WWILEY WILEY PROFESSIONAL COMPUTING

ERROR-FREE
SOFTWARE
Know-how and
Know-why of
Program
Correctness

5 g

e Robert L. Baber

. WILEY SERIES IN SOFTWARE ENGINEERING PRACTICE

Copyright Robert Laurence Baber.

This document may be copied, printed and distributed for educational or personal use under the condition that no charge whatsoever is made for such copying, printing, distributing, etc. For any other use permission must be obtained from the copyright owner, Robert Laurence Baber. 2001 July.

COMPUTERS/COMMUNICATIONS

JOHNWILEY & SONS
Chichester - New York - Brishane - Toronto - Singapore

WILEY SERIES IN
SOFTWARE ENGINEERING PRACTICE

ERROR-FREE SOFTWARE

Series Editors:
Know-How aND KNow-wHY OF PROGRAM (CORRECTNESS

Patrick A.V. Hall, The Open University, UK
Martyn A. Ould, Praxis Systems plc, UK
William E. Riddle, Software Design & Analysis, Inc., USA

Robert Laurence Baber

Fletcher J. Buckley * Implementing Software Engineering
Practices Translated from the German original by the author
John J. Marciniak and Donald J. Reifer
e Software Acquisition Management

John S. Hares ¢ SSADM for the Advanced Practitioner

Martyn A. Ould e Sirategies for Software Engineering
The Management of Risk and Quality

David P. Youll * Making Software Development Visible

Effective Project Control

Charles P. Hollocker ® Software Reviews and Audits
Handbook

Robert Laurence Baber ¢ Error-free Software
Know-how and Know-why of Program
Correctness
Charles R. Symons ¢ Software Sizing and Estimating
MkIl FPA (Function Point Analysis)

JOHN WILEY & SONS

Chichester - New York * Brisbane - Toronto * Singapore

Error-free Software: Know-how and Know-why of Program Correctness by
Robert Baber is a translation from the German book Fehlerfreie
Programmicrung fiir den Software-Zauberlehrling, published in 1990 by
R. Oldenbourg Verlag, Munchen.

Copyright = 1991 by John Wiley & Sons Ltd.
Baffins Lane, Chichester
West Sussex PO19 1UD, England

CONTENTS

All rights reserved.

No part of this book may be reproduced by any means,
or transmitted, or translated into a machine language
without the written permission of the publisher.

Other Wiley Editorial Offices

John Wiley & Sons, Inc., 605 Third Avenue,
New York, NY 10158-0012, USA

Jacaranda Wiley Ltd, G.PO. Box 859, Brisbane,

Queensland 4001, Australia
Preface e e .. Vil

John Wiley & Sons (Canada) Ltd, 22 Worcester Road,

Rexdale, Ontario MO9W 1L1, Canada . .
Mathematical Notation xi

John Wiley & Sons (SEA) Pte Ltd, 37 Jalan Pemimpin 05-04,
Block B, Union Industrial Building, Singapore 2057 . X
g 2mngap 0. The Sorcerer's Apprentices in the Land of the Ret Up
Moc e e
Library of Congress Cataloging-in-Publication Data:

Baber, Robert Laurence. .
[Fehlerfreie Programmierung fiir den Software-Zauberlehrling. I.Introduction 0., 7
English] 1.1 The Problem: Errors in Software 7

Error-free software : know-how and know-why of program 1.2 The Solution: th 1 . . .
correctness / by Robert Laurence Baber ; translated from the : e Solution: the Classical Engineering Approach . . 8
German origina] by the author. 1.3 Intended Readership e o o o s s s e e e e s e e e o o o o . . 10

p- cm. — (Wiley series in software engineering practice) . .

Translation of: Fehlerfreie Programmierung fiir den Software 1.4 Goals of this BOOk R & |
- Zauberlehrling. 1.5 Contents of this Book 11

Includes bibliographical references and index.

ISBN 0 471 93016 4 .

1. Computer software—Reliability. 2. Computer software— 2. The Exegutlon of Program Statements: Effects and
~Development. 1. Title. 1II. Series. Assumptions 15
%/;7653.21344B33 1991 0119380 2.1 The Evaluation of Expressions 16

pas 2.2 The Execution of an Assignment Statement 17

2.3 The Execution of an If Statement 18

A catalogue record for this book is available from the British 2.4 The Executfon of a Sequence of Statements 19
Library 2.5 The Execution of a WhileLoop 20
2.6 The Execution of a Subprogram Call 21

Printed in Great Britain by Biddles Ltd, Guildford

vi

Contents

3. Foundation for Correctness Proofs 23
3.1 Definitions« ot i i v v i i i it 24
3.2 Pre- and Postconditions in Correctness Proofs 25
3.3Proof Rules ittt ittt 25
3.4 Applying the Proof Rules 44
3.5 Implications for Program Documentation 45

4. Analysis: Verifying the Correctness of a Program 47
4.1 The Assignment Statement 48
4.2 The If Statementot 54
4.3 The Sequence of Statements 61
4.4 The While Loop 62
4.5 Applying the Divide and Conquer Proof Rules 70
4.6 The Subprogram or Program Segment 73
4.7 Summary: Program Analysis and Verification 77

5. Designing a Correct Program 79
5.1 Design Example: Linear Search 81
5.2 Design Example: Partitioning an Array 85
5.3 Design Example: Searching for a Substring 94
5.4 Design Example: Locating the Next Name in an

Array of Strings o oo 103
5.5 Summary: Program Design 111

6. Formulating Pre- and Postconditions 113
6.1 Boolean Expressions: a Language 113
6.2 Translating from English into the Language of

Logical Algebracoon 114
6.3 Additional Suggestions for Pre- and Postconditions
and Loop Invariants 115
6.4 A Small Glossary for English-Boolean Algebra ... 116
6.5 Examples of Translating into the Language of
Logical Algebra 116
6.6 Summary: Formulating Logical Algebraic Conditions 120
7. ConcClusion v i i i i e e e e e e e e e e e 121

7.1 The Theoretical Foundation for Error Free Software
in Practice v i i i i i it ettt e e 121
7.2 Software Development Tomorrow 123

Contents vii
Appendix A. Logical (Boolean) Algebra 125
A.1 Definitions of the Boolean Functions 125
A.2 Order of Evaluating Functions in Expressions ... 126
A.3 Fundamental Properties of the Boolean Functions 126
A.4 Exercises in Logical Algebra 128
A5Theand andor Series000... 129
Appendix B. Solutions to the Exercises 131
Bibliography i i o 149
Index i e e e e e 151
Reference card for applying the proof rules enclosed

The most important proof rules:

Pl1:
Al:
A2:

IF1:
IF2:
S1:
Wi1:
w2
DC1:
DC3:
SP2:

Strengthening a precondition and weakening a

postcondition e 26
Deriving a precondition of an assignment

L3 o= U= 0 0 1) ¢ 1 o 28
Verifying a precondition of an assignment

statement i e e e e e e e e e e e e 29
Verifying a precondition of an if statement 31
Deriving a precondition of an if statement 32
Sequence of statements00 35
While loop without initialization 36
While loop with initialization 37
Divide and conquer, 39
Divide and conquer 41
Subprogram or program segment 42

Verifying a correctness proposition — Deriving a precondition

Reference card for applying the proof rules

Side 1

Statement type Verify a correctness proposition Derive a precondition
assignment y {V} x:=E {P) (Px(E)) x:=E {P}
1
v—»p"(E) {A2] (A1}
if {V} if B then Sl eise S2 endif (P} Determine V1 and V2 such that
if {vi} S1 (P} and
{V sad B} S1 {P} and {v2} sz P}
{V and not B} S2 (P} then
{(V1 aad B) or (V2 and mst B)}
[#1] # B thea S1 clse S2 endi (P) 2]
sequence {V} S1; 82 (P} Determiae P1 and V such thet
if {V} S1 {P1} and
{v) S1 {P1} and {P1} s2 (P}
{r1} 82 (P} thea
[s1] v} s1; 82 P} Is1}
while loop with {V] Inic.; while B do S endwiile {P} Determine | and V such thet
initislization if vV} mit. {1} and
{V} Init. {I} and {l and B} S 1} ond
{amd B} S {I) and (1 and net B) = P [w2)
(1 and mot B) =» P then
[w2] {V} Init.; while B do S endwhile (P

:
:
:
i
o
i
i
|

: Know-lHow and Know-Why of Pregram Correctmess Wy
1991 by Jobn Wiley & Soms Ltd., Chichester.

Verifying a correct stion — Deriving a Bt

Reference card for applying the proof rules Side 2
Statement type Verify a correctness proposition Derive a precondition
while loop without {V} while B do S endwhile {P} Determine I such that
initialization if {Il and B} S {I}) and
V ==p | and (I and not B) = P
{l and B} S {I} and then
(I and not B) =» P [W1+P1] {1} while B do S endwhile {P} [W1+P1]
program segment Subdivide the pre- and conditions Write the postcondition as (P and B)
or subprogram {V and B} S {P and B such thet
if {v} S (P} and
{v} S {P} and B} s {8
{B} s (B} then
(sP2) {V end B} S (P amd B} sp2}
"divide and conquer” {V} S (P1 and P2} Write the postcondition as (P1 aad P2)
(any statement type) if Determiane V1 and V2 such thet
{V} S {(P1) and fvi} s (1) amd
V1 s {P2) aﬁ” s r2)
[DC3) (Vi and V23 S (P1 asd P2} fpCi)

row corresponding to the type of statement or compesition of statements.
to the task (verify a correctmess prepssition er derive a precemdition).
proof rule(s) in [] ss summarized in the ceil st the intersectisn of the selected rew amd columm.

Apply
This reference card is frem the book Errer Free Seftwere: Know-FHew asmd Kasew-Why of FPragram Cerrectmess by
Robert L. Baber. (See section 3.4.) Copyright 1981 by John Wiley & Seas Ltd., Chichester.

PREFACE

This book is the result of an evolutionary process which took
place over a number of years. The contents of this book are
based on my seminar for experienced software developers,
which I instruct internationally, and on courses which I have
taught as an external lecturer in the Informatics Department
of the Johann Wolfgang Goethe University in Frankfurt/Main,
Germany. These are based, in turn, on my own experience
applying this material in commercial software development
practice.

The questions posed by participants at my seminar and stu-
dents have influenced the organization and structure of this
book significantly. Also the skepticism about the practical
applicability of this material sometimes expressed by experi-
enced software developers and their managers has affected my
choices of the content of this work and its presentation.

Most important, however, were the very positive reactions
of my students and seminar participants. They motivated me to
try to make this subject more understandable and accessible to
the software development practitioner. The enthusiasm about
this material and the possibilities arising from its consequent
practical application expressed at my seminars, lectures, etc.
is, in my opinion, a clear indication that this approach to reli-
able software is both practically feasible and sorely needed. A
significant fraction of our software developers — especially the

Preface X

younger ones — is already convinced of the potential of this
subfield of software development. Their growing numbers will
lead to a rather fundamental change in software development
practice in the not too distant future.

I would like to take this opportunity to thank all who have
contributed — directly or indirectly, consciously or unknowingly
— to this book. Among them are my seminar participants, stu-
dents, consulting clients and professional colleagues. For the M ATHEMATICAL NOT ATION
drawing of the software sorcerer appearing in several places in
this book I am very grateful to Mrs. José Zwakman. Above all
I am much indebted to Drs. Willem Dijkhuis for his valuable
advice on all of my major writing efforts. His suggestions led
to the title of the original German edition of this book and to
the subtitle of the English translation now in your hands.

ROBERT LAURENCE BABER
Landgraf Gustav Ring 5

6380 Bad Homburg v.d.H. not ko§1cal (Boolean) function. See Appendix A, section
Germany o
1990 December or Logical (Boolean) function. See Appendix A, section
A.l.
and Logical (Boolean) function. See Appendix A, section
A.l.
=> Logical (Boolean) function. See Appendix A, section
A.l.
ori=1n The or series. See Appendix A, section A.5.
andi=1n The and series. See Appendix A, section A.5.
= Marks the end of an example, a definition of a proof
rule, etc.

Indicates the value of a variable or an expression
before the execution of a statement. See e.g. sec-
tions 2.2 and 2.3.

Mathematical Notation xii

" Indicates the value of a variable or an expression
after the execution of a statement. See e.g. sec-
tions 2.2 and 2.3.

{V} S{P} Means "V is a precondition of the postcondition P
with respect to the statement S". See section 3.1.

X

Pe

The expression obtained by replacing the variable x
in the expression P by the expression (E). See sec-

tion 3.3.2.

VA The set of all integers (0, 1, -1, 2, -2, ...). See sec-
tion 4.4.1.

€ Means "is an element of the set". The expression
"neZ" means, for example, "(the value of) n is an
element of the set of all integers" or, more briefly,
"the value of n is an integer". See section 4.4.1.

|x] The absolute value of x. If x is negative, then |x| is
equal to -x. If x is zero or positive, then |x| is equal
to x.

0

THE SORCERER’S APPRENTICES IN
THE LAND OF THE RET UP MocC

In 2500 B.C. the Land of the Ret Up Moc was an advanced
society in the cradle of civilization. A number of important
cities had been founded and active trade, both domestic and
foreign, flourished. A construction industry existed in which
professionally trained architects and civil engineers played an
important role.

Between 2500 and 2400 B.C., a major innovative technical
advance was achieved. Suddenly and unexpectedly, a group of
civil engineering teachers headed by Akado, a famous and
leading architect, developed a new technique for designing the
load carrying structures of buildings. By using the new method,
much larger buildings could be designed and constructed than
had been previously possible. Perhaps even more importantly,
considerably less material was required to construct buildings
designed in the new way. This resulted in much lower construc-
tion costs. Consequently, the demand for new buildings of all
types increased very rapidly.

2 0. The Sorcerer’s Apprentices in the Land of the Ret Up Moc

The demand for new building designs increased so much that
the already qualified architects who had taken the time to
learn the new method could not satisfy their potential custo-
mers' requirements. The number of newly trained journeymen
and masters who could act as architects' assistants was also
insufficient to alleviate the problem. The building materials
trade — unwilling to pass up such an interesting opportunity to
increase sales — found a "solution": short courses and seminars
were developed to train foremen and even construction work-
ers, etc. to draft plans for new buildings. They did not really
understand the new scientific basis for their work, of course,
but as long as they did not deviate from the detailed rules
which they memorized in the courses, the results were more or
less acceptable. Approximately a third of the new buildings
collapsed during or immediately after construction. The result-
ing losses were, however, still significantly less than the sav-
ings derived from employing the new method. So on balance,
this new approach to designing buildings was clearly better than
the old way. [Baber, 1982, 1986, 1987, Chapter 0]

After one to two decades the following equilibrium had
become established in the construction industry. Most building
designers were trained in the short courses outlined above and
were correspondingly underqualified for their work. They were
quite satisfied with this state of affairs, for it permitted them
to start early earning a high income. The royal leadership of
Moc was content with this situation, for it minimized the ex-
pense of training the building designers. Furthermore, those
costs were borne primarily by the building industry, not the
government. The building industry's customers were also basic-
ally happy, because they could have larger and cheaper build-
ings than before. Only Akado and his professional colleagues
were dissatisfied with the new situation in the building indus-
try. They knew that every collapse was avoidable and that the
necessary investment in the proper professional education of
building designers would, overall, be less expensive in the long
term than the losses caused by the many collapses. In short, in
Akado's view, the current approach was better than the prev-
ious situation, but truly professional practice — based on a cor-
respondingly challenging and intensive education of the building
designers — would be even better.

0. The Sorcerer’s Apprentices in the Land of the Ret Up Moc 3

Akado and his colleagues not only taught civil engineering
but also designed new buildings themselves. In sharp contrast to
the general Mocsian construction experience, the buildings they
designed never collapsed. Sometimes they were asked why not.
They described the basis of their calculational method, but the
other building designers could not or would not understand their
explanations. Almost all customers believed that Akado's suc-
cess was due solely to chance and luck and, therefore, was not
rationally explainable. Because he charged slightly higher fees
than the less qualified designers, his better services were not in
great demand.

Disappointed about this state of affairs, Akado discussed it
occasionally with his best friend, Naram, a famous actor and
amateur psychologist. Naram understood completely the atti-
tude of the customers, even though it was clearly irrational,
and tried to explain it to Akado. The customers were just
ordinary people, not intellectuals, and like almost everyone in
the Land of the Ret Up Moc, very religious, even superstitious.
They could not understand rational scientific explanations and
were suspicious of anyone resorting to them. Consequently,
they considered such an approach to planning buildings to be
impractical. In Naram's opinion, Akado's approach obviously
lacked sorcery and superstition, which were so important in
Moc. Naram conceived a magic show for Akado which included
all sorts of superstitious incantations, magical formulae, mys-
terious songs, spells and charms, witch dances, etc. Naram
directed rehearsals with Akado and shared several actors'
secrets with him. When Naram was satisfied with Akado's
theatrical performance, he turned him loose on the customers.

The premiere of Akado's magic show comprised the major
part of the dedication ceremony for his next building, a parti-
cularly large office complex for the royal government. Akado's
performance was a smashing success and potential customers
were so impressed that Akado was overwhelmed with new
architectural assignments. Several leading priests even became
mildly jealous over Akado's partial invasion of their domain.
Akado repeated this performance at the appropriate stage of
construction of every building which he subsequently designed.
With Naram's assistance Akado continually developed his magic
show to an ever more dramatic and impressive happening.

4 0. The Sorcerer’s Apprentices in the Land of the Ret Up Moc

No one in Moc really understood sorcery, of course, but
everyone believed in it, because it was a fundamental compo-
nent of the primitive Mocsian religion, culture and mentality.
Akado always recited the magic words very impressively and
always — without exception — the new building remained stand-
ing. The magic worked; so simple was the explanation for the
success of the construction project.

At first Akado's conscience bothered him, for he knew that
sorcery had nothing to do with the fact that his buildings never
collapsed. The magic shows only took time and increased his
costs, although only marginally. But he recognized that his
friend Naram was right. The customers did not want profes-
sional architecture, they wanted building magic. They wanted
to believe in it. They wanted reasonable plans for their new
buildings, too, of course. Akado gave them both at the same
time: building magic and building plans of high quality. He was
not acting fraudulently, he was merely "selling" precisely the
combination of services which his customers wanted to "buy".
Mocsian society needed professional civil engineering and
wanted building magic. Akado provided both.

Akado became very famous as a master of building sorcery.
As is always the case with a master sorcerer, candidate sorcer-
er's apprentices soon found their way to him. He took on the
best of them and founded the School of Building Sorcery. Na-
turally he disclosed the true secret of building "magic" to
them, because otherwise they would not, after completing their
training, be successful and the whole deception would be ex-
posed. Such a misfortune would be detrimental to all con-
cerned: Akado, his building sorcerer's apprentices and, last but
not least, the customers, who derived considerable benefit from
Akado's method.

The number of apprentices attending the School of Building
Sorcery grew rapidly. In order to organize instruction more
efficiently, Akado wrote a textbook. His book, Collapse Free
Building Designs — Know-How and Know-Why of Static Sound-
ness, recorded both the scientific and the magic-theatrical
foundations of building sorcery and transmitted them to his
pupils. Many later generations of building sorcerers also learned
the fundamental principles of their profession from this book.

0. The Sorcerer’s Apprentices in the Land of the Ret Up Moc 5

2400 B. C.

l

1990 A. D.

In terms of content and organization, the book you are now
reading corresponds to the old textbook written by Akado for
his apprentices of building sorcery — except for his chapters on
magic spells and sayings and performing magic shows. In our
modern times these aspects of truly professional software
development practice should be superfluous, even though the
resulting freedom from errors appears to many to be incredibly
magical.

1

INTRODUCTION

1.1 THE PROBLEM: ERRORS IN SOFTWARE

Computer software is still characterized by an unsatisfactorily
high error rate. Even though most of the mistakes originally
present in newly written software are found and corrected
before it is released to the user, the remaining errors still
cause unnecessary cost, lost time and effort, inconvenience and
annoyance during and long after the implementation of a sys-
tem. Reports of considerable losses resulting from errors in
software continually appear in the press. Even human deaths
have been attributed to software errors: Computer controlled
systems for medical therapy have administered lethal doses of
radiation [Joyce, 19871, [IEEE Spectrum, 1987] and of an injec-
tion [Thomas, 1988, p. 9].

Computer systems are already so widespread that our society
has become completely dependent upon them. Without such
data processing systems we would simply be unable to process
the majority of today's business transactions. Even in safety
critical areas computer systems provide important support (e.g.
air traffic control). The growth of such applications in the

8 1. Introduction

future will lead to greater demands being placed on the relia-
bility of such systems and of the software and hardware com-
prising them. The consequences of errors in software will
become ever more serious and expensive. If we software devel-
opers do not succeed in decreasing very substantially and fun-
damentally the frequency of design errors ("bugs" in our soft-
ware), the risks associated with computer systems will seriously
limit their utilization — and even preclude some otherwise
economically justified applications.

We must openly admit — especially to ourselves — that errors
in software are avoidable design errors — human errors on the
part of the software developer. They are not inherent in the
nature of software.

1.2 THE SOLUTION: THE CLASSICAL ENGINEERING
APPROACH

In the classical engineering fields the professional engineer
designs machines, structures, systems, etc. which exhibit a high
degree of reliability. Without these products and systems our
society could not function in the way to which we have become
accustomed. Examples of such engineering artefacts are build-
ings, roads, bridges, water and electric utilities, the telephone
network, vehicles, ships, airplanes, chemical processing plants,
etc. Many of these products and processes harbour great poten-
tial dangers and risks to property and life. We can, however,
rely on these systems, for the engineers who design them are
able to create plans free of a large class of potential errors.
Most importantly, engineers are able to verify analytically,
before actually building the object in question, that their design
will satisfy the specifications.

A theoretical basis for designing error free programs has
been developed during the last two decades. It is directly
comparable to the theoretical foundations of the classical
engineering fields and enables one to achieve similar results in
terms of quality, reliability and freedom from design errors. It
enables the software engineer to demonstrate, analytically and
before running a proposed program, that it fulfills its specifica-
tion — just as the civil engineer shows in his application for a

1.2 The Solution: the Classical Engineering Approach 9

construction permit that his proposed bridge design will support
itself and the intended load.

It is not especially difficult to learn how to prove programs
correct, but neither is it trivially simple. Learning this material
and developing the ability to apply it in practice does take a
certain amount of time, mental effort and the will to pursue a
truly professional approach to software development. Software
engineers experienced in its practical application report that
this approach reduces the total software development time.

Where should one start to apply correctness proof methods?
Software developers with pertinent experience agree that it is
most productive and beneficial to utilize them already before
and during the design phase, i.e. from the very beginning. This
conclusion will not surprise the engineer, because the electrical
engineer, for example, applies theoretical fundamentals when
he conceives and designs his circuits, not only after he has
completed his design. Similarly, the civil engineer employs his
theoretical foundation (statics) during the design phase; he does
not wait until he has completed the design or even until the
stucture has been built.

If one starts to apply the correctness proof approach only
after a program has been written, several difficulties can arise.
Firstly, it may be impossible to prove the program correct
simply because it is not correct. Secondly — if one succeeds in
completing the proof — the proof may turn out to be unneces-
sarily logically complicated because the program itself is
unnecessarily complicated. Thirdly, certain design decisions
must be available in an appropriate form in order to complete
the proof. Particularly important are loop invariants and pre-
and postconditions for all called subprograms. If these design
decisions are not available, then the corresponding design steps
must be repeated when constructing the proof of correctness.

Frequently the attempt to prove a subprogram (or a pro-
gram) correct leads to a new subprogram which is shorter and
simpler than the original version and — in contrast to the origi-
nal — correct.

By reducing the number of software errors — or even elimi-
nating them completely — the costs of testing, finding and
correcting errors can be substantially reduced and the produc-
tivity of the software development effort increased. Even more
importantly, the reliability and quality of the delivered soft-

10 1. Introduction

ware will be substantially improved. Losses caused by software
errors and the costs of repairing the damage will be reduced
correspondingly.

It is not enough simply to write a program. Furthermore, it
is not even enough to write a program which happens to be
correct. We, like engineers in the classical disciplines, must
also be able to convince ourselves and others that our design
(program) is correct; we must explain why one can have confi-
dence in our software. To paraphrase the French General Bos-
quet's famous comment on the battle of Balaclava, immorta-
lized by Tennyson in "The Charge of the Light Brigade", what
we software developers are now doing is magnificent, but it is
not engineering.

1.3 INTENDED READERSHIP

This book is written for software developers working in industry
or business and for those preparing for such positions.

It is conceived as a self-contained text for the practitioner
who wants to write programs containing as few errors as pos-
sible without exploiting fully all possibilities of theoretical
computing science and without having to learn the underlying
theory completely.

For the professional software engineer and the software
engineering student this book is intended as an initial introduc-
tion to the practical design of error free software and proving
programs correct. After studying this book, readers in this
group will want to complement their knowledge of the scienti-
fic and mathematical foundation of this field and to extend
their ability to apply this material to other types of correct-
ness statements (e.g. pre- and postconditions referring to data
structures, pointer variables, etc.). (See [Baber, 1987].) Sugges-
tions for such further study can be found in the Bibliography.

