

COMP1405/1005
Introduction to Computer Science I

Course Notes

Notes maintained by Mark Lanthier (2011 version)

 ii

Table of Contents

1 An Introduction to Computer Science and Problem Solving.....………….............................
1.1 What is Computer Science ?……………..……….........................
1.2 Writing Programs in Processing ……………………………………………….........................
1.3 Problem Solving ……………………..............................…………...…………....…...............
1.4 Control Abstraction ………………………………………......................…………...................
1.5 Algorithm Efficiency …………………………………………………..

1
2
6
14
24
32

2 Variables and Control Structures ..………………………………………………….…….............
2.1 Problem Solving With Variables ……………………...………………............……….............
2.2 Variable Representation ………………………………………………....................................
2.3 Conditional Statements …………………….……………......................................….............
2.4 Counting ….……………………………………...………….............
2.5 Conditional Iteration………………………...………….............
2.6 Control Structures in Processing ..
2.7 Procedures & Functions in Processing ...
2.8 Math & Trigonometry ..

39
40
48
55
63
71
79
91
105

3 Simulation and User Interaction ..……………………………………………....…………............
3.1 Simulation ………………………...………………….......................…………..………............
3.2 Simulating Motion ……..……………………………….........…………………………..............
3.3 Event Handling ……………………………………………......................................….............
3.4 User Interaction in Processing ..

113
114
123
131
134

4 Data Structures ...…………………………………..…………….............
4.1 Data Structures and Objects …………………………………………………………...............
4.2 Using Objects in Processing/JAVA .………………………………………………...................

148
149
161

5 Lists, Arrays and Searching …..……........................…………………………………….............
5.1 Collecting Data Using Lists ……………………………………………………………..............
5.2 List Searching Algorithms ……………………………………………………………….............
5.3 Arrays................. ………………………………………………………………………...............
5.4 Efficient Searching Using Arrays ..
5.5 Arrays in Processing ...
5.6 2D Arrays ..

173
174
177
189
209
214
221

6 Sorting ……………………………….…………………........................…………………….............
6.1 Sorting …..……………………………………..
6.2 Bubble Sort …...…………………………………..
6.3 Selection Sort ……………………..............…………………………………………….............
6.4 Insertion Sort ………………................………………………………………………................
6.5 Bucket Sort & Counting Sort ...
6.6 An Example - Fire Spreading Simulation ..

248
249
252
255
257
259
265

7 Recursion …...…………………………..…………………..
7.1 Recursion ..………........………………………………………………………………….............
7.2 Math Examples ………………………………….....……….…………………………...............
7.3 Graphical Examples .………………………………………………………………….................
7.4 Search Examples ……...................…………………………………………………….............

282
283
288
292
303

8 Shared Data ………………………..………………………............…………………………............
8.1 Sharing Data Can Be Useful …………………………………………………………...............
8.2 When Sharing Data is Necessary ………………………………………………....…..............
8.3 Separating Shared Data Again …..…………………………………………….....……............
8.4 Example: Graph Editor ..……………………………………...

307
308
316
320
325

Chapter 1

An Introduction to Computer Science and
Problem Solving

What is in This Chapter ?

This first chapter explains what computer science is all about. It will help you understand that
the goal of a computer scientist is to solve problems using computers. You will see how
problems are formulated by means of algorithms and how the process of abstraction can be
used to break problems down to easily manageable pieces. Finally, we will discuss the notion
of efficiency.

COMP1405/1005 – An Introduction to Computer Science and Problem Solving Fall 2011

 - 2 -

 1.1 What is Computer Science ?

Computers are used just about everywhere in our society:

• Communications: internet, e-mail, cell phones
• Word Processing: typing/printing documents
• Business Applications: accounting, spreadsheets
• Entertainment: games, multimedia applications
• Database Management: police records, stock market
• Engineering Applications: scientific analysis, simulations
• Manufacturing: CAD/CAM, robotics, assembly
• ... many more ...

A computer is defined as follows (Wikipedia):

A computer is a programmable machine that receives input, stores
and manipulates data, and provides output in a useful format.

In regards to today’s computers, the “machine” part of the computer
is called the hardware , while the “programmable” part is called the
software .

Since computers are used everywhere, you can get involved with
computers from just about any field of study. However, there are
specific fields that are more computer-related than others. For example. the fields of electrical
engineering and computer systems engineering primarily focus on the design and
manufacturing of computer hardware, while the fields of software engineering and computer
science primarily focus on the design and implementation of software.

Software itself can be broken down into 3 main categories:
 • System Software: is designed to operate the computer’s hardware and to provide and

maintain a platform for running applications. (e.g., Windows, MacOS, Linux, Unix, etc..)
 • Middleware: is a set of services that allows multiple processes running
on one or more machines to interact. Most often used to support and
simplify complex distributed applications. It can also allow data
contained in one database to be accessed through another. Middleware
is sometimes called plumbing because it connects two applications and
passes data between them. (e.g., web servers, application servers).
 • Application Software: is designed to help the user perform one or more related
specific tasks. Depending on the work for which it was designed, an application can
manipulate text, numbers, graphics, or a combination of these elements.
(e.g., office suites, web browsers, video games, media players, etc…)

COMP1405/1005 – An Introduction to Computer Science and Problem Solving Fall 2011

 - 3 -

The area of software design is huge. In this course, we will investigate the basics of creating
some simple application software. If you continue your degree in computer science, you will
take additional courses that touch upon the other areas of system software and middleware.

Software is usually written to fulfill some need that the general public, private industry or
government needs. Ideally, software is meant to make it easier for the user (i.e., the person
using the software) to accomplish some task, solve some problem or entertain him/herself.
Regardless of the user’s motivation for using the software, many problems will arise when
trying to develop the software in a way that produces correct results, is efficient ad robust,
easy to use and visually appealing. That is where computer science comes in:

Computer science is the study of the theoretical foundations of
information and computation, and of practical techniques for their
implementation and application in computer systems (Wikipedia).

So, computer science is all about taking in information and then performing some
computations & analysis to solve a particular problem or produce a desired result, which
depends on the application at hand.

Computer science is similar to mathematics in that both are used as a means of defining and
solving some problem. In fact, computer-based applications often use mathematical models
as a basis for the manner in which they solve the problem at hand.

In mathematics, a solution is often expressed in terms of formulas and equations. In
computer science, the solution is expressed in terms of a program:

A program is a sequence of instructions that can be executed by a
computer to solve some problem or perform a specified task.

However, computers do not understand arbitrary instructions written in
English, French, Spanish, Chinese, Arabic, Hebrew, etc..

Instead, computers have their own languages that they understand. Each of these
languages is known as a programming language.

A programming language is an artificial language designed
to automate the task of organizing and manipulating information, and
to express problem solutions precisely.

A programming language “boils down to” a set of words, rules and tools that
are used to explain (or define) what you are trying to accomplish. There are many different
programming languages just as there are many different "spoken" languages.

Traditional programming languages were known as structural programming languages (e.g.,
C, Fortran, Pascal, Cobol, Basic). Since the late 80's however, object-oriented
programming languages have become more popular (e.g., JAVA, C++, C#)

COMP1405/1005 – An Introduction to Computer Science and Problem Solving Fall 2011

 - 4 -

There are also other types of programming languages such as functional programming
languages and logic programming languages. According to the Tiobe index (i.e., a good site
for ranking the popularity of programming languages), as of February 2011 the 10 most
actively used programming languages were (in order of popularity):

Java , C, C++, PHP, Python , C#, VisualBasic , Objective-C , Perl , Ruby

For many years, we used JAVA as the basis in this course, due to its popularity as well as its
ease of use. However, JAVA does have some drawbacks for new programmers, pertaining to
some overhead in getting started with the language.

We therefore recently adjusted this course to use a language called Processing
(www.processing.org) which is a JAVA-based language with much less overhead in getting
started in programming. In addition, the graphical nature of the Processing language allows
for more visual applications to be developed quicker and easier. You will learn more about
this language as the course goes on.

When thinking of jobs and careers, many people think that
computer science covers anything related to computers (i.e.,
anything related to Information Technology). However, computer
science is not an area of study that pertains to IT support, repairing
computers, nor installing and configuring networks. Nor does it
have anything to do with simply using a computer such as doing
word-processing, browsing the web or playing games. The focus
of computer science is on understanding what goes on behind the
software and how software/programs can be made more efficiently.

The Computer Sciences Accreditation Board (CSAB) identifies four general areas that it
considers crucial to the discipline of computer science:
 • theory of computation

- investigates how specific computational problems can be solved efficiently
 • algorithms and data structures

- investigates efficient ways of storing, organizing and using data
 • programming methodology and languages

- investigates different approaches to describing and expressing problem solutions
 • computer elements and architecture

- investigates the design and operation of computer systems

However, in addition, they also identify other important fields of computer science:
 • software engineering • artificial intelligence • computer networking & communication • database systems • parallel computation

• distributed computation • computer-human interaction • computer graphics • operating systems • numerical & symbolic computation

COMP1405/1005 – An Introduction to Computer Science and Problem Solving Fall 2011

 - 5 -

There are aspects of each of the above fields can fall under the general areas mentioned
previously. For example, within the field of database systems you can work on theoretical
computations, algorithms & data structures, and programming methodology.

As you continue your studies in computer science, you will be able to specialize in one or more
of these areas that interest you. This course, however, is meant to be an introduction to
programming computers with an emphasis on problem solving.

This is your first programming course here in the School of Computer Science at Carleton.
You have some more core programming courses coming up after this one. Here is a break-
down of how this course fits in with your first 2 years of required programming courses:

Of course, there are other computer science courses as well. These are just the core courses
that nearly everyone is required to take. After this course is over, you should understand how
to write computer programs. In the winter term, you will take COMP1406/1006 which is a
more detailed course focused on Object-Oriented programming in JAVA. Together, these two
courses give you a solid programming background and you will be able to learn other
computer languages easily afterwards … since they all have common features. If you want to
do well in this course, attend all lectures and tutorials and do your assignments.

COMP1405/1005 – An Introduction to Computer Science and Problem Solving Fall 2011

 - 6 -

 1.2 Writing Programs in Processing

It is now time to start writing simple programs to solve simple problems. As mentioned, we will
be using the Processing language (available for free from www.Processing.org for your PC,
MAC or Linux system).

Processing is a programming language and development environment all in one. It is an easy
programming language to get started quickly in producing programs within a visual context.
That means, it is a simple language that has powerful functionality for creating professional
quality visual-based (i.e., graphical) applications and animations.

The Processing community has written over seventy libraries to help you produce applications
that incorporate:
 • computer vision • data visualization • music

• networking • electronics

Tens of thousands of companies, artists, designers, architects, and researchers use
Processing to create an incredibly diverse range of projects including:
 • Motion graphics for TV commercials

• Animations for music videos
• Visualizations such as that of a coastal marine ecosystem

Processing allows you to export applets for use on the web or standalone applications for the
PC, Mac or Linux operating systems. To start processing, just double-click on the processing
application icon that is in the processing folder that you downloaded:

COMP1405/1005 – An Introduction to Computer Science and Problem Solving Fall 2011

 - 7 -

Here is what it looks like when you are working with Processing:

Each program is called a “sketch” in Processing. The top left play button starts your program
which brings up a window (shown yellow here with a picture of a teddy bear). Since, many
processing programs are meant to be animations, there is also a stop button beside the play
button to stop the program. You should explore the Processing IDE (i.e., Integrated
Development Environment) a little to get used to it.

Processing uses the same syntax as JAVA. That means, Processing code looks almost
exactly like JAVA code. So when you are programming in Processing, you are actually
learning JAVA as well. However, Processing has been designed in a way that makes it easier
to get you started because some of the overhead in getting your first program working is
hidden.

As you may recall, Processing is a graphics-based language and therefore we will spend a lot
of time and effort drawing various things on the screen. When drawing anything, it is
important to specify where you want to draw.

COMP1405/1005 – An Introduction to Computer Science and Problem Solving Fall 2011

 - 8 -

The output screen is organized as a 2-dimensional
(2D) grid of pixels organized by the standard x and
y coordinate system. That is, given an (x,y) pair,
which we call a point , the x specifies a number of
horizontal pixels from the origin (or start location at
the top-left of the screen) while y specifies the
number of vertical pixels from the origin. So, point
(0,0) is the origin and is at the top-left of the screen.

Lets write our first program. Lets
draw a simple house like this one
shown here. This involves
drawing a square, a triangle, a
rectangle and a dot.

Since Processing is a graphical-based language, there are pre-defined functions for drawing
shapes. Each of these functions requires some parameters to specify further information
about how to do the drawing such as locations and dimensions of what we are trying to draw.

Looking at the table of functions on the next page, it should be clear that we need to call the
following functions in order to draw our house:
 • rect(x, y, w, h) – for the main frame • triangle(x 1, y1, x2, y2, x3, y3) – for the roof • rect(x, y, w, h) – for the door • point(x, y) – for the door handle

All we need to do then is to figure out what the parameters should be.

Here are the ones that we can use to draw 2-dimensional shapes:

Function Description Example

point (x,y)
draws a single dot at the location
specified by x and y.

line (x1,y1,x2,y2)
draws a line from location (x1, y1)
to location (x2, y2).

rect (x,y,w,h)

draws a rectangle with its top-
left at location (x, y). The width
and height of the rectangle are w
and h. If w and h are equal, a
square is drawn.

COMP1405/1005 – An Introduction to Computer Science and Problem Solving Fall 2011

 - 9 -

triangle (x1,y1,x2,y2,x3,y3)
draws 3 lines in order from (x1,
y1) to (x2, y2) to (x3, y3) and back
to (x1, y1) to form a triangle .

quad (x1,y1,x2,y2,x3,y3,x4,y4)

draws 4 lines in order from (x1,
y1) to (x2, y2) to (x3, y3) to (x4, y4)
and back to (x1, y1) to form a 4-
sided shape .

ellipse (x,y,w,h)

draws an ellipse (or oval) with
its center at location (x, y). The
width and height of the ellipse
are w and h. If w and h are
equal, a circle is drawn.

arc (x,y,w,h,start,stop)

draws an arc (i.e., a portion of
an ellipse or circle) with its
center at location (x, y). The
width and height of the ellipse
are w and h. If w and h are
equal, a circle is drawn. The
arc is draw from the start
number of radians to the stop
number of radians.

So the first step is to figure out the dimensions of the house in pixels.
To do this, we begin with our hand-drawn sketch. Then, we add
some dimensions to the house (in pixels).

Here to the right, is one possible set of dimensions for the house.
Note that the drawing is quite rough and so the dimensions are not
necessarily to scale.

COMP1405/1005 – An Introduction to Computer Science and Problem Solving Fall 2011

 - 10 -

Next, we’ll need to know roughly how big the drawing
area will be. Sometimes it is a good idea to know
this even before we decide upon the dimensions so
that our house is the “proper” size according to the
context of the drawing area. Assume that we
choose a drawing area of 300 x 300 pixels.

Now we need to decide where within the area the
house will be located and assign point values to the
corners of the house … remembering that (0,0) is at
the top left corner of the drawing area.

Note that for rectangles, we just need to know the top
left corner, along with the dimensions.

Here is the final program:

The size(w,h) function in Processing allows you to specify the size
of the drawing area. If you do not call this method, the default
window size will be 100 x 100.

In our case, if we did not call size(300,300) , then a small window
would appear and the house would not be shown since it would be
drawn off the window’s visible area as shown here:

“Drawing things off the screen” is a common error that many
students encounter when writing graphical programs.

COMP1405/1005 – An Introduction to Computer Science and Problem Solving Fall 2011

 - 11 -

So … we have just created our first Processing program. Notice that each function call ends

with a ; character. That’s how you tell Processing (and JAVA) that you are done that step of

the program. It is like having a period at the end of an English sentence to indicate that the
sentence has ended and a new one is about to begin. Leaving off a semi-colon somewhere is
considered a syntax error (i.e., like a spelling or grammar error) and will prevent your program
from running:

If this happens, Processing usually highlights the line in your program that appears just after
the line that is missing the semicolon.

You may also notice that there are lines with double slashes //. These are called comments .

It tells the Processing interpreter that the rest of the line is to be ignored by the program. This
allows you to put English-like explanations throughout your code so that anyone who read your
program later (possibly you yourself) will understand what you are doing in that part of the
program. It is always a good idea to use comments but not too many of them such that you
code becomes too cluttered. Use just enough to make it clear what you are doing in that part
of your program. Throughout the course, take notice of where and how many comments are
being used in the example programs that we do together.

You can also make multiple-line comments by beginning with /* and ending with */. For

example, this could be a comment at the top of your program:

/* DrawSimpleHouse:

 This program draws a simple house that has
 A frame, a roof and a door with a door knob. */

Forgetting one / in your comment will produce this error:

COMP1405/1005 – An Introduction to Computer Science and Problem Solving Fall 2011

 - 12 -

And forgetting to close a multi-line comment will produce this error:

As you learn to program, you will find many more errors. For example, a VERY common error
is to spell one of the function names wrong. If you accidentally spell rect as ret , for example,
this would be the error that you get:

You will notice however, that when you spell a function name wrong, you usually notice it
because it will not appear with the proper “orange” color that all the other functions have.

A less obvious error message occurs when you miss one of the parameters, or add too many,
or pass the wrong type of values to the function. For example, assume that you called
rect(100, 200, 100) instead of rect(100, 200, 100, 100) . This is the “less understandable”
error that you would get:

There are many more functions that you can play around with.

COMP1405/1005 – An Introduction to Computer Science and Problem Solving Fall 2011

 - 13 -

When using computers, colors are often represented as:
 • Grayscale : a shade of gray value (from 0 to 255) where 0 represents black , 255

represents white and values in between represent various levels of gray.
 • RGB: 3 values (from 0 to 255) representing the amount of red, green and blue in the color.
Bright red , for example would be represented by parameters (255, 0, 0), bright green as
(0, 255, 0) and royal blue as (0, 0, 255). By varying these values, you can obtain any
color of the rainbow.

Here are a few color-related functions that you can make use of:

Function Description

stroke (gray);
Sets the border-color for lines & shapes (e.g., points,
lines, arcs, rectangles, triangles, ellipses) to a shade
of gray specified by the value of the gray parameter.

stroke (r, g, b);
Sets the border-color for shapes to the color with the
given amount of red, green and blue, specified by
parameters r, g and b, respectively.

noStroke (); Sets the border-color to be transparent (i.e., glass).

fill (gray);
Sets the fill-in-color for enclosed shapes (e.g.,
rectangles, triangles, ellipses) to a shade of gray
specified by the value of the gray parameter.

fill (r, g, b);
Sets the fill-in-color for enclosed shapes to the color
with the given amount of red, green and blue,
specified by parameters r, g and b, respectively.

noFill (); Sets the fill-in-color to be transparent (i.e., glass).

background (gray);
Sets the drawing area’s background to a shade of
gray specified by the value of the gray parameter.

background (r, g, b);
Sets the drawing area’s background to the color with
the given amount of red, green and blue, specified by
parameters r, g and b, respectively.

background (loadImage (“hills.png”));
Sets the drawing area’s background to the image
specified by the given image file name which may be
a png , gif or jpg file.

See if you can produce the following images (of course, you would need to supply your own
300 x 300 image for the example with the background hills):

COMP1405/1005 – An Introduction to Computer Science and Problem Solving Fall 2011

 - 14 -

 1.3 Problem Solving

Regardless of the area of study, computer science is all about solving problems with
computers. The problems that we want to solve can come from any real-world problem or
perhaps even from the abstract world. We need to have a standard systematic approach to
solving problems.

Since we will be using computers to solve problems, it is important to first understand the
computer’s information processing model. The model shown in the diagram below assumes a
single CPU (Central Processing Unit). Many computers today have multiple CPUs, so you
can imagine the above model duplicated multiple times within the computer.

COMP1405/1005 – An Introduction to Computer Science and Problem Solving Fall 2011

 - 15 -

A typical single CPU computer processes information as shown in the diagram. Problems are
solved using a computer by obtaining some kind of user input (e.g., keyboard/mouse
information or game control movements), then processing the input and producing some kind
of output (e.g., images, test, sound). Sometimes the incoming and outgoing data may be in
the form of hard drives or network devices.

In regards to problem solving, we will apply the above model in that we will assume that we are
given some kind of input information that we need to work with in order to produce some
desired output solution. However, the above model is quite simplified. For larger and more
complex problems, we need to iterate (i.e., repeat) the input/process/output stages multiple
times in sequence, producing intermediate results along the way that solve part of our
problem, but not necessarily the whole problem. For simple computations, the above model is
sufficient.

It is the “problem solving” part of the process that is the interesting part, so we’ll break this
down a little. There are many definitions for “problem solving”. Here is one:

Problem Solving is the sequential process of analyzing information related to a
given situation and generating appropriate response options.

There are 6 steps that you should follow in order to solve a problem:

1. Understand the Problem
2. Formulate a Model
3. Develop an Algorithm
4. Write the Program
5. Test the Program
6. Evaluate the Solution

Consider a simple example of how the input/process/output works on a simple problem:

Example: Calculate the average grade for all students in a class.

1. Input : get all the grades … perhaps by typing them in via the keyboard or by
reading them from a USB flash drive or hard disk.

2. Process : add them all up and compute the average grade.

3. Output : output the answer to either the monitor, to the printer, to the USB flash

 drive or hard disk … or a combination of any of these devices.

As you can see, the problem is easily solved by simply getting the input, computing something
and producing the output. Let us now examine the 6 steps to problems solving within the
context of the above example.

COMP1405/1005 – An Introduction to Computer Science and Problem Solving Fall 2011

 - 16 -

STEP 1: Understand the Problem:

It sounds strange, but the first step to solving any problem is to make sure that
you understand the problem that you are trying to solve. You need to know:

o What input data/information is available ?
o What does it represent ?
o What format is it in ?
o Is anything missing ?
o Do I have everything that I need ?
o What output information am I trying to produce ?
o What do I want the result to look like … text, a picture, a graph … ?
o What am I going to have to compute ?

In our example, we well understand that the input is a bunch of grades. But we need to
understand the format of the grades. Each grade might be a number from 0 to 100 or
it may be a letter grade from A+ to F . If it is a number, the grade might be a whole
integer like 73 or it may be a real number like 73.42. We need to understand the
format of the grades in order to solve the problem.

We also need to consider missing grades. What if we do not have the grade for every
student (e.g., some were away during the test) ? Do we want to be able to include that
person in our average (i.e., they received 0) or ignore them when computing the
average ?

We also need to understand what the output should be. Again, there is a formatting
issue. Should we output a whole or real number or a letter grade ? Maybe we want
to display a pie chart with the average grade. It is our choice.

Finally, we should understand the kind of processing that needs to be performed on the
data. This leads to the next step.

STEP 2: Formulate a Model:

Now we need to understand the processing part of the problem. Many problems
break down into smaller problems that require some kind of simple mathematical
computations in order to process the data. In our example, we
are going to compute the average of the incoming grades. So,
we need to know the model (or formula) for computing the
average of a bunch of numbers. If there is no such “formula”,
we need to develop one. Often, however, the problem breaks
down into simple computations that we well understand.
Sometimes, we can look up certain formulas in a book or online if
we get stuck.

COMP1405/1005 – An Introduction to Computer Science and Problem Solving Fall 2011

 - 17 -

In order to come up with a model, we need to fully understand the information available
to us. Assuming that the input data is a bunch of integers or real numbers x1,x2,…,xn
representing a grade percentage, we can use the following computational model:

Average1 = (x 1 + x2 + x3 + … + xn) / n

where the result will be a number from 0 to 100.

That is very straight forward (assuming that we knew the formula for computing the
average of a bunch of numbers). However, this approach will not work if the input data
is a set of letter grades like B-, C, A+, F, D- , etc.. because we cannot perform addition
and division on the letters. This problem solving step must figure out a way to produce
an average from such letters. Thinking is required.

After some thought, we may decide to assign an integer number to the incoming letters
as follows:

A+ = 12 B+ = 9 C+ = 6 D+ = 3 F = 0
A = 11 B = 8 C = 5 D = 2
A- = 10 B- = 7 C- = 4 D- = 1

If we assume that these newly assigned grade numbers are y1,y2,…,yn, then we can
use the following computational model:

Average2 = (y 1 + y2 + y3 + … + yn) / n

where the result will be a number from 0 to 12.

As for the output, if we want it as a percentage, then we can use either Average1
directly or use (Average2 / 12) , depending on the input that we had originally. If we
wanted a letter grade as output, then we would have to use (Average1/100*12) or
(Average1*0.12) or Average2 and then map that to some kind of “lookup table” that
allows us to look up a grade letter according to a number from 0 to 12.

Do you understand this step in the problems solving process ? It is all about figuring
out how you will make use of the available data to compute an answer.

STEP 3: Develop an Algorithm:

Now that we understand the problem and have
formulated a model, it is time to come up with a precise
plan of what we want the computer to do.

An algorithm is a precise sequence of
instructions for solving a problem.

COMP1405/1005 – An Introduction to Computer Science and Problem Solving Fall 2011

 - 18 -

Some of the more complex algorithms may be considered “randomized algorithms ” or
“non-deterministic algorithms ” where the instructions are not necessarily in sequence
and in may not even have a finite number of instructions. However, the above definition
will apply for all algorithms that we will discuss in this course.

To develop an algorithm, we need to represent the instructions in some way that is
understandable to a person who is trying to figure out the steps involved. Two
commonly used representations for an algorithm is by using (1) pseudo code , or (2)
flow charts . Consider the following example (from Wikipedia) of solving the problem
of a broken lamp. To the right is an example of a flow chart, while to the left is an
example of pseudocode for solving the same problem:

Pseudo Code

1. IF lamp works, go to step 7.
2. Check if lamp is plugged in.
3. IF not plugged in, plug in lamp.
4. Check if bulb is burnt out.
5. IF blub is burnt, replace bulb.
6. IF lamp doesn’t work buy new lamp.
7. Quit ... problem is solved.

Notice that:

pseudocode is a simple and
concise sequence of English-like
instructions to solve a problem.

Pseudocode is often used as a way of
describing a computer program to someone
who doesn’t understand how to program a computer. When learning to program, it is
important to write pseudocode because it helps you clearly understand the problem that
you are trying to solve. It also helps you avoid getting bogged down with syntax details
(i.e., like spelling mistakes) when you write your program later (see step 4).

Although flowcharts can be visually appealing, pseudocode is often the preferred choice
for algorithm development because:
 • It can be difficult to draw a flowchart neatly, especially when mistakes are made. • Pseudocode fits more easily on a page of paper. • Pseudocode can be written in a way that is very close to real program code,

making it easier later to write the program (i.e., in step 4). • Pseudocode takes less time to write than drawing a flowchart.

Pseudocode will vary according to whoever writes it. That is, one person’s pseudocode
is often quite different from that of another person. However, there are some common
control structures (i.e., features) that appear whenever we write pseudocode.

COMP140

These a

You will
You will
that is p

05/1005 – An

are shown h

• sequ

• con d

• repet

• stor a

• jump

notice that
notice that
art of the co

n Introduction

here along w

ence : list

dition : ma
els

tition : rep
so

age: sto

ping : be

t the bold in
t for the con
ondition or

to Computer

with some e

ting instruct

1. Make s
2. Check
3. Check
4. …

aking a dec
se dependin

if lamp is
 then pl

if bulb is b
then rep

otherwis e

peating som
me conditio

repeat
 get a ne
 put it in
until lamp

repeat 3 t
 unplug
 plug int
…

oring inform

x ← a
count ←

eing able to

if bulb w
 then

n the above
ndition and
the repeat

Science and

 - 19 -

examples:

tions step b

sure switch
k if lamp is p
k if bulb is b

cision and d
ng on the o

not plugged
ug it in

burned out
place bulb
e buy new

mething a fi
on occurs.

ew light bu
n the lamp
p works or n

times
lamp

to different

mation for us

new bulb
← 8

jump to a s

works
goto step

e examples
repetition s
loop are in

 Problem Sol

by step in o

h is turned o
plugged in
urned out

doing one th
outcome of

d in

lamp

ixed numbe

lb

no more bu

socket

se in instru

specific ste

 7

highlights t
structures, t
dented a b

ving

order (often

on

hing or som
the decisio

er of times o

ulbs left

ctions furth

p when nee

the specific
the portion
it so as to m

numbered

mething
n.

or until

her down th

eded

c control str
of the pseu

make it clea

Fall 2011

)

e list

ructure.
udocode
ar that

1

COMP1405/1005 – An Introduction to Computer Science and Problem Solving Fall 2011

 - 20 -

these are kinds “inner steps” that belong to that structure. Some people will us brackets to
indicate what is in or out of a control structure as follows:

if (bulb is burned out) then {
replace bulb

}
otherwise {
 buy new lamp
}

repeat {
 get a new light bulb
 put it in the lamp
} until (lamp works or no more bulbs left)

repeat 3 times {
 unplug lamp
 plug into different socket
}

The point is that there are a variety of ways to write pseudocode. The important thing
to remember is that your algorithm should be clearly explained with no ambiguity as to
what order your steps are performed in.

Whether using a flow chart of pseudocode, you should test your algorithm by manually
going through the steps in your head to make sure that you did not forget a step or a
special situation. Often, you will find a flaw in your algorithm because you forgot about
a special situation that could arise. Only when you are convinced that your algorithm
will solve your problem, should you go ahead to the next step.

Consider our previous example of finding the average of a set of n grades stored in a
file. What would the pseudocode look like ? Here is an example of what it might look
like if we had the example of n numeric grades x1 ... xn that were loaded from a file:

Algorithm: DisplayGrades

1. set the sum of the grade values to 0.
2. load all grades x1 … xn from file.
3. repeat n times {
4. get grade x i
5. add x i to the sum
 }
6. compute the average to be sum / n.
7. print the average.

COMP1405/1005 – An Introduction to Computer Science and Problem Solving Fall 2011

 - 21 -

It would be wise to run through the above algorithm with a real set of numbers. Each
time we test an algorithm with a fixed set of input data, this is known as a test case .
You can create many test cases. Here are some to try:

 n = 5, x1 = 92, x2 = 37, x3 = 43, x4 = 12, x5 = 71 … result should be 51
 n = 3, x1 = 1, x2 = 1, x3 = 1 ……………………….… result should be 1
 n = 0 …………………………………………………… result should be 0

STEP 4: Write the Program:

Now that we have a precise set of steps for solving the problem,
most of the hard work has been done. We now have to
transform the algorithm from step 3 into a set of instructions that
can be understood by the computer.

Writing a program is often called "writing code " or
“implementing an algorithm ”. So the code (or source code)
is actually the program itself.

Without much of an explanation, below is a program (written in processing) that
implements our algorithm for finding the average of a set of grades. Notice that the
code looks quite similar in structure, however, the processing code is less readable and
seems somewhat more mathematical:

Pseudocode Processing code (i.e., program)

1. set the sum of the grade values to 0.
2. load all grades x1 … xn from file.
3. repeat n times {
4. get grade x i
5. add x i to the sum
 }
6. compute the average to be sum / n.
7. print the average.

int sum = 0;
byte [] x = loadBytes ("numbers");
for (int i=0; i<x. length ; i++)
 sum = sum + x[i];

int avg = sum / x. length ;
print (avg);

For now, we will not discuss the details of how to produce the above source code. In
fact, the source code would vary depending on the programming language that was
used. Learning a programming language may seem difficult at first, but it will become
easier with practice.

The computer requires precise instructions in order to understand what you are asking it
to do. For example, if you removed one of the semi-colon characters (;) from the
program above, the computer would become confused as to what you are doing
because the (;) is what it understands to be the end of an instruction. Leaving one of
them off will cause your program to generate what is known as a compile error .

COMP1405/1005 – An Introduction to Computer Science and Problem Solving Fall 2011

 - 22 -

Compiling is the process of converting a program into instructions that can
be understood by the computer.

The longer your program becomes, the more likely you will have multiple compile errors.
You need to fix all such compile errors before continuing on to the next step.

STEP 5: Test the Program:

Once you have a program written that compiles, you need to make sure that it solves
the problem that it was intended to solve and that the solutions are correct.

Running a program is the process of telling the
computer to evaluate the compiled instructions.

When you run your program, if all is well, you should see the
correct output. It is possible however, that your program works
correctly for some set of data input but not for all. If the output of your program is
incorrect, it is possible that you did not convert your algorithm properly into a proper
program. It is also possible that you did not produce a proper algorithm back in step 3
that handles all situations that could arise. Maybe you performed some instructions out
of sequence. Whatever happened, such problems with your program are known as
bugs .

Bugs are problems/errors with a program that cause it to stop working or
produce incorrect or undesirable results.

You should fix as many bugs in your program as you can find. To find bugs effectively,
you should test your program with many test cases (called a test suite). It is also a
good idea to have others test your program because they may think up situations or
input data that you may never have thought of. The process of finding and fixing errors
in your code is called debugging and it is often a very time-consuming “chore” when it
comes to being a programmer. If you take your time to carefully follow problem solving
steps 1 through 3, this should greatly reduce the amount of bugs in your programs and
it should make debugging much easier.

STEP 6: Evaluate the Solution:

Once your program produces a result that seems correct,
you need to re-consider the original problem and make
sure that the answer is formatted into a proper solution to
the problem. It is often the case that you realize that your
program solution does not solve the problem the way that
you wanted it to. You may realize that more steps are
involved.

COMP1405/1005 – An Introduction to Computer Science and Problem Solving Fall 2011

 - 23 -

For example, if the result of your program is a long list of numbers, but your intent was to
determine a pattern in the numbers or to identify some feature from the data, then simply
producing a list of numbers may not suffice. There may be a need to display the information
in a way that helps you visualize or interpret the results with respect to the problem. Perhaps
a chart or graph is needed.

It is also possible that when you examine your results, you realize that you need additional
data to fully solve the problem. Or, perhaps you need to adjust the results to solve the
problem more efficiently (e.g., your game is too slow).

It is important to remember that the computer will only do what you told it to do. It is up to you
to interpret the results in a meaningful way and determine whether or not it solves the original
problem. It may be necessary to re-do some of the steps again, perhaps going as far back as
step 1 again, if data was missing.

So there you have it. Those are the 6 steps that you should follow in order to solve problems
using computers. Throughout the course, you should try to use this approach for all of your
assignments. It is a good idea to practice problem solving to make sure that you understand
the process. Below are some practice exercises that will help you practice the first 3 steps of
the problem solving process. Later, you will gain experience with steps 4 through 6.

PRACTICE EXERCISES

Formulate a model and then develop an algorithm for each of the following problems. In each
case, start with a simple algorithm and then try to think about situations that can realistically go
wrong and make appropriate adjustments to the algorithm. Keep in mind that there is no
“right” answer to these problems. Everyone will have a unique solution.

a. Making a peanut butter and jam sandwich

b. Putting together a jigsaw puzzle

c. Playing the game of musical chairs

d. Replacing a flat tire on your car

e. Getting home from school today

f. Emptying a case of drinks into your refrigerator

g. Shopping for groceries (from en tering store to leaving store)

COMP1405/1005 – An Introduction to Computer Science and Problem Solving Fall 2011

 - 24 -

 1.4 Control Abstraction

We just discussed the basics of producing an algorithm to solve a problem. However, it is not
clear as to how much detail should go into our algorithm. For example, consider that you are
at home on the couch and you are thirsty. How do you solve the problem ? Here is a simple
algorithmic solution to your problem:

1. go to kitchen
2. open refrigerator
3. choose a drink
4. drink it

However, we could have come up with a more abstract (i.e., less detailed) algorithm as
follows:

1. get a drink
2. drink it.

Or, we could have been much more detailed as follows:

1. get off couch
2. walk to kitchen
3. open refrigerator
4. if there is a carton of lemonade or orange juice then {
5. take the carton
6. close refrigerator
7. go to the cupboard
8. open cupboard
9. take a glass
10. close cupboard
11. pour lemonade or juice into glass
12. go to refrigerator
13. open refrigerator
14. put carton in refrigerator
15. close refrigerator
 }
16. otherwise if there is a soda then {
17. take soda
18. close refrigerator
19. open soda
 }
20. drink it

Each of these algorithmic solutions solves the problem. So then, which one is best ? The
answer is not always easy. As a rule of thumb, we want to produce the simplest possible
algorithm that is easily understandable. While it is important to provide enough detail to be
able to properly describe the problem solution, it is also important not to get hung up on too
much detail so that the algorithm becomes cluttered and overly complicated.

COMP1405/1005 – An Introduction to Computer Science and Problem Solving Fall 2011

 - 25 -

So, likely, the first of the three algorithmic solutions here would suffice as an adequate solution
to the problem. This idea of coming up with a clear algorithm without too much details is
known as abstraction.

Abstraction is the process of reducing or factoring out details that are
not necessary in order to describe an algorithm.

Abstraction is important because it allows us to focus on a few concepts at a time.
This allows us to get the “big picture” first in regards to the problem solution. We can
then “fill in” the specific details at a later point in time. For example, in the above
example, a statement like “get a drink from the refrigerator ” would suffice when
that step is part of a larger problem such as an algorithm that describes a person’s
daily routine around dinner time. However, if we needed to program such a step into
a robot, then much more detail would be needed because the robot would require a
more precise set of movements in order to carry out such an operation.

The analogy of image resolution can be used to describe abstraction. A low-
resolution image has less detail and is more abstract than a high-resolution image.
Abstraction allows us to lower the resolution of the image so as to save space (i.e.,
by hiding details) unless they are absolutely necessary.

We also see the idea of abstraction in 3D video game engines which hide details of objects
further away as they are not necessary until the game character moves closer to those objects.
It helps to speed up the game and reduce clutter while allowing the game player to focus on
the more important objects nearby:

å åå å åå å åå å å Abstraction å å åå å åå å åå å

We have just been discussing a kind of abstraction that allows our algorithm steps to be either
quite abstract (i.e., high level) or more detailed (i.e., low level). This kind of abstraction is
known as control abstraction .

COMP1405/1005 – An Introduction to Computer Science and Problem Solving Fall 2011

 - 26 -

Often, in the cases where details are necessary, it is still possible to provide a higher-level
algorithm, while allowing the more specific details to be described in a sub-algorithm or sub-
program . As a result, we are able to describe an algorithm at multiple layers of abstraction.
For example, in our thirst-quenching scenario, we could use the details of our third very-
specific algorithmic solution but hide the more detailed portions in a sub-algorithm as follows:

AlgorithmX : QuenchThirst
1. get off couch
2. walk to kitchen
3. open refrigerator
4. perform SubAlgorithm1
5. close refrigerator
6. drink it

SubAlgorithm1: GetDrink
1. if there is a carton of lemonade or orange juice then {
2. take the carton
3. close refrigerator
4. go to the cupboard
5. open cupboard
6. take a glass
7. close cupboard
8. pour lemonade or juice into glass
9. go to refrigerator
10. open refrigerator
11. put carton in refrigerator
 }
12. otherwise if there is a soda then {
13. take soda
14. open soda
 }

Notice how the main algorithm is quite simple now with much less detail. SubAlgorithm1 is
not a stand-alone algorithm in that it cannot solve the problem on its own.

For example, it assumes that the person is standing in front of the refrigerator and that the
refrigerator door is open. We could also lessen these restrictions, for example, by
incorporating steps 3 and 5 of the main AlgorithmX into SubAlgorithm1 and moving them out
of the main algorithm. Notice the changes:

COMP1405/1005 – An Introduction to Computer Science and Problem Solving Fall 2011

 - 27 -

AlgorithmX : QuenchThirst
1. get off couch
2. walk to kitchen
3. perform SubAlgorithm1
4. drink it

SubAlgorithm1: GetDrink
1. open refrigerator
2. if there is a carton of lemonade or orange juice then {
3. take the carton
4. close refrigerator
5. go to the cupboard
6. open cupboard
7. take a glass
8. close cupboard
9. pour lemonade or juice into glass
10. go to refrigerator
11. open refrigerator
12. put carton in refrigerator
 }
13. otherwise if there is a soda then {
14. take soda
15. open soda
 }
16. close refrigerator

Now we have abstracted out a little further by hiding some details within SubAlgorithm1 . We
could also perform additional layers of abstraction by abstracting within SubAlgorithm1 :

AlgorithmX : QuenchThirst
1. get off couch
2. walk to kitchen
3. perform SubAlgorithm1
4. drink it

SubAlgorithm1: GetDrink
1. open refrigerator
2. if there is a carton of lemonade or orange juice then {
3. perform SubAlgorithm2
 }
4. otherwise if there is a soda then {
5. take soda
6. open soda
 }
7. close refrigerator

COMP1405/1005 – An Introduction to Computer Science and Problem Solving Fall 2011

 - 28 -

SubAlgorithm2: PourDrink
1. take the carton
2. close refrigerator
3. go to the cupboard
4. open cupboard
5. take a glass
6. close cupboard
7. pour lemonade or juice into glass
8. go to refrigerator
9. open refrigerator
10. put carton in refrigerator

Notice how SubAlgorithm1 became more abstract and easier to read. We can abstract out
in this manner as often as we feel it to be necessary. When do we decide to stop this kind of
abstraction ? Well, there is no fixed rule. However, when a sub-algorithm seems to be small
enough to understand or when it relates to a well-defined real-life group of actions, then it is
probably a good idea not to break it down any further.

However, it is possible that there is a portion of the algorithm that may be used by other
algorithms. For example, what if we wanted an algorithm to place a glass on the kitchen table
as part of getting prepared for dinner guests ? In that situation, you may realize that you will
need to perform the same steps again as listed in lines 3 through 6 of SubAlgorithm2 .
Hence, it may be a good idea to create a SubAlgorithm3 as follows:

SubAlgorithm3: GetGlass
1. go to the cupboard
2. open cupboard
3. take a glass
4. close cupboard

Then of course we could make use of this SubAlgorithm3 within SubAlgorithm2 as well as
within our new algorithm for setting the table as follows:

SubAlgorithm2: PourDrink
1. take the carton
2. close refrigerator
3. perform SubAlgorithm3
4. pour lemonade or juice into glass
5. go to refrigerator
6. open refrigerator
7. put carton in refrigerator

COMP1405/1005 – An Introduction to Computer Science and Problem Solving Fall 2011

 - 29 -

AlgorithmY: SetTableFor4
1. walk to kitchen
2. repeat 4 times {
3. perform SubAlgorithm3
4. place glass on table
5. perform SubAlgorithm4 // similar algorithm to get plate from cupboard
6. place plate on table
7. perform SubAlgorithm5 // similar algorithm to get fork & knife from drawer
8. place knife and fork on table
 }
9. go back onto couch

Hopefully you see now how practical and powerful abstraction can be in making algorithms
simpler, more readable and ultimately more understandable.

In computer science we give a special name to the sub-algorithms. They are sometimes
called modules , functions or procedures . In fact, it is not a good idea to simply number all
the sub-algorithms but instead to give them meaningful names. As standard convention,
when naming a function or procedure, you should use letters, numbers and underscore (i.e., _)
characters but not any spaces or punctuation. Also, the first character in the name should be
a lower case letter. If multiple words are used as the name, each word except the first should
be capitalized. Lastly, we often use parentheses (i.e., ()) after the function or procedure name
to identify it as a sub-algorithm. We’ll see why later.

You should choose meaningful names that are not too long. Here are some meaningful
names that we could use for our sub-algorithms:

SubAlgorithm1 : chooseDrink() or chooseDrinkFromRefrigerator()
SubAlgorithm2 : pourDrink() or pourCartonDrink()
SubAlgorithm3 : getGlass() or getGlassFromCupboard()
SubAlgorithm4 : getPlate() or getPlateFromCupboard()
SubAlgorithm5 : getUtensils() or getForkAndKnife() or getUtensilsFromDrawer()

Notice how readable the algorithms then become:

AlgorithmX: QuenchThirst
1. get off couch
2. walk to kitchen
3. chooseDrink()
4. drink it

and ..

COM

Noti
7, re
line
4.

Hen
obje
of ob
algo

If the
An e
walk
clea
actio
pers

Whe
dow
in re
cons
(e.g
Som
beca
prob

MP1405/1005

Algorithm Y
1. wa
2. rep
3.
4.
5.
6.
7.
8.
 }
9. go

ce in Algo r
espectively.
3 of Algor i

nce each of
ect (i.e., drin
bject (such

orithm a fun

e sub-algor
example of
kToKitche n

ar that such
ons, it does
son (or robo

en solving p
wn into man
eal life so as
sider doing
., 1000), it c

me do not ev
ause they b
blems.

– An Introduc

Y: SetTab l
alk to kitche
peat 4 tim e

getGla s
place gla
getPlat e
place pla
getUte n
place kn

back onto

rithmY that
. Then on
ithmX , whe

these sub-
nk, glass, p
as the glas

nction .

rithm does
a procedur
n()) and co
a sub-algo

s not come
ot) to the kit

problems, it
ageable ste
s to simplify
a jigsaw p

can be an o
ven enjoy s

break it dow

ction to Comp

leFor4
n

es {
ss()
ass on table
e()
ate on table

nsils()
nife and fork

couch

t we are ge
lines 4, 6 a

en we perfo

-algorithms
plate or uten
ss or plate)

not return a
re would be

ould be used
orithm is no
back with s
tchen and h

t is often ne
eps as show
y the proble
uzzle. If th
overwhelmi
such a task
wn into simp

puter Science

- 3

e

e

k on table

etting a glas
and 8 we ar
orm choos e

go off and
nsils). Whe
 or value (s

any particul
e a sub-algo
d on line 2
t a function
some kind o
has no valu

ecessary to
wn above.
em-solving
e jigsaw pu
ing problem

k, yet others
pler, more e

e and Problem

 30 -

ss, a plate a
re placing th
eDrink() , w

come back
en a sub-al
such as a n

lar value, it
orithm for w
of Algorit h

n because a
of resulting
ue to return

o break the
 We do the
process. F

uzzle has m
m to put it to
s enjoy the
easily-mana

m Solving

and a pair o
hese items

we are then

k (i.e., retur
lgorithm co
umerical re

is instead
walking to th
hmX or line
although it d
object or v
.

problem
e same thin
For example
many pieces
ogether.
challenge
aged sub-

of utensils i
on the tab
drinking tha

rn) with som
mes back w

esult), we ca

known as a
he kitchen (
1 of Algo r

does perfor
value. It sim

ng
e,
s

Fall

n lines 3, 5
le. Also, in
at drink on

me kind of
with some k
all the sub-

a procedu r
(perhaps ca
rithmY . It
rm some
mply gets th

 2011

 and
n
line

kind
-

re.
alled
is

he

COMP1405/1005 – An Introduction to Computer Science and Problem Solving Fall 2011

 - 31 -

A typical person may solve the puzzle as follows:

Algorithm: SolvePuzzle
1. pour out all pieces on the table
2. flip all pieces over to show the picture side
3. separate the edge pieces from the inside pieces
4. solve edge pieces
5. repeat until there are no more easily identifiable pieces {
6. select pieces that form an easily identifiable part of the picture
7. put these selected pieces together
8. try to fit picture portion to border or to other picture portions
 }
9. repeat until no more pieces remain {
10. pick piece up and try to fit it somewhere
11. if its location is unclear, put piece back in pile
 }

Notice how the seemingly difficult problem is broken down into well-defined stages (or steps).
By solving the edge pieces first, it gives the person a better idea as to the size of the whole
image and it gives a feel for how the other parts of the puzzle will fit together.

In fact, steps 5 through 8 can be made into more specific steps if we had more information
about the puzzle. For example, consider how you would solve this image:

COMP1405/1005 – An Introduction to Computer Science and Problem Solving Fall 2011

 - 32 -

Perhaps this would be your solution:

 Algorithm: SolvePuppies
1. pour out all pieces on the table
2. flip all pieces over to show the picture side
3. separate the edge pieces from the inside pieces
4. solve edge pieces
5. solve the puppies
6. solve the sign
7. solve the grass part
8. solve the gate
9. solve the hay
10. solve the barn

Notice how specific we can be now with our algorithm because we know the exact picture that
we are trying to build. Of course, the order in which we solve the particular parts of the image
is unimportant, but do you see how breaking a problem down into simpler, smaller procedures
can make it easy ?

Programming computers should be done in the same way. Always break your problem down
into simple pieces that you understand. Keep breaking it down until you have a simple
problem that you can understand.

This strategy of breaking down the problem into smaller pieces is often called divide and
conquer and it represents the fundamental principle for problem solving.

It is not a difficult strategy. As mentioned, we do this every day naturally in real life. Even
children can do this.

 1.5 Algorithm Efficiency

Consider an algorithm for drawing a house. Since the problems is a little vague, there are
many potential solutions. Here is one of them:

Algorithm1: DrawSimpleHouse
1. draw a square frame
2. draw a triangular roof
3. draw a door

COMP1405/1005 – An Introduction to Computer Science and Problem Solving Fall 2011

 - 33 -

Obviously, we could have made a more elaborate house, but the solution above solves the
original problem. What if this was our solution:

Algorithm2: DrawMoreComplexHouse
1. draw a square frame
2. draw a triangular roof
3. draw a door
4. draw windows
5. draw chimney
6. draw smoke
7. draw land
8. draw path to door

Which is a “better ” solution ? That’s not an easy question to answer. It depends on what
“better” means. If time is of the essence (e.g., as in playing a game of Pictionary) then
Algorithm1 would be better because it can be drawn faster. The more elaborate house of
Algorithm2 would perhaps be “better” if visual appearance was the aim, as opposed to speed
of drawing. This example brings up an important topic in computer science called algorithm
efficiency.

Algorithm efficiency is used to describe properties of an algorithm
relating to how much of various types of resources it consumes. (Wikipedia)

Normally in computer science we are interested in algorithms that are time and space
efficient, although there are also other ways (i.e., metrics) for measuring efficiency. For
example, Algorithm1 is more efficient in terms of time but it is also more efficient in terms of
ink or pencil usage as well as the amount of space that it takes on the paper. Algorithm2
may be more efficient in terms of detailing in that, depending on the context, it may take
longer for a person to guess what the drawing is (i.e., it could be confused with a barn, shed or
dog house if this was drawn in a farm setting). In this case, the extra time taken to distinguish
the house through the drawing of the windows and chimney may result in a quicker guess.

The runtime complexity (a.k.a. running time) of an algorithm is the
amount of time that it takes to complete once it has begun.

The space complexity of an algorithm is the amount of storage space that
it requires while running from start to completion.

COM

Rec

Why

It is
and

Whi
once

Here

Noti
once

We
supp

We
as fo

MP1405/1005

call the follo

Algorithm Y
1. wa
2. rep
3.
4.
5.
6.
7.
8.
 }
9. go

y is this not

inefficient i
table beca

le this may
e as well as

e is a differ

Algorithm Y
1. wa
2. get
3. pla
4. get
5. pla
6. get
7. pla
8. go

ce that ther
e, all the pla

can actuall
plying some

A para

can supply
ollows:

– An Introduc

wing algori

Y1: SetTab
alk to kitche
peat 4 tim e

getGla s
place gla
getPlat e
place pla
getUte n
place kn

back onto

an efficien

n that it req
use it gets

be a safer
s the plates

ent (yet sim

Y2: Effici e
alk to kitche
tGlasses()

ace glasses
tPlates()

ace plates o
tUtensils()

ace knives a
back onto

re is no lon
ates at onc

y generaliz
e additiona

ameter is

y an arbitrar

ction to Comp

thm for set

bleFor4
n

es {
ss()
ass on table
e()
ate on table

nsils()
nife and fork

couch

t real-world

quires a lot
one glass a

solution fo
s and utens

milar) algori

entSetTabl e
n

s on table

on table
)
and forks o
couch

ger a need
ce and all th

ze the algor
l informatio

s a piece of

ry number i

puter Science

- 3

ting a table

e

e

k on table

d solution ?

of unneces
at a time.

r a small ch
sils.

thm:

eFor4

n table

 for a “repe
he utensils a

rithm to set
on in our fun

f data provid

n our algor

e and Problem

 34 -

e:

ssary travel

hild, an adu

eat loop” sin
at once.

the table fo
nctions.

ded as inpu

rithm to spe

m Solving

lling back a

ult would lik

nce we are

or as many

ut to a func

ecify how m

and forth to

kely grab all

getting all t

guests as

tion or proc

many place s

Fall

the cupboa

l 4 glasses

the glasses

we want by

cedure.

settings to

 2011

ard

at

s at

y

set

COMP1405/1005 – An Introduction to Computer Science and Problem Solving Fall 2011

 - 35 -

AlgorithmY3: EfficientSetTableFor8
1. walk to kitchen
2. getGlasses(8)
3. place glasses on table
4. getPlates(8)
5. place plates on table
6. getUtensils(8)
7. place knives and forks on table
8. go back onto couch

Notice that we supplied a number 8 between the parentheses of our function. This is where
we normally supply additional information (i.e., parameters) to our functions. Now our function
is clear as to how many place settings will be made, whereas AlgorithmY2 was not clear.

But what would the getGlasses() function now look like ? Here was the 1-glass version:

GetGlass():
1. go to the cupboard
2. open cupboard
3. take a glass
4. close cupboard

Now we need to specify the parameter for the function and use it within the function itself:

GetGlasses(n):
1. go to the cupboard
2. open cupboard
3. repeat n times {
4. take a glass
 }
5. close cupboard

Notice how the parameter is now being used within the function to get the necessary glasses.
The value of n will vary according to how we call the function. For example, if we use
getGlasses(8) , then within the function, n will have the value of 8.
If we use getGlasses(4) , then within the function, n will have the value of 4. So, the value for
parameter n will always be the number that was passed in when the function was called.

For algorithms that are the most general, we often use the letter n as a kind of “placeholder”

or “label” to indicate that we want the algorithm to work for any number from 0 to n. The “n”
itself is not a special letter, it is just commonly used. So, the statement getGlasses(n) is
indicating “get n glasses”, where n may be any integer number that we want.

COMP1405/1005 – An Introduction to Computer Science and Problem Solving Fall 2011

 - 36 -

Obviously, there is a limit as to how many glasses a person could carry. However, to describe
an algorithm in a very general way, we use n to indicate that our algorithm will work for any
number from 0 to n. Using n instead of a fixed number, also allows us to compare two
algorithms in regards to their efficiency. That is, we can often compare the number of steps
that one algorithm requires with another algorithm.

For example, consider these two algorithms for setting the table for n people:

Algorithm A :
1. walk to kitchen
2. repeat n times {
3. getGlass()
4. place glass on table
5. getPlate()
6. place plate on table
7. getUtensils()
8. place knife and fork on table
 }
9. go back onto couch

Algorithm B :
1. walk to kitchen
2. getGlasses(n)
3. place glasses on table
4. getPlates(n)
5. place plates on table
6. getUtensils(n)
7. place knives and forks on table
8. go back onto couch

What if we defined “efficiency” in this example to refer to the “number of times we walked
back and forth between the cupboard and the table ” ? Which algorithm is more efficient ?
Well each time through the loop, AlgorithmA makes 3 trips between the cupboard and table.
Since there are n place settings (i.e., n times through the loop), then the whole algorithm takes
n x 3, or 3n, steps. What about AlgorithmB ? It takes only 3 trips between the cupboard
and table altogether, regardless of how many place settings will be required.

So what can we conclude ? If we are setting a place for 1 person, either algorithm is good. If
setting for 2 people, then Algorithm B is twice more efficient than Algorithm A since it
requires half the travel between the cupboard and table. As n gets larger, the difference
becomes more significant. For example, if we are setting the table for 8 people, then
Algorithm A uses 8 times (total of 24) more trips than Algorithm B (which takes 3 trips).

Regardless of the number of place settings, Algorithm B has a fixed cost of 3 (in regards to
back and forth travels). Since this cost is fixed, we say that the algorithm has constant
efficiency in terms of our particular cost metric.

In contrast, Algorithm A is said to be linear in that the efficiency grows equally with respect to
the value of n. Sometimes an algorithm has a constant value times n (e.g., 3n). Since the 3 is
constant (i.e., fixed in our case, because we have exactly 3 kinds of items that we are placing),
the algorithm is still considered to be linear.

If we were to vary the 3 items to be n items (e.g., place 8 items at each of the 8 people’s place
settings, or 12 items at each of the 12 person’s place settings), then we would end up with an
n x n (or n2) algorithm which is called quadratic .

COMP1405/1005 – An Introduction to Computer Science and Problem Solving Fall 2011

 - 37 -

Other common algorithm efficiency measures are logarithmic (i.e., log 2n), cubic (i.e., n3) and
exponential (i.e., nn) … just to name a few.

Here are two graphs comparing various algorithm efficiencies as the value of n grows (graphs
shown at two different scales):

Notice that the logarithmic , constant and linear algorithms are insignificant when compared
to the quadratic , cubic and (especially) exponential algorithms. You may notice as well
that the linear algorithm eventually passes the constant algorithm for larger values of n.

You may also notice that for very small values of n, the efficiency is generally not a big factor
but that the efficiency can quickly become an issue for larger values. Exponential algorithms,
for example, are usually unreasonable (i.e., useless) in practice except for very small values of
n.

Logarithmic solutions are often preferred since they are significantly more efficient than even
linear algorithms. For example, if n is 1,000,000 then a linear algorithm can take 1,000,000
steps whereas a logarithmic algorithm may take only 20 steps.

Sometimes it is hard to think in terms of an unknown number n because we are used to
working with actual concrete numbers.

0

10

20

30

40

50

0 2 4 6 8

#
 o
f S

te
p
s

n

Algorithm Efficiency
Comparison

Constant Logarithmic (log n)

Linear (n) Quadratic (n^2)

Cubic (n^3) Exponential (n^n)

0

200

400

600

800

1000

0 2 4 6 8

#
 o
f S

te
p
s

n

Algorithm Efficiency
Comparison

Constant Logarithmic (log n)

Linear (n) Quadratic (n^2)

Cubic (n^3) Exponential (n^n)

COMP1405/1005 – An Introduction to Computer Science and Problem Solving Fall 2011

 - 38 -

For example, assume that 16 players entered a one-on-one tennis tournament. If there can be
no tie games how many games must be played if each player can be eliminated by one loss ?

We can figure this out with a simple table, doing a round-by-round count:

Round Players Remaining Games Played
1 16 (nobody played yet) 8
2 8 (winners from round 1) 4
3 4 (winners from round 2) 2
4 2 (winners from round 3) 1

 15 (total)

That was easy enough to figure out. But what if we had n players
(assuming that n is an even number) ? What would the table look like ?

Round Players Remaining Games Played
1 n n/2
2 n/2 n/4
3 n/4 n/8
4 n/8 n/16
5 n/16 n/32
… … …
… 2 1

 ??? (total)

The answer seems to be (n/2 + n/4 + n/8 + n/16 + n/32 + …). But how far does that series of
numbers go on ? We can try various values of n to find out. For example, if n=100:

(100/2 + 100/4 + 100/8 + 100/16 + 100/32 + …) = (50 + 25 + 12.5 + 6.25 + 3.125 + 1.5625 ...)

Hmmm…seems like the values approach 0 but never quite there. Try n=128:

(128/2 + 128/4 + 128/8 + 128/16 + 128/32 + …) = (64 + 32 + 16 + 8 + 4 + 2 + 1) = 127

That one was easier. In fact, if you were to try various value of n, you would notice that the
games placed would total (n-1). It works out evenly for games that are powers of 2 (e.g., n=2,
4, 8, 16, 32, 64, 128, 256, 510, 1024, etc). In fact, the number of rounds played is log 2(n)
(often written as just log(n) in computer science).

So, as you can see, trying to figure out efficiency with an unknown number is not always easy.
Nevertheless, it is important for you as a computer scientist to understand how to write efficient
algorithms that run faster, take up less computer memory or use less resources. We will
briefly discuss efficiency at various times throughout this course. However, you will take
further courses to investigate algorithmic efficiency much more thoroughly.

Chapter 2

Variables and Control Structures

What is in This Chapter ?

This chapter explains the notion of a variable which is a fundamental part of mathematics,
problem solving and computer programming. Variables are used throughout a program with
various control structures such as if statements as well as for and while loops. These are
discussed with various examples. The idea of writing procedures and functions is explained
in the context of the Processing language.

COMP1405/1005 – Variables and Control Structures Fall 2011

 - 40 -

 2.1 Problem-Solving With Variables

When we use a function in a program, it is necessary to store the result somehow so that it can
be used later in the program. Remember a “standard” computer only evaluates one
instruction at a time from your program. It is similar to the idea of having only one hand to
perform an operation. For example, recall the example from chapter 1 where we needed to
solve the thirst-quenching problem. If you wanted to perform pourDrink() with one hand, you
would probably need to expand on the instructions by making use of the counter top to put
things down occasionally so your hands are free:

Two-handed Algorithm One-handed Algorithm

AlgorithmX:
1. get off couch
2. walk to kitchen
3. go to refrigerator
4. chooseDrink()
5. drink it

chooseDrink():
1. open refrigerator
2. if there is a carton of juice then {
3. pourDrink()
 }
4. otherwise if there is a soda then {
5. take soda
6. open soda
 }
7. close refrigerator

pourDrink():
1. take the carton
2. close refrigerator
3. getGlass()
4. pour lemonade or juice into glass
5. go to refrigerator
6. open refrigerator
7. put carton in refrigerator

getGlass():
1. go to the cupboard
2. open cupboard
3. take a glass
4. close cupboard

chooseDrink():
1. open refrigerator
2. if there is a carton of juice then {
3. pourDrink()
 }
4. otherwise if there is a soda then {
5. take soda
6. open soda
7. go to counter
8. put soda down on counter
9. go to refrigerator
 }
10. close refrigerator
11. go to counter
12. pick up drink
pourDrink():
1. take the carton
2. go to counter
3. put carton down on counter
4. go to refrigerator
5. close refrigerator
6. getGlass()
7. pick up carton
8. pour lemonade or juice into glass
9. put down carton
10. go to refrigerator
11. open refrigerator
12. go to counter
13. pick up carton
14. go to refrigerator
15. put carton in refrigerator
getGlass():
1. go to the cupboard
2. open cupboard
3. take a glass
4. put glass down on counter
5. close cupboard

COMP140

Notice a
one han
one “han
make us
memory
that the
counter

Notice in
refrigera
in order
counter,
there. L
from the

In reality
Howeve
stored s
juice dow
later the
informat

A

A single
variable

Conside
need to
algorithm
and the
variable

For each
can refe
store the
result.

