
Autotools: a practitioner's guide to
Autoconf, Automake and Libtool

There are few people who would deny that Autoconf, Automake and Libtool have
revolutionized the free software world. While there are many thousands of Autotools
advocates, some developers absolutely hate the Autotools, with a passion. Why? Let me
try to explain with an analogy.
In the early 1990's I was working on the final stages of my bachelor's degree in computer
science at Brigham Young University. I took a 400-level computer graphics class,
wherein I was introduced to C++, and the object-oriented programming paradigm. For the
next 5 years, I had a love-hate relationship with C++. I was a pretty good C coder by that
time, and I thought I could easily pick up C++, as close in syntax as it was to C. How
wrong I was. I fought late into the night, more often than I'd care to recall, with the C++
compiler over performance issues.

The problem was that the most fundamental differences between C++ and C are not
obvious to the casual observer. Most of these differences are buried deep within the C++
language specification, rather than on the surface, in the language syntax. The C++
compiler generates code beneath the covers at a level never even conceived of by C
compiler writers. This level of code generation provides functionality in a few lines of C++
code that requires dozens of lines of C code. Oh, yes--you can write object-oriented
software in C. But you are required to manage all of the details yourself. In C++, these
details are taken care of for you by the compiler. The advantages should be clear.

But this high-level functionality comes at a price--you have to learn to understand what
the compiler is doing for you, so you can write your code in a way that complements it.
Not surprisingly, often the most intuitive thing to do in this situation for the new C++
programmer is to inadvertently write code that works against the underlying infrastructure
generated by the compiler.

And therein lies the problem. Just as there were many programmers then (I won't call
them software engineers--that title comes with experience, not from a college degree)
complaining of the nightmare that was C++, so likewise there are many programmers
today complaining of the nightmare that is the Autotools. The differences between make
and Automake are very similar to the differences between C and C++. The most basic
single-line Makefile.am generates a Makefile.in file (an Autoconf template) containing
nearly 350 lines of make script.

Who should read this book

This book is written for the open source software package maintainer. I'm purposely not
using the terms "free software" or "proprietary software that's free". The use of the term
"open source" is critical in this context. You see, open source defines a type of software
distribution channel. One in which the primary method of obtaining software functionality
is downloading a source archive, unpacking, building and installing the built products on
your system. Free software may be published in binary form. Proprietary software may
be given away. But open source software implies source-level distribution.

Source-level distribution relegates a particular portion of the responsibility of software
development to the end-user that has traditionally been assumed by the software
developer. But end-users are not developers, so most of them won't know how to
properly build your package. What to do, what to do... The most widely adopted approach

Chapter 1: A brief introduction to the
GNU Autotools
Mon, 2008-05-12 02:51 -- John Calcote

I'm going to make a rather broad and sweeping statement here: If you're writing free or
open source software targeting Unix or Linux systems, then you should be using the
GNU Autotools. I'm sure I sound a bit biased, but I'm not. And I shouldn't be, given the
number of long nights I've spent working around what appeared to be shortcomings in
the Autotools system. Normally, I would have been angry enough to toss the entire
project out the window and write a good hand-coded makefile and configure script. But
the one fact that I always came back to was that there are literally thousands of projects
out there that appear to be very successfully using the Autotools. This was too much for
me. My pride would never let me give up.

Who should use the Autotools?

The Autotools are supposed to make projects simpler for the maintainer, right? And the
answer to that question is a definitive "No". Don't misunderstand me here--the Autotools
do make your life easier in the long run, but for different reasons than you may first
realize. The primary goal of the Autotools is not to make project maintenance simpler,
although I honestly believe the system is as simple as it can be, given the functionality it
provides. It took me a while to figure this out, and really, it was one of my most significant
Autotools epiphanies. Ultimately, I came to understand that the purpose of the Autotools
is two-fold: First, to make life easer for your users, and second, to make your project
more portable--even to systems on which you've never tested, installed or even built your
code.
Well then, what if you don't work on free or open source software? Do you still care about
these goals? What if you're writing proprietary software for Unix or Linux systems? Then,
I say, you would probably still benefit to some degree from using the Autotools. Even if
you only ever intend to target a single distribution of Linux, the Autotools will provide you
with a build environment that is flexible enough to allow your project to build successfully
on future versions or distributions with virtually no changes to the build scripts. And, let's
be honest here--you really can't know in advance whether or not your management will
want your software to run on other platforms in the future. This fact alone is enough to
warrant my statement.

Who should NOT use the Autotools?

About the only scenario where it makes sense NOT to use the Autotools is the one in
which you are writing software for non-Unix platforms only--Microsoft Window comes to
mind. Some people will tell you that the Autotools can be used successfully on Windows
as well, but my opinion is that the POSIX/FHS approach to software build management is
just too alien for Windows development. While it can be done, the tradeoffs are way too
significant to justify shoe-horning a Windows project into the Autotools build paradigm.
I've watched some project managers develop custom versions of the Autotools which
allow the use of all native Windows tools. These projects were maintained by people who
spent much of their time tweaking the tools and the build environment to do things it was
never intended to do, in a hostile and foreign environment. Quite frankly, Microsoft has
some of the best tools on the planet for Windows software development. If I were
developing a Windows software package, I'd use Microsoft's tools exclusively. In fact, I
often write portable software that targets both Linux and Windows. In these cases, I
maintain two separate build environments--one for Windows, and one based on the
Autotools for everything else.

The original reasons for using GNU tools to build Windows software were that GNU tools
were free, and Microsoft tools were expensive. This reason is no longer valid, as
Microsoft makes the better part of their tools available for free download today. This was
a smart move on their part--but it took them long enough to see the value in it.

Your choice of language

One other important factor in the decision to use or not use the Autotools with your
project is your language of choice. Let's face it, the Autotools were designed by GNU
people to manage GNU projects. There are two factors that determine the importance of
a computer language within the GNU community:

 Are there any GNU packages written in the language?
 Does the GNU compiler tool set support the language?

Autoconf provides native support for the following languages based on these two criteria:

 C
 C++
 Objective C
 Fortran
 Fortran 77
 Erlang

By "native support", I mean that Autoconf will compile, link and run source-level feature
checks in these languages.

If you want to build a Java package, you can configure Automake to do so, but you can't
ask Autoconf to compile, link or run Java-based checks. Java simply isn't supported
natively at this time by Autoconf. I believe it's important to point out here that the very
nature of the Java language and virtual machine specifications make it far less likely that
you'll need to perform a Java-based Autoconf check in the first place.

There is work being actively done on the gcj compiler and tool set, so it's not
unreasonable to think that some native Java support will be added to Autoconf at some
future date, but gcj is a bit immature yet, and currently very few (if any) GNU packages
are written in Java, so the issue is not critical to the GNU community.

That said, there is currently rudimentary support in Automake for both GNU (gcj) and
non-GNU Java compilers and VM's. I've used it myself on a project, and it works well, as
long as you don't try to push it too far. Given the history of the GNU project, I think it's
safe to say that this functionality will definitely improve with age.

If you're into Smalltalk, ADA, Modula, LISP, Forth, or some other non-mainstream
language, well then you're probably not too concerned about porting your code to dozens
of platforms and CPUs.

As an aside, if you are using a non-mainstream language, and you are in fact concerned
about the portability of your build systems, then please consider adding support for your
language to the Autotools. This is not as daunting a task as you may think, and I
gaurantee that you'll be an Autotools expert when you're finished. If you think this
statement is funny, then consider how Erlang support made it into the Autotools. I'm
betting most developers have never heard of Erlang, but members of the Erlang
community thought it was important enough to add Erlang support themselves.

Generating your package build system

The GNU Autotools framework is comprised of three main packages, each of which
provides and relies on several smaller components. The three main packages are
Autoconf, Automake and Libtool. These packages were invented in that order, and
evolved over time. Additionally, the tools in the Autotools packages can depend on or use
utilities and functionality from the gettext, m4, sed, make and perl packages, as well as
others.

It's very important at this point to distinguish between a maintainer's system and an end-
user's system. The design goals of the Autotools specify that an Autotools-generated
build system rely only on readily available, preinstalled tools on the host machine. Perl is
only required on machines that maintainers use to create distributions, not on end-user
machines that build packages from resulting release distributions packages. A corollary
to this is that end-users' machines need not have the Autotools installed.

If you've ever downloaded, built and installed software from a "tarball"--a compressed
archive with a .tar.gz, .tgz or .tar.bz2 extension--then you're probably aware of the fact
that there is a common theme to this process. It usually looks something like this:

$ gzip -cd hackers-delight-1.0.tar.gz | tar -xvf -

...

$ cd hackers-delight-1.0

$./configure

$ make all

$ sudo make install

NOTE: I have to assume some level of knowledge on your part, and I'm stating right now
that this is it. If you've performed this sequence of commands before and you know what
it means, and if you have a basic understanding of the software development process,
then you'll have no trouble following the content of this book.
Most developers know and understand the purpose of the make utility. But what's the
point of the configure script? The use of configuration scripts (generally named
configure) started a long time ago on Unix systems due to the variety imposed by the
fast growing and divergent set of Unix and Unix-like platforms. It's interesting to note that
while Unix systems have generally followed the defacto-standard Unix kernel interface for
decades, most software that does anything significant generally has to stretch outside of
these more or less standardized boundaries. Configuration scripts are hand-coded shell
scripts designed to determine platform-specific characteristics, and to allow users to
choose package options before running make.
This approach worked well for decades. With the advent of dozens of Linux distributions,
the explosion of feature permutations has made writing a decent portable configuration
script very difficult--much more so than writing the makefiles for a new project. Most
people have come up with configuration scripts for their projects using a well-understood
and pervasive technique--copy and modify a similar project's script. By the early 90's it
was becoming apparent to many developers that project configuration was going to
become painful if something weren't done to ease the burden of writing massive shell
scripts to manage configuration options--both those related to platform differences, and
those related to package options.

Autoconf

Autoconf changed this paradigm almost overnight. A quick glance at the AUTHORS file
in the Savannah Autoconf project repository will give you an idea of the number of people
that have had a hand in the making of Autoconf. The original author was David
MacKenzie, who started the Autoconf project in 1991. While configuration scripts were
becoming longer and more complex, there were really only a few variables that needed
to be specified by the user. Most of these were simply choices to be made regarding
components, features and options: Where do I find libraries and header files? Where do I
want to install my finished product? Which optional components do I want to build into my
products? With Autoconf, instead of modifying, debugging and losing sleep over literally
thousands of lines of supposedly portable shell script, developers can write a short meta-
script file, using a concise macro-based language, and let Autoconf generate a perfect
configuration script.
A generated configuration script is more portable, more correct, and more maintainable
than a hand-code version of the same script. In addition, Autoconf often catches
semantic or logic errors that the author would have spent days debugging. Another
benefit of Autoconf is that the shell code it generates is as portable as possible between
systems that supply any form of the Bourne shell. Mistakes made in portability between
shells are by far the most common, and unfortunately the most difficult to find, because
no one programmer has access to all versions or brands of Bourne-like shells in
existence.

Autoconf generated configure scripts provide a common set of options that are important
to all portable, free, open source, and proprietary software projects running on LSB-
compliant systems. These include options to modify "standard locations", a concept I'll
cover in more detail in Chapter 2. Autoconf generated configure scripts also provide
project-specific options. These are defined in the configure.ac file for each project. I'll
detail this process in Chapter 3.

The Autoconf package provides several programs. Autoconf itself is written in Bourne
shell script, while the others are perl scripts.

 autoconf
 autoheader
 autom4te
 autoreconf
 autoscan
 autoupdate
 ifnames

Autoheader

The autoheader utility generates a C language header file template from configure.ac.
This template file is usually called config.h.in. We'll cover autoheader in greater detail in
Chapter 3.

Autom4te

The autom4te utility is a cache manager used by most of the other Autotools. In the early
days of Autoconf there was really no need for such a cache, but because most of the
Autotools use constructs found in configure.ac, the cache speeds up access by
successive programs to configure.ac by about 40 percent or more. I won't spend a lot of
time on autom4te (which is pronounced "automate", by the way), because it's mainly
used internally by the Autotools, and the only sign you're given that it's working is the
existence of an autom4te.cache directory in your top-level project directory.

Aut

The
Auto
to m
feat
have
conf

Aut

The
proj
the

Aut

The
synt
Cha

Ifna

The
of so
defi
you
port
ifna
wha

Of t
mai
auto
betw

NOT
colo
pack
type
The
othe
in a
gen
Bou
succ
Not
also
As y
tools
m4

toreconf

e autoreconf
omake and

minimize the
ures, and pr
e is a config
figure and th

toscan

e autoscan p
ect. We'll sp
process of s

toupdate

e autoupdate
tax of the cu

apter 2.

ames

e ifnames pro
ource files n
nitions and t
determine w

tability. If yo
mes can he

at the names

he tools in t
ntainer while
oreconf reall
ween input f

TE: I'll follow
ored boxes r
kage. Lighte
e.
ese tools' pri
ers to config
ny way on th
erate config

urne shell. Y
cessfully exe
surprisingly

o a well-teste
you can see
s take their
macro defin

program ca
Libtool pack
amount of r

roject state.
gure.ac file,
hen make.

program is u
pend some t
setting up th

e utility is us
urrent versio

ogram is a s
names on th
their contain
what to put i
ur project ha
lp you find o
s of potentia

his list, only
e generating
ly needs to b
files and the

w this data fl
represent ob
er shades of

mary task is
ure a projec
he Autotools

gure scripts t
ou should b
ecute that s

y, this is actu
ed use case

e in this diag
input from y

nition files. T

an be used to
kages as req
regeneration
Think of au

running auto

sed to gene
time on auto
he Autotools

ed to update
on of the Aut

small, and ge
e command

ning files on
into your con
as already b
out where th
al portability

autoconf an
g a configure
be called dir
Autoconf an

Figure 1: Aut

low diagram
bjects that ar
f the same c

s to generate
ct build direc
s themselve
that will run
e able to ge
cript on a m

ually a comm
e.
ram, Autoco

your project's
They use aut

o execute th
quired by the
n that needs
toreconf as
oreconf will

erate a reaso
oscan later in
 on a basic

e your config
totools. I'll co

enerally und
d line, and d

the stdout d
nfigure.ac a

been written
hose attempt
defintions m

nd autohead
e script, and
rectly. The fo
nd autohead

toconf and auto

m format thro
re provided

colors repres

e a configure
ctory. The co
es. In fact, A

on all Unix o
enerate a co

machine whic
mon use-cas

onf and auto
s configure.
tom4te to m

he configura
e project. Th
s to be done
an Autotool
run the tools

onable confi
n Chapter's
project.

gure.ac or te
over autoup

der-utilized p
isplays a list
device. This
nd Makefile
with some l
ts are locate

might be.

der are used
d actually, as
ollowing dia
der program

oheader data f

ough the rest
either by the

sent genera

e script that
onfigure scri
utoconf is sp
or Unix-like

onfigure scrip
ch does not
se in the free

oheader are
ac file, and v
aintain cach

ation tools in
he purpose o
, based on t
s bootstrap
s you need i

gure.ac file
3 and 6, as

emplate (*.in
date in more

program tha
t of C prepro
utility is des
.am files for
evel of porta

ed in your so

d directly by
s we'll see la
gram shows

ms to genera

low diagram

t of this book
e user or by
ted objects o

can be use
ipt generate
pecifically de
platforms th
pt from Auto
have the Au
e software w

called by th
various Auto

he informatio

n the Autoco
of autorecon
timestamps,
utility. If all

in order to ru

for a new
we go throu

n) files to the
e detail in

at accepts a
ocessor
signed to he
r the sake of
ability in min
ource tree, a

the project
ater, only
s the interac

ate product f

k. Darker
y an Autotoo
of the same

ed by you or
ed does not r
esigned to

hat support a
oconf, and th
utotools inst
world, so it's

he user. The
oconf-flavore
on. Autoconf

nf,
nf is
,
you
un

ugh

e

list

elp
f
nd,
and

ction
iles:

ols
e

rely

a
hen
alled.

se
ed
f

generates your configure script, a very portable Bourne shell script that provides your
project with configuration capabilities. Autoheader generates the config.h.in template
based on macro definitions in configure.ac.

You may have noticed the apparent identity crisis being suffered by the aclocal.m4 input
file. Is that a bit of a blush on that box--is it a generated file, or a user-provided file? Well,
the answer is that it's both, and I'll explain this in more detail in the next section.

Automake

So, what's so difficult about writing a makefile? Well, actually, once you've done it a few
times, writing a basic makefile for a new project is really rather trivial. The problems occur
when you try to do more than just the basics. And let's face it--what project maintainer
has ever been satisfied with just a basic makefile?
The single most significant difference between a successful free software project and one
that rarely gets a second glance can be found deep in the heart of project maintenance
details. These details include providing the so-called "standard make targets". Potential
users become disgusted with a project fairly easily--especially when certain bits of
expected functionality are missing or improperly written. Users have come to expect
certain more or less standard make targets. A make target is a goal specified on the
make command line:

$ make install

In this example, install is the goal or target. Common make targets include all,
clean and install, among others. You'll note that none of these are real targets. A
real target is a file produced by the build system. If you're building an executable called
doofabble, then you'd expect to be able to type:

$ make doofabble

This would generate an actual executable file called doofabble. But specifying real
targets on the make command line is more work than necessary. Each project must be
built differently--make doofabble, make foodabble, make abfooble, etc. Why not just type
make or make all, if there is more than one binary to be made? So all has become an
expected pseudo-target, but "expected" doesn't mean "automatic".
Supporting the expected set of standard targets can be fairly challenging. As with
configuration scripts, the most widely used implementation is one written in the late 80's
and copied from project to project throughout the internet. Why? Because writing it
yourself is error prone. In fact, copying it is just as error-prone. It's like getting a linked-list
implementation right the first time. The process is well-understood by any veteran
software engineer, but it still rarely happens. Object-oriented programming languages like
C++ and Java provide libraries and templates for these constructs now--not because
they're hard to implement by hand, but because doing so is error-prone, and there's no
point in re-inventing the wheel--yet again.

Automake's job is to convert a much simplified specification of your project's build
process into standard boilerplate makefile syntax that always works correctly the first
time, and provides all the standard functionality expected of a free software project. In
actuality, Automake creates projects that support guidelines defined in the GNU Coding
Standards, which I'll cover in greater detail in Chapter 2.

The Automake package provides the following tools in the form of perl scripts:

 automake
 aclocal

The primary task of the Automake program is to generate standard makefile templates
(named Makefile.in) from high-level build specification files (named Makefile.am). One of
the most interesting and useful aspects of the way Automake works is that the
Makefile.am input files are mostly just regular makefiles. If you put only the few required
Automake definitions in a Makefile.am, you'll get a Makefile.in file containing several
hundred lines of makefile code. But if you add additional makefile syntax to your
Makefile.am files, this code will be transferred to the most functionally correct location in
the resulting Makefile.in. In fact, you can (if you wish) write pure make syntax in your
Makefile.am files, and they'll work just fine (as long as you actually write them correctly,
that is). This pass-through feature gives you the power and flexibility to extend
Automake's functionality with your project's own special requirements.

Aclocal

The aclocal utility is actually documented by the GNU manuals as a temporary work-
around for a certain lack of flexibility in Autoconf. Autoconf was designed and written first,
and then a few years later, the idea for Automake was conceived as an add-on for
Autoconf. But Autoconf was really not designed to be extensible on the scale required by
Automake.

Automake adds an extensive set of macros to those provided by Autoconf. The originally
documented method for adding user-defined macros to an Autoconf project was to create
a file called aclocal.m4 in the same directory as configure.ac. Any user-provided
extension macros were to be placed in this file, and Autoconf would automatically read it
while processing configure.ac. From the perspective of the Automake designers, this
existing extension mechanism was too good to pass up. But requiring the user to add an
m4_include line to aclocal.m4 seemed a bit brittle. Instead, the aclocal utility was
designed to create a project's aclocal.m4 file, containing all the required Automake
macros. Since Automake's aclocal utility basically took over aclocal.m4 for its own
purposes, it was also designed to read a new user-provided macro file called
acinclude.m4.
Essentially, aclocal's job is to create an aclocal.m4 file by consolidating various macro
files from installed Autotool packages and user-specified locations, such that Autoconf
can find them all in one place.

For the sake of modularity, the Autoconf manual is still unaware of the aclocal utility--for
the most part. The current revision of the manual rants a bit on the subject of where
aclocal functionality should actually be. Automake's manual originally suggested that you
should rename aclocal.m4 to acinclude.m4 when adding Automake to an existing
Autoconf project. This method is still followed rigorously in new projects.

However, the latest documentation from both sets of tools suggests that the entire
aclocal/acinclude paradigm is now obsolete, in favor of a newer method of specifying a
directory containing m4 macro files. The current recommendation is that you create a
directory in your project directory called simply m4 (acinclude seems more appropriate
to this author), and add macros in the form of individual .m4 files to this directory. All files
in this directory will be gathered into aclocal.m4 before Autoconf processes your
configure.ac file. Ultimately, aclocal will be replaced by functionality in Autoconf itself.
(Given the fairly complex nature of aclocal functionality, and given that most of the other
tools are already written in perl, I'm guessing that Autoconf will be rewritten in perl, at this
point.)

Figure 2: Aclocal data flow diagram

With aclocal behind us, it should be more apparent now why the aclocal.m4 box in the
Autoconf data flow diagram of Figure 1 above couldn't decide which color it should be.
When used without Automake and Libtool, the aclocal.m4 file is written by hand, but
when used in conjunction with Automake and Libtool, the file is generated by the aclocal
utility, and acinclude.m4 is used to provide project-specific macros.

Libtool

How do you build shared libraries on different Unix platforms without adding a lot of very
platform-specific conditional code to your build system and source code? This is the
question that the Libtool package tries to address.

There's a significant amount of visible functionality in Unix and Unix-like platforms that is
the same from one platform to another. However, one very significant difference is how
shared libraries are built, named and managed. Some platforms don't even provide
native shared libraries (although it's rare these days). Some platforms name their libraries
libsomething.so, while others use something.o. Some use libsomething.a,
while others use libsomething.sa. Some platforms provide libdl
(dlopen/dlsym/dlclose) to allow software to dynamically load and access library
functionality at runtime. Others provide other mechanisms--or none at all.
All of these differences have been carefully considered by the authors of the Libtool
project. Dozens of platforms are currently supported by Libtool, and adding support for
new platforms is done via the open source way--someone who cares (and knows how)
supplies a patch to the Libtool mailing list, and the maintainers look it over and apply it to
the source code for the next release.

Libtool not only provides a set of Autoconf macros that hide library naming differences in
makefiles, but it also provides an optional library of dynamic loader functionality that can
be added to your programs, allowing you to write more portable runtime dynamic shared
object management code.
The libool package provides the following programs, libraries and header files:

 libtool (program)
 libtoolize (program)
 ltdl (static and shared libraries)
 ltdl.h (header)

The libtool shell script is a generic version of Libtool designed to be used by programs on
your platform. There's nothing specific to a project in this particular copy of libtool.

Libtoolize

The libtoolize shell script is used to prepare your project to use Libtool. In reality,
libtoolize generates a custom version of the libtool script in your project directory. This
script is then executed at the appropriate time by Automake-generated makefiles.

The Libtool C API--ltdl

The Libtool package also provides the ltdl library and header files, which provide a
consistent run-time shared object manager across platforms. The ltdl library may be

The linked image cannot be displayed. The file may have been moved,
renamed, or deleted. Verify that the link points to the correct file and location.

linked statically or dynamically into your programs, giving them a consistent runtime
shared library access interface from one platform to another.

The following data flow diagram illustrates the interaction between Automake and Libtool
scripts and input files to create products used by users to configure and build your project:

Figure 3: Automake and Libtool data flow diagram

Automake and Libtool are both standard pluggable options that can be added to
configure.ac with a few simple macro calls.

Building your package

While, as maintainer, you probably build your software packages a lot more often than do
your users, you also have the advantage of being intimately familiar with your project's
components, architecture and build system. That's why you ought to be concerned that
your users' build experience is much simpler than yours. (And it wouldn't hurt a bit if you
got some benefit from this concern, as well.)

Running configure

Once the Autotools have finished their work, you're left with a shell script called configure,
and one or more Makefiles.in files. These product files are intended to be packages with
project release distribution packages. Your users download these packages, unpack
them, and run configure and make. The configure script generates Makefiles from the
Makefile.in files. It also generates a config.h header file from the config.h.in file built by
autoheader.

So why didn't the Autotools just generate the makefiles directly to be shipped with your
release? One reason is that without makefiles, you can't run make. This means that
you're forced to run configure first, after you download and unpack a project distribution
package. Makefile.in files are nearly identical to the makefiles you might write by hand,
except that you didn't have to. And they do a lot more than most people are willing to
hand code into a set of makefiles. Another reason is that the configure script may then
insert platform-characteristics and user-specified optional features directly into your
makefiles, making them more specifically tailored to the platforms on which they are
being used.

The following diagram illustrates the interaction between configure and the scripts that it
executes during the build process to create your Makefiles and your config.h header file:

Figure 4: Configure script data flow diagram

The configure script appears to have this weird sort of incestuous relationship with
another script called config.status. I'll bet you've always thought that your configure script
generated your makefiles. As it turns out, the only file (besides a log file) that configure
generates is config.status. The configure script's function is to determine platform
characteristics and features available, as specified in configure.ac. Once it has this
information, it generates config.status such that it contains all of the check results, and
then calls it. The newly generated config.status file uses the check information (now
embedded within it) to generate platform-specific config.h and makefiles, as well as any
other files specified for instantiation in configure.ac. As the double ended red arrow

The linked image cannot be displayed. The file may have been moved,
renamed, or deleted. Verify that the link points to the correct file and location.

The linked image cannot be displayed. The file may have been moved,
renamed, or deleted. Verify that the link points to the correct file and location.

shows, config.status can also call configure. When used with the --recheck option,
config.status will call configure with the same command line options with which it was
originally generated.

The configure script also generates a log file called config.log, which contains very useful
information about why a particular execution of configure failed on your user's platform.
As maintainer, you can use this information to help you debug user problems. Just ask
them to send you their config.log file. The problem is often in plain sight. Another nice
feature of config.log is that it logs how configure was executed--which command line
options were used.

From a user perspective, this could be really handy, as he comes back from a long
vacation, and can't remember what options he used to generate the project build
directory. But Autoconf-generated configure scripts make it even simpler than this. If you
need to re-generate makefiles and config.h header files for some reason, just
type ./config.status in the project build directory. The output files will be generated using
the same options originally used to generate the config.status file.

Remote build directories

A little-known feature of Autotools build environments is that they need not be generated
within a project source directory tree. That is, a user may execute configure remotely,
and generate a full build environment within a remote build directory.

In the following example, Joe User downloads doofabble 3.0 and unpacks it. Then he
creates two sibling directories called doofabble-3.0.debug and doofabble-3.0.release. He
cd's into doofabble-3.0.debug, executes doofabble-3.0's configure script remotely with a
doofabble-specific debug option, and then runs make. Finally, he switches over to the
doofabble-3.0.release directory and does the same thing, this time running configure
without the debug option enabled:

$ tar -zxvf doofabble-3.0.tar.gz

$ mkdir doofabble-3.0.debug

$ cd doofabble-3.0.debug

$../doofabble-3.0/configure --enable-debug

$ make

...

$ cd ..

$ mkdir doofabble-3.0.release

$ cd doofabble-3.0.release

$../doofabble-3.0/configure

$ make

...

Users don't often care about remote build functionality because all they generally want to
do is configure, make and install your code on their own platforms. Maintainers, on the
other hand should find remote build functionality very useful, as it allows them to, 1)
maintain a reasonably pristine source tree, and 2) maintain multiple build environments
for their project, each with potentially complex configuration options. Rather than
reconfigure a single build environment, they may simply switch between build directories
configured in multiple different ways.

Running make

Finally, you run make. Just plain old make. In fact, the Autotools designers went to a LOT
of trouble to ensure that you didn't need any special version or brand of make. You don't
need GNU make--you can use Solaris make, or BSD Unix make if you wish (read, "if you
must").

The following diagram depicts the interaction between the make utility and the generated
makefiles during the build process to create your project products:

Figure 5: Make data flow diagram

This diagram shows make running several generated scripts, but these are all really
ancillary to the make process.

Summary

In this chapter I've presented a high-level overview of the Autotools to give you a feel for
how everything ties together.

In the next chapter, we'll begin creating a hand-coded build system for a toy project. The
idea is that you'll become familiar with the requirements of a reasonable build system,
and how much can be done for you by the Autotools.

Too many developers these days start out with the Autotools, not having aquired through
the "school of hard knocks" the experience to know what it's really doing for them. This
can lead to frustration, and a negative attitude. In the next chapter, you'll become familiar
with the rationale for a lot of the original design of the Autotools. In understanding this
background information, my hope is that any potential negative bias you may already
have for the Autotools will be tempered a bit.

‹ Autotools: a practitioner's guide to Autoconf, Automake and Libtool up Chapter 2:
Project management and the GNU coding standards ›

The linked image cannot be displayed. The file may have been moved,
renamed, or deleted. Verify that the link points to the correct file and location.

Chapter 2: Project management and
the GNU coding standards
Fri, 2008-05-16 11:16 -- John Calcote

In Chapter 1, I gave a brief overview of the Autotools and some of the resources that are
currently available to help reduce the learning curve. In this chapter, we're going to step
back a little and examine project organization techniques that are applicable to all
projects, not just those whose build system is managed by the Autotools.

This chapter has downloads!
When you're done reading this chapter, you should be familiar with the common make
targets, and why they exists. You should also have a solid understanding of why projects
are organized the way they are. Trust me--by the time you finish this chapter, you'll
already be well on your way to a solid understanding of the GNU Autotools.
The information provided by this chapter comes primarily from two sources:

 The GNU Coding Standards Document
 The Filesystem Hierarchy Standard

In addition, you may find the GNU make manual very useful, if you'd like to brush up on
your make syntax:
 The GNU Make Utility Manual

Creating a new project directory structure

There are two questions to ask yourself when setting up a new open source software
(OSS) project build system:

 What platforms will I target?
 What do my users expect?

The first is an easy question to answer - you get to decide, but don't be too restrictive.
Free software projects become great due to the number of people who've adopted them.
Limiting the number of platforms arbitrarily is the direct equivalent of limiting the number
of users. Now, why would you want to do that?!

The second question is more difficult, but not unsolvable. First, let's narrow the scope to
something managable. We really mean to say, "What do my users expect of my build
system?" A common approach for many OSS developers of determining these
expectations is to download, unpack, build and install about a thousand different
packages. You think I'm kidding? If you do this, eventually, you will come to know
intuitively what your users expect of your build system. Unforutunately, package
configuration, build and install processes vary so far from the "norm" that it's difficult to
come to a solid conclusion about what the norm really is when using this technique.

A better way is to go directly to the source of the information. Like many developers new
to the OSS world, I didn't even know there was a source of such information when I first
started working on OSS projects. As it turns out, the source is quite obvious, after a little
thought: The Free Software Foundation (FSF), better known as the GNU project. The
FSF has published a document called The GNU Coding Standards, which covers a wide
variety of topics related to writing, publishing and distributing free software--specifically
for the FSF. Most non-GNU free software projects align themselves to one degree or
another with the GNU Coding Standards. Why? Well...just because they were there first.
And because their ideas make sense, for the most part.

Project structure

We'll start with a simple example project, and build on it as we continue our exploration of
source-level software distribution. OSS projects generally have some sort of catchy
name--often they're named after some past hero or ancient god, or even some made-up
word--perhaps an acronym that can be pronounced like a real word. I'll call this the jupiter
project, mainly because that way I don't have to come up with functionality that matches
my project name! For jupiter, I'll create a project directory structure something like this:

$ cd projects

$ mkdir -p jupiter/src

$ touch jupiter/Makefile

$ touch jupiter/src/Makefile

$ touch jupiter/src/main.c

$ cd jupiter

$

Woot! One directory called src, one C source file called main.c, and a makefile for
each of the two directories. Minimal yes, but hey, this is a new project, and everyone
knows that the key to a successful OSS project is evolution, right? Start small and grow
as needed (and, as you have time and inclination).
We'll start with support for the most basic of targets in any software project: all and
clean. As we progress, it'll become clear that we need to add a few more important
targets to this list, but for now, these will get us going. The top-level Makefile does very
little at this point, merely passing requests for all and clean down to src/Makefile
recursively. In fact, this is a fairly common type of build system, known as a recursive
build system. Here are the contents of each of the three files in our project:
Makefile

all clean jupiter:

 $(MAKE) -C src $@

src/Makefile

all: jupiter

jupiter: main.c

 gcc -g -O0 -o $@ $+

clean:

 -rm jupiter

src/main.c

#include <stdio.h>

#include <stdlib.h>

int main(int argc, char * argv[])

{

 printf("Hello from %s!\n", argv[0]);

 return 0;

}

At this point, you may need to stop and take a refresher course in make syntax. If you're
already pretty well versed on make, then you can skip the sidebar entitled, "Some
makefile basics". Otherwise, give it a quick read, and then we'll continue building on this
project.

Some makefile basics

For those like myself who use make only when they have to, it's often difficult to
remember exactly what goes where in a makefile. Well, here are a few things to
keep in mind. Besides comments, which begin with a HASH mark, there are only
three types of entities in a makefile:
 variable assignments
 rules
 commands

NOTE: There are a half-dozen other types of constructs in a makefile, including
conditional statements, directives, extension rules, pattern rules, function variables,
include statements, etc. For the purposes of this chapter, we need not go into these
constructs. This doesn't mean these other constructs are unimportant. On the
contrary, they are very useful if you're going to write your own complex build
system by hand. Our purpose here is to gain the background necessary for an
understanding of the GNU Autotools, so I'll cover only that portion of make
necessary to accomplish this goal. If you wish to have a much broader education on
make syntax, please refer to the GNU make manual. Furthermore, if you wish to
become a make expert, be prepared to spend a good deal of time on the project--
there's much more to the make utility than is initially apparent on the surface.
Commands always start with a TAB character. Any line in a makefile beginning
with a TAB character is ALWAYS considered by make to be a command. A list of one
or more commands should always be associated with a preceeding rule.

NOTE: The fact that commands are required to be prefixed with an essentially
invisible character is one of the most frustrating aspects of makefile syntax to both
neophites and experts alike. The error messages generated by the legacy Unix make
utility when a required TAB is missing, or when an unintentional TAB is inserted
are obscure at best. As mentioned earlier, GNU make does a better job with such
error messages these days. Nonetheless, be careful to use TAB characters properly
in your makefiles--only before commands, which in turn immediately follow rules.
The general layout of a makefile is:

var1=val1

var2=val2

...

rule1

 cmd1a

 cmd1b

 ...

rule2

 cmd2a

 cmd2b

 ...

Variable assignments may take place at any point in the makefile, however you
should be aware that make reads each makefile twice. The first pass gathers
variables and rules into tables, and the second pass resolves dependencies defined
by the rules. So regardless of where you put your variable definitions, make will act
as though they'd all been declared at the top, in the order you specified them
throughout the makefile.
Furthermore, make binds variable references to values at the very last minute--just
before referencing commands are passed to the shell for execution. So, in general,
variables may be assigned values by reference to other variables that haven't even
been assigned yet. Thus, the order of variable assignment isn't really that important.
The make utility is a rule-based command engine. The rules indicate when and
which commands should be executed. When you prefix a line with a TAB character,
you're telling make that you want it to execute these statements from a shell
according to the rules specified on the line above.
Of the remaining lines, those containing an EQUAL sign are variable definitions.
Variables in makefiles are nearly identical to shell or environment variables. In
Bourne shell syntax, you'd reference a variable in this manner: ${my_var}. In a
makefile, the same syntax applies, except you would use parentheses instead of
french braces: $(my_var). As in shell syntax, the delimiters are optional, but

shou
func
One
need
This
time
Var
will
pro
wer
will
to d
cert
usef
path
Line
EQU
all r
"com
sepa
gen
com
obje
sour
obje
For
mai
exec

The
shou
but

j

m

This
mai
cou
dep
link
list

uld be used
ctionally eq
e caveat: If
d to escape
s need arise
e I use it in

riables may
l read the en
cessing the

re defined in
l override th

depend on e
tain variabl
ful variable
h used to in
es in my exa
UAL sign), a
rules of one
mmon" mak
arates targ

nerally file s
mmands, suc
ects from w
rce files, or
ect.

r example, a
in.o. A link
cutable targ

e make utilit
uld be run b
 the syntax

upiter: m

 ld

main.o: ma

 gc

s sample m
in.o, and th
rse, jupite
endency in

k--with an in
 of comman

d to avoid am
quivalent to
f you ever w
 the DOLLA
es occasiona
 a new proj

y be defined
ntire proces
 makefile. T
n the makef
hose obtain
nvironmen
les conditio
es of its own
nvoke the cu
ample mak
 and are not
e type or an
ke rules, con
gets on the le
system entit
ch as a C co

which target
r anything r

a C compiler
ker takes de
get, jupite

ty impleme
based on w
 is trivial en

main.o

d main.o

ain.c

cc -c -g

akefile cont
he second s
er depends
 this case, b
ntermediat

nds that mak

mbiguous s
o $(my_var

want to use a
AR sign by d
ally, and it
ject.

d and used a
ss environm
Thus, you ca
file itself. N

ned from the
nt variables
onally, if the
n, such as th
urrent make
kefiles that a
t command
other. The r
ntaining a s
eft from dep
ties that can
ompiler or a
ts may be cr
really that c

r takes depe
ependency m
er, in these

Figu

nts some fa
hether the t

nough:

... -o ju

-O2 -o ma

tains two ru
says that ma
s on main.c
because ther
te result in b
ke uses to b

syntax when
r).
a shell varia
doubling it.
 nearly alw

anywhere w
ment into th
an access a

Note howeve
e environm
 in your bui
ey're presen
he MAKE va
e process.
are not vari
ds (are not p
 rules used i
 single COL
pendencies
n be produc
a linker. De
reated. The
can be used

endency ma
main.o as
e examples:

ure 6: Compile

airly comple
target exist

upiter

ain.o mai

ules. The fir
ain.o depe
c, but main
re are two s
between. Fo
build the tar

n necessary

able inside
. For instan

ways catches

within a ma
he make var
ny environ

er, that vari
ment. In gene

ild process,
nt. In additi
riable, who

iable assign
prefixed wit
in my exam
ON charact
 on the righ
ced by runn
ependencies
ese may be c
d by a comm

ain.c as in
 input, and

e and link proce

ex logic to d
ts or is older

n.c

rst says tha
ends on mai
n.o is a nec
 steps to the
or each rule
rget from th

y. Thus, $my

 a make com
nce, $${she
s me off-gua

kefile. By d
riable table
ment varia
iables set in
eral, it's a g
 although it
ion, make d

ose value is

nments (don
th a TAB ch

mples are kn
ter. The COL
ht. Targets a
ning one or
s are source
computer la

mand to gen

nput, and ge
 generates a

ess

determine w
r than its de

at jupiter
in.c. Ultim
cessary inte
 process--co

e, there is an
he list of dep

y_var is

mmand, you
ell_var}.
ard the firs

default, mak
 before

ables as if th
n the makef
good idea n
it's okay to u
defines seve
 the file syst

n't contain
haracter), a
nown as
OLON chara
 are produc
 more
e objects, or
anguage
nerate a tar

enerates tar
a named

when a rule
ependencie

r depends on
mately, of
ermediate
ompile and
n associate
pendencies

u

st

ke

hey
file
ot
use

eral
tem

 an
are

acter
ts--

r

rget

rget

e
s,

n

d
d
.

Of course, there is an easier way in the case of this example--gcc (as with most
compilers) will call the linker for you--which, as you can probably tell from the
elipsis in my example above, is very desirable. This alleviates the need for one of the
rules, and provides a convenient way of adding more dependent files to the single
remaining rule:

sources = main.c print.c display.c

jupiter: $(sources)

 gcc -g -O2 -o jupiter $(sources)

NOTE: I should point out that using a single rule and command to process both
steps is possible in this case because of the triviality of the example. In larger
projects, skipping from source to executable in a single step is not possible. In these
cases, using the compiler to call the linker can ease the burden in the second stage of
determining all of the system objects that need to be linked into an application. And,
in fact, this very technique is used quite often on Unix-like systems.
In this example, I've added a make variable to reduce redundancy. We now have a
list of source files that is referenced in two places. But, it seems a shame to be
required to reference this list twice in this manner, when the make utility knows
which rule and which command it's dealing with at any moment during the process.
Additionally, there may be other objects in the dependency list that are not in the
sources variable. It would be nice to be able to reference the entire dependency list
without duplicating that list.
As it happens, there are various "automatic" variables that can be used to reference
portions of the controlling rule during the execution of a command. For example
$(@) (or the more common syntax $@) references the current target, while $+
references the current list of dependencies:

sources = main.c print.c display.c

jupiter: $(sources)

 gcc -g -O2 -o $@ $+

If you enter "make" on the command line, the make utility will look for the first
target in a file named "Makefile" in the current directory, and try to build it using
the rules defined in that file. If you specify a different target on the command line,
make will attempt to build that target instead.
Targets need not be files only. They can also be so-called "phony targets", defined
for convenience, as in the case of all and clean. These targets don't refer to true
products in the file system, but rather to particular outcomes--the directory is
"cleaned", or "all" desirable targets are built, etc.

In the same way that dependencies may be listed on the right side of the COLON,
rules for multiple targets with the same dependencies may be combined by listing
targets on the left side of the COLON, in this manner:

all clean jupiter:

 $(MAKE) -C src $@

The -C command-line option tells make to change to the specified directory before
looking for a makefile to run.
GNU Make is significantly more powerful than the original Unix make utility,
although completely backward compatible, as long as GNU extensions are avoided.
The GNU Make manual is available online. O'Reilly has an excellent book on the
original Unix make utility and all of its many nuances. They also have a more
recent book written specifically for GNU make that covers GNU Make extensions.

Creating a source distribution archive

It's great to be able to type "make all" or "make clean" from the command line to
build and clean up this project. But in order to get the jupiter project source code to our
users, we're going to have to create and distribute a source archive.
What better place to do this than from our build system. We could create a separate
script to perform this task, and many people have done this in the past, but since we
have the ability, through phony targets, to create arbitrary sets of functionality in make,
and since we already have this general purpose build system anyway, we'll just let make
do the work for us.
Building a source distribution archive is usually relegated to the dist target, so we'll add
one. Normally, the rule of thumb is to take advantage of the recursive nature of the build
system, by allowing each directory to manage its own portions of a global process. An
example of this is how we passed control of building jupiter down to the src directory,
where the jupiter source code is located. However, the process of building a compressed
archive from a directory structure isn't really a recusive process--well, okay, yes it is, but
the recursive portions of the process are tucked away inside the tar utility. This being
the case, we'll just add the dist target to our top-level makefile:
Makefile

package = jupiter

version = 1.0

tarname = $(package)

distdir = $(tarname)-$(version)

all clean jupiter:

 $(MAKE) -C src $@

dist: $(distdir).tar.gz

$(distdir).tar.gz: $(distdir)

 tar chof - $(distdir) |\

 gzip -9 -c >$(distdir).tar.gz

 rm -rf $(distdir)

$(distdir):

 mkdir -p $(distdir)/src

 cp Makefile $(distdir)

 cp src/Makefile $(distdir)/src

 cp src/main.c $(distdir)/src

.PHONY: all clean dist

In this version of the top-level Makefile, we've added a new construct, the .PHONY rule.
At least it seems like a rule--it contains a COLON character, anyway. The .PHONY rule is
a special kind of rule called a "dot-rule", which is built into make. The make utility
understands several different dot-rules. The purpose of the .PHONY rule is simply to tell
make that certain targets don't generate file system objects, so make won't go looking for
product files in the file system that are named after these targets. Normally, the make
utility determines which commands to run by comparing the time stamps of the
associated rule products to those of their dependencies in the file system, but phony
targets don't have associated file system objects.
We've added the new dist target in the form of three rules for the sake of readability,
modularity and maintenance. This is a great rule of thumb to following in any software
engineering process: Build large processes from smaller ones, and reuse the smaller
processes where it makes sense to do so.
The dist target depends on the existance of the ultimate goal, a source-level
compressed archive package, jupiter-1.0.tar.gz--also known as a "tarball". I've
added a make variable for the version number to ease the process of updating the project
version later, and I've used another variable for the package name for the sake of
possibly porting this makefile to another project. I've also logically split the functions of
package name and tar name, in case we want them to be different later--the default tar
name is the package name. Finally, I've combined references to these variables into a
distdir variable to reduce duplication and complexity in the makefile.

The rule that builds the tarball indicates how this should be done with a command that
uses the gzip and tar utilities to create the file. But, notice also that the rule has a
dependency--the directory to be archived. We don't want everything in our project
directory hierarchy to go into our tarball--only exactly those files that are necessary for
the distribution. Basically, this means any file required to build and install our project. We
certainly don't want object files and executables from our last build attempt to end up in
the archive, so we have to build a directory containing exactly what we want to ship. This
pretty much mandates the use of individual cp commands, unfortunately.
Since there's a rule in the makefile that tells how this directory should be created, make
runs the commands for this rule before running the commands for the current rule. The
make utility runs rules to build dependencies recursively until the requested target's
commands can be run.

Forcing a rule to run

There's a subtle flaw in the $(distdir) target that may not be obvious, but it will rear
its ugly head at the worst times. If the archive directory already exists when you type
make dist, then make won't try to create it. Try this:

$ mkdir jupiter-1.0

$ make dist

tar chof - jupiter-1.0 | gzip -9 -c >jupiter-1.0...

rm -rf jupiter-1.0 &> /dev/null

$

Notice that the dist target didn't copy any files--it just built an archive out of the existing
jupiter-1.0 directory, which was empty. Our end-users would have gotten a real
surpise when they unpacked this tarball!
The problem is that the $(distdir) target is a real target with no dependencies, which
means that make will consider it up-to-date as long as it exists in the file system. We
could add $(distdir) to the .PHONY rule, but this would be a lie--it's not a phony
target, it's just that we want to force it to be rebuilt every time.
The proper way to ensure it gets rebuilt is to have it not exist before make attempts to
build it. A common method for accomplishing this task to to create a true phony target
that will run every time, and add it to the dependency chain at or above the $(distdir)
target. For obvious reasons, a commonly used name for this sort of target is "FORCE":
Makefile

...

$(distdir).tar.gz: FORCE $(distdir)

 tar chof - $(distdir) |\

 gzip -9 -c >$(distdir).tar.gz

 rm -rf $(distdir)

$(distdir):

 mkdir -p $(distdir)/src

 cp Makefile $(distdir)

 cp src/Makefile $(distdir)/src

 cp src/main.c $(distdir)/src

FORCE:

 -rm $(distdir).tar.gz &> /dev/null

 -rm -rf $(distdir) &> /dev/null

.PHONY: FORCE all clean dist

The FORCE rule's commands are executed every time because FORCE is a phony target.
By making FORCE a dependency of the tarball, we're given the opportunity to delete any
previously created files and directories before make begins to evaluate whether or not
these targets' commands should be executed. This is really much cleaner, because we
can now remove the "pre-cleanup" commands from all of the rules, except for FORCE,
where they really belong.
There are actually more accurate ways of doing this--we could make the $(distdir)
target dependent on all of the files in the archive directory. If any of these files are newer
than the directory, the target would be executed. This scheme would require an elaborate
shell script containing sed commands or non-portable GNU make functions to replace
file paths in the dependency list for the copy commands. For our purposes, this
implementation is adequate. Perhaps it would be worth the effort if our project were huge,
and creating an archive directory required copying and/or generating thousands of files.
The use of a leading DASH character on some of the rm commands is interesting. A
leading DASH character tells make to not care about the status code of the associated
command. Normally make will stop execution with an error message on the first
command that returns a non-zero status code to the shell. I use a leading DASH
character on the rm commands in the FORCE rule because I want to delete previously
created product files that may or may not exist, and rm will return an error if I attempt to
delete a non-existent file. Note that I explicitly did NOT use a leading DASH on the rm
command in the $(distdir) rule. This is because this rm command must succeed, or
something is very wrong, as the preceeding command should have created a tarball from
this directory.
Another such leading character that you may encounter is the ATSIGN (@) character. A
command prefixed with an ATSIGN tells make not to print the command as it executes it.
Normally make will print each command as it's executed. A leading ATSIGN tells make
that you don't want to see this command. This is a common thing to do on echo
statements--you don't want make to print echo statements, because then your message
will be printed twice, and that's just ugly.

Automatically testing a distribution

The rule for building the archive directory is the most frustrating of any in this makefile--it
contains commands to copy files individually into the distribution directory. What a sad
shame! Everytime we change the file structure in our project, we have to update this rule
in our top-level makefile, or we'll break our dist target.
But, there's nothing to be done for it. We've made the rule as simple as possible. Now,
we just have to remember to manage this process properly. But unfortunately, breaking
the dist target is not the worst thing that could happen if we forget to update the
distdir rule's commands. The dist target may continue to appear to work, but not
actually copy all of the required files into the tarball. This will cause us some
embarassment when our users begin to send us emails asking why our tarball doesn't
build on their systems.
In fact, this is a far more common possibility than that of breaking the dist target,
because the more common activity while working on a project is to add files to the project,
not move them around or delete them. New files will not be copied, but the dist rule
won't notice the difference.
If only there were some way of unit-testing this process. As it turns out, there is a way of
performing a sort of self-check on the dist target. We can create yet another phony
target called "distcheck" that does exactly what our users will do--unpack the tarball,
and build the project. We can do this in a new temporary directory. If the build process
fails, then the distcheck target will break, telling us that we forgot something crucial in
our distribution.
Makefile

...

distcheck: $(distdir).tar.gz

 gzip -cd $+ | tar xvf -

 $(MAKE) -C $(distdir) all clean

 rm -rf $(distdir)

 @echo "*** Package $(distdir).tar.gz\

 ready for distribution."

...

.PHONY: FORCE all clean dist distcheck

Here, we've added the distcheck target to the top-level makefile. Since the
distcheck target depends on the tarball itself, it will first build a tarball using the same
targets used by the dist target. It will then execute the distcheck commands, which
are to unpack the tarball it just built and run "make all clean" on the resulting
directory. This will build both the all and clean targets, successively. If that process
succeeds, it will print out a message, telling us that we can sleep well knowing that our
users will probably not have a problem with this tarball.
Now all we have to do is remember to run "make distcheck" before we post our
tarballs for public distribution!

Unit testing anyone?

Some people think unit testing is evil, but really--the only honest rationale they can come
up with for not doing it is laziness. Let's face it--proper unit testing is hard work, but it
pays off in the end. Those who do it have learned a lesson (usually as children) about the
value of delayed gratification.

