
Autotools: a practitioner's guide to 
Autoconf, Automake and Libtool 
 
There are few people who would deny that Autoconf, Automake and Libtool have 
revolutionized the free software world. While there are many thousands of Autotools 
advocates, some developers absolutely hate the Autotools, with a passion. Why? Let me 
try to explain with an analogy. 
In the early 1990's I was working on the final stages of my bachelor's degree in computer 
science at Brigham Young University. I took a 400-level computer graphics class, 
wherein I was introduced to C++, and the object-oriented programming paradigm. For the 
next 5 years, I had a love-hate relationship with C++. I was a pretty good C coder by that 
time, and I thought I could easily pick up C++, as close in syntax as it was to C. How 
wrong I was. I fought late into the night, more often than I'd care to recall, with the C++ 
compiler over performance issues. 

The problem was that the most fundamental differences between C++ and C are not 
obvious to the casual observer. Most of these differences are buried deep within the C++ 
language specification, rather than on the surface, in the language syntax. The C++ 
compiler generates code beneath the covers at a level never even conceived of by C 
compiler writers. This level of code generation provides functionality in a few lines of C++ 
code that requires dozens of lines of C code. Oh, yes--you can write object-oriented 
software in C. But you are required to manage all of the details yourself. In C++, these 
details are taken care of for you by the compiler. The advantages should be clear. 

But this high-level functionality comes at a price--you have to learn to understand what 
the compiler is doing for you, so you can write your code in a way that complements it. 
Not surprisingly, often the most intuitive thing to do in this situation for the new C++ 
programmer is to inadvertently write code that works against the underlying infrastructure 
generated by the compiler. 

And therein lies the problem. Just as there were many programmers then (I won't call 
them software engineers--that title comes with experience, not from a college degree) 
complaining of the nightmare that was C++, so likewise there are many programmers 
today complaining of the nightmare that is the Autotools. The differences between make 
and Automake are very similar to the differences between C and C++. The most basic 
single-line Makefile.am generates a Makefile.in file (an Autoconf template) containing 
nearly 350 lines of make script. 

Who should read this book 

This book is written for the open source software package maintainer. I'm purposely not 
using the terms "free software" or "proprietary software that's free". The use of the term 
"open source" is critical in this context. You see, open source defines a type of software 
distribution channel. One in which the primary method of obtaining software functionality 
is downloading a source archive, unpacking, building and installing the built products on 
your system. Free software may be published in binary form. Proprietary software may 
be given away. But open source software implies source-level distribution. 

Source-level distribution relegates a particular portion of the responsibility of software 
development to the end-user that has traditionally been assumed by the software 
developer. But end-users are not developers, so most of them won't know how to 
properly build your package. What to do, what to do... The most widely adopted approach 



Chapter 1: A brief introduction to the 
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I'm going to make a rather broad and sweeping statement here: If you're writing free or 
open source software targeting Unix or Linux systems, then you should be using the 
GNU Autotools. I'm sure I sound a bit biased, but I'm not. And I shouldn't be, given the 
number of long nights I've spent working around what appeared to be shortcomings in 
the Autotools system. Normally, I would have been angry enough to toss the entire 
project out the window and write a good hand-coded makefile and configure script. But 
the one fact that I always came back to was that there are literally thousands of projects 
out there that appear to be very successfully using the Autotools. This was too much for 
me. My pride would never let me give up. 

Who should use the Autotools? 

The Autotools are supposed to make projects simpler for the maintainer, right? And the 
answer to that question is a definitive "No". Don't misunderstand me here--the Autotools 
do make your life easier in the long run, but for different reasons than you may first 
realize. The primary goal of the Autotools is not to make project maintenance simpler, 
although I honestly believe the system is as simple as it can be, given the functionality it 
provides. It took me a while to figure this out, and really, it was one of my most significant 
Autotools epiphanies. Ultimately, I came to understand that the purpose of the Autotools 
is two-fold: First, to make life easer for your users, and second, to make your project 
more portable--even to systems on which you've never tested, installed or even built your 
code. 
Well then, what if you don't work on free or open source software? Do you still care about 
these goals? What if you're writing proprietary software for Unix or Linux systems? Then, 
I say, you would probably still benefit to some degree from using the Autotools. Even if 
you only ever intend to target a single distribution of Linux, the Autotools will provide you 
with a build environment that is flexible enough to allow your project to build successfully 
on future versions or distributions with virtually no changes to the build scripts. And, let's 
be honest here--you really can't know in advance whether or not your management will 
want your software to run on other platforms in the future. This fact alone is enough to 
warrant my statement. 

Who should NOT use the Autotools? 

About the only scenario where it makes sense NOT to use the Autotools is the one in 
which you are writing software for non-Unix platforms only--Microsoft Window comes to 
mind. Some people will tell you that the Autotools can be used successfully on Windows 
as well, but my opinion is that the POSIX/FHS approach to software build management is 
just too alien for Windows development. While it can be done, the tradeoffs are way too 
significant to justify shoe-horning a Windows project into the Autotools build paradigm. 
I've watched some project managers develop custom versions of the Autotools which 
allow the use of all native Windows tools. These projects were maintained by people who 
spent much of their time tweaking the tools and the build environment to do things it was 
never intended to do, in a hostile and foreign environment. Quite frankly, Microsoft has 
some of the best tools on the planet for Windows software development. If I were 
developing a Windows software package, I'd use Microsoft's tools exclusively. In fact, I 
often write portable software that targets both Linux and Windows. In these cases, I 
maintain two separate build environments--one for Windows, and one based on the 
Autotools for everything else. 



The original reasons for using GNU tools to build Windows software were that GNU tools 
were free, and Microsoft tools were expensive. This reason is no longer valid, as 
Microsoft makes the better part of their tools available for free download today. This was 
a smart move on their part--but it took them long enough to see the value in it. 

Your choice of language 

One other important factor in the decision to use or not use the Autotools with your 
project is your language of choice. Let's face it, the Autotools were designed by GNU 
people to manage GNU projects. There are two factors that determine the importance of 
a computer language within the GNU community: 

 Are there any GNU packages written in the language? 
 Does the GNU compiler tool set support the language? 

Autoconf provides native support for the following languages based on these two criteria: 

 C 
 C++ 
 Objective C 
 Fortran 
 Fortran 77 
 Erlang 

By "native support", I mean that Autoconf will compile, link and run source-level feature 
checks in these languages. 

If you want to build a Java package, you can configure Automake to do so, but you can't 
ask Autoconf to compile, link or run Java-based checks. Java simply isn't supported 
natively at this time by Autoconf. I believe it's important to point out here that the very 
nature of the Java language and virtual machine specifications make it far less likely that 
you'll need to perform a Java-based Autoconf check in the first place. 

There is work being actively done on the gcj compiler and tool set, so it's not 
unreasonable to think that some native Java support will be added to Autoconf at some 
future date, but gcj is a bit immature yet, and currently very few (if any) GNU packages 
are written in Java, so the issue is not critical to the GNU community. 

That said, there is currently rudimentary support in Automake for both GNU (gcj) and 
non-GNU Java compilers and VM's. I've used it myself on a project, and it works well, as 
long as you don't try to push it too far. Given the history of the GNU project, I think it's 
safe to say that this functionality will definitely improve with age. 

If you're into Smalltalk, ADA, Modula, LISP, Forth, or some other non-mainstream 
language, well then you're probably not too concerned about porting your code to dozens 
of platforms and CPUs. 

As an aside, if you are using a non-mainstream language, and you are in fact concerned 
about the portability of your build systems, then please consider adding support for your 
language to the Autotools. This is not as daunting a task as you may think, and I 
gaurantee that you'll be an Autotools expert when you're finished. If you think this 
statement is funny, then consider how Erlang support made it into the Autotools. I'm 
betting most developers have never heard of Erlang, but members of the Erlang 
community thought it was important enough to add Erlang support themselves. 

Generating your package build system 



The GNU Autotools framework is comprised of three main packages, each of which 
provides and relies on several smaller components. The three main packages are 
Autoconf, Automake and Libtool. These packages were invented in that order, and 
evolved over time. Additionally, the tools in the Autotools packages can depend on or use 
utilities and functionality from the gettext, m4, sed, make and perl packages, as well as 
others. 

It's very important at this point to distinguish between a maintainer's system and an end-
user's system. The design goals of the Autotools specify that an Autotools-generated 
build system rely only on readily available, preinstalled tools on the host machine. Perl is 
only required on machines that maintainers use to create distributions, not on end-user 
machines that build packages from resulting release distributions packages. A corollary 
to this is that end-users' machines need not have the Autotools installed. 

If you've ever downloaded, built and installed software from a "tarball"--a compressed 
archive with a .tar.gz, .tgz or .tar.bz2 extension--then you're probably aware of the fact 
that there is a common theme to this process. It usually looks something like this: 

 

$ gzip -cd hackers-delight-1.0.tar.gz | tar -xvf - 

... 

$ cd hackers-delight-1.0 

$ ./configure 

$ make all 

$ sudo make install 

NOTE: I have to assume some level of knowledge on your part, and I'm stating right now 
that this is it. If you've performed this sequence of commands before and you know what 
it means, and if you have a basic understanding of the software development process, 
then you'll have no trouble following the content of this book. 
Most developers know and understand the purpose of the make utility. But what's the 
point of the configure script? The use of configuration scripts (generally named 
configure) started a long time ago on Unix systems due to the variety imposed by the 
fast growing and divergent set of Unix and Unix-like platforms. It's interesting to note that 
while Unix systems have generally followed the defacto-standard Unix kernel interface for 
decades, most software that does anything significant generally has to stretch outside of 
these more or less standardized boundaries. Configuration scripts are hand-coded shell 
scripts designed to determine platform-specific characteristics, and to allow users to 
choose package options before running make. 
This approach worked well for decades. With the advent of dozens of Linux distributions, 
the explosion of feature permutations has made writing a decent portable configuration 
script very difficult--much more so than writing the makefiles for a new project. Most 
people have come up with configuration scripts for their projects using a well-understood 
and pervasive technique--copy and modify a similar project's script. By the early 90's it 
was becoming apparent to many developers that project configuration was going to 
become painful if something weren't done to ease the burden of writing massive shell 
scripts to manage configuration options--both those related to platform differences, and 
those related to package options. 



Autoconf 

Autoconf changed this paradigm almost overnight. A quick glance at the AUTHORS file 
in the Savannah Autoconf project repository will give you an idea of the number of people 
that have had a hand in the making of Autoconf. The original author was David 
MacKenzie, who started the Autoconf project in 1991. While configuration scripts were 
becoming longer and more complex, there were really only a few variables that needed 
to be specified by the user. Most of these were simply choices to be made regarding 
components, features and options: Where do I find libraries and header files? Where do I 
want to install my finished product? Which optional components do I want to build into my 
products? With Autoconf, instead of modifying, debugging and losing sleep over literally 
thousands of lines of supposedly portable shell script, developers can write a short meta-
script file, using a concise macro-based language, and let Autoconf generate a perfect 
configuration script. 
A generated configuration script is more portable, more correct, and more maintainable 
than a hand-code version of the same script. In addition, Autoconf often catches 
semantic or logic errors that the author would have spent days debugging. Another 
benefit of Autoconf is that the shell code it generates is as portable as possible between 
systems that supply any form of the Bourne shell. Mistakes made in portability between 
shells are by far the most common, and unfortunately the most difficult to find, because 
no one programmer has access to all versions or brands of Bourne-like shells in 
existence. 

Autoconf generated configure scripts provide a common set of options that are important 
to all portable, free, open source, and proprietary software projects running on LSB-
compliant systems. These include options to modify "standard locations", a concept I'll 
cover in more detail in Chapter 2. Autoconf generated configure scripts also provide 
project-specific options. These are defined in the configure.ac file for each project. I'll 
detail this process in Chapter 3. 

The Autoconf package provides several programs. Autoconf itself is written in Bourne 
shell script, while the others are perl scripts. 

 autoconf 
 autoheader 
 autom4te 
 autoreconf 
 autoscan 
 autoupdate 
 ifnames 

Autoheader 

The autoheader utility generates a C language header file template from configure.ac. 
This template file is usually called config.h.in. We'll cover autoheader in greater detail in 
Chapter 3. 

Autom4te 

The autom4te utility is a cache manager used by most of the other Autotools. In the early 
days of Autoconf there was really no need for such a cache, but because most of the 
Autotools use constructs found in configure.ac, the cache speeds up access by 
successive programs to configure.ac by about 40 percent or more. I won't spend a lot of 
time on autom4te (which is pronounced "automate", by the way), because it's mainly 
used internally by the Autotools, and the only sign you're given that it's working is the 
existence of an autom4te.cache directory in your top-level project directory. 
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generates your configure script, a very portable Bourne shell script that provides your 
project with configuration capabilities. Autoheader generates the config.h.in template 
based on macro definitions in configure.ac. 

You may have noticed the apparent identity crisis being suffered by the aclocal.m4 input 
file. Is that a bit of a blush on that box--is it a generated file, or a user-provided file? Well, 
the answer is that it's both, and I'll explain this in more detail in the next section. 

Automake 

So, what's so difficult about writing a makefile? Well, actually, once you've done it a few 
times, writing a basic makefile for a new project is really rather trivial. The problems occur 
when you try to do more than just the basics. And let's face it--what project maintainer 
has ever been satisfied with just a basic makefile? 
The single most significant difference between a successful free software project and one 
that rarely gets a second glance can be found deep in the heart of project maintenance 
details. These details include providing the so-called "standard make targets". Potential 
users become disgusted with a project fairly easily--especially when certain bits of 
expected functionality are missing or improperly written. Users have come to expect 
certain more or less standard make targets. A make target is a goal specified on the 
make command line: 

 

$ make install 

In this example, install is the goal or target. Common make targets include all, 
clean and install, among others. You'll note that none of these are real targets. A 
real target is a file produced by the build system. If you're building an executable called 
doofabble, then you'd expect to be able to type: 
 

$ make doofabble 

This would generate an actual executable file called doofabble. But specifying real 
targets on the make command line is more work than necessary. Each project must be 
built differently--make doofabble, make foodabble, make abfooble, etc. Why not just type 
make or make all, if there is more than one binary to be made? So all has become an 
expected pseudo-target, but "expected" doesn't mean "automatic". 
Supporting the expected set of standard targets can be fairly challenging. As with 
configuration scripts, the most widely used implementation is one written in the late 80's 
and copied from project to project throughout the internet. Why? Because writing it 
yourself is error prone. In fact, copying it is just as error-prone. It's like getting a linked-list 
implementation right the first time. The process is well-understood by any veteran 
software engineer, but it still rarely happens. Object-oriented programming languages like 
C++ and Java provide libraries and templates for these constructs now--not because 
they're hard to implement by hand, but because doing so is error-prone, and there's no 
point in re-inventing the wheel--yet again. 

Automake's job is to convert a much simplified specification of your project's build 
process into standard boilerplate makefile syntax that always works correctly the first 
time, and provides all the standard functionality expected of a free software project. In 
actuality, Automake creates projects that support guidelines defined in the GNU Coding 
Standards, which I'll cover in greater detail in Chapter 2. 



The Automake package provides the following tools in the form of perl scripts: 

 automake 
 aclocal 

The primary task of the Automake program is to generate standard makefile templates 
(named Makefile.in) from high-level build specification files (named Makefile.am). One of 
the most interesting and useful aspects of the way Automake works is that the 
Makefile.am input files are mostly just regular makefiles. If you put only the few required 
Automake definitions in a Makefile.am, you'll get a Makefile.in file containing several 
hundred lines of makefile code. But if you add additional makefile syntax to your 
Makefile.am files, this code will be transferred to the most functionally correct location in 
the resulting Makefile.in. In fact, you can (if you wish) write pure make syntax in your 
Makefile.am files, and they'll work just fine (as long as you actually write them correctly, 
that is). This pass-through feature gives you the power and flexibility to extend 
Automake's functionality with your project's own special requirements. 

Aclocal 

The aclocal utility is actually documented by the GNU manuals as a temporary work-
around for a certain lack of flexibility in Autoconf. Autoconf was designed and written first, 
and then a few years later, the idea for Automake was conceived as an add-on for 
Autoconf. But Autoconf was really not designed to be extensible on the scale required by 
Automake. 

Automake adds an extensive set of macros to those provided by Autoconf. The originally 
documented method for adding user-defined macros to an Autoconf project was to create 
a file called aclocal.m4 in the same directory as configure.ac. Any user-provided 
extension macros were to be placed in this file, and Autoconf would automatically read it 
while processing configure.ac. From the perspective of the Automake designers, this 
existing extension mechanism was too good to pass up. But requiring the user to add an 
m4_include line to aclocal.m4 seemed a bit brittle. Instead, the aclocal utility was 
designed to create a project's aclocal.m4 file, containing all the required Automake 
macros. Since Automake's aclocal utility basically took over aclocal.m4 for its own 
purposes, it was also designed to read a new user-provided macro file called 
acinclude.m4. 
Essentially, aclocal's job is to create an aclocal.m4 file by consolidating various macro 
files from installed Autotool packages and user-specified locations, such that Autoconf 
can find them all in one place. 

For the sake of modularity, the Autoconf manual is still unaware of the aclocal utility--for 
the most part. The current revision of the manual rants a bit on the subject of where 
aclocal functionality should actually be. Automake's manual originally suggested that you 
should rename aclocal.m4 to acinclude.m4 when adding Automake to an existing 
Autoconf project. This method is still followed rigorously in new projects. 

However, the latest documentation from both sets of tools suggests that the entire 
aclocal/acinclude paradigm is now obsolete, in favor of a newer method of specifying a 
directory containing m4 macro files. The current recommendation is that you create a 
directory in your project directory called simply m4 (acinclude seems more appropriate 
to this author), and add macros in the form of individual .m4 files to this directory. All files 
in this directory will be gathered into aclocal.m4 before Autoconf processes your 
configure.ac file. Ultimately, aclocal will be replaced by functionality in Autoconf itself. 
(Given the fairly complex nature of aclocal functionality, and given that most of the other 
tools are already written in perl, I'm guessing that Autoconf will be rewritten in perl, at this 
point.) 



Figure 2: Aclocal data flow diagram 

With aclocal behind us, it should be more apparent now why the aclocal.m4 box in the 
Autoconf data flow diagram of Figure 1 above couldn't decide which color it should be. 
When used without Automake and Libtool, the aclocal.m4 file is written by hand, but 
when used in conjunction with Automake and Libtool, the file is generated by the aclocal 
utility, and acinclude.m4 is used to provide project-specific macros. 

Libtool 

How do you build shared libraries on different Unix platforms without adding a lot of very 
platform-specific conditional code to your build system and source code? This is the 
question that the Libtool package tries to address. 

There's a significant amount of visible functionality in Unix and Unix-like platforms that is 
the same from one platform to another. However, one very significant difference is how 
shared libraries are built, named and managed. Some platforms don't even provide 
native shared libraries (although it's rare these days). Some platforms name their libraries 
libsomething.so, while others use something.o. Some use libsomething.a, 
while others use libsomething.sa. Some platforms provide libdl 
(dlopen/dlsym/dlclose) to allow software to dynamically load and access library 
functionality at runtime. Others provide other mechanisms--or none at all. 
All of these differences have been carefully considered by the authors of the Libtool 
project. Dozens of platforms are currently supported by Libtool, and adding support for 
new platforms is done via the open source way--someone who cares (and knows how) 
supplies a patch to the Libtool mailing list, and the maintainers look it over and apply it to 
the source code for the next release. 

Libtool not only provides a set of Autoconf macros that hide library naming differences in 
makefiles, but it also provides an optional library of dynamic loader functionality that can 
be added to your programs, allowing you to write more portable runtime dynamic shared 
object management code. 
The libool package provides the following programs, libraries and header files: 

 libtool (program) 
 libtoolize (program) 
 ltdl (static and shared libraries) 
 ltdl.h (header) 

The libtool shell script is a generic version of Libtool designed to be used by programs on 
your platform. There's nothing specific to a project in this particular copy of libtool. 

Libtoolize 

The libtoolize shell script is used to prepare your project to use Libtool. In reality, 
libtoolize generates a custom version of the libtool script in your project directory. This 
script is then executed at the appropriate time by Automake-generated makefiles. 

The Libtool C API--ltdl 

The Libtool package also provides the ltdl library and header files, which provide a 
consistent run-time shared object manager across platforms. The ltdl library may be 

The linked image cannot be displayed.  The file may have been moved,  
renamed, or deleted. Verify that the link points to the correct file and location.



linked statically or dynamically into your programs, giving them a consistent runtime 
shared library access interface from one platform to another. 

The following data flow diagram illustrates the interaction between Automake and Libtool 
scripts and input files to create products used by users to configure and build your project: 

Figure 3: Automake and Libtool data flow diagram 

Automake and Libtool are both standard pluggable options that can be added to 
configure.ac with a few simple macro calls. 

Building your package 

While, as maintainer, you probably build your software packages a lot more often than do 
your users, you also have the advantage of being intimately familiar with your project's 
components, architecture and build system. That's why you ought to be concerned that 
your users' build experience is much simpler than yours. (And it wouldn't hurt a bit if you 
got some benefit from this concern, as well.) 

Running configure 

Once the Autotools have finished their work, you're left with a shell script called configure, 
and one or more Makefiles.in files. These product files are intended to be packages with 
project release distribution packages. Your users download these packages, unpack 
them, and run configure and make. The configure script generates Makefiles from the 
Makefile.in files. It also generates a config.h header file from the config.h.in file built by 
autoheader. 

So why didn't the Autotools just generate the makefiles directly to be shipped with your 
release? One reason is that without makefiles, you can't run make. This means that 
you're forced to run configure first, after you download and unpack a project distribution 
package. Makefile.in files are nearly identical to the makefiles you might write by hand, 
except that you didn't have to. And they do a lot more than most people are willing to 
hand code into a set of makefiles. Another reason is that the configure script may then 
insert platform-characteristics and user-specified optional features directly into your 
makefiles, making them more specifically tailored to the platforms on which they are 
being used. 

The following diagram illustrates the interaction between configure and the scripts that it 
executes during the build process to create your Makefiles and your config.h header file: 

Figure 4: Configure script data flow diagram 

The configure script appears to have this weird sort of incestuous relationship with 
another script called config.status. I'll bet you've always thought that your configure script 
generated your makefiles. As it turns out, the only file (besides a log file) that configure 
generates is config.status. The configure script's function is to determine platform 
characteristics and features available, as specified in configure.ac. Once it has this 
information, it generates config.status such that it contains all of the check results, and 
then calls it. The newly generated config.status file uses the check information (now 
embedded within it) to generate platform-specific config.h and makefiles, as well as any 
other files specified for instantiation in configure.ac. As the double ended red arrow 
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shows, config.status can also call configure. When used with the --recheck option, 
config.status will call configure with the same command line options with which it was 
originally generated. 

The configure script also generates a log file called config.log, which contains very useful 
information about why a particular execution of configure failed on your user's platform. 
As maintainer, you can use this information to help you debug user problems. Just ask 
them to send you their config.log file. The problem is often in plain sight. Another nice 
feature of config.log is that it logs how configure was executed--which command line 
options were used. 

From a user perspective, this could be really handy, as he comes back from a long 
vacation, and can't remember what options he used to generate the project build 
directory. But Autoconf-generated configure scripts make it even simpler than this. If you 
need to re-generate makefiles and config.h header files for some reason, just 
type ./config.status in the project build directory. The output files will be generated using 
the same options originally used to generate the config.status file. 

Remote build directories 

A little-known feature of Autotools build environments is that they need not be generated 
within a project source directory tree. That is, a user may execute configure remotely, 
and generate a full build environment within a remote build directory. 

In the following example, Joe User downloads doofabble 3.0 and unpacks it. Then he 
creates two sibling directories called doofabble-3.0.debug and doofabble-3.0.release. He 
cd's into doofabble-3.0.debug, executes doofabble-3.0's configure script remotely with a 
doofabble-specific debug option, and then runs make. Finally, he switches over to the 
doofabble-3.0.release directory and does the same thing, this time running configure 
without the debug option enabled: 

 

$ tar -zxvf doofabble-3.0.tar.gz 

$ mkdir doofabble-3.0.debug 

$ cd doofabble-3.0.debug 

$ ../doofabble-3.0/configure --enable-debug 

$ make 

... 

$ cd .. 

$ mkdir doofabble-3.0.release 

$ cd doofabble-3.0.release 

$ ../doofabble-3.0/configure 



$ make 

... 

Users don't often care about remote build functionality because all they generally want to 
do is configure, make and install your code on their own platforms. Maintainers, on the 
other hand should find remote build functionality very useful, as it allows them to, 1) 
maintain a reasonably pristine source tree, and 2) maintain multiple build environments 
for their project, each with potentially complex configuration options. Rather than 
reconfigure a single build environment, they may simply switch between build directories 
configured in multiple different ways. 

Running make 

Finally, you run make. Just plain old make. In fact, the Autotools designers went to a LOT 
of trouble to ensure that you didn't need any special version or brand of make. You don't 
need GNU make--you can use Solaris make, or BSD Unix make if you wish (read, "if you 
must"). 

The following diagram depicts the interaction between the make utility and the generated 
makefiles during the build process to create your project products: 

Figure 5: Make data flow diagram 

This diagram shows make running several generated scripts, but these are all really 
ancillary to the make process. 

Summary 

In this chapter I've presented a high-level overview of the Autotools to give you a feel for 
how everything ties together. 

In the next chapter, we'll begin creating a hand-coded build system for a toy project. The 
idea is that you'll become familiar with the requirements of a reasonable build system, 
and how much can be done for you by the Autotools. 

Too many developers these days start out with the Autotools, not having aquired through 
the "school of hard knocks" the experience to know what it's really doing for them. This 
can lead to frustration, and a negative attitude. In the next chapter, you'll become familiar 
with the rationale for a lot of the original design of the Autotools. In understanding this 
background information, my hope is that any potential negative bias you may already 
have for the Autotools will be tempered a bit. 

‹ Autotools: a practitioner's guide to Autoconf, Automake and Libtool up Chapter 2: 
Project management and the GNU coding standards › 
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Chapter 2: Project management and 
the GNU coding standards 
Fri, 2008-05-16 11:16 -- John Calcote 

In Chapter 1, I gave a brief overview of the Autotools and some of the resources that are 
currently available to help reduce the learning curve. In this chapter, we're going to step 
back a little and examine project organization techniques that are applicable to all 
projects, not just those whose build system is managed by the Autotools. 

This chapter has downloads! 
When you're done reading this chapter, you should be familiar with the common make 
targets, and why they exists. You should also have a solid understanding of why projects 
are organized the way they are. Trust me--by the time you finish this chapter, you'll 
already be well on your way to a solid understanding of the GNU Autotools. 
The information provided by this chapter comes primarily from two sources: 

 The GNU Coding Standards Document 
 The Filesystem Hierarchy Standard 

In addition, you may find the GNU make manual very useful, if you'd like to brush up on 
your make syntax: 
 The GNU Make Utility Manual 

Creating a new project directory structure 

There are two questions to ask yourself when setting up a new open source software 
(OSS) project build system: 

 What platforms will I target? 
 What do my users expect? 

The first is an easy question to answer - you get to decide, but don't be too restrictive. 
Free software projects become great due to the number of people who've adopted them. 
Limiting the number of platforms arbitrarily is the direct equivalent of limiting the number 
of users. Now, why would you want to do that?! 

The second question is more difficult, but not unsolvable. First, let's narrow the scope to 
something managable. We really mean to say, "What do my users expect of my build 
system?" A common approach for many OSS developers of determining these 
expectations is to download, unpack, build and install about a thousand different 
packages. You think I'm kidding? If you do this, eventually, you will come to know 
intuitively what your users expect of your build system. Unforutunately, package 
configuration, build and install processes vary so far from the "norm" that it's difficult to 
come to a solid conclusion about what the norm really is when using this technique. 

A better way is to go directly to the source of the information. Like many developers new 
to the OSS world, I didn't even know there was a source of such information when I first 
started working on OSS projects. As it turns out, the source is quite obvious, after a little 
thought: The Free Software Foundation (FSF), better known as the GNU project. The 
FSF has published a document called The GNU Coding Standards, which covers a wide 
variety of topics related to writing, publishing and distributing free software--specifically 
for the FSF. Most non-GNU free software projects align themselves to one degree or 
another with the GNU Coding Standards. Why? Well...just because they were there first. 
And because their ideas make sense, for the most part. 



Project structure 

We'll start with a simple example project, and build on it as we continue our exploration of 
source-level software distribution. OSS projects generally have some sort of catchy 
name--often they're named after some past hero or ancient god, or even some made-up 
word--perhaps an acronym that can be pronounced like a real word. I'll call this the jupiter 
project, mainly because that way I don't have to come up with functionality that matches 
my project name! For jupiter, I'll create a project directory structure something like this: 

 

$ cd projects 

$ mkdir -p jupiter/src 

$ touch jupiter/Makefile 

$ touch jupiter/src/Makefile 

$ touch jupiter/src/main.c 

$ cd jupiter 

$ 

Woot! One directory called src, one C source file called main.c, and a makefile for 
each of the two directories. Minimal yes, but hey, this is a new project, and everyone 
knows that the key to a successful OSS project is evolution, right? Start small and grow 
as needed (and, as you have time and inclination). 
We'll start with support for the most basic of targets in any software project: all and 
clean. As we progress, it'll become clear that we need to add a few more important 
targets to this list, but for now, these will get us going. The top-level Makefile does very 
little at this point, merely passing requests for all and clean down to src/Makefile 
recursively. In fact, this is a fairly common type of build system, known as a recursive 
build system. Here are the contents of each of the three files in our project: 
Makefile 
 

all clean jupiter: 

        $(MAKE) -C src $@ 

src/Makefile 
 

all: jupiter 

 

jupiter: main.c 

        gcc -g -O0 -o $@ $+  



 

clean: 

        -rm jupiter 

src/main.c 
 

#include <stdio.h> 

#include <stdlib.h> 

 

int main(int argc, char * argv[]) 

{ 

        printf("Hello from %s!\n", argv[0]); 

        return 0; 

} 

At this point, you may need to stop and take a refresher course in make syntax. If you're 
already pretty well versed on make, then you can skip the sidebar entitled, "Some 
makefile basics". Otherwise, give it a quick read, and then we'll continue building on this 
project. 

Some makefile basics 

For those like myself who use make only when they have to, it's often difficult to 
remember exactly what goes where in a makefile. Well, here are a few things to 
keep in mind. Besides comments, which begin with a HASH mark, there are only 
three types of entities in a makefile: 
 variable assignments 
 rules 
 commands 

NOTE: There are a half-dozen other types of constructs in a makefile, including 
conditional statements, directives, extension rules, pattern rules, function variables, 
include statements, etc. For the purposes of this chapter, we need not go into these 
constructs. This doesn't mean these other constructs are unimportant. On the 
contrary, they are very useful if you're going to write your own complex build 
system by hand. Our purpose here is to gain the background necessary for an 
understanding of the GNU Autotools, so I'll cover only that portion of make 
necessary to accomplish this goal. If you wish to have a much broader education on 
make syntax, please refer to the GNU make manual. Furthermore, if you wish to 
become a make expert, be prepared to spend a good deal of time on the project--
there's much more to the make utility than is initially apparent on the surface. 
Commands always start with a TAB character. Any line in a makefile beginning 
with a TAB character is ALWAYS considered by make to be a command. A list of one 
or more commands should always be associated with a preceeding rule. 



NOTE: The fact that commands are required to be prefixed with an essentially 
invisible character is one of the most frustrating aspects of makefile syntax to both 
neophites and experts alike. The error messages generated by the legacy Unix make 
utility when a required TAB is missing, or when an unintentional TAB is inserted 
are obscure at best. As mentioned earlier, GNU make does a better job with such 
error messages these days. Nonetheless, be careful to use TAB characters properly 
in your makefiles--only before commands, which in turn immediately follow rules. 
The general layout of a makefile is: 
 

var1=val1 

var2=val2 

... 

rule1 

        cmd1a 

        cmd1b 

        ... 

rule2 

        cmd2a 

        cmd2b 

        ... 

Variable assignments may take place at any point in the makefile, however you 
should be aware that make reads each makefile twice. The first pass gathers 
variables and rules into tables, and the second pass resolves dependencies defined 
by the rules. So regardless of where you put your variable definitions, make will act 
as though they'd all been declared at the top, in the order you specified them 
throughout the makefile. 
Furthermore, make binds variable references to values at the very last minute--just 
before referencing commands are passed to the shell for execution. So, in general, 
variables may be assigned values by reference to other variables that haven't even 
been assigned yet. Thus, the order of variable assignment isn't really that important. 
The make utility is a rule-based command engine. The rules indicate when and 
which commands should be executed. When you prefix a line with a TAB character, 
you're telling make that you want it to execute these statements from a shell 
according to the rules specified on the line above. 
Of the remaining lines, those containing an EQUAL sign are variable definitions. 
Variables in makefiles are nearly identical to shell or environment variables. In 
Bourne shell syntax, you'd reference a variable in this manner: ${my_var}. In a 
makefile, the same syntax applies, except you would use parentheses instead of 
french braces: $(my_var). As in shell syntax, the delimiters are optional, but 
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Of course, there is an easier way in the case of this example--gcc (as with most 
compilers) will call the linker for you--which, as you can probably tell from the 
elipsis in my example above, is very desirable. This alleviates the need for one of the 
rules, and provides a convenient way of adding more dependent files to the single 
remaining rule: 
 

sources = main.c print.c display.c 

 

jupiter: $(sources) 

        gcc -g -O2 -o jupiter $(sources) 

NOTE: I should point out that using a single rule and command to process both 
steps is possible in this case because of the triviality of the example. In larger 
projects, skipping from source to executable in a single step is not possible. In these 
cases, using the compiler to call the linker can ease the burden in the second stage of 
determining all of the system objects that need to be linked into an application. And, 
in fact, this very technique is used quite often on Unix-like systems. 
In this example, I've added a make variable to reduce redundancy. We now have a 
list of source files that is referenced in two places. But, it seems a shame to be 
required to reference this list twice in this manner, when the make utility knows 
which rule and which command it's dealing with at any moment during the process. 
Additionally, there may be other objects in the dependency list that are not in the 
sources variable. It would be nice to be able to reference the entire dependency list 
without duplicating that list. 
As it happens, there are various "automatic" variables that can be used to reference 
portions of the controlling rule during the execution of a command. For example 
$(@) (or the more common syntax $@) references the current target, while $+ 
references the current list of dependencies: 
 

sources = main.c print.c display.c 

 

jupiter: $(sources) 

        gcc -g -O2 -o $@ $+ 

If you enter "make" on the command line, the make utility will look for the first 
target in a file named "Makefile" in the current directory, and try to build it using 
the rules defined in that file. If you specify a different target on the command line, 
make will attempt to build that target instead. 
Targets need not be files only. They can also be so-called "phony targets", defined 
for convenience, as in the case of all and clean. These targets don't refer to true 
products in the file system, but rather to particular outcomes--the directory is 
"cleaned", or "all" desirable targets are built, etc. 



In the same way that dependencies may be listed on the right side of the COLON, 
rules for multiple targets with the same dependencies may be combined by listing 
targets on the left side of the COLON, in this manner: 
 

all clean jupiter: 

        $(MAKE) -C src $@ 

The -C command-line option tells make to change to the specified directory before 
looking for a makefile to run. 
GNU Make is significantly more powerful than the original Unix make utility, 
although completely backward compatible, as long as GNU extensions are avoided. 
The GNU Make manual is available online. O'Reilly has an excellent book on the 
original Unix make utility and all of its many nuances. They also have a more 
recent book written specifically for GNU make that covers GNU Make extensions. 

Creating a source distribution archive 

It's great to be able to type "make all" or "make clean" from the command line to 
build and clean up this project. But in order to get the jupiter project source code to our 
users, we're going to have to create and distribute a source archive. 
What better place to do this than from our build system. We could create a separate 
script to perform this task, and many people have done this in the past, but since we 
have the ability, through phony targets, to create arbitrary sets of functionality in make, 
and since we already have this general purpose build system anyway, we'll just let make 
do the work for us. 
Building a source distribution archive is usually relegated to the dist target, so we'll add 
one. Normally, the rule of thumb is to take advantage of the recursive nature of the build 
system, by allowing each directory to manage its own portions of a global process. An 
example of this is how we passed control of building jupiter down to the src directory, 
where the jupiter source code is located. However, the process of building a compressed 
archive from a directory structure isn't really a recusive process--well, okay, yes it is, but 
the recursive portions of the process are tucked away inside the tar utility. This being 
the case, we'll just add the dist target to our top-level makefile: 
Makefile 
 

package = jupiter 

version = 1.0 

tarname = $(package) 

distdir = $(tarname)-$(version) 

 

all clean jupiter: 



        $(MAKE) -C src $@ 

 

dist: $(distdir).tar.gz 

 

$(distdir).tar.gz: $(distdir) 

        tar chof - $(distdir) |\ 

          gzip -9 -c >$(distdir).tar.gz 

        rm -rf $(distdir) 

 

$(distdir): 

        mkdir -p $(distdir)/src 

        cp Makefile $(distdir) 

        cp src/Makefile $(distdir)/src 

        cp src/main.c $(distdir)/src 

 

.PHONY: all clean dist 

In this version of the top-level Makefile, we've added a new construct, the .PHONY rule. 
At least it seems like a rule--it contains a COLON character, anyway. The .PHONY rule is 
a special kind of rule called a "dot-rule", which is built into make. The make utility 
understands several different dot-rules. The purpose of the .PHONY rule is simply to tell 
make that certain targets don't generate file system objects, so make won't go looking for 
product files in the file system that are named after these targets. Normally, the make 
utility determines which commands to run by comparing the time stamps of the 
associated rule products to those of their dependencies in the file system, but phony 
targets don't have associated file system objects. 
We've added the new dist target in the form of three rules for the sake of readability, 
modularity and maintenance. This is a great rule of thumb to following in any software 
engineering process: Build large processes from smaller ones, and reuse the smaller 
processes where it makes sense to do so. 
The dist target depends on the existance of the ultimate goal, a source-level 
compressed archive package, jupiter-1.0.tar.gz--also known as a "tarball". I've 
added a make variable for the version number to ease the process of updating the project 
version later, and I've used another variable for the package name for the sake of 
possibly porting this makefile to another project. I've also logically split the functions of 
package name and tar name, in case we want them to be different later--the default tar 
name is the package name. Finally, I've combined references to these variables into a 
distdir variable to reduce duplication and complexity in the makefile. 



The rule that builds the tarball indicates how this should be done with a command that 
uses the gzip and tar utilities to create the file. But, notice also that the rule has a 
dependency--the directory to be archived. We don't want everything in our project 
directory hierarchy to go into our tarball--only exactly those files that are necessary for 
the distribution. Basically, this means any file required to build and install our project. We 
certainly don't want object files and executables from our last build attempt to end up in 
the archive, so we have to build a directory containing exactly what we want to ship. This 
pretty much mandates the use of individual cp commands, unfortunately. 
Since there's a rule in the makefile that tells how this directory should be created, make 
runs the commands for this rule before running the commands for the current rule. The 
make utility runs rules to build dependencies recursively until the requested target's 
commands can be run. 

Forcing a rule to run 

There's a subtle flaw in the $(distdir) target that may not be obvious, but it will rear 
its ugly head at the worst times. If the archive directory already exists when you type 
make dist, then make won't try to create it. Try this: 
 

$ mkdir jupiter-1.0 

$ make dist 

tar chof - jupiter-1.0 | gzip -9 -c >jupiter-1.0... 

rm -rf jupiter-1.0 &> /dev/null 

$ 

Notice that the dist target didn't copy any files--it just built an archive out of the existing 
jupiter-1.0 directory, which was empty. Our end-users would have gotten a real 
surpise when they unpacked this tarball! 
The problem is that the $(distdir) target is a real target with no dependencies, which 
means that make will consider it up-to-date as long as it exists in the file system. We 
could add $(distdir) to the .PHONY rule, but this would be a lie--it's not a phony 
target, it's just that we want to force it to be rebuilt every time. 
The proper way to ensure it gets rebuilt is to have it not exist before make attempts to 
build it. A common method for accomplishing this task to to create a true phony target 
that will run every time, and add it to the dependency chain at or above the $(distdir) 
target. For obvious reasons, a commonly used name for this sort of target is "FORCE": 
Makefile 
 

... 

$(distdir).tar.gz: FORCE $(distdir) 

        tar chof - $(distdir) |\ 

          gzip -9 -c >$(distdir).tar.gz 

        rm -rf $(distdir) 



 

$(distdir): 

        mkdir -p $(distdir)/src 

        cp Makefile $(distdir) 

        cp src/Makefile $(distdir)/src 

        cp src/main.c $(distdir)/src 

 

FORCE: 

        -rm $(distdir).tar.gz &> /dev/null 

        -rm -rf $(distdir) &> /dev/null 

 

.PHONY: FORCE all clean dist 

The FORCE rule's commands are executed every time because FORCE is a phony target. 
By making FORCE a dependency of the tarball, we're given the opportunity to delete any 
previously created files and directories before make begins to evaluate whether or not 
these targets' commands should be executed. This is really much cleaner, because we 
can now remove the "pre-cleanup" commands from all of the rules, except for FORCE, 
where they really belong. 
There are actually more accurate ways of doing this--we could make the $(distdir) 
target dependent on all of the files in the archive directory. If any of these files are newer 
than the directory, the target would be executed. This scheme would require an elaborate 
shell script containing sed commands or non-portable GNU make functions to replace 
file paths in the dependency list for the copy commands. For our purposes, this 
implementation is adequate. Perhaps it would be worth the effort if our project were huge, 
and creating an archive directory required copying and/or generating thousands of files. 
The use of a leading DASH character on some of the rm commands is interesting. A 
leading DASH character tells make to not care about the status code of the associated 
command. Normally make will stop execution with an error message on the first 
command that returns a non-zero status code to the shell. I use a leading DASH 
character on the rm commands in the FORCE rule because I want to delete previously 
created product files that may or may not exist, and rm will return an error if I attempt to 
delete a non-existent file. Note that I explicitly did NOT use a leading DASH on the rm 
command in the $(distdir) rule. This is because this rm command must succeed, or 
something is very wrong, as the preceeding command should have created a tarball from 
this directory. 
Another such leading character that you may encounter is the ATSIGN (@) character. A 
command prefixed with an ATSIGN tells make not to print the command as it executes it. 
Normally make will print each command as it's executed. A leading ATSIGN tells make 
that you don't want to see this command. This is a common thing to do on echo 
statements--you don't want make to print echo statements, because then your message 
will be printed twice, and that's just ugly. 



Automatically testing a distribution 

The rule for building the archive directory is the most frustrating of any in this makefile--it 
contains commands to copy files individually into the distribution directory. What a sad 
shame! Everytime we change the file structure in our project, we have to update this rule 
in our top-level makefile, or we'll break our dist target. 
But, there's nothing to be done for it. We've made the rule as simple as possible. Now, 
we just have to remember to manage this process properly. But unfortunately, breaking 
the dist target is not the worst thing that could happen if we forget to update the 
distdir rule's commands. The dist target may continue to appear to work, but not 
actually copy all of the required files into the tarball. This will cause us some 
embarassment when our users begin to send us emails asking why our tarball doesn't 
build on their systems. 
In fact, this is a far more common possibility than that of breaking the dist target, 
because the more common activity while working on a project is to add files to the project, 
not move them around or delete them. New files will not be copied, but the dist rule 
won't notice the difference. 
If only there were some way of unit-testing this process. As it turns out, there is a way of 
performing a sort of self-check on the dist target. We can create yet another phony 
target called "distcheck" that does exactly what our users will do--unpack the tarball, 
and build the project. We can do this in a new temporary directory. If the build process 
fails, then the distcheck target will break, telling us that we forgot something crucial in 
our distribution. 
Makefile 
 

... 

distcheck: $(distdir).tar.gz 

        gzip -cd $+ | tar xvf - 

        $(MAKE) -C $(distdir) all clean 

        rm -rf $(distdir) 

        @echo "*** Package $(distdir).tar.gz\ 

          ready for distribution." 

... 

.PHONY: FORCE all clean dist distcheck 

Here, we've added the distcheck target to the top-level makefile. Since the 
distcheck target depends on the tarball itself, it will first build a tarball using the same 
targets used by the dist target. It will then execute the distcheck commands, which 
are to unpack the tarball it just built and run "make all clean" on the resulting 
directory. This will build both the all and clean targets, successively. If that process 
succeeds, it will print out a message, telling us that we can sleep well knowing that our 
users will probably not have a problem with this tarball. 
Now all we have to do is remember to run "make distcheck" before we post our 
tarballs for public distribution! 



Unit testing anyone? 

Some people think unit testing is evil, but really--the only honest rationale they can come 
up with for not doing it is laziness. Let's face it--proper unit testing is hard work, but it 
pays off in the end. Those who do it have learned a lesson (usually as children) about the 
value of delayed gratification. 

A good build system is no exception. It should encorporate proper unit testing. The 
commonly used target for testing a build is the check target, so we'll go ahead and add 
the check target in the usual manner. The test should probably go in src/Makefile 
because jupiter is built in src/Makefile, so we'll have to pass the check target down 
from the top-level makefile. 
But what commands do we put in the check rule? Well, jupiter is a pretty simple 
program--it prints out a message, "Hello from <path>jupiter!", where <path> is variable, 
depending on the location from which jupiter was executed. We could check to see that 
jupiter actually does output such a string. We'll use the grep utility to test our assertion: 
Makefile 
 

... 

all clean check jupiter: 

        $(MAKE) -C src $@ 

... 

.PHONY: FORCE all clean check dist distcheck 

src/Makefile 
 

... 

check: all 

        ./jupiter | grep "Hello from .*jupiter!" 

        @echo "*** ALL TESTS PASSED ***" 

... 