It is assumed that the reader is generally familiar with basic
mathematics and has programming experience. If he is not yet
able to manipulate algebraic (especially logical) expressions, he
must be willing to acquire this ability during the course of
studying this book. Appendix A gives a short introduction to

1.3 Intended Readership 11

this topic; many textbooks on computing contain more exten-
sive sections on this subject.

In addition, the reader should be willing to examine critically
his own prior experience and be open to new ideas and ap-
proaches to designing software. This book introduces him to a
new software development world which is quite different from
the one to which he is now accustomed.

1.4 GOALS OF THIS BOOk

The goals of this book are

» to familiarize the reader with the most important practically
applicable aspects of proving computer programs correct,

» to show how these concepts can be used as a basis for writ-
ing error free programs,

* to enable the reader to apply these principles to actual
design and programming tasks arising in his own daily work
and

e to help the reader develop the ability to write demonstrably
correct software himself.

After studying this book the reader will save time and effort
and write significantly better software. His superior will rate
him more highly and promote him before his more conservative
colleagues. In the software world of tomorrow he will not be
relegated to a position of unimportance.

It is the author's intention to present the material in this
book in a simple, non-theoretical form. Theory cannot, of
course, be avoided completely, but we will strive for an appli-
cation oriented balance between theory and practice. In this
book, practice takes precedence over theory.

1.5 CONTENTS OF THIS BOOK

In this book the emphasis is placed on the practical application
of the material presented. A rigorous theoretical and mathema-

12 1. Introduction

tical foundation for this material exists but is not presented
here. That theoretical foundation is mentioned only informally,
and then only to the extent necessary to understand the proof
rules and how to apply them.

This book deals only with logical assertions (preconditions,
postconditions, etc.) which refer to the values of declared,
active program variables. Such assertions are the most impor-
tant which arise in practice and cover the main and most
problematic aspects of program correctness. By restricting our
attention to this type of assertion it is possible to minimize the
time and effort required to learn this material while still
covering most — but not quite all — proof techniques needed in
professional software engineering practice. It is sometimes
desirable or even necessary to include other types of assertions,
e.g. about the structure of data environments, in specifications
and proofs. Such needs arise, for example, in correctness proofs
for recursive subprograms and calls thereto, where many varia-
bles with the same name but different values are maintained
simultaneously in the data environment. Extensions of the ap-
proach described in this book to such other types of assertions
can be found in the literature (see section 1.3 above and the
Bibliography).

The metaphor in chapter 0, "The Sorcerer's Apprentices in
the Land of the Ret Up Moc", expresses the notion that proving
programs correct and designing error free software have a
rational basis and constitute a professional approach to be
taken seriously, despite the fact that some still consider them
to be magic, unrealistic dreams or even charlatanry. Whether
one likes it or not, they have a scientific basis and applying
them responsibly is a professional engineering activity. In fact,
their regular application in practice is an essential prerequisite
for software engineering in the true sense of the word.

Chapter 1, "Introduction", discusses the background of the
correctness proof approach, its practical application and its
significance: the problem for society which software errors
represent and the solution which our engineering predecessors
developed long ago for comparable problems in other areas.
Then the goals of this book are specified and its contents
sketched.

Chapter 2, "The Execution of Program Statements: Effects
and Assumptions"”, informally summarizes the definitions and

1.5 Contents of this Book 13

assumptions upon which our program correctness proofs, proof
rules and design guidelines are based.

Chapter 3, "Foundation for Correctness Proofs", begins with
definitions of several key terms used frequently in the later
sections. The very important, generally applicable proof rules
are then introduced and explained. These proof rules form the
basis of our practical work.

Chapter 4, "Analysis: Verifying the Correctness of a Pro-
gram", explains and illustrates with many examples how to
apply the proof rules in order to prove the correctness of a
given program or subprogram. The correctness assertion about
the program in question is decomposed into correctness asser-
tions about smaller and smaller parts of the program until only
assertions about individual assignment statements remain. The
proof rules provide the basis for decomposing the various cor-
rectness assertions and for verifying the remaining assertions
about assignment statements.

In chapter 5, "Designing a Correct Program", it is shown how
the requirements of a correctness proof can serve as guidelines
for designing a correct program and its parts. Such guidelines
even make it possible to derive directly some parts of the pro-
gram to be designed. This new approach, to which most pro-
grammers are not yet accustomed, leads systematically and
straightforwardly to a compact, correct program. The program
and its correctness proof are developed at the same time, with
the proof tending to lead the way.

Chapter 6, "Formulating Pre- and Postconditions", discusses
translating imprecise specifications in natural language into
precise logical algebraic expressions (conditions).

Chapter 7, "Conclusion", summarizes the most important
points and results of the preceding sections and previews brief-
ly the engineering future of the field of software development.

Appendix A contains an introduction to logical (Boolean)
algebra. The reader will use it to refresh his memory in certain
areas and as a reference to look up specific details when need-
ed.

Appendix B gives solutions to the exercises posed at various
places in this book.

The Bibliography and the Index complete the book.

A reference card summarizing the practical application of
the proof rules can be found inside the book.

jost i ARG R

2

THE EXECUTION OF
PROGRAM STATEMENTS:
EFFECTS AND ASSUMPTIONS

This chapter presents the assumptions about the effects of the
various program statements upon which the proof rules intro-
duced in chapter 3 and correctness proofs in general are based.
These assumptions represent well known, but sometimes over-
looked, characteristics of the statements.

The execution of a program statement has a specific effect,
which depends in detail upon the particular characteristics of
the programming language system in question. Typically, how-
ever, the general comments in the following sections apply.

Program statements of every type contain expressions.
During the execution of a program statement, the value of
every expression appearing therein is usually calculated. There-
fore, we consider first the process of evaluating an expression.

16 2. The Execution of Program Statements: Effects and Assumptions
2.1 THE EVALUATION OF EXPRESSIONS

When, during the execution of a program, an expression is to be
evaluated, the following procedure is, in effect, carried out.
First, each name of a program variable is replaced by the
current value of the corresponding variable. Then the various
operations appearing in the expression are executed. The result
is the value of the expression.

Example: If the values of the variables x, y and z at the time
in question are 3, 4 and 5 respectively, then the expression
x*(y+z)<(x+z) will be evaluated as follows:

x*(y+z) < (x+z)
3*%(4+5) < (3+5)
3*9 < 8

27 < 8
false m

The value of an expression is, in general, defined only if the
values of all variables occurring in the expression as well as all
intermediate results calculated during the evaluation process
are defined. In addition, all such values must lie within certain
ranges. If these prerequisites are not satisfied, then the value
of the expression is in general not defined; the execution of the
program or compiler terminates with a corresponding error
message.

Example: If the values of x, y and z are 3, "Henry" and 5
respectively, then the expression x*(y+z)<(x+z) will be evalua-
ted as follows:

x*(y+z) < (x+2)
3*("Henry"+5) < (3+5)
3*(not defined) < 8
not defined < 8

not defined =

The result of the addition (+) is not defined when one argument
is a string (sequence of characters) such as "Henry". The unde-
fined intermediate result propagates here through to the end of
the evaluation process.

2.1 The Evaluation of Expressions 17

Some programming language systems, however, do permit
undefined intermediate results in some circumstances and
calculate well defined final results.

Example: Consider the array Y which is defined (declared) for
the index values 1 through 10 inclusive only. Let the value of n
be 11 and the value of x be 3. The expression (n<10 and Y(n)=x)
is to be evaluated:

n<10 and Y(n)=x

11<10 and Y(11)=3

false and (not defined=3)
false and not defined
false =

One must pay careful attention to such implementational
details. In the last example above, the system evaluates the
expression (false and not defined) as false. Some systems,
however, as in the previous example above, treat the value of
this expression as not defined.

2.2 THE EXECUTION OF AN ASSIGNMENT STATEMENT

An assignment statement consists of the name of a variable,
the assignment symbol (:=) and an expression, in which the
names of any program variables may occur. The assignment
statement is of the form:

x:=E(x, y, ...)

When such an assignment statement is executed, the expression
E(x, y, ...) is first evaluated (see section 2.1 above). Then the
value of the expression is assigned to the variable x, i.e. be-
comes the new value of the variable x. The values of all other
variables remain unchanged.

The result of executing an assignment statement is therefore
defined if the variable x is declared (or will be automatically
declared) and if the value of the expression E is defined and
(after automatic conversion or rounding, if any) lies in the
declared range of the variable x.

The effect of executing the above assignment statement can
be summarized in the following axiom.

18 2. The Execution of Program Statements: Effects and Assumptions

Axiom of the assignment statement: We write x' for the value
of the variable x before the statement is executed, x" for the
value after execution, etc. The values of the various variables
before and after the execution of an assignment statement of
the above form satisfy the following equations:

x" = E(x', y', ...)
y" = y', for all other variable names y =

Note the assumption that only the value of the variable whose
name appears to the left of the assignment symbol (:=) is
changed. So called "side effects", which change the values of
other variables, are not permitted. If this assumption is violat-
ed, then neither the axiom of the assignment statement nor the
proof rules following from it will, in general, be valid.

If the name of an array variable appears on the left side of
an assignment statement, then the index expression is evaluated
in order to determine the actual variable being referenced.

Example: If n=3, then the assignment statement

2.3 THE EXECUTION OF AN IF STATEMENT

The if statement is of the form
if B then S1 else S2 endif

where B is a condition (an expression whose value is either
false or true) and S1 and S2 are statements. The names of any
program variables may occur in the condition B. S1 and S2 may
be compound statements, i.e. sequences of statements, if
statements, loops, etc.

if-axiom: The execution of the if statement above has the same
effect as the execution of

S1, if B'=true, or
S2, if B'=false =

2.3 The Execution of an If Statement 19

That is, the entire if statement is equivalent to either S1 or S2,
depending upon whether B' is true or false.

B' is the value of the condition B before the if statement is
executed. l.e., B' is determined by evaluating the condition B
using the values of all pertinent variables immediately before
execution of the if statement begins.

The result of executing an if statement is defined, therefore,
if the value of the condition B is defined (false or true) and the
result of executing S1 or S2 — depending upon the value of B —
is defined.

The execution of an if statement
if B then S1 else S2 endif

!

true false

2.4 THE EXECUTION OF A SEQUENCE OF STATEMENTS

A sequence of statements is executed, as the name suggests,
sequentially, one after the other. The result of the execution of
the first statement in the sequence (i.e. the values of the
program variables after the first statement has been executed)
is the starting point for the execution of the second statement
in the sequence, etc. Consequently, the result of the execution
of the sequence of statements is defined if the execution of

20 2. The Execution of Program Statements: Effects and Assumptions

each individual statement in the sequence gives a defined
result.

2.5 THE EXECUTION OF A WHILE LoOoP
The while loop is of the form
while B do S endwhile

where B is a condition and S is a (possibly compound) state-
ment.

while axiom: The execution of a while statement as the above
has the same effect as the execution of

S
while B do S endwhile, if B'=true, or

the empty statement,

i.e. nothing if B'=false =

Thus, the first step of the execution of the while statement is
to evaluate the condition B, based on the previous values of all
pertinent variables. If this value is true, then S is executed and
afterward the entire while statement is executed again. If the
value of B is false, the entire while statement, including S, is
skipped and succeeding statements (if any) in the program are
executed.

If the value of the condition B is always true, then the loop
body S is repeatedly executed and the loop never ends.

The result of executing a while loop is, therefore, defined if

« the value of the condition B is defined (false or true) every
time it is evaluated and

» the result of every execution of the loop body S is defined
and

¢ the value of the condition B is false after finitely many
executions of the loop body S.

2.5 The Execution of a While Loop 21

The execution of a while loop
while B do S endwhile

A

true

o]
v
w

false

2.6 THE EXECUTION OF A SUBPROGRAM CALL

Executing a call to a subprogram without formal parameters
has the same effect as executing the statements comprising the
subprogram as if they had stood in place of the call statement.

Many programming languages permit passing parameters
explicitly in the call to a subprogram. The mechanisms for
passing parameters are implemented in different ways in differ-
ent programming languages. When such parameter passing is to
be taken into account in a correctness proof, it is usually
easiest to translate (at least mentally) the call with formal
parameter passing into an equivalent call without such parame-
ters. The translated form of the call must correctly reflect the
particular mechanisms for passing parameters in the target
programming language. Then one proves the correctness of the
resulting program containing only calls without formal parame-
ter passing.

Example: Call Called subprogram

call U(x, y) U(a, b):
result:=a+b

22 2. The Execution of Program Statements: Effects and Assumptions

In many programming languages executing this call has the
same effect as:

Call Called subprogram
call U U:

a:=x

b:=y

result:=a+b

where a and b are variables which exist only inside the subpro-
gram U. They are created when U is called and are released
(deleted) when the execution of U terminates. m

3

FOUNDATION FOR CORRECTNESS
PROOFS

In order to prove a program, a program segment or a statement
correct, one formulates a mathematical theorem about the
effect of executing the program segment in question. Then one
proves the theorem. Such a theorem is almost always of the
following form: If a particular condition is true immediately
before the program segment is executed, then a (generally
different) condition will be true after execution. Such condi-
tions are called preconditions and postconditions.

Pre- and postconditions refer to program variables. Most, in
fact, refer only to the values of program variables. In this book
we will consider only pre- and postconditions of this type.

In order to simplify the proof, the correctness theorem as
outlined above is divided into two parts. In one part, one shows
that the program segment in question executes at all, i.e. that
its execution terminates with a defined result (without a com-
pilation or run time error). In the other part, one proves the

24 3. Foundation for Correctness Proofs

correctness theorem mentioned above under the assumption
that the program terminates.

3.1 DEFINITIONS

A condition is an algebraic expression whose value is "false" or
"true". Typically names of program variables appear in an
expression; each name stands for the value of the corresponding
variable. Conditions are also called logical expressions, Boolean
expressions and assertions.

Examples:

x>8

y=4

x>3 and y+z>6

CUSTOMERNAME="Smith"
3000<salary<4000

A(1)sA(2)s ... <A(n)

A(1)<A(2) and A(2)<A(3) and ... A(n-1)<A(n)

and, l“'l Ali)<A(i+1) »

If the truth of a condition V immediately before a program
statement S is executed implies that a condition P is true
afterward, then we say that V is a precondition of the postcon-
dition P with respect to the statement S. Such a relationship
between V, P and S is usually written {V} S {P}. The statement
S may be a single statement or a compound statement contain-
ing any number of individual statements, e.g. a program seg-
ment or a complete program.

Example: If x>3 before the assignment statement x:=x+5 is
executed, then x>8 afterward. Symbolically,

{x>3} x:=x+5 {x>8} =

The result of executing a statement, a program segment or a
program is correct if it satisfies the given postcondition.

A program statement (or a program segment, program, etc.)
terminates if its execution proceeds to the end in finite time

3.1 Definitions 25

and without a run time error (and without a compilation error)
— i.e. if its execution yields a defined result.

If the execution of a statement, program segment Or pro-
gram yields a correct result whenever it terminates, then the
statement, etc. is said to be partially correct. If, in addition,
one has proved that it does terminate, then the statement, etc.
is said to be totally correct. Separating these two aspects of
correctness simplifies our proofs. Different approaches and
techniques are appropriate in these two parts of our proofs, as
we will see in chapter 4.

3.2 PRE- AND POSTCONDITIONS IN CORRECTNESS PROOFS

Pre- and postconditions are the key elements in a proof of
correctness. They represent the definition of "correctness" of a
particular program or program segment. Expressed differently,
a precondition and a postcondition together constitute the
specification of the program in question.

The essential parts of a typical proof of correctness deal
with pre- and postconditions and especially with the relation-
ships between them. Sometimes one derives algebraically a
precondition for a given postcondition and a given program
statement (simple or compound). This approach is especially
useful for assignment statements. Often the task at hand is to
verify (prove) a correctness proposition about the pre- and
postconditions of a program segment. In this case, one first
decomposes the correctness proposition to be proved into
correctness propositions about component parts of the program
segment in question and then proves the latter. Several useful
rules, which are introduced in the following sections, facilitate
these steps.

3.3 PROOF RULES

In the following sections the most important generally applic-
able theorems needed in practice to prove programs correct are
presented in the form of "proof rules". For each program state-
ment, simple or compound (assignment statement, if statement,

26 3. Foundation for Correctness Proofs

sequence of statements and while loop), one or more proof
rules are presented and briefly explained. Additional proof rules
enable one to simplify the algebraic manipulation of the logical
expressions arising in a proof.

The subject of each proof rule is a relationship between a
precondition and a postcondition. Analogies from other techni-
cal fields include Ohm's, Faraday's and Henry's laws (electrical
engineering), each of which gives the relationship between
voltage and current for a particular electrical component, and
the equations for a mass, a spring and a viscous damper (me-
chanical engineering), each of which expresses the correspond-
ing relationship between force and position.

We begin with a proof rule which sometimes enables us to
simplify the algebraic manipulation of expressions arising in a
proof. It follows from the definition of pre- and postconditions
above and makes it easier to understand some of the other
proof rules.

3.3.1 Proof rule P1: Strengthening a precondition and weaken-
ing a postcondition

If
V =» V1 and
{v1} S {P1} and
Pl =» P

then
{(vis{pP} =

3.3 Proof Rules 27

Proof rule P1
(Strengthening a precondition,
weakening a postcondition)

{v}
—>
{vi}

l

S

|

{P1}
—p

{P}

If the condition V is true before the statement S is executed
and if V implies V1, then V1 is true before S is executed. If V1
is a precondition of P1 with respect to S, then P1 will be true
after S is executed. If, finally, P1 implies P, then P will also be
true after the execution of S. L.e., the truth of V before S is
executed implies the truth of P afterward. Therefore, V is a
precondition of P with respect to S (see the definition of a
precondition in section 3.1 above).

Working backwards through a program, one may strengthen
conditions. A condition can be strengthened by anding an arbi-
trary term to it or by dropping an ored term.

Working forward through a program, one may weaken condi-
tions. A condition can be weakened by oring an arbitrary term
to it or by dropping an anded term.

Judiciously strengthening preconditions and, less frequently,
weakening postconditions can lead to simpler expressions and
reduce (sometimes considerably) the amount of algebraic mani-
pulation required to complete a proof. One must, however, be
careful not to strengthen a precondition or weaken a postcondi-

28 3. Foundation for Correctness Proofs

tion so much that the proof cannot be completed. Later exam-
ples illustrate how this potential problem can be easily avoided.

3.3.2 Proof rule Al: Deriving a precondition of an assignment
statement

To obtain a precondition of a given postcondition P with re-
spect to a given assignment statement x:=E, substitute the
expression (E) for every occurrence of the variable name x in
the postcondition P. Symbolically,

{(P*} x:=E {P} =

Proof rule Al (Assignment statement)

{PXE} = {P(E(x, y), y)}

!

x := E(x, y)

l

{P(x, y)}

Do not forget to enclose the expression E in parentheses
when substituting it for x in P. It is sometimes unnecessary, but
never wrong to do so. It is sometimes wrong not to do so.

The value of x after executing the assignment statement
x:=E is the same as the value of E before (see section 2.2). The
value of y remains unchanged (assumption: no "side effects").
(The variable y here represents all program variables other than
x.) Thus, the value of P(x, y) after executing the assignment

3.3 Proof Rules 29

statement is equal to the value of P(E, y) before. Therefore,
the truth of P(E, y) before execution implies the truth of
P(x, y) afterward and P(E, y) is a precondition of P(x, y) with
respect to the assignment statement x:=E (see the definition of
a precondition in section 3.1 above).

Example: In order to derive a precondition of the given post-
condition {10<y and x<8} with respect to the assignment state-
ment x:=x-5, we replace the variable x by the expression (x-5)
in the given postcondition. The result is {10<y and (x-5)<8} or,
equivalently, {10<y and x<13}. Symbolically,

{10<y and x<13} x:=x-5 {10<y and x<8}

By proof rule P1, every stronger condition is also a precondi-
tion, e.g.
{10<y and 0sx<13} x:=x-5 {10<y and x<8}
and
{10<y<x+N and 0<x<13} x:=x-5 {10<y and x<8} =

3.3.3 Proof rule A2: Verifying a precondition of an assignment
statement

If
X

V=>PE

then
{(VIx=E{P} m

30 3. Foundation for Correctness Proofs

Proof rule A2 (Assignment statement)

{v}
—p

P G} = (PE(, y),)}

l

x := E(x, y)

l

{P(x, y)}

Proof rule A2 is a combination of proof rules Al and P1. By
proof rule P1, V is a precondition of P with respect to the
assignment statement if

x x . —
(V=P E) and {P E} x:= E {P}
By proof rule Al,
x *—
{P E} x:=E {P}

It suffices, therefore, to show that V= PxE when one wishes
to verify that {V} x:=E {P}.

When applying proof rule A2 one implicitly applies the two
proof rules Al and Pl. In effect, proof rule Al is used to
derive a precondition. Then one verifies that the given precon-
dition implies the derived precondition, i.e., that the hypothesis
of proof rule P1 is satisfied.

3.3 Proof Rules 31

3.3.4 Proof rule IF1: Verifying a precondition of an if state-
ment
If

{V and B} S1 {P} and
{V and not B} S2 {P}

then
{V} if B then Sl else S2 endif {P} =

Proof rule IF1 (if statement)

{vi
true l false
B
{V and B} {V and not B}
v
S1 S2
{P} l {P}

{P}

If the condition V is true before the if statement is execut-
ed, then both V and B will be true immediately before Sl is
executed (if it is executed). Since (V and B) is a precondition of
P with respect to S1, P will be true after execution of Sl.
Similarly, P will be true after the execution of S2. Thus, the
truth of V before execution of the if statement implies in
either case the truth of P afterward. Therefore, V is a precon-
dition of P with respect to the entire if statement (see the
definition in section 3.1).

32 3. Foundation for Correctness Proofs

3.3.5 Proof rule IF2: Deriving a precondition of an if state-
ment
If

{v1} S1 {P} and
{v2} s2 {P}

then

{(V1 and B) or (V2 and not B)}
if B then Sl else S2 endif {P} =

Proof rule IF2 (if statement)

{(V1 and B) or (V2 and not B)}

!

true false
B
{vi} {v2}
v
S1 S2
{P} l {P}
{P}

Proof rule IF2 is essentially proof rule IF1 with V = [(V1 and
B) or (V2 and not B)]. Proof rule IF2 follows from proof rules
IF1 and P1.

By applying proof rule IF2 one can derive a precondition of a
given postcondition P with respect to a given if statement.
First, derive preconditions of P with respect to the then and
else parts S1 and S2, using the proof rules appropriate for those

3.3 Proof Rules 33

statements. Then combine the two preconditions in the manner
shown above.

3.3.6 Proof rule IF3: If statement

If

{v1} S1 {P} and
{v2} s2 {P}

then
{V1 and V2} if B then Sl else S2 endif {P} n

Proof rule IF3 (if statement)

{V1 and V2}
true l false
B
{v1} {v2}
v
S1 S2
{P} l {P}

{P}

Proof rule IF3 is a weak theorem, which follows from proof
rules IF1 and P1. Because of the simple form of the expressions
appearing in it, it is sometimes useful in practice.

34 3. Foundation for Correctness Proofs 3.3 Proof Rules 35

3.3.7 Proof rule IF4: If statement 3.3.8 Proof rule S1: Sequence of statements
If If

{V1 and B} S1 {P} and {v} S1 {P1} and

{V2 and not B} S2 {P} {P1} s2 {p}
then then

{V1 and V2} if B then Sl else S2 endif {P} = {V} (S1; S2) {P} =

Proof rule S1 (Sequence of statements)

Proof rule IF4 (if statement)

{v}
{V1 and V2} l
l S1
true false l
B {P1}
{V1 and B} {V2 and l
not B}
v v S2
S1 S2 l
P) l P} (P}
{P} Proof rule S1 generalizes to an arbitrarily long sequence of
statements in the obvious way. Thus, to find a precondition of
a given postcondition P with respect to a sequence of state-
ments, first find a precondition of P with respect to the last
) statement in the sequence. Then, use this as the postcondition
Proof rule 14 also follows from proof rules IF1 and P1. Like with respect to the next to last statement, etc., working back-
proof rule IF3, it is sometimes of practical use because of the ward statement by statement through the entire sequence. The

simple form of the precondition (V1 and V2). precondition with respect to the first statement in the se-

36 3. Foundation for Correctness Proofs

quence found in this way is also a precondition of P with re-
spect to the entire sequence.