A good build system is no exception. It should encorporate proper unit testing. The
commonly used target for testing a build is the check target, so we'll go ahead and add
the check target in the usual manner. The test should probably go in src/Makefile
because jupiter is built in src/Makefile, so we'll have to pass the check target down
from the top-level makefile.
But what commands do we put in the check rule? Well, jupiter is a pretty simple
program--it prints out a message, "Hello from <path>jupiter!", where <path> is variable,
depending on the location from which jupiter was executed. We could check to see that
jupiter actually does output such a string. We'll use the grep utility to test our assertion:
Makefile

...

all clean check jupiter:

 $(MAKE) -C src $@

...

.PHONY: FORCE all clean check dist distcheck

src/Makefile

...

check: all

 ./jupiter | grep "Hello from .*jupiter!"

 @echo "*** ALL TESTS PASSED ***"

...

.PHONY: all clean check

Note that check is dependent on all. We can't really test our products unless they've
been built. We can ensure they're up to date by creating such a dependency. Now make
will run commands for all if it needs to before running the commands for check.
There's one more thing we could do to enhance our build system a bit. We can add the
check target to the make command in our distcheck target. Adding it right between
the all and clean targets seems appropriate:
Makefile

...

distcheck: $(distdir).tar.gz

 gzip -cd $+ | tar xvf -

 $(MAKE) -C $(distdir) all check clean

 rm -rf $(distdir)

 @echo "*** Package $(distdir).tar.gz\

 ready for distribution."

...

Now, when we run "make distcheck", our entire build system will be tested before
packaging is considered successful. What more could you ask for?!

Installing products

Well, we've now reached the point where our users' experiences with our project should
be fairly painless--even pleasant, as far as building the project is concerned. Our users
will simply unpack the distribution tarball, change into the distribution directory, and type
"make". It can't really get any simpler than that.
But still we lack one important feature--installation. In the case of the jupiter project, this
is fairly trivial - there's only one executable, and most users could probably guess that
this file should be copied into either the /usr/bin or /usr/local/bin directory. More
complex projects, however could cause our users some real consternation when it comes
to where to put user and system binaries, libraries, header files, and documentation,
including man pages, info pages, pdf files, and README, INSTALL and COPYRIGHT
files. Do we really want our users to have to figure all that out?
I don't think so. So we'll just create an install target that manages putting things where
they go, once they're built properly. Why not just make installation part of the all target?
A few reasons, really. First, build and installation are separate logical concepts.
Remember the rule: Break up large processes into smaller ones and reuse the smaller
ones where you can. The second reason is a matter of rights. Users have rights to build
in their own home directories, but installation often requires root-level rights to copy files
into system directories. Finally, there are several reasons why a user may wish to build,
but not install.
While creating a distribution package may not be an inherently recursive process,
installation certainly is, so we'll allow each subdirectory in our project to manage
installation of its own components. To do this, we need to modify both makefiles. The
top-level makefile is easy. Since there are no products to be installed in the top-level
directory, we'll just pass on the responsibility to src/Makefile in the usual way:
Makefile

...

all clean check install jupiter:

 $(MAKE) -C src $@

...

.PHONY: FORCE all clean check dist distcheck

.PHONY: install

src/Makefile

...

install:

 cp jupiter /usr/bin

 chown root:root /usr/bin/jupiter

 chmod +x /usr/bin/jupiter

.PHONY: all clean check install

In the top-level makefile, we've added install to the list of targets passed down to
src/Makefile. In both files we've added install to the phony target list.
As it turns out, installation was a bit more complex than simply copying files. If a file is
placed in the /usr/bin directory, then the root user should own it so that only the root
user can delete or modify it. Additionally, we should ensure that the jupiter binary is
executable, so we use the chmod command to set the mode of the file to executable.
This is probably redundant, as the linker ensures that jupiter gets created as an
executable file, but it never hurts to be safe.
Now our users can just type the following sequence of commands, and have our project
built and installed with the correct system attributes and ownership on their platforms:

$ tar -zxvf jupiter-1.0.tar.gz

$ cd jupiter-1.0

$ make all

$ sudo make install

All of this is well and good, but it could be a bit more flexible with regard to where things
get installed. Some of our users may be okay with having jupiter installed into the
/usr/bin directory. Others are going to ask us why we didn't put it into the
/usr/local/bin directory--after all, this is a common convention. Well, we could
change the target directory to /usr/local/bin, but then others will ask us why we

didn't just put it into the /usr/bin directory. This is the perfect situation for a little
command-line flexibility.
Another problem we have with these makefiles is the amount of stuff we have to do to
install files. Most Unix systems provide a system-level program called "install", which
allows a user to specify, in an intelligent manner, various attributes of the files being
installed. The proper use of this utility could simplify things a bit. While we're adding
location flexibility, I'll just go ahead and add the use of the install utility, as well:
Makefile

...

export prefix=/usr/local

all clean install jupiter:

 $(MAKE) -C src $@

...

src/Makefile

...

install:

 install -d $(prefix)/bin

 install -m 0755 jupiter $(prefix)/bin

...

If you're astute, you may have noticed that I've declared and assigned the prefix
variable in the top-level makefile, but I've referenced it in src/Makefile. This is
possible because I used the export modifier in the top-level makefile to export this
make variable to the shell that make spawns when it executes itself in the src directory.
This is a nice feature of make because it allows us to define all of our user variables in
one obvious location--at the top of the top-level makefile.
I've now declared the prefix variable to be /usr/local, which is very nice for those
who want jupiter to be installed in /usr/local/bin, but not so nice for those who just
want it installed in /usr/bin. Fortunately, make allows the definition of make variables
on the command line, in this manner:

$ sudo make prefix=/usr install

...

Variables defined on the command line override those defined in the makefile. Thus,
users who want to install jupiter into their /usr/bin directory now have the option of
specifying this on the make command line when they install jupiter.
Actually, with this system in place, our users may install jupiter into any directory they
choose, including a location in their home directory, for which they do not need additional
rights granted. This is, in fact, the reason for the addition of the mkdir -p command. We
don't actually know where the user is going to install jupiter now, so we have to be
prepared for the possiblity that the location may not yet exist.
A bit of trivia about the install utility--it has the interesting property of changing the
ownership of any file it copies to the owner and group of the containing directory. So it
automatically sets the owner and group of our installed files to root:root if the user
tries to use the default /usr/local prefix, or to the user's id and group if she tries to
install into a location within her home directory. Nice, huh?

Uninstalling a package

What if a user doesn't like our package after it's been installed, and she just wants to get
it off her system? This is fairly likely with the jupiter package, as it's rather useless and
takes up valuable space in her bin directory. In the case of your projects however, it's
more likely that she wants to install a newer version of your project cleanly, or she wants
to change from the test build she downloaded from your website to a professionally
packaged version of your project provided by her Linux distribution. We really should
have an uninstall target, for these and other reasons:
Makefile

...

all clean install uninstall jupiter:

 $(MAKE) -C src $@

...

.PHONY: FORCE all clean dist distcheck

.PHONY: install uninstall

src/Makefile

...

uninstall:

 -rm $(prefix)/bin/jupiter

.PHONY: all clean check install uninstall

And, again, this particular target will require root-level rights if the user is using a system
prefix, such as /usr or /usr/local. The list of things to maintain is getting a out of

hand, if you ask me. We now have two places to update when changing our installation
processes--the install and uninstall targets. Unfortunately, this is really about the
best we can hope for when writing our own makefiles, without resorting to fairly complex
shell script commands. Hang in there--in Chapter 6, I'll show you how this example can
be rewritten in a much simpler way using Automake.
Finally, while we're at it, let's add testing the install and uninstall targets to our
distcheck target:
Makefile

...

distcheck: $(distdir).tar.gz

 gzip -cd $+ | tar xvf -

 $(MAKE) -C $(distdir) all check

 $(MAKE) -C $(distdir) prefix=\

 $${PWD}/$(distdir)/_inst install uninstall

 $(MAKE) -C $(distdir) clean

 rm -rf $(distdir)

 @echo "*** Package $(distdir).tar.gz\

 ready for distribution."

...

To do this properly, I had to break up the $(MAKE) commands into three different steps,
so that we could add the proper prefix to the install and uninstall targets without
affecting the other targets. I'll have more to say on this topic in a few minutes.
Note also that I used a double DOLLAR sign on the $${PWD} variable reference. This
was done in order to ensure that make passed the reference to the shell with the rest of
the command line. I wanted this variable to be dereferenced by the shell, rather than the
make utility. Technically, I didn't have to do this because the PWD variable was initialized
for make from the environment, but it serves as a good example of this process.

The Filesystem Hierarchy Standard

By the way, where am I getting these directory names from? What if some Unix system
out there doesn't use /usr or /usr/local? Well, in the first place, this is another
reason for providing the prefix variable--to handle those sorts of situations. However,
most Unix and Unix-like systems nowadays follow the Filesystem Hierarchy Standard
(FHS), as closely as possible. The FHS defines a number of "standard places", including
the following root-level directories:
 /bin
 /etc
 /home
 /opt

 /sbin
 /srv
 /tmp
 /usr
 /var

This list is not exhaustive. I've only mentioned the ones most relevant to our purposes. In
addition, the FHS defines several standard locations beneath these root-level directories.
For instance, the /usr directory should contain the following sub-directories:
 /usr/bin
 /usr/include
 /usr/lib
 /usr/local
 /usr/sbin
 /usr/share
 /usr/src

The /usr/local directory should contain a structure very similar to the /usr directory
structure, so that if the /usr/bin directory (for instance) is an NFS mount, then
/usr/local/bin (which should always be local) may contain local copies of some
programs. This way, if the network is down, the system may still be usable, to some
degree.
Not only does the FHS define these standard locations, but it also explains in fair detail
what they are for, and what types of files should be kept there. All in all, the FHS leaves
just enough flexibility and choice to you as a project maintainer to keep your life
interesting, but not enough to make you lose sleep at night, wondering if you're installing
your files in the right places.

Before I found out about the FHS, I relied on my personal experience to decide where
files should be installed in my projects. Mostly I was right, because I'm a careful guy, but I
have gone back to some of my past projects with a bit of chagrin and changed things,
once I read the FHS document. I heartily recommend you become thoroughly familiar
with this document if you seriously intend to develop Unix software.

Supporting standard targets and variables

In addition to those I've already mentioned, the GNU Coding Standards document lists
some important targets and variables that you should support in your projects, mainly
because everyone else does and your users will expect them.

Some of the chapters in the GNU Coding Standards should be taken with a grain of salt
(unless you're actually working on a GNU sponsored project, in which case you're
probably not reading this book because you need to). For example, you probably won't
care much about the C source code formatting suggestions in Chapter 5. Your users
certainly won't care, so you can use whatever source code formatting style you wish.

That's not to say that all of Chapter 5 is worthless. Sections 5.5 and 5.6, for instance,
provide excellent information on C source code portability between POSIX-oriented
platforms and CPU types. Section 5.8 gives some tips on using GNU software to
internationalize your program. This is excellent material.

While Chapter 6 discusses documentation the GNU way, some sections of Chapter 6
describe various top-level text files found commonly in projects, such as the AUTHORS,
NEWS, INSTALL, README and ChangeLog files. These are all bits that the well-read
OSS user expects to see in any decent OSS project.

But, the really useful information in the GNU Coding Standards document begins in
Chapter 7, "The Release Process". The reason why this chapter is so critical to you as an
OSS project maintainer, is that it pretty much defines what your users will expect of your
project's build system. Chapter 7 is the defacto-standard for user options provided by
packages using source-level distribution.
Section 7.1 defines the configuration process, about which we haven't spent much time
so far in this chapter, but we'll get to it. Section 7.2 covers makefile conventions,
including all of the "standard targets" and "standard variables" that users have come to
expect in OSS packages. Standard targets defined by the GNU Coding Standards
document include:

 all
 install
 install-html
 install-dvi
 install-pdf
 install-ps
 uninstall
 install-strip
 clean
 distclean
 mostlyclean
 maintainer-clean
 TAGS
 info
 dvi
 html
 pdf
 ps
 dist
 check
 installcheck
 installdirs

Note that you don't need to support all of these targets, but you should consider
supporting those which make sense for your project. For example, if you build and install
HTML pages in your project, then you should probably consider supporting the html and
install-html targets. Autotools projects support these, and more. Some of these are
useful to users, while others are only useful to maintainers.
Variables that your project should support (as you see fit) include the following. I've
added the default values for these variables on the right. You'll note that most of these
variables are defined in terms of a few of them, and ultimately only one of them, prefix.
The reason for this is (again) flexibility to the end user. I call these "prefix variables", for
lack of a more standard name:

prefix = /usr/local

exec-prefix = $(prefix)

bindir = $(exec_prefix)/bin

sbindir = $(exec_prefix)/sbin

libexecdir = $(exec_prefix)/libexec

datarootdir = $(prefix)/share

datadir = $(datarootdir)

sysconfdir = $(prefix)/etc

sharedstatedir = $(prefix)/com

localstatedir = $(prefix)/var

includedir = $(prefix)/include

oldincludedir = /usr/include

docdir = $(datarootdir)/doc/$(package)

infodir = $(datarootdir)/info

htmldir = $(docdir)

dvidir = $(docdir)

pdfdir = $(docdir)

psdir = $(docdir)

libdir = $(exec_prefix)/lib

lispdir = $(datarootdir)/emacs/site-lisp

localedir = $(datarootdir)/locale

mandir = $(datarootdir)/man

manNdir = $(mandir)/manN (N = 1..9)

manext = .1

manNext = .N (N = 1..9)

srcdir = (compiled project root)

Autotools projects support these and other useful variables automatically. Projects that
use Automake get these variables for free. Autoconf provides a mid-level form of support
for these variables. If you write your own makefiles and build system, you should support
as many of these as you use in your build and install processes.

To support the variables and targets that we've used so far in the jupiter project, we need
to add the bindir variable, in this manner:
Makefile

...

export prefix = /usr/local

export exec_prefix = $(prefix)

export bindir = $(exec_prefix)/bin

...

src/Makefile

...

install:

 install -d $(bindir)

 install -m 0755 jupiter $(bindir)

uninstall:

 -rm $(bindir)/jupiter

...

Note that we have to export prefix, exec_prefix and bindir, even though we only
use bindir explicitly in src/Makefile. The reason for this is that bindir is defined in
terms of exec_prefix, which is itself defined in terms of prefix. So when make runs
the install command, it will first resolve bindir to $(exec_prefix)/bin, and then to
$(prefix)/bin, and finally to /usr/local/bin--src/Makefile obviously needs
access to all three variables during this process.
How do such recursive variable definitions make life better for the end-user? The user
can change the root install location from /usr/local to /usr by simply typing:

$ make prefix=/usr install

...

The ability to change these variables like this is particularly useful to a Linux distribution
packager, who needs to install packages into very specific system locations:

$ make prefix=/usr sysconfdir=/etc install

...

Getting your project into a Linux distro

The dream of every OSS maintainer is that his or her project will be picked up by a Linux
distribution. When a Linux "distro" picks up your package for distribution on their CD's
and DVD's, your project will be moved magically from the realm of tens of users to that of
tens of thousands of users--almost overnight.

By following the GNU Coding Standards with your build system, you remove many
barriers to including your project in a Linux distro, because distro packagers (employees
of the company, whose job it is to professionally package your project as RPM or APT
packages) will immediately know what to do with your tarball, if it follows all the usual
conventions. And, in general, packagers get to decide, based on needed functionality,
and their feelings about your package, whether or not it should be included in their flavor
of Linux.

Section 7.2.4 of the GNU Coding Standards talks about the concept of supporting
"staged installations". This is a concept easily supported by a build system, but which if
neglected, will almost always cause problems for Linux distro packagers.

Packaging systems such as the Redhat Package Manager (RPM) system accept one or
more tarballs, a set of patches and a specification file (in the case of RPM, called an "rpm
spec file"). The spec file describes the process of building and installing your package. In
addition, it defines all of the products installed into the targeted installation directory
hierarchy. The package manager software uses this information to install your package
into a temporary directory, from which it pulls the specified binaries, storing them in a
special binary archive that the package installation software (eg., rpm) understands.
To support staged installation, all you really need to do is provide a variable named
"DESTDIR" in your build system that is a sort of super-prefix to all of your installed
products. To show you how this is done, I'll add staged installation support to the jupiter
project. This is so trivial, it only requires three changes to src/Makefile:
src/Makefile

...

install:

 install -d $(DESTDIR)$(bindir)

 install -m 0755 jupiter $(DESTDIR)$(bindir)

uninstall:

 -rm $(DESTDIR)$(bindir)/jupiter

...

As you can see, I've added the $(DESTDIR) prefix to the $(bindir) references in our
install and uninstall targets that reference any installation paths. I didn't need to add
$(DESTDIR) to the uninstall command for the sake of package managers, because
they don't care how your package is uninstalled. Package managers only install your

package while building it so they can copy the specified products from the temporary
install directory, which they then delete entirely after the package is created. Package
managers like RPM use their own rules for removing products from a system, and these
rules are based on package manager databases, not your build system.
For the sake of symmetry and to be complete, it doesn't hurt to add $(DESTDIR) to
uninstall. Besides, we need it to be complete for the sake of the distcheck target,
which we'll now modify to take advantage of our staged installation functionality:
Makefile

...

distcheck: $(distdir).tar.gz

 gzip -cd $+ | tar xvf -

 $(MAKE) -C $(distdir) all check

 $(MAKE) -C $(distdir) DESTDIR=\

 $${PWD}/$(distdir)/_inst install uninstall

 $(MAKE) -C $(distdir) clean

 rm -rf $(distdir)

 @echo "*** Package $(distdir).tar.gz\

 ready for distribution."

...

Changing the prefix variable to the DESTDIR variable in the second $(MAKE) line
above allows us to test a complete install directory hierarchy properly, as we'll see shortly
here.
At this point, an RPM spec file (for example) could provide the following text as the
installation commands for the jupiter package:

%install

make prefix=/usr DESTDIR=%BUILDROOT install

But don't worry about package manager file formats. Just focus on providing staged
installation functionality through the DESTDIR variable.

You may be wondering why this functionality could not be provided by the prefix
variable. Well, for one thing, not every path in a system-level installation is defined
relative to the prefix variable. The system configuration directory (sysconfdir), for
instance, is often defined simply as /etc by packagers. Defining prefix to anything
other than / will have little effect on sysconfdir during staged installation, unless a
build system uses $(DESTDIR)$(sysconfdir) to reference the system configuration

directory. Other reasons for this will become more clear as we talk about project
configuration later in this chapter.

Build versus installation prefix overrides

At this point, I'd like to digress slightly for just a moment to explain an illusive (or at least
non-obvious) concept regarding the prefix and other path variables defined by the GNU
Coding Standards document.

In the preceeding examples, I've always used prefix overrides on the make install
command line, like this:

$ make prefix=/usr install

...

The question I wish to address is: What's the difference between using a prefix override
for make all and make install? In our small sample makefiles, we've managed to
avoid using prefixes in any targets not related to installation, so it may not be clear at this
point that a prefix is ever useful during the build stages.
One key use of prefix variables during the build stage is to substitute paths into source
code at compile time, in this manner:

main.o : main.c

 gcc -DCFGDIR=\"$(sysconfdir)\" -o $@ $+

In this example, I'm defining a C preprocessor variable called CFGDIR on the compiler
command line for use by main.c. Presumably, there's some code in main.c that looks
like this:

#ifndef CFGDIR

define CFGDIR "/etc"

#endif

char cfgdir[FILENAME_MAX] = CFGDIR;

Later in the code, the C global variable "cfgdir" might be used to access the
application's configuration file.
Okay, with that background then, would you ever want to use different prefix variable
overrides on the build and installation command lines? Sure--Linux distro packagers do
this all the time in RPM spec files. During the build stage, the actual run-time directories
are hard-coded into the executable by using a command like this:

%build

%setup

./configure prefix=/usr sysconfdir=/etc

make

The RPM build process installs these executables into a stage directory, so it can copy
them out. The corresponding installation command looks like this:

%install

rm -rf %BUILDROOT%

make DESTDIR=%BUILDROOT% install

I mentioned the DESTDIR variable previously as a tool used by packagers for staged
installation. This has the same effect as using:

%install

rm -rf %BUILDROOT%

make prefix=%BUILDROOT%/usr \

 sysconfdir=%BUILDROOT%/etc install

The key take-away point here is this: Never recompile from an install target in your
makefiles. Otherwise your users won't be able to access your staged installation features
when using prefix overrides.
Another reason for this is to allow the user to install into a grouped location, and then
create links to the actual files in the proper locations. Some people like to do this,
especially when they are testing out a package, and want to keep track of all of its
components. For example, some Linux distributions provide a way of installing multiple
versions of some common packages. Java is a great example here. To support using
multiple versions or brands (perhaps Sun Java vs IBM Java), the Linux distribution
provides a script set called the "alternatives" scripts, which allows a user (running as root)
to swap all of the links in the various system directories from one grouped installation to
another. Thus, both sets of files may be installed in different auxiliary locations, but links
in the true installation locations can be changed to refer to each group at different times.

One final point about this issue. If you're installing into a system directory hierarchy, you'll
need root permissions. Often people run make install like this:

$ sudo make install

...

If your install target depends on your build targets, and you've neglected to build
beforehand, then make will happily build your program before installing it, but the local

copies will all be owned by root. Just an inconvenience, but easily avoided by having
`make install' fail for lack of things to install, rather than simply jump right into a build
while running as root.

Standard user variables

There's one more topic I'd like to cover before we move on to configuration. The GNU
Coding Standards document defines a set of variables that are sort of sacred to the user.
That is, these variables should be used by a GNU build system, but never modified by a
GNU build system. These are called "user variables", and they include the following for C
and C++ programs:

CC - the C compiler

CFLAGS - C compiler flags

CXX - the C++ compiler

CXXFLAGS - C++ compiler flags

LDFLAGS - linker flags

CPPFLAGS - C preprocessor flags

...

This list is by no means comprehensive, and ironically, there isn't a comprehensive list to
be found in the GCS document. Interestingly, most of these user variables come from the
documentation for the make utility. You can find a fairly complete list of program name
and flag variables in section 10.3 of the GNU make manual. The reason for this is that
these variables are used in the built-in rules of the make utility.
For our purposes, these few are sufficient, but for a more complex makefile, you should
become familiar with the larger list so that you can use them as the occasion arises. To
use these in our makefiles, we'll just replace "gcc" with $(CC), and then set CC to the gcc
compiler at the top of the makefile. We'll do the same for CFLAGS and CPPFLAGS,
although this last one will contain nothing by default:
src/Makefile

...

CC = gcc

CFLAGS = -g -O2

...

jupiter: main.c

 $(CC) $(CFLAGS) $(CPPFLAGS) -o $@ $+

...

The reason this works is that the make utility allows such variables to be overridden by
options on the command line. Make command-line variable assignments always override
values set in the makefiles themselves. Thus, to change the compiler and set some
compiler flags, a user need simply type:

$ make CC=gcc3 CFLAGS='-g -O0' CPPFLAGS=-dtest

In this case, our user has decided to use gcc version 3 instead of 4, and to disable
optimization and leave the debugging symbols in place. She's also decided to enable the
"test" option through the use of a preprocessor definition. Note that these variables are
set on the make command line. This apparently equivalent syntax will not work as
expected:

$ CC=gcc3 CFLAGS='-g -O0' CPPFLAGS=-dtest make

The reason for this is that we're merely setting environment variables in the local
environment passed to the make utility by the shell. Remember that environment
variables do not automatically override those set in the makefile. To get the functionality
we want, we could use a little GNU make-specific syntax in our makefile:

CC ?= gcc

CFLAGS ?= -g -O2

The "?=" operation is a GNU Make-specific operator, which will only set the variable in
the makefile if it hasn't already been set elsewhere. This means we can now override
these particular variable settings by setting them in the environment. But don't forget that
this will only work in GNU Make.

Configuring your package

The GNU Coding Standards document describes the configuration process in section 7.1,
"How Configuration Should Work". Up to this point, we've been able to do about
everything we've wanted to do with the jupiter project using only makefiles. You might be
wondering at this point what configuration is actually for! The opening paragraphs of
Section 7.1 state:

Each GNU distribution should come with a shell script named configure. This script is
given arguments which describe the kind of machine and system you want to compile the
program for.
The configure script must record the configuration options so that they affect
compilation.
One way to do this is to make a link from a standard name such as config.h to the
proper configuration file for the chosen system. If you use this technique, the distribution
should not contain a file named config.h. This is so that people won't be able to build
the program without configuring it first.

Another thing that configure can do is to edit the makefiles. If you do this, the
distribution should not contain a file named Makefile. Instead, it should include a file
Makefile.in which contains the input used for editing. Once again, this is so that
people won't be able to build the program without configuring it first.
So then, the primary tasks of a typical configure script are to:

 generate files from templates containing replacement variables,
 generate a C language header file (often called config.h) for inclusion by project

source code,
 set user options for a particular make environment--such as debug flags, etc.,
 set various package options as environment variables,
 and test for the existance of tools, libraries, and header files.

For complex projects, configure scripts often generate the project makefile(s) from one
or more templates maintained by project developers. A makefile template contains
configuration variables in an easily recognized (and substituted) format. The configure
script replaces these variables with values determined during configuration--either from
command line options specified by the user, or from a thorough analysis of the platform
environment. Often this analysis entails such things as checking for the existence of
certain system or package include files and libraries, searching various file system paths
for required utilities and tools, and even running small programs designed to indicate the
feature set of the shell, C compiler, or desired libraries.
The tool of choice here for variable replacement has, in the past, been the sed stream
editor. A simple sed command can replace all of the configuration variables in a makefile
template in a single pass through the file. In the latest version of Autoconf (2.62, as of
this writing) prefers awk to sed for this process. The awk utility is almost as pervasive as
sed these days, and it much more powerful with respect to the operations it can perform
on a stream of data. For the purposes of the jupiter project, either one of these tools
would suffice.

Summary

At this point, we've created a complete project build system by hand--with one important
exception. We haven't designed a configure script according to the design criteria
specified in the GNU Coding Standards document that works with this build system. We
could do this, but it would take a dozen more pages of text to build one that even comes
close to conforming to these specifications.
There are yet a few key build system features related specifically to the makefiles that
are indicated as being desirable by the GNU Coding Standards. Among these is the
concept of VPATH building. This is an important feature that can only be properly
illustrated by actually writing a configure script that works as specified by the GNU
Coding Standards.
Rather than spend this time and effort, I'd like to simply move on to a discussion of
Autoconf in Chapter 3, which will allow us to build one of these configure scripts in as
little as two or three lines of code, as you'll see in the opening paragraphs of that chapter.
With that step behind us, it will be trival to add VPATH building, and other features to the
jupiter project.

Source archive

Download the attached source archive for the original sources associated with this
chapter.

‹ Chapter 1: A brief introduction to the GNU Autotools up Chapter 3: Configuring your
project with Autoconf ›

Chapter 3: Configuring your project
with Autoconf
Tue, 2008-06-10 22:11 -- John Calcote

We should all be very grateful to David MacKenzie for having the foresight to--
metaphorically speaking--stop and sharpen the ax. Otherwise we'd still be writing
(copying) and maintaining long, complex hand-coded configure scripts today.
This chapter has downloads!
Before Automake, Autoconf was used alone, and many legacy open source projects
have never really made the transition to the full Autotools suite. As a result, it would not
be uncommon to find an open source project containing a file called configure.in (the
older naming convention used by Autoconf) and hand-written Makefile.in templates.

Configure scripts, the Autoconf way

It's instructive for this and other reasons that will become clear shortly, to spend some
time just focusing on the use of Autoconf alone. Exploring in this manner can provide a
fair amount of insight into the operation of Autoconf by exposing aspects of this tool that
are often hidden by Automake and other add-on tools.

The input to Autoconf is ... (drum roll please) ... shell script. Man, what an anti-climax!
Okay, so it's not pure shell script. That is, it's shell script with macros, plus a bunch of
macro definition files--both those that ship with an Autoconf distribution, as well as those
that you or I write. The macro language used is called M4. ("M-what?!", you ask?) The
M4 utility is a general purpose macro language processor that was originally written by
none other than Brian Kernighan and Dennis Ritchie in 1977. (The name M4 means "m
plus 4 more letters" or the word "Macro" - cute, huh? As a point of interest, this naming
convention is a fairly common practice in some software engineering domains. For
example, the term internationalization is often abrieviated i18n, and the term localization
is sometimes replaced with l10n, for the sake of brevity. The use of the term m4 here is
no-doubt a play on this concept.)
Some form of the M4 macro language processor is found on every Unix and Linux variant
(as well as other systems) in use today. In fact, this proliferance is the primary reason for
its use in Autoconf. The design goals of Autoconf included primarily that it should run on
all systems without the addition of complex tool chains and utility sets. Autoconf depends
on the existence of relatively few tools, including m4, sed and now in version 2.62, the
awk utility. Most of the Autotools (Autoconf being the exception) rely on the existence of a
perl processor, as well.
NOTE: Do not confuse the requirements of the Autotools with the requirements of the
scripts and makefiles generated by them. The Autotools are maintainer tools, while the
resulting scripts and makefiles are end-user tools. We can reasonably expect a higher
level of installed functionality on development systems than we can on end-user systems.
Nevertheless, the Autotools design goals still include a reliance only on a minimal set of
pre-installed functionality, much of which is part of a default installation.
While it's true that configure.ac is written in shell script sprinkled with M4 syntax, the
proper use of the M4 macro processor is the subject of Chapter 7. Because I want to
stick to Autoconf in this chapter, I'll gloss over some key concepts related to M4, which I'll
cover in more detail in Chapter 7. This chapter is designed to help you understand
Autoconf concepts, however, so I will cover minor aspects of M4 as it makes sense to do
so.

The smallest configure.ac file
The simplest possible configure.ac file has just two lines:

$ cat configure.ac

AC_INIT([jupiter], [1.0])

AC_OUTPUT

$

NOTE: This chapter builds on the Jupiter project begun in Chapter 2.
To those new to Autoconf, these two lines appear to be a couple of function calls,
perhaps in the syntax of some obscure computer language. Don't let this appearance
throw you--these are M4 macro expansions. The macros are defined in files distributed
with Autoconf. The definition of AC_INIT, for example,W is found in
$PREFIX/share/autoconf/autoconf/general.m4, while AC_OUTPUT is defined in
status.m4, in the same directory.
M4 macros are similar in many ways to macros defined in C language source files for the
C preprocessor, which is also a text replacement tool. This isn't surprising, given that
both M4 and cpp were originally designed by Kernighan and Ritchie.
The square brackets around the parameters are used by Autoconf as a quoting
mechanism. Such quotes are only really necessary in cases where the context of the
macro call could cause an ambiguity that the macro processor may resolve incorrectly
(usually without telling you). We'll discuss M4 quoting in much more detail in Chapter 7.
For now, just use Autoconf quotes ([and]) around every argument to ensure that the
expected macro expansions are generated.

As with cpp macros, M4 macros may or may not take parameters. And (also as with cpp)
when they do, then a set of parentheses must be used when passing the arguments. In
both M4 and cpp, the opening parenthesis must immediately follow the macro name,
with no intervening white space. When they don't accept parameters, the parentheses
are simply omitted. Unlike cpp, M4 has the ability to specify optional parameters, in
which case, you may omit the parentheses if you choose not to pass a parameter.
The result of passing this configure.ac file through Autoconf is essentially the same
file (now called configure), only with these two macros fully expanded.
Now, if you've been programming in C for many years, as I have, then you've no doubt
run across a few C preprocessor macros from the dark regions of the lower realm. I'm
talking about those truly evil cpp macros that expand into one or two pages of C code!
You know the ones I'm talking about--they should really have been written as C functions,
but the author was overly worried about performance!
Well baby, you ain't seen nothin' yet! These two M4 macros expand into a file containing
over 2200 lines of Bourne shell script that's over 60K bytes in size! Interestingly, you
wouldn't really know this by looking at their definitions. They're both fairly short--only a
dozen or two lines each. The reason for this apparent disparity is simple--they're written
in a modular fashion, each macro expanding several others, which in turn expand several
others, and so on.

Executing Autoconf

Running Autoconf couldn't be simpler. Just execute autoconf in the same directory as
your configure.ac file. While I could do this for each example in this chapter, I'm going
to use the autoREconf (capitalization added for emphasis) command instead of the
autoconf command. The reason for this is that running autoreconf has exactly the
same effect as running autoconf, except that autoreconf will also do "the right thing"
when you start adding Automake and Libtool functionality to your build system.

autoreconf is the recommended method for executing the Autotools tool chain, and it's
smart enough to only execute the tools that you need, in the order that you need them,
and with the options that you need (with one exception that I'll mention here shortly).

$ autoreconf

$ ls -lp

autom4te.cache/

configure

configure.ac

$

First, notice that autoreconf operates at exactly the same level of verbosity as the
tools it runs. By default, zero. If you want to see something happening, use the -v or --
verbose option. If you want autoreconf to run the other Autotools in verbose mode,
add -vv to the command line. (You may also pass --verbose --verbose, but this
syntax seems a bit... verbose to me--sorry, I couldn't resist!)
First, notice that Autoconf creates a directory called autom4te.cache. This is the
autom4te (pronounced "automate") cache directory. This cache is used to speed up
access to configure.ac by successive executions of utilities in the Autotools tool chain.
I'll cover autom4te in greater detail in Chapter 9, where I'll show you how to write your
own Autoconf macros that are "environmentally friendly".

Executing configure
If you recall from the last section of Chapter 2, the GNU Coding Standards document
indicates that configure should generate a script called config.status, whose job it
is to generate files from templates. Well, this is exactly the sort of functionality found in an
Autoconf-generated configure script. An Autoconf-generated configure script has
two primary tasks:
 perform requested checks
 generate, and then call config.status

The results of all of the checks performed by the configure script are written, as
environment variable settings to the top of config.status, which uses the values in
these environment variables as replacement text for Autoconf substitution variables it
finds in template files (Makefile.in, config.h.in, etc).
When you execute configure, it tells you that it's creating the config.status file. In
fact, it also creates a log file called config.log that has several important attributes:

$./configure

configure: creating ./config.status

$

$ ls -lp

autom4te.cache/

config.log

config.status

configure

configure.ac

$

The config.log file contains the following information:
 the command line used to invoke configure (very handy!)
 information about the platform on which configure was executed
 information about the core tests executed by configure
 the line number in configure at which config.status is generated and then

called
At this point in the log file, config.status takes over generating log information--it
adds the command line used to invoke config.status. After config.status
generates all of the files from their templates, it then exits, returning control to
configure, which then adds the following information to the log:
 the cache variables used by config.status to perform its tasks
 the list of output variables that may be replaced in templates
 the exit code returned by configure to the shell

This information is invaluable when debugging a configure script and its associated
configure.ac file.

Executing config.status
Now that you know how configure works, you can probably see that there might be
times when you'd be tempted to simply execute config.status yourself, rather than
going to all the trouble of having configure perform all those time-consuming checks
first. And right you'd be. This was exactly the intent of the Autoconf designers--and the
authors of the GNU Coding Standards, by whom these design goals were originally
conceived.
There are in fact, times when you'd just like to manually regenerate all of your output files
from their corresponding templates. But, far more importantly, config.status can be
used by your makefiles to regenerate themselves individually from their templates, when
make determines that something in a template file has changed.
Rather than call configure to perform needless checks (your environment hasn't
changed, has it? Just your template files), your makefiles should be written in a way that
ensures that output files are dependent on their templates. If a template file changes
(because, for example, you modified one of your Makefile.in templates), then make
calls config.status to regenerate this file. Once the Makefile is regenerated, then
make re-executes the original make command line--basically, it restarts itself. This is
actually a feature of the make utility.
Let's take a look at the relevant portion of just such a Makefile.in template:

Makefile: Makefile.in config.status

 ./config.status Makefile

Another interesting bit of make functionality is that it always looks for a rule with a target
named "Makefile". Such a rule allows make to regenerate the source makefile from its

template, in the event that the template changes. It does this before executing either the
user's specified targets, or the default target, if none was given.
This example indicates that Makefile is dependent on Makefile.in. Note that
Makefile is also dependent on config.status. After all, if config.status is
regenerated by the configure script, then it may generate a makefile differently--
perhaps something in the compilation environment changed, such as when a new
package is added to the system, so that configure can now find libraries and headers
not previously found. In this case, Autoconf substitution variables may have different
values. Thus, Makefile should be regenerated if either Makefile.in or
config.status changes.
Since config.status is itself a generated file, it stands to reason that this line of
thinking can be carried to the configure script as well. Expanding on the previous
example:

Makefile: Makefile.in config.status

 ./config.status $@

config.status: configure

 ./config.status --recheck

Since config.status is a dependency of the Makefile rule, then make will check for
a rule whose target is config.status and run its commands if the dependencies of
config.status (configure) are newer than config.status.

Adding some real functionality

Well, it's about time we move forward and put some true functionality into this
configure.ac file. I've danced around the topic of having config.status generate a
makefile up to this point. Here's the code to actually make this happen in configure.ac.
It constitutes a single additional macro expansion between the original two lines:

$ cat configure.ac

AC_INIT([jupiter], [1.0])

AC_CONFIG_FILES([Makefile

 src/Makefile])

AC_OUTPUT

$

This code assumes that I have templates for Makefile and src/Makefile, called
Makefile.in and src/Makefile.in, respectively. These files look exactly like their
Makefile counterparts, with one exception: Any text that I want Autoconf to replace
should be marked as Autoconf substitution variables, using the @VARIABLE@ syntax.

To create these files, I've merely renamed the existing makefiles to Makefile.in within
the top-level and src directories. By the way, this is a common practice when
"autoconfiscating" a project. Next, I added a few Autoconf substitution variables to
replace my orignal default values. In fact, at the top of this file, I've added the special
Autoconf substitution variable, @configure_input@ after a makefile comment HASH
mark. This comment line will become the following text line in the generated Makefile:

"Makefile. Generated from Makefile.in by conf...

I've also added the makefile regeneration rules (from the examples above) to each of
these templates, with slight file path differences in each file to account for their different
positions relative to config.status and configure:
Makefile.in

@configure_input@

Package-related substitution variables

package = @PACKAGE_NAME@

version = @PACKAGE_VERSION@

tarname = @PACKAGE_TARNAME@

distdir = $(tarname)-$(version)

Prefix-related substitution variables

prefix = @prefix@

exec_prefix = @exec_prefix@

bindir = @bindir@

...

$(distdir):

 mkdir -p $(distdir)/src

 cp configure $(distdir)

 cp Makefile.in $(distdir)

 cp src/Makefile.in $(distdir)/src

 cp src/main.c $(distdir)/src

distcheck: $(distdir).tar.gz

 gzip -cd $+ | tar xvf -

 cd $(distdir); ./configure

 $(MAKE) -C $(distdir) all check

 $(MAKE) -C $(distdir) \

 DESTDIR=$${PWD}/$(distdir)/_inst \

 install uninstall

 $(MAKE) -C $(distdir) clean

 rm -rf $(distdir)

 @echo "*** Package $(distdir).tar.gz is\

 ready for distribution."

Makefile: Makefile.in config.status

 ./config.status $@

config.status: configure

 ./config.status --recheck

...

src/Makefile.in

@configure_input@

Package-related substitution variables

package = @PACKAGE_NAME@

version = @PACKAGE_VERSION@

tarname = @PACKAGE_TARNAME@

distdir = $(tarname)-$(version)

Prefix-related substitution variables

prefix = @prefix@

exec_prefix = @exec_prefix@

bindir = @bindir@

...

Makefile: Makefile.in ../config.status

 cd .. && ./config.status $@

../config.status: ../configure

 cd .. && ./config.status --recheck

...

I've removed the export statement in the top-level Makefile.in, and added a copy of
all of the substitution variables into src/Makefile.in. Since config.status is
generating both of these files, I can reap excellent benefits by substituting everything into
both files. The primary advantage of doing this is that I can now run make in any sub-
directory, and not be concerned about environment variables that would have been
passed down by a higher-level makefile.
Finally, I've changed the distribution targets a bit. Rather than distribute the makefiles, I
now want to distribute the Makefile.in templates, as well as the configure script. In
addition, the distcheck target needed to be enhanced such that it runs the configure
script before attempting to run make.

Generating files from templates

I'm now generating makefiles from Makefile.in templates. The fact is, however, that
any (white space delimited) file listed in AC_CONFIG_FILES will be generated from a file
of the same name with a ".in" extension, found in the same directory. The ".in"
extension is the default template naming pattern for AC_CONFIG_FILES, but this default
behavior may be overridden, if you wish. I'll get into the details shortly.
Autoconf generates sed or awk expressions into the resulting configure script, which
then copies them into the config.status script. The config.status script uses
these tools to perform this simple string replacement.
Both sed and awk are text processing tools that operate on file streams. The advantage
of a stream editor (the name "sed" is actually a contraction of the phrase "stream editor")

is that it replaces text patterns in a byte stream. Thus, both sed and awk can operate on
huge files, because they don't need to load the entire input file into memory in order to
process it. The expression list passed to sed or awk by config.status is built by
Autoconf from a list of variables defined by various macros, many of which I'll cover in
greater detail in this chapter.
The important thing to notice here is that the Autoconf variables are the only items
replaced in Makefile.in while generating the makefile. The reason this is important to
understand is that it helps you to realize the flexibility you have when allowing Autoconf
to generate a file from a template. This flexibility will become more apparent as I get into
various use cases for the pre-defined Autoconf macros, and later in Chapter 9 when I
delve into the topic of writing your own Autoconf macros.
At this point, I've created a basic configure.ac file, and I can indeed run autoreconf,
followed by the generated configure script, and then make to build the Jupiter project.
The idea that I want to promote at this point is that this simple three-line configure.ac
file generates a configure script that is fully functional, according to the definition of a
configure script given in Chapter 7 of the the GNU Coding Standards document.
The resulting configure script runs various system checks and generates a
config.status file, which can replace a fair number of substitution variables in a set of
specified template files in a build system. That's a lot of stuff for three lines of code.
(You'll recall my comments in the introduction to this book about C++ doing a lot for you
with just a few lines of code?)

Adding VPATH build functionality
Okay, you may recall at the end of Chapter 2, I mentioned that I hadn't yet covered a key
concept--that of VPATH builds. A VPATH build is a way of using a particular makefile
construct (VPATH) to configure and build a project in a directory other than the source
directory. Why is this important? Well, for several reasons. You may need to:

 maintain a separate debug configuration,
 test different configurations, side by side,
 keep a clean source directory for patch diffs after local modifications,
 or build from a read-only source directory.

These are all great reasons, but won't I have to change my entire build system to support
this type of remote build? As it turns out, it's quite simple using the make utility's VPATH
statement. VPATH is short for "virtual path", meaning "virtual search path". A VPATH
statement contains a colon-separated list of places to look for dependencies, when they
can't be found relative to the current directory:

VPATH = some/path:some/other/path:yet/another/path

jupiter : main.c

 gcc ...

In this (contrived) example, if make can't find main.c in the current directory while
processing the rule, it will look for some/path/main.c, and then for
some/other/path/main.c, and finally for yet/another/path/main.c, before
finally giving up in dispair--okay, perhaps only with an error message about not knowing
how to make main.c.
"Nice feature!", you say? Nicer than you think, because with just a few simple
modifications, I can now completely support remote builds in my jupiter project build
system:

Makefile.in

...

VPATH-related substitution variables

srcdir = @srcdir@

VPATH = @srcdir@

...

$(distdir):

 mkdir -p $(distdir)/src

 cp $(srcdir)/configure $(distdir)

 cp $(srcdir)/Makefile.in $(distdir)

 cp $(srcdir)/src/Makefile.in $(distdir)/src

 cp $(srcdir)/src/main.c $(distdir)/src

...

src/Makefile.in

...

VPATH-related substitution variables

srcdir = @srcdir@

VPATH = @srcdir@

...

jupiter: main.c

 gcc -g -O0 -o $@ $(srcdir)/main.c

...

That's it. Really. When config.status generates a file, it replaces an Autoconf
substitution variable called @srcdir@ with the relative path to the template's source
directory. Each makefile will get a different value for @srcdir@, depending on the
relative location of its template.
The rules then for supporting VPATH builds in your make system are as follows:

 Set a make variable, srcdir to the @srcdir@ substitution variable.
 Set VPATH to @srcdir@ also--don't use $(srcdir) because some older versions of

make don't do variable substitution within the value of VPATH.
 Prefix all file dependencies used in commands with $(srcdir)/.

If the source directory is the same as the build directory, then the @srcdir@ substitution
variable degenerates to ".", so all of these "$(srcdir)/" prefixes degenerate to "./",
which is just so much harmless baggage.
A quick example is the easiest way to show you how this works. Now that Jupiter is fully
functional with respect to VPATH builds, let's just give it a try. Start in the jupiter
project directory, create a subdirectory called "build", and then change into that
directory. Now run configure using a relative path, and then list the current directory
contents:

$ mkdir build

$ cd build

$../configure

configure: creating ./config.status

config.status: creating Makefile

config.status: creating src/Makefile

$ ls -1p

config.log

config.status

Makefile

src/

...

The entire build system seems to have been constructed by configure and
config.status within the build sub-directory, just as it should be. What's more, it
actually works:

...

$ make

make -C src all

make[1]: Entering directory `../prj/jupiter/bui...

gcc -g -O2 -o jupiter ../../src/main.c

make[1]: Leaving directory `../prj/jupiter/bui...

$ ls -1p src

jupiter

Makefile

VPATH builds work, not just from sub-directories of the project directory, but from
anywhere you can access the project directory, using either a relative or an absolute path.
This is just one more thing that Autoconf does for you in Autoconf-generated configure
scripts. Just imagine managing proper relative paths to source directories in your own
hand-coded configure scripts!

Let's take a breather

At this point, I'd like you to stop and consider what you've seen so far: I've shown you a
mostly complete build system that includes most of the features outlined in the GNU
Coding Standards document. The features of the Jupiter project's make system are all
fairly self-contained, and reasonably simple to grasp. The most difficult feature to
implement by hand is the configure script. In fact, writing a configure script by hand
is so labor intensive relative to the simplicity of the Autoconf version that I just skipped
over the hand-coded version entirely in Chapter 2.
If you've been one to complain about Autoconf in the past, I'd like you to consider what
you have to complain about now. You now know how to get very feature-rich
configuration functionality in just three lines of code. Given what you know now about
how configure scripts are meant to work, can you see the value in Autoconf?
Most people never have trouble with that portion of Autoconf that I've covered up to this
point. The trouble is that most people don't create their build systems in the manner I've
just shown you. They try to copy the build system of another project, and then tweak it to
make it work in their own project. Later when they start a new project, they do the same
thing again. Are they going to run into problems? Sure--the "stuff" they're copying was
often never meant to be used the way they're trying to use it.

I've seen projects in my experience whose configure.ac file contained junk that had
nothing to do with the project to which it belonged. These left-over bits came from the
previous project, from which configure.ac was copied. But the maintainer didn't know
enough about Autoconf to remove the cruft. With the Autotools, it's better to start small,
and add what you need, than to start with a full-featured build system, and try to pare it
down to size.
Well, I'm sure you're feeling like there's a lot more learn about Autoconf. And you're right,
but what additional Autoconf macros are appropriate for the Jupiter project?

An even quicker start with autoscan
The simplest way to create a (mostly) complete configure.ac file is to run the
autoscan utility, which, if you remember from Chapter 1, is part of the Autoconf package.
First, I'll clean up the droppings from my earlier experiments, and then run the autoscan
utility in the jupiter directory. Note here that I'm NOT deleting my original
configure.ac file - I'll just let autoscan tell me what's wrong with it. In less than a
second I'm left with a couple of new files in the top-level directory:

$ rm config.* Makefile src/Makefile ...

$ ls -1p

configure.ac

Makefile.in

src/

$ autoscan

configure.ac: warning: missing AC_CHECK_HEADERS

 ([stdlib.h]) wanted by: src/main.c:2

configure.ac: warning: missing AC_HEADER_STDC

 wanted by: src/main.c:2

configure.ac: warning: missing AC_PROG_CC

 wanted by: src/main.c

configure.ac: warning: missing AC_PROG_INSTALL

 wanted by: Makefile.in:11

$ ls -1p

autom4te.cache/

autoscan.log

configure.ac

configure.scan

Makefile.in

src/

NOTE: I've wrapped some of the output lines for the sake of column width during
publication.
autoscan creates two files called configure.scan, and autoscan.log from a
project directory hierarchy. The project may already be instrumented for Autotools, or not.
It doesn't really matter because autoscan is decidedly non-destructive. It will never alter
any existing files in a project.
autoscan generates a warning message for each issue discovered in an existing
configure.ac file. In this example, autoscan noticed that configure.ac really
should be using the AC_CHECK_HEADERS, AC_HEADER_STDC, AC_PROG_CC and
AC_PROG_INSTALL macros. It made these assumptions based on scanning my existing
Makefile.in templates and C source files, as you can see by the comments after each

warning statement. You can always see these messages (in even greater detail, in fact)
by examining the autoscan.log file.
Now let's take a look at the generated configure.scan file. autoscan has added
more text to configure.scan than was originally in my configure.ac file, so it's
probably easier for me to just overwrite configure.ac with configure.scan and
then change the few bits of information that are specific to Jupiter:

$ mv configure.scan configure.ac

$ cat configure.ac

-*- Autoconf -*-

Process this file with autoconf to produce ...

AC_PREREQ(2.61)

AC_INIT(FULL-PACKAGE-NAME, VERSION,

 BUG-REPORT-ADDRESS)

AC_CONFIG_SRCDIR([src/main.c])

AC_CONFIG_HEADERS([config.h])

Checks for programs.

AC_PROG_CC

AC_PROG_INSTALL

Checks for libraries.

Checks for header files.

AC_HEADER_STDC

AC_CHECK_HEADERS([stdlib.h])

Checks for typedefs, structures, and compiler ...

Checks for library functions.

AC_CONFIG_FILES([Makefile

 src/Makefile])

AC_OUTPUT

NOTE: The contents of your configure.ac file may differ slightly from mine, depending
on the version of Autoconf that you have installed. I have version 2.62 of GNU Autoconf
installed on my system (the latest, as of this writing), but if your version of autoscan is
older (or newer), you may see some minor differences.
I'll then edit the file and change the AC_INIT macro to reflect the Jupiter project
parameters:

$ head configure.ac

-*- Autoconf -*-

Process this file with autoconf to produce ...

AC_PREREQ([2.61])

AC_INIT([jupiter], [1.0], [bugs@jupiter.org])

AC_CONFIG_SRCDIR([src/main.c])

AC_CONFIG_HEADERS([config.h])

$

The autoscan utility really does a lot of the work for you. The GNU Autoconf manual
states that you should hand-tailor this file to your project before using it. This is true, but
there are only a few key issues to worry about (besides those related to the AC_INIT
macro). I'll cover each of these issues in turn, starting at the top of the file.

