

Building and Testing with Gradle

Building and Testing with Gradle

Tim Berglund and Matthew McCullough
foreword by Gradleware CTO Ken Sipe

Beijing • Cambridge • Farnham • Köln • Sebastopol • Tokyo

Building and Testing with Gradle
by Tim Berglund and Matthew McCullough

Copyright © 2011 Gradle, Inc.. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (http://my.safaribooksonline.com). For more information, contact our
corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editors: Mike Loukides and Meghan Blanchette
Production Editor: Jasmine Perez
Proofreader: Jasmine Perez

Cover Designer: Karen Montgomery
Interior Designer: David Futato
Illustrator: Robert Romano

Printing History:
July 2011: First Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. Building and Testing with Gradle, the image of a bush wren, and related trade dress
are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc. was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors assume
no responsibility for errors or omissions, or for damages resulting from the use of the information con-
tained herein.

ISBN: 978-1-449-30463-8

[LSI]

1309457128

http://my.safaribooksonline.com/?portal=oreilly
mailto:corporate@oreilly.com

To my son, Zach, who plays the trumpet

Psalm 150:3

—Tim Berglund

This book is dedicated to my entire extended family
who, in numerous ways, facilitated the creation of

this first of many books. To my beautiful and
supportive wife Madelaine for allowing me long

nights of typing and days of constant Gradle talk.
My daughters Scarlette and Violette for playing
rounds of Angry Birds while I made on-the-road

commits to the book. My brother Jordan for
promoting Gradle in his circle of Denver developers

and supporting my photographic imagery
needs in Gradle educational materials. And my

parents Terry and Marylyn for bearing the laptop
coming out even at dinner whenever a few more

paragraphs could be composed.

—Matthew McCullough

Table of Contents

Foreword . xi

Preface . xiii

1. Hello, Gradle! . 1
Build Files in Groovy 2
Domain-Specific Build Languages 2
Getting Started 3

MacOS Installation with Brew 4
Linux and MacOS Installation 4
Windows Installation 4

The Hello World Build File 6
Building a Java Program 8
The Gradle Command Line 10

2. Gradle Tasks . 13
Declaring a Task 13
Task Action 14
Task Configuration 15
Tasks Are Objects 16

Methods of DefaultTask 17
Properties of DefaultTask 22
Dynamic Properties 26

Task Types 27
Copy 27
Jar 27
JavaExec 28

Custom Task Types 29
Custom Tasks Types in the Build File 29
Custom Tasks in the Source Tree 31

Where Do Tasks Come From? 32

vii

Conclusion 33

3. Ant and Gradle . 35
The Vocabulary 35
Hello Ant 37
Importing Custom Ant Tasks 38
Complex Ant Configuration 40
Importing an Entire Ant Build File 41
Ant Target and Gradle Task Codependence 42
Using AntBuilder 43
A Harmonic Duo 46

4. Maven and Gradle . 47
Cue Graven? 47
The Maven POM and Gradle Build 48
Maven Goals, Gradle Tasks 50
The Standard Maven Coordinates, Gradle Properties 51
More Gradle Properties 52
Dependencies 55
Repositories 57
Unit Testing 59
Multiple Source Directories 61
Default Tasks 61
The Maven Plug-in 62
Installing to the Local Maven Repository (Cache) 63
Publishing to a Maven Repository 64
Maven2Gradle Build Script Converter 65
Maven POM Import 67
Conclusion 68

5. Testing with Gradle . 69
JUnit 69
TestNG 72
Spock 73
Geb and EasyB 74
Gradle’s Testing Focus 77

6. Multiproject Builds . 79
Multiproject Build Structure 79
Project-Specific Build Files 80
One Master Build File 83
A Hybrid Multiproject Build 84
Individual, Unified, or Hybrid? 85

viii | Table of Contents

Multiproject Task Structure 86
Multiple Projects Your Way 87

Table of Contents | ix

Foreword

When I started writing Java code in 1996, there weren’t many options for compiling
and building a project outside of javac and a custom build script. In those days, many
of us with a background in C configured makefiles to build Java, because that’s what
we knew. The challenge with this approach was that the idiom of make and the model
it defined didn’t reflect the Java world very well. Many teams would resort to creating
a shell or batch script to build their project, so there was a huge vacuum at this time
for a tool that would provide platform independent building and packaging. The first
tool to provide a successful solution to this problem and to realize significant adoption
was Ant. Ant provided a way to describe a Java build that was extensible and platform
independent, which was a large part of its success. Some of the downsides of Ant were
its verbosity, its lack of conventions, and its lack of dependency management. These
deficiencies led to another popular tool, Maven, to be adopted by a number of devel-
opment teams.

During the same timeframe, the industry’s maturity was growing in the area of software
engineering discipline. Many of these disciplines were captured in the Agile Manifesto
and in the spirit of Extreme Programming. These led to many changes, including more
frequent builds on machines other than the developer’s workstation, often on different
operating systems. Many teams discovered that a successful compile was just a small
measure of the quality of a project, leading to an increased demand on the build system,
including unit and integration testing, static analysis tools such as FindBugs, and code
coverage analysis. This resulted in new build system pain points that needed to be
addressed. Instead of revisiting the model of the build tool, the common solution was
to create plug-ins to existing build systems. The continued growth in software engi-
neering maturity today can be seen in the DevOps movement, climaxing with the pub-
lication last year of Jez Humble and David Farley’s book Continuous Delivery (Addison-
Wesley). The discipline of continuous delivery encourages us to ask: how fast can we
move a newly coded idea from development into production? The solution to the chal-
lenges of continuous delivery is automation.

What I have discovered over the years as a software engineer is that in order to solve a
problem best, I have to understand the model. The reason make wasn’t a great build
tool for Java is that it didn’t have a way to express the model well. Ant gave us platform

xi

independence and a better vocabulary, but a weak model. Maven provided a stronger
model, which is why so many people prefer it over Ant. The challenge for Maven is that
it provided “the one model to rule them all.” You’re able to express your build needs
within that model and only that model.

Gradle fills this gap. Gradle provides a way of modeling a build system using a DSL
with convention over configuration, yet allowing an enterprise to define its own model.
It goes deeper than this, as explained in this introductory book by Matthew and Tim,
but modeling by convention is truly a game changer for enterprise software develop-
ment.

I was excited to see that this book was being written by Matthew and Tim. Matthew
has a tremendous amount of experience in the software automation space, with years
of practical hands-on consulting experience with Maven and being the top go-to guy
for Git training. Tim has been one of the top practicers and trainers in the Groovy and
Grails space for years. Together, they bring a tremendous amount of experience in
software development and software automation to this book. Additionally, I’ve known
both these guys as part of the No Fluff Just Stuff software conference series, in addition
to many other conferences, and I can attest to them being top-notch speakers, teachers,
and trainers. Tim and Matthew have a fantastic capacity to know very low-level tech-
nical details and can share that information with others in a very approachable way,
which I feel is reflected well in this book.

This book is the first book to be focused solely on the subject of Gradle. As one who
is convinced that this technology is a game changer—so much so I joined the company
behind it!—I’m convinced it will be well worth your time to understand and know this
technology. I can’t think of better people to write it than Matthew and Tim, and I know
you’ll agree. May your builds always succeed!

—Ken Sipe

xii | Foreword

Preface

Introduction
This book has a very clear aim: introduce you to the incredible simplicity and power
of Gradle.

Gradle is a flexible yet model-driven JVM-based build tool. Gradle acknowledges and
improves on the very best ideas from Make, Ant, Ivy, Maven, Rake, Gant, Scons, SBT,
Leinengen, and Buildr. The best-of-breed features previously scattered among a set of
tools are now made available via a unified Groovy DSL for scripting and Java API for
tooling. Gradle, even at the 1.0 milestone release current as of the time of this writing,
already has a passionate following among some of the most respected enterprises and
open source communities.

As we explore the tool’s capabilities, you’ll discover that Gradle is being heralded as
more than just a build tool but also as a means of automating the compilation, test,
and release process. In this first official book on this open source project, we’ll showcase
why the excitement around Gradle is on the rise and how it meets the challenge of these
lofty build automation goals. Future volumes will cover the Gradle plug-in ecosystem,
how to extend Gradle with your own build logic, and even more advanced topics. We’re
excited to have you along for the ride.

Tim Berglund and Matthew McCullough

xiii

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program elements
such as variable or function names, databases, data types, environment variables,
statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter-
mined by context.

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

Using Code Examples
This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact us for
permission unless you’re reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book does not require
permission. Selling or distributing a CD-ROM of examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting example
code does not require permission. Incorporating a significant amount of example code
from this book into your product’s documentation does require permission.

All the code samples used in this book in addition to many others that supplement this
learning effort can be found, fully open sourced, at https://github.com/gradleware/oreilly
-gradle-book-examples

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “Building and Testing with Gradle by Tim
Berglund and Matthew McCullough (O’Reilly). Copyright 2011 Gradle, Inc.,
978-1-449-30463-8.”

xiv | Preface

https://github.com/gradleware/oreilly-gradle-book-examples
https://github.com/gradleware/oreilly-gradle-book-examples

If you feel your use of code examples falls outside fair use or the permission given above,
feel free to contact us at permissions@oreilly.com.

Safari® Books Online
Safari Books Online is an on-demand digital library that lets you easily
search over 7,500 technology and creative reference books and videos to
find the answers you need quickly.

With a subscription, you can read any page and watch any video from our library online.
Read books on your cell phone and mobile devices. Access new titles before they are
available for print, and get exclusive access to manuscripts in development and post
feedback for the authors. Copy and paste code samples, organize your favorites, down-
load chapters, bookmark key sections, create notes, print out pages, and benefit from
tons of other time-saving features.

O’Reilly Media has uploaded this book to the Safari Books Online service. To have full
digital access to this book and others on similar topics from O’Reilly and other pub-
lishers, sign up for free at http://my.safaribooksonline.com.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at:

http://www.oreilly.com/catalog/0636920019909

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about our books, courses, conferences, and news, see our website
at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Preface | xv

mailto:permissions@oreilly.com
http://my.safaribooksonline.com/?portal=oreilly
http://www.oreilly.com/catalog/0636920019909
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

Acknowledgments from Tim Berglund
I’m delighted to be a part of this, the first book on Gradle to be available to the mar-
ketplace. It’s not every day that a game-changing technology comes along, and it’s
exciting to be a small part of one when it does. Gradle is just such an opportunity for
everyone reading this book.

Writing a book is enormously difficult work, even when it’s a small one and you share
the load with a coauthor. I should start by thanking that coauthor, Matthew McCul-
lough, for his organization, motivation, willingness to hold me accoutable, and of
course his excellent contributions to this volume.

I would also like to thank Hans Dockter, Ken Sipe, Adam Murdoch, Peter Niederwieser,
Szczepan Faber, and Luke Daley of the Gradleware team for their support in answering
questions and providing feedback during the writing process. The technical accuracy
of this volume would be dramatically compromised without them.

Thanks to Mike Loukides for his confidence in Gradle as a technology and his help in
publishing this book under O’Reilly’s name. Thanks also for the editorial contributions
of Meghan Blanchette and Jasmine Perez.

The book also would not have been possible without the support of Jay Zimmerman
of the No Fluff Just Stuff conference series. In five years, when Gradle has brought
peace and order to all of your builds in ways you never could have anticipated, and you
look back and realize you learned it all from these books, send Jay an email to say
thanks. He won’t know why you’re sending it, but you will.

Finally, I want to thank my wife, Kari. I could have been called to other kinds of work
which would have imposed less of a burden on her and conformed better to the as-
sumptions she once made about what it is her husband would do, but instead she got
this. Nevertheless, she believes in me and supports me in my vocation, including things
like the writing of this book. These things likely would not happen if she hadn’t.

The project of explaining Gradle continues, and these acknowledgments will follow it
in the future volumes.

Acknowledgments from Matthew McCullough
Rich Remington for his detailed book review and edits.

Ken Sipe for his structural suggestions and content review.

Chris Beams for his legitimizing of Gradle through SpringSource projects.

Hans Dockter for his edits, but equally for his coinvention of this incredible new tool
and belief that it can be stretched even further.

Adam Murdoch for his coinvention and equally meaningful technical edits of the book.

xvi | Preface

Tim Berglund for his sharing of the effort on authoring this book.

Jay Zimmerman for his encouragement and multifacted support of this technological
and educational endeavor we call Gradle.

Preface | xvii

CHAPTER 1

Hello, Gradle!

Ant and Maven have occupied opposing positions on the build continuum, to the
benefit and detriment of their users over the past decade. Ant chooses to offer extreme
flexibility to the user, imposing no conventions whatsoever, and not wanting to impose
any heavyweight dependency management infrastructure on the build. Apache Ivy later
added badly needed dependency management to Java builds, but still didn’t address
the lack of conventions inherent in Ant. Maven, on the other hand, offered rigid
standards and support for dependency management, but its standards were often over-
bearing, and deviating from them often proved more difficult than expected.

Ant and Maven have shared considerable success in the Java marketplace, despite
important shortcomings in both tools. On the one hand, Gradle presents itself as a
sensible middle ground between both extremes, offering thoughtful conventions for
your build to follow, and making it easy for you to extend or redefine those conventions
when you want to. Gradle provides out-of-the-box build conventions and at the same
time realizes that no one set of standards can accurately reflect every build. Gradle
therefore intends to be a means of developing organization- and project-specific build
standards. It is best thought of not as a set of opinions on build standards, but as a
toolkit for developing and extending those standards with a rich, descriptive language.

Gradle also gives you options in the way it handles build dependencies. If your project’s
idiom is to declare a few top-level dependencies by name and let your build tool
determine what other libraries must be present to support your declared dependencies
(“transitive dependency management”), Gradle will let you do that, interfacing with
both Maven and Ivy repositories. If you want to download JAR files and manage
dependencies by hand in a local project directory, Gradle will not penalize you in any
way. Both approaches are first-class options. This flexibility is important in many cases,
but especially when migrating builds to Gradle: regardless of the legacy build’s opinions
on dependency management, Gradle will not oppose them.

1

Gradle is rich in features, but is not such an opinionated framework that it will fight
you when you want to do things your own way. It offers conventions to those who want
them, flexibility to those who need it, and a toolkit for turning that flexibility into
domain-specific build standards that you can write on your own. Apart from its
nuanced position on the convention/configuration continuum, it offers no shortage of
helpful, high-productivity features absent from other build tools. We will explore these
together throughout the book.

Build Files in Groovy
A potentially complex build file demands an expressive format. XML was an easy choice
for a build tool a decade ago, when it was a new technology, developers were enthusi-
astic about it, and no one yet knew the pain of reading it in large quantities. It seemed
to be human-readable, and it was very easy to write code to parse it. However, a decade
of experience has shown that large and complex XML files are only easy for machines
to read, not for humans. Also, XML’s strictly hierarchical structure limits the expres-
siveness of the format. It’s easy to show nesting relationships in XML, but it’s hard to
express program flow and data access the way most common programming language
idioms express them. Ultimately, XML is the wrong format for a build file.

Gradle expresses its build files in Groovy. Groovy is a dynamic language of the JVM,
similar in many respects to Java, but with some important differences. Every Gradle
build file is an executable Groovy script. As a beginning Gradle user, you don’t even
need to be aware that you’re writing Groovy code, but as your needs become more
sophisticated, the power of the Groovy language may become very important. Unlike
the build file formats of Ant and Maven, Gradle’s Groovy-based build files allow you
to do general-purpose programming tasks in your build file. This relieves much of the
frustration developers have faced in lacking control flow in Ant or being forced into
plug-in development in Maven to accomplish nonstandard tasks.

Domain-Specific Build Languages
Every developer maintaining a complex build has wanted at some point to write just a
little bit of code in the build file. Sometime you just need an iterator, and other times
you’d like to express a moderately complex conditional without resorting to major
build file surgery. But is the unlimited ability to code your way through a complex build
a good thing? It might open broad new vistas of flexibility, but the result might ulti-
mately be a catastrophe of maintainability. Since Gradle build files are Groovy scripts,
Gradle gives you the option to break into scripting mode at any point in your build,
but doing this to excess is generally not encouraged.

2 | Chapter 1: Hello, Gradle!

Instead, Gradle intends to present the user not with mere Groovy, but with a domain-
specific language (DSL) tailored to the task of building code. A Gradle user could learn
this language, not previously having known Groovy, and use Gradle effectively. This
DSL describes the build using idioms appropriate to the task of building software, not
necessarily to general-purpose programming. General-purpose coding is always avail-
able as a fallback, but Gradle gently nudges the user toward using the idioms of its DSL
first, and coding second.

When the standard Gradle DSL doesn’t have the language to describe what you want
your build to do, you can extend the DSL through plug-ins. For example, Gradle out
of the box contains the language needed to describe how to build Java code and create
a WAR file from the output. However, it doesn’t contain the language needed to run
database migration scripts or deploy code to a set of cloud-based QA servers. Through
Gradle plug-ins, you can add new task definitions, change the behavior of existing tasks,
add new objects, and create new keywords to describe tasks that depart from the
standard Gradle categories. Even through the simple mechanism of a custom Gradle
task, you can introduce small pieces of build vocabulary, turning an otherwise unde-
sirable chunk of imperative code into a clean declaration.

If you are coming from Maven, your understanding of a plug-in may be quite different
from Gradle’s plug-in concept. In Maven, a plug-in is a means of extending the tool
with a particular, fine-grained action to be performed during your build, often associ-
ated with one or more phases in Maven’s elaborate lifecycle model. In Gradle, a plug-
in may provide configurable build actions by introducing one or more tasks, but it is
fundamentally a means of extending the build DSL to include the domain encompassed
by the plug-in.

Using and extending the Gradle DSL are usually preferable to writing code in your build
file. While you are always free to solve problems in a locally optimized way by writing
Groovy code inside your build, the most maintainable builds will eventually refactor
this code into organized plug-ins that expose new build language idioms to the build
files that use them. Thus you can express the activities of your build in a high-level,
declarative language that is meaningful in your business and technology domain.

Getting Started
Gradle is easy to install. For all platforms, the procedure is as follows:

• Visit http://gradle.org/downloads.html and download the current release

• Unzip the downloaded file into a directory of your choosing

• Add the environment variable GRADLE_HOME, pointing to the install directory (this is
optional, but it makes the next step easier)

• Add $GRADLE_HOME/bin to your path

Getting Started | 3

http://gradle.org/downloads.html

MacOS Installation with Brew
Gradle is maintained in the community-supported MacOS package manager, Home-
brew, or “brew” for short. To install Gradle using brew, simply type the following from
a Terminal window:

$ sudo brew install gradle

Brew will install and build any dependencies, then place the Gradle executable in your
path.

