jen, 18 year old Max, 4 year old Dave, 17 year old Sam, 8 year
old Lyn, 9 year old Betty]
Serving all remaining customers ...
Serving next customer ... 13 year old Jen
Serving next customer ... 18 year old Max
Serving next customer ... 4 year old Dave
Serving next customer ... 17 year old Sam
Serving next customer ... 8 year old Lyn
Serving next customer ... 9 year old Betty
Here is who remains in the line:
[]

Example:

In a PriorityQueue, when we add items, they usually get shuffled around inside according to
their priority. Therefore, we may not necessarily know the order of the items afterwards …
except that they will be in some sort of prioritized order.

Consider the QueueTestProgram. We can change the ArrayBlockingQueue to
PriorityQueue to have a prioritized queue for our people. However, if we were to run the
code, we would get an exception:

java.lang.ClassCastException: Person cannot be cast to java.lang.Comparable

COMP1406 - Chapter 8 - Abstract Data Types Winter 2014

 - 265-

The problem is that JAVA does not know how to compare Person objects in order to be able
to sort them. It is telling us that Person must implement the Comparable interface. Instead
of supplying a priority when we add the objects to the queue, the items are sorted by means of
a Comparable interface. That means, each object that we store in the PriorityQueue,
must implement methods compareTo() … which are used determine the sort order (i.e.,
priority).

So, we should add implements Comparable<Person> to the Person class definition:

public class Person implements Comparable<Person> {
 ...
}

Interestingly, the additional <Person> at the end of Comparable indicates to JAVA that we will
only be comparing Person objects, not Person objects with other types of objects.

But how do we write a compareTo() method ? It takes a single object parameter:

public int compareTo(Person p) { ... }

The method returns an int. This integer reflects the ordering
between the receiver and the parameter. If a negative value is
returned from the method, this informs JAVA that the receiver has
higher priority (i.e., comes before in the ordering) than the incoming
parameter object. Likewise, a positive value indicates lower priority
and a zero value indicates that they are equal priority.

Lets now give it a try for Person objects. If we want to prioritize by means of their increasing
ages (i.e., younger first), this would be the compareTo() method:

public int compareTo(Person p) {
 return (this.age - p.age);
}

Assume now that we ran the following program:

import java.util.PriorityQueue;

public class PriorityQueueTestProgram {
 public static void main(String[] args) {
 PriorityQueue<Person> lineup = new PriorityQueue<Person>(10);

 System.out.print("Adding 10 customers to the line ... ");
 lineup.add(new Person("Bob", 12));
 lineup.add(new Person("Mary", 6));
 lineup.add(new Person("Steve", 10));
 lineup.add(new Person("Ralph", 16));
 lineup.add(new Person("Jen", 13));
 lineup.add(new Person("Max", 18));
 lineup.add(new Person("Dave", 4));
 lineup.add(new Person("Sam", 17));
 lineup.add(new Person("Lyn", 8));
 lineup.add(new Person("Betty", 9));

COMP1406 - Chapter 8 - Abstract Data Types Winter 2014

 - 266-

 System.out.println("Here is who is in line now:");
 System.out.println(lineup);
 System.out.print("Here is who is at the front of the line ...");
 System.out.println(lineup.peek());

 System.out.println("Serving all customers ... ");
 while(!lineup.isEmpty()) {
 System.out.print("Serving next customer ... ");
 System.out.println(lineup.remove());
 }
 System.out.println("Here is who remains in the line:");
 System.out.println(lineup);
 }
}

Interestingly, the output is as follows:

Adding 10 customers to the line ... Here is who is in line now:
[4 year old Dave, 8 year old Lyn, 6 year old Mary, 12 year old Bob, 9 year
old Betty, 18 year old Max, 10 year old Steve, 17 year old Sam, 16 year old
Ralph, 13 year old Jen]
Here is who is at the front of the line ...4 year old Dave
Serving all customers ...
Serving next customer ... 4 year old Dave
Serving next customer ... 6 year old Mary
Serving next customer ... 8 year old Lyn
Serving next customer ... 9 year old Betty
Serving next customer ... 10 year old Steve
Serving next customer ... 12 year old Bob
Serving next customer ... 13 year old Jen
Serving next customer ... 16 year old Ralph
Serving next customer ... 17 year old Sam
Serving next customer ... 18 year old Max
Here is who remains in the line:
[]

Notice that the items in the queue do not seem sorted at all ! That is because a
PriorityQueue does not actually sort the items, it simple makes sure that the item at the front
of the queue is the one with highest priority. In this case, that is the youngest person … which
is indeed at the front of the queue. To get the items in sorted order, we simply extract them
from the queue one at a time as shown in the while loop from the code above. Indeed, you
can see that as we extract the items one at a time, they come out in properly prioritized order.

What if we wanted to prioritize the people by their last names instead ? To do this, we would
need to alter the compareTo() method to compare names, not ages. Lets make a subclass of
Person called AlphaPerson that has a different compareTo() method:

public class AlphaPerson extends Person {
 public AlphaPerson(String n, int a) { super(n,a); }
 // Used to compare Persons by alphabetical order of last names
 public int compareTo(Person p) {
 return this.name.compareTo(p.name); // assumes that name
 } // is declared protected
} // in the Person class

COMP1406 - Chapter 8 - Abstract Data Types Winter 2014

 - 267-

Notice that the parameter for the compareTo() is Person, not AlphaPerson. This is because
Person implements the Comparable<Person> interface, which specifies type Person and
AlphaPerson inherits from Person. We are not allowed to implement both Comparable
<Person> and Comparable<AlphaPerson> in the same class. Consider the output then
from the following program …

import java.util.PriorityQueue;
public class PriorityQueueTestProgram2 {
 public static void main(String[] args) {
 PriorityQueue<AlphaPerson> lineup = new PriorityQueue<AlphaPerson>(10);

 System.out.print("Adding 10 customers to the line ... ");
 lineup.add(new AlphaPerson("Bob", 12));
 lineup.add(new AlphaPerson("Mary", 6));
 lineup.add(new AlphaPerson("Steve", 10));
 lineup.add(new AlphaPerson("Ralph", 16));
 lineup.add(new AlphaPerson("Jen", 13));
 lineup.add(new AlphaPerson("Max", 18));
 lineup.add(new AlphaPerson("Dave", 4));
 lineup.add(new AlphaPerson("Sam", 17));
 lineup.add(new AlphaPerson("Lyn", 8));
 lineup.add(new AlphaPerson("Betty", 9));
 System.out.println("Here is who is in line now:");
 System.out.println(lineup);
 System.out.print("Here is who is at the front of the line ...");
 System.out.println(lineup.peek());

 System.out.println("Serving all customers ... ");
 while(!lineup.isEmpty()) {
 System.out.print("Serving next customer ... ");
 System.out.println(lineup.remove());
 }
 System.out.println("Here is who remains in the line:");
 System.out.println(lineup);
 }
}

Here is the output ... notice how the people are removed in alphabetical order of their name:

Adding 10 customers to the line ... Here is who is in line now:
[9 year old Betty, 12 year old Bob, 4 year old Dave, 8 year old Lyn, 13 year old
Jen, 10 year old Steve, 18 year old Max, 17 year old Sam, 16 year old Ralph, 6
year old Mary]
Here is who is at the front of the line ...9 year old Betty
Serving all customers ...
Serving next customer ... 9 year old Betty
Serving next customer ... 12 year old Bob
Serving next customer ... 4 year old Dave
Serving next customer ... 13 year old Jen
Serving next customer ... 8 year old Lyn
Serving next customer ... 6 year old Mary
Serving next customer ... 18 year old Max
Serving next customer ... 16 year old Ralph
Serving next customer ... 17 year old Sam
Serving next customer ... 10 year old Steve
Here is who remains in the line:
[]

So, we can prioritize the items in any way by creating an appropriate compareTo() method.

COMP1406 - Chapter 8 - Abstract Data Types Winter 2014

 - 268-

 8.4 The Deque ADT

Consider the Deque ADT:

A deque is an abstract data type that is analogous

to a double-ended queue. Elements are
added/removed to/from either end.

A deque allows us to add/remove from the front or the back
of the queue at any time, but no modifications to the middle.
It has the same advantages of a regular single-ended queue,
but is a little more flexible in that it allows removal from the
back of the queue and insertion at the front. An example of
where we might use a deque is when we implement “Undo” operations in a piece of software.
Each time we do an operation, we add it to the front of the deque. When we do an undo, we
remove it from the front of the deque. Since undo operations usually have a fixed limit
defined somewhere in the options (i.e., maximum 20 levels of undo), we remove from the back
of the deque when the limit is reached. Typical methods for Deques are:

addFirst(Object x) and addLast(Object x)

Insert object x at the front (or back) of the
deque.

e.g., aDeque.addLast(x) will do this →

removeFirst() and removeLast()

Remove and return the object at the front (or
back) of the deque. The next item in the deque
becomes the front (or back) item.

e.g., x = aDeque.removeFirst() will return 23 →

peekFirst() and peekLast()

Return (but do not remove) the object at the
front (or back) of the deque.

e.g., x = aDeque.peekFirst() will do this →

size(), isEmpty() and clear() Does the same as with queues

COMP1406 - Chapter 8 - Abstract Data Types Winter 2014

 - 269-

Example:

Consider simulating an "undo list". That is ... many applications allow the user to perform
various operations and then select undo to undo a mistake that was made. Often, programs
will allow you to select undo many times to undo many previous operations in sequence.
However, most programs have a limit of some time (e.g., at most 20 undo operations). After
the limit is reached, it is impossible to undo the older operations.

In JAVA, we can use an ArrayDeque (in the java.util package) to maintain our undo deque.
Each time the user performs an operation, it is added to the end of the deque. Hence the end
of the deque has the most recent operation performed while the front of the deque has the
oldest operation performed.

Assuming that we set a limit of perhaps 5 undo operations, the undo deque can hold at most
5 operations. What if a 6th operation is performed ... what do we do ? We need to add it to
the end of the deque, but then remove the oldest undo operation from the front of the deque.

Here is an example of how we could do this. The example here shows how simple operations
(in the form of Strings) can be maintained in an ArrayDeque ADT:

import java.util.ArrayDeque;

public class DequeTestProgram {
 private static int UNDO_LIST_CAPACITY = 5;

 private static ArrayDeque<String> operations;

 private static void performOperation(String x) {
 if (operations.size() == UNDO_LIST_CAPACITY)
 operations.removeFirst();
 operations.addLast(x);
 }
 private static void undo() {
 operations.removeLast();
 }

 public static void main(String[] args) {
 operations = new ArrayDeque<String>();
 System.out.println("Simulating some cut/paste/move operations ... ");
 performOperation("cut1");
 performOperation("paste1");
 performOperation("move1");
 System.out.println("Here is the undo list now: " + operations);

 System.out.println("Simulating an undo operation ...");
 undo();
 System.out.println("Here is the undo list now: " + operations);

 System.out.println("Simulating another undo operation ...");
 undo();
 System.out.println("Here is the undo list now: " + operations);

 System.out.println("Simulating some more cut/paste/move operations ... ");
 performOperation("cut2");

COMP1406 - Chapter 8 - Abstract Data Types Winter 2014

 - 270-

 performOperation("paste2");
 performOperation("move2");
 performOperation("move3");
 System.out.println("Here is the undo list now: " + operations);

 System.out.println("Simulating some more paste operations ... ");
 performOperation("paste3");
 performOperation("paste4");

 System.out.println("Here is the undo list now: " + operations);
 }
}

Here is the output ... as you can see, the deque is maintained with a size of at most 5:

Simulating some cut/paste/move operations ...
Here is the undo list now: [cut1, paste1, move1]
Simulating an undo operation ...
Here is the undo list now: [cut1, paste1]
Simulating another undo operation ...
Here is the undo list now: [cut1]
Simulating some more cut/paste/move operations ...
Here is the undo list now: [cut1, cut2, paste2, move2, move3]
Simulating some more paste operations ...
Here is the undo list now: [paste2, move2, move3, paste3, paste4]

 8.5 The Stack ADT

Consider the Stack ADT:

A stack is an abstract data type that stores elements in a last-

in-first-out (LIFO) order. Elements are added and removed
to/from the top only.

A stack stores items one on top of another. When a new item comes in,
we place it on the top of the stack and when we want to remove an item,
we take the top one from the stack. Stacks are used for many
applications in computer science such as syntax parsing, memory management, reversing
data, backtracking, etc..

Typical methods for Stacks are:

COMP1406 - Chapter 8 - Abstract Data Types Winter 2014

 - 271-

push(Object x)

Insert object x at the top of
the stack.

e.g., aStack.push(x)

pop()

Remove and return the
object at the top of the
stack.

e.g., x = aStack.pop()

peek()

Return (but do not remove)
the object at the top of the
stack.

e.g., x = aStack.peek()

size(), empty() and clear() Does the same as lists (notice empty() instead of
isEmpty())

Example:

Consider a math expression that contains numbers, operators
and parentheses (i.e., round brackets). How could we write a
program that takes a String representing a math expression
and then determines whether or not the brackets match
properly (i.e., each opening bracket has a matching closing
bracket in the right order) ?

"((23 + 4 * 5) - 34) + (34 - 5))" // no match
"((23 + 4 * 5) - 34) + ((34 - 5)" // no match
"((23 + 4 * 5) - 34) + (34 - 5)" // match

How would we approach solving this problem? Well, we need to understand the process. I’m
sure that you realize that we need to look at all the String’s characters. Perhaps from start to
end with a loop, but then what do we do ?

Lets assume that we are not interested in determining whether the formula makes sense but
rather that each opening bracket is matched by a closing bracket. Therefore, we are

interested in the bracket characters (and), but not the other characters. When encountering

COMP1406 - Chapter 8 - Abstract Data Types Winter 2014

 - 272-

an open bracket as we go through the characters of the string, we need to do something. We
might think right away of trying to find the matching closing bracket for each open bracket, but
that is not as easy as it sounds. There are many special cases that can be tricky.

A simpler approach would be to make sure that whenever we find a closing bracket, we just
need to make sure that we already encountered an open bracket to match with it. This can
be done by keeping a count of the number of open brackets. When encountering an opening
bracket we increment the counter and when encountering a closing bracket we decrement the
counter. If, when all done, the counter is not zero, there is no match. Otherwise the brackets
match. Consider these cases:

"()" // counter = 0, match
"()(" // counter = 1, no match
"(((" // counter = 3, no match
"((())())" // counter = 0, match
"(()))" // counter = -1, no match
"" // counter = 0, match

There is a special case that we did not consider. If the counter ever becomes negative before
we are done, then we must have encountered a closing bracket before an open bracket … and
there is no match:

")(" // counter = -1, no match
"())(" // counter = -1, no match

So, how do we write the code ? We can use a FOR loop and some IF statements to check for
brackets as follows:

public static boolean bracketsMatch(String s) {
 int count = 0;
 char c;

 for (int i=0; i<s.length(); i++) {
 c = s.charAt(i);
 if (c == '(') count++;
 if (c == ')') count--;
 if (count < 0)

 return false;
 }
 return count == 0;
}

Here is a test program to try it out:

COMP1406 - Chapter 8 - Abstract Data Types Winter 2014

 - 273-

import java.util.*;

public class BracketMatchTestProgram {

 public static boolean bracketsMatch(String s) { /* code as above */ }

 public static void main(String[] args) {
 Scanner keyboard = new Scanner(System.in);
 String aString;

 do {
 System.out.println("Please enter expression: (<cr> to quit)");
 aString = keyboard.nextLine();

 if (bracketsMatch(aString))
 System.out.println("The brackets match");
 else
 System.out.println("The brackets do not match");
 } while (aString.length() > 0);
 }
}

Here are some testing results:

Please enter expression: (<cr> to quit)
((23 + 4 * 5) - 34) + (34 - 5))
The brackets do not match
Please enter expression: (<cr> to quit)
((23 + 4 * 5) - 34) + ((34 - 5)
The brackets do not match
Please enter expression: (<cr> to quit)
((23 + 4 * 5) - 34) + (34 - 5)
The brackets match
Please enter expression: (<cr> to quit)
()
The brackets match
Please enter expression: (<cr> to quit)
()(
The brackets do not match
Please enter expression: (<cr> to quit)
(((
The brackets do not match
Please enter expression: (<cr> to quit)
((())())
The brackets match
Please enter expression: (<cr> to quit)
(()))
The brackets do not match
Please enter expression: (<cr> to quit)
)(
The brackets do not match
Please enter expression: (<cr> to quit)

The brackets match

COMP1406 - Chapter 8 - Abstract Data Types Winter 2014

 - 274-

I think that our solution works fine. The bracket-matching example above is not very difficult,

but what if we have 3 kinds of brackets (, [, and { ? Consider this example:

"{2 +(3 *[4 - 5}])" // not supposed to match

Maybe we can keep 3 counters ? If we just keep three counters separately, we cannot tell
whether the brackets are well formed with respect to one another. We somehow need to
know the ordering of each type of bracket so that we can ensure the reverse ordering when we
find the closing brackets.

The need for backtracking may seem a little clearer if we consider a different application of the
bracket matching program. Suppose that we want to match the brackets in our JAVA code…

 public class PrintWriterTestProgram {
public static void main(String[] args) {

try {
BankAccount aBankAccount;
PrintWriter out;

aBankAccount = new BankAccount("Rob Banks");
aBankAccount.deposit(100);
out = new PrintWriter(new FileWriter("myAccount2.dat"));
out.println(aBankAccount.getOwner());
out.println(aBankAccount.getAccountNumber());
out.println(aBankAccount.getBalance());
out.close();

} catch (FileNotFoundException e) {
System.out.println("Error: Cannot open file for writing");

} catch (IOException e) {
System.out.println("Error: Cannot write to file");

}
}

}

Here we see, for example, that the portion of code inside the class definition must have all of
its brackets matching, and that involves matching the code inside the main method’s body and
then within the try block etc… The compiler does this kind of bracket matching to make sure
that your code is well-formed.

The stack data structure is designed for this purpose. It allows us to back-track … which is
essentially what we need to do when finding a closing bracket. Here is how we can use a
stack. When we find an open bracket, we put it on the top of the stack, regardless of its type.
When we find a closing bracket, we take the top opening bracket from the stack and check to
see if it is the same type as the closing bracket. If not, the brackets are in the wrong order,
otherwise all is fine and we continue onwards. If, when encountering a closing bracket, we
find that the stack is empty, then there is no match either.

Lets look at the code. In JAVA, we make a Stack by simply calling its constructor:

Stack aStack = new Stack();

COMP1406 - Chapter 8 - Abstract Data Types Winter 2014

 - 275-

However, in our case, we are going to be placing bracket character on the Sstack. Therefore
we should specify this as follows:

Stack<Character> aStack = new Stack<Character>();

Then, we need to use the appropriate Stack methods: Here is the resulting code:

public static boolean bracketsMatch2(String s) {
 Stack<Character> aStack;
 char c;

 aStack = new Stack<Character>();
 for (int i=0; i<s.length(); i++) {
 c = s.charAt(i);

 if ((c == '(') || (c == '[') || (c == '{')) // got open bracket
 aStack.push(c);

 if ((c == ')') || (c == ']') || (c == '}')) { // got closed bracket
 if (aStack.empty())
 return false; // no open bracket for this closed one

 char top = aStack.pop(); // get the last opening bracket found
 if (((c == ')') && (top != '(')) ||
 ((c == ']') && (top != '[')) ||
 ((c == '}') && (top != '{')))
 return false; // wrong closing bracket for last opened one
 }
 }
 return aStack.empty(); // No match if brackets are left over
}

Notice in the above code that it never has return true anywhere. In fact, it is only at the very
end, once we have checked all characters that there is a chance for the method to return true.
This will happen if the stack is empty (i.e., all open brackets have been matched with closing
ones). If desired, you can simplify the above code by replacing the IF statements with a
SWITCH statement as follows:

switch(c) {
 case '(':
 case '[':
 case '{':
 aStack.push(c); // got open bracket
 break;
 case ')':
 if (aStack.empty() || (aStack.pop() != '('))
 return false;
 break;
 case ']':

COMP1406 - Chapter 8 - Abstract Data Types Winter 2014

 - 276-

 if (aStack.empty() || (aStack.pop() != '['))
 return false;
 break;
 case '}':
 if (aStack.empty() || (aStack.pop() != '{'))
 return false;
 break;
}

Here are some testing results that we would obtain if we replaced our previous
bracketsMatch() method with this new method:

Please enter the expression: (just <cr> to quit)
](){}[
The brackets do not match
Please enter the expression: (just <cr> to quit)
()[]{}
The brackets match
Please enter the expression: (just <cr> to quit)
{{(([[]]))}}
The brackets match
Please enter the expression: (just <cr> to quit)
{{{{{{
The brackets do not match
Please enter the expression: (just <cr> to quit)
}}}}}}
The brackets do not match
Please enter the expression: (just <cr> to quit)
((()[]{})[()[]{])
The brackets do not match
Please enter the expression: (just <cr> to quit)
The brackets match

Challenge: Could you adjust the code above to read in a JAVA file instead of using a fixed

string and have it ensure that the brackets match ?

 8.6 The Set ADT

Consider the Set ADT:

A set is an abstract data type that does not allow duplicate

elements to be added.

That is, there cannot be two elements e1 and e2 such that
e1.equals(e2). Any attempt to add duplicate elements is ignored.
Sets differ from Lists in that the elements are not kept in the same
order as when they were added. Sets are generally unordered,
which means that the particular location of an element may change according to the particular
set implementation.

COMP1406 - Chapter 8 - Abstract Data Types Winter 2014

 - 277-

Typical operations for Sets are:
 • add(Object x) • remove(Object x)

These operations work similar to that of Lists with the exception that the elements are not
necessarily maintained in the same order that they were added in. Also, items are not
guaranteed to be added to the Set because the add() operation will not allow any duplicate
items to be added.

Example:

Suppose we wanted to maintain a list of DVD titles in our personal movie collection. Likely we
do not want to have two or more of the same DVD. We can use a Set to avoid duplicates. In
JAVA, we use the HashSet class which is in java.util package. Consider a simple Movie
class as follows:

public class Movie {
 private String title;

 public Movie(String t) { title = t; }
 public String getTitle() { return title; }

 public String toString() {
 return "Movie: \"" + title + "\"";
 }
}

Now consider the following code which simulates some inventory at a video store. The code
makes use of the simple Movie object by adding 10 movies from among 5 unique titles …
hence many duplicates. The code makes us of Math.random() so that the inventory is
different each time we run the program.

import java.util.*;
public class SetTestProgram1 {
 public static void main(String[] args) {
 Movie[] dvds = {new Movie("Bolt"),
 new Movie("Monsters Vs. Aliens"),
 new Movie("Marley & Me"),
 new Movie("Hotel For Dogs"),
 new Movie("The Day the Earth Stood Still")};
 ArrayList<Movie> inventory = new ArrayList<Movie>();

 // Add 10 random movies from the list of dvds
 for (int i=0; i<10; i++) {
 inventory.add(dvds[(int)(Math.random()*5)]);
 }

 for (Movie m: inventory)
 System.out.println(m);
 }
}

COMP1406 - Chapter 8 - Abstract Data Types Winter 2014

 - 278-

Of course, each time that we run this code the result is different. Here is an example of what
we may see:

Movie: "Bolt"
Movie: "The Day the Earth Stood Still"
Movie: "Bolt"
Movie: "Marley & Me"
Movie: "Monsters Vs. Aliens"
Movie: "The Day the Earth Stood Still"
Movie: "The Day the Earth Stood Still"
Movie: "Bolt"
Movie: "Bolt"
Movie: "Bolt"

Can we adjust the for loop so that it only displays unique movies ? No. We would have to do
some extra work of making a new list with the duplicates removed. So, we could replace the
for loop with the following:

ArrayList<Movie> uniqueList = new ArrayList<Movie>();

for (Movie m: inventory) {
 if (!uniqueList.contains(m))
 uniqueList.add(m);
}
for (Movie m: uniqueList) {
 System.out.println(m);
}

This would produce the following output (according to the earlier results):

Movie: "Bolt"
Movie: "The Day the Earth Stood Still"
Movie: "Marley & Me"
Movie: "Monsters Vs. Aliens"

However, there is an easier way to do this. Consider what happens if we change the
inventory from an ArrayList to a HashSet as follows:

HashSet<Movie> inventory = new HashSet<Movie>();

Our code would produce the following output (which varies according to the randomness):

Movie: "Monsters Vs. Aliens"
Movie: "Bolt"
Movie: "The Day the Earth Stood Still"
Movie: "Marley & Me"

Notice that the duplicates were removed. The HashSet prevented any duplicates from being
added. Therefore, we have lost all duplicate copies from our inventory, which can be bad.

COMP1406 - Chapter 8 - Abstract Data Types Winter 2014

 - 279-

Perhaps it would be better to only use a HashSet when displaying the inventory, so that we
don’t destroy the duplicate movies. This is easily done by creating an extra HashSet variable
(displayList in this case) and using the HashSet constructor that takes a Collection
parameter:

import java.util.*;

public class SetTestProgram2 {
 public static void main(String[] args) {
 Movie[] dvds = {new Movie("Bolt"),
 new Movie("Monsters Vs. Aliens"),
 new Movie("Marley & Me"),
 new Movie("Hotel For Dogs"),
 new Movie("The Day the Earth Stood Still")};

 ArrayList<Movie> inventory = new ArrayList<Movie>();

 // Add 10 random movies from the list of dvds
 for (int i=0; i<10; i++) {
 inventory.add(dvds[(int)(Math.random()*5)]);
 }

 System.out.println("Here are the unique movies:");
 HashSet<Movie> displayList = new HashSet<Movie>(inventory);
 for (Movie m: displayList)
 System.out.println(m);

 System.out.println("\nHere is the whole inventory:");
 for (Movie m: inventory)
 System.out.println(m);
 }
}

Notice the parameter to the HashSet constructor. This constructor will ensure to add all the
elements from the inventory collection to the newly create HashSet. Then, in the FOR loop,
we use this new HashSet for display purposes, while the original inventory remains unaltered.
Here is the output:

Here are the unique movies:
Movie: "The Day the Earth Stood Still"
Movie: "Bolt"
Movie: "Monsters Vs. Aliens"
Movie: "Hotel For Dogs"

Here is the whole inventory:
Movie: "Bolt"
Movie: "Bolt"
Movie: "Bolt"
Movie: "Monsters Vs. Aliens"
Movie: "The Day the Earth Stood Still"
Movie: "Hotel For Dogs"
Movie: "Bolt"
Movie: "Monsters Vs. Aliens"
Movie: "Monsters Vs. Aliens"
Movie: "Bolt"

COMP1406 - Chapter 8 - Abstract Data Types Winter 2014

 - 280-

So, it is easy to remove duplicates from any collection … we simply create a new HashSet
from the collection and it removes the duplicates for us.

However, there is one point that should be mentioned. In the above code, the duplicate
movies all represented the same exact object in memory … that is … all duplicates were
identical to one another. However, it is more common to have two equal movies which are not
identical. So, consider this code … notice the equal (but not identical) Movie objects:

import java.util.*;

public class SetTestProgram3 {
 public static void main(String[] args) {
 Movie[] dvds = {new Movie("Bolt"),
 new Movie("Monsters Vs. Aliens"),
 new Movie("Marley & Me"),
 new Movie("Monsters Vs. Aliens"),
 new Movie("Hotel For Dogs"),
 new Movie("Hotel For Dogs"),
 new Movie("Monsters Vs. Aliens"),
 new Movie("The Day the Earth Stood Still"),
 new Movie("The Day the Earth Stood Still"),
 new Movie("The Day the Earth Stood Still"),
 new Movie("The Day the Earth Stood Still")};

 ArrayList<Movie> inventory = new ArrayList<Movie>();

 // Add 10 random movies from the list of dvds
 for (int i=0; i<10; i++) {
 inventory.add(dvds[(int)(Math.random()*11)]);
 }

 System.out.println("Here are the unique movies:");
 HashSet<Movie> displayList = new HashSet<Movie>(inventory);
 for (Movie m: displayList)
 System.out.println(m);

 System.out.println("\nHere is the whole inventory:");
 for (Movie m: inventory)
 System.out.println(m);
 }
}

Here is the result:

Here are the unique movies:
Movie: "The Day the Earth Stood Still"
Movie: "The Day the Earth Stood Still"
Movie: "The Day the Earth Stood Still"
Movie: "Bolt"
Movie: "Marley & Me"
Movie: "Monsters Vs. Aliens"
Movie: "Monsters Vs. Aliens"

Here is the whole inventory:
Movie: "Marley & Me"
Movie: "Monsters Vs. Aliens"
Movie: "The Day the Earth Stood Still"

COMP1406 - Chapter 8 - Abstract Data Types Winter 2014

 - 281-

Movie: "Monsters Vs. Aliens"
Movie: "Bolt"
Movie: "The Day the Earth Stood Still"
Movie: "The Day the Earth Stood Still"
Movie: "The Day the Earth Stood Still"
Movie: "The Day the Earth Stood Still"
Movie: "The Day the Earth Stood Still"

Notice that there are many duplicates still in the Set. The problem is that the Set classes
make use of a particular method in order to determine whether or not an object is the same as
another one already in the set. The method used by java to determine equality between
objects is called the equals(Object x) method. So, in general, the equals() method can be
used to compare any two objects to determine whether or not they are the same:

anObject.equals(anotherObject) // returns either true or false

All objects in JAVA have a default inherited equals() method which resides in the Object
class. Unfortunately however, this default equals() method does the following:

 public boolean equals(Object x) {
 return (this == x);
 }

Therefore, the method, by default, will only return true if the object is the same exact object as
x (i.e., the same memory location reference). Therefore, when we compare two Movie objects
that were created using their own constructors, these movies can never be equal by default
since they each reside in their own individual memory locations.

 Movie m1 = new Movie("Monsters Vs. Aliens");
 Movie m2 = new Movie("Monsters Vs. Aliens");
 Movie m3 = m2;
 m1.equals(m2); // returns false
 m2.equals(m3); // returns true

In order to avoid this problem, we need to re-define the equals() method for our example.
That is, we need to make our own equals() method for the Movie objects that overrides the
one up in the Object class. To do this, we simply write the following method in the Movie
class:

public boolean equals(Object x) {

if (!(x instanceof Movie))
 return false;
return title.equals(((Movie)x).title);

}

Notice that the method returns a boolean and takes a single parameter of type Object. This
is a general parameter that allows us to compare the Movie with any type of object. Of
course, if the parameter is not actually a Movie object, then the result should be false. This
test is done using the instanceof keyword in JAVA that determines whether an object is an
instance of a particular class.

COMP1406 - Chapter 8 - Abstract Data Types Winter 2014

 - 282-

Once we do that, we then need to decide what it means for two movies to be considered
equal. For simplicity, we will assume that two Movie objects are equal if they have the same
title. Notice that we simply ask the movies for their titles and then use the equals() method
from the String class (already written to compare characters). One added point is that we
need to typecast the parameter x to a Movie object.

Logically, the addition of this equals() method should solve the problem.
However, it does not quite. As it turns out, in JAVA, Sets make use of a
programming technique called hashing. Hashing is used as a way of quickly
comparing and sorting objects because it quickly identifies objects that
cannot be equal to one another, without needing to go deep down
inside the object to make comparisons. For example, if you had an
apple and a pineapple, they are clearly not equal. You need not compare them
closely because a simple quick glance tells you that they are not the same.

In real life, hashing is used by post offices when sorting mail
at various levels. First, they look at the destination country
and make two piles … domestic mail vs. international mail.
That is a quick “hash” in that the postmen do not need to
examine any further details at that time … such as street
names and recipient names etc… Then they hash again later
by using the postal code to determine "roughly" and “quickly”
the area of a city that your mail needs to be delivered to.
This allows them to make a pile of mail for all people living in
the same area. At each level of “sorting” the mail (i.e.,
country, city, postal code, street), the postmen must make a
quick decision as to which pile to place the mail item into.
This quick decision is based on something called a hash
function (or hash code).

In JAVA, for Sets to work properly, we must also write a hashCode() method for our objects.
These methods return an int which represents the “pile” that the object belongs to. Similar
objects will have similar hash codes, and therefore end up in the same “pile”. Here is the
hashCode() method for our Movie object:

public int hashCode() {
 return title.hashCode();
}

It must be public, return an int and have no parameters. The code simply returns the hash
code of the title string for the movie. We do not wish to go into details here as to “how” to
produce a proper hash code. Instead, let us simply use this “rule of thumb”: the hash code for
our objects should return a sum of all the hash codes of its attributes. If an attribute is a
primitive, just convert it to an integer in some way and use that value in the hashCode()
method’s total value.

Now, the code in SetTestProgram3 will work as desired ... removing all duplicates.

COMP1406 - Chapter 8 - Abstract Data Types Winter 2014

 - 283-

Example:

You will notice in the previous example, that the HashSet did not sort the items. Also, the
items don’t even appear in the order that they were added. Instead, the order seems
somewhat random and arbitrary.

If you want the items in sorted order, you can use a TreeSet instead of a HashSet:

TreeSet<Movie> displayList = new TreeSet<Movie>(inventory);

Of course, as we did with PriorityQueues, we will need to make sure that our Movie class
implements the Comparable<Movie> interface and thus has a compareTo() method. Here is
the completed Movie class that will work with both HashSet and TreeSet:

public class Movie implements Comparable<Movie> {
 private String title;

 public Movie(String t) { title = t; }
 public String getTitle() { return title; }
 public String toString() { return "Movie: \"" + title + "\""; }

 public boolean equals(Object obj) {
 if (!(obj instanceof Movie)) return false;
 return title.equals(((Movie)obj).title);
 }

 public int hashCode() {
 return title.hashCode();
 }

 public int compareTo(Movie m) {
 return title.compareTo(m.title);
 }
}

Here is the output from our SetTestProgram3 when using TreeSet instead of HashSet:

Here are the unique movies:
Movie: "Bolt"
Movie: "Hotel For Dogs"
Movie: "Marley & Me"
Movie: "Monsters Vs. Aliens"
Movie: "The Day the Earth Stood Still"

Here is the whole inventory:
Movie: "The Day the Earth Stood Still"
Movie: "The Day the Earth Stood Still"
Movie: "The Day the Earth Stood Still"
Movie: "The Day the Earth Stood Still"
Movie: "Marley & Me"
Movie: "Monsters Vs. Aliens"
Movie: "Hotel For Dogs"

COMP1406 - Chapter 8 - Abstract Data Types Winter 2014

 - 284-

Movie: "Monsters Vs. Aliens"
Movie: "Marley & Me"
Movie: "Bolt"

Notice the sorted order of the movies from the TreeSet.

 8.7 The Dictionary/Map ADT

Sometimes we want to store data in an organized
manner that allows us to quickly find what we are
looking for. For example, consider a video store.
Isn't it a nice idea to have the movies arranged by
category so that you don't waste time looking over
movies that are not of an interesting nature (such
as musicals or perhaps drama) ?

You may also agree that it is easy to find a
definition of a word in a dictionary because the
definition is paired up with the word that it defines.
Once we know the word that we want to look up,
then we can find its definition. The word is therefore the unique key to finding the definition.
We say that the definition of the word is the value associated with that key word. Likewise, a
person's phone number is paired up with his/her name in a phonebook so that we can find
numbers easily based the person's name as the key identifier. We say that the phone number
is the value for the particular key person.

This idea of a key-value pairing (or mapping) is the basis of the Dictionary ADT:

A dictionary is an abstract data type that stores a collection of unique keys and

their associated values. Each key is associated with a single value or a set of values.

The key is always necessary in order to access a particular value in the dictionary. Like the
Collection interface, the Map interface stores objects as well. So what is different ? Well, a
Map stores things in a particular way such that the objects can be easily located later on. A
Map really means a "Mapping" of one object to another. A Map does not keep items in any
particular index order, as with lists. In a way, however, instead of having integer indices, a
Map has arbitrary objects as indices. So just as a unique index into a list or array identifies
the object at that location, the key in the Map identifies the object associated with it.

COMP1406 - Chapter 8 - Abstract Data Types Winter 2014

 - 285-

The basic methods for inserting, removing, accessing and modifying items from a Map are as
follows:

put(Object k, Object v)

Place object v in the map with key k.
If there is already a value at key k, it is
replaced by v.

e.g., aMap.put("Bob", "555-4444")

will do this →

get(Object k)

Return the value currently associated
with key k. If k is not in the map yet,
usually null is returned.

e.g., v = aMap.get("Bob") will

return v →

remove(Object k)

Remove they key/value pair associated
with key k from the Map. Usually, the
value associated with the key is
returned.

e.g., v = aMap.remove("Bob") will

do this →

size()

Return the number of keys in the list.

e.g., n = aMap.size() will return 4 →

clear()

Remove all elements from the list.

There are additional methods often available for convenience sake. Here are some:

COMP1406 - Chapter 8 - Abstract Data Types Winter 2014

 - 286-

containsKey(Object k)

Return true if there is an entry in the map
with key k, otherwise return false.

e.g., b = aMap.containsKey("Bob")

will return true →
e.g., b = aMap.containsKey("Max")

will return false →

containsValue(Object v)

Return true if there is an entry in the map
with value v, otherwise return false.

e.g., b = aMap.containsValue("555-1111")

will return true →
e.g., b = aMap.containsValue("Jill")

will return false →

keySet()

Return a Set containing all keys in the map.

e.g., s = aMap.keySet()
will return ["Joe", "Jen", "Jill", "Bob"] →

values()

Return a Collection of all values in the map.

e.g., c = aMap.values()

will return ["555-1111","555-2222",
"555-3333", "555-4444"] →

isEmpty()

Return true if the number of elements in the
list is 0, otherwise return false.

does the same as this:

return (aMap.size() == 0);

In JAVA, the Map ADT is called a HashMap and it is located in the java.util package, which
must be imported in order to use this data type. To create a HashMap, we can simply call a
constructor from the HashMap class. Here is an example of creating a HashMap and storing
it in a variable so that we can use it:

COMP1406 - Chapter 8 - Abstract Data Types Winter 2014

 - 287-

HashMap myMap;
myMap = new HashMap();

However, we usually indicate the type of the key and the value when we declare the map:

HashMap<String, Integer> myMap;
myMap = new HashMap<String,Integer>();

There is also a TreeMap class that represents a sorted Map. That is, it maintains the keys in
sorted order.