3.3.9 Proof rule W1: While loop without initialization

If
{I and B} S {I}
then
{1} while B do S endwhile {I and not B} =

Proof rule W1 (while loop)

{n}

A

{n

true

o]

{I and B} {n
false

{I and not B}

If the condition I is true immediately before execution of
the while loop begins, then both I and B will be true before the
first execution of the loop body S. Since (I and B) is a precondi-
tion of I with respect to S, I will be true after the first execu-
tion of S. Both 1 and B will, therefore, be true before the
second execution of S, etc. The condition I will be true after

3.3 Proof Rules 37

every execution of S. If and when the execution of the loop
comes to an end, I will be true and B will be false. L.e. the
condition (I and not B) will be true when the loop terminates (if
it terminates).

The value of the condition I is true, i.e. constant, before and
after every execution of the loop body S. Therefore, the condi-
tion I is called the loop invariant. The loop invariant is the key
to designing and to understanding a loop.

The application of proof rule W1 requires that the loop
invariant I be true before the loop is executed. Typically, I is
initially true in a trivial way. In other words, the initial situa-
tion is a special case of the loop invariant. When execution of
the loop terminates, the condition (I and not B) is true. Le., the
final situation is also a special case of I. Viewed the other way
around, the loop invariant I is a generalization of the initial and
final situations. This observation suggests the very useful

Rule of thumb for determining a loop invariant: Generalize
(weaken) the initial and final situations (the pre- and postcondi-
tions) in order to determine a suitable loop invariant. m

Preceding almost every loop is its "initialization", a program
segment whose only purpose is to establish the initial truth of
the loop invariant.

Very often one wishes to prove the correctness of a loop
together with its initialization. For this purpose we have proof
rule W2.

3.3.10 Proof rule W2: While loop with initialization
Let the condition I (the loop invariant) be given. If
{V} initialization {I} and
{I and B} S {I} and
(I and not B) =» P
then

{V} (initialization; while B do S endwhile) {P} =

38 3. Foundation for Correctness Proofs

Proof rule W2 (while loop with initialization)

{v}

‘__

d
5
&

<+

—~
)
St

true

—~~—
=
@ A

y
»

{l and B} m

false

{I and not B}
=

{P}

Proof rule W2 combines (and follows from) proof rules S1, P1
and W1.

To prove the partial correctness of a while loop by applying
proof rule W2, one must

1. determine the loop invariant I (if not already given by the
designer or programmer),

2. prove that {V} initialization {I} (i.e. that I is true initially),

3. prove that {I and B} S {I} (i.e., that the body of the loop pre-
serves the truth of I) and

4. prove that (I and not B) => the postcondition P (i.e. that P
is true on termination of the loop).

3.3 Proof Rules 39

To prove that a loop is totally correct, one must in addition

5. show that the loop terminates, i.e. that there is an upper
bound to the number of times S is executed (see section 2.5).

Termination is usually proved by showing that (1) the value of
some expression is increased or decreased by at least a fixed
amount by each execution of S and that (2) there is an upper or
lower bound respectively on the value of that expression. Often
the bound follows from the while condition B; sometimes it is
part of the loop invariant. Such an expression is called a loop
variant. Strictly speaking, step 5 also requires showing that the
complete loop executes at all, i.e. that no "run time error" (e.g.
overflow, reference to an undeclared variable, etc.) can occur.

3.3.11 Proof rule DC1: Divide and conquer

If

{vi} S {P1} and
{v2} s {P2}

then
{V1 and V2} S {P1 and P2} =

Proof rule DC1 (Divide and conquer)

{vi} {v2} {V1 and V2}
S S =P S
' ' '

{P1} {P2} {P1 and P2}

Proof rule DC1 generalizes to an arbitrary number of terms
(P1, P2, P3, P4, etc.) in the obvious way.

40 3. Foundation for Correctness Proofs

Sometimes a long expression arises in a correctness proof,
for example, in the postcondition of a program segment. By
applying proof rule DC1, one can split a long postcondition con-
sisting of two or more anded terms into shorter parts, derive
the precondition for each part separately, and then recombine
these preconditions. The total amount of effort is not reduced,
but the proof is typically better organized, clearer and easier
to understand. The individual steps in the algebraic manipula-
tion are often much shorter and simpler. Even very long and
complex expressions yield to the strategy "divide and conquer".

Proof rule DC1 applies to anded terms. A comparable proof
rule exists for ored terms, too:

3.3.12 Proof rule DC2: Divide and conquer

If

{vi} s {P1} and
{v2} s {P2}

then
{Viorv2}S{PlorP2} s

Proof rule DC2 (Divide and conquer)

{vi} {v2} {V1 or V2}
S S =) S

! ! I

{rP1} {P2} {P1 or P2}

3.3 Proof Rules 41
3.3.13 Proof rule DC3: Divide and conquer

If

{v} S {P1} and
{v} S {P2}

then
{V} S {P1 and P2} =

Proof rule DC3 (Divide and conquer)

v} {v} {v}

S S = S

: | '
{P1} {P2} {P1 and P2}

Proof rule DC3 is proof rule DC1 with V=V1=V2,

3.3.14 Proof rule DC4: Divide and conquer

If

{v} S {P1} and
{v} S {P2}

then
{V} S{P1 or P2} u

42 3. Foundation for Correctness Proofs

Proof rule DC4 (Divide and conquer)

{v} {v} {v}

S S = S

! ! !
{P1} {P2} {P1 or P2}

Proof rule DCA4 is proof rule DC2 with V=V1=V2,

3.3.15 Proof rule SP1: Subprogram or program segment

If the values of all variables appearing in the condition B are
left unchanged by the execution of a program segment S (e.g. a
subprogram), then

{B} S{B} =

If in the condition B only variables appear whose values are
the same before and after the execution of S, then the value of
B before execution of S is clearly equal to the value of B
afterward. Thus if B is true before, then B will be true after-
ward, and B is a precondition of itself with respect to S.

3.3.16 Proof rule SP2: Subprogram or program segment

If the values of all variables appearing in the condition B are
left unchanged by the execution of a subprogram or program
segment S and if

{v} s {pP}
then
{V and B} S {P and B}

3.3 Proof Rules 43

and
{(VorB}S{PorB} s

Proof rule SP2 follows from proof rules SP1, DC1 and DC2.

To apply proof rule SP2, separate the postcondition into two
parts. One part should reference only variables whose values
are not changed by the execution of S. This part of the post-
condition is (by proof rule SP1) its own precondition. The se-
cond part of the postcondition contains all references to vari-
ables whose values are (or may possibly be) changed by the
execution of S; derive a precondition of this part of the post-
condition (e.g. by applying the appropriate proof rules or by
referring to the formal specification of S). Finally, combine
these two partial preconditions to form the desired precondi-
tion.

3.3.17 Proof rule SP3: Subprogram or program segment

If the values of all variables appearing in the condition B are
left unchanged by the execution of a subprogram or program
segment S and if

V =» V1 and
{vi} S {P1} and
Pl =» P

then

{V and B} S {P and B}
and

{(VorB}S{PorB}as

Proof rule SP3 is a combination of proof rules SP2 and P1.

That part of the postcondition which depends upon the effect
of executing S (i.e. P above) may be weaker than the postcondi-
tion actually established by executing S (i.e. P1). Similarly, the
relevant part of the precondition actually satisfied before exe-
cuting S (i.e. V) may be stronger than the precondition required
for the satisfactory functioning of S (i.e. V1).

44 3. Foundation for Correctness Proofs
3.4 APPLYING THE PROOF RULES

In order to prove a program or program segment correct, the
meaning of "correct" with respect to the particular program in
question must be explicitly defined. At least the postcondition
must be known. Often the precondition is also given, in which
case one must prove the given correctness proposition, i.e.
verify that the given precondition is, in fact, a precondition of
the given postcondition with respect to the given program. In
other cases a precondition is to be derived for a given postcon-
dition and a given program.

The choice of the appropriate proof rule to apply depends
upon (1) the type of program statement in question and (2)
whether a precondition is given or is to be derived. The follow-
ing table can be used to select the proof rule(s) applicable in
each case.

Proof rules DC1 through DC4 can be applied to all types of
statements and to both proof tasks (verifying and deriving a
precondition) in order to decompose lengthy conditions into
smaller subexpressions.

A reference card for applying the proof rules is enclosed
with this book. It can be used first to select the appropriate
proof rule(s) for the task at hand. In addition, the card concise-
ly explains the practical application of the proof rules. The
reference card will be especially helpful as a memory aid to
the reader who has learned the proof rules but has not yet
become experienced in their use.

3.4 Applying the Proof Rules

45

Selecting the appropriate proof rule(s)

Statement type Precondition Proof rule(s)

given A2
assignment

to be derived Al

given IF1 (in some cases
. IF3 or IF4)
if

to be derived IF2

given S1 (+ P1)
sequence

to be derived S1
while loop with given w2
initialization to be derived W2
while loop without given Wi (+ P1)
initialization to be derived w1

subprogram or
program segment

given

SP2 (or SP3)

to be derived

SP2 (or SP3)

3.5 IMPLICATIONS FOR PROGRAM DOCUMENTATION

Several requirements which the documentation of a program
must satisfy derive from the proof rules and their practical
application in proving programs correct.

First and foremost, pre- and postconditions must be included
in the documentation. They must be formulated as logical
algebraic expressions. These formulas should be supplemented

46 3. Foundation for Correctness Proofs

by brief explanations in natural language and diagrams as ap-
propriate to help the reader understand them as quickly and as
easily as possible. See the examples in sections 4.4.1, 4.4.2, 4.5,
5.1.1, 5.2, 5.3.2 and 5.4.2.

The documentation of a subprogram should unambiguously
indicate which variables are not affected by its execution.
Usually this requirement is satisfied by listing all variables
which are (or, more precisely, can be) modified by the sub-
program in question. This information is a prerequisite for
applying proof rules SP1, SP2 and SP3 (see sections 3.3.15-17,
cf. the condition B appearing therein).

Absolutely essential in the documentation is a loop invariant
for every loop.

In addition, conditions (assertions) which must be true at
selected places in the subprogram should be given in the docu-
mentation. Particularly appropriate in this regard are places
between loops and if statements as well as before and after a
sequence of assignment statements. Conditions which can be
derived easily and directly from other conditions in the docu-
mentation need not be included. Conditions which represent
design decisions or which can be derived only by lengthy, time
consuming algebraic manipulation should be included in the
documentation.

The conditions to be included in the documentation as stated
above are particularly useful when proving the correctness of
the program later and when "maintaining” (modifying) it.

Every programmer who writes a call to the subprogram being
documented must know its pre- and postconditions and which
variables its execution can modify. The precondition tells him
what state his program must establish before calling the sub-
program, i.e. what he must be concerned with before the call.
The postcondition tells him what he may assume to be true
after the call.

4

ANALYSIS: VERIFYING THE
CORRECTNESS OF A PROGRAM

In the process of proving a program segment or an entire
program correct, one almost always needs either

* to verify that a given precondition is, in fact, a precondition
of the given postcondition with respect to the given program
or

» to derive a precondition of the given postcondition with re-
spect to the given program.

In either case it is usually best to decompose the task in
question in a way corresponding to the program's structure by
applying the appropriate proof rules (see the table in section
3.4). Following this approach, one starts with the overall pro-
gram structure and works iteratively inward to smaller program
segments until only proof tasks involving individual assignment
statements remain. Finally, these are solved by applying proof
rules Al and A2 for assignment statements.

48 4. Analysis: Verifying the Correctness of a Program

For didactical reasons we will examine the proof process in
the opposite order in this chapter. We will begin with the
simplest, smallest program segments — individual assignment
statements — and then extend our knowledge to the if state-
ment, short sequences of statements and, finally, longer se-
quences involving a while loop with its initialization.

4.1 THE ASSIGNMENT STATEMENT

Proof rules Al and A2 are used to prove the correctness of
assignment statements. If a precondition is to be derived, we
apply proof rule Al. If a given precondition is to be verified,
we apply proof rule A2. (See sections 3.3.2 and 3.3.3.)

Proof rules Al and A2 are applicable to assignments both to
a simple variable and to an array (subscripted, indexed) vari-
able. In proofs for assignments to an indexed variable one must,
however, pay careful attention to certain details; therefore, a
separate section (4.1.3) is devoted to this topic.

4.1.1 Assignment to a simple variable

The application of proof rules Al and A2 is probably most
easily explained and understood by studying some examples.

Example: A precondition is to be derived for the following
assignment statement and postcondition:

{?} x:=z-y {x-y>0}

Because our task is to derive a precondition with respect to
an assignment statement, we apply proof rule Al (see the table
in section 3.4 and the reference card). According to proof rule
Al, we must substitute the expression (z-y) for every occur-
rence of the variable x in the postcondition in order to obtain
the precondition:

{x-y>0} [postcondition]
{(z-y)-y>0} [precondition]
{z-2*y>0} [precondition]

4.1 The Assignment Statement 49

Thus we have determined that
{z-2*%y>0} x:=z-y {x-y>0} =

The parentheses around the expression (z-y) were superfluous
in the above example. Sometimes, however, they are necessary,
as the following example illustrates.

Example: Determine a precondition:
{?} x:=z-y {y-x>0}

Applying proof rule Al, we substitute the expression (z-y)
for x in the postcondition:

{y-x>0} [postcondition]

{y-(z-y)>0} [precondition]

{y-z+y>0} [precondition]

{2*y-z>0} [precondition]
That is,

{2*y-z>0} x:=z-y {y-x>0} =

To verify a given precondition for a given postcondition and
assignment statement, one applies proof rule A2. In effect, one
first derives a precondition. Then, one verifies that the given
precondition implies the derived precondition.

Example: The correctness proposition
{10<y<x+N and 0<x<13} x:=x-5 {10<y and x<8}

is to be verified. At this point we note that the notational form
as<bsc is nothing other than an abbreviation for (a<b and bsc).
The above proposition has, therefore, the same meaning as

{10<y and y<x+N and 0<x and x<13} x:=x-5 {10<y and x<8}

According to proof rule A2 the above proposition will be
true if

{10<y and y<x+N and 0<x and x<13}
X
=> {10<y and x<8}",

I.e., we must show that
{10<y and y<x+N and 0sx and x<13} = {10<y and x-5<8}

50 4. Analysis: Verifying the Correctness of a Program

or, equivalently, that
{10<y and y<x+N and 0<x and x<13} => {10<y and x<13}

It can be easily seen that the given precondition (the left
part of the above implication) is stronger than the derived
precondition (the right part of the above implication) — i.e.,
that the above implication is true. (See Appendix A, section
A.4, exercise 2.) The correctness proposition to be verified is,
therefore, true by proof rule A2. =

Exercise: Solve the following problems.

1. {?} i:=i+1 {1<i}
2. {?} sum:=sum+z {sum=x+y+z}
3. {7} x:=5-z {w*y - 2*w? < z} =

4.1.2 What if it doesn't work?

(This section deals with advanced aspects of correctness proofs
for assignment statements and may be skipped on first reading.)

The approach introduced and described in section 4.1.1 above
is generally applicable to assignment statements. If, however,
an attempt to prove the correctness of an assignment state-
ment using that approach (i.e., by showing that the given pre-
condition implies the derived precondition) is unsuccessful, then
one of the following two situations must apply. Either

» the logical expressions have not yet been reformulated (mani-
pulated) appropriately to complete the proof or

» the given, supposed precondition is not, in fact, a precondi-
tion of the given postcondition with respect to the given as-
signment statement, i.e. the program segment in question
contains one or more errors.

The latter possibility must always be seriously considered,
for many a program whose correctness is to be demonstrated is
not, in fact, correct, but rather does contain errors.

When the proof cannot be successfully completed, one should
try to find values for the program variables which fulfill the
given, supposed precondition but not the derived precondition.

4.1 The Assignment Staternent 51

Such a set of values constitutes a test case which will demon-
strate the presence of an error in the program.

An attempt to prove an erroneous program correct often
leads directly to the location of the error in the program and
even to a correction of the error,

Example: This example is an extract of an erroneous subpro-
gram for merging the elements of two sorted arrays. The proof
task is to show that

{iasna+1 and (iasna and ib>nb
or ia<na and A(ia)<B(ib)
or ib<nb and A(ia)<B(ib))}
ia:=ia+1 {ia<na+1}

(which is, however, not true).
According to proof rule A2, this correctness proposition will
be true if

{ia<na+1 and (iasna and ib>nb
or ia<na and A(ia)s<B(ib)
or ibsnb and A(ia)<B(ib))}

. ia
= < .
{iasna+1} ia+1

or, equivalently,

{iasna+1 and (iasna and ib>nb
or iasna and A(ia)<B(ib)
or ibsnb and A(ia)<B(ib))}

= {ia<na}

The derived precondition {iasna} does not follow from the
given precondition (the left part of the implication above). We
raise, therefore, the question, under what circumstances is the
given precondition fulfilled (i.e. true), but the derived precondi-
tion not (i.e. false)? The negation of the derived precondition is
ia>na. If the given precondition is to be fulfilled, but the de-
rived precondition not, then ia=na+1. The first two ored terms
above will then be false; the other must, therefore, be true.
Consequently, our test case (counterexample refuting the
program's correctness) must satisfy the following conditions:

52 4. Analysis: Verifying the Correctness of a Program

ia=na+1
ib<nb
A(ia)<B(ib)

The lack of the condition iasna in the third ored term of the
given precondition prevents us from completing our correctness
proof. This term comes from an if condition in the subprogram
from which this example was taken. The correction of the error
follows already from our analysis: the condition iasna must be
anded to the if condition referred to above. =

4.1.3 Assignment to an indexed (array) variable

(This section deals with advanced aspects of correctness proofs
for assignment statements and may be skipped on first reading.)
An assignment statement which assigns a new value to an
array variable is, in principle, handled exactly as described in
section 4.1.1. One must, however, pay particularly careful
attention to the question of which references in the postcondi-
tion to an array variable should be replaced by the appropriate
expression and which should not. The following example illus-
trates the potentially problematic nature of this question.

Example: A precondition is to be derived:
{?} y(m):=z {y(m)=y(n)}

Clearly, "y(m)" in the postcondition should be replaced by
"(z)" in accordance with proof rule Al. In addition, it must be
noted that the execution of this assignment statement can,
under certain circumstances, change the value of y(n) also,
namely when the values of m and n are equal and "y(m)" and
"y(n)" therefore refer to the same array variable. In this case,
also "y(n)" must be replaced by "(z)"; otherwise, not.

If m=n, then the desired precondition is {z=z} or simply the
logical constant true. If m#n, then the desired precondition is
{z=y(n)}. In other words, the precondition V is

V = true, if m=n
[z=y(n)], if m$n

Another expression for the same condition V is (see Appendix
A, section A.4, exercise 1 and its solution in Appendix B):

4.1 The Assignment Statement 53

\Y

[(m=n) and true or (m+n) and z=y(n)]

[m=n or z=y(n)]
(See Appendix A, section A.3, identities 10 and 17.) =

By reformulating the postcondition appropriately, referencgs
to array variables can frequently be separated so that certain
references must always be replaced and tpe others, never. l?is-
pecially when and and or series occur in the postcondition
should one look for this possibility.

. X "
Example: After the execution of the assignment statemen.
D(j):=g(k), we require that the array variables D(1) t!'xrough D(j)
be sorted, i.e. D(1)sD(2)...<D(j). The precondition which ensures
that this will be the case is to be derived:

(7} D(j):=A(K) {and,_,T"! D()<D(i+1)}

Inside the and series the value of the running variab}e iis
always less than j, i.e. i¥j. Thus, D(i) never refers to D(j) egncliS
hence, is not to be replaced by "A(k)". Tpe varlable? D(i+
refers to D(j) when i=j-1, otherwise not. Thls. observation sug-
gests taking the one term out of the and series (see Appendix
A, section A.5). Accordingly, we rewrite our proof task as

follows:

(7} D():=AK) .
{j<2 or j22 and D(j-1)<D(j) andizll' D(i)<D(i+1)}

Expressed in this form, the postcondition contain:s ex?ctly
one reference to D(j). The values of the index expressions in all
other references to array variables D(.) are less than - a}nd
hence different from — the value of j. The desired precondition
can now be derived by substituting A(k) for th.e‘one occurrence
of D(j) in the last expression for the postcondition above:

-2 v
{j<2 or j22 and D(j-1)sA(k) andi=1" D(i)<D(i+1)} =

54 4. Analysis: Verifying the Correctness of a Program
This precondition requires that either

+ the array D is empty (j<2) or

+ the value of A(k) is at least as great as the value of the last
element of the array D and the elements already in D are
sorted (whereby an array containing only one element (j=2) is
sorted).

A detailed discussion of dealing with assignments to array
variables in correctness proofs as well as a generally applicable
solution to this problem can be found in [Baber, 1987, pp. 72,
73 and 140 ff.].

4.2 THE IF STATEMENT

For the if statement we have several proof rules among which
to choose. The most important of these are IF1 and IF2. The
others, IF3 and IF4, are weaker versions of IF1. Only because
of the simpler forms of the logical expressions appearing in
them are they sometimes of practical interest. (See sections
3.3.4 through 3.3.7.)

When a precondition is to be derived for a given postcondi-
tion and if statement, proof rule IF2 is used. Its application
effectively decomposes the proof task in question into subtasks
reflecting the structure of the if statement. The preconditions
with respect to the then and else parts of the if statement are
derived and then combined as specified by proof rule IF2. The
result is the desired precondition with respect to the entire if
statement.

When a given precondition of a given postcondition and if
statement is to be verified, proof rule IF1 is usually used. If
the given expressions match the form of proof rule IF3 or IF4,
then it may be applied instead of proof rule IF1. In any case
the correctness proposition about the entire if statement is
decomposed into two subsidiary correctness propositions: one
about the then part of the if statement and the other about the
else part. The resulting correctness propositions must then be
verified in turn by applying the appropriate proof rules.

4.2 The If Statement 55

Example 1: A precondition is to be derived for the following
postcondition and if statement.

{?} if x<0 then y:=-x else y:=x endif {y>0}

Proof rule IF2 is appropriate for this task (see the table in
section 3.4 and the reference card). It decomposes by proof
rule IF2 into three subtasks: Derive V1 and V2 such that

{V1?} y:=-x {y>0} and
{v2?} y:=x {y>0}

and form (and simplify, if possible) the expression
{(V1 and x<0) or (V2 and not x<0)}

which is the desired precondition V.

V1, a precondition with respect to an assignment statement,
is to be derived; we must, therefore, apply proof rule Al.
Replacing the variable y by the expression (-x) in the postcon-
dition, we obtain the precondition

\"A}
{y>0}y(_x)
{(-x)>0}
{x<0}

In order to derive V2, we replace the variable y by .the
expression (x) in the postcondition and obtain the precondition

V2
y
y>0¥,

{x>0}

Finally we combine V1 and V2 as specified by proof rulg IE2
to form the desired precondition V with respect to the entire if

statement:

56 4. Analysis: Verifying the Correctness of a Program 4.2 The If Statement 57

\Y% The following, somewhat more complex example can be
solved in essentially the same way.

{(V1 and x<0) or (V2 and not x<0)}

{(x<0 and x<0) or (x>0 and x20)} Example 2: A precondition is to be derived:

This expression for V can be simplified (see Appendix A, {?} if x<0 then y:=x else y:=x-2 endif {-1sy=4}

section A.3): By applying proof rule IF2 we decompose this task into three
\Y subtasks:
= {V1?} y:=x {-1<y=4}
{(x<0) or (x>0)} {V27} y:=x-2 {-1sy=4}

= V = {(V1 and x<0) or (V2 and not x<0)}

txt0) w By applying proof rule Al we derive the precondition V1:
V1
{~1cy=<4y x
Example 1: =
Deriving a precondition for an if statement {-12xs4}
and the precondition V2:
{x40} V2
{(x<0 and x<0) or _(x>0 and not x<0)} B - y
< _ { 15}’54} (X-Z)
l {-1=<(x-2)=<4}
true false =
x<0 | {1sx<6}
{x<0} {x>0) Substituting these expressions for V1 and V2 in the expres-
sion for V above, we obtain for the desired precondition
\'%
y =-X y::x =
{(-1=x<4 and x<0) or (1sx<6 and x20)}
{y>0} 0 =
l ty>0} {-15x<0 or 1<x<6} =

{y>0}

58 4. Analysis: Verifying the Correctness of a Program

Example 2:
Deriving a precondition for an if statement

{-1:x<0 or 1sxs6}

{(-1<x<4 and x<0) or-(lsxse and not x<0)}

!

true false
x<0
{-1<x<4}) {1sx<6}
v
y=x yi=x-2
{-1sy<4} {-1=y=4}
{-1<y=4}

Example 3: The correctness proposition

{iasna or iasna+1 and ib<nb)

if ib>nb or iasna then ia:=ia+1 else ib:=ib+1 endif
{iasna+1}

is 1{0. be verified, i.e. the precondition given above is to be
verified.

Accor:ding to proof rule IF1, this correctness proposition will
be true if the following two correctness propositions are true:

{(iasna or iasna+1 and ibsnb)
and (ib>nb or iasna)}
ia:=ia+1 {iasna+1}

[Proposition 1]

{(iasna or iasna+1 and ib<nb)
and not (ib>nb or iasna)}
ib:=ib+1 {iasna+1)}

[Proposition 2]

4.2 The If Statement 59

By applying proof rule IF1 we have decomposed the original
proof task of verifying the correctness of an entire if state-
ment into two subtasks, each of which involves verifying the
correctness of a single assignment statement.