Linux and MacOS Installation
To install Gradle on *nix operating systems like Linux and MacOS, follow this com-
mand-line script:

$ wget http://repo.gradle.org/gradle/distributions/gradle-1.0-bin.zip
--2011-03-18 10:58:46-- http://repo.gradle.org/gradle/distributions/
gradle-1.0-bin.zip
Resolving repo.gradle.org... 50.16.203.43
Connecting to gradle.artifactoryonline.com |50.16.203.43|:80... connected.
HTTP request sent, awaiting response... 200 OK
Length: 26899590 (26M) [application/zip]
Saving to: `gradle-1.0-bin.zip'

100%[===>]
26,899,590 171K/s in 2m 56s

2011-03-18 11:01:42 (149 KB/s) - `gradle-1.0-bin.zip' saved [26899590/26899590]

$ sudo unzip -q gradle-1.0-bin.zip -d /usr/local/
$ echo "export GRADLE_HOME=/usr/local/gradle-1.0" >> .profile
$ echo "export PATH=$PATH:$GRADLE_HOME/bin" >> .profile

You can also download the Gradle distribution directly from the Gradle
web site and unzip that file. Also, you may prefer another mechanism
of setting environment variables on your installation. Feel free to use
whatever works for you.

Windows Installation
To install Gradle on Windows, do the following:

• Download the Gradle ZIP file from the Gradle web site and double-click on it to
unzip. Drag the folder to a location of your choosing. In this example, we’ll assume
you put it in C:\gradle-1.0.

• Next, right-click on the My Computer icon and select Properties.

4 | Chapter 1: Hello, Gradle!

http://mxcl.github.com/homebrew
http://mxcl.github.com/homebrew
http://gradle.org/downloads.html
http://gradle.org/downloads.html
http://gradle.org/downloads.html

• In the System Control Panel window, select Advanced System Settings from the
links on the left.

• In the Advanced System Settings dialog box (Figure 1-1), click on the Environment
Variables button.

Figure 1-1. Windows Advanced System Settings dialog

The screenshots shown here are taken from Windows 7 SP1. Your ver-
sion of Windows may vary.

• In the Environment Variables dialog box, click the New button under System Var-
iables (Figure 1-2). Name the environment variable GRADLE_HOME, and give it the
value C:\gradle-1.0. (If you unzipped Gradle into a different directory, put that
directory here.)

Getting Started | 5

Figure 1-2. Adding the GRADLE_HOME environment variable

• In that same dialog box, select the Path variable under System Variables (Fig-
ure 1-3), then click Edit. Add the text ;%GRADLE_HOME%\bin to the end of the Path
variable value.

The Hello World Build File
Now that we have Gradle installed, we can start using it. Let’s build the simplest build
file that we possibly can to get an idea of the basics.

Unless otherwise noted, all of the examples in this book will assume
that you are running Gradle from the command line. See the installation
procedures in “Getting Started” on page 3 for help getting started.

6 | Chapter 1: Hello, Gradle!

Create a file called build.gradle that looks like Example 1-1.

Example 1-1. Hello World build file

task helloWorld << {
 println 'hello, world'
}

You will see the following output as a result of the Hello World build:

$ gradle -q helloWorld
hello, world

Note that the build file isn’t required to include anything, and doesn’t rely on any
external dependencies. It also doesn’t do much, other than printing out a message.
Before we move on to building some Java code, let’s try one more example. This time,
we’ll use two tasks plus a dependency to get the same work done (Example 1-2).

Figure 1-3. Editing the path

The Hello World Build File | 7

Example 1-2. Hello World in two tasks

task hello << {
 print 'hello, '
}

task world(dependsOn: hello) << {
 println 'world'
}

To run this build, we execute the second task, world. It produces remarkably similar
output to the first:

$ gradle -q world
hello, world

Building a Java Program
Of course, the Hello World example is contrived; nobody really wants to execute a
build that only prints messages to the console. Let’s have a look at how easy it can be
to build Java code. In the spirit of this introduction, we’ll make it a very simple Java
program, just to showcase how simple Gradle can make a build if you are comfortable
following its conventions.

The build file looks as shown in Example 1-3.

Example 1-3. The Simplest Possible Gradle Build File for Java

apply plugin: 'java'

The source code looks as shown in Example 1-4.

Example 1-4. Hello World in Java

package org.gradle.example.simple;

public class HelloWorld {
 public static void main(String args[]) {
 System.out.println(“hello, world”);
 }
}

Importantly, the directory layout of the project looks as shown in Example 1-5.

Example 1-5. Project layout of Hello World Java

.
├── build.gradle
 └── src
 └── main
 └── java
 └── org
 └── gradle
 └── example

8 | Chapter 1: Hello, Gradle!

 └── simple
 └── HelloWorld.java

This build file automatically introduces a number of tasks for us to run. Just run gradle
build, and you’ll see the output shown in Example 1-6.

Example 1-6. Project Layout of Hello World Java After Build

.
├── build
│ ├── classes
│ │ └── main
│ │ └── org
│ │ └── gradle
│ │ └── example
│ │ └── simple
│ │ └── HelloWorld.class
│ ├── dependency-cache
│ ├── libs
│ │ └── minimal-java-build-file.jar
│ ├── reports
│ │ └── tests
│ │ ├── css3-pie-1.0beta3.htc
│ │ ├── index.html
│ │ ├── report.js
│ │ └── style.css
│ ├── test-results
├── build.gradle
├── run-example.bsh
└── src
 └── main
 └── java
 └── org
 └── gradle
 └── example
 └── simple
 └── HelloWorld.java

Notice not only that the Java code has been compiled and its class file placed in a
directory we didn’t have to configure, but also that test report files have been generated
(ready to receive actual unit test results when we write tests later), and a JAR has been
built using the project directory name as the filename. This is all a result of the con-
ventions of Gradle’s Java plug-in. We didn’t have to make a single decision or write a
line of configuration. And let it not go without saying that we can run our nascent Java
application as shown in Example 1-7.

Example 1-7. Running Hello World Java

$ java -cp build/classes/main/ org.gradle.example.simple.HelloWorld
hello, world

Building a Java Program | 9

There is a much longer story to tell about the Java plug-in, which will be covered in a
separate volume. If you want to get started now, you should also check out the online
documentation.

If you had to write a real-world build file to build and run a Java pro-
gram, you would want to use the application plug-in, which is a core
plug-in available with every installation of Gradle.

The Gradle Command Line
The preceding examples have shown Gradle running from the command line, and the
majority of this book will continue that pattern. Gradle is designed to support first-
class IDE integration at a deep architectural level, but the command line is anything
but a second-class citizen. In this book, we will work primarily from the command line.

We won’t go over all possible command line options, but here’s what you need to be
productive right away:

--help or -h
Prints out the help messages describing all command-line options.

-Dproperty=value

Defines a system property. This is a useful mechanism for passing parameters into
a build from the command line. Example: -Dcustom.config=my-config.properties.

--info or -i
Sets the Gradle log level to INFO, which causes a few more informative messages
to be emitted over the default setting.

--debug or -d
Turns out debug logging for the build, including stack traces. This generates a lot
of output, but can be quite useful for troubleshooting build problems.

--dry-run or -m
Evaluates and runs the build file, but does not execute any task actions.

--quiet or -q
Suppresses most output, showing error messages only.

--gui

Launches the Gradle GUI.

--stacktrace or -s
Emits an abbreviated stack trace when an exception is thrown by the build.
Normally, stack trace logging is suppressed, so this is a helpful switch when
debugging a broken build. The stack trace is abbreviated by removing frames
related to purely internal Groovy method calls.

10 | Chapter 1: Hello, Gradle!

http://www.gradle.org/current/docs/userguide/userguide.html
http://www.gradle.org/current/docs/userguide/userguide.html

--full-stacktrace or -S
Emits a longer version of the --stacktrace output, including all internal Groovy
method calls. These are usually not of interest to the build developer.

properties

Emits all the properties of the build’s Project object. The Project object is an object
representing the structure and state of the current build.

tasks

Emits a list of all tasks available in the current build file. Note that plug-ins may
introduce tasks of their own, so this list may be longer than the tasks you have
defined.

The Gradle Command Line | 11

CHAPTER 2

Gradle Tasks

Inside of a Gradle build file, the fundamental unit of build activity is the task. Tasks
are named collections of build instructions that Gradle executes as it performs a build.
You’ve already seen examples of tasks in Chapter 1, and they may seem like a familiar
abstraction compared to other build systems, but Gradle provides a richer model than
you may be used to. Rather than bare declarations of build activity tied together with
dependencies, Gradle tasks are first-class objects available to you to program if you
desire.

Let’s take a look at the different ways of defining a task, the two key aspects of task
definitions, and the task API we can use to perform our own customization.

Declaring a Task
In the introduction, we saw how to create a task and assign it behavior all at the same
time. However, there’s an even simpler way to create a task. All you need is a task name
(Example 2-1).

Example 2-1. Declaring a task by name only

task hello

You can see the results of this by running gradle tasks (Example 2-2).

Example 2-2. Gradle’s report of the newly created task

 --
 Root Project
 --

 Help tasks

 dependencies - Displays the dependencies of root project 'task-lab'.
 help - Displays a help message
 projects - Displays the subprojects of root project 'task-lab'.
 properties - Displays the properties of root project 'task-lab'.

13

 tasks - Displays the tasks in root project 'task-lab'.

 Other tasks

 hello

Task Action
However, executing this task with gradle hello will not produce any result, because
we haven’t yet assigned the task an action. Previously, we assigned an action to a task
with the left-shift operator (Example 2-3).

Example 2-3. Giving a task a trivial action to perform

task hello << {
 println 'hello, world'
}

In Groovy, operators like << (the “left-shift” operator from Java) can be
overloaded to have different meanings depending upon the types of the
objects they operate on. In this case, Gradle has overloaded << to append
a code block to the list of actions a task performs. This is equivalent to
the doLast() method we’ll cover later in the chapter.

However, we now have the flexibility of accruing action code in the task by referring
to the task object we’ve created (Example 2-4).

Example 2-4. Appending a task’s actions one at a time

task hello

hello << {
 print 'hello, '
}

hello << {
 println 'world'
}

Now we can recover our familiar build output (Example 2-5).

Example 2-5. The output of the build with actions appended a piece at a time

$ gradle hello
hello, world
$

14 | Chapter 2: Gradle Tasks

This is again trivial build behavior, but it exposes a powerful insight: tasks are not one-
off declarations of build activity, but are first-class objects in the Gradle programming
environment. And if we can accrue build actions to them over the course of the build
file, there’s probably more we can do. Let’s keep exploring.

Task Configuration
New users of Gradle commonly stumble over the configuration syntax when trying to
define task actions. Continuing our previous example, we can expand it to include a
configuration block (Example 2-6).

Example 2-6. A mix of task configuration and task action definition

task initializeDatabase
initializeDatabase << { println 'connect to database' }
initializeDatabase << { println 'update database schema' }
initializeDatabase { println 'configuring database connection' }

Running this build file, we get what may seem to be a counterintuitive result (Exam-
ple 2-7).

Example 2-7. The output of the preceding build file

$ gradle -b scratch.gradle initializeDatabase
configuring database connection
:initializeDatabase
connect to database
update database schema
$

Groovy uses the term “closure” to refer to a block of code between two
curly braces. A closure functions like an object that can be passed as a
parameter to a method or assigned to a variable, then executed later.
You’ll see closures all over in Gradle, since they’re a perfect fit for hold-
ing blocks of configuration code and build actions.

If the third closure had been just another snippet of build action, then we’d expect its
message to print last, not first. It turns out that the closure added to the task name
without the left-shift operator doesn’t create additional task action code at all. Instead,
it is a configuration block. The configuration block of a task is run during Gradle’s
configuration lifecycle phase, which runs before the execution phase, when task actions
are executed.

Task Configuration | 15

Every time Gradle executes a build, it runs through three lifecycle
phases: initialization, configuration, and execution. Execution is the
phase in which build tasks are executed in the order required by their
dependency relationships. Configuration is the phase in which those
task objects are assembled into an internal object model, usually called
the DAG (for directed acyclic graph). Initialization is the phase in which
Gradle decides which projects are to participate in the build. The latter
phase is important in multiproject builds.

Configuration closures are additive just like action closures, so we could have written
the previous build file like so, and we would see the same output (Example 2-8).

Example 2-8. Appending configuration blocks

task initializeDatabase
initializeDatabase << { println 'connect to database' }
initializeDatabase << { println 'update database schema' }
initializeDatabase { print 'configuring ' }
initializeDatabase { println 'database connection' }

The configuration block is the place to set up variables and data structures that will be
needed by the task action when (and if) it runs later on in the build. The configuration
structure gives you the opportunity to turn your build’s tasks into a rich object model
populated with information about the build, rather than a mere set of build actions to
be executed in some sequence. Without this distinction between configuration and
action, you’d have to build additional complexity into your task dependency relation-
ships, resulting in a more fragile build and a much less expressive means of communi-
cating the build’s essential data structures.

All build configuration code runs every time you run a Gradle build file,
regardless of whether any given task runs during execution.

Tasks Are Objects
It may have occurred to you by now that Gradle is creating an internal object model of
your build before executing it. This is, in fact, explicitly what Gradle is doing. Every
task you declare is actually a task object contained within the overall project. A task
object has properties and methods just like any other object. We can even control the
type of each task object, and access unique, type-specific functionality accordingly. A
few examples will help make this clear.

By default, each new task receives the type of DefaultTask. Like java.lang.Object in
Java code, every Gradle task descends from this object type—even tasks that extend
the DefaultTask type with a type of their own. DefaultTasks don’t actually do anything

16 | Chapter 2: Gradle Tasks

like compile code or copy files, but they do contain the functionality required for them
to interface with the Gradle project model. Let’s take a look at the methods and prop-
erties each and every Gradle task has.

Methods of DefaultTask

dependsOn(task)

Adds a task as a dependency of the calling task. A depended-on task will always run
before the task that depends on it. There are several ways to invoke this method. If task
world depends on task hello, we could use the code shown in Example 2-9.

Example 2-9. Different ways of calling the dependsOn method

// Declare that world depends on hello
// Preserves any previously defined dependencies as well
task loadTestData {
 dependsOn createSchema
}

// An alternate way to express the same dependency
task loadTestData {
 dependsOn << createSchema
}

// Do the same using single quotes (which are usually optional)
task loadTestData {
 dependsOn 'createSchema'
}

// Explicitly call the method on the task object
task loadTestData
loadTestData.dependsOn createSchema

// A shortcut for declaring dependencies
task loadTestData(dependsOn: createSchema)

A task can depend on more than one task. If task loadTestData depends on tasks
createSchema and compileTestClasses, we could use the code shown in Example 2-10.

Example 2-10. Different ways of calling the dependsOn method for multiple dependencies

// Declare dependencies one at a time
task loadTestData {
 dependsOn << compileTestClasses
 dependsOn << createSchema
}

// Pass dependencies as a variable-length list
task world {
 dependsOn compileTestClasses, createSchema
}

Tasks Are Objects | 17

// Explicitly call the method on the task object
task world
world.dependsOn compileTestClasses, createSchema

// A shortcut for dependencies only
// Note the Groovy list syntax
task world(dependsOn: [compileTestClasses, createSchema])

doFirst(closure)

Adds a block of executable code to the beginning of a task’s action. During the execu-
tion phase, the action block of every relevant task is executed. The doFirst method
allows you to add a bit of behavior to the beginning of an existing action, even if that
action is defined by a build file or a plug-in you don’t control. Calling doFirst multiple
times keeps appending new blocks of action code to the beginning of the task’s exe-
cution sequence.

You can invoke the doFirst method directly on the task object, passing a closure to the
method. The closure contains the code to run before the task’s existing action.

As we’ve already mentioned, a closure is a block of Groovy code inside
a pair of curly braces. You can pass a closure around just like any other
object. Passing closures to methods is a common Groovy idiom.

Example 2-11. Calling the doFirst method on the task object

task setupDatabaseTests << {
 // This is the task's existing action
 println 'load test data'
}

setupDatabaseTests.doFirst {
 println 'create schema'
}

Example 2-12. The results of the preceding build file

$ gradle setupDatabaseTests
:setupDatabaseTests
create schema
load test data
$

You can also invoke doFirst from within the task’s configuration block. Recall that the
configuration block is a piece of executable code that runs before any task’s action runs,
during the configuration phase of the build. In our earlier discussion of task configu-
ration, you may have been wondering how you might practically use the configuration
block. This example shows how you can call task methods from inside the configuration
block, which makes a potentially very expressive format for modifying task behavior
(Example 2-13).

18 | Chapter 2: Gradle Tasks

Example 2-13. Calling the doFirst method inside the task’s configuration block

task setupDatabaseTests << {
 println 'load test data'
}

setupDatabaseTests {
 doFirst {
 println 'create schema'
 }
}

Repeated calls to the doFirst method are additive. Each previous call’s action code is
retained, and the new closure is appended to the start of the list to be executed in order.
If we had to set up a database for integration testing (and wanted to do it a piece at a
time), we might use the code shown in Example 2-14.

Example 2-14. Repeated calls to doFirst are cumulative

task setupDatabaseTests << {
 println 'load test data'
}

setupDatabaseTests.doFirst {
 println 'create database schema'
}

setupDatabaseTests.doFirst {
 println 'drop database schema'
}

Example 2-15. The output of the preceding example

$ gradle world
:setupDatabaseTests
drop database schema
create database schema
load test data
$

Of course, it’s somewhat contrived to break one initialization sequence into three sep-
arate closures and calls to doFirst(), as we’ve done here. However, sometimes the
initial definition of a task isn’t immediately available to change as you see fit—for
example, in cases in which the task is defined in another build file that is impossible or
impractical for you to modify. This kind of programmatic modification of that other-
wise inaccessible build logic can be very powerful.

So far, our examples have used a very simple syntax, which makes the mechanics of
Gradle more obvious, though at the expense of a lot of repetition. In a real-world build
(still relying on println statements in place of actual testing actions), we would be more
likely to structure the task as done in Example 2-16.