05/1005 – Va

all the chang
nd available
nd” (i.e., pro
se of “count
y) to “put do
program ca
top is analo

n the algori
ator. This w
for the refr
 that’s like
Likewise, g

e computer’

y, such deta
er, it is impo
o that we c
wn somewh

en. So, it is
tion/data. A

A variable

 algorithm o
must be gi

er our one-h
place both

m. In the p
carton are
s (i.e., two

h variable, w
er to it later.
e carton. H
So, perhap

ariables and C

ges that are
e. Since a t
ocessor) ru
ter tops” (i.e

own” (i.e., s
an continue
ogous to th

thm that the
was becaus
rigerator an
going to the
oing back t
s memory a

ails are usu
ortant to ind
can use it la
here but for
s important
A variable is

e is a locati

or program
iven a uniq

handed algo
the glass

pourDrink(
e sitting on t
unique loca

we need to
 It makes
However, w
ps instead o

Control Struct

e necessar
typical com
unning your
e., storag e

stor e) the in
e performing
e compute

ere were re
se with only
d cupboard
e computer
to the refrig
and ready t

ually an obv
dicate what
ater in the p
rgot where
in our algo

s used to st

ion in the co

 may use m
ue name so

orithm for g
(or soda) a
() function, f
the counter
ations on th

o choose a
sense to u

when there
of “glass”, w

ures

 - 41 -

ry now beca
puter progr

r program, w
e space in t
ntermediate
g other ope
r’s internal

epeated trip
y one hand
d doors to b
r’s memory
gerator is lik
to do some

vious part o
t information
program. F

we put it ?
orithm to sp
tore data:

omputer’s m

many variab
o that it can

getting a dri
nd possibly
for example
r. That sho
he counter t

meaningful
se the labe
is no juice,

we could us

ause you ha
ram also ha
we will also
the comput
e values/obj
erations. T
memory.

ps back and
, the glass

be opened a
y to store or
ke going ba
ething).

of the solutio
n is being s
For example

 We would
pecify when

memory tha

bles to store
n be identifi

ink from the
y the carton
e, during st
ould help us
top) to store

l variable n
el “glass” to

the algorith
se the label

ave only
as only
o have to
ter’s
jects so

The

d forth from
and carton
and closed
r retrieve so
ack to the ta

on and nee
stored and w
e, what if w
d not be ab
and where

at stores a

e intermedi
ed later.

e refrigerato
n on the co
teps 9 throu
s to see tha
e these obj

name (i.e.,
store the g

hm gives ba
“drink” inst

 the counte
 had to be
. When we

omething th
ask at hand

ed not be m
where it is

we placed th
ble to fill up
e we are sto

single piece

ate results

or. Recall t
ounter top d
ugh 12, bot
at we need
ects.

a label) so
glass and “c
ack a soda
tead:

Fall 2011

er to the
put down
e go to the

hat we left
d (i.e., back

mentioned.
being

he carton of
our glass

oring

e of data.

. Each

that we
during the
h the glass
two unique

that we
carton” to
can as the

1

f

s
e

e

COMP1405/1005 – Variables and Control Structures Fall 2011

 - 42 -

So, each variable that we make will have its own counter space on the counter top . When
we create (or declare) a variable, we are really reserving space for an object on the counter
top. And as with any reservation, we need to have a name for the reservation … which
corresponds to the label (i.e., variable name).

When a variable’s space has been reserved, usually there is nothing yet in that space … just
the label. The term null is often used to indicate that nothing has been stored in the variable
yet (i.e., noting is at that spot on the counter top). Once we put something in the variable (i.e.,
on the counter top at that label), the item that we place there is called the value of the variable.

Each variable that we declare (i.e., each time we
reserve space for something), we are actually
taking up space in the computer’s memory. You
may already know that your phone, your ipod,
your flash drive, your computer etc… all have
limited memory (or storage) space. The
computer’s memory space is called RAM, which
stands for (Random Access Memory). At the
time that these notes were written, some phones
had 512MB (roughly 512 million bytes) of storage,
while typical computers had 8GB (roughly 8 billion
bytes) of storage.

Consider, for example, a computer with 1GB of
storage. Each time we declare a variable, we are
reserving space in the RAM. That is, we are
using up a portion of the computer’s available
memory. The bigger the object that we are
storing, the more space that it takes up. So,
here, we see that the carton would take up a little
more space than a glass of orange juice.

The labels carton and drink are called references , since they are used to refer to a particular
object. The reference is actually just a number within the sequence of storage bytes in the
RAM. It is also known as a memory address , because it “sort of” represents the “home” of
the object, as a real life address uniquely identifies a home in the real world.

As we will see later, there are simple kinds of objects (such as numbers and letters) called
primitives that are stored in a simpler manner.

As with any real counter top, we can alter at any time what we place at that location on the
counter. Similarly, we can change a variable’s value at any time but putting a different value
there. What happens to the old value ? It simply disappears.

In real life the object at a specific spot on the counter does not disappear when we put a new
object there at the exact same location. So variables in a computer are a little different that
real life. When it comes to replacing a variable’s value with a new value, it is easiest to
understand that process as over-writing the variable’s value.

COMP1405/1005 – Variables and Control Structures Fall 2011

 - 43 -

You may already have experience with over-writing information, perhaps
from erasing mp3 songs from your ipod or phone, by putting new ones on
the ipod/phone … the old songs are replaced (or overwritten) by the new
ones. Variables are overwritten in the same manner.

So now, we should adjust our code to make use of the variables.

Notice what the code now looks like with two variables drink and carton:

AlgorithmX:
1. get off couch
2. walk to kitchen
3. go to refrigerator
4. drink ← result of chooseDrink()
5. drink the drink

chooseDrink():
1. open refrigerator
2. if there is a carton of lemonade or orange juice then {
3. drink ← result of pourDrink()
 }
4. otherwise if there is a soda then {
5. drink ← the soda
6. open drink
 }
7. close refrigerator
8. return drink

pourDrink():
1. carton ← the carton
2. drink ← result of getGlass()
3. pour carton contents into drink
4. go to refrigerator
5. put carton in refrigerator
6. return drink

getGlass():
1. go to the cupboard
2. open cupboard
3. drink ← the glass
4. close cupboard
5. return drink

Notice that the drink variable represents either a can of soda, an empty glass or a glass with
lemonade or orange juice in it, depending on the line of the program. The ← is used to
indicate that something is to be stored in the variable (i.e., that we want to give the variable a
new value).

COMP1405/1005 – Variables and Control Structures Fall 2011

 - 44 -

Notice as well how go to the counter and put soda down on counter and go to refrigerator
are all combined into one storage step as drink ← soda. That’s because leaving the
refrigerator and heading over to the counter was done as a means to store the soda can on the
countertop so that the single hand is free again to close the refrigerator. The entire storage
process is now specified with just one instruction.

Similarly, the go to counter and pick up drink combination as well as the go to counter and
pick up carton combination is analogous to simply getting the value of the variable in that it
gets the object stored at that location on the countertop. The functions chooseDrink(),
pourDrink() and getGlass() all bring back (i.e., return) a drink, whether it is a full glass, an
empty glass or a soda can. The drink is returned (from each function) back to the function
that called it.

The return value is the value returned as a result of the function.

The idea of a return value becomes more obvious when the function is mathematical. For
example, sine(90) is naturally understood to return the value 1 and squareRoot(100) would
naturally return the value 10.

One more point to mention regarding the variables is with respect to where (and how often)
they are used. You will notice that the drink variable is used throughout the algorithm,
whereas the carton variable is used only within the pourDrink() function. Variables that are
used only with a single function/procedure (e.g., carton) are called local variables because
they are only used locally (i.e., within the vicinity of the function or procedure). In contrast,
variables that are used across many functions/procedures (e.g., drink) are known as global
variables .

Recall from chapter 1 that a parameter is a piece of data that is provided to a function. We
used a parameter to represent the number of glasses/plates and utensils that we wanted to get
from the cupboard: getGlasses(8). We also used
parameters to specify the values for drawing our
houses such as the (x, y) coordinates and width X
height dimensions.

A parameter is similar to a variable because it is a
value that is used in your program. A parameter is
different, however, in that it usually represents a
value that remains constant within the context of
where it is being used.

For example, when performing the getGlasses(8) function, the value of 8 is fixed (i.e.,
unchanging) while we are getting the glasses. Also, when we call rect(100, 50, 100, 100) in
Processing to draw a rectangle, these 4 parameters are fixed/constant while the rectangle is
being drawn. Since you (the algorithm designer and/or programmer) came up with these
constant values, we can say that these values represent incoming algorithm parameters .

COMP1405/1005 – Variables and Control Structures Fall 2011

 - 45 -

In general, an algorithm may have many initial parameters and like variables they are usually
given names. So inside an algorithm or computer program a parameter will usually look just
like a variable. However, you should understand that these parameters will not change
throughout the execution of the algorithm/program.

Later, you will create your own functions and procedures that may take incoming parameters.
You will assign a name/label to these incoming values. You should understand though that
the values of the parameters will NOT change throughout the function/procedure.

When developing your own algorithms to solve a problem, it is important to understand the
difference between what has already been given to you (i.e., parameters) and what you need
to figure out on your own. In the following examples, see if you can develop a computational
model and identify the incoming parameters and variables that you will need.

Example:

Bob and Steve went on a vacation together. During the trip Bob paid for all the food and for
the hotel. Steve paid for the gas and for the entertainment. Write an algorithm to compute
the amount of money that Bob owes Steve (or Steve owes Bob) after the trip, assuming that
they decided to split the expenses evenly ?

How many algorithm parameters are there ? What are they ?

Algorithm: TripExpenses
 f: food cost
 h: hotel cost
 g: gas cost
 e: entertainment cost

1. each ← (f + h + g + e) / 2
2. difference ← each – (g + e)
3. if difference < 0 then Bob owes Steve the difference
4. otherwise steve owes bob the difference

Example:

There are n kids in a room. As it turns out, some kids have socks on (with or without shoes),
some kids are wearing shoes (with or without socks), and some kids are wearing both socks &
shoes. Develop a computational model & algorithm to determine how many kids are barefoot?

COMP1405/1005 – Variables and Control Structures Fall 2011

 - 46 -

Algorithm: Barefoot
 n: # of kids in total
 x: # kids with socks on
 y: # kids with shoes on
 z: # kids with socks & shoes on

1. socksOnly ← x – z
2. shoesOnly ← y – z
3. print (n – z – socksOnly – shoesOnly)

Can you re-write the algorithm without using the socksOnly and shoesOnly variables ?

Example:

A team of n people work together painting houses for the summer. For each house they paint
they get $256.00. If the people work for 4 months of summer and their expenses are $152.00
per month, how many houses must they paint for each of them to have one thousand dollars at
the end of the summer?

Algorithm: PaintHouses
 n: # people on team

1. goal ← ((n * $1000) + (4 months * $152 per month))
2. houses ← (goal / $256 per house)
3. print houses

Notice that the 1000, 4, 152 and 256 here are all fixed/constant values, as opposed to
parameters.

A constant is a single piece of data that does not change throughout the algorithm

In a more general version of this problem, we can make any (or all) of these values to be
adjustable parameters.

In each of the above examples, the parameters and variables are all numbers. When
programming, however, sometimes the variables and parameters may be of a different nature.
For example, sometimes the input to an algorithm may be in the form of text, such as a
person’s name or an address. Or perhaps the variables come in the form of yes/no answers
(i.e., true/false). Consider these examples:

COMP1405/1005 – Variables and Control Structures Fall 2011

 - 47 -

Example:

Assume that you are given a name of a person in one of the following formats:

“Firstname Lastname”

“Lastname, Firstname”

“Firstname MiddleInitial. LastName”

“Lastname, Firstname MiddleInitial.”

You want to develop an algorithm that will determine whether or not the name is properly
formatted to one of these formats. The output should be “YES” if properly formatted,
otherwise “NO”. How would you write the algorithm ? Assume that the name is the only
incoming parameter in the form of a bunch of consecutive characters.

Algorithm: NameFormat
 n: the name

1. if (n does not start with capital letter) then print NO
2. if (n has a lower case letter after a space character) then print NO
3. if (n has weird characters in it) then print NO
4. if (n has a comma and there is no space after it or no letter before it) then print NO
5. if (n has a middle initial that has more than one character) then print NO
6. otherwise print YES

Example:

Assume that you want to take a vote among 5 friends to find out whether or not
they agree to some issue (e.g., like not wearing speedos at a pool party). Each
person votes yes or no. Develop an algorithm that determines the majority
response (either yes or no).

To begin the algorithm, consider first getting all 5 votes and storing them. Then
use the votes to determine the majority.

COMP1405/1005 – Variables and Control Structures Fall 2011

 - 48 -

Algorithm: Majority
 v1, v2, v3, v4, v5: the votes of the 5 people

1. yesCount ← 0
2. noCount ← 0
3. if v1 = yes then yesCount ← yesCount + 1
4. otherwise noCount ← noCount + 1
5. if v2 = yes then yesCount ← yesCount + 1
6. otherwise noCount ← noCount + 1
7. if v3 = yes then yesCount ← yesCount + 1
8. otherwise noCount ← noCount + 1
9. if v4 = yes then yesCount ← yesCount + 1
10. otherwise noCount ← noCount + 1
11. if v5 = yes then yesCount ← yesCount + 1
12. otherwise noCount ← noCount + 1
13. if yesCount > noCount then display YES
14. otherwise display NO

In this example, the yes and no parameters are considered to be boolean values.

A boolean is a value that is either true or false .

So we can say that yes is the same as true and no is the same as false.

Now that you understand how to identify algorithmic parameters and variables, as well as how
to develop and use simple computational models, it is important to discuss how these variables
are represented in a real computer.

 2.2 Variable Representation

All information in the computer is actually stored in the electronics
as voltages … high and low voltages that can be thought of as
billions of 1’s and 0’s that have some kind of meaning to them.
That is, all user information (whether it is a name, phone number,
picture, email, database, game, etc..) is stored as 1’s and 0’s which
we call bits .

As humans, we have a hard time working at such a low level. We
do better working with things like numbers, characters and real-
world objects. So, rather than work with single bits, we group
these bits into more abstract or higher-level packages.

COMP1405/1005 – Variables and Control Structures Fall 2011

 - 49 -

A group of 8 bits is known as a byte . A byte can represent 256
combinations of 1’s and 0’s. That is, if we think of each bit as being
a switch which is either on or off, we can flip the 8 switches in 256
unique combinations. This allows a single byte to store a number
from 0 to 255.

When two bytes are required to represent a number, the pair of bytes is called a word . A word
can store a number in the range from 0 to 65535. We can continue to group bytes together to
store even larger integer numbers.

So, the bit and the byte are the two most
primitive forms that a computer uses for
number representation. Most computers will
use the term boolean to represent a 0 or 1,
but instead of saying “0” or “1” the terms
“false ” and “true ” are used.

Bytes can also be used to represent letters, digits, punctuation, etc. which are called
characters . How so ? Well, back in 1968 it was decided that computers conform to a
numbering standard called ASCII (American Standard Code for Information Interchange).
That is, each combination of numbers in the range from 0 through 127 was mapped to (i.e.,
corresponds to) a particular keyboard character.

Here is the ASCII table (provided as a reference only … DO NOT try to memorize it):

ASCII value Character(s)
0 null

1-31 various special characters
10 line feed
13 carriage return
32 space

33-47 !”#$%&'()*+,-./

48-57 0123456789

58-64 :;ú?@

65-90 ABCDEFGHIJKLMNOPQRSTUVWXYZ

91-96 [\]^_`

97-122 abcdefghijklmnopqrstuvwxyz

123-127 {|}~□

So, for example, the letter “A” corresponds to number 65 in the ACSII table which is number
01000001 in binary bits (we will not discuss bit representation any further in this course).
There are also versions of extended ACSII tables covering the numbers from 128 to 255. In
addition, since computers began to be used internationally, 256 combinations were not enough
to represent the letters of various international languages. Therefore, a new standard called
Unicode has been developed (and continues to be expanded) to account for the other
characters. However, a single byte is no longer sufficient to represent the character … two or
more bytes are required.

COMP1405/1005 – Variables and Control Structures Fall 2011

 - 50 -

In addition, we can actually use bytes to represent real numbers (also called floating-point
numbers) such as 3.14159265. Also, by making assumptions on one particular bit in a byte
(i.e., the most significant bit , also called the sign bit), we can allow the numbers to be either
negative or positive. There are many details regarding number representation, but we will not
discuss them further in this course.

The point is that bits are grouped to form bytes (or characters) which are also grouped to form
larger numbers. Ultimately, this leads to what are known as primitive data types that are
used in most programming languages. Here are the four basic primitives that are available in
most programming languages (although the names may differ in each language):
 • boolean – true or false • integer – a positive or negative whole number • floating-point number – a positive or negative real number with decimal places • character – a letter, digit, punctuation or some other keyboard character

These are called primitive because they are the most basic types of data that we can store on
the computer. Some languages will further distinguish between various types of integers or
floats. For example, the following are the four official primitive data types in Processing (&
JAVA) that can represent integers of various sizes:

Type Bytes Used Can Store an Integer Within this Range

byte 1 -128 to +127

short 2 -32,768 to +32,767

int 4 -2,147,483,648 to +2,147,483,647

long 8 -9,223,372,036,854,775,808 to +9,223,372,036,854,775,807

Notice that the various types take up a different amount of memory space.

Similarly, there are two official primitive data types in Processing (& JAVA) to store floating-
point numbers:

Type Bytes Used Can Store a Real Number Within this Range

float 4 -1038 to +1038

double 8 -10308 to +10308

Regardless of how we group the bytes, all information/data can be represented through the 4
basic primitives of boolean, integer, floating point numbers and characters.

So why are we talking about this ? Well, when programming, some languages (like
Processing and JAVA) force you to specify the types for all of your variables. That means,
for every variable that you create, you must indicate its type and its name.

In Processing and JAVA, for example, in order to use a variable to store a primitive kind of
value (e.g., a boolean, integer, floating-point number or character), you must specify in your

COMP1405/1005 – Variables and Control Structures Fall 2011

 - 51 -

program the type followed by the name (must be unique) of the variable. Here are some
examples:

boolean hungry;
int days;
byte age;
short years;
long seconds;
char gender;
float amount;
double weight;

The above examples show all 8 primitive possible types that you may use in Processing/JAVA
programs. Note that these will differ from language to language. Notice as well that there is

a ; character after each line, as with any step of an algorithm.

Each line above is responsible for declaring a variable. That means that a space is reserved
in the computer’s memory (with the given label) that can hold a value of the given type.

Declaring a variable, DOES NOT assign it any value, it only reserves space for the variable. In
processing, after you declare a variable, you MUST give it a value before you use it. For
example, suppose that tried to do this within one of your Processing functions:

 int days;
 print (days); // prints out the day variable’s value

You would get the following error, preventing your program from running:

Interestingly, Processing allows you to create global variables (i.e., variables outside of a
function which are available through your entire program). In this case, it will assign a value of
0 to your variable and it will not produce an error.

A note about variable names … make sure to pick meaningful names that are not too long !!
The name must be unique and it is case-sensitive (i.e., Hello and hello would not be
considered the same).

Variable names may contain only letters, digits and the ‘_’ character (i.e., no spaces in the
name). As standard convention, multiple word names should have every word capitalized
(except the first).

COMP1405/1005 – Variables and Control Structures Fall 2011

 - 52 -

Here are some good examples of variable names:

• count
• average
• insuranceRate
• timeOfDay

• poundsPerSquareInch
• aString
• latestAccountNumber
• weightInKilograms

There is one more restriction when it comes to writing processing code. It is a good
idea NOT to use width and height as variable names because these are variables
that are already defined in Processing, which represent the width and height of the
drawing area.

We use the term assign to represent the idea of “giving a value” to a variable. In Processing,

the assignment operator is the = sign. So, we use = to put a value into a variable.

Here are a few example of how we can do this with some of the variables that we declared
earlier:

hungry = true ;
days = 15;
gender = 'M';
amount = 21.3f ; // (in JAVA only) floats must have an 'f' after them
weight = 165.23;

Something VERY important to remember when learning to program is that the value of the
variable must be the same type of object (or primitive) as the variable’s type that was
specified when you declared it earlier. So for example, in the following table, make sure that
you understand why the examples on the left are wrong, while the right examples are correct:

int days;
days = 10.2789;

int days;
days = 10;

boolean hungry;
hungry = 'y';

boolean hungry;
hungry = false ;

char sex;
sex = "F";

char sex;
sex = 'F' ;

To help cut down the number of lines of code in our program, we are allowed to both declare
and assign a value to our variables all on one line. So, from our earlier examples, we can do
the following:

boolean hungry = true ;
int days = 15;
char gender = 'M';
float amount = 21.3f;
double weight = 165.23;

A variable may be declared only once in the program, but we may assign a value to it multiple
times.

COMP1405/1005 – Variables and Control Structures Fall 2011

 - 53 -

Can you determine the output of this piece of code:

int days;

days = 43;
print (days); // prints out 43
days = 15;
print (days); // prints out 15

So, variables can be re-assigned a value, but cannot be declared again. Therefore, the
following code will NOT compile:

int days = 365;
print (days);

int days = 7; // cannot declare days again
print (days);

Here are some more pieces of code. Do you know what the output is ?

int x;
int y;
x = 34;
y = 23;
print (x + y);

Here is a similar example. Notice in Processing (and JAVA) that we are allowed to declare

multiple variables of the same type on the same line, each separated by a ',':

int x, y;
x = 34;
y = x;
print (x + y);

Here is another one:

int x, y, z;

x = 3*2*1;
y = x + x;
z = x;
print (z);

Note that even though we use x a few times, it does not change its value.

COMP1405/1005 – Variables and Control Structures Fall 2011

 - 54 -

Here is one that is a little more interesting:

int total;
float average;

total = 12 + 25 + 36 + 15;
average = total / 4;
print("The average is ");
print(average);

Here is the output:

The average is 22.0

Notice that the print() function also allows you to display a fixed set of characters defined
within double quotes. This fixed set of characters is called a String .

Each time we call print() , the information will appear on the same line, so it is important to
have the extra space character at the end of the string above, otherwise the result would be
crowded close to the text like this:

The average is22.0

We can also combine the two print statements into one line as follows:

print("The average is " + average);

This code will append the average variable’s value to the string by using the '+' operator.

A similar function called println() is available that will allow you to stop printing on one line and
start another:

println("The average is ");
print(average);

will produce:

The average is
22.0

If you have a value that will remain constant throughout your program you can use the
keyword final (implying that it has its final value and will not change again) before the
variable’s type. In this case, you must assign the value to the constant when it is declared:

final int DAYS = 365;
final float INTEREST_RATE = 4.923;
final double PI = 3.1415965;

Normally, constants use uppercase letters with underscores (i.e., _) separating words.

COMP1405/1005 – Variables and Control Structures Fall 2011

 - 55 -

 2.3 Conditional Statements

We have already seen the need to make decisions in our program based on various input and
certain calculations. Recall, for example, the TripExpenses algorithm:

Algorithm: TripExpenses

1. each ← ((f + h + g + e) / 2)
2. difference ← (each – (g + e))
3. if difference < 0 then Bob owes Steve the difference
4. otherwise steve owes bob the difference

Notice here that a decision had to be made as to whether Bob owed Steve the difference or
vice-versa. The if/then/otherwise here is known as a conditional statement (often simply
called an if statement).

Example:

Often, the otherwise part can be left off of an if statement. For example, consider developing
a simple computational model that computes a price for patrons who want to go to the theatre.
Assume that there is a discount of 50% for women that are senior (i.e., 65 or older) or to girls
who are 12 and under. For all other people, the discount should otherwise be 0%.

Develop an algorithm that displays the appropriate discount for a particular person buying the
ticket:

Algorithm: TheatreDiscount
 p: person buying theatre ticket

1. discount ← 0
2. gender ← gender of p
3. age ← age of p
4. if gender is female and age > 64 or gender is female and age < 13 then {
 discount ← 50
 }
5. print discount

Notice that there was no need for an otherwise statement here because the discount was set
to zero and a decision was only necessary to set it to 50 in the two particular cases.

You may notice that step 4 is a little ambiguous because of the “and”s and “or”s being used.
That is, notice how the decision differs based on the placement of parentheses:

COMP1405/1005 – Variables and Control Structures Fall 2011

 - 56 -

if (gender is female and age > 64 or gender is female and age < 13) then …

if (gender is female and age > 64) or (gender is female and age < 13) then …

if (gender is female and (age > 64 or gender is female) and age < 13) then …

if (gender is female and (age > 64 or gender is female and age < 13)) then …

Which is the correct understanding of the problem ? The 2nd one. When programming, it is
important to be as clear as possible in your code. Therefore, try to be aware of the need for
parentheses when the code seems complex.

As it turns out, “and”, “or” and “not” are common operators in computer science, called logical
operators . They allow you to work with Boolean values (i.e., true/false values) to combine
them in logical ways in order to achieve an overall Boolean result.

For example, age>64 results in either true or false as does age < 13. Also, gender is
female will also produce a true or false result. When we and/or these true/false values
together, we end up with an overall true/false result that is used by the if statement to decide
whether or not to evaluate the code within the body of the if statement.

Below is a “truth table” explaining the results of using any two boolean values, say b1 and b2,
in an if statement:

b1 b2 if (b1 and b2) if (b1 or b2) if (not b1) if (b1)
false false false false true false
false true false true true false
true false false true false true
true true true true false true

Notice that the and results in true only when both Booleans are true, and false otherwise.
Conversely, the or results in false only when both Booleans are false, and true otherwise.
Also note that the not results in the opposite value of the Boolean. Of course, we can
combine multiple and/or/not operators within the same if statement as in our example.

Example:

Consider writing an algorithm that takes the number grade of a student (i.e., from 0% to 100%)
and outputs a letter grade (from F to A+). To do this, we need to first understand the
computational model … that is, which letter grade corresponds to which number grades:

A = 80% - 100%
B = 70% - 79%
C = 60% - 69%
D = 50% - 59%
F = 0% - 49%

COMP1405/1005 – Variables and Control Structures Fall 2011

 - 57 -

Algorithm: GradeToLetter
 grade: the number grade of a student

1. if (grade is between 80 and 100) then
2. print "A"
3. if (grade is between 70 and 79) then
4. print "B"
5. if (grade is between 60 and 69) then
6. print "C"
7. if (grade is between 50 and 59) then
8. print "D"
9. otherwise
10. print "F"

Notice how each if statement checks to see whether the grade lies within a specific range.
We can re-write this using and operators as follows:

Algorithm: GradeToLetter2
 grade: the number grade of a student

1. if (grade >= 80 and grade <= 100) then
2. print "A"
3. if (grade >= 70 and grade <=79) then
4. print "B"
5. if (grade >= 60 and grade <= 69) then
6. print "C"
7. if (grade >= 50 and grade <= 59) then
8. print "D"
9. otherwise
10. print "F"

This is more realistic when programming because very few (if any at all) programming
languages have a “between” kind of command that allows you to check values within a certain
range.

There is a small issue with the above code in regards to efficiency. The algorithm is correct,
but it is not efficient. Assume that the grade entered was 92%. Step 1 and 2 will be
evaluated. However, the algorithm will then continue with steps 3, 5, and 7 by checking those
if statements … which will all evaluate to false anyway.

We can avoid this inefficiency by created nested if statements . This means that we insert
successive if statements into the otherwise part of the earlier if statements as follows:

COMP1405/1005 – Variables and Control Structures Fall 2011

 - 58 -

Algorithm: GradeToLetter3
 grade: the number grade of a student

1. if (grade >= 80 and grade <= 100) then
2. print "A"
3. otherwise {
4. if (grade >= 70 and grade <=79) then
5. print "B"
6. otherwise {
7. if (grade >= 60 and grade <= 69) then
8. print "C"
9. otherwise {
10. if (grade >= 50 and grade <= 59) then
11. print "D"
12. otherwise
13. print "F"
 }
 }
 }

Notice how the successive if statements are shown indented, as they lie within the otherwise
part of the previous if statement. What happens if 92% is entered ? Steps 1 and 2 are
evaluated, but then since steps 4 through 13 are inside the otherwise part of step 1’s if
statement, they are not evaluated. This is more efficient.

Notice as well the if statement of step 4. Since it is in the otherwise part of step 1’s if
statement, the grade must be less than or equal to 79, since if not, the algorithm would have
stopped on step 2. So, we don’t need to check whether or not grade <= 79 in step 4.
Likewise, the upper bound of 69 and 59 need not be checked in steps 7 and 10. Here is the
better code:

Algorithm: GradeToLetter3
 grade: the number grade of a student

1. if (grade >= 80 and grade <= 100) then
2. print "A"
3. otherwise if (grade >= 70) then
4. print "B"
5. otherwise if (grade >= 60) then
6. print "C"
7. otherwise if (grade >= 50) then
8. print "D"
9. otherwise
10. print "F"

COMP1405/1005 – Variables and Control Structures Fall 2011

 - 59 -

Notice how the otherwise statements are also aligned nicely one after another. Since there is
only one line to evaluate in each if statement, we do not need the braces { }. In such a
scenario it is often the case that we line up the statements as shown, since it is more intuitive
to read.

Example:

Consider another example in which we are given an integer representing a month and we
would like to determine the number of days in that month (we will assume that it is not a leap
year). Here is the table of information that we need to know to begin:

Month Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Days 31 28 31 30 31 30 31 31 30 31 30 31

Here is the algorithm:

Algorithm: DaysInMonth
 month: a month from 1 to 12

1. if (month is 1) then
2. print 31
3. otherwise if (month is 2) then
4. print 28
5. otherwise if (month is 3) then
6. print 31
7. otherwise if (month is 4) then
8. print 30
9. etc..
…

However, you can see that the combined if statements will be 24 lines long! Since there are
only 3 values for the months (i.e., 31, 30 and 28), there should be a way to arrange it in a
format like this …

if (...) then // Jan, Mar, May, Jul, Aug, Oct, Dec
 print 31
otherwise if (...) then // Apr, Jun, Sep, Nov
 print 30
otherwise // Feb only
 print 28

We would just need to group the months into the appropriate category and use or operators to
decide which ones match the corresponding if statement:

COMP1405/1005 – Variables and Control Structures Fall 2011

 - 60 -

Algorithm: DaysInMonth2
 month: a month from 1 to 12

1. if ((month is 1) or (month is 3) or (month is 5) or (month is 7) or
 (month is 8) or (month is 10) or (month is 12)) then
2. print 31
3. otherwise if (month is 4) or (month is 6) or (month is 9) or (month is 11) then
4. print 30
5. otherwise print 28

This seems much shorter. How can we shorten the algorithm description even further ?

We can re-arrange the code to check for the 28 day month first, and the 31 day months last:

Algorithm: DaysInMonth2
 month: a month from 1 to 12

1. if (month is 2) then
2. print 28
3. otherwise if (month is 4) or (month is 6) or (month is 9) or (month is 11) then
4. print 30
5. otherwise print 31

Wow. The code works the same way, but is much shorter, cleaner and nicer. It is often the
case that we can re-arrange our algorithm steps in this manner like this in order to make it
more readable and simpler to understand.

Example:

Here is a larger, more complex example. See if you can understand where you should use
nested if statements.

Consider writing a program that will be placed at a kiosk in front of a
bank to allow customers to determine whether or not they qualify for
the bank’s new “Entrepreneur Startup Loan”. Assume that this kind
of loan is only given out to someone who is currently employed and
who is a recent University graduate, or someone who is employed,
over 30 and has at least 10 years of full-time work experience.

The program should display information to the screen as well as ask
the user various questions … and then determine if the person
qualifies.

COMP1405/1005 – Variables and Control Structures Fall 2011

 - 61 -

What questions should be asked ?
 • Are you currently employed ? • Did you graduate with a university degree in the past 6 months ? • How old are you ? • How many years have you been working at full time status ?

Here is an algorithm:

Algorithm: LoanQualificationKiosk

1. print welcome message
2. employed ← ask user if he/she is currently employed
3. hasDegree ← ask user if he received a university degree within past 6 months
4. age ← ask user for his/her age
5. yearsWorked ← ask user for # years worked at full time status

6. if (employed is true) then {
7. if (hasDegree is true) then
8. print “Congratulations, you qualify!”
9. otherwise {
10. if (age >= 30) then {
11. if (yearsWorked >= 10) then
12. print “Congratulations, you qualify!”
13. otherwise
14. print “Sorry, you do not qualify. You must have
 worked at least 10 years at full time status.”
 }
15. otherwise
16. print “Sorry, you do not qualify. You must be a
 recent graduate or at last 30 years of age.”
 }
 }
17. otherwise
18. print “Sorry, you must be currently employed to qualify.”

You may have noticed that some if statements are nested within others. Of course, the order
that the if statements are evaluated in can vary. That is, the check in step 6 for employment
can be done after the check for the degree, age and years worked. However, since
employment is necessary in all special cases, it is good to check for that first so that the user
code completes quicker when the user is unemployed.

In fact, we could intermix the user input (from lines 2 through 5) with the if statements as
follows:

COMP1405/1005 – Variables and Control Structures Fall 2011

 - 62 -

Algorithm: LoanQualificationKiosk

1. print welcome message
2. employed ← ask user if he/she is currently employed
3. if (employed is false) then
4. print “Sorry, you must be currently employed to qualify.”
5. otherwise {
6. hasDegree ← ask user if he received a univ. degree within past 6 months
7. if (hasDegree is true) then
8. print “Congratulations, you qualify!”
9. otherwise {
10. age ← ask user for his/her age
11. if (age < 30) then
12. print “Sorry, you do not qualify. You must be a
 recent graduate or at last 30 years of age.”
13. otherwise {
14. yearsWorked ← ask user for # years worked at full time status
15. if (yearsWorked >= 10) then
16. print “Congratulations, you qualify!”
17. otherwise
18. print “Sorry, you do not qualify. You must have
 worked at least 10 years at full time status.”
 }
 }
 }

This code may seem a little more cluttered, but it has the advantage that the program ends
quickly and abruptly as soon as any information is entered from the user that disqualifies
him/her. After all, there is nothing more annoying that having to fill out a form with a lot of
information in it only to find out that the first piece of information disqualified you!

In time, you will get used to adjusting your code accordingly to make it more efficient and user-
friendly.

COMP1405/1005 – Variables and Control Structures Fall 2011

 - 63 -

 2.4 Counting

Consider a common situation in which you want to count the total of a set of values. For
example, assume that you are having a pizza lunch and you want your employees to tell you
how many slices they each want. Your goal is to determine how many pizzas to buy (assume
8 slices per pizza … and all just plain pepperoni). Write an algorithm for doing this, assuming
that there are n people:

Algorithm: PizzaCount

1. start with a total of 0 slices
2. repeat n times {
3. ask a person for the number of slices that they want
4. add those slices to the total
 }
5. divide the total slices by 8 and print the answer

It seems straight forward. Here is a more formal version:

Algorithm: PizzaCount

1. total ← 0
2. repeat n times {
3. number ← ask a person for the number of slices that they want
4. total ← total + number
 }
5. print total / 8

The code is logical and straight forward. In real life though, the code will usually produce a
non-integer number (e.g., 4.3 pizzas). In this example we would want to increase 4.3 to the
whole number 5 so that we have an integer number of pizzas. In math, the ceiling function is
used to get the nearest integer above the given real value (likewise, the floor function gives us
the nearest integer below the given value).

Example:

What would differ in the above code if we wanted to find the average number of pizza slices
that each person will eat ? Only one thing will change… can you figure it out ?

COM

Ex

Assu
Dev
stair

To b
mod

Som
we a
migh
addi

The
that
coun
incre
exac

The
adds
will i

MP1405/1005

xample:

ume that w
velop an alg
rcase n sta

begin, you s
del ? This

1 + 2 + 3

me of you m
are unawar
ht realize th
ing an incre

Algorithm

1. t
2.
3.
4.
5.
 }
6.

above algo
of counting

nter is calle
eases by 1
ctly the valu

currentHe
s 1 each tim
involve thes

– Variables a

we want to s
gorithm that
irs high ?

should real
 is how ma

3 + 4 + … +

may realize
re of that nif
hat some ki
easingly lar

m: Stairs

total ← 0
currentHe
repeat n tim

total
curre

}
print total

orithm dem
g from 1 to
ed currentH
. Hence, c
ues that we

eight variab
me through
se simple fo

and Control S

stack concre
t will determ

ize that n m
any number

+ n

that this va
fty formula.
nd of count

rge integer

ight ← 1
mes {
← total + c

entHeight ←

onstrates a
some fixed

Height and
currentHeig
e want to ad

ble above is
the loop. M

orms of cou

Structures

- 6

ete slabs o
mine how m

may be a ve
rs we need:

alue can be
. How wou
ter is requir
to the coun

currentHei
← currentH

a very popu
d value (i.e.

that it start
ght goes th
dd together

s an examp
Most loops
unters.

 64 -

n top of eac
many slabs w

ery large nu

computed
uld you go a
red (i.e., a v
nt. Here is

ight
Height + 1

ular form of
, n in this c
ts at 1 but e
hrough the
r … and we

ple of a loo p
that you w

ch other to
would be n

umber. Wh

as n(n+1)/2
about solvin
variable) an
one possib

repetition i
case). You m
each time th
values of 1
 do so with

p counter
will use whe

form a stai
eeded to cr

hat is our m

2. Howeve
ng this prob
nd that we n
ble solution

n computer
may notice
hrough the
, 2, 3, 4, …
 the total v

or loop in d
n you are p

Fall

rcase.
reate a

mathematica

er, assume
blem ? You
need to kee

n:

r programs
that the
loop it

…, n. These
variable.

dex becaus
programmin

 2011

al

e that
u
ep

…

e are

se it
ng

COMP1405/1005 – Variables and Control Structures Fall 2011

 - 65 -

Example:

Another kind of counting involves searching through some items to enumerate (i.e., count)
them. Perhaps we need to count the number of items that match some kind of search
criteria. For example, how would we write an algorithm that went through a list of n people
and count how many people were adults ?

Algorithm: CountAdults

1. set the total of the adults to 0.
2. repeat n times {
3. get a person and look at his/her age
4. if the person is 18 years of age or older then {
5. add one adult to the total
 }
 }
6. display the total number of adults

Can you identify the variables being used here ? You should have identified:
 • total - since it changes during the program. • age - since it is found in step 3 and used later in step 4.

Here is the more formal version:

Algorithm: CountAdults

1. total ← 0
2. repeat n times {
3. age ← the age of a person

4. if age >= 18 then {
5. total ← total + 1
 }
 }

6. print total

COMP1405/1005 – Variables and Control Structures Fall 2011

 - 66 -

Example:

Suppose that we wanted to print out the even numbers from 1 to 100. How could we do this ?
Do you know how to check whether or not a number is even ? We can check if the remainder
after dividing by two is zero. The modulus operator (% in Processing and JAVA) gives the
remainder after dividing. We just need to put this into a loop:

Algorithm: OddNumbers

1. for each number n from 1 to 100 {
2. if n modulus 2 = 0 then {
3. print n
 }
 }

This kind of loop is called a for loop (or for each loop) because it repeats the loop for a set of
particular values. Notice that it iterates through each location number from 1 through to 100
and that the numbers are used within the loop (i.e., in step 2). The number n itself is called
the loop variable because it varies (i.e., changes) each time through the loop. In this case,
the loop variable is the same as the loop index or loop counter, as it simply counts from 1 to n.

Example:

Imagine that you are creating a game where two players are moving along a one-dimensional
grid (i.e., path). One player always jumps forward 2 steps at a time, while the other always
jumps forward 3 steps at a time. Develop an algorithm that figures out how many grid
locations have not been landed on if the two players start at the same location (i.e., 0) and they
each jumped up to grid location n.

How do we approach this problem ? First, examine the grid locations covered by player 1:

0, 2, 4, 6, 8, 10, 12, 14, … (seems to be the even numbered locations)

and those covered by player 2:

COMP1405/1005 – Variables and Control Structures Fall 2011

 - 67 -

0, 3, 6, 9, 12, 15, 18, 21, … (seems to be the locations that are multiples of 3)

We could try to figure out a formula… but can we do this with some kind of loop counter ?
What if we examine each location at a time … can we determine by the location number
whether or not it would be landed on ?

Algorithm: HopCoverage

1. spotsNotLandedOn ← 0
2. for each locationNumber from 0 to n {
3. if the locationNumber is not divisible by 2 and not divisible by 3 then {
4. spotsNotLandedOn ← (spotsNotLandedOn + 1)
 }
 }
5. print spotsNotLandedOn

Again, we see the for loop used as a way of counting now from 0 to n.

Example:

How could we change the algorithm so that we displayed a list of all the locations that the two
players met at along the way ?

We would just need to find the locations that were multiples of 2 or 3:

Algorithm: HopMeetings

2. for each locationNumber from 0 to n {
2. if locationNumber is divisible by both 2 and 3 then {
3. print locationNumber
 }
 }

COMP1405/1005 – Variables and Control Structures Fall 2011

 - 68 -

Example:

Often, a situation arises where we have a 2-dimensional grid of locations. For example,
imagine selling seats for an event taking place at a stadium. The seats are often arranged in
rows and columns for each section of the stadium. Imagine that some seats are sold (red),
but others are available (gray):

How could we write an algorithm that counted the available seats ?

Algorithm: CountSeats

1. seatsAvailable ← 0
2. for each seat {
3. if the seat is available then {
4. seatsAvailable ← seatsAvailable + 1
 }
 }
5. print seatsAvailable

Its not too difficult to come up with this algorithm and it is logical. Now although the algorithm
above is correct, step 2 is often not precise enough when it comes to programming. There
would need to be a systematic way of getting each seat. Somehow, we need to indicate what
order to get the seats in. Just think of how you would count the seats. You would likely count
the available seats in each row and then go to the next row…and the next one… and so on
until you completed all rows.

So, to do this, we would choose one row (e.g., row 0) and then loop through the seats in that
row… which is the same as going through the columns of the grid. This loop would then need
to be inside a bigger loop that made sure that we systematically went through each row. Here
is what we would do:

COMP140

Algo

1.
2.
3.
4.
5.

6.

Notice th
for each
loopin g

Nested l
data arra
images,

Exam

Conside
the wind
can be d
before.

Now we
moves a
car’s po
location
image …

05/1005 – Va

orithm: Co

sea
for

}
prin

hat the inne
h row. Whe
g, or simply

loops are q
anged in a
and graph

mple:

er writing a
dow, moving
drawn easil

 need to un
along to the
ints. So, w
of the car a

… perhaps

ariables and C

ountSeatsS

atsAvailab
r each row

for each
 if th

 }
}

nt seatsAv

er loop goe
enever we
nested lo o

quite commo
grid pattern
ics involvin

program th
g across th
y, kinda like

nderstand w
e right ? Th
we would ne
and use it i
the top/left

Control Struct

Systematic

ble ← 0
{

h column {
he seat at t

seatsA

vailable

s through t
include one
ops .

on in progra
n such as a
g x/y coord

at will caus
e window t
e drawing t

what is hap
he horizont
eed to intro
n our progr
tmost point

ures

 - 69 -

cally

this row an
Available ←

he seats in
e loop insid

amming. T
applications
dinate syste

se a car to b
to the right.
the house a

pening as t
tal position
oduce a var
ram. Likely
:

nd column
← seatsAv

 a particula
e another l

They often
s that manip
ems.

be displaye
 The car

as we did

the car mov
changes …

riable, say x
y the x refer

is available
ailable + 1

ar row and t
ike this, it is

appear in s
pulate data

ed on

ves. What
… which is t
x, to repres
rs to some

e then {

that this is r
s known ad

situations in
tables, pict

changes as
he x coord

sent the hor
fixed part o

Fall 2011

repeated
d nested

nvolving
tures or

s the car
inate of the
rizontal
of the car’s

1

e

COMP1405/1005 – Variables and Control Structures Fall 2011

 - 70 -

Algorithm: DrawCar

1. for successive x locations from 0 to windowWidth {
2. draw the car at position x
3. x ← x + 10
 }

windowWidth here is a fixed constant representing the width of the window. Notice how x
starts at 0 and then continues to increase by some constant value (in this case 10). The value
of 10 will represent the speed. If we use a smaller number, such as 5, the car will appear to
move slower across the screen, as it will move only half as far each time that we redraw it. A
larger value, such as 20, will double the speed.

A more “proper” way to write the for loop in our algorithm is to specify this fixed increase
amount each time (called the loop increment). We can re-write this as follows:

Algorithm: DrawCar2

1. for x locations from 0 to windowWidth by 10 {
2. draw the car at position x
 }

The “by 10” here is a way of saying that x will be increased by 10 each time the loop restarts.

Example:

Now what if we wanted the car to speed up ? The value of 10 would have to start smaller,
perhaps at 1 and then increase. So the loop increment (i.e., the speed in this case) would
need to increase each time as well as the x value.

Algorithm: AccelerateCar

1. speed ← 0
2. for x locations from 0 to windowWidth by speed {
3. draw the car at position x
4. speed ← speed + 2
 }

Notice the need for a new speed variable and how this variable is used to move the car. The
2 here is the rate of acceleration. For smaller numbers, the car accelerates slower, but for
larger numbers it accelerates faster.

COMP1405/1005 – Variables and Control Structures Fall 2011

 - 71 -

Example:

How can you adjust the code above so that the car speeds up until it gets to the center of the
window and then slows down (i.e., decelerates) so that it stops at the right of the window ?

Algorithm: DecelerateCar

1. speed ← 0
2. for x locations from 0 to windowWidth by speed {
3. draw the car at position x
4. if x < (windowWidth /2) then
5. speed ← speed + 2
6. otherwise
7. speed ← speed – 2
 }

 2.5 Conditional Iteration

In the above examples, we used variables and loops to show how we can count within an
algorithm. In each case there was a fixed number of items to iterate through. However, the
situation often arises if real life when the total number of items to iterate through is unknown.

For example, a cashier must be able to repeat the scanning of items from a customer without
knowing exactly how many items there will be. In fact, in this case the number of items is not
important, only the final cost of the items being purchased is required. In such a situation, the
repeated scanning of items will occur until some kind of condition is satisfied. For example,
scanning continues until there are no more items. We will now consider a few more examples
that show the need for conditional looping (i.e., looping that requires some kind of stopping
condition).

Example:

Consider the slight variation of the problem in which we want to find the average of a set of
grades… but we don’t know in advance how many there will be (i.e., n is no longer a
parameter). How would we write the algorithm ?

COMP1405/1005 – Variables and Control Structures Fall 2011

 - 72 -

Algorithm: Average

1. sum ← 0
2. repeat until no more grades available {
3. x ← the next grade
4. sum ← sum + x
 }
5. compute the average to be sum / (total number of grades).
6. print the average.

The condition for stopping the loop is when no more grades are available. Depending on
where the grades came from, this condition would need to be specified more clearly (e.g., if the
user has stopped entering them manually, or if we reached the end of a file, or if some time
limit has been reached, etc..).

Both sum and x are variables here, but there is another “hidden” variable. We need to have
the total number of grades in order to compute the average. Where is this total ? We need to
keep count of the number of grades that have been entered. So, we’ll need this variable
which starts at 0 and then increases each time we get a new grade.

Here is the more formal version:

Algorithm: Average1

1. sum ← 0
2. count ← 0
3. repeat until no more grades are available {
4. x ← the next grade

5. sum ← sum + x
6. count ← count + 1
 }

7. average ← sum / count
8. print average

This kind of repeat loop is called a repeat-until loop because it repeats a loop until a certain
condition occurs.

Often, it is re-written with the “until” part at the bottom as follows:

COMP1405/1005 – Variables and Control Structures Fall 2011

 - 73 -

Algorithm: Average2

1. sum ← 0
2. count ← 0
3. repeat {
4. x ← the next grade

5. sum ← sum + x
6. count ← count + 1
7. } until no more grades are available
8. average ← sum / count
9. print average

The “until part” is called the loop condition , since it is the part of the algorithm that decides
whether or not to continue looping or to stop. Sometimes the word while is used to describe
the condition for looping as follows:

Algorithm: Average3

1. sum ← 0
2. count ← 0
3. while (more grades are available) {
4. x ← the next grade

5. sum ← sum + x
6. count ← count + 1
 }

7. average ← sum / count
8. print average

This kind of repeat loop is called a while loop because it repeats the loop as long as (or while)
a certain condition still occurs. The while loop is more popular in programming than the
repeat-until loop, although they do the same thing. Notice that the condition is the opposite
from the repeat-until. That is, the condition of the “while loop” indicates when to continue the
loop, whereas the condition of the “repeat-until” loop indicates when to stop the loop.

We will make use of the while loop construct more often now in our examples, since this is
used in JAVA and Processing, whereas the repeat-until looping construct is not.

As it turns out, every repeat or for loop can be expressed in terms of a while loop.

For example, recall the AccelerateCar algorithm:

COMP1405/1005 – Variables and Control Structures Fall 2011

 - 74 -

Algorithm: AccelerateCar

1. speed ← 0
2. for x locations from 0 to windowWidth by speed {
3. draw the car at position x
4. speed ← speed + 2
 }

Here it is re-written using a while loop:

Algorithm: AccelerateCarWhileLoop

1. speed ← 0
2. x ← 0
3. while (x <= windowWidth) {
4. draw the car at position x
5. speed ← speed + 2
6. x ← x + speed
 }

However, as a “rule of thumb”, a while loop should only be used when there is uncertainty in
how many times the loop will occur. That is, you should only use a while loop when the
condition to stop the loop is generated from an unexpected event, not when a fixed counter is
to be used.

The while loop of the Average3 algorithm, for example, could get its grades one-by-one from
the user, who may type-in a special number to stop the process (e.g., -1). That would be an
unexpected event to trigger the stopping of the loop. Therefore the while loop would be a
good choice. If however, we knew that there were exactly 75 grades available, a for loop may
be used more naturally, asking for grades from 1 to 75 and then stopping automatically.

Here is another example requiring a while loop …

Example:

Consider this example that simulates a cashier scanning items at a checkout line in a store.
A while loop here would fit naturally since there is no way the cashier could know in advance
how many items will be scanned ... it could be 1, 10, 50, etc… In real life, the cashier would
likely press a particular button (e.g., total, or done) once all items are scanned.

Try to identify the variables that would be needed by looking for values that will “vary” during
the program or values that are needed in multiple parts of the program

COMP1405/1005 – Variables and Control Structures Fall 2011

 - 75 -

Algorithm: CashierSales

1. while (there are more items) {
2. scan the next item
 }
3. add the tax to the total
4. get the payment from the user
5. compute the change as payment – total - tax
6. give the change to the customer

You should have identified:
 • total cost - since it changes during the program. • tax - since it is computed in step 3 and used later in step 5. • payment - since it is received in step 4 and used later in step 5. • change - since it is computed in step 5and used later in step 6.

Likely, however, you may have missed a “hidden” variable. Notice that step 2 is kind of
vague. Within that step, we need to add the price of the item to the total cost. Likely it would
make sense to first get the price and afterwards add it to the total in a second sub step. Here
is the more formal code with the variables:

Algorithm: CashierSales

1. total ← 0
2. while (there are more items) {
3. price ← result of next scanned item
4. total ← total + price

}
5. tax ← total * 0.13
6. payment ← payment from customer
7. change ← payment – total – tax
8. give back change to customer

The 0.13 here is a constant. While it is true that the tax value may change after a few
years,(and so it is not a permanent value forever) the value does not change while the
program is running and is therefore considered constant.

COMP1405/1005 – Variables and Control Structures Fall 2011

 - 76 -

Example:

Assume that you have a nice rectangular
room that measures Wcm x Hcm. You
want to place tiles down on the floor
arranged in a grid pattern so that the
entire floor is covered. However, you do
not want to cut any tiles! Assuming that
you can buy pre-cut square tiles of any
size, what size of tiles should you buy ?

How do we approach the problem ? Once
again, make sure that we understand the
problem.

Consider the picture to the right which has
a 350cm x 500cm room. In order for the
tiles to fit properly, we can only have
whole tiles across any row and any
column. That means, if we have R tiles across a row, then for tiles that are Tcm x Tcm , then
RxT must equal exactly 350. In other words, 350 / T must be a whole number, not a fraction.
So the T must divide evenly into 350. Similarly, T must divide evenly into 500 if we are to fit
them properly in each column as well.

Certainly we could use 1cm x 1cm tiles in our example above, but that would require 175000
tiles (surely you would not want to lay those down yourself) ! In fact, here are all the possible
solutions for our example:

Tile Size Tiles Required
1cm x 1cm 350 x 500 = 175000
2cm x 2cm 175 x 250 = 43750
5cm x 5cm 70 x 100 = 7000

10cm x 10cm 35 x 50 = 1750
25cm x 25cm 14x 20 = 280
50cm x 50cm 7 x 10 = 70

Likely, the favored solution is the one that requires the least amount of tiles … which is the
50cm x 50cm tile solution. The number 50 happens to be the greatest common divisor (i.e.,
GCD) … or greatest common factor (i.e., GCF) of the numbers 350 and 500. In fact, the
problem that we are trying to solve requires us to find the GCD of our two numbers. Can you
think of a simple solution to find that number ?

COMP1405/1005 – Variables and Control Structures Fall 2011

 - 77 -

Algorithm: SimpleGCD
 n1, n2: numbers to which we need to find the GCD

1. gcd ← minimum of n1 and n2
2. found ← false
3. while (not found) {
4. if (gcd divides evenly into n1) AND (gcd divides evenly into n2) then
5. found ← true
6. otherwise
7. gcd ← gcd - 1

}
8. print(gcd)

This program will start off with an attempt to see whether or not the smaller number divides
evenly into the larger one. If that is true, then we have our answer and the while loop quits.
Otherwise, the program keeps subtracting 1 from the potential gcd until one is found.
Ultimately, this number will keep decreasing to 1, and that will be a common divisor to any
number (although it’s the least common divisor). The program assumes that neither number
is zero or negative to begin with.

The above solution will require 300 iterations of the while loop (i.e., gcd decreases from 350,
349, 348, 347, … down to 50). There are more efficient solutions. For example, since the
gcd divides both 350 and 500, we can see that it is still possible to find the gcd by ignoring a
large 350cm x 350cm portion of the floor area and concentrating on the remaining area:

As seen in the diagram, given that we have an n x m floor area remaining, we can continually
extract an n x n floor area (if n < m) or an m x m floor area (if m < n) until we end up with a
remaining floor area in which n = m. In this case, n (or m, since they are equal) is the gcd.

COMP1405/1005 – Variables and Control Structures Fall 2011

 - 78 -

We can adjust our algorithm do compute the answer in this manner by repeatedly extracting
the minimum of the dimensions:

Algorithm: BetterGCD
 n1, n2: numbers to which we need to find the GCD

1. a ← n1
2. b ← n2
3. while (a is not equal to b) {
4. if a > b then
5. a ← a - b
6. otherwise
7. b ← b - a

}
8. print(a)

This algorithm produces a better solution … which requires only 5 iterations of the while loop!

In fact, it can be improved even further (i.e., only 3 iterations of the while loop) by using the
modulus operator which takes multiples of the lower dimension away in one step:

We’ll leave the details for you to figure out as a practice exercise.

COMP1405/1005 – Variables and Control Structures Fall 2011

 - 79 -

 2.6 Control Structures in Processing

As we have seen already through various examples, the need to repeat steps of an algorithm
often arises as well as the need to make a decision using if/otherwise statements. These are
called control structures in that they specify the flow of control through the program.

The control structures that we have been using in our pseudocode is quite similar to that which
is used in Processing (and JAVA). Here, for example is some code that will run in
Processing:

int grade = 0;

if (grade >= 50) {
 print("Congratulations! ");
 print(grade);
 println(" is a passing grade.");

}
else {
 print(grade);
 println(" is quite low. Oh well, there's always next term.");

}

Notice how the if statements are not capitalized and that we do not use the word then. Also,
notice that in place of otherwise, we use the word else.

The braces { } specify the code that is inside the if or else part of the conditional statement. If
there is only one line within the if or else body, then the braces are not needed. It is often a
good idea to use the braces anyway, even if you have only one line of code because it may
prevent you from making some mistakes.

For example, the following code is not the same as above:

int grade = 0;
if (grade >= 50)
 print("Congratulations! ");
 print(grade);
 println(" is a passing grade.");
else
 print(grade);
 println(" is quite low. Oh well, there's always next term.");

The code above will not compile. Since the brackets are missing, the code is assumed to
have only one line in the if body as follows:

COMP1405/1005 – Variables and Control Structures Fall 2011

 - 80 -

int grade = 0;
if (grade >= 50)
 print("Congratulations! ");
print(grade);
println(" is a passing grade.");
else
 print(grade);
println(" is quite low. Oh well, there's always next term.");

It then sees the else as being out of place. In processing, the else, and anything after it will
then be ignored completely. So the result would be:

0 is a passing grade.

In JAVA, the situation is different. You would get a compile error saying: ‘else’ without ‘if’
and the code would not run at all.

An even worse scenario is when Processing/JAVA does not notice the error at all. Consider
the following:

int grade = 0;
if (grade >= 50)
 print("Congratulations! ");
 print(grade);
 println(" is a passing grade.");
println("All Done.");

In the above code, here is the output:

0 is a passing grade.
All Done.

Clearly this is wrong but the program continues as if nothing bad happened. Also, be careful

not to place a semi-colon ; after the if statement brackets:

int grade = 0;

if (grade >= 50);
 println("Congratulations! " + grade + " is a passing grade.");

COMP1405/1005 – Variables and Control Structures Fall 2011

 - 81 -

In the above code, here is the output:

Congratulations! 0 is a passing grade.

Why ? Because the semi-colon ; at the end of the first line tells Processing/JAVA that there is
no body for the if statement. Thus, the println(…) line is outside the if statement altogether
and is therefore always evaluated.

Recall the GradeToLetter3 algorithm:

Algorithm: GradeToLetter3
 grade: the number grade of a student

1. if (grade >= 80 and grade <= 100) then
2. print "A"
3. otherwise if (grade >= 70) then
4. print "B"
5. otherwise if (grade >= 60) then
6. print "C"
7. otherwise if (grade >= 50) then
8. print "D"
9. otherwise
10. print "F"

Here is the Processing/JAVA equivalent:

int grade = ___; // ignore for now where we got this grade from

if ((grade >= 80) && (grade <=100)) print("A");
else if (grade >= 70) print("B");
else if (grade >= 60) print("C");
else if (grade >= 50) print("D");
else print("F");

Of course, we could space this out on a few more lines, but the result would be the same.

Notice the use of &&. This is called a Boolean operator in Processing/JAVA. Here are three
useful boolean operators:

• && … the same as saying and

• || … the same as saying or

• ! … the same as saying not

COMP1405/1005 – Variables and Control Structures Fall 2011

 - 82 -

You will notice as well that the code used the >= operator. This is called a logical operator
that determines whether one number is greater than or equal to another. It takes the two
values, compares them, and then determines a boolean result of true or false. Here is the
list of all the available logical operators that we can use:

• < less than

• <= less than or equal to

• == equal to

• != not equal to

• >= greater than or equal to

• > greater than

Notice that when we want to ask if something is equal to another thing we use two equal signs

==, not one. The single equal sign = is only used to assign (i.e., give) a value to a variable.

Recall as well the DaysInMonth2 algorithm:

Algorithm: DaysInMonth2
 month: a month from 1 to 12

1. if (month is 2) then
2. print 28
3. otherwise if (month is 4) or (month is 6) or (month is 9) or (month is 11) then
4. print 30
5. otherwise print 31

This could be implemented in Processing/JAVA as follows:

int month = ___; // ignore for now where we got this month from

if (month == 2)

print(28);
else if ((month == 4) || (month == 6) || (month == 9) || (month == 11))

print(30);
else

print(31);

In special cases where there is a list of fixed values that we want to make a decision on (e.g.,
month is a number from 1 to 12), we can use what is known as a switch statement .

COMP1405/1005 – Variables and Control Structures Fall 2011

 - 83 -

The switch statement has the following format:

switch (aPrimitiveExpression) {
case val 1:

/*one or more lines of JAVA code*/;
break ;

case val 2:
/*one or more lines of JAVA code*/;
break ;

...
case val N:

/*one or more lines of JAVA code*/;
break ;

default :
/*one or more lines of JAVA code*/;
break ;

}

In the above code, aPrimitiveExpression is either a primitive variable (e.g., a variable of type
int, char, float, etc…) or any code that results in a primitive value. The values of val1, val2,
…, valN must all be primitive constant values of the same type as aPrimitiveExpression.

The switch statement works as follows:

1. It evaluates aPrimitiveExpression to obtain a value (the expression MUST result in a
primitive data type, it cannot be an object (more on this later)).

2. It then checks the values val1, val2, …, valN in order from top to bottom until a value is

found equal to the value of aPrimitiveExpression. If none match, then the default
case is evaluated.

3. It then evaluates the statements corresponding to the case whose value matched.

4. If there is a break at the end of the lines of code for that case, then the switch

statement quits. Otherwise it continues to evaluate all the successive case statements
that follow ... until a break is found or until no more cases remain.

Here is how we can use a switch statement for our DaysInMonth code …

int month = ___; // ignore for now where we got this month from

switch (month) {
 case 2: print(28); break ;
 case 4:
 case 6:
 case 9:
 case 11: print(30); break ;
 default : print(31);
}

COMP1405/1005 – Variables and Control Structures Fall 2011

 - 84 -

Note that when the month is 4, 6, 9, or 11, then the print(30); is evaluated. The code is not
necessarily much shorter, but it is simpler to read. This is the main advantage of a switch
statement.