.PHONY: all clean check 

Note that check is dependent on all. We can't really test our products unless they've 
been built. We can ensure they're up to date by creating such a dependency. Now make 
will run commands for all if it needs to before running the commands for check. 
There's one more thing we could do to enhance our build system a bit. We can add the 
check target to the make command in our distcheck target. Adding it right between 
the all and clean targets seems appropriate: 
Makefile 



 

... 

distcheck: $(distdir).tar.gz 

        gzip -cd $+ | tar xvf - 

        $(MAKE) -C $(distdir) all check clean 

        rm -rf $(distdir) 

        @echo "*** Package $(distdir).tar.gz\ 

          ready for distribution." 

... 

Now, when we run "make distcheck", our entire build system will be tested before 
packaging is considered successful. What more could you ask for?! 

Installing products 

Well, we've now reached the point where our users' experiences with our project should 
be fairly painless--even pleasant, as far as building the project is concerned. Our users 
will simply unpack the distribution tarball, change into the distribution directory, and type 
"make". It can't really get any simpler than that. 
But still we lack one important feature--installation. In the case of the jupiter project, this 
is fairly trivial - there's only one executable, and most users could probably guess that 
this file should be copied into either the /usr/bin or /usr/local/bin directory. More 
complex projects, however could cause our users some real consternation when it comes 
to where to put user and system binaries, libraries, header files, and documentation, 
including man pages, info pages, pdf files, and README, INSTALL and COPYRIGHT 
files. Do we really want our users to have to figure all that out? 
I don't think so. So we'll just create an install target that manages putting things where 
they go, once they're built properly. Why not just make installation part of the all target? 
A few reasons, really. First, build and installation are separate logical concepts. 
Remember the rule: Break up large processes into smaller ones and reuse the smaller 
ones where you can. The second reason is a matter of rights. Users have rights to build 
in their own home directories, but installation often requires root-level rights to copy files 
into system directories. Finally, there are several reasons why a user may wish to build, 
but not install. 
While creating a distribution package may not be an inherently recursive process, 
installation certainly is, so we'll allow each subdirectory in our project to manage 
installation of its own components. To do this, we need to modify both makefiles. The 
top-level makefile is easy. Since there are no products to be installed in the top-level 
directory, we'll just pass on the responsibility to src/Makefile in the usual way: 
Makefile 
 

... 

all clean check install jupiter: 



        $(MAKE) -C src $@ 

... 

.PHONY: FORCE all clean check dist distcheck 

.PHONY: install 

src/Makefile 
 

... 

install: 

        cp jupiter /usr/bin 

        chown root:root /usr/bin/jupiter 

        chmod +x /usr/bin/jupiter 

 

.PHONY: all clean check install 

In the top-level makefile, we've added install to the list of targets passed down to 
src/Makefile. In both files we've added install to the phony target list. 
As it turns out, installation was a bit more complex than simply copying files. If a file is 
placed in the /usr/bin directory, then the root user should own it so that only the root 
user can delete or modify it. Additionally, we should ensure that the jupiter binary is 
executable, so we use the chmod command to set the mode of the file to executable. 
This is probably redundant, as the linker ensures that jupiter gets created as an 
executable file, but it never hurts to be safe. 
Now our users can just type the following sequence of commands, and have our project 
built and installed with the correct system attributes and ownership on their platforms: 

 

$ tar -zxvf jupiter-1.0.tar.gz 

$ cd jupiter-1.0 

$ make all 

$ sudo make install 

All of this is well and good, but it could be a bit more flexible with regard to where things 
get installed. Some of our users may be okay with having jupiter installed into the 
/usr/bin directory. Others are going to ask us why we didn't put it into the 
/usr/local/bin directory--after all, this is a common convention. Well, we could 
change the target directory to /usr/local/bin, but then others will ask us why we 



didn't just put it into the /usr/bin directory. This is the perfect situation for a little 
command-line flexibility. 
Another problem we have with these makefiles is the amount of stuff we have to do to 
install files. Most Unix systems provide a system-level program called "install", which 
allows a user to specify, in an intelligent manner, various attributes of the files being 
installed. The proper use of this utility could simplify things a bit. While we're adding 
location flexibility, I'll just go ahead and add the use of the install utility, as well: 
Makefile 
 

... 

export prefix=/usr/local 

 

all clean install jupiter: 

        $(MAKE) -C src $@ 

... 

src/Makefile 
 

... 

install: 

        install -d $(prefix)/bin 

        install -m 0755 jupiter $(prefix)/bin 

... 

If you're astute, you may have noticed that I've declared and assigned the prefix 
variable in the top-level makefile, but I've referenced it in src/Makefile. This is 
possible because I used the export modifier in the top-level makefile to export this 
make variable to the shell that make spawns when it executes itself in the src directory. 
This is a nice feature of make because it allows us to define all of our user variables in 
one obvious location--at the top of the top-level makefile. 
I've now declared the prefix variable to be /usr/local, which is very nice for those 
who want jupiter to be installed in /usr/local/bin, but not so nice for those who just 
want it installed in /usr/bin. Fortunately, make allows the definition of make variables 
on the command line, in this manner: 
 

$ sudo make prefix=/usr install 

... 



Variables defined on the command line override those defined in the makefile. Thus, 
users who want to install jupiter into their /usr/bin directory now have the option of 
specifying this on the make command line when they install jupiter. 
Actually, with this system in place, our users may install jupiter into any directory they 
choose, including a location in their home directory, for which they do not need additional 
rights granted. This is, in fact, the reason for the addition of the mkdir -p command. We 
don't actually know where the user is going to install jupiter now, so we have to be 
prepared for the possiblity that the location may not yet exist. 
A bit of trivia about the install utility--it has the interesting property of changing the 
ownership of any file it copies to the owner and group of the containing directory. So it 
automatically sets the owner and group of our installed files to root:root if the user 
tries to use the default /usr/local prefix, or to the user's id and group if she tries to 
install into a location within her home directory. Nice, huh? 

Uninstalling a package 

What if a user doesn't like our package after it's been installed, and she just wants to get 
it off her system? This is fairly likely with the jupiter package, as it's rather useless and 
takes up valuable space in her bin directory. In the case of your projects however, it's 
more likely that she wants to install a newer version of your project cleanly, or she wants 
to change from the test build she downloaded from your website to a professionally 
packaged version of your project provided by her Linux distribution. We really should 
have an uninstall target, for these and other reasons: 
Makefile 
 

... 

all clean install uninstall jupiter: 

        $(MAKE) -C src $@ 

... 

.PHONY: FORCE all clean dist distcheck 

.PHONY: install uninstall 

src/Makefile 
 

... 

uninstall: 

        -rm $(prefix)/bin/jupiter 

 

.PHONY: all clean check install uninstall 

And, again, this particular target will require root-level rights if the user is using a system 
prefix, such as /usr or /usr/local. The list of things to maintain is getting a out of 



hand, if you ask me. We now have two places to update when changing our installation 
processes--the install and uninstall targets. Unfortunately, this is really about the 
best we can hope for when writing our own makefiles, without resorting to fairly complex 
shell script commands. Hang in there--in Chapter 6, I'll show you how this example can 
be rewritten in a much simpler way using Automake. 
Finally, while we're at it, let's add testing the install and uninstall targets to our 
distcheck target: 
Makefile 
 

... 

distcheck: $(distdir).tar.gz 

        gzip -cd $+ | tar xvf - 

        $(MAKE) -C $(distdir) all check 

        $(MAKE) -C $(distdir) prefix=\ 

         $${PWD}/$(distdir)/_inst install uninstall 

        $(MAKE) -C $(distdir) clean 

        rm -rf $(distdir) 

        @echo "*** Package $(distdir).tar.gz\ 

          ready for distribution." 

... 

To do this properly, I had to break up the $(MAKE) commands into three different steps, 
so that we could add the proper prefix to the install and uninstall targets without 
affecting the other targets. I'll have more to say on this topic in a few minutes. 
Note also that I used a double DOLLAR sign on the $${PWD} variable reference. This 
was done in order to ensure that make passed the reference to the shell with the rest of 
the command line. I wanted this variable to be dereferenced by the shell, rather than the 
make utility. Technically, I didn't have to do this because the PWD variable was initialized 
for make from the environment, but it serves as a good example of this process. 

The Filesystem Hierarchy Standard 

By the way, where am I getting these directory names from? What if some Unix system 
out there doesn't use /usr or /usr/local? Well, in the first place, this is another 
reason for providing the prefix variable--to handle those sorts of situations. However, 
most Unix and Unix-like systems nowadays follow the Filesystem Hierarchy Standard 
(FHS), as closely as possible. The FHS defines a number of "standard places", including 
the following root-level directories: 
 /bin 
 /etc 
 /home 
 /opt 



 /sbin 
 /srv 
 /tmp 
 /usr 
 /var 

This list is not exhaustive. I've only mentioned the ones most relevant to our purposes. In 
addition, the FHS defines several standard locations beneath these root-level directories. 
For instance, the /usr directory should contain the following sub-directories: 
 /usr/bin 
 /usr/include 
 /usr/lib 
 /usr/local 
 /usr/sbin 
 /usr/share 
 /usr/src 

The /usr/local directory should contain a structure very similar to the /usr directory 
structure, so that if the /usr/bin directory (for instance) is an NFS mount, then 
/usr/local/bin (which should always be local) may contain local copies of some 
programs. This way, if the network is down, the system may still be usable, to some 
degree. 
Not only does the FHS define these standard locations, but it also explains in fair detail 
what they are for, and what types of files should be kept there. All in all, the FHS leaves 
just enough flexibility and choice to you as a project maintainer to keep your life 
interesting, but not enough to make you lose sleep at night, wondering if you're installing 
your files in the right places. 

Before I found out about the FHS, I relied on my personal experience to decide where 
files should be installed in my projects. Mostly I was right, because I'm a careful guy, but I 
have gone back to some of my past projects with a bit of chagrin and changed things, 
once I read the FHS document. I heartily recommend you become thoroughly familiar 
with this document if you seriously intend to develop Unix software. 

Supporting standard targets and variables 

In addition to those I've already mentioned, the GNU Coding Standards document lists 
some important targets and variables that you should support in your projects, mainly 
because everyone else does and your users will expect them. 

Some of the chapters in the GNU Coding Standards should be taken with a grain of salt 
(unless you're actually working on a GNU sponsored project, in which case you're 
probably not reading this book because you need to). For example, you probably won't 
care much about the C source code formatting suggestions in Chapter 5. Your users 
certainly won't care, so you can use whatever source code formatting style you wish. 

That's not to say that all of Chapter 5 is worthless. Sections 5.5 and 5.6, for instance, 
provide excellent information on C source code portability between POSIX-oriented 
platforms and CPU types. Section 5.8 gives some tips on using GNU software to 
internationalize your program. This is excellent material. 

While Chapter 6 discusses documentation the GNU way, some sections of Chapter 6 
describe various top-level text files found commonly in projects, such as the AUTHORS, 
NEWS, INSTALL, README and ChangeLog files. These are all bits that the well-read 
OSS user expects to see in any decent OSS project. 



But, the really useful information in the GNU Coding Standards document begins in 
Chapter 7, "The Release Process". The reason why this chapter is so critical to you as an 
OSS project maintainer, is that it pretty much defines what your users will expect of your 
project's build system. Chapter 7 is the defacto-standard for user options provided by 
packages using source-level distribution. 
Section 7.1 defines the configuration process, about which we haven't spent much time 
so far in this chapter, but we'll get to it. Section 7.2 covers makefile conventions, 
including all of the "standard targets" and "standard variables" that users have come to 
expect in OSS packages. Standard targets defined by the GNU Coding Standards 
document include: 

 all 
 install 
 install-html 
 install-dvi 
 install-pdf 
 install-ps 
 uninstall 
 install-strip 
 clean 
 distclean 
 mostlyclean 
 maintainer-clean 
 TAGS 
 info 
 dvi 
 html 
 pdf 
 ps 
 dist 
 check 
 installcheck 
 installdirs 

Note that you don't need to support all of these targets, but you should consider 
supporting those which make sense for your project. For example, if you build and install 
HTML pages in your project, then you should probably consider supporting the html and 
install-html targets. Autotools projects support these, and more. Some of these are 
useful to users, while others are only useful to maintainers. 
Variables that your project should support (as you see fit) include the following. I've 
added the default values for these variables on the right. You'll note that most of these 
variables are defined in terms of a few of them, and ultimately only one of them, prefix. 
The reason for this is (again) flexibility to the end user. I call these "prefix variables", for 
lack of a more standard name: 
 

prefix          = /usr/local 

exec-prefix     = $(prefix) 

bindir          = $(exec_prefix)/bin 

sbindir         = $(exec_prefix)/sbin 

libexecdir      = $(exec_prefix)/libexec 



datarootdir     = $(prefix)/share 

datadir         = $(datarootdir) 

sysconfdir      = $(prefix)/etc 

sharedstatedir  = $(prefix)/com 

localstatedir   = $(prefix)/var 

includedir      = $(prefix)/include 

oldincludedir   = /usr/include 

docdir          = $(datarootdir)/doc/$(package) 

infodir         = $(datarootdir)/info 

htmldir         = $(docdir) 

dvidir          = $(docdir) 

pdfdir          = $(docdir) 

psdir           = $(docdir) 

libdir          = $(exec_prefix)/lib 

lispdir         = $(datarootdir)/emacs/site-lisp 

localedir       = $(datarootdir)/locale 

mandir          = $(datarootdir)/man 

manNdir         = $(mandir)/manN  (N = 1..9) 

manext          = .1 

manNext         = .N              (N = 1..9) 

srcdir          = (compiled project root) 

Autotools projects support these and other useful variables automatically. Projects that 
use Automake get these variables for free. Autoconf provides a mid-level form of support 
for these variables. If you write your own makefiles and build system, you should support 
as many of these as you use in your build and install processes. 

To support the variables and targets that we've used so far in the jupiter project, we need 
to add the bindir variable, in this manner: 
Makefile 
 



... 

export prefix = /usr/local 

export exec_prefix = $(prefix) 

export bindir = $(exec_prefix)/bin 

... 

src/Makefile 
 

... 

install: 

        install -d $(bindir) 

        install -m 0755 jupiter $(bindir) 

 

uninstall: 

        -rm $(bindir)/jupiter 

... 

Note that we have to export prefix, exec_prefix and bindir, even though we only 
use bindir explicitly in src/Makefile. The reason for this is that bindir is defined in 
terms of exec_prefix, which is itself defined in terms of prefix. So when make runs 
the install command, it will first resolve bindir to $(exec_prefix)/bin, and then to 
$(prefix)/bin, and finally to /usr/local/bin--src/Makefile obviously needs 
access to all three variables during this process. 
How do such recursive variable definitions make life better for the end-user? The user 
can change the root install location from /usr/local to /usr by simply typing: 
 

$ make prefix=/usr install 

... 

The ability to change these variables like this is particularly useful to a Linux distribution 
packager, who needs to install packages into very specific system locations: 

 

$ make prefix=/usr sysconfdir=/etc install 

... 



Getting your project into a Linux distro 

The dream of every OSS maintainer is that his or her project will be picked up by a Linux 
distribution. When a Linux "distro" picks up your package for distribution on their CD's 
and DVD's, your project will be moved magically from the realm of tens of users to that of 
tens of thousands of users--almost overnight. 

By following the GNU Coding Standards with your build system, you remove many 
barriers to including your project in a Linux distro, because distro packagers (employees 
of the company, whose job it is to professionally package your project as RPM or APT 
packages) will immediately know what to do with your tarball, if it follows all the usual 
conventions. And, in general, packagers get to decide, based on needed functionality, 
and their feelings about your package, whether or not it should be included in their flavor 
of Linux. 

Section 7.2.4 of the GNU Coding Standards talks about the concept of supporting 
"staged installations". This is a concept easily supported by a build system, but which if 
neglected, will almost always cause problems for Linux distro packagers. 

Packaging systems such as the Redhat Package Manager (RPM) system accept one or 
more tarballs, a set of patches and a specification file (in the case of RPM, called an "rpm 
spec file"). The spec file describes the process of building and installing your package. In 
addition, it defines all of the products installed into the targeted installation directory 
hierarchy. The package manager software uses this information to install your package 
into a temporary directory, from which it pulls the specified binaries, storing them in a 
special binary archive that the package installation software (eg., rpm) understands. 
To support staged installation, all you really need to do is provide a variable named 
"DESTDIR" in your build system that is a sort of super-prefix to all of your installed 
products. To show you how this is done, I'll add staged installation support to the jupiter 
project. This is so trivial, it only requires three changes to src/Makefile: 
src/Makefile 
 

... 

install: 

        install -d $(DESTDIR)$(bindir) 

        install -m 0755 jupiter $(DESTDIR)$(bindir) 

 

uninstall: 

        -rm $(DESTDIR)$(bindir)/jupiter 

... 

As you can see, I've added the $(DESTDIR) prefix to the $(bindir) references in our 
install and uninstall targets that reference any installation paths. I didn't need to add 
$(DESTDIR) to the uninstall command for the sake of package managers, because 
they don't care how your package is uninstalled. Package managers only install your 



package while building it so they can copy the specified products from the temporary 
install directory, which they then delete entirely after the package is created. Package 
managers like RPM use their own rules for removing products from a system, and these 
rules are based on package manager databases, not your build system. 
For the sake of symmetry and to be complete, it doesn't hurt to add $(DESTDIR) to 
uninstall. Besides, we need it to be complete for the sake of the distcheck target, 
which we'll now modify to take advantage of our staged installation functionality: 
Makefile 
 

... 

distcheck: $(distdir).tar.gz 

        gzip -cd $+ | tar xvf - 

        $(MAKE) -C $(distdir) all check 

        $(MAKE) -C $(distdir) DESTDIR=\ 

         $${PWD}/$(distdir)/_inst install uninstall 

        $(MAKE) -C $(distdir) clean 

        rm -rf $(distdir) 

        @echo "*** Package $(distdir).tar.gz\ 

          ready for distribution." 

... 

Changing the prefix variable to the DESTDIR variable in the second $(MAKE) line 
above allows us to test a complete install directory hierarchy properly, as we'll see shortly 
here. 
At this point, an RPM spec file (for example) could provide the following text as the 
installation commands for the jupiter package: 

 

%install 

make prefix=/usr DESTDIR=%BUILDROOT install 

But don't worry about package manager file formats. Just focus on providing staged 
installation functionality through the DESTDIR variable. 

You may be wondering why this functionality could not be provided by the prefix 
variable. Well, for one thing, not every path in a system-level installation is defined 
relative to the prefix variable. The system configuration directory (sysconfdir), for 
instance, is often defined simply as /etc by packagers. Defining prefix to anything 
other than / will have little effect on sysconfdir during staged installation, unless a 
build system uses $(DESTDIR)$(sysconfdir) to reference the system configuration 



directory. Other reasons for this will become more clear as we talk about project 
configuration later in this chapter. 

Build versus installation prefix overrides 

At this point, I'd like to digress slightly for just a moment to explain an illusive (or at least 
non-obvious) concept regarding the prefix and other path variables defined by the GNU 
Coding Standards document. 

In the preceeding examples, I've always used prefix overrides on the make install 
command line, like this: 
 

$ make prefix=/usr install 

... 

The question I wish to address is: What's the difference between using a prefix override 
for make all and make install? In our small sample makefiles, we've managed to 
avoid using prefixes in any targets not related to installation, so it may not be clear at this 
point that a prefix is ever useful during the build stages. 
One key use of prefix variables during the build stage is to substitute paths into source 
code at compile time, in this manner: 

 

main.o : main.c 

        gcc -DCFGDIR=\"$(sysconfdir)\" -o $@ $+ 

In this example, I'm defining a C preprocessor variable called CFGDIR on the compiler 
command line for use by main.c. Presumably, there's some code in main.c that looks 
like this: 
 

#ifndef CFGDIR 

# define CFGDIR "/etc" 

#endif 

 

char cfgdir[FILENAME_MAX] = CFGDIR; 

Later in the code, the C global variable "cfgdir" might be used to access the 
application's configuration file. 
Okay, with that background then, would you ever want to use different prefix variable 
overrides on the build and installation command lines? Sure--Linux distro packagers do 
this all the time in RPM spec files. During the build stage, the actual run-time directories 
are hard-coded into the executable by using a command like this: 
 

%build 



%setup 

./configure prefix=/usr sysconfdir=/etc 

make 

The RPM build process installs these executables into a stage directory, so it can copy 
them out. The corresponding installation command looks like this: 

 

%install 

rm -rf %BUILDROOT% 

make DESTDIR=%BUILDROOT% install 

I mentioned the DESTDIR variable previously as a tool used by packagers for staged 
installation. This has the same effect as using: 
 

%install 

rm -rf %BUILDROOT% 

make prefix=%BUILDROOT%/usr \ 

     sysconfdir=%BUILDROOT%/etc install 

The key take-away point here is this: Never recompile from an install target in your 
makefiles. Otherwise your users won't be able to access your staged installation features 
when using prefix overrides. 
Another reason for this is to allow the user to install into a grouped location, and then 
create links to the actual files in the proper locations. Some people like to do this, 
especially when they are testing out a package, and want to keep track of all of its 
components. For example, some Linux distributions provide a way of installing multiple 
versions of some common packages. Java is a great example here. To support using 
multiple versions or brands (perhaps Sun Java vs IBM Java), the Linux distribution 
provides a script set called the "alternatives" scripts, which allows a user (running as root) 
to swap all of the links in the various system directories from one grouped installation to 
another. Thus, both sets of files may be installed in different auxiliary locations, but links 
in the true installation locations can be changed to refer to each group at different times. 

One final point about this issue. If you're installing into a system directory hierarchy, you'll 
need root permissions. Often people run make install like this: 
 

$ sudo make install 

... 

If your install target depends on your build targets, and you've neglected to build 
beforehand, then make will happily build your program before installing it, but the local 



copies will all be owned by root. Just an inconvenience, but easily avoided by having 
`make install' fail for lack of things to install, rather than simply jump right into a build 
while running as root. 

Standard user variables 

There's one more topic I'd like to cover before we move on to configuration. The GNU 
Coding Standards document defines a set of variables that are sort of sacred to the user. 
That is, these variables should be used by a GNU build system, but never modified by a 
GNU build system. These are called "user variables", and they include the following for C 
and C++ programs: 

 

CC         - the C compiler 

CFLAGS     - C compiler flags 

CXX        - the C++ compiler 

CXXFLAGS   - C++ compiler flags   

LDFLAGS    - linker flags 

CPPFLAGS   - C preprocessor flags 

... 

This list is by no means comprehensive, and ironically, there isn't a comprehensive list to 
be found in the GCS document. Interestingly, most of these user variables come from the 
documentation for the make utility. You can find a fairly complete list of program name 
and flag variables in section 10.3 of the GNU make manual. The reason for this is that 
these variables are used in the built-in rules of the make utility. 
For our purposes, these few are sufficient, but for a more complex makefile, you should 
become familiar with the larger list so that you can use them as the occasion arises. To 
use these in our makefiles, we'll just replace "gcc" with $(CC), and then set CC to the gcc 
compiler at the top of the makefile. We'll do the same for CFLAGS and CPPFLAGS, 
although this last one will contain nothing by default: 
src/Makefile 
 

... 

CC     = gcc 

CFLAGS = -g -O2 

... 

jupiter: main.c 

        $(CC) $(CFLAGS) $(CPPFLAGS) -o $@ $+ 



... 

The reason this works is that the make utility allows such variables to be overridden by 
options on the command line. Make command-line variable assignments always override 
values set in the makefiles themselves. Thus, to change the compiler and set some 
compiler flags, a user need simply type: 
 

$ make CC=gcc3 CFLAGS='-g -O0' CPPFLAGS=-dtest 

In this case, our user has decided to use gcc version 3 instead of 4, and to disable 
optimization and leave the debugging symbols in place. She's also decided to enable the 
"test" option through the use of a preprocessor definition. Note that these variables are 
set on the make command line. This apparently equivalent syntax will not work as 
expected: 

 

$ CC=gcc3 CFLAGS='-g -O0' CPPFLAGS=-dtest make 

The reason for this is that we're merely setting environment variables in the local 
environment passed to the make utility by the shell. Remember that environment 
variables do not automatically override those set in the makefile. To get the functionality 
we want, we could use a little GNU make-specific syntax in our makefile: 

 

CC     ?= gcc 

CFLAGS ?= -g -O2 

The "?=" operation is a GNU Make-specific operator, which will only set the variable in 
the makefile if it hasn't already been set elsewhere. This means we can now override 
these particular variable settings by setting them in the environment. But don't forget that 
this will only work in GNU Make. 

Configuring your package 

The GNU Coding Standards document describes the configuration process in section 7.1, 
"How Configuration Should Work". Up to this point, we've been able to do about 
everything we've wanted to do with the jupiter project using only makefiles. You might be 
wondering at this point what configuration is actually for! The opening paragraphs of 
Section 7.1 state: 

Each GNU distribution should come with a shell script named configure. This script is 
given arguments which describe the kind of machine and system you want to compile the 
program for. 
The configure script must record the configuration options so that they affect 
compilation. 
One way to do this is to make a link from a standard name such as config.h to the 
proper configuration file for the chosen system. If you use this technique, the distribution 
should not contain a file named config.h. This is so that people won't be able to build 
the program without configuring it first. 



Another thing that configure can do is to edit the makefiles. If you do this, the 
distribution should not contain a file named Makefile. Instead, it should include a file 
Makefile.in which contains the input used for editing. Once again, this is so that 
people won't be able to build the program without configuring it first. 
So then, the primary tasks of a typical configure script are to: 

 generate files from templates containing replacement variables, 
 generate a C language header file (often called config.h) for inclusion by project 

source code, 
 set user options for a particular make environment--such as debug flags, etc., 
 set various package options as environment variables, 
 and test for the existance of tools, libraries, and header files. 

For complex projects, configure scripts often generate the project makefile(s) from one 
or more templates maintained by project developers. A makefile template contains 
configuration variables in an easily recognized (and substituted) format. The configure 
script replaces these variables with values determined during configuration--either from 
command line options specified by the user, or from a thorough analysis of the platform 
environment. Often this analysis entails such things as checking for the existence of 
certain system or package include files and libraries, searching various file system paths 
for required utilities and tools, and even running small programs designed to indicate the 
feature set of the shell, C compiler, or desired libraries. 
The tool of choice here for variable replacement has, in the past, been the sed stream 
editor. A simple sed command can replace all of the configuration variables in a makefile 
template in a single pass through the file. In the latest version of Autoconf (2.62, as of 
this writing) prefers awk to sed for this process. The awk utility is almost as pervasive as 
sed these days, and it much more powerful with respect to the operations it can perform 
on a stream of data. For the purposes of the jupiter project, either one of these tools 
would suffice. 

Summary 

At this point, we've created a complete project build system by hand--with one important 
exception. We haven't designed a configure script according to the design criteria 
specified in the GNU Coding Standards document that works with this build system. We 
could do this, but it would take a dozen more pages of text to build one that even comes 
close to conforming to these specifications. 
There are yet a few key build system features related specifically to the makefiles that 
are indicated as being desirable by the GNU Coding Standards. Among these is the 
concept of VPATH building. This is an important feature that can only be properly 
illustrated by actually writing a configure script that works as specified by the GNU 
Coding Standards. 
Rather than spend this time and effort, I'd like to simply move on to a discussion of 
Autoconf in Chapter 3, which will allow us to build one of these configure scripts in as 
little as two or three lines of code, as you'll see in the opening paragraphs of that chapter. 
With that step behind us, it will be trival to add VPATH building, and other features to the 
jupiter project. 

Source archive 

Download the attached source archive for the original sources associated with this 
chapter. 

‹ Chapter 1: A brief introduction to the GNU Autotools up Chapter 3: Configuring your 
project with Autoconf › 

 



Chapter 3: Configuring your project 
with Autoconf 
Tue, 2008-06-10 22:11 -- John Calcote 

We should all be very grateful to David MacKenzie for having the foresight to--
metaphorically speaking--stop and sharpen the ax. Otherwise we'd still be writing 
(copying) and maintaining long, complex hand-coded configure scripts today. 
This chapter has downloads! 
Before Automake, Autoconf was used alone, and many legacy open source projects 
have never really made the transition to the full Autotools suite. As a result, it would not 
be uncommon to find an open source project containing a file called configure.in (the 
older naming convention used by Autoconf) and hand-written Makefile.in templates. 

Configure scripts, the Autoconf way 

It's instructive for this and other reasons that will become clear shortly, to spend some 
time just focusing on the use of Autoconf alone. Exploring in this manner can provide a 
fair amount of insight into the operation of Autoconf by exposing aspects of this tool that 
are often hidden by Automake and other add-on tools. 

The input to Autoconf is ... (drum roll please) ... shell script. Man, what an anti-climax! 
Okay, so it's not pure shell script. That is, it's shell script with macros, plus a bunch of 
macro definition files--both those that ship with an Autoconf distribution, as well as those 
that you or I write. The macro language used is called M4. ("M-what?!", you ask?) The 
M4 utility is a general purpose macro language processor that was originally written by 
none other than Brian Kernighan and Dennis Ritchie in 1977. (The name M4 means "m 
plus 4 more letters" or the word "Macro" - cute, huh? As a point of interest, this naming 
convention is a fairly common practice in some software engineering domains. For 
example, the term internationalization is often abrieviated i18n, and the term localization 
is sometimes replaced with l10n, for the sake of brevity. The use of the term m4 here is 
no-doubt a play on this concept.) 
Some form of the M4 macro language processor is found on every Unix and Linux variant 
(as well as other systems) in use today. In fact, this proliferance is the primary reason for 
its use in Autoconf. The design goals of Autoconf included primarily that it should run on 
all systems without the addition of complex tool chains and utility sets. Autoconf depends 
on the existence of relatively few tools, including m4, sed and now in version 2.62, the 
awk utility. Most of the Autotools (Autoconf being the exception) rely on the existence of a 
perl processor, as well. 
NOTE: Do not confuse the requirements of the Autotools with the requirements of the 
scripts and makefiles generated by them. The Autotools are maintainer tools, while the 
resulting scripts and makefiles are end-user tools. We can reasonably expect a higher 
level of installed functionality on development systems than we can on end-user systems. 
Nevertheless, the Autotools design goals still include a reliance only on a minimal set of 
pre-installed functionality, much of which is part of a default installation. 
While it's true that configure.ac is written in shell script sprinkled with M4 syntax, the 
proper use of the M4 macro processor is the subject of Chapter 7. Because I want to 
stick to Autoconf in this chapter, I'll gloss over some key concepts related to M4, which I'll 
cover in more detail in Chapter 7. This chapter is designed to help you understand 
Autoconf concepts, however, so I will cover minor aspects of M4 as it makes sense to do 
so. 

The smallest configure.ac file 
The simplest possible configure.ac file has just two lines: 



 

$ cat configure.ac 

AC_INIT([jupiter], [1.0]) 

AC_OUTPUT 

$ 

NOTE: This chapter builds on the Jupiter project begun in Chapter 2. 
To those new to Autoconf, these two lines appear to be a couple of function calls, 
perhaps in the syntax of some obscure computer language. Don't let this appearance 
throw you--these are M4 macro expansions. The macros are defined in files distributed 
with Autoconf. The definition of AC_INIT, for example,W is found in 
$PREFIX/share/autoconf/autoconf/general.m4, while AC_OUTPUT is defined in 
status.m4, in the same directory. 
M4 macros are similar in many ways to macros defined in C language source files for the 
C preprocessor, which is also a text replacement tool. This isn't surprising, given that 
both M4 and cpp were originally designed by Kernighan and Ritchie. 
The square brackets around the parameters are used by Autoconf as a quoting 
mechanism. Such quotes are only really necessary in cases where the context of the 
macro call could cause an ambiguity that the macro processor may resolve incorrectly 
(usually without telling you). We'll discuss M4 quoting in much more detail in Chapter 7. 
For now, just use Autoconf quotes ([ and ]) around every argument to ensure that the 
expected macro expansions are generated. 

As with cpp macros, M4 macros may or may not take parameters. And (also as with cpp) 
when they do, then a set of parentheses must be used when passing the arguments. In 
both M4 and cpp, the opening parenthesis must immediately follow the macro name, 
with no intervening white space. When they don't accept parameters, the parentheses 
are simply omitted. Unlike cpp, M4 has the ability to specify optional parameters, in 
which case, you may omit the parentheses if you choose not to pass a parameter. 
The result of passing this configure.ac file through Autoconf is essentially the same 
file (now called configure), only with these two macros fully expanded. 
Now, if you've been programming in C for many years, as I have, then you've no doubt 
run across a few C preprocessor macros from the dark regions of the lower realm. I'm 
talking about those truly evil cpp macros that expand into one or two pages of C code! 
You know the ones I'm talking about--they should really have been written as C functions, 
but the author was overly worried about performance! 
Well baby, you ain't seen nothin' yet! These two M4 macros expand into a file containing 
over 2200 lines of Bourne shell script that's over 60K bytes in size! Interestingly, you 
wouldn't really know this by looking at their definitions. They're both fairly short--only a 
dozen or two lines each. The reason for this apparent disparity is simple--they're written 
in a modular fashion, each macro expanding several others, which in turn expand several 
others, and so on. 

Executing Autoconf 

Running Autoconf couldn't be simpler. Just execute autoconf in the same directory as 
your configure.ac file. While I could do this for each example in this chapter, I'm going 
to use the autoREconf (capitalization added for emphasis) command instead of the 
autoconf command. The reason for this is that running autoreconf has exactly the 
same effect as running autoconf, except that autoreconf will also do "the right thing" 
when you start adding Automake and Libtool functionality to your build system. 



autoreconf is the recommended method for executing the Autotools tool chain, and it's 
smart enough to only execute the tools that you need, in the order that you need them, 
and with the options that you need (with one exception that I'll mention here shortly). 
 

$ autoreconf 

$ ls -lp 

autom4te.cache/ 

configure 

configure.ac 

$ 

First, notice that autoreconf operates at exactly the same level of verbosity as the 
tools it runs. By default, zero. If you want to see something happening, use the -v or --
verbose option. If you want autoreconf to run the other Autotools in verbose mode, 
add -vv to the command line. (You may also pass --verbose --verbose, but this 
syntax seems a bit... verbose to me--sorry, I couldn't resist!) 
First, notice that Autoconf creates a directory called autom4te.cache. This is the 
autom4te (pronounced "automate") cache directory. This cache is used to speed up 
access to configure.ac by successive executions of utilities in the Autotools tool chain. 
I'll cover autom4te in greater detail in Chapter 9, where I'll show you how to write your 
own Autoconf macros that are "environmentally friendly". 

Executing configure 
If you recall from the last section of Chapter 2, the GNU Coding Standards document 
indicates that configure should generate a script called config.status, whose job it 
is to generate files from templates. Well, this is exactly the sort of functionality found in an 
Autoconf-generated configure script. An Autoconf-generated configure script has 
two primary tasks: 
 perform requested checks 
 generate, and then call config.status 

The results of all of the checks performed by the configure script are written, as 
environment variable settings to the top of config.status, which uses the values in 
these environment variables as replacement text for Autoconf substitution variables it 
finds in template files (Makefile.in, config.h.in, etc). 
When you execute configure, it tells you that it's creating the config.status file. In 
fact, it also creates a log file called config.log that has several important attributes: 
 

$ ./configure 

configure: creating ./config.status 

$ 

$ ls -lp 

autom4te.cache/ 



config.log 

config.status 

configure 

configure.ac 

$ 

The config.log file contains the following information: 
 the command line used to invoke configure (very handy!) 
 information about the platform on which configure was executed 
 information about the core tests executed by configure 
 the line number in configure at which config.status is generated and then 

called 
At this point in the log file, config.status takes over generating log information--it 
adds the command line used to invoke config.status. After config.status 
generates all of the files from their templates, it then exits, returning control to 
configure, which then adds the following information to the log: 
 the cache variables used by config.status to perform its tasks 
 the list of output variables that may be replaced in templates 
 the exit code returned by configure to the shell 

This information is invaluable when debugging a configure script and its associated 
configure.ac file. 

Executing config.status 
Now that you know how configure works, you can probably see that there might be 
times when you'd be tempted to simply execute config.status yourself, rather than 
going to all the trouble of having configure perform all those time-consuming checks 
first. And right you'd be. This was exactly the intent of the Autoconf designers--and the 
authors of the GNU Coding Standards, by whom these design goals were originally 
conceived. 
There are in fact, times when you'd just like to manually regenerate all of your output files 
from their corresponding templates. But, far more importantly, config.status can be 
used by your makefiles to regenerate themselves individually from their templates, when 
make determines that something in a template file has changed. 
Rather than call configure to perform needless checks (your environment hasn't 
changed, has it? Just your template files), your makefiles should be written in a way that 
ensures that output files are dependent on their templates. If a template file changes 
(because, for example, you modified one of your Makefile.in templates), then make 
calls config.status to regenerate this file. Once the Makefile is regenerated, then 
make re-executes the original make command line--basically, it restarts itself. This is 
actually a feature of the make utility. 
Let's take a look at the relevant portion of just such a Makefile.in template: 
 

Makefile: Makefile.in config.status 

        ./config.status Makefile 

Another interesting bit of make functionality is that it always looks for a rule with a target 
named "Makefile". Such a rule allows make to regenerate the source makefile from its 



template, in the event that the template changes. It does this before executing either the 
user's specified targets, or the default target, if none was given. 
This example indicates that Makefile is dependent on Makefile.in. Note that 
Makefile is also dependent on config.status. After all, if config.status is 
regenerated by the configure script, then it may generate a makefile differently--
perhaps something in the compilation environment changed, such as when a new 
package is added to the system, so that configure can now find libraries and headers 
not previously found. In this case, Autoconf substitution variables may have different 
values. Thus, Makefile should be regenerated if either Makefile.in or 
config.status changes. 
Since config.status is itself a generated file, it stands to reason that this line of 
thinking can be carried to the configure script as well. Expanding on the previous 
example: 
 

Makefile: Makefile.in config.status 

        ./config.status $@ 

 

config.status: configure 

        ./config.status --recheck 

Since config.status is a dependency of the Makefile rule, then make will check for 
a rule whose target is config.status and run its commands if the dependencies of 
config.status (configure) are newer than config.status. 

Adding some real functionality 

Well, it's about time we move forward and put some true functionality into this 
configure.ac file. I've danced around the topic of having config.status generate a 
makefile up to this point. Here's the code to actually make this happen in configure.ac. 
It constitutes a single additional macro expansion between the original two lines: 
 

$ cat configure.ac 

AC_INIT([jupiter], [1.0]) 

AC_CONFIG_FILES([Makefile 

                 src/Makefile]) 

AC_OUTPUT 

$ 

This code assumes that I have templates for Makefile and src/Makefile, called 
Makefile.in and src/Makefile.in, respectively. These files look exactly like their 
Makefile counterparts, with one exception: Any text that I want Autoconf to replace 
should be marked as Autoconf substitution variables, using the @VARIABLE@ syntax. 



To create these files, I've merely renamed the existing makefiles to Makefile.in within 
the top-level and src directories. By the way, this is a common practice when 
"autoconfiscating" a project. Next, I added a few Autoconf substitution variables to 
replace my orignal default values. In fact, at the top of this file, I've added the special 
Autoconf substitution variable, @configure_input@ after a makefile comment HASH 
mark. This comment line will become the following text line in the generated Makefile: 
 

# "Makefile.  Generated from Makefile.in by conf... 

I've also added the makefile regeneration rules (from the examples above) to each of 
these templates, with slight file path differences in each file to account for their different 
positions relative to config.status and configure: 
Makefile.in 
 

# @configure_input@ 

 

# Package-related substitution variables 

package        = @PACKAGE_NAME@ 

version        = @PACKAGE_VERSION@ 

tarname        = @PACKAGE_TARNAME@ 

distdir        = $(tarname)-$(version) 

 

# Prefix-related substitution variables 

prefix         = @prefix@ 

exec_prefix    = @exec_prefix@ 

bindir         = @bindir@ 

... 

$(distdir): 

        mkdir -p $(distdir)/src 

        cp configure $(distdir) 

        cp Makefile.in $(distdir) 

        cp src/Makefile.in $(distdir)/src 



        cp src/main.c $(distdir)/src 

 

distcheck: $(distdir).tar.gz 

        gzip -cd $+ | tar xvf - 

        cd $(distdir); ./configure 

        $(MAKE) -C $(distdir) all check 

        $(MAKE) -C $(distdir) \ 

         DESTDIR=$${PWD}/$(distdir)/_inst \ 

         install uninstall 

        $(MAKE) -C $(distdir) clean 

        rm -rf $(distdir) 

        @echo "*** Package $(distdir).tar.gz is\ 

         ready for distribution." 

 

Makefile: Makefile.in config.status 

        ./config.status $@ 

 

config.status: configure 

        ./config.status --recheck 

... 

src/Makefile.in 
 

# @configure_input@ 

 

# Package-related substitution variables 

package        = @PACKAGE_NAME@ 



version        = @PACKAGE_VERSION@ 

tarname        = @PACKAGE_TARNAME@ 

distdir        = $(tarname)-$(version) 

 

# Prefix-related substitution variables 

prefix         = @prefix@ 

exec_prefix    = @exec_prefix@ 

bindir         = @bindir@ 

... 

Makefile: Makefile.in ../config.status 

        cd .. && ./config.status $@ 

 

../config.status: ../configure 

        cd .. && ./config.status --recheck 

... 

I've removed the export statement in the top-level Makefile.in, and added a copy of 
all of the substitution variables into src/Makefile.in. Since config.status is 
generating both of these files, I can reap excellent benefits by substituting everything into 
both files. The primary advantage of doing this is that I can now run make in any sub-
directory, and not be concerned about environment variables that would have been 
passed down by a higher-level makefile. 
Finally, I've changed the distribution targets a bit. Rather than distribute the makefiles, I 
now want to distribute the Makefile.in templates, as well as the configure script. In 
addition, the distcheck target needed to be enhanced such that it runs the configure 
script before attempting to run make. 

Generating files from templates 

I'm now generating makefiles from Makefile.in templates. The fact is, however, that 
any (white space delimited) file listed in AC_CONFIG_FILES will be generated from a file 
of the same name with a ".in" extension, found in the same directory. The ".in" 
extension is the default template naming pattern for AC_CONFIG_FILES, but this default 
behavior may be overridden, if you wish. I'll get into the details shortly. 
Autoconf generates sed or awk expressions into the resulting configure script, which 
then copies them into the config.status script. The config.status script uses 
these tools to perform this simple string replacement. 
Both sed and awk are text processing tools that operate on file streams. The advantage 
of a stream editor (the name "sed" is actually a contraction of the phrase "stream editor") 



is that it replaces text patterns in a byte stream. Thus, both sed and awk can operate on 
huge files, because they don't need to load the entire input file into memory in order to 
process it. The expression list passed to sed or awk by config.status is built by 
Autoconf from a list of variables defined by various macros, many of which I'll cover in 
greater detail in this chapter. 
The important thing to notice here is that the Autoconf variables are the only items 
replaced in Makefile.in while generating the makefile. The reason this is important to 
understand is that it helps you to realize the flexibility you have when allowing Autoconf 
to generate a file from a template. This flexibility will become more apparent as I get into 
various use cases for the pre-defined Autoconf macros, and later in Chapter 9 when I 
delve into the topic of writing your own Autoconf macros. 
At this point, I've created a basic configure.ac file, and I can indeed run autoreconf, 
followed by the generated configure script, and then make to build the Jupiter project. 
The idea that I want to promote at this point is that this simple three-line configure.ac 
file generates a configure script that is fully functional, according to the definition of a 
configure script given in Chapter 7 of the the GNU Coding Standards document. 
The resulting configure script runs various system checks and generates a 
config.status file, which can replace a fair number of substitution variables in a set of 
specified template files in a build system. That's a lot of stuff for three lines of code. 
(You'll recall my comments in the introduction to this book about C++ doing a lot for you 
with just a few lines of code?) 

Adding VPATH build functionality 
Okay, you may recall at the end of Chapter 2, I mentioned that I hadn't yet covered a key 
concept--that of VPATH builds. A VPATH build is a way of using a particular makefile 
construct (VPATH) to configure and build a project in a directory other than the source 
directory. Why is this important? Well, for several reasons. You may need to: 

 maintain a separate debug configuration, 
 test different configurations, side by side, 
 keep a clean source directory for patch diffs after local modifications, 
 or build from a read-only source directory. 

These are all great reasons, but won't I have to change my entire build system to support 
this type of remote build? As it turns out, it's quite simple using the make utility's VPATH 
statement. VPATH is short for "virtual path", meaning "virtual search path". A VPATH 
statement contains a colon-separated list of places to look for dependencies, when they 
can't be found relative to the current directory: 
 

VPATH = some/path:some/other/path:yet/another/path 

 

jupiter : main.c 

        gcc ... 

In this (contrived) example, if make can't find main.c in the current directory while 
processing the rule, it will look for some/path/main.c, and then for 
some/other/path/main.c, and finally for yet/another/path/main.c, before 
finally giving up in dispair--okay, perhaps only with an error message about not knowing 
how to make main.c. 
"Nice feature!", you say? Nicer than you think, because with just a few simple 
modifications, I can now completely support remote builds in my jupiter project build 
system: 



Makefile.in 
 

... 

# VPATH-related substitution variables 

srcdir         = @srcdir@ 

VPATH          = @srcdir@ 

... 

$(distdir): 

        mkdir -p $(distdir)/src 

        cp $(srcdir)/configure $(distdir) 

        cp $(srcdir)/Makefile.in $(distdir) 

        cp $(srcdir)/src/Makefile.in $(distdir)/src 

        cp $(srcdir)/src/main.c $(distdir)/src 

... 

src/Makefile.in 
 

... 

# VPATH-related substitution variables 

srcdir         = @srcdir@ 

VPATH          = @srcdir@ 

... 

jupiter: main.c 

        gcc -g -O0 -o $@ $(srcdir)/main.c 

... 

That's it. Really. When config.status generates a file, it replaces an Autoconf 
substitution variable called @srcdir@ with the relative path to the template's source 
directory. Each makefile will get a different value for @srcdir@, depending on the 
relative location of its template. 
The rules then for supporting VPATH builds in your make system are as follows: 



 Set a make variable, srcdir to the @srcdir@ substitution variable. 
 Set VPATH to @srcdir@ also--don't use $(srcdir) because some older versions of 

make don't do variable substitution within the value of VPATH. 
 Prefix all file dependencies used in commands with $(srcdir)/. 