Tasks Are Objects | 19

Example 2-16. Repeated calls to doFirst, refactored

// Initial task definition (maybe not easily editable)
task setupDatabaseTests << {
 println 'load test data'
}

// Our changes to the task (in a place we can edit them)
setupDatabaseTests {
 doFirst {
 println 'create database schema'
 }
 doFirst {
 println 'drop database schema'
 }
}

Note that we gather together the multiple calls to doFirst inside a single configuration
block, and this occurs after the initial action is added to the world task.

doLast(closure)

The doLast method is very similar to the doFirst() method, except that it appends
behavior to the end of an action, rather than before it. If there was a block of code you
wanted to run after an existing task was done executing, you might do as shown in
Example 2-17:

Example 2-17. An example of the doLast method

task setupDatabaseTests << {
 println 'create database schema'
}

setupDatabaseTests.doLast {
 println 'load test data'
}

Just like doFirst, repeated calls to doLast are additive. Each succeeding call appends
its closure to the end of the list to be executed in order (Example 2-18).

Example 2-18. Repeated calls to doLast are additive

task setupDatabaseTests << {
 println 'create database schema'
}

setupDatabaseTests.doLast {
 println 'load test data'
}

setupDatabaseTests.doLast {
 println 'update version table'
}

20 | Chapter 2: Gradle Tasks

As discussed in “Task Action” on page 14, the << operator is another
way of expressing a call to the doLast() method.

onlyIf(closure)

The onlyIf method allows you to express a predicate which determines whether a task
should be executed. The value of the predicate is the value returned by the closure.
Using this method, you can disable the execution of a task which might otherwise run
as a normal part of the build’s dependency chain.

In Groovy, the last statement of a closure is the closure’s return value,
even if no return statement is given. A Groovy method containing a
single expression is a function that returns the value of that expression.

Example 2-19. A build file making use of the onlyIf method.

task createSchema << {
 println 'create database schema'
}

task loadTestData(dependsOn: createSchema) << {
 println 'load test data'
}

loadTestData.onlyIf {
 System.properties['load.data'] == 'true'
}

Example 2-20. Two invocations of the preceding build file. Note differing results.

$ build loadTestData

create database schema
:loadTestData SKIPPED

$ gradle -Dload.data=true loadTestData
:createSchema
create database schema
:loadTestData
load test data
$

Using the onlyIf method, you can switch individual tasks on and off using any logic
you can express in Groovy code, not just the simple System property tests we’ve used
here. You can read files, call web services, check security credentials, or just about
anything else.

Tasks Are Objects | 21

Properties of DefaultTask

didWork

A boolean property indicating whether the task completed successfully. Not all tasks
may set didWork upon completion, but some built-in tasks like Compile, Copy, and
Delete do set it to reflect the success or failure of their actions. The evaluation of a task
having worked is task-specific. For example, the current implementation of the Java
Compiler returns didWork of true if at least one file successfully compiled. You are able
to set the didWork property in your own task actions to reflect the results of build code
you write.

Example 2-21. Send an email upon successful compilation

apply plugin: 'java'

task emailMe(dependsOn: compileJava) << {
 if(tasks.compileJava.didWork) {
 println 'SEND EMAIL ANNOUNCING SUCCESS'
 }
}

Example 2-22. The results of the didWork build

$ gradle -b didWork.gradle emailMe
SEND EMAIL ANNOUNCING SUCCESS
$

enabled

A boolean property indicating whether the task will execute. You can set any task’s
enabled property to false to cause it not to run. Its dependencies will still execute the
way they would if the task were enabled.

Example 2-23. Disabling a task

task templates << {
 println 'process email templates'
}

task sendEmails(dependsOn: templates) << {
 println 'send emails'
}

sendEmails.enabled = false

Example 2-24. The build with a task disabled. Note that the dependency still runs.

$ gradle -b enabled.gradle sendEmails
:templates
process email templates
:sendEmails SKIPPED
$

22 | Chapter 2: Gradle Tasks

The -b command line switch points Gradle to a nondefault build file.
By default, it looks for a file called build.gradle, but this switch lets us
point it at a different file.

path

A string property containing the fully qualified path of a task. By default, a task’s path
is simply the name of the task with a leading colon. The following build file illustrates
this.

Example 2-25. A single-level build file that echoes its only task’s path

task echoMyPath << {
 println "THIS TASK'S PATH IS ${path}"
}

Example 2-26. The results of the previous build file

$ gradle -b path.gradle echoMyPath
THIS TASK'S PATH IS :echoMyPath
$

The leading colon indicates that the task is located in the top-level build file. However,
for a given build, not all tasks must be present in the top-level build file, since Gradle
supports dependent subprojects, or nested builds. If the task existed in a nested build
called subProject, then the path would be :subProject:echoMyPath. For more details
on nested builds, see Chapter 6.

logger

A reference to the internal Gradle logger object. The Gradle logger implements the
org.slf4j.Logger interface, but with a few extra logging levels added. The logging levels
supported by the logger are as follows. Setting the log level to one enables log output
from all succeeding log levels, with the exception of WARN and QUIET as noted:

• DEBUG. For high-volume logging messages which are of interest to the build devel-
oper, but should be suppressed during normal build execution. When this log level
is selected, Gradle automatically provides a richer log formatter, including the
timestamp, log level, and logger name of each message. All other log levels emit
only the undecorated log message.

• INFO. For lower-volume informative build messages which may be of optional
interest during build execution.

• LIFECYCLE. Low-volume messages, usually from Gradle itself, about changes in the
build lifecycle and the execution of the build tool. When Gradle is executed without
the -q command line option, this is the default logging level. Calls to the println
method emit log statements at this level.

Tasks Are Objects | 23

• WARN. Low-volume but important messages, alerting the executor of the build of
potential problems. When the log level is set to WARN, QUIET-level messages are not
emitted.

• QUIET. Messages which should appear even if the quiet switch was specified on the
Gradle command line. (Executing Gradle with the -q command line option causes
this to be the default log level.) System.out.println is directed to the logger at this
log level. When the log level is set to QUIET, WARN-level messages are not emitted.

• ERROR. Rare but critically important log messages which should be emitted in all
cases. Intended to communicate build failures. If the log level is set to ERROR, calls
to System.out.println will not show up in the console.

Example 2-27. A task illustrating the effects of each logging level. This slightly trickier Groovy code
sets the log level to each of the valid options, attempting to emit a log message at each log level each
time.

task logLevel << {
 def levels = ['DEBUG',
 'INFO',
 'LIFECYCLE',
 'QUIET',
 'WARN',
 'ERROR']
 levels.each { level ->
 logging.level = level
 def logMessage = "SETTING LogLevel=${level}"
 logger.error logMessage
 logger.error '-' * logMessage.size()
 logger.debug 'DEBUG ENABLED'
 logger.info 'INFO ENABLED'
 logger.lifecycle 'LIFECYCLE ENABLED'
 logger.warn 'WARN ENABLED'
 logger.quiet 'QUIET ENABLED'
 logger.error 'ERROR ENABLED'
 println 'THIS IS println OUTPUT'
 logger.error ' '
 }
}

Example 2-28. The output generated by the preceding build file.

$ gradle -b logging.gradle logLevel
 16:02:34.883 [ERROR] [org.gradle.api.Task] SETTING LogLevel=DEBUG
 16:02:34.902 [ERROR] [org.gradle.api.Task] ----------------------
 16:02:34.903 [DEBUG] [org.gradle.api.Task] DEBUG ENABLED
 16:02:34.903 [INFO] [org.gradle.api.Task] INFO ENABLED
 16:02:34.904 [LIFECYCLE] [org.gradle.api.Task] LIFECYCLE ENABLED
 16:02:34.904 [WARN] [org.gradle.api.Task] WARN ENABLED
 16:02:34.905 [QUIET] [org.gradle.api.Task] QUIET ENABLED
 16:02:34.905 [ERROR] [org.gradle.api.Task] ERROR ENABLED
 16:02:34.906 [ERROR] [org.gradle.api.Task]
 SETTING LogLevel=INFO

24 | Chapter 2: Gradle Tasks

 INFO ENABLED
 LIFECYCLE ENABLED
 WARN ENABLED
 QUIET ENABLED
 ERROR ENABLED

 SETTING LogLevel=LIFECYCLE

 LIFECYCLE ENABLED
 WARN ENABLED
 QUIET ENABLED
 ERROR ENABLED

 SETTING LogLevel=QUIET

 QUIET ENABLED
 ERROR ENABLED

 SETTING LogLevel=WARN

 WARN ENABLED
 ERROR ENABLED

 SETTING LogLevel=ERROR

 ERROR ENABLED
$

logging

The logging property gives us access to the log level. As illustrated in the discussion of
the logger property, the logging.level property can be read and written to change the
logging level in use by the build.

description

The description property is just what it sounds like: a small piece of human-readable
metadata to document the purpose of a task. There are several ways of setting a
description, as shown in Example 2-29 and Example 2-30.

Example 2-29. Setting the description and task behavior all in one

task helloWorld(description: 'Says hello to the world') << {
 println 'hello, world'
}

Example 2-30. The two ways of declaring task behavior and description separately

task helloWorld << {
 println 'hello, world'
}

helloWorld {
 description = 'Says hello to the world'

Tasks Are Objects | 25

}

// Another way to do it
helloWorld.description = 'Says hello to the world'

temporaryDir

The temporaryDir property returns a File object pointing to a temporary directory
belonging to this build file. This directory is generally available to a task needing a
temporary place in which to store intermediate results of any work, or to stage files for
processing inside the task.

Dynamic Properties
As we’ve seen, tasks come with a set of intrinsic properties which are indispensable to
the Gradle user. However, we can also assign any other properties we want to a task.
A task object functions like a hash map, able to contain whatever other arbitrary prop-
erty names and values we care to assign to it (as long as the names don’t collide with
the built-in property names).

Leaving our familiar “hello, world” example, let’s suppose we had a task called
createArtifact that depended on a task called copyFiles. The job of the copyFiles is
to collect files from several sources and copy them into a staging directory, which the
createArtifact task will later assemble into a deployment artifact. The list of files may
change depending on the parameters of the build, but the artifact must contain a man-
ifest listing them, to satisfy some requirement of the deployed application. This is a
perfect occasion to use a dynamic property (Example 2-31 and Example 2-32).

Example 2-31. Build file showing a dynamic task property

task copyFiles {
 // Find files from wherever, copy them
 // (then hardcode a list of files for illustration)
 fileManifest = ['data.csv', 'config.json']
}

task createArtifact(dependsOn: copyFiles) << {
 println "FILES IN MANIFEST: ${copyFiles.fileManifest}"
}

Example 2-32. The output of the above build file

$ gradle -b dynamic.gradle createArtifact
 FILES IN MANIFEST: [data.csv, config.json]
$

26 | Chapter 2: Gradle Tasks

Task Types
As we discussed in “Tasks Are Objects” on page 16, every task has a type. Besides the
DefaultTask, there are task types for copying, archiving, executing programs, and many
more. Declaring a task type is a lot like extending a base class in an object-oriented
programming language: you can get certain methods and properties available in your
task for free. This makes for very concise task definitions that can accomplish a lot.

A complete task reference is beyond the scope of this volume, but here are a few
important types with an example of how to use each.

Copy
A copy task copies files from one place into another (Example 2-33). In its most basic
form, it copies files from one directory into another, with optional restrictions on which
file patterns are included or excluded.

Example 2-33. A simple example of the copy task

task copyFiles(type: Copy) {
 from 'resources'
 into 'target'
 include '**/*.xml', '**/*.txt', '**/*.properties'
}

The copy task will create the destination directory if it doesn’t already exist. In this
case, the copyFiles task will copy any files with the .xml, .properties, or .txt extensions
from the resources directory to the target directory. Note that the from, into, and
include methods are inherited from the Copy.

Jar
A Jar task creates a Jar file from source files (Example 2-34). The Java plug-in creates
a task of this type, called unsurprisingly jar. It packages the main source set and re-
sources together with a trivial manifest into a Jar bearing the project’s name in the
build/libs directory. The task is highly customizable.

Example 2-34. A simple example of the Jar task in the jar-task example project

apply plugin: 'java'

task customJar(type: Jar) {
 manifest {
 attributes firstKey: 'firstValue', secondKey: 'secondValue'
 }
 archiveName = 'hello.jar'
 destinationDir = file("${buildDir}/jars")
 from sourceSets.main.classes
}

Task Types | 27

Note that the archive name and destination directory are easily configurable. Likewise,
the manifest can be populated with custom attributes using a readable Groovy map
syntax. The contents of the JAR are identified by the from sourceSets.main.classes
line, which specifies that the compiled .class files of the main Java sources are to be
included. The from method is identical to the one used in the CopyTask example, which
reveals an interesting insight: the Jar task extends the Copy task. Even before we’ve
seen exhaustive documentation of the Gradle object model and DSL, these details hint
at the richness and order of the underlying structure.

The expression being assigned to destinationDir is worth noting. It would be natural
just to assign a string to destinationDir, but the property expects an argument com-
patible with java.io.File. The file() method, which is always available inside a Gradle
build file, converts the string to a File object.

Remember, you can always open the docs/dsl/index.html file for doc-
umentation on standard Gradle features like the Jar task. Complete
documentation of the Jar task and its companion tasks is beyond the
scope of this book.

JavaExec
A JavaExec task runs a Java class with a main() method. Command-line Java can be a
hassle, but this task tries to take the hassle away and integrate command-line Java
invocations into your build.

Example 2-35. A Gradle task executing a command-line Java program (from the javaexec-task
example)

apply plugin: 'java'

repositories {
 mavenCentral()
}

dependencies {
 runtime 'commons-codec:commons-codec:1.5'
}

task encode(type: JavaExec, dependsOn: classes) {
 main = 'org.gradle.example.commandline.MetaphoneEncoder'
 args = "The rain in Spain falls mainly in the plain".split().toList()
 classpath sourceSets.main.classesDir
 classpath configurations.runtime
}

28 | Chapter 2: Gradle Tasks

The classpath property in the encode task is set to something called
configuration.runtime. A configuration is a collection of dependencies
that have something in common. In this case, the runtime configuration
holds all dependencies which must be available to the program at run-
time. This is in contrast to dependencies which are needed only during
compilation, or only while tests are running, or which are needed at
compile time and runtime, but which are provided by a runtime envi-
ronment like an application server. The configuration property in Gra-
dle is a collection of all configurations defined by the build, each of
which is a collection of actual dependencies.

This build file declares an external dependency: the Apache Commons Codec library.
Normally, we’d have to compile our Java file, then concoct a java command line
including the path to the compiled class files and the JAR dependency. In this build
file, however, we simply identify the main class to be run (org.gradle.example.command
line.MetaphoneEncoder), provide it with some command line arguments in the form of
a List, and point it at the Gradle classpath elements it needs. In this case, we may
symbolically refer to the classes of the main sourceSet and all of the dependencies
declared in the compile configuration. If we had a complex set of dozens of
dependencies from multiple repositories—including even some statically managed
dependencies in the project directory—this simple task would still work.

Custom Task Types
There will be occasions in which Gradle’s built-in task types will not quite do the job,
and instead, the most expressive way to develop your build will be to create a custom
task. Gradle has several ways of doing this. We will discuss the two most common ways
here.

Custom Tasks Types in the Build File
Suppose your build file needs to issue arbitrary queries against a MySQL database.
There are several ways to accomplish this in Gradle, but you decide a custom task is
the most expressive way to do it. The easiest way to introduce the task is simply to
create it in your build script as shown here:

Example 2-36. A custom task to perform queries against a MySQL database (from the custom-task
example)

task createDatabase(type: MySqlTask) {
 sql = 'CREATE DATABASE IF NOT EXISTS example'
}

task createUser(type: MySqlTask, dependsOn: createDatabase) {
 sql = "GRANT ALL PRIVILEGES ON example.*
 TO exampleuser@localhost IDENTIFIED BY 'passw0rd'"

Custom Task Types | 29

}

task createTable(type: MySqlTask, dependsOn: createUser) {
 username = 'exampleuser'
 password = 'passw0rd'
 database = 'example'
 sql = 'CREATE TABLE IF NOT EXISTS users
 (id BIGINT PRIMARY KEY, username VARCHAR(100))'
}

class MySqlTask extends DefaultTask {
 def hostname = 'localhost'
 def port = 3306
 def sql
 def database
 def username = 'root'
 def password = 'password'

 @TaskAction
 def runQuery() {
 def cmd
 if(database) {
 cmd = "mysql -u ${username} -p${password} -h ${hostname}
 -P ${port} ${database} -e "
 }
 else {
 cmd = "mysql -u ${username} -p${password} -h ${hostname} -P ${port} -e "
 }
 project.exec {
 commandLine = cmd.split().toList() + sql
 }
 }
}

The custom task, MySqlTask, extends the DefaultTask class. All custom tasks must
extend this class or one of its descendants. (A custom task can extend any task types
other than DefaultTask. See Task Types for a description of the most important built-
in task types.) The task declares properties (i.e., hostname, database, sql, etc.) in
conventional Groovy idiom. It then declares a single method, runQuery(), which is
annotated with the @TaskAction annotation. This method will run when the task runs.

The actual build tasks at the top of the build file all declare themselves to be of the
MySqlTask type. By doing this, they automatically inherit the properties and action of
that task class. Because most of the properties have defaults (some of which, like user-
name and password, are obviously specific to the build), each invocation of the task
has very little to configure. The createDatabase and createUser tasks are able to con-
figure just a single SQL query, and allow the defaults to take over from there.

The createTable task overrides the username, password, and database properties, since
its task dependencies have created a new database and username separate from the
default administrative settings. The pattern of providing a useful default configuration
which can be overridden when necessary is a recurring theme in Gradle.

30 | Chapter 2: Gradle Tasks

Custom Tasks in the Source Tree
Significant custom task logic will not fit well into a build file. A few simple lines of
scripting can pragmatically be inserted into a short task, as in the custom-task example.
However, at some point, a sophisticated task will develop a class hierarchy of its own,
might develop a reliance on external APIs, and will need automated testing. The build
is code, and complex build code should be treated as a first-class citizen of the devel-
opment world. Gradle makes this easy.

When custom task logic outgrows the build file, we can migrate it to the buildSrc
directory at the project root. This directory is automatically compiled and added to the
build classpath. Here is how we would alter the previous example to use the
buildSrc directory.