One thing that needs mentioning is that the value of the cases must be primitive literals.
That is, they cannot be expressions, ranges (nor Strings). Nor can we make use of the logical
operators such as and and or. So these three examples will not work:

switch (age) {
 case 1 to 12: price = 5.00; break ; // Won’t compile
 case 13 to 17: price = 8.00; break ; // Won’t compile
 case 18 to 54: price = 10.00; break ; // Won’t compile
 default : price = 6.00;
}

switch (name) {
 case "Mark": bonus = 3; break ; // Won’t compile
 case "Betty": bonus = 2; break ; // Won’t compile
 case "Jane": bonus = 1; break ; // Won’t compile
 default : bonus = 0;
}

switch (month) {
 case 2: print(28); break ;
 case 4 || 6 || 9 || 11: print(30); break ; // Won’t compile
 default : print(31);
}

Getting back to the IF statement, although they are quite easy to use, it is often the case that
students do not fully understand how to use boolean logic. As a result, sometimes students
end up writing overly complex and inefficient code ... sometimes even using an IF statement
when it is not even required!

To illustrate this, consider the following examples of "BAD" coding style. Try to determine why
the code is inefficient and how to improve it. If it is your desire to be a good programmer, pay
careful attention to these examples.

COMP1405/1005 – Variables and Control Structures Fall 2011

 - 85 -

Example 1:

boolean male = ...;

if (male == true) {
 println("male");
else
 println("female");

Here, the boolean value of male is already true or false, we can make use of this fact:

boolean male = ...;

if (male) {
 println("male");
else
 println("female");

Example 2:

boolean adult = ...;

if (adult == false)
 discount = 3.00;

Here is a similar situation as above, but with a negated boolean. Below is better code.

boolean adult = ...;

if (!adult) {
 discount = 3.00;

Example 3:

boolean tired = ...;

if (tired)
 result = true ;
else
 result = false;

COMP1405/1005 – Variables and Control Structures Fall 2011

 - 86 -

Above, we are actually returning the identical boolean as tired. No if statement is
needed:

boolean tired = ...;

result = tired;

Example 4:

boolean discount;

if ((age < 6) || (age > 65))
 discount = true ;
else
 discount = false ;

The discount is solely determined by the age. No if statement is needed:

boolean discount;

discount = (age < 6) || (age > 65);

Example5:

boolean fullPrice;

if ((age < 6) || (age > 65))
 fullPrice = false ;
else
 fullPrice = true ;

Just like above, we do not need the if statement:

boolean fullPrice;

fullPrice = !((age < 6) || (age > 65));

or …
fullPrice = (age >= 6) && (age <= 65);

COMP1405/1005 – Variables and Control Structures Fall 2011

 - 87 -

Now what about the repeat, for and while loops ? They too are control structures. Recall
the stair-counting algorithm:

Algorithm: Stairs

1. total ← 0
2. currentHeight ← 1
3. repeat n times {
4. total ← total + currentHeight
5. currentHeight ← currentHeight +1
 }
6. print total

What would this look like in Processing ? Here is the solution:

int total = 0;
for (int currentHeight = 1; currentHeight <= n; currentHeight ++) {
 total = total + currentHeight ;
}
println (total);

Let us discuss this code a bit. Notice that the total starts off at 0 and then the currentHeight
is added to it, just as in our pseudocode, and finally the total is printed.

Notice that the for loop has what looks like parameters and code within the parentheses ()
and that it has braces { } just as a function of procedure does. The code within the braces is
called the loop body , and it can be any chunk of code which will be evaluated over and over
again depending on the code within the parentheses.

Lets break down the code within the paretheses. You may notice that there are two semi-
colons that break things into two portions as follows:

(initializer ; loopTest ; countExpression)

Each of these portions is explained here:
 • initializer – this is usually used to declare and initialize (i.e., set the starting value for) a

variable (called the loop variable) which will be used as a counter within the loop. The
loop variable can be used anywhere within the for loop but not outside of it. In most
situations, this counter starts off at 0 or 1, but there are some times when you will use
other values.
 • loopTest – this is any coding expression that results in a boolean result. It is used to
determine whether or not to go back into the loop again for another round. Usually, this

COMP1405/1005 – Variables and Control Structures Fall 2011

 - 88 -

loop will check if the loop variable has reached some kind of limit. As long as the
boolean expression results in true, the loop will repeat again.
 • countExpression – this is a portion of code that is evaluated AFTER each time the
loop has completed one iteration (i.e., one round). It is usually used to increase or
decrease the value of the loop variable by some value (such as 1), although this not
always the case.

So in our example, the loopTest checks to see if the currentHeight <= n. If it evaluates to
true, then it keeps looping, otherwise it no longer repeats the loop code. The loopTest is
checked before the loop starts. If it is false right away, then the entire for loop is ignored and
never evaluated. Otherwise, the loop is evaluated at least once. At the end each loop
iteration (i.e., after the loop body has been evaluated), the countExpression is evaluated and
then the loopTest is performed again in order to decide whether or not to continue another
round at the top of the loop.

The countExpression has a ++ at the end of the currentHeight variable. This is called the
increment operator . It has the same result as doing:

currentHeight = currentHeight + 1;

This is evaluated AFTER each iteration of the loop and BEFORE the loopTest is performed
again.

There is also a decrement operator -- which has the same result as subtracting 1 from the
variable. It is very useful when you are counting down from a number.

Often, in order to keep code simple to read, a programmer will use the letter i to represent the
loop variable (i being short for “index”). Here is how our code will look with i instead:

for (int i=1; i<=n; i++) {
 total = total + i;
}

The code looks much simpler. In addition, if the body of a for loop has only one line of code
in it, then the brace { } characters are not needed:

for (int i=1; i<=n; i++)
 total = total + i;

Recall as well that we sometimes want to count by more than 1 each time.

For example, the code to accelerate a car increased the x value by a speed component as
follows:

COMP140

Algo

1.
2.
3.
4.

Here is w

in t
fo r

}

A few th
width of
window
each tim
What wo
follows:

for (i n
 .
}

In this ca
equal to
… your

A simila
round br

for (i n

 .
}

In this si
body to
outside

Hence th

05/1005 – Va

orithm: Ac

speed
for x lo
 d
 s
}

what the Pro

t speed =
r (int x=

drawCar
speed =

hings to note
the window
(in pixels).

me.
ould happe

nt x=0; x>
..

ase, x start
 width. Th
program ig

r unintentio
rackets by

nt x=0; x>

..

ituation, JA
be evaluate
of the for lo

he above c

ariables and C

ccelerateCa

← 0
ocations fro
raw the car
peed ← sp

cessing cod

= 0;
=0; x<=wi d
rAt(x); /
= speed +

e. First, w
w (in pixels)
 Notice as

n if the stop

>=width ;

ts at 0 and
hus, the loo
nores it.

onal situatio
mistake:

>=width ;

AVA assume
ed. In this
oop and it is

code is unde

Control Struct

ar

om 0 to win
r at position
peed + 2

de would loo

dth ; x=x+s
// detail
2;

width is a pr
). Similarly
s well now t

pping-expre

x++) {

the stoppin
op body nev

on may occ

x++); {

es that the
case, the b
s evaluated

erstood as:

ures

 - 89 -

dowWidth
n x

k like:

speed) {
ls left ou

re-defined p
y, there is a
hat the x va

ession of a

ng condition
ver gets ev

ur if you ac

for loop en
body of the
d once.

 by speed

ut

parameter
height par

alue is incre

for loop ev

n determine
valuated. T

ccidentally p

nds at that s
loop is con

{

in Processi
rameter set
eased by s

valuated to

es that it is n
That is, the

place a sem

semi-colon
sidered to

ng that is s
t to the heig

speed inste

false right

not greater
for loop do

mi-colon ; a

; and that
be regular

Fall 2011

set to the
ght of the
ad of by 1

away as

than or
oes nothing

after the

it has no
code

1

g

COM

for
}
...

Alte

You
outs
oppo

Just
othe
the s

whi l

}

As w
cont

whi l

MP1405/1005

(int x=0

rnatively, in

int tota
int cur r

while (c
 tota
 cur r
}
println (

int spee
int x=0;
while (x
 draw
 spee
 x =
}

 should not
side the loo
osed to som

t as with for
erwise your
stopping co

l e (n < 1

println

with the if s
tains a sing

l e (n >=
println

– Variables a

; x>=wid t

n Processin

al = 0;
r entHeigh t

currentHe i
l = total

r entHeigh t

(total);

ed = 0;
;
x <= widt h
wCarAt(x)
ed = spee

x + spee

tice that the
p. Howeve
me counter

r loops, you
loop body

ondition ma

00); {

n(n++);

tatements a
gle coding e

0)
n(n--);

and Control S

t h; x++) {

ng, we could

t = 1;

i ght <= n
l + curre n
t ++;

h) {
;
d + 2;
d;

e currentHe
er, it is ofte
r reaching a

u should be
will not be

ay never cha

and for loo
expression:

Structures

- 9

{

d have use

n) {
ntHeight ;

eight and x
en the case
a known lim

e careful no
evaluated.
ange to fals

ops, the bra

 90 -

d while loo

x variables
that a whil

mit. We will

ot to put a s
 Usually y
se:

// This c

ces { } are

ops in our s

are still nee
le loop wait
l do more e

semi-colon
your code w

code will

e not neces

solutions as

eded, but is
ts for some
examples la

; after the p
will loop fore

loop for

sary when

Fall

s follows:

s now defin
e event, as
ater.

parenthese
ever becaus

rever

the loop bo

 2011

ned

es,
se

ody

COMP1405/1005 – Variables and Control Structures Fall 2011

 - 91 -

Some students tend to confuse the while loop with if statements and try to replace an if
statement with a while loop. Do you understand the difference in the two pieces of code
below ?

if (age > 18) while (age > 18)
 discount = 0; discount = 0;

Assume that the person’s age is 20. The leftmost code will set the discount to 0 and move on.
The rightmost code will loop forever, continually setting the discount to 0.

 2.7 Procedures & Functions in Processing

You may recall, from our discussion of abstraction, that it is often a good idea to simplify our
overall algorithm by making it higher-level. That means, we could hide details that are
unnecessary. For example, if we wanted to create a home scenery, it may make sense to
develop a high-level algorithm like this:

Algorithm: DrawScenery

1. draw the house
2. draw the laneway
3. draw the car
4. draw the lawn
5. draw the trees

This is an easily understood algorithm which hides all the unnecessary details of “how” to draw
the various things. Recall our program for drawing a simple house:

size (300,300);

// Draw the house
rect (100,200,100,100);
triangle (100,200,150,150,200,200);
rect (135,260,30,40);
point (155,280);

How could we abstract out and make this a higher-level algorithm ? We could create a
drawHouse() procedure that will draw the house. Then our program would like simpler like
this:

size (300,300);
drawHouse ();

COMP1405/1005 – Variables and Control Structures Fall 2011

 - 92 -

What would the drawHouse() procedure look like ? Well in Processing and JAVA, this is the
format for declaring a simple procedure:

void procedureName () {
 // Write your procedure’s code here
}

Notice that procedure has void at the front. This indicates that there is no value to be
returned from the procedure.

The brace characters (i.e., { }) indicate the code’s body:

The body of a function or procedure is the code that is evaluated each
time that the function or procedure is called.

 So then, our drawHouse() procedure would look as follows:

size (300,300);
drawHouse ();

void drawHouse () {
 rect (100,200,100,100);
 triangle (100,200,150,150,200,200);
 rect (135,260,30,40);
 point (155,280);
}

The code itself looks more complicated because nothing looks hidden at all! Actually, the
above code, by itself, will not compile in Processing. In general, when writing a program in
Processing, all of our program code must lie within a function or procedure of some kind.
There are exceptions to this:
 • we may declare “global variables” outside a function at the top of our program • when we are not creating any functions or procedures of our own, Processing will allow

us to write a simple sequence of code that does not need to be inside a function or
procedure.

So, Processing has provided a useful procedure called setup() into which we can place our
code. The setup() procedure is called one time automatically by Processing whenever we
start or restart the program. Here is code that will now compile and run in Processing:

void setup () {
 size (300,300);
 drawHouse ();
}

COMP1405/1005 – Variables and Control Structures Fall 2011

 - 93 -

void drawHouse () {
 rect (100,200,100,100);
 triangle (100,200,150,150,200,200);
 rect (135,260,30,40);
 point (155,280);
}

Notice that the code is simply made up of two procedures. Again, there seems to be more
code, but notice how the main algorithm (i.e., the code in the setup() procedure) is much
simpler now.

As a side point, in JAVA, C, C#, C++ and similar languages, there is a procedure similar to
setup() called main() … which is called automatically upon program startup. You will see
more of this in the follow-up course.

Abstraction, is just one reason for creating a procedure or function. However, efficiency (in
the amount of code that is to be written) is another. In order to more fully understand the
benefits of creating functions and procedures consider how we can efficiently draw 3 houses
side-by-side. Here is an inefficient way to do it:

void setup () {
 size (300,300);

 // 1st house
 rect (0,200,100,100);
 triangle (0,200, 50,150, 100 ,200);
 rect (35,260,30,40);
 point (55,280);

 // 2nd house
 rect (100 ,200,100,100);
 triangle (100 ,200, 150 ,150, 200 ,200);
 rect (135 ,260,30,40);
 point (155 ,280);

 // 3rd house
 rect (200 ,200,100,100);
 triangle (200 ,200, 250 ,150, 300 ,200);
 rect (235 ,260,30,40);
 point (255 ,280);
}

The program is inefficient because we are duplicating portions of code. Notice that the only
differences in the code is with respect to the values shown underlined in red. Do you notice
how these values differ from the 1st house to the 2nd house and from the 2nd house to the 3rd ?

We are actually adding 100 to these values each time that we draw a house. Notice as well
that the value is always the x coordinate of the shape being drawn … the width and height

COMP1405/1005 – Variables and Control Structures Fall 2011

 - 94 -

values do not change. In other words, we are offsetting the x value of our house by a fixed
amount (i.e., 100) each time we re-draw it.

 An x-offset is the difference by which one graphical object is out of
 horizontal alignment from some fixed horizontal reference (e.g., origin or

another object’s position).

 A y-offset is the difference by which one graphical object is out of
vertical alignment from some fixed vertical reference (e.g., origin or
another object’s position).

Notice how we can re-write the code with an x-offset:

void setup () {
 int xOffset ; // Make a variable to store the offset

 size (300,300);

 // 1st house
 xOffset = 0;
 rect ((0+xOffset),200,100,100);
 triangle ((0+xOffset),200,(50+xOffset),150,(100+xOffset),200);
 rect ((35+xOffset),260,30,40);
 point ((55+xOffset),280);

 // 2nd house
 xOffset = 100;
 rect ((0+xOffset),200,100,100);
 triangle ((0+xOffset),200,(50+xOffset),150,(100+xOffset),200);
 rect ((35+xOffset),260,30,40);
 point ((55+xOffset),280);

 // 3rd house
 xOffset = 200;
 rect ((0+xOffset),200,100,100);
 triangle ((0+xOffset),200,(50+xOffset),150,(100+xOffset),200);
 rect ((35+xOffset),260,30,40);
 point ((55+xOffset),280);
}

It seems that we have written more code now, so how could this be more efficient ? As
written, it is NOT more efficient. However, you should notice that the portion of the code that
actually draws each house is exactly the same!

That means, we could create a procedure for drawing the house and simply call it three times
as follows:

COMP1405/1005 – Variables and Control Structures Fall 2011

 - 95 -

void setup () {
 int xOffset ; // Make a variable to store the offset

 size (300,300);

 // draw 3 houses with different x offsets
 xOffset = 0;
 drawHouse (xOffset);

 xOffset = 100;
 drawHouse (xOffset);

 xOffset = 200;
 drawHouse (xOffset);
}

What would the drawHouse() procedure look like now ? Well, you may notice that we need
to pass in a parameter to the procedure in order to indicate the x offset. Here is the format for
passing in parameters to a function:

void procedureName (t1 n1, t2 n2, …, tk nk) {
 // Write your procedure’s code here
}

Each parameter must be declared like a variable (i.e., with a type followed by a name), with
commas in between. So, t1, t2, …, tk are the types of the parameters to the function while n1,
n2, …, nk are the names of the parameters. While inside the function, each parameter is
available for us to use as … just as we would use any other variable.

So then, our drawHouse() procedure would now look like this:

void drawHouse (int xOffset) {
rect ((0+ xOffset),200,100,100);
triangle ((0+ xOffset),200,(50+ xOffset),150,(100+ xOffset),200);
rect ((35+ xOffset),260,30,40);
point ((55+ xOffset),280);

}

As you can see, the xOffset parameter looks just like a variable declaration, but inside the
brackets now. It tells the Processing/JAVA compiler to reserve space for this incoming integer
value which can be used within the procedure.

Where does xOffset get its value ? When we call the procedure. Each time we call it with a
different offset.

Here is the simplified code:

COMP1405/1005 – Variables and Control Structures Fall 2011

 - 96 -

void setup () {

size (300,300);

// draw 3 houses with different x offsets
drawHouse (0);
drawHouse (100);
drawHouse (200);

}

void drawHouse (int xOffset) {

rect ((0+xOffset),200,100,100);
triangle ((0+xOffset),200,(50+xOffset),150,(100+xOffset),200);
rect ((35+xOffset),260,30,40);
point ((55+xOffset),280);

}

Notice that we no longer need the xOffset variable that was declared outside the procedure
because we can simply pass in the value for the offset each time we call the procedure.

Example:

Can you write a program that would produce this picture:

What is different from the last program ? • 6 houses instead of 3 • The size of the window is different … now 500 x 150 • offset is not 100 anymore, but less (since houses overlap)…80 ? • the color of gray changes as the houses are drawn • the first 3 houses have black border while the last three have white

So, now that we understand the differences, how do we write the code that uses the same
drawHouse() procedure that we wrote earlier ?

We need to vary the stroke color and the fill color for each house as follows:

COMP1405/1005 – Variables and Control Structures Fall 2011

 - 97 -

void setup() {
 size (500,150);

 stroke (255); // use a white border on everything
 fill (0);drawHouse(0);
 fill (50);drawHouse(80);
 fill (100);drawHouse(160);

 stroke (0); // use a white border on everything
 fill (150);drawHouse(240);
 fill (200);drawHouse(320);
 fill (255);drawHouse(400);
}

void drawHouse(int x) {
 rect (x,50,100,100);
 triangle (x,50,x+50,0,x+100,50);
 rect (x+35,110,30,40);
 point (x+55,130);
}

Notice how the drawHouse() procedure remains the same, but that the main algorithm
differed. How would we change the drawHouse() function so that it takes two more
parameters that specify the stroke and fill colors ? Here it is:

void drawHouse(int x, int s, int f) {
 stroke (s);
 fill (f);
 rect (x+0,50,100,100);
 triangle (x+0,50,x+50,0,x+100,50);
 rect (x+35,110,30,40);
 point (x+55,130);
}

Notice how we simply indicate two additional parameter types and names in the parameter list
to the function and that we make use of these values on the first two lines of the function.
How does the simplified setup code now look ?

void setup() {
 size (500,150);

 drawHouse(0, 255, 0);
 drawHouse(80, 255, 50);
 drawHouse(160, 255, 100);
 drawHouse(240, 0, 150);
 drawHouse(320, 0, 200);
 drawHouse(400, 0, 255);
}

COMP1405/1005 – Variables and Control Structures Fall 2011

 - 98 -

Wow. That looks like nice and clean code.

What would happen if we forgot the order of the parameters and mixed the order up between
the stroke and the fill. What is we passed the parameters in this order (xOffset, fill, stroke) ?

Or even worse, if we did it in this order (stroke, fill, xOffset) ?

The point is…that lots can go wrong if you mix up the order of your parameters.
But what if we forget to pass in a parameter ? What if you tried drawHouse(100, 0) …
unintentionally forgetting the fill color ? Well, this would be caught as a compile error
indicating:

The method drawHouse(int, int, int) … is not applicable for the arguments (int, int)

A similar error would also occur if you passed in too many parameters to the procedure.

Example:

Adjust the drawHouse() procedure to take both an x and y value representing the bottom-left
corner of the house and have the house drawn with respect to that coordinate. For example,
if this was the code in the setup() method, then the picture shown would result:

void setup () {
 size (500,150);
 drawHouse(0, 150);
 drawHouse(200, 150);
 drawHouse(400, 150);
}

COMP1405/1005 – Variables and Control Structures Fall 2011

 - 99 -

To do this, we will need to re-compute the coordinate values for our house points with respect
to the (x,y) being the bottom left:

Now we can re-write our procedure accordingly to take the extra parameter and adjust the
points:

void drawHouse(int x, int y) {
 rect (x,(y-100),100,100);
 triangle (x,(y-100),(x+50),(y-150),(x+100),(y-100));
 rect ((x+35),(y-40),30,40);
 point ((x+55),(y-20));
}

That was not too difficult, but it did require some computations.

Example:

Add a scale parameter (i.e., a float between 1 and 0) as a third parameter to the
drawHouse() procedure from the previous example.

Use the scale parameter so that the following code produces the image shown:

COMP1405/1005 – Variables and Control Structures Fall 2011

 - 100 -

void setup () {
 size (500,150);

 drawHouse(0, 150, 1);
 drawHouse(100, 150, 0.8);
 drawHouse(180, 150, 0.6);
 drawHouse(240, 150, 0.4);
 drawHouse(280, 150, 0.2);
}

The code is not too difficult, but we must understand how the scale works. The setup()
method has already adjusted for the position of the bottom-left corner of the houses. All that
remains is to ensure that the dimensions are all somehow adjusted by the scale value:

void drawHouse(int x, int y, float s) {
 rect (x, y-100*s ,100*s ,100*s);
 triangle (x,y-100*s ,(x+50*s),y-150*s ,(x+100*s),y-100*s);
 rect ((x+35*s),y-40*s ,30*s ,40*s);
 point ((x+55*s),y-20*s);
}

Notice that we simply multiply all dimensions and offsets (i.e., any constant numbers) by the
scalar value of s.

Example:

What if we wanted to have a random value for the scale so that our houses had different sizes
each time we ran the program:

COMP1405/1005 – Variables and Control Structures Fall 2011

 - 101 -

This can be done simply by moving the scale parameter into the procedure and making use of
the random() function in Processing. The random(r) function will return a random float value
in the range from 0 to r.

Here is how we could adjust the code:

void drawHouse(int x, int y) {
 float s;

 s = random (1);
 rect (x, y-100*s ,100*s ,100*s);
 triangle (x,y-100*s ,(x+50*s),y-150*s ,(x+100*s),y-100*s);
 rect ((x+35*s),y-40*s ,30*s ,40*s);
 point ((x+55*s),y-20*s);
}

Notice how the variable s is declared within the procedure as a local variable. That means
that s cannot be used outside of the procedure.

Of course, if we don’t want our houses to overlap, we should ensure that we adjust our x
offsets to be at least 100 pixels from one another:

void setup () {
 size (500,150);

 for (int x=0; x<=400; x=x+100)
 drawHouse(x, 150);
}

Sometimes we need to return a value from our procedure so that we can make use of it in our
main program. For example, what would we have to change in order to adjust our previous
code so that it packs 8 houses close together according to their scale as follows:

COMP1405/1005 – Variables and Control Structures Fall 2011

 - 102 -

Think of what has changed and develop the algorithm. It is only the x-offset for each house
that must vary each time. How much does it vary each time ? It varies according to how
much we have scaled the house. For example, in the above image, perhaps the first house
had a width of 30. In that case the 2nd house would have an offset of 30 as its bottom-left
corner. Assuming then that the 2nd house had a width of 95, then the third house would have
an offset of 95 from the 2nd house’s corner (or 30+95=125 from the left side of the screen). So
we can piece this together into an algorithm:

Algorithm: DrawPackedHouses

1. xOffset ← 0
2. width ← random value
3. draw the 1st house at xOffset
4. xOffset ← xOffset + width
5. width ← random value
6. draw the 2nd house at xOffset
7. xOffset ← xOffset + width
8. width ← random value
9. etc…

You may notice from our previous code that the width of the house is actually 100*s, where s
is the randomly chosen scale:

void drawHouse(int x, int y) {
 float s;

 s = random (1);

 rect (x, y-100*s,(100*s) ,100*s);

 ...
}

Comparing our algorithm with the code that we already have tells us that step 2 of the
algorithm is done as the first couple of lines while we are drawing the house (i.e., within the

COMP1405/1005 – Variables and Control Structures Fall 2011

 - 103 -

drawHouse() procedure). Lines 4 and 7 of the algorithm, however, require the width of the
previously drawn house in order to compute the offset for the next house to be drawn.

You should realize that we need to get back the width of the house after we draw it, so that it
can be used to compute the offset of the next house. That means, our drawHouse()
procedure must actually become a function … in that we now need a value returned from it.

Functions are created the same way that procedures are, but with one exception. Instead of
void, a function must declare the type of the value returned as follows:

tr functionName (t1 n1, t2 n2, …, tk nk) {
 // Write your function’s code here
}

 tr here is the return type of the function:

A return type is the type of the value that is returned from a function.
So a function is exactly the same as a procedure, except that it must return a value of the type
specified as its return type.

In our example, the width of the house (i.e., 100*s) is the value that must be returned. This is
an int type. So, here is the function that we need:

int drawHouse(int x, int y) {
 float s;

 s = random (1);
 rect (x, y-100*s ,100*s ,100*s);
 triangle (x,y-100*s ,(x+50*s),y-150*s ,(x+100*s),y-100*s);
 rect ((x+35*s),y-40*s ,30*s ,40*s);
 point ((x+55*s),y-20*s);

 return 100*s;
}

Notice the return type (shown underlined in red) and that we use what is called a return
statement at the bottom to indicate what value will be returned as a result of the function call.

The above code, however will not compile. It will return an error saying:

 cannot convert from float to int .

It gives this error because the function requires an integer to be returned (i.e., return type is
int) but we are trying to return 100*s which is a float. We need to convert the return value to
an integer.

Processing offers some pre-defined conversion functions for converting between the various
data types:

COMP1405/1005 – Variables and Control Structures Fall 2011

 - 104 -

• int(x) // converts x into an int

• float(x) // converts x into a float

• byte(x) // converts x into a byte

• char(x) // converts x into a char

So in our function, we need to use return int(100*s) in order to get the integer that we need as
a result. As a side note, however, JAVA does not have such conversion functions. Instead, it
uses something called type-casting with different syntax as follows:
 • (int) x // converts x into an int

• (float) x // converts x into a float

• (byte) x // converts x into a byte

• (char) x // converts x into a char

So then, how do we make use of this new function ? Well, we need to use the width from the
previous drawHouse() function call as the xOffset for the next house:

Algorithm: DrawPackedHouses2

1. xOffset ← 0
2. xOffset ← xOffset + drawHouse(xOffset)
3. xOffset ← xOffset + drawHouse(xOffset)
4. xOffset ← xOffset + drawHouse(xOffset)
5. etc…

Notice that since the drawHouse() call returns the width of the drawn house, we simply keep
adding these widths to the xOffset to draw each successive house. Here is the Processing
code:

void setup() {
 size (500,150);

 int xOffset = 0;
 for (int i=0; i<8; i++)
 xOffset = xOffset + drawHouse(xOffset, 150);
}
int drawHouse(int x, int y) {
 float s;

 s = random (1);
 rect (x, y-100*s,100*s,100*s);
 triangle (x,y-100*s,(x+50*s),y-150*s,(x+100*s),y-100*s);
 rect ((x+35*s),y-40*s,30*s,40*s);
 point ((x+55*s),y-20*s);

 return int (100*s);
}

COMP1405/1005 – Variables and Control Structures Fall 2011

 - 105 -

You will be creating many functions and procedures throughout the course. There isn’t much
more to say about them at this point.

 2.8 Math & Trigonometry

Obviously, a computer can compute solutions to mathematical expressions. We can actually
perform simple math expressions such as:

30 + 5 * 2 - 18 / 2 – 2

In such a math expression, we need to understand the order that these calculations are done
in. You may recall from high school the BEDMAS memory aid which tells you to perform
Brackets first, then Exponents, then Division & Multiplication, followed by Addition and
Subtraction.

So, for example, in the above Processing/JAVA expression, the multiplication * operator has

preference over the addition + operator. In fact, the * and / operators are evaluated first from

left to right and then the + and -. Thus, the step-by-step evaluation of the expression is:

30 + 5 * 2 - 18 / 2 - 2

30 + 10 - 18 / 2 - 2

30 + 10 - 9 - 2

40 - 9 - 2

31 - 2
29

We can always add round brackets (called parentheses) to the expression to force a different
order of evaluation. Expressions in round brackets are evaluated first (left to right):

(30 + 5) * (2 - (18 / 2 - 2))

35 * (2 - (18 / 2 - 2))

35 * (2 - (9 - 2))
35 * (2 - 7)
35 * -5
-175

In Processing/JAVA, it is good to add round brackets around code when it helps the person
reading the program to understand what calculations/operations are done first.

Another operator that is often useful is the modulus operator which returns the remainder after
dividing by a certain value.

In Processing/JAVA we use the % sign as the modulus operator:

COMP1405/1005 – Variables and Control Structures Fall 2011

 - 106 -

10 % 2 // results in the remainder after dividing 10 by 2 which is 0
10 % 3 // results in the remainder after dividing 10 by 3 which is 1
10 % 4 // results in the remainder after dividing 10 by 4 which is 2
39 % 20 // results in the remainder after dividing 39 by 20 which is 19

Note that using a modulus of 2 will allow you to determine if a number is an odd number or an
even number … which may be useful in some applications. Perhaps a more often usage of
the modulus operator is to provide a kind of wrap-around effect when increasing or decreasing
an integer.

Example:

Recall our algorithm to move a car across the window:

Algorithm: DrawCar

1. for successive x locations from 0 to windowWidth {
2. draw the car at position x
3. x ← x + 10
 }

What if we wanted the car to drive off the right edge of the window and then re-appear on the
left side again ? We could adjust the algorithm as follows:

Algorithm: DrawCarWrapAround1

1. x ← 0
2. repeat {
3. draw the car at position x
4. x ← x + 10
5. if (x > windowWidth) then
6. x ← 0
 }

We can eliminate the IF statement and reduce this code simply by using the modulus operator:

Algorithm: DrawCarWrapAround2

1. x ← 0
2. repeat {
3. draw the car at position x
4. x ← (x + 10) % windowWidth
 }

COMP1405/1005 – Variables and Control Structures Fall 2011

 - 107 -

Of course, the above code examples cause the car to re-appear suddenly on the left side of
the window. How could we adjust it so that the car "drives in" from the left side instead of
appearing suddenly ? See if you can figure this out.

Processing actually has many other pre-defined functions that you can use within your
programs. Here are just a few of the standard mathematical ones:
 • min(a, b) – returns the smallest of a, b, and c(optional) • max(a, b) – returns the largest of a, b, and c(optional) • round(a) – rounds a up or down to the closest integer • pow(a, b) – returns a to the power of b • sqrt(a) – returns the square root of a • abs(a) – returns the absolute value of a (i.e., it discards the negative sign)

Similar functions are usually available in all programming languages, although their syntax and
parameters may vary a little. For example, in JAVA, here is what these functions would be
called:
 • Math.min(a, b) – returns the smallest of a and b • Math.max(a, b) – returns the largest of a and b • Math.round(a) – rounds a up or down to the closest integer • Math.pow(a, b) – returns a to the power of b • Math.sqrt(a) – returns the square root of a • Math.abs(a) – returns the absolute value of a (i.e., it discards the negative sign)

Example:

As an example, consider how to write a program that computes the
volume of a ball (e.g., how much space a ball takes up).

How would we write Processing code that computes and displays the
volume of such a ball with radius of 25cm ?

We need to understand the operations. We need to do a division,
some multiplications, raise the radius to the power of 3 and we need
to know the value of π (i.e., pi).

In Processing, PI is defined as a constant with the value 3.14159265358979323846 (in Java,
we use Math.PI). Here is the simplest, most straight forward solution:

int r = 25;
println(4 * PI * pow(r,3) / 3.0);

The following would also have worked, but requires the radius r to be duplicated:

println(4 * PI * (r*r*r) / 3.0);

COMP1405/1005 – Variables and Control Structures Fall 2011

 - 108 -

We could even substitute our own value for π :

println(4 * 3.14159265358979323846 * (r*r*r) / 3.0);

Or we could even pre-compute 4π/3 first (which is roughly 4.1887903) :

println(4.1887903 * pow(r,3));

The point is that there are often many ways to write out an expression. You will find in this
course that there are many solutions to a problem and that everyone in the class will have their
own unique solution to a problem (although much of the code will be similar because we will all
usually follow the same guidelines when writing our programs).

Besides these basic math functions, there are other VERY useful functions that are often
needed in computer science. For example , trigonometric functions are central to computer
graphics and for modeling and simulating objects that move around on the screen.

Trigonometry is all based on the angles of a
right-angled triangle. Recall that a right-
angled triangle has a hypotenuse ... which is
the edge opposite to the right angle:

Given one of the other angles, θ, of the
triangle (either of the ones that is not 90°),
we can relate the lengths of the triangle's
sides with one other as follows:

sine(θ) = o/h → "soh"
cosine(θ) = a/h → "cah"
tangent(θ) = o/a → "toa"

You may also remember the following formula
for calculating the length of h:

 h = √ a2 + o2

What does all of this have to do with computer science ?
Well, for one thing, geometry problems are often
encountered in computer science and they often require us
to determine the distance between two points as follows:

 d = √ (x2 - x1)

2 + (y2 - y1)
2

In Processing, however, there is a function for doing this:
 • dist(x1, y1, x2, y2) – returns the distance between points (x1, y1) and (x2, y2)

COMP1405/1005 – Variables and Control Structures Fall 2011

 - 109 -

and in JAVA, here is the function:
 • Point.distance(x1, y1, x2, y2) – returns the distance between points (x1, y1) and (x2, y2)

There are countless situations in computational geometry and in computer graphics where
knowing the distance between two points is important. We will see examples of this later in
the course.

Getting back to the trigonometric functions, they are required in many computational problems
as well as simulation and computer graphics problems.

Example:

Consider programming a game in which a ball is

moving along at some direction d (in degrees with

respect to the horizontal axis) and speed s (in pixels
per second). Given that the ball starts at position

(x,y), where do we redraw the ball after t seconds ?

To solve this problem, we simply apply trigonometry.
To begin, we need to understand the triangle formed
between the start and end location.

The distance between the start and end location cannot
be directly computed using the dist() function since we
do not know the ending location. However, we do
know that the distance travelled is (speed x time). The
speed is in pixels per second and the time is in seconds,

so the distance travelled, h, will have units of pixels.

To determine the final location of the ball at time t,
we just need to determine the amount of movement
in the horizontal and vertical directions (i.e., xDist
and yDist). Then we can add those distances to
the original (x, y) location to get the final location.

We can plug in our known trigonometric formulas:

sin(d) = yDist/h → yDist = h·sin(d)
cos(d) = xDist/h → xDist = h·cos(d)

And voila! We have the final location!!

Whenever doing trigonometry, we must always understand the difference between degrees
and radians. Recall that all angles are represented as either degrees or radians. However, in

COMP1405/1005 – Variables and Control Structures Fall 2011

 - 110 -

most programming languages, all trigonometric functions require angles to be specified in
radians. Here are the functions in Processing:

 • sin(a) – returns the sine of angle a (which must be in radians) • cos(a) – returns the cosine of angle a (which must be in radians) • tan(a) – returns the tangent of angle a (which must be in radians)

Here are the JAVA equivalent functions:
 • Math.sin(a) – returns the sine of angle a (which must be in radians) • Math.cos(a) – returns the cosine of angle a (which must be in radians) • Math.tan(a) – returns the tangent of angle a (which must be in radians)

Do you remember what radians are ? All degrees and radian values are with respect to a
horizontal line that points right … which is the 0° (and 0 radians) angle. A positive increase in
angle represents a counter-clockwise spin around a circle, while negative angles represent a
clockwise spin. Here is how angles and radians relate to each other:

Just a few common values are shown above. Note also that the negative values all have
equivalent positive values as well. So, for example, an angle of 300° (or 5π/3 radians) is the
same as the angle -60° (or -π/3 radians).

COMP1405/1005 – Variables and Control Structures Fall 2011

 - 111 -

It is a good idea to understand the above diagram to get used to working with angles.
Although the functions all require angles in radians, it is sometimes conceptually easier to
store angles as degrees (since it is more intuitive to think in degrees). Because of this, there
are conversion functions for converting back and forth between radians and degrees.
Here are the conversion functions in Processing:

 • degrees(r) – returns the degree value for radian angle r (computed as 360*r/2π) • radians(d) – returns the radians value for degree angle d (computed as 2π*d/360)

Here are the JAVA equivalent functions:

 • Math.toDegrees(r) – returns the degree of angle r (which is in radians) • Math.toRadians(d) – returns the radians of angle d (which is in degrees)

One more important pre-defined function in most programming languages is the random
function. In computer science it is often necessary to use random numbers in order to
provide variety in our program. For example,
 • If we are simulating a colony of ants roaming around on the screen, if we want the ants

to seem realistic in their movements, there is a certain degree of unpredictability that
must be allowed in the way they
move. If, for example, the ants
always moved in the same
patterns, the simulation would not
look realistic.
 • If we are testing our program to
see if it behaves with unpredictable user input, we may need to generate random data
or supply data at random intervals to test the timing of our program. Some algorithms
in computer science are based on data that is assumed to be in truly random order.

Obtaining a truly random number is difficult with a computer which is based on 1's and 0's
stored in memory. The problem of generating truly random numbers
is an open area in computer science that is still being studied.
However, many languages supply functions that produce what is
called pseudo-random numbers. That is, the numbers "seem"
random, but are actually a fixed sequence of numbers based on
some starting point (called the seed) and some function that is
applied to that seed successively. Some random number generators
simply use the computer's current clock value (i.e., time of day in
milliseconds) as a means of obtaining the seed or computing the next
random number.

Anyway, there is no need for an in-depth discussion on random number generators. All that is
important is that you know that there is a function in Processing that computes a pseudo-
random floating point number in the range of 0 to n:

COMP1405/1005 – Variables and Control Structures Fall 2011

 - 112 -

• random(n) – returns a random floating point number x such that 0.0 ≤ x < n.

So, to get a random number from 0.0 to 99.9999999999, we would call random (100) . We
can "adjust" the result of this function to obtain a number in any range that we want.
For example, if we wanted an integer in the range from 15 to 67, inclusively, we would do this:

 int (random (53)) + 15 // where 53 = 67 - 15 + 1

In JAVA, the random number generator is different:
 • Math.random() – returns a random floating point number x such that 0.0 ≤ x < 1.0.

It always generates a random number from 0.0 to 0.999999999 and if we want to get it within a
certain range we need to do additional multiplications:

100 * Math.random () // from 0.0 to 99.99999999

(int)(53 * Math.random ()) + 15 // from 15 to 67

Chapter 3

Simulation and User Interaction

What is in This Chapter ?

This chapter explains the concepts behind very simple computer simulations. All examples
are explained within a graphical context. The idea of a processing loop is explained and how
various simple 1D and 2D motion-related simulations can be programmed. Next, user
interaction is explained within the context of event handling within an event-loop. Examples
are given showing how to handle mouse-related events.

COMP1405/1005 – Simulation and User Interaction Fall 2011

 - 114 -

 3.1 Simulation

Computers are often used to simulate real-world scenarios. Here is the wikipedia definition:

A computer simulation is an attempt to model a real-life or hypothetical
situation on a computer so that it can be studied to see how the system works. By
changing variables, predictions may be made about the behaviour of the system.

Computer simulation has become a useful part of modeling many natural systems in the
areas of physics, chemistry, biology, economics, social science and engineering.

Video games are prime examples of simulation, where some real (or imaginary) life
situations are simulated in a virtual world. As time progresses, video games are becoming
more life-like as graphics and physical modeling become more precise and realistic.

Other places that require computer simulation are:
 • network traffic analysis • city/urban simulation • flight/space/vehicle/medical simulators • disaster preparedness simulations • film and movie production • theme park rides • manufacturing systems

There is much to know about simulation, enough material to fill a course or two. In this
course, however, we will just address two basic categories of simulations:
 • Running a simulation to find an answer to a problem • Virtual simulation (i.e., animation) of a real world scenario

When simulating, usually there is some kind of initialization
phase, followed by a processing loop that continuously
processes and (possibly) displays something on the screen.

Think of a simulation as a store. The initialization phase
corresponds to the work involved in getting the store ready to
open in the morning (e.g., tidying up, putting out signs,
stocking the shelves, preparing the cash register, unlocking
the door). The processing loop phase corresponds to the
repeated events that occur during the day (i.e., dealing with
customers one-by-one) until the store is to be closed.

COMP1405/1005 – Simulation and User Interaction Fall 2011

 - 115 -

In Processing, the setup() procedure is called once at the beginning of your program and it
represents the initialization phase of your program. It is also used as the main entry point of
your program (i.e., your program starts there).

The processing loop phase is accomplished via the draw() procedure …
which is called repeatedly when your program is running. It is useful for
performing repeated computations and displaying information as well as
interacting with the user (e.g., via the mouse). By default, the draw()
procedure is called directly after the setup() procedure has been evaluated.
Your program does not need to have a draw() procedure, but if it is there,
your program will call it.

Example:

Recall the drawHouse() method that we wrote earlier. Here is how we could repeatedly draw
houses at random locations on the screen:

void setup () {
 size(600,600);
}

void draw () {
 drawHouse(int (random (width))-50,
 int (random (height))+50);
}

void drawHouse(int x, int y) {
 rect (x, y-100,100,100);
 triangle (x,y-100,(x+50),y-150,(x+100),y-100);
 rect (x+35,y-40,30,40);
 point (x+55,y-20);
}

The program represents the simplest kind of simulation … that of simply displaying something
in an endless loop. Notice that the draw() procedure simply calls drawHouse() with a random
x value from 0 to width=600 and a random y value from 0 to height=600 as well. Remember,
the draw() method is called repeatedly, so the program will continually (and endlessly) draw
the house at random positions.

Of course, we could vary the above program to make random sized houses with random colors
or we could have it draw the houses along a path (e.g., spiral). Regardless of what we are
drawing and how we are drawing it, the programs will all have the same notion of a repeated
draw() loop.

COMP1405/1005 – Simulation and User Interaction Fall 2011

 - 116 -

Example:

Here is a more computational example that displays a spiraling sequence of circles.

You may notice a few differences in the code from the previous example:

int radius; // distance from center to draw from
float angle; // angle to draw at
int grayLevel; // color to display each round of spirals

void setup () {
 size(600,600);
 radius = 0;
 angle = 0;
 grayLevel = 0;
}

void draw () {
 stroke (255-grayLevel, 255-grayLevel, 255-grayLevel);
 fill (255-grayLevel, 255-grayLevel, 255-grayLevel);
 ellipse (int (cos (angle)*radius)+ width /2,
 int (sin (angle)*radius) + height /2,
 10, 10);

 angle = angle + 137.51;
 radius = (radius+1) % 300;
 if (radius == 0)
 grayLevel = (grayLevel + 10) % 255;
}

There are three variables declared at the top of the program. These are declared outside the
setup() and draw() procedures because they are used in both procedures. Hence, they are
global variables. The radius represents the distance (from the center) that we are drawing
the circles at, while the angle represents the angle that we are drawing them at. The
grayLevel indicates the color that the spirals are drawn at, which begins with white and gets
darker for each round of spirals.

COMP1405/1005 – Simulation and User Interaction Fall 2011

 - 117 -

You may notice that the draw() procedure first draws the circle (with appropriate gray-level fill
and border) and then simply updates the angle and radius for the next time that the draw()
procedure is called. The % operator is the modulus operator that gives the remained after
dividing by a specified number. The modulus operator is great for ensuring that an integer
does not exceed a certain value but that it begins again at 0. The following two pieces of code
do the same thing:

radius = (radius + 1) % 255;

radius = radius + 1;
if (radius >= 255)
 radius = 0;

For example if x was initially 0 and then we did x = (x + 1)%5, here would be the values for x:

0,1,2,3,4,0,1,2,3,4,0,1,2,3,4,0,1,2,3,4,0,1,2 … etc..

The angle of 137.51 is called the golden angle as it is found in nature
as the ideal angle for producing spirals as shown in the design of
seashells, flower petals, etc.. The angle is ideal as it minimizes
overlap during multiple rounds of spiraling.

While this example illustrates the ability to vary the computational
parameters during the processing loop of the simulation, it really does
not serve any particular purpose other than to produce a nice picture.
Now let us look at an example that actually attempts to compute
something interesting:

Example:

It is often the case that we need to compute an answer to some problem in which the
parameters are complex and/or uncertain. In some situations, it may be unfeasible or
impossible to compute an exact result to a problem using a well-defined and predictable
algorithm. There is a specific type of simulation method that is well-suited for situations in
which you need to make an estimate, forecast or decision where there is significant
uncertainty:

The Monte Carlo Method uses randomly generated or sampled data and
computer simulations to obtain approximate solutions to complex mathematical and
statistical problems.

There is always some error involved with this scheme, but the larger the number of random
samples taken, the more accurate the result.

The simplest example that is used to describe the Monte Carlo method is that of computing an
approximation of π (i.e., pi). π is a mathematical constant whose value is the ratio of
any circle’s circumference to its diameter. It is approximately equal to 3.141593 in the usual
decimal notation. π is a very important number in math and computer science as it relates to
many trigonometric functions and geometric algorithms and is used in graphics and animation.

COM

The

Kno
circl
an a
4 to

We
unifo
Som
circl
appr
will e

Here

We
conv
purp
and

MP1405/1005

value of π

Given a c
square),

wing this, if
e as well a

approximati
get an app

can estima
ormly scatte

me will lie w
e. The mo
roximation
eventually b

3

e is the algo

Algorithm
 R:

1. poin
2. poin
3. repe
4. x
5. y
6. p
7. if
8.
 }
9. print

can stop th
vergence to
posefully ch
so the app

– Simulation

can be app

circle inscr
the ratio o

f we can ge
s the area o
on for π / 4

proximation

ate the area
ering some

within the cir
ore points t
of the area
be covered

.12546

orithm, ass

: Compute

ntsInCircle
ntsInSquar
eat for a us

x ← random
y ← random
pointsInSqu
f ((the dista

point

t (pointsInC

he loop at a
o a better a
hosen only
proximation

and User Inte

proximated

ribed in a s
of the area

et an estima
of the squa
4, of course

for π.

a of the squ
e points thro
rcle, some w
hat we add

a, as the wh
d as time go

 3.1

suming that

ePi
the radius

e ← 0
re ← 0
ser-chosen
m value from
m value from
uare ← po
nce from (x
tsInCircle ←

Circle / po

any time. A
approximatio
around the
will be poo

eraction

- 11

using a Mo

square (i.e
of the circ

ate for the a
are, then we
e then multi

are and circ
oughout the
will lie outs
, the better

hole square
oes on.

13725

the circle a

s of a circle

amount of
m 0 to 2R-1
m 0 to 2R-1
intsInSqua
x,y) to (R,R
← pointsIn

intsInSqua

As the loop
on as more
 center of t

or. An appr

 18 -

onte Carlo m

e., the large
cle to that o

area of the
e can find
plying by

cle by
e square.
ide the
r the
 and circle

 3.14

and square

e and ½ wid

iterations {

are + 1

R) < R) then
nCircle + 1

are * 4)

goes on, h
e data point
he circle, th
roximation w

method bas

est circle th
of the squa

4465

are center

dth & ½ heig

n

owever, the
ts are samp
hey will not
will also be

sed on this

hat fits in t
are is π / 4

3.141

red at point

ght of a squ

e algorithm
pled. If the p

be uniform
poor if only

Fall

principle:

the
.

144

(R,R):

uare

 will slowly
points are

mly distribute
y a few poin

2011

ed,
nts

COMP1405/1005 – Simulation and User Interaction Fall 2011

 - 119 -

are randomly chosen throughout the whole square. Thus, the approximation of π will become
more accurate both with more points and with their uniform distribution.

Here is an example showing how the approximated value (blue) will converge towards the
optimal value (solid red line).

In processing, we can write a program that shows us visually what is happening by drawing
each point that is randomly chosen. For those inside the circle we can draw them as red and
those outside as blue. We can use the draw() procedure as our repeat loop from our above
algorithm since it repeats “forever” (or until the program is manually stopped).
Here is the corresponding Processing code:

int pointsInCircle = 0;
int pointsInSquare = 0;
int R = 250;

void setup () {
 size (2*R,2*R);
}

void draw () {
 int x, y;
 x = (int) random (2*R);
 y = (int) random (2*R);
 pointsInSquare = pointsInSquare + 1;
 if (dist (x,y,R,R) < R) {
 pointsInCircle = pointsInCircle + 1;
 stroke (255,0,0); // red
 }
 else
 stroke (0,0,255); // blue
 point (x,y);
 println ("PI estimated to: " + (double)pointsInCircle/pointsInSquare*4);
}

3.06

3.08

3.1

3.12

3.14

3.16

3.18

3.2

0 50000 100000 150000 200000 250000 300000 350000 400000

COMP1405/1005 – Simulation and User Interaction Fall 2011

 - 120 -

Notice that the code is very similar to the pseudocode. The random(2*R) function returns a
random number from 0.0 to 2R-1. This is a floating point number, and so we need to
typecast to (int) in order to store them in variables x and y. Alternatively, we could have set
the types of x and y to be float instead of int. The dist(x,y,R,R) function is a pre-defined
routine that computes and returns the distance (in pixels) from point (x,y) to point (R,R).
Notice as well the use of (double) in the code. This ensures that the calculations are done as
doubles, and not as integers, otherwise the result would always be 0.

Each time through the draw loop, the code adds one new point It will take a long time for this
code to produce a reasonable approximation for PI. We could add a for loop in the draw()
procedure to add many points each time such as 100 or a 1000 … in order to speed up the
approximation process.

Here is the adjusted code.

double pointsInCircle = 0;
double pointsInSquare = 0;
int R = 250;

void setup () {
 size (2*R,2*R);
}

void draw () {
 float x, y;

 for (int i=0; i<1000; i++) {
 x = random (width);
 y = random (height);
 pointsInSquare = pointsInSquare + 1;
 if (dist(x,y,R,R) < R) {
 pointsInCircle = pointsInCircle + 1;
 stroke (255,0,0); // red
 }
 else
 stroke (0,0,255); // blue
 point (x,y);
 }

 println ("PI estimated to: " + pointsInCircle/pointsInSquare*4);
}

COMP1405/1005 – Simulation and User Interaction Fall 2011

 - 121 -

Example:

In the real world we objects have what is known as state . The state of an object is normally
considered to be some condition of the object with respect to a previous state. For example,
a light bulb is considered to be in a "working" state when we buy it, but if we smash it on the
ground it would then be in a "broken" state.

How can we simulate a traffic light ? It should have 3 states ... RED, GREEN
and YELLOW. Assume that the traffic light starts in a RED state and that we
want it to cycle continuously between these states. We will assume that the
light remains RED for 20 seconds, then GREEN for 30 seconds, then
YELLOW for 3 seconds. To simulate the traffic light, it is good to think of it as
a state machine.

A state machine is any device that stores the status of something at a given time
and can operate on input to change the status and/or cause an action or output to take
place for any given change.

We can then draw a state diagram to show how the traffic light changes from one state to
another as time goes by:

Notice how the state changes from RED to GREEN only when the time has reached 20
seconds. Note as well that inside the state of GREEN, we reset the time counter to 0 so that
we can count 30 seconds again in order to decide when to switch to the yellow state.

Assuming that we store the state of the traffic light as a string, how can we write the
pseudocode to simulate the light ?

COMP1405/1005 – Simulation and User Interaction Fall 2011

 - 122 -

Algorithm: TrafficLight

1. state ← "Red
2. elapsedTime ← 0
3. repeat {
4. if (state is "Red") and (elapsedTime is 20) then {
5. state ← "Green"
6. elapsedTime ← 0
 }
7. otherwise if (state is "Green") and (elapsedTime is 30) then {
8. state ← "Yellow"
9. elapsedTime ← 0
 }
10. otherwise if (state is "Yellow") and (elapsedTime is 3) then {
11. state ← "Red"
12. elapsedTime ← 0
 }
13. elapsedTime ← elapsedTime + 1
 }

The code correctly counts properly-
proportioned time for each state of
the traffic light. However, on a
real computer, the repeat loop
would run much faster than once
per second. We would need to
slow the whole simulation down so
that the elapsed time increases
only once per second. In
Processing, the repeat loop would
be represented by the draw()
procedure which repeats
indefinitely. The frameRate(1)
function sets the re-draw rate of
the draw() procedure so that it gets
called once per second. This will
allow the traffic light to operate at
the correct speed.

String state; // either red, green or yellow
int time; // time elapsed since state changed

void setup () {
 state = "Red" ;
 time = 0;
 frameRate (4);
}

void draw () {
 if ((state == "Red") && (time == 20)) {
 state = "Green" ;
 time = 0;
 println (state);
 }
 else if ((state == "Green") && (time == 30)) {
 state = "Yellow" ;
 time = 0;
 println (state);
 }
 else if ((state == "Yellow") && (time == 3)) {
 state = "Red" ;
 time = 0;
 println (state);
 }
 time++;
}

For some fun, try writing code to draw the traffic light as it changes state.

COMP1405/1005 – Simulation and User Interaction Fall 2011

 - 123 -

 3.2 Simulating Motion

For visually-appealing simulations, it is often necessary to show one or more objects moving
on the screen. Such is certainly the case in the area of game programming. We will discuss
here some code for doing very simple motion.

Example:

Recall the algorithm that we wrote for moving a car across the screen:

Algorithm: DrawCar
 windowWidth: width of the window

1. for successive x locations from 0 to windowWidth {
2. draw the car at position x
3. x ← x + 10
 }

 To do this in processing, the code would look like this:

int x, y;

void setup () {
 size (600,300);
 x = 0;
 y = 300;
}

void draw () {
 background(255,255,255);
 drawCar(x);
 x = x + 10;
}

void drawCar(int x) {
 // Draw the body
 fill (150,150,150); // gray
 rect (x, y-30, 100, 20);
 quad (x+20,y-30,x+30,y-45,x+55,y-45,x+70,y-30);
 // Draw the wheels
 fill (0,0,0); // black
 ellipse (x+20, y-10, 20, 20);
 ellipse (x+75, y-10, 20, 20);
 fill (255,255,255); // white
 ellipse (x+20, y-10, 10, 10);
 ellipse (x+75, y-10, 10, 10);
}

COMP1405/1005 – Simulation and User Interaction Fall 2011

 - 124 -

The code above shows the car travelling from the left side of
the screen to the right. Notice that the background()
procedure is called in order to erase the background (makes
it white) before drawing the car each time. If we did not do
this step, then the previous car positions would be visible.

The code above, however, does not stop the car at the edge
of the screen. In order to stop the car, we need to do one of two things:

1) either stop changing the x value so that the car is redrawn at the same spot
2) stop the looping

The first solution is easy. We just need to change the last line of the draw() procedure to
check if we have reached the end and only update when we are not there yet:

if (x+100 < width)
 x = x + 10;

Notice that we check for the position of the front bumper of the car (i.e., x + 100), not the back
bumper (i.e., x). Recall as well that width is a pre-defined variable that represents the width
of the window.

The other option is to stop the loop. There are two ways. First, we can simply call the exit()
procedure within the draw() procedure in order to quit the program. However, this will cause
our program to stop and the window will close. The 2nd way is to call noLoop() which
temporarily disables the draw() procedure until loop() is called that will begin calling the
draw() procedure again:

void draw () {
 background (255,255,255);
 drawCar(x);
 x = x + 10;
 if (x+100 > width)

 exit();
}

void draw () {
 background (255,255,255);
 drawCar(x);
 x = x + 10;
 if (x+100 > width)

 noLoop();
}

Example:

The above example showed our car moving rather quickly across the screen. If we adjusted
the increment from 10 to a smaller value, the car would move much slower.

Recall our algorithm for accelerating the car until it reaches the middle of the window and then
decelerating until it reached the right side of the window again:

COMP1405/1005 – Simulation and User Interaction Fall 2011

 - 125 -

1. speed ← 0
2. for x locations from 0 to windowWidth by speed {
3. draw the car at position x
4. if x < (windowWidth /2)
5. speed ← speed + 0.10
6. otherwise
7. speed ← speed – 0.10
 }

It is quite easy to adjust our previous code to accomplish this:

int x, y;
float speed;

void setup () {
 size (600,300);
 x = 0;
 y = 300;
 speed = 0;
}

void draw () {
 background(255,255,255);
 drawCar(x);
 x = int (x + speed);
 if (x+100 > width)

noLoop ();
 if (x < width /2)

speed = speed + 0.10;
 else

speed = speed - 0.10;
}

void drawCar(int x) {
 // Draw the body
 fill (150,150,150); // gray
 rect (x, y-30, 100, 20);
 quad (x+20,y-30,x+30,y-45,x+55,y-45,x+70,y-30);

 // Draw the wheels
 fill (0,0,0); // black
 ellipse (x+20, y-10, 20, 20);
 ellipse (x+75, y-10, 20, 20);
 fill (255,255,255); // white
 ellipse (x+20, y-10, 10, 10);
 ellipse (x+75, y-10, 10, 10);
}

COM

If we
seem
the b
we s
spee
the c

To f
cent

 i

 el

If yo
forth

Wel
then
beco
mak

We j
to do

if

Ex

Now
wind
com

To k
cons
its x
facin
We
wind

MP1405/1005

e were to ru
ms to crash
back bump
split the win
ed of 0 aga
car before t

ix this, we s
ter of the ca

f ((x+50
speed

l se
speed

ou make the
h now! Do

l, if you wer
n back down
omes nega
king the car

just need to
o this … by

(speed <
 speed =

xample:

w what abou
dow so that

mputational

keep things
stant speed

x and y loca
ng should c
will assume

dow border

– Simulation

un the code
h (i.e., stop
er of the ca

ndow ½ wa
ain when the
that (i.e., w

simply need
ar as follow

) < wid t
= speed

= speed

e change a
o you know

re to print o
n to 0 … bu
tive. Whe

r move back

o ensure th
y adding on

< 0)
= 0;

ut 2-dimens
t it remains
model.

 simpler, le
d at all time
ations will c
change. B
e that it onl
s.

and User Inte

e, it seems
abruptly) a

ar (i.e., pos
y for accele
e back bum

when the fro

d to adjust
ws:

t h/2)
+ 0.10;

- 0.10;

nd run the c
why ?

out the spee
ut then the
n we add th
kwards. S

hat the spee
e of these t

sional motio
within the w

ets assume
es. As the b
hange. Al
ut when do
y changes

eraction

- 12

as though t
at the end o
ition x) to d
erating and

mper reache
ont bumper

the if state

code again

ed value, y
value conti
his negative

So, how do w

ed never be
to the end o

on ? How
window bor

that the ba
ball moves,
so, the dire

oes the ball’
direction w

 26 -

the car spe
of the windo
decide when
 deceleratin
es the end o
reaches th

ment to acc

n, you will n

you would n
nues going
e speed to
we fix it ?

ecomes neg
of the draw

speed =

could we g
rders ? To

all is moving
 we know t

ection that t
’s direction

when it hits t

eeds up, the
ow. That is
n to speed
ng, then the
of the wind
e window’s

celerate/de

otice that th

notice that it
g backwards
the x value

gative. Th
w() procedu

= max(0,

get a ball to
o do this, w

g at a
hat both
the ball is
change ?

the

en slows do
s because w
up or slow
e car will on
ow. Howe

s end).

ecelerate ba

he car oscil

t goes from
s to -6.6!!

e, it reduces

ere are a c
re:

speed);

bounce aro
e must und

Fall

own, but the
we are usin
down. Sin

nly reach a
ever, we sto

ased on the

llates back

m 0 to 7.5 an
So, the spe

s the x valu

couple of wa

ound the
derstand the

2011

en it
ng
nce

op

e

and

nd
eed

ue,

ays

e

COMP1405/1005 – Simulation and User Interaction Fall 2011

 - 127 -

So, we will need to keep track of the ball’s (x,y) location as well as the direction (i.e., angle).

As with our moving car, we simply need to keep updating the ball’s location and check to see
whether or not it reaches the window borders. Here is the basic idea:

Algorithm: BouncingBall

1. (x, y) ← center of the window
2. direction ← a random angle from 0 to 2π
3. repeat {
4. draw the ball at position (x, y)
5. move ball forward in its current direction
6. if ((x, y) is beyond the window border) then
7. change the direction accordingly
 }

It seems fairly straight forward, but two questions arise:

1) How do we “move the ball forward in its current direction” ?
2) How do we “change the direction accordingly” ?

The first is relatively simple, since it
is just based on the trigonometry that
we discussed it in the previous
chapter. Given that the ball at
location (x,y) travels distance d in
direction θ, the ball moves an

amount of d�cos (θ) horizontally and

d�sin (θ) vertically as shown in the

diagram. So, to get the new
location, we simply add the
horizontal component to x and the
vertical component to y to get (x +
dcos (θ) , y + dsin (θ)). Line 5 in the
above algorithm therefore can be
replaced by this more specific code (assuming that the ball moves at a speed of 10 pixels per
iteration):

x ← x + 10 * cos(direction)
y ← y + 10 * sin(direction)

Now what about changing the direction when the ball encounters a window “wall” ? Well, we
would probably like to simulate a realistic collision. To do this, we must understand what
happens to a real ball when it hits a wall.

COMP1405/1005 – Simulation and User Interaction Fall 2011

 - 128 -

You may recall the law of reflection from science/physics class.
It is often used to explain how light reflects off of a mirror. The
law states that the angle of reflection is the same as the angle
of incidence , under ideal conditions. That is, the angle at which
the ball bounces off the wall (i.e., θr in the diagram), will be the
same as the angle at which it hit the wall (i.e., θi in the diagram).