Trying out configure
I like to experiment, so the first thing I'd do at this point would be to try to run
autoreconf on this new configure.ac. and then try to run the generated
configure script to see what happens. If autoscan is all it's cracked up to be, then the
resulting configure script should generate some makefiles for me:

$ autoreconf

$./configure

checking for gcc... gcc

checking for C compiler default output file name...

checking whether the C compiler works... yes

checking whether we are cross compiling... no

checking for suffix of executables...

checking for suffix of object files... o

checking whether we are using the GNU C compiler...

checking whether gcc accepts -g... yes

checking for gcc option to accept ISO C89...

configure: error: cannot find install-sh or

 install.sh in "." "./.." "./../.."

$

Well, we didn't get too far. I mentioned the install utility in Chapter 1, and you may
have already been aware of it. It appears here that Autoconf is looking for a shell script
called install-sh or install.sh.
Autoconf is all about portability, and unfortunately, the install utility is not as portable
as we'd like it to be. From one platform to another, critical bits of installation functionality
are just different enough to cause problems, so the Autotools provide a shell script called
install-sh (deprecated name: install.sh) that acts as a wrapper around the
platform install utility. This wrapper script masks important differences between
various versions of install.
autoscan noticed that I used the install program in my src/Makefile.in template,
and generated an expansion of the AC_PROG_INSTALL macro into the
configure.scan file based on this observation. The problem is that the generated
configure script couldn't find the install-sh wrapper script.
This seems to be a minor defect in Autoconf--if Autoconf expects install-sh to be in
my project directory, then it should have just put it there, right? Well, autoreconf has a
command line option, --install, which is supposed to install missing files like this for
me. I'll give it a try. Here's a before-and-after picture of my directory structure:

$ ls -1p

autoscan.log

configure.ac

Makefile.in

src/

$ autoreconf --install

$ ls -1p

autom4te.cache/

autoscan.log

config.h.in

configure

configure.ac

Makefile.in

src/

Hmmm. It didn't seem to work, as there's no install-sh file in the directory after
running autoreconf --install. This is, in my opinion, a defect in both autoreconf
and autoconf. You see, when autoreconf is used with the --install command-
line option, it should install all auxilliary files required by all Autoconf macros used in
configure.ac. The trouble is, this auxilliary-file-installation functionality is actually a
part of Automake, not Autoconf. So when you use --install on the autoreconf
command-line, it passes tool-specific install-missing-files options down to each of the
tools that it calls. This technique would have worked just fine, except that Autoconf
doesn't provide an option to install any missing files.
Worse still, the GNU Autoconf manual tells you in Section 5.2.1, under
AC_PROG_INSTALL, that "Autoconf comes with a copy of install-sh that you can
use." But this is a lie. In fact, it's Automake and Libtool that come with copies of
install-sh, not Autoconf.
I could just copy install-sh from the Automake installation directory
(PREFIX/share/automake...), but I'll just try running automake --add-missing
--copy instead. The Automake --install-missing option copies in the missing
required utility scripts, and the --copy option indicates that true copies should be made.
Without the --copy option, automake would actually just create links to these files
where they're installed (usually /usr/(local/)share/automake-1.10):

$ automake --add-missing --copy

configure.ac: no proper invocation of AM_INIT_...

configure.ac: You should verify that configure...

configure.ac: that aclocal.m4 is present in th...

configure.ac: and that aclocal.m4 was recently...

configure.ac:11: installing `./install-sh'

automake: no `Makefile.am' found for any confi...

Ignoring the warnings indicating that I've not yet configured my project properly for
Automake, I can now see that install-sh was copied into my project root directory:

$ ls -1p

autom4te.cache/

autoscan.log

configure.ac

configure.scan

install-sh

Makefile.in

src/

So why didn't autoreconf --install do this for me? Isn't it supposed to run all the
programs that it needed to, based on my configure.ac script? As it happens, it was
exactly because my project was not configured for Automake, that autoreconf failed to
run automake --add-missing --copy. Autoreconf saw no reason to run automake
because configure.ac doesn't contain the requisite macros for initializing Automake.
And therein lies the defect. First, Autoconf should ship with install-sh, since it
provides a macro that requires it, and because autoscan adds that macro based on the
contents of a Makefile.in template. In addition, Autoconf should provide an "add-
missing" command-line option, and autoreconf should use it when called with the --
install option. This is most likely an example of the "work-in-progress" nature of the
Autotools.
But, taking a step backward for a moment. There is another obvious solution to this
problem. The install.sh script is not really required by any code generated by Autoconf.
How could it be. Autoconf doesn't generate any makefile constructs, it only substitutes
variables into your makefile.in templates. Thus, there's really no reason for Autoconf
to complain about a missing install-sh script. When I presented this problem on the
Autoconf mailing list, I was told several times that autoconf has no business copying
install-sh into a project directory, thus there is no such functionality accessible from
the Autoconf command line. If that is indeed the case, then Autoconf has no business
complaining about the missing file. Regardless, something needs to be fixed...

The proverbial autogen.sh script
Before autoreconf came along, maintainers used a shell script, often called
autogen.sh, to run all of the Autotools required for their projects in the proper order.
The autogen.sh script is often fairly sophisticated, but to solve this problem temporarily,
I'll just add a simple temporary autogen.sh script to the project root directory:

$ echo "automake --add-missing --copy

> autoreconf --install" > autogen.sh

chmod 0755 autogen.sh

If you don't want to see all the error messages from automake, just redirect the stderr
and stdout output to /dev/null.
Eventually, we'll be able to get rid of autogen.sh file, and just run autoreconf --
install, but for now, this will solve our missing files problems. Hopefully, you read this
section before scratching your head too much over the missing install-sh script. I can
now run my newly generated configure script without errors. I'll cover the details of
properly using the AC_PROG_INSTALL macro shortly. I'll cover Automake in much
greater detail in Chapter 4.

Updating Makefile.in
Okay, so how do the additional macros added by autoscan affect my build system?
Well, I have some new files to consider. For one, the config.h.in file is generated for
me now by autoheader. I can assume that autoreconf now executes autoheader
for me when I run it. Additionally, I have a new file in my project called install-sh.
Anything provide by, or generated by the Autotools should be copied into the archive
directory so that it can be shipped with my release tarballs. So, I should add these two
files to the $(distdir) target in the top-level Makefile.in template. Note that I don't
need to install autogen.sh, as it's purely a maintainer tool--my users shouldn't ever
need to execute it from a tarball distribution:
Makefile.in

...

$(distdir):

 mkdir -p $(distdir)/src

 cp $(srcdir)/configure $(distdir)

 cp $(srcdir)/config.h.in $(distdir)

 cp $(srcdir)/install-sh $(distdir)

 cp $(srcdir)/Makefile.in $(distdir)

 cp $(srcdir)/src/Makefile.in $(distdir)/src

 cp $(srcdir)/src/main.c $(distdir)/src

...

If you're beginning to think that this could become a maintenance nightmare, then you're
right. I warned you in Chapter 2 that the $(distdir) target was painful to maintain.
Luckily the distcheck target still exists, and still works as designed. It would have
caught this problem, because the distribution build will not work without these additional
files, and certainly the check target wouldn't work, if the build didn't work. When I
discuss Automake in Chapter 4, much of this mess will be cleared up.

Initialization and package information

The first section in my new configure.ac file (copied from configure.scan)
contains Autoconf initialization macros. These are required for all projects. Let's consider
each of these macros individually, as they're all pretty important.
AC_PREREQ
The AC_PREREQ macro simply defines the lowest version of Autoconf that may be used
to successfully process the configure.ac script. The manual indicates that
AC_PREREQ is the only macro that may be used before AC_INIT. The reason for this
should be obvious--you'd like to be able to ensure you're using a late enough version of
Autoconf before you begin processing any other macros, which may be version
dependent. As it turns out, AC_INIT is not version dependent anyway, so you may place
it first, if you're so inclined. I happen to prefer the way autoscan generates the file, so I'll
leave it alone.
AC_INIT
The AC_INIT macro, as its name implies, initializes the Autoconf system. It accepts up
to four arguments (autoscan only generates a call with the first three), PACKAGE,
VERSION, and optional BUG-REPORT and TARNAME arguments. The PACKAGE argument
is intended to be the name of the package. It will end up (in a canonicalized form) as the
first part of the name of an Automake-generated release distribution tarball when you run
"make dist".
In fact, by default, Automake-generated tarballs will be named TARNAME-
VERSION.tar.gz, but TARNAME is set to a canonicalized form of the PACKAGE string
(lower-cased, with all punctuation converted to underscores), unless you specify
TARNAME manually, so bear this in mind when you choose your package name and
version string. Incidentally, M4 macro arguments, including PACKAGE and VERSION, are
just strings. M4 doesn't attempt to interpret any of the text that it processes.
The optional BUG-REPORT argument is usually set to an email address, but it can be any
text really. An Autoconf substitution variable called PACKAGE_BUGREPORT will be created
for it, and that variable will be added to a config.h.in template as a C preprocessor
string, as well. The intent is that you use the variable in your code (or in template text
files anywhere in your project) to present an email address for bug reports at appropriate
places--possibly when the user requests help or version information from your application.
While the VERSION argument can be anything you like, there are a few free software
conventions that will make life a little easier for you if you follow them. The widely used
convention is to pass in major.minor (eg., 1.2). However, there's nothing that says you
can't use major.minor.revision if you want, and there's nothing wrong with this approach.
None of the resulting VERSION macros (Autoconf, shell or make) are parsed or analysed
anywhere--only used in various places as replacement text, so if you wish, you may even
add non-numeric text into this macro, such as 0.15.alpha1, which is useful
occasionally.
Note that the RPM package manager does indeed care what you put in the version string.
For the sake of RPM, you may wish to limit the version string text to only alpha-numerics
and periods--no dashes or underscores, unfortunately.
Autoconf will generate the substitution variables PACKAGE_NAME, PACKAGE_VERSION,
PACKAGE_TARNAME, PACKAGE_STRING (a stylized concatenation of the package name
and version information), and PACKAGE_BUGREPORT from arguments to AC_INIT.
AC_CONFIG_SRCDIR
The AC_CONFIG_SRCDIR macro is just a sanity check. Its purpose is to ensure that the
generated configure script knows that the directory on which it is being executed is in
fact the correct project directory. The argument can be a relative path to any source file
you like - I try to pick one that sort of defines the project. That way, in case I ever decide
to reorganize source code, I'm not likely to lose it in a file rename. But it doesn't really
matter, because if you do rename the file or move it to some other location some time
down the road, you can always change the argument passed to AC_CONFIG_SRCDIR.
Autoconf will tell you immediately if it can't find this file--after all, that's the purpose of this
macro in the first place!

The instantiating macros

Before we dive into the details of AC_CONFIG_HEADERS, I'd like to spend a little time on
the framework provided by Autoconf. From a high-level perspective, there are four major
things happening in configure.ac:

 Initialization
 File instantiation
 Check requests
 Generation of the configure script

We've pretty much covered initialization--there's not much to it, although there are a few
more macros you should be aware of. (Check out the GNU Autoconf manual to see what
these are--look up AC_COPYRIGHT, for an example.) Now, let's move on to file
instantiation.
There are actually four so-called "instantiating macros", which include
AC_CONFIG_FILES, AC_CONFIG_HEADERS, AC_CONFIG_COMMANDS and
AC_CONFIG_LINKS. An instantiating macro is one which defines one or more tags,
usually referring to files that are to be translated by the generated configure scripts,
from a template containing Autoconf substitution variables.
NOTE: You might need to change the name of AC_CONFIG_HEADER (singular) to
AC_CONFIG_HEADERS (plural) in your version of configure.scan. This was a defect
in autoscan that had not been fixed yet in Autoconf version 2.61. I reported the defect
and a patch was committed. Version 2.62 works correctly. If your configure.scan is
generated with a call to AC_CONFIG_HEADER, just change it manually. Both macros will
work, as the singular version was the older name of this macro, but the older macro is
less functional than the newer one.
These four instantiating macros have an interesting signature in common:

AC_CONFIG_xxxS([tag ...], [commands], [init-cmds])

For each of these four macros, the tag argument has the form, OUT[:INLIST] where
INLIST has the form, IN0[:IN1:...:INn]. Often, you'll see a call to one of these
macros with only a single simple argument, like this:

AC_CONFIG_HEADERS([config.h])

In this case, config.h is the OUT portion of the above specification. The default INLIST
is the OUT portion with ".in" appended to it. So the above call is exactly equivalent to:

AC_CONFIG_HEADERS([config.h:config.h.in])

What this means is that config.status will contain shell code that will generate
config.h from config.h.in, substituting all Autoconf variables in the process. You
may also provide a list of input files to be concatenated, like this:

AC_CONFIG_HEADERS([config.h:cfg0:cfg1:cfg2])

In this example, config.status will generate config.h by concatenating cfg0, cfg1
and cfg2, after substituting all Autoconf variables. The GNU Autoconf manual calls this
entire "OUT:INLIST" thing a "tag".
So, what's that all about, anyway? Why not call it a file? Well, the fact is, this parameter's
primary purpose is to provide a sort of command-line target name--much like Makefile
targets. It also happens to be used as a file system name, if the associated macro
happens to generate file system entries, as is the case when calling
AC_CONFIG_HEADERS, AC_CONFIG_FILES and AC_CONFIG_LINKS.
But AC_CONFIG_COMMANDS doesn't actually generate any files. Rather, it runs arbitrary
shell code, as specified by the user in the macro. Thus, rather than name this first
parameter after a secondary function (the generation of files), the manual refers to it by
its primary purpose - as a command line tag-name that may be specified on the
config.status command line. Here's an example:

./config.status config.h

This config.status command line will regenerate the config.h file based on the
macro call to AC_CONFIG_HEADERS in configure.ac. It will only regenerate
config.h. Now, if you're curious like me, you've already been playing around a little,
and have tried typing ./config.status --help to see what options are available
when executing config.status. You may have noticed that config.status has a
help signature like this:

$./config.status --help

`config.status' instantiates files from templates

according to the current configuration.

Usage: ./config.status [OPTIONS] [FILE]...

 -h, --help print this help, then exit

...

 --file=FILE[:TEMPLATE]

...

Configuration files:

 Makefile src/Makefile

Configuration headers:

 config.h

NOTE: I left out portions of the help display irrelevant to this discussion.
I'd like you to notice a couple of interesting things about this help display. First,
config.status is designed to give you custom help about this particular project's
config.status file. It lists "Configuration files" and "Configuration headers" that you
may use as tags. Oddly, given the "tag" nomenclature used in the manual so rigorously,
the help line still refers to such tags as [FILE]s in the "Usage:" line. Regardless, where
the usage specifies [FILE]s you may use one or more of the listed configuration files,
headers, links, or commands displayed below it. In this case, config.status will only
instantiate those objects. In the case of commands, it will execute the commands
specified by the tag passed in the associated expansion of the AC_CONFIG_COMMANDS
macro.
Each of these macros may be used multiple times in a configure.ac script. The
results are cumulative. This means that I can use AC_CONFIG_FILES as many times as
I need to in my configure.ac file. Reasons why I may want to use it more than once
are not obvious right now, but I'll get to them eventually.
Another noteworthy item here is that there is a --file option. Now why would
config.status allow us to specify files either with or without the --file= in front of
them? Well, these are actually different usages of the [FILE] option, which is why it
would make more sense for the usage text to read:

$./config.status --help

...

Usage: ./config.status [OPTIONS] [TAG]...

When config.status is called with tag names on the command line, only those tags
listed in the help text as available configuration files, headers, links and commands may
be used as tags. When you execute config.status with the --file= option, you're
really telling config.status to generate a new file not already associated with any of
the calls to instantiating macros in your configure.ac script. The file is generated from
a template using configuration options and check results determined by the the last
execution of the configure script. For example, I could execute config.status like
this:

./config.status --file=extra:extra.in

NOTE: The default template name is the file name with a ".in" suffix, so this call could
have been made without using the ":extra.in" portion of the option.
Let's get back to the instantiating macro signature. The tag argument has a complex
format, but it also represents multiple tags. Take another look:

AC_CONFIG_xxxS([tag ...], [commands], [init-cmds])

The elipsis after tag indicates there may be more than one, and in fact, this is true. The
tag argument accepts multiple tag specifications, separated by white space or new-line
characters. Often you'll see a call like this:
configure.ac

...

AC_CONFIG_FILES([Makefile

 src/Makefile

 lib/Makefile

 etc/project.cfg])

...

Each entry here is one tag specification, which if fully specified would look like this:

configure.ac

...

AC_CONFIG_FILES([Makefile:Makefile.in

 src/Makefile:src/Makefile.in

 lib/Makefile:lib/Makefile.in

 etc/proj.cfg:etc/proj.cfg.in])

...

There's still one more point to cover. There are two optional arguments that you'll not
often see used in the instantiating macros, commands and init-cmds. The commands
argument may be used to specify some arbitrary shell code that should be executed by
config.status just before the files associated with the tags are generated. You'll not
often see this used with the file generating instantiating macros, but in the case of
AC_CONFIG_COMMANDS, which generates no files by default, you almost always see this
arugument used, because a call to this macro is basically useless without it! In this case,
the tag argument becomes a way of telling config.status to execute a set of shell
commands.
The init-cmds argument is used to initialize shell variables at the top of
config.status with values available in configure.ac and configure. It's
important to remember that all calls to instantiating macros share a common namespace
along with config.status, so choose shell variable names carefully.
The old adage about the relative value of a picture vs. an explanation holds true here, so
let's try a little experiment. Create a test version of your configure.ac file containing
only the following lines:
configure.ac

AC_INIT(test, 1.0)

AC_CONFIG_COMMANDS([abc],

 [echo "Testing $mypkgname"],

 [mypkgname=$PACKAGE_NAME])

AC_OUTPUT

Then execute autoreconf, configure, and config.status in various ways to see
what happens:

$ autoreconf

$./configure

configure: creating ./config.status

config.status: executing abc commands

Testing test

$./config.status

config.status: executing abc commands

Testing test

$./config.status --help

`config.status' instantiates files from templates

according to the current configuration.

Usage: ./config.status [OPTIONS] [FILE]...

...

Configuration commands:

 abc

Report bugs to <bug-autoconf@gnu.org>.

$./config.status abc

config.status: executing abc commands

Testing test

$

As you can see here, executing configure caused config.status to be executed
with no command line options. There are no checks specified in configure.ac. so
executing config.status has nearly the same effect. Querying config.status for
help indicates that "abc" is a valid tag, and executing config.status with that tag
simply runs the associated commands.
Okay, enough fooling around. The important points to remember here are:

 Both configure and config.status may be called individually to perform their
individual tasks.

 The config.status script generates all files from templates.
 The configure script performs all checks and then executes config.status.
 config.status generates files based on the last set of check results.
 config.status may be called to execute file generation or command sets specified by

any of the tag names given in any of the instantiating macro calls.
 config.status may generate files not associated with any tags specified in

configure.ac.
 config.status can be used to call configure with the same set of command line

options used in the last execution of configure.
AC_CONFIG_HEADERS
As you've no doubt concluded by now, the AC_CONFIG_HEADERS macro allows you to
specify one or more header files to be generated from template files. You may write
multiple template header files yourself, if you wish. The format of a configuration header
template is very specific:

/* Define as 1 if you have unistd.h. */

#undef HAVE_UNISTD_H

Multiple such statements may be placed in your header template. The comments are
optional, of course. Let's try another experiment. Create a new configure.ac file with
the following contents:
configure.ac

AC_INIT([test], [1.0])

AC_CONFIG_HEADERS([config.h])

AC_CHECK_HEADERS([unistd.h foobar.h])

AC_OUTPUT

Now create a configuration header template file called config.h.in, which contains the
following two lines:
config.h.in

#undef HAVE_UNISTD_H

#undef HAVE_FOOBAR_H

Finally, execute the following commands:

$ autoconf

$./configure

checking for gcc... gcc

...

checking for unistd.h... yes

checking for unistd.h... (cached) yes

checking foobar.h usability... no

checking foobar.h presence... no

checking for foobar.h... no

configure: creating ./config.status

config.status: creating config.h

$

$ cat config.h

/* config.h. Generated from ... */

#define HAVE_UNISTD_H 1

/* #undef HAVE_FOOBAR_H */

You can see that config.status generated a config.h file from your config.h.in
template file. The contents of this header file are based on the checks executed by the
configure script. Since the shell code generated by
AC_CHECK_HEADERS([unistd.h foobar.h]) was able to locate a unistd.h
header file in the standard include directory, the corresponding #undef statement was
converted into a #define statement. Of course, no foobar.h header was found in the
system include directory, as you can also see by the output of configure, so it's
definition was left commented out in the template.
Thus, you may add this sort of code to appropriate C source files in your project:

#if HAVE_CONFIG_H

include <config.h>

#endif

#if HAVE_UNISTD_H

include <unistd.h>

#endif

Using Autoheader to generate an include file template

Maintaining your config.h.in template is more pain than necessary. After all, most of
the information you need is already encapsulated in your configure.ac script, and the
format of config.h.in is very strict. For example, you may not have any leading or
trailing white space on the #undef lines.
Fortunately, the autoheader utility will generate an include header template for you
based on your configure.ac file contents. Back to the command prompt for another
quick experiment. This one is easy--just delete your config.h.in template before you
run autoheader and autoconf, like this:

$ rm config.h.in

$ autoheader

$ autoconf

$./configure

checking for gcc... gcc

...

checking for unistd.h... yes

checking for unistd.h... (cached) yes

checking foobar.h usability... no

checking foobar.h presence... no

checking for foobar.h... no

configure: creating ./config.status

config.status: creating config.h

$ cat config.h

/* config.h. Generated from config.h.in... */

/* config.h.in. Generated from configure.ac... */

...

/* Define to 1 if you have... */

/* #undef HAVE_FOOBAR_H */

/* Define to 1 if you have... */

#define HAVE_UNISTD_H 1

/* Define to the address where bug... */

#define PACKAGE_BUGREPORT ""

/* Define to the full name of this package. */

#define PACKAGE_NAME "test"

/* Define to the full name and version... */

#define PACKAGE_STRING "test 1.0"

/* Define to the one symbol short name... */

#define PACKAGE_TARNAME "test"

/* Define to the version... */

#define PACKAGE_VERSION "1.0"

/* Define to 1 if you have the ANSI C... */

#define STDC_HEADERS 1

NOTE: Here again, I encourage you to use autoreconf, which will automatically run
autoheader for you if it notices an expansion of the AC_CONFIG_HEADERS macro in your
configure.ac script.
You may also want to take a peek at the config.h.in template file generated by
autoheader. In the meantime, here's a much more realistic example of using a generated
config.h file for the sake of portability of project source code.

AC_INIT([test], [1.0])

AC_CONFIG_HEADERS([config.h])

AC_CHECK_HEADERS([dlfcn.h])

AC_OUTPUT

The config.h file is obviously intended to be included in your source code in locations
where you might wish to test a configured option in the code itself using the C
preprocessor. Using this configure.ac script, Autoconf will generate a config.h
header file with appropriate definitions for determining, at compile time, if the current
system provides the dlfcn interface. To complete the portability check, you can add the
following code to a source file that uses dynamic loader functionality in your project:

#if HAVE_CONFIG_H

include <config.h>

#endif

#if HAVE_DLFCN_H

include <dlfcn.h>

#else

error Sorry, this code requires dlfcn.h.

#endif

...

#if HAVE_DLFCN_H

 handle = dlopen(

 "/usr/lib/libwhatever.so", RTLD_NOW);

#endif

...

If you already had code that included dlfcn.h then autoscan will have generated a
configure.ac call to AC_CHECK_HEADERS, which contains dlfcn.h as one of the
header files to be checked. Your job as the maintainer is to add the conditional to your
source code around the existing use of the dlfcn.h header inclusion and the
libdl.so API calls. This is the crux of Autoconf-provided portability.
Your project may be able to get along at compile time without the dynamic loader
functionality if it must, but it would be nice to have it. Perhaps, your project will function in
a limited manner without it. Sometimes you just have to bail out with a compiler error (as
this code does) if the key functionality is missing. Often this is an acceptable first-attempt
solution, until someone comes along and adds support to the code base for some other
dynamic loader service that is perhaps available on non-dlfcn-oriented systems.

NOTE: If you have to bail out with an error, it's best to do so at configuration time, rather
than at compile time. The general rule of thumb is to bail out as early as possible. I'll
cover examples of this sort of activity shortly.
One obvious flaw in this source code is that config.h is only included if
HAVE_CONFIG_H is defined in your compilation environment. But wait...doesn't that
definition happen in config.h?! Well, no, not in the case of this particular definition.
HAVE_CONFIG_H must be either defined by you manually, if you're writing your own
makefiles, or automatically by Automake-generated makefiles on the compiler command
line. (Are you beginning to get the feeling that Autoconf really shines when used in
conjunction with Automake?)
HAVE_CONFIG_H is part of a string of definitions passed on the compiler command line in
the Autoconf substitution variable @DEFS@. Before Autoheader and
AC_CONFIG_HEADERS, all of the compiler configuration macros were added to the
@DEFS@ variable. You can still use this method if you don't use AC_CONFIG_HEADERS in
configure.ac. but it's not the recommended method nowadays, mainly because a
large number of definitions make for a very long compiler command line.

Back to VPATH builds for a moment
Regarding VPATH builds, I haven't yet covered how to get the preprocessor to properly
locate my generated config.h file. This file, being a generated file, will be found in the
same relative position in the build directory structure as its counterpart template file,
config.h.in. The template is located in the top-level source directory (unless you
choose to put it somewhere else), so the generated file will be in the top-level build
directory. Well, that's easy enough--it's always one level up from the generated
src/Makefile.
Consider where I might have include files in this project. I might add an internal header
file to the current source directory. I obviously now have a config.h file in my top-level
build directory. I might also create a top-level source include directory for library interface
header files. In which order should I care about these files?
The order I place include directives (-I<path>) options on the compiler command line is
the order which they will be searched. The proper preprocessor include paths should
include the current build directory (.), the source directory ($(srcdir)), and the top-
level build directory (..), in that order:

...

jupiter: main.c

 gcc -g -O0 -I. -I$(srcdir) -I..\

 -o $@ $(srcdir)/main.c

...

It appears that I now need an additional rule of thumb for VPATH builds:
 Add preprocessor commands for the current build and associated source and top-level

build directories, in that order.

Checks for compilers

The AC_PROG_CC macro ensures that I have a working C language compiler. This call
was added to configure.scan when autoscan noticed that I had C source files in my
project directory. If I'd had files suffixed with ".cxx" or ".C" (an upper-case ".C"
extension indicates a C++ source file), it would have inserted a call to the AC_PROG_CXX
macro, as well as a call to AC_LANG([C++]).
This macro looks for gcc and then cc in the system search path. If neither of these are
found, it looks for other C compilers. When a compatible compiler is found, it sets a well-
known variable, $CC to the full path of the program, with options for portability, if
necessary.
AC_PROG_CC accepts an optional parameter containing an ordered list of compiler
names. For example, if you used AC_PROG_CC([cc cl gcc]), then the macro would
expand into shell code that searched for cc, cl and gcc, in that order.
The AC_PROG_CC macro also defines the following Autoconf substitution variables:
 @CC@ (full path of compiler)
 @CFLAGS@ (eg., -g -O2 for gcc)
 @CPPFLAGS@ (empty by default)
 @EXEEXT@ (eg., .exe)
 @OBJEXT@ (eg., .o)
AC_PROG_CC configures these substitution variables, but unless I used them in my
Makefile.in templates, I'm just wasting time running configure. I'll add a few of
these as make variables to my src/Makefile.in template, and then consume them,
like this:

Tool-related substitution variables

CC = @CC@

CFLAGS = @CFLAGS@

CPPFLAGS = @CPPFLAGS@

...

jupiter: main.c

 $(CC) $(CFLAGS) $(CPPFLAGS)\

 -I. -I$(srcdir) -I..\

 -o $@ $(srcdir)/main.c

Checking for other programs

Now, let's return to the AC_PROG_INSTALL macro. As with the AC_PROG_CC macro, the
other AC_PROG_* macros set and then substitute (using AC_SUBST) various environment
variables that point to the located utility. To make use of this check, you need to use
these Autoconf substitution variables in your Makefile.in templates, just as I did with
CC, CFLAGS, and CPPFLAGS above:

...

Tool-related substitution variables

CC = @CC@

CFLAGS = @CFLAGS@

CPPFLAGS = @CPPFLAGS@

INSTALL = @INSTALL@

INSTALL_DATA = @INSTALL_DATA@

INSTALL_PROGRAM= @INSTALL_PROGRAM@

INSTALL_SCRIPT = @INSTALL_SCRIPT@

...

install:

 $(INSTALL) -d $(DESTDIR)$(bindir)/jupiter

 $(INSTALL_PROGRAM) -m 0755 jupiter \

 $(DESTDIR)$(bindir)/jupiter

...

The value of @INSTALL@ is obviously the path of the located install script. The value
of @INSTALL_DATA@ is ${INSTALL} -m 0644. Now, you'd think that the values of
@INSTALL_PROGRAM@ and @INSTALL_SCRIPT@ would be ${INSTALL} -m 0755, but
they're not. These are just set to ${INSTALL}. Oversight? I don't know.
Other important utility programs you might need to check for are lex, yacc, sed, awk,
etc. If so, you can add calls to AC_PROG_LEX, AC_PROG_YACC, AC_PROG_SED, or
AC_PROG_AWK yourself. There are about a dozen different programs you can check for
using these more specialized macros. If such a program check fails, then the resulting
configure script will fail with a message indicating that the required utility could not be
found, and that the build may not continue until it's been properly installed.
As with the other program and compiler checks in Makefile.in templates, you should
use the make variables $(LEXX) and $(YACC) to invoke these tools (note that
Automake does this for you), as these Autoconf macros will set the values of these

variables according to the tools it finds installed on your system if they are not already set
in your environment.
Now, this is a key aspect of configure scripts generated by Autoconf--you may always
override anything configure will do to your environment by exporting or setting an
appropriate output variable before you execute configure.
For example, perhaps you would like to build with a very specific version of bison that
you've installed in your own home directory:

$ cd jupiter

$ YACC="$HOME/bin/bison -y" ./configure

$...

This will ensure that YACC is set the way you want for your makefiles, and that
AC_PROG_YACC does essentially nothing in your configure script.
If you need to check for the existence of a program not covered by these more
specialized macros, you can call the generic AC_CHECK_PROG macro, or you can write
your own special purpose macro (I'll cover writing macros in Chapter 9).
Key points to take away:

 AC_PROG_* macros check for the existence of programs.
 If a program is found, a substitution variable is created.
 Use these variables in your Makefile.in templates to execute the program.

A common problem with Autoconf

Here's a common problem that developers new to the Autotools consistently
encounter. Take a look at the formal definition of AC_CHECK_PROG found in the
GNU Autoconf manual. NOTE: In this case, the square brackets represent optional
parameters, not Autoconf quotes.:
AC_CHECK_PROG(variable, prog-to-check-for, value-if-found,
[value-if-not-found], [path], [reject])
Check whether program prog-to-check-for exists in PATH. If it is found, set
variable to value-if-found, otherwise to value-if-not-found, if given.
Always pass over reject (an absolute file name) even if it is the first found in the
search path; in that case, set variable using the absolute file name of the prog-
to-check-for found that is not reject. If variable was already set, do nothing.
Calls AC_SUBST for variable.
I can extract the following clearly defined functionality from this description:

 If prog-to-check-for is found in the system search path, then variable is set to
value-if-found, otherwise it's set to value-if-not-found.

 If reject is specified (as a full path), then skip it if it's found first, and continue to the
next matching program in the system search path.

 If reject is found first in the path, and then another match is found besides reject, set
variable to the absolute path name of the second (non-reject) match.

 If variable is already set by the user in the environment, then variable is left
untouched (thereby allowing the user to override the check by setting variable before
running autoconf).

 AC_SUBST is called on variable to make it an Autoconf substitution variable.
At first read, there appears to be a terrible conflict of interest here: We can see in
point 1 that variable will be set to one or the other of two specified values, based
on whether or not prog-to-check-for is found in the system search path. But

then in point 3 it states that variable will be set to the full path of some program,
but only if reject is found first and skipped. Clearly the documentation needs a
little work.
Discovering the real functionality of AC_CHECK_PROG is as easy as reading a little
shell script. While you could spend your time looking at the definition of
AC_CHECK_PROG in /usr/share/autoconf/autoconf/programs.m4, the
problem with this approach is that you're one level removed from the actual shell
code performing the check. Wouldn't it be better to just look at the resulting shell
script generated by AC_CHECK_PROG? Okay, then modify your new configure.ac
file in this manner:

...

AC_PREREQ(2.59)

AC_INIT([jupiter], [1.0],

 [jupiter-devel@lists.example.com])

AC_CONFIG_SRCDIR([src/main.c])

AC_CONFIG_HEADER([config.h])

Checks for programs.

AC_PROG_CC

AC_CHECK_PROG([bash_var], [bash], [yes],

 [no],, [/usr/sbin/bash])

...

Now just execute autoconf and then open the resulting configure script and
search for something specific to the definition of AC_CHECK_PROG. I used the string
"ac_cv_prog_bash_var", a shell variable generated by the macro call. You may
have to glance at the definition of a macro to find reasonable search text:

$ autoconf

$ vi -c /ac_cv_prog_bash_var configure

...

Extract the first word of "bash", so it can be

a program name with args.

set dummy bash; ac_word=$2

echo "$as_me:$LINENO: checking for $ac_word" >&5

echo $ECHO_N "checking for $ac_word... $ECHO_C"\

 >&6

if test "${ac_cv_prog_bash_var+set}" = set; then

 echo $ECHO_N "(cached) $ECHO_C" >&6

else

 if test -n "$bash_var"; then

 # Let the user override the test.

 ac_cv_prog_bash_var="$bash_var"

else

 ac_prog_rejected=no

as_save_IFS=$IFS; IFS=$PATH_SEPARATOR

for as_dir in $PATH

do

 IFS=$as_save_IFS

 test -z "$as_dir" && as_dir=.

 for ac_exec_ext in ''\

 $ac_executable_extensions;

 do

 if $as_executable_p\

 "$as_dir/$ac_word$ac_exec_ext"; then

 if test "$as_dir/$ac_word$ac_exec_ext" =\

 "/usr/sbin/bash"; then

 ac_prog_rejected=yes

 continue

 fi

 ac_cv_prog_bash_var="yes"

 echo "$as_me:$LINENO: found\

 $as_dir/$ac_word$ac_exec_ext" >&5

 break 2

 fi

done

done

if test $ac_prog_rejected = yes; then

 # We found a bogon in the path, so make sure

 # we never use it.

 set dummy $ac_cv_prog_bash_var

 shift

 if test $# != 0; then

 # We chose a different compiler from the

 # bogus one. However, it has the same

 # basename, so the bogon will be chosen

 # first if we set bash_var to just the

 # basename; use the full file name.

 shift

 ac_cv_prog_bash_var=\

 "$as_dir/$ac_word${1+' '}$@"

 fi

fi

 test -z "$ac_cv_prog_bash_var" &&\

 ac_cv_prog_bash_var="no"

fi

fi

bash_var=$ac_cv_prog_bash_var

if test -n "$bash_var"; then

 echo "$as_me:$LINENO: result: $bash_var" >&5

echo "${ECHO_T}$bash_var" >&6

else

 echo "$as_me:$LINENO: result: no" >&5

echo "${ECHO_T}no" >&6

fi

...

Wow! You can immediately see by the opening comment that AC_CHECK_PROG has
some undocumented functionality: You can pass in arguments with the program
name if you wish. But why would you want to? Well, look farther. You can probably
fairly accurately deduce that the reject parameter was added into the mix in
order to allow your configure script to search for a particular version of a tool.
(Could it possibly be that someone might really rather use the GNU C compiler
instead of the Solaris C compiler?)
In fact, it appears that variable really is set based on a tri-state condition. If
reject is not used, then variable can only be either value-if-found or
value-if-not-found. But if reject is used, then variable can also be the full
path of the first program found that is not reject! Well, that is exactly what the
documentation stated, but examining the generated code yields insight into the
authors' intended use of this macro. We probably should have called
AC_CHECK_PROG this way, instead:

AC_CHECK_PROG([bash_shell],[bash -x],[bash -x],,,

 [/usr/sbin/bash])

Now it makes more sense, and you can see by this example that the manual is in fact
accurate, if not clear. If reject is not specified, and bash is found in the system
path, then bash_shell will be set to bash -x. If it's not found in the system path,
then bash_shell will be set to the empty string. If, on the other hand, reject is
specified, and the undesired version of bash is found first in the path, then
bash_shell will be set to the full path of the next version found in the path, along
with the originally specified arguments (-x). The bash_shell variable may now be

used by the rest of our script to run the desired bash shell, if it doesn't test out as
empty. Wow! No wonder it was hard to document in a way that's easy to
understand! But quite frankly, a good example of the intended use of this macro,
along with a couple of sentences of explanation would have made all the difference.

Checks for libraries and header files

Does your project rely on external libraries? Most non-trivial projects do. If you're lucky,
your project relies only on libraries that are already widely available and ported to most
platforms.

The choice to use an external library or not is a tough one. On the one hand, you'll want
to reuse code that provides functionality--perhaps significant functionality that you need
and don't really have the time or expertise to write yourself. Reuse is one of the hallmarks
of the free software world.

On the other hand, you don't want to depend on functionality that may not exist on all of
the platforms you wish to target, or that requires significant porting effort on your part to
make these libraries available on all of your target platforms.

Occasionally, library-based functionality can exist in slightly different forms on different
platforms. These different forms may be functionally compatible, but have different API
signatures. For example, POSIX threads (pthreads) versus a native threading library. For
basic multi-threading functionality, many threading libraries are similar enough to be
almost drop-in replacements of each other.

To illustrate this concept, I'll add some trival multi-threading capabilities to the Jupiter
project. I want to have jupiter print its message using a background thread. To do this,
I'm going to need to add the pthreads library to my project build system. If I weren't using
the Autotools, I'd just add it to my linker command line in the makefile:

jupiter: main.c

 $(CC) ... -lpthreads ...

But what if a system doesn't support pthreads? I might want to support native threads on
a non-pthreads system--say Solaris native threads, using the libthreads library.
To do this, I'll first modify my main.c file such that the printing happens in a secondary
thread, like this:
src/main.c

#include <stdio.h>

#include <stdlib.h>

#include <pthread.h>

static void * print_it(void * data)

{

 printf("Hello from %s!\n", (char *)data);

 return 0;

}

int main(int argc, char * argv[])

{

 pthread_t tid;

 pthread_create(&tid, 0, print_it, argv[0]);

 pthread_join(tid, 0);

 return 0;

}

Now, this is clearly a ridiculous use of a thread. Nonetheless, it is the prototypical form of
thread usage. Consider the case where print_it did some long calculation, and main
had other things to do while print_it performed this calculation. On a multi-processor
machine, this could literally double the throughput of such a program.
What we now need is a way of determining which libraries should be added to the
compiler command line. Enter Autoconf and the AC_CHECK_* macros. The
AC_SEARCH_LIBS macro allows us to check for key functionality within a list of libraries.
If the function exists within one of the specified libraries, then an appropriate command
line option is added to the @LIBS@ substitution variable. The @LIBS@ variable should be
used in a Makefile.in template on the compiler (linker) command line. Here is the
formal definition of AC_SEARCH_LIBS, again from the manual:
AC_SEARCH_LIBS(function, search-libs, [action-if-found], [action-
if-not-found], [other-libraries]) Search for a library defining function if
it's not already available. This equates to calling
AC_LINK_IFELSE([AC_LANG_CALL([], [function])]) first with no libraries, then
for each library listed in search-libs. Add -llibrary to LIBS for the first library found
to contain function, and run action-if-found. If function is not found, run action-
if-not-found. If linking with the library results in unresolved symbols that would be
resolved by linking with additional libraries, give those libraries as the other-
libraries argument, separated by spaces: e.g., -lXt -lX11. Otherwise, this macro
fails to detect that function is present, because linking the test program always fails
with unresolved symbols.
Wow, that's a lot of stuff for one macro. Are you beginning to see why the generated
configure script is so large? Essentially, what you get by calling AC_SEARCH_LIBS for
a particular function is that the proper linker command line arguments (eg., -lpthread),
for linking with a library containing the desired function, are added to a substitution
variable called @LIBS@. Here's how I'll use AC_SEARCH_LIBS in my configure.ac file:
configure.ac

...

Checks for libraries.

AC_SEARCH_LIBS([pthread_create], [pthread])

...

Of course, I'll have to modify src/Makefile.in again to make proper use of the now
populated LIBS variable:

...

Tool-related substitution variables

CC = @CC@

LIBS = @LIBS@

CFLAGS = @CFLAGS@

CPPFLAGS = @CPPFLAGS@

...

jupiter: main.c

 $(CC) $(CFLAGS) $(CPPFLAGS)\

 -I. -I$(srcdir) -I..\

 -o $@ $(srcdir)/main.c $(LIBS)

...

Note that I added $(LIBS) after the source file on the compiler command line. Generally,
the linker cares about object file order, and searches them for required functions in the
order they are specified on the command line. Since I want main.c to be the primary
source of object code for jupiter, I'll continue to add additional objects, including
libraries, after this file on the command line.

Right or just good enough?

I could just stop at this point. I've done enough to make this build system properly use
pthreads on most systems. If a library is needed, it'll be added to the @LIBS@ variable,
and subsequently used on my compiler command line. In fact, this is the point at which
many maintainers would stop. The problem is that stopping here is just about the build-
system equivalent of not checking the return value of malloc in a C program (and there
are many developers out there who don't give this process the credit it deserves either). It
usually works fine. It's just during those few cases where it fails that you have a real
problem.

Well, I want to provide a good user experience, so I'll take Jupiter's build system to the
"next level". However, in order to do this, I need to make a design decision: In case
configure fails to locate a pthread library on a user's system, should I fail the build
process, or build a jupiter program without multi-threading? If I fail the build, it will
generally be obvious to the user, because the build has stopped with an error message--
although, perhaps not a very user-friendly one. At this point, either the compile process
or the link process will fail with a cryptic error message about a missing header file or an
undefined symbol. If I choose to build a single-threaded version of jupiter, I should
probably display some clear message that I'm moving forward without threads, and why.
There's another potential problem also. Some users' systems may have a pthread
library installed, but not have the pthread.h header file installed properly. This can
happen for a variety of reasons, but the most common is that the executable package
was installed, but not the developer package. Executable binaries are often packaged
independently of static libraries and header files. Executables are installed as part of a
dependency chain for a higher level consuming application, while developer packages
are often only installed directly by a user. For this reason, Autoconf provides checks for
both libraries and header files. The AC_CHECK_HEADERS macro is used to ensure the
existence of a particular header file.
Autoconf checks are very thorough. They generally not only ensure the existence of a file,
but also that the file is in fact the one you're looking for. They do this by allowing you to
make some assertions about the file, which are then verified by the macro. Additionally,
the AC_CHECK_HEADERS macro doesn't just scan the file system for the requested
header. It actually builds a short test program in the appropriate language, and then
compiles it to ensure that the compiler can both find the file, and use it. Similarly,
AC_SEARCH_LIBS is built around an attempt to link to the specified libraries, and import
the requested symbols.
Here is the formal definition of AC_CHECK_HEADERS, as found in the GNU Autoconf
manual:
AC_CHECK_HEADERS(header-file..., [action-if-found], [action-if-
not-found], [includes = 'default-includes']) For each given system
header file header-file in the blank-separated argument list that exists, define
HAVE_header-file (in all capitals). If action-if-found is given, it is additional shell
code to execute when one of the header files is found. You can give it a value of break
to break out of the loop on the first match. If action-if-not-found is given, it is
executed when one of the header files is not found.
Normally, this macro is called only with a list of desired header files in the first argument.
Remaining arguments are optional and are not often used. The reason for this is that the
macro is very functional when used in this manner. I'll add a check for the pthread library
using AC_CHECK_HEADERS to my configure.ac file.
If you're the jump-right-in type, then you've noticed by now that configure.ac already
calls AC_CHECK_HEADERS for stdlib.h. No problem--I'll just add pthread.h to the list,
using a space to separate the file names, like this:

...

Checks for header files.

AC_HEADER_STDC

AC_CHECK_HEADERS([stdlib.h pthread.h])

...

I like to make my packages available to as many people as possible, so I'll go ahead and
use the dual-mode build approach, where I can at least provide some form of jupiter
program to users without pthreads. To accomplish this, I'll need to add some conditional
compilation preprocessor code to my src/main.c file:
src/main.c

#include <stdio.h>

#include <stdlib.h>

#if HAVE_PTHREAD_H

include <pthread.h>

#endif

static void * print_it(void * data)

{

 printf("Hello from %s!\n", (char *)data);

 return 0;

}

int main(int argc, char * argv[])

{

#if HAVE_PTHREAD_H

 pthread_t tid;

 pthread_create(&tid, 0, print_it, argv[0]);

 pthread_join(tid, 0);

#else

 print_it(argv[0]);

#endif

 return 0;

}

In this version of main.c, I've added a couple of conditional checks for the existence of
the header file. The HAVE_PTHREAD_H macro will be defined to the value 1 in the
config.h.in template, if the AC_CHECK_HEADERS macro locates the pthread.h
header file, otherwise the definition will be added as a comment in the template. Thus, I'll
need to include the config.h file at the top of my main.c file:

#if HAVE_CONFIG_H

include <config.h>

#endif

...

Recall that HAVE_CONFIG_H must be defined on the compiler command line, and that
Autoconf populates the @DEFS@, substitution variable with this definition, if config.h is
available. If you choose not to use the AC_CONFIG_HEADERS macro in your
configure.ac, then @DEFS@ will contain all of the definitions generated by all of the
various check macros you do use. In this example, I've used AC_CONFIG_HEADERS, so
my config.h.in template will contain most of these definitions, and @DEFS@ will only
contain HAVE_CONFIG_H. Again, this is a nice way to go because it significantly shortens
the compiler command line. An additional benefit is that it becomes very simple to take a
snapshot of the template, and modify it by hand for non-Autotools platforms, such as
Microsoft Windows, which doesn't require as dynamic of a configuration process as does
Unix/Linux. I'll go ahead and make the required changes to my src/Makefile.in
template, like this:
src/Makefile.in

...

Tool-related substitution variables

CC = @CC@

DEFS = @DEFS@

LIBS = @LIBS@

CFLAGS = @CFLAGS@

CPPFLAGS = @CPPFLAGS@

...

jupiter: main.c

 $(CC) $(CFLAGS) $(DEFS) $(CPPFLAGS)\

 -I. -I$(srcdir) -I..\

 -o $@ $(srcdir)/main.c $(LIBS)

...

Now, I have everything I need to conditionally build the jupiter program. If the end-
user's system has pthread functionality, she'll get a version of jupiter that uses
multiple threads of execution, otherwise, she'll have to settle for serialized execution. The
only thing left is to add some code to the configure.ac script that displays a message
during configuration, indicating that it's defaulting to serialized execution if the library is
not found.
Another point to consider here is what it means to have the header file installed, but no
library. This is very unlikely, but it can happen. However, this is easily remedied by simply
skipping the header file check entirely if the library isn't found. We'll reorganize things a
bit to handle this case also:

configure.ac

...

Checks for libraries.

have_pthreads=no

AC_SEARCH_LIBS([pthread_create], [pthread],

 [have_pthreads=yes])

Checks for header files.

AC_HEADER_STDC

AC_CHECK_HEADERS([stdlib.h])

if test "x${have_pthreads}" = xyes; then

 AC_CHECK_HEADERS([pthread.h], [],

 [have_pthreads=no])

fi

if test "x${have_pthreads}" = xno; then

 echo "--"

 echo " Unable to find pthreads on this system. "

 echo " Building a single-threaded version. "

 echo "--"

fi

...

I'll run autoreconf and configure and see what additional output I get now:

$ autoreconf

$./configure

checking for gcc... gcc

...

checking for library... pthread_create... -lpthread

...

checking pthread.h usability... yes

checking pthread.h presence... yes

checking for pthread.h... yes

configure: creating ./config.status

config.status: creating Makefile

...

Of course, if your system doesn't have pthreads, you'll get something a little different. To
emulate this, I'll rename my pthreads libraries (both shared and static), and then rerun
configure:

$ su

Password:

mv /usr/lib/libpthread.so ...

mv /usr/lib/libpthread.a ...

exit

exit

$./configure

checking for gcc... gcc

...

checking for library... pthread_create... no

...

checking for stdint.h... yes

checking for unistd.h... yes

checking for stdlib.h... (cached) yes

 Unable to find pthreads on this system.

 Building a single-threaded version.

configure: creating ./config.status

config.status: creating Makefile

config.status: creating src/Makefile

config.status: creating config.h

Of course, if I had chosen to fail the build if I couldn't find the pthread.h header file or
the pthreads libraries, then my source code would have been simpler--no need for
conditional compilation. I could change my configure.ac file to look like this, instead:
configure.ac

...

Checks for libraries.

have_pthreads=no

AC_SEARCH_LIBS([pthread_create], [pthread],

 [have_pthreads=yes])

Checks for header files.

AC_HEADER_STDC

AC_CHECK_HEADERS([stdlib.h])

if test "x${have_pthreads}" = xyes; then

 AC_CHECK_HEADERS([pthread.h], [],

 [have_pthreads=no])

fi

if test "x${have_pthreads}" = xno; then

 echo "--"

 echo " The pthread library and header file is "

 echo " required to build jupiter. Stopping... "

 echo " Check 'config.log' for more information. "

 echo "--"

 (exit 1); exit 1;

fi

...

I could have used a couple of macros provided by Autoconf for the purpose of printing
messages to the console: AC_MSG_WARNING and AC_MSG_ERROR, but I don't really care
for these macros, because they tend to be single-line-oriented. This is especially a
problem in the case of the warning message, which merely indicates that it's continuing,
but it's building a single-threaded version of jupiter. Such a single-line message could
zip right by in a large configuration process, without even being noticed by the user.
In the case where I decide to terminate with an error, this is less of a problem, because--
well, I terminated. But, for the sake of consistency, I like all of my messages to look the
same. There is a note in the GNU Autoconf manual indicating that some shells are not
able to properly pass the value of the exit parameter to the parent shell, and that
AC_MSG_ERROR has a work-around for this problem. Well, the funny code after the echo
statements in this last example is this very work-around, copied right out of a test
configure script that I created using AC_MSG_ERROR.
This last topic brings to light a general lesson regarding Autoconf checks. Checks do just
that--they check. It's up to the maintainer to add code to do something based on the

results of the check. This isn't strictly true, as AC_SEARCH_LIBS adds a library to the
@LIBS@ variable, and AC_CHECK_HEADERS adds a preprocessor definition to the
config.h.in template. However, regarding the flow of control within the configure
process, all such decisions are left to the developer. Keep this in mind while you're
designing your configure.ac script, and life will be simpler for you.