Example 2-37. A build file using a custom task not defined in the build script

task createDatabase(type: MySqlTask) {
 sql = 'CREATE DATABASE IF NOT EXISTS example'
}

task createUser(type: MySqlTask, dependsOn: createDatabase) {
 sql = "GRANT ALL PRIVILEGES ON example.*
 TO exampleuser@localhost IDENTIFIED BY 'passw0rd'"
}

task createTable(type: MySqlTask, dependsOn: createUser) {
 username = 'exampleuser'
 password = 'passw0rd'
 database = 'example'
 sql = 'CREATE TABLE IF NOT EXISTS users
 (id BIGINT PRIMARY KEY, username VARCHAR(100))'
}

Example 2-38. The definition of the custom task under the buildSrc directory

import org.gradle.api.DefaultTask
import org.gradle.api.tasks.TaskAction

class MySqlTask extends DefaultTask {
 def hostname = 'localhost'
 def port = 3306
 def sql
 def database
 def username = 'root'
 def password = 'password'

 @TaskAction
 def runQuery() {
 def cmd
 if(database) {
 cmd = "mysql -u ${username} -p${password} -h ${hostname}
 -P ${port} ${database} -e "
 }
 else {

Custom Task Types | 31

 cmd = "mysql -u ${username} -p${password} -h ${hostname} -P ${port} -e "
 }
 project.exec {
 commandLine = cmd.split().toList() + sql
 }
 }
}

Note that the task definition in the buildSrc directory is very similar to the code inclu-
ded in the build script in the previous example. However, we now have a robust plat-
form for elaborating on that simple task behavior, growing an object model, writing
tests, and doing everything else we normally do when developing software.

You have four options for where to put your custom Gradle build code.
The first is in the build script itself, in a task action block. The second
is the buildSrc directory as we’ve shown here. The third is in a separate
build script file imported into the main build script. The fourth is in a
custom plug-in written in Java or Groovy. Programming Gradle with
custom plug-ins will be the topic of a separate volume.

Example 2-39. The structure of a Gradle project with custom code in the buildSrc directory.

.
├── build.gradle
├── buildSrc
│ └── src
│ └── main
│ └── groovy
│ └── org
│ └── gradle
│ └── example
│ └── task
│ └── MySqlTask.groovy

Where Do Tasks Come From?
So far, we’ve been creating tasks by coding them directly, either inside Gradle build
scripts or in the buildSrc directory as Groovy code. This is a great way to learn about
tasks, because it’s easy to see all of the moving parts in great detail. However, many of
the tasks you use won’t be tasks you write; they’ll come from plug-ins.

You’ve already seen an example of this in the section on building Java code. By applying
the Java plug-in, the build script automatically inherits a set of tasks whose code you
never directly see. You can modify the behavior of these tasks using the task configu-
ration, doFirst(), and doLast() methods we’ve covered in this chapter, but you don’t
have to code them youself. The fact that Gradle is providing you with rich, extensible
task functionality whose code you never have to look at—code you invoke through the

32 | Chapter 2: Gradle Tasks

Gradle DSL, not through lots of literal Groovy code—is core to Gradle’s strategy of
provding high extensibility with low complexity.

Gradle also has a few built-in tasks, like tasks and properties. These aren’t provided
by any plug-in or any imperative code you write, but are just a standard part of the
Gradle DSL. They are covered in the section on the Gradle command line.

Conclusion
We’ve had a pretty thorough look at tasks in this chapter. We’ve looked at how to
configure them and how to script them, and gotten an idea of how Gradle divides up
the work of configuration and execution between two lifecycle phases. We’ve seen that
tasks are first-class Groovy objects with a rich API of their own. We’ve explored that
API just enough to show you how to think about tasks as programmable entities. We
also looked at some standard class types that provide real functionality out of the box.

Finally we looked at how to write tasks of your own. Gradle’s built-in tasks and plug-
ins are enough for many users to script their builds without any custom code, but not
always. One of Gradle’s fundamental sensibilities is that it should be easy for you to
extend your build without cluttering your build scripts with a lot of unmaintainable
Groovy code. The custom task examples we looked at illustrated this.

Tasks are the basic unit of build activity in Gradle. There is more to their story than an
introduction can cover, but with this chapter under your belt, you’re well prepared to
start using them and to continue learning about them.

Conclusion | 33

CHAPTER 3

Ant and Gradle

When considering leveraging an existing investment in Apache Ant, or perhaps using
the broad set of tasks that the Ant community has created, Gradle has a great story to
tell. Gradle offers a complete superset of Ant. In fact, it makes Gradle’s use of Ant
simpler than directly using Ant, partly by leveraging Groovy’s AntBuilder functionality.
Gradle brings in everything from the Ant namespace into the Gradle namespace such
that using a core Ant task is as easy as calling ant.<taskname>.

Discussing the usage of Ant from Gradle provides a great bridge in terms of progressive
migration to a pure Gradle strategy. Over time though, we believe you’ll desire to
standardize on the more powerful Gradle feature set by using native Gradle components
or by wraping any Ant behavior in a Gradle plug-in. The latter maintains the value of
the functioning Ant behavior while fully enabling build-by-convention throughout the
updated Gradle build ecosystem. With full awareness of the quantity of existing Ant
infrastructure and value of leveraging it via the new build tool, Gradle ships with a full
copy of Ant, thus making Ant’s default tasks available to every Gradle build. To aid
with this mind-set remapping, we’ll discuss how Gradle compares to Ant, providing
parallels in the approaches to writing builds and to each tool’s unique terminology.

The Vocabulary
Gradle is occasionally described as a Groovy-based Ant. That would be the role that
Gant fills, but Gradle has much more ambitious aims. Gradle offers the flexibility of
Ant, which many teams still cherish, but with the dependency management style of
Ivy, the intelligent defaults of Maven, the speed and hashing of Git, and the meta-
programming power of Groovy. That potent best-of-breed blend is an intrinsic moti-
vator for joining the Gradle movement.

Gradle, like Ant, has a Directed Acyclic Graph (DAG) of tasks in its execution plan.
However, Gradle takes better advantage of this graph, and will, in the future, run tasks
in parallel that are on discrete paths on the DAG. Gradle also plans to leverage the value
of holding this build DAG in memory to run certain graph paths of tasks in parallel

35

http://ant.apache.org/manual/index.html
http://gant.codehaus.org/

across a distributed set of build machines. A prototype visualization tool has even been
produced that writes the DAG into a DOT format, as shown in Figure 3-1.

Figure 3-1. DAG of Gradle Tasks

Both Ant and Gradle use the word task, but with different meanings in
each namespace.

Ant uses the word task to indicate one of its executable components (close to what
many would call a plug-in in other systems), such as echo. An Ant task can be executed
within the context of a target. Gradle defines task to refer to any step of the directed
acyclic graph. task in Gradle most closely compares to a target in Ant, but shares some

36 | Chapter 3: Ant and Gradle

http://en.wikipedia.org/wiki/DOT_language

of the benefits of a task in Ant in that a Gradle plug-in can bring several automatic
Gradle tasks into the sequence of build steps.

A property in Ant can be compared to a variable in Gradle. In the more powerful Groovy
language that Gradle provides, variables can be typeless (as in Ant) or typed, if desired.
Variables are available for reference in the parent Gradle project or any subprojects.

Example 3-1. Ant build script defining a property

<project>
 <property name="buildoutput" location="output"/>
 <property name="appversion" value="2.1"/>
</project>

Example 3-2. Gradle build script defining variables

def helloName = "Fird Birfle"
int personAge = 43

task hello << {
 println "Hello ${helloName}. I believe you are ${personAge} years of age."
}

Hello Ant
Example 3-3. Ant calling the Ant Echo plug-in with an attribute

<project>
 <target name="helloViaAttribute">
 <echo message="hello from Ant"/>
 </target>
</project>

Example 3-4. Gradle calling the Ant Echo plug-in with an attribute

task hello << {
 String greeting = "hello from Ant"
 ant.echo(message: greeting)
}

In Example 3-4, we took a simple string and supplied it to the message parameter of the
echo Ant task. It is useful to reiterate that no import-like plug-in statement was needed
to make ant (a Groovy AntBuilder instance) available for invocation. Further, no com-
mand was needed to make the echo task available for calls. To fully discover which
defined fields can be supplied with values, simply refer to the actual Ant Echo task
documentation since Gradle provides a lightweight wrapper over the Ant implemen-
tation.

Making just a minor change to this build, we will additionally use the Echo task’s
documented ability to accept a message as the sole input as ant.echo(message:
greeting). In Ant’s XML form (Example 3-5), this means that the greeting is put

Hello Ant | 37

http://ant.apache.org/manual/Tasks/echo.html
http://ant.apache.org/manual/Tasks/echo.html

between the <echo> task tags, not in a message attribute of the <echo message=""> tag.
In Gradle (Example 3-6), the equivalent syntax is passing the greeting string directly
into the echo() call without naming the field to which the value should be assigned.

Example 3-5. Ant calling the Ant Echo plug-in with a tag

<project>
 <target name="helloViaTag">
 <echo>hello from Ant</echo>
 </target>
</project>

Example 3-6. Gradle calling the Ant Echo plug-in with a parameter

task hello << {
 String greeting = "hello from Ant"
 ant.echo(greeting)
}

This encompasses the basics of using Ant with Gradle, but hardly is the full breadth of
such interoperation. Let’s go a step further with the importing of custom Ant Tasks,
configuration of complex nested Ant structures, and weaving of dependence between
Gradle tasks and Ant targets.

Importing Custom Ant Tasks
Using the core Ant tasks from Gradle was easy, but using a custom Ant task is nearly
as simple. Just use the taskdef method on the AntBuilder instance according to the
same recipes that would be used for its Ant invocations.

For the first example, the Checkstyle Ant task will be loaded from a combination of a
properties file and a set of local directory JARs.

Example 3-7. Gradle loading the Checkstyle Ant task via a resource

task checkTheStyle << {
 //Load the custom task
 ant.taskdef(resource: 'checkstyletask.properties') {
 classpath {
 fileset(dir: 'libs/checkstyle', includes: '*.jar')
 }
 }

 //Use the custom task
 ant.checkstyle(config: 'src/tools/sun_checks.xml') {
 fileset(dir: 'src')
 }
}

In Example 3-7, the entire loading and execution of the custom Ant task happens within
a single Gradle task. Using standard Ant capabilities, we fetch the parameters needed

38 | Chapter 3: Ant and Gradle

http://ant.apache.org/manual/Tasks/taskdef.html
http://ant.apache.org/manual/Tasks/typedef.html
http://checkstyle.sourceforge.net/anttask.html

to load the Ant task from a properties file named checkstyletask.properties that is
contained within one of the jars in the libs/checkstyle directory. It happens to be
contained in checkstyle-5.3-all.jar and the properties file’s contents are minimal, as
shown in Example 3-8. There is simply a mapping from the desired task name check
style, to bring into the Ant namespace and the fully qualfied class that implements it,
com.puppycrawl.tools.checkstyle.CheckStyleTask.

Example 3-8. The checkstyletask.properties file from the Checkstyle JAR

checkstyle=com.puppycrawl.tools.checkstyle.CheckStyleTask

Lastly, in Example 3-7, we invoke the checkstyle Ant task via a traditional-style method
call to ant.checkstyle(...). The nested configurations via config and fileset directly
correspond to the Checkstyle Ant equivalents as if this was being configured with Ant’s
XML syntax.

As a contrasting example, a custom Ant Task can be loaded using a combination of a
Gradle configuration, a declared dependency, and Maven Central repository connec-
tivity.

Example 3-9. Gradle loading the PMD Ant task via a Maven repository and Gradle configuration

configurations {
 myPmd
}

dependencies {
 myPmd group: 'pmd', name: 'pmd', version: '4.2.5'
}

repositories {
 mavenCentral()
}

task checkThePMD << {
 ant.taskdef(name: 'myPmdTask', classname: 'net.sourceforge.pmd.ant.PMDTask',
 classpath: configurations.myPmd.asPath)
 ant.myPmdTask(shortFilenames: 'true', failonruleviolation: 'true',
 rulesetfiles: file('src/tools/pmd-basic-rules.xml').toURI().toString()) {
 formatter(type: 'text', toConsole: 'true')
 fileset(dir: 'src/main/java')
 }
}

In this more complex example of Example 3-9, we first establish a configuration for
myPmd which is a preprocessing step prior to task executions. Configurations were first
introduced as a concept in “Task Configuration” on page 15. The configurations
closure declares a grouping named myPmd for our subsequent declaration of JAR
requirements via the dependencies closure. In the dependencies closure, we once ad-
dress the myPmd grouping and indicate that it should download the PMD JAR as needed.
The source of the download is declared as the special repository mavenCentral() via the

Importing Custom Ant Tasks | 39

http://checkstyle.sourceforge.net/anttask.html

repositories closure. Next, the Gradle task checkThePMD is established. During the
loading of the Ant task definition via ant.taskdef(///) call, the JAR downloaded as
part of the myPmd configuration is added the myPmdTask classpath. Last, the myPmdTask is
invoked via ant.myPmdTask(...) with the parameters passed to the Ant task in the same
nested manner as Example 3-7.

Complex Ant Configuration
In more complex Ant configurations, there typically are several nested elements in the
build.xml syntax. Though Gradle provides a native class of tasks for archiving, and
specifically a task type of Zip, a meaningful and straightforward example of using Ant’s
zip task can display the native Ant XML configuration and the same independent con-
figuration of said Ant task from within Gradle using the clearer AntBuilder notation.

Example 3-10. Ant build.xml zipping the source files

<project>
 <target name="zipsourceInAnt">
 <zip destfile='samples-from-ant.zip'>
 <fileset dir= 'samples'>
 <include name='**.txt'/>
 </fileset>
 </zip>
 </target>
</project>

In Example 3-10, a very common configuration for preparing a compressed archive
using Ant’s zip task and XML configuration is shown. It includes all files in any sub-
directory of samples that ends with the extension .txt and writes it into a file named
samples-from-gradle.zip.

Example 3-11. Gradle using Ant to zip the source files

task zipsourceInGradle << {
 ant.zip(destfile: 'samples-from-gradle.zip') {
 fileset(dir: 'samples') {
 include(name: '**.txt')
 }
 }
}

In Example 3-11, the more readable Groovy closure notation is used within Gradle to
access this same Ant task, offering a one-to-one comparison with the pure Ant execu-
tion of the same behavior in Example 3-10.

40 | Chapter 3: Ant and Gradle

Importing an Entire Ant Build File
Up to this point, we’ve dealt with interoperability of Ant and Gradle on a fine-grained
level, either calling existing Ant tasks, creating new Ant tasks on the fly, or manipulating
the results of Ant task calls with Groovy. But what if you want to bring everything in
from an existing Ant build? Gradle handles that without even breaking a sweat.

First, we begin with our traditional Ant project in Example 3-3. Then, inside the Gradle
build, we import the Ant targets into a Gradle task.

Example 3-12. Import an entire ant project

ant.importBuild 'build.xml'

The result is an ability to treat the Ant build’s contents as a Gradle task from anywhere
else in the Gradle ecosystem. This is an implementation of the Facade pattern; all the
utility of the Ant build is maintained, but all the value that Gradle brings to builds is
additionally available to the buildmaster.

If we query Gradle for what Gradle tasks it knows about in Example 3-12, the answer
will include the helloViaAttribute Ant target.

Example 3-13. Task list from the imported Ant project

$ gradle tasks
:tasks

Help tasks

dependencies - Displays the dependencies of root project 'ant-import-to-gradle'.
help - Displays a help message
projects - Displays the subprojects of root project 'ant-import-to-gradle'.
properties - Displays the properties of root project 'ant-import-to-gradle'.
tasks - Displays the tasks in root project 'ant-import-to-gradle'.

Other tasks

helloViaAttribute

To see all tasks and more detail, run with --all.

If we run the Gradle project requesting that the helloViaAttribute Gradle task be exe-
cuted, we’ll get the bridged Ant behavior through a pure Gradle interface.

Example 3-14. Sample run of the imported Ant project

$ gradle helloViaAttribute
:helloViaAttribute
[ant:echo] hello from Ant

Importing an Entire Ant Build File | 41

Ant Target and Gradle Task Codependence
Ant targets can even participate as a dependsOn of Gradle builds, as shown in Exam-
ple 3-16. Likewise, Ant targets can point to Gradle tasks as depends fields, as shown in
Example 3-15. The only requirement of the Ant and Gradle integration is that the more
capable tool, Gradle, be the point of execution (see Example 3-17). Gradle must drive
the initiation of the build, say from from the command line, IDE, or GUI, but can be
either the subordinate or dominate player in the actual XML and Gradle build script
flow.

Example 3-15. Define an Ant target and have it depend on a Gradle task

<project>
 <target name="antStandAloneHello">
 <echo message="A standalone hello from an Ant target"/>
 </target>

 <target name="antHello" depends="beforeTheAntTask">
 <echo message="A dependent hello from the Ant target"/>
 </target>
</project>

Example 3-16. Define a task in Gradle that precedes the Ant target

ant.importBuild 'build.xml'

defaultTasks = ['antStandAloneHello', 'afterTheAntTask']

task beforeTheAntTask << {
 println "A Gradle task that precedes the Ant target"
}

task afterTheAntTask(dependsOn: "antHello") << {
 println "A Gradle task that precedes the Ant target"
}

Example 3-17. Driving the build from Gradle

$ gradle

:antStandAloneHello
[ant:echo] A standalone hello from an Ant target

:beforeTheAntTask
A Gradle task that precedes the Ant target

:antHello
[ant:echo] A dependent hello from the Ant target

:afterTheAntTask
A Gradle task that precedes the Ant target

BUILD SUCCESSFUL

42 | Chapter 3: Ant and Gradle

Using AntBuilder
The power of using Ant with Gradle isn’t limited to just the prescribed approaches
given thus far. Since the ant object is a full Groovy AntBuilder instance, existing para-
digms and constructs from the Groovy language can be used here. Though compre-
hensive knowledge of Groovy is not a prerequisite, any increased understanding of
Groovy has a direct benefit to the authoring of Gradle build files since Gradle supports
the gamut of Groovy syntax.

For example, to list the contents of a directory using an Ant FileScanner and Ant
FileSet, just use the ant instance with Groovy closure nesting for Ant subelement ac-
cess, as shown in Example 3-18.

Example 3-18. Scan folders with Ant and iterate over the results in Gradle

task echoDirListViaAntBuilder() {
 description = 'Uses the built-in AntBuilder instance to echo and list files'
 //Docs: http://ant.apache.org/manual/Types/fileset.html

 //Echo the Gradle project name via the ant echo plugin
 ant.echo(message: project.name)
 ant.echo(path)
 ant.echo("${projectDir}/samples")

 //Gather list of files in a subdirectory
 ant.fileScanner{
 fileset(dir:"samples")
 }.each{
 //Print each file to screen with the CWD (projectDir) path removed.
 println it.toString() - "${projectDir}"
 }
}

The power of Groovy’s operators can also be leveraged inside AntBuilder calls, such as
using the regular expression matcher inside an evaluation of all System properties in
Example 3-19. The spread *, elvis ?:, and other Groovy operators can all be applied
directly or to subcomponents of the ant instance for a high code-to-effect ratio. With
almost no ceremony, the ==~ “firecracker” operator is used in Example 3-19 to query
for regular expression matches of a string, charsToFind.