Example:

Consider a program that keeps track of some people and their favorite movie. We can
associate a Movie object with each Person object and store them in a HashMap as follows:

import java.util.*;
public class MapTestProgram {
 public static void main(String args[]) {
 HashMap<Person, Movie> favMovies = new HashMap<Person, Movie>();
 Person pete, jack;

 favMovies.put(pete = new Person("Pete Zaria", 12),
 new Movie("Monsters Vs. Aliens"));
 favMovies.put(new Person("Rita Book", 20),
 new Movie("Marley & Me"));
 favMovies.put(new Person("Willie Maykit",65),
 new Movie("Monsters Vs. Aliens"));
 favMovies.put(new Person("Patty O'Furniture", 41),
 new Movie("Hotel For Dogs"));
 favMovies.put(new Person("Sue Permann", 73),
 new Movie("Monsters Vs. Aliens"));
 favMovies.put(new Person("Sid Down", 19),
 new Movie("Bolt"));
 favMovies.put(jack = new Person("Jack Pot", 4),
 new Movie("Bolt"));

 System.out.println("There are: " + favMovies.size() + " favorite movies");
 System.out.println("Pete's favorite movie is: " + favMovies.get(pete));
 System.out.println("Jack's favorite movie is: " + favMovies.get(jack));
 System.out.println("The Map keys are:" + favMovies.keySet());
 System.out.println("The Map values are:" + favMovies.values());
 System.out.println("Removing Pete from the list ...");
 favMovies.remove(pete);
 System.out.println("Pete's favorite movie is: " + favMovies.get(pete));
 System.out.println("Is Pete in the Map ? " + favMovies.containsKey(pete));
 System.out.print("Is anyone's favorite Star Trek ? ");
 System.out.println(favMovies.containsValue(new Movie("Star Trek")));
 System.out.print("Is anyone's favorite Bolt ? ");
 System.out.println(favMovies.containsValue(new Movie("Bolt")));
 }
}

COMP1406 - Chapter 8 - Abstract Data Types Winter 2014

 - 288-

Here is the output:

There are: 7 favorite movies
Pete's favorite movie is: Movie: "Monsters Vs. Aliens"
Jack's favorite movie is: Movie: "Bolt"
The Map keys are:[4 year old Jack Pot, 65 year old Willie Maykit, 20 year old
Rita Book, 19 year old Sid Down, 73 year old Sue Permann, 41 year old Patty
O'Furniture, 12 year old Pete Zaria]
The Map values are:[Movie: "Bolt", Movie: "Monsters Vs. Aliens", Movie:
"Marley & Me", Movie: "Bolt", Movie: "Monsters Vs. Aliens", Movie: "Hotel For
Dogs", Movie: "Monsters Vs. Aliens"]
Removing Pete from the list ...
Pete's favorite movie is: null
Is Pete in the Map ? false
Is anyone's favorite Star Trek ? false
Is anyone's favorite Bolt ? true

Example:

Consider an application which represents a movie store that maintains movies
to be rented out. Assume that we have a collection of movies. When renting,
we would like to be able to find movies quickly. For example, we may want to:

• ask for a movie by title and have it found right away
• search for movies in a certain category (e.g., new release, comedy, action)
• find movies containing a specific actor/actress (e.g., Jackie Chan, Peter Sellers etc...)

Obviously, we could simply store all moves in one big ArrayList. But how
much time would we waste finding our movies ? Imagine a video store in
which the movies are not sorted in any particular order ... just randomly placed
on the shelves !! We would have to go through them one by one !!!

We will use HashMaps to store our movies efficiently so that we can quickly get access to the
movies that we want.

Let us start out with the representation of a
Movie object. Each movie will maintain a
title, list of actors and a type (category).
Obviously, in a real system, we would need
to keep much more information such as ID,
rental history, new releases vs. oldies,
etc... Here is the diagram representing the
Movie object:

Let us now define this Movie class.

COMP1406 - Chapter 8 - Abstract Data Types Winter 2014

 - 289-

import java.util.*;
public class Movie {
 private String title, type;
 private ArrayList<String> actors;

 public String getTitle() { return title; }
 public String getType() { return type; }
 public ArrayList<String> getActors() { return actors; }

 public Movie() { this("???", "???"); }

 public Movie(String aTitle, String aType) {
 title = aTitle;
 type = aType;
 actors = new ArrayList<String>();
 }

 public String toString() { return("Movie: \"" + title + "\""); }
 public void addActor(String anActor) { actors.add(anActor); }
}

Now lets look at the addActor() method. It merely adds the given actor (just a name) to the
actors arrayList. We can make some example methods to represent some movies. Add the
following methods to the Movie class:

 public static Movie example1() {
 Movie aMovie = new Movie("The Matrix","SciFic");
 aMovie.addActor("Keanu Reeves");
 aMovie.addActor("Laurence Fishburne");
 aMovie.addActor("Carrie-Anne Moss");
 return aMovie;
 }

 public static Movie example2() {
 Movie aMovie = new Movie("Blazing Saddles","Comedy");
 aMovie.addActor("Cleavon Little");
 aMovie.addActor("Gene Wilder");
 return aMovie;
 }

 public static Movie example3() {
 Movie aMovie = new Movie("The Matrix Reloaded","SciFic");
 aMovie.addActor("Keanu Reeves");
 aMovie.addActor("Laurence Fishburne");
 aMovie.addActor("Carrie-Anne Moss");
 return aMovie;
 }

 public static Movie example4() {
 Movie aMovie = new Movie("The Adventure of Sherlock Holmes' Smarter
Brother","Comedy");
 aMovie.addActor("Gene Wilder");
 aMovie.addActor("Madeline Kahn");
 aMovie.addActor("Marty Feldman");
 aMovie.addActor("Dom DeLuise");
 return aMovie;
 }

http://people.scs.carleton.ca/~lanthier/teaching/COMP1406/Notes/COMP1406_7/Movie.java�

COMP1406 - Chapter 8 - Abstract Data Types Winter 2014

 - 290-

 public static Movie example5() {
 Movie aMovie = new Movie("The Matrix Revolutions","SciFic");
 aMovie.addActor("Keanu Reeves");
 aMovie.addActor("Laurence Fishburne");
 aMovie.addActor("Carrie-Anne Moss");
 return aMovie;
 }

 public static Movie example6() {
 Movie aMovie = new Movie("Meet the Fockers","Comedy");
 aMovie.addActor("Robert De Niro");
 aMovie.addActor("Ben Stiller");
 aMovie.addActor("Dustin Hoffman");
 return aMovie;
 }

 public static Movie example7() {
 Movie aMovie = new Movie("Runaway Jury","Drama");
 aMovie.addActor("John Cusack");
 aMovie.addActor("Gene Hackman");
 aMovie.addActor("Dustin Hoffman");
 return aMovie;
 }

 public static Movie example8() {
 Movie aMovie = new Movie("Meet the Parents","Comedy");
 aMovie.addActor("Robert De Niro");
 aMovie.addActor("Ben Stiller");
 aMovie.addActor("Teri Polo");
 aMovie.addActor("Blythe Danner");
 return aMovie;
 }

 public static Movie example9() {
 Movie aMovie = new Movie("The Aviator","Drama");
 aMovie.addActor("Leonardo DiCaprio");
 aMovie.addActor("Cate Blanchett");
 return aMovie;
 }

 public static Movie example10() {
 Movie aMovie = new Movie("Envy","Comedy");
 aMovie.addActor("Ben Stiller");
 aMovie.addActor("Jack Black");
 aMovie.addActor("Rachel Weisz");
 aMovie.addActor("Amy Poehler");
 return aMovie;
 }

Now we need to consider the making a MovieStore object. Recall, that we want to store
movies efficiently using HashMaps.

For the MovieStore, we will maintain three HashMaps. One will be the movieList where the
keys are titles and the values are the movie objects with that title.

COMP1406 - Chapter 8 - Abstract Data Types Winter 2014

 - 291-

The second will be the actorList which will keep actor/actress names as keys and the values
will be ArrayLists of all movies that the actor/actress stars in.

The last one will be the typeList in which the keys will be the "types" (or categories) of movies
and the values will be ArrayLists of all movies belonging to that type.

Notice that one of the movies is "red" in the picture. Why ? This represents the same exact
movie. So in fact, the reference to this movie is stored in 4 different places.

Isn't this wasteful ? Keep in mind that we are not duplicating all the movie's data ... we are
only duplicating the pointer to the movie. So in fact, each time we duplicate a movie in our
HashMaps, we are simply duplicating its reference (or pointer) which takes 4 bytes.

So, yes, we are taking slightly more space, but at the benefit of allowing quick access to the
data. You will learn more about efficiency when you do your second-year course on data
structures.

The basic MovieStore definition is as follows:

COMP1406 - Chapter 8 - Abstract Data Types Winter 2014

 - 292-

import java.util.*;

public class MovieStore {
 private HashMap<String,Movie> movieList;
 private HashMap<String,ArrayList<Movie>> actorList;
 private HashMap<String,ArrayList<Movie>> typeList;

 public MovieStore() {
 movieList = new HashMap<String,Movie>();
 actorList = new HashMap<String,ArrayList<Movie>>();
 typeList = new HashMap<String,ArrayList<Movie>>();
 }

 public HashMap<String,Movie> getMovieList() { return movieList; }
 public HashMap<String,ArrayList<Movie>> getActorList() { return actorList; }
 public HashMap<String,ArrayList<Movie>> getTypeList() { return typeList; }

 public String toString() {
 return ("MovieStore with " + movieList.size() + " movies.");
 }
}

Why do not we need "set" methods for the HashMaps ? You should be able to reason on that.
Now, how do we add a movie to the store ? Well ... how do the instance variables change ?

• movie must be added to movieList
• movie must be added to typeList. What if it is the first/last movie from this category ?
• movie must be added to actorList. What if it is the first/last movie for this actor ?

Here is the code:

//This method adds a movie to the movieStore.
public void addMovie(Movie aMovie) {
 //Add to the movieList
 movieList.put(aMovie.getTitle(), aMovie);

 //If there is no category matching this movie's type, make a new category
 if (!typeList.containsKey(aMovie.getType()))
 typeList.put(aMovie.getType(), new ArrayList<Movie>());

 //Add the movie to the proper category.
 typeList.get(aMovie.getType()).add(aMovie);

 //Now add all of the actors
 for (String anActor: aMovie.getActors()) {
 //If there is no actor yet matching this actor, make a new actor key
 if (!actorList.containsKey(anActor))
 actorList.put(anActor, new ArrayList<Movie>());

 //Add the movie for this actor
 actorList.get(anActor).add(aMovie);
 }
}

COMP1406 - Chapter 8 - Abstract Data Types Winter 2014

 - 293-

In fact, removing a movie is just as easy:

//This private method removes a movie from the movie store
private void removeMovie(Movie aMovie) {
 //Remove from the movieList
 movieList.remove(aMovie.getTitle());

 //Remove from the type list vector. If last one, remove the type.
 typeList.get(aMovie.getType()).remove(aMovie);
 if (typeList.get(aMovie.getType()).isEmpty())
 typeList.remove(aMovie.getType());

 //Now Remove from the actors list. If actor has no more, remove him.
 for(String anActor: aMovie.getActors()) {
 actorList.get(anActor).remove(aMovie);
 if (actorList.get(anActor).isEmpty())
 actorList.remove(anActor);
 }
}

However, what if we do not have a hold of the Movie object that we want to delete ? Perhaps
we just know the title of the movie that needs to be removed. We can write a method which
asks to remove a movie with a certain title. All it needs to do is grab a hold of the movie and
then call the remove method that we just wrote.

//This method removes a movie (given its title) from the movie store
public void removeMovieWithTitle(String aTitle) {
 if (movieList.get(aTitle) == null)
 System.out.println("No movie with that title");
 else
 removeMovie(movieList.get(aTitle));
}

Well, perhaps the final thing we need to do is list the movies (or print them out). How do we do
this ? What if we want them in some kind of order ? Perhaps any order, by actor/actress, or
by type. Here's how to display them in the order that they were added to the MovieStore:

//This method lists all movie titles that are in the store
public void listMovies() {
 for (String s: movieList.keySet())
 System.out.println(s);
}

What about listing movies that star a certain actor/actress ? Well it just requires an additional
search. Can you guess which HashMap is needed ?

//This method lists all movies that star the given actor
public void listMoviesWithActor(String anActor) {
 for (Movie m: actorList.get(anActor))
 System.out.println(m);
}

COMP1406 - Chapter 8 - Abstract Data Types Winter 2014

 - 294-

Lastly, let us list all of the movies that belong to a certain category (type). For example,
someone may wish to have a list of all comedy movies in the store. It is actually very similar to
the actor version.

//This method lists all movies that have the given type
public void listMoviesOfType(String aType) {
 for (Movie m: typeList.get(aType))
 System.out.println(m);
}

Ok, now we better test everything:

public class MovieStoreTester {
 public static void main(String args[]) {
 MovieStore aStore = new MovieStore();
 aStore.addMovie(Movie.example1());
 aStore.addMovie(Movie.example2());
 aStore.addMovie(Movie.example3());
 aStore.addMovie(Movie.example4());
 aStore.addMovie(Movie.example5());
 aStore.addMovie(Movie.example6());
 aStore.addMovie(Movie.example7());
 aStore.addMovie(Movie.example8());
 aStore.addMovie(Movie.example9());
 aStore.addMovie(Movie.example10());

 System.out.println("Here are the movies in: " + aStore);
 aStore.listMovies();
 System.out.println();

 //Try some removing now
 System.out.println("Removing The Matrix");
 aStore.removeMovieWithTitle("The Matrix");
 System.out.println("Trying to remove Mark's Movie");
 aStore.removeMovieWithTitle("Mark's Movie");

 //Do some listing of movies
 System.out.println("\nHere are the Comedy movies in: " + aStore);
 aStore.listMoviesOfType("Comedy");
 System.out.println("\nHere are the Science Fiction movies in: " + aStore);
 aStore.listMoviesOfType("SciFic");
 System.out.println("\nHere are the movies with Ben Stiller:");
 aStore.listMoviesWithActor("Ben Stiller");
 System.out.println("\nHere are the movies with Keanu Reeves:");
 aStore.listMoviesWithActor("Keanu Reeves");
 }
}

Here is the output:

Here are the movies in: MovieStore with 10 movies.
The Matrix Revolutions
Runaway Jury
The Matrix
The Adventure of Sherlock Holmes' Smarter Brother
The Aviator

COMP1406 - Chapter 8 - Abstract Data Types Winter 2014

 - 295-

The Matrix Reloaded
Blazing Saddles
Meet the Parents
Envy
Meet the Fockers

Removing The Matrix
Trying to remove Mark's Movie
No movie with that title

Here are the Comedy movies in: MovieStore with 9 movies.
Movie: "Blazing Saddles"
Movie: "The Adventure of Sherlock Holmes' Smarter Brother"
Movie: "Meet the Fockers"
Movie: "Meet the Parents"
Movie: "Envy"

Here are the Science Fiction movies in: MovieStore with 9 movies.
Movie: "The Matrix Reloaded"
Movie: "The Matrix Revolutions"

Here are the movies with Ben Stiller:
Movie: "Meet the Fockers"
Movie: "Meet the Parents"
Movie: "Envy"

Here are the movies with Keanu Reeves:
Movie: "The Matrix Reloaded"
Movie: "The Matrix Revolutions"

 8.8 Collections Class Tools

JAVA provides a nice tool-kit class called Collections that contains a bunch of useful methods
that we can take advantage of. One of these is a sort() method which will sort an arbitrary
collection.

Examine the following code to see how easy it is to sort our ArrayList of Person objects using
this sort() method …

import java.util.*;

public class SortTestProgram {
 public static void main(String args[]) {
 ArrayList<Person> people = new ArrayList<Person>();

 people.add(new Person("Pete Zaria", 12));
 people.add(new Person("Rita Book", 20));
 people.add(new Person("Willie Maykit",65));
 people.add(new Person("Patty O'Furniture", 41));
 people.add(new Person("Sue Permann", 73));
 people.add(new Person("Sid Down", 19));
 people.add(new Person("Jack Pot", 4));

COMP1406 - Chapter 8 - Abstract Data Types Winter 2014

 - 296-

 Collections.sort(people); // do the sorting

 for (Person p: people)
 System.out.println(p);
 }
}

The output is as expected with all people sorted by their age.

Of course, we could use AlphaPerson to sort them alphabetical instead, if so desired. For
the above code to work, we still need to have the compareTo() methods written. Hopefully
you noticed how easy this sort() method is to use.

There is also a class called Arrays which has some useful methods for manipulating arrays.
For example, if our code had arrays of Person objects instead of ArrayLists, here is what the
code would look like to sort:

import java.util.*;

public class SortTestProgram2 {
 public static void main(String args[]) {
 Person[] people = {new Person("Pete Zaria", 12),
 new Person("Rita Book", 20),
 new Person("Willie Maykit",65),
 new Person("Patty O'Furniture", 41),
 new Person("Sue Permann", 73),
 new Person("Sid Down", 19),
 new Person("Jack Pot", 4)};

 Arrays.sort(people); // do the sorting

 for (Person p: people)
 System.out.println(p);
 }
}

There are similar sort methods for the primitive data types, so you can sort simple arrays of
numbers such as this:

int[] nums = {23, 54, 76, 1, 29, 89, 45, 76};

Arrays.sort(nums); // do the sorting

Interestingly, there are other useful methods in the Collections class such as reverse(),
shuffle(), max() and min(). Can you guess what they do by looking at the output of the
following program ?

COMP1406 - Chapter 8 - Abstract Data Types Winter 2014

 - 297-

import java.util.*;

public class SortTestProgram3 {
 public static void main(String args[]) {
 ArrayList<Person> people = new ArrayList<Person>();

 people.add(new Person("Pete Zaria", 12));
 people.add(new Person("Rita Book", 20));
 people.add(new Person("Willie Maykit",65));
 people.add(new Person("Patty O'Furniture", 41));
 people.add(new Person("Sue Permann", 73));
 people.add(new Person("Sid Down", 19));
 people.add(new Person("Jack Pot", 4));

 System.out.println("The list reversed:");
 Collections.reverse(people);
 for(Person p: people)
 System.out.println(p);

 System.out.println("\nThe list shuffled:");
 Collections.shuffle(people);
 for(Person p: people)
 System.out.println(p);

 System.out.println("\nThe list shuffled again:");
 Collections.shuffle(people);
 for(Person p: people)
 System.out.println(p);

 System.out.println("\nOldest person: " + Collections.max(people));
 System.out.println("Youngest person:" + Collections.min(people));
 }
}

Here is the output … was it as you expected? …

The list reversed:
4 year old Jack Pot
19 year old Sid Down
73 year old Sue Permann
41 year old Patty O'Furniture
65 year old Willie Maykit
20 year old Rita Book
12 year old Pete Zaria

The list shuffled:
12 year old Pete Zaria
19 year old Sid Down
20 year old Rita Book
4 year old Jack Pot
65 year old Willie Maykit
41 year old Patty O'Furniture
73 year old Sue Permann

COMP1406 - Chapter 8 - Abstract Data Types Winter 2014

 - 298-

The list shuffled again:
65 year old Willie Maykit
20 year old Rita Book
4 year old Jack Pot
12 year old Pete Zaria
41 year old Patty O'Furniture
73 year old Sue Permann
19 year old Sid Down

Oldest person: 73 year old Sue Permann
Youngest person:4 year old Jack Pot

There are additional methods in the Collections class. Have a look at the API and see if you
find anything useful.

 8.9 Implementing an ADT (Doubly-Linked Lists)

Consider allocating a large array of bytes:

byte[] myArray;

myArray = new byte[1000000];

An array is an object and the values of
the array are kept in consecutive memory
locations. Usually the array length is
also kept along with the array, so we
have shown this as an extra 4 bytes in
the object header ... making it a 12-byte
header (although the exact size depends
on the java implementation).

Assume that this array is filled with some
appropriate values. Consider what
happens when we want to remove the
item at position 500002 in the array
(shown red).

Remember that we cannot simply remove
something from an array but that we have
2 choices:

1. replace the item at index 500002
with some clearly identifiable value
(e.g., -1).

2. remove the item at that position by
copying all the items from index
500003 to 999999 back 1 position
in the array and then reduce the size of the array by 1.

COMP1406 - Chapter 8 - Abstract Data Types Winter 2014

 - 299-

Solution (1) is quick to do a remove operation, but then we will leave "gaps" in the array so that
when we process it later we will need to consider the fact that there may be a lot of invalid data
stored in the array at any time. In fact, after a while ... the array may be filled with mostly
invalid data!

Solution (2) would take a lot more time to remove an item because we would potentially need
to move large portions of the array back one position in memory each time we do a remove
operation. In addition, we can "logically" reduce the array size by one, but in reality, JAVA has
already allocated the memory for the 1,000,000 elements ... so that will not change. In other
words, we are essentially classifying the "end portion" of the array as garbage data as time
goes on. We are not saving any space ... the garbage/wasted data is still taking up memory.

This problem gets worse as we consider adding items to the array beyond the 1,000,000
capacity. In that case, we would need to create a whole new bigger array and copy all the
items from the "old" array into the "new" array ... then discard the old array. To do this, we
would simply move the myArray variable pointer to point to the new array:

myArray = new byte[2000000];

This would create a whole new object which takes another 2,000,000 bytes (+12 for header).
The Java VM would then realize that the data in memory from address 0008237846 to
0009237857 would no longer be needed and it would be scheduled for a future garbage
collection operation. In languages such as C or C++, there is no garbage collector, so we
would have to remember to free up that memory on our own.

One huge danger of this "new-array-reallocation-and-copy-over" strategy is that if any other
objects are pointing to the old array ... then it is not garbage collected and potentially we have
two places in our code that at one time may have been pointing to the same array but are now
pointing to different arrays !!

One solution to this problem is to store data in what is called a doubly-linked list. We would
like to be able to do two things:

1. Cut out a single piece of data and stitch the remaining data back together:

COMP1406 - Chapter 8 - Abstract Data Types Winter 2014

 - 300-

2. Cut open a spot in the data and insert a single piece of data inside:

To do this, we need to allow the data to be split and merged anywhere within the list of data.
We can do this by allowing each piece of data to be its own object. As long as each of these
objects knows the object before it in the list as well as the object after it in the list, then we can
make this happen. Consider a single item in the list represented as follows:

public class Item {
 byte data;
 Item previous;
 Item next;

 public Item(int d) {
 data = (byte)d;
 previous = null;
 next = null;
 }
}

Notice that this Item class represents a recursive data structure definition since the item before
(i.e., previous) this item is an Item object and the item after (i.e., next) it is also an Item object.
That means, the items each keep a pointer to the object before it in the list and the object after
it in the list. So we can re-draw our n-item list now as follows:

COMP1406 - Chapter 8 - Abstract Data Types Winter 2014

 - 301-

Consider a simple array created as follows:

byte[] myList = new byte[8];
myList[0] = 23; myList[1] = 65;
myList[2] = 87; myList[3] = 45;
myList[4] = 56; myList[5] = 34;
myList[6] = 95; myList[7] = 71;

Here is how we would create the linked-list version for this list of data:

Item myList = new Item(23);
Item myList1 = new Item(65);
Item myList2 = new Item(87);
Item myList3 = new Item(45);
Item myList4 = new Item(56);
Item myList5 = new Item(34);
Item myList6 = new Item(95);
Item myList7 = new Item(71);

myList.previous = null;
myList.next = myList1;
myList1.previous = myList;
myList1.next = myList2;
myList2.previous = myList1;
myList2.next = myList3;
myList3.previous = myList2;
myList3.next = myList4;
myList4.previous = myList3;
myList4.next = myList5;
myList5.previous = myList4;
myList5.next = myList6;
myList6.previous = myList5;
myList6.next = myList7;
myList7.previous = myList6;
myList7.next = null;

This code is a bit ugly because it uses many variable names. However, typically we would
create operations for adding and removing Items. Also, we usually want to keep track of the
first and last items in the linked list ... which are known as the head and the tail. So, often
we create another class to keep track of this information as follows:

public class LinkedList {
 Item head;
 Item tail;

 public LinkedList() {
 head = null;
 tail = null;
 }
}

Then we would make operations in this class.
One useful operation would be to add an item to
the end (i.e., tail) of the list.

COMP1406 - Chapter 8 - Abstract Data Types Winter 2014

 - 302-

Here is the code that will do this:

public void add(Item x) {
 if (tail == null) {
 tail = x;
 head = x;
 }
 else {
 tail.next = x;
 x.previous = tail;
 tail = x;
 }
}

Notice that we had to handle the case where we called the method the very first time. In that
case, the head and the tail would both be null. So, when adding in that case, the item being
added becomes the sole item in the list ... making it both the head and the tail at the same
time. From then on, all additions occur at the tail end of the list.

Once we have this method available, the code to construct the list becomes simplified:

LinkedList myList = new LinkedList();
myList.add(new Item(23));
myList.add(new Item(65));
myList.add(new Item(87));
myList.add(new Item(45));
myList.add(new Item(56));
myList.add(new Item(34));
myList.add(new Item(95));
myList.add(new Item(71));

Is this better than an array ? It seems like a lot of overhead! Well ... it may indeed take up
more space ... but the size of the list is unlimited (except for running out of computer memory).
That is ... we never have to worry about going past an array bounds. Also, we never have to
worry about re-allocating a new larger array and copying elements over into it.

What about the removal of an item from the list ?

It too just involves moving a couple of pointers around.

Here is the code to remove an item ... assuming that x is in the list:

COMP1406 - Chapter 8 - Abstract Data Types Winter 2014

 - 303-

public void remove(Item x) {
 if (x == head) {
 if (x == tail) {
 head = tail = null;
 }
 else {
 head = x.next;
 head.previous = null;
 }
 }
 else {
 if (x == tail) {
 tail = x.previous;
 tail.next = null;
 }
 else {
 x.previous.next = x.next;
 x.next.previous = x.previous;
 }
 }
}

The code looks a little long because we need to handle the special cases in which the
removed item is the head of the list or the tail of the list. However, you will notice that the
code for removal simply involves the changing of two pointers. There is no need to copy
items back in the array, nor is there any concern about garbage data lying around. The code
is quite simple and elegant.

How could we write a toString() method for this list that shows the contents ? Assume that we
want the list to look like this:

[H:23]<==>[65]<==>[87]<==>[45]<==>[56]<==>[34]<==>[95]<==>[71:T]

or like this when 1 item is in it: [H:23:T]
or like this when empty: [EMPTY]

To iterate through the items, we would need to start with the head of the list and keep
traversing successive .next pointers until we reached the tail.

public String toString() {
 if (head == null)
 return "[EMPTY]";

 String s = "[H:";
 Item currentItem = head;
 while (currentItem != null) {
 s += currentItem.data;
 if (currentItem != tail)
 s += "]<==>[";
 currentItem = currentItem.next;
 }
 return s + ":T]";
}

How would we write a method to add up all of the byte data in the list? It is quite similar:

COMP1406 - Chapter 8 - Abstract Data Types Winter 2014

 - 304-

public int totalData() {
 if (head == null)
 return 0;

 int total = 0;
 Item currentItem = head;
 while (currentItem != null) {
 total += currentItem.data;
 currentItem = currentItem.next;
 }
 return total;
}

Do you understand why a for loop was not used ?

Here is a test program:

public class LinkedListTestProgram {
 public static void main(String args[]) {
 Item head, tail, internal;

 LinkedList myList = new LinkedList();
 myList.add(head = new Item(23));
 myList.add(new Item(65));
 myList.add(new Item(87));
 myList.add(internal = new Item(45));
 myList.add(new Item(56));
 myList.add(new Item(34));
 myList.add(new Item(95));
 myList.add(tail = new Item(71));

 System.out.println("Here is the list: ");
 System.out.println(myList);

 System.out.println("\nThe total of the data is: ");
 System.out.println(myList.totalData());

 System.out.println("\nRemoving the head .. here is the list now: ");
 myList.remove(head);
 System.out.println(myList);

 System.out.println("\nRemoving the tail .. here is the list now: ");
 myList.remove(tail);
 System.out.println(myList);

 System.out.println("\nRemoving internal item 45, here is the list now: ");
 myList.remove(internal);
 System.out.println(myList);
 }
}

COMP1406 - Chapter 8 - Abstract Data Types Winter 2014

 - 305-

Here is the output:

Here is the list:
[H:23]<==>[65]<==>[87]<==>[45]<==>[56]<==>[34]<==>[95]<==>[71:T]

The total of the data is:
476

Removing the head .. here is the list now:
[H:65]<==>[87]<==>[45]<==>[56]<==>[34]<==>[95]<==>[71:T]

Removing the tail .. here is the list now:
[H:65]<==>[87]<==>[45]<==>[56]<==>[34]<==>[95:T]

Removing internal item 45, here is the list now:
[H:65]<==>[87]<==>[56]<==>[34]<==>[95:T]

Can you write an insert(x, i) method that will insert item x after position i in the list ? Try it.
You will need to start at the head of the list and count past i items before you start changing
pointers. Can you do a remove(i) method that will remove the i'th item from the list ?

It is important to understand how to manipulate pointers like this because some languages
(e.g., C and C++) require a lot of memory allocation and pointer manipulation. The more
practice you get ... the better!!

You should realize that although our list contained simple data in the form of a single byte, you
can simply change the type of the data to any data type. In this way, the list can store any
kind of data that you want. Here is a general definition for a list Item that can store any object:

public class Item {
 Object data;
 Item previous;
 Item next;

 public Item(Object obj) {
 data = obj;
 previous = null;
 next = null;
 }
}

Notice what the memory allocation would look like for a simple 3 item list when simple byte
data is used (left side diagram) and when Person object data is used (right side diagram):

COMP1406 - Chapter 8 - Abstract Data Types Winter 2014

 - 306-

Chapter 9

Recursion With Data Structures

What is in This Chapter ?

In the last course, we discussed recursion at a simple level. This chapter explains how to do
more complex recursion using various data structures. You should understand recursion
more thoroughly after this chapter.

COMP1406 - Chapter 9 - Recursion With Data Structures Winter 2014

 - 308 -

 9.1 Recursive Efficiency

You should already be familiar with recursion at this point, having taken it last term in
COMP1405. Although recursion is a powerful problem solving tool, it has some drawbacks. A
non-recursive (or iterative) method may be more efficient than a recursive one for two
reasons:

1. there is an overhead associated with large number of method calls
2. some algorithms are inherently inefficient.

For example, computing the nth Fibonacci number can be written as:

1 if n = 0

fib(n) = 1 if n = 1

fib(n-1) + fib(n-2) if n > 1

A straight-forward recursive solution to solving this problem would be as follows:

public static int fibonacci(int n) {
 if (n <= 1)
 return 1;
 return fibonacci(n-1) + fibonacci(n-2);
}

However, notice what is happening here:

In the above computation, some problems (e.g., fibonacci(2)) are being solved more than
once, even though we presumably know the answer after doing it the first time. This is an
example where recursion can be inefficient if we do not do it carefully.

The following iterative solution avoids the re-computation:

COMP1406 - Chapter 9 - Recursion With Data Structures Winter 2014

 - 309 -

public static int fibonacci2(int n) {

 int first = 1;

 int second = 1;

 int third = 1;

 for (int i=2; i<=n; i++) {

 third = first + second; // compute new value

 first = second; // shift the others to the right

 second = third;

 }

 return third;

}

Notice how the previous two results are always stored in the first and second variables. So
the computation need not be duplicated. We can do this recursively ... we just need to keep
track of previous computations.

public static int fibonacci(int n, int prev, int prevPrev) {
 if (n <= 0)
 return prev + prevPrev;
 else
 return fibonacci(n-1, prev + prevPrev, prev);

}

We essentially use the same idea of keeping track of the last two computations and passing
them along to the next recursive call. However, we would have to start this off with some
values for these parameters. For example to find the 20th Fibonacci number, we could do this:

fibonacci(18, 1, 1);

The first two numbers are 1 and then there are 18 more to find.
However, this is not a nice solution because the user of the method must know what the
proper values are in order to call this method. It would be wise to make this method private
and then provide a public one that passes in the correct initial parameters as follows:

public static int fibonacci3(int n) {

 if (n <= 1)
 return 1;
 return fibonacci(n-2, 1, 1); // calls above method
}

This method in itself is not recursive, as it does not call itself. However, indirectly, it does call
the 3-parameter fibonacci() method ... which is recursive. We call this kind of method
indirectly recursive.

An indirectly recursive function is one that does not call itself, but it does call a

recursive method.

COMP1406 - Chapter 9 - Recursion With Data Structures Winter 2014

 - 310 -

Indirect recursion is mainly used to supply the initial parameters to a recursive function. It
is the one that the user interacts with. It is often beneficial to use recursion to improve
efficiency as well as to create non-destructive functions.

 9.2 Examples With Self-Referencing Data Structures

Until now, the kinds of problems that you solved recursively likely did not involve the use of
data structures. We will now look at using recursion to solve problems that make use of a
couple of simple data structures.

First, recall the linked-list data structure that we created in the last chapter. It is a self-
referencing data structure since each Item object points to two other Item objects:

public class LinkedList {
 Item head;
 Item tail;
 ...
}

public class Item {
 byte data;
 Item previous;
 Item next;
 ...
}

We can write some interesting recursive methods for this data structure.

Example:

Recall the following method:

public int totalData() {
 if (head == null)
 return 0;

 int total = 0;
 Item currentItem = head;
 while (currentItem != null) {
 total += currentItem.data;
 currentItem = currentItem.next;
 }
 return total;
}

COMP1406 - Chapter 9 - Recursion With Data Structures Winter 2014

 - 311 -

Let us see how we can write this method recursively without using a while loop. As before,
we need to consider the base case. If the head of the list is null, then the answer is 0 as in
the above code. Otherwise, we will need to break the problem down recursively. To do this,
we can simply break off the first data item from the list and add it to the recursive result of the
remainder of the list ... this will be the solution:

However, we do not want to destroy the list, so we will simply "pretend" to break off a piece
by traversing through the next pointers of the items, starting at the head. The solution is
straightforward as long as we are allowed to pass in a parameter representing the item in
the list from which to start counting from (e.g., the head to begin). Recall, that we always
begin with a "base case" ... which is the stopping condition for the recursion. It always
represents the simplest situation for the data structure. In this case, the simplest case is a
null Item. If the item is null, there are no numbers to add, so the result is clearly 0.
Otherwise, we just need to "tear off" the first number and continue with the remainder of the
list (i.e., continue adding ... but starting with the next item in the list):

private int totalDataRecursive(Item startItem) {
 if (startItem == null)
 return 0;

 return startItem.data + totalDataRecursive(startItem.next);
}

Notice the simplicity of the recursion. It is quite straight forward and logical. As it turns
out, writing recursive methods for most self-referencing data structures is quite natural and
often produces simple/elegant code.

One downfall of the above method is that it requires a parameter which MUST be the head
item of the list if it is to work properly! So then, we will want to make a public method that
the user can call which will create the proper starting parameter (i.e., the head):

public int totalDataRecursive() {
 return totalDataRecursive(head);
}

As you can see, the code is quite short. It simply supplies the list head to the single-
parameter recursive method. This method is not itself recursive, but it does call the single-

parameter method which IS recursive. We therefore call this an indirectly recursive
method because although the method itself is not recursive, the solution that the method
provides is recursive.

COMP1406 - Chapter 9 - Recursion With Data Structures Winter 2014

 - 312 -

Example:

Now what about writing a recursive method that returns a new LinkedList that contains all
the odd data from the list ?

The method should return a new LinkedList:

Hence, the return type for the method should be LinkedList.

public LinkedList oddItems() {
 // ...
}

The method code should begin with a "base case". What is the simplest list that we can
have for use in the "base case" ? An empty one (i.e., headless), of course!

public LinkedList oddItems() {
 if (head == null)
 return new LinkedList();
 // ...
}

Otherwise, we will need to apply the same strategy of breaking off a piece of the problem.
We can do this using indirect recursion again by starting with the head. It will be easiest,
as well to have the new list passed in as a parameter that we can simply add to:

public LinkedList oddItems() {
 if (head == null)
 return new LinkedList();

 return oddItems(head, new LinkedList());
}

So then, the directly-recursive method will be defined as follows:

private LinkedList oddItems(Item startItem, LinkedList resultList) {
 // ...
}

Notice that it is private, because it is just a kind of helper method for the public one.

COMP1406 - Chapter 9 - Recursion With Data Structures Winter 2014

 - 313 -

Since the startItem will eventually become null, we will need to check for that as our
stopping condition (i.e., "base case"). In that case, we are done ... and we just need to
return the resultList:

private LinkedList oddItems(Item startItem, LinkedList resultList) {
 if (startItem == null)
 return resultList;
 // ...
}

As a side point, since we are checking for null here in this method as well, we can go back
and simplify our indirectly-recursive method by removing that check:

public LinkedList oddItems() {
 return oddItems(head, new LinkedList());
}

Now, we need to check to see if the data of the startItem is indeed odd, and if so... then
add it to the resultList:

private LinkedList oddItems(Item startItem, LinkedList resultList) {
 if (startItem == null)
 return resultList;

 if (startItem.data %2 != 0)
 resultList.add(new Item(startItem.data));
 // ...
}

Notice that we used a constructor to create a new Item object before adding to the resulting

list. What would have happened if we simply used resultList.add(startItem)? If

we did this, then the same Item object would exist in both lists. This is bad because if we
changed the next or previous pointer for this item, then it would affect both lists... and that
would be disastrous.

Lastly, we continue by checking the remainder of the list:

private LinkedList oddItems(Item startItem, LinkedList resultList) {
 if (startItem == null)
 return resultList;

 if (startItem.data %2 != 0)
 resultList.add(new Item(startItem.data));

 return oddItems(startItem.next, resultList);
}

Do you understand why the return keyword is needed on the last line ? What gets
returned ? Well ... remember that the method MUST return a LinkedList. If we leave off
the return keyword, the compiler will complain because we are not returning any specific
list. At the end of the recursive method calls, the "base case" will ensure that we return
the resultList that we have built up with the odd numbers. Alternatively we could have just
finished off the recursion and then specifically state that we want to return the resultList:

COMP1406 - Chapter 9 - Recursion With Data Structures Winter 2014

 - 314 -

private LinkedList oddItems(Item startItem, LinkedList resultList) {
 if (startItem == null)
 return resultList;

 if (startItem.data %2 != 0)
 resultList.add(new Item(startItem.data));

 oddItems(startItem.next, resultList);

 return resultList;
}

We can actually make this all work without that extra resultList parameter by creating the
list when we reach the end of the list, and then adding items AFTER the recursion:

public LinkedList oddItems() {
 return oddItems(head);
}

private LinkedList oddItems(Item startItem) {
 if (startItem == null)
 return new LinkedList();

 LinkedList result = oddItems(startItem.next);

 if (startItem.data %2 != 0)
 result.add(new Item(startItem.data));

 return result;
}

However, this solution will return the odd numbers in reverse order.

See if you can fix that problem. It can be done.

Example:

Now, let us find and return a list of all elements in common between 2 lists:

COMP1406 - Chapter 9 - Recursion With Data Structures Winter 2014

 - 315 -

Again, the result will be a new LinkedList:

To do this, we will need a similar indirectly-recursive method, but one that takes the 2nd list
as a parameter:

public LinkedList inCommon(LinkedList aList) {
 return inCommon(this.head, aList.head, new LinkedList());
}

Here, we see that the two list heads are passed in as well as a list onto which the common
elements may be added. The directly-recursive method begins the same way as before ...
quitting when we reach the end of one of the lists:

private LinkedList inCommon(Item start1, Item start2, LinkedList result) {
 if ((start1== null) || (start2 == null))
 return result;
 // ...
}

The remaining problem is a bit trickier. We need to check each item in one list with each
item in the other list ... but just once. So we will need to recursively shrink one list until it
has been checked against one particular item in the second list. Then, we need to move
to the next item in the second list and check it against the entire first list again. It will be
easier to do this if we had a helper method that simply checked whether or not a data item
is in another list.