Supporting optional features and packages

Alright, I've covered the cases in Jupiter where a pthreads library exists, and where it
doesn't exist. I'm satisfied, at this point, that I've done just about all I can to manage both
of these cases very well. But what about the case where the user wants to deliberately
build a single-threaded version of jupiter, even in the face of an existing pthreads
library? Do I add a note to Jupiter's README file, indicating that the user should rename
her pthreads libraries in this case? I don't think so.
Autoconf provides for both optional features, and optional sub-packages with two new
macros: AC_ARG_ENABLE and AC_ARG_WITH. These macros are designed to do two
things: First, to add help text to the output generated when you enter "configure --
help", and second, to check for the specified options, "--enable-
feature[=yes|no]", and "--with-package[=arg]" on the configure script's
command line, and then set appropriate environment variables within the script. The
values of these variables may be used later in the script to set or clear various
preprocessor definitions or substitution variables.
AC_ARG_WITH is used to control the use of optional sub-packages which may be
consumed by your package. AC_ARG_ENABLE is used to control the inclusion or
exclusion of optional features in your package. The choice to use one or the other is
often a matter of perspective and sometimes simply a matter of preference, as they
provide somewhat overlapping sets of functionality. For instance, in the Jupiter package,
it could be justifiably argued that Jupiter's use of pthreads constitutes the use of an
external package. However, it could just as well be said that asynchronous processing is
a feature that might be enabled.
In fact, both of these statements are true, and which type of option you use should be
dictated by a high-level architectural perspective on the software in question. For
example, the pthreads library supplies more than just thread creation functions. It also
provides mutexes and condition variables, both of which may be used by a library
package that doesn't create threads. If a project provides a library that needs to act in a
thread-safe manner within a multi-threaded process, then it will probably use one or more
mutex objects. But it may never create a thread. Thus, a user may choose to disable
asynchronous execution within this library package at configuration time, but the package
may still need to link the pthread library in order to access the mutex functionality from an
unrelated portion of the code.

From this perspective, it makes more sense to specify "--enable-async-exec" than
"--with-pthreads". Indeed, from a purist's perspective, this rationale is always sound,
even in cases where a project only uses pthreads to create threads. When writing
software, you won't often go wrong by siding with the purist. While some of their choices
may seem arbitrary--even rediculous, they're almost always vindicated at some point in
the future.
So, when do you use AC_ARG_WITH? Generally, when a choice should be made
between implementing functionality one way or another. That is, when there is a choice
to use one package or another, or to use an external package, or an internal
implementation. For instance, if jupiter had some reason to encrypt a file, it might be
written to use either an internal encryption algorithm, or an external package, such as
openssl. When it comes to encryption, the use of a widely understood package can be a
great boon toward gaining community adoption of your package. However, it can also be
a hindrance to those who don't have access to a required external package. Giving your

users a choice can make all the difference between them having a good or bad
experience with your package.
These two macros have very similar signatures, so I'll just list them here together:

AC_ARG_WITH(package, help-string, [action-if-given], [action-if-
not-given])
AC_ARG_ENABLE(feature, help-string, [action-if-given], [action-
if-not-given])
As with many Autoconf macros, these may be used in a very simple form, where the
check merely sets environment variables:

 ${withval} and ${with_package}
 ${enableval} and ${enable_feature}

They can also be used in a more complex form, where these environment variables are
used by shell script in the optional arguments. In either case, as usual, the resulting
variable must be used in order to act on the results of the check, or performing the check
is pointless.

Coding up the feature option

Okay, I've now decided that I should use AC_ARG_ENABLE. Do I enable or disable the
"async-exec" feature by default? The difference in how these two cases are encoded is
limited to the help text and to the shell script that I put into the action-if-not-given
argument. The help text describes the available options and the default value, and the
shell script indicates what I want to have happen if the option is NOT specified. Of course,
if it is specified, I don't need to assume anything.
Say I decide that asynchronous execution is a risky feature. In this case, I want to disable
it by default, so I might add code like this to my configure.ac script:
configure.ac

...

AC_ARG_ENABLE([async-exec],

 [--enable-async-exec enable async exec],

 [async_exec=${enable_val}],

 [async_exec=yes])

...

On the other hand, if I decide that asynchronous execution is a fairly fundamental part of
Jupiter, then I'd like it to be enabled by default. In this case I'd use code like this:

configure.ac

...

AC_ARG_ENABLE([async-exec],

 [--disable-async-exec disable async exec],

 [async_exec=${enable_val}],

 [async_exec=no])

...

There are a couple of really neat features of this macro that I'd like to point out:

 Regardless of the help text, the user may always use the syntactical standard formats,
"--enable-option[=yes|no]" or "--disable-option[=yes|no]". In either
case, the "[=yes|no]" portion is optional.

 Inverse logic is handled transparently--that is, the value of ${enableval} always
represents the user's answer to the question, "Should it be enabled?". For instance,
even if the user enters something like "--disable-option=no", the value of
${enableval} will still be set to yes.

These features of AC_ARG_ENABLE and AC_ARG_WITH make a maintainer's life a lot
simpler.
Now, the only remaining question is, do I check for the library and header file regardless
of the user's desire for this feature, or do I only check for them if the user indicates that
the "async-exec" feature should be enabled. Well, in this case, it's purely a matter of
preference, as I'm using the pthreads library only for this feature. Again, if I were also
using the pthreads library for non-feature-specific reasons, then this question would be
answered for me--I'd have to check for it.

In cases where I need the library even if the feature is disabled, I add the
AC_ARG_ENABLE macro, as in the example above, and then an additional AC_DEFINE
macro to define a config.h definition specifically for this feature. Since I don't really
want to enable the feature if the library or header file is missing--even if the user
specifically requested it--I also need to add some shell code to turn the feature off if
either of these are missing:
configure.ac

...

Checks for headers.

AC_HEADER_STDC

Checks for command line options

AC_ARG_ENABLE([async-exec],

 [--disable-async-exec disable async exec],

 [async_exec=${enableval}],

 [async_exec=yes])

have_pthreads=no

AC_SEARCH_LIBS([pthread_create], [pthread],

 [have_pthreads=yes])

if test "x${have_pthreads}" = xyes; then

 AC_CHECK_HEADERS([pthread.h], [],

 [have_pthreads=no])

fi

if test "x${have_pthreads}" = xno; then

 if test "x${async_exec}" = xyes; then

 echo "---------------------------------------"

 echo "Unable to find pthreads on this system."

 echo "Building a single-threaded version. "

 echo "---------------------------------------"

 fi

 async_exec=no

fi

if test "x${async_exec}" = xyes; then

 AC_DEFINE([ASYNC_EXEC], 1, [async exec enabled])

fi

Checks for headers.

AC_CHECK_HEADERS([stdlib.h])

...

I've also added an additional test for a "yes" value in async_exec around the echo
statements within the last test for have_pthreads. The reason for this is that this text
really belongs to the feature, not the pthreads library test. Remember, I'm trying to create
a logical separation between testing for pthreads, and testing for the requirements of the
feature.
Of course, now I also have to modify src/main.c such that it uses this new definition,
as follows:
src/main.c

...

#if HAVE_PTHREAD_H

include <pthread.h>

#endif

static void * print_it(void * data)

{

 printf("Hello from %s!\n", (char *)data);

 return 0;

}

int main(int argc, char * argv[])

{

#if ASYNC_EXEC

 pthread_t tid;

 pthread_create(&tid, 0, print_it, argv[0]);

 pthread_join(tid, 0);

#else

 print_it(argv[0]);

#endif

 return 0;

}

Notice that I left the HAVE_PTHREAD_H check around the inclusion of the header file.
This is so as to facilitate the use of pthread.h in other ways besides for this feature.
In order to check for the library and header file only if the feature is enabled, I merely
have to wrap the original check code in a test of async_exec, like this:
configure.ac

...

if test "x${async_exec}" = xyes; then

 have_pthreads=no

 AC_SEARCH_LIBS([pthread_create], [pthread],

 [have_pthreads=yes])

 if test "x${have_pthreads}" = xyes; then

 AC_CHECK_HEADERS([pthread.h], [],

 [have_pthreads=no])

 fi

 if test "x${have_pthreads}" = xno; then

 echo "---------------------------------------"

 echo "Unable to find pthreads on this system."

 echo "Building a single-threaded version. "

 echo "---------------------------------------"

 async_exec=no

 fi

fi

...

This time, I've removed the test for async_exec from the echo statements, or more
appropriately, I've moved the original check from around the echo statements, to around
the entire set of checks.

Checks for typedefs and structures

I've spent a fair amount of time during my career writing cross-platform networking
software. One key aspect of networking software is that the data sent in network packets
from one machine to another needs to be formatted in an architecture-independent
manner. If you're trying to use C-language structures to format network messages, one of
the first road blocks you generally come to is the complete lack of basic C-language
types that have the same size from one platform to another. The C language was
purposely designed such that the sizes of its basic integer types are implementation-
defined. The designers did this to allow an implementation to use sizes for char, short, int
and long that are optimal for the platform. Well, this is great for optimizing software for
one platform, but it entirely discounts the need for sized types when moving data
between platforms.
In an attempt to remedy this shortcoming in the language, the C99 standard provides just
such sized types, in the form of the intX_t and uintX_t types, where X may be one of 8,
16, 32 or 64. While many compilers provide these types today, some are still lagging
behind. GNU C, of course, has been at the fore front for some time now, providing the
C99 sized types along with the stdint.h header file in which these types are supposed
to be defined. As time goes by, more and more compilers will support C99 types
completely. But for now, it's still rather painful to write portable code that uses these and
other more recently defined integer-based types.
To alleviate the pain somewhat, Autoconf provides macros for determining whether such
integer-based types exist on a user's platform, defining them appropriately if they don't
exist. To ensure, for example, that uint16_t exists on your target platforms, you may use
the following macro expansion in your configure.ac file:

AC_TYPE_UINT16_T

This macro will ensure that either uint16_t is defined in the appropriate header files
(stdint.h, or inttypes.h), or that uint16_t is defined in config.h to an
appropriate basic integer type that actually is 16 bits in size and unsigned in nature.
The compiler tests for such integer-based types is done almost universally by a
generated configure script using a bit of C code that looks like this:

...

int main()

{

 static int test_array

 [1 - 2 * !((uint16_t) -1 >> (16 - 1) == 1)];

 test_array[0] = 1;

 return 0;

}

Now, if you study this code carefully, you'll notice that the important line is the one on
which test_array is declared (Note that I've wrapped this line for publication format
purposes). Autoconf is relying on the fact that all C compilers will generate an error if you
attempt to define an array with a negative size. An even more thorough examination of
the bracketed expression will prove to you that this expression really is a compile-time
expression. I don't know if this could have been done with simpler syntax or not, but it's a
fact proven over the last several years, that this code does the trick on all compilers
currently supported by Autoconf--which is most of them. The array is defined with a non-
negative size if (and only if) the following two conditions are met:

 uint16_t is in fact defined in one of the included header files.
 the actual size of uint16_t really is 16 bits; no more, no less.

Code that relies on the use of this macro might contain the following construct:

#if HAVE_CONFIG_H

include <config.h>

#endif

#if HAVE_STDINT_H

include <stdint.h>

#endif

...

#if defined UINT16_MAX || defined uint16_t

// code using uint16_t

#else

// complicated alternative using >16-bit unsigned

#endif

There are a few dozen such type-checks available in Autoconf. You should familiarize
yourself with Section 5.9 of the GNU Autoconf manual, so that you have a working
knowledge of what's available. I recommend you don't commit such checks to memory,
but rather just know about them, so that they'll come to mind when you need to use them.
Then go look them up for the exact syntax, when you do need them.

In addition to these type-specific checks, there is also a generic type check macro,
AC_CHECK_TYPES, which allows you to specify a comma-separated list of questionable
types that your project needs. Note that this list is comma-separated, not space
separated, as in the case of most of these sorts of check lists. This is because type
definitions (like struct fooble) may have embedded spaces. Since they are comma-

delimited, you will need to always use the square bracket quotes around this parameter--
that is, if you list more than one type in the parameter.
AC_CHECK_TYPES(types, [action-if-found], [action-if-not-found],
[includes = 'default-includes'])
If you don't specify a list of include files in the last parameter, then the default includes
are used in the compiler test. The default includes are used via the macro
AC_INCLUDES_DEFAULT, which is defined as follows (in version 2.62 of Autoconf):

#include <stdio.h>

#ifdef HAVE_SYS_TYPES_H

include <sys/types.h>

#endif

#ifdef HAVE_SYS_STAT_H

include <sys/stat.h>

#endif

#ifdef STDC_HEADERS

include <stdlib.h>

include <stddef.h>

#else

ifdef HAVE_STDLIB_H

include <stdlib.h>

endif

#endif

#ifdef HAVE_STRING_H

if !defined STDC_HEADERS && defined HAVE_MEMORY_H

include <memory.h>

endif

include <string.h>

#endif

#ifdef HAVE_STRINGS_H

include <strings.h>

#endif

#ifdef HAVE_INTTYPES_H

include <inttypes.h>

#endif

#ifdef HAVE_STDINT_H

include <stdint.h>

#endif

#ifdef HAVE_UNISTD_H

include <unistd.h>

#endif

If you know that your type is not defined in one of these header files, then you should
specify one or more include files to be included in the test, like this:

AC_CHECK_TYPES([struct doodah], [], [], [

#include<doodah.h>

#include<doodahday.h>])

The interesting thing to note here is the way I wrapped the last parameter of the macro
over three lines in configure.ac, with no indentation. This time I didn't do it for
publication reasons. This text is included verbatim in the test source file. Since some
compilers have a problem with placing the POUND SIGN (#) anywhere but the first
column, it's a good idea to tell Autoconf to start each include line in column one, in this
manner.
Admittedly, these are the sorts of things that developers complain about regarding
Autoconf. When you do have problems with such syntax, your best friend is the
config.log file, which contains the exact source code for all failed tests. You can
simply look a this log file to see how Autoconf formatted the test, possibly incorrectly, and
then fix your check in configure.ac accordingly.

The AC_OUTPUT macro
The AC_OUTPUT macro expands into the shell code that generates the configure script,
based on all the data specified in all previous macro expansions. The important thing to
note here is that all other macros must be used before AC_OUTPUT is expanded, or they
will be of little value to your configure script.
Additional shell script may be placed in configure.ac after AC_OUTPUT is expanded,
but this additional code will not affect the configuration or the file generation performed by
config.status.

I like to add some echo statements after AC_OUTPUT to indicate to the user how the
system is configured, based on their specified command line options, and perhaps
additional useful targets for make. For example, one of my projects has the following text
after AC_OUTPUT in configure.ac:

...

echo \

"---

 ${PACKAGE_NAME} Version ${PACKAGE_VERSION}

 Prefix: '${prefix}'.

 Compiler: '${CC} ${CFLAGS} ${CPPFLAGS}'

 Package features:

 Async Execution: ${async_exec}

 Now type 'make @<:@<target>@:>@'

 where the optional <target> is:

 all - build all binaries

 install - install everything

--"

This is a really handy configure script feature, as it tells the user at a glance just what
happened during configuration. Since variables such as debug are set on or off based on
configuration, the user can see if the configuration he asked for actually took place.
By the way, in case you're wondering what those funny character sequences are around
the word <target>, they're called quadrigraph sequences or simply quadrigraphs, and
serve the same purpose as escape sequences. Quadrigraphs are a little more reliable
than escaped characters or escape sequences because they're never subject to
ambiguity. They're converted to proper characters at a very late stage by M4, and so are
not subject to mis-interpretation.

The sequence, @<:@ is the quadrigraph sequence for the open square bracket ([)
character, while @:>@ is the quadrigraph for the close square bracket (]) character.
These quadrigraphs will always be output by Autoconf (M4) as literal bracket characters.
This keeps Autoconf from interpreting them as Autoconf quote characters.
There are a few other quadrigraphs. I'll show you some of them in Chapter 9 when I
begin to discuss the process of writing your own Autoconf macros. If you're interested,
check out section 8.1.5 of the GNU Autoconf manual.

NOTE: Version 2.62 of Autoconf does a much better job of deciphering the user's intent
with respect to the use of square brackets than previous versions of Autoconf. Where you
might have needed to use a quadrigraph in the past to force Autoconf to display a square
bracket, you may now use the character itself. Most of the problems the occur are a
result of not properly quoting arguments.

Does (project) size matter?

An issue that might have occurred to you by now is the size of my toy project. I mean,
c'mon! One source file?! But, I've used autoscan to autoconfiscate projects with several
hundred C++ source files, and some pretty complex build steps. It takes a few seconds
longer to run autoscan on a project of this size, but it works just as well. For a basic
build, the generated configure script only needed to be touched up a bit--project name,
version, etc.
To add in compiler optimization options for multiple target tool sets, it took a bit more
work. I'll cover these sorts of issues in Chapter 6 where I'll show you how to
autoconfiscate a real project.

Summary

In this chapter, I've covered about a tenth of the information in the GNU Autoconf manual,
but in much greater analytical detail than the manual. For the developer hoping to quickly
bootstrap into Autoconf, I believe I've covered one of the more important "tenths". But this
statement in no way alleviates a responsible software engineer from studying the other
nine tenths--as time permits, of course.

For example, I didn't go into detail about the differences between searching for a function
and searching for a library. In general, AC_SEARCH_LIBS should be used to check for a
function you need, but expect in one or more libraries. The AC_FUNC_* macros are
available to check for very specfic portability-related functionality, such as
AC_FUNC_ALLOCA, which exists on some platforms, but not others. The
AC_CHECK_FUNC macro should be used, if a particular function is not supported by one
of the more specific AC_FUNC_* macros. I recommend reading through Section 5.5 of
the GNU Autoconf manual to familiarize yourself with what's available within these
special function checks.
Another topic on which I didn't spend much time was that of checking for compiler
charactaristics. Section 5.10 of the GNU Autoconf manual covers these issues
completely. Given what you've learned after reading this chapter, reading these sections
of the manual should be pretty straight-forward.

In fact, once you're comfortable with the material in this and the preceding chapters of
this book, I'd highly recommend spending a fair amount of time in Chapter 5 of the GNU
Autoconf manual. Doing so will make you the Autoconf expert you never thought you
could be, by filling in all of the missing details.

The next chapter takes us aways from Autoconf for a while, as we get into Automake, an
Autotools tool chain add-on enhancement for the make utility.

Source archive

Download the attached source archive for the original sources associated with this
chapter.

‹ Chapter 2: Project management and the GNU coding standards up Chapter 4:
Automatically writing makefiles with Automake ›

Chapter 4: Automatically writing
makefiles with Automake
Wed, 2008-06-25 01:50 -- John Calcote

Most of the general complaints I've ever seen aimed at the Autotools are ultimately
associated with Automake, in the final analysis. The reason for this is simple: Automake
provides the highest level of abstraction over the build system. This high level of
abstraction is both apparent, and actual. And yet a solid understanding of the inner
workings of Automake can provide you with the one of the most satisfying auto-
generated build system experiences, because you can feel comfortable using the
features of Automake to their maximum potential, and extending it where your projects
require.

This chapter has downloads!
Shortly after Autoconf was well on its way to success in the GNU world, David
MacKenzie began work on a new tool--a tool for automatically generating makefiles for a
GNU project. MacKenzie's work on Automake lasted about a year during 1994, ending
around November of that year. A year later, during November of 1995, Tom Tromey (of
RedHat and Cygnus fame) took over development of the Automake project. Tromey
really had very much a defining role in Automake. In fact, although MacKenzie wrote the
initial version of Automake in Bourne shell script, Tromey completely rewrote the tool in
Perl over the following year. Tromey continued to maintain and enhance Automake
during the next 5 years.

NOTE: Do not confuse the requirements of Automake on the project maintainer with the
requirements of a generated build system on the end user. Perl is required by Automake,
not by the generated build system.
Around February of 2000, Alexandre Duret-Lutz began to take a more active role in the
development of the Automake project, and by the end of that year, had pretty much taken
over project maintenance. Duret-Lutz's role as project lead lasted until about mid-2007.
Since then, the project has been maintained by Eric Blake of the Free Software
Foundation (FSF), with strong leadership (and most of the repository check-in's, for that
matter) from automake mailing list contemporaries such as Ralf Wildenhues and Akim
Demaille. (I owe many heartfelt thanks to Ralf for kindly answering so many seemingly
trivial questions while I worked on this book.)
Sometime early during development of the GNU Coding Standards (GCS), it became
clear to MacKenzie that much of a GNU project makefile was fairly boilerplate in nature.
This is because the GCS guidelines are fairly specific about how and where a project's
products should be built, tested, and installed. These conditions have allowed Automake
syntax to be concise--in fact, it's terse, almost to a fault. One Automake statement
represents a lot of functionality. The nice thing, however, is that once you understand it,
you can get a fairly complete, complex and functionally correct build system up and
running in short order--I mean on the order of minutes, not hours or days.

Getting down to business

Let's face it, writing a makefile is hard. Oh, the initial writing is fairly simple, but getting it
right is often very difficult--the devil, as they say, is in the details. Like any high-level
programming language, make syntax is often conducive to formulaic composition. That's
just a fancy way of saying that once you've solved a "make problem", you're inclined to
memorize the solution and apply the same formula the next time that problem crops up--
which happens quite often when writing build systems.

So what advantages does Automake give us over our hand-coded Makefile.in templates,
anyway? Well, that's pretty easy to answer with a short example. Consider the following
changes to the files in our project directory structure (these commands are executed from
jupiter's top-level directory):

$ rm autogen.sh Makefile.in src/Makefile.in

$ echo "SUBDIRS = src" > Makefile.am

$ echo "bin_PROGRAMS = jupiter

> jupiter_SOURCES = main.c" > src/Makefile.am

$ touch NEWS README AUTHORS ChangeLog

$ vi configure.ac

...

AC_INIT([Jupiter], 1.0, [bugs@jupiter.org])

AM_INIT_AUTOMAKE

AC_CONFIG_SRCDIR([src/main.c])

...

$ autoreconf -i

$

The "rm" command deletes our hand-coded Makefile.in templates and the autogen.sh
script we wrote to ensure that all the support scripts and files were copied into the root of
our project directory. We won't be needing this script anymore because we're upgrading
jupiter to Automake proper.
For the sake of brevity in the text, I used echo statements to write the new Makefile.am
files, but you may, of course, use an editor if you wish. NOTE: There is a hard carriage-
return after "bin_PROGRAMS = jupiter" in the third line. The shell will continue to
accept input after the carriage return until the quotation is closed on the following line.
The touch command is used to create new empty versions of the NEWS, README,
AUTHORS and ChangeLog files in the project root directory. These files are required by
the GCS for all GNU projects. While they're not required for non-GNU programs, they've
become something of an institution in the FOSS world--you'd do well to have these files,
properly formatted, in your project, as users have come to expect them. The GCS
document covers the format and contents of these files. Section 6 covers the NEWS and
ChangeLog files, and Section 7 covers the README and INSTALL files. The AUTHORS
file is a list of people (names and optional email addresses) to whom attribution should
be given.

Enabling Automake in configure.ac
Finally, I've added a single line to the configure.ac file, AM_INIT_AUTOMAKE between the
AC_INIT and AC_CONFIG_SRCDIR statements. Besides the normal requirements of an

Autoconf input file, this is the only line that's required to enable Automake in a project
that's already configured with Autoconf. The AM_INIT_AUTOMAKE macro accepts an
optional argument--a white-space separated list of option tags, which can be passed into
this macro to modify the general behavior of Automake. The following is a
comprehensive list of options for Automake version 1.10:
 gnits
 gnu
 foreign
 cygnus
 ansi2knr
 path/ansi2knr
 check-news
 dejagnu
 dist-bzip2
 dist-lzma
 dist-shar
 dist-zip
 dist-tarZ
 filename-length-max=99
 no-define
 no-dependencies
 no-dist
 no-dist-gzip
 no-exeext
 no-installinfo
 no-installman
 nostdinc
 no-texinfo.tex
 readme-alpha
 std-options
 subdir-objects
 tar-v7
 tar-ustar
 tar-pax
 <version>
 -W<category>
 --warnings=<category>

I won't spend a lot of time on the option tag list at this point. For a detailed description of
each option, check out Chapter 17 of the GNU Automake manual. I will, however, point
out a few of the most useful options.

The check-news option will cause "make dist" to fail if the current version doesn't show
up in the first few lines of the NEWS file. The dist-* tags can be used to change the
default distribution package type. Now, these are handy because often developers want
to distribute tar.bz2 files, rather than tar.gz files. By default, "make dist" builds a tar.gz file.
You can override this by using "make dist-bzip2", but this is more painful than it needs to
be for projects that like to use bzip2 by default. The readme-alpha option can be used
to temporarily alter the behavior of the build and distribution process during alpha
releases of a project. First, a file named README-alpha, found in the project root
directory, will be distributed automatically while using this option. This option will also
alter the expected versioning scheme of the project.
The <version> option is actually a placeholder for a numeric version number. This
value represents the lowest version number of Automake that is acceptable for this
project. For instance, if 1.10 is passed as a tag, then Automake will fail if it's version is
less than 1.10. The -W<category> and --warnings=<category> options indicate
that the project would like to use Automake with various warning categories enabled.

What we get from Automake

The last line of the example executes the autoreconf -i command, which, as I've
already discussed in prior chapters, regenerates all Autotools-generated files according
to the configure.ac file. This time, with the inclusion of the AM_INIT_AUTOMAKE
statement, the -i option properly tells Automake to add any missing files. The -i option
need only be used once in a newly checked out work area. Once the missing utility files
have been added, the -i option may be dropped.
These few commands create for us an Automake-based build system containing
everything that we wrote into our original Makefile.in templates, except that this one is
more correct and functionally complete. A quick glance at the resulting generated
Makefile.in template shows us that, from just a couple of input lines, Automake has done
a significant amount of work for you. The resulting top-level Makefile.in template
(remember, the configure script turns these templates into Makefiles), is nearly 18K in
size. The original files were only a few hundred bytes long.
A generated Automake build system supports the following important make targets--and
this list is not comprehensive:
 all
 distdir
 install
 install-strip
 install-data
 install-exec
 uninstall
 install-dvi
 install-html
 install-info
 install-ps
 install-pdf
 installdirs
 check
 installcheck
 mostlyclean
 clean
 distclean
 maintainer-clean
 dvi
 pdf
 ps
 info
 html
 tags
 ctags
 dist
 dist-bzip2
 dist-gzip
 dist-lzma
 dist-shar
 dist-zip
 dist-tarZ
 uninstall

As you can see, this goes a bit beyond what was provided in your hand-coded
Makefile.in templates. And Automake writes all of this functionality automatically,
correctly and quickly for each project that you instrument in the manner outlined above.

So, what's in a Makefile.am file?

You'll no doubt recall from Chapter 3 that Autoconf accepts shell script, sprinkled with M4
macros, and generates the same shell script with those macros fully expanded into
additional shell script. Likewise, Automake accepts as input a makefile, sprinkled with
Automake commands. As with Autoconf, the significance of this statement is that
Automake input files are nothing more or less than makefiles with additional syntax.

One very significant difference between Autoconf and Automake is that Autoconf
generates no output text except for the existing shell script in the input file, plus any
additional shell script resulting from the expansion of embedded M4 macros. Automake,
on the other hand, assumes that all makefiles should contain a minimal infrastructure
designed to support the GCS, in addition to any targets and variables that you specify.
To illustrate this point, I'll create a temp directory in the root of the jupiter project, and
add an empty Makefile.am file to that directory. Then I'll add this new Makefile.am to my
project, like this:

$ mkdir temp

$ touch temp/Makefile.am

$ echo "SUBDIRS = src temp" > Makefile.am

$ vi configure.ac

...

AC_CONFIG_FILES([Makefile

 src/Makefile

 temp/Makefile])

...

$ autoreconf

$./configure

...

$ ls -1sh temp

total 20K

 12K Makefile

 0 Makefile.am

8.0K Makefile.in

$

Thus we can see that Automake considers a certain amount of support code to be
indispensable in every makefile. Even with an empty Makefile.am file, you end up with
about 12K of code in the resulting Makefile, which is generated by configure
(config.status) from an 8K Makefile.in template. Incidentally, it's fairly instructive to
examine the contents of this Makefile.in template to see the Autoconf substitution
variables that are passed in, as well as the framework code that Automake generates.

Since the make utility uses a fairly rigid set of rules for processing makefiles, Automake
takes some minor "literary license" with your additional make code. Specifically, two
basic rules are followed by Automake when generating Makefile.in templates from
Makefile.am files that contain additional non-Automake-specific syntax (rules, variables,
etc):

 Make variables that you define in your Makefile.am files are placed at the top of the
resulting Makefile.in template, immediately following any Automake-generated variable
definitions.

 Make rules that you specify in your Makefile.am files are placed at the end of the
resulting Makefile.in template, immediately following any Automake-generated rules.
Make doesn't care where rules are located relative to one another, because it reads all of
the rules and stores them in an internal database before processing any of them.
Variables are treated in a similar manner. To prove this to yourself, try referencing a
variable in a makefile before its definition. Make binds values to variable references at
the last possible moment, right before command lines containing these references are
passed to the shell for execution.

Often, you won't need to specify anything besides a few Automake commands within a
given Makefile.am, but there are frequent occasions when you will want to add your own
make targets. This is because, while Automake does a lot for you, it can't anticipate
everything you might wish to do in your build system. It's in this "grey" area where most
developers begin to complain about Automake.
I'll spend the rest of this chapter examining the functionality provided by Automake. Later,
I'll get into some tricks you can use to significantly enhance existing Automake
functionality.

Analyzing our new build system

I will now spend some time looking at what I put into those two simple Makefile.am files.
I'll start with the top-level file, with its single line of Automake code:

Makefile.am

SUBDIRS = src

It's pretty easy to divine the primary purpose of this line of text just by looking at the text
itself. It appears to be indicating that I have a sub-directory in our project called src. In
fact, this line tells Automake several things about our project:

 There are one or more immediate sub-directories containing Makefile.am files to be
processed, in addition to this file.

 Directories in this space-delimited list are to be processed in the order specified.
 Directories in this list are to be recursively processed for all primary make targets.
 Directories in this list are to be treated as part of the project distribution.

SUBDIRS is not just a make variable: it's recognized by Automake to have special
meaning, besides the intrinsic meaning associated with common make variables. As you
continue to study Automake constructs, this theme will come up over and over again.
Most Automake statements are, in fact, just make variables with special meaning to
Automake.
Another point about the SUBDIRS variable is that it may be used in an arbitrarily complex
directory structure, to process Makefile.am files within a project. You might say that
SUBDIRS is the "glue" that links Makefile.am files together in a project's directory
hierarchy.
One final point about SUBDIRS is that the current directory is implicitly listed last in the
SUBDIRS list, meaning that the current directory will be built after all of the directories
listed in the SUBDIRS variable. You may change this implied ordering if you wish, by
using "." (meaning the current directory) anywhere in the list. This is important because
it's sometimes necessary to build the current directory before one or more subdirectories.
Let's move down a level now into the src directory. The src/Makefile.am file
contains slightly more code for you to examine; two lines rather than one:
src/Makefile.am

bin_PROGRAMS = jupiter

jupiter_SOURCES = main.c

Primaries

The first line, "bin_PROGRAMS = jupiter" lists the products generated by this
Makefile.am file. Multiple files may be listed in this variable definition, separated by white
space. The variable name itself is made up of two parts, the installation location, bin,
and the product type, PROGRAMS. GNU Automake documentation calls the product type
portion of these variables a "primary". The following is a list of valid primaries for version
1.10 of Automake:
 PROGRAMS
 LIBRARIES
 LISP
 PYTHON
 JAVA
 SCRIPTS
 DATA
 HEADERS
 MANS
 TEXINFOS

NOTE: Libtool adds LTLIBRARIES to the primaries list supported by Automake. I'll
examine this and other Automake extensions provided by Libtool in Chapter 5.
You could consider primaries to be "product classes", or types of products that might be
generated by a build system. This being the case, it's pretty clear that not all product
classes are handled by Automake. What differentiates one class of product from another?
Basically differences in handling semantics during build and installation. PROGRAMS, for
example are built using different compiler and linker commands than are LIBRARIES.
Certainly LISP, JAVA and PYTHON products are handled differently--the build system
uses entirely different tool chains to build these types of products. And SCRIPTS, DATA
and HEADERS aren't generally even built (although they might be), but rather simply
copied into appropriate installation directories.
PROGRAMS also have different execution, and thus installation, semantics from LISP,
PYTHON and JAVA programs. Products that fit into the PROGRAMS category are generally

executable by themselves, while LISP, JAVA and PYTHON programs require virtual
machines and interpreters.
What makes this set of primaries important? The fact that they cover 99 percent of the
products created in official GNU projects. If your project generates a set of products that
define their own product class, or use a product class not listed in this set of primaries,
then you might do well to simply stick with Autoconf until support is added to Automake
for your product class. Another option is to add support yourself to Autoconf for your
product class, but doing so requires a deep knowledge of both the product class and the
Automake Perl script. I believe it's fair to say, however, that this set of primaries covers a
wide range of currently popular product classes.

Prefixes

Supported installation locations are provided by the GCS document. This is the same list
that I provided to you in Chapter 2. I'll relist them here for convenience:

 bindir
 sbindir
 libexecdir
 datarootdir
 datadir
 sysconfdir
 sharedstatedir
 localstatedir
 includedir
 oldincludedir
 docdir
 infodir
 htmldir
 dvidir
 pdfdir
 psdir
 libdir
 lispdir
 localedir
 mandir
 manNdir

You may have noticed that I left a few entries out of this version of the list. Essentially, all
entries ending in dir are viable prefixes for Automake primaries. Besides these standard
GCS installation locations, three other installation locations are defined by Automake to
have enhanced meaning:
 pkglibdir
 pkgincludedir
 pkgdatadir

The pkg versions of the libdir, includedir and datadir prefixes are designed to
install products into subdirectories of these installation locations that are named after the
package. For example, for the jupiter project, the pkglibdir installation location would
be found in $(exec-prefix)/lib/jupiter, rather than the usual $(exec-
prefix)/lib directory.
If this list of installation locations isn't comprehensive enough, don't worry--Automake
provides a mechanism for you to define your own installation directory prefixes. Any
make variable you define in your Makefile.am file that ends in dir can be used as a valid
primary prefix. To reuse the example found in the GNU Automake manual, let's say you
wish to install a set of XML files into an xml directory within the system data directory.
You might use this code to do so:

xmldir = $(datadir)/xml

xml_DATA = file1.xml file2.xml file3.xml ...

Note that the same naming conventions are used with custom installation locations as
with the standard locations. Namely, that the variable ends with dir, but the dir portion
of the variable name is left off when using it as a primary prefix.
There are also several prefixes with special meanings not related to installation locations:

 check
 noinst
 EXTRA

The check prefix indicates products that are built only for testing purposes, and thus will
not be installed at all. Products listed in primary variables that are prefixed with check
aren't even built if the user never types make check.
The noinst prefix indicates that the listed products should be built, but not installed. For
example, a static so-called "convenience" library might be built as an intermediate
product, and used in other stages of the build process to build final products. Such
libraries are not designed to be installed, so the prefix shouldn't be an installation location.
The noinst prefix serves this purpose.
The EXTRA prefix is used to list programs that are conditionally built. This is a difficult
concept to explain in a few paragraphs, but I'll give it a try. All product files must be listed
statically (as opposed to being calculated at build-time) in order for Automake to generate
a Makefile.in template that will work for any set of input commands. However, a project
maintainer may elect to allow some products to be built conditionally, based on
configuration options given to the configure script. If some products are listed in variables
generated by the configure script, then these products should also be listed in a primary
prefixed with "EXTRA", like this:

EXTRA_PROGRAMS = myoptionalprog

bin_PROGRAMS myprog $(optional_programs)

Here, it is assumed that the "optional_programs" variable is defined in the configure
script, and listed in an AC_SUBST macro. This way, Automake can know in advance that
"myoptionalprog" may be built, and so generate rules to build it. Any program that
may or may not be built, based on configuration options should be specified in
EXTRA_PROGRAMS, so that Automake can generate a makefile that could build it if
requested to do so.

"Super" prefixes

Some primaries allow a sort of "super" prefix to be prepended to a prefix/PRIMARY
variable specification. Such modifiers may be used together on the same variable where
it makes sense. Thus, these "super" prefixes modify the normal behaviour of a
prefix/PRIMARY specification. The existing modifiers include:

 dist
 nodist
 nobase

The dist modifier indicates a set of files that should be distributed (that is, included in
the distribution package when "make dist" is executed). The dist modifier is used with
files that are normally not distributed, but may be used explicitly anywhere for clarity. For

instance, assuming that some source files for a product should be distributed, and some
should not (perhaps they're generated), the following rules might be used:

dist_jupiter_SOURCES = file1.c file2.c

nodist_jupiter_SOURCES = file3.c file4.c

While the dist prefix is redundant in this example, it is nonetheless useful to the casual
reader.
The nobase modifier is used to suppress the removal of path information from installed
header files that are obtained from subdirectories by a Makefile.am file. For instance,
assume that installable jupiter project header files exist in a subdirectory of the src
directory "jupiter":

nobase_dist_include_HEADERS = \

 jupiter/jupiter_interface.h

Normally, such a header file would be installed into the /usr(/local)/include
directory as simply jupiter_interface.h. However, if the nobase modifier is used,
then the extra path information would not be removed, so the final resting place of the
installed header would instead be
/usr(/local)/include/jupiter/jupiter_interface.h.
Notice also in this example that I combined the use of the nobase modifier with that of
the dist modifier--just to show the concept.

Product sources

The second line in src/Makefile.am is "jupiter_SOURCES = main.c". This
variable lists the source files used to build the jupiter program. Like product variables
made from prefixes and primaries, this type of variable is derived from two parts, the
product name, jupiter in this case, and the dependent type. I call it the "dependent
type" because this variable lists source files on which the product depends. Ultimately,
Automake adds these files to make rule dependency lists.
The EXTRA prefix may also be used sometimes as a super prefix modifier. When used
with a product SOURCES variable (eg., jupiter_SOURCES), EXTRA can be used to
specify extra source files that may or may not be used, which are directly associated with
the jupiter product:

EXTRA_jupiter_SOURCES = possibly.c

In this case, possibly.c may or may not be compiled--perhaps based on an
AC_SUBST variable.

Unit tests - supporting "make check"
I mentioned earlier that this Automake-generated build system provided the same
functionality as our hand-coded build system. Well, I wasn't completely truthful when I
said that. For the most part, that was an accurate statement, but what's still missing is our
simple-minded make check functionality. The check target is indeed supported by our
new Automake build system, but it's just not hooked up to any real functionality. Let's do
that now.

You'll recall in Chapter 2 that you added code to the src/Makefile to run the jupiter
program and check for the proper output string when the user entered "make check". You
did this with a fairly simple addition to our src/Makefile:

...

check: all

 ./jupiter | grep "Hello from .*jupiter!"

 @echo "*** ALL TESTS PASSED ***"

...

As it turns out, Automake has some solid support for unit tests. Unfortunately, the
documentation consists of Chapter 15 of the GNU Automake manual--a single page of
text--half of which is focused on the obscure DejaGNU test suite syntax. Nevertheless,
adding unit tests to a Makefile.am file is fairly trivial. To add a simple "grep test" back into
the new Automake-generated build system, I've added a few more lines to the bottom of
the src/Makefile.am file:
src/Makefile.am

bin_PROGRAMS = jupiter

jupiter_SOURCES = main.c

jupiter_CPPFLAGS = -I$(top_srcdir)/common

jupiter_LDADD = ../common/libjupcommon.a

check_SCRIPTS = greptest.sh

TESTS = $(check_SCRIPTS)

greptest.sh:

 echo './jupiter | grep \

 "Hello from .*jupiter!"' > greptest.sh

 chmod +x greptest.sh

CLEANFILES = greptest.sh

The check_SCRIPTS line is clearly a prefixed primary. The SCRIPT primary indicates a
"built" script, or a script that is somehow generated at build time. Since the prefix is
"check", you know that scripts listed in this line will only be built when the user enters
"make check" (or "make distcheck"). However, this is as far as Automake goes in
supporting such built scripts with Automake-specific syntax. You must supply a make rule
for building the script yourself.
Furthermore, since you supplied the rule to generate the script, you must also supply a
rule for cleaning the file. Automake provides an extension to the generated clean rule,
wherein all files listed in a special CLEANFILES variable are added to the list of
automatically cleaned files.
The TESTS line is the important one here, in that it indicates which targets are built and
executed when a user enters "make check". Since the "check_SCRIPTS" variable
contains a complete list of these targets, I simply reused its value here.
Generating scripts or data files in this manner is a very useful technique. I'll present some
more interesting ways of doing this sort of thing in Chapter 8.

Adding complexity with convenience libraries

Well, jupiter is fairly trivial, as free software projects go. In order to highlight some more
of the key features of Automake, I'm going to have to expand jupiter into something a
little bit more complex (if not functional).

I'll start by adding a convenience library, and having jupiter consume this library.
Essentially, I'll move the code in main.c to a library source file, and then call the function
in the library from jupiter's main routine. Start with the following commands, executed
from the top-level project directory:

$ mkdir common

$ touch common/jupcommon.h

$ touch common/print.c

$ touch common/Makefile.am

Add the following text to the .h and .c files:

common/jupcommon.h

int print_routine(char * name);

common/print.c

#include <jupcommon.h>

#if HAVE_CONFIG_H

include <config.h>

#endif

#include <stdio.h>

#include <stdlib.h>

#if HAVE_PTHREAD_H

include <pthread.h>

#endif

static void * print_it(void * data)

{

 printf("Hello from %s!\n", (char *)data);

 return 0;

}

int print_routine(char * name)

{

#if ASYNC_EXEC

 pthread_t tid;

 pthread_create(&tid, 0, print_it, name);

 pthread_join(tid, 0);

#else

 print_it(name);

#endif

 return 0;

}

As promised, print.c is merely a copy of main.c, with a couple of small modifications.
First, I renamed main to print_routine, and second, I added the inclusion of the
jupcommon.h header file at the top. This header file (as you can see) merely provides
print_routine's prototype to the new src/main.c, where it's called from main.
Modify src/main.c to look like this:
src/main.c

#include <jupcommon.h>

int main(int argc, char * argv[])

{

 print_routine(argv[0]);

 return 0;

}

And now for the new common/Makefile.am file; add the following text to this file:
common/Makefile.am

noinst_LIBRARIES = libjupcommon.a

libjupcommon_a_SOURCES = jupcommon.h print.c

Let's take a look at this file for a minute. You'll recall from our discussion of Automake
primaries and prefixes that the first line indicates the products to be built and installed by
this Makefile.am file. In this case, the noinst prefix indicates that this library should not
be installed at all. This is because you're creating a "convenience" library, or a library
designed solely to make using the source code in the common directory more convenient
for two or more consumers. (Granted, you only have one consumer at this point--the
jupiter program--but later on you'll add another consumer of this library, and then it will
make more sense.)
The library we're creating will be called "libjupcommon.a"--this is a static library, also
known as an "object archive". Object archives are merely packages containing one or
more object (.o) files. They can't be executed, or loaded into a process address space, as
can shared libraries. They can only be added to a linker command line. The linker is
smart enough to realize that such archives are merely groups of object files. The linker
extracts the object files it needs to complete the linkage process when building a program
or shared library.

The second line represents the list of source files associated with this library. I chose to
place both the header and the C source file in this list. I could have chosen to use a
"noinst_HEADERS" line for the header file, but it was unnecessary because the
"libjupcommon_a_SOURCES" list works just as well. The appropriate time to use
"noinst_HEADERS" is when you have a directory that contains no source (.c) files--such

as an internal include directory. Personally, I don't care for this style of project directory
structure organization. I prefer to place private header files right along side of the source
code they represent. As a result, I never seem to need "noinst_HEADERS" in my
projects.
Notice the format of the "libjupcommon_a_SOURCES" variable. Automake transforms
library and program names in the product list into derived variable names by converting
all characters except for letters, numbers and at-signs (@) into underscore characters.
Thus, a library named libc++.a generates a SOURCES variables called
libc___a_SOURCES (there are three consecutive underscores in that variable name).
Clean up your top-level project directory, removing all files and directories except those
that we've written by hand so far. Also remove all Makefile.in files in the top-level
directory and in sub-directories. The top-level directory should look like this when you're
done:

$ ls -1F

AUTHORS

ChangeLog

common/

configure.ac

COPYING

INSTALL

src/

Makefile.am

NEWS

README

Edit the SUBDIRS variable in the top-level Makefile.am file to include the new common
directory that we just added:
Makefile.am

SUBDIRS = common src

Now you have to add some additional information to the src/Makefile.am file so that
the generated Makefile can find the new library and header file you created in the
common directory. Add two more lines to the end of the existing file, in this manner:
src/Makefile.am

bin_PROGRAMS = jupiter

jupiter_SOURCES = main.c

jupiter_CPPFLAGS = -I$(top_srcdir)/common

jupiter_LDADD = ../common/libjupcommon.a

Like the jupiter_SOURCES variable, these two new variables are obviously derived
from the program name. The jupiter_CPPFLAGS variable is used to add product-
specific C preprocessor flags to the compiler command line for all source files that are
built for the jupiter program. The jupiter_LDADD variable is used to add libraries to the
linker command line for the jupiter program.
These product-specific option variables are used to pass options to the compiler and
linker command lines. The option variables currently supported by Automake for
programs include:

 program_CCASFLAGS
 program_CFLAGS
 program_CPPFLAGS
 program_CXXFLAGS
 program_FFLAGS
 program_GCJFLAGS
 program_LFLAGS
 program_OBJCFLAGS
 program_RFLAGS
 program_UPCFLAGS
 program_YFLAGS

For static library products use library_LIBADD, instead of program_LDADD. The
_LIBADD variable for libraries allows you to specify additional object files and static
libraries that should be added to the static archive you're currently building. This can be
handy for combining multiple convenience libraries. Consider the difference between
these cases: The library_LIBADD variable is merely allowing you to specify already
built objects--either libraries or actual object modules--to the library you're currently
building. This can't be accomplished with the library_SOURCES variable, because
library_SOURCES members are compiled, whereas library_LIBADD members are
already built.
Additionally, the program_LDADD variable generally expects linker command line
options such as -lz (to add the libz library to the linker's library specification for this
program), while the library_LIBADD variable is formatted as a list of fully specified
objects (eg., libabc.a file1.o). This rule isn't particularly strict however, as I'll explain
shortly here. Quite frankly, it doesn't really matter, as long as the final command line
composed by Automake from all of these variables makes sense to the linker.

File-level option variables

Often you'll see unprefixed variables like AM_CPPFLAGS or AM_LDFLAGS used in a
Makefile.am. This is the per-file form of these flags, rather than the per-product form. The
per-file forms are used when the developer wants the same set of flags to be used for all
products within a given Makefile.am file.
Sometimes you need to set a group of preprocessor flags for all products in a
Makefile.am file, but add additional flags for one particular target. When you use a per-
product flag variable, you need to include the per-file variable explicitly, like this:

AM_CFLAGS = ... some flags ...

program_CFLAGS = ... more flags ... $(AM_CFLAGS)

User variables, such as CFLAGS, should never be modified by configuration scripts or
makefiles. These are reserved for the end-user, and will be always be appended to the
per-file or per-product versions of these variables.
Regarding the jupiter_LDADD variable, ../common/libjupcommon.a merely adds
an object to the linker command line, so that code in this library may become part of the
final program. Note that this sort of syntax is really only necessary for libraries built as
part of your own package. If you're linking your program with a library that's installed on
the user's system, then the configure script should have found it, and automatically
added an appropriate reference to the linker's command line.
In the jupiter_CPPFLAGS variable, the -I$(top_srcdir)/common directive tells the
C preprocessor to add a search directory to its list of locations in which to look for header
file references. Specifically, it indicates that header files referenced in C source files with
angle brackets (< and >) should be searched for in this include search path. Header files
referenced with double-quotes are not searched for, but merely expected to exist in the
specified directory, relative to the directory containing the referencing source file.
Getting back to our example--edit the configure.ac file; add a reference to the
AC_CONFIG_FILES macro for the new generated common/Makefile, in this manner:

configure.ac

...

AC_CONFIG_FILES([Makefile

 common/Makefile

 src/Makefile])

...

Okay, now give your updated build system a try. Add the -i option to the autoreconf
command so that it will install any additional missing files that might be required after our
enhancements:

$ autoreconf -i

configure.ac:6: installing `./missing'

configure.ac:6: installing `./install-sh'

common/Makefile.am:1: library used but `RANLIB'

 is undefined. The usual way to define

 `RANLIB' is to add `AC_PROG_RANLIB' to

 `configure.ac' and run `autoconf' again.

common/Makefile.am: installing `./depcomp'

src/Makefile.am:3: compiling `main.c' with

 per-target flags requires `AM_PROG_CC_C_O' in

 `configure.ac'

autoreconf: automake failed with exit status: 1

Well, it appears that you're still not done yet. Since you've added a new type of entity to
our build system--static libraries--Automake (via autoreconf) tells you that you need to
add a new macro to the configure.ac file. The AC_PROG_RANLIB macro is a standard
program check macro, just like AC_PROG_YACC or AC_PROG_LEX. There's a lot of
history behind the use of the ranlib utility on archive libraries. I won't get into whether it's
still useful with respect to modern development tools. It seems however, that wherever
you see it used in modern Makefiles, there's always a comment about running ranlib in
order to "add karma" to the archive. You be the judge...

Additionally, you need to add the Automake macro, AM_PROG_CC_C_O, because this
macro defines constructs in the resulting configure script that support the use of per-
product flags, such as jupiter_CPPFLAGS. Add these two macros to your configure.ac
script:
configure.ac

...

Checks for programs.

AC_PROG_CC

AC_PROG_INSTALL

AC_PROG_RANLIB

AM_PROG_CC_C_O

...

Alright, once more then, but this time I'm adding the --force option, as well as the -i
option to the autoreconf command line to keep it quiet about adding files that already
exist. (This seems like a pointless option to me, because the entire purpose of the -i
option is to add missing files, not to add all files that are required, regardless of whether
they already exist, or not, and then complain if they do exist.):

$ autoreconf -i --force

configure.ac:15: installing `./compile'

Blessed day! It works. And it really wasn't too bad, was it? Automake told you exactly
what you needed to do.

(I always find it ironic when a piece of software tells you how to fix your input file--why
didn't it just do what it knew you wanted it to do, if it understood your intent without the
correct syntax?! Okay, I understand the "purist" point of view, but why not just do "the
right thing", with a side-line comment about your ill-formatted input text? Eventually, you'd
be annoyed enough to fix the problem anyway, wouldn't you? Of course you would!)