Example 3-19. Use the Groovy regular expression operator in an AntBuilder output

task echoSystemPropertiesWithRegEx() {
 description = "Uses Groovy's regex matching to find a match in System properties"

 def charsToFind = 'sun'

 println "SYSTEM PROPERTIES"
 System.properties.each{
 ant.echo("Does '${it}' contain '${charsToFind}': " +
 (it ==~ ".*${charsToFind}.*"))

Using AntBuilder | 43

http://groovy.codehaus.org/Using+Ant+from+Groovy
http://groovy.codehaus.org/
http://groovy.codehaus.org/Operators

 }
}

In the ultimate combination, a progressive migration from Ant to Gradle can be greatly
aided by the ability to bring Ant classpaths into the Gradle space. Example 3-20 dem-
onstrates the establishment of two paths in the Ant realm, and then the consumption
of those paths in the Gradle space, including using them as repositories in Exam-
ple 3-21.

Example 3-20. Ant defining two paths

<project>
 <!-- Classpath created by Ant, then used by Gradle -->
 <path id="antPathToLibs1" location="antlibs"/>
 <path id="antPathToLibs2" location="antlibs"/>
</project>

On the build.gradle side of this example, the use of the * “spread” operator demon-
strates how to println repositories*.name all the repositories name fields in a single
statement instead of three.

Example 3-21. Use the Ant path references inside the Gradle build

ant.importBuild 'build.xml'

defaultTasks = ['gradleBuild']

//
// Gradle paths retrieved from Ant and then built using a Gradle task
repositories {
 flatDir name: 'localRepository1', dirs: ant.references['antPathToLibs1']
 flatDir name: 'localRepository2', dirs: ant.references.antPathToLibs2
 flatDir name: 'localRepository3', dirs: "antlibs"
}

task gradleBuild << {
 //Set classpath to include the JAR
 println "The repositories bridged from Ant to Gradle are:"
 println repositories*.name

 println repositories.localRepository1

 println repositories['localRepository2']

 println "localRepository3 class = " + repositories.localRepository3.class
 println "localRepository3 name = " + repositories.localRepository3.name
 println "localRepository3 latest = " + repositories.localRepository3.latest
 println "localRepository3 ivyPatterns = " + repositories.localRepository3.ivyPatterns
 println "localRepository3 artifactPatterns =
 " + repositories.localRepository3.artifactPatterns
 println "localRepository3 checkconsistency =
 " + repositories.localRepository3.checkconsistency
 println "localRepository3 m2compatible =
 " + repositories.localRepository3.m2compatible

44 | Chapter 3: Ant and Gradle

 println "localRepository3 methods =
 " + repositories.localRepository3.metaClass.methods*.name.sort().unique()
}

The converse use case is also possible and easy. Paths can be established in Gradle, as
shown in Example 3-23, and then consumed in an Ant target in Example 3-22 that even
depends on the antPathsInjectedByGradle Gradle task.

Example 3-22. Ant build file that consumes the Gradle paths

<project>
 <!-- Classpath created by Gradle, then used by Ant -->
 <path refid="gradlePathToLibs1"/>
 <path refid="gradlePathToLibs2"/>
 <path refid="gradlePathToLibs3"/>

 <!-- Echo one of the gradle paths injected into the Ant build -->
 <target name="antBuild" depends="antPathsInjectedByGradle">
 <property name="gradlePathToLibs1AsProperty" refid="gradlePathToLibs1"/>
 <echo message="gradlePathToLibs1 = ${gradlePathToLibs1AsProperty}"/>

 <property name="gradlePathToLibs2AsProperty" refid="gradlePathToLibs2"/>
 <echo message="gradlePathToLibs2 = ${gradlePathToLibs2AsProperty}"/>

 <property name="gradlePathToLibs3AsProperty" refid="gradlePathToLibs3"/>
 <echo message="gradlePathToLibs3 = ${gradlePathToLibs3AsProperty}"/>

 </target>
</project>

Example 3-23. The Gradle build file that injects the build paths into Ant

ant.importBuild 'build.xml'

defaultTasks = ['antBuild']

//
// Ant paths injected by Gradle and then built using an Ant goal
task antPathsInjectedByGradle << {
 ant.path(id: 'gradlePathToLibs1', location: 'gradlelibs')
 // or
 ant.references.gradlePathToLibs2 = ant.path(location: 'gradlelibs')
 // or
 ant.references['gradlePathToLibs3'] =
 ant.path(location: file('gradlelibs').absolutePath)

 println "This task injects Gradle paths into the AntBuilder"
}

antBuild.doLast {
 // No antBuild Task needs to be explicitly constructed
 // antBuild task is created by the build.xml import
 println "This Ant goal was converted to a Gradle task by the ant.importBuild call"
}

Using AntBuilder | 45

A Harmonic Duo
Over the course of this chapter, the examples have demonstrated the simplicity of
integrating Ant with Gradle. The purpose of the cross-tool calls can either be that of a
careful stepwise migration to Gradle, or the filling in for an absent Gradle plug-in with
a well-established Ant equivalent. Gradle’s build tool compatibility represents an
understanding of the real world of software engineering: migrations don’t always hap-
pen overnight and bridges to legacy technologies make Gradle an option for many more
teams and projects.

46 | Chapter 3: Ant and Gradle

CHAPTER 4

Maven and Gradle

Up to this point, you’ve seen the very light footprint of Gradle. You might be convinced
it is the way to go for new projects. However, only a very few of us are blessed with the
wide-open choices afforded to a greenfield project. The majority of us have an existing
build system in place and the mandate to maintain continuity of the build. We might
even have downstream clients of our JAR, WAR, and EAR binary artifacts. Gradle
would only be a logical successor to Maven if it offered a very thoughtful path to both
migration and integration from the world’s largest open source build system. It certainly
does. Let’s take a look.

Cue Graven?
First, let’s provide a bearing on the attitude of Gradle. It is not the next incremental
step after Maven. It is not just another Domain Specific Language (DSL) on top of the
existing build tooling with which we are already familiar. It is, in fact, a progression of
selected ideas of our existing build tools. Gradle brings only the best ideas forward and
leaves behind the ones that fell short of their intended mark. That is a generic set of
claims. Let’s proceed to specifics.

It would be easy to think of Polyglot Maven as an equivalent to Gradle,
but alas, the constraints that apply to Maven apply to Polyglot Maven
as well, just sans the angle brackets of XML. Gradle aims to be some-
thing more powerful than its predecessor tools in the build space.

Gradle takes the convention over configuration and consistently named artifact concepts
and brings them forward from the playbook of Maven. Gradle also implements a strong
domain model that is easily programmatically accessible. Though often cited, it is
debatable as to whether Maven actually has a strong model or merely a strong authoring
language in the form of an XSD-compliant XML file.

47

http://polyglot.sonatype.org

Diving to a deeper level of precision, Gradle takes the coordinates, including groupId,
artifactId, and version, in producing new build artifacts. It also offers a bridge, in the
form of a dependency management definition graph, to Maven and Ivy artifact repo-
sitories without demanding remote repositories. This provides connectivity to open-
source hosted binaries on sites like Maven Central, Java.net, and Clojars, just to name
a few. But the flexibility of Gradle also allows for the very valid use case in which
dependency binaries are stored alongside the source in version control, whether for
legal or technical reasons. In the example of the ultimate flexibility allowed in Gradle,
a default mapping is provided to the community-known dependency (classpath) scopes
of Maven, but Gradle users can establish custom dependency scopes should the need
arise.

That is a solid overview of what has been brought forward from the forge of the past
decade of build tool experiments and field testing. But what was intentionally omitted?
Gradle leaves behind the expensive XML format. It is pure Groovy goodness. We’ll
also leave behind the strict, predefined lifecycle of Maven and the absence of a lifecycle
with Ant. Both are too far toward the ends of the spectrum of control and chaos, re-
spectively. Gradle will instead replace the strict Maven lifecycle with task defaults set
via common plug-ins such as java. Even with convenient defaults, Gradle offers a pain-
less and lightweight way to extend the plug-in-supplied task sequence with additional
steps that fit your build’s unique needs.

The Maven POM and Gradle Build
With the big picture established, let’s take a piecewise approach to comparing Maven
and Gradle. We will start with a reminder of the appearance of a barest bones Maven
POM.

Example 4-1. The smallest possible Maven pom.xml

<!-- The smallest possible Maven POM.xml -->
<project>
 <modelVersion>4.0.0</modelVersion>
 <groupId>com.gradleware.samples</groupId>
 <artifactId>sample01-barestbones</artifactId>
 <version>0.0.1-SNAPSHOT</version>
</project>

While often desirable to have the formal vectors of groupId, artifactId, and version
for a build, there are equally times where it is overkill. No allowance is made for that
in Maven. You must provide all the fields. Adding a final bit of cruft, you also need the
modelVersion field, just in case Maven should ever decide to expand its vocabulary of
tags (though it hasn’t since the release of Maven 2.0 in 2004).

48 | Chapter 4: Maven and Gradle

Earlier in the book, we showed you just how simple it was to get started with Gradle,
so we will leave the simplicity of that first Gradle build file to the earlier example, “The
Hello World Build File” on page 6. We will use, as our first comparison with Maven,
a Gradle build file in Example 4-2 that defines a few attributes and can produce a JAR,
a common final product of a Java build.

Example 4-2. The simplest Maven equivalent build.gradle file

apply plugin: 'java'

That one line Gradle build file in Example 4-2, when executed with a mere gradle
build from the command line, performed the following actions:

• Downloaded any declared dependencies (none) to ~/.gradle/cache

• Compiled the code in src/main/java

• Wrote the class files into build/classes/main

• Attempted to compile and run any unit tests (none)

• Wrote unit test results in XML format to build/test-results/

• Wrote an HTML-formatted unit test report to build/reports/tests/

• Generated a MANIFEST.MF in build/tmp/jar/MANIFEST.MF

• Compressed the .class files along with the MANIFEST.MF into a JAR in build/
libs/maven-gradle-comparison-simple.jar

The described actions taken by Gradle are made evident by examining the files in the
structure of the output directory.

Example 4-3. Listing of the build subdirectory from the Example 4-2 Gradle build project

build
├── classes
│ └── main
│ └── Main.class
├── dependency-cache
├── libs
│ └── maven-gradle-comparison-simple.jar
├── reports
│ └── tests
│ ├── css3-pie-1.0beta3.htc
│ ├── index.html
│ ├── report.js
│ └── style.css
├── test-results
└── tmp
 └── jar
 └── MANIFEST.MF

The Maven POM and Gradle Build | 49

Maven Goals, Gradle Tasks
The aforementioned minimalistic Gradle build also offered many of the tasks (nee
Maven goals) we would have at our disposal with Maven. Let’s examine the names of
these tasks by asking Gradle what it can offer us by invoking the tasks task.

Example 4-4. Querying Gradle for the available tasks

$ gradle tasks

 Build tasks

 assemble - Assembles all Jar, War, Zip, and Tar archives.
 build - Assembles and tests this project.
 buildDependents - Assembles and tests this project and
 all projects that depend on it.
 buildNeeded - Assembles and tests this project and
 all projects it depends on.
 classes - Assembles the main classes.
 clean - Deletes the build directory.
 jar - Assembles a jar archive containing the main classes.
 testClasses - Assembles the test classes.

 Documentation tasks

 javadoc - Generates Javadoc API documentation
 for the main source code.

 Help tasks

 dependencies - Displays the dependencies of
 root project 'maven-gradle-comparison-simple'.
 help - Displays a help message
 projects - Displays the subprojects of
 root project 'maven-gradle-comparison-simple'.
 properties - Displays the properties of
 root project 'maven-gradle-comparison-simple'.
 tasks - Displays the tasks in
 root project 'maven-gradle-comparison-simple'.

 Verification tasks

 check - Runs all checks.
 test - Runs the unit tests.

We see that tasks to clean, build, test, and JAR the project’s code are included via the
simple inclusion of the java plug-in.

50 | Chapter 4: Maven and Gradle

The Standard Maven Coordinates, Gradle Properties
That comparison of a one line build.gradle to the most minimal pom.xml was valid, but
not completely controlled in the metadata values for groupId, artifactId, and
version. In Gradle, the groupId is known just as group, the artifactId is known as
name, and the version is identically version. Formally, each of these kind of fields is
known as a property in Gradle since we are saving state in POJO objects under the hood.

Table 4-1. Maven-to-Gradle Coordinate Mappings and Defaults

Maven Coordinate Gradle Property Gradle Default

groupId group blank

artifactId name or archivesBaseName project’s directory name

version version unspecified

name N/A N/A

description description null

Growing our Gradle example to a more robust Maven POM equivalent, we’ll add the
version field. This is common in Gradle builds, even in the absence of the other group
and artifact coordinates. The version property is defined in the Gradle DSL reference
and is present in every type of build, even without the java plug-in. The archivesBase
Name value is appended to the end of the produced JAR.

Example 4-5. Gradle build that includes a version number for the output artifact

apply plugin: 'java'
version = '0.0.1-SNAPSHOT'

When we run this refined build, take note that the output JAR in the libs directory is
now named maven-gradle-comparison-withattrs-0.0.1-SNAPSHOT.jar, whereas it was
previously named the less precise, maven-gradle-comparison-simple.jar in Exam-
ple 4-2. Recall that the artifact name defaults to the project’s directory name if no more
precisely desired value is supplied as shown in Table 4-1.

Example 4-6. Directory listing of output from the version-specified Gradle build

$ tree

├── classes
│ └── main
│ └── Main.class
├── dependency-cache
├── libs
│ └── maven-gradle-comparison-withattrs-0.0.1-SNAPSHOT.jar
├── reports
│ └── tests
│ ├── css3-pie-1.0beta3.htc
│ ├── index.html

The Standard Maven Coordinates, Gradle Properties | 51

http://www.gradle.org/latest/docs/dsl/org.gradle.api.Project.html

│ ├── report.js
│ └── style.css
├── test-results
└── tmp
 └── jar
 └── MANIFEST.MF

Next, using the knowledge gained in Table 4-1, we can control all values of the coor-
dinates that would typically be set in a Maven-participating project. Note that the
name field presented by the very foundation of Gradle is only mutable in the settings.gra-
dle file, and if not supplied in settings.gradle, the archivesBaseName property is assigned
a value instead. The archivesBaseName property is brought into existence by the java
plug-in.

Gradle 1.0 aims to simplify the field name mapping, doing away with
archivesBaseName, and possibly providing a top level closure to con-
figure the project’s Maven-equivalent coordinates.

Up to this point, we’ve only used the java plug-in. Though many of these features look
Maven-like in their naming and function, these are behaviors desired by nearly any Java
project, even standalone single-JAR Java applications. The consistent location of
Gradle’s source directories (src/main/java) and the specification of the artifact’s group,
name, and version metadata is useful, even without the aim of uploading an artifact to
a remote repository.

The most visible Gradle win thus far is having the properties at the top level of the build
file with slightly simplified property names rather than the XML nesting of Maven.
Keep reading. The wins are about to get more significant.

More Gradle Properties
Having introduced one plug-in thus far, you might be wondering what range of
properties are available to control. Gradle offers an easy always-available task named
properties to list the fields and values of the current build. Let’s echo all the Gradle
properties to the console with the -r or --properties flag.

Example 4-7. Gradle Properties of a “hello world” build

$ gradle properties

additionalProperties: {}
all: [task ':helloWorld']
allprojects: [root project 'minimal-build-file']
ant: org.gradle.api.internal.project.DefaultAntBuilder@5057f57f
antBuilderFactory: org.gradle.api.internal.project.DefaultAntBuilderFactory@114562c5
artifacts: org.gradle.api.internal.artifacts.dsl.DefaultArtifactHandler@23bf8cd5
asDynamicObject: org.gradle.api.internal.DynamicObjectHelper@30c26c8f

52 | Chapter 4: Maven and Gradle

http://www.gradle.org/latest/docs/dsl/org.gradle.api.Project.html
http://www.gradle.org/latest/docs/dsl/org.gradle.api.Project.html

asMap: {helloWorld=task ':helloWorld'}
buildDir: /minimal-build-file/build
buildDirName: build
buildFile: /minimal-build-file/build.gradle
buildScriptSource: org.gradle.groovy.scripts.UriScriptSource@111edceb
buildscript: org.gradle.api.internal.initialization.DefaultScriptHandler@7fb2380e
childProjects: {}
class: class org.gradle.api.internal.project.DefaultProject_Decorated
classGenerator: org.gradle.api.internal.AsmBackedClassGenerator@709a1411
configurations: org.gradle.api.internal.artifacts.configurations.
 DefaultConfigurationContainer_Decorated@69d4eeb5
convention: org.gradle.api.internal.plugins.DefaultConvention@71cbd4f7
conventionMapping: org.gradle.api.internal.ConventionAwareHelper@1aa632be
defaultTasks: []
dependencies: org.gradle.api.internal.artifacts.dsl.dependencies.
 DefaultDependencyHandler@d44752d
dependsOnProjects: []
depth: 0
description: null
displayName: task container
fileResolver: org.gradle.api.internal.file.BaseDirConverter@56d99277
gradle: build 'minimal-build-file'
group:
helloWorld: task ':helloWorld'
implicitTasks: org.gradle.api.internal.tasks.DefaultTaskContainer_Decorated@384ab40a
inheritedScope: org.gradle.api.internal.
 DynamicObjectHelper$InheritedDynamicObject@388a2006
logger: org.gradle.api.logging.Logging$LoggerImpl@521c5cd7
logging: org.gradle.logging.internal.DefaultLoggingManager@3821b42f
metaClass: org.codehaus.groovy.runtime.HandleMetaClass@5b76de14[
 groovy.lang.MetaClassImpl@5b76de14[
 class org.gradle.api.internal.project.DefaultProject_Decorated]]
module: org.gradle.api.internal.artifacts.DefaultModule@59a51312
name: minimal-build-file
parent: null
parentIdentifier: null
path: :
plugins: org.gradle.api.internal.plugins.DefaultProjectsPluginContainer@5608a6fc
project: root project 'minimal-build-file'
projectDir: /minimal-build-file
projectEvaluationBroadcaster: ProjectEvaluationListener broadcast
projectEvaluator: org.gradle.configuration.DefaultProjectEvaluator@6212f195
projectRegistry: org.gradle.api.internal.project.DefaultProjectRegistry@5e1558dc
properties: {...}
repositories: org.gradle.api.internal.artifacts.dsl.
 DefaultRepositoryHandler_Decorated@ba3bc8c
repositoryHandlerFactory: org.gradle.api.internal.artifacts.dsl.
 SharedConventionRepositoryHandlerFactory@41ed54a0
rootDir: /minimal-build-file
rootProject: root project 'minimal-build-file'
rules: []
services: ProjectInternalServiceRegistry
standardOutputCapture: org.gradle.logging.internal.DefaultLoggingManager@3821b42f
state: org.gradle.api.internal.project.ProjectStateInternal@594560cf
status: release

More Gradle Properties | 53

subprojects: []
tasks: org.gradle.api.internal.tasks.DefaultTaskContainer_Decorated@5e20dcb7
type: interface org.gradle.api.Task
typeDisplayName: task
version: unspecified

The properties listed here have a wide range of rare to common in their frequency of
being configured. Many have sensible defaults, such as status being set to release, and
are thus only occasionally tuned to an alternative value.