If the source directory is the same as the build directory, then the @srcdir@ substitution 
variable degenerates to ".", so all of these "$(srcdir)/" prefixes degenerate to "./", 
which is just so much harmless baggage. 
A quick example is the easiest way to show you how this works. Now that Jupiter is fully 
functional with respect to VPATH builds, let's just give it a try. Start in the jupiter 
project directory, create a subdirectory called "build", and then change into that 
directory. Now run configure using a relative path, and then list the current directory 
contents: 
 

$ mkdir build 

$ cd build 

$ ../configure 

configure: creating ./config.status 

config.status: creating Makefile 

config.status: creating src/Makefile 

$ ls -1p 

config.log 

config.status 

Makefile 

src/ 

... 

The entire build system seems to have been constructed by configure and 
config.status within the build sub-directory, just as it should be. What's more, it 
actually works: 
 

... 

$ make 

make -C src all 

make[1]: Entering directory `../prj/jupiter/bui... 

gcc -g -O2 -o jupiter ../../src/main.c 



make[1]: Leaving directory `../prj/jupiter/bui... 

$ ls -1p src 

jupiter 

Makefile 

VPATH builds work, not just from sub-directories of the project directory, but from 
anywhere you can access the project directory, using either a relative or an absolute path. 
This is just one more thing that Autoconf does for you in Autoconf-generated configure 
scripts. Just imagine managing proper relative paths to source directories in your own 
hand-coded configure scripts! 

Let's take a breather 

At this point, I'd like you to stop and consider what you've seen so far: I've shown you a 
mostly complete build system that includes most of the features outlined in the GNU 
Coding Standards document. The features of the Jupiter project's make system are all 
fairly self-contained, and reasonably simple to grasp. The most difficult feature to 
implement by hand is the configure script. In fact, writing a configure script by hand 
is so labor intensive relative to the simplicity of the Autoconf version that I just skipped 
over the hand-coded version entirely in Chapter 2. 
If you've been one to complain about Autoconf in the past, I'd like you to consider what 
you have to complain about now. You now know how to get very feature-rich 
configuration functionality in just three lines of code. Given what you know now about 
how configure scripts are meant to work, can you see the value in Autoconf? 
Most people never have trouble with that portion of Autoconf that I've covered up to this 
point. The trouble is that most people don't create their build systems in the manner I've 
just shown you. They try to copy the build system of another project, and then tweak it to 
make it work in their own project. Later when they start a new project, they do the same 
thing again. Are they going to run into problems? Sure--the "stuff" they're copying was 
often never meant to be used the way they're trying to use it. 

I've seen projects in my experience whose configure.ac file contained junk that had 
nothing to do with the project to which it belonged. These left-over bits came from the 
previous project, from which configure.ac was copied. But the maintainer didn't know 
enough about Autoconf to remove the cruft. With the Autotools, it's better to start small, 
and add what you need, than to start with a full-featured build system, and try to pare it 
down to size. 
Well, I'm sure you're feeling like there's a lot more learn about Autoconf. And you're right, 
but what additional Autoconf macros are appropriate for the Jupiter project? 

An even quicker start with autoscan 
The simplest way to create a (mostly) complete configure.ac file is to run the 
autoscan utility, which, if you remember from Chapter 1, is part of the Autoconf package. 
First, I'll clean up the droppings from my earlier experiments, and then run the autoscan 
utility in the jupiter directory. Note here that I'm NOT deleting my original 
configure.ac file - I'll just let autoscan tell me what's wrong with it. In less than a 
second I'm left with a couple of new files in the top-level directory: 
 

$ rm config.* Makefile src/Makefile ... 



$ ls -1p 

configure.ac 

Makefile.in 

src/ 

$ autoscan 

configure.ac: warning: missing AC_CHECK_HEADERS 

   ([stdlib.h]) wanted by: src/main.c:2 

configure.ac: warning: missing AC_HEADER_STDC 

   wanted by: src/main.c:2 

configure.ac: warning: missing AC_PROG_CC 

   wanted by: src/main.c 

configure.ac: warning: missing AC_PROG_INSTALL 

   wanted by: Makefile.in:11 

$ ls -1p 

autom4te.cache/ 

autoscan.log 

configure.ac 

configure.scan 

Makefile.in 

src/ 

NOTE: I've wrapped some of the output lines for the sake of column width during 
publication. 
autoscan creates two files called configure.scan, and autoscan.log from a 
project directory hierarchy. The project may already be instrumented for Autotools, or not. 
It doesn't really matter because autoscan is decidedly non-destructive. It will never alter 
any existing files in a project. 
autoscan generates a warning message for each issue discovered in an existing 
configure.ac file. In this example, autoscan noticed that configure.ac really 
should be using the AC_CHECK_HEADERS, AC_HEADER_STDC, AC_PROG_CC and 
AC_PROG_INSTALL macros. It made these assumptions based on scanning my existing 
Makefile.in templates and C source files, as you can see by the comments after each 



warning statement. You can always see these messages (in even greater detail, in fact) 
by examining the autoscan.log file. 
Now let's take a look at the generated configure.scan file. autoscan has added 
more text to configure.scan than was originally in my configure.ac file, so it's 
probably easier for me to just overwrite configure.ac with configure.scan and 
then change the few bits of information that are specific to Jupiter: 
 

$ mv configure.scan configure.ac 

$ cat configure.ac 

#                -*- Autoconf -*- 

# Process this file with autoconf to produce ... 

 

AC_PREREQ(2.61) 

AC_INIT(FULL-PACKAGE-NAME, VERSION, 

        BUG-REPORT-ADDRESS) 

AC_CONFIG_SRCDIR([src/main.c]) 

AC_CONFIG_HEADERS([config.h]) 

 

# Checks for programs. 

AC_PROG_CC 

AC_PROG_INSTALL 

 

# Checks for libraries. 

 

# Checks for header files. 

AC_HEADER_STDC 

AC_CHECK_HEADERS([stdlib.h]) 

 

# Checks for typedefs, structures, and compiler ... 



 

# Checks for library functions. 

 

AC_CONFIG_FILES([Makefile 

                 src/Makefile]) 

AC_OUTPUT 

NOTE: The contents of your configure.ac file may differ slightly from mine, depending 
on the version of Autoconf that you have installed. I have version 2.62 of GNU Autoconf 
installed on my system (the latest, as of this writing), but if your version of autoscan is 
older (or newer), you may see some minor differences. 
I'll then edit the file and change the AC_INIT macro to reflect the Jupiter project 
parameters: 
 

$ head configure.ac 

#                -*- Autoconf -*- 

# Process this file with autoconf to produce ... 

 

AC_PREREQ([2.61]) 

AC_INIT([jupiter], [1.0], [bugs@jupiter.org]) 

AC_CONFIG_SRCDIR([src/main.c]) 

AC_CONFIG_HEADERS([config.h]) 

$ 

The autoscan utility really does a lot of the work for you. The GNU Autoconf manual 
states that you should hand-tailor this file to your project before using it. This is true, but 
there are only a few key issues to worry about (besides those related to the AC_INIT 
macro). I'll cover each of these issues in turn, starting at the top of the file. 

Trying out configure 
I like to experiment, so the first thing I'd do at this point would be to try to run 
autoreconf on this new configure.ac. and then try to run the generated 
configure script to see what happens. If autoscan is all it's cracked up to be, then the 
resulting configure script should generate some makefiles for me: 
 

$ autoreconf 

$ ./configure 



checking for gcc... gcc 

checking for C compiler default output file name... 

checking whether the C compiler works... yes 

checking whether we are cross compiling... no 

checking for suffix of executables... 

checking for suffix of object files... o 

checking whether we are using the GNU C compiler... 

checking whether gcc accepts -g... yes 

checking for gcc option to accept ISO C89... 

configure: error: cannot find install-sh or  

   install.sh in "." "./.." "./../.." 

$ 

Well, we didn't get too far. I mentioned the install utility in Chapter 1, and you may 
have already been aware of it. It appears here that Autoconf is looking for a shell script 
called install-sh or install.sh. 
Autoconf is all about portability, and unfortunately, the install utility is not as portable 
as we'd like it to be. From one platform to another, critical bits of installation functionality 
are just different enough to cause problems, so the Autotools provide a shell script called 
install-sh (deprecated name: install.sh) that acts as a wrapper around the 
platform install utility. This wrapper script masks important differences between 
various versions of install. 
autoscan noticed that I used the install program in my src/Makefile.in template, 
and generated an expansion of the AC_PROG_INSTALL macro into the 
configure.scan file based on this observation. The problem is that the generated 
configure script couldn't find the install-sh wrapper script. 
This seems to be a minor defect in Autoconf--if Autoconf expects install-sh to be in 
my project directory, then it should have just put it there, right? Well, autoreconf has a 
command line option, --install, which is supposed to install missing files like this for 
me. I'll give it a try. Here's a before-and-after picture of my directory structure: 
 

$ ls -1p 

autoscan.log 

configure.ac 

Makefile.in 

src/ 



$ autoreconf --install 

$ ls -1p 

autom4te.cache/ 

autoscan.log 

config.h.in 

configure 

configure.ac 

Makefile.in 

src/ 

Hmmm. It didn't seem to work, as there's no install-sh file in the directory after 
running autoreconf --install. This is, in my opinion, a defect in both autoreconf 
and autoconf. You see, when autoreconf is used with the --install command-
line option, it should install all auxilliary files required by all Autoconf macros used in 
configure.ac. The trouble is, this auxilliary-file-installation functionality is actually a 
part of Automake, not Autoconf. So when you use --install on the autoreconf 
command-line, it passes tool-specific install-missing-files options down to each of the 
tools that it calls. This technique would have worked just fine, except that Autoconf 
doesn't provide an option to install any missing files. 
Worse still, the GNU Autoconf manual tells you in Section 5.2.1, under 
AC_PROG_INSTALL, that "Autoconf comes with a copy of install-sh that you can 
use." But this is a lie. In fact, it's Automake and Libtool that come with copies of 
install-sh, not Autoconf. 
I could just copy install-sh from the Automake installation directory 
(PREFIX/share/automake...), but I'll just try running automake --add-missing 
--copy instead. The Automake --install-missing option copies in the missing 
required utility scripts, and the --copy option indicates that true copies should be made. 
Without the --copy option, automake would actually just create links to these files 
where they're installed (usually /usr/(local/)share/automake-1.10): 
 

$ automake --add-missing --copy 

configure.ac: no proper invocation of AM_INIT_... 

configure.ac: You should verify that configure... 

configure.ac: that aclocal.m4 is present in th... 

configure.ac: and that aclocal.m4 was recently... 

configure.ac:11: installing `./install-sh' 

automake: no `Makefile.am' found for any confi... 



Ignoring the warnings indicating that I've not yet configured my project properly for 
Automake, I can now see that install-sh was copied into my project root directory: 
 

$ ls -1p 

autom4te.cache/ 

autoscan.log 

configure.ac 

configure.scan 

install-sh 

Makefile.in 

src/ 

So why didn't autoreconf --install do this for me? Isn't it supposed to run all the 
programs that it needed to, based on my configure.ac script? As it happens, it was 
exactly because my project was not configured for Automake, that autoreconf failed to 
run automake --add-missing --copy. Autoreconf saw no reason to run automake 
because configure.ac doesn't contain the requisite macros for initializing Automake. 
And therein lies the defect. First, Autoconf should ship with install-sh, since it 
provides a macro that requires it, and because autoscan adds that macro based on the 
contents of a Makefile.in template. In addition, Autoconf should provide an "add-
missing" command-line option, and autoreconf should use it when called with the --
install option. This is most likely an example of the "work-in-progress" nature of the 
Autotools. 
But, taking a step backward for a moment. There is another obvious solution to this 
problem. The install.sh script is not really required by any code generated by Autoconf. 
How could it be. Autoconf doesn't generate any makefile constructs, it only substitutes 
variables into your makefile.in templates. Thus, there's really no reason for Autoconf 
to complain about a missing install-sh script. When I presented this problem on the 
Autoconf mailing list, I was told several times that autoconf has no business copying 
install-sh into a project directory, thus there is no such functionality accessible from 
the Autoconf command line. If that is indeed the case, then Autoconf has no business 
complaining about the missing file. Regardless, something needs to be fixed... 

The proverbial autogen.sh script 
Before autoreconf came along, maintainers used a shell script, often called 
autogen.sh, to run all of the Autotools required for their projects in the proper order. 
The autogen.sh script is often fairly sophisticated, but to solve this problem temporarily, 
I'll just add a simple temporary autogen.sh script to the project root directory: 
 

$ echo "automake --add-missing --copy 

> autoreconf --install" > autogen.sh 

chmod 0755 autogen.sh 



If you don't want to see all the error messages from automake, just redirect the stderr 
and stdout output to /dev/null. 
Eventually, we'll be able to get rid of autogen.sh file, and just run autoreconf --
install, but for now, this will solve our missing files problems. Hopefully, you read this 
section before scratching your head too much over the missing install-sh script. I can 
now run my newly generated configure script without errors. I'll cover the details of 
properly using the AC_PROG_INSTALL macro shortly. I'll cover Automake in much 
greater detail in Chapter 4. 

Updating Makefile.in 
Okay, so how do the additional macros added by autoscan affect my build system? 
Well, I have some new files to consider. For one, the config.h.in file is generated for 
me now by autoheader. I can assume that autoreconf now executes autoheader 
for me when I run it. Additionally, I have a new file in my project called install-sh. 
Anything provide by, or generated by the Autotools should be copied into the archive 
directory so that it can be shipped with my release tarballs. So, I should add these two 
files to the $(distdir) target in the top-level Makefile.in template. Note that I don't 
need to install autogen.sh, as it's purely a maintainer tool--my users shouldn't ever 
need to execute it from a tarball distribution: 
Makefile.in 
 

... 

$(distdir): 

        mkdir -p $(distdir)/src 

        cp $(srcdir)/configure $(distdir) 

        cp $(srcdir)/config.h.in $(distdir) 

        cp $(srcdir)/install-sh $(distdir) 

        cp $(srcdir)/Makefile.in $(distdir) 

        cp $(srcdir)/src/Makefile.in $(distdir)/src 

        cp $(srcdir)/src/main.c $(distdir)/src 

... 

If you're beginning to think that this could become a maintenance nightmare, then you're 
right. I warned you in Chapter 2 that the $(distdir) target was painful to maintain. 
Luckily the distcheck target still exists, and still works as designed. It would have 
caught this problem, because the distribution build will not work without these additional 
files, and certainly the check target wouldn't work, if the build didn't work. When I 
discuss Automake in Chapter 4, much of this mess will be cleared up. 

Initialization and package information 



The first section in my new configure.ac file (copied from configure.scan) 
contains Autoconf initialization macros. These are required for all projects. Let's consider 
each of these macros individually, as they're all pretty important. 
AC_PREREQ 
The AC_PREREQ macro simply defines the lowest version of Autoconf that may be used 
to successfully process the configure.ac script. The manual indicates that 
AC_PREREQ is the only macro that may be used before AC_INIT. The reason for this 
should be obvious--you'd like to be able to ensure you're using a late enough version of 
Autoconf before you begin processing any other macros, which may be version 
dependent. As it turns out, AC_INIT is not version dependent anyway, so you may place 
it first, if you're so inclined. I happen to prefer the way autoscan generates the file, so I'll 
leave it alone. 
AC_INIT 
The AC_INIT macro, as its name implies, initializes the Autoconf system. It accepts up 
to four arguments (autoscan only generates a call with the first three), PACKAGE, 
VERSION, and optional BUG-REPORT and TARNAME arguments. The PACKAGE argument 
is intended to be the name of the package. It will end up (in a canonicalized form) as the 
first part of the name of an Automake-generated release distribution tarball when you run 
"make dist". 
In fact, by default, Automake-generated tarballs will be named TARNAME-
VERSION.tar.gz, but TARNAME is set to a canonicalized form of the PACKAGE string 
(lower-cased, with all punctuation converted to underscores), unless you specify 
TARNAME manually, so bear this in mind when you choose your package name and 
version string. Incidentally, M4 macro arguments, including PACKAGE and VERSION, are 
just strings. M4 doesn't attempt to interpret any of the text that it processes. 
The optional BUG-REPORT argument is usually set to an email address, but it can be any 
text really. An Autoconf substitution variable called PACKAGE_BUGREPORT will be created 
for it, and that variable will be added to a config.h.in template as a C preprocessor 
string, as well. The intent is that you use the variable in your code (or in template text 
files anywhere in your project) to present an email address for bug reports at appropriate 
places--possibly when the user requests help or version information from your application. 
While the VERSION argument can be anything you like, there are a few free software 
conventions that will make life a little easier for you if you follow them. The widely used 
convention is to pass in major.minor (eg., 1.2). However, there's nothing that says you 
can't use major.minor.revision if you want, and there's nothing wrong with this approach. 
None of the resulting VERSION macros (Autoconf, shell or make) are parsed or analysed 
anywhere--only used in various places as replacement text, so if you wish, you may even 
add non-numeric text into this macro, such as 0.15.alpha1, which is useful 
occasionally. 
Note that the RPM package manager does indeed care what you put in the version string. 
For the sake of RPM, you may wish to limit the version string text to only alpha-numerics 
and periods--no dashes or underscores, unfortunately. 
Autoconf will generate the substitution variables PACKAGE_NAME, PACKAGE_VERSION, 
PACKAGE_TARNAME, PACKAGE_STRING (a stylized concatenation of the package name 
and version information), and PACKAGE_BUGREPORT from arguments to AC_INIT. 
AC_CONFIG_SRCDIR 
The AC_CONFIG_SRCDIR macro is just a sanity check. Its purpose is to ensure that the 
generated configure script knows that the directory on which it is being executed is in 
fact the correct project directory. The argument can be a relative path to any source file 
you like - I try to pick one that sort of defines the project. That way, in case I ever decide 
to reorganize source code, I'm not likely to lose it in a file rename. But it doesn't really 
matter, because if you do rename the file or move it to some other location some time 
down the road, you can always change the argument passed to AC_CONFIG_SRCDIR. 
Autoconf will tell you immediately if it can't find this file--after all, that's the purpose of this 
macro in the first place! 



The instantiating macros 

Before we dive into the details of AC_CONFIG_HEADERS, I'd like to spend a little time on 
the framework provided by Autoconf. From a high-level perspective, there are four major 
things happening in configure.ac: 

 Initialization 
 File instantiation 
 Check requests 
 Generation of the configure script 

We've pretty much covered initialization--there's not much to it, although there are a few 
more macros you should be aware of. (Check out the GNU Autoconf manual to see what 
these are--look up AC_COPYRIGHT, for an example.) Now, let's move on to file 
instantiation. 
There are actually four so-called "instantiating macros", which include 
AC_CONFIG_FILES, AC_CONFIG_HEADERS, AC_CONFIG_COMMANDS and 
AC_CONFIG_LINKS. An instantiating macro is one which defines one or more tags, 
usually referring to files that are to be translated by the generated configure scripts, 
from a template containing Autoconf substitution variables. 
NOTE: You might need to change the name of AC_CONFIG_HEADER (singular) to 
AC_CONFIG_HEADERS (plural) in your version of configure.scan. This was a defect 
in autoscan that had not been fixed yet in Autoconf version 2.61. I reported the defect 
and a patch was committed. Version 2.62 works correctly. If your configure.scan is 
generated with a call to AC_CONFIG_HEADER, just change it manually. Both macros will 
work, as the singular version was the older name of this macro, but the older macro is 
less functional than the newer one. 
These four instantiating macros have an interesting signature in common: 

 

AC_CONFIG_xxxS([tag ...], [commands], [init-cmds]) 

For each of these four macros, the tag argument has the form, OUT[:INLIST] where 
INLIST has the form, IN0[:IN1:...:INn]. Often, you'll see a call to one of these 
macros with only a single simple argument, like this: 
 

AC_CONFIG_HEADERS([config.h]) 

In this case, config.h is the OUT portion of the above specification. The default INLIST 
is the OUT portion with ".in" appended to it. So the above call is exactly equivalent to: 
 

AC_CONFIG_HEADERS([config.h:config.h.in]) 

What this means is that config.status will contain shell code that will generate 
config.h from config.h.in, substituting all Autoconf variables in the process. You 
may also provide a list of input files to be concatenated, like this: 
 

AC_CONFIG_HEADERS([config.h:cfg0:cfg1:cfg2]) 



In this example, config.status will generate config.h by concatenating cfg0, cfg1 
and cfg2, after substituting all Autoconf variables. The GNU Autoconf manual calls this 
entire "OUT:INLIST" thing a "tag". 
So, what's that all about, anyway? Why not call it a file? Well, the fact is, this parameter's 
primary purpose is to provide a sort of command-line target name--much like Makefile 
targets. It also happens to be used as a file system name, if the associated macro 
happens to generate file system entries, as is the case when calling 
AC_CONFIG_HEADERS, AC_CONFIG_FILES and AC_CONFIG_LINKS. 
But AC_CONFIG_COMMANDS doesn't actually generate any files. Rather, it runs arbitrary 
shell code, as specified by the user in the macro. Thus, rather than name this first 
parameter after a secondary function (the generation of files), the manual refers to it by 
its primary purpose - as a command line tag-name that may be specified on the 
config.status command line. Here's an example: 
 

./config.status config.h 

This config.status command line will regenerate the config.h file based on the 
macro call to AC_CONFIG_HEADERS in configure.ac. It will only regenerate 
config.h. Now, if you're curious like me, you've already been playing around a little, 
and have tried typing ./config.status --help to see what options are available 
when executing config.status. You may have noticed that config.status has a 
help signature like this: 
 

$ ./config.status --help 

`config.status' instantiates files from templates 

according to the current configuration. 

 

Usage: ./config.status [OPTIONS] [FILE]... 

 

  -h, --help       print this help, then exit 

... 

  --file=FILE[:TEMPLATE] 

... 

Configuration files: 

 Makefile src/Makefile 

 

Configuration headers: 



 config.h 

NOTE: I left out portions of the help display irrelevant to this discussion. 
I'd like you to notice a couple of interesting things about this help display. First, 
config.status is designed to give you custom help about this particular project's 
config.status file. It lists "Configuration files" and "Configuration headers" that you 
may use as tags. Oddly, given the "tag" nomenclature used in the manual so rigorously, 
the help line still refers to such tags as [FILE]s in the "Usage:" line. Regardless, where 
the usage specifies [FILE]s you may use one or more of the listed configuration files, 
headers, links, or commands displayed below it. In this case, config.status will only 
instantiate those objects. In the case of commands, it will execute the commands 
specified by the tag passed in the associated expansion of the AC_CONFIG_COMMANDS 
macro. 
Each of these macros may be used multiple times in a configure.ac script. The 
results are cumulative. This means that I can use AC_CONFIG_FILES as many times as 
I need to in my configure.ac file. Reasons why I may want to use it more than once 
are not obvious right now, but I'll get to them eventually. 
Another noteworthy item here is that there is a --file option. Now why would 
config.status allow us to specify files either with or without the --file= in front of 
them? Well, these are actually different usages of the [FILE] option, which is why it 
would make more sense for the usage text to read: 
 

$ ./config.status --help 

... 

Usage: ./config.status [OPTIONS] [TAG]... 

When config.status is called with tag names on the command line, only those tags 
listed in the help text as available configuration files, headers, links and commands may 
be used as tags. When you execute config.status with the --file= option, you're 
really telling config.status to generate a new file not already associated with any of 
the calls to instantiating macros in your configure.ac script. The file is generated from 
a template using configuration options and check results determined by the the last 
execution of the configure script. For example, I could execute config.status like 
this: 
 

./config.status --file=extra:extra.in 

NOTE: The default template name is the file name with a ".in" suffix, so this call could 
have been made without using the ":extra.in" portion of the option. 
Let's get back to the instantiating macro signature. The tag argument has a complex 
format, but it also represents multiple tags. Take another look: 
 

AC_CONFIG_xxxS([tag ...], [commands], [init-cmds]) 

The elipsis after tag indicates there may be more than one, and in fact, this is true. The 
tag argument accepts multiple tag specifications, separated by white space or new-line 
characters. Often you'll see a call like this: 
configure.ac 



 

... 

AC_CONFIG_FILES([Makefile 

                 src/Makefile 

                 lib/Makefile 

                 etc/project.cfg]) 

... 

Each entry here is one tag specification, which if fully specified would look like this: 

configure.ac 
 

... 

AC_CONFIG_FILES([Makefile:Makefile.in 

                 src/Makefile:src/Makefile.in 

                 lib/Makefile:lib/Makefile.in 

                 etc/proj.cfg:etc/proj.cfg.in]) 

... 

There's still one more point to cover. There are two optional arguments that you'll not 
often see used in the instantiating macros, commands and init-cmds. The commands 
argument may be used to specify some arbitrary shell code that should be executed by 
config.status just before the files associated with the tags are generated. You'll not 
often see this used with the file generating instantiating macros, but in the case of 
AC_CONFIG_COMMANDS, which generates no files by default, you almost always see this 
arugument used, because a call to this macro is basically useless without it! In this case, 
the tag argument becomes a way of telling config.status to execute a set of shell 
commands. 
The init-cmds argument is used to initialize shell variables at the top of 
config.status with values available in configure.ac and configure. It's 
important to remember that all calls to instantiating macros share a common namespace 
along with config.status, so choose shell variable names carefully. 
The old adage about the relative value of a picture vs. an explanation holds true here, so 
let's try a little experiment. Create a test version of your configure.ac file containing 
only the following lines: 
configure.ac 
 

AC_INIT(test, 1.0) 



AC_CONFIG_COMMANDS([abc], 

                   [echo "Testing $mypkgname"], 

                   [mypkgname=$PACKAGE_NAME]) 

AC_OUTPUT 

Then execute autoreconf, configure, and config.status in various ways to see 
what happens: 
 

$ autoreconf 

$ ./configure 

configure: creating ./config.status 

config.status: executing abc commands 

Testing test 

$ ./config.status 

config.status: executing abc commands 

Testing test 

$ ./config.status --help 

`config.status' instantiates files from templates 

according to the current configuration. 

 

Usage: ./config.status [OPTIONS] [FILE]... 

... 

Configuration commands: 

 abc 

 

Report bugs to <bug-autoconf@gnu.org>. 

$ ./config.status abc 

config.status: executing abc commands 



Testing test 

$ 

As you can see here, executing configure caused config.status to be executed 
with no command line options. There are no checks specified in configure.ac. so 
executing config.status has nearly the same effect. Querying config.status for 
help indicates that "abc" is a valid tag, and executing config.status with that tag 
simply runs the associated commands. 
Okay, enough fooling around. The important points to remember here are: 

 Both configure and config.status may be called individually to perform their 
individual tasks. 

 The config.status script generates all files from templates. 
 The configure script performs all checks and then executes config.status. 
 config.status generates files based on the last set of check results. 
 config.status may be called to execute file generation or command sets specified by 

any of the tag names given in any of the instantiating macro calls. 
 config.status may generate files not associated with any tags specified in 

configure.ac. 
 config.status can be used to call configure with the same set of command line 

options used in the last execution of configure. 
AC_CONFIG_HEADERS 
As you've no doubt concluded by now, the AC_CONFIG_HEADERS macro allows you to 
specify one or more header files to be generated from template files. You may write 
multiple template header files yourself, if you wish. The format of a configuration header 
template is very specific: 
 

/* Define as 1 if you have unistd.h. */ 

#undef HAVE_UNISTD_H 

Multiple such statements may be placed in your header template. The comments are 
optional, of course. Let's try another experiment. Create a new configure.ac file with 
the following contents: 
configure.ac 
 

AC_INIT([test], [1.0]) 

AC_CONFIG_HEADERS([config.h]) 

AC_CHECK_HEADERS([unistd.h foobar.h]) 

AC_OUTPUT 

Now create a configuration header template file called config.h.in, which contains the 
following two lines: 
config.h.in 
 

#undef HAVE_UNISTD_H 



#undef HAVE_FOOBAR_H 

Finally, execute the following commands: 

 

$ autoconf 

$ ./configure 

checking for gcc... gcc 

... 

checking for unistd.h... yes 

checking for unistd.h... (cached) yes 

checking foobar.h usability... no 

checking foobar.h presence... no 

checking for foobar.h... no 

configure: creating ./config.status 

config.status: creating config.h 

$ 

$ cat config.h 

/* config.h.  Generated from ...  */ 

#define HAVE_UNISTD_H 1 

/* #undef HAVE_FOOBAR_H */ 

You can see that config.status generated a config.h file from your config.h.in 
template file. The contents of this header file are based on the checks executed by the 
configure script. Since the shell code generated by 
AC_CHECK_HEADERS([unistd.h foobar.h]) was able to locate a unistd.h 
header file in the standard include directory, the corresponding #undef statement was 
converted into a #define statement. Of course, no foobar.h header was found in the 
system include directory, as you can also see by the output of configure, so it's 
definition was left commented out in the template. 
Thus, you may add this sort of code to appropriate C source files in your project: 

 

#if HAVE_CONFIG_H 



# include <config.h> 

#endif 

 

#if HAVE_UNISTD_H 

# include <unistd.h> 

#endif 

Using Autoheader to generate an include file template 

Maintaining your config.h.in template is more pain than necessary. After all, most of 
the information you need is already encapsulated in your configure.ac script, and the 
format of config.h.in is very strict. For example, you may not have any leading or 
trailing white space on the #undef lines. 
Fortunately, the autoheader utility will generate an include header template for you 
based on your configure.ac file contents. Back to the command prompt for another 
quick experiment. This one is easy--just delete your config.h.in template before you 
run autoheader and autoconf, like this: 
 

$ rm config.h.in 

$ autoheader 

$ autoconf 

$ ./configure 

checking for gcc... gcc 

... 

checking for unistd.h... yes 

checking for unistd.h... (cached) yes 

checking foobar.h usability... no 

checking foobar.h presence... no 

checking for foobar.h... no 

configure: creating ./config.status 

config.status: creating config.h 

$ cat config.h 



/* config.h. Generated from config.h.in...  */ 

/* config.h.in. Generated from configure.ac... */ 

... 

/* Define to 1 if you have... */ 

/* #undef HAVE_FOOBAR_H */ 

 

/* Define to 1 if you have... */ 

#define HAVE_UNISTD_H 1 

 

/* Define to the address where bug... */  

#define PACKAGE_BUGREPORT "" 

 

/* Define to the full name of this package. */ 

#define PACKAGE_NAME "test" 

 

/* Define to the full name and version... */ 

#define PACKAGE_STRING "test 1.0" 

 

/* Define to the one symbol short name... */ 

#define PACKAGE_TARNAME "test" 

 

/* Define to the version... */ 

#define PACKAGE_VERSION "1.0" 

 

/* Define to 1 if you have the ANSI C... */ 

#define STDC_HEADERS 1 



NOTE: Here again, I encourage you to use autoreconf, which will automatically run 
autoheader for you if it notices an expansion of the AC_CONFIG_HEADERS macro in your 
configure.ac script. 
You may also want to take a peek at the config.h.in template file generated by 
autoheader. In the meantime, here's a much more realistic example of using a generated 
config.h file for the sake of portability of project source code. 
 

AC_INIT([test], [1.0]) 

AC_CONFIG_HEADERS([config.h]) 

AC_CHECK_HEADERS([dlfcn.h]) 

AC_OUTPUT 

The config.h file is obviously intended to be included in your source code in locations 
where you might wish to test a configured option in the code itself using the C 
preprocessor. Using this configure.ac script, Autoconf will generate a config.h 
header file with appropriate definitions for determining, at compile time, if the current 
system provides the dlfcn interface. To complete the portability check, you can add the 
following code to a source file that uses dynamic loader functionality in your project: 
 

#if HAVE_CONFIG_H 

# include <config.h> 

#endif 

 

#if HAVE_DLFCN_H 

# include <dlfcn.h> 

#else 

# error Sorry, this code requires dlfcn.h. 

#endif 

... 

#if HAVE_DLFCN_H 

   handle = dlopen( 

      "/usr/lib/libwhatever.so", RTLD_NOW); 

#endif 



... 

If you already had code that included dlfcn.h then autoscan will have generated a 
configure.ac call to AC_CHECK_HEADERS, which contains dlfcn.h as one of the 
header files to be checked. Your job as the maintainer is to add the conditional to your 
source code around the existing use of the dlfcn.h header inclusion and the 
libdl.so API calls. This is the crux of Autoconf-provided portability. 
Your project may be able to get along at compile time without the dynamic loader 
functionality if it must, but it would be nice to have it. Perhaps, your project will function in 
a limited manner without it. Sometimes you just have to bail out with a compiler error (as 
this code does) if the key functionality is missing. Often this is an acceptable first-attempt 
solution, until someone comes along and adds support to the code base for some other 
dynamic loader service that is perhaps available on non-dlfcn-oriented systems. 

NOTE: If you have to bail out with an error, it's best to do so at configuration time, rather 
than at compile time. The general rule of thumb is to bail out as early as possible. I'll 
cover examples of this sort of activity shortly. 
One obvious flaw in this source code is that config.h is only included if 
HAVE_CONFIG_H is defined in your compilation environment. But wait...doesn't that 
definition happen in config.h?! Well, no, not in the case of this particular definition. 
HAVE_CONFIG_H must be either defined by you manually, if you're writing your own 
makefiles, or automatically by Automake-generated makefiles on the compiler command 
line. (Are you beginning to get the feeling that Autoconf really shines when used in 
conjunction with Automake?) 
HAVE_CONFIG_H is part of a string of definitions passed on the compiler command line in 
the Autoconf substitution variable @DEFS@. Before Autoheader and 
AC_CONFIG_HEADERS, all of the compiler configuration macros were added to the 
@DEFS@ variable. You can still use this method if you don't use AC_CONFIG_HEADERS in 
configure.ac. but it's not the recommended method nowadays, mainly because a 
large number of definitions make for a very long compiler command line. 

Back to VPATH builds for a moment 
Regarding VPATH builds, I haven't yet covered how to get the preprocessor to properly 
locate my generated config.h file. This file, being a generated file, will be found in the 
same relative position in the build directory structure as its counterpart template file, 
config.h.in. The template is located in the top-level source directory (unless you 
choose to put it somewhere else), so the generated file will be in the top-level build 
directory. Well, that's easy enough--it's always one level up from the generated 
src/Makefile. 
Consider where I might have include files in this project. I might add an internal header 
file to the current source directory. I obviously now have a config.h file in my top-level 
build directory. I might also create a top-level source include directory for library interface 
header files. In which order should I care about these files? 
The order I place include directives (-I<path>) options on the compiler command line is 
the order which they will be searched. The proper preprocessor include paths should 
include the current build directory (.), the source directory ($(srcdir)), and the top-
level build directory (..), in that order: 
 

... 

jupiter: main.c 

        gcc -g -O0 -I. -I$(srcdir) -I..\ 



         -o $@ $(srcdir)/main.c 

... 

It appears that I now need an additional rule of thumb for VPATH builds: 
 Add preprocessor commands for the current build and associated source and top-level 

build directories, in that order. 

Checks for compilers 

The AC_PROG_CC macro ensures that I have a working C language compiler. This call 
was added to configure.scan when autoscan noticed that I had C source files in my 
project directory. If I'd had files suffixed with ".cxx" or ".C" (an upper-case ".C" 
extension indicates a C++ source file), it would have inserted a call to the AC_PROG_CXX 
macro, as well as a call to AC_LANG([C++]). 
This macro looks for gcc and then cc in the system search path. If neither of these are 
found, it looks for other C compilers. When a compatible compiler is found, it sets a well-
known variable, $CC to the full path of the program, with options for portability, if 
necessary. 
AC_PROG_CC accepts an optional parameter containing an ordered list of compiler 
names. For example, if you used AC_PROG_CC([cc cl gcc]), then the macro would 
expand into shell code that searched for cc, cl and gcc, in that order. 
The AC_PROG_CC macro also defines the following Autoconf substitution variables: 
 @CC@ (full path of compiler) 
 @CFLAGS@ (eg., -g -O2 for gcc) 
 @CPPFLAGS@ (empty by default) 
 @EXEEXT@ (eg., .exe) 
 @OBJEXT@ (eg., .o) 
AC_PROG_CC configures these substitution variables, but unless I used them in my 
Makefile.in templates, I'm just wasting time running configure. I'll add a few of 
these as make variables to my src/Makefile.in template, and then consume them, 
like this: 
 

# Tool-related substitution variables 

CC             = @CC@ 

CFLAGS         = @CFLAGS@ 

CPPFLAGS       = @CPPFLAGS@ 

... 

jupiter: main.c 

        $(CC) $(CFLAGS) $(CPPFLAGS)\ 

         -I. -I$(srcdir) -I..\ 

         -o $@ $(srcdir)/main.c 



Checking for other programs 

Now, let's return to the AC_PROG_INSTALL macro. As with the AC_PROG_CC macro, the 
other AC_PROG_* macros set and then substitute (using AC_SUBST) various environment 
variables that point to the located utility. To make use of this check, you need to use 
these Autoconf substitution variables in your Makefile.in templates, just as I did with 
CC, CFLAGS, and CPPFLAGS above: 
 

... 

# Tool-related substitution variables 

CC             = @CC@ 

CFLAGS         = @CFLAGS@ 

CPPFLAGS       = @CPPFLAGS@ 

INSTALL        = @INSTALL@ 

INSTALL_DATA   = @INSTALL_DATA@ 

INSTALL_PROGRAM= @INSTALL_PROGRAM@ 

INSTALL_SCRIPT = @INSTALL_SCRIPT@ 

... 

install: 

        $(INSTALL) -d $(DESTDIR)$(bindir)/jupiter 

        $(INSTALL_PROGRAM) -m 0755 jupiter \ 

         $(DESTDIR)$(bindir)/jupiter 

... 

The value of @INSTALL@ is obviously the path of the located install script. The value 
of @INSTALL_DATA@ is ${INSTALL} -m 0644. Now, you'd think that the values of 
@INSTALL_PROGRAM@ and @INSTALL_SCRIPT@ would be ${INSTALL} -m 0755, but 
they're not. These are just set to ${INSTALL}. Oversight? I don't know. 
Other important utility programs you might need to check for are lex, yacc, sed, awk, 
etc. If so, you can add calls to AC_PROG_LEX, AC_PROG_YACC, AC_PROG_SED, or 
AC_PROG_AWK yourself. There are about a dozen different programs you can check for 
using these more specialized macros. If such a program check fails, then the resulting 
configure script will fail with a message indicating that the required utility could not be 
found, and that the build may not continue until it's been properly installed. 
As with the other program and compiler checks in Makefile.in templates, you should 
use the make variables $(LEXX) and $(YACC) to invoke these tools (note that 
Automake does this for you), as these Autoconf macros will set the values of these 



variables according to the tools it finds installed on your system if they are not already set 
in your environment. 
Now, this is a key aspect of configure scripts generated by Autoconf--you may always 
override anything configure will do to your environment by exporting or setting an 
appropriate output variable before you execute configure. 
For example, perhaps you would like to build with a very specific version of bison that 
you've installed in your own home directory: 
 

$ cd jupiter 

$ YACC="$HOME/bin/bison -y" ./configure 

$ ... 

This will ensure that YACC is set the way you want for your makefiles, and that 
AC_PROG_YACC does essentially nothing in your configure script. 
If you need to check for the existence of a program not covered by these more 
specialized macros, you can call the generic AC_CHECK_PROG macro, or you can write 
your own special purpose macro (I'll cover writing macros in Chapter 9). 
Key points to take away: 

 AC_PROG_* macros check for the existence of programs. 
 If a program is found, a substitution variable is created. 
 Use these variables in your Makefile.in templates to execute the program. 

A common problem with Autoconf 

Here's a common problem that developers new to the Autotools consistently 
encounter. Take a look at the formal definition of AC_CHECK_PROG found in the 
GNU Autoconf manual. NOTE: In this case, the square brackets represent optional 
parameters, not Autoconf quotes.: 
AC_CHECK_PROG(variable, prog-to-check-for, value-if-found, 
[value-if-not-found], [path], [reject]) 
Check whether program prog-to-check-for exists in PATH. If it is found, set 
variable to value-if-found, otherwise to value-if-not-found, if given. 
Always pass over reject (an absolute file name) even if it is the first found in the 
search path; in that case, set variable using the absolute file name of the prog-
to-check-for found that is not reject. If variable was already set, do nothing. 
Calls AC_SUBST for variable. 
I can extract the following clearly defined functionality from this description: 

 If prog-to-check-for is found in the system search path, then variable is set to 
value-if-found, otherwise it's set to value-if-not-found. 

 If reject is specified (as a full path), then skip it if it's found first, and continue to the 
next matching program in the system search path. 

 If reject is found first in the path, and then another match is found besides reject, set 
variable to the absolute path name of the second (non-reject) match. 

 If variable is already set by the user in the environment, then variable is left 
untouched (thereby allowing the user to override the check by setting variable before 
running autoconf). 

 AC_SUBST is called on variable to make it an Autoconf substitution variable. 
At first read, there appears to be a terrible conflict of interest here: We can see in 
point 1 that variable will be set to one or the other of two specified values, based 
on whether or not prog-to-check-for is found in the system search path. But 



then in point 3 it states that variable will be set to the full path of some program, 
but only if reject is found first and skipped. Clearly the documentation needs a 
little work. 
Discovering the real functionality of AC_CHECK_PROG is as easy as reading a little 
shell script. While you could spend your time looking at the definition of 
AC_CHECK_PROG in /usr/share/autoconf/autoconf/programs.m4, the 
problem with this approach is that you're one level removed from the actual shell 
code performing the check. Wouldn't it be better to just look at the resulting shell 
script generated by AC_CHECK_PROG? Okay, then modify your new configure.ac 
file in this manner: 
 

... 

AC_PREREQ(2.59) 

AC_INIT([jupiter], [1.0],  

   [jupiter-devel@lists.example.com]) 

AC_CONFIG_SRCDIR([src/main.c]) 

AC_CONFIG_HEADER([config.h]) 

 

# Checks for programs. 

AC_PROG_CC 

AC_CHECK_PROG([bash_var], [bash], [yes],  

   [no],, [/usr/sbin/bash]) 

... 

Now just execute autoconf and then open the resulting configure script and 
search for something specific to the definition of AC_CHECK_PROG. I used the string 
"ac_cv_prog_bash_var", a shell variable generated by the macro call. You may 
have to glance at the definition of a macro to find reasonable search text: 
 

$ autoconf 

$ vi -c /ac_cv_prog_bash_var configure 

... 

# Extract the first word of "bash", so it can be 

#   a program name with args. 



set dummy bash; ac_word=$2 

echo "$as_me:$LINENO: checking for $ac_word" >&5 

echo $ECHO_N "checking for $ac_word... $ECHO_C"\ 

 >&6 

if test "${ac_cv_prog_bash_var+set}" = set; then 

  echo $ECHO_N "(cached) $ECHO_C" >&6 

else 

  if test -n "$bash_var"; then 

  # Let the user override the test. 

  ac_cv_prog_bash_var="$bash_var" 

else 

  ac_prog_rejected=no 

as_save_IFS=$IFS; IFS=$PATH_SEPARATOR 

for as_dir in $PATH 

do 

  IFS=$as_save_IFS 

  test -z "$as_dir" && as_dir=. 

  for ac_exec_ext in ''\ 

 $ac_executable_extensions; 

  do 

  if $as_executable_p\ 

 "$as_dir/$ac_word$ac_exec_ext"; then 

    if test "$as_dir/$ac_word$ac_exec_ext" =\ 

 "/usr/sbin/bash"; then 

       ac_prog_rejected=yes 

       continue 



     fi 

    ac_cv_prog_bash_var="yes" 

    echo "$as_me:$LINENO: found\ 

 $as_dir/$ac_word$ac_exec_ext" >&5 

    break 2 

  fi 

done 

done 

 

if test $ac_prog_rejected = yes; then 

  # We found a bogon in the path, so make sure 

  # we never use it. 

  set dummy $ac_cv_prog_bash_var 

  shift 

  if test $# != 0; then 

    # We chose a different compiler from the 

    # bogus one. However, it has the same 

    # basename, so the bogon will be chosen 

    # first if we set bash_var to just the 

    # basename; use the full file name. 

    shift 

    ac_cv_prog_bash_var=\ 

 "$as_dir/$ac_word${1+' '}$@" 

  fi 

fi 

  test -z "$ac_cv_prog_bash_var" &&\ 



 ac_cv_prog_bash_var="no" 

fi 

fi 

bash_var=$ac_cv_prog_bash_var 

if test -n "$bash_var"; then 

  echo "$as_me:$LINENO: result: $bash_var" >&5 

echo "${ECHO_T}$bash_var" >&6 

else 

  echo "$as_me:$LINENO: result: no" >&5 

echo "${ECHO_T}no" >&6 

fi 

... 

Wow! You can immediately see by the opening comment that AC_CHECK_PROG has 
some undocumented functionality: You can pass in arguments with the program 
name if you wish. But why would you want to? Well, look farther. You can probably 
fairly accurately deduce that the reject parameter was added into the mix in 
order to allow your configure script to search for a particular version of a tool. 
(Could it possibly be that someone might really rather use the GNU C compiler 
instead of the Solaris C compiler?) 
In fact, it appears that variable really is set based on a tri-state condition. If 
reject is not used, then variable can only be either value-if-found or 
value-if-not-found. But if reject is used, then variable can also be the full 
path of the first program found that is not reject! Well, that is exactly what the 
documentation stated, but examining the generated code yields insight into the 
authors' intended use of this macro. We probably should have called 
AC_CHECK_PROG this way, instead: 
 

AC_CHECK_PROG([bash_shell],[bash -x],[bash -x],,, 

              [/usr/sbin/bash]) 

Now it makes more sense, and you can see by this example that the manual is in fact 
accurate, if not clear. If reject is not specified, and bash is found in the system 
path, then bash_shell will be set to bash -x. If it's not found in the system path, 
then bash_shell will be set to the empty string. If, on the other hand, reject is 
specified, and the undesired version of bash is found first in the path, then 
bash_shell will be set to the full path of the next version found in the path, along 
with the originally specified arguments (-x). The bash_shell variable may now be 



used by the rest of our script to run the desired bash shell, if it doesn't test out as 
empty. Wow! No wonder it was hard to document in a way that's easy to 
understand! But quite frankly, a good example of the intended use of this macro, 
along with a couple of sentences of explanation would have made all the difference. 