Consider a method called contains() which takes a starting item in the list and determines
whether or not a specific data item is in the list by recursively iterating through the list. Can
you write this ? It should be straight forward now:

public boolean contains(Item startItem, byte data) {
 if (startItem == null)
 return false;

 if (startItem.data == data)
 return true;

 return contains(startItem.next, data);
}

Now, how can we make use of this contains() method to solve our original problem ?
Well, we can call it like any other function. We can simply iterate through the items of one
list (as before) and check each item against the other list using this contains() function. If
it IS contained, we add it to the solution. It is quite similar to the template for finding the
odd numbers now:

COMP1406 - Chapter 9 - Recursion With Data Structures Winter 2014

 - 316 -

private LinkedList inCommon(Item list1, Item list2, LinkedList result) {
 if ((list1 == null) || (list2 == null))
 return result;

 // Check if the first list contains the data
 // at the beginning item of the 2nd list.
 if (contains(list1, list2.data))
 result.add(new Item(list2.data));

 // Now check the first list with the remainder of the 2nd list
 return inCommon(list1, list2.next, result);
}

As you can see, the call to contains() here will check all items of list 1 with the first item of
list 2. Then, the recursive call will move on to the next item in list 2. Eventually, list 2 will
be exhausted and we will have the solution!

Example:

Now let us try a different data structure. In computer science, we often store information in a
binary tree:

A binary tree is a data structure that maintains data

in a hierarchical arrangement where each piece of data
(called the parent) has exactly two pieces of data
(called children) beneath it in the hierarchy.

The binary tree is similar to the notion of a
single gender (i.e., all males or all females)
family tree in which every parent has at most
2 children, which are known as the leftChild
and rightChild of their parent. It is possible
that a node in the tree (i.e., a piece of data)
may have no children, or perhaps only one
child. In this case, we say that the leftChild
and/or rightChild is null (meaning that it is
non-existent).

A node with no children is called a leaf
of the tree.

The root of the tree is the data that is at
the top of the tree which has no parent.

COMP1406 - Chapter 9 - Recursion With Data Structures Winter 2014

 - 317 -

Binary trees can be a very efficient data structure when searching for information. For
example as we search for a particular item down the tree from the root, each time that we
choose the left or right child to branch down to, we are potentially eliminating half of the
remaining data that we need to search through.

Typically, binary trees are represented as recursive data structures. That is, the tree itself
is actually made up of other smaller trees. We can see this from the figure on the previous
page, where each non-null child actually represents the root of a smaller tree.

In computer science, trees are often drawn with simple circles as nodes and lines as edges.

The height of a tree is the depth of the tree from root to the leaves. Here is an example of a
complete tree (i.e., one that is completely filled with nodes) of height 5. A complete binary
tree has 2h leaves (where h is the tree's height).

In our family tree picture (shown earlier), however, the tree was not complete ... there were
nodes missing. Here is how we would draw the equivalent tree for that example:

Notice that it is basically the 25 binary tree with many of the nodes removed. Notice as well,
that the leaves are not only at the bottom level of the tree but may appear at any level because
any node that has no children is considered a leaf.

COMP1406 - Chapter 9 - Recursion With Data Structures Winter 2014

 - 318 -

How can we represent a recursive data structure like this binary tree ? Well, remember, each
time we break a branch off of a tree, we are left with two smaller trees. So a binary tree itself
is made up of two smaller binary trees. Also, since trees are used to store data, each node of
the tree should store some kind of information. Therefore, we can create a BinaryTree data
structure as follows:

public class BinaryTree {

private String data;
private BinaryTree leftChild;
private BinaryTree rightChild;

}

Here, data represents the information being stored at that node in the tree ... it could be a
String, a number, a Point, or any data structure (i.e., Object) with a bunch of information
stored in it. Notice that the left leftChild and rightChild are actually binary trees
themselves! A tree is therefore considered to be a self-referential (i.e., refers to itself)
data structure and is thus a naturally recursive data structure.

Likely, we will also create some constructors as well as some get/set methods in the class:

public class BinaryTree {

private String data;
private BinaryTree leftChild;
private BinaryTree rightChild;

// A constructor that takes root data only and
// makes a tree with no children (i.e., a leaf)
public BinaryTree(String d) {
 data = d;
 leftChild = null;
 rightChild = null;
}

// A constructor that takes root data as well as two subtrees
// which then become children to this new larger tree.
public BinaryTree(String d, BinaryTree left, BinaryTree right) {
 data = d;
 leftChild = left;
 rightChild = right;
}

// Get methods
public String getData() { return data; }
public BinaryTree getLeftChild() { return leftChild; }
public BinaryTree getRightChild() { return rightChild; }

// Set methods
public void setData(String d) { data = d; }
public void setLeftChild(BinaryTree left) { leftChild = left; }
public void setRightChild(BinaryTree right) { rightChild = right; }

}

COMP1406 - Chapter 9 - Recursion With Data Structures Winter 2014

 - 319 -

To create an instance of BinaryTree, we simply call the constructors. Consider a tree with
the data for each node being a simple string with a letter character as follows:

Here is a test program that creates this tree:

public class BinaryTreeTest {
 public static void main(String[] args) {
 BinaryTree root;

 root = new BinaryTree("A",
 new BinaryTree("B",
 new BinaryTree("C",
 new BinaryTree("D"),
 new BinaryTree("E",
 new BinaryTree("F",
 new BinaryTree("G"),
 new BinaryTree("I")),
 new BinaryTree("H"))),
 new BinaryTree("J",
 new BinaryTree("K",
 null,
 new BinaryTree("L",
 null,
 new BinaryTree("M"))),
 new BinaryTree("N",
 null,
 new BinaryTree("O")))),
 new BinaryTree("P",
 new BinaryTree("Q"),
 new BinaryTree("R",
 new BinaryTree("S",
 new BinaryTree("T"),
 null),
 new BinaryTree("U"))));
 }
}

COMP1406 - Chapter 9 - Recursion With Data Structures Winter 2014

 - 320 -

Example:

When we have such recursive data structures, it is VERY natural to develop recursive
functions and procedures that work with them. For example, consider finding the height of
this tree. It is not natural to use a FOR loop because we have no array or list to loop
through.

How can we write a recursive function that determines the height
of a binary tree ?

We need to determine the base case(s). What is the simplest
tree ? It is one where the children are null (i.e., just a root).
In this case, the height is 0.

Here is the code so far as an instance method in the BinaryTree
class:

public int height() {
 if ((leftChild == null) && (rightChild == null))
 return 0;
}

That was easy. Now, for the recursive step, we need to express the height of the tree in
terms of the smaller trees (i.e., its children). So, if we knew the height of the leftChild and
the height of the rightChild, how can we determine the height of the "whole" tree ?

Well, the height of the tree is one more than the trees beneath it. Assuming that the left
and right sub-trees are equal in height, the recursive definition would be:

h(tree) = 1 + h(tree.leftChild)

However, as you can see from our family tree example, it is possible that the left and right
children will have different heights (i.e., 4 and 3 respectively). So, to find the height of the
whole tree, we need to take the largest of these sub-trees. So here is our recursive
definition:

h(tree) = 1 + maximum(h(tree.leftChild), h(tree.rightChild))

Here is the code:

public int height() {
 if ((leftChild == null) && (rightChild == null))
 return 0;
 return 1 + Math.max(leftChild.height(),
 rightChild.height());
}

COMP1406 - Chapter 9 - Recursion With Data Structures Winter 2014

 - 321 -

However, there is a slight problem. If one of the children is null, but not the other, then the
code will likely try to find the leftChild or rightChild of a null tree ... and this will generate a
NullPointerException in our program. We can fix this in one of two ways:

(1) check for the case where one child is null but not the other
(2) handle null trees as a base case.

Here is the solution for (1):

public int height() {
 if (leftChild == null) {
 if (rightChild == null)
 return 0;
 else
 return 1 + rightChild.height();
 }
 else {
 if (rightChild == null)
 return 1 + leftChild.height();
 else
 return 1 + Math.max(leftChild.height(),
 rightChild.height());
 }
}

The above code either checks down one side of the tree or the other when it encounters a
tree with only one child. If there are no children, it returns 0, and otherwise it takes the
maximum of the two sub-trees as before.

In choice (2) for dealing with null children, it is simpler just to add a base-case for handling
null tree roots. However this requires the addition of extra nodes. That is, instead of
having a child set to null, we can have a special tree node that represents a dummy tree
and simply have all leaves point to that special tree node. In a sense, then, these dummy
tree nodes become the leaves of the tree:

In the above picture, the black circles are BinaryTree objects and the black boxes indicate
that the values of the left and right children are null. So, the example above adds 18
dummy nodes to the tree. The dummy nodes are known as ...

COMP1406 - Chapter 9 - Recursion With Data Structures Winter 2014

 - 322 -

A Sentinel Node (or Sentinel) is a node that represents a path terminator.

It is a specifically designated node that is not a data node of the data structure.

Sentinels are used as an alternative over using null as the path terminator in order to get
one or more of the following benefits: (1) Increased speed of operations; (2) Reduced
algorithmic code size; (3) Increased data structure robustness (arguably).

How do we make a sentinel ? It is simply a regular BinaryTree but has its data value (and
children) set to null as follows:

 new BinaryTree(null, null, null)

If we decide to use sentinel tree nodes, then we need to add a constructor, perhaps a
default constructor and then make changes to the other constructors as necessary to use
sentinel nodes instead of null.

public class BinaryTree2 {

private String data;
private BinaryTree2 leftChild;
private BinaryTree2 rightChild;

// A constructor that makes a Sentinel node
public BinaryTree2() {
 data = null;
 leftChild = null;
 rightChild = null;
}

// This constructor now uses sentinels for terminators instead of null
public BinaryTree2(String d) {
 data = d;
 leftChild = new BinaryTree2();
 rightChild = new BinaryTree2();
}

// This constructor is unchanged
public BinaryTree2(String d, BinaryTree2 left, BinaryTree2 right) {
 data = d;
 leftChild = left;
 rightChild = right;
}

// Get methods
public String getData() { return data; }
public BinaryTree2 getLeftChild() { return leftChild; }
public BinaryTree2 getRightChild() { return rightChild; }

// Set methods
public void setData(String d) { data = d; }
public void setLeftChild(BinaryTree2 left) { leftChild = left; }
public void setRightChild(BinaryTree2 right) { rightChild = right; }

}

COMP1406 - Chapter 9 - Recursion With Data Structures Winter 2014

 - 323 -

Now, we can re-write the test case to replace null with the new Sentinel nodes:

public class BinaryTreeTest2 {
 public static void main(String[] args) {
 BinaryTree2 root;

 root = new BinaryTree2("A",
 new BinaryTree2("B",
 new BinaryTree2("C",
 new BinaryTree2("D"),
 new BinaryTree2("E",
 new BinaryTree2("F",
 new BinaryTree2("G"),
 new BinaryTree2("I")),
 new BinaryTree2("H"))),
 new BinaryTree2("J",
 new BinaryTree2("K",
 new BinaryTree2(),
 new BinaryTree2("L",
 new BinaryTree2(),
 new BinaryTree2("M"))),
 new BinaryTree2("N",
 new BinaryTree2(),
 new BinaryTree2("O")))),
 new BinaryTree2("P",
 new BinaryTree2("Q"),
 new BinaryTree2("R",
 new BinaryTree2("S",
 new BinaryTree2("T"),
 new BinaryTree2()),
 new BinaryTree2("U"))));
 }
}

Now we will see the advantage of doing all this. We can re-write the height() method so
that it does not need to check whether or not the children are null, but simply needs to stop
the recursion if a sentinel node has been reached:

public int height() {
 // Check if this is a sentinel node
 if (data == null)
 return -1;

 return 1 + Math.max(leftChild.height(),
 rightChild.height());
}

Notice that since the sentinel nodes have added an extra level to the tree, when we reach a
sentinel node, we can indicate a -1 value as the height so that the path from the leaf to the
sentinel does not get counted (i.e., it is essentially subtracted afterwards). The code is
MUCH shorter and simpler. This is the advantage of using sentinels ... we do not have to
keep checking for null values in our code.

COMP1406 - Chapter 9 - Recursion With Data Structures Winter 2014

 - 324 -

Example:

How could we write code that gathers the leaves of a tree and returns
them? Again, we will use recursion. In our example, we had 9 leaves.
A leaf is identified as having no children, so whenever we find such a
node we simply need to add it to a collection.

We can use an ArrayList<String> to store the node data. The base
case is simple. If the BinaryTree is a leaf, return an ArrayList with the
single piece of data in it:

public ArrayList<String> leafData() {
 ArrayList<String> result = new ArrayList<String>();

 if (leftChild == null) {
 if (rightChild == null)
 result.add(data);
 }

 return result;
}

Now what about the recursive part ? Well, we would have to check both sides of the root as
we did before, provided that they are not null. Each time, we take the resulting collection of
data and merge it with the result that we have so far. The merging can be done using the
list1.addAll(list2) method in the ArrayList class. This method adds all the elements from
list2 to list1.

Here is the code:

public ArrayList<String> leafData() {
 ArrayList<String> result = new ArrayList<String>();

 if (leftChild == null) {
 if (rightChild == null)
 result.add(data);
 else
 result.addAll(rightChild.leafData());
 }
 else {
 result.addAll(leftChild.leafData());
 if (rightChild != null)
 result.addAll(rightChild.leafData());
 }
 return result;
}

What would this code look like with the Sentinel version of our tree ? Simpler ...

COMP1406 - Chapter 9 - Recursion With Data Structures Winter 2014

 - 325 -

public ArrayList<String> leafData() {
 ArrayList<String> result = new ArrayList<String>();

 if (data != null) {
 if ((leftChild.data == null) && (rightChild.data == null))
 result.add(data);
 result.addAll(leftChild.leafData());
 result.addAll(rightChild.leafData());
 }
 return result;
}

There are many other interesting methods you could write for trees. You will learn more about
this next year.

Example:

As another example, consider the following scenario. You wrap up your
friends gift in a box ... but to be funny, you decide to wrap that box in a box
and that one in yet another box. Also, to fool him/her you throw additional
wrapped boxes inside the main box.

This boxes-within-boxes scenario is recursive. So, we have boxes that are
completely contained within other boxes and we would like to count how
many boxes are completely contained within any given box. Here is an example where the
outer (gray) box has 28 internal boxes:

Assume that each box stores an ArrayList of the boxes inside of it. We would define a
box then as follows:

COMP1406 - Chapter 9 - Recursion With Data Structures Winter 2014

 - 326 -

import java.util.ArrayList;

public class Box {

private ArrayList<Box> internalBoxes;

// A constructor that makes a box with no boxes in it
public Box() {
 internalBoxes = new ArrayList<Box>();
}

// Get method
public ArrayList<Box> getInternalBoxes() { return internalBoxes; }

// Method to add a box to the internal boxes
public void addBox(Box b) {
 internalBoxes.add(b);
}
// Method to remove a box from the internal boxes
public void removeBox(Box b) {
 internalBoxes.remove(b);
}

}

We could create a box with the internal boxes as shown in our picture above as follows:

public class BoxTest {
 public static void main(String[] args) {
 Box mainBox, a, b, c, d, e, f, g, h, i, j;

 mainBox = new Box();

 // Create the left blue box and its contents
 a = new Box(); // box 10
 b = new Box(); // box 11
 b.addBox(new Box()); // box 23
 c = new Box(); // box 4
 c.addBox(a);
 c.addBox(b);
 d = new Box(); // box 12
 d.addBox(new Box()); // box 24
 e = new Box(); // box 5
 e.addBox(d);
 f = new Box(); // box 13
 f.addBox(new Box()); // box 25
 g = new Box(); // box 14
 h = new Box(); // box 15
 h.addBox(new Box()); // box 26
 i = new Box(); // box 6
 i.addBox(f);
 i.addBox(g);
 i.addBox(h);
 j = new Box(); // box 1
 j.addBox(c);
 j.addBox(e);
 j.addBox(i);
 mainBox.addBox(j);

COMP1406 - Chapter 9 - Recursion With Data Structures Winter 2014

 - 327 -

 // Create the top right blue box and its contents
 a = new Box(); // box 7
 a.addBox(new Box()); // box 16
 b = new Box(); // box 8
 b.addBox(new Box()); // box 17
 b.addBox(new Box()); // box 18
 b.addBox(new Box()); // box 19
 b.addBox(new Box()); // box 20
 b.addBox(new Box()); // box 21
 c = new Box(); // box 2
 c.addBox(a);
 c.addBox(b);
 mainBox.addBox(c);

 // Create the bottom right blue box and its contents
 a = new Box(); // box 22
 a.addBox(new Box()); // box 27
 a.addBox(new Box()); // box 28
 b = new Box(); // box 9
 b.addBox(a);
 c = new Box(); // box 3
 c.addBox(b);
 mainBox.addBox(c);
 }
}

Now, how could we write a function to unwrap a box (as well as all boxes inside of it until
there are no more) and return the number of boxes that were unwrapped in total (including
the outer box) ?

Do you understand that this problem can be solved recursively, since a Box is made up of
other Boxes ? The problem is solved similarly to the binary tree example since we can
view the main box as the "root" of the tree while the boxes inside of it would be considered
the children (possibly more than 2).

What is the base case(s) ? What is the simplest box ? Well, a box with no internal boxes
would be easy to unwrap and then we are done and there is a total of 1 box:

public int unwrap() {
 if (numInternalBoxes == 0)
 return 1;
}

This is simple. However, what about the recursive case ? Well, we would have to
recursively unwrap and count all inside boxes. So we could use a loop to go through the
internal boxes, recursively unwrapping them one-by-one and totaling the result of each
recursive unwrap call as follows:

COMP1406 - Chapter 9 - Recursion With Data Structures Winter 2014

 - 328 -

public int unwrap() {
 if (internalBoxes.size() == 0)
 return 1;
 // Count this box
 int count = 1;

 // Count each of the inner boxes
 for (Box b: internalBoxes)
 count = count + b.unwrap();
 return count;
}

Notice how we adjusted the base case. The for loop will attempt to unwrap all internal
boxes recursively. If there are no internal boxes, then the method returns a value of 1 ...
indicating this single box.

Each recursively-unwrapped box has a corresponding count representing the number of
boxes that were inside of it (including itself). These are all added together to obtain the
result.

The above code does not modify
the internalBoxes list for any of
the boxes. That is, after the
function has completed, the box
data structure remains intact
and unmodified. This is known
as a non-destructive solution
because it does not destroy (or
alter) the data structure. In real
life however, the boxes are
actually physically opened and
the contents of each box is
altered so that when completed,
no box is contained in any other
boxes (i.e., the list is
modified/destroyed).

Alternatively, we can obtain the
same solution without a for loop
by allowing the arrayLists to be
destroyed along the way. This
would be called a destructive
solution. Destructive solutions
are often simpler to code and
understand, but they have the
disadvantage of a modified data
structure, which can be
undesirable in some situations.
Here is the process depicting a
portion of such a destructive solution: →

COMP1406 - Chapter 9 - Recursion With Data Structures Winter 2014

 - 329 -

How does this simplify our code ? If we are not worried about keeping the innerBoxes lists
intact, we can simply "bite-off" a piece of our problem by removing one box from the main
box (i.e., taking it out of the list of internal boxes) and then we have two smaller problems:

(1) the original box with one less internal box in it, and

(2) the box that we took out that still needs to be unwrapped.

We can simply unwrap each of these recursively and add their totals together:

public int unwrap2() {
 if (internalBoxes.size() == 0)
 return 1;
 // Remove one internal box, if there is one
 Box insideBox = internalBoxes.remove(0);

 // Unwrap the rest of this box as well as the one just removed
 return this.unwrap2() + insideBox.unwrap2();
}

This is much smaller code now. It is also intuitive when you make the connection to the
real-life strategy for unwrapping the boxes.

Of course, once the method completes ... the main box is empty ... since the boxes were
removed from the array list along the way. If we wanted to ensure that the main box
remained the same, we could put back the boxes after we counted them. This would have
to be done AFTER the recursive calls ... but before the return statement:

public int unwrap3() {
 if (internalBoxes.size() == 0)
 return 1;
 // Remove one internal box, if there is one
 Box insideBox = internalBoxes.remove(0);

 // Unwrap the rest of this box as well as the one just removed
 int result = this.unwrap3() + insideBox.unwrap3();

 // Put the box back in at position 0 (i.e., same order)
 internalBoxes.add(0,insideBox);

 return result;
}

This method is now considered non-destructive because the boxes are restored before
the method completes.

COMP1406 - Chapter 9 - Recursion With Data Structures Winter 2014

 - 330 -

 9.3 A Maze Searching Example

Consider a program in which a rat follow the walls
of a maze. The rat is able to travel repeatedly
around the maze using the “right-hand rule”.
Some mazes may have areas that are
unreachable (e.g., interior rooms of a building with
closed doors). We would like to write a program
that determines whether or not a rat can reach a
piece of cheese that is somewhere else in the
maze.

This problem cannot be solved by simply checking
each maze location one time. It is necessary to
trace out the steps of the rat to determine whether
or not there exists a path from the rat to the cheese.
To do this, we need to allow the rat to try all possible paths by propagating (i.e., spreading)
outwards from its location in a manner similar to that of a fire spreading outwards from a single
starting location.

Unlike a fire spreading scenario, we do not have to process the locations in order of their
distance from the rat’s start location. Instead, we can simply allow the rat to keep walking in
some direction until it has to turn, and then choose which way to turn. When there are no
more places to turn to (e.g., a dead end), then we can return to a previous “crossroad” in the
maze and try a different path.

We will need to define a Maze class that the Rat can move in. Here is a basic class that
allows methods for creating and displaying a maze as well as adding, removing and querying
walls:

public class Maze {
 public static byte EMPTY = 0;
 public static byte WALL = 1;
 public static byte CHEESE = 2;

 private int rows, columns;
 private byte[][] grid;

 // A constructor that makes a maze of the given size
 public Maze(int r, int c) {
 rows = r;
 columns = c;
 grid = new byte[r][c];
 }
 // A constructor that makes a maze with the given byte array
 public Maze(byte[][] g) {
 rows = g.length;
 columns = g[0].length;
 grid = g;
 }

COMP1406 - Chapter 9 - Recursion With Data Structures Winter 2014

 - 331 -

 // Return true if a wall is at the given location, otherwise false
 public boolean wallAt(int r, int c) { return grid[r][c] == WALL; }

 // Return true if a cheese is at the given location, otherwise false
 public boolean cheeseAt(int r, int c) { return grid[r][c] == CHEESE; }

 // Put a wall at the given location
 public void placeWallAt(int r, int c) { grid[r][c] = WALL; }

 // Remove a wall from the given location
 public void removeWallAt(int r, int c) { grid[r][c] = EMPTY; }

 // Put cheese at the given location
 public void placeCheeseAt(int r, int c) { grid[r][c] = CHEESE; }

 // Remove a cheese from the given location
 public void removeCheeseAt(int r, int c) { grid[r][c] = EMPTY; }

 // Display the maze in a format like this ------------>
 public void display() {
 for(int r=0; r<rows; r++) {
 for (int c = 0; c<columns; c++) {
 if (grid[r][c] == WALL)
 System.out.print("W");
 else if (grid[r][c] == CHEESE)
 System.out.print("c");
 else
 System.out.print(" ");
 }
 System.out.println();
 }
 }

 // Return a sample maze corresponding to the one in the notes
 public static Maze sampleMaze() {
 byte[][] grid = { {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1},
 {1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1},
 {1,0,1,1,1,1,1,0,0,0,0,1,1,1,1,1,0,0,1},
 {1,0,1,0,0,0,1,0,0,0,0,1,0,0,0,1,0,0,1},
 {1,0,1,0,0,0,1,1,1,0,0,1,0,0,0,1,0,0,1},
 {1,0,1,0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,1},
 {1,0,1,0,1,0,1,1,1,0,0,0,0,0,0,0,0,0,1},
 {1,0,1,1,1,0,0,0,0,0,0,0,0,1,1,1,1,1,1},
 {1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,1},
 {1,0,1,1,1,1,1,1,0,0,0,1,1,1,0,1,1,0,1},
 {1,0,0,0,0,0,1,0,0,1,0,1,0,0,0,1,0,0,1},
 {1,1,1,0,1,0,1,0,0,1,0,1,0,0,0,1,0,0,1},
 {1,0,1,0,1,1,1,1,1,1,0,1,1,0,1,1,0,0,1},
 {1,0,1,0,1,0,0,0,0,1,0,1,0,0,0,0,0,0,1},
 {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}};
 Maze m = new Maze(grid);
 m.placeCheeseAt(3,12);
 return m;
 }
}

What does the Rat class look like ? It is very simple, for now:

COMP1406 - Chapter 9 - Recursion With Data Structures Winter 2014

 - 332 -

public class Rat {
 private int row, col;

 // Move the Rat to the given position
 public void moveTo(int r, int c) {
 row = r; col = c;
 }
}

Let us see whether or not we can write a recursive function in the Rat class to solve this
problem. The function should take as parameters the maze (i.e., a 2D array). It should return
true or false indicating whether or not the cheese is reachable from the rat’s location.
Consider the method written in a Rat class as follows:

public boolean canFindCheeseIn(Maze m) {
 ...
}

What are the base cases for this problem ? What is the simplest scenario ? To make the
code simpler, we will assume that the entire maze is enclosed with walls … that is … the first
row, last row, first column and last column of the maze are completely filled with walls.

There are two simple cases:

1. If the cheese location is the same as the rat’s location, we are done … the answer is
true.

2. If the rat is on a wall, then it cannot move, so the cheese is not reachable. This is a
kind of error-check, but as you will see later, it will simplify the code.

Here is the code so far:

public boolean canFindCheeseIn(Maze m) {
 // Return true if there is cheese at the rat's (row,col) in the maze
 if (m.cheeseAt(row, col))
 return true;

 // Return false if there is a wall at the rat's (row,col) in the maze
 if (m.wallAt(row, col))
 return false;
}

Notice that the row and col variables are the attributes of the Rat itself.

Now what about the recursion ? How do we “break off” a piece of the problem so that the
problem becomes smaller and remains the same type of problem ? Well, how would you
solve the problem if you were the rat looking for the cheese?

COMP1406 - Chapter 9 - Recursion With Data Structures Winter 2014

 - 333 -

Likely, you would start walking in some direction looking for the
cheese. If there was only one single path in the maze you
would simply follow it. But what do you do when you come to a
crossroads (i.e., a location where you have to make a decision
as to which way to go) ?

Probably, you will choose one of these unexplored hallways,
and then if you find the cheese … great. If you don’t find the
cheese down that hallway, you will likely come back to that spot and try a different hallway. If
you find the cheese down any one of the hallways, your answer is true, otherwise…if all
hallways “came up empty” with no cheese, then you have exhausted all possible routes and
you must return false as an answer for this portion of the maze:

So the idea of “breaking off” a smaller piece of the problem is the same idea as “ruling out” one
of the hallways as being a possible candidate for containing the cheese. That is, each time
we check down a hallway for the cheese and come back, we have reduced the remaining
maze locations that need to be searched.

This notion can be simplified even further through the realization that each time we take a step
to the next location in the maze, we are actually reducing the problem since we will have
already checked that location for the cheese and do not need to re-check it. That is, we can
view each location around the rat as a kind of hallway that needs to be checked. So, the
general idea for the recursive case is as follows:

if (the cheese is found on the path to the left) then return true
otherwise if (the cheese is found on the path straight ahead) then return true
otherwise if (the cheese is found on the path to the right) then return true
otherwise return false

There are only three possible cases, since we do not need to check behind the rat since we
just came from that location. However, the actual code is a little more complicated. We
need, for example, to determine the locations on the “left”, “ahead” and “right” of the rat, but
this depends on which way the rat is facing. There would be the three cases for each of the 4
possible rat-facing directions. A simpler strategy would simply be to check all 4 locations
around the rat’s current location, even though the rat just came from one of those locations.
That way, we can simply check the 4 maze locations in the array around the rat’s current
location.

Here is the idea behind the recursive portion of the code:

COMP1406 - Chapter 9 - Recursion With Data Structures Winter 2014

 - 334 -

move the rat up
if (canFindCheese(maze)) then return true otherwise move the rat back down

move the rat down
if (canFindCheese(maze)) then return true otherwise move the rat back up

move the rat left
if (canFindCheese(maze)) then return true otherwise move the rat back right

move the rat right
if (canFindCheese(maze)) then return true otherwise move the rat back left

return false

The code above has 4 recursive calls. It is possible that all 4 recursive calls are made and
that none of them results in the cheese being found.

However, there is a problem in the above code. With the above code, the rat will walk back
and forth over the same locations many times … in fact … the code will run forever … it will not
stop. The problem is that each time we call the function recursively, we are not reducing the
problem. In fact, each time, we are simply starting a brand new search from a different
location.
The rat needs a way of “remembering” where it has been
before so that it does not “walk in circles” and continue
checking the same maze locations over and over again.
To do this, we need to leave a kind of “breadcrumb trail” so
that we can identify locations that have already been
visited.
We can leave a “breadcrumb” at a maze location by
changing the value in the array at that row and column with
a non-zero & non-wall value such as -1. Then, we can
treat all -1 values as if they are walls by not going over
those locations again.

We can add code to the Maze class to do this:

public static byte BREAD_CRUMB = -1;

// Mark the given location as visited
public void markVisited(int r, int c) {
 grid[r][c] = BREAD_CRUMB;
}

// Mark the given location as not having been visited
public void markUnVisited(int r, int c) {
 grid[r][c] = EMPTY;
}

// Return true of the location has been visited
public boolean hasBeenVisited(int r, int c) {
 return grid[r][c] == BREAD_CRUMB;
}

COMP1406 - Chapter 9 - Recursion With Data Structures Winter 2014

 - 335 -

Now we can adjust our code to avoid going to any "visited locations" and to ensure that each
location is visited. We can also put in the code to do the recursive checks now as follows:

public boolean canFindCheeseIn(Maze m) {
 // Return true if there is cheese at the rat's (row,col) in the maze
 if (m.cheeseAt(row, col))
 return true;

 // Return false if there is a wall at the rat's (row,col) in the maze
 if (m.wallAt(row, col) || m.hasBeenVisited(row, col))
 return false;

 // Mark this location as having been visited
 m.markVisited(row, col);

 // Move up in the maze and recursively check
 moveTo(row-1, col);
 if (canFindCheeseIn(m))
 return true;

 // Move back down and then below in the maze and recursively check
 moveTo(row+2, col);
 if (canFindCheeseIn(m)) return true;

 // Move back up and then left in the maze and recursively check
 moveTo(row-1, col-1);
 if (canFindCheeseIn(m)) return true;

 // Move back and then go right again in the maze and recursively check
 moveTo(row, col+2);
 if (canFindCheeseIn(m)) return true;

 // We tried all directions and did not find the cheese, so quit
 return false;
}

Notice that we are now returning with false if the location that the rat is at is a wall or if it is a
location that has already been travelled on. Also, we are setting the rat’s current maze
location to -1 so that we do not end up coming back there again.

After running this algorithm, the maze will contain many -1 values. If we wanted to use the
same maze and check for a different cheese location, we will need to go through the maze and
replace all the -1 values with 0 so that we can re-run the code. This recursive function is
therefore considered to be destructive. Destructive functions are not always desirable since
they affect the outcome of successive function calls.

However, there is a way to fix this right in the code itself. Notice that we are setting the maze
location to -1 just before the recursive calls. This is crucial for the algorithm to work.
However, once the recursive calls have completed, we can simply restore the value to 0 again
by placing the following just before each of the return calls:

m.markUnVisited(row, col);

COMP1406 - Chapter 9 - Recursion With Data Structures Winter 2014

 - 336 -

For example:

// Move up in the maze and recursively check
moveTo(row-1, col);
if (canFindCheeseIn(m)) {

moveTo(row+1, col); // Move back down before marking
 m.markUnVisited(row, col); // Unmark the visited location
 return true;
}

The code above should now do what we want it to do.

We need to test the code. To help debug the code it would be good to be able to display
where the rat is and where the breadcrumbs are.

We can modify the display() method in the Maze class to take in the rat's location and do
this as follows:

public void display(int ratRow, int ratCol) {
 for(int r=0; r<rows; r++) {
 for (int c = 0; c<columns; c++) {
 if ((r == ratRow) && (c == ratCol))
 System.out.print("r");
 else if (grid[r][c] == WALL)
 System.out.print("W");
 else if (grid[r][c] == CHEESE)
 System.out.print("c");
 else if (grid[r][c] == BREAD_CRUMB)
 System.out.print(".");
 else
 System.out.print(" ");
 }
 System.out.println();
 }
}

We can then use the following test program:

public class MazeTest {
 public static void main(String[] args) {
 Maze m = Maze.sampleMaze();
 Rat r = new Rat();
 r.moveTo(1,1);
 m.display(1,1);
 System.out.println("Can find cheese ... " +
 r.canFindCheeseIn(m));
 }
}

Also, by inserting m.display(row,col); at the top of your recursive method, you can watch
as the rat moves through the maze:

COMP1406 - Chapter 9 - Recursion With Data Structures Winter 2014

 - 337 -

In the above case, the cheese was not found after an exhaustive search.

COMP1406 - Chapter 9 - Recursion With Data Structures Winter 2014

 - 338 -

This page was intentionally left blank.

Chapter 10

Exception Handling

What is in This Chapter ?

It is never possible to predict accurately what the user of your software will do. While your
program is running, situations often arise in which some unexpected error occurs, perhaps due
to unexpected or corrupt data. We have to deal with these problems gracefully in our code so
that our code is robust, produces valid/correct results and does not crash. In this set of notes,
we will discuss Exceptions, which are JAVA's way of handling problems that occur in your
program. You will find out how to handle standard problems that occur in your code by using
the Exception classes and how to define your own types of Exceptions.

COMP1406 - Chapter 10 - Exception Handling Winter 2014

 - 340 -

 10.1 Simple Debugging

We use the term bug in computer science to denote a problem with our program.
Unfortunately, much of our programming time may be spent on finding errors/bugs in the code
that we write. This can be VERY time consuming and frustrating. Sometimes we may fix one
bug only to find that another one appears. There are basically 3 types of errors (i.e., bugs):

1. Compile Errors occur when your code will not compile. They are

the easiest to find since the compiler catches them and informs us of the
problem. Because JAVA is strongly typed, many “misunderstandings”
between method parameters and variables are eliminated. Once fixed,
compiler errors do not come back. Often though ... one error (such as a
missing semicolon) can lead to a whole slew of compile errors.

2. Runtime Errors cannot be determined at compile time. They "pop up"

when you run your code and usually represent a serious problem (e.g.,
divide by zero, stack overflow, out of memory). These errors may
sometimes require a re-design of your code (e.g., to reduce memory
usage). But often, the problem is less serious such as trying to send
messages to a null object (i.e., NullPointerException) or accessing past

available array boundaries (i.e., ArrayOutOfBoundsException)

3. Logic Errors pertain to the logistics of your program such as computing

wrong values or forgetting to handle certain “special situations” in your code.
JAVA cannot detect nor explain these errors. Sometimes the logic error
could lead to a runtime error which JAVA can then catch, but it certainly
cannot explain them. Logic errors are often VERY difficult to find since the
program could “appear” to be working. Rigorous testing is required to find
them. Logic errors typically require you to do some debugging.

As programmers, we spend much of our time maintaining code and doing what is known as ...

Debugging is the process of "figuring out errors" in your program and "fixing" them.

Actually, finding the error is usually the hard part.
Fixing it is often (but certainly not always) easy. One of
the most common debugging techniques is that of using
"print" statements in your code. When there are many
logic errors, this is usually the simplest way to debug.

If your program is producing wrong answers, you can use print statements to display
intermediate calculations as follows …

COMP1406 - Chapter 10 - Exception Handling Winter 2014

 - 341 -

public double computeMortgagePayment() {
 double monthlyRate = this.getInterestRate() / 12;
 System.out.println("monthly rate = " + monthlyRate); // debug

 double amortizeRate = (1-Math.pow(1+monthlyRate, this.numMonths*-1));
 System.out.println("amortize rate = " + amortizeRate); // debug
 return this.getHousePrice() * monthlyRate / amortizeRate;
}

From the intermediate results, you should be able to narrow down where you went wrong.
Print statements can also be used to determine whether or not a certain point in your code is
being reached or if a certain method is being called. (this is especially useful when
programming in C):

public double computeMortgagePayment() {
 System.out.println("*** Got Here 1");
 double monthlyRate = this.getInterestRate() / 12;
 double amortizeRate = (1-Math.pow(1+monthlyRate, this.numMonths*-1));

 System.out.println("*** Got Here 2");

 return this.getHousePrice() * monthlyRate / amortizeRate;
}

By doing this, we can get an idea as to where our program has stopped working and also find
out if JAVA is calling the methods that we think it is calling. Print statements can also be used
to show the order that certain pieces of code are evaluated in: (this is especially useful when
using timer events or when multiple processes are running)

public void deposit(float anAmount) {
 System.out.println("depositing $" + anAmount);
 this.balance = this.balance + anAmount;
}

public boolean withdraw(float anAmount) {
 System.out.println("withdrawing $" + anAmount);
 if (anAmount <= this.balance) {
 this.balance = this.balance - anAmount;
 return true;
 }
 return false;
}

In order to simplify the print statements, we can often print out whole objects …

COMP1406 - Chapter 10 - Exception Handling Winter 2014

 - 342 -

public static void Test1(){
 BankAccount account = new BankAccount("Jim");
 account.deposit(120.53f);
 account.withdraw(20);
 account.deposit(400);
 account.withdraw(829.31f);
 System.out.println(account);
}

As long as we have implemented an informative toString() method for our objects, we should
get descriptive output.

Although this debugging technique is effective, your code may become littered with
System.out.println statements which need to eventually be removed before you ship out your
code. However, the "print statement" remains one of the most popular and simplest methods
for debugging and this technique will usually help us narrow down the error that occurred.

In JAVA, it seems that the most common errors occur because we forgot to initialize something
or if unexpected data was given to us. In some cases we can write additional code to "expect
and handle" bad input data. This is called error-checking and it is the basis for Exceptions
in JAVA. We will not discuss debugging any further in this course, but will instead focus on
how to deal gracefully with unexpected errors that may arise in our programs.

 10.2 Exceptions

There are many chances for errors to occur in a program when the
programmer has no control over information that is entered into the program
from the keyboard, files, or from other methods/classes/packages etc... Even
worse ... when such errors occur, it is not always clear how to handle the error.