Adding the java plug-in as per the original sample build file introduces the additional
properties shown in Example 4-8.

Example 4-8. Java plug-in introduced properties

apiDocTitle: maven-gradle-comparison-simple API
archivesBaseName: maven-gradle-comparison-simple
assemble: task ':assemble'
build: task ':build'
buildDependents: task ':buildDependents'
buildNeeded: task ':buildNeeded'
buildTasks: [build]
check: task ':check'
classes: task ':classes'
clean: task ':clean'
compileJava: task ':compileJava'
compileTestJava: task ':compileTestJava'
dependencyCacheDir: /maven-gradle-comparison-simple/build/dependency-cache
dependencyCacheDirName: dependency-cache
distsDir: /maven-gradle-comparison-simple/build/distributions
distsDirName: distributions
docsDir: /maven-gradle-comparison-simple/build/docs
docsDirName: docs
jar: task ':jar'
javadoc: task ':javadoc'
libsDir: /maven-gradle-comparison-simple/build/libs
libsDirName: libs
manifest: org.gradle.api.java.archives.internal.DefaultManifest@7a66998f
metaInf: []
processResources: task ':processResources'5
processTestResources: task ':processTestResources'
rebuildTasks: [clean, build]
reportsDir: /maven-gradle-comparison-simple/build/reports
reportsDirName: reports
rules: [
 Rule: Pattern: build<ConfigurationName>: Assembles the artifacts
 of a configuration.,
 Rule: Pattern: upload<ConfigurationName>: Assembles and uploads the
 artifacts belonging to a configuration.,
 Rule: Pattern: clean<TaskName>: Cleans the output files of a task.]
runtimeClasspath: file collection
sourceCompatibility: 1.5
sourceSets: org.gradle.api.internal.tasks.DefaultSourceSetContainer_Decorated@2850a492
targetCompatibility: 1.5
test: task ':test'

54 | Chapter 4: Maven and Gradle

testClasses: task ':testClasses'
testReportDir: /maven-gradle-comparison-simple/build/reports/tests
testReportDirName: tests
testResultsDir: /maven-gradle-comparison-simple/build/test-results
testResultsDirName: test-results

Dependencies
It is rare to see a project stand alone, independent of any third party or in-house library.
It almost goes without saying that a Java project will use some open source components
such as log4j or commons-collections. Gradle offers both an Ivy and Maven dependency
and repository compatibility layer, allowing for very simplistic and flexible specification
of dependencies and repositories.

A library is declared as a desired external dependency by a one-line listing in a closure
named dependencies. The most concise form of expressing this is a colon-separated list
of fields in a single string.

Example 4-9. Dependency on a library in the most concise syntax

dependencies {
 compile 'commons-beanutils:commons-beanutils:1.8.3'
}

A more verbose form preferred by some, but accomplishing the same thing, is a field-
by-field list.

Example 4-10. Test compilation dependency on the latest 4.8.x version of JUnit

dependencies {
 testCompile group: 'junit', name: 'junit', version: '4.8.+'
 compile group: 'commons-beanutils', name: 'commons-beanutils', version: '1.8.3'
}

What are these testCompile and compile phrases we see in Example 4-10? They are the
scopes for which the declared external dependencies are to apply.

With the java plug-in introduced, there are six available scopes (or configurations to
use the precise Gradle term) to which dependencies can be assigned. Those six are as
follows:

• compile

• default

• testCompile

• testRuntime

• archives

• runtime

Dependencies | 55

However, unlike the fixed scopes of Maven, we have more flexibility with Gradle, to
the objective of providing greater build flexibility. New scopes, such as groovy, can be
introduced by a plug-in. Here we see an additional library being added to the groovy
scope.

Example 4-11. Displaying dependency assignment to scopes

apply plugin: 'java'
apply plugin: 'groovy'

group = 'com.gradleware.samples'
version = '0.0.1-SNAPSHOT'

repositories {
 mavenCentral()
}

dependencies {
 testCompile 'junit:junit:4.8.2'
 compile 'commons-beanutils:commons-beanutils:1.8.3'
 //groovy 'mule:mule-extras-groovy:1.+'
 // ^ The "+" flexible definition of a version
 // requires Internet access
 groovy 'mule:mule-extras-groovy:1.1.1'
}

The output of asking Gradle to list the dependencies shows that indeed, the new library
lives beneath the groovy scope, but also scopes that logically need what was made
available to groovy. That includes compile, default, runtime, testCompile, and compile.

Example 4-12. Displaying dependency assignment to scopes

$ gradle dependencies

archives - Configuration for the default artifacts.
No dependencies

compile - Classpath for compiling the sources.
+--- mule:mule-extras-groovy:1.1.1 [default]
\--- commons-beanutils:commons-beanutils:1.8.3 [default]
 \--- commons-logging:commons-logging:1.1.1 [compile,master,runtime]

default - Configuration for the default artifacts and their dependencies.
+--- mule:mule-extras-groovy:1.1.1 [default]
\--- commons-beanutils:commons-beanutils:1.8.3 [default]
 \--- commons-logging:commons-logging:1.1.1 [compile,master,runtime]

groovy - The groovy libraries to be used for this Groovy project.
\--- mule:mule-extras-groovy:1.1.1 [default]

runtime - Classpath for running the compiled sources.
+--- mule:mule-extras-groovy:1.1.1 [default]
\--- commons-beanutils:commons-beanutils:1.8.3 [default]
 \--- commons-logging:commons-logging:1.1.1 [compile,master,runtime]

56 | Chapter 4: Maven and Gradle

testCompile - Classpath for compiling the test sources.
+--- mule:mule-extras-groovy:1.1.1 [default]
+--- commons-beanutils:commons-beanutils:1.8.3 [default]
| \--- commons-logging:commons-logging:1.1.1 [compile,master,runtime]
\--- junit:junit:4.8.2 [default]

testRuntime - Classpath for running the test sources.
+--- mule:mule-extras-groovy:1.1.1 [default]
+--- commons-beanutils:commons-beanutils:1.8.3 [default]
| \--- commons-logging:commons-logging:1.1.1 [compile,master,runtime]
\--- junit:junit:4.8.2 [default]

Gradle offers programmatic access to all elements of the model that represents the ul-
timate build plan. A simple showcase of this access is the printing of the dependencies
to screen in Example 4-13. Iterating through all dependencies can take simultaneous
advantage of the dependencies object and the Groovy each method that accepts a clo-
sure. The contents of the closure printlns the result, but could also perform manipu-
lation or testing of the nodes, searching for a given pattern and conditionally acting on
its inclusion.

Example 4-13. Print all dependencies

task printDeps(dependsOn: build) << {
 configurations*.dependencies.each { println it }
}

Repositories
The concept of retrieving libraries, source JARs, dependency metadata, and JavaDoc
archives is an expected foundation of any modern build tool. Maven has such capa-
bilities at its very core. Ant, though the older of the JVM build tools, has been supple-
mented by the Ivy subproject to accomplish exactly this. Ivy offers both a namesake
format as well as compatibility with Maven repositories. Gradle provides a bridge
implementation to equally consume Ivy- or Maven-formatted repositories.

Gradle goes far beyond just offering an API bridge to Ivy and Maven. It provides a
Gradle-flavored DSL for both aforementioned dependency tools that make working
with repositories quite simple.

First, a demonstration of adding the mother of all repositories, :16:[Maven Central] in
Example 4-14. The ever-important Maven Central has its own predefined method
mavenCentral().

Example 4-14. Using Maven Central with Gradle

repositories {
 mavenCentral()
}

Repositories | 57

http://maven.apache.org/guides/introduction/introduction-to-repositories.html
http://maven.apache.org/guides/introduction/introduction-to-repositories.html
http://ant.apache.org/
http://ant.apache.org/ivy/

Since many organizations will need to additionally, or as a replacement, depend on a
company-internal repository, that is equally easy with an addition of a URL to the
mavenRepo configuration element of repositories in Example 4-15.

Example 4-15. A custom URL

repositories {
 mavenRepo(urls: 'http://repo.gradle.org/gradle/libs-releases-local')
}

If your project needs a true Ivy repository with resolution customization, then Gradle
is up to the task with a convenient ivy closure syntax, as shown in Example 4-16.

Example 4-16. An Ivy repository

repositories {
 ivy {
 name = 'ivyRepo'
 artifactPattern "http://repo.gradleware.org/[organisation]/[module]/
[revision]/[artifact]-[revision].[ext]"
 }
}

What if your dependencies aren’t yet in a standard repository, but rather are stored in
a custom folder alongside your project? Gradle handles that with ease via the add()
method and a FileSystemResolver(), as shown in Example 4-17.

Example 4-17. A filesystem-based custom repo

repositories {
 add(new FileSystemResolver()) {
 name = "repo"
 addArtifactPattern("$rootDir/repo/[organization]/[module]-[revision].[ext]")
 addIvyPattern("$rootDir/repo/[organization]/ivy-[module]-[revision].xml")
 checkmodified = true
 }
}

Lastly, what if you haven’t even begun your versioning and standardization of the
names of your project’s artifacts? What if they are just a series of JARs in a single flat
subdirectory? It should be no surprise by now that Gradle also has a convenient syntax
for this requirement, called flat, as shown in Example 4-18.

Example 4-18. A flat filesystem repo

repositories {
 // A single directory added to a custom-named repositories grouping.
 flatDir name: 'localDiskRepo', dirs: 'lib'

 // And a more convenient syntax for multiple directories
 added to the default grouping.
 flatDir dirs: ['graphiclibs', guilibs']
}

58 | Chapter 4: Maven and Gradle

http://ant.apache.org/ivy/
http://gradle.org/current/docs/userguide/dependency_management.html#sec:repositories

Unit Testing
Unit testing is enabled as soon as the java plug-in is included in a Gradle build script.
There’s no additional effort to enable the testCompile dependency scope and test
Classes task. However, the selection of a particular testing framework library still needs
to be stated via the dependencies section of the build.gradle file. This facilitates com-
piled tests being able to reference JUnit or TestNG annotations or base classes.

Example 4-19. Enabling compilation of unit tests

apply plugin: 'java'
apply plugin: 'maven'

group = 'com.gradleware.samples'
version = '0.0.1-SNAPSHOT'

repositories {
 mavenCentral()
}

dependencies {
 testCompile group: 'junit', name: 'junit', version: '4.8.+'
}

The unit tests can be compiled via the testClasses task.

Example 4-20. Compiling unit tests

$ gradle testClasses

:compileJava
:processResources
:classes
:compileTestJava
:processTestResources
:testClasses

BUILD SUCCESSFUL

However, it is far more common to both compile and execute the tests in one seamless
step. Simply invoke the test task to do this.

Example 4-21. Running unit tests

$ gradle test

:compileJava
:processResources
:classes
:compileTestJava
:processTestResources
:testClasses
:test

Unit Testing | 59

BUILD SUCCESSFUL

The raw reports from the execution of the unit tests are written to the build/test-
results directory and the distilled HTML output is written to the build/reports/tests
directory.

Example 4-22. Unit test execution output

build
├── reports
| └── tests
│ ├── TestMain.html
│ ├── css3-pie-1.0beta3.htc
│ ├── default-package.html
│ ├── index.html
│ ├── report.js
│ └── style.css
└── test-results
 └── TEST-TestMain.xml

A sample HTML report from this unit test is handsomely formatted as shown in Fig-
ure 4-1.

Figure 4-1. Unit test report

60 | Chapter 4: Maven and Gradle

Multiple Source Directories
In Maven, it takes hackery and the help of the build-helper-maven-plug-in to add more
than one source directory. This is one of those cases where constraints are helpful, right
up to the point that you need to break them. Then, Maven causes you great pain to
circumvent the limitation for your possibly very valid engineering reason. This is ulti-
mately because the internal model of Maven is limited to just one source folder.

On the other hand, Gradle offers you the convention of a single source folder, named
src/main/java, but lets you add more directories very easily, should your build’s design
call for it. A sourceSets entry named main is registered by default with the java plug-in
and since that is a collection, we can simply modify it to give it an additional directory
to scan during compilation, as shown in Example 4-23.

Example 4-23. Code example of multiple source directories

apply plugin: 'java'

sourceSets.main.java.srcDirs =
 ["src/main/java", "srcAdditional/main/java"]

// This add (while maintaining the default src/main/java)
// can also be accomplished with a call:
sourceSets.main.java.srcDirs 'srcAdditionalTwo/main/java'

Default Tasks
Default tasks are easy in Gradle. They are more than just a convenience for the build
user, but rather a means to communicate which task was intended by the author to be
the primary function of this build.

There was no facility for more than one default goal in Maven 1 or Maven 2; however,
this was fixed in Maven 3, closing the associated defect after five long years.

To implement a default goal in Maven, include a single <defaultGoal> tag-wrapped task
(Maven 1, 2) or space-separated list of tasks (Maven 3).

Example 4-24. Default goals for Maven 3

<build>
 <defaultGoal>clean install</defaultGoal>
</build>

Gradle has nearly the same facility, but has included support for multiple default tasks
from the get-go.

Default Tasks | 61

http://mojo.codehaus.org/build-helper-maven-plugin/add-source-mojo.html
http://jira.codehaus.org/browse/MAVEN-1663
http://jira.codehaus.org/browse/MNG-1144

Example 4-25. Default tasks for Gradle

apply plugin: 'java'

//Alternate approach 1
//defaultTasks = ['clean', 'build']

//Alternate approach 2
//defaultTasks 'clean'

//Approach 3
defaultTasks 'clean', 'build'

The Maven Plug-in
It isn’t until the point at which we need to publish a Maven pom.xml file for our project
to participate in Maven-compatible dependency resolution that we need to involve
Gradle’s Maven plug-in.

The archivesBaseName property introduced by the java plug-in can be consumed by the
newly introduced maven plug-in in controlling the value written out as the artifactId
in the generated pom.xml file. If left empty, the project’s directory name is used, as per
the defaults table.

A Gradle build file need only specify all the Maven coordinates if it wants precise control
over each value. The full set of coordinates will be generated into the pom.xml file no
matter what, simply with default values if not explicitly set.

Example 4-26. Gradle build that specifies all the usual Maven coordinates

apply plugin: 'java'
apply plugin: 'maven'

group = 'com.gradleware.samples'
// archivesBaseName is, via the java plugin, then the Maven plugin,
// ultimately setting artifactId for the Maven POM generation
// project.name is used by default, but is immutable
archivesBaseName = 'sample01-barestbones'
version = '0.0.1-SNAPSHOT'
description ="A sample project that uses the Maven plug-in and defines many attributes."

Example 4-27. Running the pom.xml generation process

$ gradle install

:compileJava
:processResources
:classes
:jar
:install

BUILD SUCCESSFUL

62 | Chapter 4: Maven and Gradle

Example 4-28. Build directory listing from the fully coordinate-specified Gradle build

$ tree

build
├── libs
│ └── sample01-barestbones-0.0.1-SNAPSHOT.jar
├── poms
 └── pom-default.xml

Example 4-29. The produced pom.xml file

<?xml version="1.0" encoding="UTF-8"?>
<project xsi:schemaLocation=
 "http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd"
 xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <modelVersion>4.0.0</modelVersion>
 <groupId>com.gradleware.samples</groupId>
 <artifactId>sample01-barestbones</artifactId>
 <version>0.0.1-SNAPSHOT</version>
</project>

Alternatively, a configuration closure can be used to set the same information for the
benefit of the generated pom.xml file.

Example 4-30. Using Configuration to control the generated POM

apply plugin: 'java'
apply plugin: 'maven'

defaultTasks = ['install']

configure(install.repositories.mavenInstaller) {
 pom.project {
 groupId 'com.gradleware.samples'
 artifactId 'sample02-barestbones'
 version '0.0.1-SNAPSHOT'
 description ='A sample project that uses the Maven plug-in
 and defines many attributes.'
 }
}

In either the approach of setting Gradle properties or authoring a configuration closure,
we’ve simplified the setting of the standard Maven coordinates to their bare essence.
Both techniques equally shape the output of the JAR file’s name and the generated
pom.xml file contents.

Installing to the Local Maven Repository (Cache)
The Maven plug-in enabled Gradle to not only produce Maven-compatible pom.xml
and JAR artifacts, but to install those to the local Maven repository. The standard
~/.m2/repository location is used as the destination, just as it would be from Maven.

Installing to the Local Maven Repository (Cache) | 63

Example 4-31. Deploying the Maven-generated artifacts locally

$ gradle install

:compileJava
:processResources
:classes
:jar
:install

BUILD SUCCESSFUL

This install process, equivalent to mvn install, is guaranteed to be compatible with
Maven because it actually uses the Maven Ant Tasks produced by the Maven team and
hosted at Apache. The ~/.m2/settings.xml is consulted, as it would be with Maven, for
an alternate location of the default local repository.

Publishing to a Maven Repository
After a successful Gradle build, a binary artifact such as a JAR should be deployed to
a binary repository manager such as Artifactory or Nexus for team-wide consumption.
Gradle again supports this as simply as its Maven predecessor would with a little con-
figuration of the URL and transport, and then an equivalent to mvn deploy.

As seen in the previous section, the maven plug-in for Gradle offers pom.xml and met-
adata file generation in addition to local installation to the ~/.m2/repository directory.
This plug-in also offers an uploadArchives task that is the equivalent to mvn deploy.