Checks for libraries and header files 

Does your project rely on external libraries? Most non-trivial projects do. If you're lucky, 
your project relies only on libraries that are already widely available and ported to most 
platforms. 

The choice to use an external library or not is a tough one. On the one hand, you'll want 
to reuse code that provides functionality--perhaps significant functionality that you need 
and don't really have the time or expertise to write yourself. Reuse is one of the hallmarks 
of the free software world. 

On the other hand, you don't want to depend on functionality that may not exist on all of 
the platforms you wish to target, or that requires significant porting effort on your part to 
make these libraries available on all of your target platforms. 

Occasionally, library-based functionality can exist in slightly different forms on different 
platforms. These different forms may be functionally compatible, but have different API 
signatures. For example, POSIX threads (pthreads) versus a native threading library. For 
basic multi-threading functionality, many threading libraries are similar enough to be 
almost drop-in replacements of each other. 

To illustrate this concept, I'll add some trival multi-threading capabilities to the Jupiter 
project. I want to have jupiter print its message using a background thread. To do this, 
I'm going to need to add the pthreads library to my project build system. If I weren't using 
the Autotools, I'd just add it to my linker command line in the makefile: 
 

jupiter: main.c 

        $(CC) ... -lpthreads ... 

But what if a system doesn't support pthreads? I might want to support native threads on 
a non-pthreads system--say Solaris native threads, using the libthreads library. 
To do this, I'll first modify my main.c file such that the printing happens in a secondary 
thread, like this: 
src/main.c 
 

#include <stdio.h> 

#include <stdlib.h> 

#include <pthread.h> 

 

static void * print_it(void * data) 



{ 

   printf("Hello from %s!\n", (char *)data); 

   return 0; 

} 

 

int main(int argc, char * argv[]) 

{ 

   pthread_t tid; 

   pthread_create(&tid, 0, print_it, argv[0]); 

   pthread_join(tid, 0); 

   return 0; 

} 

Now, this is clearly a ridiculous use of a thread. Nonetheless, it is the prototypical form of 
thread usage. Consider the case where print_it did some long calculation, and main 
had other things to do while print_it performed this calculation. On a multi-processor 
machine, this could literally double the throughput of such a program. 
What we now need is a way of determining which libraries should be added to the 
compiler command line. Enter Autoconf and the AC_CHECK_* macros. The 
AC_SEARCH_LIBS macro allows us to check for key functionality within a list of libraries. 
If the function exists within one of the specified libraries, then an appropriate command 
line option is added to the @LIBS@ substitution variable. The @LIBS@ variable should be 
used in a Makefile.in template on the compiler (linker) command line. Here is the 
formal definition of AC_SEARCH_LIBS, again from the manual: 
AC_SEARCH_LIBS(function, search-libs, [action-if-found], [action-
if-not-found], [other-libraries]) Search for a library defining function if 
it's not already available. This equates to calling 
AC_LINK_IFELSE([AC_LANG_CALL([], [function])]) first with no libraries, then 
for each library listed in search-libs. Add -llibrary to LIBS for the first library found 
to contain function, and run action-if-found. If function is not found, run action-
if-not-found. If linking with the library results in unresolved symbols that would be 
resolved by linking with additional libraries, give those libraries as the other-
libraries argument, separated by spaces: e.g., -lXt -lX11. Otherwise, this macro 
fails to detect that function is present, because linking the test program always fails 
with unresolved symbols. 
Wow, that's a lot of stuff for one macro. Are you beginning to see why the generated 
configure script is so large? Essentially, what you get by calling AC_SEARCH_LIBS for 
a particular function is that the proper linker command line arguments (eg., -lpthread), 
for linking with a library containing the desired function, are added to a substitution 
variable called @LIBS@. Here's how I'll use AC_SEARCH_LIBS in my configure.ac file: 
configure.ac 
 



... 

# Checks for libraries. 

AC_SEARCH_LIBS([pthread_create], [pthread]) 

... 

Of course, I'll have to modify src/Makefile.in again to make proper use of the now 
populated LIBS variable: 
 

... 

# Tool-related substitution variables 

CC             = @CC@ 

LIBS           = @LIBS@ 

CFLAGS         = @CFLAGS@ 

CPPFLAGS       = @CPPFLAGS@ 

... 

jupiter: main.c 

        $(CC) $(CFLAGS) $(CPPFLAGS)\ 

         -I. -I$(srcdir) -I..\ 

         -o $@ $(srcdir)/main.c $(LIBS) 

... 

Note that I added $(LIBS) after the source file on the compiler command line. Generally, 
the linker cares about object file order, and searches them for required functions in the 
order they are specified on the command line. Since I want main.c to be the primary 
source of object code for jupiter, I'll continue to add additional objects, including 
libraries, after this file on the command line. 

Right or just good enough? 

I could just stop at this point. I've done enough to make this build system properly use 
pthreads on most systems. If a library is needed, it'll be added to the @LIBS@ variable, 
and subsequently used on my compiler command line. In fact, this is the point at which 
many maintainers would stop. The problem is that stopping here is just about the build-
system equivalent of not checking the return value of malloc in a C program (and there 
are many developers out there who don't give this process the credit it deserves either). It 
usually works fine. It's just during those few cases where it fails that you have a real 
problem. 



Well, I want to provide a good user experience, so I'll take Jupiter's build system to the 
"next level". However, in order to do this, I need to make a design decision: In case 
configure fails to locate a pthread library on a user's system, should I fail the build 
process, or build a jupiter program without multi-threading? If I fail the build, it will 
generally be obvious to the user, because the build has stopped with an error message--
although, perhaps not a very user-friendly one. At this point, either the compile process 
or the link process will fail with a cryptic error message about a missing header file or an 
undefined symbol. If I choose to build a single-threaded version of jupiter, I should 
probably display some clear message that I'm moving forward without threads, and why. 
There's another potential problem also. Some users' systems may have a pthread 
library installed, but not have the pthread.h header file installed properly. This can 
happen for a variety of reasons, but the most common is that the executable package 
was installed, but not the developer package. Executable binaries are often packaged 
independently of static libraries and header files. Executables are installed as part of a 
dependency chain for a higher level consuming application, while developer packages 
are often only installed directly by a user. For this reason, Autoconf provides checks for 
both libraries and header files. The AC_CHECK_HEADERS macro is used to ensure the 
existence of a particular header file. 
Autoconf checks are very thorough. They generally not only ensure the existence of a file, 
but also that the file is in fact the one you're looking for. They do this by allowing you to 
make some assertions about the file, which are then verified by the macro. Additionally, 
the AC_CHECK_HEADERS macro doesn't just scan the file system for the requested 
header. It actually builds a short test program in the appropriate language, and then 
compiles it to ensure that the compiler can both find the file, and use it. Similarly, 
AC_SEARCH_LIBS is built around an attempt to link to the specified libraries, and import 
the requested symbols. 
Here is the formal definition of AC_CHECK_HEADERS, as found in the GNU Autoconf 
manual: 
AC_CHECK_HEADERS(header-file..., [action-if-found], [action-if-
not-found], [includes = 'default-includes']) For each given system 
header file header-file in the blank-separated argument list that exists, define 
HAVE_header-file (in all capitals). If action-if-found is given, it is additional shell 
code to execute when one of the header files is found. You can give it a value of break 
to break out of the loop on the first match. If action-if-not-found is given, it is 
executed when one of the header files is not found. 
Normally, this macro is called only with a list of desired header files in the first argument. 
Remaining arguments are optional and are not often used. The reason for this is that the 
macro is very functional when used in this manner. I'll add a check for the pthread library 
using AC_CHECK_HEADERS to my configure.ac file. 
If you're the jump-right-in type, then you've noticed by now that configure.ac already 
calls AC_CHECK_HEADERS for stdlib.h. No problem--I'll just add pthread.h to the list, 
using a space to separate the file names, like this: 
 

... 

# Checks for header files. 

AC_HEADER_STDC 

AC_CHECK_HEADERS([stdlib.h pthread.h]) 

... 



I like to make my packages available to as many people as possible, so I'll go ahead and 
use the dual-mode build approach, where I can at least provide some form of jupiter 
program to users without pthreads. To accomplish this, I'll need to add some conditional 
compilation preprocessor code to my src/main.c file: 
src/main.c 
 

#include <stdio.h> 

#include <stdlib.h> 

 

#if HAVE_PTHREAD_H 

# include <pthread.h> 

#endif 

 

static void * print_it(void * data) 

{ 

   printf("Hello from %s!\n", (char *)data); 

   return 0; 

} 

 

int main(int argc, char * argv[]) 

{ 

#if HAVE_PTHREAD_H 

   pthread_t tid; 

   pthread_create(&tid, 0, print_it, argv[0]); 

   pthread_join(tid, 0); 

#else 

   print_it(argv[0]); 

#endif 

   return 0; 



} 

In this version of main.c, I've added a couple of conditional checks for the existence of 
the header file. The HAVE_PTHREAD_H macro will be defined to the value 1 in the 
config.h.in template, if the AC_CHECK_HEADERS macro locates the pthread.h 
header file, otherwise the definition will be added as a comment in the template. Thus, I'll 
need to include the config.h file at the top of my main.c file: 
 

#if HAVE_CONFIG_H 

# include <config.h> 

#endif 

... 

Recall that HAVE_CONFIG_H must be defined on the compiler command line, and that 
Autoconf populates the @DEFS@, substitution variable with this definition, if config.h is 
available. If you choose not to use the AC_CONFIG_HEADERS macro in your 
configure.ac, then @DEFS@ will contain all of the definitions generated by all of the 
various check macros you do use. In this example, I've used AC_CONFIG_HEADERS, so 
my config.h.in template will contain most of these definitions, and @DEFS@ will only 
contain HAVE_CONFIG_H. Again, this is a nice way to go because it significantly shortens 
the compiler command line. An additional benefit is that it becomes very simple to take a 
snapshot of the template, and modify it by hand for non-Autotools platforms, such as 
Microsoft Windows, which doesn't require as dynamic of a configuration process as does 
Unix/Linux. I'll go ahead and make the required changes to my src/Makefile.in 
template, like this: 
src/Makefile.in 
 

... 

# Tool-related substitution variables 

CC             = @CC@ 

DEFS           = @DEFS@ 

LIBS           = @LIBS@ 

CFLAGS         = @CFLAGS@ 

CPPFLAGS       = @CPPFLAGS@ 

... 

jupiter: main.c 

        $(CC) $(CFLAGS) $(DEFS) $(CPPFLAGS)\ 



         -I. -I$(srcdir) -I..\ 

         -o $@ $(srcdir)/main.c $(LIBS) 

... 

Now, I have everything I need to conditionally build the jupiter program. If the end-
user's system has pthread functionality, she'll get a version of jupiter that uses 
multiple threads of execution, otherwise, she'll have to settle for serialized execution. The 
only thing left is to add some code to the configure.ac script that displays a message 
during configuration, indicating that it's defaulting to serialized execution if the library is 
not found. 
Another point to consider here is what it means to have the header file installed, but no 
library. This is very unlikely, but it can happen. However, this is easily remedied by simply 
skipping the header file check entirely if the library isn't found. We'll reorganize things a 
bit to handle this case also: 

configure.ac 
 

... 

# Checks for libraries. 

have_pthreads=no 

AC_SEARCH_LIBS([pthread_create], [pthread], 

  [have_pthreads=yes]) 

 

# Checks for header files. 

AC_HEADER_STDC 

AC_CHECK_HEADERS([stdlib.h]) 

 

if test "x${have_pthreads}" = xyes; then 

  AC_CHECK_HEADERS([pthread.h], [], 

    [have_pthreads=no]) 

fi 

 

if test "x${have_pthreads}" = xno; then 



  echo "------------------------------------------" 

  echo " Unable to find pthreads on this system.  " 

  echo " Building a single-threaded version.      " 

  echo "------------------------------------------" 

fi 

... 

I'll run autoreconf and configure and see what additional output I get now: 
 

$ autoreconf 

$ ./configure 

checking for gcc... gcc 

... 

checking for library... pthread_create... -lpthread 

... 

checking pthread.h usability... yes 

checking pthread.h presence... yes 

checking for pthread.h... yes 

configure: creating ./config.status 

config.status: creating Makefile 

... 

Of course, if your system doesn't have pthreads, you'll get something a little different. To 
emulate this, I'll rename my pthreads libraries (both shared and static), and then rerun 
configure: 
 

$ su 

Password: 

# mv /usr/lib/libpthread.so ... 

# mv /usr/lib/libpthread.a ... 



# exit 

exit 

$ ./configure 

checking for gcc... gcc 

... 

checking for library... pthread_create... no 

... 

checking for stdint.h... yes 

checking for unistd.h... yes 

checking for stdlib.h... (cached) yes 

----------------------------------------- 

 Unable to find pthreads on this system. 

   Building a single-threaded version. 

----------------------------------------- 

configure: creating ./config.status 

config.status: creating Makefile 

config.status: creating src/Makefile 

config.status: creating config.h 

Of course, if I had chosen to fail the build if I couldn't find the pthread.h header file or 
the pthreads libraries, then my source code would have been simpler--no need for 
conditional compilation. I could change my configure.ac file to look like this, instead: 
configure.ac 
 

... 

# Checks for libraries. 

have_pthreads=no 

AC_SEARCH_LIBS([pthread_create], [pthread], 

  [have_pthreads=yes]) 



 

# Checks for header files. 

AC_HEADER_STDC 

AC_CHECK_HEADERS([stdlib.h]) 

 

if test "x${have_pthreads}" = xyes; then 

  AC_CHECK_HEADERS([pthread.h], [], 

    [have_pthreads=no]) 

fi 

 

if test "x${have_pthreads}" = xno; then 

  echo "------------------------------------------" 

  echo " The pthread library and header file is   " 

  echo " required to build jupiter. Stopping...   " 

  echo " Check 'config.log' for more information. " 

  echo "------------------------------------------" 

  (exit 1); exit 1; 

fi 

... 

I could have used a couple of macros provided by Autoconf for the purpose of printing 
messages to the console: AC_MSG_WARNING and AC_MSG_ERROR, but I don't really care 
for these macros, because they tend to be single-line-oriented. This is especially a 
problem in the case of the warning message, which merely indicates that it's continuing, 
but it's building a single-threaded version of jupiter. Such a single-line message could 
zip right by in a large configuration process, without even being noticed by the user. 
In the case where I decide to terminate with an error, this is less of a problem, because--
well, I terminated. But, for the sake of consistency, I like all of my messages to look the 
same. There is a note in the GNU Autoconf manual indicating that some shells are not 
able to properly pass the value of the exit parameter to the parent shell, and that 
AC_MSG_ERROR has a work-around for this problem. Well, the funny code after the echo 
statements in this last example is this very work-around, copied right out of a test 
configure script that I created using AC_MSG_ERROR. 
This last topic brings to light a general lesson regarding Autoconf checks. Checks do just 
that--they check. It's up to the maintainer to add code to do something based on the 



results of the check. This isn't strictly true, as AC_SEARCH_LIBS adds a library to the 
@LIBS@ variable, and AC_CHECK_HEADERS adds a preprocessor definition to the 
config.h.in template. However, regarding the flow of control within the configure 
process, all such decisions are left to the developer. Keep this in mind while you're 
designing your configure.ac script, and life will be simpler for you. 

Supporting optional features and packages 

Alright, I've covered the cases in Jupiter where a pthreads library exists, and where it 
doesn't exist. I'm satisfied, at this point, that I've done just about all I can to manage both 
of these cases very well. But what about the case where the user wants to deliberately 
build a single-threaded version of jupiter, even in the face of an existing pthreads 
library? Do I add a note to Jupiter's README file, indicating that the user should rename 
her pthreads libraries in this case? I don't think so. 
Autoconf provides for both optional features, and optional sub-packages with two new 
macros: AC_ARG_ENABLE and AC_ARG_WITH. These macros are designed to do two 
things: First, to add help text to the output generated when you enter "configure --
help", and second, to check for the specified options, "--enable-
feature[=yes|no]", and "--with-package[=arg]" on the configure script's 
command line, and then set appropriate environment variables within the script. The 
values of these variables may be used later in the script to set or clear various 
preprocessor definitions or substitution variables. 
AC_ARG_WITH is used to control the use of optional sub-packages which may be 
consumed by your package. AC_ARG_ENABLE is used to control the inclusion or 
exclusion of optional features in your package. The choice to use one or the other is 
often a matter of perspective and sometimes simply a matter of preference, as they 
provide somewhat overlapping sets of functionality. For instance, in the Jupiter package, 
it could be justifiably argued that Jupiter's use of pthreads constitutes the use of an 
external package. However, it could just as well be said that asynchronous processing is 
a feature that might be enabled. 
In fact, both of these statements are true, and which type of option you use should be 
dictated by a high-level architectural perspective on the software in question. For 
example, the pthreads library supplies more than just thread creation functions. It also 
provides mutexes and condition variables, both of which may be used by a library 
package that doesn't create threads. If a project provides a library that needs to act in a 
thread-safe manner within a multi-threaded process, then it will probably use one or more 
mutex objects. But it may never create a thread. Thus, a user may choose to disable 
asynchronous execution within this library package at configuration time, but the package 
may still need to link the pthread library in order to access the mutex functionality from an 
unrelated portion of the code. 

From this perspective, it makes more sense to specify "--enable-async-exec" than 
"--with-pthreads". Indeed, from a purist's perspective, this rationale is always sound, 
even in cases where a project only uses pthreads to create threads. When writing 
software, you won't often go wrong by siding with the purist. While some of their choices 
may seem arbitrary--even rediculous, they're almost always vindicated at some point in 
the future. 
So, when do you use AC_ARG_WITH? Generally, when a choice should be made 
between implementing functionality one way or another. That is, when there is a choice 
to use one package or another, or to use an external package, or an internal 
implementation. For instance, if jupiter had some reason to encrypt a file, it might be 
written to use either an internal encryption algorithm, or an external package, such as 
openssl. When it comes to encryption, the use of a widely understood package can be a 
great boon toward gaining community adoption of your package. However, it can also be 
a hindrance to those who don't have access to a required external package. Giving your 



users a choice can make all the difference between them having a good or bad 
experience with your package. 
These two macros have very similar signatures, so I'll just list them here together: 

AC_ARG_WITH(package, help-string, [action-if-given], [action-if-
not-given]) 
AC_ARG_ENABLE(feature, help-string, [action-if-given], [action-
if-not-given]) 
As with many Autoconf macros, these may be used in a very simple form, where the 
check merely sets environment variables: 

 ${withval} and ${with_package} 
 ${enableval} and ${enable_feature} 

They can also be used in a more complex form, where these environment variables are 
used by shell script in the optional arguments. In either case, as usual, the resulting 
variable must be used in order to act on the results of the check, or performing the check 
is pointless. 

Coding up the feature option 

Okay, I've now decided that I should use AC_ARG_ENABLE. Do I enable or disable the 
"async-exec" feature by default? The difference in how these two cases are encoded is 
limited to the help text and to the shell script that I put into the action-if-not-given 
argument. The help text describes the available options and the default value, and the 
shell script indicates what I want to have happen if the option is NOT specified. Of course, 
if it is specified, I don't need to assume anything. 
Say I decide that asynchronous execution is a risky feature. In this case, I want to disable 
it by default, so I might add code like this to my configure.ac script: 
configure.ac 
 

... 

AC_ARG_ENABLE([async-exec], 

  [  --enable-async-exec     enable async exec], 

  [async_exec=${enable_val}], 

  [async_exec=yes]) 

... 

On the other hand, if I decide that asynchronous execution is a fairly fundamental part of 
Jupiter, then I'd like it to be enabled by default. In this case I'd use code like this: 

configure.ac 
 

... 

AC_ARG_ENABLE([async-exec], 



  [  --disable-async-exec    disable async exec], 

  [async_exec=${enable_val}], 

  [async_exec=no]) 

... 

There are a couple of really neat features of this macro that I'd like to point out: 

 Regardless of the help text, the user may always use the syntactical standard formats, 
"--enable-option[=yes|no]" or "--disable-option[=yes|no]". In either 
case, the "[=yes|no]" portion is optional. 

 Inverse logic is handled transparently--that is, the value of ${enableval} always 
represents the user's answer to the question, "Should it be enabled?". For instance, 
even if the user enters something like "--disable-option=no", the value of 
${enableval} will still be set to yes. 

These features of AC_ARG_ENABLE and AC_ARG_WITH make a maintainer's life a lot 
simpler. 
Now, the only remaining question is, do I check for the library and header file regardless 
of the user's desire for this feature, or do I only check for them if the user indicates that 
the "async-exec" feature should be enabled. Well, in this case, it's purely a matter of 
preference, as I'm using the pthreads library only for this feature. Again, if I were also 
using the pthreads library for non-feature-specific reasons, then this question would be 
answered for me--I'd have to check for it. 

In cases where I need the library even if the feature is disabled, I add the 
AC_ARG_ENABLE macro, as in the example above, and then an additional AC_DEFINE 
macro to define a config.h definition specifically for this feature. Since I don't really 
want to enable the feature if the library or header file is missing--even if the user 
specifically requested it--I also need to add some shell code to turn the feature off if 
either of these are missing: 
configure.ac 
 

... 

# Checks for headers. 

AC_HEADER_STDC 

 

# Checks for command line options 

AC_ARG_ENABLE([async-exec], 

  [  --disable-async-exec    disable async exec], 

  [async_exec=${enableval}], 

  [async_exec=yes]) 



 

have_pthreads=no 

AC_SEARCH_LIBS([pthread_create], [pthread], 

  [have_pthreads=yes]) 

 

if test "x${have_pthreads}" = xyes; then 

  AC_CHECK_HEADERS([pthread.h], [], 

    [have_pthreads=no]) 

fi 

 

if test "x${have_pthreads}" = xno; then 

  if test "x${async_exec}" = xyes; then 

    echo "---------------------------------------" 

    echo "Unable to find pthreads on this system." 

    echo "Building a single-threaded version.    " 

    echo "---------------------------------------" 

  fi 

  async_exec=no 

fi 

 

if test "x${async_exec}" = xyes; then 

  AC_DEFINE([ASYNC_EXEC], 1, [async exec enabled]) 

fi 

 

# Checks for headers. 

AC_CHECK_HEADERS([stdlib.h]) 



... 

I've also added an additional test for a "yes" value in async_exec around the echo 
statements within the last test for have_pthreads. The reason for this is that this text 
really belongs to the feature, not the pthreads library test. Remember, I'm trying to create 
a logical separation between testing for pthreads, and testing for the requirements of the 
feature. 
Of course, now I also have to modify src/main.c such that it uses this new definition, 
as follows: 
src/main.c 
 

... 

#if HAVE_PTHREAD_H 

# include <pthread.h> 

#endif 

 

static void * print_it(void * data) 

{ 

   printf("Hello from %s!\n", (char *)data); 

   return 0; 

} 

 

int main(int argc, char * argv[]) 

{ 

#if ASYNC_EXEC 

   pthread_t tid; 

   pthread_create(&tid, 0, print_it, argv[0]); 

   pthread_join(tid, 0); 

#else 

   print_it(argv[0]); 

#endif 



   return 0; 

} 

Notice that I left the HAVE_PTHREAD_H check around the inclusion of the header file. 
This is so as to facilitate the use of pthread.h in other ways besides for this feature. 
In order to check for the library and header file only if the feature is enabled, I merely 
have to wrap the original check code in a test of async_exec, like this: 
configure.ac 
 

... 

if test "x${async_exec}" = xyes; then 

  have_pthreads=no 

  AC_SEARCH_LIBS([pthread_create], [pthread], 

    [have_pthreads=yes]) 

 

  if test "x${have_pthreads}" = xyes; then 

    AC_CHECK_HEADERS([pthread.h], [], 

      [have_pthreads=no]) 

  fi 

 

  if test "x${have_pthreads}" = xno; then 

    echo "---------------------------------------" 

    echo "Unable to find pthreads on this system." 

    echo "Building a single-threaded version.    " 

    echo "---------------------------------------" 

    async_exec=no 

  fi 

fi 

... 



This time, I've removed the test for async_exec from the echo statements, or more 
appropriately, I've moved the original check from around the echo statements, to around 
the entire set of checks. 

Checks for typedefs and structures 

I've spent a fair amount of time during my career writing cross-platform networking 
software. One key aspect of networking software is that the data sent in network packets 
from one machine to another needs to be formatted in an architecture-independent 
manner. If you're trying to use C-language structures to format network messages, one of 
the first road blocks you generally come to is the complete lack of basic C-language 
types that have the same size from one platform to another. The C language was 
purposely designed such that the sizes of its basic integer types are implementation-
defined. The designers did this to allow an implementation to use sizes for char, short, int 
and long that are optimal for the platform. Well, this is great for optimizing software for 
one platform, but it entirely discounts the need for sized types when moving data 
between platforms. 
In an attempt to remedy this shortcoming in the language, the C99 standard provides just 
such sized types, in the form of the intX_t and uintX_t types, where X may be one of 8, 
16, 32 or 64. While many compilers provide these types today, some are still lagging 
behind. GNU C, of course, has been at the fore front for some time now, providing the 
C99 sized types along with the stdint.h header file in which these types are supposed 
to be defined. As time goes by, more and more compilers will support C99 types 
completely. But for now, it's still rather painful to write portable code that uses these and 
other more recently defined integer-based types. 
To alleviate the pain somewhat, Autoconf provides macros for determining whether such 
integer-based types exist on a user's platform, defining them appropriately if they don't 
exist. To ensure, for example, that uint16_t exists on your target platforms, you may use 
the following macro expansion in your configure.ac file: 
 

AC_TYPE_UINT16_T 

This macro will ensure that either uint16_t is defined in the appropriate header files 
(stdint.h, or inttypes.h), or that uint16_t is defined in config.h to an 
appropriate basic integer type that actually is 16 bits in size and unsigned in nature. 
The compiler tests for such integer-based types is done almost universally by a 
generated configure script using a bit of C code that looks like this: 
 

... 

int main()  

{ 

   static int test_array  

      [1 - 2 * !((uint16_t) -1 >> (16 - 1) == 1)]; 

   test_array[0] = 1; 

   return 0; 



} 

Now, if you study this code carefully, you'll notice that the important line is the one on 
which test_array is declared (Note that I've wrapped this line for publication format 
purposes). Autoconf is relying on the fact that all C compilers will generate an error if you 
attempt to define an array with a negative size. An even more thorough examination of 
the bracketed expression will prove to you that this expression really is a compile-time 
expression. I don't know if this could have been done with simpler syntax or not, but it's a 
fact proven over the last several years, that this code does the trick on all compilers 
currently supported by Autoconf--which is most of them. The array is defined with a non-
negative size if (and only if) the following two conditions are met: 

 uint16_t is in fact defined in one of the included header files. 
 the actual size of uint16_t really is 16 bits; no more, no less. 

Code that relies on the use of this macro might contain the following construct: 

 

#if HAVE_CONFIG_H 

# include <config.h> 

#endif 

#if HAVE_STDINT_H 

# include <stdint.h> 

#endif 

... 

#if defined UINT16_MAX || defined uint16_t 

// code using uint16_t 

#else 

// complicated alternative using >16-bit unsigned 

#endif 

There are a few dozen such type-checks available in Autoconf. You should familiarize 
yourself with Section 5.9 of the GNU Autoconf manual, so that you have a working 
knowledge of what's available. I recommend you don't commit such checks to memory, 
but rather just know about them, so that they'll come to mind when you need to use them. 
Then go look them up for the exact syntax, when you do need them. 

In addition to these type-specific checks, there is also a generic type check macro, 
AC_CHECK_TYPES, which allows you to specify a comma-separated list of questionable 
types that your project needs. Note that this list is comma-separated, not space 
separated, as in the case of most of these sorts of check lists. This is because type 
definitions (like struct fooble) may have embedded spaces. Since they are comma-



delimited, you will need to always use the square bracket quotes around this parameter--
that is, if you list more than one type in the parameter. 
AC_CHECK_TYPES(types, [action-if-found], [action-if-not-found], 
[includes = 'default-includes']) 
If you don't specify a list of include files in the last parameter, then the default includes 
are used in the compiler test. The default includes are used via the macro 
AC_INCLUDES_DEFAULT, which is defined as follows (in version 2.62 of Autoconf): 
 

#include <stdio.h> 

#ifdef HAVE_SYS_TYPES_H 

# include <sys/types.h> 

#endif 

#ifdef HAVE_SYS_STAT_H 

# include <sys/stat.h> 

#endif 

#ifdef STDC_HEADERS 

# include <stdlib.h> 

# include <stddef.h> 

#else 

# ifdef HAVE_STDLIB_H 

# include <stdlib.h> 

# endif 

#endif 

#ifdef HAVE_STRING_H 

# if !defined STDC_HEADERS && defined HAVE_MEMORY_H 

# include <memory.h> 

# endif 

# include <string.h> 

#endif 

#ifdef HAVE_STRINGS_H 



# include <strings.h> 

#endif 

#ifdef HAVE_INTTYPES_H 

# include <inttypes.h> 

#endif 

#ifdef HAVE_STDINT_H 

# include <stdint.h> 

#endif 

#ifdef HAVE_UNISTD_H 

# include <unistd.h> 

#endif 

If you know that your type is not defined in one of these header files, then you should 
specify one or more include files to be included in the test, like this: 

 

AC_CHECK_TYPES([struct doodah], [], [], [ 

#include<doodah.h> 

#include<doodahday.h>]) 

The interesting thing to note here is the way I wrapped the last parameter of the macro 
over three lines in configure.ac, with no indentation. This time I didn't do it for 
publication reasons. This text is included verbatim in the test source file. Since some 
compilers have a problem with placing the POUND SIGN (#) anywhere but the first 
column, it's a good idea to tell Autoconf to start each include line in column one, in this 
manner. 
Admittedly, these are the sorts of things that developers complain about regarding 
Autoconf. When you do have problems with such syntax, your best friend is the 
config.log file, which contains the exact source code for all failed tests. You can 
simply look a this log file to see how Autoconf formatted the test, possibly incorrectly, and 
then fix your check in configure.ac accordingly. 

The AC_OUTPUT macro 
The AC_OUTPUT macro expands into the shell code that generates the configure script, 
based on all the data specified in all previous macro expansions. The important thing to 
note here is that all other macros must be used before AC_OUTPUT is expanded, or they 
will be of little value to your configure script. 
Additional shell script may be placed in configure.ac after AC_OUTPUT is expanded, 
but this additional code will not affect the configuration or the file generation performed by 
config.status. 



I like to add some echo statements after AC_OUTPUT to indicate to the user how the 
system is configured, based on their specified command line options, and perhaps 
additional useful targets for make. For example, one of my projects has the following text 
after AC_OUTPUT in configure.ac: 
 

... 

echo \ 

"------------------------------------------------- 

 

 ${PACKAGE_NAME} Version ${PACKAGE_VERSION} 

 

 Prefix: '${prefix}'. 

 Compiler: '${CC} ${CFLAGS} ${CPPFLAGS}' 

 

 Package features: 

   Async Execution: ${async_exec} 

 

 Now type 'make @<:@<target>@:>@' 

   where the optional <target> is: 

     all                - build all binaries 

     install            - install everything 

 

--------------------------------------------------" 

This is a really handy configure script feature, as it tells the user at a glance just what 
happened during configuration. Since variables such as debug are set on or off based on 
configuration, the user can see if the configuration he asked for actually took place. 
By the way, in case you're wondering what those funny character sequences are around 
the word <target>, they're called quadrigraph sequences or simply quadrigraphs, and 
serve the same purpose as escape sequences. Quadrigraphs are a little more reliable 
than escaped characters or escape sequences because they're never subject to 
ambiguity. They're converted to proper characters at a very late stage by M4, and so are 
not subject to mis-interpretation. 



The sequence, @<:@ is the quadrigraph sequence for the open square bracket ([) 
character, while @:>@ is the quadrigraph for the close square bracket (]) character. 
These quadrigraphs will always be output by Autoconf (M4) as literal bracket characters. 
This keeps Autoconf from interpreting them as Autoconf quote characters. 
There are a few other quadrigraphs. I'll show you some of them in Chapter 9 when I 
begin to discuss the process of writing your own Autoconf macros. If you're interested, 
check out section 8.1.5 of the GNU Autoconf manual. 

NOTE: Version 2.62 of Autoconf does a much better job of deciphering the user's intent 
with respect to the use of square brackets than previous versions of Autoconf. Where you 
might have needed to use a quadrigraph in the past to force Autoconf to display a square 
bracket, you may now use the character itself. Most of the problems the occur are a 
result of not properly quoting arguments. 

Does (project) size matter? 

An issue that might have occurred to you by now is the size of my toy project. I mean, 
c'mon! One source file?! But, I've used autoscan to autoconfiscate projects with several 
hundred C++ source files, and some pretty complex build steps. It takes a few seconds 
longer to run autoscan on a project of this size, but it works just as well. For a basic 
build, the generated configure script only needed to be touched up a bit--project name, 
version, etc. 
To add in compiler optimization options for multiple target tool sets, it took a bit more 
work. I'll cover these sorts of issues in Chapter 6 where I'll show you how to 
autoconfiscate a real project. 

Summary 

In this chapter, I've covered about a tenth of the information in the GNU Autoconf manual, 
but in much greater analytical detail than the manual. For the developer hoping to quickly 
bootstrap into Autoconf, I believe I've covered one of the more important "tenths". But this 
statement in no way alleviates a responsible software engineer from studying the other 
nine tenths--as time permits, of course. 

For example, I didn't go into detail about the differences between searching for a function 
and searching for a library. In general, AC_SEARCH_LIBS should be used to check for a 
function you need, but expect in one or more libraries. The AC_FUNC_* macros are 
available to check for very specfic portability-related functionality, such as 
AC_FUNC_ALLOCA, which exists on some platforms, but not others. The 
AC_CHECK_FUNC macro should be used, if a particular function is not supported by one 
of the more specific AC_FUNC_* macros. I recommend reading through Section 5.5 of 
the GNU Autoconf manual to familiarize yourself with what's available within these 
special function checks. 
Another topic on which I didn't spend much time was that of checking for compiler 
charactaristics. Section 5.10 of the GNU Autoconf manual covers these issues 
completely. Given what you've learned after reading this chapter, reading these sections 
of the manual should be pretty straight-forward. 

In fact, once you're comfortable with the material in this and the preceding chapters of 
this book, I'd highly recommend spending a fair amount of time in Chapter 5 of the GNU 
Autoconf manual. Doing so will make you the Autoconf expert you never thought you 
could be, by filling in all of the missing details. 



The next chapter takes us aways from Autoconf for a while, as we get into Automake, an 
Autotools tool chain add-on enhancement for the make utility. 

Source archive 

Download the attached source archive for the original sources associated with this 
chapter. 

‹ Chapter 2: Project management and the GNU coding standards up Chapter 4: 
Automatically writing makefiles with Automake › 

 



Chapter 4: Automatically writing 
makefiles with Automake 
Wed, 2008-06-25 01:50 -- John Calcote 

Most of the general complaints I've ever seen aimed at the Autotools are ultimately 
associated with Automake, in the final analysis. The reason for this is simple: Automake 
provides the highest level of abstraction over the build system. This high level of 
abstraction is both apparent, and actual. And yet a solid understanding of the inner 
workings of Automake can provide you with the one of the most satisfying auto-
generated build system experiences, because you can feel comfortable using the 
features of Automake to their maximum potential, and extending it where your projects 
require. 

This chapter has downloads! 
Shortly after Autoconf was well on its way to success in the GNU world, David 
MacKenzie began work on a new tool--a tool for automatically generating makefiles for a 
GNU project. MacKenzie's work on Automake lasted about a year during 1994, ending 
around November of that year. A year later, during November of 1995, Tom Tromey (of 
RedHat and Cygnus fame) took over development of the Automake project. Tromey 
really had very much a defining role in Automake. In fact, although MacKenzie wrote the 
initial version of Automake in Bourne shell script, Tromey completely rewrote the tool in 
Perl over the following year. Tromey continued to maintain and enhance Automake 
during the next 5 years. 

NOTE: Do not confuse the requirements of Automake on the project maintainer with the 
requirements of a generated build system on the end user. Perl is required by Automake, 
not by the generated build system. 
Around February of 2000, Alexandre Duret-Lutz began to take a more active role in the 
development of the Automake project, and by the end of that year, had pretty much taken 
over project maintenance. Duret-Lutz's role as project lead lasted until about mid-2007. 
Since then, the project has been maintained by Eric Blake of the Free Software 
Foundation (FSF), with strong leadership (and most of the repository check-in's, for that 
matter) from automake mailing list contemporaries such as Ralf Wildenhues and Akim 
Demaille. (I owe many heartfelt thanks to Ralf for kindly answering so many seemingly 
trivial questions while I worked on this book.) 
Sometime early during development of the GNU Coding Standards (GCS), it became 
clear to MacKenzie that much of a GNU project makefile was fairly boilerplate in nature. 
This is because the GCS guidelines are fairly specific about how and where a project's 
products should be built, tested, and installed. These conditions have allowed Automake 
syntax to be concise--in fact, it's terse, almost to a fault. One Automake statement 
represents a lot of functionality. The nice thing, however, is that once you understand it, 
you can get a fairly complete, complex and functionally correct build system up and 
running in short order--I mean on the order of minutes, not hours or days. 

Getting down to business 

Let's face it, writing a makefile is hard. Oh, the initial writing is fairly simple, but getting it 
right is often very difficult--the devil, as they say, is in the details. Like any high-level 
programming language, make syntax is often conducive to formulaic composition. That's 
just a fancy way of saying that once you've solved a "make problem", you're inclined to 
memorize the solution and apply the same formula the next time that problem crops up--
which happens quite often when writing build systems. 



So what advantages does Automake give us over our hand-coded Makefile.in templates, 
anyway? Well, that's pretty easy to answer with a short example. Consider the following 
changes to the files in our project directory structure (these commands are executed from 
jupiter's top-level directory): 

 

$ rm autogen.sh Makefile.in src/Makefile.in 

$ echo "SUBDIRS = src" > Makefile.am 

$ echo "bin_PROGRAMS = jupiter 

> jupiter_SOURCES = main.c" > src/Makefile.am 

$ touch NEWS README AUTHORS ChangeLog 

$ vi configure.ac 

... 

AC_INIT([Jupiter], 1.0, [bugs@jupiter.org]) 

AM_INIT_AUTOMAKE 

AC_CONFIG_SRCDIR([src/main.c]) 

... 

$ autoreconf -i 

$ 

The "rm" command deletes our hand-coded Makefile.in templates and the autogen.sh 
script we wrote to ensure that all the support scripts and files were copied into the root of 
our project directory. We won't be needing this script anymore because we're upgrading 
jupiter to Automake proper. 
For the sake of brevity in the text, I used echo statements to write the new Makefile.am 
files, but you may, of course, use an editor if you wish. NOTE: There is a hard carriage-
return after "bin_PROGRAMS = jupiter" in the third line. The shell will continue to 
accept input after the carriage return until the quotation is closed on the following line. 
The touch command is used to create new empty versions of the NEWS, README, 
AUTHORS and ChangeLog files in the project root directory. These files are required by 
the GCS for all GNU projects. While they're not required for non-GNU programs, they've 
become something of an institution in the FOSS world--you'd do well to have these files, 
properly formatted, in your project, as users have come to expect them. The GCS 
document covers the format and contents of these files. Section 6 covers the NEWS and 
ChangeLog files, and Section 7 covers the README and INSTALL files. The AUTHORS 
file is a list of people (names and optional email addresses) to whom attribution should 
be given. 

Enabling Automake in configure.ac 
Finally, I've added a single line to the configure.ac file, AM_INIT_AUTOMAKE between the 
AC_INIT and AC_CONFIG_SRCDIR statements. Besides the normal requirements of an 



Autoconf input file, this is the only line that's required to enable Automake in a project 
that's already configured with Autoconf. The AM_INIT_AUTOMAKE macro accepts an 
optional argument--a white-space separated list of option tags, which can be passed into 
this macro to modify the general behavior of Automake. The following is a 
comprehensive list of options for Automake version 1.10: 
 gnits 
 gnu 
 foreign 
 cygnus 
 ansi2knr 
 path/ansi2knr 
 check-news 
 dejagnu 
 dist-bzip2 
 dist-lzma 
 dist-shar 
 dist-zip 
 dist-tarZ 
 filename-length-max=99 
 no-define 
 no-dependencies 
 no-dist 
 no-dist-gzip 
 no-exeext 
 no-installinfo 
 no-installman 
 nostdinc 
 no-texinfo.tex 
 readme-alpha 
 std-options 
 subdir-objects 
 tar-v7 
 tar-ustar 
 tar-pax 
 <version> 
 -W<category> 
 --warnings=<category> 

I won't spend a lot of time on the option tag list at this point. For a detailed description of 
each option, check out Chapter 17 of the GNU Automake manual. I will, however, point 
out a few of the most useful options. 

The check-news option will cause "make dist" to fail if the current version doesn't show 
up in the first few lines of the NEWS file. The dist-* tags can be used to change the 
default distribution package type. Now, these are handy because often developers want 
to distribute tar.bz2 files, rather than tar.gz files. By default, "make dist" builds a tar.gz file. 
You can override this by using "make dist-bzip2", but this is more painful than it needs to 
be for projects that like to use bzip2 by default. The readme-alpha option can be used 
to temporarily alter the behavior of the build and distribution process during alpha 
releases of a project. First, a file named README-alpha, found in the project root 
directory, will be distributed automatically while using this option. This option will also 
alter the expected versioning scheme of the project. 
The <version> option is actually a placeholder for a numeric version number. This 
value represents the lowest version number of Automake that is acceptable for this 
project. For instance, if 1.10 is passed as a tag, then Automake will fail if it's version is 
less than 1.10. The -W<category> and --warnings=<category> options indicate 
that the project would like to use Automake with various warning categories enabled. 



What we get from Automake 

The last line of the example executes the autoreconf -i command, which, as I've 
already discussed in prior chapters, regenerates all Autotools-generated files according 
to the configure.ac file. This time, with the inclusion of the AM_INIT_AUTOMAKE 
statement, the -i option properly tells Automake to add any missing files. The -i option 
need only be used once in a newly checked out work area. Once the missing utility files 
have been added, the -i option may be dropped. 
These few commands create for us an Automake-based build system containing 
everything that we wrote into our original Makefile.in templates, except that this one is 
more correct and functionally complete. A quick glance at the resulting generated 
Makefile.in template shows us that, from just a couple of input lines, Automake has done 
a significant amount of work for you. The resulting top-level Makefile.in template 
(remember, the configure script turns these templates into Makefiles), is nearly 18K in 
size. The original files were only a few hundred bytes long. 
A generated Automake build system supports the following important make targets--and 
this list is not comprehensive: 
 all 
 distdir 
 install 
 install-strip 
 install-data 
 install-exec 
 uninstall 
 install-dvi 
 install-html 
 install-info 
 install-ps 
 install-pdf 
 installdirs 
 check 
 installcheck 
 mostlyclean 
 clean 
 distclean 
 maintainer-clean 
 dvi 
 pdf 
 ps 
 info 
 html 
 tags 
 ctags 
 dist 
 dist-bzip2 
 dist-gzip 
 dist-lzma 
 dist-shar 
 dist-zip 
 dist-tarZ 
 uninstall 

As you can see, this goes a bit beyond what was provided in your hand-coded 
Makefile.in templates. And Automake writes all of this functionality automatically, 
correctly and quickly for each project that you instrument in the manner outlined above. 



So, what's in a Makefile.am file? 

You'll no doubt recall from Chapter 3 that Autoconf accepts shell script, sprinkled with M4 
macros, and generates the same shell script with those macros fully expanded into 
additional shell script. Likewise, Automake accepts as input a makefile, sprinkled with 
Automake commands. As with Autoconf, the significance of this statement is that 
Automake input files are nothing more or less than makefiles with additional syntax. 

One very significant difference between Autoconf and Automake is that Autoconf 
generates no output text except for the existing shell script in the input file, plus any 
additional shell script resulting from the expansion of embedded M4 macros. Automake, 
on the other hand, assumes that all makefiles should contain a minimal infrastructure 
designed to support the GCS, in addition to any targets and variables that you specify. 
To illustrate this point, I'll create a temp directory in the root of the jupiter project, and 
add an empty Makefile.am file to that directory. Then I'll add this new Makefile.am to my 
project, like this: 
 

$ mkdir temp 

$ touch temp/Makefile.am 

$ echo "SUBDIRS = src temp" > Makefile.am 

$ vi configure.ac 

... 

AC_CONFIG_FILES([Makefile 

                 src/Makefile 

                 temp/Makefile]) 

... 

$ autoreconf 

$ ./configure 

... 

$ ls -1sh temp 

total 20K 

 12K Makefile 

   0 Makefile.am 

8.0K Makefile.in 



$ 

Thus we can see that Automake considers a certain amount of support code to be 
indispensable in every makefile. Even with an empty Makefile.am file, you end up with 
about 12K of code in the resulting Makefile, which is generated by configure 
(config.status) from an 8K Makefile.in template. Incidentally, it's fairly instructive to 
examine the contents of this Makefile.in template to see the Autoconf substitution 
variables that are passed in, as well as the framework code that Automake generates. 

Since the make utility uses a fairly rigid set of rules for processing makefiles, Automake 
takes some minor "literary license" with your additional make code. Specifically, two 
basic rules are followed by Automake when generating Makefile.in templates from 
Makefile.am files that contain additional non-Automake-specific syntax (rules, variables, 
etc): 

 Make variables that you define in your Makefile.am files are placed at the top of the 
resulting Makefile.in template, immediately following any Automake-generated variable 
definitions. 