Exceptions are errors that occur in your program.

They are JAVA’s way of telling you that something has gone wrong in your program. When an
exception occurs, JAVA forces us to do one of the following:

1. Handle the exception (we must know when to do this and what to do), or
2. Declare that we want someone else to handle it.

Exception Handling is the strategy of handling errors which are generated

during program execution

We handle exceptions in order to allow our program to “quit gracefully" as opposed to having
JAVA spew out a bunch of exception messages.

When should we handle exceptions ? When we do not know how to deal with the error … or
when it does not make sense to handle the error.

COMP1406 - Chapter 10 - Exception Handling Winter 2014

 - 343 -

For example, in large software systems, an error may occur outside of the code that we wrote
(i.e., in someone else's code). We may not even have access to this code in order to fix the
error. Perhaps the error occurred in some module that was developed by another team of
programmers. Sometimes, it is an advantage to anticipate some possible errors and then we
can allow our program to handle the error gracefully. However, it is sometimes the case that
we do not know what to do at all when the error occurs. If our code can easily predict a
particular kind of error, then there is no need to use Exceptions, since we can deal with the
code on our own.

Furthermore, in software components such as methods, libraries, and classes that are likely to
be widely used, it is unclear as to what should be done when the error occurs. Our decision
as to how we handle the error may or may not be the best choice for the software as a whole.

To help you understand, consider this "real world" example in which an unexpected situation
occurs. Suppose that you ask your friend to go to McDonald's to get you a Big Mac and
Fries. You expect him to come back with food for you.

However, what could go wrong ?

1. he crashes his car and never arrives at McDonald's
2. he gets there, but the place is burnt down
3. he places his order but finds out there are no Big Macs

left anymore
4. he places the order but does not have enough money
5. he gets the food and drops/spills it on the ground on the

way back

As you can see, much can go wrong … but what would your friend do in each of these
situations ?

1. he informs you that he cannot handle your request
2. he either returns informing you of the problem, or drives to a different McDonald's or

nearby restaurant
3. he improvises and gets you two single hamburgers in the place of the Big Mac
4. he gets you an incomplete order
5. he tries to save money and simply wipes it off ;) ... or perhaps purchases replacements.

As you may well understand by now, we need to think along these lines. We need to always
ask ourselves:

• What can go wrong ?
• Should I handle it ?
• How do I handle it ?

As it turns out, JAVA has a nice mechanism for handling errors in a consistent manner. We
don’t always need to use this mechanism in our code, but there are advantages:

• Improves clarity of programs for large pieces of software
• Can be more efficient than "home-made" error checking code

COMP1406 - Chapter 10 - Exception Handling Winter 2014

 - 344 -

• They apply to multi-threaded (more than one program) applications
• Programmers save time by using predefined Exceptions

In JAVA, exceptions are thrown (i.e., generated) by either:

• the JVM automatically
• your code at any time

Exceptions are always caught
(i.e., handled) by one of these:

• your own code (i.e., graceful decision)
• someone else's code (i.e., delegate the responsibility)
• the JVM (i.e., program halts)

JAVA has many predefined exceptions, and we can also create our own. In JAVA,
Exceptions are objects, so each one is defined in its own class. The Exception classes are
arranged in a hierarchy, and their position in the hierarchy can affect the way that they are
handled. There are also Error objects in JAVA … which represent more serious errors that
may occur in your program which would require the program to stop altogether since they are
considered unrecoverable:

Object

Exception

VirtualMachineError

Error

…

StackOverflowError

OutOfMemoryError
RuntimeException

NullPointerException

ArithmeticException

IndexOutOfBoundsException

ClassNotFoundException

DataFormatException

…

…

Throwable

…

COMP1406 - Chapter 10 - Exception Handling Winter 2014

 - 345 -

In regards to the Error classes, generally your application should not try to catch them. There
are many subclasses of Error, here are just a few:

• VirtualMachineError
o StackOverflowError (e.g., recursion too deep)
o OutOfMemoryError (e.g., can't create any more objects)

• LinkageError
o NoClassDefFoundError (e.g., no class with given name)

o ClassFormatError (e.g., class is incompatible)

The Exception class and its subclasses indicate a "less serious"
problem. The exceptions are either "checked" or "unchecked" by the compiler. “Checked”
exceptions are pre-defined types of errors that the JAVA compiler looks for in your code and
forces you to deal with them before it will compile your code. Generally, your applications will
need to deal with these types of Exceptions.

Here are just a few of the "checked" exceptions that we might need to catch in our code:

• ClassNotFoundException (e.g., tried to load an undefined class)

• CloneNotSupportedException (e.g., cannot make copy of object)

• DataFormatException (e.g., bad data conversion)

• IllegalAccessException (e.g., access modifiers prevent access)

• InstantiationException (e.g., problem creating an object)

• IOException
o EOFException (e.g., end of file exception)

o FileNotFoundException (e.g., cannot find a specified file)

Here are a few of the "unchecked" exceptions. Although you can check for (i.e., detect and
handle) these types of errors in your code, normally you will not do so. Instead, you will try to
write your code so that such exceptions cannot happen. The JAVA compiler will not force you
to handle these errors before compiling:

• RuntimeException
o ArithmeticException (e.g., bad computation such as divide by 0)

o ArrayStoreException (e.g., storing wrong type of object in array)

o ClassCastException (e.g., cannot typecast one class to another)

o IndexOutOfBoundsException (e.g., gone outside array bounds)

o NoSuchElementException (e.g., cannot find any more elements)

o NullPointerException (e.g., attempt to send message to null)

o NumberFormatException (e.g., trouble converting to a number)

Recall that when exception handling you must either (a) handle the
exception yourself, or (b) declare that someone else will handle it.

In the 2nd case, we are actually delegating the exception-handling
responsibility to someone else. We do this when we do not want to handle
the error situation in our code. We actually delegate the responsibility to the "calling method"
(i.e., the method that called our method must handle the error). We do this by adding a throws
clause to our method declaration as follows …

COMP1406 - Chapter 10 - Exception Handling Winter 2014

 - 346 -

public void openFile(String fileName) throws java.io.FileNotFoundException {
 // code for method
}

The throws keyword appears at the end of a method signature and is followed by an
Exception type. When compiling this method, JAVA will check all methods that call this
openFile() method to make sure that they deal with the FileNotFoundException in some way
(i.e., either by catching it, or declaring that they too will throw it, thereby delegating the
responsibility further up the chain of method calls).

You can actually specify multiple exception types with the throws clause by listing the
exceptions separated by commas:

void convertFile(String fileName) throws java.io.FileNotFoundException,
 java.lang.ClassNotFoundException,
 java.io.IOException {
 // code for method
}

So, to clarify things a little, the throws clause is part of a method’s
declaration that is used to tell the compiler which exceptions the
method may throw back to its caller. The throws clause is
required if the code in the method "may" generate, but not handle,
a particular type of exception. You should think of the throws
clause as a “sign” that the method holds up in order to tell the
whole world publicly that the code in that method may generate the
specified exception.

For example, if we consider the openFile() method mentioned
earlier, it declares to everyone in its signature that it may generate a
FileNotFoundException at any time. So, when we call the openFile() method from some
other method, say getCustomerInfo(), then the getCustomerInfo() method "may also"
declare that it throws the exception (if, for example, it did not want to handle it):

public void getCustomerInfo() throws java.io.FileNotFoundException {
 // do something
 this.openFile("customer.txt");
 // do something
}

Here, if the exception is thrown while in the openFile() method, the getCustomerInfo()
method will stop and it will then pass on the exception to "its" caller.
The responsibility may be repeatedly delegated in this manner. It is as if everyone ignores the
error (like a hot potato). Nobody explicitly handles the error. The JVM will eventually catch it
and halt the program:

COMP1406 - Chapter 10 - Exception Handling Winter 2014

 - 347 -

At any time during this process however, any method may catch the exception and handle it.
Once caught, propagation of the exception stops.

A method may catch an exception by specifying try and catch blocks. A "block" here refers to
a sequence of JAVA statements (i.e., code defined between braces { }).

The "try block" represents the code for which you want to handle an Exception. We precede
this block with the try keyword. Similarly, the "catch block" represents the code that handles
a particular type of exception. We precede these blocks with the catch keyword.

COMP1406 - Chapter 10 - Exception Handling Winter 2014

 - 348 -

A catch block always appears right after a try block as follows:

...
try {
 // some code that may cause an exception
}
catch (FileNotFoundException ex) {
 // some code that handles the exception
}
...

Notice that the catch block requires a parameter which indicates the type of error to be
caught. This parameter can be accessed and used within the catch block (more on this
later). The getCustomerInfo() method in our previous example can decide to handle the
exception through use of try/catch blocks as follows:

public void getCustomerInfo() {
 try {
 this.openFile("customer.txt");
 }
 catch (java.io.FileNotFoundException ex) {
 System.out.println("Error: File not found"); // Handle the error here
 }
}

Notice that the method no longer needs to "throw" the exception any further (i.e., no throws
clause), since it caught and handled it.

More than one catch block may be used to catch one-of-many possible exceptions. We
simply list all catch blocks one after another:

public void getCustomerInfo() {
 try {
 // do something that may cause an Exception
 }
 catch (java.io.FileNotFoundException ex) {
 // Handle the error here
 }
 catch (NullPointerException ex) {
 // Handle the error here
 }
 catch (ArithmeticException ex) {
 // Handle the error here
 }
}

Consider what happens when an exception occurs within a try block:

COMP1406 - Chapter 10 - Exception Handling Winter 2014

 - 349 -

Here, an exception of type
ExceptionType2 occurs as
a result of the doSomething()
method call. JAVA will
immediately stop running the
code in the try block and
search through the catch
blocks for one whose
parameter type matches the
exception that occurred (i.e.,
for one that takes
ExceptionType2 parameter
or a superclass of
ExceptionType2). When
one is found, it executes the
code within that catch block
and then continues to the
point in the program
immediately following the
catch blocks.

Note that JAVA does NOT
go back to the try block
once it completes the
catch block. So any code
remaining in the try block
after the location where
the exception had occurred
is not evaluated as shown
here å

If no match is found when
JAVA looks for a matching
catch block, then the entire
getCustomerInfo() method
halts and the method throws
the same exception to the
method that called this
getCustomerInfo()
method and that method will then have to deal with the exception in some way.

Does NOT go
back to the try

block again

public void getCustomerInfo() {
 try {
 ...
 doSomething();
 ...
 }
 catch (ExceptionType1 ex) {
 ...
 }
 catch (ExceptionType2 ex) {
 ...
 }
 catch (ExceptionType3 ex) {
 ...
 }
 // continue with program
 ...
}

public void getCustomerInfo() {
 try {
 ...
 doSomething();
 ...
 }
 catch (ExceptionType1 ex) {
 ...
 }

 catch (ExceptionType2 ex) {
 ...
 }

 catch (ExceptionType3 ex) {
 ...
 }
 // continue with program
 ...
}

1. Exception
 occurs

2. Match
 is found

4. Program
 continues

3. Catch block
 is executed

COMP1406 - Chapter 10 - Exception Handling Winter 2014

 - 350 -

Since Exceptions are objects and are organized in a class hierarchy, then one Exception
may be a more specific kind of another one. That is, Exceptions in general may have
superclasses and subclasses. So, when JAVA goes looking through the catch blocks for a
match, it will look for the first match that either matches the Exception class exactly or
matches one of its superclasses. It is important to note that only one catch block (the one
that "first" matches the exception) will ever be evaluated. That means we need to be careful,
because the order of the catch blocks is important when we list them.

Consider the following portion of the JAVA class hierarchy:

The code below is problematic. Do you know why ?

public void getCustomerInfo() {
 try {
 // do something that may cause an exception
 }
 catch (Exception ex){
 // Catches all exceptions
 }
 catch (java.io.IOException ex){
 // Never reached since above catches all
 }
 catch (java.io.FileNotFoundException ex){
 // Never reached since above two are caught first
 }
}

Notice that we arranged the catch blocks so that the more general Exception is caught first.
But this is bad because ALL exceptions are subclasses of Exception. That means,
regardless of what type of exception occurs in the try block, the "first" catch block will
ALWAYS match and therefore ALWAYS be evaluated. The remaining to catch blocks will
never be evaluated. In fact, the JAVA compiler will detect this and tell you that the last two
catch blocks are "unreachable". To fix the problem, we can simply reverse the order of the
catch blocks.

An additional finally block may be optionally used after a set of catch blocks:

Exception

IOException

FileNotFoundException

Object

COMP1406 - Chapter 10 - Exception Handling Winter 2014

 - 351 -

try {
 ...
}
catch (java.io.IOException ex){ ... }
catch (Exception ex){ ... }
finally {
 // Code to release resources
}

The finally block is used to release resources (e.g., closing files). It is always executed. That
is, if no exception occurs, it is executed immediately after the try block, even if the try block
has a return statement in it ! (i.e., it is executed just before returning). If an exception does
occur, the finally block is executed immediately after the catch block is executed. If an
exception occurs and no catch block matches, the finally block is evaluated before the
method halts with the thrown exception.

Let us now look at what we can do inside our catch blocks. While inside the catch block, the
following messages can be sent to the incoming Exception (i.e., to the parameter of a catch
block):

• getMessage() - returns a String describing the exception. Typically, these

strings are short descriptions of the error.

• printStackTrace() - displays the sequence of method calls that led up to

the exception. This is what you see on the screen when the JVM catches
an exception. This is very useful for debugging purposes.

So we can do many different things inside catch blocks. Here are some
examples:

try {
 ...
}
catch (ExceptionType1 ex) {
 System.out.println("Hey! Something bad just happened!");
}
catch (ExceptionType2 ex) {
 System.out.println(ex.getMessage());
}
catch (ExceptionType3 ex) {
 ex.printStackTrace();
}

COMP1406 - Chapter 10 - Exception Handling Winter 2014

 - 352 -

Consider the stack trace for this code:

import java.util.ArrayList;

public class MyClass {
 public static void doSomething(ArrayList<Integer> anArray){
 doAnotherThing(anArray);
 }
 public static void doAnotherThing(ArrayList<Integer> theArray){
 System.out.println(theArray.get(0)); // Error is generated
 }
 public static void main(String[] args){
 doSomething(null);
 }
}

When we run this code, we get the following stack trace printed to the console window:

java.lang.NullPointerException
 at MyClass.doAnotherThing(MyClass.java:7)
 at MyClass.doSomething(MyClass.java:4)
 at MyClass.main(MyClass.java:10)

Notice that the stack trace indicates:

1. the kind of Exception that was generated
2. the method that generated the exception and
3. the line number at which the exception occurred

 10.3 Examples of Handling Exceptions

Let us now look at how we can handle (i.e., catch) a standard Exception in
JAVA. Consider a program that reads in two integers and divides the first one
by the second and then shows the answer. We will assume that we want the
number of times that the second number divides evenly into the first (i.e., ignore
the remainder). What problems can occur ? Well, we may get invalid data or we
may get a divide by zero error. Let us look at how we would have done this
previously …

COMP1406 - Chapter 10 - Exception Handling Winter 2014

 - 353 -

import java.util.Scanner;

public class ExceptionTestProgram1 {
 public static void main(String[] args) {
 int number1, number2, result;
 Scanner keyboard;

 keyboard = new Scanner(System.in);
 System.out.println("Enter the first number:");
 number1 = keyboard.nextInt();

 System.out.println("Enter the second number:");
 number2 = keyboard.nextInt();

 System.out.print(number2 + " goes into " + number1);
 System.out.print(" this many times: ");

 result = number1 / number2;
 System.out.println(result);
 }
}

Here is the output if 143 and 24 are entered:

Enter the first number:
143
Enter the second number:
24
24 goes into 143 this many times: 5

What if we now enter 143 and ABC ?

Enter the first number:
143
Enter the second number:
ABC
Exception in thread "main" java.util.InputMismatchException
 at java.util.Scanner.throwFor(Scanner.java:840)
 at java.util.Scanner.next(Scanner.java:1461)
 at java.util.Scanner.nextInt(Scanner.java:2091)
 at java.util.Scanner.nextInt(Scanner.java:2050)
 at ExceptionTestProgram1.main(ExceptionTestProgram1.java:13)

This is not a pleasant way for your program to end. By default, when exceptions occur, they
actually print out the stack trace (i.e., the sequence of method calls that led to the exception).
That is what we are seeing here. It is ugly, but good for debugging purposes.

Notice what happened. The first line of the stack trace indicates that an
InputMismatchException has occurred.

COMP1406 - Chapter 10 - Exception Handling Winter 2014

 - 354 -

The second line tells us that the error occurred at line 840 of the Scanner.java code from a
method called throwFor(). This was not code that we wrote … it is pre-existing code from
JAVA’s Scanner class. The error, however, is not in line 840 of the Scanner class code.
That is just where the error surfaced.

By looking further down the stack trace, we can gain insight as to why our code caused the
Exception to occur. We just need to look down the stack trace until we find a method that we
wrote. Notice that most of the successive method calls were in the Scanner class. However,
right at the bottom we notice that the main method was called.

As it turns out, JAVA is telling us that the error occurred as a result of line 13 in our
ExceptionTestProgram1. That is the code that tries to obtain the next integer from the
Scanner. When it attempts to do this, we get an “Input Mismatch” because we entered ABC
when we ran the program … and ABC cannot be converted to an integer.

So now that we know WHY the error occurred, how can we gracefully handle the error ? We
certainly do not want to see the stack trace message !!!

In order to handle the entering of bad data (e.g., ABC instead of an integer) we would need to
do one of two things:

1. either modify the code in the Scanner class to detect and gracefully handle the error, or
2. catch the InputMismatchException within our code and gracefully handle the error.

Since it is not usually possible nor recommended to copy and start modifying the available
JAVA class libraries, our best choice would be to catch and handle the error from our own
code. We will have to "look for" (i.e., catch) the InputMismatchException by placing
try/catch blocks in the code appropriately as follows:

try {
 System.out.println("Enter the first number:");
 number1 = keyboard.nextInt();

 System.out.println("Enter the second number:");
 number2 = keyboard.nextInt();
}
catch (java.util.InputMismatchException e) {
 System.out.println("Those were not proper integers! I quit!");
 System.exit(-1);
}
System.out.print(number2 + " goes into " + number1);
...

Notice in the catch block that we display an error message when the error occurs and then we

do: System.exit(-1);. This is a quick way to halt the program completely.

The value of -1 is somewhat arbitrary but when a program stops we need to supply some kind
of integer value. Usually the value is a special code that indicates what happened. Often,
programmers will use -1 to indicate that an error occurred.

COMP1406 - Chapter 10 - Exception Handling Winter 2014

 - 355 -

Once we incorporate the try block, JAVA indicates to us the following compile errors:

variable number2 might not have been initialized
variable number1 might not have been initialized

It is referring to this line:

System.out.print(number2 + " goes into " + number1);

Here we are using the number1 and number2 variables. However, because the try block
may generate an error, JAVA is telling us that there is a chance that we will never assign
values to these variables (i.e., they might not be initialized) and so we might obtain wrong data.
JAVA does not like variables that have no values … so it is forcing us to assign a value to
these two variables. It is perhaps the most annoying type of compile error in JAVA, but
nevertheless we must deal with it. The simplest way is to just assign a value of 0 to each of
these variables when we declare them. Here is the updated version:

import java.util.Scanner;

public class ExceptionTestProgram2 {
 public static void main(String[] args) {
 int number1 = 0, number2 = 0, result;
 Scanner keyboard;

 keyboard = new Scanner(System.in);
 try {
 System.out.println("Enter the first number:");
 number1 = keyboard.nextInt();

 System.out.println("Enter the second number:");
 number2 = keyboard.nextInt();
 }
 catch (java.util.InputMismatchException e) {
 System.out.println("Those were not proper integers! I quit!");
 System.exit(-1);
 }
 System.out.print(number2 + " goes into " + number1);
 System.out.print(" this many times: ");

 result = number1 / number2;
 System.out.println(result);
 }
}

COMP1406 - Chapter 10 - Exception Handling Winter 2014

 - 356 -

If we test it again with 143 and 24 as before, it still works the same. However, now when
tested with 143 and ABC, here is the output:

Enter the first number:
143
Enter the second number:
ABC
Those were not proper integers! I quit!

What if we enter ABC as the first number ?

Enter the first number:
ABC
Those were not proper integers! I quit!

Woops! It appears that our error message is not grammatically correct anymore. Perhaps we
should change it to "Invalid integer entered!" … this should be clear enough.

Now let us test the code with values 12 and 0:

Enter the first number:
12
Enter the second number:
0
0 goes into 12 this many times: Exception in thread "main"
java.lang.ArithmeticException: / by zero
 at ExceptionTestProgram2.main(ExceptionTestProgram2.java:23)

JAVA has detected that we tried to divide a number by zero … a big “no no” in the world of
mathematics. We can handle the ArithmeticException by adding additional try/catch
blocks around line 23 of our code:

try {
 result = number1 / number2;
}
catch (ArithmeticException e) {
 System.out.println("Second number is 0, cannot do division!");
 System.exit(-1);
}
 System.out.println(result);

We can merge the two try blocks into one if we want to as follows…

COMP1406 - Chapter 10 - Exception Handling Winter 2014

 - 357 -

import java.util.Scanner;

public class ExceptionTestProgram3 {
 public static void main(String[] args) {
 int number1 = 0, number2 = 0, result = 0;
 Scanner keyboard;

 keyboard = new Scanner(System.in);
 try {
 System.out.println("Enter the first number:");
 number1 = keyboard.nextInt();

 System.out.println("Enter the second number:");
 number2 = keyboard.nextInt();

 result = number1 / number2;
 }
 catch (java.util.InputMismatchException e) {
 System.out.println("Invalid integer entered!");
 System.exit(-1);
 }
 catch (ArithmeticException e) {
 System.out.println("Second number is 0, cannot do division!");
 System.exit(-1);
 }
 System.out.print(number2 + " goes into " + number1);
 System.out.println(" this many times: " + result);
 }
}

Now when we enter 12 and 0 as input, we get the appropriate message:

Second number is 0, cannot do division!

How can we adjust our code to repeatedly prompt for integers until valid ones were entered ?
We would need a while loop since we do not know how many times to keep asking.
Here is how we could do this to get a single number …

int number1 = 0;
boolean gotANumber = false;

while (!gotANumber) {
 try {
 System.out.println("Enter the first number");
 number1 = new Scanner(System.in).nextInt();
 gotANumber = true;
 }
 catch (java.util.InputMismatchException e) {
 System.out.println("Invalid integer. Please re-enter");
 }
}

COMP1406 - Chapter 10 - Exception Handling Winter 2014

 - 358 -

This code would repeatedly ask for a number until it was a valid integer. However, there is a
slight problem with the Scanner class. When the error is generated in the Scanner class
code due to the invalid integer being entered, the Scanner object is messed up and is no
longer ready read integers using nextInt(). The easiest way to fix this is to re-assign a new
Scanner object to the keyboard variable when the error occurs. Here is the completed code:

import java.util.Scanner;

public class ExceptionTestProgram4 {
 public static void main(String[] args) {
 int number1 = 0, number2 = 0, result = 0;
 boolean gotANumber = false;
 Scanner keyboard;

 keyboard = new Scanner(System.in);
 while(!gotANumber) {
 try {
 System.out.println("Enter the first number");
 number1 = keyboard.nextInt();
 gotANumber = true;
 }
 catch (java.util.InputMismatchException e) {
 System.out.println("Invalid integer. Please re-enter");
 keyboard = new Scanner(System.in);
 }
 }
 gotANumber = false;
 while(!gotANumber) {
 try {
 System.out.println("Enter the second number");
 number2 = keyboard.nextInt();
 gotANumber = true;
 }
 catch (java.util.InputMismatchException e) {
 System.out.println("Invalid integer. Please re-enter");
 keyboard = new Scanner(System.in);
 }
 }
 try {
 result = number1 / number2;
 System.out.print(number2 + " goes into " + number1);
 System.out.println(" this many times: " + result);
 }
 catch (ArithmeticException e) {
 System.out.println("Second number is 0, cannot do division!");
 }
 }
}

COMP1406 - Chapter 10 - Exception Handling Winter 2014

 - 359 -

Here are the test results:

Enter the first number
what
Invalid integer. Please re-enter
Enter the first number
help me
Invalid integer. Please re-enter
Enter the first number
ok, ok, here goes
Invalid integer. Please re-enter
Enter the first number
143
Enter the second number
did you say number 2 ?
Invalid integer. Please re-enter
Enter the second number
40
40 goes into 143 this many times: 3

 10.4 Creating and Throwing Your Own Exceptions

You may throw an exception in your code at any time if you want to inform everyone that an
error occurred in your code. Thus, you do not need to handle the error in your code, you can
simply delegate (i.e., transfer) the responsibility to whoever calls your method.

Exceptions are thrown with the throw statement. Basically, when we want to generate an
exception, we create a new Exception object by calling one of its constructors, and then
throw it as follows:

throw new java.io.FileNotFoundException();
throw new NullPointerException();
throw new Exception();

Methods that throw these exceptions, must declare that they do
so in their method declarations, using the throws clause (as we
have seen before):

public void yourMethod() throws anException {
 ...
}

COMP1406 - Chapter 10 - Exception Handling Winter 2014

 - 360 -

You may even catch an exception, partially handle it and then throw it again:

public void yourMethod() throws Exception {
 try {
 ...
 }
 catch (Exception ex){
 ... // partially handle the exception here
 throw ex; // then throw it again
 }
}

Catching and then throwing an exception again is useful, for example, if we want to:

• just keep an internal "log" of errors that were generated,
• attach additional information to the exception message, or
• delay the passing on of the exception to the calling method

It is also possible to create "your own" types of exceptions. This would allow you to catch
specific types of problems in your code that JAVA would normally ignore. To make your own
exceptions, you simply need to create a subclass of an existing exception. If you are unsure
where to put it in the hierarchy, you should use Exception as the superclass.

Here are the steps to making your own Exception:

1. choose a meaningful class/exception name (e.g., WrongPasswordException)
2. specify the superclass under which this exception will reside (e.g., Exception)
3. optionally provide a constructor (for simplicity, this constructor may just call the super

constructor, passing in a string indicating the reason for the error).

Here is an example of a newly defined exception called MyExceptionName. We define it just
as we would any other class and then save it to a file called MyExceptionName.java. It must
also be compiled before it can be used in your program …

COMP1406 - Chapter 10 - Exception Handling Winter 2014

 - 361 -

public class MyExceptionName extends Exception {
 public MyExceptionName() {
 super("Some string explaining the exception");
 }
}

Consider an example of how we could force the user to type in their name (i.e., not leave it
blank). We could do the following:

import java.util.Scanner;

public class MyExceptionTestProgram {
 public static void main(String[] args) {
 String name = "";
 boolean gotValidName = false;
 Scanner keyboard = new Scanner(System.in);

 while (!gotValidName) {
 System.out.println("Enter your name");
 name = keyboard.nextLine();
 if (name.length() > 0)
 gotValidName = true;
 else
 System.out.println("Error: Name must not be blank");
 }
 System.out.println("Hello " + name);
 }
}

Here would be the output of such a program:

Enter your name

Error: Name must not be blank
Enter your name
Mark
Hello Mark

Notice how the “error” is detected … we simply check the data for an empty string and use
if/else statements to determine whether or not the error has occurred and then display an
appropriate message.

In some programs, however, we may not want to print a message to the screen. For example,
we may want to bring up a dialog box. In fact, we may not know exactly what to do, as it
depends on our user interface as well as the context within our application. In such cases
(i.e., when we are not sure what to do), we could simply generate an exception and let the
method that called our code decide what to do.
Let us generate a MissingNameException when the user does not enter a name. We can
do this by starting with our own exception definition as follows:

COMP1406 - Chapter 10 - Exception Handling Winter 2014

 - 362 -

public class MissingNameException extends Exception {
 public MissingNameException() {
 super("Name is blank");
 }
}

We need to save and compile that code in its own file. Now, how do we generate the
exception ? We simply call throw new MissingNameException() at the right spot in the

code:

import java.util.Scanner;

public class MyExceptionTestProgram2 {
 public static void main(String[] args) throws MissingNameException {
 String name = "";
 boolean gotValidName = false;
 Scanner keyboard = new Scanner(System.in);

 while (!gotValidName) {
 System.out.println("Enter your name");
 name = keyboard.nextLine();
 if (name.length() <= 0)
 throw new MissingNameException();
 gotValidName = true;
 }
 System.out.println("Hello " + name);
 }
}

Notice that we must declare in our method that we now “throw” the exception. If we run the
code as before, we can see this new exception being generated:

Enter your name

Exception in thread "main" MissingNameException: Name is blank
 at MyExceptionTestProgram2.main(MyExceptionTestProgram2.java:12)

Congratulations to us … we have successfully created and generated our own exception.
How though can we handle the exception ? So that we may use the same example, let us
adjust the code a little by creating a method that will get the user input for us as follows …

public String getName() throws MissingNameException {
 String name = new Scanner(System.in).nextLine();
 if (name.length() <= 0)
 throw new MissingNameException();
 return name;
}

COMP1406 - Chapter 10 - Exception Handling Winter 2014

 - 363 -

The above method gets the name from the user and returns it … unless the name is blank …
in which case it generates the MissingNameException.

Now we should catch the error from our main program as follows:

import java.util.Scanner;

public class MyExceptionTestProgram3 {

 // Method to get the name from the user
 public static String getName() throws MissingNameException {
 String name = new Scanner(System.in).nextLine();
 if (name.length() <= 0)
 throw new MissingNameException();
 return name;
 }

 // Main method to test out the MissingNameException
 public static void main(String[] args) {
 String name = "";
 boolean gotValidName = false;

 while (!gotValidName) {
 System.out.println("Enter your name");
 try {
 name = getName();
 gotValidName = true;
 }
 catch (MissingNameException ex) {
 System.out.println("Error: Name must not be blank");
 }
 }
 System.out.println("Hello " + name);
 }
}

The resulting output is the same as before (i.e., same as MyExceptionTestProgram).

As another example, let us take another look at the BankAccount object again ... more
specifically ... consider this withdraw() method:

public boolean withdraw(float anAmount) {
 if (anAmount <= this.balance) {
 this.balance -= anAmount;
 return true;
 }
 return false;
}

When the user tries to withdraw more money than is actually in the account ... nothing
happens. Since the method returns a boolean, we can always check for this error where we
call the method:

COMP1406 - Chapter 10 - Exception Handling Winter 2014

 - 364 -

public static void main(String[] args) {
 BankAccount b = new BankAccount("Bob");
 b.deposit(100);
 b.deposit(500.00f);

 if (!b.withdraw(25.00f))
 System.out.println("Error withdrawing money from account");
 if (!b.withdraw(189.45f))
 System.out.println("Error withdrawing money from account");
 b.deposit(100.00f);
 if (!b.withdraw(1000000))
 System.out.println("Error withdrawing money from account");
}

This form of error checking works fine, but it clearly clutters up the code! Let us see how we
can make use of an Exception. We will create a WithdrawalException object. Where would
it go in the Exception hierarchy ? Probably right under the Exception class again, since
there are no existing bank-related exception classes in JAVA. Here is the exception:

public class WithdrawalException extends Exception {
 public WithdrawalException() {
 super("Error making withdrawal");
 }
}

Now how do we throw the exception from within the withdraw() method ?
Here is how we do it …

public void withdraw(float anAmount) throws WithdrawalException {
 if (anAmount <= this.balance)
 this.balance -= anAmount;
 else
 throw new WithdrawalException();
}

Note that we must also instruct the compiler that this method may throw a
WithdrawalException by writing this as part of the method declaration. The addition of this
simple statement will force all methods that call the withdraw() method to deal with the
exception.

Also notice that we no longer need the boolean return type for the withdraw() method since
its purpose was solely for error checking. Now that we have the exception being generated,
this becomes our new form of error checking.

Now how do we change the code that calls the withdraw() method ? We just need to enclose
our withdrawal code in a try block:

COMP1406 - Chapter 10 - Exception Handling Winter 2014

 - 365 -

public static void main(String[] args) {
 BankAccount b = new BankAccount("Bob");
 try {
 b.deposit(100);
 b.deposit(500.00f);
 b.withdraw(25.00f);
 b.withdraw(189.45f);
 b.deposit(100.00f);
 b.withdraw(1000000);
 } catch (WithdrawalException ex) {
 System.out.println("Error withdrawing money");
 }
}

Notice how much simpler and cleaner the calling code becomes. Be aware however, that if
one error occurs early within the try block, none of the remaining code in the try block gets
evaluated!!! So an error in the first withdrawal attempt would prevent the two other
withdrawals and deposit being made on the account from happening. If we did not want this
behavior, we would need to make a separate try/catch block for each of the 3 withdraw()
method calls.

We can make our code even simpler by ignoring the error. To do this we would have to
indicate in the main() method that the WithdrawalException may occur as follows …

public static void main(String[] args) throws WithdrawalException {
 BankAccount b = new BankAccount("Bob");
 b.deposit(100);
 b.deposit(500.00f);
 b.withdraw(25.00f);
 b.withdraw(189.45f);
 b.deposit(100.00f);
 b.withdraw(1000000);
}

If we do this, however, then the program will stop and quit when the first
WithdrawalException occurs.

We can actually add more information to our exceptions. For example, there may be many
reasons why we cannot withdraw from a BankAccount. The bank account …

• may not have enough money in it,
• may not allow withdrawals (e.g., some kinds of SavingsAccounts), or
• may not have sufficient funds to cover transaction fees associated with the account

We do not need to make different types of exceptions, but can instead supply more information
when the WithdrawException is generated. The easiest way to do this is to modify the
constructor in our WithdrawalException class that takes a String parameter to describe the
error:

COMP1406 - Chapter 10 - Exception Handling Winter 2014

 - 366 -

public class WithdrawalException extends Exception {
 public WithdrawalException(String description) {
 super(description);
 }
}

We can then use this new constructor instead by supplying different explanations as to why the
error occurred. For example, the SuperSavings account may have the following withdraw()
method:

public void withdraw(float anAmount) throws WithdrawalException {
 throw new WithdrawalException("Withdrawals not allowed from this account");
}

whereas the PowerSavings account may have this method …

public void withdraw(float anAmount) throws WithdrawalException {
 if (anAmount > this.balance)
 throw new WithdrawalException("Insufficient funds in account to
 withdraw specified amount");
 if (anAmount + WITHDRAW_FEE > this.balance) {
 throw new WithdrawalException("Not enough money to cover
 transaction fee");
 this.balance -= anAmount + WITHDRAW_FEE;
}

So, as can easily be seen, we can provide additional explanatory information for the user when
an exception does occur. Furthermore, we can do this with a single exception class (i.e., we
do not need to make a subclass of WithdrawalException for each specific situation).

We can extract this “additional explanation” from the exception by sending the getMessage()
message to the exception within our catch blocks:

public static void main(String[] args) {
 PowerSavings p = new PowerSavings("Bob");
 SuperSavings s = new SuperSavings("Betty");
 try {
 p.deposit(100);
 s.deposit(500.00f);
 p.withdraw(25.00f);
 p.withdraw(189.45f);
 s.deposit(100.00f);
 s.withdraw(1000000);
 } catch (WithdrawalException ex) {
 System.out.println(ex.getMessage());
 }
}

In this example, the catch block catches any errors for both bank accounts.

Chapter 11

Saving and Loading Information

What is in This Chapter ?

In computer science, all data eventually gets stored onto storage devices such as hard drives,
diskettes, USB flash drives, CDs, DVDs, etc... This set of notes explains how to save
information from your program to a file that sits on one of these backup devices. It also
discusses how to load that information back into your program. The saving/loading of data
from files can be done using different formats. We discuss here the notion of text vs. binary
formats. Note as well that the techniques presented here also apply to sending and receiving
information from Streams (e.g., networks). We will look at the way in which Stream objects
are used to do data I/O in JAVA. We will also look at how to use ObjectStreams to read/write
entire objects easily and finally investigate the File class which is useful for querying files and
folders on your computer.

COMP1406 - Chapter 11 - Saving and Loading Information Winter 2014

 - 368 -

 11.1 Introduction to Files and Streams

File processing is very important since eventually, all data must be stored externally from the
machine so that it will not be erased when the power is turned off. Here are some of the terms
related to file processing:

In JAVA, we can store information from our various objects by extracting their attributes and
saving these to the file. To use a file, it must be first opened. When done with a file, it MUST
be closed. We use the terms read to denote getting information from a file and write to
denote saving information to a file. The contents of a file is ultimately reduced to a set of
numbers from 0 to 255 called bytes.

In JAVA, files are represented as Stream objects. The idea is that
data “streams” (or flows) to/from the file … similar to the idea of
streaming video that you may have seen online. Streams are
objects that allow us to send or receive information in the form of
bytes. The information that is put into a stream, comes out in the
same order.

It is similar to those scrolling signs where the letters scroll from right
to left, spelling out a sentence:

Field
A group of characters that
reflects the value of a
single object attribute
(e.g., name, phone
number, age, gender).

Record
A composition of several
related fields. (e.g.,
represents group of all
attribute values for a
particular object such as
a single employee’s info).

File
A group of related records
(e.g., all employees in a
company, products at a
store)

Database
A group of possibly
unrelated files (e.g., police
database containing all
criminals, DMV records,
phone records)

COMP1406 - Chapter 11 - Saving and Loading Information Winter 2014

 - 369 -

Streams are actually very general in that they provide a way to send or receive information to
and from:

• files
• networks
• different programs
• any I/O devices (e.g., console and keyboard)

When we first start executing a JAVA program, 3 streams are automatically created:

• System.in // for inputting data from the keyboard
• System.out // for outputting data to the screen
• System.err // for outputting error messages to the screen

In fact, there are many stream-related classes in JAVA. We will look at a few and how they
are used to do file I/O. The various Streams differ in the way that data is “entered into” and
“extracted from” the stream. As with Exceptions, Streams are organized into different
hierarchies. JAVA contains four main stream-related hierarchies for transferring data as binary
bytes or as text bytes:

It is interesting to note that there is no common Stream class from which these main classes
inherit. Instead, these 4 abstract classes are the root of more specific subclass hierarchies.
A rather large number of classes are provided by JAVA to construct streams with the desired
properties. We will examine just a few of the common ones here.

Typically I/O (i.e., input/output) is a bottleneck in many applications. That is, it is very time
consuming to do I/O operations when compared to internal operations. For this reason,
buffers are used. Buffered output allows data to be collected for output before it is actually
sent to the output device. Only when the buffer gets full does the actual data get sent. This
reduces the amount of actual output operations, but each output operation would usually send
more data. (Note: The flush() command can be sent to buffered streams in order to empty the buffer and

cause the data to be sent "immediately" to the output device. Input data can also be buffered.)