Proposition 1: By proof rule A2, proposition 1 above will be
true if

{(iasna or ia<na+1 and ib<nb) and (ib>nb or iasna)}
= {iasna}

Simplifying the left expression in the above implication, we
obtain (see Appendix A, section A.3):

{(iasna or ia<na+1 and ibsnb)
and (ib>nb or ia<na)}

{ia<na and ib>nb

or iasna and iasna

or iasna+1 and ibsnb and ib>nb
or ia<na+1 and ib<nb and iasna}

{ia<na and ib>nb
or iasna

_ or false
or iasna and ibs<nb}

{ia<na}

Thus, proposition 1 reduces to [{iasna} = {iasna}], which is
obviously true.

Proposition 2: By proof rule A2, proposition 2 above will be
true if

{(iasna or iasna+1 and ib<nb)
and not (ib>nb or iasna)}
=P {ias<na+1}

It is evident that the right condition in the implication above
{iasna+1} follows from the first anded subexpression in the left
part of the implication. Formally (see Appendix A, section A.3
and section A.4, exercise 2),

60 4. Analysis: Verifying the Correctness of a Program

{(iasna or ias<na+1 and ib<nb)
and not (ib>nb or iasna))

{(iasna or iasna+1 and ibsnb) and ...}
=

{ias<na or iasna+1 and ib<nb}
=

{iasna or ia<na+1 and ib<nb or iasna+1}

{iasna+1} =

Example 3:
Verifying the correctness of an if statement

V = {iasna or ia<na+1 and ibsnb)

!

true false

ib>nb or iasna

~{Vand {V and
if-cond.} not if-cond.}

. > =’

{iasna) {iasna+1}

JV {V
ia:=ia+1 ib:=ib+1
{iasna+1} {iasna+1}
{ia<na+1}

Exercise: Solve the following problems.

1. {7} ff x<0 then y:=-x else y:=x endif {y>0}
2. {?} 3f x<0 then y:=-x else y:=x endif {y=0}
3. {?} if x<0 then y:=-x else y:=x endif {y<0}

4.2 The If Statement 61

4. {?} if x<0 then y:=-x else y:=x endif {y<0}
5. {3<|x|<4} if x<0 then y:=-x else y:=x endif {2:y<4} 7 =

4.3 THE SEQUENCE OF STATEMENTS

The correctness of a sequence of statements is proved by
applying proof rule Sl (see section 3.3.8). One begins with the
postcondition and, working backward through the sequence of
statements, derives a precondition for each statement. The
precondition with respect to the first statement in the se-
quence derived in this way is also a precondition with respect
to the entire sequence.

Example: A precondition is to be derived for the following
postcondition and sequence of statements:

{V?} gr:=gr-1; gl:=gl-1 {il-1<gl<grsig}

Applying proof rule S1, we decompose this proof task into
two subtasks, each involving a single assignment statement:
{V?} gr:=gr-1 {P1} [P1 still to be determined]
and
{P17} gl:=gl-1 {il-1sgl<gr=ig)}

Because P1 is unknown, we cannot yet solve the subtask for
the first assignment statement. We must start with the last
one. We derive Pl by applying proof rule Al, substituting the
expression (gl-1) for the variable gl in the postcondition:

P1 = {il-1sgl-1<grsig}
The subtask for the first assignment statement then becomes
{V?} gr:=gr-1 {il-1<gl-1<gr<ig}

Applying proof rule Al, we substitute the expression (gr-1)
for the variable gr in P1 (which is now the postcondition of the
first assignment statement in the sequence) in order to derive
the desired precondition.

V = {il-1sgl-1<gr-1sig)}

Summarizing (and repeating), we have shown that

62 4. Analysis: Verifying the Correctness of a Program

{il-1=gl-1<gr-1=ig} gr:=gr-1 {il-1sgl-1<grsig)

and
{il-12gl-1<gr=ig} gl:=gl-1 {il-1sgl<grsig}

from which it follows by proof rule Sl that
{il-12gl-1<gr-1sig} gri=gr-1; gl:=gl-1 {il-12gl<gr<ig} =

Exercise: Show that the following correctness proposition about
the given sequence of statements is true.

1. {0=N} i:=0; j:=0

N-1

{andk=0j_1 (not anda=O D(k+a)=K(a))

and (j>M-N or jsM-N and__ 'l D(j+a)=K(a))

and Os<j and 0<isN} =

4.4 THE WHILE Loop

Proof rules W1 and W2 are used to prove the correctness of a
while loop, depending upon whether the proof task involves a
loop without or with initialization respectively. Most often the
subject of the proof task is a loop with initialization. There-
fore, we will devote our attention here to proof rule W2, which
includes proof rule W1 as a component part anyway. (See sec-
tions 3.3.9 and 3.3.10.)

By applying proof rule W2, one decomposes the task of
proving the correctness of a loop with initialization into three
subtasks: proving (1) the correctness of the initialization, (2)
the correctness of the loop body and (3) the truth of the post-
condition upon termination of the loop. Each of these subtasks
is solved by applying the appropriate proof rule(s) or by suitably
transforming the logical algebraic expressions in question.

Finally one must show that the loop will terminate, especial-

ly that the body of the loop will be executed only a limited
number of times.

4.4 The While Loop 63

A suitable loop invariant must be known before proof rule
W2 can be applied. Determining the loop invariant is actually a
design decision. The loop invariant should, therefo're, be. stated
explicitly in the documentation on the program in yvhlch the
loop appears. Because its inclusion in the dqcumentatlon cannot
yet be taken for granted, however, this design step must some-
times be repeated before a formal correctness proof can be

completed.
In section 4.4.1 below we will prove the correctness of a

while loop for which a loop invariant is known. In seqtion 4.4.2
we will see how to determine a suitable loop invariant when
none is given.

4.4.1 Correctness proof (loop invariant known)

Example: Prove the correctness of the following sybprogram,
which searches the array A for the value of the variable x.

k:=1
while k<n and A(k}$x do k:=k+1 endwhile

The specified precondition is
neZ and O<n

where Z is the set of all integers (0, 1, -1, 2, -2, ...). Le. tt'l'e
phrase "neZ" means "the value of the variable n is an integer".
The variable n indicates how many elements the array A
contains.
The given postcondition is

neZ and keZ and 1<ksn+1 [range of k]
and, lk-l A(i)$x [all elements before the k-th # x]
1=

and (k<n and A(k)=x [A(k) = x]

or k=n+1) [no element of A = x]

64 4. Analysis: Verifying the Correctness of a Program

The correctness proposition to be proved is, therefore,
{neZ and 0<n)
k:=1
while k<n and A(k)$x do k:<k+1 endwhile

{neZ and keZ and 1<ksn+1 andi=lk-l Alidx

and (ksn and A(k)=x or k=n+1)}

The programmer specified the loop invariant I to be as
follows:

neZ and keZ and 1s<ks<n+1 [range of k]

and.=1k_l Ali)fx

; [all elements before the k-th ¥ x]

Because the correctness proposition to be proved involves a
while loop with initialization, we will apply proof rule W2. By
proof rule W2, the correctness proposition above will be true if
the following three propositions are true:

{neZ and 0sn} k:=1 {1}
{I and k<n and A(k)+x} k:=k+1 {1}

{I and not (ksn and A(k)x)}
=

{neZ and keZ and 1<k<n+1 andi=lk_1 Ai)x

[Proposition 1]
[Proposition 2]
[Proposition 3]

and (ksn and A(k)=x or k=n+1)}

Proposition 1: This proof task consists of verifying the correct-
ness of an individual assignment statement as described in
section 4.1.1. By proof rule A2, this correctness proposition will
be true if

{neZ and 0<n} =» {Ikl}

Written out in full, this expression becomes
{neZ and 0<n}
= {neZ and 1eZ and 1s1sn+1 andi=10 A(i)$x}

65
4.4 The While Loop

ies i he value true (see

he and series is empty and has, therefore, t A ue (s
prendix A, section A.5). The right part of the implication
above reduces to the given precondition (the left part of the

implication above), so proposition 1 is true.

Proposition 2: Written out in full, proposition 2 is

-1 ,4.
{neZ and keZ and 1sksn+1 andi=lk A(i)Fx
and k=<n and A(k)#x}
ki=k+1 a1
{neZ and keZ and 1<k=n+1 andi=lk Ali)$x}

The precondition in this proposition can be simplified to

k-1 ...
{neZ and keZ and 1sksn and,_," " Ali4x and A(k)$x}

- kK A/
{neZ and keZ and 1<k<n and,_," A(i)}x}
so that proposition 2 can be rewritten as

k ¢
{neZ and keZ and 1<k<n and,_," A(i)$x}

k:=k+1 kel ...
{neZ and keZ and 1sksn+1 and,_, A(idx)

By proof rule A2, this correctness proposition will be true if

k o
{neZ and keZ and 1sksn and,_, " A(i)$x}
k-1 , 1k
{neZ and keZ and 1sksn+1 and,_," " Alix},

or, equivalently,

(neZ and keZ and 1sksn and,_ " A()x}
==
(neZ and keZ and Osks<n and,_, " A()x)

which is clearly true. Therefore, proposition 2 is true. More
formally,

66

4. Analysis: Verifying the Correctness of a Program

{neZ and k Al
i keZ and 1<ksp and, " A(iMx}

(1<k) and {neZ
_ {neZ and keZ and 0s<k<n andi=lk A(i)fx)}

{neZ and k kA
€Z and 0Osksn and, " A(iHx)

oposition 3: Written out fully, this proposition is:

{neZ and keZ and 1<k<n+] ang. K-
i=1

Alidx
and not (k<n and A(k)$x)}
=
{neZ and k k-
€Z and 1sksn+] and; | 1 A(i)fx

and (ksn and A(k)=x or k=n+1)}

The left part of the implication above

follows (see Appendix A i
) » Section A.
section A.4, exercise 3): >

. can be rewritten as
identities 19 and 17, and

{neZ and k k-1
€Z and 1sksn+1 and,_, " " A(i)$x

and (k>n or ksn and A(k)=x)}

{neZ and k k-1
€Z and 1sksn+1 and,_ X1 A(j)x

and (ks<n and A(k)=x or k=n+1)}

This last expression is the

as ri . C
proposition 3. Proposition 3 i oreart of the mplication of

s thereby verified.

Total :
correctness: We have proved above that the given subpro-

‘ - 10 prove that it is t
Eram .) otally corr
still show that it will be executed to complgtion &?Eﬁoﬁ?

a run time error (i.e., that it will "terminate" i
1deXIt];fo); ;(i(ilgéonag.conditions which ensure igair;tatlttaif;lli?lt;::;y,
will be o Jthe é‘dt 1r;gs, we must show that the body of the loép
times), Lrecu only a limited number of times (finitely man
. IS case - and typically — this part of the proof iz

4.4 The While Loop o

relatively simple. Each execution of the loop body increases the
value of k by 1. As soon as k>n the loop ends.

In addition, we must show that every execution of every
statement in the program will yield a defined result, i.e. that
no run time error can arise. In complete detail, such a proof
depends upon the target system upon which the program is to
run. Despite this fact, however, typically valid conclusions can
be drawn (see chapter 2). Strictly speaking, we must also show
that every statement is syntactically correct, but we will not
concern ourselves here with tests so specific to the target
programming language — tests which most systems conduct
automatically and completely anyway.

The results of executing the two assignment statements
k:=... will always be defined if the (possibly automatically)
declared range of the variable k includes all integers from 1 to
n+1 inclusive (cf. the loop invariant). If, for example, k and n
are declared as variables of the same type, n is not permitted
to have the highest value.

The first part of the while condition can always be evaluated
if the variables k and n are declared and their values can be
compared for <. Because k and n take on integer values only
(see the loop invariant), the latter condition will be fulfilled.
{These variables need not, however, be declared as type inte-

ger.)
The second part of the while condition can be evaluated if
the variables A(1), ... A(n) and x are declared (or will be auto-

matically declared when needed) and their values can be com-
pared with one another for equality. Furthermore, we must
consider that A(n+1) is referenced during the last execution of
the loop, for the loop invariant permits k=n+1. When the (possi-
bly undeclared) variable A(n+1) is compared, the term ksn is
false, so that the value of A(n+1) is of no consequence. We
must pay attention, however, to the way in which the target
system evaluates an expression of the form "false and unde-
fined" (see the comments on evaluating an expression in section
2.1). If the target system evaluates this expression as false,
then this subprogram will execute without a run time error. If,
on the other hand, the target system considers the value of this
expression to be undefined, then the execution of this subpro-
gram will end abnormally with a corresponding error message;

68 4. Analysis: Verifying the Correctness of a Program

with respect to such a system, our subprogram is not totally
correct.

A precondition for which the given subprogram is totally
correct is, therefore:

* The variable n is declared and has a nonnegative integer
value and

* the variable k is declared or will be declared automatically
as needed and

* the (possibly automatically) declared range of the variable k
includes all integers between 1 and n+1 inclusive and

* the variables A(1), ... A(n) (and, depending upon the target
system, A(n+l), see above) and x are declared and their
values can be compared with one another for equality.

Additional conditions could be imposed by specific charac-
teristics of the target system upon which the subprogram is to
be executed (e.g., that k must be declared as an array subscript
variable or as type integer, etc.). =

4.4.2 Correctness proof (loop invariant unknown)

In section 4.4.1 it was assumed that a suitable loop invariant
was given together with the correctness proposition to be
proved. Sometimes, however, one is faced with the task of
proving a loop correct even though the loop invariant is un-
known. In this case a suitable loop invariant must be deter-
mined before the proof can be completed.

The loop invariant is a generalization of the pre- and post-
conditions of the while loop (see section 3.3.9). Le., it must be
true both before and after execution of the loop.

A loop invariant appropriate for a given loop with initializa-
tion and a given postcondition can often be determined as fol-
lows. Consider the value of the postcondition initially (i.e. im-
mediately before execution of the loop) and ask how the post-
condition would have to be changed in order to be true initially.
Terms which prevent the postcondition from being true initially
are candidates for omission or modification.

69
4.4 The While Loop

Consider again the example in section 4.4.1, but without the
loop invariant given there.
Example: The given postcondition is:

neZ and keZ and 1<ksn+l [range of k]

k=1 A [all elements before the k-th + x]

and,_, Ali)x
and (k<n and A(k)=x [A(k) = x]
or k=n+1) [no element of A = x]

The initialization of the loop ensures that k=1 immediatel)_'
before execution of the loop begins. The value of the postcon
dition before the loop is, therefore,

neZ and 1eZ and 1<12n+1
and_ 0 AGH4x

and (1sn and A(1)=x
or 1=n+1)
which can be simplified to
neZ and Osn
and (1s<n and A(1)=x
or 0=n)

The given precondition of the subprogrgrp ensures that tlt;e
first line above will be true. However, initially it will not be
known if A(l)=x or not. Furthermore., the value of n czp . :31
zero or positive. Thus, the last two lines of the ppstczon 11?(:1)
prevent it from being true initially. We can gen'erahzeh yﬁa e)
the postcondition by omitting these 1a§$ two lines (w e (;ont
stitute an anded term in the postcondition). The loop invarian

I then becomes

neZ and keZ and 1sksn+1 [range of k]

and,_, "1 Al [all elements before the k-th # x]
1=

(See the example in section 4.4.1.) =

70 4. Analysis: Verifying the Correctness of a Program

The topic of determining the loop invariant is dealt with in
more detail in chapter 5.

4.5 APPLYING THE DIVIDE AND CONQUER PROOF RULES

Sometimes a lengthy expression arises in a correctness proof.
Although this does not pose a fundamental problem, it can lead
to a disorganized, unclear proof. Furthermore, manipulating
lengthy algebraic expressions can become quite tedious and
difficult. By applying the proof rules DC1 through DC4 ("divide
and conquer"), these potential problems can often be avoided.

Example: Consider the following loop, which merges the values
from the two presorted arrays A and B into array C,

while iasna or ibsnb do
if ib>nb or ia<na and A(ia)<B(ib)
then C(ic):=A(ia)
ia:=ia+1
else C(ic):=B(ib)
ib:=ib+1
endif
ic:=ic+1
endwhile

for which the programmer specified as the loop invariant I

I1: 1<iasna+l
I12: and 1l=zibsnb+1
I3: and (ic-1)=(ia-1)+(ib-1)

[range of ia]
[range of ib]
[relationship between
ia, ib and ic]

14: and (icsl or ia>na or C(ic-1)sA(ia))
[next element of A (if any) > last element of C (if any)]

I5: and (ics1 or ib>nb or C(ic-1)<B(ib))

[next element of B (if any) > last element of C (if any)]
16: and._,"“% C(i)sC(i+1) [C sorted]
17: and,_,"*" A()sAGi+1) and,_ "1 B(1)sB(i+1)

- - [A, B sorted]

k]
e

4.5 Applying the Divide and Conguer Proof Rules 71

whose several terms he named as shown above. Tt.xe lengthiest
part of the proof consists of verifying the invariance of the
loop invariant I, i.e., that

{I and (ia<na or ib<nb)}
if ib>nb or iasna and A(ia)<B(ib)
then Clic):=A(ia)
ia:=ia+1
else C(ic):=B(ib)
ib:=ib+1
endif
ic:=ic+1

{n

This program segment consists of a sequence of two state-
ments (an if statement and an assignment statement). There-
fore, we apply proof rule S1 and dec;qrnpose the correctness
proposition above into two new propositions:

{I and (ia<na or ibsnb)}
if ib>nb or iasna and A(ia)<B(ib)
then C(ic):=A(ia)
ia:=ia+1
else C(ic):=B(ib)
ib:=ib+1
endif

{IiC }

ic+l

and

{Iicic+1} ic:=ic+1 {I}

whereby we obtain Ilcic+1 by replacing the variable ic by the

expression (ic+1) in I (see proof rule Al).

The last proposition above is true by proof }”gle Al. We mus't
still decompose the above correctness proposition ab’ouF the if
statement by applying proof rule IF1. Aftez: simplifying the
preconditions we obtain the following propositions to be proved:

72

{I and iaSna and (ib b . .
Clic):=Al(ia) >nb or A(ia)<B(ib))}
ia:=ia+1

ic
a ic+l}
and

{I and ibsnb and (ia>na i i

€ or B(ib)<A
Gl et (ib)<Alia))}
ib:=ib+1

ic
{ iC+l}

The postcondition is a lon i i
g expression with the same form

?r:ld ‘str;xct.ure as the loop invariant I (see above). The algebraic

anipulation and the proof are clearer and easier to follow and

understand if we decompose the ab iti
ove propositions by applyi
proof rule DC3. We thereby obtain the propositions Y sppyine

{I and ia<na and (ib>nb or A(ia)<B(i
Clic):=A(ia) (ia)<B(ib))}
fa:=ia+1

ic
{1 ic+1} = {1siasna+1}

and
{I and ia<na and (ib>nb or A(ia)<B(i
<B
Clic):=A(ia))<Blb)
ia:=ia+1
ic
{12 ic+l} = {1<ibsnb+1}
and

{I and ia<na and (ib>nb or A(ia)<B(j

<B
Ciomd Lasns (ia)<B(ib))}
ia:=ia+1

{13.icic+ 1 = {lic)=(ia-1)+(ib-1)}

r(T,(:lc.tYVeIhave 14 proppsitions of this form to prove, but each is
atively short and simple. Several of them are, in fact, trivi-

al. Each can be proved by applying proof rules S1, Al and A2

4. Analysis: Verifying the Correctness of a Program

4.5 Applying the Divide and Congquer Proof Rules 73

(see section 4.3). Because of the symmetry between ia and ib,
etc., structurally identical algebraic transformations arise
pairwise, effectively halving the actual work to be done.

Exercise:

1. The given while loop and its loop invariant are almost sym-
metrical with respect to the arrays A and B and their associ-
ated variables ia, ib, na and nb. The two correctness proposi-
tions about the then and else branches of the if statement
are symmetrical except for the relation between A(ia) and
B(ib) (< instead of < in one place). How can complete sym-
metry be achieved?

2. Formulate in complete detail all 14 correctness propositions
obtained by applying proof rule DC3 to the two correctness
propositions mentioned above.

3. Prove all of these 14 correctness propositions. m

4.6 THE SUBPROGRAM OR PROGRAM SEGMENT

The postcondition of a program segment or of a call to a sub-
program typically includes two subconditions. One subcondition
relates to the effect of executing the program segment or
subprogram in question. The other subcondition references
variables whose values are not changed by the program segment
under consideration. The latter subcondition relates to the
effects of previous parts of the program whose results must be
preserved for subsequent use. (Cf. proof rules SP1, SP2 and SP3
in sections 3.3.15 through 3.3.17.)

The following example, in which three subprograms are
called one after the other, illustrates how the two types of
subconditions mentioned above are separated and handled in the
proof. The reader should pay particularly close attention to
that part of the proof which deals with the second call.

Example: The following part of a program has the task of
copying the values in the arrays A and B into array C in such a
way that afterward, array C is sorted. Initially, the arrays A
and B are not necessarily sorted. The variables na, nb and nc
indicate the number of elements in the arrays A, B and C re-

74 4. Analysis: Verifying the Correctness of a Program

?pﬁctively. The correctness proposition to be proved here is as
ollows:

{na20 and nb20}
call sortA
call sortB
call merge

[ranges of na, nb]

_ nc-1 . .
{nc=na+nb and;_, C(i)sC(i+1)} [C sorted]
This program is a sequence of three statements. Therefore,

we apply proof rule S1 and decompose our proof task into three
subtasks:

{na=0 and nb20} call sortA {P1} ? [Subtask 1, P1 still

to be derived]

{P1?} call sortB {P2} [Subtask 2, P2 still to be derived]

{P2?} call merge [Subtask 3]

{nc=na+nb andi= 1 nc-1 Cli)=C(i+1)}

F’regonditions are to be determined for the last two statements
in the sequence. For the first statement, the gi iti

i ne ven precondi

is to be verified. ’ & P ven

.As usual in the case of a sequence of statements, we begin
with the last statement in the sequence.

Subtask 3: The given specification of the subprogram merge
states that it (1) calculates the value of the variable nc and (2)
copies the values of the variables A(1), ... A(na), B(1), ... B(nb)
into array C so that array C is sorted. The prerequisite for the
correct functioning of this subprogram is that each of the
arrays A and B is sorted. Formally,

{na=0 and nb20 and,_ " A(i)sA(i+1)

1
andi=1"b'l B(i)<B(i+1)}

call merge {nc=na+nb andizlnc_1 C(i)sC(i+1)}

| 4.6 The Subprogram or Program Segment 75

The postcondition of subtask 3 and the postcondition in the
specification of the subprogram merge are identical. We can,
therefore, take the precondition from the specification as the
desired precondition P2.

Subtask 2: Now that P2 has been determined (see subtask 3
above), subtask 2 becomes: :

{P17?} call sortB na-1
{na20 and nbz0 andi=l Ali)<A(i+1)

andi=1“b'l B(i)<B(i+1)}

The given formal specification of subprogram sortB states
that it exchanges (permutes, rearranges — i.e. changes) the
values of the variables B(1), ... B(nb) and changes the values of
the program variables i, j and k. (The values of the variables i,
j and k are meaningful only within the subprogram.) Subprogram
sortB does not modify any other variable. It fulfills the cor-
rectness proposition (specification)

{nb20} call sortB {andi=lnb_l B(i)<B(i+1)}

Our task is to find a precondition for a postcondition which
is stronger than the postcondition in the specification. We
must, therefore, separate the postcondition of subtask 2 into
two subconditions such that one subcondition is identical to (or
follows from) the postcondition in the specification and the
other subcondition references only variables which are not
modified by subprogram sortB. In other words, we separate the
postcondition of subtask 2 into subconditions corresponding to
the conditions P and B in proof rule SP2 (or SP3). (See proof
rules SP2 and SP3.) Subtask 2 then becomes

{P1?} call sortB na-1
{na=0 and nbz0 and, ™2 A(i)sA(i+1) [B: not changed
i=1
by sortBl]

nb-1 [P: changed by sortB]

and, B(i)<B(i+1)}

i=1

We wish to find a precondition by applying proof rule SP2.
The conditions V, P and B appearing in proof rule SP2 corre-
spond to the subexpressions above as follows:

76 4. Analysis: Verifying the Correctness of a Program
V: nb20

P: and. ,"™ 1 B(i)<B(i+1)

i=1

B: naz0 and nbz20 andi= na-1 A(i)sA(i+1)

1
The postcondition in subtask 2 is (P and B). By proof rule SP2,
the precondition is (V and B). The correctness proposition for

this call — with the precondition P1 in the desired form - is,
therefore,

{naz0 and nbz0 andi_lna-1 A(i)=A(i+1)}
call sortB -

[P1: V and B]

{naz0 and nb20 andi___lna-1 A(i)sA(i+1) [B: not changed
by sortB}
andizlnb_1 B(i)sB(i+1)} [P: changed by sortB]

Subtask 1: Now that Pl has been determined (see subtask 2
above), subtask 1 calls for us to verify that

{naz0 and nbz0} call sortA

{na20 and nb20 and,_, "1 A()<AGi+1)}

1

The given formal specification of subprogram sortA cor-
responds to that of subprogram sortB (see above). Subprogram
sortA exchanges (permutes, rearranges — i.e. changes) the
values of the variables A(1), ... A(na) and changes the values of
the internal program variables i, j and k. Subprogram sortA
does not modify any other variable. It fulfills the correctness
proposition (specification)

{naz0} call sortA {andi= na-1 A(i)sA(i+1)}

1

Here, too, the postcondition in our proof task is stronger
than the postcondition in the specification. We must, therefore,
separate the postcondition of our proof task as we did in sub-
task 2 above. (See proof rules SP2 and SP3.) Rewriting subtask
1 accordingly, we must verify that

el 3
SR

4.6 The Subprogram or Program Segment 77

{na=0 and nb20} call sortA

{na20 and nb20 [B: not changed by sortA]

andi_lma_1 Ali)=A(i+1)} [P: changed by sortA]

According to proof rule SP2, this correctness proposition is
true. In this application of proof rule SP2, the conditions V, P
and B appearing therein correspond to the subexpressions above
as follows:

V: na20
P: andi=lna_1 Ali)=A(i+1)

B: naz0 and nb20

This completes the proof (verification) of the original cor-
rectness proposition about the sequence of three calls to sub-
programs. m

If the postcondition of a call to a subprogram (or of a pro-
gram segment) cannot be separated as above (i.e. as required in
order to apply proof rule SP2 or SP3), then a design error is
present. Either the program contains an error or the formal
specification of the subprogram (or program segment) in ques-
tion is incomplete.