 Make rules that you specify in your Makefile.am files are placed at the end of the 
resulting Makefile.in template, immediately following any Automake-generated rules. 
Make doesn't care where rules are located relative to one another, because it reads all of 
the rules and stores them in an internal database before processing any of them. 
Variables are treated in a similar manner. To prove this to yourself, try referencing a 
variable in a makefile before its definition. Make binds values to variable references at 
the last possible moment, right before command lines containing these references are 
passed to the shell for execution. 

Often, you won't need to specify anything besides a few Automake commands within a 
given Makefile.am, but there are frequent occasions when you will want to add your own 
make targets. This is because, while Automake does a lot for you, it can't anticipate 
everything you might wish to do in your build system. It's in this "grey" area where most 
developers begin to complain about Automake. 
I'll spend the rest of this chapter examining the functionality provided by Automake. Later, 
I'll get into some tricks you can use to significantly enhance existing Automake 
functionality. 

Analyzing our new build system 

I will now spend some time looking at what I put into those two simple Makefile.am files. 
I'll start with the top-level file, with its single line of Automake code: 

Makefile.am 
 

SUBDIRS = src 

It's pretty easy to divine the primary purpose of this line of text just by looking at the text 
itself. It appears to be indicating that I have a sub-directory in our project called src. In 
fact, this line tells Automake several things about our project: 

 There are one or more immediate sub-directories containing Makefile.am files to be 
processed, in addition to this file. 

 Directories in this space-delimited list are to be processed in the order specified. 
 Directories in this list are to be recursively processed for all primary make targets. 
 Directories in this list are to be treated as part of the project distribution. 



SUBDIRS is not just a make variable: it's recognized by Automake to have special 
meaning, besides the intrinsic meaning associated with common make variables. As you 
continue to study Automake constructs, this theme will come up over and over again. 
Most Automake statements are, in fact, just make variables with special meaning to 
Automake. 
Another point about the SUBDIRS variable is that it may be used in an arbitrarily complex 
directory structure, to process Makefile.am files within a project. You might say that 
SUBDIRS is the "glue" that links Makefile.am files together in a project's directory 
hierarchy. 
One final point about SUBDIRS is that the current directory is implicitly listed last in the 
SUBDIRS list, meaning that the current directory will be built after all of the directories 
listed in the SUBDIRS variable. You may change this implied ordering if you wish, by 
using "." (meaning the current directory) anywhere in the list. This is important because 
it's sometimes necessary to build the current directory before one or more subdirectories. 
Let's move down a level now into the src directory. The src/Makefile.am file 
contains slightly more code for you to examine; two lines rather than one: 
src/Makefile.am 
 

bin_PROGRAMS = jupiter 

jupiter_SOURCES = main.c 

Primaries 

The first line, "bin_PROGRAMS = jupiter" lists the products generated by this 
Makefile.am file. Multiple files may be listed in this variable definition, separated by white 
space. The variable name itself is made up of two parts, the installation location, bin, 
and the product type, PROGRAMS. GNU Automake documentation calls the product type 
portion of these variables a "primary". The following is a list of valid primaries for version 
1.10 of Automake: 
 PROGRAMS 
 LIBRARIES 
 LISP 
 PYTHON 
 JAVA 
 SCRIPTS 
 DATA 
 HEADERS 
 MANS 
 TEXINFOS 

NOTE: Libtool adds LTLIBRARIES to the primaries list supported by Automake. I'll 
examine this and other Automake extensions provided by Libtool in Chapter 5. 
You could consider primaries to be "product classes", or types of products that might be 
generated by a build system. This being the case, it's pretty clear that not all product 
classes are handled by Automake. What differentiates one class of product from another? 
Basically differences in handling semantics during build and installation. PROGRAMS, for 
example are built using different compiler and linker commands than are LIBRARIES. 
Certainly LISP, JAVA and PYTHON products are handled differently--the build system 
uses entirely different tool chains to build these types of products. And SCRIPTS, DATA 
and HEADERS aren't generally even built (although they might be), but rather simply 
copied into appropriate installation directories. 
PROGRAMS also have different execution, and thus installation, semantics from LISP, 
PYTHON and JAVA programs. Products that fit into the PROGRAMS category are generally 



executable by themselves, while LISP, JAVA and PYTHON programs require virtual 
machines and interpreters. 
What makes this set of primaries important? The fact that they cover 99 percent of the 
products created in official GNU projects. If your project generates a set of products that 
define their own product class, or use a product class not listed in this set of primaries, 
then you might do well to simply stick with Autoconf until support is added to Automake 
for your product class. Another option is to add support yourself to Autoconf for your 
product class, but doing so requires a deep knowledge of both the product class and the 
Automake Perl script. I believe it's fair to say, however, that this set of primaries covers a 
wide range of currently popular product classes. 

Prefixes 

Supported installation locations are provided by the GCS document. This is the same list 
that I provided to you in Chapter 2. I'll relist them here for convenience: 

 bindir 
 sbindir 
 libexecdir 
 datarootdir 
 datadir 
 sysconfdir 
 sharedstatedir 
 localstatedir 
 includedir 
 oldincludedir 
 docdir 
 infodir 
 htmldir 
 dvidir 
 pdfdir 
 psdir 
 libdir 
 lispdir 
 localedir 
 mandir 
 manNdir 

You may have noticed that I left a few entries out of this version of the list. Essentially, all 
entries ending in dir are viable prefixes for Automake primaries. Besides these standard 
GCS installation locations, three other installation locations are defined by Automake to 
have enhanced meaning: 
 pkglibdir 
 pkgincludedir 
 pkgdatadir 

The pkg versions of the libdir, includedir and datadir prefixes are designed to 
install products into subdirectories of these installation locations that are named after the 
package. For example, for the jupiter project, the pkglibdir installation location would 
be found in $(exec-prefix)/lib/jupiter, rather than the usual $(exec-
prefix)/lib directory. 
If this list of installation locations isn't comprehensive enough, don't worry--Automake 
provides a mechanism for you to define your own installation directory prefixes. Any 
make variable you define in your Makefile.am file that ends in dir can be used as a valid 
primary prefix. To reuse the example found in the GNU Automake manual, let's say you 
wish to install a set of XML files into an xml directory within the system data directory. 
You might use this code to do so: 
 



xmldir = $(datadir)/xml 

xml_DATA = file1.xml file2.xml file3.xml ... 

Note that the same naming conventions are used with custom installation locations as 
with the standard locations. Namely, that the variable ends with dir, but the dir portion 
of the variable name is left off when using it as a primary prefix. 
There are also several prefixes with special meanings not related to installation locations: 

 check 
 noinst 
 EXTRA 

The check prefix indicates products that are built only for testing purposes, and thus will 
not be installed at all. Products listed in primary variables that are prefixed with check 
aren't even built if the user never types make check. 
The noinst prefix indicates that the listed products should be built, but not installed. For 
example, a static so-called "convenience" library might be built as an intermediate 
product, and used in other stages of the build process to build final products. Such 
libraries are not designed to be installed, so the prefix shouldn't be an installation location. 
The noinst prefix serves this purpose. 
The EXTRA prefix is used to list programs that are conditionally built. This is a difficult 
concept to explain in a few paragraphs, but I'll give it a try. All product files must be listed 
statically (as opposed to being calculated at build-time) in order for Automake to generate 
a Makefile.in template that will work for any set of input commands. However, a project 
maintainer may elect to allow some products to be built conditionally, based on 
configuration options given to the configure script. If some products are listed in variables 
generated by the configure script, then these products should also be listed in a primary 
prefixed with "EXTRA", like this: 
 

EXTRA_PROGRAMS = myoptionalprog 

bin_PROGRAMS myprog $(optional_programs) 

Here, it is assumed that the "optional_programs" variable is defined in the configure 
script, and listed in an AC_SUBST macro. This way, Automake can know in advance that 
"myoptionalprog" may be built, and so generate rules to build it. Any program that 
may or may not be built, based on configuration options should be specified in 
EXTRA_PROGRAMS, so that Automake can generate a makefile that could build it if 
requested to do so. 

"Super" prefixes 

Some primaries allow a sort of "super" prefix to be prepended to a prefix/PRIMARY 
variable specification. Such modifiers may be used together on the same variable where 
it makes sense. Thus, these "super" prefixes modify the normal behaviour of a 
prefix/PRIMARY specification. The existing modifiers include: 

 dist 
 nodist 
 nobase 

The dist modifier indicates a set of files that should be distributed (that is, included in 
the distribution package when "make dist" is executed). The dist modifier is used with 
files that are normally not distributed, but may be used explicitly anywhere for clarity. For 



instance, assuming that some source files for a product should be distributed, and some 
should not (perhaps they're generated), the following rules might be used: 
 

dist_jupiter_SOURCES = file1.c file2.c 

nodist_jupiter_SOURCES = file3.c file4.c 

While the dist prefix is redundant in this example, it is nonetheless useful to the casual 
reader. 
The nobase modifier is used to suppress the removal of path information from installed 
header files that are obtained from subdirectories by a Makefile.am file. For instance, 
assume that installable jupiter project header files exist in a subdirectory of the src 
directory "jupiter": 
 

nobase_dist_include_HEADERS = \ 

  jupiter/jupiter_interface.h 

Normally, such a header file would be installed into the /usr(/local)/include 
directory as simply jupiter_interface.h. However, if the nobase modifier is used, 
then the extra path information would not be removed, so the final resting place of the 
installed header would instead be 
/usr(/local)/include/jupiter/jupiter_interface.h. 
Notice also in this example that I combined the use of the nobase modifier with that of 
the dist modifier--just to show the concept. 

Product sources 

The second line in src/Makefile.am is "jupiter_SOURCES = main.c". This 
variable lists the source files used to build the jupiter program. Like product variables 
made from prefixes and primaries, this type of variable is derived from two parts, the 
product name, jupiter in this case, and the dependent type. I call it the "dependent 
type" because this variable lists source files on which the product depends. Ultimately, 
Automake adds these files to make rule dependency lists. 
The EXTRA prefix may also be used sometimes as a super prefix modifier. When used 
with a product SOURCES variable (eg., jupiter_SOURCES), EXTRA can be used to 
specify extra source files that may or may not be used, which are directly associated with 
the jupiter product: 
 

EXTRA_jupiter_SOURCES = possibly.c 

In this case, possibly.c may or may not be compiled--perhaps based on an 
AC_SUBST variable. 

Unit tests - supporting "make check" 
I mentioned earlier that this Automake-generated build system provided the same 
functionality as our hand-coded build system. Well, I wasn't completely truthful when I 
said that. For the most part, that was an accurate statement, but what's still missing is our 
simple-minded make check functionality. The check target is indeed supported by our 
new Automake build system, but it's just not hooked up to any real functionality. Let's do 
that now. 



You'll recall in Chapter 2 that you added code to the src/Makefile to run the jupiter 
program and check for the proper output string when the user entered "make check". You 
did this with a fairly simple addition to our src/Makefile: 
 

... 

check: all 

        ./jupiter | grep "Hello from .*jupiter!" 

        @echo "*** ALL TESTS PASSED ***" 

... 

As it turns out, Automake has some solid support for unit tests. Unfortunately, the 
documentation consists of Chapter 15 of the GNU Automake manual--a single page of 
text--half of which is focused on the obscure DejaGNU test suite syntax. Nevertheless, 
adding unit tests to a Makefile.am file is fairly trivial. To add a simple "grep test" back into 
the new Automake-generated build system, I've added a few more lines to the bottom of 
the src/Makefile.am file: 
src/Makefile.am 
 

bin_PROGRAMS = jupiter 

jupiter_SOURCES = main.c 

jupiter_CPPFLAGS = -I$(top_srcdir)/common 

jupiter_LDADD = ../common/libjupcommon.a 

 

check_SCRIPTS = greptest.sh 

TESTS = $(check_SCRIPTS) 

 

greptest.sh: 

        echo './jupiter | grep \ 

          "Hello from .*jupiter!"' > greptest.sh 

        chmod +x greptest.sh 

 

CLEANFILES = greptest.sh 



The check_SCRIPTS line is clearly a prefixed primary. The SCRIPT primary indicates a 
"built" script, or a script that is somehow generated at build time. Since the prefix is 
"check", you know that scripts listed in this line will only be built when the user enters 
"make check" (or "make distcheck"). However, this is as far as Automake goes in 
supporting such built scripts with Automake-specific syntax. You must supply a make rule 
for building the script yourself. 
Furthermore, since you supplied the rule to generate the script, you must also supply a 
rule for cleaning the file. Automake provides an extension to the generated clean rule, 
wherein all files listed in a special CLEANFILES variable are added to the list of 
automatically cleaned files. 
The TESTS line is the important one here, in that it indicates which targets are built and 
executed when a user enters "make check". Since the "check_SCRIPTS" variable 
contains a complete list of these targets, I simply reused its value here. 
Generating scripts or data files in this manner is a very useful technique. I'll present some 
more interesting ways of doing this sort of thing in Chapter 8. 

Adding complexity with convenience libraries 

Well, jupiter is fairly trivial, as free software projects go. In order to highlight some more 
of the key features of Automake, I'm going to have to expand jupiter into something a 
little bit more complex (if not functional). 

I'll start by adding a convenience library, and having jupiter consume this library. 
Essentially, I'll move the code in main.c to a library source file, and then call the function 
in the library from jupiter's main routine. Start with the following commands, executed 
from the top-level project directory: 

 

$ mkdir common 

$ touch common/jupcommon.h 

$ touch common/print.c 

$ touch common/Makefile.am 

Add the following text to the .h and .c files: 

common/jupcommon.h 
 

int print_routine(char * name); 

common/print.c 
 

#include <jupcommon.h> 

 

#if HAVE_CONFIG_H 



# include <config.h> 

#endif 

 

#include <stdio.h> 

#include <stdlib.h> 

 

#if HAVE_PTHREAD_H 

# include <pthread.h> 

#endif 

 

static void * print_it(void * data) 

{ 

   printf("Hello from %s!\n", (char *)data); 

   return 0; 

} 

 

int print_routine(char * name) 

{ 

#if ASYNC_EXEC 

   pthread_t tid; 

   pthread_create(&tid, 0, print_it, name); 

   pthread_join(tid, 0); 

#else 

   print_it(name); 

#endif 

   return 0; 



} 

As promised, print.c is merely a copy of main.c, with a couple of small modifications. 
First, I renamed main to print_routine, and second, I added the inclusion of the 
jupcommon.h header file at the top. This header file (as you can see) merely provides 
print_routine's prototype to the new src/main.c, where it's called from main. 
Modify src/main.c to look like this: 
src/main.c 
 

#include <jupcommon.h> 

 

int main(int argc, char * argv[]) 

{ 

   print_routine(argv[0]); 

   return 0; 

} 

And now for the new common/Makefile.am file; add the following text to this file: 
common/Makefile.am 
 

noinst_LIBRARIES = libjupcommon.a 

libjupcommon_a_SOURCES = jupcommon.h print.c 

Let's take a look at this file for a minute. You'll recall from our discussion of Automake 
primaries and prefixes that the first line indicates the products to be built and installed by 
this Makefile.am file. In this case, the noinst prefix indicates that this library should not 
be installed at all. This is because you're creating a "convenience" library, or a library 
designed solely to make using the source code in the common directory more convenient 
for two or more consumers. (Granted, you only have one consumer at this point--the 
jupiter program--but later on you'll add another consumer of this library, and then it will 
make more sense.) 
The library we're creating will be called "libjupcommon.a"--this is a static library, also 
known as an "object archive". Object archives are merely packages containing one or 
more object (.o) files. They can't be executed, or loaded into a process address space, as 
can shared libraries. They can only be added to a linker command line. The linker is 
smart enough to realize that such archives are merely groups of object files. The linker 
extracts the object files it needs to complete the linkage process when building a program 
or shared library. 

The second line represents the list of source files associated with this library. I chose to 
place both the header and the C source file in this list. I could have chosen to use a 
"noinst_HEADERS" line for the header file, but it was unnecessary because the 
"libjupcommon_a_SOURCES" list works just as well. The appropriate time to use 
"noinst_HEADERS" is when you have a directory that contains no source (.c) files--such 



as an internal include directory. Personally, I don't care for this style of project directory 
structure organization. I prefer to place private header files right along side of the source 
code they represent. As a result, I never seem to need "noinst_HEADERS" in my 
projects. 
Notice the format of the "libjupcommon_a_SOURCES" variable. Automake transforms 
library and program names in the product list into derived variable names by converting 
all characters except for letters, numbers and at-signs (@) into underscore characters. 
Thus, a library named libc++.a generates a SOURCES variables called 
libc___a_SOURCES (there are three consecutive underscores in that variable name). 
Clean up your top-level project directory, removing all files and directories except those 
that we've written by hand so far. Also remove all Makefile.in files in the top-level 
directory and in sub-directories. The top-level directory should look like this when you're 
done: 

 

$ ls -1F 

AUTHORS 

ChangeLog 

common/ 

configure.ac 

COPYING 

INSTALL 

src/ 

Makefile.am 

NEWS 

README 

Edit the SUBDIRS variable in the top-level Makefile.am file to include the new common 
directory that we just added: 
Makefile.am 
 

SUBDIRS = common src 

Now you have to add some additional information to the src/Makefile.am file so that 
the generated Makefile can find the new library and header file you created in the 
common directory. Add two more lines to the end of the existing file, in this manner: 
src/Makefile.am 
 

bin_PROGRAMS = jupiter 



jupiter_SOURCES = main.c 

jupiter_CPPFLAGS = -I$(top_srcdir)/common 

jupiter_LDADD = ../common/libjupcommon.a 

Like the jupiter_SOURCES variable, these two new variables are obviously derived 
from the program name. The jupiter_CPPFLAGS variable is used to add product-
specific C preprocessor flags to the compiler command line for all source files that are 
built for the jupiter program. The jupiter_LDADD variable is used to add libraries to the 
linker command line for the jupiter program. 
These product-specific option variables are used to pass options to the compiler and 
linker command lines. The option variables currently supported by Automake for 
programs include: 

 program_CCASFLAGS 
 program_CFLAGS 
 program_CPPFLAGS 
 program_CXXFLAGS 
 program_FFLAGS 
 program_GCJFLAGS 
 program_LFLAGS 
 program_OBJCFLAGS 
 program_RFLAGS 
 program_UPCFLAGS 
 program_YFLAGS 

For static library products use library_LIBADD, instead of program_LDADD. The 
_LIBADD variable for libraries allows you to specify additional object files and static 
libraries that should be added to the static archive you're currently building. This can be 
handy for combining multiple convenience libraries. Consider the difference between 
these cases: The library_LIBADD variable is merely allowing you to specify already 
built objects--either libraries or actual object modules--to the library you're currently 
building. This can't be accomplished with the library_SOURCES variable, because 
library_SOURCES members are compiled, whereas library_LIBADD members are 
already built. 
Additionally, the program_LDADD variable generally expects linker command line 
options such as -lz (to add the libz library to the linker's library specification for this 
program), while the library_LIBADD variable is formatted as a list of fully specified 
objects (eg., libabc.a file1.o). This rule isn't particularly strict however, as I'll explain 
shortly here. Quite frankly, it doesn't really matter, as long as the final command line 
composed by Automake from all of these variables makes sense to the linker. 

File-level option variables 

Often you'll see unprefixed variables like AM_CPPFLAGS or AM_LDFLAGS used in a 
Makefile.am. This is the per-file form of these flags, rather than the per-product form. The 
per-file forms are used when the developer wants the same set of flags to be used for all 
products within a given Makefile.am file. 
Sometimes you need to set a group of preprocessor flags for all products in a 
Makefile.am file, but add additional flags for one particular target. When you use a per-
product flag variable, you need to include the per-file variable explicitly, like this: 

 

AM_CFLAGS = ... some flags ... 



program_CFLAGS = ... more flags ... $(AM_CFLAGS) 

User variables, such as CFLAGS, should never be modified by configuration scripts or 
makefiles. These are reserved for the end-user, and will be always be appended to the 
per-file or per-product versions of these variables. 
Regarding the jupiter_LDADD variable, ../common/libjupcommon.a merely adds 
an object to the linker command line, so that code in this library may become part of the 
final program. Note that this sort of syntax is really only necessary for libraries built as 
part of your own package. If you're linking your program with a library that's installed on 
the user's system, then the configure script should have found it, and automatically 
added an appropriate reference to the linker's command line. 
In the jupiter_CPPFLAGS variable, the -I$(top_srcdir)/common directive tells the 
C preprocessor to add a search directory to its list of locations in which to look for header 
file references. Specifically, it indicates that header files referenced in C source files with 
angle brackets (< and >) should be searched for in this include search path. Header files 
referenced with double-quotes are not searched for, but merely expected to exist in the 
specified directory, relative to the directory containing the referencing source file. 
Getting back to our example--edit the configure.ac file; add a reference to the 
AC_CONFIG_FILES macro for the new generated common/Makefile, in this manner: 

configure.ac 
 

... 

AC_CONFIG_FILES([Makefile 

                 common/Makefile 

                 src/Makefile]) 

... 

Okay, now give your updated build system a try. Add the -i option to the autoreconf 
command so that it will install any additional missing files that might be required after our 
enhancements: 
 

$ autoreconf -i 

configure.ac:6: installing `./missing' 

configure.ac:6: installing `./install-sh' 

common/Makefile.am:1: library used but `RANLIB' 

   is undefined. The usual way to define 

   `RANLIB' is to add `AC_PROG_RANLIB' to  

   `configure.ac' and run `autoconf' again. 

common/Makefile.am: installing `./depcomp' 



src/Makefile.am:3: compiling `main.c' with 

   per-target flags requires `AM_PROG_CC_C_O' in 

   `configure.ac' 

autoreconf: automake failed with exit status: 1 

Well, it appears that you're still not done yet. Since you've added a new type of entity to 
our build system--static libraries--Automake (via autoreconf) tells you that you need to 
add a new macro to the configure.ac file. The AC_PROG_RANLIB macro is a standard 
program check macro, just like AC_PROG_YACC or AC_PROG_LEX. There's a lot of 
history behind the use of the ranlib utility on archive libraries. I won't get into whether it's 
still useful with respect to modern development tools. It seems however, that wherever 
you see it used in modern Makefiles, there's always a comment about running ranlib in 
order to "add karma" to the archive. You be the judge... 

Additionally, you need to add the Automake macro, AM_PROG_CC_C_O, because this 
macro defines constructs in the resulting configure script that support the use of per-
product flags, such as jupiter_CPPFLAGS. Add these two macros to your configure.ac 
script: 
configure.ac 
 

... 

# Checks for programs. 

AC_PROG_CC 

AC_PROG_INSTALL 

AC_PROG_RANLIB 

AM_PROG_CC_C_O 

... 

Alright, once more then, but this time I'm adding the --force option, as well as the -i 
option to the autoreconf command line to keep it quiet about adding files that already 
exist. (This seems like a pointless option to me, because the entire purpose of the -i 
option is to add missing files, not to add all files that are required, regardless of whether 
they already exist, or not, and then complain if they do exist.): 
 

$ autoreconf -i --force 

configure.ac:15: installing `./compile' 

Blessed day! It works. And it really wasn't too bad, was it? Automake told you exactly 
what you needed to do. 



(I always find it ironic when a piece of software tells you how to fix your input file--why 
didn't it just do what it knew you wanted it to do, if it understood your intent without the 
correct syntax?! Okay, I understand the "purist" point of view, but why not just do "the 
right thing", with a side-line comment about your ill-formatted input text? Eventually, you'd 
be annoyed enough to fix the problem anyway, wouldn't you? Of course you would!) 

A word about the utility scripts 

It seems that Automake has added yet another missing file--the "compile" script is a 
wrapper around some older compilers that do not understand the use of both -c and -o 
on the command line to name the object file differently than the source file. When you 
use product-specific flags, Automake has to generate code that may compile source files 
multiple times with different flags for each file. Thus it has to name the files differently for 
each set of flags it uses. The requirement for the compile script actually comes from the 
inclusion of the AM_PROG_CC_C_O macro. 
At this point, you have the following Autotools-added files in the root of our project 
directory structure: 

 compile 
 depcomp 
 install-sh 
 missing 

These are all scripts that are executed by the configure script, and by the generated 
Makefiles at various points during the end-user build process. Thus, the end-user will 
need these files.You can only get these files from Autotools. Since the user shouldn't be 
required to have Autotools installed on the final target host, you need to make these files 
available to the user somehow. 

These scripts are automatically added (by "make dist") to the distribution tarball. So, do 
you check them in to the repository, or not? The answer to this question is debatable, but 
generally I recommend against doing this. Anyone who will be creating a distribution 
tarball should also have the Autotools installed, and should be working from a repository 
work area. As a result, this maintainer will also be running autoreconf -i (--force) 
to ensure that she has the latest updated Autotools-provided utility scripts. Checking 
them in will only make it more probable that they become out of date as time goes by. 
As mentioned in Chapter 2, this sentiment goes for the configure script as well. Some 
people argue that checking the utility and configure scripts into the project repository is 
beneficial, because it ensures that someone checking out a work area can build the 
project from the work area without having the Autotools installed. But is this really 
important? Shouldn't developers and maintainers be expected to have more advanced 
tools? My personal philosophy is that they should. Yours may differ. Occasionally, an end 
user will need to build a project from a work area, but this should be the exceptional case, 
not the typical case. If it is the typical case, then there are bigger problems with the 
project than can be solved in this discussion. 

What goes in a distribution? 

In general, Automake determines automatically what should go into a distribution created 
with make dist. This is because Automake is vary aware of every single file in the build 
process, and what it's used for. Thus, it need not be told explicitly which files should be in 
the package, and which should be left behind. 
An important concept to remember is that Automake wants to know statically about every 
source file used to build a product, and about every file that's installed. This means, of 
course, that all of these files must somehow be specified at some point in a Makefile.am 



primary variable. This bothers some developers--and with good reason. There are cases 
where dozens of installable files are generated by tools using long, apparently random 
and generally unimportant naming conventions. Listing such generated files statically in a 
primary variable is problematic, to say the least. 

I'll cover techniques that can be used to work around such problem cases later in this 
book. At this point, however, I'd like to introduce the EXTRA_DIST variable for those 
cases where file system entities are not part of the Automake build process, but should 
be distributed with a distribution tarball. The EXTRA_DIST variable contains a space-
delimited list of files and directories which should be added to the distribution package 
when "make dist" is executed. 
 

EXTRA_DIST = windows 

This might be used to add, for example, a windows build directory to the distribution 
package. Such a directory would be otherwise ignored by Automake, and then your 
windows users would be upset when they unpacked your latest tarball. Note in this 
example that windows is a directory, not a file. Automake will automatically and 
recursively add every file in this directory to the distribution package. 

Summary 

In this chapter, I've covered a fair number of details about how to instrument a project for 
Automake. The project I chose to instrument happened to already be instrumented for 
Autoconf, which is the most likely scenario, as you'll probably be adding Autoconf 
functionality to your bare projects first in most cases. 

What I've explicitly not covered are situations where you need to extend Automake to 
handle your special cases, although I've hinted at this sort of thing from time to time. 
In the next chapter, I'll examine adding Libtool to the jupiter project, and then in Chapter 6, 
I'll Autotool-ize a real-world project, consisting of several hundred source files and a 
custom build system that takes the form of a GNU makefile designed to use native 
compilers on multiple platforms including Solaris, AIX, Linux, Mac OS and Windows, 
among others. I'll warn you up front thatI'll be remaining true to the original mission 
statement of this book in that we'll not be trying to get Autotools to build Microsoft 
Windows products. 

Source archive 

Download the attached source archive for the original sources associated with this 
chapter. 

‹ Chapter 3: Configuring your project with Autoconf up Chapter 5: Building shared 
libraries with Libtool › 

 



Chapter 5: Building shared libraries 
with Libtool 
Wed, 2008-07-09 19:23 -- John Calcote 

The person who invented the concept of shared libraries should be given a raise... and a 
bonus. The person who decided that shared library management and naming 
conventions should be left to the implementation should be flogged. 

This opinion is the result of too much negative experience on my part with building 
shared libraries for multiple platforms without the aid of Libtool. The very existence of 
Libtool stands as a witness to the truth of this sentiment. 
Libtool exists for one purpose only--to provide a standardized, abstract interface for 
developers desiring to create portable shared libraries. It abstracts both the shared library 
build process, and the programming interfaces used to dynamically load and access 
shared libraries at run time. 

This chapter has downloads! 
Before I get into a discussion of the proper use of Libtool, I should probably spend a few 
minutes on the features and functionality provided by shared libraries, so that you will 
understand the scope of the material I'm covering here. 

The benefits of shared libraries 

Shared libraries provide a way to ship reusable chunks of functionality in a convenient 
package that can be loaded into a process address space, either automatically at 
program load time by the operating system loader, or by code in the application itself, 
when it decides to load and access the library's functionality. The point at which an 
application binds functionality from a shared library is very flexible, and determined by the 
developer, based on the design of the program and the needs of the end-user. 

The interfaces between the program executable and modules defined as shared libraries 
must be well-designed by virtue of the fact that shared library interfaces must be well-
specified. This rigorous specification promotes good design practices. When you use 
shared libraries, you're essentially forced to be a better programmer. 

Shared libraries may be (as the name implies) shared among processes. This sharing is 
very literal. The code segments for a shared library can be loaded once into physical 
memory pages. Those same memory pages can then be mapped into the process 
address spaces for multiple programs. The data pages must, of course, be unique per 
process, but global data segments are often small compared to the code segments of a 
shared library. This is true efficiency. 

Shared libraries are easily updated during program upgrades. The base program may not 
have changed at all between two revisions of a software package. A new version of a 
shared library may be laid down on top of the old version, as long as its interfaces have 
not been changed. When interfaces are changed, two versions of the same shared 
library may co-exist side-by-side, because the versioning scheme used by shared 
libraries (and supported by Libtool) allows the library files to be named differently, but 
treated as the same library. Older programs may continue to use older versions of the 
library, while newer programs may use the newer versions. 
If a software package specifies a well-defined "plug-in" interface, then shared libraries 
can be used to implement user-configurable loadable functionality. This means that 



additional functionality can become available to a program after it's been released, and 
third-parties can even add functionality to your program, if you publish a document 
describing your plug-in interface specification. 
There are a few widely-known examples of systems such as this. Eclipse, for instance, is 
almost a pure plug-in framework. The base executable supports little more than a well-
defined plug-in interface. Most of the functionality in an Eclipse application comes from 
library functions. Granted, Eclipse is written in Java, and uses Java class libraries, but 
the same concept can be (and has been) easily implemented in C or C++ using shared 
libraries. 

How shared libraries work 

As I mentioned above, the way a POSIX-based operating system implements shared 
libraries varies from platform to platform, but the general idea is the same for all platforms. 
The following discussion applies to shared library references that are resolved by the 
linker while the program is being built, and by the operating system loader at program 
load time. 

Dynamic linking at load time 

As a program executable image is being built, the linker (formally called a "link editor") 
maintains a table of unresolved function entry points and global data references. Each 
new symbol referenced by the object code being linked together, is added to this table. At 
the end of the linking process, all object files containing only unreferenced symbols are 
removed from the link list. All object files containing referenced symbols are linked 
together, and become part of the program executable image. If there are any outstanding 
references in the symbol table after all of the object files have been analyzed in this 
manner, the linker exits with an error message. On success, the final executable image 
may then be loaded and executed by a user. It is entirely self-contained, depending only 
upon itself. 

Assuming that all undefined references are resolved during the linking process, if the list 
of objects to be linked contains one or more shared libraries, the linker will build the 
executable image from all non-shared objects specified on the linker command line. This 
includes all individual .o files and all static library archives. However it will add two tables 
to the binary image header; the first is the table of outstanding external references--those 
found only in shared libraries, and the second is a table of shared library names and 
versions in which the outstanding undefined references were found. 
Later, when the operating system loader attempts to load this program, it must resolve 
the remaining outstanding references to symbols imported from the shared libraries 
named in the executable header. If the loader can't resolve all of the references, then a 
load error occurs, and the process is terminated with an operating system error message. 

Note here that these external symbols are not tied to a specific shared library. The 
operating system will stop loading shared libraries as soon as it is able to resolve all of 
the outstanding symbol references. Usually, this happens after the last indicated shared 
library is loaded into the process address space, but there are exceptions. 
NOTE: This process differs a bit from the way a Windows operating system resolves 
symbols in Dynamic Link Libraries (DLLs). On Windows, a particular symbol is tied by the 
linker at program build time to a specifically named DLL. 
Using free-floating external references has both pros and cons. On some operating 
systems, unbound symbols can be satisfied by a library specified by the user. That is, a 
user can entirely replace a library (or a portion of a library) at run time by simply 
preloading one that contains the same symbols. On BSD and Linux based systems, for 
example, a user can use the "LD_PRELOAD" environment variable to inject a shared 



library into a process address space. Since such libraries are loaded first by the loader 
before any other libraries, symbols in the preloaded libraries will be located first by the 
loader when it tries to resolve external references. 
In the following example, the "df" utility is executed in an environment containing the 
LD_PRELOAD variable, set to a path referring to a library that presumably contains a heap 
manager. This technique can be used to debug problems in your programs. By 
preloading your own heap manager, you can capture memory leaks in a log file, or debug 
memory block overruns. This sort of technique is used by such widely-known debugging 
aids as the valgrind package. 
 

$ LD_PRELOAD=~/lib/libmymalloc.so /bin/df 

... 

Unfortunately, free-floating symbols can also lead to problems. For instance, two libraries 
can provide the same symbol name, and the dynamic loader can inadvertently bind an 
executable to a symbol from the wrong library. At best, this will cause a program crash 
when the wrong arguments are passed to the mis-matched function. At worst, it can 
present security risks, because the mis-matched function might be used to capture 
passwords and security credentials passed by the unsuspecting program. 

C-language symbols do not include parameter information, so it's rather likely that 
symbols will clash in this manner. C++ symbols are a bit safer, in that the entire function 
signature (minus the return type) is encoded into the symbol name. However, even C++ 
is not immune to hackers purposely replacing security functions with their own versions 
of those functions. 

Automatic dynamic linking at run time 

The operating system loader can also use a very late form of binding, often referred to as 
"lazy binding". In this situation, the external reference entries in the jump table in the 
program header are initialized such that they refer to code in the dynamic loader itself. 

When a program first calls such a "lazy" entry, the call will be routed to the loader, which 
will then (potentially) load the proper shared library, determine the actual address of the 
function, reset the entry point in the jump table, and finally redirect to the (now available) 
shared library function. The next time this happens, the jump table entry will have been 
correctly initialized, and the program will jump directly to the called function. 

This lazy binding mechanism makes for very fast program startup, because shared 
libraries whose symbols are not bound until they're needed aren't even loaded until 
they're first referenced by the application program. Now, consider this--they may never 
be referenced. Which means they may never be loaded, saving both time and space. An 
example of this situation might be a word processor with a thesaurus feature, 
implemented in a shared library. How often do you use your thesaurus? Using automatic 
dynamic linking, chances are that the shared library containing the thesaurus code will 
never be loaded in a given execution of your word processor. 
The problems with this method should be obvious, at this point. While using automatic 
run-time dynamic linking can give you faster load times, and better performance and 
space efficiency, it can also cause abrupt terminations of your application--without 
warning. If the loader can't find the requested symbol--perhaps the required library is 
missing--then it has no recourse except to abort the process. 



Why not ensure that all symbols exist when the program is loaded? Well, if the loader 
resolved all symbols at load time, then it might as well populate the jump table entries at 
that point. After all, it had to load all the libraries to ensure that the symbols actually exist. 
This then entirely defeats the purpose of this binding method. Furthermore, even if the 
loader did bother to check out all external references at the point when the program was 
first started, there's nothing to stop someone from deleting one or more of these libraries 
before it's used, while the program is still running. Thus, even the pre-check is defeated. 

The moral of this story is that you get what you pay for. If you don't want to pay the 
insurance premium for longer up-front load times, and more space consumed (even if 
you may never really need it), then you may have to take the hit of a missing symbol at 
run time, causing a program crash. 

Manual dynamic linking at run time 

One possible solution to the aforementioned problem is to take personal responsibility for 
the work done by the system loader. Then, when things don't go right, you have a little 
more control over the outcome. In the case of the thesaurus module, was it really 
necessary to terminate the program if the thesaurus library could not be loaded or didn't 
provide the correct symbols? Of course not, but the loader didn't know that. Only the 
programmer can make such value judgements. 

When a program manages dynamic linking manually at run-time, the linker is left entirely 
out of the equation. The program doesn't call any shared library functions directly. Rather, 
shared library functions are referenced though function pointers that are populated by the 
application program itself at run time. 

The way this works is that a program calls an operating system function to manually load 
a shared library into its own process address space. This system function returns a 
"handle", or an opaque value representing the loaded library. The program then calls 
another loader function to import a symbol from the library referred to by the handle. If all 
goes well, the operating system returns the address of the requested function or data 
item in the desired library. The program may then call the function, or access the global 
data item through this pointer. 

If something goes wrong in one of these two steps--say the library could not be found, or 
the symbol was not found within the library, then it becomes the responsibility of the 
program to define the results--perhaps display an error message, indicating that the 
program was not configured correctly. 

This is a little nicer than the way automatic dynamic run-time linking works; while the 
loader has no option but to abort, the application has a higher-level perspective, and can 
handle the problem much more gracefully. The drawback, of course, is that you as the 
programmer have to manage the process of loading libraries and importing symbols 
within your application code. However, this process is not really very difficult, as I'll 
explain later in this chapter. 

Using Libtool 

An entire book could be written about the details of shared libraries and their 
implementations on various systems. This short primer will suffice for your immediate 
needs; so I'll move on to how Libtool can be used to make a package maintainer's life a 
little easier. 



The Libtool project was started in 1996 by Gordon Matzigkeit. Libtool was designed to 
extend Automake, but can be used independently within hand-coded makefiles, as well. 
The Libtool project is currently maintained by Bob Friesenhahn, Peter O'Gorman, Gary 
Vaughan and Ralf Wildenhues. 

Abstracting the build process 

First, I'll look at how Libtool helps during the build process. Libtool provides a script 
(ltmain.sh) that config.status executes in a Libtool-enabled project. The 
ltmain.sh script builds a custom version of the libtool script, specifically for your 
package. This libtool script is then used by your project's makefiles to build shared 
libraries specified using the LTLIBRARIES primary. The libtool script is really just a 
fancy wrapper around the compiler, linker and other tools. The ltmain.sh script should 
be shipped in a distribution tarball, as part of your end-user build system. Automake-
generated rules ensure that this happens properly. 
The libtool script insulates the build system author from the nuances of building 
shared libraries on multiple platforms. This script accepts a well-defined set of options, 
converting them to appropriate platform- and linker-specific options on the target platform 
and tool set. Thus, the maintainer need not worry about the specifics of building shared 
libraries on each platform. She need only understand the available libtool script 
options. These are well specified in the GNU Libtool manual, and I'll cover many of them 
in this chapter. 
On systems that don't support shared libraries at all, the libtool script uses 
appropriate commands and options to build and link static libraries. This is all done in 
such a way that the maintainer is isolated from the differences between building shared 
libraries and static libraries. 
You can emulate building your package on a static-only system by using the "--
disable-shared" option on the configure command line for your project. This 
causes Libtool to assume that shared libraries cannot be built on the target system. 

Abstraction at run-time 

Libtool can also be used to abstract the programming interfaces supplied by the 
operating system for loading libraries and importing symbols. Programmers who've ever 
dynamically loaded a library on a Linux system are familiar with the standard Linux 
shared library API, including the functions, dlopen, dlsym and dlclose. These 
functions are provided by a system-level shared library, usually named "dl". 
Unfortunately, not all POSIX systems that support shared libraries provide the dl library, 
or functions using these names. 
To address these differences, Libtool provides a shared library called "ltdl", which 
provides a clean, portable library management interface, very similar to the dlopen 
interface provided by the Linux loader. The use of this library is optional, of course, but 
highly recommended, because it provides more than just a common API across shared 
library platforms. It also provides an abstraction for manual run-time dynamic linking 
between shared library and non-shared library platforms. 
"What!? How can that work?" You might ask. On systems that don't provide shared 
libraries, Libtool actually creates internal symbol tables within the executable containing 
all of the symbols that would otherwise be found in shared libraries on systems that 
support shared libraries. By using these symbol tables on these platforms, the 
lt_dlopen and lt_dlsym functions can make your code appear to be loading and 
importing symbols, when in fact, the "load" function does nothing more than return a 
handle to the appropriate symbol table, and the "import" function returns the address of 
some code that's been statically linked into the program itself. 
The ltdl library is, of course, not really necessary for packages that don't use manual 
run-time dynamic linking. But if your package does--perhaps by providing a plug-in 
interface of some sort--then you'd be well-advised to use the API provided by ltdl to 



manage loading and linking to your plug-in modules--even if you only target systems that 
provide good shared library services. Otherwise, your source code will have to consider 
the differences in shared library management between your many target platforms. At the 
very least, some of your users will have to put on their "developer" hats, and attempt to 
modify your code so that it works on their odd-ball platforms. (They may have to do so 
anyway, but when they finish, their work can then be incorporated into Libtool, so that 
everyone else can take advantage of their efforts.) 

A word about the latest Libtool 

The most current version of Libtool is 2.2. However, many popular GNU/Linux 
distributions are still shipping Libtool version 1.5, so many developers don't know about 
the changes between these two versions. The reason for this is that certain backward-
compability issues were introduced after version 1.5 that make it difficult for GNU/Linux 
distros to support the latest version of Libtool. The upgrade probably won't happen until 
all (or almost all) of the packages they provide have updated their configure.ac 
scripts to properly use the latest version of Libtool. 
This is somewhat of a "chicken-and-egg" scenario--if distros don't ship it, how will 
developers ever start using it on their own packages? So it's not likely to happen any time 
soon. If you want to make use of the latest Libtool version while developing your 
packages (and I highly recommend that you do so), you'll probably have to download, 
build and install it manually, or look for an updated Libtool package from your distribution 
provider. 

Downloading, building and installing Libtool manually is really trival: 

 

$ wget ftp.gnu.org/gnu/libtool/libtool-2.2.tar.gz 

... 

$ tar xzf libtool-2.2.tar.gz 

$ cd libtool-2.2 

$ ./configure && make 

... 

$ sudo make install 

... 

Be aware that the default installation location (as with most of the GNU packages) is 
/usr/local. If you wish to install it into the /usr hierarchy, then you'll need to use the 
--prefix=/usr option on the configure command line. 
You might also wish to use the --enable-ltdl-install option on the configure 
command line to install the ltdl libraries and header files into your lib and include 
directories. 

Adding shared libraries to Jupiter 



Now that I've presented that background information, I will take a look at how I might add 
a Libtool shared library to the Jupiter project. First, consider what I might do with a 
shared library in Jupiter. As mentioned above, I might wish to provide my users with 
some library functionality that their own applications could use. I might also have several 
applications in my package that need to share the same functionality. A shared library is 
a great tool for both of these scenarios, because I get the benefits of code reuse and 
memory savings, as the cost of the memory used by shared code is amortized across 
multiple applications--both internal and external to my project. 

I'll add a shared library to Jupiter that provides the print functionality I use in the jupiter 
application. I'll do this by having the new shared library call into the libjupcommon.a 
static library. Remember that calling a routine in a static library has the same effect as 
linking the object code for the called routine right into the calling application (or shared 
library, as the case may be). The called routine ultimately becomes an integral part of the 
calling binary image (program or shared library). 
Additionally, I'll provide a public header file from the Jupiter project that will allow external 
applications to call this same functionality. By doing this, I can allow other applications to 
"display stuff" in the same way that the jupiter program "displays stuff". (This would be 
significantly cooler if I was actually doing something useful in jupiter!). 

Using the LTLIBRARIES primary 
Automake has built-in support for Libtool. The LTLIBRARIES primary is provided by 
code in the Automake package, not the Libtool package. This really doesn't qualify as a 
pure extension, but rather more of an add-on package for Automake, where Automake 
provides the necessary infrastructure for that specific add-on package. You can't access 
the LTLIBRARIES primary functionality provided by Automake without Libtool, because 
the use of this primary obviously generates make rules that call the libtool build script. 
I state all of this here because it bothers me that you can't really extend the list of 
primaries supported by Automake without modifying the actual Automake source code. 
The fact that Automake is written in perl is somewhat of a boon, because it means that 
it's possible to do it. But you've really got to understand Automake source code in order 
to do it properly. I envision a future version of Automake whereby code may be added to 
an Automake extension file that will allow the dynamic definition of new primaries. 
It's a bit like the old FOSS addage, generally offered to someone complaining about lack 
of functionality in a particular package: "It's open source. Change it yourself!" This is very 
often easier said than done. Furthermore, what these people are actually telling you is to 
change your copy of the source code for your own purposes, not to change the master 
copy of the source code. Getting your changes accepted into the master source base 
often depends more on the quality of your relationship with the current project 
maintainers than it does on the quality of your coding skills. I'm not complaining, mind 
you. I'm merely stating a fact that should not be overlooked when one is considering 
making changes to an existing open source software package. 
So why not ship Libtool as part of Automake, rather than as a separate package? 
Because Libtool can quite effectively be used independently of Automake. If you wish to 
try Libtool by itself, then please refer to the GNU Libtool manual for more information. 
The opening chapters in that manual describe the use of the libtool script as a stand-
alone product. It's really as simple as modifying your makefile commands such that the 
compiler, linker and librarian are called using the libtool script, and then modifying some 
of your command line parameters, as required by Libtool. 

Public include directories 

Earlier in this book, I made the statement that a project sub-directory named include 
should only contain public header files--those that expose a public interface in your 
project. I'm now going to add just such a header file to the Jupiter project: so, I'll create 
an include directory. I'll add this directory at the top-level of the project directory 
structure. 