InputStream

Object

OutputStream Reader Writer

Binary Text (e.g., ASCII)

COMP1406 - Chapter 11 - Saving and Loading Information Winter 2014

 - 370 -

By the way, what is System.in and System.out exactly ? We can determine their respective
classes with the following code:

System.out.print("System.in is an instance of ");
System.out.println(System.in.getClass());
System.out.print("System.out is an instance of ");
System.out.println(System.out.getClass());

This code produces the following output:

System.in is an instance of class java.io.BufferedInputStream
System.out is an instance of class java.io.PrintStream

So we have been using these streams for displaying information and getting information from
the user through the keyboard. We will now look at how the classes are arranged in the
different stream sub-hierarchies.

 11.2 Reading and Writing Binary Data

First, let us examine a portion of JAVA's OutputStream sub-hierarchy:

The streams in this sub-hierarchy are responsible for outputting binary data. That is, data
which is in the form of bytes or data types. OutputStreams have a write() method that allows
us to output a single byte of data at a time.

To open a file for binary writing, we can create an instance of FileOutputStream using one of
the following constructors:

FileOutputStream

Object

OutputStream

…

DataOutputStream

ObjectOutputStream FilterOutputStream

PrintStream …

Output bytes
to a file

System.out is
one of these

Output primitives
to a file

Output objects
to a file

COMP1406 - Chapter 11 - Saving and Loading Information Winter 2014

 - 371 -

new FileOutputStream(String fileName);
new FileOutputStream(String fileName, boolean append);

The first constructor opens a new file output stream with that name. If one exists already with
that name, it is overwritten (i.e., erased). The second constructor allows you to determine
whether you want an existing file to be overwritten or appended to. If the file does not exist, a
new one with the given name is created. If the file already exists prior to opening then the
following rules apply:

• if append = false the existing file's contents is discarded and the file will be overwritten.
• if append = true the new data to be written to the file is appended to the end of the file.

We can output simple bytes to a FileOutputStream by using the write() method, which takes
a single byte (i.e., a number from 0 to 255) as follows:

FileOutputStream out;

out = new FileOutputStream("myFile.dat");
out.write('H');
out.write(69);
out.write(76);
out.write('L');
out.write('O');
out.write('!');
out.close();

This code outputs the characters HELLO! to a file called "myFile.dat". The file will be
created (if not existing already) in the current directory/folder (i.e., the directory/folder that your
JAVA program was run from). Alternatively, you can specify where to create the file by
specifying the whole path name instead of just the file name as follows:

FileOutputStream out;
out = new FileOutputStream("F:\\My Documents\\myFile.dat");

Notice the use of "two" backslash characters within the String constant (because the backslash
character is a special character which requires it to be preceded by a backslash ... just like \n
is used to create a new line).

Using this strategy, we can output either characters or positive integers in the range from 0 to
255. Notice in the code that we closed the file stream when done. This is important to
ensure that the operating system (e.g., Windows 7) releases the file handles correctly.

When working with files in this way, two exceptions may occur:

• opening a file for reading or writing may generate a java.io.FileNotFoundException
• reading or writing to/from a file may generate a java.io.IOException

COMP1406 - Chapter 11 - Saving and Loading Information Winter 2014

 - 372 -

You should handle these exceptions with appropriate try/catch blocks:

import java.io.*;

public class FileOutputStreamTestProgram {
 public static void main(String[] args) {
 try {
 FileOutputStream out;
 out = new FileOutputStream("myFile.dat");
 out.write('H'); out.write(69);
 out.write(76); out.write('L');
 out.write('O'); out.write('!');
 out.close();

 } catch (FileNotFoundException e) {
 System.out.println("Error: Cannot open file for writing");
 } catch (IOException e) {
 System.out.println("Error: Cannot write to file");
 }
 }
}

Since all streams are a part of the java.io package we need to import them.

The code above allows us to output any data as long as it is in byte format. This can be
tedious. For example, if we have the integer 7293901 and we want to output it, we have a few
choices:

• break up the integer into its 7 digits and output these digits one at a time (very tedious)
• output the 4 bytes corresponding to the integer itself (recall that an int is stored as 4

bytes)

Either way, these are not fun. Fortunately, JAVA provides a DataOutputStream class which
allows us to output whole primitives (e.g., ints, floats, doubles) as well as whole Strings to a
file! Here is an example of how to use it to output information from a BankAccount object …

COMP1406 - Chapter 11 - Saving and Loading Information Winter 2014

 - 373 -

import java.io.*;

public class DataOutputStreamTestProgram {
 public static void main(String[] args) {
 try {
 BankAccount aBankAccount;
 DataOutputStream out;

 aBankAccount = new BankAccount("Rob Banks");
 aBankAccount.deposit(100);

 out = new DataOutputStream(new FileOutputStream("myAcc.dat"));
 out.writeUTF(aBankAccount.getOwner());
 out.writeInt(aBankAccount.getAccountNumber());
 out.writeFloat(aBankAccount.getBalance());
 out.close();

 } catch (FileNotFoundException e) {
 System.out.println("Error: Cannot open file for writing");
 } catch (IOException e) {
 System.out.println("Error: Cannot write to file");
 }
 }
}

The DataOutputStream acts as a “wrapper” class around the FileOutputStream. It takes
care of breaking our primitive data types and Strings into separate bytes to be sent to the
FileOutputStream.

There are methods to write each of the primitives as well as Strings:

writeUTF(String aString)
writeInt(int anInt)
writeFloat(float aFloat)
writeLong(long aLong)
writeDouble(double aDouble)

writeShort(short aShort)
writeBoolean(boolean aBool)
writeByte(int aByte)
writeChar(char aChar)

The output from a DataOutputStream is not very nice to look at (i.e., it is in binary format).
The myAcc.dat file would display as follows if we tried to view it with Windows Notepad:

Rob Banks † BÈ

This is the binary representation of the data, which usually takes up less space than text files.
The disadvantage of course, is that we cannot make sense of the data if we try to read it with
our eyes as text. However, rest assured that the data is saved properly.

Let us now examine how we could read that information back in from the file with a different
program. To start, we need to take a look at the InputStream sub-hierarchy as follows …

COMP1406 - Chapter 11 - Saving and Loading Information Winter 2014

 - 374 -

Notice that it is quite similar to the OutputStream hierarchy. In fact, its usage is also very
similar. We can read back in the byte data from our file by using FileInputStream now as
follows:

import java.io.*;

public class FileInputStreamTestProgram {
 public static void main(String[] args) {
 try {
 FileInputStream in = new FileInputStream("myFile.dat");
 while(in.available() > 0)
 System.out.print(in.read() + " ");
 in.close();

 } catch (FileNotFoundException e) {
 System.out.println("Error: Cannot open file for reading");
 } catch (IOException e) {
 System.out.println("Error: Cannot read from file");
 }
 }
}

Notice that we now use read() to read in a single byte from the file. Notice as well that we can
use the available() method which returns the number of bytes available to be read in from the
file (i.e., the file size minus the number of bytes already read in).

The code reads the data back in from our file (i.e., the characters HELLO!) and outputs their
ASCII (i.e., byte) values to the console:

72 69 76 76 79 33

FileInputStream

Object

InputStream

…

DataInputStream

ObjectInputStream FilterInputStream

BufferedInputStream …

Input bytes
from a file

System.in is
one of these

Input primitives
from a file

Input objects
from a file

COMP1406 - Chapter 11 - Saving and Loading Information Winter 2014

 - 375 -

Try changing in.read() to (char)in.read() (i.e., type-cast the byte to a char) … what happens ?

That was fairly simple ... but what about getting back those primitives ? You guessed it! We
will use DataInputStream:

import java.io.*;

public class DataInputStreamTestProgram {
 public static void main(String[] args) {
 try {
 BankAccount aBankAccount;
 DataInputStream in;

 in = new DataInputStream(new FileInputStream("myAccount.dat"));

 String name = in.readUTF();
 int acc = in.readInt();
 float bal = in.readFloat();

 aBankAccount = new BankAccount(name, bal, acc);
 System.out.println(aBankAccount);
 in.close();

 } catch (FileNotFoundException e) {
 System.out.println("Error: Cannot open file for reading");
 } catch (IOException e) {
 System.out.println("Error: Cannot read from file");
 }
 }
}

Notice that we re-create a new BankAccount object and "fill-it-in" with the incoming file data.
Note, that in order for the above code to compile, we would need to write a public constructor
for the BankAccount class that takes an owner name, balance and account number (i.e.,
previously, in our BankAccount class, we had no way of specifying the accountNumber
since it was set automatically) …

BankAccount(String initName, float initBal, int num) {
 ownerName = initName;
 accountNumber = num;
 balance = initBal;
}

As with the output streams, there are methods to read in the other primitives:

String readUTF()
int readInt()
float readFloat()
long readLong()
double readDouble()

short readShort()
boolean readBoolean()
int readByte()
char readChar()

COMP1406 - Chapter 11 - Saving and Loading Information Winter 2014

 - 376 -

 11.3 Reading and Writing Text Data

Here is the Writer class sub-hierarchy which is used for writing text data to a stream:

Notice that there are 3 main classes we will use for writing characters, lines of characters
and general objects to a text file. When objects are written to the text file, the toString()
method for the object is called and the resulting String is saved to the file.

We can output (in text format) to a file using simply the print() or println() methods with the
PrintWriter class as follows …

import java.io.*;

public class PrintWriterTestProgram {
 public static void main(String[] args) {
 try {
 BankAccount aBankAccount;
 PrintWriter out;

 aBankAccount = new BankAccount("Rob Banks");
 aBankAccount.deposit(100);

 out = new PrintWriter(new FileWriter("myAccount2.dat"));

 out.println(aBankAccount.getOwner());
 out.println(aBankAccount.getAccountNumber());
 out.println(aBankAccount.getBalance());
 out.close();

 } catch (FileNotFoundException e) {
 System.out.println("Error: Cannot open file for writing");
 } catch (IOException e) {
 System.out.println("Error: Cannot write to file");
 }
 }
}

BufferedWriter

Object

Writer

… PrintWriterOutputStreamWriter

Output lines of
text to a file

Output objects to a

file using toString()

FileWriter

Output characters
to a file

COMP1406 - Chapter 11 - Saving and Loading Information Winter 2014

 - 377 -

BufferedReader

Object

Reader

…

FileReader

InputStreamReader

Input lines of text
from a file

Input characters
from a file

Wow! Outputting text to a file is as easy as outputting it to the console window ! But what
does it look like ? If we opened the file with Windows Notepad, we would notice that the result
is a “pleasant looking” text format:

Rob Banks
100000
100.0

In fact, we can actually write any object using the println() method. JAVA will use that
object's toString() method. So if we replaced this code:

 out.println(aBankAccount.getOwner());
 out.println(aBankAccount.getAccountNumber());
 out.println(aBankAccount.getBalance());

with this code:

 out.println(aBankAccount);

we would end up with the following saved to the file:

Account #100000 with $100.0

So it actually does behave just like the System.out console. We would need to be careful
though, because you will notice that the BankAccount’s toString() method in the example
above did not display the owner’s name. So the file does not record that owner’s name and
therefore we could never read that name back in again … it would be lost forever. Notice as
well how the PrintWriter wraps the FileWriter class just as the DataOutputStream wrapped
the FileOutputStream.

It is also easy to read back in
the information that was
saved to a text file. Here is
the hierarchy of classes for
reading text files å

Notice that we can only read
in characters and lines of
characters from the text file,
but NOT general objects.
We will see later how we
can re-build read-in
objects.

Most of the time, we will make
use of the BufferedReader
class by using the readLine() method as follows:

COMP1406 - Chapter 11 - Saving and Loading Information Winter 2014

 - 378 -

import java.io.*;

public class BufferedReaderTestProgram {
 public static void main(String args[]) {
 try {
 BankAccount aBankAccount;
 BufferedReader in;

 in = new BufferedReader(new FileReader("myAccount2.dat"));
 String name = in.readLine();
 int acc = Integer.parseInt(in.readLine());
 float bal = Float.parseFloat(in.readLine());

 aBankAccount = new BankAccount(name, bal, acc);
 System.out.println(aBankAccount);
 in.close();

 } catch (FileNotFoundException e) {
 System.out.println("Error: Cannot open file for reading");
 } catch (IOException e) {
 System.out.println("Error: Cannot read from file");
 }
 }
}

Note the use of "primitive data type" wrapper classes to read data types. We could have used
the Scanner class here to simplify the code:

import java.io.*;
import java.util.*; // Needed for use of Scanner and NoSuchElementException

public class BufferedReaderTestProgram2 {
 public static void main(String[] args) {
 try {
 BankAccount aBankAccount;

 Scanner in = new Scanner(new FileReader("myAccount2.dat"));
 String name = in.nextLine();
 int acc = in.nextInt();
 float bal = in.nextFloat();
 aBankAccount = new BankAccount(name, bal, acc);
 System.out.println(aBankAccount);
 in.close();

 } catch (FileNotFoundException e) {
 System.out.println("Error: Cannot open file for reading");
 } catch (NoSuchElementException e) {
 System.out.println("Error: EOF encountered, file may be corrupt");
 } catch (IOException e) {
 System.out.println("Error: Cannot read from file");
 }
 }
}

Notice here that we now catch a NoSuchElementException. This is how the Scanner
detects the end of the file. The main advantage of using this Scanner class is that we do not
have to use any wrapper classes to convert the input strings to primitives.

COMP1406 - Chapter 11 - Saving and Loading Information Winter 2014

 - 379 -

 11.4 Reading and Writing Whole Objects

So far, we have seen ways of saving and loading bytes and characters to a file. Also, we
have seen how DataOutputStream/DataInputStream and PrintWriter/BufferedReader
classes can make our life simpler since they deal with larger (more manageable) chunks of
data such as primitives and Strings. We also looked at how we can save a whole object (i.e.,
a BankAccount) to a file by extracting its attributes and saving them individually. Now we will
look at an even simpler way to save/load a whole object to/from a file using the
ObjectInputStream and ObjectOutputStream classes:

These classes allow us to save or load entire JAVA objects with one method call, instead of
having to break apart the object into its attributes. Here is how we do it:

import java.io.*;

public class ObjectOutputStreamTestProgram {
 public static void main(String args[]) {
 try {
 BankAccount aBankAccount;
 ObjectOutputStream out;

 aBankAccount = new BankAccount("Rob Banks");
 aBankAccount.deposit(100);

 out = new ObjectOutputStream(new FileOutputStream("myAcc.dat"));
 out.writeObject(aBankAccount);
 out.close();

 } catch (FileNotFoundException e) {
 System.out.println("Error: Cannot open file for writing");
 } catch (IOException e) {
 System.out.println("Error: Cannot write to file");
 }
 }
}

Wow! It is VERY easy to write out an object. We simply supply the object that we want to
save to the file as a parameter to the writeObject() method. Notice that the
ObjectOutputStream class is a wrapper around the FileOutputStream. That is because
ultimately, the object is reduced to a set of bytes by the writeObject() method, which are then
saved to the file.

Object

OutputStream

ObjectOutputStream

InputStream

ObjectInputStream

COMP1406 - Chapter 11 - Saving and Loading Information Winter 2014

 - 380 -

Serialization is the process of breaking down an object into bytes.

Thus, when an object is saved to a file, it is automatically de-constructed into bytes, these
bytes are then saved to a file, and then the bytes are read back in later and the object is re-
constructed again. This is all done automatically by JAVA, so we don’t have to be too
concerned about it.

In order to be able to save an object to a file using the ObjectOutputStream, the object must
be serializable (i.e., able to be serialized…or reduced to a set of bytes). To do this, we need
to inform JAVA that our object implements the java.io.Serializable interface as follows …

public class BankAccount implements java.io.Serializable {
 ...
}

This particular interface does not actually have any methods within it that we need to
implement. Instead, it merely acts as a “flag” that indicates your permission for this object to
be serialized. It allows a measure of security for our objects (i.e., only serializable objects
are able to be broken down into bytes and sent to files or over the network).

Most standard JAVA classes are serializable by default and so they can be saved/loaded
to/from a file in this manner. When allowing our own objects to be serialized, we must make
sure that all of the “pieces” of the object are also serializable. For example, assume that our
BankAccount is defined as follows:

public class BankAccount implements java.io.Serializable {
 Customer owner;
 float balance;
 int accountNumber;
 ...
}

In this case, since owner is not a String but a Customer object, then we must make sure that
Customer is also Serializable:

public class Customer implements java.io.Serializable {
 ...
}

We would need to then check whether Customer itself uses other
objects and ensure that they too are serializable … and so on.
To understand this, just think of a meat grinder. If some hard
marbles were placed within out meat, we cannot expect it to come
out through the grinder since they cannot be reduced to a smaller
form. Similarly, if we have any non-serializable objects in our original object, we cannot
properly serialize the object.

COMP1406 - Chapter 11 - Saving and Loading Information Winter 2014

 - 381 -

So what does a serialized object look like anyway ? Here is what the file would look like from
our previous example if opened in Windows Notepad:

¬í sr BankAccount“ÈSòñúä I accountNumberF balanceL ownert
Ljava/lang/String;xp † BÈ t Rob Banks

Weird … it seems to be a mix of binary and text. As it turns out, JAVA saves all the attribute
information for the object, including their types and values, as well as some other information.
It does this in order to be able to re-create the object when it is read back in.

The object can be read back in by using the readObject() method in the ObjectInputStream
class as follows:

import java.io.*;

public class ObjectInputStreamTestProgram {
 public static void main(String[] args) {
 try {
 BankAccount aBankAccount;
 ObjectInputStream in;

 aBankAccount = new BankAccount("Rob Banks");
 aBankAccount.deposit(100);

 in = new ObjectInputStream(new FileInputStream("myAcc.dat"));
 aBankAccount = (BankAccount)in.readObject();

 System.out.println(aBankAccount);
 in.close();

 } catch (ClassNotFoundException e) {
 System.out.println("Error: Object'c class does not match");
 } catch (FileNotFoundException e) {
 System.out.println("Error: Cannot open file for writing");
 } catch (IOException e) {
 System.out.println("Error: Cannot read from file");
 }
 }
}

Note, that the ObjectInputStream wraps the FileInputStream. Also, notice that once read in,
the object must be type-casted to the appropriate type (in this case BankAccount). Also, if
there is any problem trying to re-create the object according to the type of object that we are
loading, then a ClassNotFoundException may be generated, so we have to handle it.
Finally, in order for this to work, you must also make sure that your object (i.e., BankAccount)
has a zero-parameter constructor, otherwise an IOException will occur when JAVA tries to
rebuild the object. Although not shown in our example above, you may also make use of the
available() method to determine whether or not the end of the file has been reached.

COMP1406 - Chapter 11 - Saving and Loading Information Winter 2014

 - 382 -

Although this method is extremely easy to use, there is a potentially disastrous disadvantage.
The object that is saved to the file using this strategy is actually saved in binary format which
depends on the class name, the object’s attribute types and names as well
as the method signatures and their names. So if you change the class
definition after it has been saved to the file, it may not be able to be read
back in again !!! Some changes to the class do not cause problems such
as adding an attribute or changing its access modifiers.
So as a warning, when saving objects to a file using this strategy, you
should always keep a backed-up version of all of your code so that you will
be able to read these files with this backed-up code in the future.

 Supplemental Information (Disguising Serialized Data)

You can actually write your own methods for serializing your objects. One
reason for doing this may be to encrypt some information beforehand (such as a
password). You can decide which parts of the object will be serialized and which parts will not.
You can declare any object attribute as being transient (which means that it will not be
serialized) as follows:

 private transient String password;

This will tell JAVA that you do not want the password saved automatically upon serialization.
That way you can write your own method to encrypt it before it is serialized.

To do this, you would need to write two methods called writeObject(ObjectOutputStream)
and readObject(ObjectInputStream). These methods will automatically be called by JAVA
upon serialization and they override the default writing behavior. In fact, there are
defaultWriteObject() and defaultReadObject() methods which do the default serialization
behavior (i.e., the serializing before you decided to do your own). Here are examples of what
you can do:

public void writeObject(ObjectOutputStream out) throws IOException {
 out.defaultWriteObject();
 // ... do extra stuff here to append to end of file
 out.writeObject(myField.encrypt());
}
public void readObject(ObjectInputStream in) throws IOException,
 ClassNotFoundException {
 in.defaultReadObject();
 // ... do extra stuff here to read from end of file
 myField = ((myFieldType)in.readObject()).decrypt();
}

COMP1406 - Chapter 11 - Saving and Loading Information Winter 2014

 - 383 -

 11.5 Saving and Loading Example

Let us now consider a real example that shows how to save and load information from an
Autoshow which contains Car objects. The Autoshow and Car classes will be defined as
shown below:

public class Car {
 private String make;
 private String model;
 private String color;
 private int topSpeed;
 private boolean has4Doors;

 public Car() {
 this("","","",0,false);
 }

 public Car(String mak, String mod, String col, int tsp, boolean fd) {
 make = mak;
 model = mod;
 color = col;
 topSpeed = tsp;
 has4Doors = fd;
 }

 public String toString() {
 String s = color;
 if (has4Doors)
 s += " 4-door ";
 else
 s += " 2-door ";
 return (s + make + " " + model +
 " with top speed " + topSpeed + "kmph");
 }
}

import java.util.ArrayList;

public class Autoshow {
 private String name;
 private ArrayList<Car> cars;

 public Autoshow(String n) {
 name = n;
 cars = new ArrayList<Car>();
 }
 public void addCar(Car c) {
 cars.add(c);
 }
 public void showCars() {
 for (Car c: cars)
 System.out.println(c);
 }
}

COMP1406 - Chapter 11 - Saving and Loading Information Winter 2014

 - 384 -

We will save the autoshow’s information in a text file so that we can print it out or read it easily.
So, we will be using the PrintWriter and BufferedReader classes. We need to decide how to
format the text in the file. We will need to save the name of the autoshow as well as the
individual cars in the show. For each car, the file should show the make, model, color,
topSpeed and has4Doors. Perhaps we will separate the cars by a blank line to indicate that
one car's data ends and another's begins as follows:

AutoRama 2009

Porsche
959
Red
240
false

Pontiac
Grand-Am
White
160
true

 ... etc ...

This seems like a reasonable way to save the autoshow so that the data is readable in a text
program. You will notice that each Car object is saved the same way. Hence, it would be
good to start by writing some methods that can save/load Car objects.

We can write the following method in the Car class to begin…

public void saveTo(PrintWriter aFile) {
 ...
}

Notice that the method will take a single parameter which is a PrintWriter object to represent
the file that we are saving to. Where does this file come from ? It actually does not matter.
When writing this method, we should just assume that someone opened a file and handed it to
us and now it is our job to write the Car information to the file specified through this incoming
parameter. Note as well, that since we did not open the file (i.e., the PrintWriter was handed
to us), we should also not close the file. It is the opener’s responsibility to close it.

So, now how do we write the Car information to the file ? We simply do it as if we were
writing to the System console:

public void saveTo(PrintWriter aFile) {
 aFile.println(make);
 aFile.println(model);
 aFile.println(color);
 aFile.println(topSpeed);
 aFile.println(has4Doors);
}

COMP1406 - Chapter 11 - Saving and Loading Information Winter 2014

 - 385 -

That was easy. Remember though, that in order for JAVA to recognize the PrintWriter object,
we will need to import java.io.PrintWriter at the top of our Car class. In fact, as you will see
soon, we will need more classes from the java.io package, so it would be best to simply
import java.io.*;

The method for loading a Car back in from the file is also quite easy. Again, it should read
from a file (i.e., a BufferedReader object) that is passed in as a parameter, not a file that we
open or close. Then all we need to do is to read the information from the file. But what do we
“do” with the information once it has been read in ? Probably, we return it from the method so
that whoever called this “load” method can decide what to do with the loaded car information.
So, the method should probably return a Car object. Here is the method that we will write:

public static Car loadFrom(BufferedReader aFile) {

...
}

Notice that the method is static. This is not required, but it allows us to call the method as
follows:

Car c = Car.loadFrom(aFile);

instead of doing this:

Car c = new Car().loadFrom(aFile);

That is the only difference. The static version is more logical. So … now … what goes into
the method ? Well, we need to at least create and return a new Car object, so we can start
with that:

public static Car loadFrom(BufferedReader aFile) {
 Car loadedCar = new Car();
 // ...
 return loadedCar;
}

To read in the car, we should recall that we use readLine() to read a single line of text from a
BufferedReader file. We need to read the lines of text in the same order that they were
outputted (i.e., make, model, color, topSpeed and then has4Doors). Then we can set the
attributes of the Car to the data that was read in. Here is the code:

public static Car loadFrom(BufferedReader aFile) throws IOException {
 Car loadedCar = new Car();

 loadedCar.make = aFile.readLine();
 loadedCar.model = aFile.readLine();
 loadedCar.color = aFile.readLine();
 loadedCar.topSpeed = Integer.parseInt(aFile.readLine());
 loadedCar.has4Doors = Boolean.parseBoolean(aFile.readLine());

 return loadedCar;
}

COMP1406 - Chapter 11 - Saving and Loading Information Winter 2014

 - 386 -

Notice that the method may throw an IOException (due to the fact that JAVA's readLine()
method declares that it throws an IOException). We could have caught the exception here
and handled it. However, since this method is just a helper method in a larger application, we
are unsure what to do here if an error occurs. Therefore, by declaring that this method throws
an IOException, we will be forced to handle that exception from the place where we call this
loadFrom() method. Also notice that we are calling the zero-parameter constructor for the
Car here … we would need to make sure that such a constructor is available.

Now we will write some test code to see if it works. Notice in the following code how we
separated the write and read tests …

import java.io.*;

public class CarSaveLoadTestProgram {
 private static void writeTest() throws IOException {
 PrintWriter file1, file2;
 Car car1, car2;

 file1 = new PrintWriter(new FileWriter("car1.txt"));
 file2 = new PrintWriter(new FileWriter("car2.txt"));
 car1 = new Car("Pontiac", "Grand-Am", "White", 160, true);
 car2 = new Car("Ford", "Mustang", "White", 230, false);
 car1.saveTo(file1);
 car2.saveTo(file2);
 file1.close();
 file2.close();
 }

 private static void readTest() throws IOException {
 BufferedReader file1, file2;
 Car car1, car2;

 file1 = new BufferedReader(new FileReader("car1.txt"));
 file2 = new BufferedReader(new FileReader("car2.txt"));
 car1 = Car.loadFrom(file1);
 car2 = Car.loadFrom(file2);
 System.out.println(car1);
 System.out.println(car2);
 file1.close();
 file2.close();
 }

 public static void main(String[] args) throws IOException {
 writeTest();
 readTest();
 }
}

Notice that we simply ignored handling any IOExceptions by declaring that the test methods
and the main() method all throw the IOException. If we now look at the "car1.txt" and
"car2.txt" files, we see that it seems to have saved properly:

COMP1406 - Chapter 11 - Saving and Loading Information Winter 2014

 - 387 -

car1.txt looks like this:

Pontiac
Grand-Am
White
160
true

car2.txt looks like this:

Ford
Mustang
White
230
false

Now for the fun part. Let us make this work with the Autoshow. We will make saveTo() and
loadFrom() methods in the Autoshow class as well. This time, we need to save ALL the Car
objects from the autoshow's cars list. Recall that we need to first save the autoshow’s name
to the file:

public void saveTo(PrintWriter aFile) {
 aFile.println(name);
 ...
}

Now we can iterate through the cars and save them one by one, leaving a blank line in
between each, to make the file more readable:

public void saveTo(PrintWriter aFile) {
 aFile.println(name);
 for (Car c: cars) {
 aFile.println(); // Leave a blank line before writing the next one
 c.saveTo(aFile);
 }
}

Notice that we are making use of the Car class's saveTo() method. This is important, since it
makes good use of pre-existing code and is more modular. Again, we should import java.io.*
at the top of our Autoshow class.

The method for loading an Autoshow from the file is also quite easy. It should create and
return an Autoshow object whose name is the name that is the first line of the file.

We will make it a static method as well:

public static Autoshow loadFrom(BufferedReader aFile) throws IOException {
 Autoshow aShow = new Autoshow(aFile.readLine());
 ...
 return aShow;
}

Again, we will need to make sure that a zero-parameter constructor is available in the
Autoshow class. Now we now need to read in the name at the top of the file and then read in
each car individually. How do we know how many cars to read ? Well, we can simply read
until there are no more cars left. The ready() method in the BufferedReader class returns
true as long as there is another line to be read in the file, otherwise it returns false. We can
simply keep reading in cars until we get a !ready() as follows …

COMP1406 - Chapter 11 - Saving and Loading Information Winter 2014

 - 388 -

public static Autoshow loadFrom(BufferedReader aFile) throws IOException {
 Autoshow aShow = new Autoshow(aFile.readLine());

 while (aFile.ready()) { //read until no more available (i.e., not ready)
 aFile.readLine(); //read the blank line
 aShow.cars.add(Car.loadFrom(aFile)); //read & add the car
 }
 return aShow;
}

Notice that each time we load a new car from the file, we must not forget to add it to the new
autoshow object’s cars collection. Here is a method for testing out our saving and loading:

import java.io.*;
public class AutoshowSaveLoadTestProgram {
 // This method tests the writing of an autoshow to a file
 private static void writeTest() throws IOException {
 // First make an Autoshow and add lots of cars to the show
 Autoshow show = new Autoshow("AutoRama 2009");
 show.addCar(new Car("Porsche", "959", "Red", 240, false));
 show.addCar(new Car("Pontiac", "Grand-Am", "White", 160, true));
 show.addCar(new Car("Ford", "Mustang", "White", 230, false));
 show.addCar(new Car("Volkswagon", "Beetle", "Blue", 140, false));
 show.addCar(new Car("Volkswagon", "Jetta", "Silver", 180, true));
 show.addCar(new Car("Geo", "Storm", "Yellow", 110, true));
 show.addCar(new Car("Toyota", "MR2", "Black", 220, false));
 show.addCar(new Car("Ford", "Escort", "Yellow", 10, true));
 show.addCar(new Car("Honda", "Civic", "Black", 220, true));
 show.addCar(new Car("Nissan", "Altima", "Silver", 180, true));
 show.addCar(new Car("BMW", "5", "Gold", 260, true));
 show.addCar(new Car("Prelude", "Honda", "White", 90, false));
 show.addCar(new Car("Mazda", "RX7", "Red", 240, false));
 show.addCar(new Car("Mazda", "MX6", "Green", 160, true));
 show.addCar(new Car("Pontiac", "G6", "Black", 140, false));

 // Now open the file and save the autoshow
 PrintWriter aFile;
 aFile = new PrintWriter(new FileWriter("autoshow.txt"));
 show.saveTo(aFile);
 aFile.close();
 }

 // This method tests the reading of an autoshow from a file
 private static void readTest() throws IOException {
 BufferedReader aFile;

 aFile = new BufferedReader(new FileReader("autoshow.txt"));
 Autoshow aShow = Autoshow.loadFrom(aFile);
 aShow.showCars();
 aFile.close();
 }

 public static void main(String[] args) throws IOException {
 writeTest(); // Write an autoshow to the file
 readTest(); // Read an autoshow from the file
 }
}

From running the test, we can see that the Autoshow does indeed load properly.

COMP1406 - Chapter 11 - Saving and Loading Information Winter 2014

 - 389 -

Storing Data on a Single Line:

What if we want to store the Car data on a single line as follows:

Porsche 959 Red 240 false
Pontiac Grand-Am White 160 true
Ford Mustang White 230 false

Well, saving a Car is easy:

public void saveTo(PrintWriter aFile) {
 aFile.println(make + " " + model + " " + color + " " +
 topSpeed + " " + has4Doors);
}

For reading however, we will need to alter the load method to use a StringTokenizer to
extract the pieces:

public static Car loadFrom(BufferedReader aFile) throws IOException {
 Car loadedCar = new Car();

 StringTokenizer wholeLine = new StringTokenizer(aFile.readLine());
 loadedCar.make = wholeLine.nextToken();
 loadedCar.model = wholeLine.nextToken();
 loadedCar.color = wholeLine.nextToken();
 loadedCar.topSpeed = Integer.parseInt(wholeLine.nextToken());
 loadedCar.has4Doors = Boolean.parseBoolean(wholeLine.nextToken());

 return loadedCar;
}

The methods for saving and loading the Autoshow would not change much, except that the
blank line need not be written nor read in after each Car.

But what if the Car make has two words like this ?

PT Cruiser Chrysler Silver 120 true

Now it is tougher since the name requires two tokens, not one. We can save and load using
commas as our delimiters and then extract the pieces of data one at a time …

PT Cruiser,Chrysler,Silver,120,true

This solves the problem.

COMP1406 - Chapter 11 - Saving and Loading Information Winter 2014

 - 390 -

 11.6 The File Class

The File class allows us to retrieve information about a file or folder on our
computer. However, it has nothing to do with reading and writing
information to and from the files.

To make a File object, there are three commonly used constructors:

File file1 = new File("C:\\Data\\myFile.dat");
File file2 = new File("C:\\Data\\", "myFile.dat");
File file3 = new File(new File("."), "myFile.dat");

In the first constructor, we supply the entire file name as a string which includes the path to the
file. (A path is a sequence of folders on the computer that lead to the file … starting with the
root drive letter).

In the second constructor, we can supply the pathname as a separate string from the file
name. The third constructor actually uses another File object as a parameter which must
represent a folder/directory on the computer. The “.” as a filename indicates the current
directory/folder. The “..” as a filename indicates the directory/folder above the current
directory/folder. Alternatively we could supply any path name here.

Once we create this File object, there are a set of methods that we can use to ask questions
about this file or folder. Here are just some of the available methods:

boolean canRead()

 Returns whether or not this file is readable.

boolean canWrite()

 Returns whether or not this file is writable.

boolean exists()

 Returns whether or not this file or directory exists in the specified path.

boolean isFile()

 Returns whether or not this represents a file (as opposed to a directory/folder).

boolean isDirectory()

 Returns whether or not this represents a directory/folder (as opposed to a file).

boolean isAbsolute()

 Returns whether or not this represents an absolute path to a file or directory.

COMP1406 - Chapter 11 - Saving and Loading Information Winter 2014

 - 391 -

Here are other methods for accessing components (i.e., filenames and pathnames) of a file or
directory:

String getAbsolutePath()

 Return a String with the absolute path of the file or directory.

String getName()

 Return a String with the name of the file or directory.

String getPath()

 Return a String with the path of the file or directory.

String getParent()

 Return a String with the parent directory of the file or directory.

Here are some other user useful methods:

long length()

 Return the length of the file in bytes. If the File object is a directory, return 0.

long lastModified()

 Return a system-dependent representation of the time at which the file or
 directory was last modified. The value returned is only useful for comparison
 with other values returned by this method.

String[] list()

 Return an array of Strings representing the contents of a directory.

COMP1406 - Chapter 11 - Saving and Loading Information Winter 2014

 - 392 -

For the purpose of demonstration, here is a program that gives a directory listing of the files
and folders on the root of your C: drive, but it does not go into each folder recursively …

import java.io.*;

public class FileClassTestProgram {
 public static void main(String[] args) {
 // The dot means the current directory
 File currDir = new File("C:\\");
 System.out.println("The directory name is: " + currDir.getName());
 System.out.println("The path name is: " + currDir.getPath());
 System.out.println("The actual path name is: " +
 currDir.getAbsolutePath());

 System.out.println("Here are the files in the current directory: ");
 String[] files = currDir.list();
 for (int i=0; i<files.length; i++) {
 if (new File("C:\\", files[i]).isDirectory())
 System.out.print("*** ");
 System.out.println(files[i]);
 }
 }
}

Here is the output (which differs of course depending where you run your code from):

The directory name is:
The path name is: C:\
The actual path name is: C:\
Here are the files in the current directory:
*** 1eceb6cd306883b5737c1dbf5404e4
a-1049-1-7C23.zip
AUTOEXEC.BAT
BOOT.BAK
boot.ini
*** Config.Msi
CONFIG.SYS
*** CtDriverInstTemp
*** Documents and Settings
*** Downloaded Videos
*** Downloads
*** drivers
hiberfil.sys
*** i386
INFCACHE.1
IO.SYS
IPH.PH
*** java

… etc …

*** System Volume Information
*** temp
*** TempArchive
*** Users
*** WINDOWS

COMP1406 - Chapter 11 - Saving and Loading Information Winter 2014

 - 393 -

File Separators:

Depending on which type of computer you have, folders are specified in different ways. For
example, windows uses a ‘\’ character to separate folders in a pathname, whereas Unix/Linux
uses ‘/’ and Classic Mac OS uses “:”.

If we were to hard-code out pathnames into our programs, then our code would not be portable
to different machines. For example, this pathname:

String fileName = "C:\\FunInc\\models\\BankAccount.java";

would be ok for a windows-based machine, but for a Unix/Linux machine, the pathname would
be invalid. We would need to use something like this for Linux:

String fileName = "usr/FunInc/models/BankAccount.java";

… and further…something like this for an older Mac OS:

String fileName = "C:FunInc:models:BankAccount.java";

In order to make our code portable, JAVA has defined a static constant called separator in
the File class which will represent the appropriate file separation character depending on the
machine that our code is running on. Hence, the following code will be portable for all
machines:

String fileName = File.separator + "FunInc" + File.separator +
 "models" + File.separator + "BankAccount.java";

If you do this in your programs, your code will always be portable and you will save time when
porting your code to other machines.

COMP1406 - Chapter 11 - Saving and Loading Information Winter 2014

 - 394 -

This page has been intentionally left blank.

Chapter 12

Network Programming

What is in This Chapter ?

This chapter explains how to connect your JAVA application to a network. You will learn how
to read files from over the internet as well as have two or more programs communicate with
one another over a network connection (wired or wireless). You will learn about Uniform
Resource Locators as well as Client/Server communications using TCP and Datagram
Sockets.

COMP1406 - Chapter 12 - Network Programming Winter 2014

 - 396 -

 12.1 Networking Basics

Network Programming involves writing programs that communicate with other

programs across a computer network.

There are many issues that arise when doing network programming which do not appear when
doing single program applications. However, JAVA makes networking applications simple
due to the easy-to-use libraries. In general, applications that have components running on
different machines are known as distributed applications ... and usually they consist of
client/server relationships.

A server is an application that provides a "service" to various clients who request

the service.

There are many client/server scenarios in real life:

• Bank tellers (server) provide a service for the account owners (client)
• Waitresses (server) provide a service for customers (client)
• Travel agents (server) provide a service for people wishing to go on

vacation (client)

In some cases, servers themselves may become clients at various times.

• E.g., travel agents will become clients when they phone the airline to make a
reservation or contact a hotel to book a room.

In the general networking scenario, everybody can either be a client or a server at any time.
This is known as peer-to-peer computing. In terms of writing java applications it is similar to
having many applications communicating among one another.

• E.g., the original Napster worked this way. Thousands of people all
acted as clients (trying to download songs from another person) as well
as servers (in that they allowed others to download their songs).

There are many different strategies for allowing communication between applications.
JAVA technology allows:

• internet clients to connect to servlets or back-end business systems (or databases).
• applications to connect to one another using sockets.
• applications to connect to one another using RMI (remote method invocation).
• some others

We will look at the simplest strategy of connecting applications using sockets.