A word about the utility scripts

It seems that Automake has added yet another missing file--the "compile" script is a
wrapper around some older compilers that do not understand the use of both -c and -o
on the command line to name the object file differently than the source file. When you
use product-specific flags, Automake has to generate code that may compile source files
multiple times with different flags for each file. Thus it has to name the files differently for
each set of flags it uses. The requirement for the compile script actually comes from the
inclusion of the AM_PROG_CC_C_O macro.
At this point, you have the following Autotools-added files in the root of our project
directory structure:

 compile
 depcomp
 install-sh
 missing

These are all scripts that are executed by the configure script, and by the generated
Makefiles at various points during the end-user build process. Thus, the end-user will
need these files.You can only get these files from Autotools. Since the user shouldn't be
required to have Autotools installed on the final target host, you need to make these files
available to the user somehow.

These scripts are automatically added (by "make dist") to the distribution tarball. So, do
you check them in to the repository, or not? The answer to this question is debatable, but
generally I recommend against doing this. Anyone who will be creating a distribution
tarball should also have the Autotools installed, and should be working from a repository
work area. As a result, this maintainer will also be running autoreconf -i (--force)
to ensure that she has the latest updated Autotools-provided utility scripts. Checking
them in will only make it more probable that they become out of date as time goes by.
As mentioned in Chapter 2, this sentiment goes for the configure script as well. Some
people argue that checking the utility and configure scripts into the project repository is
beneficial, because it ensures that someone checking out a work area can build the
project from the work area without having the Autotools installed. But is this really
important? Shouldn't developers and maintainers be expected to have more advanced
tools? My personal philosophy is that they should. Yours may differ. Occasionally, an end
user will need to build a project from a work area, but this should be the exceptional case,
not the typical case. If it is the typical case, then there are bigger problems with the
project than can be solved in this discussion.

What goes in a distribution?

In general, Automake determines automatically what should go into a distribution created
with make dist. This is because Automake is vary aware of every single file in the build
process, and what it's used for. Thus, it need not be told explicitly which files should be in
the package, and which should be left behind.
An important concept to remember is that Automake wants to know statically about every
source file used to build a product, and about every file that's installed. This means, of
course, that all of these files must somehow be specified at some point in a Makefile.am

primary variable. This bothers some developers--and with good reason. There are cases
where dozens of installable files are generated by tools using long, apparently random
and generally unimportant naming conventions. Listing such generated files statically in a
primary variable is problematic, to say the least.

I'll cover techniques that can be used to work around such problem cases later in this
book. At this point, however, I'd like to introduce the EXTRA_DIST variable for those
cases where file system entities are not part of the Automake build process, but should
be distributed with a distribution tarball. The EXTRA_DIST variable contains a space-
delimited list of files and directories which should be added to the distribution package
when "make dist" is executed.

EXTRA_DIST = windows

This might be used to add, for example, a windows build directory to the distribution
package. Such a directory would be otherwise ignored by Automake, and then your
windows users would be upset when they unpacked your latest tarball. Note in this
example that windows is a directory, not a file. Automake will automatically and
recursively add every file in this directory to the distribution package.

Summary

In this chapter, I've covered a fair number of details about how to instrument a project for
Automake. The project I chose to instrument happened to already be instrumented for
Autoconf, which is the most likely scenario, as you'll probably be adding Autoconf
functionality to your bare projects first in most cases.

What I've explicitly not covered are situations where you need to extend Automake to
handle your special cases, although I've hinted at this sort of thing from time to time.
In the next chapter, I'll examine adding Libtool to the jupiter project, and then in Chapter 6,
I'll Autotool-ize a real-world project, consisting of several hundred source files and a
custom build system that takes the form of a GNU makefile designed to use native
compilers on multiple platforms including Solaris, AIX, Linux, Mac OS and Windows,
among others. I'll warn you up front thatI'll be remaining true to the original mission
statement of this book in that we'll not be trying to get Autotools to build Microsoft
Windows products.

Source archive

Download the attached source archive for the original sources associated with this
chapter.

‹ Chapter 3: Configuring your project with Autoconf up Chapter 5: Building shared
libraries with Libtool ›

Chapter 5: Building shared libraries
with Libtool
Wed, 2008-07-09 19:23 -- John Calcote

The person who invented the concept of shared libraries should be given a raise... and a
bonus. The person who decided that shared library management and naming
conventions should be left to the implementation should be flogged.

This opinion is the result of too much negative experience on my part with building
shared libraries for multiple platforms without the aid of Libtool. The very existence of
Libtool stands as a witness to the truth of this sentiment.
Libtool exists for one purpose only--to provide a standardized, abstract interface for
developers desiring to create portable shared libraries. It abstracts both the shared library
build process, and the programming interfaces used to dynamically load and access
shared libraries at run time.

This chapter has downloads!
Before I get into a discussion of the proper use of Libtool, I should probably spend a few
minutes on the features and functionality provided by shared libraries, so that you will
understand the scope of the material I'm covering here.

The benefits of shared libraries

Shared libraries provide a way to ship reusable chunks of functionality in a convenient
package that can be loaded into a process address space, either automatically at
program load time by the operating system loader, or by code in the application itself,
when it decides to load and access the library's functionality. The point at which an
application binds functionality from a shared library is very flexible, and determined by the
developer, based on the design of the program and the needs of the end-user.

The interfaces between the program executable and modules defined as shared libraries
must be well-designed by virtue of the fact that shared library interfaces must be well-
specified. This rigorous specification promotes good design practices. When you use
shared libraries, you're essentially forced to be a better programmer.

Shared libraries may be (as the name implies) shared among processes. This sharing is
very literal. The code segments for a shared library can be loaded once into physical
memory pages. Those same memory pages can then be mapped into the process
address spaces for multiple programs. The data pages must, of course, be unique per
process, but global data segments are often small compared to the code segments of a
shared library. This is true efficiency.

Shared libraries are easily updated during program upgrades. The base program may not
have changed at all between two revisions of a software package. A new version of a
shared library may be laid down on top of the old version, as long as its interfaces have
not been changed. When interfaces are changed, two versions of the same shared
library may co-exist side-by-side, because the versioning scheme used by shared
libraries (and supported by Libtool) allows the library files to be named differently, but
treated as the same library. Older programs may continue to use older versions of the
library, while newer programs may use the newer versions.
If a software package specifies a well-defined "plug-in" interface, then shared libraries
can be used to implement user-configurable loadable functionality. This means that

additional functionality can become available to a program after it's been released, and
third-parties can even add functionality to your program, if you publish a document
describing your plug-in interface specification.
There are a few widely-known examples of systems such as this. Eclipse, for instance, is
almost a pure plug-in framework. The base executable supports little more than a well-
defined plug-in interface. Most of the functionality in an Eclipse application comes from
library functions. Granted, Eclipse is written in Java, and uses Java class libraries, but
the same concept can be (and has been) easily implemented in C or C++ using shared
libraries.

How shared libraries work

As I mentioned above, the way a POSIX-based operating system implements shared
libraries varies from platform to platform, but the general idea is the same for all platforms.
The following discussion applies to shared library references that are resolved by the
linker while the program is being built, and by the operating system loader at program
load time.

Dynamic linking at load time

As a program executable image is being built, the linker (formally called a "link editor")
maintains a table of unresolved function entry points and global data references. Each
new symbol referenced by the object code being linked together, is added to this table. At
the end of the linking process, all object files containing only unreferenced symbols are
removed from the link list. All object files containing referenced symbols are linked
together, and become part of the program executable image. If there are any outstanding
references in the symbol table after all of the object files have been analyzed in this
manner, the linker exits with an error message. On success, the final executable image
may then be loaded and executed by a user. It is entirely self-contained, depending only
upon itself.

Assuming that all undefined references are resolved during the linking process, if the list
of objects to be linked contains one or more shared libraries, the linker will build the
executable image from all non-shared objects specified on the linker command line. This
includes all individual .o files and all static library archives. However it will add two tables
to the binary image header; the first is the table of outstanding external references--those
found only in shared libraries, and the second is a table of shared library names and
versions in which the outstanding undefined references were found.
Later, when the operating system loader attempts to load this program, it must resolve
the remaining outstanding references to symbols imported from the shared libraries
named in the executable header. If the loader can't resolve all of the references, then a
load error occurs, and the process is terminated with an operating system error message.

Note here that these external symbols are not tied to a specific shared library. The
operating system will stop loading shared libraries as soon as it is able to resolve all of
the outstanding symbol references. Usually, this happens after the last indicated shared
library is loaded into the process address space, but there are exceptions.
NOTE: This process differs a bit from the way a Windows operating system resolves
symbols in Dynamic Link Libraries (DLLs). On Windows, a particular symbol is tied by the
linker at program build time to a specifically named DLL.
Using free-floating external references has both pros and cons. On some operating
systems, unbound symbols can be satisfied by a library specified by the user. That is, a
user can entirely replace a library (or a portion of a library) at run time by simply
preloading one that contains the same symbols. On BSD and Linux based systems, for
example, a user can use the "LD_PRELOAD" environment variable to inject a shared

library into a process address space. Since such libraries are loaded first by the loader
before any other libraries, symbols in the preloaded libraries will be located first by the
loader when it tries to resolve external references.
In the following example, the "df" utility is executed in an environment containing the
LD_PRELOAD variable, set to a path referring to a library that presumably contains a heap
manager. This technique can be used to debug problems in your programs. By
preloading your own heap manager, you can capture memory leaks in a log file, or debug
memory block overruns. This sort of technique is used by such widely-known debugging
aids as the valgrind package.

$ LD_PRELOAD=~/lib/libmymalloc.so /bin/df

...

Unfortunately, free-floating symbols can also lead to problems. For instance, two libraries
can provide the same symbol name, and the dynamic loader can inadvertently bind an
executable to a symbol from the wrong library. At best, this will cause a program crash
when the wrong arguments are passed to the mis-matched function. At worst, it can
present security risks, because the mis-matched function might be used to capture
passwords and security credentials passed by the unsuspecting program.

C-language symbols do not include parameter information, so it's rather likely that
symbols will clash in this manner. C++ symbols are a bit safer, in that the entire function
signature (minus the return type) is encoded into the symbol name. However, even C++
is not immune to hackers purposely replacing security functions with their own versions
of those functions.

Automatic dynamic linking at run time

The operating system loader can also use a very late form of binding, often referred to as
"lazy binding". In this situation, the external reference entries in the jump table in the
program header are initialized such that they refer to code in the dynamic loader itself.

When a program first calls such a "lazy" entry, the call will be routed to the loader, which
will then (potentially) load the proper shared library, determine the actual address of the
function, reset the entry point in the jump table, and finally redirect to the (now available)
shared library function. The next time this happens, the jump table entry will have been
correctly initialized, and the program will jump directly to the called function.

This lazy binding mechanism makes for very fast program startup, because shared
libraries whose symbols are not bound until they're needed aren't even loaded until
they're first referenced by the application program. Now, consider this--they may never
be referenced. Which means they may never be loaded, saving both time and space. An
example of this situation might be a word processor with a thesaurus feature,
implemented in a shared library. How often do you use your thesaurus? Using automatic
dynamic linking, chances are that the shared library containing the thesaurus code will
never be loaded in a given execution of your word processor.
The problems with this method should be obvious, at this point. While using automatic
run-time dynamic linking can give you faster load times, and better performance and
space efficiency, it can also cause abrupt terminations of your application--without
warning. If the loader can't find the requested symbol--perhaps the required library is
missing--then it has no recourse except to abort the process.

Why not ensure that all symbols exist when the program is loaded? Well, if the loader
resolved all symbols at load time, then it might as well populate the jump table entries at
that point. After all, it had to load all the libraries to ensure that the symbols actually exist.
This then entirely defeats the purpose of this binding method. Furthermore, even if the
loader did bother to check out all external references at the point when the program was
first started, there's nothing to stop someone from deleting one or more of these libraries
before it's used, while the program is still running. Thus, even the pre-check is defeated.

The moral of this story is that you get what you pay for. If you don't want to pay the
insurance premium for longer up-front load times, and more space consumed (even if
you may never really need it), then you may have to take the hit of a missing symbol at
run time, causing a program crash.

Manual dynamic linking at run time

One possible solution to the aforementioned problem is to take personal responsibility for
the work done by the system loader. Then, when things don't go right, you have a little
more control over the outcome. In the case of the thesaurus module, was it really
necessary to terminate the program if the thesaurus library could not be loaded or didn't
provide the correct symbols? Of course not, but the loader didn't know that. Only the
programmer can make such value judgements.

When a program manages dynamic linking manually at run-time, the linker is left entirely
out of the equation. The program doesn't call any shared library functions directly. Rather,
shared library functions are referenced though function pointers that are populated by the
application program itself at run time.

The way this works is that a program calls an operating system function to manually load
a shared library into its own process address space. This system function returns a
"handle", or an opaque value representing the loaded library. The program then calls
another loader function to import a symbol from the library referred to by the handle. If all
goes well, the operating system returns the address of the requested function or data
item in the desired library. The program may then call the function, or access the global
data item through this pointer.

If something goes wrong in one of these two steps--say the library could not be found, or
the symbol was not found within the library, then it becomes the responsibility of the
program to define the results--perhaps display an error message, indicating that the
program was not configured correctly.

This is a little nicer than the way automatic dynamic run-time linking works; while the
loader has no option but to abort, the application has a higher-level perspective, and can
handle the problem much more gracefully. The drawback, of course, is that you as the
programmer have to manage the process of loading libraries and importing symbols
within your application code. However, this process is not really very difficult, as I'll
explain later in this chapter.

Using Libtool

An entire book could be written about the details of shared libraries and their
implementations on various systems. This short primer will suffice for your immediate
needs; so I'll move on to how Libtool can be used to make a package maintainer's life a
little easier.

The Libtool project was started in 1996 by Gordon Matzigkeit. Libtool was designed to
extend Automake, but can be used independently within hand-coded makefiles, as well.
The Libtool project is currently maintained by Bob Friesenhahn, Peter O'Gorman, Gary
Vaughan and Ralf Wildenhues.

Abstracting the build process

First, I'll look at how Libtool helps during the build process. Libtool provides a script
(ltmain.sh) that config.status executes in a Libtool-enabled project. The
ltmain.sh script builds a custom version of the libtool script, specifically for your
package. This libtool script is then used by your project's makefiles to build shared
libraries specified using the LTLIBRARIES primary. The libtool script is really just a
fancy wrapper around the compiler, linker and other tools. The ltmain.sh script should
be shipped in a distribution tarball, as part of your end-user build system. Automake-
generated rules ensure that this happens properly.
The libtool script insulates the build system author from the nuances of building
shared libraries on multiple platforms. This script accepts a well-defined set of options,
converting them to appropriate platform- and linker-specific options on the target platform
and tool set. Thus, the maintainer need not worry about the specifics of building shared
libraries on each platform. She need only understand the available libtool script
options. These are well specified in the GNU Libtool manual, and I'll cover many of them
in this chapter.
On systems that don't support shared libraries at all, the libtool script uses
appropriate commands and options to build and link static libraries. This is all done in
such a way that the maintainer is isolated from the differences between building shared
libraries and static libraries.
You can emulate building your package on a static-only system by using the "--
disable-shared" option on the configure command line for your project. This
causes Libtool to assume that shared libraries cannot be built on the target system.

Abstraction at run-time

Libtool can also be used to abstract the programming interfaces supplied by the
operating system for loading libraries and importing symbols. Programmers who've ever
dynamically loaded a library on a Linux system are familiar with the standard Linux
shared library API, including the functions, dlopen, dlsym and dlclose. These
functions are provided by a system-level shared library, usually named "dl".
Unfortunately, not all POSIX systems that support shared libraries provide the dl library,
or functions using these names.
To address these differences, Libtool provides a shared library called "ltdl", which
provides a clean, portable library management interface, very similar to the dlopen
interface provided by the Linux loader. The use of this library is optional, of course, but
highly recommended, because it provides more than just a common API across shared
library platforms. It also provides an abstraction for manual run-time dynamic linking
between shared library and non-shared library platforms.
"What!? How can that work?" You might ask. On systems that don't provide shared
libraries, Libtool actually creates internal symbol tables within the executable containing
all of the symbols that would otherwise be found in shared libraries on systems that
support shared libraries. By using these symbol tables on these platforms, the
lt_dlopen and lt_dlsym functions can make your code appear to be loading and
importing symbols, when in fact, the "load" function does nothing more than return a
handle to the appropriate symbol table, and the "import" function returns the address of
some code that's been statically linked into the program itself.
The ltdl library is, of course, not really necessary for packages that don't use manual
run-time dynamic linking. But if your package does--perhaps by providing a plug-in
interface of some sort--then you'd be well-advised to use the API provided by ltdl to

manage loading and linking to your plug-in modules--even if you only target systems that
provide good shared library services. Otherwise, your source code will have to consider
the differences in shared library management between your many target platforms. At the
very least, some of your users will have to put on their "developer" hats, and attempt to
modify your code so that it works on their odd-ball platforms. (They may have to do so
anyway, but when they finish, their work can then be incorporated into Libtool, so that
everyone else can take advantage of their efforts.)

A word about the latest Libtool

The most current version of Libtool is 2.2. However, many popular GNU/Linux
distributions are still shipping Libtool version 1.5, so many developers don't know about
the changes between these two versions. The reason for this is that certain backward-
compability issues were introduced after version 1.5 that make it difficult for GNU/Linux
distros to support the latest version of Libtool. The upgrade probably won't happen until
all (or almost all) of the packages they provide have updated their configure.ac
scripts to properly use the latest version of Libtool.
This is somewhat of a "chicken-and-egg" scenario--if distros don't ship it, how will
developers ever start using it on their own packages? So it's not likely to happen any time
soon. If you want to make use of the latest Libtool version while developing your
packages (and I highly recommend that you do so), you'll probably have to download,
build and install it manually, or look for an updated Libtool package from your distribution
provider.

Downloading, building and installing Libtool manually is really trival:

$ wget ftp.gnu.org/gnu/libtool/libtool-2.2.tar.gz

...

$ tar xzf libtool-2.2.tar.gz

$ cd libtool-2.2

$./configure && make

...

$ sudo make install

...

Be aware that the default installation location (as with most of the GNU packages) is
/usr/local. If you wish to install it into the /usr hierarchy, then you'll need to use the
--prefix=/usr option on the configure command line.
You might also wish to use the --enable-ltdl-install option on the configure
command line to install the ltdl libraries and header files into your lib and include
directories.

Adding shared libraries to Jupiter

Now that I've presented that background information, I will take a look at how I might add
a Libtool shared library to the Jupiter project. First, consider what I might do with a
shared library in Jupiter. As mentioned above, I might wish to provide my users with
some library functionality that their own applications could use. I might also have several
applications in my package that need to share the same functionality. A shared library is
a great tool for both of these scenarios, because I get the benefits of code reuse and
memory savings, as the cost of the memory used by shared code is amortized across
multiple applications--both internal and external to my project.

I'll add a shared library to Jupiter that provides the print functionality I use in the jupiter
application. I'll do this by having the new shared library call into the libjupcommon.a
static library. Remember that calling a routine in a static library has the same effect as
linking the object code for the called routine right into the calling application (or shared
library, as the case may be). The called routine ultimately becomes an integral part of the
calling binary image (program or shared library).
Additionally, I'll provide a public header file from the Jupiter project that will allow external
applications to call this same functionality. By doing this, I can allow other applications to
"display stuff" in the same way that the jupiter program "displays stuff". (This would be
significantly cooler if I was actually doing something useful in jupiter!).

Using the LTLIBRARIES primary
Automake has built-in support for Libtool. The LTLIBRARIES primary is provided by
code in the Automake package, not the Libtool package. This really doesn't qualify as a
pure extension, but rather more of an add-on package for Automake, where Automake
provides the necessary infrastructure for that specific add-on package. You can't access
the LTLIBRARIES primary functionality provided by Automake without Libtool, because
the use of this primary obviously generates make rules that call the libtool build script.
I state all of this here because it bothers me that you can't really extend the list of
primaries supported by Automake without modifying the actual Automake source code.
The fact that Automake is written in perl is somewhat of a boon, because it means that
it's possible to do it. But you've really got to understand Automake source code in order
to do it properly. I envision a future version of Automake whereby code may be added to
an Automake extension file that will allow the dynamic definition of new primaries.
It's a bit like the old FOSS addage, generally offered to someone complaining about lack
of functionality in a particular package: "It's open source. Change it yourself!" This is very
often easier said than done. Furthermore, what these people are actually telling you is to
change your copy of the source code for your own purposes, not to change the master
copy of the source code. Getting your changes accepted into the master source base
often depends more on the quality of your relationship with the current project
maintainers than it does on the quality of your coding skills. I'm not complaining, mind
you. I'm merely stating a fact that should not be overlooked when one is considering
making changes to an existing open source software package.
So why not ship Libtool as part of Automake, rather than as a separate package?
Because Libtool can quite effectively be used independently of Automake. If you wish to
try Libtool by itself, then please refer to the GNU Libtool manual for more information.
The opening chapters in that manual describe the use of the libtool script as a stand-
alone product. It's really as simple as modifying your makefile commands such that the
compiler, linker and librarian are called using the libtool script, and then modifying some
of your command line parameters, as required by Libtool.

Public include directories

Earlier in this book, I made the statement that a project sub-directory named include
should only contain public header files--those that expose a public interface in your
project. I'm now going to add just such a header file to the Jupiter project: so, I'll create
an include directory. I'll add this directory at the top-level of the project directory
structure.

If I had multiple shared libraries, I'd have a choice to make: do I create separate
include directories for each library in the library source directory, or do I add a single
top-level include directory? I usually use the following rule of thumb to determine the
answer to this question: if the libraries are designed to work together as a group, and if
consuming applications generally use the libraries as a group, then I use a single top-
level include directory. If, on the other hand, the libraries can be effectively used
independently, and if they offer fairly autonomous sets of functionality, then I provide
individual include directories in my project's library subdirectories.
In the end, it really doesn't matter much, because the header files for these libraries will
be installed in entirely different directory structures than those in which they exist within
your project. In fact, make sure you don't inadvertently use the same file name for
headers in two different libraries in your project, or you'll probably have problems
installing these files. They generally end up all together in the "$(prefix)/include"
directory, although this default can be overridden with the pkginclude prefix.
I'll also add a directory for the new Jupiter shared library, called libjupiter. These
changes require adding references to these new directories to the top-level
Makefile.am file's SUBDIRS variable, and then adding corresponding makefile
references to the AC_CONFIG_FILES macro in the configure.ac script:

$ mkdir include

$ mkdir libjup

$ echo "SUBDIRS = common include libjup src" \

 > Makefile.am

$ echo "include_HEADERS = libjupiter.h" \

 > include/Makefile.am

$ vi configure.ac

...

AC_PREREQ([2.61])

AC_INIT([Jupiter], [1.0], [bugs@jupiter.org])

AM_INIT_AUTOMAKE

LT_PREREQ([2.2])

LT_INIT([dlopen])

...

AC_CONFIG_FILES([Makefile

 common/Makefile

 include/Makefile

 libjup/Makefile

 src/Makefile])

...

The include directory's Makefile.am file is trivial, containing only a single line,
wherein the public header file, libjupiter.h is referred to in an Automake HEADERS
primary. Note that I'm using the include prefix on this primary. You'll recall that the
include prefix indicates that files specified in this primary are destined to be installed in
the $(includedir) directory (eg., /usr/local/include). The HEADERS primary is
much like the DATA primary, in that it specifies a set of files that are to be treated simply
as data to be installed without modification or pre-processing. The only really tangible
difference is that the HEADERS primary restricts the possible installation locations to those
that make sense for header files.
The libjup/Makefile.am file is a bit more complex, containing four lines, as opposed
to the usual one or two lines:
libjup/Makefile.am

lib_LTLIBRARIES = libjupiter.la

libjupiter_la_SOURCES = jup_print.c

libjupiter_la_LIBADD = ../common/libjupcommon.a

libjupiter_la_CPPFLAGS = -I$(top_srcdir)/include \

 -I$(top_srcdir)/common

Let me analyze this file line by line. The first line is the primary one, and contains the
usual prefix for libraries. The lib prefix indicates that the referenced products are to be
installed in the $(libdir) directory. I might also have used the pkglib prefix to
indicate that I wanted my libraries installed into the $(prefix)/lib/jupiter directory.
Here, I'm using the LTLIBRARIES primary, rather than the older LIBRARIES primary.
The use of this primary tells Automake to generate rules that use the libtool script,
rather than calling the compiler and librarian (ar) directly to generate the products.
The second line lists the sources that are to be used for the first (and only) product. The
third line indicates a set of linker options for this product. In this case, I'm specifying that
the libjupcommon.a static library should be linked into (become part of) the
libjupiter.so shared library.
There's an important concept regarding the *_LIBADD variable that you should strive to
understand completely: Libraries that are consumed within, and yet built as part of the
same project, should be referenced internally, using relative paths within the build
directory hierarchy. Libraries that are external to a project generally need not be
referenced explicitly at all, as the $(LIBS) variable should already contain the
appropriate "-L" and "-l" options for those libraries. These options come from attempts
made by the configure script to locate these libraries, using the appropriate
AC_CHECK_LIBS, or AC_SEARCH_LIBS macros.
The fourth line indicates a set of C preprocessor flags that are to be used on the compiler
command line for locating the associated shared library header files. These options
indicate, of course, that the top-level include and common directories should be

searched by the pre-processor for header files referenced in the source code. In fact,
here's the new source file, jup_print.c:
libjup/jup_print.c

#include <libjupiter.h>

#include <jupcommon.h>

int jupiter_print(char * name)

{

 print_routine(name);

}

I need to include the shared library header file for access to the jupiter_print
function's public prototype. This leads us to another general software engineering
principle. I've heard it called by many names, but the one I tend to use the most is "The
DRY Principle", which is an acronym that stands for Don't Repeat Yourself. C function
prototypes are very useful, because when used correctly, they enforce the fact that the
public's view of a function is identical to the package maintainer's view. So often, I've
seen source code for a function where the source file doesn't include the header
containing the public prototype for the function. It's easy to make a small change in the
function or prototype, and then not duplicate it in the other location--unless you've
included the public header file within the source file containing the function. Then, the
compiler catches all such mistakes.
I need the static library header file because I call its function from within my public library
function. Note also that I placed the public header file first--there's a good reason for this.
Here is another general principle: by placing the public header file first in the source file, I
can allow the compiler to check that the use of this header file doesn't depend on any
other files in the project.

If the public header file has a hidden dependency on some construct (a typedef, structure
or pre-processor definition) defined in internal headers like jupcommon.h, and if I
include the public header file after jupcommon.h, then the dependency would be hidden
by the fact that the required construct is already available in the translation unit when the
compiler begins to process the public header file.
Next, I'll modify the jupiter application's main function so that it calls into the shared
library instead of calling into the common static library:
src/main.c

#include <libjupiter.h>

int main(int argc, char * argv[])

{

 jupiter_print(argv[0]);

 return 0;

}

Here, I've changed the print function from print_routine, found in the static library, to
jupiter_print, as provided by the new shared library. I've also changed the header
file included at the top from libjupcommon.h to libjupiter.h.
My choices of names for the public function and header file were arbitrary, but based on
a desire to provide a clean, rational and informational public interface. The name
libjupiter.h very clearly indicates that this header file provides the public interface
for the libjupiter.so shared library. I try to name library interface functions in such a
way that they are clearly part of an interface. How you choose to name your public
interface members--files, functions, structures, typedefs, pre-processor definitions, global
data, etc--is up to you, but you should consider using a similar philosophy. Remember,
the goal is to provide a great end-user experience.
Finally, the src/Makefile.am file must also be modified to use my new shared library,
rather than the libjupcommon.a static library:
src/Makefile.am

bin_PROGRAMS = jupiter

jupiter_SOURCES = main.c

jupiter_CPPFLAGS = -I$(top_srcdir)/include

jupiter_LDADD = ../libjup/libjupiter.la

...

In this file, I've changed the jupiter_CPPFLAGS variable so that it now refers to the
new include directory, rather than the common directory. I've also changed the
jupiter_LDADD variable so that it refers to the new Libtool shared library object, rather
than the libjupcommon.a static library. All else remains the same. Note that these
changes are both obvious and simple. The syntax for referring to a Libtool library is
identical to that referring to an older static library. Only the library extension is different.
The Libtool library extension, .la stands for "libtool archive".
Take a step back for a moment: Do I actually need to make this change? No, of course
not. The jupiter application will continue to work just fine the way it was originally set
up--linking the code for the static library's print_routine directly into the application
works equally well to calling the new shared library routine (which ultimately contains the
same code). There is slightly more overhead in calling a shared library routine because
of the extra level of indirection when calling though a jump table.
In a real project, you might actually leave it the way it was. Why? Because both public
entry points, main and jupiter_print call exactly the same function
(print_routine) in libjupcommon.a, so the functionality is identical. Why add the
(slight) overhead of a call through the public interface? Well, you can take advantage of
shared code. By using the shared library function, you're not duplicating code--either on
disk, or in memory. Again, the DRY principle at work.
In this situation, you might now consider simply moving the code from the static library
into the shared library, thereby removing the need for the static library entirely. Again, I'm
going to beg your indulgence with my contrived example. In a more complex project, I

might very well have a need for this sort of configuration, as such common code is often
gathered together into static convenience libraries. Often, only a portion of this code is
reused in shared libraries. I'm going to leave it the way it is for the sake of its educational
value.

Reconfigure and build

Let me summarize where the project stands at this point. Since I've added a major new
component to my project build system (Libtool), I'll add the -i option to the autoreconf
command, just in case new files need to be installed:

$ autoreconf -i

$./configure

...

checking for ld used by gcc...

checking if the linker ... is GNU ld... yes

checking for BSD- or MS-compatible name lister...

checking the name lister ... interface...

checking whether ln -s works... yes

checking the maximum length of command line...

checking whether the shell understands some XSI...

checking whether the shell understands "+="...

checking for ...ld option to reload object files...

checking how to recognize dependent libraries...

checking for ar... ar

checking for strip... strip

checking for ranlib... ranlib

checking command to parse ...nm -B output...

...

checking for dlfcn.h... yes

checking for objdir... .libs

checking if gcc supports -fno-rtti...

checking for gcc option to produce PIC... -fPIC

checking if gcc PIC flag -fPIC -DPIC works...

checking if gcc static flag -static works...

checking if gcc supports -c -o file.o... yes

checking if gcc supports -c -o file.o... yes

checking whether ... linker ... supports shared...

checking whether -lc should be explicitly linked...

checking dynamic linker characteristics...

checking how to hardcode library paths...

checking whether stripping libraries is possible...

checking if libtool supports shared libraries...

checking whether to build shared libraries...

checking whether to build static libraries...

...

$

The first noteworthy item here is that Libtool adds significant overhead to the
configuration process. I've only shown the output lines here that are new since I added
Libtool. All I've added to the configure.ac script is the reference to the LT_INIT
macro, and I've nearly doubled my configure script output. This should give you some
idea of the number of system characteristics that must be examined to create portable
shared libraries. Libtool does a lot of the work for you.
NOTE: In the following output examples, I've wrapped long output lines to fit publication
formatting, and I've added blank lines between output lines for readability. I've also
removed some unnecessary text, such as long directory names--both to increase
readability and to shorten line lengths.

$ make

...

Making all in libjup

make[2]: Entering directory `.../libjup'

/bin/sh ../libtool --tag=CC --mode=compile gcc

 -DHAVE_CONFIG_H -I. -I../../libjup -I..

 -I../../include -I../../common -g -O2

 -MT libjupiter_la-jup_print.lo -MD -MP -MF

 .deps/libjupiter_la-jup_print.Tpo -c

 -o libjupiter_la-jup_print.lo

 `test -f 'jup_print.c'

 || echo '../../libjup/'`jup_print.c

libtool: compile: gcc -DHAVE_CONFIG_H -I.

 -I../../libjup -I.. -I../../include

 -I../../common -g -O2 -MT

 libjupiter_la-jup_print.lo -MD -MP -MF

 .deps/libjupiter_la-jup_print.Tpo -c

 ../../libjup/jup_print.c -fPIC -DPIC

 -o .libs/libjupiter_la-jup_print.o

libtool: compile: gcc -DHAVE_CONFIG_H -I.

 -I../../libjup -I.. -I../../include

 -I../../common -g -O2 -MT

 libjupiter_la-jup_print.lo -MD -MP -MF

 .deps/libjupiter_la-jup_print.Tpo -c

 ../../libjup/jup_print.c

 -o libjupiter_la-jup_print.o >/dev/null 2>&1

mv -f .deps/libjupiter_la-jup_print.Tpo

 .deps/libjupiter_la-jup_print.Plo

/bin/sh ../libtool --tag=CC --mode=link gcc -g

 -O2 ../common/libjupcommon.a -o libjupiter.la

 -rpath /usr/local/lib libjupiter_la-jup_print.lo

 -lpthread

*** Warning: Linking ... libjupiter.la against the

*** static library libjupcommon.a is not portable!

libtool: link: gcc -shared

 .libs/libjupiter_la-jup_print.o

 ../common/libjupcommon.a -lpthread

 -Wl,-soname -Wl,libjupiter.so.0

 -o .libs/libjupiter.so.0.0.0

.../ld: ../common/libjupcommon.a(print.o):

 relocation R_X86_64_32 against `a local symbol'

 can not be used when making a shared object;

 recompile with -fPIC

../common/libjupcommon.a: could not read symbols:

 Bad value

collect2: ld returned 1 exit status

make[2]: *** [libjupiter.la] Error 1

...

That wasn't a very pleasant experience! It appears that I have some errors to fix. I'll take
them one at a time, from top to bottom.

The first point of interest is that the libtool script is being called with a --
mode=compile option, which causes libtool to act as a wrapper script around a
somewhat modified version of a standard gcc command line. You can see the effects of
this statement in the next two compiler command lines. Two compiler commands? That's
right. It appears that libtool is causing the compile operation to occur twice.
A careful examination of the differences between these two command lines shows that
the first compiler command is using two additional flags: "-fPIC" and "-DPIC". The first
line also appears to be directing the output file to a ".libs" subdirectory, whereas, the
second line is saving it in the current directory. Finally, both the STDOUT and STDERR
output is redirected to /dev/null in the second line.
This double-compile "feature" has caused a fair amount of anxiety on the Libtool mailing
list over the years. Mostly, this is due to a lack of understanding of what it is that Libtool is
trying to do, and why it's necessary. Using various configure script command line
options provided by Libtool, you can force a single compilation, but doing so brings with it
a certain loss of functionality, which I'll explain here shortly.
The next line renames the dependency file from *.Tpo to *.Plo. Dependency files
contain make rules that declare dependencies between source files and referenced
header files. These are generated by the C preprocessor when the -MT compiler option
is used. (And what better tool to know about such references than the one that actually
processes them!) They're then included in makefiles so that the make utility can properly
recompile a source file, if one or more of its include dependencies have been modified
since the last build. This is not really germane to an examination of Libtool, so I'll not go
into any more detail here, but check the GNU Make manual for more information. The
point is that one Libtool command may (and often does) execute a group of shell
commands.
The next line is another call to the libtool script, this time using the --mode=link
option. This option generates a call to execute the compiler in "link" mode, passing all of
the libraries and linker options specified in the Makefile.am file.
And finally, here is first problem--a portablity warning about linking a shared library
against a static library. Specifically, this warning is about linking a Libtool shared library
against a non-Libtool static library. You'll soon begin to see why this might be a problem.
Notice also that this is not an error. Were it not for additional errors we'll encounter later,
this library would be built in spite of this warning.
After the portability warning, libtool attempts to link the requested objects together into
a shared library named "libjupiter.so.0.0.0". But here the script runs into the real
problem--a linker error indicating that somewhere from within libjupcommon.a--and
more specifically within print.o--an Intel object relocation cannot be performed
because the original source file (print.c) was apparently not compiled correctly. The
linker is kind enough to tell me exactly what I need to do to fix the problem. It indicates
that I need to compile the source code using a "-fPIC" compiler option.
Now, if you were to encounter this error and didn't know anything about the "-fPIC"
option, then you'd be wise at this point to open the man page for gcc and study it, before
willy-nilly inserting compiler or linker options until the warning or error disappears, as
many inexperienced programmers are wont to do. Software engineers should understand
the meaning and nuances of every command line option used by the tools in their
projects' build systems. Why? Because otherwise they don't really know what they have
when their build completes. It may work the way it should--but if it does, it's simply by luck,
rather than by design. Good engineers know their tools, and the best way to learn is to

stud
on.

So

Whe
exec
Com
The
gen
exec
the
wou
Con
add
syst
0x10
cont
ano
inco
the
the
with

Tha
cert
libra
com
give
built
one
whe
whe
As a
"PIC
imp
fPI
effic
may
The
used
the
to th
load
DOL
(IP)
0xC

The
sho
optio
sup

dy error mes

what is "P

en operating
cutable imag

mpilers and
erefore, whe
erate those
cutable at a
absolute ad

uld crash wh
nsider Figure
ress is 0x10
tem. In the p
0000000. At
trol to the ab
ther area of

orrectly at ad
processor ju
program ima

h more subtle

at's how thing
ain types of

ary will be lo
mpiler or the
en process, a
t, not the lib
 owns locati

ere there is s
ere it will fina
a result, sha
C" objects. P
lies that refe
IC" option is
cient relative
y be loaded
e diagram in
d when gen
image is loa
he current in
ded at the sa
LLAR SIGN
, so "$ + 0

C74 bytes ah

ere are vario
uld become
on that is m
ports a "-fp

ssages and t

PIC" code

g systems cr
ges at the s
linkers know
n they gene
references
 different loc
dresses wit

hen the it jum
e 1 below fo
0000000, thi
process on t
t some poin
bsolute addr
f the program
ddress 0x20
umps to add
age. This, o
e and dasta

gs work for
f hardware (
oaded within

linker before
and the orde
rary. Furthe
ion "B"? The
space for it a
ally reside--a
ared libraries
PIC is an acr
erences in th
used on the

e addressing
anywhere.
Figure 2 be
erating PIC

aded, addres
nstruction po
ame address
($) used in
xC74" tells

head of the c

us nuances
 familiar with
ost appropri
pic" option

The linked image cannot be displayed. The file may have been move
renamed, or deleted. Verify that the link points to the correct file and

their fixes un

e?

reate new p
ame memor

w this, and th
rate interna
as absolute
cation in me
hin the code

mped to the
r a moment
s diagram d
the left, an e
t in the code
ress 0x1000
m. In the pro
000000. Wh

dress 0x1000
f course, fai
rdly ramifica

Figure 1: Ab

program ima
Intel x86 and
a process a

ehand. This
er in which t
rmore, who'
e fact is, libra
at the time it
and then onl
s can only be
ronym which
he object co
e compiler c
g in branchin

elow graphic
objects. Wh

sses work co
ointer. In Fig
ses, 0x1000
the JMP ins
the process
current instru

Figure 2: Rela

to generatin
h them all be
iate for your
(lowercase)

ed,
 location.

ntil the prob

rocess addr
ry address.
hey know wh
l references

e addresses.
emory, it wou
e would be i
wrong locat
. Given a sy

depicts two p
executable im
e a "jmp" ins
01000, wher
ocess on the
hen that sam
01000, beca
ils--often spe
ations.

bsolute address

ages. Howe
d x86_64 in
address spa
s is because
they are load
's to say wh
raries may b
t's loaded. O
ly just before
e built from
h stands for

ode are not a
command lin
ng instructio

cally depicts
hen using re
orrectly bec

gure 2, the d
00000 and 0
struction rep
sor that it sho
uction pointe

ative addressin

ng and using
efore using
r situation. F
), which use

lem is well-u

ress spaces
This magic
hat that add

s to function
. If you were
uld simply n
ncorrect. At
tion during a
ystem whose
process add
mage is load
struction tells
re it continue
e right, the p
me branch in
ause that ad
ectacularly b

sing in executa

ever, when a
cluded), the

ace cannot b
many librar

ded depend
ich library ow
e loaded an

Only the ope
e it's actuall
a special cla
"Position-In

absolute, bu
ne, the comp
ns. Such po

the concept
elative addre
cause they're
iagrams ind

0x20000000
resents the
ould jump to
er position.

ng in shared lib

g position-in
them, so tha

For example
s a slightly q

understood,

, they alway
address is s
ress is on a
calls, for ex

e somehow a
ot work prop
the very lea

a function ca
e magic exe
ress spaces
ded correctly
s the proces
es executing
program is lo
nstruction is
ddress is har
by crashing,

ble images.

a shared libra
e address at
be known by
ries may be
s on how th
wns location

nywhere into
erating syste
y loaded.
ass of objec
ndependent
t relative. W

piler will use
osition-indep

t of relative a
essing, regar
e always enc
icate a shar
. In both cas
current instr

o the instruct

brary images.

ndependent
at you can c
, the GNU C
quicker, but

 before mov

ys load the
system-spec
a given syste
xample, they
able to load
perly, becau
ast, the prog
all.
ecutable load
s within that
y at address
ssor to trans
g instruction
oaded

encountere
rd-coded int
, but someti

rary is built fo
which the

y either the
loaded into

he executabl
n "A", and w
o a process
em loader kn

ct file called
Code", and

When the "-
 somewhat

pendent cod

addressing,
rdless of wh
coded relati
red library
ses, the
ruction point

ction starting

code, and y
choose the
C compiler a
more limited

ving

cific.
em.
y can

the
use
gram

d

s
sfer
s in

ed,
to
mes

or

any
le is

which

nows

less
e

 as
here
ve

ter
g

you

also
d

mechanism to accomplish relocatable object code. Wikipedia has a very informative page
on position-independent code (although I find its treatment of Windows DLLs to be
somewhat less than accurate).

Fixing the jupiter "PIC" problem

From what you now understand, one way to fix my linker error is to add the "-fPIC"
option to the compiler command line for the source files that comprise the
libjupcommon.a static library. Try that:
common/Makefile.am

noinst_LIBRARIES = libjupcommon.a

libjupcommon_a_SOURCES = jupcommon.h print.c

libjupcommon_a_CFLAGS = -fPIC

And now I'll try the build again:

$ autoreconf

$ make

...

gcc -DHAVE_CONFIG_H -I. -I../../common -I.. -fPIC

 -g -O2 -MT libjupcommon_a-print.o -MD -MP -MF

 .deps/libjupcommon_a-print.Tpo -c

 -o libjupcommon_a-print.o `test -f 'print.c' ||

 echo '../../common/'`print.c

...

/bin/sh ../libtool --tag=CC --mode=link gcc -g

 -O2 ../common/libjupcommon.a -o libjupiter.la

 -rpath /usr/local/lib libjupiter_la-jup_print.lo

 -lpthread

*** Warning: Linking ... libjupiter.la against the

*** static library libjupcommon.a is not portable!

libtool: link: gcc -shared

 .libs/libjupiter_la-jup_print.o

 ../common/libjupcommon.a -lpthread -Wl,-soname

 -Wl,libjupiter.so.0 -o .libs/libjupiter.so.0.0.0

libtool: link: (cd .libs && rm -f libjupiter.so.0

 && ln -s libjupiter.so.0.0.0 libjupiter.so.0)

libtool: link: (cd .libs && rm -f libjupiter.so

 && ln -s libjupiter.so.0.0.0 libjupiter.so)

libtool: link: ar cru .libs/libjupiter.a

 ../common/libjupcommon.a

 libjupiter_la-jup_print.o

libtool: link: ranlib .libs/libjupiter.a

libtool: link: (cd .libs && rm -f libjupiter.la

 && ln -s ../libjupiter.la libjupiter.la)

...

I now have a shared library, built properly with position-independent code, as per system
requirements. However, I still have that strange warning about the portability of linking a
Libtool library against a static library. The problem here is not in what I'm doing, but
rather in the way in which I'm doing it. You see, the concept of PIC does not apply to all
hardware architectures. Some CPUs don't support any form of absolute addressing in
their instruction sets. As a result, native compilers for these platforms don't support a -
fPIC option--it has no meaning for them.
If I tried (for example) to compile my code on an IBM RS/6000 system using the native
IBM compiler, it would "hiccup" when it came to the -fPIC option because it doesn't
make sense to support such an option on a system where all code is automatically

generated as position-independent code. One way I could get around this problem would
be to make the -fPIC option conditional in my Makefile.am file, based on the type of
the target system, and the tools I'm using. But that's exactly the sort of problem that
Libtool was designed to address! I'd have to account for all of the different Libtool target
system types and tool sets in order to handle the entire set of conditions that Libtool
already handles.
The way around this portability problem then is to let Libtool generate my static library as
well. Libtool makes a distinction between static libraries that are installed as part of a
developer's kit, and static libraries used only internally within a project. It calls such
internal static libraries "convenience" libraries, and whether or not a convenience library
is generated depends on the prefix used with the LTLIBRARIES primary. If the noinst
prefix is used, then Libtool assumes that I want a convenience library because there's no
point in generating a shared library that will never be installed. Thus, convenience
libraries are always generated as static archives.
The reason for distinguishing between convenience libraries and other forms of static
library is that convenience libraries are always built, whereas non-convenience static
libraries are only built if the --enable-static option is specified on the configure
command line (or conversely, if the --disable-static option is not specified).

Customizing Libtool with LT_INIT options
Default values for enabling or disabling static and shared libraries can be specified in the
argument list passed into the LT_INIT macro in the configure.ac script. Have a quick
look at the LT_INIT macrom which may be used with or without arguments. LT_INIT
accepts a single argument, which is a white-space separated list of key words. The
following key words are valid:
 dlopen -- Enable checking for dlopen support. This option should be used if the

package makes use of the -dlopen and -dlpreopen Libtool flags, otherwise Libtool
will assume that the system does not support dl-opening. This option is actually
assumed by default.

 disable-fast-install -- Change the default behavior for LT_INIT to disable
optimization for fast installation. The user may still override this default, depending on
platform support, by specifying --enable-fast-install to configure.

 shared -- Change the default behavior for LT_INIT to enable shared libraries. This is
the default on all systems where Libtool knows how to create shared libraries. The
user may still override this default by specifying --disable-shared to configure.

 disable-shared -- Change the default behavior for LT_INIT to disable shared
libraries. The user may still override this default by specifying --enable-shared to
configure.

 static -- Change the default behavior for LT_INIT to enable static libraries. This is
the default on all systems where shared libraries have been disabled for some reason,
and on most systems where shared libraries have been enabled. If shared libraries are
enabled, the user may still override this default by specifying --disable-static to
configure.

 disable-static -- Change the default behavior for LT_INIT to disable static
libraries. The user may still override this default by specifying --enable-static to
configure.

 pic-only -- Change the default behavior for libtool to try to use only PIC objects.
The user may still override this default by specifying --without-pic to configure.

 no-pic -- Change the default behavior of libtool to try to use only non-PIC objects.
The user may still override this default by specifying --with-pic to configure.

NOTE: I've omitted the description for the win32-dll option, because it doesn't apply to
this book.
Now, back to the Jupiter project. The conversion from an older static library to a new
Libtool convenience library is simple enough--all I have to do is add LT to the primary
name and remove the -fPIC option and the associated variable, as there were no other

options being used in that variable. Note also that I've changed the library extension
from .a to .la:
common/Makefile.am

noinst_LTLIBRARIES = libjupcommon.la

libjupcommon_la_SOURCES = jupcommon.h print.c

libjup/Makefile.am

...

libjupiter_la_LIBADD = ../common/libjupcommon.la

...

Now when I try to build, here's what I get:

$ autoreconf

$./configure

...

$ make

...

/bin/sh ../libtool --tag=CC --mode=compile gcc

 -DHAVE_CONFIG_H -I. -I../../common -I..

 -g -O2 -MT print.lo -MD -MP -MF .deps/print.Tpo

 -c -o print.lo ../../common/print.c

libtool: compile: gcc -DHAVE_CONFIG_H -I.

 -I../../common -I.. -g -O2 -MT print.lo -MD -MP

 -MF .deps/print.Tpo -c ../../common/print.c

 -fPIC -DPIC -o .libs/print.o

...

/bin/sh ../libtool --tag=CC --mode=link gcc -g -O2

 -o libjupcommon.la print.lo -lpthread

libtool: link: ar cru .libs/libjupcommon.a

 .libs/print.o

...

/bin/sh ../libtool --tag=CC --mode=link gcc -g -O2

 ../common/libjupcommon.la -o libjupiter.la

 -rpath /usr/local/lib libjupiter_la-jup_print.lo

 -lpthread

libtool: link: gcc -shared

 .libs/libjupiter_la-jup_print.o

 -Wl,--whole-archive

 ../common/.libs/libjupcommon.a

 -Wl,--no-whole-archive -lpthread -Wl,-soname

 -Wl,libjupiter.so.0 -o .libs/libjupiter.so.0.0.0

...

You can see that the common library is now built as a static convenience library because
the ar utility is used to build libjupcommon.a. Libtool also seems to be building files
with new and different extensions. A closer look will discover extensions such as .lo
and .la. If you take a closer look at these files, you'll find that they're actually descriptive
text files containing object and library meta data. Take a look at the
common/libjupcommon.la file:
common/libjupcommon.la

libjupcommon.la - a libtool library file

Generated by ltmain.sh (GNU libtool) 2.2

Please DO NOT delete this file!

It is necessary for linking the library.

The name that we can dlopen(3).

dlname=''

Names of this library.

library_names=''

The name of the static archive.

old_library='libjupcommon.a'

Linker flags that can not go in dependency_libs.

inherited_linker_flags=''

Libraries that this one depends upon.

dependency_libs=' -lpthread'

...

The various fields in these files help the linker--or rather the libtool wrapper script--to
determine certain options that would otherwise have to be remembered by the developer,
and then passed on the command line to the linker. For instance, the library's shared and
static names are remembered here, as well as any other library dependencies required
by these libraries. In this library, for example, I can see that libjupcommon.a depends
on the pthread library. But, using Libtool, I don't have to pass a -lpthread option on
the libtool command line because libtool can detect in this meta data file that the
linker will need this, so it passes the option for me.
Making these files human-readable was a minor stroke of genius, as they can tell me a
lot about my Libtool libraries, at a glance. These files are designed to be installed with
their associated binaries, and in fact, the make install rules generated by Automake
for Libtool libraries do just this.

The Libtool library versioning scheme

If you've spent any time at all working at the Linux command prompt, then you'll certainly
recognize this series of executable and link names.

NOTE: There's nothing special about libz--I am merely using this library as a common
example:

$ ls -dal /lib/libz*

... /lib/libz.so.1 -> libz.so.1.2.3

... /lib/libz.so.1.2 -> libz.so.1.2.3

... /lib/libz.so.1.2.3

If you've ever wondered what this means, then read on. Libtool provides a versioning
scheme for shared libraries that has become prevalent in the Linux world. Other
operating systems use different versioning schemes for shared libraries, but the one
defined by Libtool has become so popular that people often associate it with Linux, rather
than with Libtool. This is not entirely an unfair assessment because the Linux loader
honors this scheme to a certain degree. But to be completely fair, it's Libtool that should
be given the credit for this versioning scheme.