4.7 SUMMARY: PROGRAM ANALYSIS AND VERIFICATION

In order to prove a program or program segment partially
correct, one first writes the proof task as a correctness propo-
sition of the form

{v} s {P}

where V is the known (given) precondition, P is the given post-
condition and S is the program in question. The proof rule
appropriate for S (see the table in section 3.4 and the reference
card) is then applied in order to decompose the original cor-
rectness proposition to be proved into subsidiary correctness
propositions (proof tasks). This process is continued iteratively
until only propositions about assignment statements remain.

78 4. Analysis: Verifying the Correctness of a Program

Finally, these last propositions are verified by applying proof
rules Al and A2 for the assignment statement.

This process decomposes correctness propositions (proof
tasks) about larger parts of the program into correctness propo-
sitions about ever smaller parts of the program, until the level
of individual assignment statements is reached. Thus, the
correctness proof is decomposed in a manner reflecting the
structure of the program being verified.

When, in the course of decomposing proof tasks in this way,
already verified correctness propositions are encountered, one
can, of course, stop there. This situation will arise especially in
the case of propositions about subprogram calls. (See section
4.6.) Such already verified correctness propositions represent
lemmas and theorems about subsidiary parts of the program
which each correctness proof for a superior (e.g. calling) pro-
gram segment may — and should - reference.

To prove additionally that a program is totally correct, one
must above all show that the body of each loop will be execut-
ed a finite number of times only (i.e. that the number of exe-
cutions is limited). One must show further that every execution
of each statement will yield a defined result, i.e. that no run
time error can occur. Chapter 2 contains typically valid guide-
lines for assessing program statements in this regard. (See
section 4.4.1 for an example.)

DESIGNING A CORRECT PROGRAM

In this chapter we will design several program segments. Each
will be designed to fulfill a given specification — consisting of a
precondition and a postcondition. The various requirements of a
correctness proof serve as guidelines for the design of the
program. They enable us, in fact, to derive several parts of our
program more or less directly.

The resulting approach presented here directs the designer's
attention to the essential aspects of the program being de-
signed and away from inessential aspects. Consequently, he
proceeds more directly and systematically toward his goal than
before. The result is often a surprisingly compact program with
a simple, clear and logical structure.

This approach contrasts sharply with the traditional way of
programming. One views the program and the process of devel-
oping it in a rather different way and from a quite different
standpoint. In contrast to the traditional approach, one pays
more attention to states and to that which does not change (to
invariants and conditions), and much less attention to the
changes brought about by the execution of the program state-
ments. This new, different design approach — and different way

80 5. Designing a Correct Program

of thinking — must be learned and practiced before one can
apply it with ease, but experience shows that it is not particu-
larly difficult to master.

With practice and experience, the approach to designing
programs presented in this chapter can be employed quickly and
easily. The designer applies the various proof rules almost
subconsciously and as reflex actions, just as engineering col-
leagues in other fields apply their theoretical foundations to
practical design tasks.

Because of space limitations we will examine only four
examples of limited size in this chapter. The subject of each
example is the design of a subprogram on the lowest hierarchi-
cal level. For design examples involving hierarchically higher
level program segments, including a control program at the top
level of a middle sized program system, see [Baber, 1987, chap-
ter 6].

When designing a provably correct program one typically
proceeds as follows. Starting with a general description of the
task the program is to perform, one adds detail, making the
description more specific, and formulates the pre- and postcon-
ditions as logical algebraic expressions. Then the designer
decides upon the basic structure of his program. If, as is often
the case, a loop is chosen, he next decides upon a loop invari-
ant. Based on the difference between the postcondition and the
loop invariant, he derives the while condition. Using the loop
invariant as a check list, he designs the body of the loop.
Finally he completes a proof of correctness for his program
design. Typically, many parts of the proof fall out of the design
process as a by-product.

The loop invariant is determined by generalizing the pre- and
postconditions. This step of the design process can be based on
either the algebraic formulas or corresponding diagrams or
both. Sometimes the formulas lead more directly to the goal
and sometimes diagrams simplify and clarify the process more
effectively. The practical software designer should, in any case,
develop his ability to use and think in terms of both representa-
tional forms fluently and to "translate" between them in both
directions.

Frequently the required initialization of the loop becomes
obvious during the process of determining the loop invariant.

5.1 Design Example: Linear Search 81

When reading and studying the following design examples,
note carefully how the design steps described generally above
are actually carried out in detail.

5.1 DESIGN EXAMPLE: LINEAR SEARCH

In our first example we will design the program segment which
was proved correct in section 4.4.1.

The variable n, the array A(1), A(2), ... A(n) and the variable
x are given. The program to be designed is to determine wheth-
er the value of x is present in the array A and if so, where it
first occurs. The value of the result variable k should indicate
which element of A was found to be equal to x.

5.1.1 Specification

The precondition is given as
neZ and O<n

The program to be designed should calculate a value for the
variable k so that after execution of the program the postcon-
dition

keZ and 1sksn+1 [range of k]

and,_ X1 A(4x [all elements before the k-th # x]

and (k<n and A(k)=x [A(k) = x]
or k=n+1) [no element of A = x]

is satisfied (is true). No other variable should be modified.

5.1.2 Basic structure of the subprogram

It seems appropriate and natural to solve the stated problem by
comparing elements of the array A, one after the other, with x
(testing for equality). The repetition of the same basic step
suggests a loop for the basic structure of our program. As a

82 5. Designing a Correct Program

rule, a loop has an initialization, which ensures that the loop
invariant is true initially. Thus, our program has the general
form

initialization; while B do S endwhile

5.1.3 Loop invariant

The most important design decision in connection with a loop is
the determination of the loop invariant. An appropriate loop
invariant can be determined by generalizing the postcondition
and the initial situation (see section 3.3.9).

In section 4.4.2 we determined a loop invariant for this loop.
There, the program — in particular the initialization of the loop
— was known. Here we proceed similarly, but we cannot refer
to an existing initialization routine for the loop.

We begin with the postcondition (see above) and ask our-
selves how it must be generalized (weakened) in order to be
satisfied initially. Is or can the first line of the postcondition
be true in the beginning? The precondition ensures that nz0. If
the first line of the postcondition is to be true for all possible
values of n, then it must be true that 1sk<0+1 (assuming that
the initial value of k does not depend on n), i.e. k=1. Viewed
the other way around, the first line of the postcondition will be
true if k=1. This observation suggests the assignment statement
k:=1 for the initialization.

If k=1, then the second line of the postcondition is the empty
and series, which by definition is true.

The third line of the postcondition asserts that A(k)=x.
Initially (k=1) it will be unknown whether A(k)=x or not. Also
the fourth line can be either true or false initially. Since these
two lines together form an anded term of the postcondition,
the postcondition can be weakened by omitting them.

Thus we are left with the following condition as our loop
invariant I:

keZ and 1sksn+1 [range of k]

and, X1 A(i)Fx [all elements before the k-th # x]

i=1

5.1 Design Example: Linear Search 83

The loop invariant I can be represented by the following dia-
gram:

The loop invariant {I}

Another line of reasoning also leads to this loop invariant.
We pose the question, which parts of the postcondition must be
true at intermediate stages of the search and which not? The
first line of the postcondition limits the range of values of the
variable k; the given range includes all values obviously re-
quired during the search. Those elements of A already investi-
gated will be unequal to x, so the second line of the postcondi-
tion will be true at intermediate stages of the search. During
the search neither of the conditions A(k)=x (equality found) or
k=n+1 (end of array) will, in general, be true; the last two lines
of the postcondition cannot, therefore, be included in a suitable
loop invariant.

5.1.4 While condition

In the correctness proof we must show that the postcondition
is satisfied upon termination of the loop, in particular, that
[I and not B] => the postcondition P (see proof rule W2). We
formed the loop invariant by omitting an anded term of the
postcondition. The omitted term is an obvious candidate for
[not B]. Therefore, we negate the omitted term to derive the
while condition B:

not [k<n and A(k)=x or k=n+1]

[k>n or A(k)$x] and kin+1

84 5. Designing a Correct Program
[k>n or k<n and A(k}4x] and k$n+1

[k>n and k$n+1 or k<n and k#n+1 and A(k)x]
[k>n+1 or k<n and A(kHx]

The loop invariant will always be true when the while condi-
tion is evaluated. It follows that the left term above will

always be false. We choose, therefore, for the while condition
simply

ksn and A(k)$x

5.1.5 Loop body

The body of the loop has only two functions to perform: (1) to
maintain the truth of the loop invariant and (2) to achieve
Progress in the direction of termination (the postcondition). Cf.
(1) proof rule W1 and step 3 of proof rule W2 — {I and B} S {1} -
and (2) step 5 of proof rule W2. Any other consideration when
designing the loop body is superfluous, because it contributes
nothing to the correctness proof.

The following diagram represents the relationships between
the values of the variables A(.) and x which are known to be
true just before each execution of the loop body {I and B):

The precondition of the loop body {I and B}

|1 [ie[ke1 ol

| u 4] ? ,

Comparing this diagram for {I and B} with the diagram for {I}
(see the previous diagram above) we see that the diagram for {I
and B} can be transformed into the diagram for the loop in-
variant by increasing k by 1. Examining the corresponding
logical algebraic expressions leads to the same conclusion.

85
5.1 Design Example: Linear Search

Increasing k reduces the length of t(he t}}?ll'mov?tll rt;goi;)tnc;o;gi.:
i toward termination (fulfilling the
s ohee: i h of the unknown
i i ts the length o
ion). This observation sugges) "
iegiz)n in the loop invariant, i.e. n-k+1, as the l.oop var}az)r;t {1]}
the formal proof of termination. (See the diagram

ab(’?,t?é) body of the loop will, therefore, consist of the one

assignment statement k:=k+1.

5.1.6 The complete subprogram

Thus the complete subprogram is as follows:

k:=1]
while k<n and A(k)¥x do k:=k+1 endwhile

5.1.7 Correctness proof

The correctness of the program designed here was proved in
section 4.4.1.

5.2 DESIGN EXAMPLE: PARTITIONING AN ARRAY

i variables il and ir and the array var1able§ .X(ll’),
§1(13+11r)1’tege l;((ir) are given. The precondition is not s.pemféid t:Z
greater detail. Any additional necessary restr1ct1(;>n§ to be
added to the precondition are to be specified by the desig

i m.
thl’sl‘t?gbg;g;gnl:sgram to be designed. should exchange .(perrgll.lttl::g
the values of the above array variables and qeterrrtl‘lmtal varra
for the variables gl and gr such that three regions of the y

are formed:

86 5. Designing a Correct Program

The postcondition

Iil lgl grl irl

The middle region may not be empty; the others are permit-
ted to be empty. The subprogram being designed should select
the value of the elements in the middle region. No restrictions
are placed on the method for selecting that value.

5.2.1 Specification

Expressed as a logical algebraic expression, the postcondition is
as follows:

gl-1

and, ., X(i)<X(gl)

gr 2y _

andi=g1 X(i)=X(gl)
ir .

andi:gr+1 X(i)>X(gl)

The precondition is to be specified in detail by the designer of
the subprogram.

5.2.2 Basic structure of the subprogram

It must be assumed that, in general, many exchanges of values
of the elements of the array X will be necessary to fulfill the
postcondition. The repetition of an operation (here exchanging)

suggests that a loop would be an appropriate basic structure for
our program.

5.2 Design Example: Partitioning an Array 87

5.2.3 Loop invariant

The loop invariant 1 must be true initially as we.ll as fina.lly.
The diagram above illustrates the postcondition, i.e. the final
situation. . .

Initially, nothing is known about the relationships be!:ween
the values of the array elements. A diagram cc‘)rre.sporfdmg.to
that for the postcondition but representing the initial situation

18:

The initial situation

The loop invariant must be a generalization of the initial and
final situations (pre- and postconditions). It must, therefore;,
include the four regions <, =, > and ?. One of the several possi-

bilities is:

The loop invariant {I}

I I I R

T - 1]

88 5. Designing a Correct Program

In logical algebraic form, the loop invariant I is

and,_ 81 x(i)<x(g)

8T ~r(iy_
and;__,&" X(i)=X(g)

and; 1" X()>X(gl)

5.2.4 While condition

If grzk, then the ? region is empty and the loop invariant
implies the postcondition. See the diagrams above for the
postcondition and for the loop invariant.

Thus, the end condition for the while loop is grzk. The while
condition is the negation thereof, i.e. gr<k.

5.2.5 Loop body

We must design the body of the loop such that it (1) maintains
the truth of the loop invariant and (2) makes progress toward
fulfilling the postcondition.

In order to make progress toward fulf illing the postcondition,
the size of the ? region in the loop invariant must be reduced
(see the diagram above). An element of the ? region — e.g.
X(gr+1) ~ must be selected and inserted into one of the three
regions <, = or > as appropriate. By comparing the selected
element with any element in the = region, we can determine in
which region the selected element belongs. The result of com-
paring X(gr+1) and X(gl) will be either case 1:

,il ,gl gr, k , ir ,, Case 1

N N

5.2 Design Example: Partitioning an Array 89

or case 2:

|ll |gl gr| kl 1r| [Case 2]
T - T]

or case 3:

lﬂ |gl gr| kl ﬂ [Case 3]
T - e

The loop invariant does not correspond to the relevar;t.: l—(xh?i_
gram; the validity of the loop invariant must be re—‘estab ishe t
That is the only purpose of the other statemenFs which we mus
write into the loop body. The statements which must. be exe-
cuted in order to re-establish the validity o’f t.he l-oop invariant
differ in the three cases above. This case distinction leads to a
corresponding structure of if statements in our program.

Case 1:
|il Igl grl k| ir|

[Case 1]
| s

<

Exchanging the values of X(gl) and X(gr+1) brings them to
the appropriate places:
Iil |gl grl kI irl
T T T T

Increasing gl and gr by 1 establishes a state corresponding to

(described by) the loop invariant, i.e. re-establishes the validity
of the loop invariant:

<

Iil |g1 grl kI irI I after
I P e e

90 5. Designing a Correct Program

Thus in this case the following statements must be executed
to re-establish the validity of the loop invariant.

X(gl):=:X{(gr+1)
gl:=gl+1
gr:=gr+l

The exchange statement (x:=:y) causes the values of the
variables x and y to be exchanged. The previous value of x is
assigned to the variable y and the previous value of y is as-
signed to the variable x. l.e. the previous value of x becomes
the subsequent value of y and the previous value of y becomes
the subsequent value of x. The same effect can be achieved
with the following assignment statements, whereby auxvar is an
auxiliary variable not used for any other purpose.

auxvar:=x
x:=y
y:=auxvar

Case 2:

I il Igl gr I kl ir|

l . I } |=, ? l N I [Case 2]

All values are already in the correct places; only the bound-
ary gr must be adjusted by increasing it by 1.

|i1 Igl gr' kl irl [l after
IR I A
In this case only the assignment statement
gri=gr+l
must be executed.
Case 3:
lil lgl grl kl ir,
l) l : 1 l - l [Case 3]

5.2 Design Example: Partitioning an Array 91

Exchanging the values of X(k) and X(gr+1) brings them to the
appropriate places:
Iil |gl

| < | = ? ? > > l

gr k ir |

Decreasing k by 1 restores the validity of the loop invariant:

|il Igl gr| k| irl [l after
B A B e B

Thus in this case the assignment statements

X(k):=:X(gr+1)
k:=k-1

must be executed.

5.2.6 Initialization

We must design the initialization so that after its execution the
loop invariant is true. The loop invariant I sFates that th(? =
region may not be empty (glsgr). The descrlptloq of the design
task stated that the = element may be selected in any conven-
ient way. The < and > regions are initially empty. The ? region
contains all elements other than the one chosen as the first =
element. Therefore, we write for the initialization

gl:=il [< region emptyl
gr:=gl [= region contains 1 element]
k:=ir [> region empty]

The arbitrary selection of the = element can be explicitly
expressed by prefixing the exchange statement

X(il):=:X(j), where j is any integer in the interval ilsjsir

to the initialization already designed abov.e. ‘ . ’
The initialization establishes the following starting situation:

92 5. Designing a Correct Program

|=' [1 after init.]

5.2.7 The complete subprogram

Putting together the various individual parts of the program, all
of which we have now designed, the complete program becomes

gl:=il; gr:=gl; k:=ir
while gr<k do
if X(gr+1)<X(gl)
then X(gl):=:X(gr+1)
gl:=gl+1
gr:=gr+l
else if X(gr+1)=X(gl)
then gr:=gr+1
else [Remark: X(gr+1)>X(gl)]
X(k):=:X(gr+1)
k:=k-1
endif
endif
endwhile

5.2.8 Precondition

The precondition of the loop invariant I (as postcondition) with
respect to the initialization — which (by proof rule W2) is also
the precondition of the entire subprogram - is derived by
applying proof rules S1 and Al to the initialization:

5.2 Design Example: Partitioning an Array \ 93

{il<ir}

gl:=il

gri=gl

k:=ir
{ilsglsgrsksir

and,_ B! X(i)<X(g))

8r <r(i)=
and,_,° X(i)=X(gl)
ir .
andi=k+1 X(i)>X(gh)}

This precondition makes explicit the requirement that the given
array X must contain at least one element — in order that after
the execution of the subprogram the middle region can contain
at least one element.

5.2.9 Termination of the loop

Does the loop end? The value of the expression (loop variant)
k-gr

which is the length of the ? region in the loop invariant I, is
reduced by 1 with each execution of the loop body. The lower
bound of this value is 0 (see the loop invariant I and the while
condition). The loop must, therefore, terminate after finitely
many (i.e. after a limited number of) executions of the loop
body.

5.2.10 Correctness proof

The correctness proof for this subprogram reflects closely the
several design steps above.

Exercise:

1. How can proof rules Al and A2 be generalized for the ex-
change statement (:=:)? How can the exchange statement be
handled in a correctness proof?

94 5. Designing a Correct Program

2. Prove the correctness of the program designed above in
section 5.2. =

See [Baber, 1987, section 6.3] and [Dijkstra, 1976, chapter
14] for variations of this design task.

5.3 DESIGN EXAMPLE: SEARCHING FOR A SUBSTRING

The variables M and N as well as the arrays D and K are given.
The values of the variables M and N are integers. The values of
the array variables D(.) and K(.) can be compared with one
another for equality, but are not specified more precisely (e.g.
they may be characters). The program to be designed should
search the array D(id), id = 0, 1, ... M-1, for a subsequence
equal to the sequence [K(0), K(1), ... K(N-1)]. Typically, the
value of N is much less than the value of M.

After the execution of our program the variable j should
indicate where the first subsequence of D begins which is equal
to the sequence K. If no such subsequence of D is present, the
value of j should indicate this situation. A more detailed speci-
fication of the program to be designed — e.g. the pre- and
postconditions in the form of logical algebraic expressions — is
not given.

5.3.1 Preliminary analysis

Which values can the result variable j take on? In other words,
at which positions of D can a subsequence begin which is equal
to (the entire sequence) K? The sequence D begins in position 0
(D(0)), so the first subsequence of D which could be equal to K
begins in position 0. The last subsequence of D which could be
equal to K ends in the last position of D, M-1. This subsequence
must be of the same length as K; it must, therefore, begin in
position M-1-(N-1) = M-N. Every subsequence of D which begins
in a later position is too short to be equal to K.

5.3 Design Example: Searching for a Substring 95

0 ’M—N M-1 |

0 N-1| [K = first
i subsequence
of D]

[D]

|0 N—ll [K = last
subsequence
| of D]

If D is shorter than K (M<N), then no subsequence of D can
be equal to K.

If a subsequence of D is found which is equal to K, then the
value of j (the starting position in D of the subsequence) must
lie in the interval 0<jsM-N. The program to be designed should
find the first subsequence of D which is equal to K. The search
must, therefore, begin at position 0 of array D. For this reason,
it seems appropriate to define "too large" a value of j (j>M-N)
to mean that no subsequence of D is equal to K.

Implicit in these preliminary deliberations is the idea of
finding the sequence by repeatedly comparing. The repetition,
in turn, suggests a loop as the basic structure for our program.

We will presumably need to talk often about equality and
inequality of subsequences of D and K, e.g. in the postcondi-
tion, loop invariant, etc. We should, therefore, develop a logical
algebraic formula for such equality. The subsequence of D
which starts in position s is equal to K when D(s)=K(0) and

- D(s+1)=K(1) and ... D(s+N-1)=K(N-1), i.e. when

{K = subsequence of D
starting at position s]

and N-1 D(s+a)=K(a)

a=0

We will call this condition G(s) below.
The subsequence of D beginning in position s is not equal to
K if

96 5. Designing a Correct Program
not G(s) [K # subsequence of D beginning at s]

N-1
not anda=0 D(s+a)=K(a)

ora=0N'l D(s+a)¥K(a)

5.3.2 Specification

The following assertions must be expressed in the postcondition.
Either K has been found in D (0<jsM-N) or K is not present in
D (j>M-N), see above. (We exclude the possibility that K is
present in D but was not found.) If K was found in D, then the
subsequence of D beginning in position j is equal to K. Further-
more, this is the first such subsequence in D; in other words,
all previous subsequences of D are not equal to K. The value of
j is in any case an integer and at least 0. Thus, our preliminary
postcondition is

j€Z and 0sj [range of jl
andk_oj_1 not G(k) [all subsequences of D

B before the j-th K]
and (j>M-N {no subsequence of D = K]

or jsM-N and G(j)) [subsequence of D

starting at j = K]

No upper boundary for the value of j is given in this postcon-
dition. It is often easier to prove termination if both upper and
lower bounds for all variables modified in the loop are known.
Therefore the postcondition should, in general, contain both an
upper and a lower bound for the value of each variable calcu-
lated by the program segment in question.

At first it would appear to suffice to specify M-N+1, the
first value greater than M-N, as the maximum value of j. Then
the range of j would be 0<jsM-N+1. But if D is short and K,
long, then M-N+1 is negative and this condition cannot be
satisfied. We must, therefore, always permit j to be 0. The
upper bound on j must, then, be the larger of M-N+1 or 0.
Written out completely, our postcondition becomes

5.3 Design Example: Searching for a Substring

97

jeZ and 0s<jsmax(0,M-N+1) [range of j]

[subsequences of D
before the j-th + K]

[no subsequence of D = K]

andk=0j-l (ora___ON'l D(k+a)$K(a))

and (j>M-N

or jsM-N anda___oN-1 D(j+a)=K(a)) [subsequence of

D starting at j = K]

and in diagrammatical form

The postcondition

found:
|0 j [M-N+1 M-1
D:
| + =| ? | # (too short) |
0 N—1|
K: - |

or not present:

j
.0 IM-N+1 M-ll

+ I % (too short) I

In the original description of the design task the precondition
was not precisely defined. The variables M and N indicate the
lengths of the arrays D and K respectively; only va.lues 2() are
meaningful. It was stated that the value of N is typically much
less than the value of M. That does not mean, however, that

98 5. Designing a Correct Program

N<M must necessarily be true. In fact, it is desirable that our
program also functions correctly when a long sequence is being
sought in a shorter one (in which case, of course, the result
should be "not present"). Thus the preliminary precondition,
which we must perhaps revise after designing the program, is

MeZ and 0<M and NeZ and 0sN

In a diagrammatical form corresponding to that of the postcon-
dition above, the precondition is

The precondition

0 |M—N+l M-1 I

? | # (too short) |

0 N-ll

5.3.3 Loop invariant

We can determine a suitable loop invariant by generalizing the
pre- and postconditions. We can do this on the basis of either
the diagrams or the logical algebraic formulas.