However, where do we get the angle of incidence from ? Well,
we have the direction of the ball stored in our direction variable.

This direction will always be
an angle from 0 to 360° (or
from 0 to 2π radians).

So, our ball’s direction
(called α for the purpose of this discussion) is always
defined with respect to 0° being the horizontal vector
facing to the right. 360° is the same as 0°. As the
direction changes counter-clockwise, the angle will
increase. If the direction changes clockwise, the angle
decreases. It is also possible that an angle can become
negative. This is ok, since 330° is the same as -30°.

Now, if you

think back to the various angle theorems that you
encountered in your math courses, you may
remember these two:

1) the opposite angles of two straight crossing
lines are equal

2) the interior angles of a triangle add up to
180°

So, in the diagram on the right, for example, the 1st
theorem above tells us that opposite angles β2 and
β3 are equal. From the law of reflection, we also
know that β1 and β3 are equal. Finally, α and β3
add up to 90°.

What does all this mean ? Well, since α is the ball’s direction, then to reflect off the wall, we
simply need to add β1 and β2 to rotate the direction counter-clockwise. And since β1, β2 and
β3 are all equal … and equal to 90° - α, then to have the ball reflect we just need to do this:

direction = direction + (β1 + β2)
 = direction + (90° - α + 90° - α)
 = direction + (180° - 2 x direction)
 = 180° - direction

COMP1405/1005 – Simulation and User Interaction Fall 2011

 - 129 -

The vertical bounce reflection is similar. In the
diagram here, it is easy to see that β1 = 90° - α.
To adjust for the collision on the top of the
window, we simply need to subtract 2α from the
direction:

direction = direction - 2 x direction)
 = - direction

To summarize then, when the ball reaches the
left or right boundaries of the window, we
negate the direction and add 180°, but when it
reaches the top or bottom boundaries, we just negate the direction. Here is how we do it:

Algorithm: BouncingBall
 windowWidth, windowHeight: dimensions of the window

1. x ← windowWidth/2
2. y ← windowHeight/2
3. direction ← a random angle from 0 to 2π
4. repeat {
5. draw the ball at position (x, y)
6. x ← x + 10 * cos(direction)
7. y ← y + 10 * sin(direction)
8. if ((x >= windowWidth) OR (x <= 0)) then
9. direction = 180° - direction
10. if ((y >= windowHeight) OR (y <= 0)) then
11. direction = - direction
 }

Our calculations made the assumption that the window boundaries are
horizontal and vertical. Similar (yet more complex) formulas can be used
for the case where the ball bounces off walls that are placed at some
arbitrary angle. Also, all of our calculations assumed that the ball was a
point. In reality though, the ball has a shape. If, for example, the ball was
drawn as a circle centered at (x,y), then it would only detect a collision
when the center of the ball reached the border.

How could we fix this ?

We just need to account for the ball’s radius during our collision checks:

if (((x+radius) >= windowWidth) OR (x-radius) <= 0)) then
 …
if ((y+radius) >= windowHeight) OR (y-radius) <= 0)) then
 …

COMP1405/1005 – Simulation and User Interaction Fall 2011

 - 130 -

In processing, the code follows directly from, the pseudocode:

int x, y; // location of the ball at any time
float direction; // direction of the ball at any time

static float SPEED = 10; // the ball’s speed
static int RADIUS = 15; // the ball’s radius

void setup () {
 size (600,600);
 x = width /2;
 y = height /2;
 direction = random (TWO_PI);
}

void draw () {
 // erase the last ball position and draw the ball again
 background (0,0,0);
 ellipse (x, y, 2*RADIUS,2*RADIUS);

 // move the ball forward
 x = x + int (SPEED*cos (direction));
 y = y + int (SPEED*sin (direction));

 // check if ball collides with borders and adjust accordingly
 if ((x+RADIUS >= width) || (x-RADIUS <= 0))
 direction = PI - direction;
 if ((y+RADIUS >= height) || (y-RADIUS <= 0))
 direction = -direction;
}

Notice that the angles are in radians, instead of degrees. That is because the trigonometric
functions cos() and sin() require angles in radians. Just for reference, TWO_PI and PI are
constants defined in Processing that represent 2π (i.e., 0° or 360°) and π (i.e., 180°)

COMP1405/1005 – Simulation and User Interaction Fall 2011

 - 131 -

 3.3 Event Handling

In many simulations, especially games, it is important to interact with the user. Sometimes the
interaction is in regards to setting various simulation parameters before the simulation begins
(i.e., wind speed, sensing diameter, start/end times, etc.). For gaming, there are other
appropriate parameters such as difficulty settings, level of detail, game level, etc..

However, it is often necessary to interact with the user during
the simulation by the means of buttons being pressed on the
window, data being entered through dialog boxes, mouse
clicks and keyboard presses, etc..

A problem arises, however, when dealing with such events.
The problem is that the program is usually busy processing
and displaying data in an endless loop. Since typical
computers have only one processor (ignore multi-core for
now), they can only literally do one thing at a time. However,
the operating system of the computer is set up to handle user
interaction events that arise while the computer is running.

An event is something that happens in the program based on some kind of
triggering input which is typically caused (i.e., generated) by user interaction
such as pressing a key on the keyboard, moving the mouse, or pressing a mouse
button.

These are called low-level events because they deal directly with physical interaction with the
user. There are higher-level events that differentiate what the user is actually tying to do. For
example, in JAVA, there are window-related events that get generated when the user clicks on
a button, enters text in a text field or selects something from a list, etc. Regardless of the type
of event that occurs, the programmer can decide what to do when these events occur by
writing event handling routines:

An event handler is a procedure that specifies the code to be executed
when a specific type of event occurs in the program.

Typically, when dealing with user-interaction in an application, a programmer will write many
event handlers, each corresponding to unique types of events. In fact, the event handlers
may have different code to evaluate depending on the context of the program. For example, in
a game, a mouse click may cause the game character to shoot a weapon when in one “mode”
of the game, but when in another mode, the same mouse click may simply allow objects to be
selected and moved around.

Some programs rely solely on events to determine what they will do. These are known as
event-driven programs . After initializing some values and perhaps opening a window to
display something, event-driven programs enter into an infinite loop, called an event loop .

COMP1405/1005 – Simulation and User Interaction Fall 2011

 - 132 -

An event loop is an infinite loop that waits for events to occur. When an
event arrives, it is handled and then the program returns to the loop to wait for
the next event.

The idea of an event loop is similar to the notion of a store clerk waiting for
customers ... the clerk does nothing unless an “event” occurs. Here are
some events which may occur, along with how they may be handled:

• a customer arrives – store clerk wakes up and looks sharp • a customer asks a question - store clerk gives an answer • a customer goes to the cash to buy - store clerk handles the sale • time becomes 6:00pm - store clerk goes home

When multiple customers arrive at the same time, only one can be served, so the others wait
in line. Once a customer has been served, the next customer in line is served. This repeats
until there are no more customers, in which case the store clerk waits patiently again for more
customers or “events”.

This line-up of customers is similar to what happens with the event loop. There is an event
queue which is a “line-up” of incoming events that need to be handled (e.g., mouse click, key
press, mouse move, etc…). Once an event has been handled to completion, the event loop
extracts the next event from the queue and handles it:

Events are handled one at a time on a first-come-first-served basis. Event-driven programs
continually operate in this manner. Often, the event queue is empty. In a typical application,
the time between mouse clicks and keyboard presses is so large, that it is rare to have more
than one or two events in the queue at any time. However, when a timer is used, it may
generate events very quickly (e.g., once per millisecond) and the event queue can fill up
quickly if the event handler is too slow.

For example, assume that your program sent an email when you clicked on a “Send” button.
The clicking on the button is an event which will call an event-handling procedure. Assume
that the event handler attempts to send the email. If it takes too long (as it usually does) to
send the email then the event handler will not return right way. Meanwhile, the user may be

COMP1405/1005 – Simulation and User Interaction Fall 2011

 - 133 -

trying to click on various places on the window … but with no response. The window itself
cannot be closed. What is happening is that when the user clicks, moves the mouse, presses
a key etc.., these events are simply placed into the queue. However, the event loop is not
taking any new events from the queue since it has not returned from the previous event. So
the system has locked up until the “send email” event handler has returned.

So, it is important to make sure that event handling procedures do not take up too much time.
If there is no choice in that the event handler may take a long time, then we can get around
this “program lock-up” by spawning (i.e., starting up) what is called a thread .

A thread (a.k.a. process) is a unit of processing that performs some tasks.
It generally results from a fork (i.e., split) of a program into two or more tasks
that run at the same time.

The diagram below describes how a thread is started:

COMP1405/1005 – Simulation and User Interaction Fall 2011

 - 134 -

As shown in the diagram, a thread (i.e., new task) is started, perhaps from an event handling
routine or from another thread. This thread acts just like a separate program (although it
shares the same variable space as the program that it started from (i.e., was spawned from).
The new thread continues on evaluating program code concurrently (i.e., at the same time as)
the code that spawned it. So, we could, for example, spawn a thread to go send that email
which takes a long time, while the original program continues on back to the event loop to
handle more events. The newly spawned thread may simply stop when it has completed, or it
too may loop repeatedly, performing other program-related tasks .. and it too can spawn
additional threads at any time.

Although creating and starting threads is easy, writing programs that have multiple inter-
communicating threads can be difficult. There are many timing-related issues that arise as
well as the area of resource management. Programming with many threads/processes falls
into the computer science areas of concurrent programming and parallel & distributed
computing. We will not discuss this any further in the course.

 3.4 User Interaction in Processing

Recall that in processing, the main event-handling loop is hidden. However, it allows you to
write your own event handling procedures for some pre-defined types of
events. Also, processing has a kind of “internal event handler” that sets the
values of some useful variables which are related to the mouse and
keyboard events. Here is a table of the mouse-related variables that are
automatically set:

Variable Description

mouseX The current x (i.e., horizontal) position of the mouse

mouseY The current y (i.e., vertical) position of the mouse

pmouseX The previous x (i.e., horizontal) position of the mouse

pmouseY The previous y (i.e., vertical) position of the mouse

mousePressed true if the mouse button is being pressed, otherwise false

mouseButton The mouse button that is being pressed
(i.e., always one of LEFT, RIGHT or CENTER).

We can make use of these variables if we want our program to interact with the user based on
the mouse movements and keyboard keys that are pressed.

Example:

The following code will draw a house with its bottom-left at the mouse’s current location:

COMP1405/1005 – Simulation and User Interaction Fall 2011

 - 135 -

void setup () {
 size(600,600);
}

void draw () {
 drawHouse(mouseX, mouseY);
}

void drawHouse(int x, int y) {
 rect (x, y-100,100,100);
 triangle (x,y-100,(x+50),y-150,(x+100),y-100);
 rect (x+35,y-40,30,40);
 point (x+55,y-20);
}

Notice how the house is draw repeatedly at whatever position the mouse is at currently. How
could we alter this code so that it erases the old house ? Here are 2 choices:

a) we can erase the background each time or
b) erase the house at its previous location before drawing the new one.

Here is solution a):

void draw () {
 background(200); // light gray = 200
 drawHouse(mouseX, mouseY);
}

We just needed to add one line at the top of the draw() procedure that repaints the
background … in this case gray with level 200 … a light gray.

Here is solution b):

void setup () {
 size(600,600);
 background (200);
}

void draw () {
 fill (200);
 stroke (200);
 drawHouse(pmouseX, pmouseY);
 fill (255);
 stroke (0);
 drawHouse(mouseX, mouseY);
}

void drawHouse(int x, int y) {} // same code as above… omitted to save space

COMP1405/1005 – Simulation and User Interaction Fall 2011

 - 136 -

Notice how it makes use of the previous mouse position (pmouseX, pmouseY) and “undraws”

the house at that previous location. Some programming languages do not have such
convenient variables. For example, if pmouseX and pmouseY were not available, how would
you accomplish the same thing ? We would need to keep track of the previous position
ourselves:

int previousX, previousY;

void setup () {
 size (600,600);
 background (200);
 previousX = mouseX;
 previousY = mouseY;
}

void draw () {
 fill (200);
 stroke (200);
 drawHouse(previousX, previousY);
 fill (255);
 stroke (0);
 drawHouse(mouseX, mouseY);
 previousX = mouseX;
 previousY = mouseY;
}

Example:

How could we adjust the above code so that when the left mouse button is pressed, the house
shrinks in scale but when the right mouse button is pressed, the house grows in scale ?

Well, to begin, we would need to recall our code that draws a house at a specific scale:

float scale = 1;

void drawHouse(int x, int y) {
 rect (x, y-100* scale ,100* scale ,100* scale);
 triangle (x,y-100* scale ,(x+50* scale),

 y-150* scale ,(x+100* scale),y-100* scale);
 rect ((x+35* scale),y-40* scale ,30* scale ,40* scale);
 point ((x+55* scale),y-20* scale);
}

We can then combine this code with some logic that increases or decreases the scale
depending on the mouse button that was pressed. Here is the logic that will
increase/decrease the scale by 1% each time:

COMP1405/1005 – Simulation and User Interaction Fall 2011

 - 137 -

if (left mouse button is being pressed) then
 scale ← scale * 0.99
if (right mouse button is being pressed) then

scale ← scale * 1.01

However, in processing, the determination of whether or not a mouse button is being pressed
is a separate function from the one that identifies which mouse button is being pressed. So,
we cannot tell if the “left mouse button is being pressed” with one function call. First, we must
determine whether or not a mouse button is being pressed by checking the mousePressed
boolean variable. Then we may check which button is being pressed by checking the
mouseButton variable as follows:

float scale ;

void setup () {
 size(600,600);
 background (200);
 scale = 1;
}

void draw () {
 background (200);
 drawHouse(mouseX, mouseY);
 if (mousePressed) {
 if (mouseButton == RIGHT)
 scale = scale * 1.01;
 else
 scale = scale * 0.99;
 }
}

void drawHouse(int x, int y) {
 rect (x, y-100* scale ,100* scale ,100* scale);
 triangle (x,y-100* scale ,(x+50* scale),

 y-150* scale ,(x+100* scale),y-100* scale);
 rect ((x+35* scale),y-40* scale ,30* scale ,40* scale);
 point ((x+55* scale),y-20* scale);
}

COMP1405/1005 – Simulation and User Interaction Fall 2011

 - 138 -

Similarly, here is a table of the keyboard-related variables that are
automatically set:

Variable Description

keyPressed true if a keyboard key is being pressed, otherwise false

key A character representing the key that was most recently

pressed (e.g., ‘a’, ‘A’, ‘1’, ‘.’, etc.., BACKSPACE , TAB ,
ENTER, RETURN , ESC, and DELETE).

keyCode A constant representing a “special” key that was most recently

pressed (i.e., UP, DOW N , LEFT , RI GHT arrow keys
and ALT , CONTROL, SHI FT) .

�

Example:

How would we adjust our above example code so that the house becomes darker when the up
arrow key is pressed and lighter when the down arrow is pressed ?

We would need to add a shade variable to keep track of the current color of the house and
adjust it accordingly:

shade ← 128
if (up arrow is being pressed) then
 shade ← shade + 1
if (down arrow is being pressed) then

shade ← shade – 1

Of course, we would need to ensure that our shade always remains in the range of 0 to 255:

if (up arrow is being pressed) AND (shade < 255) then
 shade ← shade + 1
if (down arrow is being pressed) AND (shade > 0) then

shade ← shade – 1

In processing, the code follows from this logic. We would first need to check to make sure that
a key is being pressed using the keyPressed variable, and then (since the arrow keys are
special keys) use keyCode to see whether or not it was the up or down arrow.

Here is the code:

COMP140

float s
int s

void se
 //
 sh a
}

void dr
 bac
 fi l
 dr a
 if
 if

 }
}
void d r

You may
required
and ‘b’,

if (ke y
 if

 el s

}

The abo
Howeve
example
necessa

Process
predefin
handler
importan
Process

05/1005 – Sim

scale;
shade ;

etup () {
same co d

ade = 12 8

r aw() {
ckground (
l l (shade)
awHouse(m

(mousePr
(keyPre s

if (ke y
 if

 el s

}

r awHouse(i

y have noti
d whenever

instead of

yPressed)
((key = =

shade+ +
se if ((k
 shade- -

ove example
er, not all pr
e, if you wa
ary to write

sing allows
ned types of

called auto
nt to “spell”
sing is expe

mulation and

de as bef o
8;

200);
;

mouseX , mo
r essed) { }
ssed) {
y == CODED

((keyCo d
shade =

se if ((k
shade =

i nt x, i n

ced that we
checking f
UP and DO

{
= 'a') &&
+;
key == 'b '
- ;

es show ho
rogramming
nt to acces
your own e

you to write
f events. I

omatically w
the event h

ecting.

User Interact

ore ... o m

ouseY);
} // sam e

D) { / / R
de == UP)
= shade +
keyCode ==
= shade -

nt y) {} /

e checked t
for special k
OWN, the co

(shade <

') && (sha

ow to use so
g languages
ss the mous
event handl

e event han
n order to h

when the ev
handler exa

tion

 - 139 -

mitted t o

e code a s

Required b
&& (shade
1;

= DOWN) &&
1;

/ / same a s

to see whet
keys. If, fo
ode would

255))

ade > 0))

ome of the
s have such
se position
er.

ndlers for so
have this ev
vent occurs
actly the wa

o save sp a

s before .

before ch e
e < 255))

& (shade

s before

ther or not
or example
simply use

pre-defined
h variables
or determin

ome
vent
, it is
ay that

ace

. .. omitt e

ecking “ s

> 0))

... omit t

the key ==
we were ch
the key va

d variables
readily ava

ne the key t

ed to sa v

special” k

t ed to sa v

 CODED.
hecking for
ariable as fo

 in Process
ailable. In
that was pr

Fall 2011

ve space

keys

ve space

This is
keys ‘a’

ollows:

sing.
JAVA, for
essed,, it is

1

s

COMP1405/1005 – Simulation and User Interaction Fall 2011

 - 140 -

Below is a table showing which procedures need to written in order to handle some specific
events:

Event Handling Procedure Description

void mousePressed() { … } called when a mouse button is pressed

void mouseReleased() { … } called when a mouse button is released

void mouseClicked() { … } called when a mouse button is pressed & released

void mouseMoved() { … } called when the mouse is moved

void mouseDragged() { … } called when the mouse is moved while a button is being pressed

void keyPressed() { … } called when a key is pressed on the keyboard

void keyReleased() { … } called when a key is released on the keyboard

void keyTyped() { … } called when a key is pressed and released on the keyboard

Example:

Can we adjust the car program so that it accelerates horizontally towards the right but then
when we press a mouse button, it should slow down and change directions, heading
backwards to the left. Again, if we press a mouse button it should slow down and head right
again. Therefore the car alternates from right to left all the while remaining within the window.

This is a good example of where an event handler could be used. The car should speed up at
all times, only slowing down on a direction change (indicated by a mouse press event).

As usual, we need to understand the model first. Below is the sequence of speed values
(assuming the speed starts at 0 and accelerating/decelerating with a value of 1) that would
occur as the car is moving. Notice how the speed changes when the event occurs (note that

this goes a bit beyond the car movement shown above):

COMP1405/1005 – Simulation and User Interaction Fall 2011

 - 141 -

Notice how the speed increases by the increment value until the mouse is clicked. It then
“increases” by a negative increment value (i.e., decreases) until the next mouse click. We can
make use of an acceleration variable that it is positive when speeding up and negative when
slowing down, corresponding to the increment value in the above table.

Recall our algorithm that caused the car to speed up until the car reached half way, then
slowed down:

Algorithm: AcceleratingCar
 windowWidth: width of the window

1. speed ← 0
2. repeat {
3. draw the car at position x
4. x ← x + speed
5. if x < (windowWidth /2) then
6. speed ← speed + 0.10
7. otherwise
8. speed ← speed – 0.10
 }

Our new algorithm will be similar except that we now need to incorporate the
acceleration/deceleration and also adjust to ensure that the car does not go beyond the
window boundaries:

Algorithm: AlternatingCar
 windowWidth: width of the window

1. speed ← 0
2. acceleration ← 0.10
3. repeat {
4. draw the car at position x
5. x ← x + speed
6. speed ← speed + acceleration
7. if x < 0 then {
8. speed ← 0
9. x ← 0
 }
10. if (x +100) > windowWidth then {
11. speed ← 0
12. x ← windowWidth - 100
 }
 }

COMP1405/1005 – Simulation and User Interaction Fall 2011

 - 142 -

All that remains is to set up an event handler for when the mouse button is clicked. In that
event handler, all we need to do is negate the acceleration:

acceleration ← acceleration * -1

That is all. Here is the corresponding Processing code:

int x, y;
float speed;
float acceleration;

void setup () {
 size (600,300);
 x = 0;
 y = 300;
 speed = 0;
 acceleration = 0.10;
}

void draw () {
 background(255,255,255);
 drawCar(x);

 x = int (x + speed);
 speed = speed + acceleration;

 if (x < 0) {
 x = 0;
 speed = 0;
 }
 else if (x+100 > width) {
 x = width - 100;
 speed = 0;
 }
}

// This is the mouse pressed event handler
void mousePressed () {
 acceleration = acceleration * -1;
}

void drawCar(int x) {
 // … same code as before … omitted to save space.
}

COMP1405/1005 – Simulation and User Interaction Fall 2011

 - 143 -

Example:

Recall our bouncing ball example. Below is the adjusted code to ensure that the ball remains
within the screen and with a speed variable added:

Algorithm: BouncingBall
 windowWidth, windowHeight: dimensions of the window
 radius: the ball’s radius

1. x ← windowWidth/2
2. y ← windowHeight/2
3. direction ← a random angle from 0 to 2π
4. speed ← 10
5. repeat {
6. draw the ball at position (x, y)
7. x ← x + speed * cos(direction)
8. y ← y + speed * sin(direction)
9. if ((x+radius >= windowWidth) OR (x-radius <= 0)) then
10. direction = 180° - direction
11. if ((y+radius >= windowHeight) OR (y-radius <= 0)) then
12. direction = - direction
 }

How can we adjust this code using event handlers so that the ball
can be “grabbed” and “thrown” by the mouse ? That is, if the user
places the mouse cursor over the ball and clicks, then the ball stops
moving and appears to be “stuck” to the mouse cursor until the
mouse is released. Then when we let go of the mouse button, the
ball should “fly off” in the direction that we threw it with a speed that
varies according to how “hard” we threw it.

To do this, we should break the problem down into more
manageable steps:

1. Add the ability to grab the ball and carry it around
2. Add the ability to throw the ball
3. Adjust the speed of the ball according to how “hard” we threw it.

To grab the ball, we would need to prevent lines 7 and 8 from being evaluated while the ball is
being held. Instead, we would set the ball’s location to be the mouse location.

We can create a boolean to determine whether or not the ball is being held:

COMP1405/1005 – Simulation and User Interaction Fall 2011

 - 144 -

grabbed ← false
repeat {
 …
 if not grabbed then {
 x ← x + speed * cos(direction)
 y ← y + speed * sin(direction)
 }
 otherwise {
 x ← x position of mouse
 y ← y position of mouse
 }
 …
}

All that would be left to do is to set the grabbed variable accordingly. When the user would
click on the ball, we should set it to true and when the user releases the mouse button, we
should set it to false. So we need two event handlers:

mousePressed() {
 grabbed ← true
}
mouseReleased() {
 grabbed ← false
}

But this will ALWAYS “grab” the ball, even if the mouse cursor was not on it. How can we
determine whether or not the mouse cursor is over the ball ? We can check to see whether or
not the mouse location is within (i.e., ≤) the ball’s radius.

We can compute the distance from the ball’s center (i.e., (x,y)) to the
location of the mouse (mX, mY). If this distance is less than or
equal to the ball’s radius, then we can assume that the user has
“grabbed” the ball. Here is the adjusted code:

mousePressed() {
 d ← distance from (x, y) to (mX, mY)
 if (d <= radius) then
 grabbed ← true
}

When the user lets go of the ball, it will continue in the direction that it was in before it was
grabbed. Now how do we adjust the code so that we are able to “throw” the ball in some
particular direction ?

COMP1405/1005 – Simulation and User Interaction Fall 2011

 - 145 -

Well, upon releasing the mouse, we will need to determine which direction the ball was being
thrown in and then set the direction variable directly. We can determine the direction that the
ball was thrown in by examining the current mouse location (mX, mY) with respect to the
previous mouse location (pX, pY).

The angle (i.e., θ) at which the ball should be thrown will be the arctangent of the differences
in x and y coordinates as shown here.

However, in the case that we throw vertically, the difference in x coordinates will be zero and
we are not allowed to divide by zero. Fortunately, many computer languages have a function
called atan2(y, x) which allows you to find the angle that a point makes with respect to the
origin (0,0). We can make use of this by assuming that (pX,pY) is the origin and translate
(mX,mY) accordingly as follows: atan2(mY-pY, mX-pX)

So, upon a mouse release, we can do this:

mouseReleased() {
 if grabbed then {
 direction ← atan2(mY-pY, mX-pX)
 grabbed ← false

 }
}

Notice that we only change the direction when we have already grabbed the ball.

One last aspect of the program is to allow the ball to be thrown at various speeds. Likely, we
want the ball to slow down as time goes on.

COMP1405/1005 – Simulation and User Interaction Fall 2011

 - 146 -

We should add the following to the algorithm’s main repeat loop:

speed ← speed – 0.1
if (speed < 0) then
 speed ← 0

Now to determine the speed at which the ball is thrown, we can take notice of how the mouse
location varies according to the speed at which it is moved.

If the mouse is moved fast, the successive locations of the mouse will be further apart, while
slow mouse movements will have successive locations that are relatively closer together.

So, as a simple strategy, the amount of “throw hardness” can be computed as a function of the
distance between the current mouse location and the previous mouse location.

We can simply set the speed to this distance in the mouseReleased() handler as follows:

mouseReleased() {
 if grabbed then {
 direction ← atan2(mY-pY, mX-pX)
 speed ← distance from (pX,pY) to (mX,mY)
 grabbed ← false

 }
}

Here is the resulting Processing code:

COMP1405/1005 – Simulation and User Interaction Fall 2011

 - 147 -

int x, y; // location of the ball at any time
float direction; // direction of the ball at any time
boolean grabbed; // true if the ball is being held
float speed; // the ball’s speed

final int RADIUS = 40; // the ball’s radius
final float ACCELERATION = 0.10; // acceleration/deceleration amount

void setup () {
 size (600,600);
 x = width /2;
 y = height /2;
 direction = random (TWO_PI);
 grabbed = false ;
 speed = 10;
}

void draw () {
 background (0,0,0);
 ellipse (x, y, 2*RADIUS,2*RADIUS);

 // move the ball forward if not being held
 if (!grabbed) {
 x = x + int (speed* cos (direction));
 y = y + int (speed* sin (direction));
 }
 else {
 x = mouseX;
 y = mouseY;
 }

 speed = max(0, speed - ACCELERATION);

 if ((x+RADIUS >= width) || (x-RADIUS <= 0))
 direction = PI - direction;
 if ((y+RADIUS >= height) || (y-RADIUS <= 0))
 direction = -direction;
}

void mousePressed () {
 if (dist (x,y, mouseX, mouseY) < RADIUS)
 grabbed = true ;
}

void mouseReleased () {
 if (grabbed) {
 direction = atan2 (mouseY - pmouseY, mouseX - pmouseX);
 speed = int (dist (mouseX, mouseY, pmouseX, pmouseY));
 }
 grabbed = false ;
}

Chapter 4

Data Structures

What is in This Chapter ?

Almost all programs require the use of some data as input to the problem being solved. It is
often advantageous to group (or structure) related data together. This chapter discusses the
idea of creating data structures in Processing, which are also known as objects . Objects
are used as a way of keeping your data organized in a logical manner. In a later course, we
will further develop the notion of an Object.

COMP1405/1005 – Data Structures and Objects Fall 2011

 - 149 -

 4.1 Data Structures and Objects

Recall that we used functions and procedures to provide control abstraction in order to hide
low-level conceptual details within our algorithms so that they are simpler to read and
understand. There is another type of abstraction known as data abstraction . In this type of
abstraction we are interested in hiding information (or data) that will unnecessarily clutter up
an algorithm. The idea behind data abstraction is to group simple data values together which
have a well understood relationship.

For example, if we are mailing out an envelope within the same country, then an address is
assumed to have this information:

1. name
2. street number
3. street name
4. city
5. province
6. postal Code

Whenever most people hear the word “address”, they understand that such information is
actually made up of some smaller, specific kinds of information. The address itself is not
complete unless it is has all of that information. In a sense, the individual pieces of
information make up (or define the structure of) the address.

We can create such “more abstract” types of data (e.g., like an address) simply by combining
or structuring the more primitives (i.e., simpler) pieces of data together in meaningful ways:

A data structure is a particular way of combining, storing and organizing
data so that it may be used more efficiently and in a more abstract manner.

We also use the word data type which is somewhat analogous to the term data structure . In
object-oriented programming languages, such as Processing and Java, a data type is also
known as a class or category, and defining a data type is also called defining an object .

A object represents multiple pieces of information that are grouped together.

Recall that a primitive data type represents a single simple piece of information such as a
number or character. An object, however, is a bundle of data, which can be made up of
multiple primitives or possibly other objects as well. You
can think of an object as a bunch of small pieces of
information with an elastic around it å

COMP1405/1005 – Data Structures and Objects Fall 2011

 - 150 -

Perhaps the simplest data structure is called a string which is a group of one or more
characters with a specific ordering. Characters by themselves are not very interesting.
However, when we group them together, we form a huge variety of words and seemingly
unlimited variety of sentences. Each word in the English language, for example, represents a
string data structure, as does each sentence, paragraph, page of text, etc…

In many programming languages (including Processing and JAVA), strings are represented by
placing double quotes around a set of characters like this:

name ← “Patty O. Lantern”

A string is not a primitive data type because it is made up of characters…which themselves are
the primitive data types. In fact, we can abstract out the notion of a string even further by
grouping strings together in a meaningful way to create an even more abstract data structure.

For example, consider an address as described above. A full address may be represented
using multiple numbers and strings as follows:

name ← “Patty O. Lantern”
streetNumber ← 187
streetName ← “Oak St.”
city ← “Ottawa”
province ← “ON”
postalCode ← “K6S8P2”

Together, all of the variables above represent a full address. It would be advantageous if we
could define a single variable, perhaps called address, that can store all of the above
information:

address ← … ? …

Of course, we could combine everything into one big string …

address ← “Patty O. Lantern, 187 Oak St., Ottawa, ON, K6S8P2”

… but then it would be more difficult/cumbersome to extract the needed pieces of information
(e.g., street number or last name).

Many programming languages allow you to “group” variables together into a structure of some
type. The process of defining which variables and types of data should be grouped together is
called defining a data structure (or defining a data type). In object-oriented languages
(such as JAVA) this is also called defining an object and sometimes defining a class .

COMP1405/1005 – Data Structures and Objects Fall 2011

 - 151 -

When defining such a structure, we need to specify the name of the new type of data (e.g.,
Address) as well as the names and types of data that is contained within it.

We will use the following notation to define a structure in our
pseudocode (below), as well as visually (shown to the right):

define Address to be made of {
.name
.streetNumber
.streetName
.city
.province
.postalCode

}

Notice that we capitalized the data type Address. This is proper coding style and any definition
of data structure, data type or object should always be capitalized.

The above notation shows that an address is made up of 6 pieces of
data with the given name labels. It is as if the Address data type is
a “blank form” onto which we can fill in appropriate values. It
defines a kind of template for creating data of this type.

That is how we will define a new data type. However, defining a
data type does not actually create any variables, it only creates a
definition. When we actually want to use a data type, we need a
way of specifying that we want to create a new instance of this data type.

An instance of a data structure (or object) is a particular group of values for each of
the individual variables that make up the data structure (or object).

That means an instance is a particular object belonging to the category of objects defined by
the data type. For example, each of the following is an instance of the Address data type,
because they represent particular addresses:

COMP1405/1005 – Data Structures and Objects Fall 2011

 - 152 -

Recall that when we created variables, we had to reserve space in the computer’s memory
that would allow us to store information in the variable. Similarly, in order to make a new
variable that can hold a data type, we have to also declare the variable in order to allocate
sufficient memory.

When we declare a variable that belongs to the new data type, however, it is as if we are
declaring space for all of its pieces. In fact, the pieces of a particular instance of a data type
are actually called instance variables , since they are just regular variables … that happen to
be grouped together to form a particular instance.

In some programming languages, you have to allocate/reserve space (i.e., memory) for the
instance of the data structure yourself. The popular languages C, for example, requires you to
call a function that will allocate the memory for you
(e.g., malloc()). Once you are done with the variable,
it is your responsibility to free up that memory space
once again by calling another function (e.g., free()).

The allocating and freeing up of memory is known as
dynamic memory allocation & deallocation and is
quite tedious and unpleasant. It can also be a source
of many problems/bugs/errors in a program. For
example, if memory is allocated many times, but never
freed, the program will fill up the computer’s memory
and the program will crash. These are called memory
leaks . Also, you have to make sure that you allocate
enough memory to hold everything that you need and
that you don’t free memory that you still want to use …
otherwise your program will likely crash.

In order to make programmers live happier lives, some language designers have decided that
it would be convenient and safer to perform this memory management for you. That is, they
provide a means of allowing you to automatically reserve memory when you want to make a
new instance of a data type (i.e., when you want to use a new object in your program).
Object-oriented languages such as C++, C#, JAVA and Processing have built-in memory
management.

In order to allocate enough memory for a new instance of a data type and start using it, the
new keyword is used. For example, here is how we will indicate that we want a new instance
of the Address data type in our pseudocode:

anAddress ← new Address

This will allocate enough memory to hold all of the address’ information.

You may want to think of the Address class as a factory that makes Address objects (i.e.,
makes instances of the Address class). In general, every time we use new, it is as if we go
to the factory for that class and buy a instance of the object. So… the class is the “factory”,
and the instance is the particular “object” that we can start using now in our programs.

The Address Class new Address Instance of type Address

COMP1405/1005 – Data Structures and Objects Fall 2011

 - 153 -

The Person Class new Person Instance of type Person

The House Class new House Instance of type House

We will then assign values to the individual components (i.e., instance variables) of
anAddress by using the dot operator as follows:

anAddress ← new Address
anAddress.name ← “Patty O. Lantern”
anAddress.streetNumber ← 187
anAddress.streetName ← “Oak St.”
anAddress.city ← “Ottawa”
anAddress.province ← “ON”
anAddress.postalCode ← “K6S8P2”

The dot operator indicates that we are going inside the data type to get a piece of information.
That is, we are getting more specific as to what particular piece of data we want. Whenever
we use, for example, anAddress.name, it behaves just like any other variable and refers to the
data stored in that part of the address’s memory.

Sometimes, however, some information may be missing. For example, when we give a local
person our address on a piece of paper, it is likely that we’ll only give them the street number
and name.

COMP1405/1005 – Data Structures and Objects Fall 2011

 - 154 -

In this situation there will be some missing information. Perhaps the missing information is
assumed to be particular values. For example, we may assume that the city and province are
local to where we received the piece of paper. Nevertheless,
when data is missing, we would want to make sure that we
don’t assume potentially wrong data. Our data structure, may
therefore be missing data.

What is the value of the instance variables in this case, since
we did not supply any values ? It actually depends what is in
the computer’s memory at the location where the city,
province and postal code is stored. It could be “garbage” data
that was from a data type whose memory was previously freed
up. With memory-managed languages, however, these values are usually set to 0 (when the
variable’s type is a number) or null (when the variable’s type is a data type).

Null is a word that represents an undefined value. If a variable has a
value of null, it means that it does not yet have a value.

Therefore, the following code logic is flawed:

anAddress ← new Address
print (anAddress.name)

The code does not make sense because we are trying to print out the address’s name before
we have assigned a value to it. Depending on the language used, the result may be null or
perhaps even random “garbage” data.

We can actually go deeper into each piece of data as well, making them more abstract. For
example, we created the address’s instance variable to store the name as a single string as
follows:

anAddress.name ← “Patty O. Lantern”

It is sometimes desirable to be able to distinguish between the first name, last name and
middle name(s) of the person. To do this, we would need to separate the names into different
variables as follows:

anAddress.firstName ← “Patty”
anAddress.middleName ← “Ohh”
anAddress.lastName ← “Lantern”

Then we can choose which portion of the person’s name that we want to
use at any time. A downside is that we now have to use 3 variables
instead of 1.

We could re-define the Address data type as shown in the picture here å

COMP1405/1005 – Data Structures and Objects Fall 2011

 - 155 -

This would suffice. However, the address seems more complicated. We could perform
additional data abstraction by combining the first, middle and last names into their own unique
data structure:

define FullName to be made of {
.firstName
.middleName
.lastName

}

Then we could make use of this within our Address
data structure as shown here. From the picture å
you can see that the name stored in the Address
structure is no longer a simple string of characters.
Now it is a different kind of data structure (i.e., object)
of type FullName.

Here is what our example would look like now:

The code for setting the name of anAddress would be as follows:

anAddress ← new Address
anAddress.name ← new FullName
anAddress.name.firstName ← “Patty”
anAddress.name.middleName ← “Ohh”
anAddress.name.lastName ← “Lantern”

Notice now that the dot operator is used twice: once to get into the address to get the name,
then again to get into the name to set the first, middle and last values.

An additional advantage of creating the separate FullName data structure is that we can use it
in other applications. Consider, a BankAccount data structure that is defined as follows:

define BankAccount to be made of {
.owner
.accountNumber
.balance

}

COMP1405/1005 – Data Structures and Objects Fall 2011

 - 156 -

We could then set the owner to be a FullName data type as well:

The fun does not stop here. In fact, it is often the case that data structures use multiple kinds
of data structures within them. For example, could you determine the code that would
produce this image ?

Now we should look at examples of using a data structure.

Example:

Recall the “Loan Qualification Kiosk” program that we implemented earlier which was to allow
a people to enter personal information and then inform them as to whether or not they qualify
for the loan.

1. print welcome message
2. employed ← ask user if he/she is currently employed
3. hasDegree ← ask user if he received a univ. degree within past 6 months
4. age ← ask user for his/her age
5. yearsWorked ← ask user for # years worked at full time status

6. if (employed is true) then {
7. if (hasDegree is true) then print “Congratulations…”
8. otherwise {
9. if (age >= 30) then {
10. if (yearsWorked >= 10) then print “Congratulations, …”
11. otherwise print “Sorry, …”
 }
12. otherwise print “Sorry,”
 }
 }
13. otherwise print “Sorry, ...”

COMP1405/1005 – Data Structures and Objects Fall 2011

 - 157 -

How can we adjust the code to combine all of the employee information into one data structure
? Notice what the code looks like now when an Employee data structure is used:

define Employee to be made of {
 .employed
 .hasDegree
 .age
 .yearsWorked
}

Algorithm: LoanQualificationKiosk

1. print welcome message
2. employee ← new Employee
3. employee.employed ← ask user if he/she is currently employed
4. employee.hasDegree ← ask user if he received a univ. degree within past 6 months
5. employee.age ← ask user for his/her age
6. employee.yearsWorked ← ask user for # years worked at full time status

7. if (employee.employed is true) then {
8. if (employee.hasDegree is true) then print “Congratulations…”
9. otherwise {
10. if (employee.age >= 30) then {
11. if (employee.yearsWorked >= 10) then print “Congratulations, …”
12. otherwise print “Sorry, …”
 }
13. otherwise print “Sorry,”
 }
 }
14. otherwise print “Sorry, ...”

All of the employee’s information is packaged into the single Employee data structure and
stored in the employee variable. The code seems longer, however, the data is now set up for
more abstract use. For example, assume that we created a function to get the user’s
information and another to determine whether or not they qualify.

Notice the simple main code (i.e., lines 1 to 4):

Algorithm: LoanQualificationKiosk2

1. print welcome message
2. employee ← getUserInformation()
3. determineQualifications(employee)
4. print “Thank you, have a nice day.”

COMP1405/1005 – Data Structures and Objects Fall 2011

 - 158 -

Notice how the Employee object is created in the getUserInformation() procedure, populated
with information from the user, and then returned to the main algorithm:

 getUserInformation() {
5. print welcome message
6. employee ← new Employee
7. employee.employed ← ask if currently employed
8. employee.hasDegree ← ask if received a univ. degree within past 6 months
9. employee.age ← ask for age
10. employee.yearsWorked ← ask for # years worked at full time status
11. return employee
 }

The determineQualifications() procedure then accepts an incoming Employee object (which
is labelled as emp) and uses it for various computations and decisions:

 determineQualifications(emp) {
12. if (emp.employed is true) then {
13. if (emp.hasDegree is true) then
14. print “Congratulations…”
 otherwise {
15. if (emp.age >= 30) then {
16. if (emp.yearsWorked >= 10) then
17. print “Congratulations, …”
18. otherwise print “Sorry, …”
 }
19. otherwise print “Sorry,”
 }
 }
20. otherwise print “Sorry, ...”
 }

Within the determineQualifications() procedure we simply use the dot operator to get at the
specific piece of employee information that we need.

There are some advantages of using the data structure:

1) The main algorithm is more abstract and simpler to understand

2) If we add additional qualification parameters (e.g., marital status, # of dependants, credit
history, etc…) then the main program (lines 1 through 4) remains unchanged.

The code is thus simpler and more organized with the use of the data structure/object.

However, it is not always obvious to know what kind of information (i.e., components) should
make up a data structure/object. That is … there is not always a “well defined” set of data that
make up the object. For an Address data structure, it is somewhat obvious. However, what
about a Person data structure … what should “make up” a person ?

COMP1405/1005 – Data Structures and Objects Fall 2011

 - 159 -

Some possible attributes of a person data structure may be firstName, lastName, age,
gender and retired. Why would we choose these ? In reality, doesn’t our choice of
attributes depend on the application that we are trying to develop. For example, while the age
and gender may be vital pieces of information for a program that determines players on a
team sport in some league, information about whether a person is retired is not necessary.
And for medical applications, perhaps weight and height are vital pieces of information. If it
is to be an online social network application, perhaps emailAddress is an important piece of
information that all Persons should have. The choice of a data structure’s components really
depends on the application.

As another example, consider defining a Car data structure. We should think of what
characteristics we will need to store for each car (e.g., make, model, color, mileage, etc..):

The choice will depend on the program/application you are making. Consider these possible
applications in which a Car data structure may be used:

• a program for a car repair shop • a program for a car dealership • a program for a car rental agency • a program for an insurance company

So, now let us examine what kind of attributes (i.e., instance variables) that we would likely
need to define for a Car in each of these individual applications:
 • repair shop

make, model, year, engine size, spark plug type, air/oil filter types, air hose
diameter, repair history, owner etc..
. • car dealership
model, price, warranty, interior finish (leather/material), color, engine size, fuel
efficiency rating, etc...
 • rental agency
sedan or coupe, make, model, license plate, price per hour, mileage, repair
history, etc...
 • insurance company
year, make, model, owner, insurance type (fire/theft/collision/liability), color,
license plate, etc...

So you can see that it is not always straight forward to identify the components of a data
structure. You need to always understand how it fits into the application.

COMP1405/1005 – Data Structures and Objects Fall 2011

 - 160 -

Example:

Recall the algorithm that accelerates a car across the window:

1. speed ← 0
2. for x locations from 0 to windowWidth by speed {
3. draw car at position (x, windowHeight –100)
4. if x < (windowWidth /2) then
5. speed ← speed + 0.10
6. otherwise
7. speed ← speed – 0.10
 }

We can create a Car data structure and use it within the program. What should make up the
data structure ? What components can be grouped together to represent the car ?

define Car to be made of {
 .x
 .y
 .speed
}

1. myCar ← new Car
2. myCar.x ← 0
3. myCar.y ← windowHeight –100
4. myCar.speed ← 0
5.
6. for x locations from 0 to windowWidth by myCar.speed {
7. myCar.x ← x
8. draw(myCar)
9. if myCar.x < (windowWidth /2) then
10. myCar.speed ← myCar.speed + 0.10
11. otherwise
12. myCar.speed ← myCar.speed – 0.10
 }

Now all of the car’s parameters (i.e., location and speed) are kept together. Notice as well
that the draw() procedure now simply takes one parameter, representing the car. It can then
extract the x and y locations easily with the dot operator.

This may not seem like an advantage in this simple example, but as more and more car-
related functions or procedures are added, this will greatly reduce the number of parameters
being passed around. Also, if we add additional instance variables to the car’s structure (e.g.,
color, scale) then this information will be readily available in the draw() procedure and we will
not have to change line 8 of our program !! Once again, the code is cleaner and more
organized.

COMP1405/1005 – Data Structures and Objects Fall 2011

 - 161 -

 4.2 Using Objects in Processing/JAVA

In Processing (and Java), data structures are called objects . To define a new data structure,
we define a class using the class keyword and simply list the variables one after another
(along with their types) between braces. Here are a few examples:

Pseudocode Processing code

define FullName to be made of {

.firstName

.middleName

.lastName
}

class FullName {

String firstName;
String middleName;
String lastName;

}

define Address to be made of {

.name

.streetNumber

.streetName

.city

.province

.postalCode
}

class Address {

FullName name;
int streetNumber;
String streetName;
String city;
String province;
String postalCode;

}

define BankAccount to be made of {

.owner

.accountNumber

.balance
}

class BankAccount {

Address owner;
int accountNumber;
float balance;

}

define Employee to be made of {
 .employed
 .hasDegree
 .age
 .yearsWorked
}

class Employee {

boolean employed;
boolean hasDegree;
int age;
int yearsWorked;

}

define Car to be made of {
 .x
 .y
 .speed
}

class Car {

int x;
int y;
float speed;

}

Notice how the types must now all be specified. Also, notice that when one data structure is
contained within another (e.g., FullName inside Address), we must indicate the name of the
data structure (i.e., class) as the variable’s type.

COMP1405/1005 – Data Structures and Objects Fall 2011

 - 162 -

The above class definitions cannot be done within the setup() or draw() procedures, nor in
any other procedures or functions. They are defined on their own, separately, just like the
setup() and draw() procedures. It is a good idea to gather all your class definitions near the
top or bottom of your program. Here is an example template showing Car and House data
structures defined just above the setup() and draw() procedures:

int aVariable;
float anotherVariable;

class Car {

…
}

class House {

…
}

void setup() {
 …
}

void draw() {
 …
}

Later, in COMP1406, when we start doing Java programming, we will define each class in its
own separate file.

Now, to create a new instance of one of these classes, we usually need to first create a
variable to store it in and then we simply use the new keyword followed by the class name and
parenthesis. Then we assign values to the instance variables using the = operator. Here are
some examples of how this is done:

Pseudocode Processing code

myCar ← new Car

myCar.x← 0
myCar.y← windowHeight - 100
myCar.speed← 0

Car myCar;

myCar = new Car();
myCar.x = 0;
myCar.y = height – 100;
myCar.speed = 0;

aFullName ← new FullName
aFullName.firstName ← “Patty”
aFullName.middleName ← “Ohh”
aFullName.lastName ← “Lantern”

FullName aFullName;

aFullName = new FullName();
aFullName.firstName = "Patty" ;
aFullName.middleName = "Ohh" ;
aFullName.lastName = "Lantern" ;

COMP1405/1005 – Data Structures and Objects Fall 2011

 - 163 -

addr ← new Address
addr.name ← new FullName
addr.name.firstName ← “Patty”
addr.name.middleName ← “Ohh”
addr.name.lastName ← “Lantern”
addr.streetNumber ← 187
addr.streetName ← “Oak St.”
addr.city ← “Ottawa”
addr.province ← “ON”
addr.postalCode ← “K6S8P2”

Address addr;

addr = new Address();
addr.name = new FullName();
addr.name.firstName = "Patty"
addr.name.middleName = "Ohh"
addr.name.lastName = "Lantern"
addr.streetNumber = 187
addr.streetName = "Oak St."
addr.city = "Ottawa"
addr.province = "ON"
addr.postalCode = "K6S8P2"

b ← new BankAccount
b.owner ← new Address
b.owner.name ← new FullName
b.owner.name.firstName ← “Patty”
b.owner.name.middleName ← “Ohh”
b.owner.name.lastName ← “Lantern”
b.owner.streetNumber ← 187
b.owner.streetName ← “Oak St.”
b.owner.city ← “Ottawa”
b.owner.province ← “ON”
b.owner.postalCode ← “K6S8P2”
b.accountNumber ← 829302
b.postalCode ← 2319.67

BankAccount b;
Address addr;

addr = new Address();
addr.name = new FullName();
addr.name.firstName = "Patty"
addr.name.middleName = "Ohh"
addr.name.lastName = "Lantern"
addr.streetNumber = 187
addr.streetName = "Oak St."
addr.city = "Ottawa"
addr.province = "ON"
addr.postalCode = "K6S8P2"

b = new BankAccount();
b.owner = addr;
b.accountNumber = 829302
b.postalCode = 2319.67

emp ← new Employee

emp.employed ← … some code …
emp.hasDegree ← … some code …
emp.age ← … some code …
emp.yearsWorked ← … some code …

Employee emp = new Employee();

emp.employed = /* some code */ ;
emp.hasDegree = /* some code */ ;
emp.age = /* some code */ ;
emp.yearsWorked = /* some code */ ;

Example:

Recall our example in which we drew 5 houses of
various sizes at adjacent locations on the window →

COMP1405/1005 – Data Structures and Objects Fall 2011

 - 164 -

Here is the code that we used:

void setup () {
 size (500,150);

 drawHouse(0, 150, 1);
 drawHouse(100, 150, 0.8);
 drawHouse(180, 150, 0.6);
 drawHouse(240, 150, 0.4);
 drawHouse(280, 150, 0.2);
}

void drawHouse(int x, int y, float s) {
 rect (x, y-100*s,100*s,100*s);
 triangle (x,y-100*s,(x+50*s),y-150*s,(x+100*s),y-100*s);
 rect ((x+35*s),y-40*s,30*s,40*s);
 point ((x+55*s),y-20*s);
}

How could we adjust this code to make use of a House data structure ? What information in
this example represents the attributes of the Houses ?

The x, y location are attributes of the houses as well as their scale factor. So, we could define
a house data structure (i.e., object) as follows:

class House {
 int x;
 int y;
 float s;
}

Then we can make use of this new House object in our code:

void setup () {
 House h1, h2, h3, h4, h5;

 size (500,150);

 h1 = new House();
 h1.x = 0;
 h1.y = 150;
 h1.s = 1.0;

 h2 = new House();
 h2.x = 100;
 h2.y = 150;
 h2.s = 0.8;

 h3 = new House();
 h3.x = 180;

COMP1405/1005 – Data Structures and Objects Fall 2011

 - 165 -

 h3.y = 150;
 h3.s = 0.6;

 h4 = new House();
 h4.x = 240;
 h4.y = 150;
 h4.s = 0.4;

 h5 = new House();
 h5.x = 280;
 h5.y = 150;
 h5.s = 0.2;

 drawHouse(h1);
 drawHouse(h2);
 drawHouse(h3);
 drawHouse(h4);
 drawHouse(h5);
}

void drawHouse(House h) {
 rect (h.x , h.y -100* h.s ,100* h.s ,100* h.s);
 triangle (h.x , h.y -100* h.s ,(h.x +50* h.s), h.y -150* h.s ,
 (h.x +100* h.s), h.y -100* h.s);
 rect ((h.x +35* h.s), h.y -40* h.s ,30* h.s ,40* h.s);
 point ((h.x +55* h.s), h.y -20* h.s);
}

Notice how the houses are each stored in variables h1 through h5. That is, the x, y and s data
is all kept together for each individual house and stored in their own unique House variable.

Notice as well how the House objects are passed as parameters into the drawHouse
procedure. Within the procedure, each house is referred to as h, as indicated by the
parameter name. Then, inside the procedure, we simply access the x, y or s component of
the house by using h.x, h.y or h.s, respectively.

Example:

Here is how we could use a Car data structure in a modification of our accelerating car
example that uses two cars. Notice how the use of the data structure simplifies the code
when multiple cars are used.

COMP1405/1005 – Data Structures and Objects Fall 2011

 - 166 -

Car myCar, yourCar ; // The two cars to move around

class Car { // Definition of what a “Car” actually is
 int x, y;
 float speed;
 int direction;
}

void setup () { // Initialize the cars by setting the values of their components
 size (600,300);
 myCar = new Car();
 myCar.x = 0;
 myCar.y = 300;
 myCar.speed = 0;
 myCar.direction = 1;

 yourCar = new Car();
 yourCar .x = 300;
 yourCar .y = 300;
 yourCar .speed = 0;
 yourCar .direction = -1;
}

void draw () { // Repeatedly draw and move each car
 background (255,255,255);
 drawCar(myCar);
 drawCar(yourCar);

 moveCar(myCar);
 moveCar(yourCar);
}

// Draw the car that is passed in as a parameter
void drawCar(Car aCar) {
 fill (150,150,150);
 rect (aCar .x, aCar .y-30, 100, 20);
 quad (aCar .x+20, aCar .y-30, aCar .x+30, aCar .y-45, aCar .x+55, aCar .y-45, aCar .x+70, aCar .y-30);

 fill (0,0,0); // black
 ellipse (aCar .x+20, aCar .y-10, 20, 20);
 ellipse (aCar .x+75, aCar .y-10, 20, 20);
 fill (255,255,255); // white
 ellipse (aCar .x+20, aCar .y-10, 10, 10);
 ellipse (aCar .x+75, aCar .y-10, 10, 10);
}

// Move the car that is passed in as a parameter
void moveCar(Car aCar) {
 aCar .x = int (aCar .x + aCar .speed* aCar .direction);

 if (mousePressed)
 aCar .speed = min (100, aCar .speed + 0.10);
 else
 aCar .speed = max(0, aCar .speed - 0.10);

 if (abs (aCar .x+50 - mouseX) <= aCar .speed)
 aCar .speed = 0;

 if (mouseX < aCar .x+50)
 aCar .direction = -1;
 else
 aCar .direction = 1;
}

COMP1405/1005 – Data Structures and Objects Fall 2011

 - 167 -

Creating an instance of a data structure that has many instance variables, may require many
lines of code. For example, creating and initializing myCar, in our previous example required
5 lines of code as follows:

 myCar = new Car();
 myCar.x = 0;
 myCar.y = 300;
 myCar.speed = 0;
 myCar.direction = 1;

In Processing (and Java) we can significantly reduce the amount of code that we need to write
when we create and initialize objects by making use of something called a constructor .

A constructor is a special procedure that is automatically called to initialize
a new object.

In fact, the parentheses that appear when we do new Car() indicate that Car() is in fact a kind
of procedure or function. This is actually a special kind of function known as the default
constructor . What it actually does is that it creates and returns a new fully-initialized object.
That is, it reserves space for the data structure’s components and sets them all to a value of
“zero”.

In our above example, however, we wanted to set the y value of the car to 300 and the
direction to 1 … we did not want zeros. In the yourCar variable, we further set the x value to
300 and direction to -1. The point is … each object that we create will often have their own
unique initial values. In a way, the idea is analogous to building our own computer … we
would like to have control to configure our own system with our choice of internal components
(i.e., we pick the hard drive, the video card, the motherboard, the monitor, etc..).

We are allowed to write our own constructor procedures so that we can supply our own initial
values for our objects. Making a constructor is almost identical to defining a function that
takes a bunch of parameters (i.e., one for each of the data structure’s instance variables) and
then uses these parameters to set the instance variable. The constructor must be written
within the data structure’s class definition as follows:

class Car { // Definition of what a "Car" actually is
 int x, y;
 float speed;
 int direction;

 Car(int p1, int p2, float p3, int p4) { // a constructor
 x = p1;
 y = p2;
 speed = p3;
 direction = p4;
 }
}

COMP1405/1005 – Data Structures and Objects Fall 2011

 - 168 -

Notice that the constructor’s name is identical to the class name (always uppercase letter to
start). Also, notice how there is one parameter for each of the 4 instance variables. The
types of the parameters must match the types of the instance variables. The names of the
parameters (i.e., p1, p2, p3 and p4) are arbitrary, but they must be unique from one another
and MUST NOT be the same as any instance variable names.

The code for the body of the constructor is simple. It simply sets each instance variable to
have the value of its corresponding parameter.

So what does this all mean ? It means that once we define this constructor, we can then call
the constructor with the parameter values that we want to have set in the instance variables.
Below shows the previous setup() code before we had the constructor … along with the new
code that makes use of the constructor:

Without the constructor: With the constructor:

Car myCar, yourCar ;

class Car {
 int x, y;
 float speed;
 int direction;
}

void setup () {
 size (600,300);
 myCar = new Car();
 myCar.x = 0;
 myCar.y = 300;
 myCar.speed = 0;
 myCar.direction = 1;

 yourCar = new Car();
 yourCar .x = 300;
 yourCar .y = 300;
 yourCar .speed = 0;
 yourCar .direction = -1;
}

Car myCar, yourCar ;

class Car {
 int x, y;
 float speed;
 int direction;

 Car(int p1, int p2, float p3, int p4) {
 x = p1;
 y = p2;
 speed = p3;
 direction = p4;
 }
}

void setup () {
 size (600,300);
 myCar = new Car(0, 300, 0, 1);
 yourCar = new Car(300, 300, 0, -1);
}

Notice the drastic reduction of code within the setup() procedure. The saving in code space
can be much more drastic when multiple kinds of objects are used together. For example,
consider that we created constructors for the FullName, Address and BankAccount objects:

class FullName {
 String firstName, middleName, lastName;

 FullName(String p1, String p2, String p3) {
 firstName = p1;
 middleName = p2;
 lastName = p3;
 }
}

COMP1405/1005 – Data Structures and Objects Fall 2011

 - 169 -

class Address {
 FullName name;
 int streetNumber;
 String streetName, city, province, postalCode;

 Address(FullName p1, int p2, String p3, String p4, String p5, String p6) {
 name = p1;
 streetNumber = p2;
 streetName = p3;
 city = p4;
 province = p5;
 postalCode = p6;
 }
}

class BankAccount {
 Address owner;
 int accountNumber;
 float balance;

 BankAccount (Address p1, int p2, float p3) {
 owner = p1;
 accountNumber = p2;
 balance = p3;
 }
}

Once we make such definitions, notice the significant simplification in code:

Without the constructor: With the constructor:
BankAccount b;
Address a;
FullName n;

n = new FullName();
n.firstName = "Patty"
n.middleName = "Ohh"
n.lastName = "Lantern"

a = new Address();
a.name = n;
a.streetNumber = 187
a.streetName = "Oak St."
a.city = "Ottawa"
a.province = "ON"
a.postalCode = "K6S8P2"

b = new BankAccount();
b.owner = a;
b.accountNumber = 829302
b.postalCode = 2319.67

BankAccount b;
Address a;
FullName n;

n = new FullName("Patty", "Ohh" , "Lantern");
a = new Address(n, 187, "Oak St." , "Ottawa" , "ON" , "K6S8P2");
b = new BankAccount(a, 829302, 2319.67);

So, constructors can be a significant factor in keeping your code simple. We will discuss
constructors in more detail in COMP1406.

COMP1405/1005 – Data Structures and Objects Fall 2011

 - 170 -

Example:

Recall our example that allowed us to throw a ball around in the window:

int x, y; // location of the ball at any time
float direction; // direction of the ball at any time
boolean grabbed; // true if the ball is being held
float speed; // the ball’s speed

final int RADIUS = 40; // the ball’s radius
final float ACCELERATION = 0.10; // acceleration/deceleration amount

void setup () {
 size (600,600);
 x = width /2;
 y = height /2;
 direction = random (TWO_PI);
 grabbed = false ;
 speed = 10;
}

void draw () {
 background (0,0,0);
 ellipse (x, y, 2*RADIUS,2*RADIUS);

 // move the ball forward if not being held
 if (!grabbed) {
 x = x + int (speed* cos (direction));
 y = y + int (speed* sin (direction));
 }
 else {
 x = mouseX;
 y = mouseY;
 }

 speed = max(0, speed - ACCELERATION);

 if ((x+RADIUS >= width) || (x-RADIUS <= 0))
 direction = PI - direction;
 if ((y+RADIUS >= height) || (y-RADIUS <= 0))
 direction = -direction;
}

void mousePressed () {
 if (dist (x,y, mouseX, mouseY) < RADIUS)
 grabbed = true ;
}

void mouseReleased () {
 if (grabbed) {
 direction = atan2 (mouseY - pmouseY, mouseX - pmouseX);
 speed = int (dist (mouseX, mouseY, pmouseX, pmouseY));
 }
 grabbed = false ;
}

COMP1405/1005 – Data Structures and Objects Fall 2011

 - 171 -

How could we adjust the code to use a Ball data structure ? What information in this
program, will make up the attributes of the ball ?