One interesting aspect of this scheme is that, if not understood properly, people can
easily mis-use or abuse the system without intending to. People who don't understand
this system tend to think of the numeric values as major, minor and revision, when in fact,
these values have very specific meaning to the operating system loader, and must be
updated properly for each new library version in order to keep from confusing the loader.
I remember a meeting I had at work one day several years ago with my company's
corporate versioning committee. This committee's job was to come up with software
versioning policy for the company as a whole. They wanted us to ensure that the version
numbers incorporated into our shared library names were in alignment with the corporate
software versioning standard. It took me the better part of a day to convince them that a
shared library version was not related to a product version in any way, nor should such a
relationship be established or enforced by them or anyone else.

Here's why. The version number on a shared library is not really a library version, but
rather an interface version. The interface I'm referring to here is the application
programming interface (API) presented by a library to the potential user--a programmer
wishing to call functions in the interface. As the GNU Libtool manual points out, a
program has a single well-defined entry point (usually called main, in the C language).
But a shared library has multiple entry points that are generally not standardized in a
widely understood manner. This makes it much more difficult to determine if a particular
version of a library is "interface-compatible" with another version of the same library.
NOTE: The concept of "interface" goes much deeper in shared library versioning,
referring to all aspects of a shared library's connections with the outside world. These
connections include files and file formats, network connections and wire data formats,
IPC channels and protocols, etc. When versioning a new public release of a shared
library, all aspects of the library's interactions with the world should be taken into account.

Microsoft DLL versioning

Consider Microsoft Windows Dynamic Link Libraries (DLLs). These are shared
libraries in every sense of the word. They provide a proper application
programming interface. But unfortunately, Microsoft has in the past provided no
integrated DLL interface versioning scheme. As a result, Windows developers have
often refered to DLL versioning issues (tongue-in-cheek, I'm sure) as "DLL hell".

As a fix to this problem, on Windows systems, DLLs can be installed into the same
directory as the program that uses them, and the Windows operating system loader
will always attempt to use the local copy first before searching for a copy in the
system path. This alleviates a part of the problem because a specific version of the
library can be installed with the package that requires it.
While this is a fair solution it's not a really good solution, because one of the major
benefits of shared libraries is that they can be shared--both on disk and in memory.
If every application has its own copy of a different version of the library, then this
benefit of shared libraries is lost--both on disk and in memory.
Since the introduction of this partial solution, Microsoft hasn't paid much attention
to DLL sharing efficiency issues. The reasons for this include both a cavalier attitude
regarding the cost of disk space and RAM, and a technical issue regarding the
implementation of Windows dynamic link libraries. Instead of generating position-
independent code, Microsoft system architects chose to link DLL's with a specific
base address, and then list all absolute address references in a base table in the
image header. When a DLL can't be loaded at the required base address (because of
a conflict with another DLL), then the loader "rebases" the DLL by picking a new
base address and changing all of the absolute addresses referred to in the base table.
Whenever a DLL is rebased in this manner, it can only be shared with processes
that happen to rebase the DLL to the same address. The odds of accidentally
encountering such a scenario--especially among applications with many DLL
components--are pretty slim.
Recently, Microsoft invented the concept of the "Side-by-Side Cache" (sometimes
referred to as "SxS"), which allows developers to associate a unique identification
value (a GUID, in fact) with a particular version of a DLL installed in a system
location. This location is named by the DLL name and version identifier.
Applications built against SxS-versioned libraries have meta data stored in their
executable headers that indicate the particularly versioned DLLs that they require.
If the right version is found (by newer OS loaders) in the SxS cache, then they load it.
Based on policy in the meta data, they can then revert to the older scheme of looking
for a local and then a global copy of the DLL. This is a vast improvement over
earlier solutions--providing a very flexible versioning system.
Given the fact that DLLs use the rebasing technique, as opposed to PIC code, the
side-by-side cache is still a fairly benign improvement with respect to applications
that manage dozens of shared libraries. SxS is really intended for system libraries
that many applications are likely to consume. These are generally "based" at
different addresses, so that the odds of clashing (and thus rebasing) are decreased.
Regardless, the entire based approach to shared libraries has the major drawback
that the program address space may become fairly fragmented, as randomly
chosen base addresses are honored throughout a 32-bit address space by the system
loader. 64-bit addressing helps tremendously in this area, so you may find the side-
by-side cache to be much more useful on 64-bit Windows systems.

Linux and other Unix-like systems that support shared libraries manage interface
versions using the Libtool versioning scheme. In this scheme, shared libraries are said to
support a range of interface versions, each identified by a unique integer value. If any
aspect of an interface changes in any way between public releases, then it can no longer
be considered the same interface. It becomes a new interface, identified by a new integer
interface value. To make the interface versioning process comprehensible to the human
mind, each public release of a library wherein the interface has changed simply acquires
the next consecutive interface version number. Thus, a given shared library may support
versions 2-5 of an interface.

Libtool shared libraries follow a naming convention that encodes the interface range
supported by a particular shared library. A shared library named libname.so.0.0.0
contains the library interface version number, 0.0.0. these three values are respectively
called the library interface current, revision and age values.
The current value represents the current interface version number. This is the value
that changes each time a new interface version must be declared, because the interface
has changed in any way since the last public release of the library. The first interface in a
library is given a version number of "0", by popular convention.
Consider a shared library wherein the developer has added a new function to the set of
functions exposed by this library since the last public release. The interface can't be
considered the same in this new version as it was in the previous version because there's
one additional function. Thus, it's current number must be increased from "0" to "1".
The age value represents the number of back-versions supported by the shared library.
In mathematical terms, the library is said to support the interface range, current - age
through current. In the example I just gave, a new function was added to the library, so
the interface presented in this version of the library is not the same as that presented in
the previous version. However, the previous version is still fully supported because the
previous interface is a proper subset of the current interface. Thus, this library could
conceivably be named "libname.so.1.0.1", where the range of supported interfaces
is 1 - 1 (or 0) through 1, inclusive.
The revision value merely represents a serial revision of the current interface. That is,
if no changes are made to a shared library's interface between releases--perhaps an
internal function was optimized--then the library name should change in some manner,
but both the current and age values would be the same, as the interface has not
changed. The revision value is incremented to reflect the fact that this is a new
release of the same interface. If two libraries exist on a system with the same name, and
the same current and age values, then the operating system loader will always select
the library with the higher revision value.
To simplify the release process for shared libraries, the GNU Libtool manual provides an
algorithm that should be followed step-by-step for each new version of a library that is
about to be publically released. I'll reproduce the algorithm verbatim here for your
information:

 Start with version information of 0:0:0 for each libtool library. [This is done automatically
by simply omitting the -version option from the list of linker flags passed to the
libtool script.]

 Update the version information only immediately before a public release of your software.
More frequent updates are unnecessary, and only guarantee that the current interface
number gets larger faster.

 If the library source code has changed at all since the last update, then increment
revision (c:r:a becomes c:r+1:a).

 If any interfaces [exported functions or data] have been added, removed, or changed
since the last update, increment current, and set revision to 0.

 If any interfaces have been added since the last public release, then increment age.
 If any interfaces have been removed since the last public release, then set age to 0.

Keep in mind that this is an algorithm, and as such it is designed to be followed step by
step, as opposed to jumping directly to the steps that appear to apply to your case. For
example, if you removed any API functions from your library since the last release, you
would not simply jump to the last step and set age to zero. Rather, you would follow all of
the steps properly until you reached the last step, and then set age to zero.
In greater detail: assume that this is the second release of a library, and that the first
release was named libexample.so.0.0.0, and that one new function was added to
the API during this development cycle, and one old function was deleted. The effect on
this release of the library would be as follows:

 (n/a)

 (n/a)
 libexample.so.0.0.0 -> libexample.so.0.1.0 (library source was changed)
 libexample.so.0.1.0 -> libexample.so.1.0.0 (library interface was modified)
 libexample.so.1.0.0 -> libexample.so.1.0.1 (one new function was added)
 libexample.so.1.0.1 -> libexample.so.1.0.0 (one old function was removed)

Why all the "hoop jumping"? Because, as I alluded to earlier, the versioning scheme is
honored by the linker and the operating system loader. When the linker creates the
library name table in an executable image header, it writes the versions of the libraries
linked to the application along side of each entry in this table. When the loader searches
for a matching library, it looks for the latest version of the library required by the
executable. If the application was linked with version 0.0.0 of a particular library, but the
user only has version 1.0.1 installed, the system will load it and use it because it's
current and age values indicate that it supports the required version (0).
Note also that libname.so.0.0.0 can coexist in the same directory as
libname.so.1.0.0 without any problem. Programs that need the earlier version
(which supports only the later interface because of the deleted function) will properly and
automatically have it loaded into their process address space, just as will programs that
require the later version properly have the "1.0.0" version loaded.
One more point regarding interface versioning. Once you fully understand Libtool
versioning, you'll find that even the above algorithm does not cover all possible interface
modification scenarios. Consider, for example, version 0.0.0 of a shared library that you
maintain. Now, assume you add a new function to the interface for the next public
release. This second release is properly named version 1.0.1, because the library
supports both interfaces 0 and 1. Just before the third release of the library, you realize
that you didn't really need that new function after all, and so you remove it. Assume also
that this is the only change made to the library interface in this release. The above
algorithm would have this release named version 2.0.0. But in fact, you've merely
removed the second interface, and are now presenting the original interface once again.
Technically, this library should be properly named version 0.1.0, as it presents a second
release of version 0 of the shared library interface.

Using libltdl to dlopen a shared library
Once again, I'm going to have to add some functionality to the Jupiter project in order to
illustrate the concepts of this section. The goal here is to create a plug-in interface that
the jupiter application can use to enhance the output.

Necessary infrastructure

Currently, jupiter prints "Hello, from jupiter!". (Actually, the name printed is more likely
at this point to be a long ugly path containing some Libtool directory garbage and some
derivation of the name "jupiter", but just pretend it prints "jupiter" for now.) I'm going to
add an additional parameter to the common static library print routine, named
"salutation". This parameter will also be a character string reference, and will contain the
leading word or phrase--the salutation, as it were.
Here are the changes I have to make to the files in the common directory:
common/print.c

...

static void * print_it(void * data)

{

 char ** strings = (char **)data;

 printf("%s from %s!\n", strings[0], strings[1]);

 return 0;

}

int print_routine(char * salutation, char * name)

{

 char * strings[] = {salutation, name};

#if ASYNC_EXEC

 pthread_t tid;

 pthread_create(&tid, 0, print_it, strings);

 pthread_join(tid, 0);

#else

 print_it(strings);

#endif

 return 0;

}

common/jupcommon.h

#ifndef JUPCOMMON_H_INCLUDED

#define JUPCOMMON_H_INCLUDED

int print_routine(char * salutation, char * name);

#endif /* JUPCOMMON_H_INCLUDED */

And here are the changes I need to make to the files in the libjup and include
directories:

libjup/jup_print.c

...

int jupiter_print(char * salutation, char * name)

{

 print_routine(salutation, name);

}

include/libjupiter.h

...

int jupiter_print(char * salutation, char * name);

...

And finally, here are the changes I need to make to main.c in the src directory:
src/main.c

...

#define DEFAULT_SALUTATION "Hello"

int main(int argc, char * argv[])

{

 char * salutation = DEFAULT_SALUTATION;

 jupiter_print(salutation, argv[0]);

 return 0;

}

To be clear, all I've really done here is parameterize the salutation in the print routines.
That way, I can indicate from main what salutation I'd like to use. I've set the default
salutation to "Hello", so that nothing will have changed from the user's perspective. The

overall effect of these changes was benign. Note also that these are all source code
changes. I've made no changes to the build system.

Adding a plug-in interface

Now, I can begin to discuss adding a plug-in interface to Jupiter. I'd like to make it
possible to change the salutation displayed by simply changing a plug-in module. The
code and build system changes required to add this functionality will be limited here to
the src directory, and subdirectories thereof.
First, I need to define the actual plug-in interface. I'll do this by creating a new private
header file in the src directory, called module.h:
src/module.h

#ifndef MODULE_H_INCLUDED

#define MODULE_H_INCLUDED

#define GET_SALUTATION_SYM "get_salutation"

typedef char * get_salutation_t(void);

char * get_salutation(void);

#endif /* MODULE_H_INCLUDED */

There are a number of interesting points about this header file. First, the preprocessor
definition, GET_SALUTATION_SYM. This string represents the name of the function you
need to import from the plug-in module. I like to define these in the header file, so that all
of the information that needs to be reconciled co-exists in one place. In this case, the
symbol name, the function type definition, and the function prototype must all be in
alignment. While I could have simply allowed the caller to specify the string, defining the
symbol name here allows me to change it later if I need to. As long as the caller used the
definition I provided, s/he should be unaffected by a name change (of course, s/he'll have
to recompile).
Another interesting point is the type definition: why should I provide one? If I don't, the
user is going to have to invent one, or else use a complex type cast on the return value of
the dlsym function. I provide it here for consistency. Finally, look at the function
prototype. This isn't so much for the caller, as it is for the module itself. Modules providing
this function should include this header file, so that the compiler can catch potential mis-
spellings of the function name. Since all of this information must be in agreement, I
simply define it all here together.

Doing it the "old-fashioned" way

For this first attempt, I'll use the dlopen/dlsym/dlclose interface provided by the
Solaris, BSD and Linux libdl.so library. Then, in the next section, I'll convert this code

over to the Libtool ltdl interface. To do this right, I need to add checks to the
configure.ac script to look for both the libdl library and the dlfcn.h header file:
configure.ac

...

Checks for header files (2).

AC_CHECK_HEADERS([stdlib.h dlfcn.h])

Checks for libraries.

Checks for typedefs, structures, and compiler...

Checks for library functions.

AC_SEARCH_LIBS([dlopen], [dl])

...

echo \

"---

 ${PACKAGE_NAME} Version ${PACKAGE_VERSION}

 Prefix: '${prefix}'.

 Compiler: '${CC} ${CFLAGS} ${CPPFLAGS}'

 Libraries: '${LIBS}'

...

These changes consist of adding the dlfcn.h header file to the list of files passed to the
AC_CHECK_HEADERS macro, and adding a check for the dlopen function in the dl
library. Note here that the AC_SEARCH_LIBS macro searches a list of libraries for a
function, so this call goes under the section entitled, "Checks for library functions.", rather
than the one entitled, "Checks for libraries."
To help me see which libraries I'm actually linking against, I've also added a line to the
echo statement at the end of the file. The "Libraries:" line displays the contents of the
LIBS variable, which is modified by the AC_SEARCH_LIBS macro.
NOTE: The LT_INIT macro actually already checks for the existence of the dlfcn.h
header file, but I do it here explicitly, so it's obvious to observers that I wish to use this
header file myself. This is a good rule of thumb to follow, as long as it doesn't negatively

affect performance too much. In this case, I felt it was well worth the extra check. Besides
that, the results of the check performed by LT_INIT is cached by autom4te, so it has
little effect anyway.
Now it's time to actually add a new module. This requires several changes, so I'll make
them all here now in the following command sequence:

$ cd src

$ mkdir -p modules/hithere

$ vi Makefile.am

SUBDIRS = modules

...

$ echo "SUBDIRS=hithere" > modules/Makefile.am

$ cd modules/hithere

$ echo "pkglib_LTLIBRARIES = hithere.la

> hithere_la_SOURCES = hithere.c

> hithere_la_LDFLAGS = -module \

> -avoid-version" > Makefile.am

$ vi hithere.c

#include "../../module.h"

char * get_salutation(void)

{

 return "Hi there";

}

Okay, look for a moment at this sequence. First, I created a modules directory beneath
the existing src directory, and then a hithere directory beneath the new modules
directory. The hithere module will provide the salutation, "Hi there" to the caller.
Next, I added a SUBDIRS directive to the top of the src/Makefile.am file, indicating
that the new modules directory should be processed by Automake. Then I created a
new Makefile.am file in the new hithere directory, containing instructions on how to
build the hithere.c source file. Finally, I went ahead and added the hithere.c
source file, itself.

The source file includes the private module.h header file using a double quoted relative
path. The make VPATH statement will handle any differences between the source and
build trees with regard to this relative path. The file then defines the get_salutation
function, which is prototyped in the module.h header file. It simply returns a pointer to a
static string.
As long as this library is loaded, this string is available to the caller. This is important to
know because the caller must know the scope of data references returned by plug-in
modules, as such modules could inadvertently be unloaded before the caller is ready to
stop using these references.

The last line of the hithere/Makefile.am file requires some explanation. Here, I'm
using a -module option on the hithere_la_LDFLAGS variable. This is a Libtool option,
that tells Libtool that you really do want to call your library "hithere", and not
"libhithere". The GNU Libtool manual makes the statement that modules do not need
to be prefixed with "lib". Quite frankly, I'm not sure who came up with this policy, but it
seems fairly arbitrary to me. I suppose the reason for this is that since your own code will
be loading the module, it should not have to be concerned with using the "lib" prefix. Oh
well, there you have it--modules need not be prefixed with "lib".
If you don't care to use module versioning on your dynamically loadable (dlopen)
modules, then try using the Libtool -avoid-version option, as I've also done here.
This option causes Libtool to generate the shared library as libname.so, rather than
libname.so.0.0.0, along with links for libname.so.0 and libname.so pointing to
this binary image.
I still need to make one more change to the configure.ac file to get this new module
to build. I need to add these two new makefiles to the AC_CONFIG_FILES list.
configure.ac

...

AC_CONFIG_FILES([Makefile

 common/Makefile

 include/Makefile

 libjup/Makefile

 src/Makefile

 src/modules/Makefile

 src/modules/hithere/Makefile])

...

These changes will allow our module to be built, but I'm still not using it. To use the
module, I need to modify the src/main.c file so that it loads the module, imports the
symbol, and uses it.
src/main.c

#include <libjupiter.h>

#include "module.h"

#if HAVE_CONFIG_H

include <config.h>

#endif

#if HAVE_DLFCN_H

include <dlfcn.h>

#endif

#define DEFAULT_SALUTATION "Hello"

int main(int argc, char * argv[])

{

 char * salutation = DEFAULT_SALUTATION;

#if HAVE_DLFCN_H

 void * module;

 get_salutation_t * get_salutation_fp = 0;

 module = dlopen("./module.so", RTLD_NOW);

 if (module != 0)

 {

 get_salutation_fp = (get_salutation_t *)

 dlsym(module, GET_SALUTATION_SYM);

 if (get_salutation_fp != 0)

 salutation = get_salutation_fp();

 }

#endif

 jupiter_print(salutation, argv[0]);

#if HAVE_DLFCN_H

 if (module != 0)

 dlclose(module);

#endif

 return 0;

}

In this new version of main.c, I'm including the new private module.h header file. I've
also added preprocessor directives to conditionally include config.h, and then
dlfcn.h. Finally, I've added two sections of code; one before and one after the original
call to jupiter_print. Both are conditionally compiled, based on whether or not I have
access to a dynamic loader. This conditional, of course, allows our code to build and run
correctly on systems that do not provide run-time dynamic linking via the libdl library.
The general philosophy that I use here when deciding if code should be conditionally
compiled is this: if I fail in the configure script because a library or header file is
missing, then I don't need to conditionally compile the code that uses the item checked
for by configure. If I check for a library or header file in configure, but allow it to
continue if it's missing, then I'd better use conditional compilation.
There are just a few more minor points to bring up regarding the use of libdl interface
functions. First, dlopen accepts two parameters, a file name or path (absolute or
relative), and a flags word, which is the bitwise composite of your choice of several flag
values defined in dlfcn.h. If a path is used, then dlopen honors that path verbatim.
But if a file name is used, then the library search path is searched for your module. By
prefixing the name with ./, I've told dlopen not to search.
But, shouldn't the file name have been "hithere.so"? Well, it's true that I built a module
called "hithere.so", but I want to be able to configure which module jupiter uses. So
I'm using the generic name, "module.so". In fact, the built module is actually located
several directories down in the build tree from the src directory. To test this functionality,
I'll need to create a link in the current directory called module.so that points to the
module I wish to load.

$./configure && make

...

$ cd src

$./jupiter

Hello, from ...jupiter!

$ ln -s modules/hithere/.libs/hithere.so module.so

$./jupiter

Hi there, from ...jupiter!

$

All of this would normally be done using policy defined in some sort of configuration file in
a real application, but none of this is important in this example, so I'm simply ignoring
these details to simplify the code.

Check the man page for dlopen to learn more about the flag bits that may be specified.
By this point in this chapter, you should have the background required to understand
most of the descriptions you'll find there.

Converting to Libtool's ltdl library
As I mentioned earlier, Libtool provides a wrapper library called ltdl that abstracts and
hides some of the portability issues surrounding the use of shared libraries across many
different platforms. Most applications ignore the ltdl library because of the added
complexity involved in using it. But there are really only a few issues to deal with. I'll
enumerate them here, and then cover them in detail:
 The ltdl functions follow a naming convention based on the dl library. However, the

names are different. Generally, the rule of thumb is that dl functions such as dlopen
are prefixed in the ltdl library with lt_. Thus, dlopen is named lt_dlopen.

 Unlike the dl library, the ltdl library must be initialized and terminated at appropriate
locations in a program.

 To make full use of ltdl functionality--even on platforms that don't provide shared
library functionality--you need to build your consuming application (the jupiter
program, in this case), using the -dlopen <modulename> option on the linker
command line.

 To ensure that modules can be "opened" on non-shared library platforms, or when
building static-only configurations, you need to use the
LTDL_SET_PRELOADED_SYMBOLS() macro at an appropriate location in your
program source code.

 Shared library modules designed to be dlopened using ldtl should use the -
module option (and optionally, the -avoid-version option) on the linker command
line (specifically, in the *_LDFLAGS variable).

 The ltdl library also provides extensive functionality beyond the dl library, and this
can be intimidating, but all of this other functionality is optional.

Take a look specifically at what I need to do to the Jupiter project build system in order to
use the ltdl library. First, I need to modify the configure.ac script to look for the
ltdl.h header, and search for the lt_dlopen function. This means modifying
references to dl.h and the dl library in the AC_CHECK_HEADERS and
AC_SEARCH_LIBS macros:
configure.ac

...

Checks for header files (2).

AC_CHECK_HEADERS([stdlib.h ltdl.h])

Checks for libraries.

Checks for typedefs, structures, and compiler...

Checks for library functions.

AC_SEARCH_LIBS([lt_dlopen], [ltdl])

...

If I'm using Libtool, then why do I even need to check for ltdl.h and libltdl?
Because, these are separate libraries, which must be installed on your end-user's system
in order to make them available.
I'd like you to recognize that this is the first time that the Autotools have required an end-
user to have an Autotools package installed on his or her machine. This is the very
reason is why most people avoid the use of ltdl entirely. The GNU Libtool manual
provides a detailed description of how to package the ltdl library with your project, so
that it get's built and installed on the end-user's system when your package is built and
installed.
In fact, this tutorial (which you'll find in Section 11.6 of that manual) is a great example of
adding sub-projects into a project. Interestingly, shipping the source code for the ltdl
library with your package is the only way to get your program to statically link with the
ltdl library. Linking statically with ltdl has the added (and very ironic) side effect of
not requiring the ltdl library to be installed on the end-user's system at all! Since it
becomes part of your executable images, you no longer need it to be installed. However,
there are caveats to doing this. If you happen to consume a third-party library that does
link dynamically to ltdl, then you'll have a symbol conflict between the shared and static
versions of the ltdl libraries. Given how little ltdl is currently used, this is an unlikely
scenario these days, but all of this could change in the future, if more packages begin to
use ltdl, one way or the other.
In any case, by searching for these installed resources on the end-user's system, and by
failing configuration if they're not found, or by properly using preprocessor definitions in
your source code, you can provide the same sort configuration experience with ltdl that
I've talked about throughout this book when using other third-party resources. It's the
same, really.
The next major change required is found in the source code--limited, in this case, to
src/main.c:
src/main.c

#include <libjupiter.h>

#include "module.h"

#if HAVE_CONFIG_H

include <config.h>

#endif

#if HAVE_LTDL_H

include <ltdl.h>

#endif

#define DEFAULT_SALUTATION "Hello"

int main(int argc, char * argv[])

{

 char * salutation = DEFAULT_SALUTATION;

#if HAVE_LTDL_H

 int ltdl;

 lt_dlhandle module;

 get_salutation_t * get_salutation_fp = 0;

 LTDL_SET_PRELOADED_SYMBOLS();

 ltdl = lt_dlinit();

 if (ltdl == 0)

 {

 module = lt_dlopen("modules/.../hithere.la");

 if (module != 0)

 {

 get_salutation_fp = (get_salutation_t *)

 lt_dlsym(module, GET_SALUTATION_SYM);

 if (get_salutation_fp != 0)

 salutation = get_salutation_fp();

 }

 }

#endif

 jupiter_print(salutation, argv[0]);

#if HAVE_LTDL_H

 if (ltdl == 0)

 {

 if (module != 0)

 lt_dlclose(module);

 lt_dlexit();

 }

#endif

 return 0;

}

The changes here are very symmetrical with respect to the original code. Mostly, items
that previously referred to dl now refer to ltdl or lt_dl. For example, #if
HAVE_DL_H now becomes #if HAVE_LTDL_H, and so forth.
One important change is the fact that the ltdl library must be initialized with a call to
lt_dlinit, whereas the dl library need not be initialized at all. This complicates the
code a little--in fact, it may appear to do so much more than it really does, just by virtue of

the fact that jupiter is so ridiculously simple. In a larger program, the complexity
overhead of calling lt_dlinit and lt_dlexit are amortized over a much larger code
base.
Another important detail is the addition of the LTDL_SET_PRELOADED_SYMBOLS macro.
This macro is used to configure global variables required by the lt_dlopen and
lt_dlsym functions on systems that don't support shared libraries. It's benign on
systems where shared libraries are used.
One last detail that I should mention is that the return type of dlopen was void *, or a
generic pointer, whereas the return type of lt_dlopen is actually lt_dlhandle. This
abstraction is important so that ltdl can be ported to systems that have a return type
not compatible with a void pointer.
When a system doesn't support shared libraries, Libtool actually links all modules that
might be loaded right into the program. Thus, the jupiter program's linker command
line must contain some form of reference to these modules. This is done using the -
dlopen <modulename> construct, in this manner:
src/Makefile.am

...

jupiter_LDADD = ../libjup/libjupiter.la \

 -dlopen modules/hithere/hithere.la

...

Now, this begs the question: What do you do when there is a choice of module to be
loaded, as in the case of the jupiter program? If Libtool links them all into a program, and
they all provide a get_salutation function, then there will be a conflict of public
symbols. Which one will be used? The GNU Libtool manual provides for this condition by
defining a convention for symbol naming:

 All exported interface symbols should be prefixed with <modulename>_LTX_ (eg.,
hithere_LTX_get_salutation).

 All remaining non-static symbols should be reasonably unique. The Libtool way is to
prefix them with _<modulename>_ (eg., _jupiter_internal_function).

 Modules should, of course, be named differently, even if they're built in different
directories.
Although (unfortunately) it's not explicitly stated in the GNU Libtool manual, the
lt_dlsym function first searches for the specified symbol as
<modulename>_LTX_<symbolname>, and then, if it can't find a prefixed version of the
symbol, for exactly <symbolname>.
You can see that this convention, or something like it, is necessary, but only for cases
where Libtool may statically link such loadable modules directly into the application on
systems that don't support shared libraries. Libtool's ltdl library makes it possible to
have the appearance of shared libraries on platforms that don't support shared libraries,
but the price you have to pay for this level of portability is pretty high. This is another
reason why people avoid the use of ltdl.
To fix the hithere module's source code so that it's in conformance with this convention,
I have to make the following changes:
src/modules/hithere/hithere.c

#define get_salutation hithere_LTX_get_salutation

#include "../../module.h"

char * get_salutation(void)

{

 return "Hi there";

}

While it is indeed rather odd to have a preprocessor definition above a header file
inclusion statement, in this case, it makes sense. By defining the replacement for
get_salutation above the inclusion of the module.h header file, I'm also able to
change the prototype in the header file so that it matches the modified version of the
function name. Because of the way the C preprocessor works, this substitution only
affects the function prototype in module.h, not the quoted symbol string, or the type
definition.

Checking it all out

You can test your program and modules for both static and dynamic shared library
systems by using the --disable-shared option on the configure command line:

$./configure --disable-shared && make

...

$ cd src

$ ls -1p modules/hithere/.libs

hithere.a

hithere.la

hithere.lai

$./jupiter

Hi there, from ./jupiter!

$

$ cd ..

$ make clean

...

$./configure && make

$ cd src

$ ls -1p modules/hithere/.libs

hithere.a

hithere.la

hithere.lai

hithere.o

hithere.so

$./jupiter

Hi there, from ...jupiter!

$

As you can see, in both configurations, the output contains the hithere salutation, and
yet in the --disable-shared version, the shared library doesn't even exist. It seems
that ltdl is doing its job.
The Jupiter code base has become rather fragile, because I've ignored the issue of
where to find shared libraries at run-time. This problem would ultimately have to be fixed
in a real program. But, given that I've finished my task of showing you how to properly
use the Libtool ltdl library, and that I've taken the "Hello, world!" concept much farther
than anyone has a right to, I think I'll just leave the rest as an exercise.

Summary

That was a lot to assimilate. Libtool, as with the other packages in the Autotools tool
chain gives you a lot of functionality and flexibility. As you've probably noticed, with this
functionality and flexibility comes complexity.

Libtool can make your life easier, or more difficult, depending on how you choose to use
the options and flexibility it offers you. But with this background, you can decide the
degree to which you will embrace the optional features of Libtool, like the ltdl library,
for example. The decision to use shared libraries brings with it a whole truck-load of
issues. Each must be dealt with if you're interested in maximum portability. The ltdl
library is not a solution to every problem. It solves some problems, but brings others to
the surface. Suffice it to say that using ltdl has trade-offs.
Hopefully, by spending a little time going through the exercises in this book, you've been
able to "get your head around" the Autotools enough to at least be comfortable with how
they work and what they're doing for you. At this point, you should be very comfortable
Autotool-izing your own projects--at least at the basic level.

Source archive

Download the attached source archive for the original sources associated with this
chapter.

‹ Chapter 4: Automatically writing makefiles with Automake up Chapter 6: FLAIM: an
Autotools example ›

Chapter 6: FLAIM: an Autotools
example
Mon, 2008-03-10 20:34 -- John Calcote

In this book, I've taken you on a whirlwind tour of the main features of Autoconf,
Automake and Libtool. I believe I've explained them in a manner that was not only simple
to digest, but also to retain--especially if you had the time and inclination to follow my
lead with your own copies of the examples. I've always believed that no form of learning
comes anywhere close to the learning that happens while doing.
This chapter has downloads!
In this chapter, I'll continue this learning-by-doing pattern by converting an existing open
source project to use the GNU Autotools.

The project I've chosen is called FLAIM, which is (what else?) an acronym that stands for
FLexible Adaptable Information Management. FLAIM is actually a highly scalable
database management system, written entirely in C++, and built on its own thin portability
layer called the FLAIM Tool Kit (FTK).

What's FLAIM?!

Some of you out there may recognize FLAIM as the database used by both Novell
eDirectory and the Novell GroupWise server. Novell eDirectory currently uses this
particular version of FLAIM today to manage directory information bases (DIBs)
containing over a billion objects. GroupWise actually uses a much earlier spin-off of
FLAIM.

Novell made the FLAIM source code available as an open source project licensed under
the GNU General Public License (GPL) version 2 in 2006. The FLAIM project is hosted
by Novell's forge site. As a side note, if you're interested in looking at FLAIM yourself,
you'll need to set up a Novell account. This is simple to do, and costs nothing. You'll be
given the opportunity to create a Novell account the first time you attempt to access the
Novell forge site.

Why FLAIM?

While FLAIM is not a mainstream OSS project, it has several qualities that make it the
perfect choice of project to convert to GNU Autotools in this chapter. For instance, it's
currently built using a hand-coded makefile--and a beast of makefile it is, too, containing
well over 2000 lines of complex make script. The FLAIM makefile contains a number of
GNU-make specific constructs, and thus can only be processed using GNU make.
Individual (but nearly identical) makefiles are used to build the flaim, xflaim, and flaimsql
database libraries, as well as the FLAIM tool kit (ftk) and several utility and sample
programs on GNU/Linux, Unix, Windows and NetWare.

The existing FLAIM build system targets several different flavors of Unix, including AIX,
Solaris, and HP/UX, as well as Apple's OS X. It also targets multiple compilers on these
systems. These features make FLAIM ideal for my example conversion project, because
I can show you how to handle differences in operating systems and tool sets in the new
configure.ac files.
The existing build system also contains rules for many of the standard GNU Autotools
targets, such as distribution tarballs. In addition, it provides rules for building binary
installation packages, as well as RPMs for systems that can build and install RPM
packages. Finally, it even provides targets for building doxygen description files, which it

then uses to build source documentation. I'll spend a few paragraphs discussing how
these types of targets can be added to the infrastructure provided by Automake.

The FLAIM tool kit is a portability library that can be built and consumed in its own right
by third-party applications or libraries. This gives me the opportunity to demonstrate
Autoconf's ability to manage separate sub-projects as optional sub-directories within a
project. That is, if the FLAIM tool kit happens to already be installed on the end-user's
build machine, then the installed version may be used, or optionally overridden with the
local copy. On the other hand, if the FLAIM tool kit is not installed, then the local, sub-
directory based copy will be used by default.

The FLAIM project also provides code to build both Java and CSharp language bindings,
which allows me to delve a bit into those esoteric realms. I'll not go into great detail on
building either Java or CSharp applications, but I will cover how to write a Makefile.am
file that does.
The FLAIM project makes good use of unit tests, which are built as individual programs
that run without command line parameters. Thus, I can easily show you how to add unit
tests to the new FLAIM build system using Automake's trivial test framework. (Autoconf
supplies a more extensive test framework called Autotest, but I'll not discuss Autotest at
this time.)

The FLAIM project, and its original build system happen to use a reasonably modular
directory layout, making it rather easy to convert to GNU Autotools, which simply run
better in projects that follow such good design principles. As one of my goals is ultimately
to submit this build system back to the project maintainers, it's nice not to have to
rearrange too much of the source code. A simple directory tree diff should suffice.

Finally, I also chose FLAIM because I have some limited experience with it. Although I
have been given check-in rights to the project, I'm not really a FLAIM developer, and my
experience is pretty much limited to using it for simple database projects occasionally.

Why hasn't FLAIM already been converted?

There are several good reasons why FLAIM hasn't already been converted to use the
GNU Autotools.

 FLAIM is still a fairly new open source project, having only been released a couple of
years ago.

 FLAIM's existing build system is well-understood by the developers, and they have
limited experience with the GNU Autotools.

 FLAIM's build system targets three different kinds of platform, Windows, Unix and
NetWare, using only GNU makefiles. This makes it difficult to give up, because one
makefile is used to build FLAIM for all target platforms.
But FLAIM's build system is not well understood by the open source community. Since
FLAIM's release into the "wild", several people have complained about FLAIM's "nasty"
makefile on the FLAIM mailing lists. The GNU makefile that FLAIM uses is more or less
an unmaintainable monstrosity, from the perspective of new developers. This negative
attitude has an almost viral effect on the usefulness of the entire project within the
community.
These community critics are accurate in their assessment of FLAIM's build system, with
respect to an open source project. The FLAIM team recognizes this and has voiced the
desire to establish an Autotools build system, at least for GNU/Linux and Unix platforms.
This means that duplicate build systems would have to be created for NetWare and
Windows (as per my personal philosophy with respect to using Autotools on non-Unix
systems). But, as they say in the shoe business, "The customer is always right!".

An initial look

Let me just start by saying that converting FLAIM from GNU makefiles to an Autotools
build system is a non-trival project. It took me a couple of weeks. Much of that time was
spent determining exactly what to build, and how to do it--in other words, analyzing the
existing FLAIM build system. Another significant portion of my time was spent on
converting aspects of the FLAIM build system that lay on the outer fringes of Autotools
functionality. For example, I spent more time converting build system rules for building
CSharp language bindings than I did for building the core C++ FLAIM libraries.

Working on the outer fringes of Autotools capabilities can be a frustrating experience. I'll
readily admit that this is where most people get disgusted with the GNU Autotools--
especially with Automake. It's my hope that this Chapter will put you ahead of most
others in this area. Once you learn a few tricks, working on the outer fringe is pretty
simple.

The first step in this conversion project is to analyze the existing directory structure and
build system. What components are actually built, and which components depend on
others? Can individual components be built, distributed and consumed independently?
These types of component-level relationships are important, because they'll often
determine how you want to layout your project directory structure.

The FLAIM project is actually several small projects, combined into one large umbrella
project within its Subversion repository. There are three separate and distinct database
products, flaim, xflaim and flaimsql. The flaim sub-project is the original FLAIM database
library used by eDirectory and GroupWise. The xflaim project is a hierarchical XML
database, optimized for node-based access. This version was developed for internal
projects at Novell. The flaimsql project is FLAIM with integrated SQL semantics exposed
through the FLAIM API. This was an experiment, which frankly isn't quite finished.

The point is that all three of these database libraries are separate and unrelated to each
other; none of them depend on the others. Since they may easily be used independently
of one another, they can actually be shipped as individual distributions. Each could be
considered an individual project, in its own right. This, then will become one of my
primary goals--to allow the FLAIM project to be easily broken up into smaller projects,
which may be managed independently of one another.

The FLAIM tool kit is also an independent project. While it's tailored specifically for the
FLAIM database projects, providing just the system service abstractions required for a
DBMS, it depends on nothing but itself, and may easily be used as the basis for
portability within another project, without dragging any unnecessary database baggage
along. As you might guess, its file I/O abstraction is highly optimized.

The existing FLAIM project is laid out in its Subversion repository like this:

trunk

 flaim

 flaim

 sample

 src

 util

 ftk

 src

 util

 sql

 src

 xflaim

 csharp

 java

 sample

 src

 util

The complete tree is fairly deep and broad, and there are significant utilities, tests and
other such binaries that are built by the existing FLAIM build system. At some point
during the downward trek into this hierarchy, I have to simply stop and consider whether
it's worth converting that additional utility or layer. If I don't, this chapter will be as long as
all the others combined!

To this end, I've decided to convert:

 the libraries themselves
 the unit and library tests
 the utilities and other such high-level programs found in the various util directories
 the Java and CSharp language bindings.

I'll also convert the CSharp unit tests, but I won't go into the Java unit tests because
(believe it or not), attempting to work within the Automake-provided Java framework is
more painful than just writing the rules yourself. Since Automake provides no help for
CSharp, I have to provide everything myself.

Getting started

My first true design decision was centered around how to organize this one FLAIM
project into sub-projects. As it turns out, the existing layout is perfect for what I've
ultimately done. I've created a master configure.ac file in the top-level flaim
directory--the one just under trunk. This configure.ac file acts as a sort of Autoconf
control file for each of the four lower-level projects, ftk, flaim, flaimsql and xflaim.
I've managed the database library dependencies on the FLAIM tool kit (ftk) by treating it
as a pure external dependency, defined by make variables FTKINC and FTKLIB. In this

way, I've conditionally defined these variables to point to one of a couple of different
sources, including installed libraries, or even user-specified configure options.

Adding the configure.ac scripts
The directory structure under the Autotools build system won't change much. In the
following directory layout, I've indicated where I've placed individual configure.ac files.
You'll recall that each configure.ac file represents a separate and individual project,
which may be packaged and distributed independently.

trunk

 flaim configure.ac (master)

 flaim configure.ac (flaim)

 sample

 src

 util

 ftk configure.ac (ftk)

 src

 util

 sql configure.ac (flaimsql)

 src

 xflaim configure.ac (xflaim)

 csharp

 java

 sample

 src

 util

 java

After these design decisions were made, the next task was to create these
configure.ac scripts. The top-level script was trivial, so I created it by hand. The
project-specific scripts were more complex, so I allowed the autoscan utility to do the
bulk of the work for me. Right now, take a look at that top-level configure.ac script:

-*- Autoconf -*-

Process this file with autoconf to produce a c...

AC_PREREQ([2.62])

AC_INIT([flaim-projects], [1.0])

AC_CANONICAL_SYSTEM

AM_INIT_AUTOMAKE([-Wall -Werror foreign])

LT_PREREQ([2.2])

LT_INIT([dlopen])

AC_CONFIG_MACRO_DIR([m4])

AC_CONFIG_SUBDIRS([ftk flaim sql xflaim])

AC_CONFIG_FILES([Makefile])

AC_OUTPUT

This file is short and simple, because it doesn't do much. Nevertheless, there are some
new and important concepts in this file that I'd like to discuss. Since its only job is to
configure several lower-level projects, I've taken some shortcuts. The project name and
version number, for instance, are really rather unimportant, as this project will probably
never be distributed in one large tarball. Regardless, some values had to be used, so I
invented the name flaim-projects, and the version number 1.0. These are not likely
to change unless really dramatic changes take place in the project directory structure in
the future.
The most important aspect of this script is the use of the AC_CONFIG_SUBDIRS macro.
This new macro, which I haven't yet covered in this book, lists the sub-projects to be built,
along with the current project. This macro is effectively the Autoconf equivalent of the
Automake SUBDIRS variable. It allows the maintainer to set up a hierarchy of projects, in
much the same way that SUBDIRS configures the directory hierarchy for Automake within
a single project.
Because the four sub-projects actually contain all of the functionality, this
configure.ac script acts simply as a control file, passing all specified configuration
options to each of the sub-projects successively, in the order that they're specified in
AC_CONFIG_SUBDIRS. The ordering is important, because the FLAIM tool kit project
must be built first, since the other projects depend on it.
Another important new concept in this file is the use of the AC_CANONICAL_SYSTEM
macro. This macro causes the environment variables, $host, $build and $target to
be defined. These variables contain canonicalized CPU, operating system and
manufacturer values for the host, build and target systems. This information can easily be
parsed later in the configure.ac file in order to configure system-specific options. I'll
dive more deeply into this concept in the project-specific scripts below.

Automake in the umbrella project

Automake usually requires the existence of several text files in the top-level project
directory. These include the AUTHORS, COPYING, INSTALL, NEWS, README, and
ChangeLog files. In the case of this umbrella project, it would be nice not to have to deal
with these files, as they are rather redundant here. I could do this by not using Automake
at all, but then I'd either have to create my own Makefile.in template for this directory,
or use Automake once to generate one for me. I could then check this template into the
repository as part of the project, along with the install-sh and missing scripts that
are installed by autoreconf -i. Once I have these files in place, I could then remove
the AM_INIT_AUTOMAKE macro from the master configure.ac file, and Autoconf will
create the final makefile from the preserved template.
Another option would be to keep the AM_INIT_AUTOMAKE macro, and use the foreign
option in the macro's optional parameter. The foreign option tells Automake that the
project will not follow GNU standards, and thus Automake will not require the usual GNU
project text files. This is the path I decided to take, because I might wish to alter the list of
subordinate projects at some point in the future, and I don't want to have to hand-tweak
the generated Makefile.in template.
The AM_INIT_AUTOMAKE parameter contains a string of white-space separated options
that should be assumed by Automake. When Automake parses the configure.ac
script, it notes these options, and enables them as if they'd been passed on the
command line. I've also passed the -Wall and -Werror options, which indicate that
Automake should enable all (Automake) warnings, and report them as errors. Note that
these options have nothing to do with the compilation environment--only Automake
processing.

Why add the Libtool macros?

You may be wondering at this point why I've included those expensive Libtool macros.
The reason is more complicated than I wish it were. Even though I don't do anything with
Libtool in the umbrella project, the lower level projects expect that a containing project
will provide all the necessary scripts, and the LT_INIT macro provides the ltmain.sh
script.
If you don't initialize Libtool in the umbrella project, then tools like autoreconf, which
actually look in the parent directory to determine if the current project is itself a sub-
project, will fail when it can't find scripts that its configure.ac file requires. For
instance, within the ftk project's top-level directory, autoreconf expects to find a file
called ../ltmain.sh. Note the reference to the parent directory--autoreconf noticed
by examining the parent directory that ftk was actually a sub-project of a larger project.
Rather than install all of the auxilliary scripts multiple times, it causes sub-projects to look
in their parent project's directory for them, so they can be installed once in a multi-project
package.
If I don't use LT_INIT in the umbrella project, then I can't successfully run autoreconf
in the sub-projects, because the ltmain.sh file will not have been installed in the parent
project's top-level directory.
NOTE: For the rather small disk space savings it provides, I personally don't think it's
worth breaking modularity in this manner just to manage this odd child-to-parent
relationship.

Adding a macro sub-directory

Another new construct used in the top-level configure.ac script is the
AC_CONFIG_MACRO_DIR macro. This macro indicates the name of a sub-directory in
which the aclocal utility can find all project-local M4 macro files. These files are
ultimately combined into the aclocal.m4 file used by Autoconf. The use of this macro
replaces the original single acinclude.m4 file with a directory containing .m4 files.
NOTE: This entire system of combining (one or more) M4 macro files into a single
aclocal.m4 file is a bit of a band-aid over a system that was never originally designed

for more than one macro file. In my opinion, it could use a major overhaul, by doing away
with aclocal entirely, and just having Autoconf read the macro files in the specified (or
defaulted) macro directory, along with other macro files found in system locations.
I've indicated by the parameter to this macro that all of the local macro files to be added
to aclocal.m4 can be found in a sub-directory called m4. As a side benefit, when
autoreconf -i is run, and then, when it subsequently executes the required Autotools
with their respective "add missing" options, these tools will note the use of
AC_CONFIG_MACRO_DIR in configure.ac, and add all missing required system macro
files to the m4 directory.
The actual reason for my choosing to do this is that Libtool will not add its additional
macro files to the project if you haven't enabled the macro directory option in this manner.
Instead, it complains loudly that you should add these files to acinclude.m4 yourself. I
found that none of the macros in the Libtool system macro files were required by my
project, but that didn't stop it from complaining, and it may not be the case for your
projects.
Since I wanted the Autotools to do the job for me, and this is a fairly complex project
anyway, I decided to begin using this "macro sub-directory" feature. In point of fact, a
future release of Autotools will require this form anyway, as it's considered the more
modern way of adding macro files to aclocal.m4, as opposed to using a single user-
generated acinclude.m4 file.

The top-level Makefile.am file
The only other point to be covered regarding the umbrella project is the top-level
Makefile.am file. This file contains the following code:

ACLOCAL_AMFLAGS = -I m4

EXTRA_DIST = libflaim.changes libxflaim.changes

SUBDIRS = ftk flaim sql xflaim

rpms srcrpm:

 for dir in $(SUBDIRS); do \

 $(MAKE) -C $$dir $@; \

 done

.PHONY: rpms srcrpm

The ACLOCAL_AMFLAGS variable is a requirement of using a macro sub-directory.
According to the Automake documentation, this variable should be defined in the top-
level Makefile.am file of any project that uses AC_CONFIG_MACRO_DIR in its

configure.ac file. These flags indicate to aclocal where it should look for macro files
when it's executed by rules defined in Makefile.am.
I've used the EXTRA_DIST variable here to ensure that additional top-level files get
distributed. This isn't critical to the umbrella project, since I don't intend to create
distributions at this level, but I like to be complete.
The SUBDIRS variable is a duplicate of the information in the configure.ac file's
AC_CONFIG_SUBDIRS macro.
I'll discuss the remaining code later, when I cover adding new make targets to your build
system. These particular targets allow the end-user to build RPM packages for rpm-
based GNU/Linux systems.

The sub-projects

Each of the sub-projects, flaim, ftk, flaimsql and xflaim, are set up just as in the Jupiter
project. I'll start with the FLAIM toolkit (ftk) project. Because all of the others are
dependent on it, it will have to be built first, anyway.

This configure.ac script was generated for me by autoscan. Autoscan is a bit finicky
when it comes to where it will look for information. If your project doesn't contain a
makefile file named exactly "Makefile", or if your project already contains an Autoconf
Makefile.in template, then autoscan will not add any information about required
libraries to the configure.scan output file. It has no other way of determining this
information, except by looking into your old build system, and it won't do this unless
conditions are just right.
As mentioned earlier, the FLAIM project did contain a rather large makefile, and frankly I
was quite impressed with autoscan's ability to parse it for library information, given the
complex nature of this multi-platform GNU makefile. Here's a snippet of the ftk project's
configure.scan file:

...

AC_PREREQ(2.62)

AC_INIT(FULL-PACKAGE-NAME, VERSION,

 BUG-REPORT-ADDRESS)

AC_CONFIG_SRCDIR([util/ftktest.cpp])

AC_CONFIG_HEADERS([config.h])

Checks for programs.

AC_PROG_CXX

AC_PROG_CC

AC_PROG_INSTALL

Checks for libraries.

FIXME: Replace `main' with a function in `-lc':

AC_CHECK_LIB([c], [main])

FIXME: Replace `main' with a function in...

AC_CHECK_LIB([crypto], [main])

...

AC_CONFIG_FILES([Makefile])

AC_OUTPUT

I substituted real values for the place-holder values left by autoscan in the AC_INIT
macro. I added calls to AM_INIT_AUTOMAKE, LT_PREREQ and LT_INIT. I added a call
to AC_CONFIG_MACRO_DIR here, as well. Why not? I'd already done it in the umbrella
project above, and this, after all, is the new "UL Approved" method for managing project-
local macro files. I then changed the AC_CONFIG_SRCDIR file that autoscan
recommended, for one that made more sense to me. And I deleted the use of the
AC_PROG_CC macro; this project is written entirely in C++.
Next, I deleted the comments above each of the AC_CHECK_LIB macro calls, and then I
started to replace the main place-holders in these macros with actual library function
names. I say I started to do that, but I stopped because I wondered if all of those libraries
were really necessary. Sometimes I've noticed, where hand-coded build systems are
concerned, the author will often cut and paste sets of library names into the makefile until
the program builds and runs correctly. (For some reason, this activity is especially
prevalent when libraries are being built, although programs are not immune to it.) Also,
since autoscan build this list by parsing the original makefile, I figured it probably tried
to include everything that it thought might be a library.
Instead of blindly continuing this trend, I chose to simply comment out all of the calls to
AC_CHECK_LIB, and see how far I was able to get in the build, and then add them back
in one at a time, as required, in order to resolve missing symbols during the build. Unless
your project consumes literally hundreds of libraries, this only takes a few extra minutes,
but it can save you a lot of time later when builds are speedier than they otherwise might
be. And personally, I like to be accurate in my build systems, using only those libraries
that really are required. When used religiously, this ideology is also a good form of
project-level documentation.
The configure.scan file contained 14 such calls to AC_CHECK_LIB. As it turned out,
only three of them were actually required by the FLAIM tool kit on my 64-bit Linux system,
pthread, ncurses, and rt. So I deleted the "cruft" and swapped out the place-holder
parameters for real functions in the remaining three.
Finally, I added references to src/Makefile and util/Makefile to the
AC_CONFIG_FILES macro, and then added the echo statement at the bottom, for some
visual verification of my configuration status.
Note that I left all of the header file and library function checks in place, as originally
specified by autoscan. I figure that autoscan is probably pretty accurate in noting the
use of header files and functions in my source code. Who am I to argue?
Here's the final ftk configure.ac file (slightly edited, as usual, to satisfy column width
requirements):

-*- Autoconf -*-

Process this file with autoconf to produce a c...