Looking at the diagrams for the pre- and postconditions, we
notice that a ? region in array K is missing in the postcondi-
tion; otherwise the precondition can be viewed as a special
case of the postcondition. By extending the postcondition
accordingly we obtain for the loop invariant

5.3 Design Example: Searching for a Substring 99

The loop invariant {I}

searching:
|0 j [M-N+1 M-l
D:
l + =?| ? | # (too short) l
0 i N-1 I
K:
§ —
or not present:
0 ‘ %VI-N*—I M-1 l
D:
| + | # (too short) |

This diagram for the loop invariant can be interpreted as
follows. Either the search for sequence K in D is still in pro-
gress or it has already been determined that K is not present in
D. In the first case (searching), it has already been determined
that the subsequences of D which begin in the positions 0, 1, ...
j~1 are not equal to K. The subsequence of D which begins in
position j is currently being tested for equality to K. Up to
position i (exclusively), the subsequences are equal.

Alternatively, we can examine the logical algebraic formulas
for the pre- and postconditions and ask ourselves, what part(s)
of the postcondition prevent the postcondition from being true
imitially. Only the value of 0 for j will always satisfy the first
line, which suggests that the initialization must ensure that j=0.
Then only "N" in the upper limit of the and series in the last
line prevents the postcondition from being true initially. We

_ must introduce a new variable (e.g. i) in its place which is

initialized in such a way that this and series is true (i.e. emp-
ty). This suggests 0 as the initial value of i.

100 5. Designing a Correct Program

In addition, an assertion about the range of the newly intro-
duced variable i should be included in the loop invariant. This
assertion should be as strong (restrictive) as possible. The
initial value 0 (see the last paragraph above) will be the mini-
mumn value (lower bound). When i=N, the postcondition is ful-
filled. Therefore, we need not allow i to assume greater values.

These considerations lead to our loop invariant I

jeZ and Osjsmax(0,M-N+1) and i€Z and 0sisN
[ranges of i and jl

N-1

D(k+a)$K(a)) [subsequences of D

before the j-th # K]
and (j>M-N [no subsequence of D = K]
or jsM-N anda=01-1 D(j+a)=K(a))

j-1
andk=0 (oral=0

[subsequence of
D starting at j = K
to position i-1]

The above comments and observations also lead to the con-
clusion that the initialization must contain (or consist of) the
sequence of assignment statements

i:=0; j:=0

5.3.4 While condition

The loop can be terminated as soon as the postcondition is
fulfilled. When does the loop invariant imply the postcondition?
Looking at the diagrams above for the postcondition and the
loop invariant, we see that the postcondition is fulfilled either
when the ? region in K is empty (i>N-1) or when j2M-N+1. Thus
the end condition is

i>N-1 or j2M-N+1
The negation of the end condition is the while condition
isN-1 and j<M-N+1
or, equivalently, (because i, j, M and N are integers)
i<N and jsM-N

5.3 Design Example: Searching for a Substring 101

Now that we have designed the initialization and the while
condition, only the loop body remains.

5.3.5 Loop body

The body of the loop must (1) make progress toward fulfilling
the postcondition (in order that termination can be proved) and
(2) maintain the truth of the loop invariant.

Before each execution of the loop body both the loop in-
variant and the while condition will be true, i.e. {I and B} v{ill
be true. Thus, in our specific case, the upper part of the ‘dla—
gram for the loop invariant will apply and the ? region in K
will not be empty:

The precondition of the loop body {I and B}

searching:
|0 j | M-N+1 M-1|
D:
l + =? ? # (too short)
(may be empty)
0 |i N—ll
K:
= | ? (not empty) l

Progress toward fulfilling the postcondition can be made by
increasing i or j. Because the truth of the loop invariant must
be maintained, the variable i may be increased only if the
corresponding elements of the arrays D and K are equal, i.e. if
D(j+i)=K(i). This observation suggests an if statement with this
condition. The variable j may be increased only if the subse-
quence of D beginning in position j is not equal to K — e.g.
because D(j+i)$K(i). In this case, the variable i must be reset to
0 in order to ensure the truth of the loop invariant.

102 5. Designing a Correct Program

The loop body, therefore, consists of the following if state-
ment:

if D(j+i)=K(i) then i:=i+1 else j:=j+1; i:=0 endif

5.3.6 The complete subprogram

Assembling the various parts of the program designed above,
we have for our complete subprogram

i:=0; j:=0
while i<N and j<M-N do

if D(j+i)=K(i) then i:=i+1 else j:=j+1; i:=0 endif
endwhile

5.3.7 Precondition

In the original description of the design task the precondition
was not precisely defined. The preliminary version of the pre-
condition worked out in section 5.3.2 is subject to verification
or revision. Therefore, we will now derive a precondition for
our program. The loop invariant I must be true after the initial-
ization (see proof rule W2). A precondition of 1 with respect to
the initialization is (see proof rules S1 and Al)

Iy _ (os
W'y = ©0=N)

The precondition assumed in section 5.3.2 is stronger and there-
fore, by proof rule P1, also a precondition with respect to the
program designed here.

Exercise:

1. What is the meaning of N=0? M=0? What does our program
do and what does the postcondition mean in these cases?

2. The precondition derived in section 5.3.7 permits M<0.
Interpret the postcondition and the effect of executing the
program in this case.

3. The term jsmax(0,M-N+1) appears in the loop invariant. Show
that in general

[jsmax(a,b)] = [j<a or j<b]

5.3 Design Example: Searching for a Substring 103

and
[jsmin(a,b)] = [j<a and jsb]

4. Prove the correctness of the program designed above. =

5.4 DESIGN EXAMPLE: LOCATING THE NEXT NAME IN AN
ARRAY OF STRINGS

An array is given, each element of which is a string (a se-
quence of characters). An array variable is also called a "line"
in this subchapter. The given array of lines contains names. A
name is a sequence of one or more characters other than the
space. One or more consecutive spaces separate names. A name
is always contained in one line, i.e. a line break separates
names.

The program to be designed should locate the first name
which begins in or after a given position. The name found (if
any) should be returned to the calling program as the result.

The input variables to the program to be designed are A (the
array), n (the number of lines in array A), bl (beginning line
number) and bp (beginning position number). The array consists
of the array variables A(1), A(2), ... A(n). The search is to begin
in position bp of A(bl).

An array could, for example, appear as follows, whereby the
symbol a marks the end of a line. In this example, n=3.

A(l): inputl input5 outputl =
A(2): input3 input7 output3m
A(3):input2 input4 output4 =

A line may be empty, i.e. may be 0 characters long. A line
may contain only spaces. The array may be empty (n=0).

5.4.1 Preliminary analysis

We will find it necessary to refer often to a specific position
of a specific line. We should, therefore, establish a uniform
convention for such references. In particular, we should identify
the ranges of values of the (integer) position and line numbers.

104 5. Designing a Correct Program

In any case we must allow line numbers from 1 to n inclu-
sive. This range is not sufficient, however, e.g. when n=0. In
order to cover this case, the range of permissible line numbers
must either begin with 0 or extend to n+l. We choose the
latter:

1 < line number < n+l

Correspondingly we establish the convention that position
numbers begin with 1 and end with the length of the line in
question plus 1:

1 < position number < length(A(line number))+1

where "length" is a function, assumed to be given, whose value
is the number of characters in the argument string. This condi-
tion is meaningful only when the line number refers to a line
actually present, i.e. when l<line numbersn. Otherwise, i.e.
when the line number=n+1, it would seem appropriate to define
the range of the position number as if the (fictitious) line were
empty, in other words, as if it were of length 0. In this case
the position number must be 1.

We further assume that a function exists in the target pro-
gramming language which extracts a substring from a given
string. We call this function "mid" and assume that mid(S,p,len)
is the substring which begins in position p of the string S and is
len characters long. Furthermore, we assume that this function
counts the positions in a string beginning with 1 (not 0).

5.4.2 Specification

The input variables for the subprogram to be designed are n,
the array A, bl and bp (see the general description of the
program above). We assume that the values of bl and bp are
valid line and position numbers. Thus the precondition is

neZ and bleZ and bpeZ
and O=n and 1sblsn+l
and (bl=n+1 and bp=1
or blsn and 1sbpslength(A(bl))+1)

Because no precise postcondition was given, we must formu-
late it. The task of the subprogram is to locate the first name

in, bl, bp integers]
[ranges of n, bl]
[at end of array]
[inside arrayl]

5.4 Design Example: Locating the Next Name in an Array of Strings 105

which begins in or after the position (bl,bp), whereby we must
allow for the possibility that no such name is present. Spaces
and line breaks may be present before the first name begins.
The name found (if any) should be returned to the calling
program as one of the results of the subprogram.

First, we must distinguish between two possibilities: no name
is present in or after position (bl,bp) or (at least) one is pre-
sent.

No name is present when the entire area from the position
(bl,bp) to the end of the array — position (n+1,1) — contains only
spaces and line breaks. We will write this condition below as
"empty(bl,bp,n+1,1)". When no further name is present, the
result returned to the calling program should indicate this
situation, e.g. by being the empty string.

If a name is present, our subprogram must locate its begin-
ning and end. We will use the variables nl and np to record the
line and position respectively in which the name begins. The
area between the position (bl,bp) and the beginning of the name
(nl,np) must, of course, be empty. We will use the variable ep
to record the name's end position (which must be in the same
line as the beginning position). The result of the subprogram,
then, must be the name lying between these two positions.

The following diagram represents the postcondition.

The postcondition

no name present:

nl,np

n+l,1

II (end of array)

bl,bp

empty

or name located:
bl,bp | nl,np | nl,ep

empty | name = result | empty

106 5. Designing a Correct Program

Expressed in the form of a logical algebraic expression, the
postcondition is

empty(bl,bp,nl,np) [empty zone before name]

and {nl=n+1 and result=empty string [no name present]
or
nlsn and nameloc(nl,np,ep)
and result=mid(A(nl),np,ep-np)}

[name located]

Formally we must still define the functions empty(...) and
nameloc(...) and include restrictions on the ranges of the vari-
ables nl, np and ep in the postcondition above.

Exercise:

1. Supplement the postcondition above with assertions about
the ranges of the variables nl, np and ep.

2. Define formally the functions empty(...) and nameloc(...).

3. It might be desirable to require in the precondition that the
position (bl,bp) does not lie inside a name. Supplement the
precondition with a corresponding assertion. m

5.4.3 Basic structure of the subprogram

It seems appropriate to establish the truth of the several anded
terms in the postcondition (see above) step by step, one after
the other. In the first step, our subprogram scans over spaces
and line breaks until either the beginning of a name or the end
of the array is encountered. The results of this first step are
the values of the variables nl and np. In the second step, the
end of the name (if any is present) is located. The result of the
second step is the value of the variable ep. In the last step, the
result of the subprogram — the name found or the empty string
— is assigned to the output variable.

The basic structure of the subprogram will, therefore, be a
sequence of statements. The first and second steps will each
consist primarily of a loop.

5.4 Design Example: Locating the Next Name in an Array of Strings 107
5.4.4 Step 1: Locating the end of the empty region
We begin planning this part of our program, as usual, with its

goal, i.e. its postcondition. The postcondition of the first step —
locating the end of the empty region — is

The postcondition of the first step

no name present:

nl,np
n+1,1
“ (end of array)

bl,bp

empty

or beginning of name located:
bl,bp |nl,np

empty | name

The main part of our loop invariant will be the assertion that
the region from position (bl,bp) until just before position (nl,np)
is empty, i.e. contains at most spaces and line breaks. Also part
of the loop invariant is the requirement that the values of the
variables nl and np are in the allowed ranges for line and posi-
tion numbers (see section 5.4.1 above).

The initial truth of the loop invariant can be established by
setting the values of nl and np to bl and bp respectively.

Our loop should end when either (1) the end of the array is
encountered (nl=n+1) or (2) the beginning of a name — a charac-
ter other than a space within a line within the array — is en-
countered:

nl>n
or nl<n and np<length(A(nl)) and mid(A(nl),np,1)¥space

108 5. Designing a Correct Program

or equivalently
nl>n or npslength(A(nl)) and mid(A(nl),np,1)$space
The negation of this end condition is the while condition:

nlsn and (np>length(A(nl)) or mid(A(nl),np,1)=space)

Only the body of the loop remains to be designed. The while
condition will be true if and only if a line break or a space
occurs at position (nl,np). The loop body should skip over this
position in such a way that the truth of the loop invariant is
maintained. In particular, the values of nl and np must remain
in the allowed range. If a line break was encountered, then nl
must be increased by 1 and np must be set to 1. If a space was
found, np should be increased by 1. Thus the first part of our
program becomes

nl:=bl; np:=bp
while nl<n and (np>length(A(nl))
or mid(A(nl),np,1)=space) do
if np>length(A(nl))
then nl:=nl+1; np:=1 else np:=np+1 endif
endwhile

5.4.5 Step 2: Locating the end of the name

The postcondition of the second step — locating the end of the
name — is

5.4 Design Example: Locating the Next Name in an Array of Strings 109

The postcondition of the second step

no name present:

nl,np

n+1,1

" (end of array)

bl,bp

empty

or name located:
bl,bp | nl,np | nl,ep

empty I name | empty

Our precondition for this second step is the postcondition of
the previous (first) step. In particular, valid values have already
been calculated for the variables nl and np. If nl=n+1, then the
postcondition of the second step is already satisfied, so nothing
further need be done (in this step). Otherwise (nl<n) the end of
the name must be located. This case distinction suggests an if
statement.

The end of the name can be located by skipping over all
characters belonging to the name. This idea suggests repeated
comparisons with a space. The repetition in turn suggests a
loop. The loop invariant is obvious: every position from (nl,np)
to just before (nl,ep) contains a character other than a space.
Also part of the loop invariant is the requirement that the
value of the variable ep is in the allowed range for a position
number for line nl.

The initial truth of the loop invariant can be established by
setting the value of ep to either np or np+l.

The loop should end when position (nl,ep) no longer belongs
to the name. This will be the case as soon as either the end of
the line is reached (ep>length(A(nl))) or position (nl,ep) contains
a space:

ep>length(A(nl)) or mid(A(nl),ep,1)=space

110 5. Designing a Correct Program

The while condition is the negation thereof:
ep<length(A(nl)) and mid(A(nl),ep,1)¥space

The loop body should bring position (nl,ep), which contains a
character other than a space, into the name region. This is
simply done by increasing the value of the variable ep by 1 (see
the loop invariant above).

Thus the second part of our program becomes

if nlzn
then ep:=np+1
while epszlength(A(nl)) and mid(A(nl),ep,1)¥space do
ep:=ep+1
endwhile
endif

5.4.6 Step 3: Determining the result

The task of the third and last part of our program is to deter-
mine the value of the result variable. If a name was found,
then the result should be the substring which begins in position
(nl,np) and ends in position (nl,ep-1). Otherwise (if no name is
present), the result should be the empty string. This case dis-
tinction suggests an if statement. The last part of the program
to be designed is, therefore:

if nl<n

then result:=mid(A(nl),np,ep-np)
else result:=empty string

endif

5.4.7 The complete subprogram

Bringing the individual steps together and combining the if
statements of the second and third parts, the complete program
becomes

5.4 Design Example: Locating the Next Name in an Array of Strings 111

nl:=bl; np:=bp
while nlsn and (np>length(A(nl))
or mid(A(nl),np,1)=space) do
if np>length(A(nl))
then nl:=nl+1; np:=1 else np:=np+1 endif
endwhile

if nlsn
then ep:=np+1
while epszlength(A(nl)) and mid(A(nl),ep,1)+space do
ep:=ep+1
endwhile
result:=mid(A(nl),np,ep-np)
else result:=empty string
endif

It would probably be appropriate to ask the system designer
whether or not new values should be assigned to the variables
bl and bp, e.g. in preparation for a subsequent call to this
subprogram (to find the following name in the array). If so,
then the postcondition must be changed and extended accord-
ingly. The additional assignment statements would be bl:=nl and
bp:=ep (at the end of the then branch) or bp:=1 (at the end of
the else branch).

5.5 SUMMARY: PROGRAM DESIGN

In this chapter four examples illustrated how to design error
free programs, using the proof rules as guidelines. In each case
we began with the pre- and postconditions — i.e. with the
specification of the program to be designed. Before investing
time in programming, we determined precisely and clearly what
the program should do - in other words, what we wanted to
design. For if one does not know what the goal is, then it is
unlikely that one will achieve it.

It is always worthwhile to invest time in a clear and com-
plete formulation of the postcondition. Not only does the de-
signer of the program segment in question profit, also every
programmer of a call to it benefits from clearly and precisely
formulated pre- and postconditions. Such a specification tells

112 5. Designing a Correct Program

him exactly and completely what he must concern himself with
and provide for before the cail and what he may assume after
the return.

When the specification of the program to be designed was
clear and precise, we decided upon the basic structure for our
program: a loop, an if statement or a sequence of statements.
Repetition of an operation suggests a loop; a case distinction in
the analysis, an if statement. When the postcondition consists
of subexpressions which build upon one another, a sequence of
statements is frequently appropriate. In such a sequence each
statement (which itself may be compound, i.e. made up of
subsidiary statements) establishes the truth of the correspond-
ing subexpression of the postcondition.

After choosing a loop as our basic program structure, we
determined the loop invariant by generalizing the pre- and
postconditions. Of the two, the postcondition was the more
important basis for developing the loop invariant.

We then derived the end condition of the loop from the
difference between the loop invariant and the postcondition. To
do this, we asked ourselves the questions, "when does the loop
invariant also represent the postcondition?" or "under what
condition does the loop invariant imply the postcondition?".
Finally, the while condition was determined by negating the end
condition.

Each time we designed the body of the loop so that it (1)
made progress toward fulfilling the postcondition and (2) main-
tained the truth of the loop invariant. Any other consideration
is superfluous when designing the loop body.

The initialization of every loop was designed so that it would
establish the truth of the loop invariant. Here, too, any other
consideration is superfluous.

As elsewhere, practice makes perfect. It is not difficult to
learn the generally applicable approach presented here, but
neither is it trivially easy. Software developers who have taken
the time and effort to do so report that it definitely paid off.
Also the users of their software are pleased with the results.

6

FORMULATING PRE- AND
POSTCONDITIONS

6.1 BOOLEAN EXPRESSIONS: A LANGUAGE

Before a program can be proved correct, its pre- and postcon-
ditions must be available and in appropriate form — logical
algebraic expressions. If the system designer has not provided
them, then the designer of the program segment in question
must write the pre- and postconditions in this form himself.

Many with little or no experience in proving programs cor-
rect find this important step somewhat difficult at first. We
will, therefore, concern ourselves with this process in this
chapter.

The process of formulating the pre- and postconditions as
logical algebraic expressions given a verbal description of the
program is, fundamentally, nothing other than translating be-
tween two different languages. In this case the target language
is a subset of the language of mathematics.

The ability to translate into a particular language presup-
poses, in general, active knowledge of the target language. This

114 6. Formulating Pre- and Postconditions

obvious truism also applies when the target language is, as
here, the mathematical language. Practice in reading, inter-
preting and manipulating logical algebraic expressions helps
considerably in acquiring the ability to express thoughts, re-
quirements, etc., in this form.

It is suggested, therefore, that the reader view logical (Bool-
ean) algebra as a language. Read logical algebraic expressions
frequently, translate them into English and write in this lan-
guage in order to gain experience, increase your active knowl-
edge and become fluent. Study again, for example, the develop-
ment of the postconditions in sections 5.1.1, 5.2.1, 5.3.2 and
5.4.2,

The language of Boolean algebra used in this book is based
on the logical functions and, or and not. The implication (=)
is a useful, but not absolutely necessary extension. (See the
section "Mathematical notation" at the beginning of this book
and Appendix A.) The subexpressions which are combined by the
logical functions can be formed using other mathematical func-
tions (e.g. <, >, =, +, -, ¥, /, etc.).

6.2 TRANSLATING FROM ENGLISH INTO
THE LANGUAGE OF LOGICAL ALGEBRA

In order to formulate the pre- and postconditions of a program,
given a general description of the effect of its execution, the
following approach is often useful. From the description of the
effects or changes caused by the execution of the program,
derive descriptions of the states prevailing before and after
execution. Relationships between the values of the various
program variables should constitute the subject of these state
descriptions.

Step by step, these descriptions of the states before and
after execution of the program are made more precise until
they can be written in the form of logical algebraic expres-
sions. Then these expressions are simplified, if possible and
appropriate. The results are the desired pre- and postconditions.

It is sometimes advantageous in this translation process to
draw diagrams of various types, using them as intermediate
descriptive forms. Chapter 5 contains a number of examples of

6.2 Translating from English into the Language of Logical Algebra 115

such diagrams. It should be remembered, however, that such
diagrams supplement, facilitate interpreting or help to formu-
late the logical algebraic expressions. The diagrams are not
substitutes for the algebraic expressions and one should resist
any temptation to use them as such.

6.3 ADDITIONAL SUGGESTIONS FOR PRE- AND
POSTCONDITIONS AND LOOP INVARIANTS

As a general rule, assertions about the ranges of all key vari-
ables should be included in the pre- and postconditions. In the
precondition, such assertions should normally be as weak (unre-
strictive) as possible. In the postcondition, they should generally
be as strong (restrictive) as feasible. The postcondition should
contain assertions about the ranges of all variables modified by
the program segment in question.

Correspondingly, every loop invariant should contain asser-
tions about the ranges of all program variables modified by the
loop body. These assertions should be as strong (restrictive) as
possible and should include both upper and lower bounds. It is
often easier to prove that the loop terminates if these guide-
lines are followed.

It is usually advisable to write conditions — especially post-
conditions — in the form

(Al and ...) or (A2 and ...) or ... {An and ...)

or, similarly,
and [(Al and ...) or (A2 and ...) or ... (An and ...)]

where Al, A2, etc., are simple and mutually exclusive condi-
tions. When the postcondition is in this form, tests in the
subsequent program segment to distinguish between the several
cases are particularly simple. Cf. the postconditions in sections
5.1.1, 5.3.2 and 5.4.2.

116 6. Formulating Pre- and Postconditions
6.4 A SMALL GLOSSARY FOR ENGLISH-BOOLEAN ALGEBRA

In the English descriptions of the effects of executing a pro-
gram or the states before and after execution, certain terms
and phrases frequently appear which correspond to particular
logical algebraic forms. These can be translated immediately
into the target language to form the basis for the rest of the
pre- or postcondition.

Frequently appearing verbal terms and phrases correspond to
logical functions and algebraic expressions as follows:

English Boolean algebra
and, but and
or or

(for) all, every and series

(for) no, none and series with

negated assertion

there is (are), there exists, or series
(for) some, at least one

sorted and, ! A(i)sA(i+1)
[A(1)=A(2)s ... <A(n)] =1

integer, whole number «.€Z

if (when, whenever) ... then ... =

search, find, equal, present =

exchange, rearrange, different permutation (see
order (sequence), merge, copy, sort section 6.5)

6.5 EXAMPLES OF TRANSLATING INTO THE LANGUAGE OF
LOGICAL ALGEBRA

In seye;ral examples in chapter 5 we developed pre- and post-
cpndxtlons from verbal descriptions of the program to be de-
signed. See especially sections 5.1.1, 5.2.1, 5.3.2 and 5.4.2.

6.5 Examples of Translating into the Language of Logical Algebra 117

Below we will examine still more examples of this translation
process.

6.5.1 Merging

Consider the following informal specification of a subprogram
which we want to express in logical algebraic form: "The values
stored in arrays A and B are merged and stored in array C.
Before the subprogram is called, arrays A and B are sorted.
Afterward, array C is sorted. The variables na and nb indicate
how many elements there are in arrays A and B respectively."

The term "sorted" suggests and series in the pre- and post-
conditions (see section 6.4). It is not clear whether the ranges
of the array subscripts begin with 0, 1 or some other value. We
will assume here that they begin with 1. This assumption should
be verified with the system designer.

The precondition should express the requirement that the
arrays A and B be sorted. It should also include an assertion
about the range of the variables na and nb. Only integer values
are meaningful. Negative values obviously make no sense. A
value of 1 or more must be regarded as normal and, therefore,
permitted. If na=0 or nb=0, then the corresponding array is
empty. Even though such a case might not be "normal", it
would certainly be meaningful. Because a precondition should,
in general, be as weak (unrestrictive) as possible, we will allow
0 as a value for na and nb. The precondition becomes:

naeZ and nbeZ and na20 and nb20 [ranges of na, nb]

and,_,"®! A()<A(i+1) and,_"®! B(i)sB(i+1) [A, B sorted]

1

The postcondition should assert that the array C is sorted
and that the values in array C after execution of the program
were copied from the arrays A and B. A corresponding postcon-
dition is as follows:

118 6. Formulating Pre- and Postconditions

and na+nb-1 C(i)<C(i+1) [C sorted]

i=1

and the sequence {C(1), C(2), ... C(na+nb)} is a permuta-

tion of the sequence {A(l), ... A(na), B(1), ... B(nb)}
{values in C copied from A and B]

The last term in the postcondition states that the values in
array C are the same as those in arrays A and B. Only the
order may be different. This term eliminates the possibility
that array C contains values differing from those in arrays A
and B.