It is easy to see that 4 of the 5 variables actually represent the ball’s state … that is, its (x, y)
position, direction, and speed. Whether the ball has been grabbed or not is not necessarily
part of the Ball’s attributes. That is, a ball does not need to know whether or not it has been
grabbed. For example, we may have an application in which the balls are moving around
without the ability to be grabbed. So, here is what our Ball data structure would look like
along with its constructor:

class Ball {
int x, y; // location of the ball at any time
float direction; // direction of the ball at any time
float speed; // the ball’s speed

 Ball(int p1, int p2, float p3, float p4) {
 x = p1;

y = p2;
 direction = p3;
 speed = p4;
 }
}

Assuming that we define this class in our program, the remainder of the program can now be
adjusted as follows. Notice the difference between the code before the Ball class is used and
after:

Without Ball Class Definition

With Ball Class Definition

final int RADIUS = 40;
final float ACCELERATION = 0.10;

int x, y;
float direction;
float speed;
boolean grabbed;

void setup () {
 size (600,600);
 x = width /2;
 y = height /2;
 direction = random (TWO_PI);
 speed = 10;
 grabbed = false ;
}

void draw () {
 background (0,0,0);
 ellipse (x, y, 2*RADIUS,2*RADIUS);

class Ball { // as defined earlier
 ...
}

final int RADIUS = 40;
final float ACCELERATION = 0.10;

Ball b; // the Ball

boolean grabbed;

void setup () {
 size (600,600);
 b = new Ball(width /2, height /2,
 random (TWO_PI), 10);

 grabbed = false ;
}

void draw () {
 background (0,0,0);
 ellipse (b. x, b. y, 2*RADIUS,2*RADIUS);

COMP1405/1005 – Data Structures and Objects Fall 2011

 - 172 -

 if (!grabbed) {
 x = x + int (speed* cos (direction));
 y = y + int (speed* sin (direction));
 }
 else {
 x = mouseX;
 y = mouseY;
 }

 speed = max(0, speed - ACCELERATION);

 if ((x+RADIUS>= width)||(x-RADIUS<=0))
 direction = PI - direction;
 if ((y+RADIUS>= height)||(y-RADIUS<=0))
 direction = -direction;
}

void mousePressed () {
 if (dist (x,y, mouseX, mouseY) < RADIUS)
 grabbed = true ;
}

void mouseReleased () {
 if (grabbed) {
 direction = atan2 (mouseY - pmouseY,
 mouseX - pmouseX);
 speed = int (dist (mouseX, mouseY,
 pmouseX, pmouseY));
 }
 grabbed = false ;
}

 if (!grabbed) {
 b. x=b. x+ int (b. speed* cos (b. direction));
 b. y=b. y+ int (b. speed* sin (b. direction));
 }
 else {
 b. x = mouseX;
 b. y = mouseY;
 }

 b. speed = max(0, b. speed-ACCELERATION);

 if ((b. x+RADIUS>=width)||(b. x-RADIUS<=0))
 b. direction = PI - b. direction;
 if ((b. y+RADIUS>=height)||(b. y-RADIUS<=0))
 b. direction = - b. direction;
}

void mousePressed () {
 if (dist (b. x, b. y, mouseX, mouseY)<RADIUS)
 grabbed = true ;
}

void mouseReleased () {
 if (grabbed) {
 b. direction = atan2 (mouseY - pmouseY,
 mouseX - pmouseX);
 b. speed = int (dist (mouseX, mouseY,
 pmouseX, pmouseY));
 }
 grabbed = false ;
}

Notice how the ball’s attributes are all now defined inside the Ball object so that less variables
are needed in the main program. Also, the remainder of the code simply requires b. in front of
these attributes in order to go into the object to get their values.

While it seems as though we are writing a little bit more code now, the advantage of creating
this Ball data structure will be more clear later.

Chapter 5

Lists, Arrays and Searching

What is in This Chapter ?

When solving problems, we often deal with data that has been collected together. We often
must sift through collections of information to find answers. This chapter discusses how data
can be collected together into Arrays and also the various ways that we can search through
the data efficiently to find what we want.

COMP1405/1005 – Lists, Arrays and Searching Fall 2011

 - 174 -

 5.1 Collecting Data Using Lists

As we have seen in the last section, it is easy to define our own data structures. In fact, it is
such common practice to define data structures that there is an entire 2nd year course on Data
Structures and Algorithms. We will not discuss the deeper concepts related to data structures
in this course.

Obviously, we can define a particular data structure to suit our own needs. There are,
however, some common well-known kinds of data structures that are fundamental to the
development of more useful algorithms. Such data structures have “similar patterns” of what
they store and how they are used. When we have two or more particular data structures that
fall under the same “pattern” of usage, we group all such data structures into a category and
denote such a category as an abstract data type (ADT).

One such abstract data type is called a Collection which represents a group of objects that
are treated as a single entity. Collections appear in real-life situations such as:

• storing products on shelves in a store
• maintaining information on customers
• keeping track of cars for sale, for rental or for servicing
• a personal collection of books, CDs, DVDs, cards, etc...
• maintaining a shopping cart of items to be purchased from a website

A more specific kind of collection is called an Ordered Collection or List . The concept of a
list is intuitive to most of us. We know it as a bunch of items that are placed in some kind of
order (e.g., ordered in a first-come-first-served basis, or perhaps sorted alphabetically, etc..).

We may think of a list written on a piece of paper, perhaps of
items that need to be picked up at the grocery store. Even
though the order of the items is unimportant, it nevertheless
has an order (perhaps arbitrary) to the items. Sometimes, a
list may also be sorted, perhaps alphabetically or by price or
date. Such a kind of ordering would make the list a Sorted
List .

For the remainder of this discussion, we will assume that the
word List represents an unordered list of items, unless otherwise stated.

COMP1405/1005 – Lists, Arrays and Searching Fall 2011

 - 175 -

When using a list, there are certain standard functions and procedures that are expected to be
available. That is, we should be able to create a new list, add something to the list, remove
something from the list etc… One of the most common operations to perform on a list is to
iterate (or traverse) through its elements one-by-one in order. Let us look at some examples
that build up some lists of items and then do something simple with the list data.

Example:

Consider working as an assistant at a library. Imagine that someone
was handing books to you and you needed to place them side-by-side
on an empty shelf. What represents the collection data structure in
this situation ?

The shelf is the collection, and in fact … it is an ordered list since the
books will eventually have an order once they are on the shelf (i.e.,
in the list). Assuming that we had to find the empty shelf on our
own, how would we write an algorithm for stocking the shelf,
assuming that there is a shelf with enough space for all the books ?

Algorithm: PlaceBooks

1. shelf ← new List
2. while there are more books {
3. book ← get the next book
4. add book to shelf
 }

The algorithm is simple and logical, but it does not indicate where to add the books on the
shelf. It may not matter. In this case, step 4 may simply require adding the book to the end
of the shelf, beside the last one added.

However, if the books are to be sorted by their call numbers, then the order will matter. It will
require us to insert the book at a specific position on the shelf. We can be a little more
specific in our code by making use of the call number:

Algorithm: PlaceSortedBooks

1. shelf ← new List
2. while there are more books {
3. book ← get the next book
4. callNumber ← look at the book’s call number
5. insert book into shelf at the appropriate callNumber location
 }

COMP1405/1005 – Lists, Arrays and Searching Fall 2011

 - 176 -

Of course, step 5 can always be clarified further, but the algorithm as shown is understandable
at a high level.

Example:

Now assume that we want to transfer all the books from an existing shelf to an empty shelf of
the same size. How would we adjust the algorithm to do this, assuming that we are given two
parameters to the algorithm representing the shelves ?

Algorithm: TransferBooks
 shelf1: shelf containing some books to be transferred
 shelf2: an empty shelf to place the books onto

1. for each book on shelf1 {
2. remove book from shelf1
3. add book to shelf2
 }

The algorithm is straight-forward, and again … a similar version for sorted books can be
written.

Example:

The above example assumes that there is enough space on shelf2 to hold the books that were
on shelf1 . How could we adjust the algorithm to account for the situation where shelf2 is
smaller than shelf1 ?

Algorithm: TransferLimitedBooks
 shelf1: shelf containing some books to be transferred
 shelf2: an empty shelf to place the books onto

1. for each book on shelf1 {
2. if (there is space on shelf2) then {
3. remove book from shelf1
4. add book to shelf2
 }
 }

As we will see later, there are more details to work out when we begin to program, but for now,
it is important to understand how lists can be used in other important examples.

COMP1405/1005 – Lists, Arrays and Searching Fall 2011

 - 177 -

 5.2 List Searching Algorithms

In real life, we are often faced with the problem of sifting through
information (i.e., data) to determine whether or not a particular type of
value lies within the information. We call this the searching
problem, since we are searching through data for a (possibly partial)
solution to our problem at hand.

For example, we may look through a list to:

1. determine the existence of a piece of data (e.g., check if a person is on a list)
2. verify that all items satisfy a condition (e.g., is anyone missing from work today)
3. pick an appropriate candidate for our problem (e.g., find an available seat on the bus)
4. determine the most efficient solution (e.g., detect the shortest line at Walmart)

etc..

A linear search (or sequential search) is a method of checking every

one of the elements in a list, one at a time and in sequence, until a value is found
that satisfies some particular condition (e.g., until a match is found).

When developing algorithms, the simplest approach is often called a “brute force ” approach,
implying that there is a lack of human sensibility in the solution. A “brute force” algorithm is
one that is often easy to come up with, but that does not usually consider efficiency or any
form of ingenuity.

A linear search is the simplest kind of search since it involves naively looking through the
elements in turn for the one that matches the criteria. In all the examples below, we will
assume that the items that we are searching through are stored as an array (explained later).

Example:

Consider determining whether or not a person is on a list,
perhaps to allow them admittance into a special event. How
would you develop an algorithm to do this using a linear search ?

Assume for example that we wanted to find “Patty O. Lantern” on
the list shown here. It may be obvious that all we need to do is
to start at the top of the list and then work our way down towards
the bottom, comparing names along the way.

But how do we explain this procedure with an algorithm ?
Here is one way …

COM

Noti

use

scie

to le

Noti
gets

The
may
list m

In pr
look
loop

Noti
The
effic
on th

MP1405/1005

Algorithm
 nam
 sear

1. fou n
2. for e
3.
4.
 }
5. print

ce that the

of the Bool

nce. It is

et people kn

ce how the
s raised (i.e

above algo
y require us
matches).

ractice how
king through
p where the

Algorithm
 nam
 sear

1. fou n
2. whi l
3.
4.
5.
 }
6. print

ce now how
n, once the

cient in prac
he list. Not

– Lists, Array

: IsOnList
mes:
rchName:

nd ← fals e
each name

if (name =
 fou n

t found

for loop ch

lean variab

analogous

now when t

e flag is dow
., set to tru

orithm alwa
s to check a

wever, it is p
h the rest o
 flag is the

: IsOnList 2
mes:
rchName:

nd ← fals e
le ((found =

name ←
if (name =
 fou n

t found

w the false
e name is fo
ctice, althou
tice as well

ys and Search

 the
 the

e
e in the nam
= searchN a
nd ← true

hecks all the

ble found .

to the little

heir mail ha

wn (i.e., fals
ue) when th

ays takes lin
all of the na

possible to
f the names
loop condit

2
 the
 the

e
= false) AN
get the nex
= searchN a
nd ← true

value at th
ound, the fla
ugh in the w

that the loo

hing

- 17

e list (e.g., a
e name to s

mes list {
ame) then

e people on

This is call

 flag on ma

as arrived.

se) before t
e name ma

near time …
mes on the

exit the loo
s when we
tion:

e list (e.g., a
e name to s

ND (there a
xt name in t
ame) then

he beginning
ag is set an
worst case,
op ends wh

 78 -

array) to se
search for

n the list on

led a boole

ailboxes tha

the loop sta
atches the s

… that is, in
e list (i.e., th

op when a m
have alrea

array) to se
search for

re more na
the names

g ensures t
nd the loop
it may still

hen no mor

earch throug

ne-by-one.

an flag in

at the mailp

arts and tha
searchNa m

n the worst
he last nam

match is fou
ady found it

earch throug

ames to che
list

that we ent
will stop rig
require us
e names ar

gh

 Notice the

computer

person lifts u

at it only
me.

case it
me on the

und. After
. Conside

gh

eck)) {

er into the w
ght away.
to check al
re available

Fall

e

up

all, why ke
r using a w

while loop.
This is mor
l of the peo

e.

2011

ep
while

.
re
ople

COMP140

Exam

Conside
some co
determin
older ?
false if j

Likely w
But wha
under th

Do we n
any time

Alg o

1.
2.
3.
5.

6.

The stru
however
false wh
switch th

Exam

Now let
list. Pe
the door

How wo
or false
somethi

What is

Here is a

05/1005 – Lis

mple:

er now dete
ondition. F
nes whethe
 This is a k
ust one “un

we’ll begin a
at are we loo
he age of 18

need to che
e ? Here is

orithm: Al l
people:

allAdul t
for each
 if (

}
print allA

ucture of thi
r, that we b
hen there is
he flag arou

mple:

us go back
rhaps to ge
r so that ou

uld we adju
whether or
ng about th

different ?

a solution:

sts, Arrays an

rmining wh
For example
er or not eve
kind of verif
nder age” p

s before ch
oking for ?
8.

eck every pe
s the algorit

lAdults
 the

ts ← true
h person in
person. ag

allAdul t

Adults

s search al
began with a
s someone
und like this

k to our algo
et into the s
r age can b

ust the algo
r not a pers
he person, s

 Do we sti

d Searching

hether or no
e, how wou
eryone on
ication algo

person is fou

hecking eac
 We are lo

erson, or ca
thm:

e list (e.g., a

n the peopl e
e < 18) the
ts ← false

lgorithm is
an assump
found who

s ?

orithm that
special even
be verified.

orithm so th
son is on th
such as the

ll need a bo

 - 179 -

ot all items i
ld we write
a list is 18

orithm that s
und.

ch person’s
ooking for s

an we jump

array) to se

e list {
en

quite simila
tion that all
is under ag

searches fo
nt, we need

hat it didn’t s
e list but in
eir age ?

oolean flag

in a list sati
 an algorith
years of ag
should retu

s age one-b
someone wh

p out of the

earch throug

ar to our pre
l in the list a
ge. Do yo

or a name o
d to show o

simply retur
fact return

?

isfy
hm that
ge or
urn

by-one.
ho is

loop at

gh

evious exam
are adults a
u understan

on a
our ID at

rn true
ed

mple. Noti
and only se
nd why we

Fall 2011

ice
et the flag to

had to

1

o

COM

Noti
the a
later
have

We

Noti
the p

MP1405/1005

Algorithm
 peo
 sear

1. for e
2.
3.
 }
4. print

ce now tha
age of the p
r. Of cours
e done it wi

Algorithm
 peo
 sear

1. for e
2.
3.
 }

can also ev

Algorithm
 peo
 sear

1. fou n
2. whi l
3.
4.
5.
6.

 }

ce now tha
person has

– Lists, Array

: FindAge O
ple:
rchName:

each pers o
if (perso n
 age

t age

at we did no
person that
se, if all we
ithin the loo

: FindAge O
ple:
rchName:

each pers o
if (perso n
 print

ven adjust t

: FindAge O
ple:
rchName:

nd ← fals e
le ((found =

person ←
if (perso n
 print
 fou n
}

at the algori
s been foun

ys and Search

OfPerson
the list
the nam

on in the pe
n.name = s
← person

ot use a boo
t we found
wanted to

op:

OfPerson 2
 the
 the

on in the pe
n.name = s
t (person. a

the code to

OfPerson 3
 the
 the

e
= false) AN
← get the ne
n.name = s
t (person. a
nd ← true

thm is effic
d.

hing

- 18

(e.g., array
me to searc

eople list {
searchNa m
.age

olean flag b
in the list s
do was prin

2
e list (e.g., a
e name to s

eople list {
searchNa m
age)

o use a whi

3
e list (e.g., a
e name to s

ND (there a
ext person

searchNa m
age)

ient in that

 80 -

y) to search
ch for

me) then

but instead
o that we c
nt the age,

array) to se
search for

me) then

le loop so a

array) to se
search for

re more pe
in the peop

me) then {

it prints out

h through

we stored
could print it

we could

earch throug

as to allow

earch throug

eople to che
ple list

t the age a

t

gh

the loop to

gh

eck)) {

nd quits the

Fall

exit early:

e loop when

2011

n

COMP1405/1005 – Lists, Arrays and Searching Fall 2011

 - 181 -

One problem, however, with our above solutions is that they do not handle the situation in
which the person is not found in the list. In the 2nd and 3rd case, this may not be a problem
since nothing is printed. In the 1st case however, the age is printed on the last line. But this
age is only set when the person is found. What is the age set to when the person is not found
? This depends on the computer language being used. Often, the age will default to zero,
and so 0 will be printed. It might be a good idea to specify the “default” age at the top of the
algorithm … perhaps age = -1 or something like that to indicate that it is invalid.

Example:

Another very common task when searching through a set of values is to find the maximum or
minimum. Can you write an algorithm to find the age of the oldest person out of a set of
people ?

What do you need to keep track of as you are figuring out who has the maximum age ?

Algorithm: FindOldest
 people: the list (e.g., array) to search through

1. oldestSoFar ← 0
2. for each person in the people list {
3. if (person. age > oldestSoFar) then

4. oldestSoFar ← person. age
 }
5. print oldestSoFar

Notice how the oldestSoFar variable is used as a “record keeper” to remember the age of the
person who is currently the oldest as we search systematically through the list. We only
change that value once we find someone older.

To find the youngest person, the algorithm is nearly identical. Do you know what changes ?

Algorithm: FindYoungest
 people: the list (e.g., array) to search through

1. youngestSoFar ← 200
2. for each person in the people list {
3. if (person. age < youngestSoFar) then

4. youngestSoFar ← person. age
 }
5. print youngestSoFar

COMP1405/1005 – Lists, Arrays and Searching Fall 2011

 - 182 -

As you can see, the code is basically the same, except for the minor change in the condition
as well as the initial starting value for the youngestSoFar . Why did we set this to such a
large number like 200 ? What would have happened if we left it at 0 ? Do you understand ?

It is important to choose a number that we know to be larger than any other possible age of the
people that we are searching through. In our times, 200 is a reasonable number since all
people will have an age lower than this. However, just a few thousand years ago, people lived
longer than 200 years old. For example, if you recall the historical account of Noah (the man
that built the ark with all the animals on it) … history records that he lived 950
years old! People actually lived a long time back then .. the oldest recorded
was 969 (Noah’s grandfather whose name was Methuselah).

How would our algorithm perform if used on people who lived that long ?
Well, likely all people will be older than 200 years and therefore the algorithm
would never set the youngestSoFar variable and so the answer would
always be 200 … which is wrong.

So, it is always “better to be safe than sorry” by choosing a very large value that we know to be
above all possible values in our problem. Recorded history tells us therefore that any number
1000 or more would be sufficient to ensure that at least one of our people are below that age.
Some computer languages have predefined constants representing the maximum integer or
minimum integer. Processing and JAVA, for example, have constants that represent the
largest and smaller integers that can be stored: Integer.MAX_VALUE and Integer.MIN_VALUE .

These would be good value to use if we are trying to find maximum and minimum numerical
values. Whenever we find ourselves in need of determining the largest/maximum or
smallest/minimum value of a list, the templates above will always work.

Sometimes we need to keep track of additional information as we find the maximum and
minimum. For example, what if we wanted to know the name of the oldest person, not just
the age ? What do you need to keep track of as you are figuring out who has the maximum
age ?

Algorithm: FindNameOfOldest
 people: the list (e.g., array) to search through

1. oldestAge ← 0
2. oldestName ← “unknown”
3. for each person in the people list {
4. if (person. age > oldestAge) then {
5. oldestAge ← person. age
6. oldestName ← person. name
 }
 }
7. print oldestName

COMP1405/1005 – Lists, Arrays and Searching Fall 2011

 - 183 -

Notice how both the age and the name of oldest person is maintained throughout the loop.
The oldestAge is used to compare against each person’s age while the oldestName is simply
stored as the name of the person who had the oldestAge so far.

As before, we would have to choose some kind of default oldestName for the situation in
which no oldest person is found. However, this would only occur when all people are 0 years
of age or more likely when there is nobody on the list. Provided that we choose a proper
starting oldestAge , then the default oldestName will only be an issue in the case where the
list is empty.

We could actually simplify the code to make use of the entire person data structure (with the
name , age, etc..) as opposed to just the name as follows:

Algorithm: FindNameOfOldest2
 people: the list (e.g., array) to search through

1. oldest ← the first person in the people list
2. for each person in the people list {
3. if (person. age > oldest. age) then

4. oldest ← person
 }
5. print oldest. name

Notice now that only one variable is needed because it is an entire data structure that contains
the name & age of the person who is the oldest . (Remember, a data structure is really just a
grouping together of data). In fact, if we wanted, on line 5 we could access or print out any (or
all) of that oldest person’s information because it is readily available within the data structure.

Notice that line 1 set the oldest to initially be the first person in the list. Beginning with the
first value in a list is a typical when finding a maximum or minimum value as opposed to
beginning with a value of null . That is because the very first person in the list would be
compared in line 3 with oldest.age . If oldest is null , then oldest.age would be undefined and
the code would not make sense.

Example:

In our examples above, we did not consider the situation in which people have the same name
and/or the same age. For example, consider what happens when we are searching for a
name in a list that has duplicates.

In the case where we are trying to find out whether a particular person is on the list, the
algorithm need not worry. Also, if we are trying to determine whether or not everyone on the
list is an adult, duplicates do not affect the algorithm either.

COM

Con
their
once

Wha
sear

Whic
exam
time
over

We
pers
this:

Ex

How
scor

MP1405/1005

nsider peop
r score on a
e and their

at would be
rchName is

Algorithm
 peo
 sear

1. for e
2.
3.
 }
4. print

ch score ge
mination of
es for the lis
rwritten by t

can actuall
son by mov
 print (sco

xample:

w could we
re for the pe

Algorithm
 peo
 sear

1. sco r
2. cou
3. for e
4.
5.
6.

 }
7. print

– Lists, Array

le playing a
a list. In thi
associated

e the result
s “Patty O.

: FindSco r
ple:
rchName:

each pers o
if (perso n
 sco r

t score

ets printed
f the code s
st shown ab
the 3rd valu

y adjust the
ving the prin
ore of pers o

alter the alg
erson ?

: Average S
ple:
rchName:

re ← 0
nt ← 0
each pers o

if (perso n
 sco r
 cou
}

t score / co

ys and Search

a game one
is case, a p

d score is lik

of the follow
Lantern”:

reOfPerso n
the list (e
the name

on in the pe
n.name = s
re ← pers o

? The last
shows that t
bove, the 1s

ue of 16.

e algorithm
nt procedure
on).

gorithm so

ScoreOfP e
the list (e
the name

on in the pe
n.name = s
re ← scor e
nt ← coun

ount

hing

- 18

e or more ti
person may
kely unique

wing algorit

n
e.g., array)
e to search

eople list {
searchNa m
on.score

t one does.
the score v
st and 2nd va

 to list all th
e from step

that it displ

erson
.g., array) t

e to search

eople list {
searchNa m
e + person
t + 1

 84 -

mes and re
y appear mo
e each time

thm if the

to search t
h for

me) then

 Careful
variable is s
alues are

he scores fo
p 5 to step 4

layed the av

to search th
for

me) then {
.score

ecording
ore than
.

through

set three

or that
4 like

verage

hrough

Fall 2011

COMP140

Notice h
understa
appeare

Exam

How abo

If you re
should t
What sh

1. P
2. P
3. P

What wo
case, th

person:

Alg o

1.
2.
3.
4.
5.
6.

7.

For the 2
(score >
you exp

hig h
hig h
for e

}

05/1005 – Lis

how the sco
and why we
ed on the lis

mple:

out finding

emember, th
he answer

hould the ou

Print the firs
Print the last
Print all thre

ould the alg
e format is

orithm: Hi g
people:

highest
highest
for each
 if (

 }
}
print hig

2nd case, w
>= highest
lain why the

hestScore
hestName
each pers o

if (pers o
 hig
 prin
}

sts, Arrays an

ore is totale
e needed to
st ? It is ne

the highest

he first step
be ? Well

utput be ?

t person wh
t person wh
e who have

gorithm look
identical to

ghestScor e
 the

Score ← 0
Name ← “u

h person in
person. sco

highest S
highest

ghestNam e

we just need
Score). T
e following

← 0
← “unknow

on in the pe
on.score >=
ghestScor e
nt (person .

d Searching

ed each tim
o also main
ecessary in

t score whe

p to problem
, three peo
 We have s

ho received
ho tied the
e the highe

k like in eac
o the one th

e
e list (e.g., a

0
unknown”

n the peopl e
ore > high e
Score ← p
Name ← p

e

d to change
The 3rd case

code will N

wn”
eople list {
= highest S
e ← perso n
.name)

 - 185 -

me we notice
ntain a cou n
n order to co

ere there ar

m solving is
ople in our e
some choic

d the highes
highest sco
st score.

ch case ?
hat found th

array) to se

e list {
estScore) t
person. scor
person. nam

e the condit
e is a little tr
NOT work ?

Score) then
n.score

e the perso
nt of how m
ompute the

re multiple p

s to underst
example he
ces:

st score.
ore.

For the firs
he oldest

earch throug

then {
re

me

ion in step
rickier. Ca

?

n {

on in the list
many times
e average.

people with

tand the pro
ere have the

st

gh

5 to
an

t. Also, do
the person

h the same

oblem. So
e highest sc

Fall 2011

you
n’s name

score ?

o what
core.

1

COMP1405/1005 – Lists, Arrays and Searching Fall 2011

 - 186 -

This algorithm would print out every person whose score exceeded the current high score as
we went through the list. Here would be the names printed:

Hugh Jarms, Shelly Fish, Mary Me, Patty O. Lantern, Ilene Dover

Now, while the last three names are correct, the first two do not share the same high score.
What is wrong with the algorithm ? We cannot simply print out the person whenever they
“beat” the currently best high score. We need to know that the currently high score is the
actual highest score before we print. So, we will need to print at the end, but somehow
remember all those who had the highest score.

To do this, we will need to keep a new list of people who share the high score. When do we
add to the list ? Do we ever need to reset the list ? Think about it.

Here is a revised (and correct) solution:

Algorithm: HighestScore
 people: the list (e.g., array) to search through

1. highestScore ← 0
2. highestList ← new List
3. for each person in the people list {
4. if (person. score > highestScore) then {
5. highestScore ← person. score
6. highestList ← new List
 }
7. if (person. score = highestScore) then

8. add person. name to highestList
 }
9. print highestList

Notice that whenever we find a new highest score, the highestList of people who had the
previous highest score is emptied out (step 7). Then in step 9, this person is added to that
newly emptied highestList . Whenever someone else is found who shares that highest score,
he/she is simply added to the highestList .

COMP140

Exam

Here is a
to an au
(for som
most po

Now how

Well thin
of cars a
likely bri
clipboar

When yo
write dow

Assume
new colo
would ju

Below is
order of

If we we
each co
all times

The clip
a list to s
list of co
to store

05/1005 – Lis

mple:

a tougher o
utoshow but
me strange/u

pular color

w do we ap

nk of real lif
and that yo
ing with you
d) so that y

ou enter the
wn the colo

e that you w
or down too
ust increme

s a picture s
red, white,

ere to take t
lor that we

s (represent

board/pape
store that.

olors , we w
the count s

sts, Arrays an

one now. W
t before we
unknown re
of car at th

pproach the

fe. Assumi
ur memory
u a piece of
you can kee

e autoshow
or on the pa

went to the n
o along with
nt its count

showing ho
 white, blue

this approa
write down
ting the cou

er itself repr
 In fact, sin

will need tw
s.

d Searching

What if we w
e left our roo
eason) to de
he autoshow

e problem ?

ng that the
is not perfe

f paper (pe
ep track of t

w and see th
aper and m

next car an
h a count of
t.

ow your clip
e, etc..:

ch in our pr
n on our clip
unt of the n

resents our
nce we nee

wo lists… on

 - 187 -

were on ou
ommate as
etermine th
w.

?

re were hun
ect, you wo
rhaps on a
the colors o

he first car,
aybe put th

d that it wa
f 1. If you

pboard gets

rogramming
pboard will
number of t

r list of colo
d a list of c

ne to store t

ur way
ked us

he

ndreds
ould

of cars that

 you would
he number

as a differen
find a car w

 updated a

g solution,
have a sing
times that c

ors so we w
counts alon
the colors

you find.

 look at its
1 beside it.

nt color. Yo
with the sam

s you enco

 etc..

then we ne
gle number
color appea

would need
ng with the
and one

color and t

ou would w
me color ag

ounter car c

 e

eed to realiz
r associated
ared).

Fall 2011

then likely

rite that
gain, you

colors in the

etc..

ze that
d with it at

1

e

COMP1405/1005 – Lists, Arrays and Searching Fall 2011

 - 188 -

At this point, we can do a partial algorithm that will count up the number of times that each
color appears at the show as follows:

Algorithm: CarColorCount
 cars: the list (e.g., array) to search through

1. colorsList ← new List
2. colorCountList ← new List
3. for each car in the cars list {
4. if (car.color is not in the colorsList) then

5. add car.color to colorsList
6. add 1 to colorCountList for the color corresponding to car.color
 }

Once this part of the algorithm has been completed, we have two lists filled in showing the
colors at the autoshow and their corresponding counts.

To find the most popular color, we simply need to find out which of these colors has the largest
value (i.e., the maximum count). We will assume that there are no duplicates (or that only the
first one with the maximum count is the answer).

The solution would then be to first count the colors using the above algorithm and then apply a
max/min algorithm similar to the one that found the name of the oldest person as we did
before:

Algorithm: MostPopularColor
 cars: the list (e.g., array) to search through

1. perform algorithm CarColorCount()
2. bestCountSoFar ← 0
3. bestColorSoFar ← unknown
4. for each color in the colorsList {
5. count ← count in colorCountList corresponding to color
6. if (count > bestCountSoFar) then {
7. bestCountSoFar ← count
8. bestColorSoFar ← color
 }
 }
9. print bestColorSoFar

Notice that the structure is similar to the standard min/max template except that we performed
a kind of pre-processing stage in step 1 to count the colors.

COMP1405/1005 – Lists, Arrays and Searching Fall 2011

 - 189 -

Alternatively, we could have combined the color counting and max-finding sub-algorithms
together:

Algorithm: CombinedMostPopularColor
 cars: the list (e.g., array) to search through

1. colorsList ← new List
2. colorCountList ← new List
3. bestCountSoFar ← 0
4. bestColorSoFar ← unknown

5. for each car in the cars list {
6. if (car.color is not in the colorsList) then

7. add car.color to the colorsList
8. add 1 to colorCountList for the color corresponding to car.color
9. count ← count in colorCountList corresponding to car.color

10. if (count > bestCountSoFar) then {
11. bestCountSoFar ← count
12. bestColorSoFar ← car.color
 }
 }
13. print bestColorSoFar

 5.3 Arrays

In most of our list examples, we were not overly concerned about particular positions of items
in the list. That is, we usually iterated through the items in the list one at a time, but were not
concerned about the number of the item within the list. When we used a while loop, we
simply asked to “get the next item in the list”. Therefore, we were essentially treating the list
as if it was unordered (i.e., as if the order did not matter):

for each person in the people list { … }
for each car in the cars list { … }
name ← get the next name in the names list

COMP1405/1005 – Lists, Arrays and Searching Fall 2011

 - 190 -

However, in our last example, we wanted to
maintain a count for each color in the list. When
we encountered a particular color, we needed to
find that color in the colorsList and add 1 to the
corresponding color in the colorCountList å

To do this, we need to make sure that we update
the correct counter each time. So, we need to
know the position of the color in the colorsList
and update the counter at the SAME position in
the colorCountList .

A list in which the order of the items is important to know, is called an ordered list . Some
programming languages have pre-defined data types to represent ordered lists with convenient
methods such as add , remove , insertItemAtPosition , getItemAtPosition , etc... However,
not all languages have such a convenient data type readily available.

All the popular programming languages do, however, have a fixed data type called an array .

An array is a collection of data items that can be selected by indices (or locations).

So, arrays are a means of “gluing” a bunch of variables side-by-side in some specified order.

Each item (also known as element) in an array is stored at a location which is specified by an
index . The index is an integer that identifies the location within the sequence of items.
Indices start at 0. Arrays are fixed-sized collections in that they can hold a fixed number of
items … that is … they don’t grow or shrink … they have a fixed size. In the above image, the
array holds exactly 10 items, so the indices go from 0 through 9. An index of 10 or higher
would be out of the array’s “bounds”, and would therefore be invalid. We often refer to the
“size” of the array as its length . The size/or length of the array is NOT the number of items
that we have put inside it, rather, it is the capacity of the array (i.e., the maximum number of
items that we can put into it). We will use anArray .length in our pseudocode to indicate the
length of an array which is stored in the anArray variable.

Arrays themselves are data types that store a particular kind of item within them. Each item is
understood to be of the same type (e.g., all integers, all floats, all Strings, all Cars, etc..). Here
are some examples of arrays that hold integers, Strings, Person objects and Car objects:

COMP1405/1005 – Lists, Arrays and Searching Fall 2011

 - 191 -

Notice how each item in the array is of the same type. The array data structure is quite
efficient in how it actually stores the items in memory. Once allocated in memory, the array
takes up a contiguous (i.e., connected without a break) sequence of memory locations.

If the data being store is simple primitive-like data, then it is stored
directly in the array one item after another. The sickDays variable
above, for example, represents an array with simple integers that
would be store sequentially in memory as shown here: å

If, however, the array’s data items are a more complex data type,
then it is stored differently in a way that depends on the
programming language.

For example, in JAVA/Processing, pre-existing objects may be
created and then the array would store simply pointers (e.g.,
memory addresses) to those objects. So an array of items of type
Person , would store a sequence of pointers to the individual
Person objects, as shown here in the friends array: å

Alternatively, in languages like C for instance, the array would
simply reserve contiguous space for the entire series of Person
data types by calculating the size of a person data structure and
multiplying by the size of the array.

COM

Beca
refe
varia

Of c
So,
also

So,
Thus
num

Ex

Con
som
the t
side

Uno

fou
for

}
pri

Noti
num
state
ther
indic

So y
loca

MP1405/1005

ause array
r to all of th
able to refe

course, whe
we need to

o need to su

we will use
s, we will u

mber within t

theArra

xample:

nsider for ex
meone’s nam

table below
e indicates t

ordered List

und ← fals
r each nam
if (name =
 fou n

nt found

ce a couple
mber (stored
ement cond
e is no nam
cate the na

you can see
ation of each

– Lists, Array

data is sto
he data by u
er to all the

en we want
o supply its
upply the in

e square bra
se the arra
the bracket

y[5]

xample our
me (i.e., sea
w shows the
the array ve

t Version

se
me in the na

searchNa
nd ← true

e of things w
d in variable
dition to acc
me variable
me by mea

e that the c
h item in th

ys and Search

red and acc
using a sing
items, even

to access a
index. Als
dex locatio

ackets (i.e.,
ay’s variable
ts as follow

previous a
archName
e code as w
ersion.

ames list {
me) then

with the ab
e i) of the it
cess the na
 to store th

ans of the s

ode is esse
e list by me

hing

- 19

cessible in
gle variable
n if there ar

a particular
so, each tim
on.

, []) whene
e name, foll

ws:

algorithm fo
) is on a lis

was used w

ove code.
ems in the

ame at posi
e name. In
quare brac

entially the
eans of its i

 92 -

contiguous
e name! Th
re thousand

r item, we n
me we want

ever we refe
lowed by sq

r determinin
t (i.e., nam
ith unorder

Array Ver

found ←
for index

 if (nam

}
print fou

 We are sp
array. The
tion i in the

nstead, we
ckets and in

same, exce
index.

s memory lo
hat is nice.
ds of them.

need to indi
t to put som

er to a parti
quare brack

ng whether
mes). The le
red lists, wh

rsion

← false
x i from 0 to
mes[i] = s

found ←

nd

pecifying in
en, this ind

e names ar
simply use

ndex i.

ept that we

ocations, w
 We can u

cate which
mething into

icular item
kets and pla

r or not
eft side of
hile the righ

o names .le
earchNam
true

the for loo
ex is used

rray. You m
the entire a

now need

Fall

we can actua
use just one

 one we wa
o the array w

in the array
ace the ind

t

ngth-1 {
e) then

p the index
in the if

may notice t
array and

to specify t

2011

ally
e

ant.
we

y.
dex

x

that

the

COMP1405/1005 – Lists, Arrays and Searching Fall 2011

 - 193 -

Example:

Recall the example that determined the person with the highest score in the unordered list.
Again, below is a comparison of the unordered list version with the array version. In the
example, people is the parameter containing Person data structures (i.e., objects), which
each have score and name attributes.

Unordered List Version Array Version

highestScore ← 0
highestName ← “unknown”
for each person in the people list {
 if (person. score > highestScore) then {
 highestScore ← person. score
 highestName ← person. name
 }
}
print highestName

highestScore ← 0
highestName ← “unknown”
for index i from 0 to people .length-1 {
 person ← people [i]
 if (person. score > highestScore) then {
 highestScore ← person. score
 highestName ← person. name
 }
}
print highestName

Notice that the code is almost identical again, except that we require the index. In order to
keep the code simpler, we added a line to set a person variable to the element of the array at
position i. This variable was not necessary. We could have substituted people[i] for person
as follows:

for index i from 0 to people .length-1 {
 if (people [i].score > highestScore) then {
 highestScore ← people [i].score
 highestName ← people [i].name
 }
}

The point is that each time we want to refer to a different person, we need to supply the index.

Example:

Now assuming that high scores can be tied, we wrote an algorithm that returned a new
unordered list of all people who obtained that high score:

COMP1405/1005 – Lists, Arrays and Searching Fall 2011

 - 194 -

Algorithm: HighestScore
 people: the list (e.g., array) to search through

1. highestScore ← 0
2. highestList ← new List
3. for each person in the people list {
4. if (person. score > highestScore) then {
5. highestScore ← person. score
6. highestList ← new List
 }
7. if (person. score = highestScore) then

8. add person. name to highestList
 }
9. print highestList

How can we adjust this to use arrays … even creating a new array to represent the solution ?
Let us first convert the code into code that assumes that the people list is an array:

highestScore ← 0
highestList ← new List
for index i from 0 to people .length-1 {
 if (people [i].score > highestScore) then {
 highestScore ← people [i].score
 highestList ← new List
 }
 if (people [i].score = highestScore) then

 add people [i].name to highestList
}
print highestList

Now, how do we adjust the code so that highestList is an array ? Recall that an array must
have its capacity specified when it is created. How big should this answer be ? Think of the
“worst-case-scenario” (i.e., the scenario that causes the array to be its largest size).

It is possible that everyone shares the same high score. In that case, the array would need to
be the same size as the original people list:

highestList ← new Array with capacity people .length

How do we add people to the highestList ? Well, recall that this array should just be a
sequence of Person data structures/objects. So, to add a person to the array, we need to
indicate where in the array it should go … that is … we need to supply an index in the range
from 0 to highestList.length – 1 .

Logically, the first person added should go at position 0 in the array, the next one in position 1,
the third in position 2, etc… So we will need to keep track of the next available location within
the array. This can be done with a simple nextLocation integer counter which starts at 0.

COMP1405/1005 – Lists, Arrays and Searching Fall 2011

 - 195 -

Then, we simply insert into the array by simply assigning the person to the location in the array
specified by nextLocation . Here is the code so far:

highestScore ← 0
highestList ← new Array with capacity people .length
nextLocation ← 0
for index i from 0 to people .length-1 {
 if (people [i].score > highestScore) then {
 highestScore ← people [i].score

 highestList ← new Array with capacity people .length
 nextLocation ← 0
 }
 if (people [i].score = highestScore) then {
 highestList [nextLocation] ← people [i].name
 nextLocation ← nextLocation + 1
 }
}
print highestList

Notice that we need to increase the nextLocation counter after we add a new person so that
the next person will be added right after it. Do you know what would happen if we did not
increase this counter ?

Assume that we were keeping track of the equal highest scores and suddenly we encounter a
better high score. What do we do ? All of the high scores that we have added to the
highestList are no longer highest scores.

Currently, our code simply replaces the highestList with a brand new highestList . Where
does the previous highestList go ? Well, it depends on the programming language. In
Processing/JAVA, this old/garbage array will be “garbage collected”. That is, the memory
space that this array is using up will automatically be discarded at a later point in time by the
system. However, in a language like C where WE are responsible for allocating and freeing
up the memory, we must make sure to free this memory before re-assigning a new array to the
highestList variable.

Regardless of the programming language, in both cases we would need to reset the
nextLocation back to 0 so that new items begin to be placed at the start of the array again.

Interestingly, what would happen if we removed this line from the first if statement:

highestList ← new Array with capacity people .length

Well, the highestList would contain some high scores that are no longer valid. However,
since we are resetting the nextLocation back to zero, all newly encountered high scores will
be added to the array such that they overwrite the previous high scores. Notice in this
example how the resetting of the nextLocation causes overwrite:

COMP1405/1005 – Lists, Arrays and Searching Fall 2011

 - 196 -

As a result, the final array may have some invalid data for all indices greater than
nextLocation . The nextLocation variable actually indicates (at all times) the number of
highest scores. Hence, even though the array is of size n, if the nextLocation variable has
the value of 3 at the end of the loop iteration, then there are only 3 valid high scores which are
located at the beginning of the array.

Example:

In the previous example, we produced a solution in which the resulting array had a size likely
greater than was necessary. For example, if the people array had 100 people in it and only
two had the highest score, the resulting array would be of size 100, yet only two values in the
array would be valid. This is wasteful. How can we adjust the algorithm so that the array has
a length that is exactly equal to the number of people with the highest score ?

Logically, we cannot know how many people have the highest score until after we have
checked all of the people. So, we must traverse the list at least one time before knowing how
big to make the array.

If we leave our code as it is now, before returning we could create a new array with the proper
size (i.e., size = nextLocation) and then copy the items over from the big array to the other
array. Then we can free the memory from the other array if necessary. We just need to
append this to the end of our algorithm’s code:

COMP1405/1005 – Lists, Arrays and Searching Fall 2011

 - 197 -

finalAnswer ← new Array with capacity nextLocation
for index i from 0 to nextLocation -1 {
 finalAnswer [i] ← highestList [i]
}

This code will copy the people from one array to the other. The highestList array will then be
discarded. This is done either through automatic garbage collection (as in Processing/Java),
or by manually freeing up the memory (as in C) … depending on the programming language
used.

Of course, the above solution may be considered wasteful in that a potentially large array
needs to be allocated and then disposed of. This is not a space-efficient solution.
Alternatively, we could adjust our algorithm to follow these steps:

1. Find the highest score
2. Find out how many people have the highest score
3. Create an array of the correct size
4. Fill up the array with all those with the highest score.

Separately, steps 1, 2 and 4 each require an iteration through the people in the list:

highestScore ← 0 // STEP 1 above
for index i from 0 to people .length-1 {
 if (people [i].score > highestScore) then
 highestScore ← people [i].score
}
highestCount ← 0 // STEP 2 above
for index i from 0 to people .length-1 {
 if (people [i].score = highestScore) then
 highestCount ← highestCount + 1
}
highestList ← new Array with capacity highestCount // STEP 3 above
nextLocation ← 0 // STEP 4 above
for index i from 0 to people .length-1 {
 if (people [i].score = highestScore) then {
 highestList [nextLocation] ← people [i].name
 nextLocation ← nextLocation + 1
 }
}
print highestList

While this solution is more space-efficient, it is less efficient in terms of running time, as it
requires an additional iteration through the list. However, with some careful thought, we can
combine steps 1 and 2. Do you know how ?

COMP1405/1005 – Lists, Arrays and Searching Fall 2011

 - 198 -

highestScore ← 0 // STEP 1 & 2 above
highestScoreCount ← 0
for index i from 0 to people .length-1 {
 if (people [i].score > highestScore) then {
 highestScore ← people [i].score
 highestScoreCount ← 0
 }
 if (people [i].score = highestScore) then
 highestScoreCount ← highestScoreCount + 1
}
highestList ← new Array with capacity highestScoreCount // STEP 3 above
nextLocation ← 0 // STEP 4 above
for index i from 0 to people .length-1 {
 if (people [i].score = highestScore) then {
 highestList [nextLocation] ← people [i].name
 nextLocation ← nextLocation + 1
 }
}
print highestList

Notice that we just needed to keep track of the number of people with the current high score …
the same way as nextLocation was used in the previous example to store the number of
people with the current highest score.

Example:

Recall our example for finding the most popular car color at the autoshow:

Algorithm: MostPopularColor
 cars: the list to search through

1. colorsList ← new List
2. colorCountList ← new List
3. colorsCount ← CarColorCount()
4. bestCountSoFar ← 0
5. bestColorSoFar ← unknown
6. for each color in the colorsList {
7. count ← count in colorCountList corresponding to color
8. if (count > bestCountSoFar) then {
9. bestCountSoFar ← count
10. bestColorSoFar ← color
 }
 }
11. print bestColorSoFar

COMP1405/1005 – Lists, Arrays and Searching Fall 2011

 - 199 -

CarColorCount()
1. for each car in the cars list {
2. if (car.color is not in the colorsList) then

3. add car.color to colorsList
4. add 1 to colorCountList for the color corresponding to car.color
 }
5. return the size of colorsList

Assume that the colorsList and colorCountList are now arrays:

The main algorithm remains largely similar, assuming that CarColorCount() returns the
number of unique colors:

Algorithm: MostPopularColor
 cars: the list to search through

1. colorsList ← new array with capacity cars .length
2. colorCountList ← new array with capacity cars .length
3. colorsCount ← CarColorCount()
4. bestCountSoFar ← 0
5. bestColorSoFar ← unknown
6. for index i from 0 to colorsCount {
7. if (colorCountList [i] > bestCountSoFar) then {
8. bestCountSoFar ← colorCountList [i]
9. bestColorSoFar ← colorsList [i]
 }
 }
10. print bestColorSoFar

How though can we adjust the CarColorCount() function to use arrays ? The code for
checking whether a car is in the list or not, is not as simple as this:

if (car.color is not in the colorsList) then …

COMP1405/1005 – Lists, Arrays and Searching Fall 2011

 - 200 -

We are going to have to go through the whole colorsList to determine if the car’s color is
already in there. This requires an additional loop (see steps 2 though 5 below) with some sort
of boolean flag as follows:

CarColorCount()

1. for each car in the cars list {
2. found ← false
3. for each color in the colorsList {
4. if (car .color = color) then
5. found ← true

 }

6. if (not found) then

7. add car.color to the colorsList
8. add 1 to colorCountList for the color corresponding to car.color
 }
9. return the size of colorsList

This code will add the color to the colorList when found has not be changed to true . The list
will therefore contain the proper colors when completed.

But we should adjust the code so that the colorsList ’s colors are accessed properly by integer
indices:

CarColorCount()

1. for each car in the cars list {
2. found ← false
4. for index j from 0 to colorsList. length-1 {
5. if (car .color = colorsList [j]) then
5. found ← true

 }

6. if (not found) then

7. add car.color to the colorsList
8. add 1 to colorCountList for the color corresponding to car.color
 }
9. return the size of colorsList

But there is a problem on line 7. Where in the colorsList do we add the newly found color ?
Logically, we should add it beside the last color that we added. But nowhere do we keep track
of where the last color was added. So, we should maintain a variable that indicates where to
add the next color. This variable will also serve as a counter that indicates how many colors
are currently in the list. That is good, because line 9 requires us to return that value:

COMP1405/1005 – Lists, Arrays and Searching Fall 2011

 - 201 -

CarColorCount()

1. colorsCount ← 0
2. for each car in the cars list {
3. found ← false
4. for index j from 0 to colorsCount {
5. if (car .color = colorsList [j]) then
6. found ← true

 }

7. if (not found) then {
8. colorsList [colorsCount] ← car.color
9. colorsCount ← colorsCount + 1
 }
10. add 1 to colorCountList for the color corresponding to car.color
 }
11. return colorsCount

Notice how the loop in line 4 needs only to go from 0 to the number of colors currently in the
list (i.e., colorsCount), not its capacity.

We are almost done. Line 10 is the last line to fix. In order to increase the count in the
colorsCountList we need to know the position of car.color in the colorsList . So we need
to, not only determine whether or not a color is already in the list, but also where (i.e., its index)
it is in the list.
So the boolean found flag will need to be an integer index instead:

CarColorCount()

1. colorsCount ← 0
2. for each car in the cars list {
3. colorPosition ← -1
4. for index j from 0 to colorsList. length-1 {
5. if (car .color = colorsList [j]) then
6. colorPosition ← j
 }

7. if (colorPosition = -1) then {
8. colorsList [colorsCount] ← car.color
9. colorPosition ← colorsCount
10. colorsCount ← colorsCount + 1
11. colorCountList [colorPosition] ← 0
 }
12. colorCountList [colorPosition] ← colorCountList [colorPosition] + 1
 }
13. return colorsCount

COMP1405/1005 – Lists, Arrays and Searching Fall 2011

 - 202 -

Notice how -1 is used to identify an invalid colorPosition . Also, notice how line 11 places a
0 in the colorCountList for all newly found colors. On line 12, both new and repeated colors
have their count incremented. That’s it. The code is complete.

Example:

Consider a program that continually asks for integers from the user, and adds them to an array
as they come in until -1 is entered, and then does something interesting with the numbers that
were entered. What is the structure of the algorithm ?

Algorithm: GetValidNumbers

1. numbers ← new array with some initial capacity
2. count ← 0
3. entered ← get a number from the user
4. while (entered is not -1) {
5. numbers [count] ← entered
6. count ← count + 1
7. entered ← get a number from the user
 }
8. do something with numbers

The code is straight forward. However, can you foresee a problem that may arise ?
Notice that each number coming in is added to the array according to the count position,
which is incremented each time a valid number arrives. When the loop has completed, count
represents the number of integers that were entered and added to the array.

It is possible that we may attempt to add an item beyond the array’s capacity. In such a case,
the program will usually crash (or stop unexpectedly and non-gracefully).

How do we address this potentially serious problem ? Since arrays are fixed size, we cannot
simply make more room within the existing array. Rather, a new bigger array must be created
and all elements must be copied into the new array. But how much bigger ? It’s up to us.

Here is how we could change the code to increase the array size by 5 each time it gets full …

COMP140

Alg o

1.
2.
3.
4.
5.
6.
7.
8.

9.

10.
11.
12.

13.

Of cours

Exam

Assume
the array

Alg o

1.
2.
3.

How cou
the array
recorded
can ove

So, to de
0 or nul

05/1005 – Lis

orithm: G e

numbe r
count ←
entered
while (e
 if

 }
 nu
 co
 ent
}
do some

se, we can

mple:

e that we ar
y) all peopl

orithm: R e
people:

for each
 if (

}

uld we do th
y will not ge
d on a vide
rwrite it (i.e

elete a piec
l. The arra

sts, Arrays an

etValidNu m

rs ← new a
← 0

 ← get a nu
entered is n
(count >=

tempAr r
for index
 tem
}
numbe r

mbers [cou
unt ← cou
teredNum b

ething with

increase by

re given an
e below the

emoveYou n
 the

h person in
person. ag

remove

his using an
et smaller.
otape, we c

e., replace it

ce of inform
ay will stay

d Searching

mbers

array with s

umber from
not -1) {
numbers .le
ray ← new
x i from 0 to
mpArray [i]

rs ← temp A

unt] ← ente
unt + 1
ber ← get a

numbers

y any amou

array of Pe
e age of 18

ngsters
e list to sea

n the peopl e
e < 18) the
person fro

n array ? W
 The situat

cannot actu
t) with a ne

mation from
the same s

 - 203 -

ome initial

m the user

ength) then
w array with
o number s
 ← numb e

Array

ered

a number fr

unt each tim

erson objec
.

arch through

e list {
en
m the peop

Well, an arr
tion is analo
ually remov
ew value.

an array, y
size, but the

capacity

n {
capacity n

s.length-1 {
ers [i]

rom the use

me, perhaps

cts and we n

h

ple list

ray is fixed
ogous to a

ve the item

you usually
e data will b

umbers .le

er

s even dou

need to dis

size, so wh
program
but we

replace it w
be deleted.

ngth + 5

bling the si

card (or rem

hen we rem

with

Fall 2011

ze.

move from

move data,

1

COMP1405/1005 – Lists, Arrays and Searching Fall 2011

 - 204 -

Algorithm: RemoveYoungstersArrayVersion
 people: the array to search through

1. for index i from 0 to people .length-1 {
2. if (people [i].age < 18) then
3. people [i] ← null
 }

This will replace all underage people with null , but the result array will be filled with “gaps” or
holes:

The holes may present two problems. First, we don’t know how many people are left in the
array. Second, when looping through the array we will encounter null objects that we need to
deal with properly.

To handle the issue regarding the amount of valid data remaining in the array, we can always
maintain a variable indicating the number of such valid elements as follows:

COMP1405/1005 – Lists, Arrays and Searching Fall 2011

 - 205 -

Algorithm: RemoveYoungstersArrayVersion2
 people: the array to search through

1. count ← 0
2. for index i from 0 to people .length-1 {
3. if (people [i].age < 18) then
4. people [i] ← null
5. otherwise
6. count ← count + 1
 }

This count variable will indicate the number of people who are 18 or over. The code above
assumes that the array was filled with people.

The second issue of being able to handle the holes implies that we check for a hole each time:

Algorithm: RemoveYoungstersArrayVersion3
 people: the array to search through

1. count ← 0
2. for index i from 0 to people .length-1 {
3. if (people [i] is not null) then {
4. if (people [i].age < 18) then
5. people [i] ← null
6. otherwise
7. count ← count + 1
 }
 }

However, it is often unpleasant to continually check for “holes” in the array like this. In fact, in
a typical application we are likely more often going to need to traverse through elements of an
array for display purposes than to search through the array to remove data. Therefore, it
would be more advantageous to “fill-in” the hole each time so that the valid array elements are
at the front-most part of the array at all times.

Assume that we have such a valid array in which all the elements are at the front-most part of
the array. Assume then, that we always have a count as to how many people are stored in
the array at all times.

Whenever we decide to remove a person, we can grab the person from the end of the array
and place it in that spot, then reduce our counter by one to indicate that we have one less
piece of data. We can even place null in the last location of the array to erase the data that
was there.

COMP1405/1005 – Lists, Arrays and Searching Fall 2011

 - 206 -

However, it is possible that the last person in the array that we try to move over is also
underage. Therefore, we could go ahead and move it over, but make sure to check the age of
the person that we moved over as well before we move on to the next index in the array.
Here is the code:

Algorithm: RemoveYoungstersArrayVersion4
 people: the array to search through
 count: number of people in the array

1. for index i from 0 to count – 1 {
2. if (people [i].age < 18) then {
3. people [i] ← people [count – 1]
4. people [count – 1] ← null
5. count ← count - 1
6. i ← i – 1 // decrease index so that next time we check this new item
 }
 }

Here is a picture of what is happening (the ages are shown in the array instead of the person
in order to save space):

COMP1405/1005 – Lists, Arrays and Searching Fall 2011

 - 207 -

Notice how the count continually decreases as elements are removed from the array. It is not
actually necessary to move the item to the open “holes”. The item may simply be copied
over, leaving “garbage” at the end of the array:

COMP1405/1005 – Lists, Arrays and Searching Fall 2011

 - 208 -

Example:

Assume that we already had a list of people sorted by their ages. How can we write code that
will insert a new person into the appropriate location in the array so that it remains sorted ?

To insert at some index position (e.g., i) we must shift all array items from indices i onwards
one position further in the array:

Here is the code to do this:

COMP1405/1005 – Lists, Arrays and Searching Fall 2011

 - 209 -

Algorithm: ArrayInsert
 people: the array of sorted people
 newPerson: the new person to insert into the array
 count: number of items currently in the array

1. if (count < people .length) then {
2. index ← 0
3. while (index < count) {
4. if (people [index].age < newPerson .age) then {
5. for index i from count -1 down to index { // count backwards
6. people [i+1] ← people [i]
 }
7. people [index] ← newPerson
8. count ← count + 1
9. index ← count // Need this in order to quit
 }
10. index ← index + 1 // Need this to check next position
 }
 }

Notice how the search for the insertion position continues until a person in the array has an
age less than that of the person being inserted. Then every person after that “found” position
is moved over to the right and the new person is simply added to that newly found position.

 5.4 Efficient Searching Using Arrays

We have discussed linear searching and how it sometimes requires us to iterate through all the
items in a list whereas at other times we can stop the iteration once we have found something
that positively answers our problem at hand. In the worst case, however, it can require a full
search through all the items.

There is another very popular search strategy called a binary search:

A binary search is an efficient method for finding a particular value in a

sorted list, that consists of continually reducing the search space by half during
each search step.

As stated, in order to perform a binary search it is necessary for
the elements to be in sorted order. If the elements are out of
order, the algorithm will not work.

The idea behind a binary search is easily understood using the
analogy of looking up someone’s name in the white pages of a
phone book. Image that you are looking for the last name

COMP1405/1005 – Lists, Arrays and Searching Fall 2011

 - 210 -

“Peterson”. If you opened the book in the middle and looked at the top of the page, chances
are that you would see a name that comes alphabetically before Peterson (e.g., Lanthier”) or
alphabetically after it (e.g., “Ryans”). If you saw “Ryans”, for example, then you know that
“Peterson” comes before it in the book (since the names are sorted), so you don’t bother
checking the 2nd half of the book, but instead turn your attention to the first half of the book.
Then, the problem kinda starts all over again with the first half of the book in that you will now
check from book from “A” to “Ryans”, ignoring the portion from “Ryans” to “Z”. The process
continues until the name is found, each time a big chunk of the phone book is eliminated from
the potential pages to search.

The “binary” from “binary search” indicates that the data is repeatedly divided into two halves.
How do we find the half way point ? Well, if the first page is 1 and the last page is 2000, we
just do (2000 – 1) / 2 = 999.5 which can be rounded up to 1000. But what about when we are
searching the top half of the book … perhaps from page 1000 to 2000 ? Then the same
formula of (2000 – 1000) / 2 = 500 which is not the middle. 500 is actually the number of
pages from page 1000 to the middle of the 1000 to 2000 range. So we need to add the offset
of the start page. The formula is therefore:

midPage = startPage + (endPage – startPage) / 2
or

midPage = (startPage + endPage) / 2

Here is an example of how the algorithm works if we were looking for the name Green :

Here is a more formal algorithm:

COMP1405/1005 – Lists, Arrays and Searching Fall 2011

 - 211 -

Algorithm: SearchPhoneBook
 phonebook: the book to search through
 searchName: the name you are looking for

1. startPage ← 1
2. endPage ← 2000 // or whatever the last page is
3. found ← false
4. while ((not found) and (startPage is not greater than endPage)) {
5. midPage ← (startPage + endPage) / 2
6. open the phonebook at midPage
7. currentName ← name at the top of midPage
8. if (currentName is the same as searchName) then
9. found ← true
10. else {
11. if (currentName comes alphabetically before searchName) then
12. startPage ← midPage + 1
13. else
14. endPage ← midPage - 1
 }
 }

Notice how the startPage (or endPage) is adjusted in line 12 (or 14) to be one more (or less)
than the midPage . That is because we have already checked the midPage , so there is no
need to have it remain in the list of items to search.

Of course, this algorithm works for any collection of sorted items. Assume that the items are
stored in an array. We can make the algorithm even more formal and compact as shown
below. This pseudocode assumes that the items in the array can be compared using a <
operator:

Algorithm: BinarySearch
 items: the array to search through
 searchItem: the item you are looking for

1. s ← 0
2. e ← items .length - 1
3. location ← -1
4. while ((location < 0) and (s <= e)) {
5. m ← (s + e) / 2
6. if (items [m] = searchItem) then
7. location ← m
8. else {
9. if (items [m] < searchItem) then
10. s ← m + 1
11. else
12. e ← m - 1
 }
 }
13. print location

COMP1405/1005 – Lists, Arrays and Searching Fall 2011

 - 212 -

The code has been adjusted to return the location of the found item, not just a boolean
showing whether or not it was found. Of course, if the item is not found, it will return -1.

Notice that it loops through the items one at a time and returns the same result. However, this
code is simpler than the binary search. In order to see the advantage of the binary search, let
us look at a real example.

Example:

As an example, assume that we have the following array of numbers and that we want to
determine whether or not the number 24 lies within the array:

Here is the result of applying the algorithm:

… and here is the result if we were searching for the number 18:

COMP1405/1005 – Lists, Arrays and Searching Fall 2011

 - 213 -

You may feel that this seems more complicated than simply searching through the elements
one-by-one. Yes, it is more complicated. Here is a comparative linear search:

Algorithm: LinearSearch
 items: the array to search through
 searchItem: the item you are looking for

1. i ← 0
3. location ← -1
4. while ((location < 0) and (i <= items .length - 1)) {
5. i ← i + 1
6. if (items [i] = searchItem) then
7. location ← i
 }
13. print location

But think about the advantages. Imagine checking the phone book for a name by always
starting your search from the front of the book and checking page by page. Do you
understand the advantage yet ?

In our above example, a linear search for the number 24 would require us to examine 10 array
items (i.e., 2, 3, 5, 7, 7, 12, 14, 19, 21, 24), while the binary search required us to examine only
3 array items (i.e., 19, 32, 24) before the number was found.

COMP1405/1005 – Lists, Arrays and Searching Fall 2011

 - 214 -

When searching for a number that is not there (e.g. 20), the linear search would have to be
exhaustive, checking all 16 items. However, the binary search required only 5 to be
examined.

Of course, the binary search code is longer and has more variables, so there is a bit of
“overhead” in getting it to work. Hence, the linear search is often much better to use when a
small number of items need to be searched. The advantage of the binary search comes when
the array size is large. For example, in the worst case scenario an array of around 1,000,000
items would require us to search all 1,000,000 items if the item is not in the array. However, a
binary search would only require a search of around log 2(1,000,000) ~= 20 items !!! The
logarithm (base 2) comes into play because we are continually discarding ½ of the array items
during each round through the loop. Can you imagine the time-savings of searching 1GB of
data ? It would check only 30 items at most in place of 1,000,000,000 !!!

As you continue with your degree in computer science, you will learn much more about
efficiency.

 5.5 Arrays in Processing

Recall that in Processing & Java, variables are defined by specifying their type (primitive or
object) as well as a label (the variable’s name). Array variables are defined similarly, but with
square [] brackets. Below is a table showing how to declare variables that hold a single value
verses variables that hold arrays (or multiple values):

Single-value variables Array variables

boolean hungry;
int days;
char gender;
float amount;
double weight;

Car myCar;

FullName myName;
Address myHomeAddress;
BankAccount myAccount;

boolean [] hungry;
int [] days;
char [] gender;
float [] amount;
double [] weight;

Car[] myCar;

FullName[] myName;
Address[] myHomeAddress;
BankAccount[] myAccount;

So you can see that arrays are declared similarly to regular variables. Note that the square
brackets may appear either with the type (as shown) or with the variable’s name as follows:

int days[];
Car myCar[];

Now these array variable declarations simply reserve space to store array objects, but it
actually does not create the array object.