If I had multiple shared libraries, I'd have a choice to make: do I create separate 
include directories for each library in the library source directory, or do I add a single 
top-level include directory? I usually use the following rule of thumb to determine the 
answer to this question: if the libraries are designed to work together as a group, and if 
consuming applications generally use the libraries as a group, then I use a single top-
level include directory. If, on the other hand, the libraries can be effectively used 
independently, and if they offer fairly autonomous sets of functionality, then I provide 
individual include directories in my project's library subdirectories. 
In the end, it really doesn't matter much, because the header files for these libraries will 
be installed in entirely different directory structures than those in which they exist within 
your project. In fact, make sure you don't inadvertently use the same file name for 
headers in two different libraries in your project, or you'll probably have problems 
installing these files. They generally end up all together in the "$(prefix)/include" 
directory, although this default can be overridden with the pkginclude prefix. 
I'll also add a directory for the new Jupiter shared library, called libjupiter. These 
changes require adding references to these new directories to the top-level 
Makefile.am file's SUBDIRS variable, and then adding corresponding makefile 
references to the AC_CONFIG_FILES macro in the configure.ac script: 
 

$ mkdir include 

$ mkdir libjup 

$ echo "SUBDIRS = common include libjup src" \ 

   > Makefile.am 

$ echo "include_HEADERS = libjupiter.h" \ 

   > include/Makefile.am 

$ vi configure.ac 

... 

AC_PREREQ([2.61]) 

AC_INIT([Jupiter], [1.0], [bugs@jupiter.org]) 

AM_INIT_AUTOMAKE 

LT_PREREQ([2.2]) 

LT_INIT([dlopen]) 

... 

AC_CONFIG_FILES([Makefile 

                 common/Makefile 

                 include/Makefile 



                 libjup/Makefile 

                 src/Makefile]) 

... 

The include directory's Makefile.am file is trivial, containing only a single line, 
wherein the public header file, libjupiter.h is referred to in an Automake HEADERS 
primary. Note that I'm using the include prefix on this primary. You'll recall that the 
include prefix indicates that files specified in this primary are destined to be installed in 
the $(includedir) directory (eg., /usr/local/include). The HEADERS primary is 
much like the DATA primary, in that it specifies a set of files that are to be treated simply 
as data to be installed without modification or pre-processing. The only really tangible 
difference is that the HEADERS primary restricts the possible installation locations to those 
that make sense for header files. 
The libjup/Makefile.am file is a bit more complex, containing four lines, as opposed 
to the usual one or two lines: 
libjup/Makefile.am 
 

lib_LTLIBRARIES = libjupiter.la 

libjupiter_la_SOURCES = jup_print.c 

libjupiter_la_LIBADD = ../common/libjupcommon.a 

libjupiter_la_CPPFLAGS = -I$(top_srcdir)/include \ 

 -I$(top_srcdir)/common 

Let me analyze this file line by line. The first line is the primary one, and contains the 
usual prefix for libraries. The lib prefix indicates that the referenced products are to be 
installed in the $(libdir) directory. I might also have used the pkglib prefix to 
indicate that I wanted my libraries installed into the $(prefix)/lib/jupiter directory. 
Here, I'm using the LTLIBRARIES primary, rather than the older LIBRARIES primary. 
The use of this primary tells Automake to generate rules that use the libtool script, 
rather than calling the compiler and librarian (ar) directly to generate the products. 
The second line lists the sources that are to be used for the first (and only) product. The 
third line indicates a set of linker options for this product. In this case, I'm specifying that 
the libjupcommon.a static library should be linked into (become part of) the 
libjupiter.so shared library. 
There's an important concept regarding the *_LIBADD variable that you should strive to 
understand completely: Libraries that are consumed within, and yet built as part of the 
same project, should be referenced internally, using relative paths within the build 
directory hierarchy. Libraries that are external to a project generally need not be 
referenced explicitly at all, as the $(LIBS) variable should already contain the 
appropriate "-L" and "-l" options for those libraries. These options come from attempts 
made by the configure script to locate these libraries, using the appropriate 
AC_CHECK_LIBS, or AC_SEARCH_LIBS macros. 
The fourth line indicates a set of C preprocessor flags that are to be used on the compiler 
command line for locating the associated shared library header files. These options 
indicate, of course, that the top-level include and common directories should be 



searched by the pre-processor for header files referenced in the source code. In fact, 
here's the new source file, jup_print.c: 
libjup/jup_print.c 
 

#include <libjupiter.h> 

#include <jupcommon.h> 

 

int jupiter_print(char * name) 

{ 

   print_routine(name); 

} 

I need to include the shared library header file for access to the jupiter_print 
function's public prototype. This leads us to another general software engineering 
principle. I've heard it called by many names, but the one I tend to use the most is "The 
DRY Principle", which is an acronym that stands for Don't Repeat Yourself. C function 
prototypes are very useful, because when used correctly, they enforce the fact that the 
public's view of a function is identical to the package maintainer's view. So often, I've 
seen source code for a function where the source file doesn't include the header 
containing the public prototype for the function. It's easy to make a small change in the 
function or prototype, and then not duplicate it in the other location--unless you've 
included the public header file within the source file containing the function. Then, the 
compiler catches all such mistakes. 
I need the static library header file because I call its function from within my public library 
function. Note also that I placed the public header file first--there's a good reason for this. 
Here is another general principle: by placing the public header file first in the source file, I 
can allow the compiler to check that the use of this header file doesn't depend on any 
other files in the project. 

If the public header file has a hidden dependency on some construct (a typedef, structure 
or pre-processor definition) defined in internal headers like jupcommon.h, and if I 
include the public header file after jupcommon.h, then the dependency would be hidden 
by the fact that the required construct is already available in the translation unit when the 
compiler begins to process the public header file. 
Next, I'll modify the jupiter application's main function so that it calls into the shared 
library instead of calling into the common static library: 
src/main.c 
 

#include <libjupiter.h> 

 

int main(int argc, char * argv[]) 

{ 



   jupiter_print(argv[0]); 

   return 0; 

} 

Here, I've changed the print function from print_routine, found in the static library, to 
jupiter_print, as provided by the new shared library. I've also changed the header 
file included at the top from libjupcommon.h to libjupiter.h. 
My choices of names for the public function and header file were arbitrary, but based on 
a desire to provide a clean, rational and informational public interface. The name 
libjupiter.h very clearly indicates that this header file provides the public interface 
for the libjupiter.so shared library. I try to name library interface functions in such a 
way that they are clearly part of an interface. How you choose to name your public 
interface members--files, functions, structures, typedefs, pre-processor definitions, global 
data, etc--is up to you, but you should consider using a similar philosophy. Remember, 
the goal is to provide a great end-user experience. 
Finally, the src/Makefile.am file must also be modified to use my new shared library, 
rather than the libjupcommon.a static library: 
src/Makefile.am 
 

bin_PROGRAMS = jupiter 

jupiter_SOURCES = main.c 

jupiter_CPPFLAGS = -I$(top_srcdir)/include 

jupiter_LDADD = ../libjup/libjupiter.la 

... 

In this file, I've changed the jupiter_CPPFLAGS variable so that it now refers to the 
new include directory, rather than the common directory. I've also changed the 
jupiter_LDADD variable so that it refers to the new Libtool shared library object, rather 
than the libjupcommon.a static library. All else remains the same. Note that these 
changes are both obvious and simple. The syntax for referring to a Libtool library is 
identical to that referring to an older static library. Only the library extension is different. 
The Libtool library extension, .la stands for "libtool archive". 
Take a step back for a moment: Do I actually need to make this change? No, of course 
not. The jupiter application will continue to work just fine the way it was originally set 
up--linking the code for the static library's print_routine directly into the application 
works equally well to calling the new shared library routine (which ultimately contains the 
same code). There is slightly more overhead in calling a shared library routine because 
of the extra level of indirection when calling though a jump table. 
In a real project, you might actually leave it the way it was. Why? Because both public 
entry points, main and jupiter_print call exactly the same function 
(print_routine) in libjupcommon.a, so the functionality is identical. Why add the 
(slight) overhead of a call through the public interface? Well, you can take advantage of 
shared code. By using the shared library function, you're not duplicating code--either on 
disk, or in memory. Again, the DRY principle at work. 
In this situation, you might now consider simply moving the code from the static library 
into the shared library, thereby removing the need for the static library entirely. Again, I'm 
going to beg your indulgence with my contrived example. In a more complex project, I 



might very well have a need for this sort of configuration, as such common code is often 
gathered together into static convenience libraries. Often, only a portion of this code is 
reused in shared libraries. I'm going to leave it the way it is for the sake of its educational 
value. 

Reconfigure and build 

Let me summarize where the project stands at this point. Since I've added a major new 
component to my project build system (Libtool), I'll add the -i option to the autoreconf 
command, just in case new files need to be installed: 
 

$ autoreconf -i 

$ ./configure 

... 

checking for ld used by gcc... 

checking if the linker ... is GNU ld... yes 

checking for BSD- or MS-compatible name lister... 

checking the name lister ... interface... 

checking whether ln -s works... yes 

checking the maximum length of command line... 

checking whether the shell understands some XSI... 

checking whether the shell understands "+="... 

checking for ...ld option to reload object files... 

checking how to recognize dependent libraries... 

checking for ar... ar 

checking for strip... strip 

checking for ranlib... ranlib 

checking command to parse ...nm -B output... 

... 

checking for dlfcn.h... yes 

checking for objdir... .libs 



checking if gcc supports -fno-rtti... 

checking for gcc option to produce PIC... -fPIC 

checking if gcc PIC flag -fPIC -DPIC works... 

checking if gcc static flag -static works... 

checking if gcc supports -c -o file.o... yes 

checking if gcc supports -c -o file.o... yes 

checking whether ... linker ... supports shared... 

checking whether -lc should be explicitly linked... 

checking dynamic linker characteristics... 

checking how to hardcode library paths... 

checking whether stripping libraries is possible... 

checking if libtool supports shared libraries... 

checking whether to build shared libraries... 

checking whether to build static libraries... 

... 

$ 

The first noteworthy item here is that Libtool adds significant overhead to the 
configuration process. I've only shown the output lines here that are new since I added 
Libtool. All I've added to the configure.ac script is the reference to the LT_INIT 
macro, and I've nearly doubled my configure script output. This should give you some 
idea of the number of system characteristics that must be examined to create portable 
shared libraries. Libtool does a lot of the work for you. 
NOTE: In the following output examples, I've wrapped long output lines to fit publication 
formatting, and I've added blank lines between output lines for readability. I've also 
removed some unnecessary text, such as long directory names--both to increase 
readability and to shorten line lengths. 
 

$ make 

... 

Making all in libjup 

make[2]: Entering directory `.../libjup' 



 

/bin/sh ../libtool --tag=CC   --mode=compile gcc 

  -DHAVE_CONFIG_H -I. -I../../libjup -I.. 

  -I../../include -I../../common   -g -O2 

  -MT libjupiter_la-jup_print.lo -MD -MP -MF 

  .deps/libjupiter_la-jup_print.Tpo -c 

  -o libjupiter_la-jup_print.lo  

  `test -f 'jup_print.c' 

    || echo '../../libjup/'`jup_print.c 

 

libtool: compile:  gcc -DHAVE_CONFIG_H -I. 

  -I../../libjup -I.. -I../../include 

  -I../../common -g -O2 -MT 

  libjupiter_la-jup_print.lo -MD -MP -MF 

  .deps/libjupiter_la-jup_print.Tpo -c 

  ../../libjup/jup_print.c  -fPIC -DPIC 

  -o .libs/libjupiter_la-jup_print.o 

 

libtool: compile:  gcc -DHAVE_CONFIG_H -I. 

  -I../../libjup -I.. -I../../include 

  -I../../common -g -O2 -MT 

  libjupiter_la-jup_print.lo -MD -MP -MF 

  .deps/libjupiter_la-jup_print.Tpo -c 

  ../../libjup/jup_print.c 

  -o libjupiter_la-jup_print.o >/dev/null 2>&1 

 



mv -f .deps/libjupiter_la-jup_print.Tpo 

  .deps/libjupiter_la-jup_print.Plo 

 

/bin/sh ../libtool --tag=CC   --mode=link gcc  -g 

  -O2 ../common/libjupcommon.a  -o libjupiter.la 

  -rpath /usr/local/lib libjupiter_la-jup_print.lo 

  -lpthread  

 

*** Warning: Linking ... libjupiter.la against the 

*** static library libjupcommon.a is not portable! 

 

libtool: link: gcc -shared 

  .libs/libjupiter_la-jup_print.o 

  ../common/libjupcommon.a -lpthread 

  -Wl,-soname -Wl,libjupiter.so.0 

  -o .libs/libjupiter.so.0.0.0 

 

.../ld: ../common/libjupcommon.a(print.o): 

  relocation R_X86_64_32 against `a local symbol' 

  can not be used when making a shared object; 

  recompile with -fPIC 

 

../common/libjupcommon.a: could not read symbols: 

  Bad value 

 

collect2: ld returned 1 exit status 



make[2]: *** [libjupiter.la] Error 1 

... 

That wasn't a very pleasant experience! It appears that I have some errors to fix. I'll take 
them one at a time, from top to bottom. 

The first point of interest is that the libtool script is being called with a --
mode=compile option, which causes libtool to act as a wrapper script around a 
somewhat modified version of a standard gcc command line. You can see the effects of 
this statement in the next two compiler command lines. Two compiler commands? That's 
right. It appears that libtool is causing the compile operation to occur twice. 
A careful examination of the differences between these two command lines shows that 
the first compiler command is using two additional flags: "-fPIC" and "-DPIC". The first 
line also appears to be directing the output file to a ".libs" subdirectory, whereas, the 
second line is saving it in the current directory. Finally, both the STDOUT and STDERR 
output is redirected to /dev/null in the second line. 
This double-compile "feature" has caused a fair amount of anxiety on the Libtool mailing 
list over the years. Mostly, this is due to a lack of understanding of what it is that Libtool is 
trying to do, and why it's necessary. Using various configure script command line 
options provided by Libtool, you can force a single compilation, but doing so brings with it 
a certain loss of functionality, which I'll explain here shortly. 
The next line renames the dependency file from *.Tpo to *.Plo. Dependency files 
contain make rules that declare dependencies between source files and referenced 
header files. These are generated by the C preprocessor when the -MT compiler option 
is used. (And what better tool to know about such references than the one that actually 
processes them!) They're then included in makefiles so that the make utility can properly 
recompile a source file, if one or more of its include dependencies have been modified 
since the last build. This is not really germane to an examination of Libtool, so I'll not go 
into any more detail here, but check the GNU Make manual for more information. The 
point is that one Libtool command may (and often does) execute a group of shell 
commands. 
The next line is another call to the libtool script, this time using the --mode=link 
option. This option generates a call to execute the compiler in "link" mode, passing all of 
the libraries and linker options specified in the Makefile.am file. 
And finally, here is first problem--a portablity warning about linking a shared library 
against a static library. Specifically, this warning is about linking a Libtool shared library 
against a non-Libtool static library. You'll soon begin to see why this might be a problem. 
Notice also that this is not an error. Were it not for additional errors we'll encounter later, 
this library would be built in spite of this warning. 
After the portability warning, libtool attempts to link the requested objects together into 
a shared library named "libjupiter.so.0.0.0". But here the script runs into the real 
problem--a linker error indicating that somewhere from within libjupcommon.a--and 
more specifically within print.o--an Intel object relocation cannot be performed 
because the original source file (print.c) was apparently not compiled correctly. The 
linker is kind enough to tell me exactly what I need to do to fix the problem. It indicates 
that I need to compile the source code using a "-fPIC" compiler option. 
Now, if you were to encounter this error and didn't know anything about the "-fPIC" 
option, then you'd be wise at this point to open the man page for gcc and study it, before 
willy-nilly inserting compiler or linker options until the warning or error disappears, as 
many inexperienced programmers are wont to do. Software engineers should understand 
the meaning and nuances of every command line option used by the tools in their 
projects' build systems. Why? Because otherwise they don't really know what they have 
when their build completes. It may work the way it should--but if it does, it's simply by luck, 
rather than by design. Good engineers know their tools, and the best way to learn is to 
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mechanism to accomplish relocatable object code. Wikipedia has a very informative page 
on position-independent code (although I find its treatment of Windows DLLs to be 
somewhat less than accurate). 

Fixing the jupiter "PIC" problem 

From what you now understand, one way to fix my linker error is to add the "-fPIC" 
option to the compiler command line for the source files that comprise the 
libjupcommon.a static library. Try that: 
common/Makefile.am 
 

noinst_LIBRARIES = libjupcommon.a 

libjupcommon_a_SOURCES = jupcommon.h print.c 

libjupcommon_a_CFLAGS = -fPIC 

And now I'll try the build again: 

 

$ autoreconf 

$ make 

... 

gcc -DHAVE_CONFIG_H -I. -I../../common -I.. -fPIC 

  -g -O2 -MT libjupcommon_a-print.o -MD -MP -MF 

  .deps/libjupcommon_a-print.Tpo -c  

  -o libjupcommon_a-print.o `test -f 'print.c' || 

    echo '../../common/'`print.c 

... 

/bin/sh ../libtool --tag=CC --mode=link gcc  -g 

  -O2 ../common/libjupcommon.a -o libjupiter.la 

  -rpath /usr/local/lib libjupiter_la-jup_print.lo 

  -lpthread  

 

*** Warning: Linking ... libjupiter.la against the 

*** static library libjupcommon.a is not portable! 



 

libtool: link: gcc -shared 

  .libs/libjupiter_la-jup_print.o 

  ../common/libjupcommon.a -lpthread -Wl,-soname 

  -Wl,libjupiter.so.0 -o .libs/libjupiter.so.0.0.0 

 

libtool: link: (cd .libs && rm -f libjupiter.so.0 

  && ln -s libjupiter.so.0.0.0 libjupiter.so.0) 

 

libtool: link: (cd .libs && rm -f libjupiter.so 

  && ln -s libjupiter.so.0.0.0 libjupiter.so) 

 

libtool: link: ar cru .libs/libjupiter.a  

  ../common/libjupcommon.a  

  libjupiter_la-jup_print.o 

 

libtool: link: ranlib .libs/libjupiter.a 

 

libtool: link: (cd .libs && rm -f libjupiter.la 

  && ln -s ../libjupiter.la libjupiter.la) 

... 

I now have a shared library, built properly with position-independent code, as per system 
requirements. However, I still have that strange warning about the portability of linking a 
Libtool library against a static library. The problem here is not in what I'm doing, but 
rather in the way in which I'm doing it. You see, the concept of PIC does not apply to all 
hardware architectures. Some CPUs don't support any form of absolute addressing in 
their instruction sets. As a result, native compilers for these platforms don't support a -
fPIC option--it has no meaning for them. 
If I tried (for example) to compile my code on an IBM RS/6000 system using the native 
IBM compiler, it would "hiccup" when it came to the -fPIC option because it doesn't 
make sense to support such an option on a system where all code is automatically 



generated as position-independent code. One way I could get around this problem would 
be to make the -fPIC option conditional in my Makefile.am file, based on the type of 
the target system, and the tools I'm using. But that's exactly the sort of problem that 
Libtool was designed to address! I'd have to account for all of the different Libtool target 
system types and tool sets in order to handle the entire set of conditions that Libtool 
already handles. 
The way around this portability problem then is to let Libtool generate my static library as 
well. Libtool makes a distinction between static libraries that are installed as part of a 
developer's kit, and static libraries used only internally within a project. It calls such 
internal static libraries "convenience" libraries, and whether or not a convenience library 
is generated depends on the prefix used with the LTLIBRARIES primary. If the noinst 
prefix is used, then Libtool assumes that I want a convenience library because there's no 
point in generating a shared library that will never be installed. Thus, convenience 
libraries are always generated as static archives. 
The reason for distinguishing between convenience libraries and other forms of static 
library is that convenience libraries are always built, whereas non-convenience static 
libraries are only built if the --enable-static option is specified on the configure 
command line (or conversely, if the --disable-static option is not specified). 

Customizing Libtool with LT_INIT options 
Default values for enabling or disabling static and shared libraries can be specified in the 
argument list passed into the LT_INIT macro in the configure.ac script. Have a quick 
look at the LT_INIT macrom which may be used with or without arguments. LT_INIT 
accepts a single argument, which is a white-space separated list of key words. The 
following key words are valid: 
 dlopen -- Enable checking for dlopen support. This option should be used if the 

package makes use of the -dlopen and -dlpreopen Libtool flags, otherwise Libtool 
will assume that the system does not support dl-opening. This option is actually 
assumed by default. 

 disable-fast-install -- Change the default behavior for LT_INIT to disable 
optimization for fast installation. The user may still override this default, depending on 
platform support, by specifying --enable-fast-install to configure. 

 shared -- Change the default behavior for LT_INIT to enable shared libraries. This is 
the default on all systems where Libtool knows how to create shared libraries. The 
user may still override this default by specifying --disable-shared to configure. 

 disable-shared -- Change the default behavior for LT_INIT to disable shared 
libraries. The user may still override this default by specifying --enable-shared to 
configure. 

 static -- Change the default behavior for LT_INIT to enable static libraries. This is 
the default on all systems where shared libraries have been disabled for some reason, 
and on most systems where shared libraries have been enabled. If shared libraries are 
enabled, the user may still override this default by specifying --disable-static to 
configure. 

 disable-static -- Change the default behavior for LT_INIT to disable static 
libraries. The user may still override this default by specifying --enable-static to 
configure. 

 pic-only -- Change the default behavior for libtool to try to use only PIC objects. 
The user may still override this default by specifying --without-pic to configure. 

 no-pic -- Change the default behavior of libtool to try to use only non-PIC objects. 
The user may still override this default by specifying --with-pic to configure. 

NOTE: I've omitted the description for the win32-dll option, because it doesn't apply to 
this book. 
Now, back to the Jupiter project. The conversion from an older static library to a new 
Libtool convenience library is simple enough--all I have to do is add LT to the primary 
name and remove the -fPIC option and the associated variable, as there were no other 



options being used in that variable. Note also that I've changed the library extension 
from .a to .la: 
common/Makefile.am 
 

noinst_LTLIBRARIES = libjupcommon.la 

libjupcommon_la_SOURCES = jupcommon.h print.c 

libjup/Makefile.am 
 

... 

libjupiter_la_LIBADD = ../common/libjupcommon.la 

... 

Now when I try to build, here's what I get: 

 

$ autoreconf 

$ ./configure 

... 

$ make 

... 

/bin/sh ../libtool --tag=CC --mode=compile gcc 

  -DHAVE_CONFIG_H -I. -I../../common -I.. 

  -g -O2 -MT print.lo -MD -MP -MF .deps/print.Tpo 

  -c -o print.lo ../../common/print.c 

 

libtool: compile: gcc -DHAVE_CONFIG_H -I. 

  -I../../common -I.. -g -O2 -MT print.lo -MD -MP 

  -MF .deps/print.Tpo -c ../../common/print.c 

  -fPIC -DPIC -o .libs/print.o  

... 



/bin/sh ../libtool --tag=CC --mode=link gcc -g -O2 

  -o libjupcommon.la print.lo -lpthread 

 

libtool: link: ar cru .libs/libjupcommon.a 

  .libs/print.o 

... 

/bin/sh ../libtool --tag=CC --mode=link gcc -g -O2 

  ../common/libjupcommon.la -o libjupiter.la 

  -rpath /usr/local/lib libjupiter_la-jup_print.lo 

  -lpthread  

 

libtool: link: gcc -shared 

  .libs/libjupiter_la-jup_print.o 

  -Wl,--whole-archive 

  ../common/.libs/libjupcommon.a 

  -Wl,--no-whole-archive -lpthread -Wl,-soname 

  -Wl,libjupiter.so.0 -o .libs/libjupiter.so.0.0.0 

... 

You can see that the common library is now built as a static convenience library because 
the ar utility is used to build libjupcommon.a. Libtool also seems to be building files 
with new and different extensions. A closer look will discover extensions such as .lo 
and .la. If you take a closer look at these files, you'll find that they're actually descriptive 
text files containing object and library meta data. Take a look at the 
common/libjupcommon.la file: 
common/libjupcommon.la 
 

# libjupcommon.la - a libtool library file 

# Generated by ltmain.sh (GNU libtool) 2.2 

# 

# Please DO NOT delete this file! 



# It is necessary for linking the library. 

 

# The name that we can dlopen(3). 

dlname='' 

 

# Names of this library. 

library_names='' 

 

# The name of the static archive. 

old_library='libjupcommon.a' 

 

# Linker flags that can not go in dependency_libs. 

inherited_linker_flags='' 

 

# Libraries that this one depends upon. 

dependency_libs=' -lpthread' 

... 

The various fields in these files help the linker--or rather the libtool wrapper script--to 
determine certain options that would otherwise have to be remembered by the developer, 
and then passed on the command line to the linker. For instance, the library's shared and 
static names are remembered here, as well as any other library dependencies required 
by these libraries. In this library, for example, I can see that libjupcommon.a depends 
on the pthread library. But, using Libtool, I don't have to pass a -lpthread option on 
the libtool command line because libtool can detect in this meta data file that the 
linker will need this, so it passes the option for me. 
Making these files human-readable was a minor stroke of genius, as they can tell me a 
lot about my Libtool libraries, at a glance. These files are designed to be installed with 
their associated binaries, and in fact, the make install rules generated by Automake 
for Libtool libraries do just this. 

The Libtool library versioning scheme 

If you've spent any time at all working at the Linux command prompt, then you'll certainly 
recognize this series of executable and link names. 



NOTE: There's nothing special about libz--I am merely using this library as a common 
example: 
 

$ ls -dal /lib/libz* 

... /lib/libz.so.1 -> libz.so.1.2.3 

... /lib/libz.so.1.2 -> libz.so.1.2.3 

... /lib/libz.so.1.2.3 

If you've ever wondered what this means, then read on. Libtool provides a versioning 
scheme for shared libraries that has become prevalent in the Linux world. Other 
operating systems use different versioning schemes for shared libraries, but the one 
defined by Libtool has become so popular that people often associate it with Linux, rather 
than with Libtool. This is not entirely an unfair assessment because the Linux loader 
honors this scheme to a certain degree. But to be completely fair, it's Libtool that should 
be given the credit for this versioning scheme. 

One interesting aspect of this scheme is that, if not understood properly, people can 
easily mis-use or abuse the system without intending to. People who don't understand 
this system tend to think of the numeric values as major, minor and revision, when in fact, 
these values have very specific meaning to the operating system loader, and must be 
updated properly for each new library version in order to keep from confusing the loader. 
I remember a meeting I had at work one day several years ago with my company's 
corporate versioning committee. This committee's job was to come up with software 
versioning policy for the company as a whole. They wanted us to ensure that the version 
numbers incorporated into our shared library names were in alignment with the corporate 
software versioning standard. It took me the better part of a day to convince them that a 
shared library version was not related to a product version in any way, nor should such a 
relationship be established or enforced by them or anyone else. 

Here's why. The version number on a shared library is not really a library version, but 
rather an interface version. The interface I'm referring to here is the application 
programming interface (API) presented by a library to the potential user--a programmer 
wishing to call functions in the interface. As the GNU Libtool manual points out, a 
program has a single well-defined entry point (usually called main, in the C language). 
But a shared library has multiple entry points that are generally not standardized in a 
widely understood manner. This makes it much more difficult to determine if a particular 
version of a library is "interface-compatible" with another version of the same library. 
NOTE: The concept of "interface" goes much deeper in shared library versioning, 
referring to all aspects of a shared library's connections with the outside world. These 
connections include files and file formats, network connections and wire data formats, 
IPC channels and protocols, etc. When versioning a new public release of a shared 
library, all aspects of the library's interactions with the world should be taken into account. 

Microsoft DLL versioning 

Consider Microsoft Windows Dynamic Link Libraries (DLLs). These are shared 
libraries in every sense of the word. They provide a proper application 
programming interface. But unfortunately, Microsoft has in the past provided no 
integrated DLL interface versioning scheme. As a result, Windows developers have 
often refered to DLL versioning issues (tongue-in-cheek, I'm sure) as "DLL hell". 



As a fix to this problem, on Windows systems, DLLs can be installed into the same 
directory as the program that uses them, and the Windows operating system loader 
will always attempt to use the local copy first before searching for a copy in the 
system path. This alleviates a part of the problem because a specific version of the 
library can be installed with the package that requires it. 
While this is a fair solution it's not a really good solution, because one of the major 
benefits of shared libraries is that they can be shared--both on disk and in memory. 
If every application has its own copy of a different version of the library, then this 
benefit of shared libraries is lost--both on disk and in memory. 
Since the introduction of this partial solution, Microsoft hasn't paid much attention 
to DLL sharing efficiency issues. The reasons for this include both a cavalier attitude 
regarding the cost of disk space and RAM, and a technical issue regarding the 
implementation of Windows dynamic link libraries. Instead of generating position-
independent code, Microsoft system architects chose to link DLL's with a specific 
base address, and then list all absolute address references in a base table in the 
image header. When a DLL can't be loaded at the required base address (because of 
a conflict with another DLL), then the loader "rebases" the DLL by picking a new 
base address and changing all of the absolute addresses referred to in the base table. 
Whenever a DLL is rebased in this manner, it can only be shared with processes 
that happen to rebase the DLL to the same address. The odds of accidentally 
encountering such a scenario--especially among applications with many DLL 
components--are pretty slim. 
Recently, Microsoft invented the concept of the "Side-by-Side Cache" (sometimes 
referred to as "SxS"), which allows developers to associate a unique identification 
value (a GUID, in fact) with a particular version of a DLL installed in a system 
location. This location is named by the DLL name and version identifier. 
Applications built against SxS-versioned libraries have meta data stored in their 
executable headers that indicate the particularly versioned DLLs that they require. 
If the right version is found (by newer OS loaders) in the SxS cache, then they load it. 
Based on policy in the meta data, they can then revert to the older scheme of looking 
for a local and then a global copy of the DLL. This is a vast improvement over 
earlier solutions--providing a very flexible versioning system. 
Given the fact that DLLs use the rebasing technique, as opposed to PIC code, the 
side-by-side cache is still a fairly benign improvement with respect to applications 
that manage dozens of shared libraries. SxS is really intended for system libraries 
that many applications are likely to consume. These are generally "based" at 
different addresses, so that the odds of clashing (and thus rebasing) are decreased. 
Regardless, the entire based approach to shared libraries has the major drawback 
that the program address space may become fairly fragmented, as randomly 
chosen base addresses are honored throughout a 32-bit address space by the system 
loader. 64-bit addressing helps tremendously in this area, so you may find the side-
by-side cache to be much more useful on 64-bit Windows systems. 

Linux and other Unix-like systems that support shared libraries manage interface 
versions using the Libtool versioning scheme. In this scheme, shared libraries are said to 
support a range of interface versions, each identified by a unique integer value. If any 
aspect of an interface changes in any way between public releases, then it can no longer 
be considered the same interface. It becomes a new interface, identified by a new integer 
interface value. To make the interface versioning process comprehensible to the human 
mind, each public release of a library wherein the interface has changed simply acquires 
the next consecutive interface version number. Thus, a given shared library may support 
versions 2-5 of an interface. 



Libtool shared libraries follow a naming convention that encodes the interface range 
supported by a particular shared library. A shared library named libname.so.0.0.0 
contains the library interface version number, 0.0.0. these three values are respectively 
called the library interface current, revision and age values. 
The current value represents the current interface version number. This is the value 
that changes each time a new interface version must be declared, because the interface 
has changed in any way since the last public release of the library. The first interface in a 
library is given a version number of "0", by popular convention. 
Consider a shared library wherein the developer has added a new function to the set of 
functions exposed by this library since the last public release. The interface can't be 
considered the same in this new version as it was in the previous version because there's 
one additional function. Thus, it's current number must be increased from "0" to "1". 
The age value represents the number of back-versions supported by the shared library. 
In mathematical terms, the library is said to support the interface range, current - age 
through current. In the example I just gave, a new function was added to the library, so 
the interface presented in this version of the library is not the same as that presented in 
the previous version. However, the previous version is still fully supported because the 
previous interface is a proper subset of the current interface. Thus, this library could 
conceivably be named "libname.so.1.0.1", where the range of supported interfaces 
is 1 - 1 (or 0) through 1, inclusive. 
The revision value merely represents a serial revision of the current interface. That is, 
if no changes are made to a shared library's interface between releases--perhaps an 
internal function was optimized--then the library name should change in some manner, 
but both the current and age values would be the same, as the interface has not 
changed. The revision value is incremented to reflect the fact that this is a new 
release of the same interface. If two libraries exist on a system with the same name, and 
the same current and age values, then the operating system loader will always select 
the library with the higher revision value. 
To simplify the release process for shared libraries, the GNU Libtool manual provides an 
algorithm that should be followed step-by-step for each new version of a library that is 
about to be publically released. I'll reproduce the algorithm verbatim here for your 
information: 

 Start with version information of 0:0:0 for each libtool library. [This is done automatically 
by simply omitting the -version option from the list of linker flags passed to the 
libtool script.] 

 Update the version information only immediately before a public release of your software. 
More frequent updates are unnecessary, and only guarantee that the current interface 
number gets larger faster. 

 If the library source code has changed at all since the last update, then increment 
revision (c:r:a becomes c:r+1:a). 

 If any interfaces [exported functions or data] have been added, removed, or changed 
since the last update, increment current, and set revision to 0. 

 If any interfaces have been added since the last public release, then increment age. 
 If any interfaces have been removed since the last public release, then set age to 0. 

Keep in mind that this is an algorithm, and as such it is designed to be followed step by 
step, as opposed to jumping directly to the steps that appear to apply to your case. For 
example, if you removed any API functions from your library since the last release, you 
would not simply jump to the last step and set age to zero. Rather, you would follow all of 
the steps properly until you reached the last step, and then set age to zero. 
In greater detail: assume that this is the second release of a library, and that the first 
release was named libexample.so.0.0.0, and that one new function was added to 
the API during this development cycle, and one old function was deleted. The effect on 
this release of the library would be as follows: 

 (n/a) 



 (n/a) 
 libexample.so.0.0.0 -> libexample.so.0.1.0 (library source was changed) 
 libexample.so.0.1.0 -> libexample.so.1.0.0 (library interface was modified) 
 libexample.so.1.0.0 -> libexample.so.1.0.1 (one new function was added) 
 libexample.so.1.0.1 -> libexample.so.1.0.0 (one old function was removed) 

Why all the "hoop jumping"? Because, as I alluded to earlier, the versioning scheme is 
honored by the linker and the operating system loader. When the linker creates the 
library name table in an executable image header, it writes the versions of the libraries 
linked to the application along side of each entry in this table. When the loader searches 
for a matching library, it looks for the latest version of the library required by the 
executable. If the application was linked with version 0.0.0 of a particular library, but the 
user only has version 1.0.1 installed, the system will load it and use it because it's 
current and age values indicate that it supports the required version (0). 
Note also that libname.so.0.0.0 can coexist in the same directory as 
libname.so.1.0.0 without any problem. Programs that need the earlier version 
(which supports only the later interface because of the deleted function) will properly and 
automatically have it loaded into their process address space, just as will programs that 
require the later version properly have the "1.0.0" version loaded. 
One more point regarding interface versioning. Once you fully understand Libtool 
versioning, you'll find that even the above algorithm does not cover all possible interface 
modification scenarios. Consider, for example, version 0.0.0 of a shared library that you 
maintain. Now, assume you add a new function to the interface for the next public 
release. This second release is properly named version 1.0.1, because the library 
supports both interfaces 0 and 1. Just before the third release of the library, you realize 
that you didn't really need that new function after all, and so you remove it. Assume also 
that this is the only change made to the library interface in this release. The above 
algorithm would have this release named version 2.0.0. But in fact, you've merely 
removed the second interface, and are now presenting the original interface once again. 
Technically, this library should be properly named version 0.1.0, as it presents a second 
release of version 0 of the shared library interface. 

Using libltdl to dlopen a shared library 
Once again, I'm going to have to add some functionality to the Jupiter project in order to 
illustrate the concepts of this section. The goal here is to create a plug-in interface that 
the jupiter application can use to enhance the output. 

Necessary infrastructure 

Currently, jupiter prints "Hello, from jupiter!". (Actually, the name printed is more likely 
at this point to be a long ugly path containing some Libtool directory garbage and some 
derivation of the name "jupiter", but just pretend it prints "jupiter" for now.) I'm going to 
add an additional parameter to the common static library print routine, named 
"salutation". This parameter will also be a character string reference, and will contain the 
leading word or phrase--the salutation, as it were. 
Here are the changes I have to make to the files in the common directory: 
common/print.c 
 

... 

static void * print_it(void * data) 

{ 

   char ** strings = (char **)data; 



   printf("%s from %s!\n", strings[0], strings[1]); 

   return 0; 

} 

 

int print_routine(char * salutation, char * name) 

{ 

   char * strings[] = {salutation, name}; 

 

#if ASYNC_EXEC 

   pthread_t tid; 

   pthread_create(&tid, 0, print_it, strings); 

   pthread_join(tid, 0); 

#else 

   print_it(strings); 

#endif 

   return 0; 

} 

common/jupcommon.h 
 

#ifndef JUPCOMMON_H_INCLUDED 

#define JUPCOMMON_H_INCLUDED 

 

int print_routine(char * salutation, char * name); 

 

#endif  /* JUPCOMMON_H_INCLUDED */ 

And here are the changes I need to make to the files in the libjup and include 
directories: 



libjup/jup_print.c 
 

... 

int jupiter_print(char * salutation, char * name) 

{ 

   print_routine(salutation, name); 

} 

include/libjupiter.h 
 

... 

int jupiter_print(char * salutation, char * name); 

... 

And finally, here are the changes I need to make to main.c in the src directory: 
src/main.c 
 

... 

#define DEFAULT_SALUTATION "Hello" 

 

int main(int argc, char * argv[]) 

{ 

   char * salutation = DEFAULT_SALUTATION; 

 

   jupiter_print(salutation, argv[0]); 

 

   return 0; 

} 

To be clear, all I've really done here is parameterize the salutation in the print routines. 
That way, I can indicate from main what salutation I'd like to use. I've set the default 
salutation to "Hello", so that nothing will have changed from the user's perspective. The 



overall effect of these changes was benign. Note also that these are all source code 
changes. I've made no changes to the build system. 

Adding a plug-in interface 

Now, I can begin to discuss adding a plug-in interface to Jupiter. I'd like to make it 
possible to change the salutation displayed by simply changing a plug-in module. The 
code and build system changes required to add this functionality will be limited here to 
the src directory, and subdirectories thereof. 
First, I need to define the actual plug-in interface. I'll do this by creating a new private 
header file in the src directory, called module.h: 
src/module.h 
 

#ifndef MODULE_H_INCLUDED 

#define MODULE_H_INCLUDED 

 

#define GET_SALUTATION_SYM "get_salutation" 

 

typedef char * get_salutation_t(void); 

 

char * get_salutation(void); 

 

#endif  /* MODULE_H_INCLUDED */ 

There are a number of interesting points about this header file. First, the preprocessor 
definition, GET_SALUTATION_SYM. This string represents the name of the function you 
need to import from the plug-in module. I like to define these in the header file, so that all 
of the information that needs to be reconciled co-exists in one place. In this case, the 
symbol name, the function type definition, and the function prototype must all be in 
alignment. While I could have simply allowed the caller to specify the string, defining the 
symbol name here allows me to change it later if I need to. As long as the caller used the 
definition I provided, s/he should be unaffected by a name change (of course, s/he'll have 
to recompile). 
Another interesting point is the type definition: why should I provide one? If I don't, the 
user is going to have to invent one, or else use a complex type cast on the return value of 
the dlsym function. I provide it here for consistency. Finally, look at the function 
prototype. This isn't so much for the caller, as it is for the module itself. Modules providing 
this function should include this header file, so that the compiler can catch potential mis-
spellings of the function name. Since all of this information must be in agreement, I 
simply define it all here together. 

Doing it the "old-fashioned" way 

For this first attempt, I'll use the dlopen/dlsym/dlclose interface provided by the 
Solaris, BSD and Linux libdl.so library. Then, in the next section, I'll convert this code 



over to the Libtool ltdl interface. To do this right, I need to add checks to the 
configure.ac script to look for both the libdl library and the dlfcn.h header file: 
configure.ac 
 

... 

# Checks for header files (2). 

AC_CHECK_HEADERS([stdlib.h dlfcn.h]) 

 

# Checks for libraries. 

# Checks for typedefs, structures, and compiler... 

# Checks for library functions. 

AC_SEARCH_LIBS([dlopen], [dl]) 

... 

echo \ 

"------------------------------------------------- 

 

 ${PACKAGE_NAME} Version ${PACKAGE_VERSION} 

 

 Prefix: '${prefix}'. 

 Compiler: '${CC} ${CFLAGS} ${CPPFLAGS}' 

 Libraries: '${LIBS}' 

... 

These changes consist of adding the dlfcn.h header file to the list of files passed to the 
AC_CHECK_HEADERS macro, and adding a check for the dlopen function in the dl 
library. Note here that the AC_SEARCH_LIBS macro searches a list of libraries for a 
function, so this call goes under the section entitled, "Checks for library functions.", rather 
than the one entitled, "Checks for libraries." 
To help me see which libraries I'm actually linking against, I've also added a line to the 
echo statement at the end of the file. The "Libraries:" line displays the contents of the 
LIBS variable, which is modified by the AC_SEARCH_LIBS macro. 
NOTE: The LT_INIT macro actually already checks for the existence of the dlfcn.h 
header file, but I do it here explicitly, so it's obvious to observers that I wish to use this 
header file myself. This is a good rule of thumb to follow, as long as it doesn't negatively 



affect performance too much. In this case, I felt it was well worth the extra check. Besides 
that, the results of the check performed by LT_INIT is cached by autom4te, so it has 
little effect anyway. 
Now it's time to actually add a new module. This requires several changes, so I'll make 
them all here now in the following command sequence: 

 

$ cd src 

$ mkdir -p modules/hithere 

$ vi Makefile.am 

SUBDIRS = modules 

... 

$ echo "SUBDIRS=hithere" > modules/Makefile.am 

$ cd modules/hithere 

$ echo "pkglib_LTLIBRARIES = hithere.la 

> hithere_la_SOURCES = hithere.c 

> hithere_la_LDFLAGS = -module \ 

>  -avoid-version" > Makefile.am 

$ vi hithere.c 

#include "../../module.h" 

 

char * get_salutation(void) 

{ 

   return "Hi there"; 

} 

Okay, look for a moment at this sequence. First, I created a modules directory beneath 
the existing src directory, and then a hithere directory beneath the new modules 
directory. The hithere module will provide the salutation, "Hi there" to the caller. 
Next, I added a SUBDIRS directive to the top of the src/Makefile.am file, indicating 
that the new modules directory should be processed by Automake. Then I created a 
new Makefile.am file in the new hithere directory, containing instructions on how to 
build the hithere.c source file. Finally, I went ahead and added the hithere.c 
source file, itself. 



The source file includes the private module.h header file using a double quoted relative 
path. The make VPATH statement will handle any differences between the source and 
build trees with regard to this relative path. The file then defines the get_salutation 
function, which is prototyped in the module.h header file. It simply returns a pointer to a 
static string. 
As long as this library is loaded, this string is available to the caller. This is important to 
know because the caller must know the scope of data references returned by plug-in 
modules, as such modules could inadvertently be unloaded before the caller is ready to 
stop using these references. 

The last line of the hithere/Makefile.am file requires some explanation. Here, I'm 
using a -module option on the hithere_la_LDFLAGS variable. This is a Libtool option, 
that tells Libtool that you really do want to call your library "hithere", and not 
"libhithere". The GNU Libtool manual makes the statement that modules do not need 
to be prefixed with "lib". Quite frankly, I'm not sure who came up with this policy, but it 
seems fairly arbitrary to me. I suppose the reason for this is that since your own code will 
be loading the module, it should not have to be concerned with using the "lib" prefix. Oh 
well, there you have it--modules need not be prefixed with "lib". 
If you don't care to use module versioning on your dynamically loadable (dlopen) 
modules, then try using the Libtool -avoid-version option, as I've also done here. 
This option causes Libtool to generate the shared library as libname.so, rather than 
libname.so.0.0.0, along with links for libname.so.0 and libname.so pointing to 
this binary image. 
I still need to make one more change to the configure.ac file to get this new module 
to build. I need to add these two new makefiles to the AC_CONFIG_FILES list. 
configure.ac 
 

... 

AC_CONFIG_FILES([Makefile 

                 common/Makefile 

                 include/Makefile 

                 libjup/Makefile 

                 src/Makefile 

                 src/modules/Makefile 

                 src/modules/hithere/Makefile]) 

... 

These changes will allow our module to be built, but I'm still not using it. To use the 
module, I need to modify the src/main.c file so that it loads the module, imports the 
symbol, and uses it. 
src/main.c 
 

#include <libjupiter.h> 



#include "module.h" 

 

#if HAVE_CONFIG_H 

# include <config.h> 

#endif 

 

#if HAVE_DLFCN_H 

# include <dlfcn.h> 

#endif 

 

#define DEFAULT_SALUTATION "Hello" 

 

int main(int argc, char * argv[]) 

{ 

   char * salutation = DEFAULT_SALUTATION; 

 

#if HAVE_DLFCN_H 

   void * module; 

   get_salutation_t * get_salutation_fp = 0; 

 

   module = dlopen("./module.so", RTLD_NOW); 

   if (module != 0) 

   { 

      get_salutation_fp = (get_salutation_t *) 

            dlsym(module, GET_SALUTATION_SYM); 

      if (get_salutation_fp != 0) 



         salutation = get_salutation_fp(); 

   } 

#endif 

 

   jupiter_print(salutation, argv[0]); 

 

#if HAVE_DLFCN_H 

   if (module != 0) 

      dlclose(module); 

#endif 

 

   return 0; 

} 

In this new version of main.c, I'm including the new private module.h header file. I've 
also added preprocessor directives to conditionally include config.h, and then 
dlfcn.h. Finally, I've added two sections of code; one before and one after the original 
call to jupiter_print. Both are conditionally compiled, based on whether or not I have 
access to a dynamic loader. This conditional, of course, allows our code to build and run 
correctly on systems that do not provide run-time dynamic linking via the libdl library. 
The general philosophy that I use here when deciding if code should be conditionally 
compiled is this: if I fail in the configure script because a library or header file is 
missing, then I don't need to conditionally compile the code that uses the item checked 
for by configure. If I check for a library or header file in configure, but allow it to 
continue if it's missing, then I'd better use conditional compilation. 
There are just a few more minor points to bring up regarding the use of libdl interface 
functions. First, dlopen accepts two parameters, a file name or path (absolute or 
relative), and a flags word, which is the bitwise composite of your choice of several flag 
values defined in dlfcn.h. If a path is used, then dlopen honors that path verbatim. 
But if a file name is used, then the library search path is searched for your module. By 
prefixing the name with ./, I've told dlopen not to search. 
But, shouldn't the file name have been "hithere.so"? Well, it's true that I built a module 
called "hithere.so", but I want to be able to configure which module jupiter uses. So 
I'm using the generic name, "module.so". In fact, the built module is actually located 
several directories down in the build tree from the src directory. To test this functionality, 
I'll need to create a link in the current directory called module.so that points to the 
module I wish to load. 
 