A permutation of a sequence is a rearrangement of its mem-
bers (terms). Two sequences are permutations of each other if
they differ only in the order of their terms. If a particular
value appears in a sequence several times, then that value must
appear the same number of times in a permutation of the se-
quence.

6.5.2 Sorting

Consider the following informal specification of a subprogram
which we want to express in logical algebraic form: "The array
X is given. The integer subscript ranges from il to ir inclusive.
The array may be empty. The program to be designed should
sort the values in array X by rearranging (permuting) them
appropriately."

The precondition must express the relationship between the
values of the variables il and ir arising from the fact that the
number of elements in array X is 0 or positive: ir-il+120. Equiv-
alent and perhaps clearer is the form il-1<ir. Adding the asser-
tion that the values of il and ir must be integers, our precondi-
tion becomes

ileZ and ireZ and il-1sir

What state should prevail after execution of the program?
The values in array X should be in order (sorted). The informal
specification does not state whether ascending or descending
sequence is desired; we will assume that they should be sorted
into ascending sequence with equal values allowed. Further-
more, these values should be the same as the ones in array X

6.5 Examples of Translating into the Language of Logical Algebra 119

before the program was executed, although they may be in
different places within the array afterward. Translated into the
language of logical algebra, our postcondition is

and ir-1 X(i)sX(i+1) [X sorted]

i=il
and the sequence {X(il), X(il+1), ... X(ir)} is a permutation
of the sequence {X'(il), X'(il+1), ... X'(ir)}

[values in X originally in X]

The apostrophe (') here refers to the value of the corresponding
array variable before execution of the sorting program being
designed.

6.5.3 Qualified (conditional) conditions

In a pre- or postcondition we must sometimes require a certain
condition B to be fulfilled, but only if some other condition A
is true. When A is not true (false), then it does not matter
whether B is fulfilled (true) or not. Such a qualified (condition-
al) requirement is often anded with other conditions in the pre-
or postcondition. For a requirement of this type the logical
implication

A= B

is appropriate. This implication is equivalent to (see Appendix
A, section A.3, identity 22)

not A or B

In the latter expression it is especially clear that the value of
B is immaterial when A is false. When A is true, this expression
simplifies to the condition B.

Example: Consider a subprogram which merges values from
presorted arrays A and B into array C, which must also be
sorted. The loop invariant must include the requirement that
the next element to be copied from array A (A(ia)) be greater
than or equal to the last element in array C (C(ic-1)), but only
if there is another element in array A to be copied (ia<na) and
array C already contains an element (ic>1). The corresponding
"conditional" condition is

120 6. Formulating Pre- and Postconditions

iasna and ic>1 = Cl(ic-1)zA(ia)
This implication is equivalent to the expression
ia>na or ics<1 or C(ic-1)sA(ia)

which can be read (interpreted, translated into English) as
follows: The requirement is fulfilled when either

* there is no element left in array A to be copied or

* no element has as yet been copied to array C (array C is
empty) or

* the last element in array C is less than or equal to the next
element in array A.

The corresponding condition must be placed on the next
element of array B also:

ibsnb and ic>1 =» C(ic-1)zB(ib)

See also section 4.5 above. =

6.6 SUMMARY: FORMULATING
LoGIcAL ALGEBRAIC CONDITIONS

Formulating pre- and postconditions based on given informal
verbal descriptions of the effects of executing a program is a
translation process. Therefore, active knowledge of the target
language — a subset of the language of mathematics — is a
prerequisite for the ability to write pre- and postconditions in
the necessary form, i.e. as logical algebraic expressions. In
order to become sufficiently fluent in logical (Boolean) algebra,
one must invest a certain — but not especially large — amount
of time and effort learning this material.

7

CONCLUSION

7.1 THE THEORETICAL FOUNDATION FOR
ERROR FREE SOFTWARE IN PRACTICE

In the last one to two decades a mathematical and theoretical
foundation has been developed for designing provably correct
software. The nature of this foundation, the way in which it
can be applied to practical software design problems and the
quality of the resulting software — in particular freedom from
design errors — exhibit great similarity to the corresponding
aspects of the classical engineering fields. This mathematical
and theoretical foundation is a primary and essential prere-
quisite for a truly engineering approach to software develop-
ment.

The subject of this book is the practical application of the
foundation mentioned above, not the theory itself. We have
learned the most essential aspects of this material in the form
of proof rules. The proof rules are applied directly in order to
verify a correctness proposition (consisting of a precondition, a
program or program segment and a postcondition) and to derive
a precondition for a given program and a given postcondition.

122 7. Conclusion

When verifying a correctness proposition, one applies the
proof rules in order to decompose the original correctness
proposition into correctness propositions about the component
parts of the program in a way corresponding to the structure of
the original program. This process is repeated iteratively until
only correctness propositions about assignment statements and
already proved propositions (e.g. about subprograms) remain.
Correctness propositions about assignment statements are
verified directly by applying suitable proof rules.

By organizing a program as a hierarchical structure of sub-
programs, each of limited size, and by decomposing the proof
into corresponding subproofs (lemmas), it is feasible in practice
to prove even a large program correct.

Even more importantly for software development practice,
useful guidelines for designing a program can be derived from
the proof rules and their application. These guidelines direct
the designer's attention to the important and essential aspects
of the program and away from its unimportant and inessential
aspects. The software developer works more systematically and
goal oriented than in the traditional way. Typically the result is
a more compact program which is logically simpler and cor-
respondingly easier to understand. Often several parts of the
program can be derived directly. The proof of correctness (or
at least a detailed sketch thereof) is developed simultaneously
with the program, as a by-product. (Some would take the op-
posite standpoint: the program is developed as a by-product of
constructing the proof.)

The methods and approach presented in this book enable the
software developer to verify that his program design satisfies
the requirements (the specification) — before running or "test-
ing" it — just as engineers in the classical fields do. In particu-
lar, he can determine under what conditions the program will
reliably yield correct results, i.e., when one may have confi-
dence in the results (and when not). Without such knowledge
and information, he cannot assume the same type of responsi-
bility for the program that his engineering colleagues regularly
do for their designs.

This book is concerned only with logical algebraic expres-
sions (e.g. pre- and postconditions) which refer to the values of
program variables. Such expressions are the most important of
those arising in practice and cover the most essential and

7.1 The Theoretical Foundation for Error Free Software in Practice 123

problematic aspects of program logic and correctness. Other
types of assertions, e.g. about the structure of data environ-
ments, are treated in the scientific literature [Baber, 1987].
The professional software developer will find it worthwhile to
study the theory underlying the material presented in this book
in order to extend his knowledge to include such more advanced
topics (see the Bibliography).

7.2 SOFTWARE DEVELOPMENT TOMORROW

It was already mentioned in section 1.1 that computer systems
are being employed in an ever widening range of application
areas in our society. The number of applications requiring very
high levels of reliability (e.g. safety critical systems upon
which human lives depend) will grow significantly. It will be-
come ever more important that software embedded in such
systems be free of design errors. The developers of such soft-
ware will be held increasingly responsible for their programs —
and above all, for their mistakes.

In the middle to long term, software development will be
placed on a proper engineering basis, for really reliable soft-
ware is not only possible but also sorely needed. In the future
practice of software development, a very different mentality
will prevail — both technically and with regard to responsibility
for the correctness (freedom from design errors) of programs.
The software developer will be expected to "calculate" the
behaviour of his program analytically and systematically, there-
by proving that it is consistent with the specification — much as
the structural engineer calculates the statics of the object he
is designing. The software developer of the future will fulfill
this expectation. An approach enabling him to do so was pre-
sented in this book.

Software developers of today should begin as soon as possible
to prepare themselves for the software development world of
tomorrow, which will be quite different from the software
development world to which they are now accustomed. For
developing in the traditional way software upon which human
life depends is nothing other than high tech Russian roulette.

APPENDIX A. LOGICAL (BOOLEAN)
ALGEBRA

In the following sections, x, y and z are variables or expressions
whose values are false or true.

A.1 DEFINITIONS OF THE BOOLEAN FUNCTIONS

The Boolean functions and, or, implication (=) and not are de-
fined in the following truth tables:

X y x and y xory XxX=b>y
false false false false true
false true false true true
true false false true false
true true true true true

126 Appendix A. Logical (Boolean) Algebra

X not x
false true
true false

A.2 ORDER OF EVALUATING FUNCTIONS IN EXPRESSIONS

The various functions appearing in an expression are typically
evaluated in the following order, unless indicated otherwise by
parentheses.

T (exponentiation)

+, - (sign)

* / (multiplication, division)

+, - (addition, subtraction)

<, >, =, 5, 2, % (relational functions)
not (also written —)

and (also written A)

or (also written V)

= (logical implication)

A.3 FUNDAMENTAL PROPERTIES
OF THE BOOLEAN FUNCTIONS

The following relationships (mostly equations) express particu-
larly important properties of the Boolean functions. They are
applied often when manipulating and simplifying logical alge-
braic expressions; use this list, therefore, as a reference.

It is recommended that the reader verify the equations and
other formulas below as an exercise. Use the definitions given
in section A.1 above as a starting point.

The functions and and or are commutative:

1. (x and y) = (y and x)
2. (x or y) = (y or x)

A.3 Fundamental Properties of the Boolean Functions 127

The functions and and or are associative:

3. (x and (y and z)) = ((x and y) and z)
4. (x or (y or z)) = ((x or y) or z)

The functions and and or are distributive:

5. (x and (y or z)) = ((x and y) or (x and z))
6. (x or (y and z)) = ((x or y) and (x or z))
Simple identities:

7. (x and not x) = false
8. (x and false) = false
9. (x and x) = x

10. (x and true) = x

11. (x or false) = x
12. (x or x) = x

13. (x or true) = true
14. (x or not x) = true

15. (not (not x)) = x
Additional identities:

16. (x or (x and y)) = x
17. (x or (not x and y)) = (x or y)
18. ((x or y) and (x or z)) = (x or y and z)

The negation of and and or expressions:

19. (not (x and y)) = ((not x) or (not y))
20. (not (x or y)) = ((not x) and (not y))

Alternative expressions for the implication:

21. (x => y) = (not (x and not y))

22. (x = y) = ((not x) or y)

23. (x =>» y) = ((not y) = (not x))

24. (z and (x => y)) = (z and ((z and x) => y))

Alternative expression for equality:
25. (x = y) = ((x and y) or (not x and not y))

Notice that (x and y) = (x and z) provided only that y=z when
x is true. When x is false, (x and y) = (x and z) regardless of

‘whether y=z or not. Symbolically,

128 Appendix A. Logical (Boolean) Algebra

26. [x => (y=2)] = [(x and y) = (x and z)]

A .4 EXERCISES IN LOGICAL ALGEBRA

1. Let B, C and D be Boolean variables or expressions. The new
function F is defined as follows:

F = C, if B=true,
= D, if B=false

Write an equivalent expression for F. Use only B, C, D and the
Boolean functions and, or and not. Show that your new expres-
sion satisfies the above definition of F.

2. Strengthening and weakening conditions: Show that the
following statements are true for all values of x and y.

x and y = x
X=F xory

3. Show that the following expressions are equal:

x and (y or z)

x and (x and y or z)

x and (y or x and z)

x and (x and y or x and z)
x and y or x and z

4. Show that the following is true: If

a=» x and
b=»y

then

a and b => x and y and
aorb=>xory

5. Simplify or expand the following expressions:

1. x and (y => z)
2. x or (y => z)
3.(xand y) => z
4. (x ory) => z

A.4 Exercises in Logical Algebra 129

-a>0 and a<0 or a>0 and not a<0
-a20 and a<0 or 220 and not a<0
. -a<0 and a<0 or a<0 and not a<0
. -as0 and a<0 or as0 and not a<0

® oo

A.5 THE AND AND OR SERIES

The and and or series are defined as follows:
and._," A(i) = A(1) and A(2) ... and A(n)
or,_" A(i) = A(1) or A(2) ... or Aln)

where A(i) is any expression in which the variable i may appear.
The variable i is not a program variable, but rather a running
variable for the series; outside the series it has no meaning.
The value of an empty and series (n<1 above) is by definition
true; the value of an empty or series, false. (Cf. the £ and Il
notation for sums and products.)
It is obvious that

and,_,™ AG)] = [A(n) and_, """ A®)]

=1

if n21. However, a term can be taken out of a series only when
the original series contains at least one term. In general (i.e.,
when the original series may be empty) the following applies:

[andi=1n A(i)] = [n<1 or n21 and A(n) andi= n-1 Ali)]

1

For the or series the corresponding formula is
for,_," A®I = [n21 £2d (A or,_,"™" AW)]

Exercise:

1. Verify the identities above. Hint:

land,_," A(D)] = [(n<1 or nz1) and,_," A(i)] =

APPENDIX B. SOLUTIONS
TO THE EXERCISES

The problem numbers shown below are made up of the number
of the section in which the exercise appears and the number of
the problem within the exercise.

4.1.1 (1). {0<i} i:=i+1 {1=i)

4.1.1 (2). {sum+z=x+y+z} sum:=sum+z {sum=x+y+z}. Often the
precondition can be simplified to {sum=x+y}. However, if the
addition symbol (+) in the assignment statement refers to
floating point arithmetic, then one must remember that (1) this
simplification assumes that addition is associative [(...+z)-z =
...+(z-z)], a requirement not generally satisfied by floating point
addition, and that (2) the addition symbol (+) in the postcondi-
tion may refer to standard mathematical addition, which is not
the same operation as floating point addition. In the latter
case, one should use two different symbols for the two dif-
ferent addition operations.

4.1.1 (3). {w*y - 2*w? < z} x:=5-z {w*y - 2*w? < z}. The variable
x does not appear in the postcondition. By proof rule Al, the
postcondition is also the precondition in this case.

132 Appendix B. Solutions to the Exercises

4.2 (1). {x$0} if x<0 then y:=-x else y:=x endif {y>0}. Apply proof
rule IF2. V1 = {-x>0} = {x<0}, V2 = {x>0}, B = {x<0}, not B =
{x>0}.

4.2 (2). {true} if x<0 then y:=-x else y:=x endif {y20}. The pre-
condition is the logical constant true. The postcondition will
always be satisfied (true) after execution of the if statement.

4.2 (3). {false} if x<0 then y:=-x else y:=x endif {y<0}. The pre-
condition is the logical constant false. The postcondition will
never be satisfied after execution of the if statement.

4.2 (4). {x=0} if x<0 then y:=-x else y:=x endif {y=<0}

4.2 (5). {3<[x[<4} if x<0 then y:=-x else y:=x endif {2sy<4} is
true. Apply proof rules IF1 and A2. Alternatively, the applica-
tion of proof rule IF2 yields {2<|x|<4} as a precondition. By
proof rule P1, the stronger given precondition is also a precon-
dition.

4.3 (1). We apply proof rules SI and Al. Beginning with the
postcondition and the last assignment statement, we work
backwards to the beginning of the sequence of statements.
(Read, therefore, from bottom to top.)

{0=N}

{(0>M-N or 0<M-N) and 0<N}

i:=0

{(0-M-N or 0<M-N and,_,'"! D(0+a)=K(a) and 0<isN}

j:=0
and, ;¥ (not and__ N"! D(kva)=K(a))

and (j>M-N or jsM-N andal:Oi'1 D(j+a)=K(a))

and 0<j and 0<isN)

4.5 (1). The following two correctness propositions are to be
verified (see section 4.5):

Appendix B. Solutions to the Exercises 133

{I and ia<na and (ib>nb or A(ia)<B(ib))}
Cf(ic):=A(ia)
ia:=ia+1

ic
it ic+l}
and

{I and ibsnb and (ia>na or B(ib)<A(ia))}
C(ic):=B(ib)
ib:=ib+1

ic
{ ic+l}
By proof rule P1, the last proposition above will be true if

{I and ib<nb and (ia>na or B(ib)sA(ia))}
C(ic):=B(ib)
ib:=ib+1

ic
{I ic+l}

Now the two correctness propositions to be proved (the first

and the last above) are completely symmetric in A/a and B/b.
(The loop invariant I is symmetric.)

4.5 (2). The following correctness propositions are to be veri-
fied (see 4.5 (1) above):

{I and ia<na and (ib>nb or A(ia)<B(ib))}
Clic):=A(ia)

ia:=ia+1

{Ini€

}

ic+1
and

{I and ibsnb and (ia>na or B(ib)zA(ia))}
Clic):=B(ib)

ib:=ib+1

{Ini€

}

ic+1

for the seven postconditions

134 Appendix B. Solutions to the Exercises
Iliclc+1 l1<ia<na+1
12“’l csp? 1sibsnb+l
ic R . .
I3 ic+1 ic=(ia-1)+(ib-1)
I4icic+1: (ic<0 or ia>na or C(ic)sA(ia))
15iclc+1 (ic=0 or ib>nb or C(ic)<B(ib))
ic ic-1 ~,. .
167, and;_; C(i)=C(i+1)
17+ and_ "' AG)<AGi+1) and,_ """ B(i)<B(i+1)

4.5 (3). Because of the symmetry between A/a and B/b, we
need prove only the seven correctness propositions

{I and iasna and (ib>nb or A(ia)<B(ib))}
Clic):=A(ia)
ia:=ia+l

ic
{In ic+l}
for n=1, 2, ... 7. For each postcondition we derive a precondi-
tion with respect to the sequence of the two assignment state-
ments by applying proof rules Al and S1. Then, we verify that
the derived precondition follows from the one given above
(applying proof rule P1). In the trivial cases 2 and 7, the pre-
condition is the same as the postcondition and it follows direct-
ly from the loop invariant I. For the other cases we derive the
preconditions:

1: {0siasna} Clic):=A(ia); ia:=ia+1 {l<ia<na+1}
3: {ic=ia+(ib-1)} C(ic):=A(ia); ia:=ia+1 {ic=(ia-1)+(ib-1)}

4: {ic=0 or ia+1>na or A(ia)zA(ia+1)}
Clic):=Alia); ia:=ia+1
{ic<0 or ia>na or C(ic)zA(ia)}

|

Appendix B. Solutions to the Exercises 135

5: {ic<0 or ib>nb or A(ia)<B(ib)}
C(ic):=A(ia); ia:=ia+1
{ic<0 or ib>nb or C(ic)sB(ib)}

6: {ics1 or Clic-1)<A(ia) and,_,"*"% C()<C(i+1)}

1

Clic):=A(ia); ia:=ia+1 {andi= ic-1 C(i)sC(i+1)}

1

We must still show that these derived preconditions follow
from the given precondition (cf. proof rules P1 and A2).

1: The given precondition contains (I and ia<na), which im-
plies 1<iasna. This, in turn, implies the derived precondition
Osias<na.

3: The derived precondition is equivalent to the expression
(ic-1)=(ia-1)+(ib-1), one of the anded terms in the loop invariant
I and hence in the given precondition.

4: The loop invariant I implies that icz1 (see Il, 12 and 13).
Thus the term ics0 in the derived precondition will always be
false. The rest of the derived precondition is equivalent to
[iasna-1 = A(ia)<A(ia+1)]. This condition follows from I7 in
combination with I1. The given precondition implies, therefore,
the derived precondition. Formally,

{I and ia<na and (ib>nb or A(ia)<B(ib))}

-

I1 and 17

n

<ia and. "1 A(i)<A(i+1)

i=1
1<ia and (1siasna-1 = A(ia)sA(ia+1))

= [see Appendix A, section A.3, identity 24]
1sia and (iasna-1 => A(ia)<A(ia+1))

—p
(iasna-1 =» A(ia)<A(ia+1))

=

ia>na-1 or A(ia)<A(ia+l)

ia+l>na or A(ia)zA(ia+1)
=)

136 Appendix B. Solutions to the Exercises

icz0 or ia+1>na or A(ia)<A(ia+1)

5: The first term will always be false (see 4 above). The rest
of the derived precondition is an anded term in the given
precondition and therefore follows from it.

6: The derived precondition follows from (I and ia<na), part
of the given precondition. In particular, the derived precondi-
tion follows from (I4 and ia<na and I16).

5.2.10 (1). In order to derive a precondition with respect to the
exchange statement x:=:y, simultaneously replace x by y and y
by x everywhere in the postcondition. Alternatively, one can
replace the exchange statement by the equivalent sequence of
assignment statements

auxvar:=y; y:=xX; X:=auxvar

and prove the resulting program correct. Care must be taken
that this use of the auxiliary variable auxvar does not interfere
with the other effects of the program. In particular, the vari-
able auxvar may not appear in the postcondition of the ex-
change statement.

5.2.10 (2). The following correctness proposition about the
entire program segment is to be verified:

{il<ir}
gl:=il; gr:=gl; k:=ir
while gr<k do
if X(gr+1)<X(gl)
then X(gl):=:X(gr+1)
gl:=gl+1; gr:=gr+1
else if X(gr+1)=X(gl)
then gr:=gr+1
else [Remark: X(gr+1)>X(gl)]
X(k):=:X(gr+1)
k:=k-1
endif
endif
endwhile

{ilsglzgrsir and, . gl-1 X(i)<X(gh)

1

8l (i _ ir .
andi=gl X(i)=X(gl) andizgr+l X(i)>X(gh}

Appendix B. Solutions to the Exercises 137

The loop invariant I is known from the design phase:

ilsglsgrsksir andi=ilgl'1 X(i)<X(gl)

andi___glgr X(i)=X(gl) andi=k+llr X(i)>X(gl)

It was already proved in section 5.2.9 that the loop termi-
nates. Therefore, we will prove only partial correctness here.

By applying proof rule W2, we decompose the correctness
proposition above into the following three correctness proposi-
tions which we must verify.

{il<ir} gl:=il; gr:=gl; k:=ir {1} (1]
{l and gr<k} if ... endif {I} (2]
{I and not gr<k} [3]
—

{il<gl<grsir andi=i1g1_1 X(i)<X(gh

8T X(i)=X(gl) and. Ir x(1)>X(gl)

and, i=gr+1

i=gl

Proposition 1 above was, in effect, verified already in sec-
tion 5.2.8, where we derived the precondition by applying proof
rules Al and S1.

The proof of proposition 3 above is straightforward and
relatively simple. {I and not gr<k} = {I and grzk} =% gr=k.
Replace k by gr in the loop invariant; the result is the postcon-
dition.

Proposition 2 above can be decomposed by applying proof
rule IF1. Three correctness propositions about the individual
branches of the if statement result. Fully written out, they are
as follows:

138

and

and

Appendix B. Solutions to the Exercises

(ilsglsgr<ksir and,_ 81 X(1)<x(g) [2.1]

and,_,5" X()=X(gl) and,_, ™ X(1)>X(g)
and X(gr+1)<X(gl)}

X(gl):=:X(gr+1); gl:=gl+1; gr:=gr+1
{il=glsgrsksir andi=ilgl~1 X(i)<X(gl)

gr . i .
and, =" X(i)=X(gl) and,_, " X(i)>X(gD)}

{il<gl=gr<ksir andi=ilgl'1 X(i)<X(gl) [2.2]

8 (o ir /.
andi=gl X(i)=X(gl) andi=k+1 X(i)>X(gl)
and X(gr+1)=X(gl)}

gri=gr+l
{ilsgl<grsksir andi=i1g]'l X(i)<X(gl)

andi=glgr X(i)=X(gl) andi___k+llr X(i)>X(gl)}

{ilsglsgreksir and,_ 81 x(i)<x(g)) [2.3]

and;_ B X(1)-X(gl) and,_ ¥ X(i)>X(g)

i=gl
and X(gr+1)>X(gl)}

X(k):=:X(gr+1); k:=k-1
{ilsgl<grsksir andi=ilgl-l X(i)<X(gl)

and;_ " X(i)=X(gl) and,_,_ ¥ x(i)>X(gD)}

Appendix B. Solutions to the Exercises 139

The above propositions are proved by applying proof rules
Al, A2 and Sl. First a precondition of the loop invariant (as
postcondition) with respect to the sequence of assignment
statements is derived. Then we verify that the given precondi-
tion implies the derived precondition.

Correctness proposition 2.2 above relates to a single assign-
ment to a simple (not indexed) variable. Its proof is correspond-
ingly short and straightforward. Proposition 2.1 relates to the
longest sequence of statements and its proof is the most com-
plex. Furthermore, the algebraic manipulation in its proof can
be greatly facilitated by a particularly suitable, but simple
transformation of the postcondition and an appropriate applica-
tion of proof rule P1. Therefore, we will prove proposition 2.1
in detail.