COMP1405/1005 – Lists, Arrays and Searching Fall 2011

 - 215 -

So, the following code would print out null because the variable is not yet initialized:

int [] days;
println (days);

Notice above that we did not use the square brackets [] when you are using the array variable
in your code ... you only use the brackets when we define the variable.

To use this variable (which is just like any other variable), we must give it a value. What kind
of value should it have ? An array of course. But it may surprise you to know that we do not
call a constructor to create arrays. Instead, we use a special (similar) syntax as follows:

new ArrayType[ArraySize]

This is the template to create an array that can hold up to ArraySize values of type

ArrayType. Remember that arrays are fixed size, so you cannot enlarge them later. If you

are unsure how many items that you want to put into the array, you should chose an over-
estimate (i.e., a maximum bound) for its size. Here are some examples of how to give a value
to our 6 array variables by creating some fixed-size arrays:

int [] days;
double [] weights;
String[] names;
Car[] rentals;
Person[] friends;

days = new int [30]; // creates array that can hold 30 ints
weights = new double [100]; // creates array that can hold 100 doubles
names = new String[3]; // creates array that can hold 3 String objects
rentals = new Car[500]; // creates array that can hold 500 Car objects
friends = new Person[50]; // creates array that can hold 50 Person objects

Once we create arrays using the code above, the arrays themselves simply reserve enough
space to hold the number of objects (or data types) that you specified. However, it does not
create any of those objects!! The array is NOT initialized with new objects in each location.
Newly created arrays are filled with 0 for numbered arrays, character 0 (i.e., the null character)
for char arrays, false for boolean
arrays and null for Object-type
arrays.

Hence, the following code
produces the result shown in the
picture here:

int [] days;
Car[] cars;
Person[] friends;

days = new int [3];
cars = new Car[4];
friends = new Person[5];

COMP1405/1005 – Lists, Arrays and Searching Fall 2011

 - 216 -

Notice that the arrays which hold object types are simply filled with null values … there are no
Car objects nor Person objects created in the above code.

At any time, if we would like to ask an array how big it is (i.e., its size or capacity), we can
access one of its special attributes called length as follows:

println (days. length); // displays 3
println (cars. length); // displays 4

Remember that the length of an array is its overall capacity, it is not the number of elements
that you put into the array.

Values are actually assigned to an array using the = operator just as with other variables.
Here is an example of how to fill in our arrays:

int [] days;
Car[] cars;
Person[] friends;

days = new int [3];
cars = new Car[4];
friends = new Person[5];

days[0] = 34;
days[1] = 12;
days[2] = 65;
cars[1] = new Car("Red");
cars[3] = new Car("Blue");
friends[0] = new Person(...);
friends[1] = new Person(...);
friends[2] = new Person(...);

The picture here shows the result from this code →

Notice that we can insert an object at any location in the array, provided that the index is valid.

The following two lines of code would produce an ArrayIndexOutOfBoundsException :

days[3] = 87; // Error: index 3 is out of range
cars[10] = new Car("Yellow"); // Error: index 10 is out of range

A very common mistake made when learning to use arrays is to declare the array variable, but
forget to create the array and then try to use it. For example, look at this code:

Person[] friends = new Person[10];
println (friends[0].firstName); // Error!
println (friends[0].age); // Error!
println (friends[0].gender); // Error!

Although the above code does create an array that can hold Person objects, it actually never
creates any Person objects. Hence, the array is filled with 10 values of null .

COMP1405/1005 – Lists, Arrays and Searching Fall 2011

 - 217 -

The code will produce a NullPointerException because friends[0] is null here and we are
trying to access the attributes of a null object. We are really doing this: null.firstName …
which makes no sense.

Assigning individual values to an array like this can be quite tedious, especially when the array
is large. Sometimes, in fact, we already know the numbers that we want to place in an array
(e.g., we are using some fixed table or matrix of data that is pre-defined). In this case, to save
on coding time JAVA allows us to assign values to an array at the time that we create it. This
is done by using braces { } . In this case, neither the new keyword, the type nor the size of
the array are specified. Instead, we supply the values on the same line as the declaration of
the variable. Here are some examples:

int [] ages = {34, 12, 45};
double [] weights = {4.5, 23.6, 84.124, 78.2, 61.5};
boolean [] retired = { true , false , false , true };
String[] names = { "Bill" , "Jennifer" , "Joe" };
char [] vowels = { 'a' , 'e' , 'i' , 'o' , 'u' };

Here, the array’s size is automatically determined by the number of values that you specify
within the braces, each value separated by a comma. So the sizes of the arrays above are 3,
5, 4, 3 and 5, respectively.

Objects may also be created and assigned during this initialization process as follows …

Person[] people = { new Person("Hank" , "Urchif" , 19, 'M' , false),
 new Person("Don" , "Beefordusk" , 23, 'M' , false),
 new Person("Holly" , "Day" , 67, 'F' , true),
 null ,
 null };

Here we are actually creating three specific Person objects and inserting them into the first
three positions in the people array. Notice that you can even supply a value of null , for
example if you wish to leave some extra space at the end for future information. Hence the
people array above has a capacity (i.e., length) of 5.

COMP1405/1005 – Lists, Arrays and Searching Fall 2011

 - 218 -

Example:

Recall our example in which a ball was thrown around the window. How can we adjust the
code so that multiple balls are able to be thrown around ?

final int RADIUS = 40;
final float ACCELERATION = 0.10;

Ball b; // the Ball
boolean grabbed;

class Ball { // as defined earlier
 ...
}

void setup ()() {
 size (600,600);
 aBall = new Ball(width /2, height /2,
 random (TWO_PI), 10);
 grabbed = false ;
}

void draw () { ... }
void mousePressed () { ... }
void mouseReleased () { ... }

To begin, we will need to store an array of balls. We can adjust b to be an array balls . Then
in the setup() method, we need to create the array and fill it up with some balls:

One Ball Version Array of Balls Version

Ball b; // the Ball
boolean grabbed;
...
void setup () {
 ...
 aBall = new Ball(width /2, height /2,
 random (TWO_PI), 10);
 grabbed = false ;
}

Ball[] balls ; // lotsa balls
boolean grabbed;
...
void setup () {
 ...
 balls = new Ball[10];
 for (int i=0; i< balls .length; i++)
 balls [i] = new Ball(width /2, height /2,
 random (TWO_PI), 10);
 grabbed = false ;
}

Notice how we need to use a loop to fill in the array at each location. If we did not do this, the
array would be filled with null . Each ball is made as before, and placed in the array at
consecutive locations.

The draw() procedure will now need to draw ALL the balls. So we will need to loop through
them all in order to ensure that all get displayed. Here is how the code gets adjusted:

COMP1405/1005 – Lists, Arrays and Searching Fall 2011

 - 219 -

One Ball Version

void draw () {
 background (0,0,0);
 ellipse (b. x, b. y, 2*RADIUS, 2*RADIUS);

 if (!grabbed) {
 b. x = b. x + int (b. speed * cos (b. direction));
 b. y = b. y + int (b. speed * sin (b. direction));
 }
 else {
 b. x = mouseX;
 b. y = mouseY;
 }

 b. speed = max(0, b. speed - ACCELERATION);

 if ((b. x + RADIUS >= width)||(b. x - RADIUS <= 0))
 b. direction = PI - b. direction;
 if ((b. y + RADIUS >= height)||(b. y – RADIUS <= 0))
 b. direction = - b. direction;
}

Array of Balls Version

void draw () {
 background (0,0,0);
 for (int i=0; i< balls .length; i++) {
 ellipse (balls[i] . x, balls[i] . y, 2*RADIUS, 2*RADIUS);

 if (!grabbed) {
 balls[i] . x = balls[i] . x + int (balls[i] . speed * cos (balls[i] . direction));
 balls[i] . y = balls[i] . y + int (balls[i] . speed * sin (balls[i] . direction));
 }
 else {
 balls[i] . x = mouseX;
 balls[i] . y = mouseY;
 }

 balls[i] . speed = max(0, balls[i] . speed - ACCELERATION);

 if ((balls[i] . x + RADIUS >= width)||(balls[i] . x - RADIUS <= 0))
 balls[i] . direction = PI - balls[i] . direction;
 if ((balls[i] . y + RADIUS >= height)||(balls[i] . y - RADIUS <= 0))
 balls[i] . direction = - balls[i] . direction;
 }
}

Notice how the for loop wraps around the code. Also, notice how each reference to b is
simply replaced by balls[i] to indicate the particular ball in the array.

However, there is a problem in regards to grabbing the ball. What ball are we grabbing ?
Should we be able to grab any ball ? Probably.

We will need to make a change so that instead of remembering whether or not we grabbed a
ball, we should remember which ball we grabbed , if any at all.

COMP1405/1005 – Lists, Arrays and Searching Fall 2011

 - 220 -

Therefore, we will change our grabbed boolean to be of type Ball, so that we can keep track of
the particular ball that was grabbed:

boolean grabbed; will become Ball grabbed;

In the setup() procedure, we will set it to null , since we have not grabbed any balls when the
program first starts.

grabbed = false ; will become grabbed = null ;

How do we change the if (!grabbed) line in the draw() procedure ? We want to move each
ball except the one that was grabbed. So we move the ball at location i as long as it is not the
grabbed one. So we need to change this line to if (grabbed != balls[i]) in the draw()
procedure.

Likewise, we need to adjust the mousePressed() procedure to search through all the balls
and find out which one was grabbed, then remember it as follows:

One Ball Version
void mousePressed () {
 if (dist (b. x, b. y, mouseX, mouseY) < RADIUS)
 grabbed = true ;
}

Array of Balls Version
void mousePressed () {
 for (int i=0; i<balls.length; i++) {
 if (dist (balls[i] . x, balls[i] . y, mouseX, mouseY) < RADIUS)
 grabbed = balls[i] ;
 }
}

Likewise, we need to adjust the mouseReleased() procedure to “un-remember” the grabbed
ball as follows:

One Ball Version
void mouseReleased () {
 if (grabbed) {
 b. direction = atan2 (mouseY - pmouseY, mouseX - pmouseX);
 b. speed = int (dist (mouseX, mouseY, pmouseX, pmouseY));
 }
 grabbed = false ;
}

Array of Balls Version
void mouseReleased () {
 if (grabbed != null) {
 grabbed . direction = atan2 (mouseY - pmouseY, mouseX - pmouseX);
 grabbed . speed = int (dist (mouseX, mouseY, pmouseX, pmouseY));
 }
 grabbed = null ;
}

COMP1405/1005 – Lists, Arrays and Searching Fall 2011

 - 221 -

Notice how we now use the grabbed variable to set the direction and speed of the grabbed ball
according to where we throw it.

 5.6 2D Arrays

In all of our search-related examples so far we assumed that we had a list of items that we are
searching through. A list of items is considered 1-dimensional in that we travel one way
through the list (although this could be done forwards or backwards). Sometimes, however,
we need to perform 2-dimensional searches by traveling up, down, left or right through data
that is usually arranged in a grid.

One particular class of problems that apply to 2-dimensional data is called image processing .
That is, there are many algorithms that process and manipulate images. All images can be
stored in pixels arranged in an (x,y) grid:

Sometimes the images are compressed and stored differently (e.g., jpg) but in our examples,
we will assume that the data is in what is known as a “raw” format where each pixel
(representing a dot of the image) is accessible and modifiable by a unique (x,y) location in the
image. Therefore, we can imagine that the image is stored in a 2-dimensional array as rows
and columns of pixels. Therefore, we will access a particular pixel in the image by using this
notation: image [row][column]

Here, each pixel requires two indices…one to represent the row (starting at zero), the other to
represent the column (starting at 0 as well). While there are many ways to represent pixels in
an image, we will assume for our examples that each pixel value is either stored as a:
 • grayscale value: Usually a number from 0 to 255 representing the amount of “gray” at

that location in the image. • RGB value: A set of 3 numbers (each from 0 to 255) representing the amount of “red”,
“green” and “blue” at that location in the image.

COMP1405/1005 – Lists, Arrays and Searching Fall 2011

 - 222 -

Example:

How would we print out the grayscale values of a gray scale image stored in an array with R
rows and C columns ? What does the loop structure look like ?

Algorithm: PrintGrayValues
 image: the 2D array representing the image
 R: number of rows in the image
 C: number of columns in the image

1. for each row r from 0 to R-1 {
2. for each column c from 0 to C-1 {
3. print image [r][c]
 }
 }

Nested for loops are usually everybody’s favorite control structure for iterating through the
elements of a 2-dimensional array.

The above code assumes that the value of the array is indeed the grayscale value. How
would the code differ if the image was stored in RGB format ? This depends on how the data
is actually stored. For example, it is possible that, instead of a single grayscale byte value per
pixel, the array may actually hold a data structure with accessible r, g, b values:

define Pixel to be made of {
.red
.green
.blue

}

In this case, we would simply need to access the appropriate values:

Algorithm: PrintRGBValues
 image: the 2D array of Pixel objects representing the image
 R: number of rows in the image
 C: number of columns in the image

1. for each row r from 0 to R-1 {
2. for each column c from 0 to C-1 {
3. print image [r][c].red
4. print image [r][c].green
5. print image [r][c].blue
 }
 }

COMP1405/1005 – Lists, Arrays and Searching Fall 2011

 - 223 -

In some programming languages, however, the pixels may be stored as large 3-byte or 4-byte
integers that encodes the RGB values in some manner (sometimes including gray or black
level as a 4th byte). In this case, the programming language will often provide functions for
extracting the relevant data and thus the code may look something like this:

Algorithm: PrintRGBValues
 image: the 2D array containing the image
 R: number of rows in the image
 C: number of columns in the image

1. for each row r from 0 to R-1 {
2. for each column c from 0 to C-1 {
3. print redAmount (image [r][c])
4. print greenAmount (image [r][c])
5. print blueAmount (image [r][c])
 }
 }

Regardless of the exact manner in which the color values are accessed, the processing of the
image data occurs in a similar manner.

Example:

A common operation in image processing is that of “blurring” an image. There are multiple
ways to blur an image. One way is simply to replace a pixel’s value with a new value that
corresponds to the average values of the pixels around it (including itself). A simple “box blur”
would examine the pixels in the rows/cols that are above/below the pixel to be blurred. The
number of rows and columns to use in the operation is determined by a parameter called the
window size . Each pixel in the blurred image has a value that represents the average of the
pixels within the window around it from the original image:

COMP1405/1005 – Lists, Arrays and Searching Fall 2011

 - 224 -

Imagine taking the following grayscale image and computing a blur for it. Here is the original
image containing pixels that are either white (i.e., 255) or black (i.e., 0):

Here is the image after blurring:

COMP1405/1005 – Lists, Arrays and Searching Fall 2011

 - 225 -

You can see that the black pixels becomes lighter due to the fact that they have incorporated
the white pixels around it in its new average value. Similarly, some of the white pixels became
gray due to the averaging of nearby black pixels.

How could we write the code to do this assuming that the image is grayscale and is stored in
an array ? We need to go through each pixel one-by-one…so a nested for loop is necessary.
As we move through the pixels, we need to find the average of all pixels in the window around
it and then set the new image’s pixel to that averaged value. Here is the basic idea, although
some details still need to be worked out:

Algorithm: BasicBlurGrayscaleImage
 image: the 2D array representing the image
 R: number of rows in the image
 C: number of columns in the image
 windowSize: width & height of the averaging window

1. blurredImage ← new Array with capacity image .length
2. for each row r from 0 to R-1 {
3. for each column c from 0 to C-1 {
4. sum ← 0
5. for each pixel p in the window around and including image [r][c] {
6. sum ← sum + p
 }
7. blurredImage [r][c] = sum / windowSize 2
 }
 }
8. image ← blurredImage

The loop on line 5 is not clear. How do we find each p pixel ?

One way is to consider the window pixels as being
“offsets” in the array with respect to the pixel’s
location. So, for example, to get the new value for
the pixel at row 3, column 3 (see below) with a
window size w of 5, we can consider offsets of
–w/2 to +w/2 in both the rows and columns (which
corresponds to -2 to +2 when w=5) as shown here å

Thus, we can use a for loop to iterate through the w2
pixels in the window:

for each rowOffset from –w/2 to +w/2 {
 for each colOffset from –w/2 to +w/2 {
 … image [r+rowOffset][c+colOffset]
 }
}

COMP1405/1005 – Lists, Arrays and Searching Fall 2011

 - 226 -

Of course, there will be some
issues along the borders of the
image because adding the offsets
will cause image coordinates that
are less than zero or greater than
the image’s width or height å

So we will have to check for these
“boundary” cases. We can either
ignore them (i.e., don’t average any
pixels that are along such a
border), or we can adjust the
computation so that it also counts
how many pixels are within the
boundary and averages just those
instead. We’ll take the 2nd
approach. So we will need to
count how many valid pixels are
within the window and use that to get the average. Here is the completed solution, making
sure that the nested window loops are snuggled nicely within our outer nested loops:

Algorithm: BlurGrayscaleImage
 image: the 2D array representing the image
 R: number of rows in the image
 C: number of columns in the image
 windowSize: width/height of the averaging window

1. blurredImage ← new Array with capacity image .length
2. for each row r from 0 to R-1 {
3. for each column c from 0 to C-1 {
4. sum ← 0
5. count ← 0
6. for each rowOffset from –w/2 to +w/2 {
7. for each colOffset from –w/2 to +w/2 {
8. if (((r+rowOffset) >= 0) AND (r+rowOffset) < R) AND
 ((c+colOffset) >= 0) AND ((c+colOffset) < C)) then {
9. sum ← sum + image [r+rowOffset][c+colOffset]
10. count ← count + 1
11. }
12. }
13. }
14. blurredImage [r][c] = sum / count
 }
 }
15. image ← blurredImage

COMP1405/1005 – Lists, Arrays and Searching Fall 2011

 - 227 -

Example:

Imagine some machine parts moving along a conveyor belt. Assume that a robot must pick
up a particular type part to assemble some product. Before the parts reach the robot, a
camera takes images of the
moving parts. The image is
processed to a black and white
silhouette showing the shape of
a part. We would like to
process the image to find the
edges of the part so that we
can compare it to a database of
“known” parts and identify the
shape for pickup by the robot
arm.

Let us consider the portion of
this problem that determines
the border (i.e., edge) of the
object in the silhouette image.

There are many strategies for
doing edge detection in an
image. However, we will use
an approach that computes a
chain of pixels along an object’s
boundary. This will allow us to
easily convert the pixel chain into
a polygon and then compare with the polygons stored in the database.

For now, assume that the image is given to us so that the
entire part is within the boundaries of the image and that
only one part is in the image … and the image is black
and white (i.e., binary). How do we find the border pixels
?

One approach may be to simply process the image by
looking at each black pixel and specifying that it is a
border pixel if it is not completely surrounded by 8 black
pixels all around it as shown here å

The result is that we could identify pixels that are clearly
inside the part and those that are along the border.

Below, on the left, is the result. On the right is the “thinner” result that would be obtained if we
“relaxed” our conditions a little and assume that a pixel is on the border only if the 4 pixels
above or below are white (ignoring diagonals):

COMP1405/1005 – Lists, Arrays and Searching Fall 2011

 - 228 -

Here is the code that takes the black and white image and colors the border pixels red:

Algorithm: BordersGrayscaleImage
 image: 2D array representing the image
 R: # rows in image
 C: # columns in image

1. blurredImage ← new Array with capacity image .length
2. for each row r from 0 to R-1 {
3. for each column c from 0 to C-1 {
6. if (image [r][c] is black) then {
6. if ((image [r+1][c] is white) OR (image [r-1][c] is white) OR
8. (image [r][c+1] is white) OR (image [r][c-1] is white)) then
9. image [r+1][c] ← red
13. }
 }
 }

The code above properly determines the border pixels.
However, there is a problem. It does not give us the order
of the pixels…so we cannot easily form a polygon (which
has vertices and edges).

A better approach would be to start at some “beginning”
edge pixel and then somehow trace around the border of
the shape until we get back at the beginning pixel. å

What pixel do we start the tracing at ? It does not matter,
but for simplicity, we can choose the top-most/left-most
pixel with some code like this:

COMP140

Alg o

1.
2.
3.
4.
5.

Now tha
trace the
? Here

The nex
possibili
in fact a
shows im

You may
simply c
start by
the belo

Assume
next poi

05/1005 – Lis

orithm: Fi n
image:
R:
C:

for each
 for

 }
}

at we have t
e border co
 are the po

xt pixel alon
ties … the
“stand-alon

mpossible s

y notice tha
check these
checking b
w/right pixe

e then that w
nt along the

sts, Arrays an

ndStart
 2D arra
 # rows
 # colum

h row r from
r each colum

if (imag e
 sta
 sta
 qu
}

the starting
ounter-clock
ossibilities:

ng the borde
5th one be
ne” black p
situations …

at all possib
e 4 possibili
elow/left fir

el first ? It

we ended u
e border.

d Searching

ay represen
in image

mns in imag

m 0 to R-1 {
mn c from 0
e[r][c] is bla
artR← r
artC← c
it with star t

g pixel, how
kwise aroun

er depends
ing a very s

pixel … perh
… given tha

bilities are b
ties in sequ

rst. Why ?
is clearly n

up finding a
But then wh

 - 229 -

ting image

e

0 to C-1 {
ack) then {

tR, startC

w do we star
nd the shap

s on the sha
special cas
haps noise
at we starte

below or to
uence. Do
 Look at th

not on the b

 black pixe
hat ? We

as starting

rt tracing ?
pe. Where

ape itself.
e where the
from the in
d at the top

the right.
oes the orde
he last ima

border of the

l in the belo
need to do

pixel

 Well, let u
e should the

Above, we
e black pixe

ncoming dat
p left black

You may a
er matter ?
ge above.
e shape.

ow/left posi
a similar p

us assume
e next borde

see that th
el that we f
ta. The las
pixel to beg

also notice t
 Yes. We
 What if we

tion. We h
rocess aga

Fall 2011

that we wil
er point be

here are 5
found was
st image
gin with.

that we can
e need to
e checked

ave our
ain:

1

l

n

COMP1405/1005 – Lists, Arrays and Searching Fall 2011

 - 230 -

Notice now that there are more possibilities (7, in fact). So how do we know how to choose
the next pixel ? We need to look around the last added pixel, again in a counter-clockwise
order … this time starting with the upper-left pixel….until we find a black pixel. Notice that the
pixel above (shown as X) is not a possible “next-pixel” because it would have been chosen
beforehand in the border tracing.

So, the first time, we started looking in the bottom left first, the next time we started in the
upper left … it is not consistent. In fact, the pixel that we start looking at first (in our trace
around the last added border pixel) depends on the direction that we came from.

It is not as straight-forward and intuitive as it seems. Lets draw some possibilities:

It looks like a lot of possibilities, but every second set of pictures is just a 90° rotated version of
a previous set. When solving problems in computer science, it is often necessary to write out
these “test cases” and to try and make sure that you cover every possible solution. In this
case, there are a small number of possibilities for each situation, so this is feasible. However,
in some problems, it is not possible to figure out all possible situations. In time, you will get to

COMP1405/1005 – Lists, Arrays and Searching Fall 2011

 - 231 -

know which kinds of problems will have a small fixed number of possibilities and which
problems are too difficult (or too time consuming) to determine all possible solutions.

Given each of the 8 possible incoming directions, the leftmost pictures above show the
direction to the next border pixel. Here is the series of images showing (red arrow) the
incoming direction (from previous border pixel) and the corresponding start direction (to
next potential border pixel) in which to start looking for the next border pixel:

So, to get the next pixel in the border, we could just use 8 if statements to figure it out:

if (incomingDirection is right) then
startDirection ← lowerRight

if (incomingDirection is up) then
startDirection ← upperRight

if (incomingDirection is left) then
startDirection ← upperLeft

if (incomingDirection is down) then
startDirection ← lowerLeft

if (incomingDirection is lowerRight) then
startDirection ← lowerLeft

if (incomingDirection is upperRight) then
startDirection ← lowerRight

if (incomingDirection is uperLeft) then
startDirection ← upperRight

if (incomingDirection is lowerLeft) then
startDirection ← upperLeft

However, there is an easier way. Consider numbering the pixels
around the a pixel as shown here to the right å

In this case, the leftmost 4 pictures above will assign the start direction
to be: (incomingDirection + 7) modulo 8 and the rightmost pictures
above will assign the start direction to be: (incomingDirection + 6)
modulo 8 . In both cases, the modulo 8 ensures that the maximum
value is 7. It accounts for the “wrap around” effect.

Interestingly, the 4 left pictures above all have even numbered incoming directions, while the
others are odd numbered. So, we can use this code instead of the 8 if statements above:

if (incomingDirection is even) then
startDirection ← (incomingDirection + 7) modulo 8

otherwise
startDirection ← (incomingDirection + 6) modulo 8

COMP1405/1005 – Lists, Arrays and Searching Fall 2011

 - 232 -

How do we check if a number is even or odd ? We can divide by 2 and check if the remainder
is 0 or 1. So, incomingDirection modulo 2 = 0 means that the incomingDirection is even.

OK, so we know the direction in which to start searching for the next border pixel. How do we
actually do this search ? Well, we need to search counter clockwise until we find a black
pixel, or until we checked all the 6 or 7 valid positions around the previous border pixel. In
fact, we can check all 8 positions…it does not really matter, but 7 is sufficient to cover both
cases.

But wait. How do we even check the pixel in the
startDirection ? Where is that pixel in the array with
respect to the last border pixel ? We need a way to convert
the startDirection into an actual row and column in the
array. Assume that the last border pixel is a row r, column
c. Notice here, how the offsets are set up according to
position (r, c) å

Again, we could set up a set of 8 if statements

if (startDirection is 0) then {
startR ← r
startC ← c + 1

}
if (startDirection is 1) then {

 … etc…

However, there is a shorter way. We can set up 2 arrays of constant offsets and then access
them using the startDirection as an index. This is called a lookup table .

Here are the tables:

rowOffsets = new array with numbers: [0, -1, -1, -1, 0, 1, 1, 1]
colOffsets = new array with numbers: [1, 1, 0, -1, -1, -1, 0, 1]

Then we simply compute the next potential border pixel as:

 image [r + rowOffsets [startDirection]][c + colOffsets [startDirection]]

Now all we need to do is to loop counter-clockwise around the last border pixel, looking for a
black pixel, starting with the incomingDirection . Here is a function that takes the last-added
pixel (r, c) in the image along the border that is being traced and a starting incomingDirection
and then determines the next pixel in the image.

The code returns a new point which represents the location of the next pixel along the border
during the tracing procedure. It also updates the incomingDirection to be the last
startingDirection in order to get ready for the next pixel along the border trace.

COMP1405/1005 – Lists, Arrays and Searching Fall 2011

 - 233 -

Algorithm: FindNextPixel
 image: 2D array representing the image
 incomingDirection: direction coming in to this pixel
 r: row# of pixel in image
 c: column# of pixel in image

1. rOff = new array with numbers: [0, -1, -1, -1, 0, 1, 1, 1]
2. cOff = new array with numbers: [1, 1, 0, -1, -1, -1, 0, 1]
3. if (incomingDirection modulo 2 is 0) then
4. startDirection ← (incomingDirection + 7) modulo 8
 otherwise
5. startDirection ← (incomingDirection + 6) modulo 8

6. count ← 0
7. found ← false
8. while (count < 8 AND found is false) {
9. if (image [r + rOff [startDirection]][c + cOff [startDirection]] is black) then
10. found ← true
 otherwise {
11. count ← count + 1
12. startDirection ← (startDirection + 1) modulo 8
 }
 }
13. incomingDirection ← startDirection
14. if (found is false) then
15. return null
 otherwise
16. return new point(r+rOff [startDirection], c+cOff [startDirection])

Now we have everything that we need for our algorithm. We know how to find the starting
pixel and then to determine the direction to get the next pixel. We can do this until the start
pixel is found again. We would need to set the incomingDirection to 7 as a start, since we
started looking for the first black pixel from the top/left in the image. Here is the completed
code:

COMP1405/1005 – Lists, Arrays and Searching Fall 2011

 - 234 -
0 1 2 3 4 5 6 7 8 9

0

1

2

3

4

5

6

7

Algorithm: TraceBorder
 image: 2D array representing the image
 R: # rows in image
 C: # columns in image

1. polygon ← new polygon with no points
2. startPixel ← null
3. for each row r from 0 to R-1 {
4. for each column c from 0 to C-1 {
5. if ((startPixel is null) AND (image [r][c] is black)) then {
6. startPixel ← (r, c)
7. add startPixel to polygon
 }
 }
 }
8. if (startPixel is not null)) then { // handles case where image is all white
9. direction ← 7
10. done ← false
11. while (done is false) {
12. nextPixel ← findNextPixel (image , direction , r, c)
13. if ((nextPixel is null) OR (nextPixel is same as startPixel)) then
14. done ← true
 otherwise
15. add nextPixel to polygon
 }
 }
16. return polygon

Notice that lines 2 through 7 simply find the starting pixel (if there is one), while lines 9 through
15 do the tracing along the border. Each time, a new border pixel (i.e., nextPixel) is added to
the polygon until the original startPixel is reached again. The code will also handle the case
where the startPixel is the only black pixel…in this case nextPixel will be null .

Example:

The examples that we have seen so far are related
to image processing. However, 2D arrays can be
used for any situation in which data is arranged in
a grid. For example, consider representing the
following maze by using arrays å

In Processing, we could represent this maze by
using a 2D array of ints indicating whether or not
 there is a wall at each location in the array (i.e., 1
for wall, 0 for open space).

COMP1405/1005 – Lists, Arrays and Searching Fall 2011

 - 235 -

Notice how we can do this by using the quick array declaration with the braces { } as we did
with one-dimensional (i.e., 1D) arrays:

int [][] maze = {{ 1,1,1,1,1,1,1,1,1,1 },
 { 1,0,0,1,0,0,0,0,0,1 },
 { 1,0,1,1,1,0,1,1,0,1 },
 { 1,0,1,0,0,0,1,0,0,1 },
 { 1,0,1,0,1,1,1,0,1,1 },
 { 1,0,0,0,1,0,1,1,1,1 },
 { 1,0,1,0,0,0,0,0,0,1 },
 { 1,1,1,1,1,1,1,1,1,1 }};

This array represents a grid with 8 rows and 10 columns. Notice that there are more brace
characters than with 1D arrays. Each row is specified by its own unique braces and each row
is separated by a comma. In fact, each row is itself a 1D array.

We could display this array quite simply by iterating through the rows and columns:

for (int row=0; row<8; row++) {
 for (int col=0; col<10; col++)
 print (maze[row][col]);
 println ();
}

1111111111
1001000001
1011101101
1010001001
1010111011
1000101111
1010000001
1111111111

Of course, we may want to display the maze with nicer-looking characters:

for (int row=0; row<8; row++) {
 for (int col=0; col<10; col++) {
 if (item == 1)

 print ('*');
 else

 print (' ');
 }
 println ();
}

* * *
* *** ** *
* * * *
* * *** **
* * ****
* * *

How though, would we draw the maze (as shown in the picture above) on the window in
processing ? We would need to decide upon how big each square would be and then loop
through drawing the squares in the appropriate color.

Here is a more complete program (assuming that the maze variable is set as shown earlier):

int GRID_SIZE = 20;

void setup () {
 size (GRID_SIZE*10, GRID_SIZE*8);
 stroke (0); // use a black border
}

void draw () {
 drawMaze();
}

COMP1405/1005 – Lists, Arrays and Searching Fall 2011

 - 236 -

void drawMaze() {
 for (int row=0; row<8; row++) {
 for (int col=0; col<10; col++) {
 if (maze[row][col] == 1)
 fill (150,200,255); // light blue
 else
 fill (255, 255, 255); // white
 rect (col* GRID_SIZE, row* GRID_SIZE, GRID_SIZE, GRID_SIZE);
 }
 }
}

Notice how the GRID_SIZE is an adjustable parameter which is used as a scalar to make the
maze appear larger or smaller.

Example:

Some mazes contain “dead-ends”. A “dead-end” is any location in the maze that has only one
way to get into it (i.e., it is surrounded by 3 walls). Using the previous maze example, how
can we adjust the code so that dead-ends are colored red ?

We need to identify a dead-end by checking the
grid locations around it. There are exactly 4 cases
that we should check as shown here å

Given a particular grid location maze[r][c] that is an open space (i.e., maze[r][c] = 0) we can
determine if it is a dead-end like this:

if (((maze[r-1][c] is a wall) AND (maze[r][c-1] is a wall) AND (maze[r][c+1] is a wall)) OR

 ((maze[r-1][c] is a wall) AND (maze[r+1][c] is a wall) AND (maze[r][c+1] is a wall)) OR

 ((maze[r+1][c] is a wall) AND (maze[r][c-1] is a wall) AND (maze[r][c+1] is a wall)) OR

 ((maze[r-1][c] is a wall) AND (maze[r+1][c] is a wall) AND (maze[r][c-1] is a wall))) then

 maze[r][c] is a dead end, so paint it red

This code checks each of the 4 cases by checking the grid locations above, below, to the right
and to the left of location (r,c). Can we do this in a simpler way, given that all maze locations
are represented as numbers either 0 or 1 ?

Yes. We can add up the maze locations of the 4 directions around (r,c). If their sum is 3,
then this is a dead-end.

count ← maze[r-1][c] + maze[r+1][c] + maze[r][c-1] + maze[r][c+1]
if (count is 3) then
 maze[r][c] is a dead end, so paint it red

COMP1405/1005 – Lists, Arrays and Searching Fall 2011

 - 237 -

Of course, this assumes that (r,c) is not along the border,
otherwise we may be trying to examine locations that are
outside of the maze boundaries (e.g., r-1<0, c-1<0, r+1>7,
c+1>7).

Of course, in our maze example, there are no open (i.e.,
white) locations along the border, so we would not need to
worry about going beyond the boundaries. If however, the
maze had openings along the border, we would have to check
for such boundary issues like this:

if ((r>0) AND (r<7) AND (c>0) AND (c<9)) then {
count ← maze[r-1][c] + maze[r+1][c] +
 maze[r][c-1] + maze[r][c+1]
if (count is 3) then

 maze[r][c] is a dead end, so paint it red
}

Example:

Assume that we had an underlying maze as in our previous example and that we wanted to
move an object (e.g., a small rat) around in the maze by clicking on successive adjacent maze
locations to move the rat.

To begin, here is what our rat will look like å

As we learned earlier in the course, the code for drawing this rat at a
particular location is as easy as drawing a combination of circles, a
triangle and some lines.

However, we would like to keep track of the rat’s location in terms of
the row and column that it lies in within the maze. Therefore, we will assume that the rat’s
position is recorded as a (row,col) in the maze and that we need to calculate the (x,y) position
based on this row and column.

The x and y position of the rat’s center (shown as the black dot above) can be computed as:

x ← col * GRID_SIZE + (GRID_SIZE /2)
y ← row * GRID_SIZE + (GRID_SIZE /2)

The GRID_SIZE is the width and height (in pixels) of each square grid location. So, multiplying
the row and column by the GRID_SIZE gives us the (x,y) location of the top left corner of the
grid location. However, we likely want to draw the rat in the center of the grid location, so we
need to add half of the GRID_SIZE:

COMP1405/1005 – Lists, Arrays and Searching Fall 2011

 - 238 -

Here is the code, then, for drawing the rat:

int ratRow, ratCol;

void drawRat() {
 int x = ratCol * GRID_SIZE + GRID_SIZE/2;
 int y = ratRow * GRID_SIZE + GRID_SIZE/2;
 fill (150, 150, 150); // gray
 triangle (x, y-20, x+10, y, x-10, y); // head
 line (x, y+10, x, y+20); // tail
 line (x, y-17, x-10, y-17); // whisker1
 line (x, y-17, x-10, y-20); // whisker2
 line (x, y-17, x+10, y-17); // whisker3
 line (x, y-17, x+10, y-20); // whisker4
 ellipse (x, y, 20, 20); // body
 fill (255, 0, 0); // red
 ellipse (x-3, y-14, 3, 3); // eye1
 ellipse (x+3, y-14, 3, 3); // eye2
}

How can we write the program that draws the rat at the location clicked on ?

Well, we know how to draw the maze and the rat… we just need to handle mouse-press
events. At any time, the draw() method should always draw the rat at its current location in the
grid. We only need to update that location when the user clicks on a new location.

int GRID_SIZE = 50;
int ratRow = 1, ratCol = 1;

void setup () { ... }
void drawMaze() { ... }
void drawRat() { ... }

void draw () {
 drawMaze();
 drawRat();
}

void mousePressed () {
 ... write code here ...
}

COMP1405/1005 – Lists, Arrays and Searching Fall 2011

 - 239 -

So, what do we do when the mouse is pressed ? We simply determine the ratRow and
ratCol that the user clicked on. Once we change these variables to the new location, the
draw() procedure should automatically draw the rat at the new location.

Determining the (row, column) from the (mouseX, mouseY) is not difficult. Recall that we
found the (x,y) to draw the rat by multiplying the columns and rows by the GRID_SIZE. To do
the reverse, we simply divide by the GRID_SIZE:

void mousePressed () {
 ratRow = mouseY / GRID_SIZE;
 ratCol = mouseX / GRID_SIZE;
}

Of course, we need to make sure that we move the rat to an “open” grid location. The rat
should be allowed to move to any grid location that is not a wall:

void mousePressed () {
 int newRow = mouseY/ GRID_SIZE;
 int newCol = mouseX/ GRID_SIZE;
 if (maze[newRow][newCol] == 0) {
 ratRow = newRow;
 ratCol = newCol;
 }
}

If we are not simply selecting a location for the rat, but in fact steering it around the maze, we
will want to ensure that we only move the rat to an adjacent grid location (i.e., up, down, left or
right). Given that the rat is at location (r,c), the valid new locations are (r-1, c), (r+1, c), (r, c-1)
and (r, c+1). Of course (r,c) is also a valid location, but the rat does not need to change
locations in that case. Here is the code:

void mousePressed () {
 int newRow = mouseY/ GRID_SIZE;
 int newCol = mouseX/ GRID_SIZE;
 if (maze[newRow][newCol] == 0) {
 if (((newRow == ratRow+1) && (newCol == ratCol)) ||
 ((newRow == ratRow-1) && (newCol == ratCol)) ||
 ((newRow == ratRow) && (newCol == ratCol+1)) ||
 ((newRow == ratRow) && (newCol == ratCol-1))) {

 ratRow = newRow;
 ratCol = newCol;
 }
 }
}

Can this code be reduced ? Yes. We can make use of the abs function by examining the
difference between the old row and the new row (same for columns). If the difference
between the old and new row values is 1 and the column difference is 0, then this is a valid
new position. Likewise, if the difference in columns is 1 and the rows is zero, then this too is a
good position. So, we can add up the differences in rows and columns and make sure that
the value is 1.

COMP1405/1005 – Lists, Arrays and Searching Fall 2011

 - 240 -

void mousePressed () {
 int newRow = mouseY/ GRID_SIZE;
 int newCol = mouseX/ GRID_SIZE;
 if (maze[newRow][newCol] == 0) {
 if (abs (newRow-ratRow) + abs (newCol-ratCol) == 1) {

 ratRow = newRow;
 ratCol = newCol;
 }
 }
}

Example:

How can we adjust this program so that the rat turns to face
the direction that it just travelled ?

Since the rat travels in just 4 directions, we need to display it
in one of 4 possible positions as shown here.

The only difference in the above code will be with respect to the drawRat() procedure. Recall
that this code draws the rat centered around the x and y location of the center of a grid square,
which is computed from the ratRow and ratCol variables:

Here is the code for drawing the rat facing upwards:

void drawRat() {
 int x = ratCol * GRID_SIZE + GRID_SIZE/2;
 int y = ratRow * GRID_SIZE + GRID_SIZE/2;
 fill (150, 150, 150); // gray
 triangle (x, y-20, x+10, y, x-10, y); // head
 line (x, y+10, x, y+20); // tail
 line (x, y-17, x-10, y-17); // whisker1
 line (x, y-17, x-10, y-20); // whisker2
 line (x, y-17, x+10, y-17); // whisker3
 line (x, y-17, x+10, y-20); // whisker4
 ellipse (x, y, 20, 20); // body
 fill (255, 0, 0); // red
 ellipse (x-3, y-14, 3, 3); // eye1
 ellipse (x+3, y-14, 3, 3); // eye2
}

What changes when we want the rat to face downwards ? In reality, it is only the y offset
values that need to be negated (i.e., mirrored with respect to the (x,y) origin). However, when
we want to face the mouse right or left, the X and Y values of the various points will need to be
swapped:

COMP1405/1005 – Lists, Arrays and Searching Fall 2011

 - 241 -

So, for example, looking at the code for drawing the triangle, here is how it changes depending
on the direction that we want to draw the rat:

triangle (x +20 , y, x, y -10 , x, y +10); // facing right
triangle (x, y -20 , x +10 , y, x -10 , y); // facing upwards
triangle (x -20 , y, x, y +10 , x, y -10); // facing left
triangle (x, y +20 , x -10 , y, x +10 , y); // facing downwards

Since there are many coordinates that need to change like this (i.e., the line endpoints and
ellipse centers), we will need to change the constants throughout the drawRat() procedure
depending on the direction of the rat.

The simplest way to write the code is to duplicate the code 4
times (i.e., once for each direction). This, however, is a lot of
duplication. We can do better. We can number the
directions as shown here å

We would thus need to create the following variable to store the rat’s current direction:

int direction; // 0 = right, 1 = up, 2 = left, 3 = down

Then, a better way to write the code would be to take advantage of the fact that directions 0
and 2 have negated offsets as well as directions 1 and 3. So, we can combine two of these
by creating a multiplication factor f with a value of either 1 or -1 as follows:

 void drawRat() {

 int f = 1;
 int x = ratCol*GRID_SIZE + (GRID_SIZE /2);
 int y = ratRow*GRID_SIZE + (GRID_SIZE /2);
 fill (150, 150, 150); // gray

 if ((direction == 1) || (direction == 2))

f = -1;

 if ((direction == 1) || (direction == 3)) {
 triangle (x, y+ f* 20, x+10, y, x-10, y);
 line (x, y- f* 10, x, y- f* 20); // tail
 line (x, y+ f* 17, x-10, y+ f* 17); // whisker1

COMP1405/1005 – Lists, Arrays and Searching Fall 2011

 - 242 -

 line (x, y+ f* 17, x-10, y+ f* 20); // whisker2
 line (x, y+ f* 17, x+10, y+ f* 17); // whisker3
 line (x, y+ f* 17, x+10, y+ f* 20); // whisker4
 ellipse (x, y, 20, 20);
 fill (255, 0, 0); // red
 ellipse (x-3, y+ f* 14, 3, 3);
 ellipse (x+3, y+ f* 14, 3, 3);
 }
 else {
 triangle (x+ f* 20, y, x, y+10, x, y-10);
 line (x- f* 10, y, x- f* 20, y); // tail
 line (x+ f* 17, y, x+ f* 17, y-10); // whisker1
 line (x+ f* 17, y, x+ f* 20, y-10); // whisker2
 line (x+ f* 17, y, x+ f* 17, y+10); // whisker3
 line (x+ f* 17, y, x+ f* 20, y+10); // whisker4
 ellipse (x, y, 20, 20);
 fill (255, 0, 0); // red
 ellipse (x+ f* 14, y-3, 3, 3);
 ellipse (x+ f* 14, y+3, 3, 3);
 }
 }

This is not too bad as it requires half the code than if we were to duplicate the drawing code 4
times. Perhaps, an even better way may be to create a 2D array of these constant offsets
where each row of constants refers to a rat direction. Here are two such arrays representing
the x and y offsets, respectively:

int [][] xOff = {{20, 0, 0, -10, -20, 17, 17, 17, 20, 17, 17, 17, 20, 14, 14},
 {0, 10, -10, 0, 0, 0, -10, 0, -10, 0, 10, 0, 10, -3, 3},
 {-20, 0, 0, 10, 20, -17, -17, -17, -20, -17, -17, -17, -20, -14, -14},
 {0, -10, 10, 0, 0, 0, 10, 0, 10, 0, -10, 0, -10, 3, -3}};

int [][] yOff = {{0, 10, -10, 0, 0, 0, -10, 0, -10, 0, 10, 0, 10, -3, 3},
 {-20, 0, 0, 10, 20, -17, -17, -17, -20, -17, -17, -17, -20, -14, -14},
 {0, -10, 10, 0, 0, 0, 10, 0, 10, 0, -10, 0, -10, 3, -3},
 {20, 0, 0, -10, -20, 17, 17, 17, 20, 17, 17, 17, 20, 14, 14}};

Now we can easily make use of these offsets within a simpler procedure as follows:

void drawRat() {
 int x = ratCol * GRID_SIZE + GRID_SIZE/2;
 int y = ratRow * GRID_SIZE + GRID_SIZE/2;
 fill (150, 150, 150); // gray
 int [] xs = xOff [direction];
 int [] ys = yOff [direction];
 triangle (x+ xs [0], y+ ys [0], x+ xs [1], y+ ys [1], x+ xs [2], y+ ys [2]);
 line (x+ xs [3], y+ ys [3], x+ xs [4], y+ ys [4]); // tail
 line (x+ xs [5], y+ ys [5], x+ xs [6], y+ ys [6]); // whisker1
 line (x+ xs [7], y+ ys [7], x+ xs [8], y+ ys [8]); // whisker2
 line (x+ xs [9], y+ ys [9], x+ xs [10], y+ ys [10]); // whisker3
 line (x+ xs [11], y+ ys [11], x+ xs [12], y+ ys [12]); // whisker4
 ellipse (x, y, 20, 20);
 fill (255, 0, 0); // red
 ellipse (x+ xs [13], y+ ys [13], 3, 3);
 ellipse (x+ xs [14], y+ ys [14], 3, 3);
}

COMP1405/1005 – Lists, Arrays and Searching Fall 2011

 - 243 -

As you can see, now no code is duplicated, but it does require some extra offset numbers.

Interestingly, if we have a fixed number of directions, we can simply determine the x and y
offsets for each additional direction and then increase the number of rows in the xOff and yOff
arrays. Alternatively, we can calculate the x and y offsets for an arbitrary direction by using
trigonometry. Then, we would not need the offset arrays. However, our code would become
more complex and slower, requiring trigonometric calculations for each point of the rat.

All that remains to do is to adjust the direction as the user clicks on the rat’s new location.
Recall the code for handling mouse presses. When we find the new location to move to, we
can simply compare the row and column that we are arriving at with the row and column we
are leaving and this will determine the direction:

void mousePressed () {
 int newRow = mouseY/ GRID_SIZE;
 int newCol = mouseX/ GRID_SIZE;
 if (maze[newRow][newCol] == 0) {
 if (abs (newRow-ratRow) + abs (newCol-ratCol) == 1) {

 if (newRow > ratRow) direction = 3;
 else if (newRow < ratRow) direction = 1;
 else if (newCol > ratCol) direction = 0;
 else if (newCol < ratCol) direction = 2;
 ratRow = newRow;

 ratCol = newCol;
 }
 }
}

Example:

As a final example, how can we get the rat to
travel through the maze on its own ? Assume
that we simply want the rat to continuously
travel around the maze without stopping.
How can we do this ?

One well-known method of traveling through a
maze is that of using the “right-hand rule”.
The right hand rule says that as long as we
keep our right hand touching a wall as we
walk, we will find a solution through the maze.

Does this work for all mazes ? I guess it
depends on what we call a “maze”.

COMP1405/1005 – Lists, Arrays and Searching Fall 2011

 - 244 -

Mazes with inner loops cannot necessarily be solved using this strategy … it would depend on
where the rat began following the walls.

Let us consider how the rat will move around
in the maze to follow the “right-hand rule”.
Assume that the rat has its “right hand” on a
wall. If it is able to move forward, it should
simply do so as shown here →

If however, the rat encounters a wall in front of
it, then it should simply turn left →

Then the rat will continue moving forwards as
it now has its right hand on the wall again. It
is possible that while traveling along it may
lose contact with the wall →

In this case, notice that the rat needs to regain contact again with the wall on its right. First, it
must turn right. However, the wall will still not be on the right of the rat after turning.
Therefore it also needs to move forward. Then, it will be back-on-track again. These three
cases actually encompass all situations. For example, if the rat ends up in a “dead-end”,
these three cases will get it out again.

So, how can we write an algorithm for traveling through this maze ? We simply follow the
wall-following model that we developed and produce a state machine diagram:

COMP1405/1005 – Lists, Arrays and Searching Fall 2011

 - 245 -

The code follows directly from the state diagram:

Algorithm: TravelMaze

1. repeat {
2. if (there is a wall on the right) then {
3. if (there is a wall in front) then
4. turnLeft()
5. otherwise
6. moveForward()
 }
7. otherwise {
8. turnRight()
9. moveForward()
10. }
 }

The code is straight forward. However, some details have been left out. For example, how
do we know if there is a wall on the right or not ? It depends on the rat’s current location in the
maze as well as its current direction.

Assume that the rat has the direction and location defined in variables as before:

int ratRow, ratCol, direction;

Also, assume that the maze has either 1 or 0 at each (row, column) location representing walls
or open spaces, respectively.

How do we determine whether or not there is a “wall on the right” of
the rat ? We would need to look at the position to its right in the
maze. Assuming that the rat is at position (r, c) , then the relative
positions around it are shown here å

So, we could write code like this:

COMP1405/1005 – Lists, Arrays and Searching Fall 2011

 - 246 -

if (((direction is 0) AND (maze[ratRow +1][ratCol] is 1)) OR

 ((direction is 1) AND (maze[ratRow][ratCol +1] is 1)) OR

 ((direction is 2) AND (maze[ratRow -1][ratCol] is 1)) OR

 ((direction is 3) AND (maze[ratRow][ratCol -1] is 1))) then {

To check whether or not there is a wall to the right of the rat’s location. A similar check can be
made for walls in front of the rat.

How do we make a turn ? We simply increase or decrease the direction. We can do this as
follows:

direction ä (direction + 1) modulo 4; // to turn left
direction ä (direction + 3) modulo 4; // to turn right

As with checking maze locations right or ahead, moving forward will depend on the direction of
the rat as well:

 if (direction is 0) ratCol ä ratCol + 1
 else if (direction is 1) ratRow ä ratRow - 1
 else if (direction is 2) ratCol ä ratCol - 1
 else if (direction is 3) ratRow ä ratRow + 1

So, we can merge all of this code together to come up with a complete solution. The solution
here has duplicated code. It is possible to reduce this code quite easily by making use of
procedures. See if you can shrink the code.

COMP1405/1005 – Lists, Arrays and Searching Fall 2011

 - 247 -

Algorithm: TravelMaze
 maze: the maze to travel through

1. ratRow , ratCol ä any valid starting location in the maze with wall on right
2. direction ä any valid starting direction in the maze with wall on right

3. repeat {

4. if (((direction is 0) AND (maze[ratRow +1][ratCol] is 1)) OR

5. ((direction is 1) AND (maze[ratRow][ratCol +1] is 1)) OR
6. ((direction is 2) AND (maze[ratRow -1][ratCol] is 1)) OR

7. ((direction is 3) AND (maze[ratRow][ratCol -1] is 1))) then {

8. if (((direction is 0) AND (maze[ratRow][ratCol +1] is 1)) OR

9. ((direction is 1) AND (maze[ratRow -1][ratCol] is 1)) OR
10. ((direction is 2) AND (maze[ratRow][ratCol -1] is 1)) OR

11. ((direction is 3) AND (maze[ratRow +1][ratCol] is 1))) then

12. direction ä (direction + 1) modulo 4; // turn left

 otherwise {
13. if (direction is 0) then
14. ratCol ä ratCol + 1
15. otherwise if (direction is 1) then
16. ratRow ä ratRow – 1
17. otherwise if (direction is 2) then
18. ratCol ä ratCol – 1
19. otherwise if (direction is 3) then
20. ratRow ä ratRow + 1
 }
 }
 otherwise {
21. direction ä (direction + 3) modulo 4; // turn right
22. if (direction is 0) then
23. ratCol ä ratCol + 1
24. otherwise if (direction is 1) then
25. ratRow ä ratRow – 1
26. otherwise if (direction is 2) then
27. ratCol ä ratCol – 1
28. otherwise if (direction is 3) then
29. ratRow ä ratRow + 1
 }
 }

Chapter 6

Sorting

What is in This Chapter ?

Sorting is a fundamental problem-solving "tool" in computer science which can greatly affect
an algorithm's efficiency. Sorting is discussed in this chapter as it pertains to the area of
computer science. A few sorting strategies are discussed (i.e., bubble sort, selection sort,
insertion sort and counting sort) and briefly compared. Finally, sorting is applied to the
problem of simulating a fire spreading across a forest.

COMP1405/1005 – Sorting Fall 2011

 - 249 -

 6.1 Sorting

In addition to searching lists, sorting is one of the most fundamental "tools" that a programmer
can use to solve problems.

Sorting is the process of arranging items in some sequence and/or in different sets.

In computer science, we are often presented with a list of data that needs to be sorted. For
example, we may wish to sort a list of people. Naturally, we may imagine a list of people's
names sorted by their last names. This is very common and is called a lexicographical (or
alphabetical) sorting. The "way" in which we compare any two items for sorting is defined by
the sort order . There are many other "sort orders" to sort a list of people. Depending on the
application, we would choose the most applicable sorting order:
 • sort by ID numbers • sort by age • sort by height • sort by weight • sort by birth date • etc..

A list of items is just one obvious example of where sorting is often used. However, there are
many problems in computer science in which it is less obvious that sorting is required.
However, sorting can be a necessary first step towards solving some problems efficiently.
Once a set of items is sorted, problems usually become easier to solve. For example,
 • Phone books are sorted by name so it makes it easier to find

someone's number.

 • DVDs are sorted by category at the video store (e.g., comedy,
drama, new releases) so that we can easily find what we are
looking for.

• A pile of many trading cards can be sorted in order to make it
easier to find and remove the duplicates.

 • Incoming emails are sorted by date so that we can read and

respond to them in order of arrival.

• Ballots can be sorted so that we can determine easily who had
the most votes.

COMP1405/1005 – Sorting Fall 2011

 - 250 -

Sorting is also an important tool in computer graphics. For example, scenes in a computer-
generated image may draw various objects, but the order that the objects are drawn is
important. Consider drawing houses as we did earlier in the course. Here is an example of
drawing them in (a) the order in which they were added to the program, and (b) in sorted order
from back to front:

(a) normal order (b) sorted order

Notice how the houses in (a) are not drawn realistically in terms of proper perspective. In (b),
however, the houses are displayed from back to front. That is, those with a smaller y-value
(i.e., topmost houses) are displayed first. Thus, sorting the houses by their y-coordinate and
then displaying them in that order will result in a proper image. This idea of drawing (or
painting) from back to front is called the painter's algorithm in computer science. Painters
do the same thing, as they paint background scenery before painting foreground objects:

COMP1405/1005 – Sorting Fall 2011

 - 251 -

In 3D computer graphics (e.g., in a 3D game) most objects are made up of either triangular
faces or quad surfaces joined together to represent 3D objects and surfaces. The triangles
must be displayed in the correct order with respect to the current viewpoint. That is, far
triangles need to be displayed before close ones. If this is not done correctly, some surfaces
may be displayed out of order and the image will look wrong:

 (a) wrong display order (b) correct depth-sorted order

 (a) wrong display order (b) correct depth-sorted order

Thus, sorting all surfaces according to their depth (i.e., distance from the viewpoint) is
necessary in order to properly render (i.e., display) a scene. The idea of displaying things in
the correct order is commonly referred to as hidden surface removal .

So, you can see that sorting is necessary in many applications in computer science.

Not only is sorting sometimes necessary to obtain correct results, but the ability to sort data
efficiently is an important requirement for optimizing algorithms which may require data to be
in sorted order to work correctly.

Therefore, if we can sort quickly, this can speed up search times and it can even allow our 3D
games to run faster and more smoothly. Because sorting is such a fundamental tool in
computer science which underlies many algorithms, many different "ways" of sorting have
been developed ... each with their own advantages and disadvantages.

How many ways are there to sort ? Many.

COMP1405/1005 – Sorting Fall 2011

 - 252 -

For example, here is a table of just some types of sorting algorithms:

Sorting Style

Algorithms

Exchange Sorts Bubble Sort, Cocktail Sort, Odd-even Sort,
Comb Sort, Gnome Sort, QuickSort

Selection Sorts Selection Sort, Heap Sort, Smooth Sort,
Cartesian Tree Sort, Tournament Sort, Cycle Sort

Insertion Sorts Insertion Sort, Shell Sort, Tree Sort, Library Sort

Merge Sorts Merge Sort, Polyphase Merge Sort, Strand Sort

Non-Compairon Sorts

Bead Sort, Bucket Sort, Burst Sort, Counting Sort,
Pigeonhole Sort, Proxmap Sort, Radix Sort

Why are there so many ways to sort ? These algorithms vary in their computational
complexity. That is, for each algorithm, we can compute the (1) worst , (2) average and (3)
best case behavior in terms of how many times we need to compare two items from the list
during the sort. Given a list of n items, a "good" sorting algorithm would require in the order of

n·log(n) comparisons, while a "bad" sorting algorithm could require n2 or more comparisons.

It is also possible to compare algorithms in terms of:

1. how many times a pair of items in the list are swapped (i.e., change positions).
2. how much memory (or other computer resources) is required to complete the sort.
3. how simple the algorithm is to implement.

It is not the purpose of this course to make a comparison of a pile of sorting algorithms.
However, it is good to get an idea as to how to write sorting routines in various ways so that
you get a feel as to how various algorithms can be used to solve the same problem. We will
examine a few of these now.

 6.2 Bubble Sort

The bubble sort algorithm is easy to implement (i.e., it is easy to write

the code for it). For this reason, many programmers use this strategy
when they are in a hurry to write a sorting routine and when they are not
worried about efficiency. The bubble sort algorithm has a bad worst-
case complexity of around n2, so it is not an efficient algorithm when n
becomes large.
Consider sorting some integers in increasing order. The idea behind any
sorting algorithm is to make sure that the small numbers are in the first
half of the list, while the larger numbers are in the second half of the list:

COMP1405/1005 – Sorting Fall 2011

 - 253 -

Regarding this "split" of numbers in the final sorted list, we can actually draw conclusions as to
relative positions of adjacent numbers in the list as we are trying to sort. For example,
assume that we examine any two adjacent numbers in the list. If the number on the left is
smaller than the one on the right (e.g., 4 and 9 in the picture below), then relatively, these two
numbers are in the correct order with respects to the final sorted outcome. However, if the
number on the left is larger than the one on the right (e.g., 7 and 3 in the picture below), then
these two numbers are out of order and
somehow need to "swap" positions to be in
correct order:

So, by generalizing this swapping principle to ensure "proper" ordering, we can take pairs of
adjacent items in the list and swap them repeatedly until there are no more out of order.
However, we need a systematic way of doing this.

The bubble sort approach is to imagine the items in a list as having a kind of "weight" in that
"heavy" items sink to the bottom, while "lighter" items float (or bubble up) to the top of the list.
The algorithm performs the "bubbling-up" of light items by swapping pairs of adjacent items in
the list such that the lighter one is ensured to be above the heavier item. It does this by
making multiple passes (i.e., multiple iterations or "rounds") through the list, each time moving
(or sinking) the heaviest item towards its final position at the end (or bottom) of the list.

Here is an example of how the algorithm works on a list of 5 integers:

As can be seen, during the first pass through the data, the heaviest item is moved (i.e., sinks)
to the end of the list because all numbers are smaller (i.e., lighter) than it, so they "bubble-up"
higher towards the top of the list. At the end of pass one, we are ensured that the largest item
is at the end of the list.

COMP1405/1005 – Sorting Fall 2011

 - 254 -

During the second pass, comparisons of adjacent items are made the same way and
eventually the next largest item sinks down toward the bottom. Notice that there is no need to
compare the 5 with 8 at the end of the 2nd pass since the 1st pass ensured that 8 was the
largest item. So the 2nd pass takes one less step to complete. The subsequent passes
continue in the same manner. Once 4 passes have been completed, the list is guaranteed to
be sorted.

Notice that the algorithm requires 10 comparisons of adjacent items. This is exactly twice the
list size. However, as the number of items in the list grows, it is easy to see that the algorithm
requires this many comparisons:

(n-1) + (n-2) + (n-3) + .. . + 3 + 2 + 1 ... which is: n·(n-1)/2 comparisons.

This is a little slow, but the algorithm is simple. Can you write the code for this algorithm ?
Hopefully, you can easily see the need for nested loops, as the outer loop will cover the
number of passes, while the inner loop will handle the comparisons during a single pass.