Example 4-32. Gradle build file that permits file:// repository uploads

apply plugin: 'java'
apply plugin: 'maven'

group = 'com.gradleware.samples'

uploadArchives {
 repositories.mavenDeployer {
 repository(url: "file:///Users/mccm06/Documents/Temp/Scratch/mytemprepo/")
 }
}

Example 4-33. Invoking the artifact upload

$ gradle uploadArchives

:clean
:compileJava
:processResources
:classes
:jar
:uploadArchives
Uploading:

64 | Chapter 4: Maven and Gradle

http://maven.apache.org/ant-tasks/index.html
http://www.jfrog.com/products.php
http://nexus.sonatype.org/

 com/gradleware/samples/maven-uploadlocal-unspecified.jar
 to repository remote at
 file:///Users/mccm06/Documents/Temp/Scratch/mytemprepo/
Transferring 1K from remote
Uploaded 1K

BUILD SUCCESSFUL

Protocols other than file:// require just slightly more configuration in that the pro-
tocol and wagon JAR that supplies that connectivity must be explicitly called out as
shown for webdav in Example 4-34.

Example 4-34. Specifying a webdav protocol for artifact uploads

apply plugin: 'java'
apply plugin: 'maven'

group = 'com.gradleware.samples'

configurations {
 deployerJars
}

repositories {
 mavenCentral()
}

dependencies {
 deployerJars "org.apache.maven.wagon:wagon-webdav-jackrabbit:1.0-beta-7"
}

uploadArchives {
 repositories.mavenDeployer {
 configuration = configurations.deployerJars
 repository(
 url: "http://localhost:8081/nexus/content/repositories/matthew"
)
 }
}

Maven2Gradle Build Script Converter
There is indeed such a tool called maven2gradle crafted by Baruch Sadogursky of BMC
Software. It is still under active development on its path to going 1.0, and though young,
is useful even in its current form. maven2gradle views the effective-pom flat view of a
project’s POM as its bridge to export to a Gradle build file. Based on the utility’s
knowledge of the constrained Maven vocabulary, it converts those instructions to Gra-
dle equivalents.

Maven2Gradle Build Script Converter | 65

http://www.gradle.org/maven_plugin.html
https://github.com/jbaruch/maven2gradle
http://blog.sadogursky.com/
http://blog.sadogursky.com/

The maven2gradle conversion tool is rather sensitive to both the Gradle
and Maven tooling versions on the $PATH. Check the project’s README
for details on tooling version requirements.

The execution of the tool is as simple as cding into a directory containing a standalone
or top level multimodule pom.xml file, then executing maven2gradle, as shown in Ex-
ample 4-35.

Example 4-35. A small Maven POM to be converted to Gradle

<!-- The smallest possible Maven POM.xml -->
<project>
 <modelVersion>4.0.0</modelVersion>
 <groupId>com.gradleware.samples</groupId>
 <artifactId>sample01-barestbones</artifactId>
 <version>0.0.1-SNAPSHOT</version>
</project>

The tool outputs lightweight progress information as it works through the POM, set-
tings, repositories, dependencies, and WAR natures, as shown in Example 4-36.

Example 4-36. Converting a Maven POM to a Gradle build file

$ maven2gradle
Wait, obtaining effective pom... Done.
Wait, obtaining effective settings... Done.
This is single module project.
Configuring Maven repositories... Done.
Configuring Dependencies... Done.
Adding tests packaging...Generating settings.gradle if needed... Done.
Generating main build.gradle... Done.

At the conclusion of the tool’s execution, a build.gradle file and, as needed, a
settings.gradle file are output to the current working directory. A sample output is
shown in Example 4-37.

Example 4-37. The result of the maven2gradle conversion

apply plugin: 'java'
apply plugin: 'maven'

 group = 'com.gradleware.samples'
 version = '0.0.1-SNAPSHOT'

description = """"""

sourceCompatibility = 1.5
targetCompatibility = 1.5

66 | Chapter 4: Maven and Gradle

repositories {

 mavenRepo urls: ["http://repo1.maven.org/maven2"]
}

Taking the file exactly as output by maven2gradle would be short of the Gradle build’s
full potential as it would miss out on some verbosity reductions that Gradle has to offer.
The resultant build.gradle file will function correctly, but the idea with Gradle is not
just to have a functional equivalent in the Groovy language, but a better build than
what we started with in Maven. The output build.gradle can benefit from hand-tuning
to leverage more Groovy idioms and Gradle plug-ins. After all, Gradle’s aims are to
provide you with great possibilities: a more expressive vocabulary and a more concise
build file due to the ability to conform to your needs rather than the other way around.

Maven POM Import
A second, and quite different question, is whether Gradle can directly import a Maven
POM, capturing the existing behavior and converting it to equivalent Gradle behavior
at runtime. The short-term answer is “it’s a work in progress” named Gradle-M2Meta
data-Plug-in. The limited vocabulary of Maven makes this feasible, but mirroring the
idiosyncrasies of Maven’s behavior for each combination of tags is a steep challenge.
Today, the source compatibility levels, dependencies, coordinates, and packaging can
be brought across via a run-time import of a Maven pom.xml file’s contents.

To use this plug-in, add an apply and a configuration of the buildScript task that
indicates where the plug-in’s JAR can be retrieved, as shown in Example 4-38.

Example 4-38. The M2Metadata plug-in’s driving build.gradle

apply plugin: 'maven-metadata'

//Repo to retrieve the maven-metadata plugin
buildscript {
 repositories {
 mavenRepo urls: ["http://repo.jfrog.org/artifactory/plugins-snapshots"]
 }

 dependencies {
 classpath "org.gradle.plugins:gradle-m2metadata-plugin:1.0-SNAPSHOT"
 }
}

On the Maven side, the pom.xml is as traditional as a POM can be. It defines coordinates
and two dependencies which are used by the source code. This is shown in Exam-
ple 4-39.

Maven POM Import | 67

https://github.com/jbaruch/Gradle-M2Metadata-Plugin
https://github.com/jbaruch/Gradle-M2Metadata-Plugin

Example 4-39. The M2Metadata plug-in’s consumed pom.xml

<!-- The smallest possible Maven POM.xml -->
<project>
 <modelVersion>4.0.0</modelVersion>
 <groupId>com.gradleware.samples</groupId>
 <artifactId>sample01-m2metadata</artifactId>
 <version>0.0.2-SNAPSHOT</version>

 <dependencies>
 <dependency>
 <groupId>log4j</groupId>
 <artifactId>log4j</artifactId>
 <version>1.2.16</version>
 </dependency>
 <dependency>
 <groupId>junit</groupId>
 <artifactId>junit</artifactId>
 <version>4.8.2</version>
 <scope>test</scope>
 </dependency>
 </dependencies>
</project>

Conclusion
Gradle, instead of starting anew from the things that we’ve learned and adopted in the
Maven build space, promotes that it is okay to use something that already exists on the
way to a better build. Gradle loves scaffolding. Gradle likes convention over configu-
ration. Gradle likes a strong domain model. There’s no shame in those similarities to
its predecessors. The important twist is that Gradle is willing to be flexible where pred-
ecessors would be rigid. This newfound flexibility exists while still facilitating the par-
tial consumption of existing Maven build files for a gradual transition to a full Gradle
build. This is certainly the definition of a win-win situation.

68 | Chapter 4: Maven and Gradle

CHAPTER 5

Testing with Gradle

The discussion of testing with Gradle takes two primary directions. The first is the
simple testing of Java classes with existing test frameworks like JUnit and TestNG. The
second is a full automation of the testing pipeline, including separating integration tests
from unit test and the leveraging of more advanced testing frameworks like Spock and
Geb.

JUnit
The simplest JUnit example is almost entirely supplied by the java Gradle plug-in. It
adds the test task to the build graph and needs only the appropriate JUnit JAR to be
added to the classpath to fully activate test execution. This is demonstrated in Exam-
ple 5-1.

Example 5-1. Testing Java source with JUnit

apply plugin: 'java'

repositories {
 mavenCentral()
}

dependencies {
 testCompile 'junit:junit:4.8.2'
}

The report from the execution of the JUnit tests is quite handsome compared to its
non-Gradle counterparts, as you can see in Figure 5-1. It offers a summary of the tests
that were executed, succeeded, and failed.

69

http://code.google.com/p/spock/
http://geb.codehaus.org/latest/index.html
http://kentbeck.github.com/junit/

Figure 5-1. JUnit Test Report

When JUnit tests reach a certain level of proliferation within a project, there is a mo-
tivation to run them in parallel to get the results faster. However, there would be a great
overhead to running every unit test in its own JVM. Gradle provides an intelligent
compromise in that it offers a maxParallelForks that governs the maximum simulta-
neous JVMs that are spawned.

In the same area of testing, but with a different motivation, is the forkEvery setting.
Tests, in their quest to touch everything and exercise as much as possible, can cause
unnatural pressure on the JVM’s memory allocation. In short, it is what Java developers
term a “leak”. It can merely be the loading of every class causing the problem. This isn’t
really a leak since the problem stems from the fact that loaded class definitions are not
garbage collected but instead are loaded into permgen space. The forkEvery setting
causes a test-running JVM to close and be replaced by a brand new one after the speci-
fied number of tests have run under an instance.

Though these two settings have very different goals, they may often be seen used in
combination when a project has a large battery of tests. The use of forkEvery and
maxParallelForks is shown in Example 5-2.

70 | Chapter 5: Testing with Gradle

Example 5-2. Testing Java source with multiple JUnit threads

apply plugin: 'java'

repositories {
 mavenCentral()
}

dependencies {
 testCompile 'junit:junit:4.8.2'
}

test {
 maxParallelForks = 5
 forkEvery = 50
}

In Example 5-2, we leverage the test closure that was provided by the java plug-in as
a scoping syntax for assignment of new values to the forkEvery and maxParallelForks
variables.

Example 5-3 executes a Gradle build that uses the two governing parallelism settings
as set in Example 5-2.

Example 5-3. Displaying the Gradle worker JVMs with the jps utility

$ gradle test

:createTests
:compileJava UP-TO-DATE
:processResources UP-TO-DATE
:classes UP-TO-DATE
:compileTestJava
:processTestResources UP-TO-DATE
:testClasses
> Building > :test > 760 tests completed

When the Example 5-2 tests should spin up multiple JVMs for unit tests, we can validate
this behavior by running the jps command as shown in Example 5-4.

Example 5-4. Displaying the Gradle worker JVMs with the jps utility

$ jps

90861 GradleWorkerMain
90862 GradleWorkerMain
90863 GradleWorkerMain
90865 GradleWorkerMain
90864 GradleWorkerMain
90731 GradleMain

We can see that five GradleWorkerMain instances are indeed busy, running tests as per
our Example 5-2 specifications.

JUnit | 71

TestNG
A more recent testing framework, TestNG, has been gaining traction in the Java space
as of late. It is also an easy testing framework to use with Gradle. Only the modest
addition of the useTestNG() call to the test closure is needed in addition to the refac-
toring of the unit test class.

Example 5-5. A TestNG Unit Test

package org.gradle.example.simple;

import org.gradle.example.simple.Person;

import org.testng.annotations.*;
import static org.testng.AssertJUnit.*;

public class TestPerson {
 private Person p = null;

 @BeforeClass
 public void setUp() {
 p = new Person();
 p.setAge(20);
 p.setName("Fird Birfle");
 p.setSalary(195750.22);
 }

 @Test(groups = { "fast" })
 public void testPerson() {
 assertEquals(215325.242, p.calculateBonus(), 0.01);
 assertEquals("The Honorable Fird Birfle", p.becomeJudge());
 assertEquals(30, p.timeWarp());
 }

 @Test(groups = { "slow" })
 public void testPersonAgain() {
 Person p = new Person();
 p.setAge(30);
 p.setName("Bird Firfle");
 p.setSalary(32001.99);

 p.wasteTime();
 }
}

Example 5-6. Testing Java source with TestNG

apply plugin: 'java'

repositories {
 mavenCentral()
}

test {

72 | Chapter 5: Testing with Gradle

http://testng.org/doc/index.html

 useTestNG()
}

dependencies {
 testCompile 'org.testng:testng:6.0.1'
}

Lastly, when tests start to bifurcate into both unit and integration tests, which among
many differentiators, typically means short and long running respectively, a need to
also have the tool respect those separations arises. Gradle handles this with aplomb
with a simple specification of a pattern of tests to include in each grouping as shown
in Example 5-7.

Example 5-7. Separating tests into unit and integration tests

apply plugin: 'java'

repositories {
 mavenCentral()
}

dependencies {
 testCompile 'junit:junit:4.8.2'
}

test {
 include '**/Test*.*'
}

task integrationTest(type: Test, dependsOn: "test") << {
 include '**/IntegrationTest*.*'
}

This same goal of separating unit and integration tests could also be accomplished with
a different technique of separate sourceSet entries. The sourceSet and configuration
distinction (one for unitTest and one for integrationTest) has JAR dependency pre-
cision, but also more verbosity. This is similar to the technique employed by the Gradle
plug-in in that it has a distinct set of files (src/main/groovy) and dependencies (like the
Groovy core library).

Spock
Spock, as the homepage states, is a “testing and specification framework for Java and
Groovy applications.” In a sea of similar tools, it distinguishes itself from the others by
a very expressive DSL that reads nearly like natural English writing.

Example 5-8. Spock testing specification

class HelloSpock extends spock.lang.Specification {
 def "length of Spock's and his friends' names"() {
 expect:

Spock | 73

http://www.gradle.org/groovy_plugin.html
http://www.gradle.org/groovy_plugin.html
http://code.google.com/p/spock/

 name.size() == length

 where:
 name | length
 "Spock" | 5
 "Kirk" | 4
 "Scotty" | 6
 }
}

A Spock specification, since run under the umbrella of JUnit, can be executed by the
mere addition of Spock’s JAR to Gradle’s dependencies.

Example 5-9. Executing Spock test specifications with Gradle

apply plugin: "groovy"

repositories {
 mavenCentral()
}

dependencies {
 groovy("org.codehaus.groovy:groovy-all:1.7.5")
 testCompile "org.spockframework:spock-core:0.5-groovy-1.7"

 // dependencies used by examples in this project
 // (not required for using Spock)
 testRuntime "com.h2database:h2:1.2.147"
}

The standard results for JUnit executions also apply to Spock, providing a consistent
summary of both traditional and specification-style test execution results, as shown in
Figure 5-2.

Geb and EasyB
Geb can be thought of as the furthest reaches of test automation on the JVM with
Groovy-based control of web browsers for testing what is primarily thought of as a task
for Selenium/WebDriver. There are a growing number of developers writing about and
demonstrating this powerful combination of driving a browser from JUnit all the way
to specification formats like easyB.

Gradle can easily drive a Geb and easyB combination with just a few additional
dependencies and an Ant task defintion, as shown in Example 5-10.

74 | Chapter 5: Testing with Gradle

http://geb.codehaus.org/latest/index.html
http://code.google.com/p/selenium/wiki/GettingStarted
http://blog.james-carr.org/2011/04/27/using-gebeasyb-with-gradle/
https://github.com/jamescarr/gradle-easyb-geb-example
http://www.easyb.org/

Figure 5-2. JUnit test report for Spock tests

Geb and EasyB | 75

Example 5-10. Geb Gradle build file

apply plugin: 'groovy'

repositories {
 mavenCentral()
}

dependencies {
// groovy 'org.codehaus.groovy:groovy:1.7.10'
 testCompile ('org.easyb:easyb:0.9.8')
 testCompile 'org.codehaus.geb:geb-core:0.5.1'
 testCompile 'org.codehaus.geb:geb-easyb:0.5.1'
 testCompile 'org.seleniumhq.selenium:selenium-htmlunit-driver:2.0a7'
}

test.doLast {
 ant.taskdef(name: "easyb", classname:"org.easyb.ant.BehaviorRunnerTask", classpath:
 sourceSets.test.runtimeClasspath.asPath)

 ant.easyb(classpath: sourceSets.test.runtimeClasspath.asPath,
 failureProperty:'easyb_failed') {
 report(location:"${project.testResultsDir}/story.html", format:"html")
 behaviors(dir: "src/test/stories") {
 include(name:"**/*.story")
 }
 }

 ant.fail(if:'easyb_failed', message: 'Failures in easyb stories')
}

The easyB specification file reads like plain English in its execution of web browser
driving events and querying of the page responses.

Example 5-11. Geb easyB specification

using "geb"

scenario "scripting style", {

 when "we go to google", {
 go "http://google.com"
 }

 then "we are at google", {
 page.title.shouldBe "Google"
 }

 when "we search for chuck", {
 $("input", name: "q").value("chuck norris")
 $("input", value: "Google Search").click()
 }

 then "we are now at the results page", {
 page.title.shouldEndWith "Google Search"

76 | Chapter 5: Testing with Gradle

 }

 and "we get straight up norris", {
 $("li.g", 0).find("a.l").text().shouldStartWith "Chuck Norris"
 }

}

And, at the end of the Geb via easyB execution, a very pleasant results page (Fig-
ure 5-3) describes the stories that were run, like a richer version of the JUnit test report.

Figure 5-3. easyB test report for Geb tests

Gradle’s Testing Focus
The review and examples of testing with Gradle shows that the traditional JUnit testing
approach is slightly less ceremonious than with other build tools. However, Gradle
truly shines in that the more advanced forms of separating integration tests, running
Spock specifications, or driving the browser via Geb are handled with absolutely sim-
plicity. As more complex software, larger code bases, and increased automation drive
developers toward these more advanced testing tools, Gradle is poised to offer the most
convenient use. This will continue to drive Gradle’s adoption as a software craftsper-
son’s build and automation tool.

Gradle’s Testing Focus | 77

CHAPTER 6

Multiproject Builds

Large projects are typically broken up into separate modules with independent build
lifecycles. Each subproject has some kind of life of its own, perhaps with a development
team assigned to it alone, and certainly with a test suite of its own which is worthwhile
to run apart from the project as a whole. However, any large system that is broken into
pieces must also be reintegrated together, implying the need for a master build that
combines all subprojects into a single integration test suite and set of release artifacts
or processes. A next-generation build system will be equipped to provide a flexible
framework for dealing with real-world project differentiation and integration.

Multiproject Build Structure
A multiproject is generally hierarchical in nature: it typically has a master project with
one or more subprojects. In some cases, subprojects may be nested. The master project
goes in a top-level directory, with subprojects arranged in subdirectories underneath.
The master project may add code, resources, tests, and build conventions of its own,
or it may simply be build glue that holds the project tree together.