In the first step, we replace gr and gl by gr+l and gl+1
respectively in the postcondition. This will give rise to referen-
ces to X(gl+l). Then we must replace references to X(gr+l1).
Depending upon whether gl+l=gr+l or not, the references to
X(gl+1) should or should not be replaced. This dependence would
complicate the algebraic manipulation at that point consider-
ably; it would be much more convenient if such references
should be either unconditionally replaced or unconditionally not
replaced.

The postcondition implies that X(gl)=X(gr) (see the and series
for the = region). If we rewrite the postcondition accordingly,
the references in question will be limited to X(gr+1), which
should be replaced unconditionally. The new expression for the
postcondition is

{il<gl<grsksir andi=ilgl_l X(i)<X(gr)

and,__ 8" X(i)=X(gr) and,_, " X(i)>X(gr)}

i=gl
The precondition with respect to the sequence of the last
two assignment statements (gl:=gl+1; gr:=gr+1) is

{ilsgl+1<gr+1sksir andi=ilgl X(i)<X(gr+1)

1 . i .
andi=gl+lgr+ X(i)=X(gr+1) andi=k+llr X(i)>X(gr+1)}

140 Appendix B. Solutions to the Exercises

) The first term is equivalent to (ilsgl+1 and glsgr<ksir). The
given precondition ensures that the stronger restriction il=gl is
satisfied. The exchange statement does not affect these vari-
ables: so il=gl will still hold after its execution. Proof rule P1
permits us to strengthen the precondition derived above accord-
ingly to obtain

{ilsgl<gr<ksir andi=ilgl X(i)<X(gr+1)

and gr+l1

mgle1® | X(W=X(gr+1) and,_, ™" X(i)>X(gr+1))

i=k+1
as a precondition with respect to the sequence of assignment
statements (gl:=gl+1; gr:=gr+1).

Now we must replace X(gl) and X(gr+1) in order to derive a
pref:ondition with respect to the exchange statement and the
entire sequence of statements. We know that glsgr<gr+1. Some
of the X(i) are references to X(gl) or X(gr+1); we must separate
such references from the others. We must take one term (i=gl)
qut of the first and series. Similarly, we must take one term
(i=gr+1) out of the second and series. This term is a tautology
thus true, and can therefore be dropped (see Appendix A’
section A.3, identity 10). ’

Our Precondition with respect to the sequence of the last
two assignment statements, which is also the postcondition for
the exchange statement, then becomes

i ; 1-1 .
{il=glsgr<ksir andi:ilg X(i)<X(gr+1) and X(gl)<X(gr+1)

4 U ir o,.
andi=gl+l X(i)=X(gr+1) andi=k+l X(i)>X(gr+1)}

. Now no Xfi) is’ a reference to either X(gl) or X(gr+1). In the
first and series, i<gl<gr+l. In the second and series, gl<i<gr+1.
In:x the third and series, gl<gr+l<k+1s<i, thus gl<gr+1<i (see the
first term in the expression above).

Now we can simultaneously replace X(
. gl) by X(gr+l) and
X(gr+1) by X(gl) in order to derive a precondition with respect
to the entire branch of the if statement:

{il<gl<gr<ksir andi=ilgl-1 X(i)<X(gl) and X(gr+1)<X(gl)

gr . i .
and;_ ., & X()=X(gl) and,_, " X(i)>X(gh}

Appendix B. Solutions to the Exercises 141

This derived precondition is equivalent to the given precondi-
tion. The term X(i)=X(gl) for i=gl is missing in the second and
series; this term is clearly true and can, therefore, be anded to
the expression. Except for the order of the terms, the derived
and given preconditions are otherwise identical.

The proof of proposition 2.3 above is structurally similar, but
significantly simpler.

5.3.7 (1). If N=0, then the search key K is the empty string
(also called the null string). In this case, the program "finds"
the empty string at the beginning of the string D (also when D
is the empty string) and ends immediately with j=0. When M=0,
then D (the string in which K is being sought) is the empty
string. A non-empty string K cannot be present in an empty
string D. In this case (N>0, M=0), the program ends (without
executing the body of the loop) with j=0>M-N=-N, i.e. with the
result "not present". See the postcondition in section 5.3.2.

5.3.7 (2). The case M<0 can be interpreted as M=0 (see problem
5.3.7. (1)) with the exception that even an empty string K is
"not present". The program ends without executing the loop
body with j=0. However, negative values of M as the length of
D have no meaning; therefore they were excluded in the given
precondition.

5.3.7 (3). Hint: Distinguish between the two cases asb and a>b.

5.3.7 (4). The task is to verify the following correctness propo-
sition about the entire subprogram:

{MeZ and 0<M and NeZ and 0s<N}

i:=0; j:=0
while i<N and jsM-N do

if D(j+i)=K(i) then i:=i+1 else j:=j+1; i:=0 endif
endwhile

{jeZ and 0<jsmax(0,M-N+1)

N-1 p(k+a)tK(a))

N-1

i1
andy "~ {ory_g

and (j>M-N or jsM-N and__,~ " D(j+a)=K(a))}

142 Appendix B. Solutions to the Exercises

By applying proof rule W2, we decompose the correctness
p.roposition above into the following two correctness proposi-
tions .about smaller program segments and one implication. The
loop invariant I was developed in the design step described in
section 5.3.3.

{MeZ and 0<M and NeZ and 0sN} i:=0; j:=0 {I} [1]

{I and i<N and j<sM-N} (2]
if D(j+i)=K(i) then i:=i+1 else j:=j+1; i:=0 endif {I}

{I and not (i<N and jsM-N)} (3]
=

{jeZ and 0<jsmax(0,M-N+1)

N-1

and, 7! (or,_ N1 DikraK(a))
N-1

and (j>M-N or jsM-N andal=0 D(j+a)=K(a))}

Proposition 1 above was proved in section 5.3.7. The proof of
proposition 3 is only an exercise in the manipulation of logical
e.xpressions. By applying proof rule IF1, we decompose proposi-
tion 2 into correctness propositions about the individual branch-
es of the if statement:

{I and i<N and jsM-N and D(j+i)=K(i)} [2.1]
ir=i+1 {1}

{I and i<N and jsM-N and D(j+i}+K(i)} [2.2]
ji=j+1; i:=0 {1}

Proposjtions 2.1 and 2.2 can be verified in the usual manner
by applying proof rules Al, A2 and S1. At one point in the
proof of proposition 2.2 the fact that

0<i<N and D(j+i)$K(i) =» ora=or\‘l-l D(j+a)$K(a)

mustt)be used. (Cf. Appendix A, section A.4, problem 2, second
part.

In addition, we must show that the loop terminates. It is
apparent that every execution of the loop body increases either
iorjby 1, and that j is never decreased. Because both i and j
have upper bounds (see the while condition), the loop must
terminate. More formally, define (j*N+i) as the loop variant.

Appendix B. Solutions to the Exercises 143

The then branch of the if statement increases the value of this
expression by 1. The else branch increases this value by N and
decreases it by i (at most N-1); thus on balance, the value of
the loop variant is increased by at least 1. The value of the
loop variant will, therefore, reach its maximum, which follows
from the while condition, after a limited number of executions
of the loop body. Then the loop terminates.

5.4.2 (1). The postcondition must be extended by anding the
following expression to it:

1snlsn+1 [range of nl]

and {nl=n+1 and np=1 [range of np, no name]

or nl<n and l<np<epslength(A(nl))+1}
[ranges of np, ep, name located]

5.4.2 (2). empty(z1,p1,z2,p2): The region from position (line z1,
position pl) until just before position (z2,p2) contains only
spaces and line breaks if

p2-1

z1=2z2 andp=pl mid(A(z1),p,1)=space [only one line]

or

z1<z2 [more than one line]

length(A(z1)) mid(A(z1),p,1)=space [line z1]

nd _llength(A(z)) mid(A(z),p,1)=space
p= lintermediate lines (if any)]

d
anCp-p1
and z2-1 a

z=zl+1

a“dp=1p2_l mid(A(z2),p,1)=space [line z2]

This formula is valid only if position (z1,pl) lies before
position (z2,p2) or if the two positions are equal (in which case
the region in question is empty). l.e., the formula above applies
only if (z1=z2 and plsp2 or z1<z2). The values of these vari-
ables must, of course, be valid line and position numbers.

nameloc(z,p1,p2): A name begins in position (z,pl) and ends
just before position (z,p2) if (1) line z is within the array and
(2) a name begins in position (z,pl) and (3) every position from

144 Appendix B. Solutions to the Exercises

(z,pl) to (z,p2-1) inclusive contains a character other than a
space and (4) position (z,p2) does not belong to the name. A
name begins in position (z,pl) if position pl lies within the line
and contains a character other than a space and either position
(z,pl) is the first position in the line or the previous position
contains a space. Position (z,p2) does not belong to the name if
it either does not lie within the line or contains a space:

1<z<n and 1<pl<p2<length(A(z))+1 [ranges of z, pl, p2]
and (pl=1 [beginning of line}

or 1<pl and mid(A(z),p1-1,1)=space)
[space before (z,pl)]

andp=p1p2_l mid(A(z),p,1)¥space
and (p2=length(A(z))+1 [end of line]

or p2<length(A(z)) and mid(A(z),p2,1)=space)
[space in (z,p2)]

[no space in name]

This expression can be simplified somewhat: after each or,
the subexpressions "1<pl and" and "p2s<length(A(z)) and" may be
left out. If it can be guaranteed elsewhere that only valid line
and position numbers are generated for z and pl respectively,
then "1<z" and "1spl1" may also be left out.

5.4.2 (3). Note that the term "inside" as used here is not really
precise. Task descriptions formulated in a natural language are
often ambiguous, sometimes even misleading. Frequently one
notices this and discovers the actually intended meaning only
when one tries to translate the description into another lan-
guage. The most stringent test arises when the target language
allows only precise, unambiguous statements.

In this case the only reasonable interpretation of the re-
quirement is as follows: Position (bl,bp) may not be part of a
name which began in a previous position.

Position (bl,bp) would be in a name which began earlier if
and only if it and the immediately previous position each con-
tain a character other than a space:

1<bl<n and 1<bp-1 and bpslength(A(bl))
and mid(A(bl),bp-1,1)$space and mid(A(bl),bp,1)$space

Appendix B. Solutions to the Exercises 145

The desired condition is the negation of the above expres-
sion. After simplifying, it is:

bl=n+1 or bp=1 or bp=length(A(bl))+1
or mid(A(bl),bp-1,1)=space or mid(A(bl),bp,1)=space

In contrast to the sentence "position (bl,bp) does not lie inside
a name", the above mathematical formulation of the condition
is unambiguous and subject to only one interpretation.

A.3. Every identity can be proved by listing all combinations of
the possible values of the variables x, y and z together with the
corresponding values of the expressions in question, i.e. by
completing a "truth table". Alternatively, many identities can
be proved by applying previously verified identities.

There are four possible combinations of the values of two
Boolean (logical) variables. For three variables there are eight
possible combinations of their values:

false false false
false false true
false true false
false true true
true false false
true false true
true true false
true true true

A.4(1). F = [(B and C) or (not B and D)]. It can be easily shown
that this expression satisfies the given definition of F by com-
pleting a truth table.

A.4(2). [x and y = Xx]
i [not (x and y) or x]
[not x or not y or x]
[true or not y]
true

[x => x or y]

146 Appendix B. Solutions to the Exercises
[not x or x or y]

true

Alternatively, the statements can be proved by constructing
truth tables.

A.4 (3). [x and (y or 2z)]
i [x and x and (y or z)]
[x and (x and y or x and z)]
[x and (x and x and y or x and z)]
[x and x and (x and y or z)]

[x and (x and y or z)]
The expression in the third line above also equals:

[x and (x and y or x and x and z)]
[x and x and (y or x and z)]

[x and (y or x and z)]

The first and last expressions are equal by identity 5 in Appen-
dix A, section A.3.

A.4 (4). It is given that a implies x and b implies y. If both a
and b are true, then both x and y are true, i.e. (x and y) is
true. If either a or b is true, then x or y respectively is true
and hence (x or y) is true.

More formally, we wish first to show that

[(@a=> x) and (b => y)] => [a and b => x and y]
This expression can be transformed as follows:

[(not a or x) and (not b or y)]

= [not a or not b or x and y]

not [(not a or x) and (not b or y)]
or [not a or not b or x and y]

Appendix B. Solutions to the Exercises 147

a and not x or b and not y
ornot aornotbor xandy

[Appendix A, section A.3, identity 17}
not xornot yornotaornotbory

true

The second part of the problem,

[(a=> x) and (b => y)] => [a or b => x or y]

can be formally proved in the same way.
A.4 (5).

1
2
3
4
5
6
7
8

.5

A

.
.
.
.

-
.
.
.

[x and (not y or z)] = [x and not y or x and z]
[x or not y or z]

[not x or not y or z]

[not x and not y or z]

at0

true

false

a=0

(1). For the and series:

land,_," AG)]

[true andi=1n A(i)]

[(n<1 or nz1) andi=ln A()]

[n<1 andi=ln Al(i) or n21 andizln Ali)]
[n<1 or nz1 andi=ln Ali)]

[n<1 or n21 and A(n) andi=ln-1 A(i)]

corresponding derivation for the or series is similar:
n ,;.
. Al
lor,_,~ A()]

[true and (ori=1n A(i))]

148

Appendix B. Solutions to the Exercises

[(n<1 or n21) and (or,_," A())]

[n<1 and (or;_;" A(i)) or nz1 and (or;_," A(})]
[n<1 and false or n=1 and (or,_," A()]

[n21 and (or,_," A®))]

[n21 and (A(n) ori=1n_l A(i)]

BIBLIOGRAPHY

Alagié, Suad; Arbib, Michael A., The Design of Well-Structured
and Correct Programs, Springer-Verlag, New York, Heidel-
berg, Berlin, 1978.

Baber, Robert L., Software Reflected: The Socially Responsible
Programming of Our Computers, North-Holland Publishing
Co., Amsterdam, New York, Oxford, 1982.

Baber, Robert L., Softwarereflexionen: Ideen und Konzepte fir
die Praxis, Springer-Verlag, Berlin, Heidelberg, New York,
1986.

Baber, Robert L., The Spine of Software: Designing Provably
Correct Software — Theory and Practice, John Wiley & Sons,
Chichester, 1987.

Backhouse, Roland C., Program Construction and Verification,
Prentice-Hall International, Englewood Cliffs, N. J., 1986.
Bauer, Friedrich L.; Wossner, Hans, Algorithmische Sprache und
Programmentwicklung, Springer-Verlag, Berlin, Heidelberg,

New York, 1984.

Dahl, O.-].; Dijkstra, E. W.; Hoare, C. A. R., Structured Pro-
gramming, Academic Press, London, 1972.

Denvir, Tim, Introduction to Discrete Mathematics for Soft-
ware Engineering, Macmillan Education, Basingstoke, 1986.

Dijkstra, Edsger W., A Discipline of Programming, Prentice-
Hall, Inc., Englewood Cliffs, N. J., 1976.

150 Bibliography

Futschek, Gerald, Programmentwicklung und Verifikation,
Springer-Verlag, Wien, New York, 1989.

Grams, Timm, Denkfallen und Programmierfehler, Springer-
Verlag, Berlin, Heidelberg, 1990.

Gries, David, The Science of Programming, Springer-Verlag,
New York, Heidelberg, Berlin, 1981.

Hoare, C. A. R., Communicating Sequential Processes, Pren-
tice-Hall International, Englewood Cliffs, N. J., 1985.

IEEFE Spectrum, "Lethal dose", in Faults & Failures column, Vol.
24, No. 12, 1987 December, S. 16.

Jones, Cliff B., Systematic Software Development Using VDM,
Prentice Hall International, Englewood Cliffs, N.J., 1986.
Joyce, Ed, "Software Bugs: A Matter of Life and Liability", Da-

tamation, 1987 May 15, S. 88-92.

Linger, Richard C.; Mills, Harlan D.; Witt, Bernard 1., Struc-
tured Programming: Theory and Practice, Addison-Wesley
Publishing Co., Reading, Massachusetts, 1979.

Loeckx, Jacques; Sieber, Kurt, The Foundations of Program
Verification, B. G. Teubner, Stuttgart, and John Wiley &
Sons, Chichester, 1984.

McGowan, Clement L.; Kelly, John R., Top-Down Structured
Programming Techniques, Petrocelli/Charter, New York,
1975.

Spivey, J.M., The Z Notation, Prentice Hall, New York, 1989.

Thomas, Martyn, Should we trust computers?, The BCS/UNISYS
Annual Lecture 1988, 1988 July 4, British Computer Society,
London.

ST SRS R S

SRS 2 st

INDEX

air traffic control 7
Akado 1-5
and (Boolean function) 125
series 129
array 17, 18, 48, 51-54,
63, 68, 70, 73, 74, 81,
83, 85-87, 93-95, 97,
98, 101, 103-107, 109,
111, 117-120, 143
variable, applying proof
rule A1 52, 139
assertion 24
assignment statement
execution 17
precondition 28, 29
proving correctness 48
associative 127, 131
automatic conversion 17
axiom
assignment statement
18
if statement 18
while loop 20
Balaclava, battle of 10

Boolean expression 24
Boolean functions
definitions 125
important properties
126
Bosquet 10
call to subprogram
documentation 46
execution 21
proving correctness 73
case distinction 89, 109,
110, 112
Charge of the Light Bri-
gade 10
charlatanry 12
civil engineer 1, 8, 9
commutative 126
compilation error 16, 23,
25
condition 24
qualified 119
strengthening and weak-
ening 27, 128

152

condition (cont'd.)
while, deriving 83, 88,
100, 107, 109, 112
conversion
automatic 17
correct
partially 25, 38, 66, 77,
137
totally 25, 39, 66, 68,
78
correct program 24
costs 1, 2,4,7,9, 10
critical, safety 7, 123
current 26
damper, viscous 26
dangers 8
data environment 12
data structure 10, 12, 123
deaths 7
decision, design 9, 46, 63,
82
declaration 12, 17, 67, 68
decomposing a proof task
13, 25, 47, 77, 78,
122
if statement 54, 71
sequence of statements
61, 71, 74
subprogram 73
while loop 62
design decision 9, 46, 63,
82
design error 8, 77, 111,
121, 123
diagram 46, 80, 83-85, 87,
88, 89, 97-101, 105,
114, 115
distributive 127
divide and conquer 39-42,
70
documentation 45, 63

Index

dose, lethal 7, 150
dreams 12
education 2
electrical engineer 9
electrical engineering 26
engineer
civil 1, 8, 9
electrical 9
software 8-10
structural 123
engineering 1, 3, 4, 8§, 10,
12, 13, 26, 80, 121,
122, 123, 149
electrical 26
mechanical 26
software 10, 12, 13,
149
equality, alternative ex-
pression 127
error
compilation 16, 23, 25
design 8, 77, 111, 121,
123
run time 23, 25, 39, 66,
67, 78
error message 16, 67
errors in software 7-9
evaluation of expressions
16
exchange statement 90,
91, 93, 136, 140
execution
assignment statement
17
if statement 18
program statement 15
sequence of statements
19
subprogram call 21
while loop 20

Index

expression
Boolean 24
index 18
logical 24
Faraday's law 26
floating point arithmetic
131
force 26
formal parameter 21
foundation, theoretical 8,
9, 12, 80, 121
glossary 116
Henry's law 26
if statement 112
designing 89, 101, 109,
110
execution 18
precondition 31, 32
proving correctness 54
implication (Boolean func-
tion) 119, 125
alternative expressions
127
index expression 18
indexed variable 48
initialization (while loop)

37, 80
designing 82, 91, 99,
107, 109, 112
invariant

loop 9, 37-39, 46, 62,
63, 64, 67-73, 80, 82,
83, 84, 85, 87-93, 95,
98, 99-102, 107-110,
112, 115, 119, 133-
135, 137, 139, 142

loop, determining 37,
68, 70, 80, 82, 87, 98,
107, 109, 112

invariants 79

large program, proving
correct 122
lethal dose 7, 150
logical expression 24
loop (while) 112
execution 20
initialization 37, 80
initialization, designing
82, 91, 99, 107, 109,
112
proof rule 36, 37
proving correctness 62
loop body
designing 84, 88, 101,
108, 110, 112
loop invariant 9, 37-39,
46, 62-64, 67-73, 80,
82, 83-85, 87-93, 95,
98, 99-102, 107-110,
112, 115, 119, 133-
135, 137, 139, 142
determining 37, 68, 70,
80, 82, 87, 98, 107,
109, 112
upper and lower bounds
in 115
loop variant 39, 85, 93,
142, 143
losses 2, 7, 10
maintaining a program 46
mass 26
mathematics 10, 12, 23,
113, 114, 120, 121,
131, 145, 149
mechanical engineering 26
medical therapy 7
merge 51, 70, 74, 75, 116,
117, 119
Moc 1-4, 12
modifying a program 46
Naram 3, 4

153

154

negation 127
not (Boolean function) 125
not defined 16, 17, 67
Ohm's law 26
or (Boolean function) 125
series 129
order of evaluation 126
parameter, formal 21
partially correct 25, 38,
66, 77, 137
partitioning an array 85
permutation 75, 76, 85,
116, 118, 119
pointer variables 10
position 26
postcondition 9, 23-25,
111, 115
formulating 113
upper and lower bounds
in 96
weakening 26
precondition 9, 23-25, 111,
115
assignment statement
28, 29
formulating 113
if statement 31, 32
sequence of statements
35
strengthening 26
productivity 9
professional education 2
professional software de-
velopment 5
program correctness 24
program documentation
45, 63
program segment
proof rule 42, 43
proving correctness 73

Index

program statement
execution 15
program variable 129
proof rule 25
Al 28, 30, 45, 47-49,
52, 55, 57, 61, 71, 72,
78, 92, 93, 102, 115,
131, 132, 134, 137,
139, 142
A2 29, 30, 45, 47-51,
59, 64, 65, 72, 78, 93,
115, 132, 135, 139,
142
DC1 39-41, 43, 44, 70
DC2 40, 42, 43
DC3 41, 72, 73
DC4 41, 42, 44, 70
IF1 31-34, 45, 54, 58,
59, 71, 132, 137, 142
IF2 32, 45, 54, 55, 57,
132
IF3 33, 34, 45, 54
IF4 34, 45, 54
P1 26, 27, 29, 30, 32,
33, 34, 35, 38-43, 45,
61, 74-76, 102, 132,
133, 134, 135, 139,
140, 143, 144
S1 18, 19, 31-35, 38,
45, 61, 62, 71, 72, 74,
92, 102, 132, 134,
137, 139, 142
selecting the appropri-
ate 45
SP1 42, 43, 46, 73
SP2 42, 43, 45, 46, 73,
75, 76, 77
SP3 43, 45, 46, 73, 75,
76, 77
W1 36-38, 45, 62, 84

R

Index

proof rule (cont'd.)
W2 37, 38, 45, 62, 64,
83, 84, 92, 102, 137,
142
qualified condition 119
recursion 12
reliability 8, 9, 123
repetition 3, 9, 61, 63, 81,
86, 95, 109, 112, 122
Ret Up Moc 1-4, 12
risks 8
rounding 17
run time error 23, 25, 39,
66, 67, 78
running variable (in a ser-
ies) 129
Russian roulette 123
safety critical 7, 123
searching 63, 81, 83, 94,
95, 99, 101, 103, 116,
141
sequence of statements
112
execution 19
precondition 35
proving correctness 61
series (and, or) 129
side effect 18, 28
software development
professional 5
software engineer 8-10
software engineering 10,
12, 13, 149
sort 3, 51, 53, 54, 73, 74,
116, 117-119
specification 8, 12, 13, 25,
43, 74-77, 79, 81, 86,
94, 96, 104, 111, 112,
117, 118, 122, 123
spring 26

155

statement
assignment, execution
17
assignment, precondition
28, 29
exchange 90, 91, 93,
136, 140
if, execution 18
if, precondition 31, 32
program, execution 15
subprogram call, execu-
tion 21
while, execution 20
statements, sequence of
execution 19
precondition 35
states 79, 114
statics 9, 123
strengthening a condition
27, 128
strengthening a precondi-
tion 26
structural engineer 123
subprogram
documentation 46
proof rule 42, 43
subprogram call
execution 21
proving correctness 73
subscripted variable 48
symmetric 73, 133, 134
Tennyson 10
termination 16, 22-25, 36,
37, 38, 39, 62, 66, 78,
83, 84, 85, 93, 95,
100, 101, 115, 137,
142, 143
theoretical foundation 8,
9, 12, 80, 121
therapy, medical 7

156 Index

totally correct 25, 39, 66, while condition, deriving
68, 78 83, 88, 100, 107, 109,
undefined 16, 17, 67 112
value of expression 16 while loop 112
values of variables 12, 16, body, designing 84, 88,
23, 122 101, 108, 110, 112
variant, loop 39, 85, 93, execution 20
142, 143 initialization 37, 80
viscous damper 26 initialization, designing
voltage 26 82, 91, 99, 107, 109,
weakening a condition 27, 112
128 proof rule 36, 37
weakening a postcondition proving correctness 62

26