Here is a straight forward implementation:

Algorithm: BubbleSort1
 items: the array containing the items to sort

1. repeat items .length-1 times {
2. for each location i from 0 to items .length-2 {
3. if (items [i] > items [i +1]) {
4. temp ← items [i +1]
5. items [i +1] ← items [i]
6. items [i] ← temp
 }
 }
 }

This implementation, however, always requires (n-1)·(n-2) comparisons. We forgot to adjust
the code to eliminate one less comparison in the list each time, since each pass ensures that
one more item is in its final position. To do this, we need to adjust the count for the inner loop
to reflect the pass number that we are making. Here is the adjusted code:

Algorithm: BubbleSort2
 items: the array containing the items to sort

1. for each pass p from items .length-1 down to 0 {
2. for each location i from 0 to p-1 {
3. if (items [i] > items [i +1]) {
4. temp ← items [i +1]
5. items [i +1] ← items [i]
6. items [i] ← temp
 }
 }
 }

COMP1405/1005 – Sorting Fall 2011

 - 255 -

One more thing what if the list suddenly becomes sorted during the middle of the algorithm
(i.e., all numbers fall into place) ? Even worse ... what if the list is already sorted ? We can
add something to the algorithm to cause it to quit when the list is sorted. How do we know
when the list is sorted ? Well ... if we go through an entire pass and did not make any
swappings, then all integers must be in their correct position ... do you agree ? So we could
just check to ensure that a swap was made during a pass ... and if not ... then quit:

Algorithm: BubbleSort3
 items: the array containing the items to sort

1. for each pass p from items .length-1 down to 0 {
2. madeSwap ← false
3. for each location i from 0 to p-1 {
4. if (items [i] > items [i +1]) then {
5. temp ← items [i +1]
6. items [i +1] ← items [i]
7. items [i] ← temp
8. madeSwap ← true
 }
 }
9. if (madeSwap is false) then
 quit()
 }

 6.3 Selection Sort

The selection sort algorithm is a natural kind of sorting technique. It

is also easy to implement but like the Bubble Sort, it also has a bad worst-
case complexity of around n2, so it is not an efficient algorithm when n
becomes large.

The idea behind the algorithm is simple. It is similar to the idea of
stacking a set of blocks in a tower. Find the largest block, place it at the
bottom. Then find the next largest and place it on top of it, then the next
largest ... and so on ... with the smallest block being placed at the top.

When the data is in a list or an array, the algorithm is slightly more
complicated because we need to ensure that each item is always stored
somewhere in the array. So, when we find the largest item that needs to go at the end of the
array... we need to swap its position with the last item in the array. So this idea of swapping
positions is necessary. The algorithm itself is usually described as finding the minimum and
placing it at the front of the array ... which is opposite to the block-stacking example just
mentioned, but nevertheless produces the same sorted result.

COMP1405/1005 – Sorting Fall 2011

 - 256 -

The selection sort approach is to always keep track of (i.e., hold on to) the smallest item as
you go through the list. As the algorithm iterates through the items in the list it always
compares against the smallest item being held onto and if a smaller item comes along, it them
becomes the smallest item. Once the list has been checked, we then move the smallest item
to the front of the list and do another round starting with the second item.

Here is an example of how the algorithm works on a list of 5 integers:

Notice that the algorithm again requires 10 comparisons of adjacent items as well as 3 swaps.
As with the bubble sort, it is easy to see that the selection sort may require n·(n-1)/2
comparisons. However, much less swaps are made with the selection sort. The selection
sort may require (n-1) swaps, while the bubble sort can require up to n·(n-1)/2 (e.g., when the
list is in reverse order). You can see therefore, that the selection sort is a little more efficient.

The code for this algorithm is quite similar to that of the bubble sort in that it has nested loops
and compares items. However, this time, we compare each item against the minimum, not
against its adjacent neighbor. Also, the swap occurs outside the inner loop... not within the
inner loop as with the bubble sort.

COMP1405/1005 – Sorting Fall 2011

 - 257 -

Here is a straight-forward implementation:

Algorithm: SelectionSort
 items: the array containing the items to sort

1. for each pass p from 0 to items .length-1 {
2. minIndex ← p
3. for each index i from p+1 to items .length-1 {
4. if (items [i] < items [minIndex]) then
5. minIndex ← i
 }
6. temp ← items [p]
7. items [p] ← items [minIndex]
8. items [minIndex] ← temp
 }

 6.4 Insertion Sort

The Insertion Sort algorithm is perhaps the most natural sorting algorithm. It is very much

like the Selection Sort in that it attempts to sort by selecting one item at a time. Even though it
has a bad worst-case complexity of around n2, in general it is faster than the Selection Sort
because it does not search the whole list to look for the smallest item first.

The idea behind the algorithm is simple and relates to a real-life kind
of sort that we would naturally perform. Imagine on the table a "pile"
of unsorted items. The idea is to repeatedly select items from the
unsorted pile and place them in a newly sorted pile. So, the
algorithm maintains a portion of items that are sorted (i.e., the ones
at the front of the list) and a portion of items that still remain to be
sorted (i.e., the ones at the back of the list). Each time an item is
selected, the "sorted portion" grows by one, while the "unsorted pile"
shrinks by one. After doing this n times, the whole list is sorted. It is
similar to the idea of a librarian placing books on a shelf with
"already-sorted" books.

Here is an example of how the algorithm works on a list of 6 integers:

COMP1405/1005 – Sorting Fall 2011

 - 258 -

Notice how the left side of the list always contains items in sorted order, although additional
items still need to be inserted in there, so that sorted list is not complete until the last pass.
Notice in all except the 3rd pass that there was a need to search backwards through the sorted
portion in order to find the correct place to insert the key item.

COMP1405/1005 – Sorting Fall 2011

 - 259 -

Here is a straight-forward implementation. Notice the use of a while loop in order to allow the
loop to exit quickly as soon as the key item is larger than the ones remaining in the sorted
portion of the list:

Algorithm: InsertionSort
 items: the array containing the items to sort

1. for each pass p from 1 to items .length-1 {
2. key ← items [p]
3. i ← p - 1
4. while (i >= 0) AND (items [i] > key) {
5. items [i +1] ← items [i]
6. i ← i - 1
 }
7. items [i +1] ← key
 }

With a careful look at the code, you can see that the algorithm may need to make n·(n-1)/2
comparisons as with the Selection Sort. Also, there may be a need to make this many swaps
as well. However, in a typical scenario with an initial random arrangement of numbers, the
Insertion Sort takes about half the speed of a Selection Sort ... due to the ability of the while
loop to exit earlier. So, in general, the Insertion Sort is a little more efficient.

 6.5 Bucket Sort & Counting Sort

The Bucket Sort algorithm is an excellent sorting algorithm for

the special case in which there are many duplicate items and the
items are bounded by some small maximum size. It is a simple
algorithm and can run in worst-case complexity of 2·n time (under
certain situations) !

The idea of the algorithm is similar to that of what you may find at
the post office. Incoming mail is quickly placed into "roughly
sorted" bins (or buckets). Each item in a particular bin is "equal" in
some sense of the word (e.g., same destination city, same postal
code, same street, etc..). So each bin represents a partially-sorted list. Each bin can then be
sorted separately, in any manner. A special case arises when multiple items are considered
equal. That is, consider 1,000 student exam papers with integer grades ranging from 0% to
100% that need to be sorted by grade. You can sort them by making 101 bins representing
the grades and then placing each exam in the corresponding bin according to the grade.

COMP1405/1005 – Sorting Fall 2011

 - 260 -

In the case where we
actually have a set of fixed-
range integers that we
need to store, the
algorithm becomes what is

known as a Counting
Sort and is quite simple.

Consider an array with 14
numbers as show below.
The array is assumed to
contain integers from 1 to
4. We can make 4
buckets in the form of
integer counters and then
simply fill up the
corresponding bucket
counter as we iterate
through the numbers.
Then, to get the sorted list,
we just empty the buckets
in order →

This is very simple and it
only takes 2n steps. Here
is a straight-forward
implementation:

Algorithm:
BucketSort1
 items: the array containing the items to sort
 b: the number of bins to use

1. bins ← new array of size b each element set to 0

2. for each pass i from 0 to items .length-1 {
3. bins [items [i]-1] ← bins [items [i]-1] + 1
 }

4. i ← 0
5. for each bin x from 0 to b-1 {
6. for each count c from 0 to bins [x] {
7. items [i] ← x + 1
8. i ← i + 1
 }
 }

COMP1405/1005 – Sorting Fall 2011

 - 261 -

Notice in steps 2 and 3 how the bins array simply stores a count of how many items had that
bin's value. Then in steps 4 through 8 we simply go through each bin and fill in the items
array with the correct number of items from the bins.

A slightly more complex situation arises when we actually need to store the items themselves
in the bucket (i.e., not just counters). In our example with the exam papers, we need to store
the exam papers themselves, not just the grades.

To accomplish this, we need to store more than a counter in each bin. In fact, we need to
reserve space for the items themselves. How many items may fit into a bin ? Well, if all the
items are equal, they will end up in the same bin!! Therefore, even though it is likely that a
typical random set of items will be distributed evenly among the bins, it is possible that some
bins may get very full. So, to be safe, we would need to make each bin large enough to hold
all the items.

Therefore, our bins array in the above code would need to be a two-dimensional array of size
b·n so that each of the b buckets can store up to n items. Here is what the algorithm will do:

COMP1405/1005 – Sorting Fall 2011

 - 262 -

Now, in reality, only n items are being stored in the buckets. Therefore (b-1)·n spaces in the
2D array will remain empty. This is a little bit wasteful.

In our exam paper example, the 2D array would need to have space to store 101·1000 =
101,000 exam papers, although only 1,000 exam papers would actually be stored!!! That is
about 99% of wasted space! Of course, there are ways to fix this, as you will learn in your 2nd
year here in computer science. We can, for example, make initially small buckets based on
"estimates" as to how many items we expect to fall into any given bucket ... and then grow the
buckets as they become full. We will not discuss this further here. However, be aware that
there is often a trade-off between runtime complexity and storage space.

Here is the adjusted code to handle the storage of items instead of counters:

Algorithm: BucketSort2
 items: the array containing the items to sort
 b: the number of bins to use

1. bins ← new array of b empty arrays each of size items .length
2. binCount ← new array of b counters initially set to 0

3. for each pass i from 0 to items .length-1 {
4. binID ← getBinFor(items [i])
5. bins [binID][binCount [binID]] ← items [i]
6. binCount [binID]← binCount [binID] + 1
 }
7. i ← 0
8. for each bin binID from 0 to b-1 {
9. for each item c from 0 to binCount [binID] {
10. items [i] ← bins [binID][c]
11. i ← i + 1
 }
 }

The above code assumes that the order of any two exam papers with the same grade is
arbitrary/unimportant and thus do not need to be re-arranged in any way.

However, the algorithm can be generalized by allowing less bins. For example, considering
our exam paper example, if we use only 10 bins instead of 101, this would significantly reduce
the storage requirements.

We could, for example, put all grades in the 70%-79% range into one bin, all grades in the
80%-89% range into another bin, etc..

The result is that the array would be partially sorted, but not complete. Here is our example
again but with 2 buckets instead of 4:

COMP1405/1005 – Sorting Fall 2011

 - 263 -

Notice that
there is much
less wasted
space, but the
end-result is
that the array
is not sorted.
A solution
would be to
sort each
bucket before
filling up the
array again.
Depending on
the size, we
could use any
sorting
technique to
sort the
buckets.

We could, for example, use a bucket sort again on the two buckets:

COMP1405/1005 – Sorting Fall 2011

 - 264 -

The actual merging of the sorted buckets is easy again, as we simply use the same code as
before. The speed of the algorithm will depend on the kind of sorting technique that we use.

Here is the code for the general Bucket Sort where the buckets need to be sorted:

Algorithm: BucketSort3
 items: the array containing the items to sort
 b: the number of bins to use

1. bins ← new array of b empty arrays each of size items .length
2. binCount ← new array of b counters initially set to 0

3. for each pass i from 0 to items .length-1 {
4. binID ← getBinFor(items [i])
5. bins [binID][binCount [binID]] ← items [i]
6. binCount [binID]← binCount [binID] + 1
 }
7. for each bin binID from 0 to b-1 {
8. sort(bins [binID]) // use any algorithm...will affect runtime though
 }
9. i ← 0
10. for each bin binID from 0 to b-1 {
11. for each item c from 0 to binCount [binID] {
12. items [i] ← bins [binID][c]
13. i ← i + 1
 }
 }

In summary, with a large number of items and enough bin space (i.e., storage space), then a
Counting Sort is the best that we can hope for since it minimizes the number of steps needed
to be made in order to sort. However, remember that it only works well if there are a lot of
items that are equal. The more general Bucket Sort is used when the bin size is greater than
one and this can also be very efficient when there are many equal items.

COMP1405/1005 – Sorting Fall 2011

 - 265 -

 6.6 An Example - Fire Spreading Simulation

Consider another example of where sorting is necessary. Assume that we want to simulate
the spread of a fire across a terrain. Here is an example that shows three separate fires
spreading across a forested area, leaving charred remains behind:

To make all of this happen, we first need to understand how the forest & lakes are
represented, stored and displayed in our simulation. The following processing code displays
an image of forest and lakes from a file called "smallLakes.png":

PImage terrain; // image representing the forests and lakes

void setup () {
 terrain = loadImage ("smallLakes.png");
 size (terrain. width , terrain. height);
 image (terrain, 0, 0);
 loadPixels ();
}

void draw () {
 updatePixels ();
}

In the code above, the terrain variable is of type PImage which is the data type for storing
images in Processing. You must call the loadImage() function before you can use the image,
supplying the name of the image file that you want to load (which must be of type .gif , .jpg ,
.tga , or .png).

Once loaded, you can access the PImage object which contains fields for the width and
height of the image, as well as an array called pixels[] which contains the values for every
pixel in the image. You can use the width and height values to decide how big to make your
window.

The image(anImage, x, y) procedure will draw anImage onto the window with the top/left of
the image starting at the given x and y coordinate on the window (although in Processing there

COMP1405/1005 – Sorting Fall 2011

 - 266 -

is a minimum window width & height so if the image is very small, it may be centered in the
window).

Once the image has been displayed, you can call the loadPixels() procedure to load the pixel
data from the display window into a pre-defined Processing array called pixels . The
loadPixels() procedure must always be called before reading from or writing to pixels . We
can use the pixels array to examine and modify any pixel in the image (i.e., to determine
whether or not it is grass (green) or water (blue) and to set it to show a fire (orange) or a burnt
area (black).

Finally, the updatePixels() procedure will take the (possibly modified) data from the pixels
array and draw the image again on the window. During our simulation, we will do this
repeatedly in the draw procedure to show visually that the fires are spreading.

So, how then do we represent the fires ? Well, a fire can be shown by simply changing a pixel
to orange. Say, for example that we wanted the pixel at location (85,70) in the image to be on
fire. We simply need to change the correct pixel in the pixels array to orange. Since the
pixels array is one-dimensional, we need to determine the index in the array that represents
(85,70) in the image.

The pixels array stores each row of the image one after another. So the first row has
terrain.width pixels in it and these are the first pixels in the array representing the pixels in
which y = 0. Hence, if we want the 71st row (i.e., y = 70, since y starts at 0), then we need to
multiply the width of the image by the row (i.e., 70) to bypass the first 70 rows.

Therefore, to calculate the index of (85,70) we need to use this formula:

pixels[85 + (70*terrain.width)]

In general, the pixel at position (x, y) in the image can be set to orange as follows:

pixels[x + (y*terrain.width)] = color(255, 100, 0); // lotsa red & a bit of green = orange

So, we can simulate the fires by changing the appropriate pixels to orange for a while and then
black afterwards to indicate a burned area.

But to simulate the fire spreading process properly, we need to make the fires grow outwards
from their starting locations. But how can we do this ?

Intuitively, green pixels close to the starting location need to "catch fire" before ones that are
further away. Here, for example is a single fire spreading outwards:

 (a) (b) (c) (d) (e)

COMP1405/1005 – Sorting Fall 2011

 - 267 -

Notice that as the fire spreads ... there is a "wall" of fire that expands outwards, while the
interior burned portions remain black. Intuition again tells us that we only need to consider
this "wall" (also known as the active border) of the fire in order to determine the spread-
pattern of the fire. That is, each orange pixel is a miniature fire that needs to be spread
outwards.

Therefore, we will need to maintain this active border of all locations that are currently on fire
so that we can propagate the fire outwards from each of these locations. These border
locations can be simply represented as (x,y) points and to begin ... we can add the first fire
pixel location as the only border point upon startup. Here is how we can add code to do this:

PImage terrain; // The image with forest and lakes
Point start; // start location of fire
Point[] border; // points along active border of fire
int borderSize; // # points along active border of fire

// Data structure to represent a point
class Point {
 int x, y;
 Point(int ix, int iy) {
 x = ix;
 y = iy;
 }
}

void setup () {
 terrain = loadImage ("smallLakes.png");
 size (terrain. width , terrain. height);
 image (terrain, 0, 0);
 loadPixels ();

 border = new Point[1000];
 border[0] = new Point(85,70);
 borderSize = 1;
}

Notice that the border array begins with one point, but that it is able to hold a lot more as the
border grows. The number 1000 is somewhat arbitrary, but it is big enough to hold a lot of
border points. If the entire 107x102 pixel image was on fire ... that would require 17,340
border pixels potentially. However, we must remember that as the border grows it does not
get very large since the previous border points will change to black as the fire consumes the
forest. So, 1000 points is reasonable in our example, although with larger images a larger
border would be necessary.

So now that we know the active border pixels, how do we "grow" the fires ?
Well, for each pixel on the active border, we just need to look at the
neighboring pixels surrounding it (i.e., see picture (b) on the previous page).
Assume that the pixels are stored in a 2-dimensional image called image and
that each location image[x][y] is either colored green, blue, orange or black.

COMP1405/1005 – Sorting Fall 2011

 - 268 -

Given that a image[x][y] is on the active border of the fire, here is the idea for spreading the
fire from point (x,y):

image [x][y] ← BLACK // make burnt now

image [x-1][y] ← ORANGE // burn left now

image [x+1][y] ← ORANGE // burn right now

image [x][y-1] ← ORANGE // burn up now

image [x][y+1] ← ORANGE // burn down now

We will need to make sure that all of these "new" fires are added to the active border for the
next round of spreading. So, we need to repeat the process of extracting a fire location from
the active border, processing it (i.e., spread outwards from here) and then repeat.

Here is the algorithm that we have so far now:

Algorithm: FireSpread
 image: the image containing forests and lakes
 start: point representing the starting location of the fire

1. borders = new array of points, initially empty
2. borderSize = 0
3. borders [0] = start
4. while (borderSize > 0) {
5. x ← borders [borderSize -1].x
6. y ← borders [borderSize -1].y
7. image [x][y] ← BLACK // burnt
8. borderSize ← borderSize - 1

9. borders [borderSize] ← new Point (x-1, y)
10. borderSize ← borderSize + 1
11. image [x-1][y] ← ORANGE

12. borders [borderSize] ← new Point (x+1, y)
13. borderSize ← borderSize + 1
14. image [x+1][y] ← ORANGE

15. borders [borderSize] ← new Point (x, y-1)
16. borderSize ← borderSize + 1
17. image [x][y-1] ← ORANGE

18. borders [borderSize] ← new Point (x, y+1)
19. borderSize ← borderSize + 1
20. image [x][y+1] ← ORANGE
 }

COMP1405/1005 – Sorting Fall 2011

 - 269 -

We need to make sure however, that we do not process any pixels outside the valid range.
For example, if the border point is the top left pixel in the image, then we cannot try to
propagate the fire upwards nor leftwards because the point (-1,-1) would be out of range.
Therefore, we need to add some "bounds-checking" to ensure that this does not happen.

We need to place conditional statements around lines 9-11, 12-14, 15-17 and 18-20 as follows:

9. if (x > 0) then { // make sure not gone beyond left border
10. borders [borderSize] ← new Point (x-1, y)
11. borderSize ← borderSize + 1
12. image [x-1][y] ← ORANGE
 }

13. if (x < image .width -1) then { // make sure not gone beyond right border
14. borders [borderSize] ← new Point (x+1, y)
15. borderSize ← borderSize + 1
16. image [x+1][y] ← ORANGE
 }
17. if (y > 0) then { // make sure not gone beyond top border
18. borders [borderSize] ← new Point (x, y-1)
19. borderSize ← borderSize + 1
20. image [x][y-1] ← ORANGE
 }
21. if (y < image .height -1) then { // make sure not gone beyond bottom border
22. borders [borderSize] ← new Point (x, y+1)
23. borderSize ← borderSize + 1
24. image [x][y+1] ← ORANGE
 }
 }

At this point, we still have a slight problem. When we extract a border point, we need to
ensure that we don't re-propagate through the same points over and over again (i.e., through
points that are ORANGE or BLACK), otherwise we will never have an end to our fires and fires
can restart. Below, for example, shows how we spread out from the 4 fires around the center,
showing the number of times a location is added as a fire to the active border:

It may come as a surprise to you that 5 separate fires end up starting at the center location ...
even after that location has been burned. We need to ensure that we do not add points to the
border if there is already a fire there (i.e., ORANGE) or if there is a burned area there (i.e.,
BLACK) or if there is water there (i.e., BLUE).

To do this, we need to again modify lines 9, 13, 17 and 21 as follows:

COMP1405/1005 – Sorting Fall 2011

 - 270 -

9. if ((x > 0) AND (image [x-1][y] is GREEN)) then {

13. if ((x < image .width -1) AND (image [x+1][y] is GREEN)) then {

17. if ((y > 0) AND (image [x][y-1] is GREEN)) then {

21. if ((y < image .height -1) AND (image [x][y+1] is GREEN)) then {

As a result, we do not repeatedly add fires to the same location:

At this point, the active border will begin by growing from 1 point to having 4 new points in it,
representing 4 new fires (as shown above). However, you may notice in the image above that
the fire will spread in a diamond-like pattern. Here is what it would look like as we continued
this process:

This pattern is called an artifact of the simulation.

An artifact is something that appears in a scientific result that is not a true feature of
thing being studied, but instead a result of the experimental or analysis method, or
observational error.

Clearly, this is not a realistic fire-spread model as fires do not spread in diamond-shape
formation. In order to make the spreading more realistic, we need to cause the fire to spread
outwards by processing the pixels outwards in a circular pattern from the starting fire location:

COMP1405/1005 – Sorting Fall 2011

 - 271 -

To do this, we need to ensure that active border points that are closest to the center are
processed first. So, we need to sort the border points by their distance to the starting location
of the fire.

One way of doing this is to compute the distance from the center of the fire (i.e., the initial
starting location) to each point on the active border. Then, we can sort the points on the
active border according to their distance to the fire center and make sure that the next point to
be processed is the one that is closest to the center.

To do this, we would need to keep track of the
distance to each point on the active border which
would be set to the distance from the starting fire
location. To represent these distances, we can
have each point on the active border maintain its
distance from the fire's center. In processing, we
could re-define the Point data structure as shown
here. Here are the changes to the algorithm:

class Point {
 int x, y, distance;
 Point(int ix, int iy, float d) {
 x = ix;
 y = iy;
 distaince = d;
 }
}

Algorithm: FireSpread(image, start)

1. borders = new array of points, initially empty
2. borderSize = 0
3. borders [0] = start
4. while (borderSize > 0) {
5. x ← borders [borderSize -1].x
6. y ← borders [borderSize -1].y
7. image [x][y] ← BLACK
8. borderSize ← borderSize - 1
9. if ((x > 0) AND (image [x-1][y] is GREEN)) then {
10. borders [borderSize] ← new Point (x-1, y, distance from start to (x-1, y))
11. borderSize ← borderSize + 1
12. image [x-1][y] ← ORANGE
 }
13. if ((x < image .width -1) AND (image [x+1][y] is GREEN)) then {
14. borders [borderSize] ← new Point (x+1, y, distance from start to (x+1, y))
15. borderSize ← borderSize + 1
16. image [x-1][y] ← ORANGE
 }
17. if ((y > 0) AND (image [x][y-1] is GREEN)) then {
18. borders [borderSize] ← new Point (x, y-1, distance from start to (x, y-1))
19. borderSize ← borderSize + 1
20. image [x][y-1] ← ORANGE
 }
21. if ((y < image .height -1) AND (image [x][y+1] is GREEN)) then {
22. borders [borderSize] ← new Point (x, y+1, distance from start to (x, y+1))
23. borderSize ← borderSize + 1
24. image [x][y+1] ← ORANGE
 }
25. sort borders by distances from largest to smallest
 }

COMP1405/1005 – Sorting Fall 2011

 - 272 -

Any sort algorithm will suffice, as long as the sorting is done with respect to the distances
stored in each border point.

The above code will produce a nice "round" fire spread ... however ... the fire is still not
spreading realistically. Can you see what is wrong in the following images:

Notice particularly the 2nd image. See how the fire quickly spreads around the lake on the left
side of the fire border circle ? This is not realistic as the fire must spread from the bottom left
side of the lake upwards....and this takes time. So, the point is... we cannot assume that the
fire should be processed with respect to the distance from the center of the fire's starting point.
Instead, we must adjust the code so that the fire "bends" properly around obstacles.

To do this, we need to adjust our computation so that each new fire spreads time-wise relative
to the fire that spawned it. That is, the cost of a fire should be with respect to the distance
from the border point that it started from. Therefore, we need to adjust lines 10, 14, 18 and 22
as follows:

10. borders [borderSize] ← new Point (x-1, y, distance from (x, y) + 1)

14. borders [borderSize] ← new Point (x+1, y, distance from (x, y) +1)

18. borders [borderSize] ← new Point (x, y-1, distance from (x, y) + 1)

22. borders [borderSize] ← new Point (x, y+1, distance from (x, y) + 1)

The above code allows each new fire point to have a distance value that is 1 more than the
previous distance value.

However, oddly enough, the code will still produce a result that has a diamond-shaped pattern
in it !!! This diamond-shaped artifact is a result of the strategy of only updating the 4 pixel
neighborhood around each pixel. This is called the von Neuman neighborhood . The
diamond-shape can be adjusted to an octagonal shape if a Moore neighborhood is used. A
Moore neighborhood includes the diagonal pixels around a pixel. To use this 8-pixel update
model, we would need to add additional code to add border points to the 8 surrounding points:

COMP1405/1005 – Sorting Fall 2011

 - 273 -

To accomplish this, we simply need to add the following code to the end of our existing code:

25. if ((x > 0) AND (image [x-1][y-1] is GREEN)) then {
26. borders [borderSize] ← new Point (x-1, y-1, distance from (x, y) + 1.417))
27. borderSize ← borderSize + 1
28. image [x-1][y-1] ← ORANGE
 }
29. if ((x < image .width -1) AND (image [x+1][y-1] is GREEN)) then {
30. borders [borderSize] ← new Point (x+1, y-1, distance from (x, y) + 1.417))
31. borderSize ← borderSize + 1
32. image [x+1][y-1] ← ORANGE
 }
33. if ((y > 0) AND (image [x-1][y+1] is GREEN)) then {
34. borders [borderSize] ← new Point (x-1, y+1, distance from (x, y) + 1.417))
35. borderSize ← borderSize + 1
36. image [x-1][y+1] ← ORANGE
 }
37. if ((y < image .height -1) AND (image [x+1][y+1] is GREEN)) then {
38. borders [borderSize] ← new Point (x+1, y+1, distance from (x, y) + 1.417))
39. borderSize ← borderSize + 1
40. image [x+1][y+1] ← ORANGE
 }

41. sort borders by distances from largest to smallest
 }

Notice that the cost to the diagonals is actually 1.417 ... which is the square root of 2. This is
the diagonal distance from the middle of the center pixel to the middle of the diagonal pixel.

As you can see, the result is now octagonal ... a more realistic approximation, although the
octagonal shape is still somewhat "artificial-looking":

COMP1405/1005 – Sorting Fall 2011

 - 274 -

However, we can make this even more realistic by adding a degree of randomness. Instead
of having fixed distances as the fire spreads, we can add some random cost as well. For
example, we can adjust the code as follows:

10. borders [borderSize] ← new Point (x-1, y, distance(x, y) + 1 + rand(3))

14. borders [borderSize] ← new Point (x+1, y, distance(x, y) + 1 + rand(3))

18. borders [borderSize] ← new Point (x, y-1, distance(x, y) + 1 + rand(3))

22. borders [borderSize] ← new Point (x, y+1, distance(x, y) + 1 + rand(3))

26. borders [borderSize] ← new Point (x-1, y-1, distance(x, y) +1.414+ rand(3))

30. borders [borderSize] ← new Point (x+1, y-1, distance(x, y) +1.414 + rand(3))

34. borders [borderSize] ← new Point (x-1, y+1, distance(x, y) +1.414 + rand(3))

38. borders [borderSize] ← new Point (x+1, y+1, distance(x, y) +1.414 + rand(3))

The rand(3) indicates a random number from 0 to 3. Here is the result:

The higher the random value, the less circular the shape will be as the fires spread. For
example, if we increase the randomness to 50, then here is what we will get:

Lastly, we can even simulate wind. For example, we can have a low cost for spreading to the
right and high cost for spreading left ... this would cause the fire to spread quickly rightwards:

COMP1405/1005 – Sorting Fall 2011

 - 275 -

Ultimately, it would be best to produce a more realistic fire-spread model that takes into
account the type of trees being burned, wind, elevation, etc...

Here is the final code in Processing:

PImage terrain; // The image with the grass and lakes
Point[] border; // points along the border of the fire
int borderSize; // # points along the border of the fire

color orange = color (255, 100, 0);
color black = color (0, 0, 0);

// Data structure to represent a point
class Point {
 int x, y;
 float cost;
 Point(int ix, int iy, float c) {
 x = ix;
 y = iy;
 cost = c;
 }
}

void setup () {
 terrain = loadImage ("smallLakes.png");
 size (terrain. width , terrain. height);
 image (terrain, 0, 0);
 loadPixels ();
 border = new Point[1000];
 border[0] = new Point(85, 70, 0);
 border[1] = new Point(120, 30, 0);
 border[2] = new Point(20, 20, 0);
 borderSize = 3;
}

void draw () {
 if (!spreadFire()) {
 exit (); // Quit the program
 }
 updatePixels ();
 println (borderSize);
}

boolean isUnburnedForest(int x, int y) {
 return (blue (get (x,y)) < 128) && (green (get (x,y)) > 80) && (red (get (x,y)) < 150);
}

boolean spreadFire() {
 if (borderSize > 0) {
 Point p = border[borderSize-1];
 pixels [p.x + (p.y*terrain. width)] = black;
 borderSize--;

 // Check left
 if ((p.x > 0) && isUnburnedForest(p.x-1,p.y)) {
 pixels [p.x-1 + (p.y*terrain. width)] = orange;
 border[borderSize++] = new Point(p.x-1, p.y, p.cost + 1 + random (3));
 }

 // Check right
 if ((p.x < terrain. width -1) && isUnburnedForest(p.x+1,p.y)) {
 pixels [p.x+1 + (p.y*terrain. width)] = orange;
 border[borderSize++] = new Point(p.x+1, p.y, p.cost + 1 + random (3));
 }

COMP1405/1005 – Sorting Fall 2011

 - 276 -

 // Check up
 if ((p.y > 0) && isUnburnedForest(p.x,p.y-1)) {
 pixels [p.x + (p.y-1)*terrain. width] = orange;
 border[borderSize++] = new Point(p.x, p.y-1, p.cost + 1 + random (3));
 }

 // Check down
 if ((p.y < terrain. height -1) && isUnburnedForest(p.x,p.y+1)) {
 pixels [p.x + (p.y+1)*terrain. width] = orange;
 border[borderSize++] = new Point(p.x, p.y+1, p.cost + 1 + random (3));
 }

 // Check left/up diagonal
 if ((p.x > 0) && (p.y > 0) && isUnburnedForest(p.x-1,p.y-1)) {
 pixels [p.x-1 + (p.y-1)*terrain. width] = orange;
 border[borderSize++] = new Point(p.x-1, p.y-1, p.cost + 1.414 + random (3));
 }

 // Check right/up diagonal
 if ((p.x < terrain. width -1) && (p.y > 0) && isUnburnedForest(p.x+1,p.y-1)) {
 pixels [p.x+1 + (p.y-1)*terrain. width] = orange;
 border[borderSize++] = new Point(p.x+1, p.y-1, p.cost + 1.414 + random (3));
 }

 // Check left/down diagonal
 if ((p.x > 0) && (p.y < terrain. height -1) && isUnburnedForest(p.x-1,p.y+1)) {
 pixels [p.x-1 + (p.y+1)*terrain. width] = orange;
 border[borderSize++] = new Point(p.x-1, p.y+1, p.cost + 1.414 + random (3));
 }

 // Check right/down diagonal
 if ((p.x < terrain. width -1) && (p.y<terrain. height -1) && isUnburnedForest(p.x+1,p.y+1)) {
 pixels [p.x+1 + (p.y+1)*terrain. width] = orange;
 border[borderSize++] = new Point(p.x+1, p.y+1, p.cost + 1.414 + random (3));
 }

 BubbleSort(border, borderSize);
 return true ;
 }
 return false ;
}

// BubbleSort
void BubbleSort(Point[] fire, int fireSize) {
 for (int p=fireSize-1; p>=0; p--) {
 boolean madeSwap = false ;
 for (int i=0; i<=p-1; i++) {
 if (fire[i].cost < fire[i+1].cost) {
 Point temp = fire[i+1];
 fire[i+1] = fire[i];
 fire[i] = temp;
 madeSwap = true ;
 }
 }
 if (!madeSwap) return ;
 }
}

For added enjoyment, we can create a 3D version of the landscape and then watch as the fire
spreads, burning the trees (rest assured that no animals were harmed in this simulation). The
code to do this is quite similar. Instead of displaying an image, we just need to create a big
pile of square surfaces that corresponds to the terrain.

COMP1405/1005 – Sorting Fall 2011

 - 277 -

The idea is to simply take the image and assign a height value to each pixel. Water could have height
0 while the trees could have a height which is some constant value with a degree of randomness to
provide variety. We could then form a 3D rectangular polyhedra for each pixel and display them ...

COMP1405/1005 – Sorting Fall 2011

 - 278 -

As the fire spreads, we can color the rectangular polyhedra orange and then one burned, we can
decrease their height to a small value to represent burnt "stubble":

Here is the code. We will not be discussing the 3D aspects of this code:

float xmag, ymag = 0; // Used for mouse interaction
float newXmag, newYmag = 0; // Used for mouse interaction

PImage terrain; // The image with the grass and lakes
int [][] imgPixels; // Holds the image color data
float [][] heights; // Holds the image "pixel" heights
int halfWidth; // Half the computerd width
int halfHeight; // Half the computerd height
int scale; // Zoom factor
Point[] border; // points along the border of the fire
int borderSize; // # points along the border of the fire

color orange = color (255, 100, 0);

// Data structure to represent a point
class Point {
 int x, y;
 float cost;
 Point(int ix, int iy, float c) {

COMP1405/1005 – Sorting Fall 2011

 - 279 -

 x = ix;
 y = iy;
 cost = c;
 }
}

void setup () {
 size (1000, 1000, P3D);
 noStroke ();
 colorMode (RGB, 1);

 terrain = loadImage ("smallLakes.png");
 imgPixels = new int [terrain. width][terrain. height];
 heights = new float [terrain. width][terrain. height];
 halfWidth = terrain. width /2;
 halfHeight = terrain. height /2;
 scale = 5;

 for (int i = 0; i < terrain. height ; i++) {
 for (int j = 0; j < terrain. width ; j++) {
 imgPixels[j][i] = terrain. get (j, i);
 float h = 5* random (2);
 if ((blue (imgPixels[j][i]) > 0.4))
 h = 1;
 heights[j][i] = h;
 }
 }

 border = new Point[1000];
 border[0] = new Point(85, 70, 0);
 border[1] = new Point(120, 30, 0);
 border[2] = new Point(20, 20, 0);
 borderSize = 3;

}

void draw () {
 if (!spreadFire()) {
 println ("Total Time: " + millis ()/1000.0 + " seconds");
 exit ();
 }

 pushMatrix ();

 // Code for allowing user interaction to rotate the terrain
 if (mousePressed) {
 if (mouseButton == LEFT) {
 newXmag = mouseX/ float (width) * TWO_PI;
 newYmag = mouseY/ float (height) * TWO_PI;
 }
 else
 scale = width /2 - mouseX;
 }

 translate (width /2, height /2, -30);
 float diff = xmag-newXmag;
 if (abs (diff) > 0.01) { xmag -= diff/4.0; }
 diff = ymag-newYmag;
 if (abs (diff) > 0.01) { ymag -= diff/4.0; }
 rotateX (-ymag);
 rotateZ (-xmag);
 scale (scale);

 // Draw the terrain
 background (0.5);
 beginShape (QUADS);
 for (int i = 0; i < terrain.width-1; i++) {

COMP1405/1005 – Sorting Fall 2011

 - 280 -

 for (int j = 0; j < terrain.height-1; j++) {
 // Set the surface color for this "pixel"
 fill (red (imgPixels[i][j]), green (imgPixels[i][j]), blue (imgPixels[i][j]));

 // Add the surface face
 vertex (i-halfWidth, j-halfHeight, heights[i][j]);
 vertex (i+1-halfWidth, j-halfHeight, heights[i][j]);
 vertex (i+1-halfWidth, j+1-halfHeight, heights[i][j]);
 vertex (i-halfWidth, j+1-halfHeight, heights[i][j]);

 // Add the remaining 4 side faces
 if (imgPixels[i][j] == orange)
 fill (1.0,0.4,0.0);
 else if (heights[i][j] < 10)
 fill (0.2,0.1,0.0);
 else
 fill (0.2,0.6,0.0);
 vertex (i+1-halfWidth, j-halfHeight, heights[i][j]);
 vertex (i+1-halfWidth, j-halfHeight, heights[i+1][j]);
 vertex (i+1-halfWidth, j+1-halfHeight, heights[i+1][j]);
 vertex (i+1-halfWidth, j+1-halfHeight, heights[i][j]);

 if (i > 0) {
 vertex (i-halfWidth, j-halfHeight, heights[i][j]);
 vertex (i-halfWidth, j+1-halfHeight, heights[i][j]);
 vertex (i-halfWidth, j+1-halfHeight, heights[i-1][j]);
 vertex (i-halfWidth, j-halfHeight, heights[i-1][j]);
 }

 if (imgPixels[i][j] == orange)
 fill (1.0,0.5,0.0);
 else if (heights[i][j] < 10)
 fill (0.3,0.2,0.0);
 else
 fill (0.3,0.7,0.0);
 vertex (i-halfWidth, j+1-halfHeight, heights[i][j]);
 vertex (i+1-halfWidth, j+1-halfHeight, heights[i][j]);
 vertex (i+1-halfWidth, j+1-halfHeight, heights[i][j+1]);
 vertex (i-halfWidth, j+1-halfHeight, heights[i][j+1]);

 if (j > 0) {
 vertex (i-halfWidth, j-halfHeight, heights[i][j]);
 vertex (i+1-halfWidth, j-halfHeight, heights[i][j]);
 vertex (i+1-halfWidth, j-halfHeight, heights[i][j-1]);
 vertex (i-halfWidth, j-halfHeight, heights[i][j-1]);
 }
 }
 }

 // Draw the bottom face
 fill (0.2,0.1,0); // Dark brown
 vertex (-halfWidth, -halfHeight, -1); vertex (-halfWidth, halfHeight, -1);
 vertex (halfWidth, halfHeight, -1); vertex (halfWidth, -halfHeight, -1);

 endShape ();
 popMatrix ();
}

boolean isUnburnedForest(int x, int y) {
 return (blue (imgPixels[x][y]) < 0.5) && (green (imgPixels[x][y]) > 0.31) &&
(red (imgPixels[x][y]) < 0.59);
}

boolean spreadFire() {
 if (borderSize > 0) {
 Point p = border[borderSize-1];
 imgPixels[p.x][p.y] = color (0.2* random (1), 0.1* random (1), 0); // random dark brown color

COMP1405/1005 – Sorting Fall 2011

 - 281 -

 heights[p.x][p.y] = random (2); // random height for burned twigs

 borderSize--;

 // Check left
 if ((p.x > 0) && isUnburnedForest(p.x-1,p.y)) {
 imgPixels[p.x-1][p.y] = orange;
 border[borderSize++] = new Point(p.x-1, p.y, p.cost + 1 + random (3));
 }
 // Check right
 if ((p.x < terrain. width -1) && isUnburnedForest(p.x+1,p.y)) {
 imgPixels[p.x+1][p.y] = orange;
 border[borderSize++] = new Point(p.x+1, p.y, p.cost + 1 + random (3));
 }
 // Check up
 if ((p.y > 0) && isUnburnedForest(p.x,p.y-1)) {
 imgPixels[p.x][p.y-1] = orange;
 border[borderSize++] = new Point(p.x, p.y-1, p.cost + 1 + random (3));
 }
 // Check down
 if ((p.y < terrain. height -1) && isUnburnedForest(p.x,p.y+1)) {
 imgPixels[p.x][p.y+1] = orange;
 border[borderSize++] = new Point(p.x, p.y+1, p.cost + 1 + random (3));
 }
 // Check left/up diagonal
 if ((p.x > 0) && (p.y > 0) && isUnburnedForest(p.x-1,p.y-1)) {
 imgPixels[p.x-1][p.y-1] = orange;
 border[borderSize++] = new Point(p.x-1, p.y-1, p.cost + 1.414 + random (3));
 }
 // Check right/up diagonal
 if ((p.x < terrain. width -1) && (p.y > 0) && isUnburnedForest(p.x+1,p.y-1)) {
 imgPixels[p.x+1][p.y-1] = orange;
 border[borderSize++] = new Point(p.x+1, p.y-1, p.cost + 1.414 + random (3));
 }
 // Check left/down diagonal
 if ((p.x > 0) && (p.y < terrain. height -1) && isUnburnedForest(p.x-1,p.y+1)) {
 imgPixels[p.x-1][p.y+1] = orange;
 border[borderSize++] = new Point(p.x-1, p.y+1, p.cost + 1.414 + random (3));
 }
 // Check right/down diagonal
 if ((p.x < terrain. width -1)&&(p.y < terrain. height -1) && isUnburnedForest(p.x+1,p.y+1)) {
 imgPixels[p.x+1][p.y+1] = orange;
 border[borderSize++] = new Point(p.x+1, p.y+1, p.cost + 1.414 + random (3));
 }

 BubbleSort(border, borderSize);
 return true ;
 }
 return false ;
}

// BubbleSort
void BubbleSort(Point[] fire, int fireSize) {
 for (int p=fireSize-1; p>=0; p--) {
 boolean madeSwap = false ;
 for (int i=0; i<=p-1; i++) {
 if (fire[i].cost < fire[i+1].cost) {
 Point temp = fire[i+1];
 fire[i+1] = fire[i];
 fire[i] = temp;
 madeSwap = true ;
 }
 }
 if (!madeSwap) return ;
 }
}

Chapter 7

Recursion

What is in This Chapter ?

This chapter explains the notion of recursion as it appears in computer science. We discuss
briefly the idea of using recursion for simple math-based problems and for simple graphical
drawing, such as drawing fractal pictures which are often found in computer science.
Recursion usually involves thinking in a different manner than you may be used to. It is a very
powerful technique, however, that can simplify algorithms and make your life easier ... once
you understand it. A more thorough discussion of recursive techniques is covered in further
courses.

COMP1405/1005 – Recursion Fall 2011

 - 283 -

 7.1 Recursion

Recall in the first chapter, we discussed the notion of "divide-and-conquer" in regards to
breaking a problem down into smaller, more manageable, modular pieces called functions or
procedures.

Sometimes when we break a problem down into smaller pieces of the same type of problem,
we are simply reducing the amount of information that we must process, since the problem is
solved in the same manner ... it is just a smaller version of the same problem.

For example, there are many real-world examples where we often break problems into smaller
ones of the same type in order to solve the bigger problem:

1. Jigsaw puzzles are solved in "steps": border, interesting portion, grass, sky, etc..
2. Math problems are broken down into smaller/simpler problems
3. Even climbing stairs eventually breaks down to climbing one step at a time.

Such problems can be solved recursively.

Recursion is a divide-and-conquer technique in which the problem being
solved is expressed (or defined) in terms of smaller problems of the same type.

The word Recursion actually comes from a Latin word meaning "a running back". This
makes sense because recursion is the process of actually "going off" and breaking down a
problem into small pieces and then bringing the solutions to those smaller pieces back
together to form the complete solution. So ...

• recursion breaks down a complex problem into smaller sub-problems
• the sub-problems are smaller instances of the same type of problem.

So, when using recursion, we need to consider how to:

1. break the problem down into smaller sub-problems
2. deal with each smaller sub-problem
3. merge the results of the smaller sub-problems to answer the original problem

COMP1405/1005 – Recursion Fall 2011

 - 284 -

In fact, it is actually easier than this sounds. Most of the
time, we simply take the original problem and break/bite off
a small piece that we can work with. We simply keep biting
off the small pieces of the problem, solve them, and then
merge the results.

Consider the simple example of computing the factorial of an
integer. You may recall that the function works as follows:

0! = 1
1! = 1
2! = 2x1
3! = 3x2x1
4! = 4x3x2x1
5! = 5x4x3x2x1
etc..

So, the function is defined non-recursively as follows:

1 if N = 0

N! = N x (N-1) x (N-2) x ... x 3 x 2 x 1 if N ≥ 1

If you were asked to write a factorial function, you could do so with a FOR loop as follows:

Function: Factorial
 n: a positive integer for which to find the factorial

1. answer ← 1
2. for each integer i from 2 to n do {
3. answer ← answer * i
 }
4. return answer

This code is simple and straight-forward to write.

The factorial problem, however, can also be defined recursively as follows:

1 if N = 0
N! = N x (N-1)! if N ≥ 1

Notice how N! is expressed as a function of the smaller sub-problem of (N-1)! which is of the
same type of problem (i.e., it is also a factorial problem, but for a smaller number).

So, if we had the solution for (N-1)!, say S, we could use this to compute the solution to N! as
follows: N! = N x S

COMP1405/1005 – Recursion Fall 2011

 - 285 -

However, how do we get the solution for (N-1)! ? We use the same formula, setting N to N-1
as follows:

(N-1)! = (N-1) x ((N-1)-1)! = (N-1) x (N-2)!

Similarly, we can recursively break down (N-2)! in the same way. Eventually, as we keep
reducing N by 1 each time, we end up with N=0 or 1 and for that simple problem we know the
answer is 1. So breaking it all down we see the solution of 5! as follows:

If you were asked to write this recursive factorial function, you could do so as follows:

Function: FactorialRecursive
 n: a positive integer for which to find the factorial

1. if (n is 0) then
2. answer ← 1
3. otherwise
4. answer ← n * FactorialRecursive (n-1)
5. return answer

Notice how we no longer have a repeating loop in our code. Instead, the FactorialRecursive
function calls itself with a smaller value of n. That is, the function repeatedly calls itself over
and over again with smaller values of n until finally n has the smallest value of 0, in which case
the code stops calling itself recursively. A recursive function is easily identifiable by the fact
that a function or procedure calls itself. The "stopping situation" is called the base case of the
problem. In general, a recursive function (or procedure) may have multiple base cases (i.e.,
multiple stopping conditions).

To understand the inner-workings of the function as it calls itself, consider the following
diagram which shows how the control passes from one function call to the next when
computing the factorial of 3. There are 11 main "steps" of the recursion as shown numbered
in black bold font:

COMP1405/1005 – Recursion Fall 2011

 - 286 -

If you were to compare the non-recursive solution with the recursive solution ... which do you
find to be simpler ?

Function: Factorial
 n: a positive integer

1. answer ← 1
2. for each integer i from 2 to n do {
3. answer ← answer * i
 }
4. return answer

Function: Factorial
 n: a positive integer

1. if (n is 0) then
2. answer ← 1
3. otherwise
4. answer ← n * Factorial (n-1)
5. return answer

You may feel that the non-recursive version is simpler. In this particular example, you are
probably right. So the question that arises is ... "Why should we use recursion ?".

Here are 4 reasons:

COMP1405/1005 – Recursion Fall 2011

 - 287 -

1. Some problems are naturally recursive and are easier to express recursively than non-
recursively. For example, some math problems are defined recursively.

2. Sometimes, using recursion results in a simpler, more elegant solution .

3. Recursive solutions may actually be easier to understand .

4. In some cases, a recursive solution may be the only way to approach a seemingly
overwhelming problem .

As we do various examples, the advantages of using recursion should become clear to you.

How do we write our own recursive functions and procedures ? It
is important to remember the following two very important facts
about the sub-problems:

• must be an instance of the same kind of problem
• must be smaller than the original problem

The trick is to understand how to "bite off" small pieces of the problem and knowing when to
stop doing so. When we write the code, we will usually start with the base cases since they
are the ones that we know how to handle. For example, if we think of our "real world"
examples mentioned earlier, here are the base cases:

1. For the jigsaw puzzle , we divide up the pieces until we have just

a few (maybe 5 to 10) pieces that form an interesting part of our picture.
We stop dividing at that time and simply solve (by putting together) the
simple base case problem of this small sub-picture. So the base case is
the problem in which there are only a few pieces all part of some
identifiable portion of the puzzle.

2. For the math problem , we simply keep breaking down the problem until
either (a) there is a simple expression remaining (e.g., 2 + 3) or (b) we have a
single number with no operations (e.g., 7). These are simple base cases in
which there is either one operation to do or none.

3. For the stair climbing problem , each stair that we climb brings us closer to

solving the problem of climbing all the stairs. Each time, we take a step up, the
problem is smaller, and of the same type. The base case is our simplest case
when there is only one stair to climb. We simply climb that stair and there is no
recursion to do at that point.

So then to write recursive methods, we first need to understand "where" the recursion will fit in.
That is, we need to understand how to reduce the problem and then merge the results. It is
important to fully understand the problem and the kind of parameters that you will need as the
function/procedure gets called repeatedly. Make sure you understand how the problem gets
smaller (i.e., usually the parameters change in some way). Then, you can implement the
simple base cases and add in the recursion. Let us look at a few examples.

COMP1405/1005 – Recursion Fall 2011

 - 288 -

 7.2 Math Examples

Recursive math examples are easy to program because we are often given the recursive
definition directly and then it easily transfers into a program.

Example:

For example, consider computing how much money
per month a person would have to pay to pay back a
mortgage on his/her home. Consider the following
notation:

• amount = mortgage amount borrowed
(e.g., $130,000)

• rate = annual interest rate as a percentage

(e.g., 3.5%)

• months = length of time for the mortgage to be paid off

(e.g., 300 months for a 25 year mortgage)

• payment(amount, rate, months) = monthly payment to pay off mortgage

(e.g., $647.57)

We would like to calculate the value for the payment function. Here is the function and its
parameters as defined:

Function: Payment
 amount: the principal amount of the mortgage
 rate: annual interest rate to be paid
 months: mortgage term (in months)

If we borrow money for 0 months, then the whole point of borrowing is silly. Assume then that
months > 0. What if months = 1 ... that is ... we want to pay off the entire mortgage one
month after we borrowed the money ? Then we must pay one month interest and so the
value of the payment function should return:

 amount + amount *(rate /12) or amount * (1 + (rate /12))

which is one month of interest on the original loan amount. We divide by 12 since the rate is
per year and we want only 1 month of interest. For a 2-month term, the payment would be:

 [amount * (1 + (rate /12))] * (1 + (rate /12))

and for a 3-month term:

 {[amount * (1 + (rate /12))] * (1 + (rate /12)))} * (1 + (rate /12))

COMP1405/1005 – Recursion Fall 2011

 - 289 -

So you can see, the interest to be paid each month is compounded monthly...so we pay
interest on interest owed and this grows larger each month.

There are a few ways to compute mortgage payments, but we will use the following formula so
that we can practice our recursion. The formula for computing the payment is actually
recursive and is defined as follows (showing first letter only for each parameter name):

Looking at the formula, do you see that the problem is recursive ? The result of the payment
function p(a,r,m) depends on the result of the payment function p(a,r,m-1) for one less month.
It is easy to see that the problem for one less month is the same problem (i.e., same function)
and that the problem is smaller.

Now let us determine the base case (i.e., the simplest case). Well, the amount and rate do
not change throughout the computation. Only the month value changes ... by getting smaller.
So the base case must be the stopping condition for the months being decreased. This base
case is the simplest case which follows from the definition.

Function: Payment
 amount: the principal amount of the mortgage
 rate: annual interest rate to be paid
 months: mortgage term (in months), assumed to be > 0

1. if (months is 1) then
2. return amount * (1 + rate /12)

That wasn't so bad. Now what about the recursive part ? It also follows from the formula:

Function: Payment
 amount: the principal amount of the mortgage
 rate: annual interest rate to be paid
 months: mortgage term (in months), assumed to be > 0

1. if (months is 1) then
2. return amount * (1 + rate /12)

3. return amount / ((amount / Payment (amount , rate , months -1)) + (1 + rate /12)
months

)

As you can see, the code is easy to write as long as we have a recursive definition to begin
with.

COMP1405/1005 – Recursion Fall 2011

 - 290 -

Example:

Imagine now that we have a teacher who wants to choose 10 students from a class of 25, to
participate in a special project. Assuming that each student is unique in his/her own way ...
how many different groups of students can be chosen ?

This is a classic problem using binomial coefficients that is often encountered in combinatorics
for determining the amount of variety in a solution, giving insight as to the complexity of a
problem. In general, if we have n items and we want to choose k items, we are looking for the
solution of how many groups of k-elements can be chosen from the n elements.

The expression is often written as follows and pronounced "n choose k":

Assuming that n is fixed, we can vary k to obtain a different answer. The simplest solutions
for this problem are when k=0 or k=n. If k=0, we are asking how many groups of zero can be
chosen from n items. The answer is 1 ... there is only one way to choose no items. Similarly,
if k=n then we want to choose all items ... and there is only one way to do that as well. Also, if
k>n, then there is no way to do this and the answer is zero (e.g., cannot choose 10 students
from a group of 6).

Otherwise, we can express the problem as a recursive solution by examining what happens
when we select a single item from the n items. Imagine therefore that we select one particular
student that we definitely want to participate in the project (e.g., the teacher's "pet").

We need to then express the solution to the problem, taking into account that we
are going to use that one student. In the remainder of the classroom, we therefore
have n-1 students left and we still need to select k-1 students. Here is what is left →

COMP1405/1005 – Recursion Fall 2011

 - 291 -

The other situation is that we decide that we definitely DO NOT want a particular
student to participate in the project (e.g., he's been a "bad boy" lately). In this case,
if we eliminate that student, we still need to select k students, from the n-1
remaining. Here is what is left →

Now, I'm sure you will agree that if we examine one particular student ... then we will either
select that student for the project or not. These two cases represent all possible solutions to
the problem. Therefore, we can express the entire solution as:

This is a recursive definition. The problem is of the same type and gets smaller each time
(since n gets smaller and k does also in one case). This problem is interesting because there
are two recursive calls to the same problem. That is, the problem branches off twice
recursively.

So then, to write the code, we start with the function:

Function: StudentCombinations
 n: total number of students
 k: number of students to choose

What about the base case(s) ? Well, we discussed the situations where k=n, k=0, k>n, so
these are the simplest cases:

Function: StudentCombinations
 n: total number of students
 k: number of students to choose

1. if (k > n) then
2. return 0
3. if (k is 0) then
4. return 1
5. if (k is n) then
6. return 1

As before, the recursive case is easy, since we have the definition. This time, the code will be
interesting as the function will call itself twice:

COMP1405/1005 – Recursion Fall 2011

 - 292 -

Function: StudentCombinations
 n: total number of students
 k: number of students to choose

1. if (k > n) then
2. return 0
3. if (k is 0) then
4. return 1
5. if (k is n) then
6. return 1

7. return StudentCombinations (n-1,k-1) + StudentCombinations (n-1,k)

Not too bad ... was it ? Do you understand how the recursion will eventually stop ?

 7.3 Graphical Examples

Recursion also appears in many graphical applications. For example, in computer games,
trees are often created and displayed using recursion. Fractals are often used in computer
graphics.

A fractal is a rough or fragmented geometric shape that can be split into parts, each
of which is (at least approximately) a reduced-size copy of the whole. (wikipedia)

So, a fractal is often drawn by repeatedly re-drawing a specific pattern in a way that the
pattern becomes smaller and smaller, but is of the same type.

Example:

Consider how we can draw a snowflake. See if you can detect
the recursion in the following snowflake (called the Koch
Snowflake):

It may not be easy to see. However ... if we were to examine the
process of creating this snowflake recursively, notice how it can be
done by starting with an equilateral triangle:

COMP1405/1005 – Recursion Fall 2011

 - 293 -

 etc..

The recursion happens on each side of the triangle. Consider a single horizontal edge. We
can recursively alter the edge into 4 segments as follows:

COMP1405/1005 – Recursion Fall 2011

 - 294 -

To accomplish this, we need to understand how a single edge is broken down into 4 pieces.
Then we need to understand how this gets done recursively. Notice above how each recursive
edge gets smaller. In fact, during each step of the recursion, the edge gets smaller by a factor
of 3. Eventually, the edge will be very small in length (e.g., 2) and the recursion can stop,
since breaking it down any further will not likely make a difference graphically.

Consider an edge going from a starting location (Sx, Sy) and going in direction angle towards
location (Ex, Ey) . Here is how we break the edge down into 4 pieces:

So the code for doing this, is as follows:

Function: drawKochEdge
 Sx: x location to start drawing at
 Sy: y location to start drawing at
 Ex: x location to stop drawing at
 Ey: y location to stop drawing at
 angle: direction to draw towards

1. length ← distance from (Sx, Sy) to (Ex, Ey)/3
2. Px ← Sx + length * cos (angle)
3. Py ← Sy + length * sin (angle +180°)
4. Qx ← Px + length * cos (angle + 60°)
5. Qy ← Py + length * sin (angle + 60°+180°)
6. Rx ← Qx + length * cos (angle - 60°)
7. Ry ← Qy + length * sin (angle - 60°+180°)
8. draw line from (Sx, Sy) to (Px, Py)
9. draw line from (Px, Py) to (Qx, Qy)
10. draw line from (Qx, Qy) to (Rx, Ry)
11. draw line from (Rx, Ry) to (Ex, Ey)

COMP1405/1005 – Recursion Fall 2011

 - 295 -

The above code will work for any start/end locations. The angle is also passed in as a
parameter, but alternatively it can be computed from the start and end points of the edge. It
is important that the angle passed is actually the correct angle from the start to the end
location.

Now, how do we draw the entire snowflake ? We need to draw three edges to represent the
starting triangle. Assume that we want the snowflake centered at some location (Cx, Cy) and
that the snowflake's size is defined by the length of the three triangle edges called size .

We can draw the triangle with simple straight line edges as follows:

Function: drawSnowflake
 Cx, Cy: location of center of snowflake
 size: size of snowflake (i.e., length of inner triangle edge)

1. Px ← Cx + size * cos (90°)
2. Py ← Cy + size * sin (90°+180°)
3. Qx ← Cx + size * cos (-30°)
4. Qy ← Cy + size * sin (-30°+180°)
5. Rx ← Cx + size * cos (210°)
6. Ry ← Cy + size * sin (210°+180°)
7. draw line from (Px, Py) to (Qx, Qy)
8. draw line from (Qx, Qy) to (Rx, Ry)
9. draw line from (Rx, Ry) to (Px, Py)

We can draw the triangle with a single Koch edge as follows:

Function: drawSnowflake
 Cx, Cy: location of center of snowflake
 size: size of snowflake (i.e., length of inner triangle edge)

1. Px ← Cx + size * cos (90°)
2. Py ← Cy + size * sin (90°+180°)
3. Qx ← Cx + size * cos (-30°)
4. Qy ← Cy + size * sin (-30°+180°)
5. Rx ← Cx + size * cos (210°)
6. Ry ← Cy + size * sin (210°+180°)
7. drawKochEdge (Px, Py, Qx, Qy, -60°)
8. drawKochEdge (Qx, Qy, Rx, Ry, 180°)
9. drawKochEdge (Rx, Ry, Px, Py, 60°)

The code above will draw the shape with one level of recursion. But how do we complete the
code so that it does many levels of recursion ? We need to come up with a base case for
stopping the recursion. This can be done in the drawKochEdge procedure by noticing when

COMP1405/1005 – Recursion Fall 2011

 - 296 -

the length of the edge is very small (e.g., 2). In this case, we draw a regular line as opposed
to breaking it up into 4 and recursively drawing. Notice the code:

Function: drawKochEdge
 Sx, Sy: location to start drawing at
 Ex, Ey: location to stop drawing at
 angle: direction to draw towards

1. length ← distance from (Sx, Sy) to (Ex, Ey) / 3
2. if (length < 2) then
3. draw line from (Sx, Sy) to (Ex, Ey) // just draw a straight line
 otherwise {
4. Px ← Sx + length * cos (angle)
5. Py ← Sy + length * sin (angle +180°)
6. Qx ← Px + length * cos (angle + 60°)
7. Qy ← Py + length * sin (angle + 60°+180°)
8. Rx ← Qx + length * cos (angle - 60°)
9. Ry ← Qy + length * sin (angle - 60°+180°)
10. drawKochEdge (Sx, Sy, Px, Py, angle)
11. drawKochEdge (Px, Py, Qx, Qy, angle + 60°)
12. drawKochEdge (Qx, Qy, Rx, Ry, angle - 60°)
13. drawKochEdge (Rx, Ry, Ex, Ey, angle)
 }

This code will produce the desired snowflake pattern.

Example:

Consider drawing a tree. We can draw the stem of a tree
as a branch and then repeatedly draw smaller and smaller
branches of the tree until we reach the end of the tree.
Here, for example, is a fractal tree →

How can we draw this ? Well, imagine drawing just one
portion of this tree starting at the bottom facing upwards.
We can travel for some number of pixels (e.g., 100) and
then bend to the right, perhaps 40° as shown here. Then,
we can draw for a smaller distance, perhaps 60% of the
previous branch. We can do this repeatedly, turning 40°
and drawing a new smaller branch. We can stop when the
branch is small enough (perhaps 2 or 3 pixels in length).

Consider doing this for just one portion of branches in the tree (e.g, the right sequence of
branches shown here in bold/red).

COMP1405/1005 – Recursion Fall 2011

 - 297 -

Assume that the bendAngle is set at 40° and that the
shrinkFactor is 0.6 (i.e., 60%). Consider the code to draw
the rightmost set of branches of the tree. Assume that the
initial (x,y) location is centered at the bottom of the window
and that the drawing direction is north (i.e., upwards at
90°).