AC_PREREQ([2.62])

AC_INIT([FTK], [1.1], [flaim-users@forge.novell.com])

AM_INIT_AUTOMAKE([-Wall -Werror])

LT_PREREQ([2.2])

LT_INIT([dlopen])

AC_LANG(C++)

AC_CONFIG_MACRO_DIR([m4])

AC_CONFIG_SRCDIR([src/flaimtk.h])

AC_CONFIG_HEADERS([config.h])

Checks for programs.

AC_PROG_CXX

AC_PROG_INSTALL

Checks for optional programs.

AC_PROG_TRY_DOXYGEN

Configure options: --enable-debug[=no].

AC_ARG_ENABLE([debug],

 [AS_HELP_STRING([--enable-debug],

 [enable debug code (default is no)])],

 [debug="$withval"], [debug=no])

Configure option: --enable-openssl[=no].

AC_ARG_ENABLE([openssl],

 [AS_HELP_STRING([--enable-openssl],

 [enable the use of openssl (default is no)])],

 [openssl="$withval"], [openssl=no])

Check for doxygen program.

if test -z "$DOXYGEN"; then

 echo "---"

 echo " No Doxygen program found - continuing"

 echo " without Doxygen documentation support."

 echo "---"

fi

AM_CONDITIONAL([HAVE_DOXYGEN],[test -n "$DOXYGEN"])

Checks for libraries.

AC_CHECK_LIB([ncurses], [initscr])

AC_CHECK_LIB([pthread], [pthread_create])

AC_CHECK_LIB([rt], [aio_suspend])

if test "x$openssl" = xyes; then

 AC_DEFINE([FLM_OPENSSL], [],

 [Define to use openssl])

 AC_CHECK_LIB([ssl], [SSL_new])

 AC_CHECK_LIB([crypto], [CRYPTO_add])

 AC_CHECK_LIB([dl], [dlopen])

 AC_CHECK_LIB([z], [gzopen])

fi

Checks for header files.

AC_HEADER_RESOLV

AC_CHECK_HEADERS([arpa/inet.h fcntl.h limits.h \

malloc.h netdb.h netinet/in.h stddef.h stdlib.h \

string.h strings.h sys/mount.h sys/param.h \

sys/socket.h sys/statfs.h sys/statvfs.h \

sys/time.h sys/vfs.h unistd.h utime.h])

Checks for typedefs, structures, and compiler ...

AC_HEADER_STDBOOL

AC_C_INLINE

AC_TYPE_INT32_T

AC_TYPE_MODE_T

AC_TYPE_PID_T

AC_TYPE_SIZE_T

AC_CHECK_MEMBERS([struct stat.st_blksize])

AC_TYPE_UINT16_T

AC_TYPE_UINT32_T

AC_TYPE_UINT8_T

Checks for library functions.

AC_FUNC_LSTAT_FOLLOWS_SLASHED_SYMLINK

AC_FUNC_MALLOC

AC_FUNC_MKTIME

AC_CHECK_FUNCS([atexit fdatasync ftruncate getcwd \

gethostbyaddr gethostbyname gethostname gethrtime \

gettimeofday inet_ntoa localtime_r memmove memset \

mkdir pstat_getdynamic realpath rmdir select \

socket strchr strrchr strstr])

Configure DEBUG source code, if requested.

if test "x$debug" = xyes; then

 AC_DEFINE([FLM_DEBUG], [],

 [Define to enable FLAIM debug features])

fi

Configure global pre-processor definitions.

AC_DEFINE([_REENTRANT], [],

 [Define for reentrant code])

AC_DEFINE([_LARGEFILE64_SOURCE], [],

 [Define for 64-bit data files])

AC_DEFINE([_LARGEFILE_SOURCE], [],

 [Define for 64-bit data files])

Configure supported platforms' compiler and li...

case $host in

 sparc-*-solaris*)

 LDFLAGS="$LDFLAGS -R /usr/lib/lwp"

 if "x$CXX" != "xg++"; then

 if "x$debug" = xno; then

 CXXFLAGS="$CXXFLAGS -xO3"

 fi

 SUN_STUDIO=`"$CXX" -V | grep "Sun C++"`

 if "x$SUN_STUDIO" = "xSun C++"; then

 CXXFLAGS="$CXXFLAGS -errwarn=%all\

 -errtags -erroff=hidef,inllargeuse,doubunder"

 fi

 fi ;;

 -apple-darwin)

 AC_DEFINE([OSX], [],

 [Define if building on Apple OSX.]) ;;

 --aix*)

 if "x$CXX" != "xg++"; then

 CXXFLAGS="$CXXFLAGS -qthreaded -qstrict"

 fi ;;

 --hpux*)

 if "x$CXX" != "xg++"; then

 # Disable "Placement operator delete

 # invocation is not yet implemented" warning

 CXXFLAGS="$CXXFLAGS +W930"

 fi ;;

esac

AC_CONFIG_FILES([Makefile

 docs/Makefile

 docs/doxyfile

 obs/Makefile

 obs/ftk.spec

 src/Makefile

 util/Makefile])

AC_OUTPUT

echo "

 ($PACKAGE_NAME) version $PACKAGE_VERSION

 Prefix.........: $prefix

 Debug Build....: $debug

 Using OpenSSL..: $openssl

 C++ Compiler...: $CXX $CXXFLAGS $CPPFLAGS

 Linker.........: $LD $LDFLAGS $LIBS

 Doxygen........: ${DOXYGEN:-NONE}

"

Note that I did not use the foreign keyword in the AM_INIT_AUTOMAKE macro this
time. This is a real project, and I expect it will be packaged as such. Thus, the developers
will (should) want these files. I used the touch command to create empty versions of the
GNU project text files.
Another new construct near the top of the file is the AC_LANG macro. This macro
indicates which language should be assumed when executing compilation tests within
the configure script. I've passed "C++" as the parameter, so that Autoconf will
generate compilation tests using the C++ compiler via the $CXX variable, rather than the
default C code using the $CC macro.

Moving down a few more lines will have you staring at a macro called
AC_PROG_TRY_DOXYGEN. Try as you might, you won't find this macro in the Autoconf
documentation, because I wrote it myself. Here's the source code, which can be found in
ftk/m4/ac_prog_try_doxygen.m4 in the sample code download archive:

AC_DEFUN([AC_PROG_TRY_DOXYGEN],[

AC_REQUIRE([AC_EXEEXT])dnl

test -z "$DOXYGEN" &&\

 AC_CHECK_PROGS([DOXYGEN], [doxygen$EXEEXT])dnl

])

The macro tests first to see if the end-user has already set the DOXYGEN environment
variable. If not, it then uses the standard AC_CHECK_PROG macro to locate it on the host
machine, if it's installed. If AC_CHECK_PROG finds it, it sets the DOXYGEN variable to the
name of the program, allowing the build system to later locate the actual executable in
the system path. If it's not found, it doesn't set the DOXYGEN variable.
There are other more standard macros that check for specific programs. In fact, as
simple as this macro is, I could have just used AC_CHECK_PROGS in the configure.ac
file, instead of writing my own macro. I wanted to encapsulate the "test and check"
construct:

test -z "$DOXYGEN" && AC_CHECK_PROGS...

Additionally, I knew I'd need this test in each of the four projects, so it was simpler to
create a macro file that could just be copied into the individual projects' m4 directories.
Besides, and probably most importantly for this chapter, it's more readable to see
AC_PROG_TRY_DOXYGEN, than to see test -z....
Why AC_PROG_TRY_DOXYGEN and not simply AC_PROG_DOXYGEN? Because
traditionally, the AC_PROG_* macros fail the configuration process if the associated
program is not found. I wanted the DOXYGEN variable to be populated if the doxygen
program was found on the system, but be left empty otherwise. That way I could
conditionally build the doxygen documentation.
In fact, if you look a bit farther down, you'll see some text that looks like this:

...

Check for doxygen program.

if test -z "$DOXYGEN"; then

 echo "---"

 echo " No Doxygen program found - continuing"

 echo " without Doxygen documentation support."

 echo "---"

fi

AM_CONDITIONAL([HAVE_DOXYGEN],[test -n "$DOXYGEN"])

...

This tests whether or not my AC_PROG_TRY_DOXYGEN macro actually found a doxygen
program, and acts on the results. If doxygen is not installed on the user's system, then
the configure script prints out a large, hard-to-miss message stating that doxygen
documentation will not be built. No big deal, really, unless the user was, in fact, counting
on it. In that case, she can simply install doxygen and rebuild.
The AM_CONDITIONAL macro defines an automake variable called HAVE_DOXYGEN,
which can be used in the project's Makefile.am files to do something conditionally,
based on whether or not doxygen can successfully be called (via the $DOXYGEN variable).
The first parameter is the Automake conditional variable to be defined, and the second
parameter is the test to be run by the configure script in order to determine how the
variable should be defined in the makefile. Just one caveat: AM_CONDITIONAL must not
be used conditionally (eg., within a shell if statement) in the configure.ac script.
Immediately following the DOXYGEN AM_CONDITIONAL statement, you'll find the library
checks. The first three are the ones that autoscan told me about that I found I actually
needed after experimenting a bit. The next four are checked within an if statement.
Additionally, a preprocessor macro is defined using the AC_DEFINE macro:

...

if test "x$openssl" = xyes; then

 AC_DEFINE([FLM_OPENSSL], [],

 [Define to use openssl])

 AC_CHECK_LIB([ssl], [SSL_new])

 AC_CHECK_LIB([crypto], [CRYPTO_add])

 AC_CHECK_LIB([dl], [dlopen])

 AC_CHECK_LIB([z], [gzopen])

fi

...

These libraries are included conditionally based on the user's use of the --enable-
openssl command-line argument defined in a previous call to the AC_ARG_ENABLE
macro. The openssl variable is defined to either yes or no, based on the default value
given to AC_ARG_ENABLE, and the user's command-line choices.
The AC_DEFINE macro call ensures that the C++ preprocessor variable, FLM_OPENSSL
is defined in the config.h file, and the AC_CHECK_LIB macro calls ensure that -lssl,

-lcrypto, -ldl, and -lz strings are added to the $LIBS variable. But only if the
openssl macro is defined as yes.
The last item I'll cover here is the conditional use of the AC_DEFINE macro, based on the
contents of the debug variable:

...

Configure DEBUG source code, if requested.

if test "x$debug" = xyes; then

 AC_DEFINE([FLM_DEBUG], [],

 [Define to enable FLAIM debug features])

fi

...

This is another preprocessor definition, conditionally defined, based on the results of a
command-line parameter given to configure. The --enable-debug option ultimately
enables the definition of FLM_DEBUG within config.h. Both FLM_OPENSSL and
FLM_DEBUG are consumed within the FLAIM project source code. Using AC_DEFINE in
this manner allows the user to determine what sort of features are compiled into his
binaries.
I'll cover the details of the platform-specific checks later in this chapter. This code is
identical in all of the projects' configure.ac scripts, as the four original GNU makefiles
contained identical such checks.

The ftk/Makefile.am file
Discounting the code for doxygen and rpm targets, the ftk/Makefile.am file is fairly
trivial:

ACLOCAL_AMFLAGS = -I m4

EXTRA_DIST = COPYRIGHT GNUMakefile netware

SUBDIRS = src util obs

if HAVE_DOXYGEN

 SUBDIRS += docs

endif

doc_DATA = AUTHORS ChangeLog COPYING COPYRIGHT INSTALL NEWS
README

rpms srcrpm: dist

 $(MAKE) -C obs $(AM_MAKEFLAGS) $@

 rpmarch=`rpm --showrc | grep ^build\ arch | sed 's/\(.*:
\)\(.*\)/\2/'`; \

 test -z $$rpmarch || (mv $$rpmarch/* .; rm -rf
$$rpmarch)

 -rm -rf $(distdir)

dist-hook:

 -rm -rf `find $(distdir) -name .svn`

.PHONY: srcrpm rpms

Here, you find the usual ACLOCAL_AMFLAGS, EXTRA_DIST and SUBDIRS variable
definitions. But you can also see the use of an Automake conditional. The if statement
allows us to append another directory (docs) to the SUBDIRS list, but only if you have
access to the doxygen program. If you try to use such a conditional without a
corresponding AM_CONDITIONAL in the configure.ac file, then Automake will
complain about it.
Another new construct--at least in a top-level Makefile.am file--is the use of the
doc_DATA variable. The FLAIM toolkit provides some extra documentation files in its top-
level directory that I'd like to have installed. By using the doc prefix on the DATA primary
in this manner, I'm telling Automake that I'd like to have these files installed as data files
in the $(docdir) directory, which ultimately resolves to the $(prefix)/share/doc
directory.
An interesting effect of the use of the DATA primary is that files mentioned in DATA
variable are not automatically distributed, so you have to mention them in the
EXTRA_DIST variable as well. You'll note that I did not have to mention the standard
GNU project text files in EXTRA_DIST. These are always distributed automatically.
However, I did have to mention the standard text files in the doc_DATA variable. This is
because Automake makes no assumptions about the files that you want installed.
Once again, I'll defer a discussion of the RPM targets until later.

Automake "-hook" and "-local" rules

At this point, I'd like to discuss the use of the dist-hook target. Automake recognizes
two types of extensions. I call these -local targets and -hook targets. Both of these

types of targets represent Automake extension points. Automake recognizes and honors
-local extensions for the following standard Automake targets:
 all
 info
 dvi
 ps
 pdf
 html
 check
 install-data
 install-dvi
 install-exec
 install-html
 install-info
 install-pdf
 install-ps
 uninstall
 installdirs
 installcheck
 mostlyclean
 clean
 distclean
 maintainer-clean

Adding a -local version of any of these to your Makefile.am files will cause
Automake to ensure that the commands associated with these rules are executed before
the associated standard target. Automake does this by generating the rule for the
standard target such that the -local version is one of its dependencies (if it exists), thus
the -local version is run before the commands for the standard target. Shortly, I'll show
an example of this, using a clean-local target.
The -hook targets are a bit different in that they are executed after the corresponding
standard target is executed. Automake does this by adding another command to the end
of the standard target command list that executes make (via the $(MAKE) variable) on
the same Makefile, with the -hook target as the command-line target. Thus, the -
hook target is executed at the end of the standard target commands.
The following standard Automake targets support -hook versions:
 install-data
 install-exec
 uninstall
 dist
 distcheck

In this example, I use the dist-hook target to "adjust" the distribution directory before
Automake create a tarball from its contents.

...

dist-hook:

 -rm -rf `find $(distdir) -name .svn`

...

The rm command removes extraneous files and directories that become part of the
distribution directory as a result of my adding entire directories to the EXTRA_DIST
variable. When you add a directory name to EXTRA_DIST, everything in that directory is

added to the distribution--even hidden Subversion control files and directories. I certainly
don't want this stuff in my tarball, so I use the dist-hook target to add commands that
remove these unwanted files after the distribution directory has been created, but before
it's "zipped" up into a tarball.
Here's a portion of the generated Makefile, showing how dist-hook is used by
Automake:

...

distdir: $(DISTFILES)

 ... # copy files into distdir

 $(MAKE) $(AM_MAKEFLAGS) \

 top_distdir="$(top_distdir)" \

 distdir="$(distdir)" dist-hook

 ... # change attributes of files in distdir

...

dist dist-all: distdir

 tardir=$(distdir) && $(am__tar) | \

 GZIP=$(GZIP_ENV) gzip -c \

 >$(distdir).tar.gz

 $(am__remove_distdir)

...

.PHONY: ... dist-hook ...

...

dist-hook:

 -rm -rf `find $(distdir) -name .svn`

...

Don't be afraid to dig into the generated makefiles to see just exactly what Automake is
doing with your code. While there's a fair amount of ugly shell code in there, most of it
can be ignored. You're usually more interested in the make rules that Automake is
generating, and these are easily separated out. Once you understand the rules, you are
well on your way to becoming an Automake expert.

Designing the ftk/src/Makefile.am file

I've left the most difficult task for last. I now need to create appropriate Makefile.am
files in the src and utils directories. I want to ensure that all of the original functionality
is preserved from the old build system as I'm creating these files. Basically, this includes:
 properly building the ftk shared and static libraries;
 properly specifying installation locations for all installed files;
 setting the ftk library version information correctly;
 ensuring that all remaining unused files are distributed;
 ensuring that platform-specific compiler options are used.

Besides a few additions to ftk's configure.ac file, the following framework should
cover most of the points above, so I'll be using it for all of the FLAIM library projects, with
appropriate additions and subtractions, based on the needs of each individual library:

EXTRA_DIST = ...

lib_LTLIBRARIES = ...

include_HEADERS = ...

xxxxx_la_SOURCES = ...

xxxxx_la_LDFLAGS = -version-info x:y:z

The original GNU makefile told me that the library was named libftk.so. This is a bad
name for a library on Linux, as most of the three-letter acronyms are already taken for
other purposes within the file system, so I've made an executive decision here and
renamed the ftk library to flaimtk. I added the libtool library name, libflaimtk.la
to the lib_LTLIBRARIES list, and then changed the xxxxx portions of the remaining
macros to libflaimtk.
To get the source files, I could have entered them all by hand, but I noticed while reading
the original makefile that it used the GNU make function macro, $(wildcard
src/*.cpp) in order to build the file list for the library from the contents of the src
directory. This tells me that all of the .cpp files within the source directory are required
by the library. To get the file list into Makefile.am, I used a simple shell command to
concatenate the file list to the end of the Makefile.am file (assuming I'm in the
ftk/src directory):

$ ls >> Makefile.am

This leaves me with a single column list of all of the files in the ftk/src directory
appended to the bottom of the ftk/src/Makefile.am file. I deleted the Makefile.am
file from this list, and then moved the list to just below the libflaimtk_la_SOURCES =
entry. I added a BACKSLASH character after the EQUAL sign, and at the end of each of
the files except the last one. This gives me a clean file list. Another formatting technique
is to simply wrap the line every 70 characters or so with a BACKSLASH and a
CARRIAGE RETURN. I prefer to put each file on a separate line--especially early on in
the conversion process, so that I can easily extract or add files to the lists.
For the header files, I had to manually examine each one to determine its use in the
project. There are only four header files in the src directory, and as it turns out, the only
one not used by ftk on Unix and GNU/Linux platforms is ftknlm.h. This file is specific to
the NetWare build. I added this file to the EXTRA_DIST list.

The ftk.h file (now renamed to flaimtk.h) is the only public header file, so I moved
that one into the include_HEADERS list. The other two are used internally in the library
build, so I left them in the libflaimtk_la_SOURCES list.
Finally, I noted in the original makefile, that the last ftk library that was released to the
public in a distribution sported an interface version of 4.0.0. However, since I change the
name of the library from libftk to libflaimtk, I reset this value to 0.0.0 because it's
a different library now, so I replaced x:y:z with 0:0:0 in the -version-info option
within the libflaimtk_la_LDFLAGS variable. (_NOTE: Version 0.0.0 is the default, so
I could have simply removed the -version-info argument entirely for the same effect.)
Here's (most of) the final ftk/src/Makefile.am file:

EXTRA_DIST = ftknlm.h

lib_LTLIBRARIES = libflaimtk.la

include_HEADERS = flaimtk.h

libflaimtk_la_SOURCES = \

 ftkarg.cpp \

 ftkbtree.cpp \

 ftkcmem.cpp \

 ftkcoll.cpp \

 ...

 ftksys.h \

 ftkunix.cpp \

 ftkwin.cpp \

 ftkxml.cpp

libflaimtk_la_LDFLAGS = -version-info 0:0:0

That's it! You know--I don't know about you, but I'd much rather maintain this file, than a
2200 line GNU makefile! Granted, I'm not really done yet, but (trust me) it won't get much
worse than this.

Moving on to the ftk/util directory

Properly designing a Makefile.am file for the util directory requires examining the
original makefile again for more products--those built from files in the ftk/util directory.
A quick glance at the ftk/util directory showed that there was only one source file,
ftktest.cpp. This appeared to be some sort of testing program for the ftk library, so I
had a design decision to make here: should I build this as a normal program, or as a
"check" program.
The difference, of course, is that normal programs are always built, but "check" programs
are only built when make check is executed. Remember also that check programs are
never installed. Thus, if I chose to always build ftktest, I'd then have to decided
whether or not I want it to be installed. If I want it built all the time, but not installed, I'd
have to specify the program using the noinst prefix, rather than the usual bin prefix.
In either case, I probably want to add the ftktest binary to the list of tests run during
make check, so the two questions here are (1) whether or not I might wish to run
ftktest manually at times after a build, and (2) do I want to install the ftktest
program? Given that ftk is rather mature at this point, I opted to not install ftktest and
only build it during make check. Here's my final ftk/util/Makefile.am file:

FTKINC=-I$(top_srcdir)/src

FTKLIB=../src/libflaimtk.la

check_PROGRAMS = ftktest

ftktest_SOURCES = ftktest.cpp

ftktest_CPPFLAGS = $(FTKINC)

ftktest_LDADD = $(FTKLIB)

TESTS = ftktest

Note that I could easily have left out the FTKINC and FTKLIB variables, replacing their
references with the appropriate text in the CPPFLAGS and LDADD variables, but since this
will be a pattern used quite often in the new FLAIM build system, because of the external
dependency between the database projects and the tool kit, I've decided to start the habit
right here and now.
I hope by now that you can see the relationship between TEST and check_PROGRAMS.
To be blunt, there really is no relationship between the files listed in check_PROGRAMS
and those listed in TEST. TEST can refer to anything that can be executed without
command line parameters, and these programs or scripts are executed during make
check after all of the check_PROGRAMS are built (if any). This separation of duties
makes for a very clean and flexible system.

Designing the xflaim build system

Now that I've finished with the tool kit, I'll move on to the xflaim project. I'm choosing
xflaim, rather than flaim, because it supplies the most build features that can be
converted to GNU Autotools, including the Java and CSharp language bindings. After
xflaim, covering the remaining database projects would be redundant, as the processes
are identical (but simpler). However, you can find the other build system files in the
attached source archive, as usual.

I generated the configure.ac script using autoscan again. It's important to use
autoscan in each of the individual projects, because the source code of each project is
different, and will thus cause different macros to be written into each configure.scan
file. I then used the same techniques to create xflaim's configure.ac script as I used
with the tool kit.

The xflaim configure.ac script
After hand-modifying the generated configure.scan file and renaming it to
configure.ac, I found this configure.ac script to be similar in many ways to ftk's
configure.ac script. As it's fairly long, I'll only show you the most significant
differences here:

...

Checks for optional programs.

AC_PROG_TRY_CSC

AC_PROG_TRY_CSVM

AC_PROG_TRY_JAVAC

AC_PROG_TRY_JAVAH

AC_PROG_TRY_JAVADOC

AC_PROG_TRY_JAR

AC_PROG_TRY_DOXYGEN

Configure variables: FTKLIB and FTKINC.

AC_ARG_VAR([FTKLIB], [where libflaimtk.la is at])

AC_ARG_VAR([FTKINC], [where flaimtk.h is at])

Ensure that both or neither are specified.

if (test -n "$FTKLIB" && test -z "$FTKINC") || \

 (test -n "$FTKINC" && test -z "$FTKLIB"); then

 AC_MSG_ERROR([both or neither FTK variables])

fi

Not specified? Check for FTK in standard places.

if test -z "$FTKLIB"; then

 # Check for flaim tool kit as a sub-project.

 if test -d "$srcdir/ftk"; then

 AC_CONFIG_SUBDIRS([ftk])

 FTKINC='$(top_srcdir)/ftk/src'

 FTKLIB='$(top_builddir)/ftk/src'

 else

 # Check for flaim tool kit as a super-project.

 if test -d "$srcdir/../ftk"; then

 FTKINC='$(top_srcdir)/../ftk/src'

 FTKLIB='$(top_builddir)/../ftk/src'

 fi

 fi

fi

Still empty? Check for installed flaim tool kit.

if test -z "$FTKLIB"; then

 AC_CHECK_LIB([flaimtk], [ftkFastChecksum],

 [AC_CHECK_HEADERS([flaimtk.h])

 LIBS="-lflaimtk $LIBS"],

 [AC_MSG_ERROR([No FLAIM Took Kit found.])])

fi

AC_SUBST command line variables.

if test -n "$FTKLIB"; then

 AC_SUBST([FTK_LTLIB], ["$FTKLIB/libflaimtk.la"])

 AC_SUBST([FTK_INCLUDE], ["-I$FTKINC"])

fi

Check for Java compiler.

have_java=yes

if test -z "$JAVAC"; then have_java=no; fi

if test -z "$JAVAH"; then have_java=no; fi

if test -z "$JAR"; then have_java=no; fi

if test "x$have_java" = xno; then

 echo "---"

 echo " Some Java tools not found - continuing"

 echo " without XFLAIM JNI support."

 echo "---"

fi

AM_CONDITIONAL([HAVE_JAVA],

 [test "x$have_java" = xyes])

Check for CSharp compiler.

if test -z "$CSC"; then

 echo "---"

 echo " No CSharp compiler found - continuing"

 echo " without XFLAIM CSHARP support."

 echo "---"

fi

AM_CONDITIONAL([HAVE_CSHARP], [test -n "$CSC"])

...

echo "

 ($PACKAGE_NAME) version $PACKAGE_VERSION

 Prefix.........: $prefix

 Debug Build....: $debug

 C++ Compiler...: $CXX $CXXFLAGS $CPPFLAGS

 Linker.........: $LD $LDFLAGS $LIBS

 FTK Library....: ${FTKLIB:-INSTALLED}

 FTK Include....: ${FTKINC:-INSTALLED}

 CSharp Compiler: ${CSC:-NONE} $CSCFLAGS

 CSharp VM......: ${CSVM:-NONE}

 Java Compiler..: ${JAVAC:-NONE} $JAVACFLAGS

 JavaH Utility..: ${JAVAH:-NONE} $JAVAHFLAGS

 Jar Utility....: ${JAR:-NONE} $JARFLAGS

 Javadoc Utility: ${JAVADOC:-NONE}

 Doxygen........: ${DOXYGEN:-NONE}

"

First, you'll notice that I've invented a few more of my AC_PROG_TRY macros. In the first
portion, I'm checking for the optional existence of the following programs: a CSharp
compiler, a CSharp virtual machine, a Java compiler, a JNI header and stub generator, a
javadoc generation tool, a Java archive tool, and of course, doxygen. As before, I've
written separate macro files for each of these checks, and added them to my xflaim/m4
directory.
As with the AC_PROG_TRY_DOXYGEN macro, each of these macros attempts to locate
the associated program, but doesn't go apoplectic if it's not found, because I want to be

able to use the program if it's there, but not require my users to have them in order to
build some of the most useful functionality of the FLAIM projects.
Next, you'll find a new macro, AC_ARG_VAR. Like the AC_ARG_ENABLE and
AC_ARG_WITH macros, AC_ARG_VAR allows the project maintainer to extend the
interface to the configure script. This variable is different, however, in that it adds a
public variable to the list of variables that the configure script cares about. In this case,
I'm adding two public variables, FTKINC and FTKLIB. These variables will show up in
the configure script's help text under the section entitled "Some influential environment
variables:".
These variables are also automatically substituted into the Makefile.in templates
generated by Automake. However, I don't really need this substitution functionality, as I'm
going to build other variables out of these variables, and I'll want these derived variables
to be substituted, as you'll soon see.
These variables may be set by the user in the environment, or specified on the
configure script's command line in this manner:

$./configure FTKINC='$HOME/dev/ftk/include' ...

The large chunk of code that follows the AC_ARG_VAR macros actually uses these
variables to set other variables used in the build system:

...

Ensure that both or neither are specified.

if (test -n "$FTKLIB" && test -z "$FTKINC") || \

 (test -n "$FTKINC" && test -z "$FTKLIB"); then

 AC_MSG_ERROR([both or neither FTK variables])

fi

Not specified? Check for FTK in standard places.

if test -z "$FTKLIB"; then

 # Check for flaim tool kit as a sub-project.

 if test -d "$srcdir/ftk"; then

 AC_CONFIG_SUBDIRS([ftk])

 FTKINC='$(top_srcdir)/ftk/src'

 FTKLIB='$(top_builddir)/ftk/src'

 else

 # Check for flaim tool kit as a super-project.

 if test -d "$srcdir/../ftk"; then

 FTKINC='$(top_srcdir)/../ftk/src'

 FTKLIB='$(top_builddir)/../ftk/src'

 fi

 fi

fi

Still empty? Check for installed flaim tool kit.

if test -z "$FTKLIB"; then

 AC_CHECK_LIB([flaimtk], [ftkFastChecksum],

 [AC_CHECK_HEADERS([flaimtk.h])

 LIBS="-lflaimtk $LIBS"],

 [AC_MSG_ERROR([No FLAIM Took Kit found.])])

fi

AC_SUBST command line variables.

if test -n "$FTKLIB"; then

 AC_SUBST([FTK_LTLIB], ["$FTKLIB/libflaimtk.la"])

 AC_SUBST([FTK_INCLUDE], ["-I$FTKINC"])

fi

...

First, I check to see that either both variables are specified, or neither. If only one of them
is given, then I have to fail with an error. The user isn't allowed to tell me where to find
half the tool kit. I need both the include file and the library.

If neither is specified, then I go searching for them. First I look for a sub-directory called
ftk. If I find one, then I configure that directory as a sub-project to be processed by
Autoconf, by using the AC_CONFIG_SUBDIRS macro. Note that you can use this macro

conditionally, and multiple times within the same configure.ac file. I also set the
variables to point to the appropriate relative locations within the ftk project.
If I don't find it as a sub-directory, then I look for it in the parent directory. If I find it there, I
set the FTK variables appropriately. This time I don't need to configure the located ftk
directory as a sub-project, because I'm assuming that the current project (xflaim) is
already a sub-project of the umbrella project.
If I don't find it in either place, I use the standard AC_CHECK_LIB and
AC_CHECK_HEADERS macros to see if it's installed on the user's host machine. If so, I
need only add -lflaimtk to the $LIBS variable. The header file will be found in the
standard location--usually /usr(/local)/include. Note that normally,
AC_CHECK_LIB would automatically add the library reference to the $LIBS variable, but
since I've overridden the default functionality in the third parameter, I have to add it
myself.
If I don't find it installed, then I give up with an error message, indicating that xflaim can't
be built without the FLAIM tool kit.

However, after making it through the checks, if the FTKLIB variable is no longer empty,
then I use AC_SUBST to "publish" FTK_INCLUDE and FTK_LTLIB variables, containing
derivations of the FTK variables appropriate for the C++ preprocessor and the linker.
The remaining code (excluding the trailing echo statement) calls AM_CONDITIONAL for
Java and CSharp tools in a manner similar to the way I handled doxygen. Again, I
generate bold messages to the user that the Java or CSharp portions of the xflaim
project will not be built if those tools can't be found, but I allow the build to continue.

Creating the xflaim/src/Makefile.am file
I wrote the xflaim/src/Makefile.am file by following the same design principles
used in the ftk/src version of that file. It looks very similar to its ftk counterpart, with
one exception: According to the original build system makefile, the Java native interface
(JNI) and CSharp native language binding sources are compiled and linked right into the
xflaim shared library.
This is not an uncommon practice, because it alleviates the need for extra library objects
specifically for these languages. Essentially, the xflaim shared library exports native
interfaces for these languages, that are then consumed by their corresponding language
binding wrappers.

I'm going to ignore these language binding interfaces for now. However, keep them in the
back of your mind, because later when I've finished with the entire xflaim project, I'll turn
my attention back to properly hooking these bindings into the library. Except for the
language bindings then, the Makefile.am file looks almost identical to its ftk
counterpart:

SUBDIRS =

if HAVE_JAVA

 SUBDIRS += java

 JNI_LIBADD=java/libxfjni.la

endif

if HAVE_CSHARP

 SUBDIRS += cs

 CSI_LIBADD=cs/libxfcsi.la

endif

SUBDIRS += .

lib_LTLIBRARIES = libxflaim.la

include_HEADERS = xflaim.h

libxflaim_la_SOURCES = \

 btreeinfo.cpp \

 f_btpool.cpp \

 f_btpool.h \

 ...

 rfl.h \

 scache.cpp \

 translog.cpp

libxflaim_la_CPPFLAGS = $(FTK_INCLUDE)

libxflaim_la_LIBADD = $(JNI_LIBADD)\

 $(CSI_LIBADD) $(FTK_LTLIB)

libxflaim_la_LDFLAGS = -version-info 3:2:0

As I did with the docs directory in the top-level Makefile.am file, I've conditionally
defined the SUBDIRS variable here, based on the Automake conditional specified in
configure.ac. What's different here is that I've pre-defined SUBDIRS to be empty
before checking the condition, and then added the current directory (.) at the end.
These directories must be processed (if they can be) before the current directory, as they
generate libraries that must be linked into the library built by this makefile. I had to

initialize SUBDIRS to empty because the PLUS-EQUAL (+=) Automake extension
operator will only work properly if the variable is already defined--even if it must be
defined as empty.
Since I initialized it to empty, I removed the implicit current directory, so I added it back in
after the conditional checks. It's a bit clumsy, I know, but it works.

The library interface version information was once again extracted from the original xflaim
project makefile.

Turning to the xflaim/util directory
The util directory for xflaim is a bit more complex. According to the original makefile, it
generates several utility programs, as well as a convenience library that is consumed by
each of these utilities.
In addition, the task of finding out which source files belong to which utilities, and which
were not used at all was more difficult. It turns out that there are several files in the
xflaim/util directory that are not used by any of the utilities. I suppose the project
developers thought there might be some future value in these source files, so they kept
them around. Well, that leaves us with another decision: Do we distribute these "extra"
source files? I chose to do so, as they were already being distributed by the original build
system, and adding them to the EXTRA_DIST list makes it obvious to later observers that
they aren't used in the build.
Here's my version of the xflaim/util/Makefile.am file:

EXTRA_DIST = dbdiff.cpp dbdiff.h domedit.cpp\

 diffbackups.cpp xmlfiles

XFLAIM_INCLUDE=-I$(top_srcdir)/src

XFLAIM_LDADD=../src/libxflaim.la

Utility Programs

bin_PROGRAMS = xflmcheckdb xflmrebuild\

 xflmview xflmdbshell

xflmcheckdb_SOURCES = checkdb.cpp

xflmcheckdb_CPPFLAGS =\

 $(XFLAIM_INCLUDE) $(FTK_INCLUDE)

xflmcheckdb_LDADD = libutil.la $(XFLAIM_LDADD)

xflmrebuild_SOURCES = rebuild.cpp

xflmrebuild_CPPFLAGS =\

 $(XFLAIM_INCLUDE) $(FTK_INCLUDE)

xflmrebuild_LDADD = libutil.la $(XFLAIM_LDADD)

xflmview_SOURCES = \

 viewblk.cpp \

 view.cpp \

 ...

 viewmenu.cpp \

 viewsrch.cpp

xflmview_CPPFLAGS =\

 $(XFLAIM_INCLUDE) $(FTK_INCLUDE)

xflmview_LDADD = libutil.la $(XFLAIM_LDADD)

xflmdbshell_SOURCES = \

 domedit.h \

 fdomedt.cpp \

 fshell.cpp \

 fshell.h \

 xshell.cpp

xflmdbshell_CPPFLAGS =\

 $(XFLAIM_INCLUDE) $(FTK_INCLUDE)

xflmdbshell_LDADD = libutil.la $(XFLAIM_LDADD)

Utility Convenience Library

noinst_LTLIBRARIES = libutil.la

libutil_la_SOURCES = \

 flm_dlst.cpp \

 flm_dlst.h \

 flm_lutl.cpp \

 flm_lutl.h \

 sharutil.cpp \

 sharutil.h

libutil_la_CPPFLAGS =\

 $(XFLAIM_INCLUDE) $(FTK_INCLUDE)

Check Programs

check_PROGRAMS = \

 ut_basictest \

 ut_binarytest \

 ...

 ut_xpathtest \

 ut_xpathtest2

check_DATA = copy-xml-files.stamp

check_HEADERS = flmunittest.h

ut_basictest_SOURCES =\

 flmunittest.cpp basictestsrv.cpp

ut_basictest_CPPFLAGS =\

 $(XFLAIM_INCLUDE) $(FTK_INCLUDE)

ut_basictest_LDADD = libutil.la $(XFLAIM_LDADD)

...

ut_xpathtest2_SOURCES =\

 flmunittest.cpp xpathtest2srv.cpp

ut_xpathtest2_CPPFLAGS =\

 $(XFLAIM_INCLUDE) $(FTK_INCLUDE)

ut_xpathtest2_LDADD = libutil.la $(XFLAIM_LDADD)

Unit Tests

TESTS = \

 ut_basictest \

 ...

 ut_xpathtest2

Miscellaneous rules required by Check Programs

copy-xml-files.stamp:

 cp $(srcdir)/xmlfiles/*.xml .

 echo Timestamp > $@

clean-local:

 -rm -rf ix2.*

 -rm -rf bld.*

 -rm -rf tst.bak

 -rm -f *.xml

 -rm -f copy-xml-files.stamp

In this example, you can see by the ellipses that I left out several long lists of files and
products. There are, for instance, 22 unit tests built by this makefile. I only left the
descriptions for two of them, because they're all identical, except for naming differences
and the source files from which they're built.

But here's something curious. Take a look at the definition for the xflmcheckdb
program:

...

xflmcheckdb_SOURCES = checkdb.cpp

xflmcheckdb_CPPFLAGS =\

 $(XFLAIM_INCLUDE) $(FTK_INCLUDE)

xflmcheckdb_LDADD = libutil.la $(XFLAIM_LDADD)

...

Notice that the xflmcheckdb_CPPFLAGS variable uses both the XFLAIM_INCLUDE and
FTK_INCLUDE variables. The utility clearly requires information from both sets of header
files. But the xflmcheckdb_LDADD variable only uses the XFLAIM_LDADD variable.
Why? Because Libtool manages inter-library dependencies for you. Since I reference
libxflaim.la (through XFLAIM_LDADD) when building the utilities and unit tests, and
since libxflaim.la lists libflaimtk.la as a dependency, I don't need to explicitly
reference that library here.
You can get a clearer picture of this if you take a look at the contents of libxflaim.la
(in your build directory under xflaim/src). You'll find a few lines like this somewhere in
the middle of the file:

...

Libraries that this one depends upon.

dependency_libs=

 ' .../flaim/build/ftk/src/libflaimtk.la

 -lrt -lpthread -lncurses'

...

Notice that the path information for libflaimtk.la is listed here, thus we don't have to
specify it in the LDADD variables for the xflaim utilities. The linker still requires this
information, but the libtool script effectively hides this requirement by extracting the
information from the .la file and appending it to the linker command line when building
the utility files.
As an aside, when libxflaim.la is installed, Libtool modifies the installed version of
this file such that it references the installed versions of the libraries, rather than those in
the build directory structure.

Stamp targets

In creating this makefile, I ran across another minor problem that I hadn't anticipated. At
least one of the unit tests (probably several) seemed to require that some XML data files
be present in the directory from which the test is run. What brought this to my attention
was the fact that that particular unit test failed. When I dug into it, I noticed that it was
trying to open some specifically named XML data files. Searching around a bit lead me to
the xmldata directory, beneath the xflaim/util directory. This directory contained
several dozen XML data files.
Somehow I needed to copy those files into the build hierarchy's xflaim/util directory
before I could run the unit tests. Well, I know that check programs are built before
TESTS are executed. As it turns out other primaries prefixed with check are also
processed before TESTS are executed. Notice the check_DATA variable:

...

check_DATA = copy-xml-files.stamp

...

copy-xml-files.stamp:

 cp $(srcdir)/xmlfiles/*.xml .

 echo Timestamp > $@

...

It refers to a file called copy-xml-files.stamp. This is a special type of file target
called a "stamp" target. It's purpose is to replace a bunch of unspecified files, or a non-
file-based operation, with one single representative file. This stamp file is used to indicate
to the make system that the operation of copying all of the XML data files into the test

directory has been done. Automake uses stamp files quite often in its own generated
rules.
The rule for generating the stamp file (near the bottom of the example above), also
copies the XML data files into the test execution directory. The echo statement simply
creates a file named copy-xml-files.stamp, and containing the single word,
"Timestamp". The file may contain anything, really. The important point here is that the
file exists, and has a time and date associated with it. The make utility uses this
information to determine whether or not the copy operation needs to be executed. In this
case, since copy-xml-files.stamp has no dependencies, its mere existence
indicates to make that the operation has already been done, and need not be done again.
To get make to perform the copy operation on the next build, simply delete the stamp file.
This is a sort of hybrid between a true file-based rule, and a phony target. Phony targets
are always executed, because they aren't real files, so make has no way of knowing
whether or not the associated operation should be performed. The time stamps of file-
based rules can be checked against their dependency lists to determine if they should be
re-executed, or not. Stamp rules like this one are executed only if the stamp file is
missing.
All files placed in the build directory should be cleaned up when the user enters make
clean at the command prompt. Since I placed these XML data files into this directory, I
need to clean them up also. Files listed in DATA variables are not cleaned up
automatically, because DATA files are usually not generated files. Most often, the DATA
primary is used to list existing project files that need to be installed. In this case, I actually
created a bunch of XML files and a stamp file, so I need to clean these up when make
clean is executed.
NOTE: Be careful when using this technique on files that need to be copied from the
source directory into the same corresponding location in the build directory. Special care
needs to be taken to ensure you don't inadvertently delete source files from the source
tree when building in the source tree.

Cleaning your room

There is another way to ensure that files created using your own make rules get cleaned
up during execution of the clean target. You may also define the CLEANFILES variable
to contain a white space separated list of files or wild card specifications to be removed.
The CLEANFILES variable is the more "approved" method of removing extra files during
make clean.
If that's so, then why did I use clean-local in this case? Because the CLEANFILES
variable has one caveat: it won't remove directories, only files. Each of the rm commands
above removes a wild card file specification that contains at least one directory, so I had
to use clean-local in this case. I'll show you a proper use of CLEANFILES shortly.

...

clean-local:

 -rm -rf ix2.*

 -rm -rf bld.*

 -rm -rf tst.bak

 -rm -f *.xml

 -rm -f copy-xml-files.stamp

...

Here, I needed to remove all files ending in .xml, plus the stamp file. In addition, the unit
tests themselves are not well written, in that they leave "droppings" behind. Let this be a
lesson: when you write unit tests that generate files and directories, remove all such
droppings before terminating your test. That way, you won't have to write such clean
rules in your makefiles.
Another way of managing this is would be to write a script that calls the tests, and then
cleans up left-over files and directories. This script then becomes the entry in the TESTS
variable.
I use the Automake supported clean-local target here as a way to extend the clean
target. The clean-local target is executed as a dependency of (and thus before) the
clean target, if it exists. Here's the corresponding code from the Automake-generated
Makefile:

...

clean: clean-am

clean-am: clean-binPROGRAMS clean-checkPROGRAMS \

 clean-generic clean-libtool clean-local \

 clean-noinstLTLIBRARIES mostlyclean-am

...

.PHONY: ... clean-local ...

...

clean-local:

 -rm -rf ix2.*

 -rm -rf bld.*

 -rm -rf tst.bak

 -rm -f *.xml

 -rm -f copy-xml-files.stamp

...

Automake noted that I had a target named clean-local in my Makefile.am file, so it
added clean-local to the dependency list for clean-am, and then added it to
the .PHONY list. Had I not written a clean-local target, these references would have
been missing from the generated Makefile.

When cleaning up files in a build directory using wild cards in this manner, you need to
remember that the user may be building in the source directory. Try to make your wild
cards as specific as possible so you don't inadvertently remove source files.

Building Java sources using Autotools

The most significant barrier to building Java sources using the GNU Autotools is the
(apparently nearly intentional) misdirection in the existing documentation. Now, I know
better than to think it was done on purpose, but time and time again, what you find in
internet searches, or in the GNU Automake documentation is just enough information,
presented in just such a way as to allow you to really hang yourself well when you try to
use it. There's nothing quite as frustrating as finding dozens of implications that
something can be done, but finding no information telling you exactly how to do it.

There are two sections in the GNU Automake manual that refer to building Java sources
using the GNU Autotools. The first is section 8.15, entitled, "Java Support". The second
is section 10.4, entitled simply, "Java". (The major section 10 is entitled, "Other GNU
Tools".)

In the first place, the contents of these two sections should probably be swapped.
Section 8.15 actually discusses using the GCJ front end to the GNU compiler suite to
compile and link Java source code into native executables. This is nothing that the
average Java purist would understand without a little hand-holding, because Sun Java
doesn't do anything of the sort. The information in this section would be better placed
under a section entitled, "Other GNU Tools" (like section 10, for instance).
On the other hand, section 10.4 talks about building Java sources using whatever javac
compiler happens to be found in the system path. This is much more likely to be
something a Java developer might actually wish to do in a Makefile.am file, so I'm
going to ignore section 8.15 (native compilation, using GCJ), and talk strictly about
section 10.4.

Autotools Java support

Autoconf has no built-in support for java. For example, it provides no macros that locate
Java tools in the end user's environment. Automake's support for building Java classes is
minimal, but getting it to work is not that difficult if you know what you're doing.
Automake provides a built-in primary (JAVA) for building Java sources. Automake does
not provide any preconfigured installation location prefixes for installing Java classes.
However, the usual place to install Java classes and .jar files is in the
$(datadir)/java directory. So, creating a proper prefix is as simple as using the
Automake prefix extension mechanism of defining a variable suffixed with dir:

...

javadir = $(datadir)/java

java_JAVA = file_a.java file_b.java ...

...

Note that you don't often want to install Java sources, which is what you will accomplish
when you define your JAVA primary with this sort of prefix. Rather, you want the class
files to be installed, or more likely a .jar file containing all of your .class files. So I find

it more useful to define the JAVA primary with the noinst prefix. Additionally, files in the
JAVA primary list are not distributed by default, so you may even want to use the dist
super-prefix, in this manner:

...

dist_noinst_JAVA = file_a.java file_b.java ...

...

When you define a list of Java source files in a variable containing the JAVA primary,
Automake generates a make rule that builds that list of files all in one command, using
the following command line syntax:

...

JAVAROOT = $(top_builddir)

JAVAC = javac

CLASSPATH_ENV = CLASSPATH=$(JAVAROOT):\

 $(srcdir)/$(JAVAROOT):$$CLASSPATH

...

classdist_noinst.stamp: $(dist_noinst_JAVA)

 @list1='$?'; list2=; \

 if test -n "$$list1"; then \

 for p in $$list1; do \

 if test -f $$p;

 then d=; \

 else d="$(srcdir)/"; \

 fi; \

 list2="$$list2 $$d$$p"; \

 done; \

 echo '$(CLASSPATH_ENV) $(JAVAC) \

 -d $(JAVAROOT) $(AM_JAVACFLAGS) \

 $(JAVACFLAGS) '"$$list2"; \

 $(CLASSPATH_ENV) $(JAVAC) \

 -d $(JAVAROOT) $(AM_JAVACFLAGS) \

 $(JAVACFLAGS) $$list2; \

 else :; fi

 echo timestamp > classdist_noinst.stamp

...

Most of the "stuff" you see in the command above is for prepending the $(srcdir)
prefix onto each file in the user-specified list, in order to properly support VPATH builds.
This code uses a shell for statement to split the list into individual files, prepend
$(srcdir), and then reassemble the list.
NOTE: It's interesting to note that this file list munging process could have been done in a
half-line of GNU make-specific code, but Automake is designed to generate makefiles
that can be executed by many older make programs.
The part that actually does the work is found in one line, near the bottom. To make it
simpler to read, I'll reformat this example, removing the cruft:

...

JAVAROOT = $(top_builddir)

JAVAC = javac

CLASSPATH_ENV = CLASSPATH=$(JAVAROOT):\

 $(srcdir)/$(JAVAROOT):$$CLASSPATH

...

classdist_noinst.stamp: $(dist_noinst_JAVA)

 ...

 $(CLASSPATH_ENV) $(JAVAC) -d $(JAVAROOT) \

 $(AM_JAVACFLAGS) $(JAVACFLAGS) $$list

...

You may have noticed Automake's use of a stamp file here. This is done because the
single $(JAVAC) command generates several .class files from several .java files.
Rather than just pick one of these at random to use in the rule, Automake generates and
uses a stamp file. This is important to know, because using a stamp file in the rule

causes make to ignore the associations between individual .class files and their
corresponding .java files. That is, if you delete a .class file, the rules in the
Makefile will not cause it to be rebuilt. The only way to cause the re-execution of the
$(JAVA) command is to either modify one or more of the .java files, thereby causing
their timestamps to become newer than that of the the stamp file, or to delete the stamp
file entirely.
The variables used in the build environment, and on the command line include
JAVAROOT, JAVAC, JAVACFLAGS, AM_JAVACFLAGS and CLASSPATH_ENV. Each of
these may be specified by the developer in the Makefile.am file. If they're not specified,
then the defaults you see in this example are used instead. Where you don't see a
default value set, you may assume the default value is empty.
One important point about this code is that all of the files specified in the JAVA primary
list are compiled using a single command line, which could pose a problem on systems
with limited command line lengths. If you find you have such a problem, you may have to
develop your own make rules for building Java classes. Given the limited support that
Automake currently provides, this isn't really a very daunting task.
The CLASSPATH_ENV variables sets the Java classpath environment variable for the
javac command such that it contains the contents of JAVAROOT ($(top_builddir),
by default), the same value prefixed with $(srcdir), and then any class path that might
be specified in the environment by the user.
The JAVAC variable contains javac by default. The hope here is that javac can be
found in the system path. The AM_JAVACFLAGS variable may be set in the
Makefile.am file by the developer. As usual, the non-Automake version of this variable
(JAVACFLAGS) is considered a "user" variable, and shouldn't be set in makefiles.
The JAVAROOT variable is used to specify the location of the java root directory, which is
where the Java compiler will expect to find the start of packages directory hierarchies
belonging to your project.
This is fine as far as it goes, but it doesn't go nearly far enough. In this (relatively simple)
project, I also need to generate JNI header files using the javah utility, and I need to
generate a .jar file from the .class files built from my Java sources. Automake-
provided Java support doesn't even begin to handle these tasks. So I'll have to do the
rest with hand-coded make rules. I'll start with Autoconf macros to ensure that I have a
good Java build environment.