$ ./configure && make 



... 

$ cd src 

$ ./jupiter 

Hello, from ...jupiter! 

$ ln -s modules/hithere/.libs/hithere.so module.so 

$ ./jupiter 

Hi there, from ...jupiter! 

$  

All of this would normally be done using policy defined in some sort of configuration file in 
a real application, but none of this is important in this example, so I'm simply ignoring 
these details to simplify the code. 

Check the man page for dlopen to learn more about the flag bits that may be specified. 
By this point in this chapter, you should have the background required to understand 
most of the descriptions you'll find there. 

Converting to Libtool's ltdl library 
As I mentioned earlier, Libtool provides a wrapper library called ltdl that abstracts and 
hides some of the portability issues surrounding the use of shared libraries across many 
different platforms. Most applications ignore the ltdl library because of the added 
complexity involved in using it. But there are really only a few issues to deal with. I'll 
enumerate them here, and then cover them in detail: 
 The ltdl functions follow a naming convention based on the dl library. However, the 

names are different. Generally, the rule of thumb is that dl functions such as dlopen 
are prefixed in the ltdl library with lt_. Thus, dlopen is named lt_dlopen. 

 Unlike the dl library, the ltdl library must be initialized and terminated at appropriate 
locations in a program. 

 To make full use of ltdl functionality--even on platforms that don't provide shared 
library functionality--you need to build your consuming application (the jupiter 
program, in this case), using the -dlopen <modulename> option on the linker 
command line. 

 To ensure that modules can be "opened" on non-shared library platforms, or when 
building static-only configurations, you need to use the 
LTDL_SET_PRELOADED_SYMBOLS() macro at an appropriate location in your 
program source code. 

 Shared library modules designed to be dlopened using ldtl should use the -
module option (and optionally, the -avoid-version option) on the linker command 
line (specifically, in the *_LDFLAGS variable). 

 The ltdl library also provides extensive functionality beyond the dl library, and this 
can be intimidating, but all of this other functionality is optional. 

Take a look specifically at what I need to do to the Jupiter project build system in order to 
use the ltdl library. First, I need to modify the configure.ac script to look for the 
ltdl.h header, and search for the lt_dlopen function. This means modifying 
references to dl.h and the dl library in the AC_CHECK_HEADERS and 
AC_SEARCH_LIBS macros: 
configure.ac 



 

... 

# Checks for header files (2). 

AC_CHECK_HEADERS([stdlib.h ltdl.h]) 

 

# Checks for libraries. 

# Checks for typedefs, structures, and compiler... 

# Checks for library functions. 

AC_SEARCH_LIBS([lt_dlopen], [ltdl]) 

... 

If I'm using Libtool, then why do I even need to check for ltdl.h and libltdl? 
Because, these are separate libraries, which must be installed on your end-user's system 
in order to make them available. 
I'd like you to recognize that this is the first time that the Autotools have required an end-
user to have an Autotools package installed on his or her machine. This is the very 
reason is why most people avoid the use of ltdl entirely. The GNU Libtool manual 
provides a detailed description of how to package the ltdl library with your project, so 
that it get's built and installed on the end-user's system when your package is built and 
installed. 
In fact, this tutorial (which you'll find in Section 11.6 of that manual) is a great example of 
adding sub-projects into a project. Interestingly, shipping the source code for the ltdl 
library with your package is the only way to get your program to statically link with the 
ltdl library. Linking statically with ltdl has the added (and very ironic) side effect of 
not requiring the ltdl library to be installed on the end-user's system at all! Since it 
becomes part of your executable images, you no longer need it to be installed. However, 
there are caveats to doing this. If you happen to consume a third-party library that does 
link dynamically to ltdl, then you'll have a symbol conflict between the shared and static 
versions of the ltdl libraries. Given how little ltdl is currently used, this is an unlikely 
scenario these days, but all of this could change in the future, if more packages begin to 
use ltdl, one way or the other. 
In any case, by searching for these installed resources on the end-user's system, and by 
failing configuration if they're not found, or by properly using preprocessor definitions in 
your source code, you can provide the same sort configuration experience with ltdl that 
I've talked about throughout this book when using other third-party resources. It's the 
same, really. 
The next major change required is found in the source code--limited, in this case, to 
src/main.c: 
src/main.c 
 

#include <libjupiter.h> 

#include "module.h" 



 

#if HAVE_CONFIG_H 

# include <config.h> 

#endif 

 

#if HAVE_LTDL_H 

# include <ltdl.h> 

#endif 

 

#define DEFAULT_SALUTATION "Hello" 

 

int main(int argc, char * argv[]) 

{ 

   char * salutation = DEFAULT_SALUTATION; 

 

#if HAVE_LTDL_H 

   int ltdl; 

   lt_dlhandle module; 

   get_salutation_t * get_salutation_fp = 0; 

 

   LTDL_SET_PRELOADED_SYMBOLS(); 

 

   ltdl = lt_dlinit(); 

   if (ltdl == 0) 

   { 

      module = lt_dlopen("modules/.../hithere.la"); 



      if (module != 0) 

      { 

         get_salutation_fp = (get_salutation_t *) 

               lt_dlsym(module, GET_SALUTATION_SYM); 

         if (get_salutation_fp != 0) 

            salutation = get_salutation_fp(); 

      } 

   } 

#endif 

 

   jupiter_print(salutation, argv[0]); 

 

#if HAVE_LTDL_H 

   if (ltdl == 0) 

   { 

      if (module != 0) 

         lt_dlclose(module); 

      lt_dlexit(); 

   } 

#endif 

 

   return 0; 

} 

The changes here are very symmetrical with respect to the original code. Mostly, items 
that previously referred to dl now refer to ltdl or lt_dl. For example, #if 
HAVE_DL_H now becomes #if HAVE_LTDL_H, and so forth. 
One important change is the fact that the ltdl library must be initialized with a call to 
lt_dlinit, whereas the dl library need not be initialized at all. This complicates the 
code a little--in fact, it may appear to do so much more than it really does, just by virtue of 



the fact that jupiter is so ridiculously simple. In a larger program, the complexity 
overhead of calling lt_dlinit and lt_dlexit are amortized over a much larger code 
base. 
Another important detail is the addition of the LTDL_SET_PRELOADED_SYMBOLS macro. 
This macro is used to configure global variables required by the lt_dlopen and 
lt_dlsym functions on systems that don't support shared libraries. It's benign on 
systems where shared libraries are used. 
One last detail that I should mention is that the return type of dlopen was void *, or a 
generic pointer, whereas the return type of lt_dlopen is actually lt_dlhandle. This 
abstraction is important so that ltdl can be ported to systems that have a return type 
not compatible with a void pointer. 
When a system doesn't support shared libraries, Libtool actually links all modules that 
might be loaded right into the program. Thus, the jupiter program's linker command 
line must contain some form of reference to these modules. This is done using the -
dlopen <modulename> construct, in this manner: 
src/Makefile.am 
 

... 

jupiter_LDADD = ../libjup/libjupiter.la \ 

 -dlopen modules/hithere/hithere.la 

... 

Now, this begs the question: What do you do when there is a choice of module to be 
loaded, as in the case of the jupiter program? If Libtool links them all into a program, and 
they all provide a get_salutation function, then there will be a conflict of public 
symbols. Which one will be used? The GNU Libtool manual provides for this condition by 
defining a convention for symbol naming: 

 All exported interface symbols should be prefixed with <modulename>_LTX_ (eg., 
hithere_LTX_get_salutation). 

 All remaining non-static symbols should be reasonably unique. The Libtool way is to 
prefix them with _<modulename>_ (eg., _jupiter_internal_function). 

 Modules should, of course, be named differently, even if they're built in different 
directories. 
Although (unfortunately) it's not explicitly stated in the GNU Libtool manual, the 
lt_dlsym function first searches for the specified symbol as 
<modulename>_LTX_<symbolname>, and then, if it can't find a prefixed version of the 
symbol, for exactly <symbolname>. 
You can see that this convention, or something like it, is necessary, but only for cases 
where Libtool may statically link such loadable modules directly into the application on 
systems that don't support shared libraries. Libtool's ltdl library makes it possible to 
have the appearance of shared libraries on platforms that don't support shared libraries, 
but the price you have to pay for this level of portability is pretty high. This is another 
reason why people avoid the use of ltdl. 
To fix the hithere module's source code so that it's in conformance with this convention, 
I have to make the following changes: 
src/modules/hithere/hithere.c 
 

#define get_salutation hithere_LTX_get_salutation 



 

#include "../../module.h" 

 

char * get_salutation(void) 

{ 

   return "Hi there"; 

} 

While it is indeed rather odd to have a preprocessor definition above a header file 
inclusion statement, in this case, it makes sense. By defining the replacement for 
get_salutation above the inclusion of the module.h header file, I'm also able to 
change the prototype in the header file so that it matches the modified version of the 
function name. Because of the way the C preprocessor works, this substitution only 
affects the function prototype in module.h, not the quoted symbol string, or the type 
definition. 

Checking it all out 

You can test your program and modules for both static and dynamic shared library 
systems by using the --disable-shared option on the configure command line: 
 

$ ./configure --disable-shared && make 

... 

$ cd src 

$ ls -1p modules/hithere/.libs 

hithere.a 

hithere.la 

hithere.lai 

$ ./jupiter 

Hi there, from ./jupiter! 

$ 

$ cd .. 

$ make clean 

... 



$ ./configure && make 

$ cd src 

$ ls -1p modules/hithere/.libs 

hithere.a 

hithere.la 

hithere.lai 

hithere.o 

hithere.so 

$ ./jupiter 

Hi there, from ...jupiter! 

$  

As you can see, in both configurations, the output contains the hithere salutation, and 
yet in the --disable-shared version, the shared library doesn't even exist. It seems 
that ltdl is doing its job. 
The Jupiter code base has become rather fragile, because I've ignored the issue of 
where to find shared libraries at run-time. This problem would ultimately have to be fixed 
in a real program. But, given that I've finished my task of showing you how to properly 
use the Libtool ltdl library, and that I've taken the "Hello, world!" concept much farther 
than anyone has a right to, I think I'll just leave the rest as an exercise. 

Summary 

That was a lot to assimilate. Libtool, as with the other packages in the Autotools tool 
chain gives you a lot of functionality and flexibility. As you've probably noticed, with this 
functionality and flexibility comes complexity. 

Libtool can make your life easier, or more difficult, depending on how you choose to use 
the options and flexibility it offers you. But with this background, you can decide the 
degree to which you will embrace the optional features of Libtool, like the ltdl library, 
for example. The decision to use shared libraries brings with it a whole truck-load of 
issues. Each must be dealt with if you're interested in maximum portability. The ltdl 
library is not a solution to every problem. It solves some problems, but brings others to 
the surface. Suffice it to say that using ltdl has trade-offs. 
Hopefully, by spending a little time going through the exercises in this book, you've been 
able to "get your head around" the Autotools enough to at least be comfortable with how 
they work and what they're doing for you. At this point, you should be very comfortable 
Autotool-izing your own projects--at least at the basic level. 

Source archive 

Download the attached source archive for the original sources associated with this 
chapter. 
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Chapter 6: FLAIM: an Autotools 
example 
Mon, 2008-03-10 20:34 -- John Calcote 

In this book, I've taken you on a whirlwind tour of the main features of Autoconf, 
Automake and Libtool. I believe I've explained them in a manner that was not only simple 
to digest, but also to retain--especially if you had the time and inclination to follow my 
lead with your own copies of the examples. I've always believed that no form of learning 
comes anywhere close to the learning that happens while doing. 
This chapter has downloads! 
In this chapter, I'll continue this learning-by-doing pattern by converting an existing open 
source project to use the GNU Autotools. 

The project I've chosen is called FLAIM, which is (what else?) an acronym that stands for 
FLexible Adaptable Information Management. FLAIM is actually a highly scalable 
database management system, written entirely in C++, and built on its own thin portability 
layer called the FLAIM Tool Kit (FTK). 

What's FLAIM?! 

Some of you out there may recognize FLAIM as the database used by both Novell 
eDirectory and the Novell GroupWise server. Novell eDirectory currently uses this 
particular version of FLAIM today to manage directory information bases (DIBs) 
containing over a billion objects. GroupWise actually uses a much earlier spin-off of 
FLAIM. 

Novell made the FLAIM source code available as an open source project licensed under 
the GNU General Public License (GPL) version 2 in 2006. The FLAIM project is hosted 
by Novell's forge site. As a side note, if you're interested in looking at FLAIM yourself, 
you'll need to set up a Novell account. This is simple to do, and costs nothing. You'll be 
given the opportunity to create a Novell account the first time you attempt to access the 
Novell forge site. 

Why FLAIM? 

While FLAIM is not a mainstream OSS project, it has several qualities that make it the 
perfect choice of project to convert to GNU Autotools in this chapter. For instance, it's 
currently built using a hand-coded makefile--and a beast of makefile it is, too, containing 
well over 2000 lines of complex make script. The FLAIM makefile contains a number of 
GNU-make specific constructs, and thus can only be processed using GNU make. 
Individual (but nearly identical) makefiles are used to build the flaim, xflaim, and flaimsql 
database libraries, as well as the FLAIM tool kit (ftk) and several utility and sample 
programs on GNU/Linux, Unix, Windows and NetWare. 

The existing FLAIM build system targets several different flavors of Unix, including AIX, 
Solaris, and HP/UX, as well as Apple's OS X. It also targets multiple compilers on these 
systems. These features make FLAIM ideal for my example conversion project, because 
I can show you how to handle differences in operating systems and tool sets in the new 
configure.ac files. 
The existing build system also contains rules for many of the standard GNU Autotools 
targets, such as distribution tarballs. In addition, it provides rules for building binary 
installation packages, as well as RPMs for systems that can build and install RPM 
packages. Finally, it even provides targets for building doxygen description files, which it 



then uses to build source documentation. I'll spend a few paragraphs discussing how 
these types of targets can be added to the infrastructure provided by Automake. 

The FLAIM tool kit is a portability library that can be built and consumed in its own right 
by third-party applications or libraries. This gives me the opportunity to demonstrate 
Autoconf's ability to manage separate sub-projects as optional sub-directories within a 
project. That is, if the FLAIM tool kit happens to already be installed on the end-user's 
build machine, then the installed version may be used, or optionally overridden with the 
local copy. On the other hand, if the FLAIM tool kit is not installed, then the local, sub-
directory based copy will be used by default. 

The FLAIM project also provides code to build both Java and CSharp language bindings, 
which allows me to delve a bit into those esoteric realms. I'll not go into great detail on 
building either Java or CSharp applications, but I will cover how to write a Makefile.am 
file that does. 
The FLAIM project makes good use of unit tests, which are built as individual programs 
that run without command line parameters. Thus, I can easily show you how to add unit 
tests to the new FLAIM build system using Automake's trivial test framework. (Autoconf 
supplies a more extensive test framework called Autotest, but I'll not discuss Autotest at 
this time.) 

The FLAIM project, and its original build system happen to use a reasonably modular 
directory layout, making it rather easy to convert to GNU Autotools, which simply run 
better in projects that follow such good design principles. As one of my goals is ultimately 
to submit this build system back to the project maintainers, it's nice not to have to 
rearrange too much of the source code. A simple directory tree diff should suffice. 

Finally, I also chose FLAIM because I have some limited experience with it. Although I 
have been given check-in rights to the project, I'm not really a FLAIM developer, and my 
experience is pretty much limited to using it for simple database projects occasionally. 

Why hasn't FLAIM already been converted? 

There are several good reasons why FLAIM hasn't already been converted to use the 
GNU Autotools. 

 FLAIM is still a fairly new open source project, having only been released a couple of 
years ago. 

 FLAIM's existing build system is well-understood by the developers, and they have 
limited experience with the GNU Autotools. 

 FLAIM's build system targets three different kinds of platform, Windows, Unix and 
NetWare, using only GNU makefiles. This makes it difficult to give up, because one 
makefile is used to build FLAIM for all target platforms. 
But FLAIM's build system is not well understood by the open source community. Since 
FLAIM's release into the "wild", several people have complained about FLAIM's "nasty" 
makefile on the FLAIM mailing lists. The GNU makefile that FLAIM uses is more or less 
an unmaintainable monstrosity, from the perspective of new developers. This negative 
attitude has an almost viral effect on the usefulness of the entire project within the 
community. 
These community critics are accurate in their assessment of FLAIM's build system, with 
respect to an open source project. The FLAIM team recognizes this and has voiced the 
desire to establish an Autotools build system, at least for GNU/Linux and Unix platforms. 
This means that duplicate build systems would have to be created for NetWare and 
Windows (as per my personal philosophy with respect to using Autotools on non-Unix 
systems). But, as they say in the shoe business, "The customer is always right!". 



An initial look 

Let me just start by saying that converting FLAIM from GNU makefiles to an Autotools 
build system is a non-trival project. It took me a couple of weeks. Much of that time was 
spent determining exactly what to build, and how to do it--in other words, analyzing the 
existing FLAIM build system. Another significant portion of my time was spent on 
converting aspects of the FLAIM build system that lay on the outer fringes of Autotools 
functionality. For example, I spent more time converting build system rules for building 
CSharp language bindings than I did for building the core C++ FLAIM libraries. 

Working on the outer fringes of Autotools capabilities can be a frustrating experience. I'll 
readily admit that this is where most people get disgusted with the GNU Autotools--
especially with Automake. It's my hope that this Chapter will put you ahead of most 
others in this area. Once you learn a few tricks, working on the outer fringe is pretty 
simple. 

The first step in this conversion project is to analyze the existing directory structure and 
build system. What components are actually built, and which components depend on 
others? Can individual components be built, distributed and consumed independently? 
These types of component-level relationships are important, because they'll often 
determine how you want to layout your project directory structure. 

The FLAIM project is actually several small projects, combined into one large umbrella 
project within its Subversion repository. There are three separate and distinct database 
products, flaim, xflaim and flaimsql. The flaim sub-project is the original FLAIM database 
library used by eDirectory and GroupWise. The xflaim project is a hierarchical XML 
database, optimized for node-based access. This version was developed for internal 
projects at Novell. The flaimsql project is FLAIM with integrated SQL semantics exposed 
through the FLAIM API. This was an experiment, which frankly isn't quite finished. 

The point is that all three of these database libraries are separate and unrelated to each 
other; none of them depend on the others. Since they may easily be used independently 
of one another, they can actually be shipped as individual distributions. Each could be 
considered an individual project, in its own right. This, then will become one of my 
primary goals--to allow the FLAIM project to be easily broken up into smaller projects, 
which may be managed independently of one another. 

The FLAIM tool kit is also an independent project. While it's tailored specifically for the 
FLAIM database projects, providing just the system service abstractions required for a 
DBMS, it depends on nothing but itself, and may easily be used as the basis for 
portability within another project, without dragging any unnecessary database baggage 
along. As you might guess, its file I/O abstraction is highly optimized. 

The existing FLAIM project is laid out in its Subversion repository like this: 

 

trunk 

  flaim 

    flaim 

      sample 



      src 

      util 

    ftk 

      src 

      util 

    sql 

      src 

    xflaim 

      csharp 

      java 

      sample 

      src 

      util 

The complete tree is fairly deep and broad, and there are significant utilities, tests and 
other such binaries that are built by the existing FLAIM build system. At some point 
during the downward trek into this hierarchy, I have to simply stop and consider whether 
it's worth converting that additional utility or layer. If I don't, this chapter will be as long as 
all the others combined! 

To this end, I've decided to convert: 

 the libraries themselves 
 the unit and library tests 
 the utilities and other such high-level programs found in the various util directories 
 the Java and CSharp language bindings. 

I'll also convert the CSharp unit tests, but I won't go into the Java unit tests because 
(believe it or not), attempting to work within the Automake-provided Java framework is 
more painful than just writing the rules yourself. Since Automake provides no help for 
CSharp, I have to provide everything myself. 

Getting started 

My first true design decision was centered around how to organize this one FLAIM 
project into sub-projects. As it turns out, the existing layout is perfect for what I've 
ultimately done. I've created a master configure.ac file in the top-level flaim 
directory--the one just under trunk. This configure.ac file acts as a sort of Autoconf 
control file for each of the four lower-level projects, ftk, flaim, flaimsql and xflaim. 
I've managed the database library dependencies on the FLAIM tool kit (ftk) by treating it 
as a pure external dependency, defined by make variables FTKINC and FTKLIB. In this 



way, I've conditionally defined these variables to point to one of a couple of different 
sources, including installed libraries, or even user-specified configure options. 

Adding the configure.ac scripts 
The directory structure under the Autotools build system won't change much. In the 
following directory layout, I've indicated where I've placed individual configure.ac files. 
You'll recall that each configure.ac file represents a separate and individual project, 
which may be packaged and distributed independently. 
 

trunk 

  flaim       configure.ac (master) 

    flaim     configure.ac (flaim) 

      sample 

      src 

      util 

    ftk       configure.ac (ftk) 

      src 

      util 

    sql       configure.ac (flaimsql) 

      src 

    xflaim    configure.ac (xflaim) 

      csharp 

      java 

      sample 

      src 

      util 

        java 

After these design decisions were made, the next task was to create these 
configure.ac scripts. The top-level script was trivial, so I created it by hand. The 
project-specific scripts were more complex, so I allowed the autoscan utility to do the 
bulk of the work for me. Right now, take a look at that top-level configure.ac script: 
 

#                 -*- Autoconf -*- 



# Process this file with autoconf to produce a c... 

 

AC_PREREQ([2.62]) 

AC_INIT([flaim-projects], [1.0]) 

AC_CANONICAL_SYSTEM 

AM_INIT_AUTOMAKE([-Wall -Werror foreign]) 

LT_PREREQ([2.2]) 

LT_INIT([dlopen]) 

 

AC_CONFIG_MACRO_DIR([m4]) 

AC_CONFIG_SUBDIRS([ftk flaim sql xflaim]) 

AC_CONFIG_FILES([Makefile]) 

AC_OUTPUT 

This file is short and simple, because it doesn't do much. Nevertheless, there are some 
new and important concepts in this file that I'd like to discuss. Since its only job is to 
configure several lower-level projects, I've taken some shortcuts. The project name and 
version number, for instance, are really rather unimportant, as this project will probably 
never be distributed in one large tarball. Regardless, some values had to be used, so I 
invented the name flaim-projects, and the version number 1.0. These are not likely 
to change unless really dramatic changes take place in the project directory structure in 
the future. 
The most important aspect of this script is the use of the AC_CONFIG_SUBDIRS macro. 
This new macro, which I haven't yet covered in this book, lists the sub-projects to be built, 
along with the current project. This macro is effectively the Autoconf equivalent of the 
Automake SUBDIRS variable. It allows the maintainer to set up a hierarchy of projects, in 
much the same way that SUBDIRS configures the directory hierarchy for Automake within 
a single project. 
Because the four sub-projects actually contain all of the functionality, this 
configure.ac script acts simply as a control file, passing all specified configuration 
options to each of the sub-projects successively, in the order that they're specified in 
AC_CONFIG_SUBDIRS. The ordering is important, because the FLAIM tool kit project 
must be built first, since the other projects depend on it. 
Another important new concept in this file is the use of the AC_CANONICAL_SYSTEM 
macro. This macro causes the environment variables, $host, $build and $target to 
be defined. These variables contain canonicalized CPU, operating system and 
manufacturer values for the host, build and target systems. This information can easily be 
parsed later in the configure.ac file in order to configure system-specific options. I'll 
dive more deeply into this concept in the project-specific scripts below. 

Automake in the umbrella project 



Automake usually requires the existence of several text files in the top-level project 
directory. These include the AUTHORS, COPYING, INSTALL, NEWS, README, and 
ChangeLog files. In the case of this umbrella project, it would be nice not to have to deal 
with these files, as they are rather redundant here. I could do this by not using Automake 
at all, but then I'd either have to create my own Makefile.in template for this directory, 
or use Automake once to generate one for me. I could then check this template into the 
repository as part of the project, along with the install-sh and missing scripts that 
are installed by autoreconf -i. Once I have these files in place, I could then remove 
the AM_INIT_AUTOMAKE macro from the master configure.ac file, and Autoconf will 
create the final makefile from the preserved template. 
Another option would be to keep the AM_INIT_AUTOMAKE macro, and use the foreign 
option in the macro's optional parameter. The foreign option tells Automake that the 
project will not follow GNU standards, and thus Automake will not require the usual GNU 
project text files. This is the path I decided to take, because I might wish to alter the list of 
subordinate projects at some point in the future, and I don't want to have to hand-tweak 
the generated Makefile.in template. 
The AM_INIT_AUTOMAKE parameter contains a string of white-space separated options 
that should be assumed by Automake. When Automake parses the configure.ac 
script, it notes these options, and enables them as if they'd been passed on the 
command line. I've also passed the -Wall and -Werror options, which indicate that 
Automake should enable all (Automake) warnings, and report them as errors. Note that 
these options have nothing to do with the compilation environment--only Automake 
processing. 

Why add the Libtool macros? 

You may be wondering at this point why I've included those expensive Libtool macros. 
The reason is more complicated than I wish it were. Even though I don't do anything with 
Libtool in the umbrella project, the lower level projects expect that a containing project 
will provide all the necessary scripts, and the LT_INIT macro provides the ltmain.sh 
script. 
If you don't initialize Libtool in the umbrella project, then tools like autoreconf, which 
actually look in the parent directory to determine if the current project is itself a sub-
project, will fail when it can't find scripts that its configure.ac file requires. For 
instance, within the ftk project's top-level directory, autoreconf expects to find a file 
called ../ltmain.sh. Note the reference to the parent directory--autoreconf noticed 
by examining the parent directory that ftk was actually a sub-project of a larger project. 
Rather than install all of the auxilliary scripts multiple times, it causes sub-projects to look 
in their parent project's directory for them, so they can be installed once in a multi-project 
package. 
If I don't use LT_INIT in the umbrella project, then I can't successfully run autoreconf 
in the sub-projects, because the ltmain.sh file will not have been installed in the parent 
project's top-level directory. 
NOTE: For the rather small disk space savings it provides, I personally don't think it's 
worth breaking modularity in this manner just to manage this odd child-to-parent 
relationship. 

Adding a macro sub-directory 

Another new construct used in the top-level configure.ac script is the 
AC_CONFIG_MACRO_DIR macro. This macro indicates the name of a sub-directory in 
which the aclocal utility can find all project-local M4 macro files. These files are 
ultimately combined into the aclocal.m4 file used by Autoconf. The use of this macro 
replaces the original single acinclude.m4 file with a directory containing .m4 files. 
NOTE: This entire system of combining (one or more) M4 macro files into a single 
aclocal.m4 file is a bit of a band-aid over a system that was never originally designed 



for more than one macro file. In my opinion, it could use a major overhaul, by doing away 
with aclocal entirely, and just having Autoconf read the macro files in the specified (or 
defaulted) macro directory, along with other macro files found in system locations. 
I've indicated by the parameter to this macro that all of the local macro files to be added 
to aclocal.m4 can be found in a sub-directory called m4. As a side benefit, when 
autoreconf -i is run, and then, when it subsequently executes the required Autotools 
with their respective "add missing" options, these tools will note the use of 
AC_CONFIG_MACRO_DIR in configure.ac, and add all missing required system macro 
files to the m4 directory. 
The actual reason for my choosing to do this is that Libtool will not add its additional 
macro files to the project if you haven't enabled the macro directory option in this manner. 
Instead, it complains loudly that you should add these files to acinclude.m4 yourself. I 
found that none of the macros in the Libtool system macro files were required by my 
project, but that didn't stop it from complaining, and it may not be the case for your 
projects. 
Since I wanted the Autotools to do the job for me, and this is a fairly complex project 
anyway, I decided to begin using this "macro sub-directory" feature. In point of fact, a 
future release of Autotools will require this form anyway, as it's considered the more 
modern way of adding macro files to aclocal.m4, as opposed to using a single user-
generated acinclude.m4 file. 

The top-level Makefile.am file 
The only other point to be covered regarding the umbrella project is the top-level 
Makefile.am file. This file contains the following code: 
 

ACLOCAL_AMFLAGS = -I m4 

 

EXTRA_DIST = libflaim.changes libxflaim.changes 

 

SUBDIRS = ftk flaim sql xflaim 

 

rpms srcrpm: 

        for dir in $(SUBDIRS); do \ 

          $(MAKE) -C $$dir $@; \ 

        done 

 

.PHONY: rpms srcrpm 

The ACLOCAL_AMFLAGS variable is a requirement of using a macro sub-directory. 
According to the Automake documentation, this variable should be defined in the top-
level Makefile.am file of any project that uses AC_CONFIG_MACRO_DIR in its 



configure.ac file. These flags indicate to aclocal where it should look for macro files 
when it's executed by rules defined in Makefile.am. 
I've used the EXTRA_DIST variable here to ensure that additional top-level files get 
distributed. This isn't critical to the umbrella project, since I don't intend to create 
distributions at this level, but I like to be complete. 
The SUBDIRS variable is a duplicate of the information in the configure.ac file's 
AC_CONFIG_SUBDIRS macro. 
I'll discuss the remaining code later, when I cover adding new make targets to your build 
system. These particular targets allow the end-user to build RPM packages for rpm-
based GNU/Linux systems. 

The sub-projects 

Each of the sub-projects, flaim, ftk, flaimsql and xflaim, are set up just as in the Jupiter 
project. I'll start with the FLAIM toolkit (ftk) project. Because all of the others are 
dependent on it, it will have to be built first, anyway. 

This configure.ac script was generated for me by autoscan. Autoscan is a bit finicky 
when it comes to where it will look for information. If your project doesn't contain a 
makefile file named exactly "Makefile", or if your project already contains an Autoconf 
Makefile.in template, then autoscan will not add any information about required 
libraries to the configure.scan output file. It has no other way of determining this 
information, except by looking into your old build system, and it won't do this unless 
conditions are just right. 
As mentioned earlier, the FLAIM project did contain a rather large makefile, and frankly I 
was quite impressed with autoscan's ability to parse it for library information, given the 
complex nature of this multi-platform GNU makefile. Here's a snippet of the ftk project's 
configure.scan file: 
 

... 

AC_PREREQ(2.62) 

AC_INIT(FULL-PACKAGE-NAME, VERSION, 

  BUG-REPORT-ADDRESS) 

AC_CONFIG_SRCDIR([util/ftktest.cpp]) 

AC_CONFIG_HEADERS([config.h]) 

 

# Checks for programs. 

AC_PROG_CXX 

AC_PROG_CC 

AC_PROG_INSTALL 

 



# Checks for libraries. 

# FIXME: Replace `main' with a function in `-lc': 

AC_CHECK_LIB([c], [main]) 

# FIXME: Replace `main' with a function in... 

AC_CHECK_LIB([crypto], [main]) 

... 

AC_CONFIG_FILES([Makefile]) 

AC_OUTPUT 

I substituted real values for the place-holder values left by autoscan in the AC_INIT 
macro. I added calls to AM_INIT_AUTOMAKE, LT_PREREQ and LT_INIT. I added a call 
to AC_CONFIG_MACRO_DIR here, as well. Why not? I'd already done it in the umbrella 
project above, and this, after all, is the new "UL Approved" method for managing project-
local macro files. I then changed the AC_CONFIG_SRCDIR file that autoscan 
recommended, for one that made more sense to me. And I deleted the use of the 
AC_PROG_CC macro; this project is written entirely in C++. 
Next, I deleted the comments above each of the AC_CHECK_LIB macro calls, and then I 
started to replace the main place-holders in these macros with actual library function 
names. I say I started to do that, but I stopped because I wondered if all of those libraries 
were really necessary. Sometimes I've noticed, where hand-coded build systems are 
concerned, the author will often cut and paste sets of library names into the makefile until 
the program builds and runs correctly. (For some reason, this activity is especially 
prevalent when libraries are being built, although programs are not immune to it.) Also, 
since autoscan build this list by parsing the original makefile, I figured it probably tried 
to include everything that it thought might be a library. 
Instead of blindly continuing this trend, I chose to simply comment out all of the calls to 
AC_CHECK_LIB, and see how far I was able to get in the build, and then add them back 
in one at a time, as required, in order to resolve missing symbols during the build. Unless 
your project consumes literally hundreds of libraries, this only takes a few extra minutes, 
but it can save you a lot of time later when builds are speedier than they otherwise might 
be. And personally, I like to be accurate in my build systems, using only those libraries 
that really are required. When used religiously, this ideology is also a good form of 
project-level documentation. 
The configure.scan file contained 14 such calls to AC_CHECK_LIB. As it turned out, 
only three of them were actually required by the FLAIM tool kit on my 64-bit Linux system, 
pthread, ncurses, and rt. So I deleted the "cruft" and swapped out the place-holder 
parameters for real functions in the remaining three. 
Finally, I added references to src/Makefile and util/Makefile to the 
AC_CONFIG_FILES macro, and then added the echo statement at the bottom, for some 
visual verification of my configuration status. 
Note that I left all of the header file and library function checks in place, as originally 
specified by autoscan. I figure that autoscan is probably pretty accurate in noting the 
use of header files and functions in my source code. Who am I to argue? 
Here's the final ftk configure.ac file (slightly edited, as usual, to satisfy column width 
requirements): 
 



#                 -*- Autoconf -*- 

# Process this file with autoconf to produce a c... 

 

AC_PREREQ([2.62]) 

AC_INIT([FTK], [1.1], [flaim-users@forge.novell.com]) 

AM_INIT_AUTOMAKE([-Wall -Werror]) 

LT_PREREQ([2.2]) 

LT_INIT([dlopen]) 

 

AC_LANG(C++) 

 

AC_CONFIG_MACRO_DIR([m4]) 

AC_CONFIG_SRCDIR([src/flaimtk.h]) 

AC_CONFIG_HEADERS([config.h]) 

 

# Checks for programs. 

AC_PROG_CXX 

AC_PROG_INSTALL 

 

# Checks for optional programs. 

AC_PROG_TRY_DOXYGEN 

 

# Configure options: --enable-debug[=no]. 

AC_ARG_ENABLE([debug], 

  [AS_HELP_STRING([--enable-debug], 

    [enable debug code (default is no)])], 



  [debug="$withval"], [debug=no]) 

 

# Configure option: --enable-openssl[=no]. 

AC_ARG_ENABLE([openssl],  

  [AS_HELP_STRING([--enable-openssl],  

    [enable the use of openssl (default is no)])],  

  [openssl="$withval"], [openssl=no]) 

 

# Check for doxygen program. 

if test -z "$DOXYGEN"; then 

  echo "-----------------------------------------" 

  echo " No Doxygen program found - continuing" 

  echo " without Doxygen documentation support." 

  echo "-----------------------------------------" 

fi 

AM_CONDITIONAL([HAVE_DOXYGEN],[test -n "$DOXYGEN"]) 

 

# Checks for libraries. 

AC_CHECK_LIB([ncurses], [initscr]) 

AC_CHECK_LIB([pthread], [pthread_create]) 

AC_CHECK_LIB([rt], [aio_suspend]) 

if test "x$openssl" = xyes; then  

  AC_DEFINE([FLM_OPENSSL], [],  

    [Define to use openssl]) 

  AC_CHECK_LIB([ssl], [SSL_new]) 

  AC_CHECK_LIB([crypto], [CRYPTO_add]) 



  AC_CHECK_LIB([dl], [dlopen]) 

  AC_CHECK_LIB([z], [gzopen]) 

fi 

 

# Checks for header files. 

AC_HEADER_RESOLV 

AC_CHECK_HEADERS([arpa/inet.h fcntl.h limits.h \ 

malloc.h netdb.h netinet/in.h stddef.h stdlib.h \ 

string.h strings.h sys/mount.h sys/param.h \ 

sys/socket.h sys/statfs.h sys/statvfs.h \ 

sys/time.h sys/vfs.h unistd.h utime.h]) 

 

# Checks for typedefs, structures, and compiler ... 

AC_HEADER_STDBOOL 

AC_C_INLINE 

AC_TYPE_INT32_T 

AC_TYPE_MODE_T 

AC_TYPE_PID_T 

AC_TYPE_SIZE_T 

AC_CHECK_MEMBERS([struct stat.st_blksize]) 

AC_TYPE_UINT16_T 

AC_TYPE_UINT32_T 

AC_TYPE_UINT8_T 

 

# Checks for library functions. 

AC_FUNC_LSTAT_FOLLOWS_SLASHED_SYMLINK 



AC_FUNC_MALLOC 

AC_FUNC_MKTIME 

AC_CHECK_FUNCS([atexit fdatasync ftruncate getcwd \ 

gethostbyaddr gethostbyname gethostname gethrtime \ 

gettimeofday inet_ntoa localtime_r memmove memset \ 

mkdir pstat_getdynamic realpath rmdir select \ 

socket strchr strrchr strstr]) 

 

# Configure DEBUG source code, if requested. 

if test "x$debug" = xyes; then 

  AC_DEFINE([FLM_DEBUG], [],  

    [Define to enable FLAIM debug features]) 

fi 

 

# Configure global pre-processor definitions. 

AC_DEFINE([_REENTRANT], [],  

  [Define for reentrant code]) 

AC_DEFINE([_LARGEFILE64_SOURCE], [],  

  [Define for 64-bit data files]) 

AC_DEFINE([_LARGEFILE_SOURCE], [],  

  [Define for 64-bit data files]) 

 

# Configure supported platforms' compiler and li... 

case $host in 

  sparc-*-solaris*) 

    LDFLAGS="$LDFLAGS -R /usr/lib/lwp" 



    if "x$CXX" != "xg++"; then 

      if "x$debug" = xno; then 

        CXXFLAGS="$CXXFLAGS -xO3" 

      fi 

      SUN_STUDIO=`"$CXX" -V | grep "Sun C++"` 

      if "x$SUN_STUDIO" = "xSun C++"; then 

        CXXFLAGS="$CXXFLAGS -errwarn=%all\ 

 -errtags -erroff=hidef,inllargeuse,doubunder" 

      fi 

    fi ;; 

 

  *-apple-darwin*) 

    AC_DEFINE([OSX], [],  

      [Define if building on Apple OSX.]) ;; 

 

  *-*-aix*) 

    if "x$CXX" != "xg++"; then 

      CXXFLAGS="$CXXFLAGS -qthreaded -qstrict" 

    fi ;; 

 

  *-*-hpux*) 

    if "x$CXX" != "xg++"; then 

      # Disable "Placement operator delete 

      # invocation is not yet implemented" warning 

      CXXFLAGS="$CXXFLAGS +W930" 

    fi ;; 



esac 

 

AC_CONFIG_FILES([Makefile 

                 docs/Makefile 

                 docs/doxyfile 

                 obs/Makefile 

                 obs/ftk.spec 

                 src/Makefile 

                 util/Makefile]) 

 

AC_OUTPUT 

 

echo " 

  ($PACKAGE_NAME) version $PACKAGE_VERSION 

  Prefix.........: $prefix 

  Debug Build....: $debug 

  Using OpenSSL..: $openssl 

  C++ Compiler...: $CXX $CXXFLAGS $CPPFLAGS 

  Linker.........: $LD $LDFLAGS $LIBS 

  Doxygen........: ${DOXYGEN:-NONE} 

" 

Note that I did not use the foreign keyword in the AM_INIT_AUTOMAKE macro this 
time. This is a real project, and I expect it will be packaged as such. Thus, the developers 
will (should) want these files. I used the touch command to create empty versions of the 
GNU project text files. 
Another new construct near the top of the file is the AC_LANG macro. This macro 
indicates which language should be assumed when executing compilation tests within 
the configure script. I've passed "C++" as the parameter, so that Autoconf will 
generate compilation tests using the C++ compiler via the $CXX variable, rather than the 
default C code using the $CC macro. 



Moving down a few more lines will have you staring at a macro called 
AC_PROG_TRY_DOXYGEN. Try as you might, you won't find this macro in the Autoconf 
documentation, because I wrote it myself. Here's the source code, which can be found in 
ftk/m4/ac_prog_try_doxygen.m4 in the sample code download archive: 
 

AC_DEFUN([AC_PROG_TRY_DOXYGEN],[ 

AC_REQUIRE([AC_EXEEXT])dnl 

test -z "$DOXYGEN" &&\ 

 AC_CHECK_PROGS([DOXYGEN], [doxygen$EXEEXT])dnl 

]) 

The macro tests first to see if the end-user has already set the DOXYGEN environment 
variable. If not, it then uses the standard AC_CHECK_PROG macro to locate it on the host 
machine, if it's installed. If AC_CHECK_PROG finds it, it sets the DOXYGEN variable to the 
name of the program, allowing the build system to later locate the actual executable in 
the system path. If it's not found, it doesn't set the DOXYGEN variable. 
There are other more standard macros that check for specific programs. In fact, as 
simple as this macro is, I could have just used AC_CHECK_PROGS in the configure.ac 
file, instead of writing my own macro. I wanted to encapsulate the "test and check" 
construct: 
 

test -z "$DOXYGEN" && AC_CHECK_PROGS... 

Additionally, I knew I'd need this test in each of the four projects, so it was simpler to 
create a macro file that could just be copied into the individual projects' m4 directories. 
Besides, and probably most importantly for this chapter, it's more readable to see 
AC_PROG_TRY_DOXYGEN, than to see test -z.... 
Why AC_PROG_TRY_DOXYGEN and not simply AC_PROG_DOXYGEN? Because 
traditionally, the AC_PROG_* macros fail the configuration process if the associated 
program is not found. I wanted the DOXYGEN variable to be populated if the doxygen 
program was found on the system, but be left empty otherwise. That way I could 
conditionally build the doxygen documentation. 
In fact, if you look a bit farther down, you'll see some text that looks like this: 

 

... 

# Check for doxygen program. 

if test -z "$DOXYGEN"; then 

  echo "-----------------------------------------" 

  echo " No Doxygen program found - continuing" 

  echo " without Doxygen documentation support." 



  echo "-----------------------------------------" 

fi 

AM_CONDITIONAL([HAVE_DOXYGEN],[test -n "$DOXYGEN"]) 

... 

This tests whether or not my AC_PROG_TRY_DOXYGEN macro actually found a doxygen 
program, and acts on the results. If doxygen is not installed on the user's system, then 
the configure script prints out a large, hard-to-miss message stating that doxygen 
documentation will not be built. No big deal, really, unless the user was, in fact, counting 
on it. In that case, she can simply install doxygen and rebuild. 
The AM_CONDITIONAL macro defines an automake variable called HAVE_DOXYGEN, 
which can be used in the project's Makefile.am files to do something conditionally, 
based on whether or not doxygen can successfully be called (via the $DOXYGEN variable). 
The first parameter is the Automake conditional variable to be defined, and the second 
parameter is the test to be run by the configure script in order to determine how the 
variable should be defined in the makefile. Just one caveat: AM_CONDITIONAL must not 
be used conditionally (eg., within a shell if statement) in the configure.ac script. 
Immediately following the DOXYGEN AM_CONDITIONAL statement, you'll find the library 
checks. The first three are the ones that autoscan told me about that I found I actually 
needed after experimenting a bit. The next four are checked within an if statement. 
Additionally, a preprocessor macro is defined using the AC_DEFINE macro: 
 

... 

if test "x$openssl" = xyes; then  

  AC_DEFINE([FLM_OPENSSL], [],  

    [Define to use openssl]) 

  AC_CHECK_LIB([ssl], [SSL_new]) 

  AC_CHECK_LIB([crypto], [CRYPTO_add]) 

  AC_CHECK_LIB([dl], [dlopen]) 

  AC_CHECK_LIB([z], [gzopen]) 

fi 

... 

These libraries are included conditionally based on the user's use of the --enable-
openssl command-line argument defined in a previous call to the AC_ARG_ENABLE 
macro. The openssl variable is defined to either yes or no, based on the default value 
given to AC_ARG_ENABLE, and the user's command-line choices. 
The AC_DEFINE macro call ensures that the C++ preprocessor variable, FLM_OPENSSL 
is defined in the config.h file, and the AC_CHECK_LIB macro calls ensure that -lssl, 



-lcrypto, -ldl, and -lz strings are added to the $LIBS variable. But only if the 
openssl macro is defined as yes. 
The last item I'll cover here is the conditional use of the AC_DEFINE macro, based on the 
contents of the debug variable: 
 

... 

# Configure DEBUG source code, if requested. 

if test "x$debug" = xyes; then 

  AC_DEFINE([FLM_DEBUG], [],  

    [Define to enable FLAIM debug features]) 

fi 

... 

This is another preprocessor definition, conditionally defined, based on the results of a 
command-line parameter given to configure. The --enable-debug option ultimately 
enables the definition of FLM_DEBUG within config.h. Both FLM_OPENSSL and 
FLM_DEBUG are consumed within the FLAIM project source code. Using AC_DEFINE in 
this manner allows the user to determine what sort of features are compiled into his 
binaries. 
I'll cover the details of the platform-specific checks later in this chapter. This code is 
identical in all of the projects' configure.ac scripts, as the four original GNU makefiles 
contained identical such checks. 