A Protocol is a standard pattern of exchanging information.

COMP1406 - Chapter 12 - Network Programming Winter 2014

 - 397 -

It is like a set of rules/steps for communication. The simplest example of a protocol is a
phone conversation:

1. JIM dials a phone number
2. MARY says "Hello..."
3. JIM says "Hello..."
4. The conversation goes on for a while ...
5. JIM says "Goodbye"
6. MARY says "Goodbye"

Perhaps another person gets involved:

1. JIM dials a phone number
2. MARY says "Hello..."
3. JIM says "Hello" and perhaps asks to speak to FRED
4. MARY says "Just a minute"
5. FRED says "Hello..."
6. JIM says "Hello..."
7. The conversation goes on for a while ...
8. JIM says "Goodbye"
9. FRED says "Goodbye"

Either way, there is an "expected" set of steps or responses involved during the initiation and
conclusion of the conversation. If these steps are not followed, confusion occurs (like when
you phone someone and they pick up the phone but do not say anything).

Computer protocols are similar in that a certain amount of "handshaking" goes on to establish
a valid connection between two machines. Just as we know that there are different ways to
shake hands, there are also different protocols. There are actually layered levels of protocols
in that some low level layers deal with how to transfer the data bits, others deal with more
higher-level issues such as "where to send the data to".

Computers running on the internet typically use one of the following high-level Application
Layer protocols to allow applications to communicate:

o Hyper Text Transfer Protocol (HTTP)
o File Transfer Protocol (FTP)
o Telnet

This is analogous to having multiple strategies for communicating with someone (in person, by
phone, through electronic means, by post office mail etc...).

In a lower Transport Layer of communication, there is a separate protocol which is used to
determine how the data is to be transported from one machine to another:

o Transport Control Protocol (TCP)
o User Datagram Protocol (UDP)

COMP1406 - Chapter 12 - Network Programming Winter 2014

 - 398 -

This is analogous to having multiple ways of actually delivering a package to someone (Email,
Fax, UPS, Fed-Ex etc...)

Beneath that layer is a Network Layer for determining how to locate destinations for the data
(i.e., address). And at the lowest level (for computers) there is a Link Layer which actually
handles the transferring of bits/bytes.

So, internet communication is built of several layers:

When you write JAVA applications that communicate over a network, you are programming in
the Application Layer.

JAVA allows two types of communication via two main types of Transport Layer protocols:

TCP

• a connection-based protocol that provides a
reliable flow of data between two computers.

• guarantees that data sent from one end of the
connection actually gets to the other end and in the
same order

o similar to a phone call. Your words come out
in the order that you say them.

• provides a point-to-point channel for applications
that require reliable communications.

• slow overhead time of setting up an end-to-end
connection.

COMP1406 - Chapter 12 - Network Programming Winter 2014

 - 399 -

UDP

• a protocol that sends independent packets of data,
called datagrams, from one computer to another.

• no guarantees about arrival. UDP is not connection-
based like TCP.

• provides communication that is not guaranteed
between the two ends

o sending packets is like sending a letter
through the postal service

o the order of delivery is not important and not
guaranteed

o each message is independent of any other
• faster since no overhead of setting up end-to-end

connection
• many firewalls and routers have been configured

NOT TO allow UDP packets.

Why would anyone want to use UDP protocol if information may get lost ?
Well, why do we use email or the post office ? We are never guaranteed that
our mail will make it to the person that we send it to, yet we still rely on those
delivery services. It may still be quicker than trying to contact a person via
phone to convey the data (i.e., like a TCP protocol).

One more important definition we need to understand is that of a port:

A port is used as a gateway or "entry point" into an application.

Although a computer usually has a single physical connection to the network, data sent by
different applications or delivered to them do so through the use of ports configured on the
same physical network connection. Data transmitted over the internet to an application
requires the address of the destination computer and the application's port number. A
computer's address is a 32-bit IP address. The port number is a 16-bit number ranging from 0
to 65,535, with ports 0-1023 restricted by well-known applications like HTTP and FTP.

COMP1406 - Chapter 12 - Network Programming Winter 2014

 - 400 -

12.2 Reading Files From the Internet (URLs)

A Uniform Resource Locator (i.e., URL) is a reference (or address) to a

resource over a network (e.g., on the Internet).

So, a URL can be used to represent the "location" of a webpage or web-based application. A
URL is really just a String that represent the names of resources which can be files,
databases, applications, etc.. The resource names contain a host machine name, filename,
port number, and other information and may also specify a protocol identifier (e.g., http, ftp)
Here are some examples of URLs:

http://www.cnn.com/
http://www.apple.com/ipad/index.html
http://en.wikipedia.org/wiki/Computer_science

Here, http:// is the protocol identifier which indicates the protocol that will be used to obtain
the resource. The remaining part is the resource name, and its format depends on the
protocol used to access it.

The complete list of components that can be found in a URL resource name are as follows:
 • Host Name - The name of the machine on which the resource lives.

http://www.apple.com:80/ipad/index.html
 • Port # (optional) - The port number to which to connect.

http://www.apple.com:80/ipad/index.html
 • Filename - The pathname to the file on the machine.

http://www.apple.com:80/ipad/index.html

In JAVA, there is a URL class defined in the java.net package. We can create our own URL
objects as follows:

URL webPage = new URL("http://www.apple.com/ipad/index.html");

JAVA will "dissect" the given String in order to obtain information about protocol, hostName,
file etc....

Due to this, JAVA may throw a MalformedURLException ... so we will need to do this:

try {
 URL webPage = new URL("http://www.apple.com/ipad/index.html");
} catch(MalformedURLException e) {
 ...
}

Another way to create a URL is to break it into its various components:

COMP1406 - Chapter 12 - Network Programming Winter 2014

 - 401 -

try {
 URL webPage = new URL("http","www.apple.com",80,"/ipad/index.html");
} catch(MalformedURLException e) {
 ...
}

If you take a look at the JAVA API, you will notice some other constructors as well.

The URL class also supplies methods for extracting the parts (protocol, host, file, port and
reference) of a URL object. Here is an example that demonstrates what can be accessed.
Note that this example only manipulates a URL object, it does not go off to grab any web
pages:

import java.net.*;

public class URLTestProgram {

 public static void main(String[] args) {

 URL webpage = null;

 try {

 webpage = new URL("http", "www.apple.com", 80, "/ipad/index.html");

 } catch(MalformedURLException e) {

 e.printStackTrace();

 }

 System.out.println(webpage);

 System.out.println("protocol = " + webpage.getProtocol());

 System.out.println("host = " + webpage.getHost());

 System.out.println("filename = " + webpage.getFile());

 System.out.println("port = " + webpage.getPort());

 System.out.println("ref = " + webpage.getRef());

 }

}

Here is the output:

http://www.apple.com:80/ipad/index.html
protocol = http
host = www.apple.com
filename = /ipad/index.html
port = 80
ref = null

After creating a URL object, you can actually connect to that webpage and read the contents of
the URL by using its openStream() method which returns an InputStream. You actually read
from the webpage as if it were a simple text file. If an attempt is made to read from a URL that
does not exist, JAVA will throw an UnknownHostException

COMP1406 - Chapter 12 - Network Programming Winter 2014

 - 402 -

Example:

Here is an example that reads a URL directly. It actually reads the file on wikipedia and
displays it line by line to the console. Notice that it reads the file as a text file, so we simply
get the HTML code. Also, you must be connected to the internet to run this code:

import java.net.*;
import java.io.*;

public class URLReaderProgram {
 public static void main(String[] args) {
 URL wiki = null;
 try {
 wiki = new URL("http", "en.wikipedia.org", 80,
 "/wiki/Computer_science");
 BufferedReader in = new BufferedReader(
 new InputStreamReader(wiki.openStream()));

 // Now read the webpage file
 String lineOfWebPage;
 while ((lineOfWebPage = in.readLine()) != null)
 System.out.println(lineOfWebPage);

 in.close(); // Close the connection to the net
 } catch(MalformedURLException e) {
 System.out.println("Cannot find webpage " + wiki);
 } catch(IOException e) {
 System.out.println("Cannot read from webpage " + wiki);
 }
 }
}

The output should look something like this, assuming you could connect to the webpage:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html lang="en" dir="ltr" xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>Computer science - Wikipedia, the free encyclopedia</title>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />
<meta http-equiv="Content-Style-Type" content="text/css" />
<meta name="generator" content="MediaWiki 1.17wmf1" />
<link rel="alternate" type="application/x-wiki" title="Edit this page"
href="/w/index.php?title=Computer_science&action=edit" />
<link rel="edit" title="Edit this page"
href="/w/index.php?title=Computer_science&action=edit" />
<link rel="apple-touch-icon" href="http://en.wikipedia.org/apple-touch-icon.png" />
<link rel="shortcut icon" href="/favicon.ico" />
<link rel="search" type="application/opensearchdescription+xml"
href="/w/opensearch_desc.php" title="Wikipedia (en)" />
...

COMP1406 - Chapter 12 - Network Programming Winter 2014

 - 403 -

Example:

Here is a modification to the above example that reads the URL by making a URLConnection
first. Since the tasks of opening a connection to a webpage and reading the contents may
both generate an IOException, we cannot distinguish the kind of error that occurred. By
trying to establish the connection first, if any IOExceptions occur, we know they are due to a
connection problem. Once the connection has been established, then any further
IOException errors would be due to the reading of the webpage data.

import java.net.*;
import java.io.*;

public class URLConnectionReaderExample {
 public static void main(String[] args) {
 URL wiki = null;
 BufferedReader in = null;
 try {
 wiki = new URL("http", "en.wikipedia.org", 80,
 "/wiki/Computer_science");
 } catch(MalformedURLException e) {
 System.out.println("Cannot find webpage " + wiki);
 System.exit(-1);
 }
 try {
 URLConnection aConnection = wiki.openConnection();
 in = new BufferedReader(
 new InputStreamReader(aConnection.getInputStream()));
 }
 catch (IOException e) {
 System.out.println("Cannot connect to webpage " + wiki);
 System.exit(-1);
 }
 try {
 // Now read the webpage file
 String lineOfWebPage;
 while ((lineOfWebPage = in.readLine()) != null)
 System.out.println(lineOfWebPage);
 in.close(); // Close the connection to the net
 } catch(IOException e) {
 System.out.println("Cannot read from webpage " + wiki);
 }
 }

}

COMP1406 - Chapter 12 - Network Programming Winter 2014

 - 404 -

 12.3 Client/Server Communications

Many companies today sell services or products. In addition, there are a large number of
companies turning towards E-business solutions and various kinds of web-server/database
technologies that allow them to conduct business over the internet as well as over other
networks. Such applications usually represent a client/server scenario in which one or more
servers serve multiple clients.

A server is any application that provides a service and allows clients to

communicate with it.

Such services may provide:

• a recent stock quote
• transactions for bank accounts
• an ability to order products
• an ability to make reservations
• a way to allow multiple clients to interact (Auction)

A client is any application that requests a service from a server.

The client typically "uses" the service and then displays results to the
user. Normally, communication between the client and server must be
reliable (no data can be dropped or missing):

• stock quotes must be accurate and timely
• banking transactions must be accurate and stable
• reservations/orders must be acknowledged

The TCP protocol, mentioned earlier, provides reliable point-to-point
communication. Using TCP the client and server must establish a
connection in order to communicate. To do this, each program binds a
socket to its end of the connection. A socket is one endpoint of a two-
way communication link between 2 programs running on the network. A
socket is bound to a port number so that the TCP layer can identify the
application to which the data is to be sent. It is similar to the idea of
plugging the two together with a cable.

COMP1406 - Chapter 12 - Network Programming Winter 2014

 - 405 -

The port number is used as the server's location on the machine that the
server application is running. So if a computer is running many different
server applications on the same physical machine, the port number
uniquely identifies the particular server that the client wishes to
communicate with:

The client and server may then each read and write to the socket bound to its end of the
connection.

In JAVA, the server application uses a ServerSocket object to wait for client connection
requests. When you create a ServerSocket, you must specify a port number (an int). It is
possible that the server cannot set up a socket and so we have to expect a possible
IOException. Here is an example:

public static int SERVER_PORT = 5000;

ServerSocket serverSocket;
try {
 serverSocket = new ServerSocket(SERVER_PORT);
} catch(IOException e) {
 JOptionPane.showMessageDialog(null, "Cannot open server connection",
 "Error", JOptionPane.ERROR_MESSAGE);
}

The server can communicate with only one client at a time.

The server waits for an incoming client request through the use of the accept() message:

COMP1406 - Chapter 12 - Network Programming Winter 2014

 - 406 -

Socket aClientSocket;
try {
 aClientSocket = serverSocket.accept();
} catch(IOException e) {
 JOptionPane.showMessageDialog(null, "Cannot connect to client",
 "Error", JOptionPane.ERROR_MESSAGE);
}

When the accept() method is called, the server program actually waits
(i.e., blocks) until a client becomes available (i.e., an incoming client
request arrives). Then it creates and returns a Socket object through
which communication takes place.

Once the client and server have completed their interaction, the socket
is then closed:

aClientSocket.close();

Only then may the next client open a socket connection to the server. So, remember ... if one
client has a connection, everybody else has to wait until they are done:

So how does the client connect to the server ? Well, the client must know the address of the
server as well as the port number. The server's address is stored as an InetAddress object
which represents any IP address (i.e., an internet address, an ftp site, local machine etc,...).

If the server and client are on the same machine, the static method getLocatHost() in the
InetAddress class may be used to get an address representing the local machine as follows:

COMP1406 - Chapter 12 - Network Programming Winter 2014

 - 407 -

 public static int SERVER_PORT = 5000;

 try {
 InetAddress address = InetAddress.getLocalHost();
 Socket socket = new Socket(address, SERVER_PORT);
 } catch(UnknownHostException e) {
 JOptionPane.showMessageDialog(null, "Host Unknown",
 "Error", JOptionPane.ERROR_MESSAGE);
 } catch(IOException e) {
 JOptionPane.showMessageDialog(null, "Cannot connect to server",
 "Error", JOptionPane.ERROR_MESSAGE);
 }

Once again, a socket object is returned which can then be used for communication.
Here is an example of what a local host may look like:

cr850205-a/169.254.180.32

The getLocalHost() method may, however, generate an UnknownHostException.
You can also make an InetAddress object by specifying the network IP address directly or the
machine name directly as follows:

 InetAddress.getByName("169.254.1.61");
 InetAddress.getByName("www.scs.carleton.ca");

So how do we actually do communication between the client and the server ? Well, each
socket has an inputStream and an outputStream. So, once we have the sockets, we simply
ask for these streams … and then reading and writing may occur.

try {
 InputStream in = socket.getInputStream();
 OutputStream out = socket.getOutputStream();
} catch(IOException e) {
 JOptionPane.showMessageDialog(null, "Cannot open I/O Streams",
 "Error", JOptionPane.ERROR_MESSAGE);
}

Normally, however, we actually wrap these input/output streams with text-based, datatype-
based or object-based wrappers:

ObjectInputStream in = new ObjectInputStream(socket.getInputStream());
ObjectOutputStream out = new ObjectOutputStream(socket.getOutputStream());

BufferedReader in = new BufferedReader(new InputStreamReader(socket.getInputStream()));
PrintWriter out = new PrintWriter(socket.getOutputStream());

DataInputStream in = new DataInputStream(socket.getInputStream());
DataOutputStream out = new DataOutputStream(socket.getOutputStream());

You may look back at the notes on streams to see how to write to the streams. However, one
more point ... when data is sent through the output stream, the flush() method should be sent
to the output stream so that the data is not buffered, but actually sent right away.

COMP1406 - Chapter 12 - Network Programming Winter 2014

 - 408 -

Also, you must be careful when using ObjectInputStreams and ObjectOutputStreams.
When you create an ObjectInputStream, it blocks while it tries to read a header from the
underlying SocketInputStream. When you create the corresponding ObjectOutputStream at
the far end, it writes the header that the ObjectInputStream is waiting for, and both are able to
continue. If you try to create both ObjectInputStreams first, each end of the connection is
waiting for the other to complete before proceeding which results in a deadlock situation (i.e.,
the programs seems to hang/halt). This behavior is described in the API documentation for
the ObjectInputStream and ObjectOutoutStream constructors.

Example:

Lets now take a look at a real example. In this example, a client will attempt to:

1. connect to a server
2. ask the server for the current time
3. ask the server for the number of requests that the server has handled so far
4. ask the server for an invalid request (i.e., for a pizza)

Here is the server application. It runs forever, continually waiting for incoming client requests:

import java.net.*; // all socket stuff is in here
import java.io.*;
import javax.swing.JOptionPane;

public class Server {
 public static int SERVER_PORT = 6000; // arbitrary, but above 1023
 private int counter = 0;

 // Helper method to get the ServerSocket started
 private ServerSocket goOnline() {
 ServerSocket serverSocket = null;
 try {
 serverSocket = new ServerSocket(SERVER_PORT);
 } catch (IOException e) {
 JOptionPane.showMessageDialog(null,
 "SERVER: Error creating network connection",
 "Error", JOptionPane.ERROR_MESSAGE);
 }
 System.out.println("SERVER online");
 return serverSocket;
 }

 // Handle all requests
 private void handleRequests(ServerSocket serverSocket) {

 while(true) {
 Socket socket = null;
 BufferedReader in = null;
 PrintWriter out = null;

 try {

COMP1406 - Chapter 12 - Network Programming Winter 2014

 - 409 -

 // Wait for an incoming client request
 socket = serverSocket.accept();
 // At this point, a client connection has been made
 in = new BufferedReader(new InputStreamReader(
 socket.getInputStream()));
 out = new PrintWriter(socket.getOutputStream());
 } catch(IOException e) {
 JOptionPane.showMessageDialog(null,
 "SERVER: Error connecting to client",
 "Error", JOptionPane.ERROR_MESSAGE);
 System.exit(-1);
 }
 // Read in the client's request
 try {
 String request = in.readLine();
 System.out.println("SERVER: Client Message Received: " + request);
 if (request.equals("What Time is It ?")) {
 out.println(new java.util.Date());
 counter++;
 }
 else if (request.equals("How many requests have you handled ?"))
 out.println(counter++);
 else
 System.out.println("SERVER: Unknown request: " + request);

 out.flush(); // Now make sure that the response is sent
 socket.close(); // We are done with the client's request

 } catch(IOException e) {
 JOptionPane.showMessageDialog(null,
 "SERVER: Error communicating with client",
 "Error", JOptionPane.ERROR_MESSAGE);
 }
 }
 }

 public static void main (String[] args) {
 Server s = new Server ();
 ServerSocket ss = s.goOnline();
 if (s != null)
 s.handleRequests(ss);
 }
}

Here is the client application:

import java.net.*;
import java.io.*;
import javax.swing.JOptionPane;

public class ClientProgram {
 private Socket socket;
 private BufferedReader in;
 private PrintWriter out;

COMP1406 - Chapter 12 - Network Programming Winter 2014

 - 410 -

 // Make a connection to the server
 private void connectToServer() {
 try {
 socket = new Socket(InetAddress.getLocalHost(), Server.SERVER_PORT);

 in = new BufferedReader(new InputStreamReader(socket.getInputStream()));
 out = new PrintWriter(socket.getOutputStream());
 } catch(IOException e) {
 JOptionPane.showMessageDialog(null, "CLIENT: Cannot connect to server",
 "Error", JOptionPane.ERROR_MESSAGE);
 System.exit(-1);
 }
 }

 // Disconnect from the server
 private void disconnectFromServer() {
 try {
 socket.close();
 } catch(IOException e) {
 JOptionPane.showMessageDialog(null,
 "CLIENT: Cannot disconnect from server",
 "Error", JOptionPane.ERROR_MESSAGE);
 }
 }

 // Ask the server for the current time
 private void askForTime() {
 connectToServer();
 out.println("What Time is It ?");
 out.flush();
 try {
 String time = in.readLine();
 System.out.println("CLIENT: The time is " + time);
 } catch(IOException e) {
 JOptionPane.showMessageDialog(null,
 "CLIENT: Cannot receive time from server",
 "Error", JOptionPane.ERROR_MESSAGE);
 }
 disconnectFromServer();
 }

 // Ask the server for the number of requests obtained
 private void askForNumberOfRequests() {
 connectToServer();
 out.println("How many requests have you handled ?");
 out.flush();
 int count = 0;
 try {
 count = Integer.parseInt(in.readLine());
 } catch(IOException e) {
 JOptionPane.showMessageDialog(null,
 "CLIENT: Cannot receive num requests from server",
 "Error", JOptionPane.ERROR_MESSAGE);
 }
 System.out.println("CLIENT: The number of requests are " + count);
 disconnectFromServer();
 }

COMP1406 - Chapter 12 - Network Programming Winter 2014

 - 411 -

 // Ask the server to order a pizza
 private void askForAPizza() {
 connectToServer();
 out.println("Give me a pizza");
 out.flush();
 disconnectFromServer();
 }

 public static void main (String[] args) {
 ClientProgram c = new ClientProgram();
 c.askForTime();
 c.askForNumberOfRequests();
 c.askForAPizza();
 c.askForTime();
 c.askForNumberOfRequests();
 }
}

Note, to run this using JCreator, we will have to execute two different JCreator applications,
one for the server and one for the client.

 12.4 Datagram Sockets

Recall that with the datagram protocol (i.e., UDP) there is no direct socket connection between
the client and the server. That is, packets are received "in seemingly random order" from
different clients. It is similar to the way email works. If the client requests or server
responses are too big, they are broken up into multiple packets and sent one packet at a
time. The server is not guaranteed to receive the packets all at once, nor in the same order,
nor is it guaranteed to receive all the packets !!

Let us look at the same client-server application, but by now using DatagramSockets and
DatagramPackets. Once again, the server will be in a infinite loop accepting messages,
although there will be no direct socket connection to the client.
We will be setting up a buffer (i.e., an array of bytes) which will be
used to receive incoming requests. Each message is sent as a
packet. Each packet contains:

• the data of message (i.e., the message itself)
• the length of the message (i.e., the number of bytes)
• the address of the sender (as an InetAddress)
• the port of the sender

The code for packaging and sending an outgoing packet involves creating a DatagramSocket
and then constructing a DatagramPacket. The packet requires an array of bytes, as well as
the address and port in which to send to. The byte array can be obtained from most objects
by sending a getBytes() message to the object. Finally, a send() message is used to send
the packet:

COMP1406 - Chapter 12 - Network Programming Winter 2014

 - 412 -

byte[] sendBuffer;
DatagramSocket socket;
DatagramPacket packetToSend ;

socket = new DatagramSocket();
sendBuffer = "This is the data ... need not be a String".getBytes();
packetToSend = new DatagramPacket(sendBuffer, sendBuffer.length,

 anInetAddress, aPort);
 socket.send(packetToSend);

The server code for receiving an incoming packet involves allocating space (i.e., a byte array)
for the DatagramPacket and then receiving it. The code looks as follows:

 byte[] recieveBuffer;
 DatagramPacket receivePacket;

 recieveBuffer = new byte[INPUT_BUFFER_LIMIT];
 receivePacket = new DatagramPacket(recieveBuffer, recieveBuffer.length);
 socket.receive(receivePacket);

We then need to extract the data from the packet. We can get the address and port of the
sender as well as the data itself from the packet as follows:

 InetAddress sendersAddress = receivePacket.getAddress();
 int sendersPort = receivePacket.getPort();
 String sendersData = new String(receivePacket.getData(), 0,
 receivePacket.getLength());

In this case the data sent was a String, although it may in general be any object. By using
the sender's address and port, whoever receives the packet can send back a reply.

Example:

Here is a modified version of our client/server code ... now using the DatagramPackets:

import java.net.*;
import java.io.*;
import javax.swing.JOptionPane;

public class PacketServer {
 public static int SERVER_PORT = 6000;
 private static int INPUT_BUFFER_LIMIT = 500;
 private int counter = 0;

 // Handle all requests
 private void handleRequests() {
 System.out.println("SERVER online");

 // Create a socket for communication
 DatagramSocket socket = null;
 try {
 socket = new DatagramSocket(SERVER_PORT);

COMP1406 - Chapter 12 - Network Programming Winter 2014

 - 413 -

 } catch (SocketException e) {
 JOptionPane.showMessageDialog(null, "SERVER: no network connection",
 "Error", JOptionPane.ERROR_MESSAGE);
 System.exit(-1);
 }
 // Now handle incoming requests
 while(true) {
 try {
 // Wait for an incoming client request
 byte[] recieveBuffer = new byte[INPUT_BUFFER_LIMIT];
 DatagramPacket receivePacket;
 receivePacket = new DatagramPacket(recieveBuffer,
 recieveBuffer.length);
 socket.receive(receivePacket);
 // Extract the packet data that contains the request
 InetAddress address = receivePacket.getAddress();
 int clientPort = receivePacket.getPort();
 String request = new String(receivePacket.getData(), 0,
 receivePacket.getLength());
 System.out.println("SERVER: Packet received: \"" + request +
 "\" from " + address + ":" + clientPort);
 // Decide what should be sent back to the client
 byte[] sendBuffer;
 if (request.equals("What Time is It ?")) {
 System.out.println("SERVER: sending packet with time info");
 sendResponse(socket, address, clientPort,
 new java.util.Date().toString().getBytes());
 counter++;
 }
 else if (request.equals("How many requests have you handled ?")) {
 System.out.println("SERVER: sending packet with num requests");
 sendResponse(socket, address, clientPort,
 ("" + ++counter).getBytes());
 }
 else
 System.out.println("SERVER: Unknown request: " + request);
 } catch(IOException e) {
 JOptionPane.showMessageDialog(null,
 "SERVER: Error receiving client requests",
 "Error", JOptionPane.ERROR_MESSAGE);
 }
 }
 }

 // This helper method sends a given response back to the client
 private void sendResponse(DatagramSocket socket, InetAddress address,
 int clientPort, byte[] response) {
 try {
 // Now create a packet to contain the response and send it
 DatagramPacket sendPacket = new DatagramPacket(response,
 response.length, address, clientPort);
 socket.send(sendPacket);
 } catch (IOException e) {
 JOptionPane.showMessageDialog(null,
 "SERVER: Error sending response to client" +
 address + ":" + clientPort,
 "Error", JOptionPane.ERROR_MESSAGE);
 }
 }

COMP1406 - Chapter 12 - Network Programming Winter 2014

 - 414 -

 public static void main (String args[]) {
 new PacketServer().handleRequests();
 }
}

Notice that only one DatagramSocket is used, but that a new DatagramPacket object is
created for each incoming message. Now let us look at the client:

import java.net.*;
import java.io.*;
import javax.swing.JOptionPane;

public class PacketClientProgram {
 private static int INPUT_BUFFER_LIMIT = 500;
 private InetAddress localHost;

 public PacketClientProgram() {
 try {
 localHost = InetAddress.getLocalHost();
 } catch(UnknownHostException e) {
 JOptionPane.showMessageDialog(null,
 "CLIENT: Error connecting to network",
 "Error", JOptionPane.ERROR_MESSAGE);
 System.exit(-1);
 }
 }

 // Ask the server for the current time
 private void askForTime() {
 DatagramSocket socket = null;
 try {
 socket = new DatagramSocket();
 byte[] sendBuffer = "What Time is It ?".getBytes();
 DatagramPacket sendPacket = new DatagramPacket(sendBuffer,
 sendBuffer.length, localHost,
 PacketServerProgram.SERVER_PORT);
 System.out.println("CLIENT: Sending time request to server");
 socket.send(sendPacket);
 } catch(IOException e) {
 JOptionPane.showMessageDialog(null,
 "CLIENT: Error sending time request to server",
 "Error", JOptionPane.ERROR_MESSAGE);
 }
 try {
 byte[] receiveBuffer = new byte[INPUT_BUFFER_LIMIT];
 DatagramPacket receivePacket = new DatagramPacket(receiveBuffer,
 receiveBuffer.length);
 socket.receive(receivePacket);
 System.out.println("CLIENT: The time is " + new String(
 receivePacket.getData(), 0, receivePacket.getLength()));
 } catch(IOException e) {
 JOptionPane.showMessageDialog(null,
 "CLIENT: Cannot receive time from server",
 "Error", JOptionPane.ERROR_MESSAGE);
 }
 socket.close();
 }

COMP1406 - Chapter 12 - Network Programming Winter 2014

 - 415 -

 // Ask the server for the number of requests obtained
 private void askForNumberOfRequests() {
 DatagramSocket socket = null;
 try {
 socket = new DatagramSocket();
 byte[] sendBuffer = "How many requests have you handled ?".getBytes();
 DatagramPacket sendPacket = new DatagramPacket(sendBuffer,
 sendBuffer.length, localHost,
 PacketServerProgram.SERVER_PORT);
 System.out.println("CLIENT: Sending request count request to server");
 socket.send(sendPacket);
 } catch(IOException e) {
 JOptionPane.showMessageDialog(null,
 "CLIENT: Error sending request to server",
 "Error", JOptionPane.ERROR_MESSAGE);
 }
 try {
 byte[] receiveBuffer = new byte[INPUT_BUFFER_LIMIT];
 DatagramPacket receivePacket = new DatagramPacket(receiveBuffer,
 receiveBuffer.length);
 socket.receive(receivePacket);
 System.out.println("CLIENT: The number of requests are " +
 new String(receivePacket.getData(), 0,
 receivePacket.getLength()));
 } catch(IOException e) {
 JOptionPane.showMessageDialog(null,
 "CLIENT: Cannot receive num requests from server",
 "Error", JOptionPane.ERROR_MESSAGE);
 }
 socket.close();
 }

 // Ask the server to order a pizza
 private void askForAPizza() {
 try {
 byte[] sendBuffer = "Give me a pizza".getBytes();
 DatagramPacket sendPacket = new DatagramPacket(sendBuffer,
 sendBuffer.length, localHost,
 PacketServerProgram.SERVER_PORT);
 DatagramSocket socket = new DatagramSocket();
 System.out.println("CLIENT: Sending pizza request to server");
 socket.send(sendPacket);
 socket.close();
 } catch(IOException e) {
 JOptionPane.showMessageDialog(null,
 "CLIENT: Error sending request to server",
 "Error", JOptionPane.ERROR_MESSAGE);
 }
 }

 public static void main (String[] args) {
 PacketClientProgram c = new PacketClientProgram();
 c.askForTime();
 c.askForNumberOfRequests();
 c.askForAPizza();
 c.askForTime();
 c.askForNumberOfRequests();
 }
}

COMP1406 - Chapter 12 - Network Programming Winter 2014

 - 416 -

This page has been intentionally left blank.

Chapter 13

Other Interesting JAVA Classes

What is in This Chapter ?

This chapter discusses some interesting JAVA classes such as String, Date,
GregorianCalendar and others. This chapter can be viewed as an explanation of the tool-like
classes available in JAVA to make your life easier.

COMP1406 - Chapter 13 - Text Formatting Classes Winter 2014

 - 418 -

 13.1 The String Class

Strings are one of the most commonly used
concepts in all programming languages. They are
used to represent text characters and are
fundamental in allowing a user to interact with the
program. In JAVA, Strings are actually objects, not
primitives and any text between double quotes
represents a literal String in our programs:

String name = "Stan Dupp";
String empty = "";

However, since Strings are also objects, we can
create one by using one of many available
constructors. Here are two examples:

String nothing = new String(); // makes an empty String
String copy = new String(name); // makes copy of the name String

A String has a length corresponding to the number of characters in the String. We can ask a
String for its length by using the length() method:

String name = "Stan Dupp";
String empty = "";
name.length(); // returns 9
empty.length(); // returns 0

This length remains unchanged for the string at all times. That is, once a string has been
created we cannot change the size of the string, nor can we append to the string.

Even though we cannot append to a String, we can still make use of the + operator to join two

of them together. Recall, for example, the use of the + operator within the toString() method
for the Person class:

public String toString() {
 return (this.age + " year old Person named " +
 this.firstName + " " + this.lastName);
}

Here, we are actually combining 5 String objects to form a new String object containing the
result … the original 5 String objects remain unaltered.

Each character in a String is assigned an imaginary integer index that represents its order in
the sequence. The first character in the String has an index of 0, the second character has

COMP1406 - Chapter 13 - Text Formatting Classes Winter 2014

 - 419 -

an index of 1, and so on. We can access any character from a String by using the charAt()
method which requires us to specify the index of the character that we want to get:

String name = "Hank Urchif";
name.charAt(0); // returns character 'H'
name.charAt(1); // returns character 'a'
name.charAt(name.length() - 1); // returns character 'f'
name.charAt(name.length()); // causes StringIndexOutOfBoundsException
name.charAt(100); // causes StringIndexOutOfBoundsException

There are also some methods in the String class that allow us to extract a sequence (or
range) of characters from the String. The substring(s,e) method does just that. It takes two
parameters s and e, where s specifies the starting character index and e specifies one more
than the ending character index:

String name = "Hank Urchif";
name.substring(0, 4); // returns character "Hank"
name.substring(5, 11); // returns character "Urchif"
name.substring(1, name.length()); // returns character "ank Urchif"
name.substring(3, 6); // returns character "k U"

In all cases above, the resulting String is a new
object, the original name object remaining unchanged.

There is also a very useful method for eliminating unwanted leading and trailing characters
(e.g., spaces, tabs, newlines and carriage returns). This can be useful when writing programs
that get String input (e.g., name, address, email etc..) from the user through text fields on
windows. The trim() method returns a new String object that represents the original string
object but with no leading and trailing space, tab, newline or carriage return characters.

String s1 = " I need a shave ";
String s2 = " ";
s1.trim() ; // returns "I need a shave"
s2.trim() ; // returns empty string ""

Also, sometimes when getting input from the user we would like to force the information to be
formatted as either uppercase or lowercase characters. Two useful methods called
toUppercase() and toLowercase() will generate a copy of the string but with all alphabetic
characters converted to uppercase or lowercase, respectively. The methods only affect the
alphabetic characters … all other characters remain the same.

COMP1406 - Chapter 13 - Text Formatting Classes Winter 2014

 - 420 -

String s = "Tea For 2!";
s.toUpperCase() ; // returns "TEA FOR 2!"
s.toLowerCase() ; // returns "tea for 2!"

A final important topic that we will discuss regarding strings is that of comparing strings with
one another. String comparison is a fundamental tool used in many programs. For example,
whenever we want to search for a person’s name in a list, we must compare the name of the
person (i.e., a String) with all of the names in a list of some sort.

JAVA has two useful methods for comparing Strings. The equals(s) method compares one
String with another String, s, and then returns true if the two strings have the exact same
characters in them and false otherwise. A similar comparison method called
equalsIgnoreCase(s) is used to compare the two strings but in a way such that lowercase and
uppercase characters are considered equal.

String apple1 = "apple";
String apple2 = "APPLE";
String apple3 = "apples";
String orange = "orange";

apple1.equals(orange); // returns false
apple1.equals(apple2); // returns false
apple1.equals(apple3); // returns false
apple1.equals(apple2.toLowercase()); // returns true

apple1.equalsIgnoreCase(apple2); // returns true

In regards to sorting strings, the compareTo(s) method will compare one string with another
(i.e., parameter s) and return information about their respective alphabetical ordering. The
method returns an integer which is:

• negative if the first string is alphabetically before s • positive if the first string is alphabetically after s, or • zero if the first string equals s

String apple = "Apple";
String orange = "Orange";
String banana = "Banana";

banana.compareTo(orange); // returns -13, Banana comes before Orange
banana.compareTo(apple); // returns 1, Banana comes after Apple
apple.compareTo("Apple"); // returns 0, Apple equals Apple
"Zebra".compareTo("apple"); // returns -7, uppercase chars are before lower!
"apple".compareTo("Apple"); // returns 32, lowercase chars are after upper!

You may notice, in the last two cases, that uppercase characters always come alphabetically
before lowercase characters. You should always take this into account when sorting data.

COMP1406 - Chapter 13 - Text Formatting Classes Winter 2014

 - 421 -

To avoid sorting problems, it may be best to use toUpperCase() on each String before
comparing them:

if (s1.toUpperCase().compareTo(s2.toUpperCase()) < 0)
// s1 comes first

else
// s2 comes first

Another very useful method in the String class is the split() method because it allows you to
break up a String into individual substrings (called tokens) based on some separation
criteria. For example, we can extract

• words from a sentence, one by one
• fields from a database or text file, separated by commas or other chars

The term delimiter is used to indicate the character(s) that separate the tokens (i.e., individual
words or data elements).

Consider for example, the following String data which has been read in from a file:

"Mark,Lanthier,43,M,false"

Perhaps this is data for a particular person and we want to extract the information from the
string in a way that we can use it. If we consider the comma ',' character as the only delimiter,
then we can use the split method to obtain an array of Strings which we can then parse one
by one to extract the needed data:

String s1 = "Mark,Lanthier,43,M,false";

String[] tokens = s1.split(",");
for(String token: tokens)
 System.out.println(token);

The code above will produce the following output:

Mark
Lanthier
41
M
false

Each token is an individual String that can be used afterwards. If, for example, we wanted to
have just the 3rd piece of data (i.e., 41) and use it in a math expression, we could split the
string and access just that piece of data, converting it to an integer as necessary …

COMP1406 - Chapter 13 - Text Formatting Classes Winter 2014

 - 422 -

String s1 = "Mark,Lanthier,43,M,false";
String[] tokens;
int age;

tokens = s1.split(",");
age = Integer.parseInt(tokens[2]);
if (age > 21) ...

The "," parameter to the split() method above indicates that the ',' character is the delimiter.
If we had the following String, however, we may want to include the ':' character as a delimiter
as well:

"Mark,Lanthier:43:M,false"

We cannot simply use the parameter string ",:" because that will only consider consecutive
comma colon characters as delimiters (i.e., a 2-char delimiter). We want to allow the comma
OR the colon to be delimiters, but not necessarily together. To accomplish this, the
expression in the string becomes more complex. We basically have to indicate that we want
all non-alphanumeric characters to be part of the tokens and everything else to be delimiters.
So the following code would do what we want:

String s1 = "Mark,Lanthier:43:'M',false";

String[] tokens = s1.split("[^a-zA-Z0-9]");
for(String token: tokens)
 System.out.println(token);

Notice the square brackets [] in the parameter string. This indicates that we are about to list
a sequence of characters to be the delimiters. The ^ character negates the list of characters
to indicate that we are about to list all the non-delimiter characters (i.e., the token characters).
Then we list the alphanumeric ranges a-z, A-Z and 0-9 to indicate that any alphanumeric
character is part of a token, while everything else is to be considered a delimiter.