In the most intuitive case, Gradle allows you to define a build file for the top-level
project and one for each subproject. In a more interesting and potentially more useful
case, it also lets you define the entire build from the top-level build file. Alternatively,
if neither a scattered set of individual build files nor a single, integrated build file suits
you, you can also put some build configuration in the top-level build file and put
project-specific details in the project-specific build files in their respective subdirecto-
ries. As usual, Gradle wants to you give you the ability to define your own build con-
ventions, rather than impose its opinions on you.

To tell Gradle which subdirectories of the root project actually contain projects (and
not merely sources or build outputs), you must provide the settings.gradle file. This
is a build configuration file which is independent of build.gradle. In the simplest case,
settings.gradle simply lists the names of the subdirectories which contain subprojects,
and nothing more.

79

When Gradle runs the Initialization lifecycle phase, it first looks for settings.gradle,
and from it finds the list of subdirectories which contain subprojects. If those
subdirectories contain build.gradle files of their own, they are processed next and
incorporated into the directed acyclic graph (DAG) that describes the build. The fact
that Gradle is building an internal project DAG reveals a compelling option: given the
right Gradle syntax, we can actually do all of the multiproject build configuration from
a single build.gradle file at the root level. We can also distribute all of the configuration
to the individual build files, or use a hybrid approach in which common configuration
settings are in the master file, and project-specific settings reside in the individual build
files.

Project-Specific Build Files
Having a single, project-specific build file per subproject is easiest to digest for most
new users. There is a settings.gradle file at the project root, and a build.gradle file
at the root and in each subproject directory. Each subproject manages its own build
affairs, and the top-level project combines the subproject build outputs into the inte-
grated build outcome which is the ultimate goal of the build.

In our example, the root project is a command-line application that takes the name of
a poet as a command line argument, then emits a few lines of that poet’s poetry to the
console in an encoded form. One of its dependencies is a project containing a simple
API for generating the poems, including a Java interface, a factory class, and several
implementations containing different poem fragments. The other dependency is an API
that encodes arbitrary strings first with the Metaphone algorithm, then the Base64
format. The top-level application has the responsibility of calling both APIs to emit
encoded poetry to the console. This example illustrates two dependent subprojects,
one of which is a completely standalone API, and one of has external JAR dependencies
which must be fetched from an online repository and made available to the root-level
project.

The settings.gradle file looks as shown in Example 6-1.

Example 6-1. The settings.gradle file for a simple multiproject build.

include 'codec', 'content'

This is the most basic use of settings.gradle possible. It simply names the subprojects
by directory name, relative to the directory of the top-level project. The settings.gra
dle file is interpreted during the Initialization lifecycle phase, when the skeleton of the
build graph is being constructed. Consequently, a richer API than the include method
is available. In general, any part of the Gradle API that affects the structure of the build
graph can be called in this file. We haven’t looked in detail at what these API calls are
yet, but later on in this chapter, we’ll look at some of them when we extract parts of
the subproject build files into the top-level build file.

80 | Chapter 6: Multiproject Builds

The top-level build file looks as shown in Example 6-2.

Example 6-2. The root project build file, when subprojects have individual build files

evaluationDependsOn(':codec')

apply plugin: 'java'

dependencies {
 compile project(':codec')
 compile project(':content')
}

['shakespeare', 'williams', 'shelley', 'chesterton'].each { poet ->
 task "${poet}"(type: JavaExec) {
 group = 'Encoded Poetry'
 args = [poet]
 main = 'org.gradle.example.codedpoet.CommandLine'
 classpath sourceSets.main.runtimeClasspath,
 project(':codec').sourceSets.main.runtimeClasspath
 }
}

This Groovy code declares a list of four strings (each of which is the name of a poet),
then iterates over that list.

This line creates a dynamic task in the top-level project named after each poet.

The args parameter expects a List, so we use Groovy list literal syntax to wrap the
poet variable.

There are a few things in this build file that we haven’t seen yet. First of all, note that
the dependencies aren’t vectors describing a JAR file in a repository, but they are
projects. The project() method queries the Gradle DAG and returns the project object
belonging to a subproject. The colon at the beginning of the project name indicates the
root of the project tree, in a similar way that a forward slash indicates the root directory
in a Unix filesystem, or a backslash indicates the root directory on Windows. The
project name following the colon is the project name as given in settings.gradle. This
top-level project’s dependencies block indicates that it depends on the codec and
content subprojects.

This build file also uses dynamic task creation. The dynamic tasks created in this build
file are JavaExec tasks, each of which runs the org.gradle.example.codedpoet.Command
Line class, passing in the name of the poet as a command-line argument. Most impor-
tantly, each task’s classpath property is given two arguments: the runtimeClasspath of
the top-level project, and the runtimeClasspath of the :codec project.

The codec project’s classpath must be added to the JavaExec task explicitly because the
codec introduces a dependency of its own: namely, the Apache commons-codec library.
It is very typical for subprojects to have their own dependencies, either stored locally

Project-Specific Build Files | 81

in the project or retrieved from a Maven- or Ivy-style repository, so including them in
the top-level project’s build is commonplace.

Finally, the first line of build.gradle introduces a method call we have not seen before.
The evaluationDependsOn() method, which takes a subproject name as its argument,
indicates that the evaluation of the current project (the top-level or root project)
depends on the named project. This method call is necessary to enable the dependencies
of the codec project to be available in the top-level project. Calling this method will
always force the named project to be evaluated first, so its contributions to the project
graph will exist before the current project is evaluated.

The build file of the content project is trivial (Example 6-3).

Example 6-3. The build file of the content subproject.

apply plugin: 'java'

It is a pure Java project with no external dependencies, following all of the conventions
of the Java plug-in. The code itself is only slightly more complex, having an interface,
a factory class, and several concrete implementations of the interface. These are all
compiled and bundled into a JAR to be used by the top-level project.

The build file of the codec project contains only slightly more configuration (Exam-
ple 6-4).

Example 6-4. The build file of the codec subproject.

apply plugin: 'java'

repositories {
 mavenCentral()
}

dependencies {
 compile 'commons-codec:commons-codec:1.5'
}

In addition to applying the Java plug-in, it also names Maven Central as a repository,
and declares the Apache commons-codec library version 1.5 as a dependency. The code
itself declares a single class called Encoder, which exposes a method that calls both the
Metaphone and Base64 codecs on a string argument.

Splitting a multiproject build into a parent project and multiple subprojects, and giving
each subproject its own build file, is an easy-to-understand structure with much to
recommend it as a standard approach to complex, composite Gradle projects. How-
ever, the fact that Gradle converts the build files internally into a unified project DAG
exposes a couple of other options for us when deciding how to organize multiproject
builds. Let’s look at how we might refactor this build to put all of the build configuration
into one file.

82 | Chapter 6: Multiproject Builds

One Master Build File
The previous multiproject build can be expressed in a single build file in the root project.
The settings.gradle remains the same, naming the subprojects by their directories
(Example 6-5).

Example 6-5. The settings.gradle for the unified multiproject build case.

include 'codec', 'content'

However, the build.gradle files in the codec and content subproject directories go away
entirely. They are replaced with configuration in the master build file (Example 6-6).

Example 6-6. A unified build file for a mutli-project build

 evaluationDependsOn(':codec')

allprojects {
 apply plugin: 'java'
}

project(':codec') {
 repositories {
 mavenCentral()
 }

 dependencies {
 compile 'commons-codec:commons-codec:1.5'
 }
}

dependencies {
 compile project(':codec')
 compile project(':content')
}

['shakespeare', 'williams', 'shelley', 'chesterton'].each { poet ->
 task "${poet}"(type: JavaExec) {
 group = 'Encoded Poetry'
 args = [poet]
 main = 'org.gradle.example.codedpoet.CommandLine'
 classpath sourceSets.main.runtimeClasspath,
 project(':codec').sourceSets.main.runtimeClasspath
 }
}

The call to evaluationDependsOn() tells Gradle to evaluate the :codec build file before
the root project’s build file. This ensure that codec build objects will exist in the
graph before the rest of this build file is evaluated.

The allprojects method passes all of its configuration to all projects in the build,
including the root and all subprojects.

One Master Build File | 83

The project() method gives us direct access to the configuration of the codec sub-
project. Using this syntax, we can configure any project in the graph.

In the unified build, all three projects need the Java plug-in, so we apply that plug-in
inside the allprojects closure. If we had configuration to apply only to subprojects,
we could use the subprojects method instead.

The codec project has some individual configuration needs that don’t apply to the other
two projects in the build, and we can apply this configuration by using the project()
method. Note that the parameter passed to project() is :codec. Using this syntax, we
can access the project graph of any configured subproject. The power and flexibility of
this syntax is difficult to overstate. The object returned by project() is a Project object,
which is implicitly the object being operated on by all of the methods normally called
in a Gradle build file. Just as repositories and dependencies are configured in this block,
tasks could be created or modified, new Java SourceSets defined, plug-ins applied, or
any other Gradle configuration operation performed. The ability to access the Project
object from the top-level build file gives us complete control over the structure of the
entire build. This feature is much more consequential than its ordinary-seeming syntax
would suggest.

The rest of the build file is the same as what we saw in the individual build file example:
the root project is made to depend on the two subprojects, and a set of tasks is
dynamically created to call the CommandLine class with an appropriate argument. This
gives us the same functionality as the individual build file example.

A Hybrid Multiproject Build
So far, we’ve seen two ways of expressing a multiproject build: splitting the build up
into several project-specific build files, and combining all build configuration into one
master build file. As an alternative to these, you may find that the most expressive way
to describe your build is to choose a hybrid approach in which some configuration is
placed in the root build file and some is included in project-specific build files. Let’s
rework the build files from the previous two examples to reflect such a hybrid config-
uration.

The new root-level build file still contains an allprojects configuration, applying the
Java plug-in to all projects. Otherwise, it looks just like the root project build file from
the individual build file example. The resulting file is shown in Example 6-7.

Example 6-7. The build file of the root-level project in the hybrid multiproject build case.

allprojects {
 apply plugin: 'java'
}

evaluationDependsOn(':codec')

dependencies {

84 | Chapter 6: Multiproject Builds

 compile project(':codec')
 compile project(':content')
}

['shakespeare', 'williams', 'shelley', 'chesterton'].each { poet ->
 task "${poet}"(type: JavaExec) {
 group = 'Encoded Poetry'
 args = [poet]
 main = 'org.gradle.example.codedpoet.CommandLine'
 classpath sourceSets.main.runtimeClasspath,
 project(':codec').sourceSets.main.runtimeClasspath
 }
}

Since the dependency and repository configuration of the codec project were specific
to that project, we push that configuration back down into its build file as shown in
Example 6-8:

Example 6-8. The build file for the codec subproject.

repositories {
 mavenCentral()
}

dependencies {
 compile 'commons-codec:commons-codec:1.5'
}

Note that we do not apply the Java plug-in in the code project’s build file, since the
Java plug-in is a common configuration step that is done in the root-level build.gra
dle file. Because of this, there is no need to provide a build file for the content subpro-
ject, since that very simple build relies entirely on the defaults provided by the Java
plug-in, which is applied by the root project.

Individual, Unified, or Hybrid?
The three approaches we’ve explored here each have unique advantages. Creating a
single build file for each subproject project provides for a very clear separation of con-
cerns, and is a very easy-to-understand approach for new users of Gradle. Putting all
configuration into a single build file puts the entire description of the build in one easy-
to-examine file. A hybrid approach lets us put common configuration in one place,
then to factor project-specific configuration into build files associated with their indi-
vidual projects. Each one of these approaches has something to recommend it.

Each is desirable for a reason of its own, but Gradle imposes no opinion on which
approach is correct. As a user of Gradle, you are free to structure your multiproject
builds in whatever way best fits your circumstances and build sensibilities.

Individual, Unified, or Hybrid? | 85

Multiproject Task Structure
Gradle considers a multi-project build as a single graph of projects, tasks, and other
configuration data structures. As a result, running the build from inside the root project
or any subproject gives you access to the entire graph of tasks. If you’re in the directory
of a subproject, you don’t have to change directories into another subproject to get
access to that project’s tasks.

The task addressing scheme is similar to directory paths in the file system, except it
uses colons instead of slashes as delimiters. A colon at the beginning of a fully qualified
task name indicates the root project. If the colon is followed by the name of the task in
the root project, then that fully qualified task name refers to that task in the root project
—whether Gradle is being executed from within the root directory or from within a
subproject directory. If the text after the colon is a subproject name, then it should be
followed by another colon and the name of a task within that subproject. Again, this
task can be invoked no matter what project directory in the tree you’re in when you
run Gradle.

If you want to run the whole project build while in the directory of a subproject, you
might use the command line shown in Example 6-9.

Example 6-9. Running a task in the root project from within a subproject directory

[~/mutiproject] $ cd codec
[~/mutiproject/codec] $ gradle :build
:codec:compileJava
:codec:processResources
:codec:classes
:codec:jar
:content:compileJava
:content:processResources
:content:classes
:content:jar
:compileJava
:processResources
:classes
:jar
:assemble
:compileTestJava
:processTestResources
:testClasses
:test
:check
:build

BUILD SUCCESSFUL

Total time: 12.333 secs

If you want to build another subproject while in one subproject’s directory, you’d use
the longer task syntax (Example 6-10).

86 | Chapter 6: Multiproject Builds

Example 6-10. Running one subproject’s tasks while in a second subproject

[~/mutiproject] $ cd content
[~/mutiproject/content] $ gradle :codec:compileJava
:codec:compileJava

BUILD SUCCESSFUL

Total time: 1.274 secs

This same syntax applies when you’re in the root project and want to run a subproject
task directly, except that you may optionally omit the colon, since you’re already at the
root level (Example 6-11).

Example 6-11. Running a subproject task from the root project

[~/mutiproject] $ gradle codec:jar
:codec:compileJava
:codec:processResources
:codec:classes
:codec:jar

BUILD SUCCESSFUL

Total time: 0.996 secs

Multiple Projects Your Way
Gradle’s internal architecture lends itself to a very fluid way of dealing with multi-
project builds. It is a central fact of Gradle’s architecture that it converts all
build.gradle files into a unified DAG that describes the dependencies and associated
actions of a build. The existence of this DAG gives you tremendous flexibility in how
you want to represent the configuration of your multiproject build in your actual project
files. The individual, unified, and hybrid approaches—all of which are automatically
integrated by the time the build executes—offer options that should appeal to all build
developers regardless of project structure and developer preferences. As usual, Gradle
wants to provide you with the tools to create your own standards, rather than impose
its standards on you.

Multiple Projects Your Way | 87

About the Authors
Tim is a full-stack generalist and passionate teacher who loves coding, presenting, and
working with people. He is founder and principal software developer at the August
Technology Group, a technology consulting firm focused on the JVM. He is a speaker
internationally and on the No Fluff Just Stuff tour in the United States, copresenter of
the best-selling O’Reilly Git Master Class, and is copresident of the Denver Open Source
User Group. He has recently been exploring build automation, nonrelational data
stores, and abstract ideas like how to make software architecture look more like an ant
colony. He lives in Littleton, CO, with the wife of his youth and their three children.

Matthew is an energetic fifteen-year veteran of enterprise software development, world-
traveling open source educator, and co-founder of Ambient Ideas, LLC, a U.S. consul-
tancy. Matthew currently is a trainer for Gradleware, educator for GitHub.com, author
of the Git Master Class series for O’Reilly, speaker on the No Fluff Just Stuff tour,
author of three of the top ten DZone RefCards (including the Git RefCard), and Pres-
ident of the Denver Open Source Users Group. His current topics of research center
around project automation, including: build tools (Gradle, Leiningen, Maven, Ant),
distributed version control (Git, Mercurial), testing frameworks (Geb, Spock, JUnit,
TestNG, Mockito), continuous integration (Jenkins, Hudson, Bamboo) and code qual-
ity metrics (Sonar, CodeNarc, PMD).

Colophon
The animal on the cover of Building and Testing with Gradle, first edition, is a bush wren.

The cover image is from Cassell's Natural History. The cover font is Adobe ITC
Garamond. The text font is Linotype Birka; the heading font is Adobe Myriad
Condensed; and the code font is LucasFont’s TheSansMonoCondensed.

	Table of Contents
	Foreword
	Preface
	Introduction
	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us
	Acknowledgments from Tim Berglund
	Acknowledgments from Matthew McCullough

	Chapter 1. Hello, Gradle!
	Build Files in Groovy
	Domain-Specific Build Languages
	Getting Started
	MacOS Installation with Brew
	Linux and MacOS Installation
	Windows Installation

	The Hello World Build File
	Building a Java Program
	The Gradle Command Line

	Chapter 2. Gradle Tasks
	Declaring a Task
	Task Action
	Task Configuration
	Tasks Are Objects
	Methods of DefaultTask
	dependsOn(task)
	doFirst(closure)
	doLast(closure)
	onlyIf(closure)

	Properties of DefaultTask
	didWork
	enabled
	path
	logger
	logging
	description
	temporaryDir

	Dynamic Properties

	Task Types
	Copy
	Jar
	JavaExec

	Custom Task Types
	Custom Tasks Types in the Build File
	Custom Tasks in the Source Tree

	Where Do Tasks Come From?
	Conclusion

	Chapter 3. Ant and Gradle
	The Vocabulary
	Hello Ant
	Importing Custom Ant Tasks
	Complex Ant Configuration
	Importing an Entire Ant Build File
	Ant Target and Gradle Task Codependence
	Using AntBuilder
	A Harmonic Duo

	Chapter 4. Maven and Gradle
	Cue Graven?
	The Maven POM and Gradle Build
	Maven Goals, Gradle Tasks
	The Standard Maven Coordinates, Gradle Properties
	More Gradle Properties
	Dependencies
	Repositories
	Unit Testing
	Multiple Source Directories
	Default Tasks
	The Maven Plug-in
	Installing to the Local Maven Repository (Cache)
	Publishing to a Maven Repository
	Maven2Gradle Build Script Converter
	Maven POM Import
	Conclusion

	Chapter 5. Testing with Gradle
	JUnit
	TestNG
	Spock
	Geb and EasyB
	Gradle’s Testing Focus

	Chapter 6. Multiproject Builds
	Multiproject Build Structure
	Project-Specific Build Files
	One Master Build File
	A Hybrid Multiproject Build
	Individual, Unified, or Hybrid?
	Multiproject Task Structure
	Multiple Projects Your Way