Using ac-archive macros

I did a little hunting around on the internet, and found that the ac-archive project on
sourceforge.net does in fact supply Autoconf macros that come close to what I need in
order to ensure that I have a good Java development environment. I downloaded the
latest ac-archive source package, and just hand-installed the .m4 files that I needed into
my xflaim/m4 directory.
Then I modified them (and their names) such that they work the way my
AC_PROG_TRY_DOXYGEN macro works. I wanted to locate Java tools if they exist, but be
able to continue without them if they're missing. Given the current politics surrounding the
existence of Java tools in GNU/Linux distributions at this time, this is probably a wise
approach.
NOTE: The other way to use the ac-archive package is to actually install it on your
system, which will place the ac-archive .m4 files into the /usr/(local/)share/ac-
archive directory. The documentation for ac-archive provides instructions on how you
might pass flags to the aclocal utility from within your project's top-level Makefile.am
file that tell it how to access the installed ac-archive macros during an execution of
autoreconf, or aclocal.
I created the following macros and files from those found in the ac-archive:

 AC_PROG_TRY_JAVAC is defined in ac_prog_try_javac.m4 and
ac_prog_javac_works.m4

 AC_PROG_TRY_JAVAH is defined in ac_prog_try_javah.m4
 AC_PROG_TRY_JAVADOC is defined in ac_prog_try_javadoc.m4
 AC_PROG_TRY_JAR is defined in ac_prog_try_jar.m4
 AC_PROG_TRY_CSC is defined in ac_prog_try_csc.m4 and

ac_prog_csc_works.m4
 AC_PROG_TRY_CSVM is defined in ac_prog_try_csvm.m4 and

ac_prog_csvm_works.m4
With only a little more effort, I was also able to create the CSharp macros I needed to
accomplish the same tasks for the CSharp language bindings. I'll discuss CSharp in the
next section. Here's a portion of the xflaim configure.ac file, repeated here for your
information:

...

Checks for optional programs.

AC_PROG_TRY_CSC

AC_PROG_TRY_CSVM

AC_PROG_TRY_JAVAC

AC_PROG_TRY_JAVAH

AC_PROG_TRY_JAVADOC

AC_PROG_TRY_JAR

...

Check for Java compiler.

have_java=yes

if test -z "$JAVAC"; then have_java=no; fi

if test -z "$JAVAH"; then have_java=no; fi

if test -z "$JAR"; then have_java=no; fi

if test "x$have_java" = xno; then

 echo "---"

 echo " Some Java tools not found - continuing"

 echo " without XFLAIM JNI support."

 echo "---"

fi

AM_CONDITIONAL([HAVE_JAVA],

 [test "x$have_java" = xyes])

Check for CSharp compiler.

if test -z "$CSC"; then

 echo "---"

 echo " No CSharp compiler found - continuing"

 echo " without XFLAIM CSHARP support."

 echo "---"

fi

AM_CONDITIONAL([HAVE_CSHARP], [test -n "$CSC"])

...

These macros set the CSC, CSVM, JAVAC, JAVAH, JAVADOC and JAR variables to the
location of their respective CSharp and Java tools, and then substitute them into the
xflaim project's Makefile.in templates using AC_SUBST. If any of these variables are
already set in the user's environment when the configure script is executed, their
values are left untouched, allowing the user to override the values that would have been
set by the macros.
I also added some shell code to set a variable, have_java to either yes or no,
depending on whether or not all three tools could be found. If they are found, have_java
becomes yes, which fact is later used in the call to AM_CONDITIONAL. Recall that this
Automake macro conditionally sets the HAVE_JAVA variable, which is later used in
xflaim/src/Makefile.am file to conditionally build the java sub-directory hierarchy.

Canonical system information

The only non-obvious bit of information you need to know about using these ac-archive
extensions is that they rely on the built-in Autoconf macro, AC_CANONICAL_TARGET.
Autoconf provides a way to automatically expand any existing macros inside the
definition of a macro, so that macros required by the one being defined can be made
available immediately. However, if AC_CANONICAL_TARGET is not used before certain
other macros (including, unfortunately, LT_INIT), then autoreconf will generate about
a dozen warning messages.
To alleviate these warnings, I added AC_CANONICAL_SYSTEM to my top-level and
xflaim-level configure.ac files, immediately after the call to AC_INIT. As I mentioned
earlier in this chapter, this macro and those that it calls, AC_CANONICAL_BUILD,
AC_CANONICAL_HOST and AC_CANONICAL_TARGET, are designed to ensure that the
$host, $build and $target environment variables are defined by the configure
script, such that they contain appropriate values describing the user's host, build and
target systems.

These variables contain canonical values for the host, build and target CPU, vendor and
operating system. Values like these are very useful to extension macros. If a macro can
assume these variables are set properly, then it saves quite a bit of code duplication in
the macro definition.

The values of these variables are calculated using two helper scripts, config.guess
and config.sub, which are distributed with Autoconf. The config.guess script uses
a combination of uname commands to ferret out information about the host system, and
munge it into a canonical value. The config.sub script is used to reformat host, build
and target information specified by the user on the configure command line into a
canonical value.
The key point here, however, is that I had to use the AC_CANONICAL_SYSTEM macro
well before I called the ac-archive extension macros in my configure.ac script.

The xflaim/java directory structure
The original source layout had the Java JNI and CSharp native sources located in
entirely different directory structures than xflaim/src. The JNI sources were located in
xflaim/java/jni, and the CSharp native sources were located in
xflaim/csharp/xflaim. While Automake has no problem generating rules for
accessing files well outside the current directory hierarchy, I find it a bit silly to put these
files so far away from the only library they can really belong to. Thus, I broke my own rule
of thumb about not rearranging files in this case. I moved the contents of these two
directories to directories under xflaim/src. I named the JNI directory
xflaim/src/java and the CSharp native sources directory xflaim/src/cs.

flaim

 xflaim

 src

 cs

 java

 wrapper

 xflaim

As you can see, I also added a wrapper directory beneath the java directory, in which I
rooted the xflaim wrapper package hierarchy. Since the Java xflaim wrapper classes are
part of the Java xflaim package, they have to be located in a directory called xflaim.
Nevertheless, the build happens in the wrapper directory. There are no build files found
in the wrapper/xflaim directory, or any directories below that point.
Note that it doesn't matter how deep your package hierarchy is. You will still build the
java classes in the wrapper directory--this is the JAVAROOT directory for this project.

The xflaim/src/Makefile.am file
At this point the configure.ac script is doing about all it can for me to ensure that I
have a good Java build environment. If I have a good Java build environment, my build
system will be able to generate my JNI wrapper classes and header files, and build my
C++ JNI sources. If my end user's system doesn't provide these tools, then she simply
can't build or link in the JNI language bindings on that host.

Have a look at the xflaim/src/Makefile.am file, and examine the portions that are
relevant to building the Java and CSharp language bindings:

SUBDIRS =

if HAVE_JAVA

 SUBDIRS += java

 JNI_LIBADD=java/libxfjni.la

endif

if HAVE_CSHARP

 SUBDIRS += cs

 CSI_LIBADD=cs/libxfcsi.la

endif

SUBDIRS += .

...

libxflaim_la_LIBADD =\

 $(JNI_LIBADD) $(CSI_LIBADD) $(FTK_LTLIB)

...

I've already explained the use of the conditionals to ensure that the java and cs
directories only get built if the proper conditions are met. You can now see how this fits
into the build system I've created so far.
Notice that I'm also conditionally defining two new library variables. If I can build the Java
language bindings, then the JNI_LIBADD variable will refer to the library that is built in
the java directory. If I can build the CSharp language bindings, then the CSI_LIBADD
variable will refer to the library that is built in the cs directory. In either case, if the
required tools are not found by the configure script, then the associated variable will
remain undefined. When an undefined variable is referenced, it expands to nothing, so
there's no harm in using it in the libxflaim_la_LIBADD variable.

Building the JNI C++ sources

Now, allow me to turn your attention to the xflaim/src/java/Makefile.am file:

SUBDIRS = wrapper

XFLAIM_INCLUDE=-I$(srcdir)/..

noinst_LTLIBRARIES = libxfjni.la

libxfjni_la_SOURCES = \

 jbackup.cpp \

 jdatavector.cpp \

 jdb.cpp \

 jdbsystem.cpp \

 jdomnode.cpp \

 jistream.cpp \

 jniftk.cpp \

 jniftk.h \

 jnirestore.cpp \

 jnirestore.h \

 jnistatus.cpp \

 jnistatus.h \

 jostream.cpp \

 jquery.cpp

libxfjni_la_CPPFLAGS =\

 $(XFLAIM_INCLUDE) $(FTK_INCLUDE)

Again, I want the wrapper directory to be built first, because it will build the class files
and JNI header files required by the JNI convenience library sources. This time, it's not
conditional. If I've made it this far into the build hierarchy, then I know I have all the Java

tools I need. This Makefile.am file simply builds a convenience library containing my
JNI C++ interface functions.
Because of the way Libtool builds both shared and static libraries from the same sources,
this convenience library will become part of both the xflaim shared and static libraries.
The original build system makefile accounted for this by linking the JNI and CSharp
native interface objects into only the shared library.

The fact that these libraries are added to both the shared and static xflaim libraries is not
really a problem. Objects in a static library remain unused in applications or libraries
linking to the static library, as long as code in those objects remain unreferenced.
However, I'll admit that it's a bit of a "wart" on the side of my new build system.

The Java wrapper classes and JNI headers

Finally, the xflaim/src/java/wrapper/Makefile.am file takes us to the heart of
the matter. I've tried many different configurations for building Java JNI wrappers, and
this one always comes out on top. Here's the wrapper directory's Automake intput file:

JAVAROOT = .

jarfile = $(PACKAGE)jni-$(VERSION).jar

jardir = $(datadir)/java

pkgpath = xflaim

jhdrout = ..

$(jarfile): $(dist_noinst_JAVA)

 $(JAR) cf $(JARFLAGS) $@ $(pkgpath)/*.class

jar_DATA = $(jarfile)

java-headers.stamp: $(dist_noinst_JAVA)

 @list="`echo $(dist_noinst_JAVA) |\

 sed -e 's|\.java||g' -e 's|/|.|g'`"; \

 for class in $$list; do \

 echo "$(JAVAH) -jni -d $(jhdrout)\

 $(JAVAHFLAGS) $$class"; \

 $(JAVAH) -jni -d $(jhdrout)\

 $(JAVAHFLAGS) $$class; \

 done

 @echo "JNI headers generated"\

 > java-headers.stamp

all-local: java-headers.stamp

CLEANFILES = $(jarfile) $(pkgpath)/*.class\

 java-headers.stamp $(jhdrout)/xflaim_*.h

dist_noinst_JAVA = \

 $(pkgpath)/BackupClient.java \

 $(pkgpath)/Backup.java \

 ...

 $(pkgpath)/XFlaimException.java \

 $(pkgpath)/XPathAxis.java

I've set the JAVAROOT variable to DOT (.), mainly because I want Automake to be able
to tell the Java compiler that this is where the package hierarchy begins. The xflaim Java
wrapper classes are found in the xflaim package. The default value for JAVAROOT is
$(top_builddir), which would have the wrapper class belong to the
xflaim.src.java.wrapper.xflaim package. That's not right.
I then created a variable called jarfile, deriving its value from $(PACKAGE) and
$(VERSION). This is how the destdir variable is derived also, from which the name of
the tarball comes. A make rule indicates how the .jar file should be built. Here, I'm
using the JAR variable, whose value was calculated for me by the results of the
AC_PROG_TRY_JAR macro in the configure script. This rule is fairly straight forward.
I've defined a new installation variable called jardir--the place where .jar files are to
be installed, presumably. And I've used it as the prefix for a DATA primary. Any files that
Automake doesn't understand--basically, any files that you build using your own rules--
are just considered by Automake to be data files, and are installed as such.

I'm using another stamp file in the rule that builds the JNI header files from the .class
files. I'm doing this for the same reason that Automake used a stamp file in the rule that it
uses to build .class files from .java source files.
This is the most complex part of this makefile, so I'll try to break it into simple pieces. The
rule states that the stamp file depends on the files listed in the dist_noinst_JAVA
variable. The command is a bit of complex shell script that strips the .java extensions
from the file list, and converts all the SLASH characters in to DOT characters. The
reason for this is that the javah utility wants a list of class names, not a list of file names.
The last line, of course, generates the stamp file.
Finally, I hooked my java-headers.stamp target into the all target by adding it as a
dependency to the all-local target. When the all target (the default for all
Automake-generated makefiles) is executed in this makefile, java-headers.stamp will
be built, along with the JNI headers.
Here, I've also added the .jar file, all of the .class files, the java-headers.stamp
file and all of the generated JNI header files to the CLEANFILES variable, so that
Automake will clean them up for me when make clean is executed on this makefile.
Again, I can use the CLEANFILES variable here because I'm not trying to delete any
directories.

A caveat about using the JAVA primary
There's one important caveat to using the JAVA primary. You may only define one JAVA
primary variable per Makefile.am file. The reason for this is that multiple classes may
be generated from a single .java file, and the only way to know which classes came
from which .java file would be to parse the .java files. Rather than do this, Automake
allows only one JAVA primary per file, so all .class files generated within a given build
directory are installed in the location specified by the single JAVA primary variable prefix.
Realizing this gives me pause for thought. It seems that I've broken this rule by assuming
in my java-headers.stamp rule that the source for class information is the list of files
specified in the dist_noinst_JAVA variable. In reality, I should probably be looking in
the current build directory for all .class files found after the rules for the JAVA primary
are executed.
It's a good thing I don't need to install my JNI header files. I have no way of knowing what
they're called from within my Makefile.am file! You should by now be able to see the
problems that Autotools has with Java. In fact, these problems are not so much related to
the poor design of Autotools, as they are the poor design of the Java language itself. This
will become clear in the next section, as I cover the rules that build the CSharp native
interfaces.

Building the CSharp sources

Returning now to the xflaim/src/cs directory brings us to a discussion of building
source for a language for which Automake has no support: CSharp. Here's the
Makefile.am file that I wrote for the cs directory:

SUBDIRS = wrapper

XFLAIM_INCLUDE=-I$(srcdir)/..

noinst_LTLIBRARIES = libxfcsi.la

libxfcsi_la_SOURCES = \

 Backup.cpp \

 DataVector.cpp \

 Db.cpp \

 DbInfo.cpp \

 DbSystem.cpp \

 DbSystemStats.cpp \

 DOMNode.cpp \

 IStream.cpp \

 OStream.cpp \

 Query.cpp

libxfcsi_la_CPPFLAGS = $(XFLAIM_INCLUDE) $(FTK_INCLUDE)

Not surprisingly, this looks almost identical to the Makefile.am file found in the
xflaim/src/java directory. I'm building a simple convenience library from C++ source
files found in this directory, just as I did in the java directory. As in the java version, this
makefile is specifying a sub-directory called wrapper, which Automake builds first.
The wrapper/Makefile.am file looks like this:

EXTRA_DIST = xflaim cstest sample xflaim.ndoc

xfcs_sources = \

 xflaim/BackupClient.cs \

 xflaim/Backup.cs \

 ...

 xflaim/RestoreClient.cs \

 xflaim/RestoreStatus.cs

cstest_sources = \

 cstest/BackupDbTest.cs \

 cstest/CacheTests.cs \

 ...

 cstest/StreamTests.cs \

 cstest/VectorTests.cs

TESTS = cstest_script

AM_CSCFLAGS = -d:mono -nologo -warn:4\

 -warnaserror+ -optimize+

#AM_CSCFLAGS += -debug+ -debug:full\

-define:FLM_DEBUG

all-local: xflaim_csharp.dll

clean-local:

 -rm xflaim_csharp.dll xflaim_csharp.xml

 -rm cstest_script cstest.exe libxflaim.so

 -rm Output_Stream

 -rm -rf abc backup test.*

check-local: cstest.exe cstest_script

install-exec-local:

 test -z "$(libdir)" || \

 $(MKDIR_P) "$(DESTDIR)$(libdir)"

 $(INSTALL_PROGRAM) xflaim_csharp.dll\

 "$(DESTDIR)$(libdir)"

install-data-local:

 test -z "$(docdir)" || \

 $(MKDIR_P) "$(DESTDIR)$(docdir)"

 $(INSTALL_DATA) xflaim_csharp.xml\

 "$(DESTDIR)$(docdir)"

uninstall-local:

 rm "$(DESTDIR)$(libdir)/xflaim_csharp.dll"

 rm "$(DESTDIR)$(docdir)/xflaim_csharp.xml"

xflaim_csharp.dll: $(xfcs_sources)

 @list1='$+'; list2=; \

 if test -n "$$list1"; then \

 for p in $$list1; do \

 if test -f $$p; then d=; \

 else d="$(srcdir)/"; fi; \

 list2="$$list2 $$d$$p"; \

 done; \

 echo '$(CSC) -target:library\

 $(AM_CSCFLAGS) $(CSCFLAGS) -out:$@\

 -doc:$(@:.dll=.xml) '"$$list2"; \

 $(CSC) -target:library $(AM_CSCFLAGS)\

 $(CSCFLAGS) -out:$@ -doc:$(@:.dll=.xml)\

 $$list2; \

 else :; fi

cstest.exe: xflaim_csharp.dll $(cstest_sources)

 @list1='$(cstest_sources)'; \

 list2=; if test -n "$$list1"; then \

 for p in $$list1; do \

 if test -f $$p; then d=; \

 else d="$(srcdir)/"; fi; \

 list2="$$list2 $$d$$p"; \

 done; \

 echo '$(CSC) $(AM_CSCFLAGS) $(CSCFLAGS)\

 -out:$@ '"$$list2"'\

 -reference:xflaim_csharp.dll'; \

 $(CSC) $(AM_CSCFLAGS) $(CSCFLAGS)\

 -out:$@ $$list2\

 -reference:xflaim_csharp.dll; \

 else :; fi

libxflaim.so:

 $(LN_S) ../../.libs/libxflaim.so\

 libxflaim.so

cstest_script: cstest.exe libxflaim.so

 echo "#!/bin/sh" > cstest_script

 echo "$(CSVM) cstest.exe" >> cstest_script

 chmod 0755 cstest_script

The default target for this Makefile.am file is, of course, the all target. I've hooked the
all target with my own code by implementing the all-local target, which depends on
a file named xflaim_csharp.dll.
NOTE: This executable file name may be a bit confusing to those who are new to CSharp.
In essence, the creators of CSharp (Microsoft) designed the CSharp VM to execute
Microsoft native (or almost native) binaries. In porting the CSharp virtual machine to Unix,
the Mono team decided against breaking the naming conventions defined by Microsoft,
so that Microsoft generated programs could be executed by the Mono CSharp virtual
machine implementation. Nevertheless, it still suffers from problems that need to be
managed occasionally by name-mapping configuration files.

...

xfcs_sources = ...

...

all-local: xflaim_csharp.dll

...

xflaim_csharp.dll: $(xfcs_sources)

 @list1='$+'; list2=; \

 if test -n "$$list1"; then \

 for p in $$list1; do \

 if test -f $$p; then d=; \

 else d="$(srcdir)/"; fi; \

 list2="$$list2 $$d$$p"; \

 done; \

 echo '$(CSC) -target:library\

 $(AM_CSCFLAGS) $(CSCFLAGS) -out:$@\

 -doc:$(@:.dll=.xml) '"$$list2"; \

 $(CSC) -target:library $(AM_CSCFLAGS)\

 $(CSCFLAGS) -out:$@ -doc:$(@:.dll=.xml)\

 $$list2; \

 else :; fi

...

The xflaim_csharp.dll binary depends on the list of CSharp source files specified in
the xfcs_sources variable. I take no credit for the commands in this rule. They're
copied from the Automake-generated java/wrapper/Makefile, and slightly modified
to build CSharp binaries from CSharp source files.
This isn't a lesson in building CSharp sources--the point here is that the default target is
automatically built by hooking the all target via the all-local target.
This Makefile.am file also builds a set of unit tests in CSharp that test the CSharp
language bindings. Here are the relevant portions of the file:

...

cstest_sources = ...

TESTS = cstest_script

...

check-local: cstest.exe cstest_script

...

cstest.exe: xflaim_csharp.dll $(cstest_sources)

 @list1='$(cstest_sources)'; \

 list2=; if test -n "$$list1"; then \

 for p in $$list1; do \

 if test -f $$p; then d=; \

 else d="$(srcdir)/"; fi; \

 list2="$$list2 $$d$$p"; \

 done; \

 echo '$(CSC) $(AM_CSCFLAGS) $(CSCFLAGS)\

 -out:$@ '"$$list2"'\

 -reference:xflaim_csharp.dll'; \

 $(CSC) $(AM_CSCFLAGS) $(CSCFLAGS)\

 -out:$@ $$list2\

 -reference:xflaim_csharp.dll; \

 else :; fi

libxflaim.so:

 $(LN_S) ../../.libs/libxflaim.so\

 libxflaim.so

cstest_script: cstest.exe libxflaim.so

 echo "#!/bin/sh" > cstest_script

 echo "$(CSVM) cstest.exe" >> cstest_script

 chmod 0755 cstest_script

The test sources are built into a CSharp executable named cstest.exe. The rules state
that cstest.exe depends on xflaim_csharp.dll and the source files. I again
copied the commands from the rule for building xflaim_csharp.dll, and modified
them for building CSharp programs.
Ultimately, the Automake-generated makefile will attempt to execute the scripts or
executables listed in the TESTS variable, so the idea here is to ensure that all necessary
components get built before these files are executed. The cstest_script is a script
built for the sole purpose of executing the cstest.exe binary in the CSharp virtual
machine referenced by the CSVM variable. This variable was defined in my configure
script by the code generated by the AC_PROG_TRY_CSVM macro.
The script depends on the executable, and on a link to the libxflaim.so file. This file
must be present in the current directory, or its location must be specified somehow on the
mono ($CSVM) command line. I chose to simply create a link in the current directory to the
location of the actual built library--located up a few directories, and then down into the
xflaim/src/.libs directory.

Manual installation

Since I'm doing everything myself here, I can't rely on Automake to install files for me. I
have to write my own installation rules. Here again are the relevant portions of the
makefile:

...

install-exec-local:

 test -z "$(libdir)" || \

 $(MKDIR_P) "$(DESTDIR)$(libdir)"

 $(INSTALL_PROGRAM) xflaim_csharp.dll\

 "$(DESTDIR)$(libdir)"

install-data-local:

 test -z "$(docdir)" || \

 $(MKDIR_P) "$(DESTDIR)$(docdir)"

 $(INSTALL_DATA) xflaim_csharp.xml\

 "$(DESTDIR)$(docdir)"

uninstall-local:

 rm "$(DESTDIR)$(libdir)/xflaim_csharp.dll"

 rm "$(DESTDIR)$(docdir)/xflaim_csharp.xml"

...

Note that, as per the rules defined in the GNU Coding Standards, the installation targets
do not depend on the binaries they install. I don't want make install to build anything.
If they haven't been built yet, I'll have to exit out of the root account, back into my own
user account and build the binaries with make all first.

Cleaning up again

As usual, things must be cleaned up properly. The clean-local target handles this
nicely for me:

...

clean-local:

 -rm xflaim_csharp.dll xflaim_csharp.xml

 -rm cstest_script cstest.exe libxflaim.so

 -rm Output_Stream

 -rm -rf abc backup test.*

...

Configuring compiler options

The original GNU build system was doing a lot for the user. By specifying a list of
auxiliary targets on the make command line, the user could indicate that she wanted a
debug or release build, force a 32-bit build on a 64-bit system, indicate that she wanted
to generate generic SPARC code on a Solaris sytem, etc.
Oddly, this turn-key approach to build systems is quite common in commercial code.
Whereas, in open source code, the more common practice is to omit much of this
framework, allowing the user to set her own options in the standard user variables, CC,
CPP, CXX, CFLAGS, CXXFLAGS, CPPFLAGS and others. What's strange about this
situation is that commercial software is developed by experts working in the industry,
while open source software is often built and consumed by hobbyists. And yet the
experts are the ones using the menu-driven rigid-options framework, while the hobbyists
have to manually configure their compiler options.
I suppose the most reasonable explanation for this is that commercial software relies on
carefully crafted builds that must be able to be duplicated. Open source hobbyists are
more carefree, and would rather not give up the flexibility afforded by the lack of such
turn-key systems.

To this end, I've added some of the options supported by the original GNU makefile-
based build system, but left others out. Here's the portion of the configure.ac file that
I'm talking about:

...

Configure global pre-processor definitions.

AC_DEFINE([_REENTRANT], [],

 [Define for reentrant code])

AC_DEFINE([_LARGEFILE64_SOURCE], [],

 [Define for 64-bit data files])

AC_DEFINE([_LARGEFILE_SOURCE], [],

 [Define for 64-bit data files])

Configure supported platforms' compiler and li...

case $host in

 sparc-*-solaris*)

 LDFLAGS="$LDFLAGS -R /usr/lib/lwp"

 if "x$CXX" != "xg++"; then

 if "x$debug" = xno; then

 CXXFLAGS="$CXXFLAGS -xO3"

 fi

 SUN_STUDIO=`"$CXX" -V | grep "Sun C++"`

 if "x$SUN_STUDIO" = "xSun C++"; then

 CXXFLAGS="$CXXFLAGS -errwarn=%all\

 -errtags -erroff=hidef,inllargeuse,doubunder"

 fi

 fi ;;

 -apple-darwin)

 AC_DEFINE([OSX], [],

 [Define if building on Apple OSX.]) ;;

 --aix*)

 if "x$CXX" != "xg++"; then

 CXXFLAGS="$CXXFLAGS -qthreaded -qstrict"

 fi ;;

 --hpux*)

 if "x$CXX" != "xg++"; then

 # Disable "Placement operator delete

 # invocation is not yet implemented" warning

 CXXFLAGS="$CXXFLAGS +W930"

 fi ;;

esac

...

Here, I've used the $host variable to determine the type of system for which I'm building.
The config.guess and config.sub files are your friends here. If you need to write
code like for your project, then you'll need to examine these files to find common traits for
the processes and systems for which you'd like to set various compiler and linker options.
Note also that in each of these cases (except for the definition of the OSX preprocessor
variable on Apple Darwin systems), I'm really only setting flags for native compilers. The
GNU compiler tools seem to be able to handle any sort of code thrown at them without
monkeying around with compiler options. This is a good thing, and a lesson could be
learned by compiler vendors from this fact.

Hooking Doxygen into the build process

I wanted to generate documentation as part of my build process, if possible. That is, if the
user has doxygen installed on her system, then the build system will use it to build
doxygen documentation as part of the make all process. As I've already mentioned, I
used the AM_CONDITIONAL macro to conditionally build the docs directory.
Now, relative to the xflaim project, this is probably not the right thing to do, as I want non-
doxygen documentation to be installed even if doxygen isn't available. The right approach
to this problem would be to have a doxygen directory beneath the docs directory that
handles only generated documentation. The docs directory itself would be limited to
simply installing existing documentation. I've combined them to save space in this book,
but I'll probably fix this problem before committing my build system to the project.
For the FLAIM tool kit project, this configuration works fine for now, because there is no
other documentation to be installed. I say "for now" because at some point in the future,
someone may write some tool kit documentation, and then I'll have to move things
around to get the end-user experience I want.

Doxygen uses a configuration file (often called doxyfile) to configure literally hundreds
of doxygen options. This configuration file contains some information that is known to
Autoconf. This sounds like the perfect opportunity to use an Autoconf-generated file. To
this end, I've written a file called doxyfile.in that contains most of what a normal
doxyfile would contain, except it also has a few Autoconf substitution variable references:

...

PROJECT_NAME = @PACKAGE_NAME@

PROJECT_NUMBER = @PACKAGE_VERSION@

...

STRIP_FROM_PATH = @top_srcdir@

...

There are many other lines in this file, but they are all identical to the output file, so I've
omitted them for the sake of space and clarity. The key here is that Autoconf will replace

these values with those defined in configure.ac, and by Autoconf itself. If these
values change in configure.ac, the generated file will be written with the new values.
I've added a reference to ftk/docs/doxyfile to the AC_CONFIG_FILES list in ftk's
configure.ac file. That's all it takes.
Here's the ftk/docs/Makefile.am file:

docpkg = $(PACKAGE_TARNAME)-doxy-$(PACKAGE_VERSION).tar.gz

doc_DATA = $(docpkg)

$(docpkg): doxygen.stamp

 tar chof - html | gzip -9 -c >$@

doxygen.stamp: doxyfile

 $(DOXYGEN) $(DOXYFLAGS) $<

 echo Timestamp > $@

CLEANFILES = doxywarn.txt doxygen.stamp $(docpkg)

clean-local:

 -rm -rf html

In this file, I've created a package name for the tarball that will contain the doxygen
documentation files. It's basically the same as the distribution tarball for the ftk project,
except that it contains the text -doxy after the package name.
I've also defined a doc_DATA variable containing the name of the doxygen tarball. This
file will be installed in the $(docdir) directory, which by default is
$(datarootdir)/doc/$PACKAGE_TARNAME. And $(datarootdir) is configured as
$(prefix)/share, by default.
Note again here that the DATA primary brings with it significant Automake functionality--
installation is managed automatically. And, while I must build the doxygen documentation
package myself, the DATA primary automatically hooks the all target for me, so that my
package is built when the user executes make all.
I'm using another stamp file here because doxygen generates literally hundreds of html
files from my input file (and from the source tree). Rather then attempt to figure out a
rational way to assign dependencies, I simply generate one stamp file, and then use that
to determine whether or not the documentation is out of date.

Note that this is wrong, but much simpler than attempting to list every source file used in
the generation of the documentation as a dependency of the stamp file. (In fact, this is
quite trivial in this project because the only source file currently containing documentation
markup, and thus, listed in the doxyfile as an input file, is the flaimtk.h header file.
However, this could easily change in the future.)
For cleaning my generated files, I've used a combination of the CLEANFILES variable
and a clean-local rule--just to show you that it can be done.

Adding a new rpms target
Adding a new non-standard target is a little different than hooking an existing target. In
the first place, you don't need to use AM_CONDITIONAL and Autoconf checks to see if
you have the tools you need. You may do everything from the Makefile.am file, if you
wish. After all, if the user was building on a Debian system, why in the world did she type
make rpms in the first place?! Nonetheless, you still have to account for the possibility
that the user will experiment.
First, I created a directory called obs to contain the Makefile.am file for building RPM
package files. OBS is an acronym for "Opensuse Build Service", which is an online
package building service (found at http://build.opensuse.org) that I fell in love with almost
as soon as it came out. I've had some experience building distro packages, and I can tell
you, it's far less painful with the OBS than it is using more traditional techniques.
Furthermore, packages built with the OBS can be published on the OBS web site for
others to access immediately after they're built (in this case,
http://software.opensuse.org/search).

Building RPM package files is done using a configuration file, called a "spec" file, which is
very much like the doxyfile is used to configure doxygen for a specific project. As with the
doxyfile, the rpm spec file contains information that Autoconf knows about regarding the
project package. So, I wrote an ftk.spec.in file, adding substitution variables where
appropriate, and then I added another file reference to the AC_CONFIG_FILES macro.
Here is the relevant portion of the ftk.spec.in file:

Name: @PACKAGE_TARNAME@

BuildRequires: gcc-c++ libstdc++ libstdc++-devel doxygen

Summary: FTK is the FLAIM cross-platfomr toolkit.

URL: http://forge.novell.com/modules/xfmod/project/?flaim

Version: @PACKAGE_VERSION@

Release: 1

License: GPL

Vendor: Novell, Inc.

Group: Development/Libraries/C and C++

Source: %{name}-%{version}.tar.gz

BuildRoot: %{_tmppath}/%{name}-%{version}-build

...

I used @PACKAGE_TARNAME@ and @PACKAGE_VERSION@. Now the tar name is not likely
to change much over the life time of this project, but the version will change quite often.
Without the Autoconf substitution mechanism, I'd have to remember to update this
version number whenever I updated the version in the configure.ac file. Here's the
obs/Makefile.am file:

rpmspec = $(PACKAGE_TARNAME).spec

rpmmacros =\

 --define='_rpmdir $(PWD)'\

 --define='_srcrpmdir $(PWD)'\

 --define='_sourcedir $(PWD)'\

 --define='_specdir $(PWD)'\

 --define='_builddir $(PWD)'

rpmopts = --nodeps --buildroot='$(PWD)/_rpm'

rpmcheck:

 @which rpmbuild &> /dev/null; \

 if [$$? -ne 0]; then \

 echo "*** This make target requires an rpm-based linux
distribution."; \

 (exit 1); exit 1; \

 fi

srcrpm: rpmcheck $(rpmspec)

 rpmbuild -bs $(rpmmacros) $(rpmopts) $(rpmspec)

rpms: rpmcheck $(rpmspec)

 rpmbuild -ba $(rpmmacros) $(rpmopts) $(rpmspec)

.PHONY: rpmcheck srcrpm rpms

Building RPM package files is rather simple, as you can see. The targets provided by this
makefile include srcrpm and rpms. The rpmcheck target is only used internally. How
can you tell? Well, you can't really tell from here. In order to find out which targets in a
lower-level Makefile.am file are supported by a top-level build, you have to look at the
top-level Makefile.am file:

...

rpms srcrpm: dist

 $(MAKE) -C obs $(AM_MAKEFLAGS) $@

 rpmarch=`rpm --showrc | grep ^build\ arch | sed 's/\(.*:
\)\(.*\)/\2/'`; \

 test -z $$rpmarch || (mv $$rpmarch/* .; rm -rf
$$rpmarch)

 -rm -rf $(distdir)

...

.PHONY: srcrpm rpms

As you can see from the first command in this rule, when a user targets rpms or srcrpm
from the top-level build directory, the commands are recursively passed on to the
obs/Makefile. The remaining commands simply remove droppings left behind by the
RPM build process that are simpler to remove at this level. (Try building an rpm
sometime, and you'll see what I mean!)
Notice also that both of these top-level makefile targets depend on the dist target.
That's because the RPM build process requires the distribution tarball. Adding it as a
dependency simply ensures that the distribution tarball is there when the rpmbuild
utility needs it.

Summary

While using Autotools, there are a myriad of details to manage, most of which, as they
say in the free software world, "can wait for the next release!" The take-away lesson here
is that a build system is never really finished. It should be incrementally improved over
time, as you find time in your schedule to work on it. And it can be rewarding to do so.

I've shown you a number of new features--features I didn't cover directly in the earlier
chapters on the individual tools. There are many many more features that I couldn't begin
to cover. You'll need to study the GNU Autotools manuals to become truly proficient. At
this point, it should be pretty simple to pick up this additional information yourself.

Source Code

You can access the entire flaim project source hierarchy, along with the new build system
defined in this chapter from the attached source archive.

‹ Chapter 5: Building shared libraries with Libtool up Chapter 7: A catalog of reusable
solutions ›

Chapter 7: A catalog of reusable
solutions
Mon, 2008-03-10 20:35 -- John Calcote

This chapter started out as a catalog of reusable solutions--canned macros, if you will.
But as I finished chapter after chapter preceeding this one, it became clear to me that I
really needed to broaden my definition of a "canned solution". Instead of just cataloging
interesting macros here (which has been done before anyway), this chapter lists several
unrelated, but important tips for creating great projects in general. Some of these are
related to the GNU Autotools, but others are merely good programming practice with
respect to open source and free software projects.

Never expose config.h in a public interface
At times, I've come across poorly designed library interfaces where a project's config.h
file is required by the project's public header files. This presents a real problem when
more than one such library is required by a consumer. Which config.h file should be
included? Both are named the same, and chances are good that both provide similar--
even identically named--definitions.
When you carefully consider the original purpose of config.h, then you can see that it
makes little sense to expose it in a library's public interface (by including it in any of the
library's public header files). Its purpose is to provide platform-specific definitions to a
particular build of the library. On the other hand, the public interface of a portable library
is, by definition, platform-independent.
Interface design is a fairly general topic in computer science. This item focuses a bit
more specifically on designing great Application Programmer Interfaces (API's) for GNU
Autotools library projects. Specifically, how to avoid including config.h in your public
interfaces.
But this item provides some more or less generic advice, as well. When designing a
library for consumption by other projects, you have a great responsibility to not polute
your consumers' symbol spaces with useless garbage from your header files. I once
worked on a project that consumed a library interface from another team. This team
provided both a Win32 and a Unix version of their library, with the header file being
"portable" between the two platforms. Unfortunately, they didn't understand the definition
of a clean interface. At some point in their public header files, they had a bit of code that
looked like this:

#ifdef _WIN32

include <windows.h>

#else

typedef void * HANDLE

#endif

Ouch! Did they really need to include windows.h--just for the definition of HANDLE? Not
only should they not have done this, but in fact, they probably should have used a
different name for the handle object in their public interface. Why? Because HANDLE is

too generic, and could easily conflict with a dozen other library interfaces. Why not use
XYZ_HANDLE, or something a little more specific to the XYZ library?
In C++ this concept is even simpler to implement with the use of namespaces. Anyone
who properly understands the rationale behind C++ namespaces will have no problem
understanding the value of this advice.

To properly design a library, first design the public interface such that it exposes as little
of the internals of your library implementation as is reasonable. Now, you'll have to
determine the definition of reasonable, but it will most probably involve a compromise
between abstraction and performance.
When designing an API, start with the functionality you wish to expose from your library.
Design functions that will maximize ease of use for your consumers. If you find yourself
trying to decide between a simpler implementation and a simpler user experience, always
err on the side of ease of use for your consumers. They'll thank you by actually using
your library. Of course, if the interface is already defined by a software standard, then
much of your work is done for you, but often this is not the case and you will have to
make these decisions.
Next, try to abstract away internal details. Everyone knows that the C language doesn't
make it very easy to do this. You often need to pass structure references in public API's
which contain internal details of your implementation that consumers have no business
seeing. Ironically, C++ is just as bad in this area. C++ classes define public interfaces
and private implementation details in the same class definition.

In C, a common solution for this problem is to define a public alias for a private structure
in terms of a void pointer. Many developers don't care for this approach because it
reduces type safety in the interface. Such losses of type safety occur often in C
programming. It's the nature of the language. The loss of type safety is significantly offset
by the increase in interface abstraction. Here's an example of this technique:

Private C source file

#include <abc_pub.h>

#if HAVE_CONFIG_H

include <config.h>

#endif

typedef struct {

 /* private details */

} abc_impl;

int abc_func(abc * p)

{

 abc_impl * ip = (abc_impl *)p;

 /* use 'p' through 'ip' */

}

Public C header file - abc_pub.h

typedef void abc;

int abc_func(abc * p);

Notice how the abstraction so conveniently alleviates the need to include a bunch of
really private definitions in the library's public interface.

In C++, this can be done using a few different techniques, including virtual interfaces, and
the PIMPL (Private IMPLementation) pattern.

In the PIMPL pattern, implementation details are hidden behind a pointer to a private
implementation class stored as private data within the public interface class. Here's an
example of the PIMPL pattern:

Private C++ source file

#include <abc_pub.h>

#if HAVE_CONFIG_H

include <config.h>

#endif

class abc_impl {

 /* private details */

};

int abc::func(void)

{

 /* use 'pimpl' pointer */

}

Public C++ header file - abc_pub.h

class abc_impl;

class abc {

 abc_impl * pimpl;

public:

 int func(void);

};

The C++ language allows the use of a forward declaration for any types used only
through references or pointers, but never dereferenced in the public interface. Thus, the
definition of the implementation class need not be exposed in the public interface,
because the compiler is quite happy to compile the public interface files without the
definition of the private implementation class.

The performance trade-off here generally involves the dynamic allocation of an instance
of the private implementation class, and then accessing class data indirectly through this
pointer, rather than directly in the public structure. Again, however, notice how all internal
details are now conveniently hidden, and thus not required by the public interface.

Another approach when using C++ is to define a public "interface" class, most (if not all)
of whose methods are declared pure virtual. The interface is then implemented internally
by the library. To access an object of this class, consumers call a public factory function,
whose job it is to return a pointer to the implementation class in terms of the interface
definition:

Private C++ source file

#include <abc_pub.h>

#if HAVE_CONFIG_H

include <config.h>

#endif

class abc_impl : public abc {

 /* implementation of virtual methods */

};

Public C++ header file - abc_pub.h

#define interface class

interface abc {

public:

 virtual int func(void) = 0;

};

abc * abc_instantiate(/* abc_impl ctor params */);

To show the policy in practice here, I've used the C++ preprocessor to define a new
keyword, interface. By definition, interface is synonymous with class, so they may be
used interchangably. The idea here is that an interface doesn't expose any
implementation details to the consumer. The public library function abc_instantiate
returns a pointer to a new object of type abc_impl, except in terms of abc. Thus, nothing
internal need be shown to the caller in the public header file.
You may think the interface class method is more efficient than the PIMPL method, but
the fact is most compilers implement virtual function calls as tables of function pointers
referred to by a hidden "vptr" address within the implementation class, so you still end up
calling all of your public methods indirectly through a pointer. Which of these techniques
you choose to use to help you hide your implementation details is more a matter of taste
than performance.

When I design a library, I start by designing a minimal but complete functional interface,
with as much of my internal implementation abstracted away as is reasonable. I try to use
only standard library basic types, if possible, in my function prototypes, and then include
only the C or C++ standard header files required by the use of those types and definitions.
This technique is the fastest way I've found to creating a highly portable and maintainable
interface.

If you still can't see the value in the advice offered by this item, then let me give you one
more scenario to ponder. Consider what happens when a Linux distro packager decides
to create a 'devel' package for your library - that is, a package containing static libraries
and header files, designed to be installed into the /user/lib and /usr/include
directories on a target system. Every header file required by your library must be installed
into the /user/include directory. If your library's public interface requires the inclusion
of your config.h file, then by extension, your config.h must be installed into the

/usr/include directory. Now consider what happens when multiple such libraries need
to be installed.
I've seen message threads on the Autotools mailing list defending the need to do this sort
of thing, and providing techniques for naming config.h in a package-specific manner.
These techniques often involve some form of post-processing of this file to rename the
macros it contains such that they don't conflict with other packages' installed config.h
macros. While this can be done, and while there are a few good reasons for doing so
(usually involving a legacy code base that can't be modified much), these situations
should be considered the exception, not the rule.

Implementing recursive extension targets

When you add a new top-level target to your build system, you have to either tie it into an
existing Automake target, or add your own make code to the target to recurse into the
sub-directory structure provided by Automake in your build system.

The SUBDIRS variable can be used to recurse all sub-directories of the current directory,
passing the build command into the makefiles in these directories. This works great for
targets that must be built based on configuration options, because after configuration the
SUBDIRS variable contains only those directories configured to be built.
If you need to execute your new recursive target in all sub-directories, regardless of any
conditional configuration, which might exclude one or more sub-directories specified in
the SUBDIRS variable, then use the DISTDIRS variable instead. This variable is derived
by Automake from all conditional and non-conditional additions to the SUBDIRS variable.
There are various ways to recurse, including some really simple one-liners provided by
GNU Make specific syntax. but the most portable way is to use the technique that
Automake itself uses:

recursive-target:

 $preorder_commands

 for dir in $(SUBDIRS); do \

 (cd $$dir && $(MAKE) $(AM_MAKEFLAGS) $@) || exit 1; \

 done

 $postorder_commands

.PHONY: recursive-target

The $preorder_commands macro can be used to do things that must be done before
recursing to lower-level directories. The $postorder_commands macro can likewise be
used to do additional things once you return from the lower-level directories. At some
point in the hierarchy, you'll need to actually do something useful besides calling down to
lower levels. Use these two macros to encode the actual functionality of this technique.
For example, assuming you want to build some generated documentation, you might
have a special target called doxygen. Even if you happen to be okay with building your
documentation in the top-level directory, there may be cases where you need to

distribute the generation of your documentation to various directories within your project
hierarchy. You might use the following code in each Makefile.am file in your project:

uncomment if doxyfile exists in this directory

postorder_commands = $(DOXYGEN) $(DOXYFLAGS) doxyfile

doxygen:

 $preorder_commands

 for dir in $(SUBDIRS); do \

 (cd $$dir && $(MAKE) $(AM_MAKEFLAGS) $@) || exit 1; \

 done

 $postorder_commands

.PHONY: doxygen

For directories where doxyfile doesn't exist, you may comment out (or better yet,
simply omit) the postorder_commands macro definition. The doxygen target will be
harmlessly propagated to the next lower level in the build tree.
This code ensures that the build terminates when a lower-level makefile fails on the
recursive target, propagating the shell error code (1) back up to each parent until the top-
level shell is reached. This is important, or the build may continue at some levels until a
different error is encountered.

Also note that I don't use the somewhat less portable -C make command line option to
change directories before running the sub-make operation.
Allow me to emphasize here that if you choose to implement a completely recursive
global target in this manner, then you must include this code snippet in every single
Makefile.am file in your project, even if it has nothing to do with the generation of
documentation. If you don't, then make will fail on that makefile because no such target
exists within that makefile. The commands may do nothing, but the target must exist.

If you want to do something simpler, such as pass the target down to a single sub-
directory beneath the top-level directory--say, a doc directory just below the top--then life
is simpler:

Top-level Makefile.am

doxygen:

 (cd doc && $(MAKE) $(AM_MAKEFLAGS) $@) || exit 1

.PHONY: doxygen

doc directory Makefile.am

doxygen:

 $(DOXYGEN) $(DOXYFLAGS) doxyfile

.PHONY: doxygen

NOTE: The variables, DOXYGEN and DOXYFLAGS are assumed to exist by virtue of some
macro or shell code executed within the configure script.

Using a repository revision number

Arguments to the Autoconf AC_INIT macro must be static text. That is, they can't be
shell variables, and Autoconf will flag attempts to use shell variables in these arguments
as errors. This is all well and good until you want to calculate any portion of your
package's version number during the configuration process.
I once tried to use a shell variable in the VERSION argument so that I could substitute my
Subversion revision number into the VERSION argument when configure was executed. I
spent a couple of days trying to figure out how to trick Autoconf into letting me use a shell
variable as a sort of "revision" field in my package's version number. Eventually, I
discovered the following trick, which I implemented in my configure.ac script, and in
my top-level Makefile.am file:
configure.ac

SVNREV=`svnversion $srcdir | sed 's/:.*//'`

which svnversion > /dev/null; \

if [$? -ne 0] || ["x$SVNREV" = "xexported"]

 then SVNREV=`cat $srcdir/SVNREV`

 else echo -n $SVNREV>$srcdir/SVNREV

fi

AC_SUBST(SVNREV)

First, the shell variable SVNREV is set to the output of the svnversion command, as
executed on the project top-level source directory. The output is piped through the sed
utility to remove all text following an embedded COLON (:) character. This gives us a raw
Subversion revision number--that is, if the code is executed in a true Subversion work
area, which isn't always the case.
When a user executes this configure script from a distribution tarball, Subversion may
not even be installed on her workstation. Even if it is, the top-level project directory
comes from the tarball, not a Subversion repository. To handle these situations, the next

line checks to see if either Subversion is not installed, or if the output from the first line
was the word, "exported", which is the result of executing the svnversion utility on a
non-work-area directory.
If either of these cases is true, then the SVNREV variable is populated from the contents
of a file called SVNREV. This file actually ships with a distribution tarball containing this
configuration code. This is true because if the svnversion command works properly,
generating a true Subversion repository revision number, then that value is immediately
written to the SVNREV file by the else clause of this if statement.
Finally, AC_SUBST is used to cause Autoconf to substitute the SVNREV variable so that it
becomes available to the makefile as a make variable (all AC_SUBST variables are
converted to make variables by Automake).
In the top-level Makefile.am file, I then ensure that the SVNREV file becomes part of the
distribution tarball by adding it to the EXTRA_DIST list. This means that when a
distribution tarball is created and published by the maintainer, it contains an SVNREV file
that contains the source tree revision number to be used when generating a tarball from
this source code. It's accurate because the tarball was actually generated from a this
revision of the SVN repository.
Generally, it's not particularly important that a tarball be able to generate a proper tarball,
but an Automake-generated tarball can do so without this code, so it should be able to do
so with this code.

Top-level Makefile.am

EXTRA_DIST = SVNREV

distdir = $(PACKAGE)-$(VERSION).$(SVNREV)

The distdir make variable controls the name of the distribution directory and the tarball
file name generated by Automake. Setting this variable in the top-level Makefile.am file
affects the generation of the distribution tarball, because the top-level Makefile.am is
where this functionality is located.
If you have a particular need for the distdir variable to be formatted correctly in any
other Makefile.am file in your project, you should set this variable in that file as well.
For most purposes, setting it in the top-level Makefile.am file should be sufficient.

Ensure your distribution packages are "clean"

Have you ever downloaded and unpacked an open source package, and tried to run
configure; make only to have it fail half way through one of these steps? As you dug
into the problem, you perhaps discovered that there were missing files in the tarball. How
sad to have this happen on an Autotools project, when the Autotools make it so easy to
ensure that this simply doesn't happen.
Ensure that your distribution tarballs are always clean and complete by running the
distcheck target on a newly created tarball. Don't be satisified with what you believe
about your package. Allow Automake to run the distribution unit tests, so to speak. I call
these tests "unit tests" because they provide the same testing functionality for a
distribution package that regular unit tests provide for your code.
You'd never make a code change and ship a package without running your unit tests,
would you? (If so, then you can safely skip this section.) So don't ship your tarballs
without running the build system unit tests either - run make distcheck on your project
before posting your new tarballs.

Cross-compilation

Emulating autoconf replacement techniques

Using the ac-archive project

...MORE TO COME...

‹ Chapter 6: FLAIM: an Autotools example up Appendix A: An overview of the M4 macro
processor ›

References
Mon, 2008-03-10 20:38 -- John Calcote

The GNU Autoconf Manual
The GNU Automake Manual
The GNU Libtool Manual
GNU Autoconf, Automake and Libtool by Gary V. Vaughan, Ben Elliston, Tom Tromey
and Ian Lance Taylor. Also known as "The Goat Book".
An Autotools Tutorial by A. Duret-Lutz. This is a great tutorial, but one of the nicest
aspects of this web site is the list of Autotools resources at the bottom of the first page.
The GNU M4 Macro Processor Manual
The GNU Make Utility Manual
The GNU Coding Standards
The GNU sed Manual
Bruce Barnett's very well-written Unix utility tutorials
The AC Autoconf Macro Archive - an archive of drop-in components for autoconfiscated
projects. Macros are fully classified for easy lookup, and full documentation for each
macro is provided.

‹ Appendix A: An overview of the M4 macro processor up

	Front-matters
	Chapter-1
	Chapter-2
	Chapter-3
	Chapter-4
	Chapter-5
	Chapter-6
	Chapter-7
	Appendix