The parameter string is considered to be a regular expression (not discussed here) and can
be quite complex. You may look in JAVA’s API for more information. In some cases, the
token strings will be of size 0. For example, consider the following code:

String s1 = "Mark, Lanthier , 43 ,,, M , false";

String[] tokens = s1.split("[,]"); // comma or space delimiter
for(String token: tokens)
 System.out.println(token);

The following output would be obtained …

COMP1406 - Chapter 13 - Text Formatting Classes Winter 2014

 - 423 -

Mark

Lanthier

41

M

false

Notice that there are many spaces in between. These spaces are empty strings. We should
check for the empty strings in our code:

String s1 = "Mark, Lanthier , 43 ,,, M , false";

String[] tokens = s1.split("[,]"); // comma or space delimiter
for(String token: tokens)
 if (token.length() > 0)
 System.out.println(token);

Then we obtain the output as before:

Mark
Lanthier
41
M
false

COMP1406 - Chapter 13 - Text Formatting Classes Winter 2014

 - 424 -

 Supplemental Information (StringTokenizers)

There is another (perhaps simpler) way of extracting tokens from a String through use of the
StringTokenizer class (imported from the java.util package). However, for some reason,
the JAVA guys “suggest” that you use the split() method instead.

String s = "Mark, Lanthier , 44 ,,, M , false";

StringTokenizer tokens = new StringTokenizer(s,", ");
System.out.println("The string has " + tokens.countTokens() + " tokens");

while(tokens.hasMoreTokens()) {
 System.out.println(tokens.nextToken());
}

This code will produce the same result as above, but with an extra line of output indicating the
number of tokens in total, which is 5 in this example.

Interestingly, the Scanner class that we used for getting keyboard input can also be used to
get tokens from a String. The list of delimiters however is actually a pattern sequence, not a
list of separate delimiter characters. That means, whatever is listed as the delimiter string
must match exactly (i.e., in the example below, a single comma must be followed by a single
space character):

String sentence = "Banks, Rob, 34, Ottawa, 12.67";
Scanner s = new Scanner(sentence).useDelimiter(", ");
System.out.println(s.next());
System.out.println(s.next());
System.out.println(s.nextInt());
System.out.println(s.next());
System.out.println(s.nextFloat());
s.close();

Notice that the Scanner should be closed, we did not do this earlier but it is common
practice.

 13.2 The StringBuilder & Character Classes

Strings cannot be changed once created. Instead, when we try to
manipulate them, we always get back a "brand new" String object.
This is not normally a problem in most cases when programming,
however, sometimes we would like to be able to modify a String by
inserting/removing characters. For example, when we open a file in
a text editor or word processor, we usually append, cut and insert
text “on the fly”. It would be memory-inefficient and time-inefficient
to continually create new strings and copy over characters from an
old string to a new one.

COMP1406 - Chapter 13 - Text Formatting Classes Winter 2014

 - 425 -

The StringBuilder class in JAVA is useful for such a purpose. You may think of it simply as a
String that can be modified. The StringBuilder methods run a little slower that their String
equivalent methods, so if you plan to create strings that will not need to change, use String
objects instead.

Here are two constructors for the StringBuilder class:

new StringBuilder();
new StringBuilder(s); // s is a String

The first creates a StringBuilder with no characters to begin with and the second creates one
with the characters equal to the ones in the given String s.

As with Strings, the length() method can be used to return the number of characters in the
StringBuilder as follows:

StringBuilder sb1, sb2;

sb1 = new StringBuilder();
sb2 = new StringBuilder("hello there");
sb1.length(); // returns 0
sb2.length(); // returns 11

Unlike Strings, you can actually modify the length of the StringBuilder to any particular length
by using a setLength(int newLength) method. If the newLength is less than the current
length, the characters at the end of the StringBuilder are truncated. If the size is greater, null
characters are used to fill in the extra places at the end as follows:

StringBuilder sb;

sb = new StringBuilder("hello there");
sb.setLength(9);
System.out.println(sb); // displays "hello the"

As with Strings, the charAt(int index) method is used to access particular characters based
on their index position (which starts at position 0). Unlike Strings though, a setCharAt(int
index, char c) method is also available which allows you to change the character at the given
index to become the specified character c. Here is how these methods work …

StringBuilder name;

name = new StringBuilder("Chip Electronic");
name.charAt(3); // returns 'p'
name.setCharAt(4,'+');
System.out.println(name); // displays "Chip+Electronic"

COMP1406 - Chapter 13 - Text Formatting Classes Winter 2014

 - 426 -

However, a more commonly used method in the StringBuilder class is the append(Object x)
method which allows you to append a bunch of characters to the end of the StringBuilder. If
x is a String object, the entire string is appended to the end. If x is any other object, JAVA
will call the toString() method for that object and append the resulting String to the end of the
StringBuilder:

StringBuilder sb = new StringBuilder();

sb.append("Mark has ");
sb.append(new BankAccount("Mark"));

System.out.println(sb); // displays "Mark has Account #10000 with $0.0"

The resulting output may differ, of course, depending on the BankAccount’s toString()
method. Similar methods also exist for appending an int, long, float, double, boolean or
char as follows:

append(int x), append(long x), append(float x),
append(double x), append(boolean x), append(char x)

The final two methods that we will mention allow you to remove characters from the
StringBuilder. The deleteCharAt(int index) method will remove the character at the given
index while the delete(int start, int end) method will delete all the characters within the indices
ranging from start to end-1 as follows:

StringBuilder sb;

sb = new StringBuilder("Miles Perlyter");
sb.delete(3,11); // changes sb to "Milter"
sb.deleteCharAt(sb.length()-1); // changes sb to "Milte"
sb.deleteCharAt(sb.length()-1); // changes sb to "Milt"

Sometimes, it is useful to use a StringBuilder to go through a String and make changes to it.
For example, consider using a StringBuilder to remove all the non-alphabetic characters from
a String as follows (of course the result would have to be a new String, since the original
cannot be modified) …

String original, result = "";
StringBuilder sb;
Character c;

original = "Hello, my 1st name ... is Mark !!";
sb = new StringBuilder();
for (int i=0; i<original.length(); i++) {
 c = original.charAt(i);
 if (Character.isLetter(c))
 sb.append(c);
}
result = new String(sb);
System.out.println(result);

COMP1406 - Chapter 13 - Text Formatting Classes Winter 2014

 - 427 -

Notice a couple of things from this code. First, the StringBuilder is used as a temporary
object for creating the result string but is no longer useful after the method has
completed. We use one of the String class’ constructors to create the new
String … passing in the StringBuilder. Second, we are checking for non-
alphabetic characters by using Character.isLetter(). Here, isLetter() is a static
function in the Character class that determines whether or not the given
character is alphabetic or not.

Side note: Character is a class in JAVA known as a wrapper class because it is an
object wrapper for the char primitive. Essentially, the class can be used to “convert” (i.e., wrap up) a
char into an object that can then be used as a regular object. There is a wrapper class for each of the
primitives in JAVA (i.e., Integer, Long, Float, Double, Character, Boolean, Short and Byte). Since
JAVA 1.5, primitives are automatically wrapped into objects, and so we need not worry about this.

There are other useful methods in the Character class. Here are just a few:

Character.isLetter(c) // checks if c is a letter in the alphabet
Character.isDigit(c) // checks if c is a digit (i.e., '0' - '9')
Character.isLetterOrDigit(c) // … this one is obvious …
Character.isWhiteSpace(c) // checks if c is the space character
Character.isLowerCase(c) // checks if c is lowercase (e.g., ‘a’)
Character.isUpperCase(c) // checks if c is uppercase (e.g., ‘A’)
Character.toLowerCase(c) // returns lowercase equivalent of c
Character.toUpperCase(c) // returns uppercase equivalent of C

Here are some examples of how they are used:

Character.isLetter('A') // returns true
Character.isDigit('6') // returns true
Character.isLetterOrDigit('@') // returns false
Character.isWhiteSpace(' ') // returns true
Character.isLowerCase('a') // returns true
Character.isUpperCase('A') // returns true
Character.toLowerCase('B') // returns 'b'
Character.toUpperCase('b') // returns 'B'

Note that none of these methods require you to make an instance of a Character object. They
are all static/class methods that take a char as a parameter (int in some cases) and return
another primitive.

 13.3 The Date and Calendar Classes

It is often necessary to use dates and times when programming. Let us take a look at the Date
class provided in the java.util package. The Date class allows us to make
data objects that incorporate time as well. The java.util.Date class is used to
represent BOTH date and time. Dates are stored simply as a number, which
happens to be the number of milliseconds since January 1, 1970, 00:00:00
GMT.

COMP1406 - Chapter 13 - Text Formatting Classes Winter 2014

 - 428 -

New dates are created with a call to a constructor as follows:

Date today = new Date();

The result is an object that represents the current date and time and it looks something like this
when displayed (of course it will vary depending on the day you run your code):

Thu Mar 26 14:39:17 EDT 2009

Notice that it shows the day, month, day-of-month, hours, minutes, seconds, timezone
and year of the Date object. This is default behavior for this class. There are only three other
useful methods in the Date class:
 • getTime() - Returns a long representing this time in milliseconds.

• after(Date d) - Returns whether or not receiver date comes after the given date d.

• before(Date d) - Returns whether or not receiver date comes before the given date d.

Most other methods have been deprecated (which means they should not be used anymore).

In the class Date itself, there is no easy way to create a specific date (e.g., Feb. 13, 1992).
Instead, we must use a different class to do this. In the current version of JAVA,
Calendar objects are used to represent dates, instead of Date objects. Calendar is
an abstract base class for converting between a Date object and a set of integer
fields such as YEAR, MONTH, DAY, HOUR, and so on.

Although this Calendar class has many useful constants and methods (as you will soon see),
we cannot make instances of it (i.e., we cannot say new Calendar()). Instead, the more
specific kind of calendar called a GregorianCalendar is used.

The java.util.GregorianCalendar class is used to query and manipulate dates. Here are some
of the available constructors …

new GregorianCalendar() // today’s date
new GregorianCalendar(1999, 11, 31) // year,month,day
new GregorianCalendar(1968, 0, 8, 11, 55) // year, month, day, hours, mins

Notice that:

• the year is specified as 4-digits (e.g., 1968)
• months are specified from 0 to 11 (January being 0)
• days must be from 1 to 31
• hours and minutes are at the end of the constructor

Calendars do not display well.

COMP1406 - Chapter 13 - Text Formatting Classes Winter 2014

 - 429 -

Here is what you would see if you tried displaying a GregorianCalendar:

java.util.GregorianCalendar[time=1178909251343,areFieldsSet=true,
areAllFieldsSet=true,lenient=true,zone=sun.util.calendar.ZoneInfo[id=
"America/New_York",offset=-18000000,dstSavings=3600000,useDaylight=true,
transitions=235,lastRule=java.util.SimpleTimeZone[id=America/New_York,
offset=-18000000,dstSavings=3600000,useDaylight=true,startYear=0,
startMode=3,startMonth=3,startDay=1,startDayOfWeek=1,startTime=7200000,
startTimeMode=0,endMode=2,endMonth=9,endDay=-1,endDayOfWeek=1,endTime=
7200000,endTimeMode=0]],firstDayOfWeek=1,minimalDaysInFirstWeek=1,ERA=1,
YEAR=2007,MONTH=4,WEEK_OF_YEAR=19,WEEK_OF_MONTH=2,DAY_OF_MONTH=11,
DAY_OF_YEAR=131,DAY_OF_WEEK=6,DAY_OF_WEEK_IN_MONTH=2,AM_PM=1,HOUR=2,
HOUR_OF_DAY=14,MINUTE=47,SECOND=31,MILLISECOND=343,ZONE_OFFSET=
-18000000,DST_OFFSET=3600000]

Obviously, this is not pleasant. To display a Calendar in a friendlier manner, we can use the
getTime() method, which actually returns a Date object (... not very intuitive … I know).
Consider these examples:

System.out.println(new GregorianCalendar().getTime()); // today
System.out.println(new GregorianCalendar(1999,11,31).getTime());
System.out.println(new GregorianCalendar(1968,0,8,11,55).getTime());

Here is the output (which of course varies with the current date):

Thu Mar 26 14:48:40 EDT 2009
Fri Dec 31 00:00:00 EST 1999
Mon Jan 08 11:55:00 EST 1968

The isLeapYear(int year) method returns whether or not the given year is a
leap year for this calendar:

 new GregorianCalendar().isLeapYear(2008)); // returns true
 new GregorianCalendar().isLeapYear(2009)); // returns false

There are many other methods that we can use to query or alter the date which are inherited
from the Calendar class.

For example, the get(int field) method is used along with some static constants to access
information about the particular calendar date. For example, at the time of updating these
notes the date was:

Thu Mar 26 15:05:35 EDT 2009

Consider the results (shown to the right) of each get method call in the code below. You
should use import java.util.Calendar at the top of your code so that you can use these
constants:

COMP1406 - Chapter 13 - Text Formatting Classes Winter 2014

 - 430 -

Calendar today = Calendar.getInstance();

today.get(Calendar.YEAR); // 2009
today.get(Calendar.MONTH); // 2
today.get(Calendar.DAY_OF_MONTH); // 26
today.get(Calendar.DAY_OF_WEEK); // 5
today.get(Calendar.DAY_OF_WEEK_IN_MONTH); // 4
today.get(Calendar.DAY_OF_YEAR); // 85
today.get(Calendar.WEEK_OF_MONTH); // 4
today.get(Calendar.WEEK_OF_YEAR); // 13
today.get(Calendar.HOUR); // 3
today.get(Calendar.AM_PM); // 1
today.get(Calendar.HOUR_OF_DAY); // 15
today.get(Calendar.MINUTE); // 5
today.get(Calendar.SECOND); // 35

The value returned from the get(int field) method can be compared with other Calendar
constants. For example,

if (aCalendar.get(Calendar.MONTH) == Calendar.APRIL) {...}
if (aCalendar.get(Calendar.DAY_OF_WEEK) == Calendar.SATURDAY) {...}

Here are some of the useful constants:

Calendar.SUNDAY
Calendar.MONDAY
Calendar.TUESDAY
Calendar.WEDNESDAY
Calendar.THURSDAY
Calendar.FRIDAY
Calendar.SATURDAY

Calendar.JANUARY
Calendar.FEBRUARY
Calendar.MARCH
Calendar.APRIL
Calendar.MAY
Calendar.JUNE
Calendar.AM

Calendar.JULY
Calendar.AUGUST
Calendar.SEPTEMBER
Calendar.OCTOBER
Calendar.NOVEMBER
Calendar.DECEMBER
Calendar.PM

There is also a set(int field, int value) method that can be used to set the values for certain
date fields:

aCalendar.set(Calendar.MONTH, Calendar.JANUARY);
aCalendar.set(Calendar.YEAR, 1999);
aCalendar.set(Calendar.AM_PM, Calendar.AM);

Other set methods allow the date and time to be changed …

aCalendar.set(1999, Calendar.AUGUST, 15);
aCalendar.set(1999, Calendar.AUGUST, 15, 6, 45);

We can also format dates when we want to print them nicely. There is a SimpleDateFormat
class (in the java.text package) that formats a Date object using one of many predefined
formats. It does this by generating a String representation of the date. The constructor
takes a String which indicates the desired format:

new SimpleDateFormat("MMM dd,yyyy");

COMP1406 - Chapter 13 - Text Formatting Classes Winter 2014

 - 431 -

The parameter in the method is a format string that specifies “how you want the date to look”
when it is printed. By using different characters in the format string, you get different output
for the date. The format(Date d) method in the SimpleDataFormat class is then used to
actually do the work by applying the format to the given date. Here is an example:

import java.text.SimpleDateFormat;
...

SimpleDateFormat dateFormatter = new SimpleDateFormat("MMM dd,yyyy");
Date today = new Date();
String result = dateFormatter.format(today);

System.out.println(result);

Here is the result (which would vary, depending on the date):

Mar 26,2009

Here are examples of format Strings and their effect on the date April 30th 2001 at 12:08 PM:

Format String Resulting output

without formatting

"yyyy/MM/dd"
"yy/MM/dd"
"MM/dd"
"MMM dd,yyyy"
"MMMM dd,yyyy"
"EEE. MMMM dd,yyyy"
"EEEE, MMMM dd,yyyy"
"h:mm a"
"MMMM dd, yyyy (hh:mma)"

Tue Apr 10 15:07:52 EDT 2001

2001/04/30
01/04/30
04/30
Apr 30, 2001
April 30, 2001
Mon. April 30, 2001
Monday, April 30, 2001
12:08 PM
April 30, 2001 (12:08PM)

For additional formatting information, check out the JAVA API specification. Here is a simple
example that creates two dates. One representing today, the other representing a future date:

import java.util.*;
import java.text.SimpleDateFormat;

public class DateTestProgram {
 public static void main (String[] args) {

 Calendar today = Calendar.getInstance();
 Calendar future;
 int difference;

 // Display Information about today's date and time
 System.out.println("Here is today:");
 System.out.println(today.getTime());

COMP1406 - Chapter 13 - Text Formatting Classes Winter 2014

 - 432 -

 System.out.println(today.get(Calendar.YEAR));
 System.out.println(today.get(Calendar.MONTH));
 System.out.println(today.get(Calendar.DAY_OF_MONTH));

 // Display Information about a future day's date and time
 future = Calendar.getInstance();
 future.set(2010, Calendar.MARCH, 5);
 System.out.println("Here is the future:");
 System.out.println(future.getTime());
 System.out.println(future.get(Calendar.YEAR));
 System.out.println(future.get(Calendar.MONTH));
 System.out.println(future.get(Calendar.DAY_OF_MONTH));

 // Test the formatting
 Date aDate = new Date();
 System.out.println(aDate);
 System.out.println(new SimpleDateFormat("yyyy/MM/dd").format(aDate));
 System.out.println(new SimpleDateFormat("yy/MM/dd").format(aDate));
 System.out.println(new SimpleDateFormat("MM/dd").format(aDate));
 System.out.println(new SimpleDateFormat("MMM dd,yyyy").format(aDate));
 System.out.println(new SimpleDateFormat("MMMM dd,yyyy").format(aDate));
 }
}

Here is the output from running this code on May 30th, 2011:

Here is today:
Mon May 30 15:37:47 EDT 2011
2011
4
30
Here is the future:
Fri Mar 05 15:37:47 EST 2010
2010
2
5
Mon May 30 15:37:47 EDT 2011
2011/05/30
11/05/30
05/30
May 30,2011
May 30,2011

Notice that the months start at 0, and so March is month #2.

Although we can create and display simple dates, we have not done any manipulation at all.
For instance, we may want to know how many working days there are between two dates.
There are many more functions in the Calendar and Date classes, but we will not discuss
them any further here. You would have to look at the API for the Date, Calendar,
GregorianCalendar and SimpleDateFormat classes.

COMP1406 - Chapter 13 - Text Formatting Classes Winter 2014

 - 433 -

 Supplemental Information (Formatting Dates with Strings)

We can also use the String.format() method to format dates and times. There are many
flags that can be used (see the API for details) but here are some commonly used ones for
displaying dates and times:

Date aDate = new Date();

System.out.println(String.format("%tc", aDate));
System.out.println(String.format("%tF", aDate));
System.out.println(String.format("%tR", aDate));
System.out.println(String.format("%tr", aDate));
System.out.println(String.format("%tD", aDate));

Here was the output when it was ran on March 26, 2009 at 3:26pm:

Thu Mar 26 15:26:56 EDT 2009
2009-03-26
15:26
03:26:56 PM
03/26/09

COMP1406 - Chapter 13 - Text Formatting Classes Winter 2014

 - 434 -

This page has been intentionally left blank.

Chapter 14

Graphics

What is in This Chapter ?

As programmers, we will likely all eventually come across a situation in which we need to
display graphics. Graphics may be pictures or perhaps drawings consisting of lines, circles,
rectangles etc... For example, if we want to have an application that displays a bar graph,
there is no "magical" component in JAVA that does this for us. In this chapter, we will learn
the basics of drawing graphics, displaying images, and manipulating graphics in our
JAVA applications.

COMP1406 - Chapter 14 - Graphics Winter 2014

 - 436 -

 14.1 Doing Simple Graphics

Graphics are used in many applications to display graphs, statistics, diagrams, pictures etc...
Some applications are even completely based on graphics such as games, paint programs,
MS PowerPoint etc... We have already seen that ImageIcons can be used to display images
on your application window inside labels, buttons etc... Now we will see how to actually draw
our own graphics, as when drawing graphs or diagrams.

The java.awt package has a class called Graphics that permits the drawing of various
shapes. The class is abstract and so there is no constructor. Instead, JAVA provides a
getGraphics() method that can be sent to any window component which returns an instance
of this Graphics class (i.e., each component keeps an instance of that class by default).
Think of each component having its own "pen" that can only be used to draw in that
component's "space", just like the pens attached to kiosks at the bank.

There are a set of drawing functions that allow you to draw onto a component's area. Since a
particular graphics object belongs to one specific component, you can only draw on that
component with it. Most drawing functions allow you to specify x and y coordinates. The
coordinate (x,y)=(0,0) is at the top left corner of the component's area. So all coordinates are
with respect to the component's area. Here are just some of the methods available in the
Graphics class (look in the JDK API for more info):

// Draw a line from (x1, y1) to (x2,y2)
public abstract void drawLine(int x1, int y1,
 int x2, int y2);

// Draw a rectangle with its top left at (x, y) having
the given width and height
public abstract void drawRect(int x, int y,
 int width, int height);

// Draw a filled rectangle with its top left at (x, y)
having the given width and height
public abstract void fillRect(int x, int y,
 int width, int height);

// Erase a rectangular area by filling it in with the
background color
public abstract void clearRect(int x, int y,
 int width, int height);

COMP1406 - Chapter 14 - Graphics Winter 2014

 - 437 -

// Draw an oval with its top left at (x, y) having the
given width and height
public abstract void drawOval(int x, int y,
 int width, int height);

// Draw a filled oval with its top left at (x, y)
having the given width and height
public abstract void fillOval(int x, int y,
 int width, int height);

// Draw the given String with its bottom left at (x, y)
public abstract void drawString(String str,
 int x, int y);

// Draw a polygon with the given coordinates
public abstract void drawPolygon(int[] x, int[] y,
 int numEdges);

// Draw a filled polygon with the given coordinates
public abstract void fillPolygon(int[] x, int[] y,
 int numEdges);

// Set the foreground & fill color of Graphics object
public abstract void setColor(Color c);

ABCDEFG

// Set the Font for use with drawString
public abstract void setFont(Font font);

Example:

This code makes a simple JFrame and then draws
some text on it wherever the user clicks the
mouse. As it turns out, we can draw directly to the
frame of a window. We don't need to add any
components for this example. To the right is a
snapshot of the running program.

You will notice three things about this example:

1. The text is drawn such that the bottom left
corner of the text appears at the location
which the mouse is clicked.

2. The text is erased whenever we alter the
size of the window.

3. We can ask a mouseEvent for the x and y
position of the mouse.

Here is the code:

COMP1406 - Chapter 14 - Graphics Winter 2014

 - 438 -

import java.awt.event.*;
import javax.swing.*;

public class TextDrawingExample extends JFrame {

 public TextDrawingExample(String title) {
 super(title);
 addMouseListener(new MouseAdapter() {
 public void mousePressed(MouseEvent e) {
 getGraphics().drawString("Hello", e.getX(), e.getY());
 }});

 setDefaultCloseOperation(EXIT_ON_CLOSE);
 setSize(300, 300);
 }

 public static void main(String args[]) {
 new TextDrawingExample("Text Drawing Example").setVisible(true);
 }
}

Example:

In this example, we will set up six JLabels, each
one allowing a different shape to be drawn onto it.
We will set up a single event handler for all mouse
presses and within that method we will ask which
label has been clicked on and then draw the
corresponding shape onto the label. The shapes
will be drawn with different colors each time. We
use Math.random() to get a random number for
creating a random color. To the right is a snapshot
of the working program. You will notice that:

1. The getGraphics() message is sent to the
component, not to the frame.

2. The labels have neat little borders which
were created by using

BorderFactory.createRaisedBevelBorder().

You can take a look at the Java API to find out more about the different kinds of borders that
are possible.

Here is the code:

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

COMP1406 - Chapter 14 - Graphics Winter 2014

 - 439 -

public class ShapeDrawingExample extends JFrame {
 private JLabel labels[];

 public ShapeDrawingExample(String title) {
 super(title);
 setLayout(new GridLayout(3,2,5,5));
 labels = new JLabel[6];
 for (int i=0; i<6; i++) {
 getContentPane().add(labels[i] = new JLabel());
 labels[i].setBorder(BorderFactory.createRaisedBevelBorder());
 }
 addListeners();
 setDefaultCloseOperation(EXIT_ON_CLOSE);
 setSize(300, 300);
 }

 // Add listener for a mouse press
 private void addListeners() {
 MouseAdapter anAdapter = new MouseAdapter() {
 public void mousePressed(MouseEvent e) {
 JLabel area = (JLabel)e.getSource();
 Graphics g = area.getGraphics();

 // Get a random color
 g.setColor(new Color((float)Math.random(),
 (float)Math.random(),
 (float)Math.random()));

 // Find the label that caused this event
 int labelNumber;
 for (labelNumber=0; labelNumber<6; labelNumber++) {
 if (area == labels[labelNumber]) break;
 }
 int x = e.getX();
 int y = e.getY();

 // Now decide what to draw
 switch (labelNumber) {
 case 0: g.drawString("(" + String.valueOf(x) + "," +
 String.valueOf(y) + ")", x, y); break;
 case 1: g.drawLine(x, y, x+20, y+20); break;
 case 2: g.drawOval(x, y, 10, 20); break;
 case 3: g.drawRect(x, y, 40, 20); break;
 case 4: g.fillOval(x, y, 10, 20); break;
 case 5: g.fillRect(x, y, 40, 20); break;
 }
 }};

 // Add mouse listeners to all labels
 for (int i=0; i<6; i++)
 labels[i].addMouseListener(anAdapter);
 }

 public static void main(String args[]) {
 new ShapeDrawingExample("Shape Drawing Example").setVisible(true);
 }
}

COMP1406 - Chapter 14 - Graphics Winter 2014

 - 440 -

14.2 Repainting Components

You may have noticed in our examples so far that all the drawings we do are erased when the
window is resized. When a window is resized, each of the components needs to be redrawn.
Every JComponent has (or inherits) a repaint() method which is called by JAVA automatically
when the window is resized in order to redraw the component. JAVA redraws these
components as it already knows how to do, but it will not automatically redraw anything that we
may have drawn manually, unless we tell it to. In fact, we too can call this repaint() method
any time we want our component to be redrawn.

The repaint() method actually calls a method called paintComponent(Graphics g), which is also
inherited from the JComponent class. However, the default inherited paintComponent() method
does not know what you want to be painted. In order to tell it what to actually redraw, you
need to override this method by writing your own paintComponent() method which will specify
exactly how to draw your graphics.

To add this functionality to our previous two examples, we would have to "keep track of" all the
graphical shapes that we have been drawing (as well as their attributes, such as location,
dimension and color) so that in our paintComponent() method, we can redraw all of them
properly each time.

The previous two examples showed how simple graphics can be drawn effortlessly on a frame
or on a label. In fact, you can draw on any component. The component that is intended for
general purpose drawing is a JPanel.

Note in the older AWT framework of JAVA, a special class called a Canvas was used for drawing using a paint()
method, not the paintComponent() method. JPanels in the newer Swing library have all the capabilities of the
old Canvas class built-in and should be used instead. In fact if the older paint() method is used you can expect
bugs, so use the JPanels and paintComponent() method instead.

The common strategy in JAVA for drawing on a blank area is to make your own class which is
a subclass of JPanel. This class should implement, or override, the paintComponent() method.
When we override this method however, we will be sure to call the super method so that the
default drawing of the component still occurs.

Example:

In this example, we create a subclass of JPanel on which we will keep
track of mouse click locations and draw 40x40 pixel squares centered
at each of these locations. We will override the paintComponent()

method so that the squares will be properly redrawn whenever we (or
JAVA) call repaint() or when the window is resized. The application
itself is not so exciting to look at, but rather the underlying concept of
painting on the panel is what is important.

COMP1406 - Chapter 14 - Graphics Winter 2014

 - 441 -

In this example, you may notice a couple of things:

• The getPoint() method is sent to a MouseEvent object to obtain the Point object
representing the location that was clicked.

• Since all squares will be the same size, we don't store the size, just their center
locations.

Here is the code:

import java.util.*;
import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

public class SquareCanvas extends JPanel implements MouseListener {

 private ArrayList<Point> squares; // Keep track of all square centers

 public SquareCanvas() {
 squares = new ArrayList<Point>();
 setBackground(Color.white);
 addMouseListener(this);
 }

 // Displays the contents of the canvas
 public void paintComponent(Graphics graphics) {
 // Draw the component as before (i.e., default look)
 super.paintComponent(graphics);
 // Now draw all of our squares
 graphics.setColor(Color.black);
 for (Point center: squares)
 graphics.drawRect(center.x - 20, center.y - 20, 40, 40);
 }

 // These are unused MouseEventHandlers. Note that we could have
 // used an Adapter class here. However, a typical drawing
 // application would make use of these other events as well.
 public void mouseClicked(MouseEvent event) {}
 public void mouseEntered(MouseEvent event) {}
 public void mouseExited(MouseEvent event) {}
 public void mouseReleased(MouseEvent event) {}

 // Store the mouse location when it is pressed
 public void mousePressed(MouseEvent event) {
 squares.add(event.getPoint());
 repaint(); // this will call paintComponent()
 }

 public static void main(String args[]) {
 JFrame frame = new JFrame("Square Drawing Example");
 frame.add(new SquareCanvas());
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 frame.setSize(300, 300);
 frame.setVisible(true);
 }
}

COMP1406 - Chapter 14 - Graphics Winter 2014

 - 442 -

Notice how we are redrawing the panel by first making a call to super.paintComponent().
This ensures that the panel's background is redrawn (i.e., erased) before we start drawing
again. If we did not do this call, our squares would still be drawn, but the background color for
the window (i.e., white in this case) would not be shown. We would end up with the light gray
default background coloring of the JFrame.

14.3 Displaying Images

We have seen how to draw shapes of different colors onto components, now we will find out
how to draw an image on the screen. JAVA lets you load and display both ".gif" files as well as
".jpg" files. We have seen the use of ImageIcons with components so that we can display an
icon along with text or as a label of a button. Icons, however, are meant to be small images
and are not meant for large images. When larger pictures are to be shown, you should use
Image objects. In fact, the Image class is abstract, but there are two useful subclasses. In
JAVA, there is much to learn about Image objects. There are many classes relating to the
manipulation of images and a thorough investigation into these classes is well beyond the
scope of this course. Here, we will look simply at the basic displaying of images in our
applications.

A typical scenario is to load and display an image (such as a .gif or .jpg) from a file.
Unfortunately, the way images are obtained from files is a platform-specific issue. This means
that it is not always done the same way, depending on what machine you run your code.
Fortunately, JAVA supplies a Toolkit class that has common "special" methods for doing
various platform-specific things such as loading images.

We can load an image from the disk by asking the Toolkit class for an instance of Toolkit (i.e.,
default will do fine) and then get the image as follows:

 Image myImage = Toolkit.getDefaultToolkit().createImage("picture.gif");

The code loads and returns an Image object from the file entitled picture.gif but it does not
display the image. We can display the image by asking a Graphics object to draw the image:

 g.drawImage(anImage, x, y, null);

The image is drawn with its top-left corner at (x, y) in this graphics context's coordinate space.
The 4th parameter can be any class that implements the ImageObserver interface. This
interface is used as a means of informing a class when an image is done being loaded or
drawn (since images in general may take a while to load or draw ... especially if being loaded
from a network). This strategy of informing interested classes of image completion, allows
more efficient use of process cycles so that the program does not sit idly by doing nothing
while the image is being loaded/drawn. We will keep things simple in our example and set this
value to null so that nobody is informed when the image is loaded or drawn.

One final issue that we are interested in is with respect to the image size. We may want to
create a JPanel that has the exact same size of the image (e.g., for use as a background
image for the panel). In this case, we can ask an image for its width and height before

COMP1406 - Chapter 14 - Graphics Winter 2014

 - 443 -

choosing the size of our panel. There are getWidth() and getHeight() methods that we can
send to our Image object to obtain these values. However, there is one minor issue. While
the image is being loaded (which may take a while), the value returned from getWidth() and
getHeight() is -1. So, we have to introduce a delay in our program by waiting until these
methods return valid results:

 while ((anImage.getWidth(null) == -1) && (anImage.getHeight(null) == -1));

Notice as well that these methods take an ImageObserver as a parameter (which we set to
null). By using a proper ImageObserver, we would not have to put in this delay, but could
perform other application-specific tasks while we wait for the image to be loaded.

Now we may set the "preferred size" of the panel. Note that setting the "size" of the panel is
not useful since when placed on a frame, the frame's layout manager will automatically resize
all of its components.

 setPreferredSize(new Dimension(anImage.getWidth(null),anImage.getHeight(null)));

So here is the code we can use to test:

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

public class ImagePanel extends JPanel {
 private Image anImage;

 public ImagePanel() {
 anImage = Toolkit.getDefaultToolkit().createImage("altree.gif");

 while ((anImage.getWidth(null) == -1) && (anImage.getHeight(null) == -1));
 setPreferredSize(new Dimension(anImage.getWidth(null),
 anImage.getHeight(null)));

 }

 public void paintComponent(Graphics g) {
 super.paintComponent(g);
 g.drawImage(anImage, 0, 0, null);
 }

 public static void main(String args[]) {
 JFrame frame = new JFrame("Image Display Test");
 frame.add(new ImagePanel());
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 frame.pack(); // Makes size according to panel's preference
 frame.setVisible(true);
 }
}

COMP1406 - Chapter 14 - Graphics Winter 2014

 - 444 -

Here is the result:

By the way, this is "AL".
She was my first Iguana.
She is no longer alive, but now
she is remembered here in our
notes :).

Note that since we used the
panel's paintComponent()
method to draw the image, the
image is drawn as a background
and so any components we add
to the panel will appear on top of
the image. So you can see that
it is quite easy to create a
window as shown below simply
by adding components to the
panel as usual:

There are many more things that
you can do with images:

• Shrink/Grow them
• Fade them
• Warp them
• other filters ...

We do not have time to fully investigate these other features of the API library. Feel free to
experiment on your own.

COMP1406 - Chapter 14 - Graphics Winter 2014

 - 445 -

14.4 Graph Editor Example

This section of the notes describes a step-by-step approach for creating a simple graph editor.
It introduces the notion of "drag and drop" as well as selecting objects.

What is a graph ? There are many types of graphs. We are interested in graphs that form
topological and/or spatial information. Our graphs will consist of nodes and edges. The
nodes may represent cities in a map while the edges may represent roads between cities:

We would like to make a graph editor with the ability to:

• add/remove nodes
• add/remove edges
• move nodes around (edges between them will remain connected)
• "select" groups of nodes and edges for removal or moving
• do some other useful graph-manipulation features

The Graph Model:

We will begin our application as usual by developing the model. We know that our graph
itself is going to be the model, but we must first think about what components make up the
graph. These are the nodes and edges.

Let us begin by creating a Node class. What state should each node maintain ? Well, it
depends on the application that will be using it. Since we know that the graph will be
displayed, each node will need to keep track of its location. Also, we may wish to label
nodes (e.g., a city's name). Here is a basic model for the nodes:

COMP1406 - Chapter 14 - Graphics Winter 2014

 - 446 -

import java.awt.Point;

public class Node {
 private String label;
 private Point location;

 public Node() { this("",new Point(0,0)); }
 public Node(String aLabel) { this(aLabel, new Point(0,0)); }
 public Node(Point aPoint) { this("", aPoint); }
 public Node(String aLabel, Point aPoint) {
 label = aLabel;
 location = aPoint;
 }

 public String getLabel() { return label; }
 public Point getLocation() { return location; }
 public void setLabel(String newLabel) { label = newLabel; }
 public void setLocation(Point aPoint) { location = aPoint; }
 public void setLocation(int x, int y) { location = new Point(x, y); }

 // Nodes look like this: label(12,43)
 public String toString() {
 return(label + "(" + location.x + "," + location.y + ")");
 }
}

Notice that we don't have much in terms of behavior ... simply some get/set methods and a
toString() method. Notice the two different set methods for location. This gives us flexibility
in cases where we the coordinates are either Point objects or ints.

What state do we need for a graph edge ? Well ... they must start at some node and end at
another so we may want to know which nodes these are. Does it make sense for a graph
edge to exist when one or both of its endpoints are not nodes ? Probably not. So an edge
should keep track of the node from which it starts and the node at which it ends. We will call
them startNode and endNode. What about a label ? Sure ... roads have names (as well as
lengths). Here is a basic Edge class:

public class Edge {
 private String label;
 private Node startNode, endNode;

 public Edge(Node start, Node end) { this("", start, end); }
 public Edge(String aLabel, Node start, Node end) {
 label = aLabel;
 startNode = start;
 endNode = end;
 }

 public String getLabel() { return label; }
 public Node getStartNode() { return startNode; }
 public Node getEndNode() { return endNode; }

COMP1406 - Chapter 14 - Graphics Winter 2014

 - 447 -

 public void setLabel(String newLabel) { label = newLabel; }
 public void setStartNode(Node aNode) { startNode = aNode; }
 public void setEndNode(Node aNode) { endNode = aNode; }

 // Edges look like this: sNode(12,43) --> eNode(67,34)
 public String toString() {
 return(startNode.toString() + " --> " + endNode.toString());
 }
}

Now what about the graph itself ? What do we need for the state of the graph ?
Well ... a graph is just a bunch of nodes and edges.

Still, we have a few choices for representing the Graph:

1. Keep a collection of all nodes AND another collection of all edges
2. Keep only a collection of all nodes
3. Keep only a collection of all edges
4. Keep only 1 node OR 1 edge (this seems weird doesn't it ?)

Let us examine each of these:

1. The 1st strategy would provide quick access for nodes and edges since they are readily
available. However, it does take more space than the other strategies.

2. The 2nd strategy allows quick access to nodes, but if we ever needed to get all the
edges, we would have to build up the collection, which takes time. This can be done by
iterating through all incident edges of all nodes and adding the edges (this is slower, but
more space efficient). So each node would have to keep track of the edges from/to it.

3. The 3rd strategy is similar to the 2nd except that the edges are efficiently accessible
and the nodes are not.

4. The 4th strategy is weird. If we keep one node, we would have to traverse along one of
its incident edges to the other end and continue in this manner throughout the graph in
order to collect all the nodes or edges. However, this will ONLY work if the graph is
connected (i.e., every node can be reached from every other node through a sequence
of graph edges).

We will choose the 2nd strategy for our implementation, although you should realize that all
three are possible.

Let us examine our Node and Edge classes a little further and try to imagine additional
behavior that we may want to have.

Notice that each edge keeps track of the nodes that it connects to. But shouldn't a node also
keep track of the edges are connected to it ? Think of "real life". Wouldn't it be nice to know
which roads lead "into" and "out of" a city ?

Obviously, we can always consult the graph itself and check ALL edges to see if they connect
to a given city. This is NOT what you would do if you had a map though. You don't find this

COMP1406 - Chapter 14 - Graphics Winter 2014

 - 448 -

information out by looking at ALL roads on a map. You find the city of interest, then look at the
roads around that area (i.e., only the ones heading into/out of the city).