Each time we can draw a single branch, then turn
bendAngle and then recursively draw the remaining
branches starting with branch length reduced by the
shrinkFactor .

Here is the code:

Function: drawSingleTreePath
 length: length of tree branch
 x, y: location to start drawing at
 dir: direction to draw towards

1. if (length < 2)
2. return
3. endX ← x + length * cos (dir + bendAngle)
4. endY ← y + length * sin (dir + bendAngle +180°)
5. draw line from (x, y) to (endX , endY)
6. drawTree (length * shrinkFactor , endX ,
 endY , dir + bendAngle)

COMP1405/1005 – Recursion Fall 2011

 - 298 -

Assume that we begin the tree by drawing a 100 pixel length vertical line from the bottom
center of the screen (windowWidth /2, windowHeight) facing upwards (i.e. North at 90°) to
(windowWidth /2, windowHeight -100) We would complete the drawing simply by calling
the function with initial values corresponding to facing North and a 100*shrinkFactor = 60
pixel length as follows:

 drawSingleTreePath (60, windowWidth /2, windowHeight -100, 90°)

The recursion stops when the tree branch size reaches 2, which is somewhat arbitrary.
To draw the remainder of the tree, we simply add code to draw left as well:

Function: drawTree
 length: length of tree branch
 x, y: location to start drawing at
 dir: direction to draw towards

1. if (length < 2)
2. return
3. endX ← x + length * cos (dir + bendAngle)
4. endY ← y + length * sin (dir + bendAngle +180°)
5. draw line from (x, y) to (endX , endY)
6. drawTree (length * shrinkFactor , endX , endY , dir + bendAngle)

7. endX ← x + length * cos (dir - bendAngle)
8. endY ← y + length * sin (dir - bendAngle +180°)
9. draw line from (x, y) to (endX , endY)
10. drawTree (length * shrinkFactor , endX , endY , dir - bendAngle)

Notice how the tree takes shape because each time we draw a single branch, we branch
out 40° left and 40° right. Notice how the trees differ as we change the bendAngle to
other angles other than 40°:

 10° 20° 30°

COMP1405/1005 – Recursion Fall 2011

 - 299 -

 60° 90° 120°

Also, as we adjust the shrinkFactor to other values, notice how the tree changes (here the
bendAngle is fixed at 45°:

 0.10 0.25 0.4 0.5

 0.7 0.75

COMP1405/1005 – Recursion Fall 2011

 - 300 -

Example:

Now, consider drawing a more realistic tree. A real tree does not have branches that grow
at exact angles. Let us begin by adjusting the bendAngle to be random instead of fixed at
say 40°. That way, each branch of the tree can bend randomly. Of course, we want to
have some limits as to how random they should bend.

We can change the bendAngle so that it bend at least some amount each time (e.g., π/32
= 5.6°) plus some random amount (e.g., 0 to π/4 ... or 0° to 45°):

 bendAngle ← 5.6° + (random value from 0° to 45°)

The result is that our trees will look less symmetrical and will bend more naturally:

Another factor that we can adjust is the length of each branch. Currently, they shrink by a
constant factor of shrinkFactor which is 0.6 in the examples above. However, we can
shrink them by a random amount (within reason, of course). So, we can add or subtract a
random amount from the shrinkFactor . It is easiest to simply multiply the shrinkFactor
by some value, perhaps in the range from 1.0 to 1.5. That will allow some branches to be
larger than 60% of their "parent" branch.

Here is the code as we now have it using a variable bendAngle and a new variable called
stretch to allow randomly longer branches:

Function: drawNaturalTree
 length: length of tree branch
 x, y location to start drawing at
 dir: direction to draw towards

 ... continued on next page ...

COMP1405/1005 – Recursion Fall 2011

 - 301 -

1. if (length < 2)
2. return

3. bendAngle ← 5.6° + (random value from 0° to 45°)
4. endX ← x + length * cos (dir + bendAngle)
5. endY ← y + length * sin (dir + bendAngle +180°)
6. draw line from (x, y) to (endX , endY)
7. stretch ← 1 + (random value from 0 to 0.5)
8. drawNaturalTree (length * shrinkFactor * stretch , endX , endY , dir + bendAngle)

9. bendAngle ← 5.6° + (random value from 0° to 45°)
10. endX ← x + length * cos (dir - bendAngle)
11. endY ← y + length * sin (dir - bendAngle +180°)
12. draw line from (x, y) to (endX , endY)
13. stretch ← 1 + (random value from 0 to 0.5)
14. drawNaturalTree (length * shrinkFactor * stretch , endX , endY , dir - bendAngle)

Here are two examples of results due to this change:

Notice how tree is more "bushy". That is because the recursion goes further before it stops
(i.e., it draws more branches). This is because the base case of the recursion stops only
when the branch reaches a specific small size. Due to the randomness of the parameters,
we may end up with some lopsided trees:

COMP1405/1005 – Recursion Fall 2011

 - 302 -

Of course, we can make everything even bushier if we increase the shrinkFactor to 65%:

All that remains now is to make the branches thicker and color them brown. For very small
branches, we color them green:

Function: drawColorTree
 length: length of tree branch
 x: x location to start drawing at
 y: y location to start drawing at
 dir: direction to draw towards

1. if (length < 2)
2. return
2. for b from -1 to 1 by 2 do {
3. set line drawing width to length / 7
4. if (length > 10) then
5. set line drawing color to brown
6. otherwise {
7. set line drawing color to a random amount of green (e.g., 80 to 130)
8. set line drawing width to 2 + (length / 7)
 }
9. bendAngle ← 5.6° + (random value from 0° to 45°)
10. endX ← x + length * cos (dir + b*bendAngle)
11. endY ← y + length * sin (dir + b*bendAngle +180°)
12. draw line from (x, y) to (endX , endY)
13. stretch ← 1 + (random value from 0 to 0.5)
14. drawColorTree (length * shrinkFactor * stretch , endX , endY , dir + b*bendAngle)
 }

Notice the FOR loop now which repeats exactly 2 times. This reduces our code since the
code for drawing the left branch is the same as that for drawing the right branch, except
that the angle offset is negative (represented by the value of b).

COMP1405/1005 – Recursion Fall 2011

 - 303 -

Here is the result (with shrinkFactor at 67% and bendAngle of (π/32 + random 0- π/6)):

 7.4 Search Examples

Sometimes, we use recursion to search for an answer to a problem. Searching for an answer
recursively can often lead to a simpler, more elegant solution than writing search code that
uses many loops and IF statements.

Example:

Consider writing code to solve a rubik's cube. The task may seem daunting at first ... but
there are many systematic ways of solving the cube in steps or phases. Any non-recursive
code that you would write could be quite complex, tedious and/or cumbersome. However, a
recursive solution is quite simple.

Assume that the cube can be solved by making at most 100
quarter turns of one of the cube's sides (a reasonable
assumption). Here is the idea behind the recursive solution:

Try turning 1 of the 6 sides 1/4 of a turn, then try to solve the
cube in 99 more turns, recursively. If the recursion comes
back with a solution from the 99 additional moves, then the
1/4 turn that we made was a good one, hence part of the
solution. If however, the recursion came back after 99
moves with an unsolved cube, then the 1/4 turn that we
made was a bad choice ... undo it and then try turning one of
the other 5 sides.

Here is the pseudocode for a function to solve the cube recursively in n steps, returning true if
it has been solved, or false otherwise:

COMP1405/1005 – Recursion Fall 2011

 - 304 -

Function: SolveRubiksCube
 cube: the cube data structure
 n: maximum number of steps remaining to solve the cube

1. if (cube is solved) then
2. return true
3. if (n is 0) then
4. return false
5. for each side of the cube s from 1 to 6 do {
6. turn side s 1/4 turn clockwise
7. recursiveAnswer ← SolveRubiksCube (cube , n-1)
8. if (recursiveAnswer is true) then
9. return true
10. turn side s 1/4 turn counter-clockwise // i.e., undo the turn
11. }
12. return false

That is the solution! It is quite simple. Do you see the power of recursion now ? Of course,
this particular solution can be quite slow, as it blindly tries all possible turns without any
particular strategy. Nevertheless, the solution is simple to understand. It would be difficult to
produce such a simple function to solve this problem without using recursion.

Example:

Another problem that is naturally solved recursively is that the Towers of Hanoi puzzle.
In this puzzle game, there are three pegs and a set of n
disks of various sizes that can be moved from one peg
to another. To begin, all n pegs are stacked on the first
peg in order of increasing sizes such that the largest
disk is at the bottom and the smallest is at the top. The
objective of the game is to move the entire tower of disks
to a different peg by moving one disk at a time and doing so with a minimum number of steps.

There are just two rules:

1. disks must be moved from one peg to another, not placed aside on the table
2. a disk can never be placed onto a smaller-sized disk.

COMP1405/1005 – Recursion Fall 2011

 - 305 -

To approach this problem recursively, we must understand
how to break the problem down into a smaller problem of the
same type. Since all we are doing is moving disks, then a
"smaller" sub-problem would logically just be moving less
disks. For example, if 1 disk is moved, then only n-1 disks
remain to be moved ... which a smaller problem.

So what then would be the base case ? Well ... what is the
simplest number of disks to move ? Zero. A simple problem
is also the case where n = 1. In that case, we simply pick
up the disk and move it. For values of n greater than 1, we
now have to worry about moving some disks out of the
way. Here is the solution when n = 2 →

Notice that after the small red disk is moved to peg B, then
we have the smaller/simpler problem of moving the one
larger disk from peg A to peg C. Finally, we have the
simpler/smaller problem of moving the red disk from peg B
to peg C and we are done.

It may be hard to see the recursion, at this point, so let us look at the solution for n = 3:

COMP1405/1005 – Recursion Fall 2011

 - 306 -

You may notice that steps 1 to 3 are basically the same as the problem where n = 2, except
that we are moving the disks from peg A to peg B instead of to peg C. Then step 4 simply
moves the 1 disk from peg A to peg C. Finally, we are left with the recursive sub-problem
again of moving 2 disks from peg B to peg C.

So, the recursive solution of moving n disks is based on
this idea:

1. Move the n-1 smaller disks out of the way to the
spare peg B

2. Move the large disk to peg C

3. Move the n-1 smaller disks to peg C

As you can see above, there are two recursive sub-
problems corresponding to moving n-1 disks out of the
way first, and then solving the n-1 problem once the
largest bottom disk is in place.

So, we can now write the code by defining a procedure
that indicates the peg to move from , the peg to move
to , the extra peg and the number of disks to move .

Procedure: TowersOfHanoi
 pegA: the peg to move from
 pegC: the peg to move to
 pegB: the extra peg
 n: number of disks to move

1. if (n is 1) then
2. Move 1 disk from pegA to pegC
 otherwise {
3. TowersOfHanoi (pegA , pegB , pegC , n-1)
4. Move 1 disk from pegA to pegC
5. TowersOfHanoi (pegB , pegC , pegA , n-1)
 }

As you can see, the problem is expressed in a simple manner with only about 5 lines. Notice
that there was no need to check if n = 0 since that would represent a problem that is already
solved.

Chapter 8

Shared Data

What is in This Chapter ?

This chapter discusses the notion of sharing data in your programs. It explains situations in
which sharing of data can be useful to simplify your program and be memory efficient. The
chapter also explains how sharing of data is sometimes necessary in order for your program to
run and then gives an example showing potentially unpleasant consequences of not being
careful when dealing with shared data. Lastly, a large graph editor example is given that
incorporates shared data and brings together many of the concepts that you have learned
throughout this course.

COMP1405/1005 – Shared Data Fall 2011

 - 308 -

 8.1 Sharing Data Can Be Useful

Recall in our discussion of variables that a variable is bound to (i.e., attached to) a value when
we assign something to it using the = operator.

x = 100;
name = "Bob" ;

When we create our own data structures (i.e., objects) we need to remember that the data that
makes up the object (i.e., the object's attributes) is stored in the computer's memory. The
object itself is simply just a reference (i.e., a pointer) to the location in memory where the
object's attributes are actually being stored. Each object created is a unique reference (i.e.,
memory location in the computer's memory).

Consider creating two ball objects as
follows:

Ball aBall;
Ball anotherBall;

aBall = new Ball();
anotherBall = new Ball();

Since each ball is stored in a different
memory location, each has its own set of
unique attribute values. That is, each ball
has its own (x,y) location, direction and
speed.

Sometimes, however, we can end up in a
situation in which two balls share the same
memory location. Consider adding another
ball variable as follows:

Ball bBall;

bBall = aBall;

Now, bBall and aBall are actually references to the same object ... that is ... they are pointing
to the same memory location and therefore share the same attributes.

Having two objects share the same memory can be advantageous
since they can share the same information together, using up less
memory space. For example, consider a "family car" in which many
members of the same family drive the exact same vehicle, thereby
reducing the need to buy another car and saving space in the
laneway.

COMP1405/1005 – Shared Data Fall 2011

 - 309 -

Of course, sharing does have some disadvantages. For
example, if someone borrows the car and brings it back with
no gasoline, then it affects the next person who will use the
car. Also, the seat and mirrors may all need to be adjusted
for the next driver. Worse yet, if one person in the family
crashes the car, then the car is ruined for everyone.

When programming, it is important to understand when data
structures are being shared so that efficient programs can be
written, while ensuring that the data from one object does not
interfere with the data from other objects unexpectedly.

Example:

Consider simulating a swarm of insect-like robots that are attracted towards a beacon such as
a light source. We can define a beacon as having a particular (x,y) location on the window
and perhaps a randomly-chosen color:

class Beacon {
 float x, y;
 color col;

 Beacon(float bx, float by) {
 x = bx;
 y = by;
 col = color (55+ random (200),55+ random (200),55+ random (200));
 }
}

Now to simulate the robots, let us define robot's as having an (x, y) location, a direction and a
speed. We will also assign a Beacon to each robot as some particular location to head
towards. The definition is very similar to the Ball data structure that we defined previously:

class Robot {
 float x, y; // location of the robot at any time
 float direction; // direction of the robot at any time
 float speed; // the robot’s speed
 Beacon beacon; // the beacon to head towards

 Robot(float rx, float ry) {
 x = rx;
 y = ry;
 direction = random (TWO_PI); // a random direction
 speed = 3 + random (4); // a random speed from 3 to 6
 beacon = null ; // not set yet
 }
}

Notice that each robot now stores their own Beacon object (i.e., their own place to head
towards). We can draw the data structures as follows ... notice how each robot has its own
Beacon object, allowing them all to head in different directions:

COMP1405/1005 – Shared Data Fall 2011

 - 310 -

Here is the additional code required to create and display the robots and their beacons:

Robot[] robots; // a bunch of robots
final int ROBOT_RADIUS = 2; // a robot's radius (in pixels)
final int BEACON_RADIUS = 15; // a beacon's radius (in pixels)

void setup () {
 size (600,600);

 // Make some robots with unique beacons
 robots = new Robot[10];
 for (int i=0; i<robots. length ; i++) {
 robots[i] = new Robot(width /2, height /2);
 robots[i].beacon = new Beacon(random(width), random(height));
 }
}

void draw () {
 background (0,0,0);
 for (int i=0; i<robots. length ; i++) { // draw all robots and their beacons
 draw(robots[i]);
 draw(robots[i].beacon);
 move(robots[i]); // explained later
 }
}

void draw(Robot r) {
 fill (r.beacon.col); // use beacon's color
 stroke (0,0,0);
 ellipse (r.x, r.y, 2*ROBOT_RADIUS,2*ROBOT_RADIUS);
}

void draw(Beacon b) {
 fill (b.col);
 stroke (0,0,0);
 ellipse (b.x, b.y, 2*BEACON_RADIUS,2*BEACON_RADIUS);
}

COMP1405/1005 – Shared Data Fall 2011

 - 311 -

Notice how each robot is colored to match its beacon location's color. The move() procedure
will be explained later. For now, assume though that it steers the robot towards its beacon
location.

In the code above, each robot has its own unique beacon to head towards. Now we will
adjust the code to allow multiple robots to head towards the same beacon, thereby causing a
swarm-like simulation. We will alter the code so that instead of having a unique beacon for
each robot, we will generate only a few beacons and have the robots share the same exact
Beacon object as their target destination. Here is how the data structure will change:

There will be much less Beacon objects created since multiple robots will share the same one.
Is there any advantage to having less/shared Beacons ?

One important advantage to having shared beacons like this is that memory storage
requirements are reduced. Imagine for example, that it takes 4 bytes each to store the x and
y values of the beacon location and an additional 3 bytes to store the color. That means,
each beacon requires a minimum of 11 bytes of storage. If we simulated N robots each storing
their own unique beacons, this would require ((11+4) x N) bytes of storage in memory just to
store the beacons (the extra 4 bytes storing the pointer to the beacon in the memory).

Now, assume that we create M beacons. This would require (11 x M) bytes of storage. If
each robot now kept only a single pointer (i.e., 4 bytes) to one of the M beacons, the total
storage requirements for the beacon storage would be ((4 x N) + (11 x M)) bytes.

This seems a little abstract. Assume then that we have 5 beacons and 1000 robots. Then
this works out to be 15,000 bytes for the non-shared beacon version and 4,055 bytes for the
shared beacon version. That is a significant difference of less than 1/3 of the storage space
requirements!!

COMP1405/1005 – Shared Data Fall 2011

 - 312 -

This is often the reason for having shared data and shared objects ... to reduce storage space
requirements for the program. However, in addition to reduced storage space, there is
another important advantage to having shared beacons. If the beacon's location was to
change (e.g., manually moved by the user), we would simply need to alter the (x,y) location of
the single Beacon object, and since all same-swarm robots share this same Beacon object in
memory, they will all be able to access (i.e., when heading towards) the newly changed (x,y)
location immediately. Therefore, by changing a single variable (e.g., a beacon's x location),
we are automatically modifying the behavior of multiple robots. This allows us to simulate the
objects efficiently. Conversely, if we had stored a unique beacon object within each robot
(i.e., non-shared beacons), we would need to find all robot's that share that beacon and update
all of their x coordinates. This would be a slower process since it would require us to loop
through all robots, checking their beacons for a match as to which ones the user is trying to
move.

To verify this, consider altering the setup code to produce a newly-defined array of 5 beacons
and then adjust the robot's to choose one of these 5 beacons as their destination. We also
should adjust the draw() procedure to draw the beacons separately:

...
Beacon[] beacons; // a bunch of beacons

void setup () {
 ...
 beacons = new Beacon[5];
 for (int i=0; i<beacons.length; i++)
 beacons[i] = new Beacon(random(width), random(height));

 // Make some robots with shared beacons
 robots = new Robot[1000]; // lots of robots
 for (int i=0; i<robots. length ; i++) {
 robots[i] = new Robot(width /2, height /2);
 robots[i].beacon = beacons[int (random (beacons. length))]; // choose random one
 }
}

void draw () {
 background (0,0,0);

 // draw all robots
 for (int i=0; i<robots. length ; i++) {
 draw(robots[i]);
 move(robots[i]); // explained later
 }

 // draw all beacons separately
 for (int i=0; i<beacons. length ; i++)
 draw(beacons[i]);
}

Notice how each robot is now assigned a random
beacon from the beacons array. The program
will now allow 5 groups of robots to head towards
one of the 5 beacons in a swarm-like fashion.

COMP1405/1005 – Shared Data Fall 2011

 - 313 -

For added enjoyment, we can add the following to allow beacons to be grabbed and moved
around on the screen:

Beacon grabbed; // the beacon that has been grabbed

void mousePressed () {
 for (int i=0; i<beacons. length ; i++) {
 if (dist (beacons[i].x, beacons[i].y, mouseX, mouseY) < BEACON_RADIUS) {
 grabbed = beacons[i];
 return ;
 }
 }
}
void mouseDragged () {
 if (grabbed != null) {
 grabbed.x = mouseX;
 grabbed.y = mouseY;
 }
}
void mouseReleased () {
 grabbed = null ;
}

As the beacon is moved around, you will see a subset of the robots following it around.
Clearly, by allowing robot's to share Beacon objects we gain the advantages of saving storage
space and also easy of updates when we change a beacon's location.

The only missing component of our code is the move() procedure...which is responsible for
moving the robot towards the beacon. Recall from our ball-moving example that to move a ball
(or robot) forward, we simply apply trigonometry using the robot's location and direction:

void move(Robot r) {
 r.x = r.x + int (r.speed* cos (r.direction));
 r.y = r.y + int (r.speed* sin (r.direction));
}

The code above simply moves the robot forward in its current direction. The harder part is to
determine and update the direction of the robot so that it heads towards the beacon location.
All we need to do is to look at the where the robot is heading and decide whether or not it
needs to turn right or left to get towards the beacon:

Above, (rx, ry) is the robot's current location and (r'x, r'y) would be the robot's next location if it
were to travel in its current direction without turning (for this next location we could simply use
the new value for r.x and r.y that we computed in our code above).

COMP1405/1005 – Shared Data Fall 2011

 - 314 -

The beacon location is represented as (gx,gy). In order to determine whether or not the robot
should take a left or right turn to get to the beacon from its current direction, we can examine
the type of turn from (rx, ry) → (r'x, r'y) → (gx,gy). If this is a left turn, the robot should turn left.
If it is a right turn the robot should turn right. If it is a straight line, the robot will need to either
move straight ahead, or straight backwards (depending on where the beacon location is).

To determine the type of turn, we can make use of the
cross product of the vector from (rx, ry) → (r'x, r'y) and
the vector from (rx, ry) → (gx,gy). You may recall that the
cross product a X b is a vector that is perpendicular to the
plane containing the two vectors a and b. The cross
product will either be positive, negative or zero. You can
visualize the cross product by using the right-hand rule as
shown in the picture here.

If the cross product is positive, this indicates a left turn. If
negative, then a right turn. If the cross product is zero,
then there is no turn (i.e., the two vectors form an angle of 180°).

The cross product can be computed as follows:

crossProduct = (r'x - rx)(gy - ry) - (r'y - ry)(gx - rx)

So, we can just plug this into our program and check for the sign of the result. Once we
determine whether to turn left or right, we simply add some degree amount to the robot's
direction. If we use a large degree amount (e.g., 90°) then the robot will make only right-
angled turns ... not too realistic. If we use a smaller amount (e.g., 45°), then the robot will
make sharp turns and will orient towards the beacon quickly. Smaller amounts (e.g., 30° or
15°) will provide a more smooth motion. Very small amounts (e.g., 1°) will cause the robot to
always makes large arcing motions, taking a while to orient towards the beacon.

COMP1405/1005 – Shared Data Fall 2011

 - 315 -

To make the swarm more realistic, instead of having a fixed turn amount, we could adjust it to

have a ±12.5% error as follows, given a desired turn amount of θ:

amountToTurn = θ + random(θ/4) - (θ/4)/2

As a result, here is the kind of movement pattern that a robot would produce for various values

of θ (note that the beacon location is not displayed, but is in the center if the window):

void move(Robot r) {
 float nextX, nextY, crossProduct;

 nextX = r.x + int (r.speed* cos (r.direction));
 nextY = r.y + int (r.speed* sin (r.direction));

 crossProduct = (nextX - r.x)*(r.beacon.y - r.y)-(nextY - r.y)*(r.beacon.x - r.x);
 r.x = nextX;
 r.y = nextY;
 if (crossProduct < 0) // try changing to: if((crossProduct<0)&&(random(1)<0.6))
 r.direction -= (ANGLE + random (ANGLE/4) - (ANGLE/8))/180*PI;
 else
 r.direction += (ANGLE + random (ANGLE/4) - (ANGLE/8))/180*PI;
}

COMP1405/1005 – Shared Data Fall 2011

 - 316 -

 8.2 When Shared Data is Necessary

In some cases, it is absolutely necessary to share data in order to have a working program.
Consider the area of computer animation. To animate something simple (i.e., 2D) in a
program, programmers often use what are called sprites .

A sprite is a 2D image that it integrated into a scene to form an animated character.

Sprites are often displayed and animated by drawing a set of pictures in

sequence. Each of the individual pictures, called frames represent

the different "movements" of the object to be animated. So, by
displaying these frames in sequence, we achieve animation.

For example, consider a stick person walking. We can do this with only
two frames and just swap between them:

Frame 1

Frame 2

The animation, however, would have the undesirable characteristic of being very "jumpy", not
very smooth. The problem is that there is no smooth transition between the frames. We can
make a big improvement just by introducing one more picture and duplicating the 2nd frame
twice to produce a 4 frame sequence:

Frame 1

Frame 2

Frame 3 Frame 4

This animation would appear much smoother, but if we display the frames at the same rate,
the person would appear to walk much slower. Assuming that we display 1 frame every 1/4
second, the 2-frame case would take 1/2 second to complete a cycle while in the 4-frame
case, would take a full second. For the 4-frame case we can just reduce the inter-frame
display delay to 1/8 of a second and the speed will then appear to match the 2-frame case.

The number of frames that can be displayed in a second is known as the frame rate . So, by

using a delay of 1/8 seconds between frames, we have a frame rate for the animation of 8
frames per second (fps).

COMP1405/1005 – Shared Data Fall 2011

 - 317 -

Example:

Consider a program that simulates birds flying across a
beach scene. To make this look somewhat realistic
(from a cartoon perspective), we would need to have
unique pictures (i.e., frames) to display that represent
the various "poses" of the bird as it flies.

We will make use of exactly 8 different poses (i.e.,
frames) for the birds as shown below. Each pose
must be stored as a unique .gif image in a subfolder of
our processing program's folder called data. The
indices below the images represent the frame number:

0 1 2 3 4 5 6 7

We will need to maintain information for each bird in regards to its location on the screen, its
speed and perhaps which frame is being shown at any time. Here is how we can define such
a Bird data structure:

Define a bird object as follows:

class Bird {
 float x, y; // bird's coordinate on the screen
 float speed; // bird's speed in pixel movements per frame
 PImage[] images; // frames/pictures of the bird in various poses
 int currentFrame; // current frame of the bird

 Bird(float bx, float by) {
 x = bx;
 y = by;
 speed = random (10) + 5; // random speed from 5 to 15 pixels/frame
 currentFrame = int (random (8)); // start with a random picture
 images = new PImage[8]; // array to hold 8 pictures
 for (int i=1; i<=8; i++) // load up all 8 pictures for this bird
 images[i-1] = loadImage ("Birdx" + i + ".gif");
 }
}

We can then create an array of Bird objects and display them on the screen as shown in the
following code. Note that the beach image is a separate image that is displayed as a
background picture. The code will display 50 birds at random locations on the window at
some random pose. Even though the birds are displayed, they are not moving...they seem
still. The frameRate is the number of times per second that the draw() procedure is called.
It is set to 20 and this will be fast enough to animate the birds, as we will see later. If it is not
set, then the frameRate will be too fast because the default rate is 60 fps.

COMP1405/1005 – Shared Data Fall 2011

 - 318 -

Bird[] birds;
PImage beach;

void setup () {
 size (800,600);
 birds = new Bird[50];
 for (int i=0; i<8; i++)
 birds[i] = new Bird(random (width), random (height /2));
 beach = loadImage ("beach.jpg");
 frameRate (20);
}

void draw () { // This is called repeatedly at a fixed frameRate
 image (beach, 0, 0);
 for (int i=0; i<8; i++)
 draw(birds[i]);
}

void draw(Bird b) {
 image (b.images[b.currentFrame], b.x, b.y);
}

To animate the birds, we must now do two things: (1) Have them vary their images, and (2)
have them move horizontally. We can update the draw() procedure by adding a move()
procedure as follows:

void draw () { // This is called repeatedly at a fixed frameRate
 image (beach, 0, 0);
 for (int i=0; i<8; i++) {
 move(birds[i]);
 draw(birds[i]);
 }
}

The move() procedure must move the bird forward and this can be done simply by adding the
bird's speed to the x coordinate, making sure that when it reaches the right side of the window,
we cause a wraparound to the left side again. To do this, we simply set the x value to an
amount which is -width of the bird image so that the bird slowly flies back onto the window
again from the left. To change the bird's image, we simply increment the currentFrame,
making sure that when it reaches 8, we set it back to 0 again ...using the modulus operator:

void move(Bird b) {
 // Move the bird 10 pixels forward
 b.x = b.x + b.speed;

 if (b.x > width)
 b.x = -102; // 102 is the width of the Bird image

 b.currentFrame = (b.currentFrame + 1) % 8;
}

Now the birds will appear to be flying nicely. Try changing the array to make 500 birds.
Depending on your computer's memory ... the code may or may not run. My computer
produced an error indicating that I would need to increase the memory setting in the
Preferences under the File menu.

COMP1405/1005 – Shared Data Fall 2011

 - 319 -

The problem is simple. The current code loads 8 images for each bird. Therefore, 500 birds
would require (500 x 8 = 4000) images to be loaded and stored in the program. However, it is
easily seen that the birds are all using the same 8 image files. Therefore, instead of having
each bird store their own images, it makes more sense to simply load the 8 images and have
the birds "share" the images. We can add this to the program:

PImage[] birdFrames;

and then add this to the setup() procedure:

birdFrames = new PImage[8];
for (int i=1; i<=8; i++)
 birdFrames[i-1] = loadImage ("Birdx" + i + ".gif");

Then we can remove the images from the Bird object:

class Bird {
 float x, y;
 float speed;
 int currentFrame;

 Bird(float bx, float by) {
 x = bx;
 y = by;
 speed = random (10) + 5;
 currentFrame = int (random (8));
 }
}

Finally, we make changes to the draw(Bird b) procedure:

void draw(Bird b) {
 image (birdFrames[b.currentFrame], b.x, b.y);
}

Now, you may even be able to add up to 50,000 birds without problems...although the program
would become very slow ;)

So in this example, we see that sharing is sometimes necessary in order to reduce memory
space requirements and have a running program. There are also examples in which sharing
is NOT even desired at all...

COMP1405/1005 – Shared Data Fall 2011

 - 320 -

 8.3 Separating Shared Data Again

Example:

Even though sharing objects may be to our advantage, there are some
situations where we do not want shared objects. For example,
sometimes we need to make copies of objects and we would like the
copy to be a truly unique copy so that we can leave the original intact
and safe at all times. We may think of making photocopies of
important documents so that the original document can be stored away
safely.

Consider the following function which creates and returns a copy of a list:

Function: makeCopy(aList)

1. anotherList ← new array with capacity aList.length
2. for index i from 0 to aList.length - 1

3. anotherList[i] ← aList[i]
4. return anotherList

The code produces a new array containing the objects from the original list. Consider testing
this function with an array of Person objects, which have a firstName, lastName, age, height
and retiredStatus as follows:

Algorithm: CopyTest1

1. original ← new array with capacity 3
2. original[0] ← new Person("Hank", "Urchif", 21, 5.8, false)
3. original[1] ← new Person("Holly", "Day", 32, 5.9, false)
4. original[2] ← new Person("Bobby", "Pins", 87, 6.2, true)
5. copy ← makeCopy(original)

Here is what we accomplish with this code …

COMP1405/1005 – Shared Data Fall 2011

 - 321 -

Notice that when we add the Person objects to the copy, they are actually shared between the

two arrays. This is known as a shallow copy . The advantage is that we do not need to use

up additional memory space to store duplicate information for the copy. That is, we do not
need to store the first and last names twice (i.e., for the original and the copy) since they are
the same names. Normally this is not a problem when writing code as long as we know that
the items are shared.

We need to understand the consequences of having such shared data. Consider what
happens in the following example as we make changes to the copy:

Algorithm: CopyTest2

1. original ← new array with capacity 3
2. original[0] ← new Person("Hank", "Urchif", 21, 5.8, false)
3. original[1] ← new Person("Holly", "Day", 32, 5.9, false)
4. original[2] ← new Person("Bobby", "Pins", 87, 6.2, true)

5. copy ← makeCopy(original)

6. copy[0] .firstName ← "Steve"
7. copy[2] ← new Person("April", "Rain", 15, 4.7, false)
8. copy[2] .firstName ← "Acid"

We are doing three things to the copy: (1) changing a person's name, (2) replacing one person
entirely with a new one, and (3) changing the new one's name. Here is what happened:

COMP1405/1005 – Shared Data Fall 2011

 - 322 -

When changing Hank's name in the copy to "Steve", the original list is modified as well since
the Person object, that both the original and copy lists were sharing, has now been altered.
This can have serious consequences in your program since you may end up with a part of your
code that unknowingly affects other parts of your program by modifying data structures that
were not meant to be changed.

Some modifications, however, can be made to the copy that do not affect the original. For
example, when replacing Bobby with the new person April in the copy, the original remains
unchanged since we are simply moving a "pointer" in the copy to a new memory location.
Then, when we replace April's name with "Acid", the original is not affected since nowhere
does it refer to that newly create Person object.

So you can see, by replacing, adding to or removing from a copied list, the original list remains
intact. However, when we access a shared object from the copy and go into it to make
changes to its attributes, then the original list will be affected.

To make a more thoroughly-separated copy, we could make what is known as a deep copy
of the list so that the Person objects are not shared between them (i.e., each list has their own
copies of the Person objects). To do this, we would need to make copies of the objects in the
lists. That means, we would need to create a new object for each item in the list and then
copy over all of the attributes so that they match the original objects.

COMP1405/1005 – Shared Data Fall 2011

 - 323 -

Here is how we can modify the makeCopy function to accomplish this:

Function: makeCopy(aList)

1. anotherList ← new array with capacity aList.length
2. for index i from 0 to aList.length - 1 {
3. anotherList[i] ← new Person
4. anotherList[i].firstName ← aList[i].firstName
5. anotherList[i].lastName ← aList[i].lastName
6. anotherList[i].age ← aList[i].age
7. anotherList[i].height ← aList[i].height
8. anotherList[i].retiredStatus ← aList[i].retiredStatus
 }
9. return anotherList

Notice that much more work is involved. However, the effect of running our CopyTest1
algorithm would be as follows:

COMP1405/1005 – Shared Data Fall 2011

 - 324 -

Notice that there are unique Person objects now and that changing the name of anyone in the
copy will not affect the original. You may notice though, that the Strings are still shared! That
means, if we altered any characters in one person's name in the copy, this would affect the
original (i.e., remember...replacing shared objects does not cause problems but modifying
shared objects does cause a problem).

Fortunately, in Processing (and JAVA), it is not possible to modify characters in a String, so
this would never be a problem. However, to be safe, a truly deep copy can be made by
copying these strings as well by changing lines 4 and 5 in the makeCopy function to:

4. anotherList[i].firstName ← new String with same characters as aList[i].firstName
5. anotherList[i].lastName ← new String with same characters as aList[i].lastName

Then, we would have a true copy:

In fact, in order to make a truly deep copy, we would need to ensure that we thoroughly copy
each of the attributes of all objects. That is, if an object is made up of other objects ... we
must go into those other objects and make deep copies of them as well.

COMP1405/1005 – Shared Data Fall 2011

 - 325 -

 8.4 Example: Graph Editor

As a final example, we will consider an application in which data is shared within a data
structure called a graph :

A graph is an abstract data structure that represents interconnectivity of a set of
objects (called nodes or Vertices). Two nodes of a graph are connected by an edge
to indicate some kind of relationship between the nodes.

Graphs are used throughout computer science. They can be used to store data that
represents interconnectivity between various "things". For example, graphs can be used to
represent
 • connected flights from one city to another • roads and intersections on a map • various pathways on a terrain (e.g., water flow) • interconnectivity in networks (e.g., social networks) • etc...

Regardless of the application, graphs can be automatically generated or created manually.
We will examine a simple application that allows the user to create, manipulate and edit a
graph on a window in Processing.

This larger programming example with bring together many of the concepts that you have
learned in the course including the use of data structures, graphics, event handling, arrays,
searching and the sharing of data.

To begin, here is what the graph will look like:

COMP1405/1005 – Shared Data Fall 2011

 - 326 -

We will then be able to move nodes and edges around the graph as well as add and delete
nodes and edges. As you will see, the edges of the graph will share nodes so that when
edges are moved, their nodes will also move and when a node is deleted, all edges connected
to that node will be deleted.

We need to begin by understanding how the graph is stored. The graph will be made up of
Node objects which have a particular (x,y) location on the screen as well as a label:

class Node {
 int x, y;
 String label;

 Node(int ix, int iy, String lab) {
 x = ix;
 y = iy;
 label = lab;
 }
}

Creating nodes is therefore quite easy, since we simply call the constructor as follows:

 new Node(350, 250, "Ottawa");

Edges will connect two nodes. It does not make sense for an edge to exist unless it connects
two nodes of the graph. For example, all of an airline's flights have a departure city and an
destination city. It does not make sense for either one of these cities to be missing.
Therefore, an edge will not connect two points on the screen, rather it will connect two nodes
of the graph. Here is the definition of the Edge data structure:

class Edge {
 Node startNode, endNode;

 Edge(Node start, Node end) {
 startNode = start;
 endNode = end;
 }
}

COMP1405/1005 – Shared Data Fall 2011

 - 327 -

Notice how the attributes of the Edge are actually Node objects. Creating an edge therefore
requires us to already have two Node objects:

Node n1 = new Node(350, 250, "Ottawa");
Node n2 = new Node(100, 380, "Toronto");

Edge e = new Edge(n1, n2);

Now, for the Graph itself ... it is really nothing other than a set of nodes and edges. We can
store these using two arrays ... one for the nodes and one for the edges. But how big should
the arrays be ? Ideally, we should allow them to grow (recall from chapter 5 how we were
able to grow an array by making a new one and copying over the contents). However, to keep
our code simple, we will not allow the arrays to grow but instead we will set a maximum
number of nodes and edges that can be added to the graph. Here is our definition for the
Graph data structure:

final int MAX_GRAPH_NODES = 100; // arbitrarily chosen #
final int MAX_GRAPH_EDGES = 1000; // arbitrarily chosen #

class Graph {
 int numNodes, numEdges;
 Node[] nodes;
 Edge[] edges;

 Graph () {
 nodes = new Node[MAX_GRAPH_NODES];
 edges = new Edge[MAX_GRAPH_EDGES];
 numNodes = numEdges = 0;
 }
}

Graphs with no nodes or edges are made by simply calling the constructor: new Graph();

However, in order to make an interesting graph, we will need the ability to add nodes and
edges to it. We can write simple procedures that allow us to add nodes and edges to the
corresponding graph arrays as follows:

// Add the given node to the given graph
void addNode (Graph g, Node n) {
 if (g.numNodes < MAX_GRAPH_NODES) {
 g.nodes[g.numNodes] = n;
 g.numNodes++;
 }
}

// Add an edge to the given graph from node a to node b
void addEdge (Graph g, Node a, Node b) {
 if (g.numEdges < MAX_GRAPH_EDGES) {
 g.edges[g.numEdges] = new Edge(a, b);
 g.numEdges++;
 }
}

COMP1405/1005 – Shared Data Fall 2011

 - 328 -

Notice the error checking to make sure that we do not go past the maximum array sizes.

Here is a simple function that creates and returns the graph shown earlier:

Graph exampleGraph() {
 Graph g = new Graph();
 Node n1 = new Node(350, 250, "Ottawa");
 Node n2 = new Node(100, 380, "Toronto");
 Node n3 = new Node(300, 340, "Kingston");
 Node n4 = new Node(440, 240, "Montreal");
 addNode(g, n1);
 addNode(g, n2);
 addNode(g, n3);
 addNode(g, n4);
 addEdge(g, n1, n2);
 addEdge(g, n1, n3);
 addEdge(g, n1, n4);
 addEdge(g, n2, n3);

 return g;
}

To display the graph, we need to write the setup() procedure that will define the window size,
initialize the graph and prepare the font for the node labels:

Graph graph; // Global variable to store the graph

// Start the program by initializing everything
void setup () {
 size (600,600);
 graph = exampleGraph();

 // Set up the font for the node labels (must be in data directory)
 PFont font = loadFont ("Arial-BoldMT-12.vlw");
 textFont (font);
}

The above code makes a 600x600 window and loads a font that will be used to draw the labels
onto the nodes. It also creates the example graph and stores it in a global variable that we
can access from anywhere within our program. (Note that the font string shown here was

automatically produced from the Tools/Create Font... menu option in Processing).

Drawing a node n is as simple as calling the ellipse() procedure where the node's (x,y)
position is its center and the NODE_DIAMETER is the width and height of the node:

final int NODE_RADIUS = 15;
final int NODE_DIAMETER = NODE_RADIUS*2;
ellipse (n.x, n.y, NODE_DIAMETER, NODE_DIAMETER);

Drawing an edge e is also simple using the line() procedure:

line (e.startNode.x, e.startNode.y, e.endNode.x, e.endNode.y);

COMP1405/1005 – Shared Data Fall 2011

 - 329 -

To draw the label of node n, we simply use the text() procedure:

text (n.label, n.x + NODE_RADIUS, n.y - NODE_RADIUS);

Notice how we added the node's radius to the x and subtracted from the y. This allows us to
draw the label up and to the right of the node ... making it more readable:

Drawing at (x+radius, y-radius) Drawing at (x,y)

Here is the draw() procedure that draws the whole graph altogether:

void draw () {
 background (255); // Paint the background white
 stroke (0,0,0); // black border

 // Draw the Edges
 for (int i=0; i<graph.numEdges; i++) {
 Edge e = graph.edges[i];
 line (e.startNode.x, e.startNode.y, e.endNode.x, e.endNode.y);
 }

 // Draw the Nodes
 for (int i=0; i<graph.numNodes; i++) {
 Node n = graph.nodes[i];
 fill (150,150,255); // light blue inside color
 ellipse (n.x, n.y, NODE_DIAMETER, NODE_DIAMETER);
 }

 // Draw the labels on the nodes
 fill (0);
 for (int i=0; i<graph.numNodes; i++) {
 text (graph.nodes[i].label,
 graph.nodes[i].x + NODE_RADIUS,
 graph.nodes[i].y - NODE_RADIUS);
 }
}

Notice that the code first clears the background, then draws the edges, then the nodes and
finally the labels of the nodes. Drawing the edges first prevents the edges from drawing on
top of the center of the nodes:

Edges drawn first Nodes drawn first

Likewise, the labels of the nodes are drawn afterwards so that they will always appear on top
and not get hidden underneath the other nodes:

COMP1405/1005 – Shared Data Fall 2011

 - 330 -

Labels drawn with Nodes Labels drawn after nodes

Now that we have the ability to draw the graph, we can start working on allowing it to be edited
and manipulated.

Adding Nodes:

To begin, we will write code that allows the user to add a node to the graph by double-clicking
the left mouse button at some location in the window. The new node should appear centered
where the user clicked. We need to write a mouseClicked() event handler:

void mouseClicked () {
 addNode(graph, new Node(mouseX, mouseY, ""));
}

Notice how simple the code is. We simply
check if the mouse was clicked and add a node
to the graph with the current mouse position as
the node's center. We can now add new
nodes to the graph ... as shown here →

To adjust the code so that the node only gets
added when the mouse is double-clicked, we
need to make use of a variable in Processing called mouseEvent. That variable is an object
that allows us to apply various functions to it. In the next course, we will see that we can
"attach" (or associate) functions and procedures to objects. In this case, we will call the
getClickCount() function which returns the number of successive clicks that the user made so
that we can add the node only when a 2nd successive click was made:

void mouseClicked () {
 if (mouseEvent.getClickCount() == 2)
 addNode(graph, new Node(mouseX, mouseY, ""));
}

Selecting Nodes:

Many drawing programs have the ability to select and move objects around. We will now add
functionality to allow our nodes to be selected. Selected nodes should appear selected
somehow ... in our case ... we will simply color them red instead of blue.

Rather than trying to keep a list of selected nodes, we can alter the Node data structure to
include a boolean so that each node has the ability to be selected or unselected:

COMP1405/1005 – Shared Data Fall 2011

 - 331 -

class Node {
 int x, y;
 String label;
 boolean selected ;

 Node(int ix, int iy, String lab) {
 x = ix;
 y = iy;
 label = lab;
 selected = false ;
 }
}

So then what do we do to select a node ? Likely we will double-click on the node. What if we
double-click on a node that is already selected ? It should become unselected. So, double-
clicking on a node should cause it to toggle between being selected and unselected.

We need to modify our mouseClicked() event handler. There is a slight problem ... double-
clicking anywhere on the window will cause a new node to be added. We need to adjust the
code therefore so that when we double-click on top of a node ... we select it instead of adding
a new node.

if (there is a node already at the mouse location)
 select the node
otherwise
 add a new node at the mouse location

So, we need to find out whether or not there is a node at the mouse location. We can write a
function to find and return the node at a given location. To do this, we need to look at all the
nodes and determine which one was clicked on (if any). Here is one way to do this:

Node nodeAt (Graph g, int x, int y) {
 for (int i=0; i<g.numNodes; i++) {
 if ((g.nodes[i].x == x) && (g.nodes[i].y == y))
 return g.nodes[i];
 }
 return null ;
}

This code will look through all the nodes in the graph and find the one whose center matches
the point specified by the given (x,y) point. If we find such a node, it is returned right away,
otherwise the FOR loop completes ... no matching node was found ... so the function returns
null.

The problem with this code, however, is that we are extremely unlikely to click on the exact
center of the node. It would be very difficult and painfully tedious to force the user to click on
the center of a node to select it. So, we need to adjust our code so that the user may click
anywhere inside the node to select it. How do we determine whether the point (x,y) is inside
the node or outside of it ? We already solved this problem when we simulated the throwing of
a ball back in chapter 3. We just need to check the distance from the click point to the center
of the node and ensure that it is less than the radius of the node:

COMP1405/1005 – Shared Data Fall 2011

 - 332 -

Node nodeAt(Graph g, int x, int y) {
 for (int i=0; i<g.numNodes; i++) {
 Node n = g.nodes[i];
 float d = sqrt (((n.x - x) * (n.x - x)) + ((n.y - y) * (n.y - y)));
 if (d <= NODE_RADIUS)
 return n;
 }
 return null ;
}

Note that the code above can be made more efficient by checking the "square" of the distance
against the square of the radius to avoid the computation of a square root ... thereby speeding
up the computation.

Now we can adjust the mouseClicked() event handler to allow nodes to be selected:

void mouseClicked () {
 if (mouseEvent.getClickCount() == 2) {
 Node n = nodeAt(graph, mouseX, mouseY);
 if (n != null)
 n.selected = !n.selected;
 else
 addNode(graph, new Node(mouseX, mouseY, ""));
 }
}

All that remains to be done is to draw nodes as selected. We can replace the

fill (150, 150, 255) line in the draw() procedure by the following:

 if (n.selected)
 fill (255,0,0); // red inside
 else
 fill (150,150,255); // light blue inside

We can now select nodes.

Moving Nodes:

A natural user action to move nodes around on the window would be to select a node and then
grab it and drag it to its new position. To allow this functionality, we will need to incorporate
into our program additional event handlers. Let us consider what happens when the user
drags a node:

COMP1405/1005 – Shared Data Fall 2011

 - 333 -

So, we will need to write mousePressed, mouseDragged and mouseReleased event
handlers. What happens when the mouse is pressed on a selected node ? Well, the node
does not move. Nothing really "happens" visually. What about when the mouse is dragged ?
Well, we need to move the node that we had clicked on to the new mouse location. Within the
mouseDragged event handler, we will need to know which node we had initially pressed the
mouse on. So, in the mousePressed() event handler all we need to do is to find out which
node was at that position and remember it. We can store this into a variable called dragNode
as follows:

Node dragNode; // Add to the top of program

void mousePressed () {
 dragNode = nodeAt(graph, mouseX, mouseY);
}

Then, as the mouse is dragged, we simply access this dragNode and set its (x,y) location to
be the mouse's location as follows:

void mouseDragged () {
 dragNode.x = mouseX;
 dragNode.y = mouseY;
}

However, it is possible that the user may drag the mouse without first having pressed on a
node. In that case, the nodeAt() function will return null (as it is supposed to) and our code
would stop working since dragNode would be null and we cannot access null.x or null.y. So
we should check to ensure that dragNode is not null. Also, we should ensure that the
dragNode is selected, otherwise we may be moving nodes that we did not intend to move.
Here are the changes:

void mouseDragged () {
 if (dragNode != null) {
 if (dragNode.selected) {
 dragNode.x = mouseX;
 dragNode.y = mouseY;
 }
 }
}

COMP1405/1005 – Shared Data Fall 2011

 - 334 -

Adding Edges:

What kind of user-action will our program consider for adding edges ? There are a few
options. For example, we could write code that allows an edge to be added simply by clicking
two nodes one after another. However, a "nicer" interface will allow the user to click on a
node and "drag" a line towards another edge so that when the user lets go on another node,
an edge is added:

The idea is similar to that of "stretching" an elastic band tied from the center of the start node
with the other end on the mouse cursor. This elastic-banding effect is common with many
drawing programs as it provides feedback to the user giving a rough idea as to how the edge is
going to appear in the graph.

To accomplish this, as the mouse is being dragged, we will need to draw a line from the start
node to the mouse's current location. Where do we do the drawing of this line ? It needs to
be done in the draw() procedure. So, in the draw() procedure we will need to know the start
node as well as the current mouse location.

The code in the mousePressed event handler already stored the start node as dragNode.
All we would then need to do is to ensure that as the user drags the mouse (i.e., in the
mouseDragged event handler) we store the mouse location. We could use variables called
elasticEndX and elasticEndY as follows:

int elasticEndX, elasticEndY; // Add to the top of program

void mouseDragged () {
 if (dragNode != null) {
 if (dragNode.selected) {
 dragNode.x = mouseX;
 dragNode.y = mouseY;
 }
 else { // store end point for edge to be added
 elasticEndX = mouseX;
 elasticEndY = mouseY;
 }
 }
}

Then, in the draw() procedure we add code to ensure that the line is drawn. However, we
want to make sure that the user first clicked on a node to begin the edge adding process.

COMP1405/1005 – Shared Data Fall 2011

 - 335 -

If the user clicked off of a node, then we can detect this by checking if dragNode is null as
follows:

 // Draw the elastic band
 stroke (0,0,0); //black
 if (dragNode != null)
 line (dragNode.x, dragNode.y, elasticEndX, elasticEndY);

This code should appear after background(255) but before the nodes of the graph are drawn
so that the line will appear behind the nodes and not cut across them.

If the user decides to start drawing an edge but then lets go of the mouse button somewhere
other than on another node, then the edge should not be added and the line should disappear.
However, our code does not do this. We need to have a way of informing the draw()
procedure NOT to draw the line once the user releases the mouse button. The simplest way
to do this is to set the elasticEndX to have a value of -1... or something similar ... in the
mouseReleased event handler. Then we can check for this in the draw() procedure:

void mouseReleased () {
 elasticEndX = -1;
 elasticEndY = -1;
}

void draw () {
 ...
 if ((dragNode != null) && (elasticEndX != -1))
 line (dragNode.x, dragNode.y, elasticEndX, elasticEndY);
 ...
}

Of course, we must handle the case where the user successfully releases the mouse on a
node. Then we need to add a new edge. We should add the edge as long as the user
released the mouse on a "different" node...not the same one as the dragNode:

void mouseReleased () {
 elasticEndX = -1;
 elasticEndY = -1;
 if (dragNode != null) {
 Node n = nodeAt(graph, mouseX, mouseY);
 if ((n != null) && (n != dragNode))
 addEdge(graph, dragNode, n);
 }
 }
}

We now have the ability to add nodes to the graph. You may notice that dragging a "selected"
node does not add an edge but still allows the user to move the node around.

COMP1405/1005 – Shared Data Fall 2011

 - 336 -

Deleting Nodes:

Of course, sooner or later we are going to create some nodes by mistake and want to delete
them. With many drawing programs, a common action for deleting objects is to first select
them and then press delete.

How do we allow them to be deleted ? We allow the user to press the DELETE key. This
should cause them to be deleted. We simply write a keyPressed() event handler and
determine if the key variable has been set to DELETE. Then we delete any nodes that have
been selected:

void keyPressed () {
 if (key == DELETE) {
 for (int i=0; i<graph.numNodes; i++) {
 if (graph.nodes[i].selected) {
 deleteNode(graph, graph.nodes[i]);
 i--; // required so that we check the same index next time
 }
 }
 }
}

Notice that that the code loops through all nodes, determines if they are selected and then
calls a deleteNode() procedure (we need to write this yet). The i-- will make sense after we
write the deleteNode() procedure.

Deleting a node is actually a complicated process since there may be edges connected to a
node. We cannot allow any edges to remain in the graph if the edge's startNode or endNode
has been deleted. So we first need to delete all the edges connected to the node being
deleted, then we can delete the node itself. We can write a procedure that loops through the
edges and deletes the ones that have the given node as its start or end node as follows:

void deleteNode(Graph g, Node n) {
 // Find & delete the edges connected to this node
 for (int j=0; j<g.numEdges; j++) {
 if ((g.edges[j].startNode == n) || (g.edges[j].endNode == n)) {
 // Put the last edge in the place of this deleted edge
 g.edges[j] = g.edges[g.numEdges-1];
 g.numEdges--;
 j--; // required so that we check the same index next time
 }
 }
 // Now find and delete the Node
 for (int i=0; i<g.numNodes; i++) {
 if (g.nodes[i] == n) {
 // Put the last node in the place of this deleted node
 g.nodes[i] = g.nodes[g.numNodes-1];
 g.numNodes--;
 return ;
 }
 }
}

COMP1405/1005 – Shared Data Fall 2011

 - 337 -

Notice that to delete something from an array we need to replace it with a different value.
Rather than leave gaps, the above code takes the last edge (or node ... depending on the
array) and places it in the array at the position of the one deleted. Then the number of
elements in the array is actually smaller, so we decrease numEdges (or numNodes ...
depending on the array). The j-- is required to ensure that the next time through the loop ...
we check this same location that we removed the edge (or node) from ... since we placed the
last edge (or node) there and it too needs to be checked.

The code should now work, allowing all selected nodes to be deleted.

Selecting Edges:

We will also want to select, move and delete edges. We can add a boolean to the edge data
structure to allow this:

class Edge {
 Node startNode, endNode;
 boolean selected ;

 Edge(Node start, Node end) {
 startNode = start;
 endNode = end;
 selected = false ;
 }
}

How does the user select an edge ? Likely, by clicking on or near it. We can accomplish this
by determining the distance between the point clicked at and the edge itself. If the distance is
smaller than some pre-decided value (e.g., 5 pixels) then we can assume that this edge was
just clicked on... otherwise we can assume that the edge was not clicked on. The equation to
find the distance from a point to an edge is indicated below:

However, the above equation actually computes the distance from (x,y) to the line that passes
through the two edge nodes. So, if we click anywhere close to that line, we will be a small
distance value and we will think that the edge was selected:

COMP1405/1005 – Shared Data Fall 2011

 - 338 -

Certainly, we do not want such an (x,y) point to be considered as "close to" the edge. We can
avoid this problem situation by examining the x-coordinate of the point that the user clicked on.
The x-coordinate must be greater that the left node's x-coordinate and smaller than the right
node's x-coordinate.

IF (distance < 3) THEN {
 IF ((x > n1.x) AND (x < n2.x)) OR ((x > n2.x) AND (x < n1.x)) THEN
 this edge has been selected
}

Can you foresee any further problems with the algorithm ? What if the edge is vertical ? The
above checking will never select the edge ! Instead, if the edge is vertical, we should
compare the y-coordinates. In fact, if the line is "more horizontal" we should check the x-
coordinates and if it is "more vertical" we should check the y-coordinates. To determine if a
line segment is more vertical or horizontal, we can compare the difference in x and the
difference in y. Here is the code:

IF (distance < 3) THEN {
 xDiff ← abs(n2.x - n1.x)
 yDiff ← abs(n2.y - n1.y)
 IF (xDiff > yDiff) THEN
 IF ((x > n1.x) AND (x < n2.x)) OR ((x > n2.x) AND (x < n1.x)) THEN
 this edge has been selected
 OTHERWISE
 IF ((y > n1.y) AND (y < n2.y)) OR ((y > n2.y) AND (y < n1.y)) THEN
 this edge has been selected
}

Now that we have the algorithm that we need, it would make sense to create an edgeAt()
function to find the edge that was selected, since we did something similar for nodeAt().

Here is the code:

COMP1405/1005 – Shared Data Fall 2011

 - 339 -

Edge edgeAt(Graph g, int x, int y) {
 for (int i=0; i<g.numEdges; i++) {
 Edge e = g.edges[i];
 Node n1 = e.startNode;
 Node n2 = e.endNode;
 int xDiff = n2.x - n1.x;
 int yDiff = n2.y - n1.y;
 float distance = abs (xDiff*(n1.y-y)-(n1.x-x)*yDiff) /
 sqrt (xDiff*xDiff + yDiff*yDiff);
 if (distance <= 5) {
 if (abs (xDiff) > abs (yDiff)) {
 if (((x < n1.x) && (x > n2.x)) || ((x > n1.x) && (x < n2.x)))
 return e;
 }
 else
 if (((y < n1.y) && (y > n2.y)) || ((y > n1.y) && (y < n2.y)))
 return e;
 }
 }
 return null ;
}

Now that we have such a function, we can modify the mouseClicked event handler to allow
edges to be selected:

void mouseClicked () {
 if (mouseEvent.getClickCount() == 2) {
 Node n = nodeAt(graph, mouseX, mouseY);
 if (n != null)
 n.selected = !n.selected;
 else {
 Edge e = edgeAt(graph, mouseX, mouseY);
 if (e != null)
 e.selected = !e.selected;
 else
 addNode(graph, new Node(mouseX, mouseY, ""));
 }
 }
}

Notice now that we first check to see if a node was selected and only if a node was not
selected will we then check to see if an edge was selected. Of course, we will want to show
selected edges as red, so we need to modify the draw() procedure:

 if (e.selected) {
 stroke (255,0,0); // red edge
 strokeWeight (5); // thicker line
 }
 else {
 stroke (0,0,0); // black edge
 strokeWeight (1); // thin line
 }

COMP1405/1005 – Shared Data Fall 2011

 - 340 -

Our program now allows edges to be selected.

Deleting Edges:

We will want to allow edges to be deleted as well. To do this, we should allow the user to
select any edges and press delete. To delete an edge, we simply need to remove it from the
array. We can write a deleteEdge() procedure to do this as follows:

void deleteEdge(Graph g, Edge e) {
 for (int i=0; i<g.numEdges; i++) {
 if (g.edges[i] == e) {
 // Put the last edge in the place of this deleted edge
 g.edges[i] = g.edges[g.numEdges-1];
 g.numEdges--;
 return ;
 }
 }
}

Then, in the keyPressed event handler we simply remove any selected edges by adding the
following code:

 for (int i=0; i<graph.numEdges; i++) {
 if (graph.edges[i].selected) {
 deleteEdge(graph, graph.edges[i]);
 i--;
 }
 }

Moving Edges:

It would be nice to allow an edge to be grabbed and dragged just like a node is grabbed and
dragged. To do this, we will need to determine whether or not the user has pressed the
mouse on an edge and then "remember" that edge so that it can be dragged later. For nodes,
we used a dragNode variable. For edges we can create a similar dragEdge variable:

Edge dragEdge;

We can set this to null in the setup() procedure and then in the mousePressed event handler
we can set it as follows:

dragEdge = edgeAt(graph, mouseX, mouseY);

At this point, we will know which edge has been selected for dragging. All that is left to do is
to actually move the edge when the user drags the mouse. However, how do we actually
move the edge ? It should move by the amount that the mouse moved. We can calculate the
amount that the mouse moved by remembering the "start" point that was initially clicked on
and then finding the change in x and y to the current mouse location:

COMP1405/1005 – Shared Data Fall 2011

 - 341 -

So, in addition to the edge that has been selected, we will need to remember the point that
was clicked at so that we can determine the change from that point to the new mouse location
in order to adjust the edge's node locations. We can create two new variables at the top of
the program to store the mouse location at which the user initially pressed:

int dragX, dragY;

We can then add this to the mousePressed handler set the values:

dragX = mouseX;
dragY = mouseY;

Then in the mouseDragged event handler we can now move the edge, provided that one was
selected by the user by appending this code:

if (dragEdge != null)
 if (dragEdge.selected) {
 int x = mouseX - dragX;
 int y = mouseY - dragY;
 dragEdge.startNode.x = dragEdge.startNode.x + x;
 dragEdge.startNode.y = dragEdge.startNode.y + y;
 dragEdge.endNode.x = dragEdge.endNode.x + x;
 dragEdge.endNode.y = dragEdge.endNode.y + y;
 dragX = mouseX;
 dragY = mouseY;
 }

Moving Multiple Nodes:

When we moved the edge in the above code, we actually did this by moving two nodes. In
fact, we can adjust our node-dragging code so that it allows multiple selected nodes to be
moved around at the same time. We just need to offset the nodes by an amount equal to the
difference between the current mouse location (mouseX, mouseY) and the (dragX, dragY)
location ... as when we moved the edge.

So, instead of doing this in the mouseDragged event handler:

 dragNode.x = mouseX; dragNode.y = mouseY;

we can do the following to move ALL the selected nodes:

COMP1405/1005 – Shared Data Fall 2011

 - 342 -

for (int i=0; i<graph.numNodes; i++) {
 if (graph.nodes[i].selected) {
 graph.nodes[i].x = graph.nodes[i].x + x;
 graph.nodes[i].y = graph.nodes[i].y + y;
 }
}

Now, for example, if we selected all the nodes in the graph, we could translate the whole graph
with one drag operation !

Other Fun Features:

If you want to have more fun, try implementing these features on your own:
 • Allow all selected edges and nodes to be moved by dragging a selected edge.

 • Press <CNTRL><A> to select all nodes and edges and <CNTRL><U> to unselect them.
 • Right-click the mouse on a Node and prompt the user for a label to put on that node.
 • Scale the entire graph up or down by holding the <SHIFT> key while pressing the
mouse on an empty spot on the window and then dragging the mouse up or down to
enlarge or shrink the graph.
 • Press <CNTRL><D> to duplicate all selected nodes and edges and have the new
portion of the graph appear a little below and to the right of the original nodes/edges.