The point is ... for time efficiency reasons, we will probably want each node to keep track of the
edges that it is connected to. Of course, we won't make copies of these edges, we will just
keep "pointers" to them so the additional memory usage is not too bad.

We should go back and add the following instance variable to the Node class:

 private ArrayList<Edge> incidentEdges;

We will also need the following "get method" and another for adding an edge:

public ArrayList<Edge> incidentEdges() {
 return incidentEdges;
}

public void addIncidentEdge(Edge e) {
 incidentEdges.add(e);
}

We will also have to add this line to the last of the Node constructors:

 incidentEdges = new ArrayList<Edge>();

While we are making changes to the Node class, we will also add another interesting method
called neighbours that returns the nodes that are connected to the receiver node by a graph
edge. That is, it will return an ArrayList of all nodes that share an edge with this receiver
node. It is very much like asking: "which cities can I reach from this one if I travel on only one
highway ?".

We can obtain these neighbors by iterating through the incidentEdges of the receiver and
extracting the node at the other end of the edge. We will have to determine if this other node
is the start or end node of the edge:

public ArrayList<Node> neighbours() {
 ArrayList<Node> result = new ArrayList<Node>();

 for (Edge e: incidentEdges) {
 if (e.getStartNode() == this)
 result.add(e.getEndNode());
 else
 result.add(e.getStartNode());
 }

 return result;
}

As we write this method, it seems that we are writing a portion of code that is potentially useful
for other situations. That code is the code responsible for finding the opposite node of an
edge. We should extract this code and make it a method for the Edge class:

COMP1406 - Chapter 14 - Graphics Winter 2014

 - 449 -

public Node otherEndFrom(Node aNode) {
 if (startNode == aNode)
 return endNode;
 else
 return startNode;
}

Now, we can rewrite the neighbours() method to use the otherEndFrom() method:

public ArrayList<Node> neighbours() {
 ArrayList<Node> result = new ArrayList<Node>();

 for (Edge e: incidentEdges)
 result.add(e.otherEndFrom(this));

 return result;
}

Ok. Now we will look at the Graph class. We have decided that we were going to store just
the nodes, and not the edges. We will also store a label for the graph ... after all ... provinces
have names don't they ?

import java.util.*;

public class Graph {
 private String label;
 private ArrayList<Node> nodes;

 public Graph() { this("", new ArrayList<Node>()); }
 public Graph(String aLabel) { this(aLabel, new ArrayList<Node>()); }
 public Graph(String aLabel, ArrayList<Node> initialNodes) {
 label = aLabel;
 nodes = initialNodes;
 }
 public ArrayList<Node> getNodes() { return nodes; }
 public String getLabel() { return label; }
 public void setLabel(String newLabel) { label = newLabel; }

 // Graphs look like this: label(6 nodes, 15 edges)
 public String toString() {
 return(label + "(" + nodes.size() + " nodes, " +
 getEdges().size() + " edges)");
 }
}

Let us write a method to return all the edges of the graph. It will have to go and collect all the
Edge objects from the incident edges of the Node objects and return them as an ArrayList.
Can you foresee a small problem ?

COMP1406 - Chapter 14 - Graphics Winter 2014

 - 450 -

// Get all the edges of the graph by asking the nodes for them
public ArrayList<Edge> getEdges() {
 ArrayList<Edge> edges = new ArrayList<Edge>();

 for (Node n: nodes) {
 for (Edge e: n.incidentEdges()) {
 if (!edges.contains(e)) //so that it is not added twice
 edges.add(e);
 }
 }

 return edges;
}

Now we need methods for adding/removing nodes/edges. Adding a node or edge is easy,
assuming that we already have the node or edge:

public void addNode(Node aNode) {
 nodes.add(aNode);
}

public void addEdge(Edge anEdge) {
 // ?????? What ?????? ...
}

Wait a minute ! How do we add an edge if we do not store them explicitly ? Perhaps we don't
want an addEdge method that takes an "already created" edge. Instead, we should have an

addEdge method that takes the startNode and endNode as parameters, then it creates the
edge:

public void addEdge(Node start, Node end) {
 // First make the edge
 Edge anEdge = new Edge(start, end);

 // Now tell the nodes about the edge
 start.addIncidentEdge(anEdge);
 end.addIncidentEdge(anEdge);
}

There ... that is better. What about removing/deleting a node or edge ? Deleting an Edge is
easy, we just ask the edge's start and end nodes to remove the edge from their lists.
Removing a Node is a little more involved since all of the incident edges must be removed as
well. After all ... we cannot have edges dangling with one of its Nodes missing !

public void deleteEdge(Edge anEdge) {
 // Just ask the nodes to remove it
 anEdge.getStartNode().incidentEdges().remove(anEdge);
 anEdge.getEndNode().incidentEdges().remove(anEdge);
}

COMP1406 - Chapter 14 - Graphics Winter 2014

 - 451 -

public void deleteNode(Node aNode) {
 // Remove the opposite node's incident edges
 for (Edge e: aNode.incidentEdges())
 e.otherEndFrom(aNode).incidentEdges().remove(e);

 nodes.remove(aNode); // Remove the node now
}

OK. Let us write some code that now tests the model classes. Here is static method for the
Graph class that creates and returns a graph:

public static Graph example() {
 Graph myMap = new Graph("Ontario and Quebec");
 Node ottawa, toronto, kingston, montreal;

 myMap.addNode(ottawa = new Node("Ottawa", new Point(250,100)));
 myMap.addNode(toronto = new Node("Toronto", new Point(100,170)));
 myMap.addNode(kingston = new Node("Kingston", new Point(180,110)));
 myMap.addNode(montreal = new Node("Montreal", new Point(300,90)));
 myMap.addEdge(ottawa, toronto);
 myMap.addEdge(ottawa, montreal);
 myMap.addEdge(ottawa, kingston);
 myMap.addEdge(kingston, toronto);

 return myMap;
}

We can test it by writing Graph.example() anywhere. This looks fine and peachy, but if we have
100 nodes, we would need 100 local variables (or a big array) just for the purpose of adding
edges !! Maybe this would be a better way to write the code:

public static Graph example() {
 Graph myMap = new Graph("Ontario and Quebec");

 myMap.addNode(new Node("Ottawa", new Point(250,100)));
 myMap.addNode(new Node("Toronto", new Point(100,120)));
 myMap.addNode(new Node("Kingston", new Point(200,130)));
 myMap.addNode(new Node("Montreal", new Point(300,70)));
 myMap.addEdge("Ottawa", "Toronto");
 myMap.addEdge("Ottawa", "Montreal");
 myMap.addEdge("Ottawa", "Kingston");
 myMap.addEdge("Kingston", "Toronto");

 return myMap;
}

This way, we can access the nodes of the graph by their names (assuming that they are all
unique names). How can we make this happen ? We just need to make another addEdge()

method that takes two String arguments and finds the nodes that have those labels. Perhaps
we could make a nice little helper method in the Graph class that will find a node with a given
name (label):

COMP1406 - Chapter 14 - Graphics Winter 2014

 - 452 -

public Node nodeNamed(String aLabel) {
 for (Node n: nodes)

 if (n.getLabel().equals(aLabel)) return n;

 return null; // If we don't find one
}

Now we can write another addEdge() method that takes String parameters representing Node
names:

public void addEdge(String startLabel, String endLabel) {
 Node start = nodeNamed(startLabel);
 Node end = nodeNamed(endLabel);

 if ((start != null) && (end != null))
 addEdge(start, end);
}

Notice the way we share code by making use of the "already existing" addEdge() method. Also
notice the careful checking for valid node labels. After this new addition, the 2nd main() method
that we created above will now work.

Displaying the Graph:

If we are going to be displaying the graph, we
need to think about how we want to draw it.
Here is what we "may" want to see. So where
do we start ? Let us work on writing code that
draws each of the graph components
separately.

We will start by writing methods for drawing
Nodes and Edges, then use these to draw the Graph. We can pass around the Graphics
object that corresponds to the "pen" that belongs to the panel. Here is a method for the Node
class that will instruct a Node to draw itself using the given Graphics object:

public void draw(Graphics aPen) {
 int radius = 15;

 // Draw a blue-filled circle around the center of the node
 aPen.setColor(Color.blue);
 aPen.fillOval(location.x - radius, location.y - radius, radius*2, radius*2);

 // Draw a black border around the circle
 aPen.setColor(Color.black);
 aPen.drawOval(location.x - radius, location.y - radius, radius*2, radius*2);

 // Draw a label at the top right corner of the node
 aPen.drawString(label, location.x + radius, location.y - radius);
}

COMP1406 - Chapter 14 - Graphics Winter 2014

 - 453 -

Notice that we draw the node twice ... once for the blue color ... once for the black border.
Here is now a similar method for the Edge class that draws an edge:

public void draw(Graphics aPen) {
 // Draw black line from center of startNode to center of endNode
 aPen.setColor(Color.black);
 aPen.drawLine(startNode.getLocation().x, startNode.getLocation().y,
 endNode.getLocation().x, endNode.getLocation().y);
}

When drawing the graph, we should draw edges first, then draw the nodes on top. Why not
the other way around ? Here is the corresponding draw method for the Graph class:

public void draw(Graphics aPen) {
 ArrayList<Edge> edges = getEdges();

 for (Edge e: edges) // Draw the edges first
 e.draw(aPen);

 for (Node n: nodes) // Draw the nodes second
 n.draw(aPen);
}

The User Interface:

Now we can start the creation of our GraphEditor user interface. We will begin by making a
panel on which we will display the graph:

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

public class GraphEditor extends JPanel {
 private Graph aGraph; // The model (i.e. the graph)

 public GraphEditor() {
 this(new Graph());
 }
 public GraphEditor(Graph g) {
 aGraph = g;
 setBackground(Color.white);
 }

 // This is the method that is responsible for displaying the graph
 public void paintComponent(Graphics aPen) {
 super.paintComponent(aPen);
 aGraph.draw(aPen);
 }
}

Now we will make a class called GraphEditorFrame that represents a simple view which
holds only our GraphEditor panel:

COMP1406 - Chapter 14 - Graphics Winter 2014

 - 454 -

import javax.swing.*;

public class GraphEditorFrame extends JFrame {
 private GraphEditor editor;

 public GraphEditorFrame (String title) {
 this(title, new Graph());
 }

 public GraphEditorFrame (String title, Graph g) {
 super(title);
 add(editor = new GraphEditor(g));
 setDefaultCloseOperation(EXIT_ON_CLOSE);
 setSize(600, 400);
 }

 public static void main(String args[]) {
 new GraphEditorFrame("Graph Editor", Graph.example()).setVisible(true);
 }
}

Notice that we can run the example by running the GraphEditorFrame class. Our example
Ontario/Quebec graph comes up right away ! This is because the paintComponent() method of
GraphEditor() class is called upon startup.

Manipulating Nodes:

What kind of action should the user perform to add a node to the graph ? There are many
possibilities (i.e., menu options, buttons, mouse clicks). We will allow nodes to be added to the
graph via double clicks of the mouse. When the user double-clicks on the panel, a new node
will be added at that click location. We must have the GraphEditor class implement the
MouseListener interface. When we receive a click count of 2 on a mouseClick event, we will
add the node at that location. For now, we will leave the other mouse listeners blank:

COMP1406 - Chapter 14 - Graphics Winter 2014

 - 455 -

public void mouseClicked(MouseEvent event) {
 // If this was a double-click, then add a node at the mouse location
 if (event.getClickCount() == 2) {
 aGraph.addNode(new Node(event.getPoint()));
 // We have changed the model, so now we update
 update();
 }
}
public void mousePressed(MouseEvent event) { }
public void mouseReleased(MouseEvent event) { }
public void mouseEntered(MouseEvent event) { }
public void mouseExited(MouseEvent event) { }

Of course, we will have to add the MouseListener in the constructor. We will do this by calling
addEventHandlers() which we will be adding to later on:

public void addEventHandlers() {
 addMouseListener(this);
}

public void removeEventHandlers() {
 removeMouseListener(this);
}

The update() method itself is quite simple since there is only one component on the window !
It merely calls repaint() after temporarily disabling the event handlers:

public void update() {
 removeEventHandlers();
 repaint();
 addEventHandlers();
}

If we run our code, we will notice something that is not so
pleasant. Our strategy of using the double click allows us
to add nodes on top of each other, making them possibly
indistinguishable:

Perhaps instead of having nodes lying on top of each
other, we could check to determine whether or not the
user clicks within a node. Then we can decide to "not
add" the node if there is already one there. What do we
do then ... ignore the click ? Maybe we should cause the
node to be somehow "selected" so that we can move it around.

To do this, we will need to add functionality that allows nodes to be selected and unselected.

If we attempt to re-select an "already selected" node, it should probably become unselected
(i.e., toggle on/off). We should make the node appear different as well (perhaps red). We will
need to detect which node has been selected. This sounds like it could be a nice little helper
method in the Graph class.

COMP1406 - Chapter 14 - Graphics Winter 2014

 - 456 -

We can just check the distance from the given point to the center of all nodes. If the distance
is <= the radius, then we are inside that node.

In fact, we are not really computing the distance, we are computing the square of the distance.
This is more efficient since we do not need to compute the root. Add this to the Graph class:

// Return the first node in which point p is contained, if none, return null
public Node nodeAt(Point p) {
 for (Node n: nodes) {
 Point c = n.getLocation();
 int d = (p.x - c.x) * (p.x - c.x) + (p.y - c.y) * (p.y - c.y);

 if (d <= (15*15))
 return n;
 }
 return null;
}

The 15 looks like a "magic" number. It seems like this number may be used a lot. We should
define a static constant in the Node class. Go back and change the draw method as well to
use this new static value:

 public static int RADIUS = 15;

Here is the better code:

// Return the first node in which point p is contained, if none, return null
public Node nodeAt(Point p) {
 for (Node n: nodes) {
 Point c = n.getLocation();
 int d = (p.x - c.x) * (p.x - c.x) + (p.y - c.y) * (p.y - c.y);

 if (d <= (Node.RADIUS * Node.RADIUS)) return n;
 }
 return null;
}

We should go back into our drawing routines and adjust the code so that it uses this new
RADIUS constant.

COMP1406 - Chapter 14 - Graphics Winter 2014

 - 457 -

Now since we are allowing Nodes to be selected, we will have to somehow keep track of all
the selected nodes. We have two choices:

• Let the graph keep track of the selected nodes separately
• Let each node keep track of whether or not it is selected

We will choose the second strategy (do you understand the tradeoffs of each ?).
Add the following instance variable and methods to the Node class:

 private boolean selected;

public boolean isSelected() { return selected; }
public void setSelected(boolean state) { selected = state; }
public void toggleSelected() { selected = !selected; }

Now we should modify the draw method to allow nodes to be selected and unselected:

public void draw(Graphics aPen) {
 // Draw a blue or red-filled circle around the center of the node
 if (selected)
 aPen.setColor(Color.red);
 else
 aPen.setColor(Color.blue);
 aPen.fillOval(location.x-RADIUS, location.y-RADIUS, RADIUS*2, RADIUS*2);

 // Draw a black border around the circle
 aPen.setColor(Color.black);
 aPen.drawOval(location.x-RADIUS, location.y-RADIUS, RADIUS*2, RADIUS*2);

 // Draw a label at the top right corner of the node
 aPen.drawString(label, location.x + RADIUS, location.y - RADIUS);
}

To make it all work, we must use it in the mouseClicked event handler of the GraphEditor:

public void mouseClicked(MouseEvent event) {
 // If this was a double-click, then add a node at the mouse location
 if (event.getClickCount() == 2) {
 Node aNode = aGraph.nodeAt(event.getPoint());
 if (aNode == null)
 aGraph.addNode(new Node(event.getPoint()));
 else
 aNode.toggleSelected();

 // We have changed the model, so now we update
 update();
 }
}

Now how do we allow nodes to be deleted ? Perhaps, the user must select the node(s) first
and then hit the delete key. Perhaps when the delete key is pressed, ALL of the currently
selected nodes should be deleted. So we will make a method that first returns all the selected
nodes. We will need to add this method to the Graph class which returns a vector of all the
selected nodes:

COMP1406 - Chapter 14 - Graphics Winter 2014

 - 458 -

// Get all the nodes that are selected
public ArrayList<Node> selectedNodes() {
 ArrayList<Node> selected = new ArrayList<Node>();
 for (Node n: nodes)
 if (n.isSelected()) selected.add(n);
 return selected;
}

We already took care of the node selection, now we must handle the delete key. We should
have the GraphEditor implement the KeyListener interface.

public void addEventHandlers() {
 addMouseListener(this);
 addKeyListener(this);
}

public void removeEventHandlers() {
 removeMouseListener(this);
 removeKeyListener(this);
}

public void keyTyped(KeyEvent event) {}

public void keyReleased(KeyEvent event) {}

public void keyPressed(KeyEvent event) {
 if (event.getKeyCode() == KeyEvent.VK_DELETE) {
 for (Node n: aGraph.selectedNodes())
 aGraph.deleteNode(n);
 update();
 }
}

There is a SLIGHT problem. It seems that even though we have only one component in our
window (i.e., the JPanel which is the GraphEditor itself), this component does not have the
focus by default. In order for the keystrokes to be detectable, the component MUST have the
focus. So we will add the following line to the beginning of the update() method:

public void update() {
 requestFocus(); // Need this for handling KeyPress
 removeEventHandlers();
 repaint();
 addEventHandlers();
}

Now, how can we move nodes around once they are created ? Once again, we must decide
how we want the interface to work. It is most natural to allow the user to move nodes by
pressing the mouse down while on top of a node and holding it down while dragging the node
to the new location, then release the mouse button to cause the node to appear in the new
location. We will need the mousePressed and mouseDragged events of the MouseListener
and MouseMotionListener interfaces, respectively. Here is what we will have to do:

COMP1406 - Chapter 14 - Graphics Winter 2014

 - 459 -

 • When the user presses the mouse (i.e., a "press", not a "click"), then determine if

he/she pressed on top of a node.
 • If yes, then remember this node as being the one selected, otherwise do nothing
 • As the mouse moves (while button being held down), we must update the chosen
node's location

We will have to remember which node is being dragged so that we can keep changing its
location as the mouse is dragged. We will add an instance variable in the GraphEditor called
dragNode to keep this node:

 private Node dragNode;

We must have the GraphEditor implement the MouseMotionListener interface. Here are
the updated mousePressed and mouseReleased event handlers as well as the new
mouseDragged and mouseMoved event handlers which must be written:

// Mouse press event handler
public void mousePressed(MouseEvent event) {
 // First check to see if we are about to drag a node
 Node aNode = aGraph.nodeAt(event.getPoint());

 if (aNode != null) {
 dragNode = aNode; // If we pressed on a node, store it
 }
}

// Mouse release event handler (i.e. stop dragging process)
public void mouseReleased(MouseEvent event) {
 dragNode = null;
}

// Mouse drag event handler
public void mouseDragged(MouseEvent event) {
 if (dragNode != null)
 dragNode.setLocation(event.getPoint());
 update(); // We have changed the model, so now update
}

// Mouse drag event handler
public void mouseMoved(MouseEvent event) { /* Do Nothing */ }

COMP1406 - Chapter 14 - Graphics Winter 2014

 - 460 -

We also need to add addMouseMotionListener(this); to the addEventHandlers() method
and removeMouseMotionListener(this); to the removeEventHandlers() method.
Notice that the pressing of the mouse merely stores the node to be moved. The releasing of
the mouse button merely resets this stored node to null. All of the moving occurs in the
dragging event handler. If we drag the mouse, we just make sure that we had first clicked on a
node by examining the stored node just mentioned. If this stored node is not null, we then
update its position and then update the rest of the graph. Notice that all the edges connected
to a node move along with the node itself. Can you explain why ?

Manipulating Edges:

We have exhausted almost all the fun out of manipulating the graph nodes and we are now left
with the "fun" of adding/deleting/selecting and moving edges. First we will consider adding
edges. We must decide again on what action the user needs to perform in order to add the
edge:

1. We can have the user double-click on the startNode, double click on the endNode and
then have the edge magically appear.

2. We can select any two nodes of the graph and then perform some magic action (menu
item, button press, triple click) to cause an edge to appear between the two selected
edges.

3. We can click on a node and then drag the mouse to the destination node while showing
the created edge as we go.

I hope you will agree that the 3rd approach is nicer in that it is more intuitive and provides the
user with a nice user-friendly interface. We will see that this strategy is called elastic
banding. To start, we will need to make the following assumptions:
 • When the user presses and holds the mouse button down on a node, this node

becomes the startNode for the edge to be created. As the user moves the mouse (i.e.,
mouseDragged event) a line should be drawn from this startNode to the current
mouse position. When the user lets go of the mouse button on top of a different node,
an edge is created between the two.
 • We should abort the process of adding an edge if the user releases the mouse button
while: a) not on a node or b) on the same node as he/she started.

COMP1406 - Chapter 14 - Graphics Winter 2014

 - 461 -

We will have to modify the mousePressed , mouseDragged and mouseReleased methods.

As it turns out, the mousePressed event handler already stores the "start" node in the dragNode
variable. But now look at the mouseDragged event handler. Currently, if we press the mouse on
a node and then drag it, this will end up causing the node to be moved. But we need to allow
an elastic band edge to be drawn instead of moving the node. So, we now have two
behaviors that we want to do from the same action of pressing the mouse on a node. This
presents a conflict since we cannot do both behaviors. Let us modify our node-moving
behavior as follows:

• If the node initially clicked on is a selected node, then we will move it, otherwise we will
assume that an edge is to be added.

The mousePressed event handler currently just stores the selected node. There is really nothing
more to do there.
But now during the mouseDragged event handler, we will have to make a decision so as to either
move the node (if it was a "selected" Node) or to merely draw an edge from the pressed node
to the current mouse location. We cannot however, do the drawing within this method. Why
? Well, our paintComponent() method does the drawing and will draw over any of our drawing
done here!! The drawing doesn't belong here. Drawing should happen in the paintComponent()

method ONLY. All we will do here is just store the current mouse location in a
private Point elasticEndLocation; variable and use it within the paintComponent() method.

Here are the new changes:

// Mouse drag event handler
public void mouseDragged(MouseEvent event) {
 if (dragNode != null) {
 if (dragNode.isSelected())
 dragNode.setLocation(event.getPoint());
 }

 // We have changed the model, so now update
 update();
}

Here is the updated paintComponent() method for the GraphEditor class:

// This is the method that is responsible for displaying the graph
public void paintComponent(Graphics aPen) {
 super.paintComponent(aPen);
 aGraph.draw(aPen);

 if (dragNode != null)
 if (!dragNode.isSelected())
 aPen.drawLine(dragNode.getLocation().x, dragNode.getLocation().y,
 elasticEndLocation.x, elasticEndLocation.y);
}

Notice that this method makes use of the dragNode and elasticEndLocation variables but
still needs to decide whether or not to draw the elastic band line. We draw the elastic line
ONLY if we are adding an edge. How do we know we are adding an edge ?

COMP1406 - Chapter 14 - Graphics Winter 2014

 - 462 -

Well, we must have pressed on a starting node, so the dragNode must not be null. Also, that
dragNode must not be selected, otherwise we are in the middle of a "node moving" operation,
not an "edge adding" one.

Our last piece to this trilogy of event handler changes is to have the mouseReleased event
handler add the new edge ONLY if we let go of the mouse button on top of a node that is not
the same as the one we started with. If it is, or we let go somewhere off a node, then we must
repaint everything either way to erase the elastic band:

// Mouse released event handler (i.e., stop dragging process)
public void mouseReleased(MouseEvent event) {
 // Check to see if we have let go on a node
 Node aNode = aGraph.nodeAt(event.getPoint());
 if ((aNode != null) && (aNode != dragNode))
 aGraph.addEdge(dragNode, aNode);

 // Refresh the panel either way
 dragNode = null;
 update();
}

One of our last tasks is to allow edges to be selected and removed. We can similarly add an
instance variable and methods to the Edge class:

 private boolean selected;

public boolean isSelected() { return selected;}

public void setSelected(boolean state) { selected = state;}

public void toggleSelected() { selected = !selected;}

Of course ... again we must initialize the instance variable in the constructor. Now we make
selected edges appear different (i.e., red).

// Draw the edge using the given Graphics object
public void draw(Graphics aPen) {
 // Draw black or red line from center of startNode to center of endNode
 if (selected)
 aPen.setColor(Color.red);
 else
 aPen.setColor(Color.black);

 aPen.drawLine(startNode.getLocation().x, startNode.getLocation().y,
 endNode.getLocation().x, endNode.getLocation().y);
}

How does the user select an edge ? Likely, by clicking on or near it. We can accomplish this
by determining the distance between the point clicked at and the edge itself.

COMP1406 - Chapter 14 - Graphics Winter 2014

 - 463 -

If the distance is smaller than some pre-decided value (e.g., 5 pixels) then we can assume that
this edge was just clicked on... otherwise we can assume that the edge was not clicked on.
The equation to find the distance from a point to an edge is indicated below:

However, the above equation actually computes the distance from (x,y) to the line that passes
through the two edge nodes. So, if we click anywhere close to that line, we will be a small
distance value and we will think that the edge was selected:

Certainly, we do not want such an (x,y) point to be considered as "close to" the edge. We can
avoid this problem situation by examining the x-coordinate of the point that the user clicked on.
The x-coordinate must be greater that the left node's x-coordinate and smaller than the right
node's x-coordinate.

IF (distance < 3) THEN {
 IF ((x > n1.x) AND (x < n2.x)) OR ((x > n2.x) AND (x < n1.x)) THEN
 this edge has been selected
}

Can you foresee any further problems with the algorithm ? What if the edge is vertical ? The
above checking will never select the edge ! Instead, if the edge is vertical, we should
compare the y-coordinates. In fact, if the line is "more horizontal" we should check the x-
coordinates and if it is "more vertical" we should check the y-coordinates.

To determine if a line segment is more vertical or horizontal, we can compare the difference in
x and the difference in y.

Here is the code:

COMP1406 - Chapter 14 - Graphics Winter 2014

 - 464 -

IF (distance < 3) THEN {
 xDiff ← abs(n2.x - n1.x)
 yDiff ← abs(n2.y - n1.y)
 IF (xDiff > yDiff) THEN
 IF ((x > n1.x) AND (x < n2.x)) OR ((x > n2.x) AND (x < n1.x)) THEN
 this edge has been selected
 OTHERWISE
 IF ((y > n1.y) AND (y < n2.y)) OR ((y > n2.y) AND (y < n1.y)) THEN
 this edge has been selected
}

Add the following method to the Graph class:

// Return first edge in which point p is near midpoint; if none, return null
public Edge edgeAt(Point p) {
 for (Edge e: getEdges()) {
 Node n1 = e.getStartNode();
 Node n2 = e.getEndNode();
 int xDiff = n2.getLocation().x - n1.getLocation().x;
 int yDiff = n2.getLocation().y - n1.getLocation().y;
 double distance = Math.abs(xDiff*(n1.getLocation().y - p.y) -
 (n1.getLocation().x - p.x)*yDiff) /
 Math.sqrt(xDiff*xDiff + yDiff*yDiff);
 if (distance <= 5) {
 if (Math.abs(xDiff) > Math.abs(yDiff)) {
 if (((p.x < n1.getLocation().x) &&
 (p.x > n2.getLocation().x)) ||
 ((p.x > n1.getLocation().x) &&
 (p.x < n2.getLocation().x)))
 return e;
 }
 else
 if (((p.y < n1.getLocation().y) &&
 (p.y > n2.getLocation().y)) ||
 ((p.y > n1.getLocation().y) &&
 (p.y < n2.getLocation().y)))
 return e;
 }
 }
 return null;
}

Now, upon a double click, we must check for edges. We will first check to see if we clicked on
a node, then if we find that we did not click on a node, we will check to see if we clicked on an
edge:

COMP1406 - Chapter 14 - Graphics Winter 2014

 - 465 -

public void mouseClicked(MouseEvent event) {
 // If this was a double-click, then add/select a node or select an edge
 if (event.getClickCount() == 2) {
 Node aNode = aGraph.nodeAt(event.getPoint());

 if (aNode == null) {
 // We missed a node, now try for an edge midpoint
 Edge anEdge = aGraph.edgeAt(event.getPoint());
 if (anEdge == null)
 aGraph.addNode(new Node(event.getPoint()));
 else
 anEdge.toggleSelected();
 }
 else
 aNode.toggleSelected();

 // We have changed the model, so now we update
 update();
 }
}

We can change the keyPressed event handler to delete all selected Nodes AND Edges. Of
course, we will need a method to get the "selected" edges in the Graph class first:

// Get all the edges that are selected
public ArrayList<Edge> selectedEdges() {
 ArrayList<Edge> selected = new ArrayList<Edge>();
 for (Edge e: getEdges())
 if (e.isSelected()) selected.add(e);
 return selected;
}

public void keyPressed(KeyEvent event) {
 if (event.getKeyCode() == KeyEvent.VK_DELETE) {
 // First remove the selected edges
 for (Edge e: aGraph.selectedEdges())
 aGraph.deleteEdge(e);

 // Now remove the selected nodes
 for (Node n: aGraph.selectedNodes())
 aGraph.deleteNode(n);
 update();
 }
}

COMP1406 - Chapter 14 - Graphics Winter 2014

 - 466 -

14.5 Adding Features to the Graph Editor

We have implemented a basic graph editor. There are many features that can be added.
Below are solutions to some added features to the GraphEditor. You may want to try to add
these features yourself without looking at the solutions.

Dragging Edges

• Add the following two instance variables to the
GraphEditor class:

private Edge dragEdge;
private Point dragPoint;

• Add code to the mousePressed event handler in the GraphEditor class to store the edge
to be dragged:

public void mousePressed(MouseEvent event) {
 // First check to see if we are about to drag a node
 Node aNode = aGraph.nodeAt(event.getPoint());
 if (aNode != null) {
 // If we pressed on a node, store it
 dragNode = aNode;
 dragEdge = null;
 }
 else
 dragEdge = aGraph.edgeAt(event.getPoint());

 dragPoint = event.getPoint();
}

• Add code to the mouseDragged event handler in the GraphEditor class to store the edge
to be dragged:

public void mouseDragged(MouseEvent event) {
 if (dragNode != null) {
 if (dragNode.isSelected())
 dragNode.setLocation(event.getPoint());
 else
 elasticEndLocation = event.getPoint();
 }
 if (dragEdge != null) {
 if (dragEdge.isSelected()) {
 dragEdge.getStartNode().getLocation().translate(
 event.getPoint().x - dragPoint.x, event.getPoint().y - dragPoint.y);
 dragEdge.getEndNode().getLocation().translate(
 event.getPoint().x - dragPoint.x, event.getPoint().y - dragPoint.y);
 dragPoint = event.getPoint();
 }
 }
 update(); // We have changed the model, so now update
}

COMP1406 - Chapter 14 - Graphics Winter 2014

 - 467 -

Moving Multiple Nodes

• Add the following instance variable to the GraphEditor class (if not already there):

private Point dragPoint;

• Add the following line at the bottom of the mousePressed event handler in the
 GraphEditor class (if not already there):

dragPoint = event.getPoint();

• In the mouseDragged event handler for the GraphEditor class, change

if (dragNode != null) {
 if (dragNode.isSelected())
 dragNode.setLocation(event.getPoint());
 else
 elasticEndLocation = event.getPoint();
}

 to this:

if (dragNode != null) {
 if (dragNode.isSelected()) {
 for (Node n: aGraph.selectedNodes()) {
 n.getLocation().translate(
 event.getPoint().x - dragPoint.x,
 event.getPoint().y - dragPoint.y);
 }
 dragPoint = event.getPoint();
 }
 else
 elasticEndLocation = event.getPoint();
}

Drawing Selected Edges with Different Thicknesses

• Add the following instance variable to the Edge class:

 public static final int WIDTH = 7;

COMP1406 - Chapter 14 - Graphics Winter 2014

 - 468 -

• Modify the draw() method in the Edge class:

public void draw(Graphics aPen) {
 if (selected) {
 aPen.setColor(Color.RED);

 int xDiff = Math.abs(startNode.getLocation().x-endNode.getLocation().x);
 int yDiff = Math.abs(startNode.getLocation().y-endNode.getLocation().y);

 for (int i= -WIDTH/2; i<=WIDTH/2; i++) {
 if (yDiff > xDiff)
 aPen.drawLine(startNode.getLocation().x+i,
 startNode.getLocation().y,
 endNode.getLocation().x+i,
 endNode.getLocation().y);
 else
 aPen.drawLine(startNode.getLocation().x,
 startNode.getLocation().y+i,
 endNode.getLocation().x,
 endNode.getLocation().y+i);
 }
 }
 else {
 aPen.setColor(Color.black);
 aPen.drawLine(startNode.getLocation().x, startNode.getLocation().y,
 endNode.getLocation().x, endNode.getLocation().y);
 }
}

Loading and Saving Graphs

• Add the following methods to the Node class:

// Save node to given file. Note that incident edges are not saved.
public void saveTo(PrintWriter aFile) {
 aFile.println(label);
 aFile.println(location.x);
 aFile.println(location.y);
 aFile.println(selected);
}

// Load a node from given file. Note that incident edges are not connected
public static Node loadFrom(BufferedReader aFile) throws IOException {
 Node aNode = new Node();

 aNode.setLabel(aFile.readLine());
 aNode.setLocation(Integer.parseInt(aFile.readLine()),
 Integer.parseInt(aFile.readLine()));
 aNode.setSelected(Boolean.valueOf(aFile.readLine()).booleanValue());
 return aNode;
}

COMP1406 - Chapter 14 - Graphics Winter 2014

 - 469 -

• Add the following methods to the Edge class:

// Save edge to given file. Note that nodes themselves are not saved.
// We assume here that node locations are unique identifiers for the nodes.
public void saveTo(PrintWriter aFile) {
 aFile.println(label);
 aFile.println(startNode.getLocation().x);
 aFile.println(startNode.getLocation().y);
 aFile.println(endNode.getLocation().x);
 aFile.println(endNode.getLocation().y);
 aFile.println(selected);
}

// Load an edge from given file. Note that nodes themselves are not loaded.
// We are actually making temporary nodes here that do not correspond to actual
// graph nodes that this edge connects. We'll have to throw out these TEMP
// nodes later and replace them with graph nodes that connect to this edge.
public static Edge loadFrom(BufferedReader aFile) throws IOException {
 Edge anEdge;
 String aLabel = aFile.readLine();
 Node start = new Node("TEMP");
 Node end = new Node("TEMP");

 start.setLocation(Integer.parseInt(aFile.readLine()),
 Integer.parseInt(aFile.readLine()));
 end.setLocation(Integer.parseInt(aFile.readLine()),
 Integer.parseInt(aFile.readLine()));

 anEdge = new Edge(aLabel, start, end);
 anEdge.setSelected(Boolean.valueOf(aFile.readLine()).booleanValue());

 return anEdge;
}

• Add the following methods to the Graph class:

// Save the graph to the given file.
public void saveTo(PrintWriter aFile) {
 aFile.println(label);

 // Output the nodes
 aFile.println(nodes.size());
 for (Node n: nodes)
 n.saveTo(aFile);

 // Output the edges
 ArrayList<Edge> edges = getEdges();
 aFile.println(edges.size());
 for (Edge e: edges)
 e.saveTo(aFile);
}

COMP1406 - Chapter 14 - Graphics Winter 2014

 - 470 -

// Load a Graph from the given file. After the nodes and edges are loaded,
// We'll have to go through and connect the nodes and edges properly.
public static Graph loadFrom(BufferedReader aFile) throws IOException {
 // Read the label from the file and make the graph
 Graph aGraph = new Graph(aFile.readLine());

 // Get the nodes and edges
 int numNodes = Integer.parseInt(aFile.readLine());
 for (int i=0; i<numNodes; i++)
 aGraph.addNode(Node.loadFrom(aFile));

 // Now connect them with new edges
 int numEdges = Integer.parseInt(aFile.readLine());
 for (int i=0; i<numEdges; i++) {
 Edge tempEdge = Edge.loadFrom(aFile);
 Node start = aGraph.nodeAt(tempEdge.getStartNode().getLocation());
 Node end = aGraph.nodeAt(tempEdge.getEndNode().getLocation());
 aGraph.addEdge(start, end);
 }

 return aGraph;
}

• Change the GraphEditorFrame class definition to implement the ActionListener interface:

public class GraphEditorFrame extends JFrame implements ActionListener

• Add the following methods to the GraphEditor class:

public Graph getGraph() { return aGraph; }
public void setGraph(Graph g) { aGraph = g; update(); }

• Add the following to the constructor of the GraphEditorFrame class:

JMenuBar menubar = new JMenuBar();
setJMenuBar(menubar);
JMenu file = new JMenu("File");
menubar.add(file);
JMenuItem load = new JMenuItem("Load");
JMenuItem save = new JMenuItem("Save");
file.add(load);
file.add(save);
load.addActionListener(this);
save.addActionListener(this);

COMP1406 - Chapter 14 - Graphics Winter 2014

 - 471 -

• Add the following to the GraphEditorFrame class (you need to import java.io.*):

public void actionPerformed(ActionEvent e) {
 JFileChooser chooser = new JFileChooser(new File("."));

 if (e.getActionCommand().equals("Load")) {
 int returnVal = chooser.showOpenDialog(this);

 if (returnVal == JFileChooser.APPROVE_OPTION) {
 try {
 BufferedReader file = new BufferedReader(new FileReader(
 chooser.getSelectedFile().getAbsoluteFile()));
 editor.setGraph(Graph.loadFrom(file));
 file.close();
 }
 catch (Exception ex) {
 JOptionPane.showMessageDialog(null,
 "Error Loading Graph From File !",
 "Error", JOptionPane.ERROR_MESSAGE);
 }
 }
 }
 else {
 int returnVal = chooser.showSaveDialog(null);

 if (returnVal == JFileChooser.APPROVE_OPTION) {
 try {
 PrintWriter file = new PrintWriter(new FileWriter(
 chooser.getSelectedFile().getAbsoluteFile()));
 editor.getGraph().saveTo(file);
 file.close();
 }
 catch (java.io.IOException ex) {}
 }
 }
}

Other Features:

There are also other features we can add. Feel free to experiment with the graph editor:
 • Allow all selected edges and nodes to be moved by dragging a selected edge.

• Press <CNTRL><A> to select all nodes and edges and <CNTRL><U> to unselect them.

• Right-click the mouse on a Node and prompt the user for a label to put on that node.

• Scale the entire graph up or down by holding the <SHIFT> key while pressing the
mouse on an empty spot on the window and then dragging the mouse up or down to
enlarge or shrink the graph.

• Press <CNTRL><D> to duplicate all selected nodes and edges and have the new
portion of the graph appear a little below and to the right of the original nodes/edges.

• Show labels on edges

• Adjust labels so that they don't overlap