The ftk/Makefile.am file 
Discounting the code for doxygen and rpm targets, the ftk/Makefile.am file is fairly 
trivial: 
 

ACLOCAL_AMFLAGS = -I m4 

 

EXTRA_DIST = COPYRIGHT GNUMakefile netware 

 

SUBDIRS = src util obs 

 

if HAVE_DOXYGEN 

  SUBDIRS += docs 

endif 



 

doc_DATA = AUTHORS ChangeLog COPYING COPYRIGHT INSTALL NEWS 
README 

 

rpms srcrpm: dist 

        $(MAKE) -C obs $(AM_MAKEFLAGS) $@ 

        rpmarch=`rpm --showrc | grep ^build\ arch | sed 's/\(.*: 
\)\(.*\)/\2/'`; \ 

        test -z $$rpmarch || ( mv $$rpmarch/* .; rm -rf 
$$rpmarch ) 

        -rm -rf $(distdir) 

 

dist-hook: 

        -rm -rf `find $(distdir) -name .svn` 

 

.PHONY: srcrpm rpms 

Here, you find the usual ACLOCAL_AMFLAGS, EXTRA_DIST and SUBDIRS variable 
definitions. But you can also see the use of an Automake conditional. The if statement 
allows us to append another directory (docs) to the SUBDIRS list, but only if you have 
access to the doxygen program. If you try to use such a conditional without a 
corresponding AM_CONDITIONAL in the configure.ac file, then Automake will 
complain about it. 
Another new construct--at least in a top-level Makefile.am file--is the use of the 
doc_DATA variable. The FLAIM toolkit provides some extra documentation files in its top-
level directory that I'd like to have installed. By using the doc prefix on the DATA primary 
in this manner, I'm telling Automake that I'd like to have these files installed as data files 
in the $(docdir) directory, which ultimately resolves to the $(prefix)/share/doc 
directory. 
An interesting effect of the use of the DATA primary is that files mentioned in DATA 
variable are not automatically distributed, so you have to mention them in the 
EXTRA_DIST variable as well. You'll note that I did not have to mention the standard 
GNU project text files in EXTRA_DIST. These are always distributed automatically. 
However, I did have to mention the standard text files in the doc_DATA variable. This is 
because Automake makes no assumptions about the files that you want installed. 
Once again, I'll defer a discussion of the RPM targets until later. 

Automake "-hook" and "-local" rules 

At this point, I'd like to discuss the use of the dist-hook target. Automake recognizes 
two types of extensions. I call these -local targets and -hook targets. Both of these 



types of targets represent Automake extension points. Automake recognizes and honors 
-local extensions for the following standard Automake targets: 
 all 
 info 
 dvi 
 ps 
 pdf 
 html 
 check 
 install-data 
 install-dvi 
 install-exec 
 install-html 
 install-info 
 install-pdf 
 install-ps 
 uninstall 
 installdirs 
 installcheck 
 mostlyclean 
 clean 
 distclean 
 maintainer-clean 

Adding a -local version of any of these to your Makefile.am files will cause 
Automake to ensure that the commands associated with these rules are executed before 
the associated standard target. Automake does this by generating the rule for the 
standard target such that the -local version is one of its dependencies (if it exists), thus 
the -local version is run before the commands for the standard target. Shortly, I'll show 
an example of this, using a clean-local target. 
The -hook targets are a bit different in that they are executed after the corresponding 
standard target is executed. Automake does this by adding another command to the end 
of the standard target command list that executes make (via the $(MAKE) variable) on 
the same Makefile, with the -hook target as the command-line target. Thus, the -
hook target is executed at the end of the standard target commands. 
The following standard Automake targets support -hook versions: 
 install-data 
 install-exec 
 uninstall 
 dist 
 distcheck 

In this example, I use the dist-hook target to "adjust" the distribution directory before 
Automake create a tarball from its contents. 
 

... 

dist-hook: 

        -rm -rf `find $(distdir) -name .svn` 

... 

The rm command removes extraneous files and directories that become part of the 
distribution directory as a result of my adding entire directories to the EXTRA_DIST 
variable. When you add a directory name to EXTRA_DIST, everything in that directory is 



added to the distribution--even hidden Subversion control files and directories. I certainly 
don't want this stuff in my tarball, so I use the dist-hook target to add commands that 
remove these unwanted files after the distribution directory has been created, but before 
it's "zipped" up into a tarball. 
Here's a portion of the generated Makefile, showing how dist-hook is used by 
Automake: 
 

... 

distdir: $(DISTFILES) 

        ... # copy files into distdir 

        $(MAKE) $(AM_MAKEFLAGS) \ 

          top_distdir="$(top_distdir)" \ 

          distdir="$(distdir)" dist-hook 

        ... # change attributes of files in distdir 

... 

dist dist-all: distdir 

        tardir=$(distdir) && $(am__tar) | \ 

          GZIP=$(GZIP_ENV) gzip -c \ 

          >$(distdir).tar.gz 

        $(am__remove_distdir) 

... 

.PHONY: ... dist-hook ... 

... 

dist-hook: 

        -rm -rf `find $(distdir) -name .svn` 

... 

Don't be afraid to dig into the generated makefiles to see just exactly what Automake is 
doing with your code. While there's a fair amount of ugly shell code in there, most of it 
can be ignored. You're usually more interested in the make rules that Automake is 
generating, and these are easily separated out. Once you understand the rules, you are 
well on your way to becoming an Automake expert. 

Designing the ftk/src/Makefile.am file 



I've left the most difficult task for last. I now need to create appropriate Makefile.am 
files in the src and utils directories. I want to ensure that all of the original functionality 
is preserved from the old build system as I'm creating these files. Basically, this includes: 
 properly building the ftk shared and static libraries; 
 properly specifying installation locations for all installed files; 
 setting the ftk library version information correctly; 
 ensuring that all remaining unused files are distributed; 
 ensuring that platform-specific compiler options are used. 

Besides a few additions to ftk's configure.ac file, the following framework should 
cover most of the points above, so I'll be using it for all of the FLAIM library projects, with 
appropriate additions and subtractions, based on the needs of each individual library: 
 

EXTRA_DIST = ... 

lib_LTLIBRARIES = ... 

include_HEADERS = ...  

xxxxx_la_SOURCES = ...  

xxxxx_la_LDFLAGS = -version-info x:y:z 

The original GNU makefile told me that the library was named libftk.so. This is a bad 
name for a library on Linux, as most of the three-letter acronyms are already taken for 
other purposes within the file system, so I've made an executive decision here and 
renamed the ftk library to flaimtk. I added the libtool library name, libflaimtk.la 
to the lib_LTLIBRARIES list, and then changed the xxxxx portions of the remaining 
macros to libflaimtk. 
To get the source files, I could have entered them all by hand, but I noticed while reading 
the original makefile that it used the GNU make function macro, $(wildcard 
src/*.cpp) in order to build the file list for the library from the contents of the src 
directory. This tells me that all of the .cpp files within the source directory are required 
by the library. To get the file list into Makefile.am, I used a simple shell command to 
concatenate the file list to the end of the Makefile.am file (assuming I'm in the 
ftk/src directory): 
 

$ ls >> Makefile.am 

This leaves me with a single column list of all of the files in the ftk/src directory 
appended to the bottom of the ftk/src/Makefile.am file. I deleted the Makefile.am 
file from this list, and then moved the list to just below the libflaimtk_la_SOURCES = 
entry. I added a BACKSLASH character after the EQUAL sign, and at the end of each of 
the files except the last one. This gives me a clean file list. Another formatting technique 
is to simply wrap the line every 70 characters or so with a BACKSLASH and a 
CARRIAGE RETURN. I prefer to put each file on a separate line--especially early on in 
the conversion process, so that I can easily extract or add files to the lists. 
For the header files, I had to manually examine each one to determine its use in the 
project. There are only four header files in the src directory, and as it turns out, the only 
one not used by ftk on Unix and GNU/Linux platforms is ftknlm.h. This file is specific to 
the NetWare build. I added this file to the EXTRA_DIST list. 



The ftk.h file (now renamed to flaimtk.h) is the only public header file, so I moved 
that one into the include_HEADERS list. The other two are used internally in the library 
build, so I left them in the libflaimtk_la_SOURCES list. 
Finally, I noted in the original makefile, that the last ftk library that was released to the 
public in a distribution sported an interface version of 4.0.0. However, since I change the 
name of the library from libftk to libflaimtk, I reset this value to 0.0.0 because it's 
a different library now, so I replaced x:y:z with 0:0:0 in the -version-info option 
within the libflaimtk_la_LDFLAGS variable. (_NOTE: Version 0.0.0 is the default, so 
I could have simply removed the -version-info argument entirely for the same effect.) 
Here's (most of) the final ftk/src/Makefile.am file: 
 

EXTRA_DIST = ftknlm.h 

 

lib_LTLIBRARIES = libflaimtk.la 

include_HEADERS = flaimtk.h 

 

libflaimtk_la_SOURCES = \ 

 ftkarg.cpp \ 

 ftkbtree.cpp \ 

 ftkcmem.cpp \ 

 ftkcoll.cpp \ 

 ... 

 ftksys.h \ 

 ftkunix.cpp \ 

 ftkwin.cpp \ 

 ftkxml.cpp 

 

libflaimtk_la_LDFLAGS = -version-info 0:0:0 

That's it! You know--I don't know about you, but I'd much rather maintain this file, than a 
2200 line GNU makefile! Granted, I'm not really done yet, but (trust me) it won't get much 
worse than this. 

Moving on to the ftk/util directory 



Properly designing a Makefile.am file for the util directory requires examining the 
original makefile again for more products--those built from files in the ftk/util directory. 
A quick glance at the ftk/util directory showed that there was only one source file, 
ftktest.cpp. This appeared to be some sort of testing program for the ftk library, so I 
had a design decision to make here: should I build this as a normal program, or as a 
"check" program. 
The difference, of course, is that normal programs are always built, but "check" programs 
are only built when make check is executed. Remember also that check programs are 
never installed. Thus, if I chose to always build ftktest, I'd then have to decided 
whether or not I want it to be installed. If I want it built all the time, but not installed, I'd 
have to specify the program using the noinst prefix, rather than the usual bin prefix. 
In either case, I probably want to add the ftktest binary to the list of tests run during 
make check, so the two questions here are (1) whether or not I might wish to run 
ftktest manually at times after a build, and (2) do I want to install the ftktest 
program? Given that ftk is rather mature at this point, I opted to not install ftktest and 
only build it during make check. Here's my final ftk/util/Makefile.am file: 
 

FTKINC=-I$(top_srcdir)/src 

FTKLIB=../src/libflaimtk.la 

 

check_PROGRAMS = ftktest 

 

ftktest_SOURCES = ftktest.cpp 

ftktest_CPPFLAGS = $(FTKINC) 

ftktest_LDADD = $(FTKLIB) 

 

TESTS = ftktest 

Note that I could easily have left out the FTKINC and FTKLIB variables, replacing their 
references with the appropriate text in the CPPFLAGS and LDADD variables, but since this 
will be a pattern used quite often in the new FLAIM build system, because of the external 
dependency between the database projects and the tool kit, I've decided to start the habit 
right here and now. 
I hope by now that you can see the relationship between TEST and check_PROGRAMS. 
To be blunt, there really is no relationship between the files listed in check_PROGRAMS 
and those listed in TEST. TEST can refer to anything that can be executed without 
command line parameters, and these programs or scripts are executed during make 
check after all of the check_PROGRAMS are built (if any). This separation of duties 
makes for a very clean and flexible system. 

Designing the xflaim build system 



Now that I've finished with the tool kit, I'll move on to the xflaim project. I'm choosing 
xflaim, rather than flaim, because it supplies the most build features that can be 
converted to GNU Autotools, including the Java and CSharp language bindings. After 
xflaim, covering the remaining database projects would be redundant, as the processes 
are identical (but simpler). However, you can find the other build system files in the 
attached source archive, as usual. 

I generated the configure.ac script using autoscan again. It's important to use 
autoscan in each of the individual projects, because the source code of each project is 
different, and will thus cause different macros to be written into each configure.scan 
file. I then used the same techniques to create xflaim's configure.ac script as I used 
with the tool kit. 

The xflaim configure.ac script 
After hand-modifying the generated configure.scan file and renaming it to 
configure.ac, I found this configure.ac script to be similar in many ways to ftk's 
configure.ac script. As it's fairly long, I'll only show you the most significant 
differences here: 
 

... 

# Checks for optional programs. 

AC_PROG_TRY_CSC 

AC_PROG_TRY_CSVM 

AC_PROG_TRY_JAVAC 

AC_PROG_TRY_JAVAH 

AC_PROG_TRY_JAVADOC 

AC_PROG_TRY_JAR 

AC_PROG_TRY_DOXYGEN 

 

# Configure variables: FTKLIB and FTKINC. 

AC_ARG_VAR([FTKLIB], [where libflaimtk.la is at]) 

AC_ARG_VAR([FTKINC], [where flaimtk.h is at]) 

 

# Ensure that both or neither are specified. 

if (test -n "$FTKLIB" && test -z "$FTKINC") || \ 

   (test -n "$FTKINC" && test -z "$FTKLIB"); then 



  AC_MSG_ERROR([both or neither FTK variables]) 

fi  

 

# Not specified? Check for FTK in standard places. 

if test -z "$FTKLIB"; then 

  # Check for flaim tool kit as a sub-project. 

  if test -d "$srcdir/ftk"; then 

    AC_CONFIG_SUBDIRS([ftk]) 

    FTKINC='$(top_srcdir)/ftk/src' 

    FTKLIB='$(top_builddir)/ftk/src' 

  else 

    # Check for flaim tool kit as a super-project. 

    if test -d "$srcdir/../ftk"; then 

      FTKINC='$(top_srcdir)/../ftk/src' 

      FTKLIB='$(top_builddir)/../ftk/src' 

    fi 

  fi 

fi 

 

# Still empty? Check for installed flaim tool kit. 

if test -z "$FTKLIB"; then 

  AC_CHECK_LIB([flaimtk], [ftkFastChecksum],  

    [AC_CHECK_HEADERS([flaimtk.h]) 

     LIBS="-lflaimtk $LIBS"], 

    [AC_MSG_ERROR([No FLAIM Took Kit found.])]) 

fi 



 

# AC_SUBST command line variables. 

if test -n "$FTKLIB"; then 

  AC_SUBST([FTK_LTLIB], ["$FTKLIB/libflaimtk.la"]) 

  AC_SUBST([FTK_INCLUDE], ["-I$FTKINC"]) 

fi 

 

# Check for Java compiler. 

have_java=yes  

if test -z "$JAVAC"; then have_java=no; fi 

if test -z "$JAVAH"; then have_java=no; fi 

if test -z "$JAR"; then have_java=no; fi 

if test "x$have_java" = xno; then 

  echo "-----------------------------------------" 

  echo " Some Java tools not found - continuing" 

  echo " without XFLAIM JNI support." 

  echo "-----------------------------------------" 

fi 

AM_CONDITIONAL([HAVE_JAVA],  

  [test "x$have_java" = xyes]) 

 

# Check for CSharp compiler. 

if test -z "$CSC"; then 

  echo "-----------------------------------------" 

  echo " No CSharp compiler found - continuing" 

  echo " without XFLAIM CSHARP support." 



  echo "-----------------------------------------" 

fi 

AM_CONDITIONAL([HAVE_CSHARP], [test -n "$CSC"]) 

 

... 

 

echo " 

  ($PACKAGE_NAME) version $PACKAGE_VERSION 

  Prefix.........: $prefix 

  Debug Build....: $debug 

  C++ Compiler...: $CXX $CXXFLAGS $CPPFLAGS 

  Linker.........: $LD $LDFLAGS $LIBS 

  FTK Library....: ${FTKLIB:-INSTALLED} 

  FTK Include....: ${FTKINC:-INSTALLED} 

  CSharp Compiler: ${CSC:-NONE} $CSCFLAGS 

  CSharp VM......: ${CSVM:-NONE} 

  Java Compiler..: ${JAVAC:-NONE} $JAVACFLAGS 

  JavaH Utility..: ${JAVAH:-NONE} $JAVAHFLAGS 

  Jar Utility....: ${JAR:-NONE} $JARFLAGS  

  Javadoc Utility: ${JAVADOC:-NONE} 

  Doxygen........: ${DOXYGEN:-NONE} 

" 

First, you'll notice that I've invented a few more of my AC_PROG_TRY macros. In the first 
portion, I'm checking for the optional existence of the following programs: a CSharp 
compiler, a CSharp virtual machine, a Java compiler, a JNI header and stub generator, a 
javadoc generation tool, a Java archive tool, and of course, doxygen. As before, I've 
written separate macro files for each of these checks, and added them to my xflaim/m4 
directory. 
As with the AC_PROG_TRY_DOXYGEN macro, each of these macros attempts to locate 
the associated program, but doesn't go apoplectic if it's not found, because I want to be 



able to use the program if it's there, but not require my users to have them in order to 
build some of the most useful functionality of the FLAIM projects. 
Next, you'll find a new macro, AC_ARG_VAR. Like the AC_ARG_ENABLE and 
AC_ARG_WITH macros, AC_ARG_VAR allows the project maintainer to extend the 
interface to the configure script. This variable is different, however, in that it adds a 
public variable to the list of variables that the configure script cares about. In this case, 
I'm adding two public variables, FTKINC and FTKLIB. These variables will show up in 
the configure script's help text under the section entitled "Some influential environment 
variables:". 
These variables are also automatically substituted into the Makefile.in templates 
generated by Automake. However, I don't really need this substitution functionality, as I'm 
going to build other variables out of these variables, and I'll want these derived variables 
to be substituted, as you'll soon see. 
These variables may be set by the user in the environment, or specified on the 
configure script's command line in this manner: 
 

$ ./configure FTKINC='$HOME/dev/ftk/include' ... 

The large chunk of code that follows the AC_ARG_VAR macros actually uses these 
variables to set other variables used in the build system: 
 

... 

# Ensure that both or neither are specified. 

if (test -n "$FTKLIB" && test -z "$FTKINC") || \ 

   (test -n "$FTKINC" && test -z "$FTKLIB"); then 

  AC_MSG_ERROR([both or neither FTK variables]) 

fi  

 

# Not specified? Check for FTK in standard places. 

if test -z "$FTKLIB"; then 

  # Check for flaim tool kit as a sub-project. 

  if test -d "$srcdir/ftk"; then 

    AC_CONFIG_SUBDIRS([ftk]) 

    FTKINC='$(top_srcdir)/ftk/src' 

    FTKLIB='$(top_builddir)/ftk/src' 

  else 



    # Check for flaim tool kit as a super-project. 

    if test -d "$srcdir/../ftk"; then 

      FTKINC='$(top_srcdir)/../ftk/src' 

      FTKLIB='$(top_builddir)/../ftk/src' 

    fi 

  fi 

fi 

 

# Still empty? Check for installed flaim tool kit. 

if test -z "$FTKLIB"; then 

  AC_CHECK_LIB([flaimtk], [ftkFastChecksum],  

    [AC_CHECK_HEADERS([flaimtk.h]) 

     LIBS="-lflaimtk $LIBS"], 

    [AC_MSG_ERROR([No FLAIM Took Kit found.])]) 

fi 

 

# AC_SUBST command line variables. 

if test -n "$FTKLIB"; then 

  AC_SUBST([FTK_LTLIB], ["$FTKLIB/libflaimtk.la"]) 

  AC_SUBST([FTK_INCLUDE], ["-I$FTKINC"]) 

fi 

... 

First, I check to see that either both variables are specified, or neither. If only one of them 
is given, then I have to fail with an error. The user isn't allowed to tell me where to find 
half the tool kit. I need both the include file and the library. 

If neither is specified, then I go searching for them. First I look for a sub-directory called 
ftk. If I find one, then I configure that directory as a sub-project to be processed by 
Autoconf, by using the AC_CONFIG_SUBDIRS macro. Note that you can use this macro 



conditionally, and multiple times within the same configure.ac file. I also set the 
variables to point to the appropriate relative locations within the ftk project. 
If I don't find it as a sub-directory, then I look for it in the parent directory. If I find it there, I 
set the FTK variables appropriately. This time I don't need to configure the located ftk 
directory as a sub-project, because I'm assuming that the current project (xflaim) is 
already a sub-project of the umbrella project. 
If I don't find it in either place, I use the standard AC_CHECK_LIB and 
AC_CHECK_HEADERS macros to see if it's installed on the user's host machine. If so, I 
need only add -lflaimtk to the $LIBS variable. The header file will be found in the 
standard location--usually /usr(/local)/include. Note that normally, 
AC_CHECK_LIB would automatically add the library reference to the $LIBS variable, but 
since I've overridden the default functionality in the third parameter, I have to add it 
myself. 
If I don't find it installed, then I give up with an error message, indicating that xflaim can't 
be built without the FLAIM tool kit. 

However, after making it through the checks, if the FTKLIB variable is no longer empty, 
then I use AC_SUBST to "publish" FTK_INCLUDE and FTK_LTLIB variables, containing 
derivations of the FTK variables appropriate for the C++ preprocessor and the linker. 
The remaining code (excluding the trailing echo statement) calls AM_CONDITIONAL for 
Java and CSharp tools in a manner similar to the way I handled doxygen. Again, I 
generate bold messages to the user that the Java or CSharp portions of the xflaim 
project will not be built if those tools can't be found, but I allow the build to continue. 

Creating the xflaim/src/Makefile.am file 
I wrote the xflaim/src/Makefile.am file by following the same design principles 
used in the ftk/src version of that file. It looks very similar to its ftk counterpart, with 
one exception: According to the original build system makefile, the Java native interface 
(JNI) and CSharp native language binding sources are compiled and linked right into the 
xflaim shared library. 
This is not an uncommon practice, because it alleviates the need for extra library objects 
specifically for these languages. Essentially, the xflaim shared library exports native 
interfaces for these languages, that are then consumed by their corresponding language 
binding wrappers. 

I'm going to ignore these language binding interfaces for now. However, keep them in the 
back of your mind, because later when I've finished with the entire xflaim project, I'll turn 
my attention back to properly hooking these bindings into the library. Except for the 
language bindings then, the Makefile.am file looks almost identical to its ftk 
counterpart: 
 

SUBDIRS =  

 

if HAVE_JAVA 

  SUBDIRS += java 

  JNI_LIBADD=java/libxfjni.la 

endif 

 



if HAVE_CSHARP 

  SUBDIRS += cs 

  CSI_LIBADD=cs/libxfcsi.la 

endif 

 

SUBDIRS += . 

 

lib_LTLIBRARIES = libxflaim.la 

include_HEADERS = xflaim.h 

 

libxflaim_la_SOURCES = \ 

 btreeinfo.cpp \ 

 f_btpool.cpp \ 

 f_btpool.h \ 

 ... 

 rfl.h \ 

 scache.cpp \ 

 translog.cpp 

 

libxflaim_la_CPPFLAGS = $(FTK_INCLUDE) 

libxflaim_la_LIBADD = $(JNI_LIBADD)\ 

 $(CSI_LIBADD) $(FTK_LTLIB) 

libxflaim_la_LDFLAGS = -version-info 3:2:0 

As I did with the docs directory in the top-level Makefile.am file, I've conditionally 
defined the SUBDIRS variable here, based on the Automake conditional specified in 
configure.ac. What's different here is that I've pre-defined SUBDIRS to be empty 
before checking the condition, and then added the current directory (.) at the end. 
These directories must be processed (if they can be) before the current directory, as they 
generate libraries that must be linked into the library built by this makefile. I had to 



initialize SUBDIRS to empty because the PLUS-EQUAL (+=) Automake extension 
operator will only work properly if the variable is already defined--even if it must be 
defined as empty. 
Since I initialized it to empty, I removed the implicit current directory, so I added it back in 
after the conditional checks. It's a bit clumsy, I know, but it works. 

The library interface version information was once again extracted from the original xflaim 
project makefile. 

Turning to the xflaim/util directory 
The util directory for xflaim is a bit more complex. According to the original makefile, it 
generates several utility programs, as well as a convenience library that is consumed by 
each of these utilities. 
In addition, the task of finding out which source files belong to which utilities, and which 
were not used at all was more difficult. It turns out that there are several files in the 
xflaim/util directory that are not used by any of the utilities. I suppose the project 
developers thought there might be some future value in these source files, so they kept 
them around. Well, that leaves us with another decision: Do we distribute these "extra" 
source files? I chose to do so, as they were already being distributed by the original build 
system, and adding them to the EXTRA_DIST list makes it obvious to later observers that 
they aren't used in the build. 
Here's my version of the xflaim/util/Makefile.am file: 
 

EXTRA_DIST = dbdiff.cpp dbdiff.h domedit.cpp\ 

 diffbackups.cpp xmlfiles 

 

XFLAIM_INCLUDE=-I$(top_srcdir)/src 

XFLAIM_LDADD=../src/libxflaim.la 

 

## Utility Programs 

 

bin_PROGRAMS = xflmcheckdb xflmrebuild\ 

 xflmview xflmdbshell 

 

xflmcheckdb_SOURCES = checkdb.cpp 

xflmcheckdb_CPPFLAGS =\ 

 $(XFLAIM_INCLUDE) $(FTK_INCLUDE) 

xflmcheckdb_LDADD = libutil.la $(XFLAIM_LDADD) 



 

xflmrebuild_SOURCES = rebuild.cpp 

xflmrebuild_CPPFLAGS =\ 

 $(XFLAIM_INCLUDE) $(FTK_INCLUDE) 

xflmrebuild_LDADD = libutil.la $(XFLAIM_LDADD) 

 

xflmview_SOURCES = \ 

 viewblk.cpp \ 

 view.cpp \ 

 ... 

 viewmenu.cpp \ 

 viewsrch.cpp 

 

xflmview_CPPFLAGS =\ 

 $(XFLAIM_INCLUDE) $(FTK_INCLUDE) 

xflmview_LDADD = libutil.la $(XFLAIM_LDADD) 

 

xflmdbshell_SOURCES = \ 

 domedit.h \ 

 fdomedt.cpp \ 

 fshell.cpp \ 

 fshell.h \ 

 xshell.cpp 

 

xflmdbshell_CPPFLAGS =\ 

 $(XFLAIM_INCLUDE) $(FTK_INCLUDE) 



xflmdbshell_LDADD = libutil.la $(XFLAIM_LDADD) 

 

## Utility Convenience Library  

 

noinst_LTLIBRARIES = libutil.la 

 

libutil_la_SOURCES = \ 

 flm_dlst.cpp \ 

 flm_dlst.h \ 

 flm_lutl.cpp \ 

 flm_lutl.h \ 

 sharutil.cpp \ 

 sharutil.h 

 

libutil_la_CPPFLAGS =\ 

 $(XFLAIM_INCLUDE) $(FTK_INCLUDE) 

 

## Check Programs 

 

check_PROGRAMS = \ 

 ut_basictest \ 

 ut_binarytest \ 

 ... 

 ut_xpathtest \ 

 ut_xpathtest2 

 



check_DATA = copy-xml-files.stamp 

check_HEADERS = flmunittest.h 

 

ut_basictest_SOURCES =\ 

 flmunittest.cpp basictestsrv.cpp 

ut_basictest_CPPFLAGS =\ 

 $(XFLAIM_INCLUDE) $(FTK_INCLUDE) 

ut_basictest_LDADD = libutil.la $(XFLAIM_LDADD) 

 

... 

 

ut_xpathtest2_SOURCES =\ 

 flmunittest.cpp xpathtest2srv.cpp 

ut_xpathtest2_CPPFLAGS =\ 

 $(XFLAIM_INCLUDE) $(FTK_INCLUDE) 

ut_xpathtest2_LDADD = libutil.la $(XFLAIM_LDADD) 

 

## Unit Tests 

 

TESTS = \ 

 ut_basictest \ 

 ... 

 ut_xpathtest2 

 

## Miscellaneous rules required by Check Programs 

 



copy-xml-files.stamp: 

        cp $(srcdir)/xmlfiles/*.xml . 

        echo Timestamp > $@ 

 

clean-local:  

        -rm -rf ix2.* 

        -rm -rf bld.* 

        -rm -rf tst.bak 

        -rm -f *.xml 

        -rm -f copy-xml-files.stamp 

In this example, you can see by the ellipses that I left out several long lists of files and 
products. There are, for instance, 22 unit tests built by this makefile. I only left the 
descriptions for two of them, because they're all identical, except for naming differences 
and the source files from which they're built. 

But here's something curious. Take a look at the definition for the xflmcheckdb 
program: 
 

... 

xflmcheckdb_SOURCES = checkdb.cpp 

xflmcheckdb_CPPFLAGS =\ 

 $(XFLAIM_INCLUDE) $(FTK_INCLUDE) 

xflmcheckdb_LDADD = libutil.la $(XFLAIM_LDADD) 

... 

Notice that the xflmcheckdb_CPPFLAGS variable uses both the XFLAIM_INCLUDE and 
FTK_INCLUDE variables. The utility clearly requires information from both sets of header 
files. But the xflmcheckdb_LDADD variable only uses the XFLAIM_LDADD variable. 
Why? Because Libtool manages inter-library dependencies for you. Since I reference 
libxflaim.la (through XFLAIM_LDADD) when building the utilities and unit tests, and 
since libxflaim.la lists libflaimtk.la as a dependency, I don't need to explicitly 
reference that library here. 
You can get a clearer picture of this if you take a look at the contents of libxflaim.la 
(in your build directory under xflaim/src). You'll find a few lines like this somewhere in 
the middle of the file: 
 



... 

# Libraries that this one depends upon. 

dependency_libs= 

 ' .../flaim/build/ftk/src/libflaimtk.la 

 -lrt -lpthread -lncurses' 

... 

Notice that the path information for libflaimtk.la is listed here, thus we don't have to 
specify it in the LDADD variables for the xflaim utilities. The linker still requires this 
information, but the libtool script effectively hides this requirement by extracting the 
information from the .la file and appending it to the linker command line when building 
the utility files. 
As an aside, when libxflaim.la is installed, Libtool modifies the installed version of 
this file such that it references the installed versions of the libraries, rather than those in 
the build directory structure. 

Stamp targets 

In creating this makefile, I ran across another minor problem that I hadn't anticipated. At 
least one of the unit tests (probably several) seemed to require that some XML data files 
be present in the directory from which the test is run. What brought this to my attention 
was the fact that that particular unit test failed. When I dug into it, I noticed that it was 
trying to open some specifically named XML data files. Searching around a bit lead me to 
the xmldata directory, beneath the xflaim/util directory. This directory contained 
several dozen XML data files. 
Somehow I needed to copy those files into the build hierarchy's xflaim/util directory 
before I could run the unit tests. Well, I know that check programs are built before 
TESTS are executed. As it turns out other primaries prefixed with check are also 
processed before TESTS are executed. Notice the check_DATA variable: 
 

... 

check_DATA = copy-xml-files.stamp 

... 

copy-xml-files.stamp: 

        cp $(srcdir)/xmlfiles/*.xml . 

        echo Timestamp > $@ 

... 

It refers to a file called copy-xml-files.stamp. This is a special type of file target 
called a "stamp" target. It's purpose is to replace a bunch of unspecified files, or a non-
file-based operation, with one single representative file. This stamp file is used to indicate 
to the make system that the operation of copying all of the XML data files into the test 



directory has been done. Automake uses stamp files quite often in its own generated 
rules. 
The rule for generating the stamp file (near the bottom of the example above), also 
copies the XML data files into the test execution directory. The echo statement simply 
creates a file named copy-xml-files.stamp, and containing the single word, 
"Timestamp". The file may contain anything, really. The important point here is that the 
file exists, and has a time and date associated with it. The make utility uses this 
information to determine whether or not the copy operation needs to be executed. In this 
case, since copy-xml-files.stamp has no dependencies, its mere existence 
indicates to make that the operation has already been done, and need not be done again. 
To get make to perform the copy operation on the next build, simply delete the stamp file. 
This is a sort of hybrid between a true file-based rule, and a phony target. Phony targets 
are always executed, because they aren't real files, so make has no way of knowing 
whether or not the associated operation should be performed. The time stamps of file-
based rules can be checked against their dependency lists to determine if they should be 
re-executed, or not. Stamp rules like this one are executed only if the stamp file is 
missing. 
All files placed in the build directory should be cleaned up when the user enters make 
clean at the command prompt. Since I placed these XML data files into this directory, I 
need to clean them up also. Files listed in DATA variables are not cleaned up 
automatically, because DATA files are usually not generated files. Most often, the DATA 
primary is used to list existing project files that need to be installed. In this case, I actually 
created a bunch of XML files and a stamp file, so I need to clean these up when make 
clean is executed. 
NOTE: Be careful when using this technique on files that need to be copied from the 
source directory into the same corresponding location in the build directory. Special care 
needs to be taken to ensure you don't inadvertently delete source files from the source 
tree when building in the source tree. 

Cleaning your room 

There is another way to ensure that files created using your own make rules get cleaned 
up during execution of the clean target. You may also define the CLEANFILES variable 
to contain a white space separated list of files or wild card specifications to be removed. 
The CLEANFILES variable is the more "approved" method of removing extra files during 
make clean. 
If that's so, then why did I use clean-local in this case? Because the CLEANFILES 
variable has one caveat: it won't remove directories, only files. Each of the rm commands 
above removes a wild card file specification that contains at least one directory, so I had 
to use clean-local in this case. I'll show you a proper use of CLEANFILES shortly. 
 

... 

clean-local:  

        -rm -rf ix2.* 

        -rm -rf bld.* 

        -rm -rf tst.bak 

        -rm -f *.xml 

        -rm -f copy-xml-files.stamp 



... 

Here, I needed to remove all files ending in .xml, plus the stamp file. In addition, the unit 
tests themselves are not well written, in that they leave "droppings" behind. Let this be a 
lesson: when you write unit tests that generate files and directories, remove all such 
droppings before terminating your test. That way, you won't have to write such clean 
rules in your makefiles. 
Another way of managing this is would be to write a script that calls the tests, and then 
cleans up left-over files and directories. This script then becomes the entry in the TESTS 
variable. 
I use the Automake supported clean-local target here as a way to extend the clean 
target. The clean-local target is executed as a dependency of (and thus before) the 
clean target, if it exists. Here's the corresponding code from the Automake-generated 
Makefile: 
 

... 

clean: clean-am 

 

clean-am: clean-binPROGRAMS clean-checkPROGRAMS \ 

        clean-generic clean-libtool clean-local \ 

        clean-noinstLTLIBRARIES mostlyclean-am 

... 

.PHONY: ... clean-local ... 

... 

clean-local:  

        -rm -rf ix2.* 

        -rm -rf bld.* 

        -rm -rf tst.bak 

        -rm -f *.xml 

        -rm -f copy-xml-files.stamp 

... 

Automake noted that I had a target named clean-local in my Makefile.am file, so it 
added clean-local to the dependency list for clean-am, and then added it to 
the .PHONY list. Had I not written a clean-local target, these references would have 
been missing from the generated Makefile. 



When cleaning up files in a build directory using wild cards in this manner, you need to 
remember that the user may be building in the source directory. Try to make your wild 
cards as specific as possible so you don't inadvertently remove source files. 

Building Java sources using Autotools 

The most significant barrier to building Java sources using the GNU Autotools is the 
(apparently nearly intentional) misdirection in the existing documentation. Now, I know 
better than to think it was done on purpose, but time and time again, what you find in 
internet searches, or in the GNU Automake documentation is just enough information, 
presented in just such a way as to allow you to really hang yourself well when you try to 
use it. There's nothing quite as frustrating as finding dozens of implications that 
something can be done, but finding no information telling you exactly how to do it. 

There are two sections in the GNU Automake manual that refer to building Java sources 
using the GNU Autotools. The first is section 8.15, entitled, "Java Support". The second 
is section 10.4, entitled simply, "Java". (The major section 10 is entitled, "Other GNU 
Tools".) 

In the first place, the contents of these two sections should probably be swapped. 
Section 8.15 actually discusses using the GCJ front end to the GNU compiler suite to 
compile and link Java source code into native executables. This is nothing that the 
average Java purist would understand without a little hand-holding, because Sun Java 
doesn't do anything of the sort. The information in this section would be better placed 
under a section entitled, "Other GNU Tools" (like section 10, for instance). 
On the other hand, section 10.4 talks about building Java sources using whatever javac 
compiler happens to be found in the system path. This is much more likely to be 
something a Java developer might actually wish to do in a Makefile.am file, so I'm 
going to ignore section 8.15 (native compilation, using GCJ), and talk strictly about 
section 10.4. 

Autotools Java support 

Autoconf has no built-in support for java. For example, it provides no macros that locate 
Java tools in the end user's environment. Automake's support for building Java classes is 
minimal, but getting it to work is not that difficult if you know what you're doing. 
Automake provides a built-in primary (JAVA) for building Java sources. Automake does 
not provide any preconfigured installation location prefixes for installing Java classes. 
However, the usual place to install Java classes and .jar files is in the 
$(datadir)/java directory. So, creating a proper prefix is as simple as using the 
Automake prefix extension mechanism of defining a variable suffixed with dir: 
 

... 

javadir = $(datadir)/java 

java_JAVA = file_a.java file_b.java ... 

... 

Note that you don't often want to install Java sources, which is what you will accomplish 
when you define your JAVA primary with this sort of prefix. Rather, you want the class 
files to be installed, or more likely a .jar file containing all of your .class files. So I find 



it more useful to define the JAVA primary with the noinst prefix. Additionally, files in the 
JAVA primary list are not distributed by default, so you may even want to use the dist 
super-prefix, in this manner: 
 

... 

dist_noinst_JAVA = file_a.java file_b.java ... 

... 

When you define a list of Java source files in a variable containing the JAVA primary, 
Automake generates a make rule that builds that list of files all in one command, using 
the following command line syntax: 
 

... 

JAVAROOT = $(top_builddir) 

JAVAC = javac 

CLASSPATH_ENV = CLASSPATH=$(JAVAROOT):\ 

  $(srcdir)/$(JAVAROOT):$$CLASSPATH 

... 

classdist_noinst.stamp: $(dist_noinst_JAVA) 

        @list1='$?'; list2=; \ 

        if test -n "$$list1"; then \ 

          for p in $$list1; do \ 

            if test -f $$p;  

              then d=; \ 

              else d="$(srcdir)/"; \ 

            fi; \ 

            list2="$$list2 $$d$$p"; \ 

          done; \ 

          echo '$(CLASSPATH_ENV) $(JAVAC) \ 

            -d $(JAVAROOT) $(AM_JAVACFLAGS) \ 



            $(JAVACFLAGS) '"$$list2"; \ 

          $(CLASSPATH_ENV) $(JAVAC) \ 

            -d $(JAVAROOT) $(AM_JAVACFLAGS) \ 

            $(JAVACFLAGS) $$list2; \ 

        else :; fi 

        echo timestamp > classdist_noinst.stamp 

... 

Most of the "stuff" you see in the command above is for prepending the $(srcdir) 
prefix onto each file in the user-specified list, in order to properly support VPATH builds. 
This code uses a shell for statement to split the list into individual files, prepend 
$(srcdir), and then reassemble the list. 
NOTE: It's interesting to note that this file list munging process could have been done in a 
half-line of GNU make-specific code, but Automake is designed to generate makefiles 
that can be executed by many older make programs. 
The part that actually does the work is found in one line, near the bottom. To make it 
simpler to read, I'll reformat this example, removing the cruft: 

 

... 

JAVAROOT = $(top_builddir) 

JAVAC = javac 

CLASSPATH_ENV = CLASSPATH=$(JAVAROOT):\ 

  $(srcdir)/$(JAVAROOT):$$CLASSPATH 

... 

classdist_noinst.stamp: $(dist_noinst_JAVA) 

        ... 

        $(CLASSPATH_ENV) $(JAVAC) -d $(JAVAROOT) \ 

          $(AM_JAVACFLAGS) $(JAVACFLAGS) $$list 

... 

You may have noticed Automake's use of a stamp file here. This is done because the 
single $(JAVAC) command generates several .class files from several .java files. 
Rather than just pick one of these at random to use in the rule, Automake generates and 
uses a stamp file. This is important to know, because using a stamp file in the rule 



causes make to ignore the associations between individual .class files and their 
corresponding .java files. That is, if you delete a .class file, the rules in the 
Makefile will not cause it to be rebuilt. The only way to cause the re-execution of the 
$(JAVA) command is to either modify one or more of the .java files, thereby causing 
their timestamps to become newer than that of the the stamp file, or to delete the stamp 
file entirely. 
The variables used in the build environment, and on the command line include 
JAVAROOT, JAVAC, JAVACFLAGS, AM_JAVACFLAGS and CLASSPATH_ENV. Each of 
these may be specified by the developer in the Makefile.am file. If they're not specified, 
then the defaults you see in this example are used instead. Where you don't see a 
default value set, you may assume the default value is empty. 
One important point about this code is that all of the files specified in the JAVA primary 
list are compiled using a single command line, which could pose a problem on systems 
with limited command line lengths. If you find you have such a problem, you may have to 
develop your own make rules for building Java classes. Given the limited support that 
Automake currently provides, this isn't really a very daunting task. 
The CLASSPATH_ENV variables sets the Java classpath environment variable for the 
javac command such that it contains the contents of JAVAROOT ($(top_builddir), 
by default), the same value prefixed with $(srcdir), and then any class path that might 
be specified in the environment by the user. 
The JAVAC variable contains javac by default. The hope here is that javac can be 
found in the system path. The AM_JAVACFLAGS variable may be set in the 
Makefile.am file by the developer. As usual, the non-Automake version of this variable 
(JAVACFLAGS) is considered a "user" variable, and shouldn't be set in makefiles. 
The JAVAROOT variable is used to specify the location of the java root directory, which is 
where the Java compiler will expect to find the start of packages directory hierarchies 
belonging to your project. 
This is fine as far as it goes, but it doesn't go nearly far enough. In this (relatively simple) 
project, I also need to generate JNI header files using the javah utility, and I need to 
generate a .jar file from the .class files built from my Java sources. Automake-
provided Java support doesn't even begin to handle these tasks. So I'll have to do the 
rest with hand-coded make rules. I'll start with Autoconf macros to ensure that I have a 
good Java build environment. 

Using ac-archive macros 

I did a little hunting around on the internet, and found that the ac-archive project on 
sourceforge.net does in fact supply Autoconf macros that come close to what I need in 
order to ensure that I have a good Java development environment. I downloaded the 
latest ac-archive source package, and just hand-installed the .m4 files that I needed into 
my xflaim/m4 directory. 
Then I modified them (and their names) such that they work the way my 
AC_PROG_TRY_DOXYGEN macro works. I wanted to locate Java tools if they exist, but be 
able to continue without them if they're missing. Given the current politics surrounding the 
existence of Java tools in GNU/Linux distributions at this time, this is probably a wise 
approach. 
NOTE: The other way to use the ac-archive package is to actually install it on your 
system, which will place the ac-archive .m4 files into the /usr/(local/)share/ac-
archive directory. The documentation for ac-archive provides instructions on how you 
might pass flags to the aclocal utility from within your project's top-level Makefile.am 
file that tell it how to access the installed ac-archive macros during an execution of 
autoreconf, or aclocal. 
I created the following macros and files from those found in the ac-archive: 

 AC_PROG_TRY_JAVAC is defined in ac_prog_try_javac.m4 and 
ac_prog_javac_works.m4 



 AC_PROG_TRY_JAVAH is defined in ac_prog_try_javah.m4 
 AC_PROG_TRY_JAVADOC is defined in ac_prog_try_javadoc.m4 
 AC_PROG_TRY_JAR is defined in ac_prog_try_jar.m4 
 AC_PROG_TRY_CSC is defined in ac_prog_try_csc.m4 and 

ac_prog_csc_works.m4 
 AC_PROG_TRY_CSVM is defined in ac_prog_try_csvm.m4 and 

ac_prog_csvm_works.m4 
With only a little more effort, I was also able to create the CSharp macros I needed to 
accomplish the same tasks for the CSharp language bindings. I'll discuss CSharp in the 
next section. Here's a portion of the xflaim configure.ac file, repeated here for your 
information: 
 

... 

# Checks for optional programs. 

AC_PROG_TRY_CSC 

 

AC_PROG_TRY_CSVM 

AC_PROG_TRY_JAVAC 

AC_PROG_TRY_JAVAH 

AC_PROG_TRY_JAVADOC 

AC_PROG_TRY_JAR 

... 

# Check for Java compiler. 

have_java=yes  

if test -z "$JAVAC"; then have_java=no; fi 

if test -z "$JAVAH"; then have_java=no; fi 

if test -z "$JAR"; then have_java=no; fi 

if test "x$have_java" = xno; then 

  echo "-----------------------------------------" 

  echo " Some Java tools not found - continuing" 

  echo " without XFLAIM JNI support." 

  echo "-----------------------------------------" 



fi 

AM_CONDITIONAL([HAVE_JAVA],  

  [test "x$have_java" = xyes]) 

 

# Check for CSharp compiler. 

if test -z "$CSC"; then 

  echo "-----------------------------------------" 

  echo " No CSharp compiler found - continuing" 

  echo " without XFLAIM CSHARP support." 

  echo "-----------------------------------------" 

fi 

AM_CONDITIONAL([HAVE_CSHARP], [test -n "$CSC"]) 

... 

These macros set the CSC, CSVM, JAVAC, JAVAH, JAVADOC and JAR variables to the 
location of their respective CSharp and Java tools, and then substitute them into the 
xflaim project's Makefile.in templates using AC_SUBST. If any of these variables are 
already set in the user's environment when the configure script is executed, their 
values are left untouched, allowing the user to override the values that would have been 
set by the macros. 
I also added some shell code to set a variable, have_java to either yes or no, 
depending on whether or not all three tools could be found. If they are found, have_java 
becomes yes, which fact is later used in the call to AM_CONDITIONAL. Recall that this 
Automake macro conditionally sets the HAVE_JAVA variable, which is later used in 
xflaim/src/Makefile.am file to conditionally build the java sub-directory hierarchy. 

Canonical system information 

The only non-obvious bit of information you need to know about using these ac-archive 
extensions is that they rely on the built-in Autoconf macro, AC_CANONICAL_TARGET. 
Autoconf provides a way to automatically expand any existing macros inside the 
definition of a macro, so that macros required by the one being defined can be made 
available immediately. However, if AC_CANONICAL_TARGET is not used before certain 
other macros (including, unfortunately, LT_INIT), then autoreconf will generate about 
a dozen warning messages. 
To alleviate these warnings, I added AC_CANONICAL_SYSTEM to my top-level and 
xflaim-level configure.ac files, immediately after the call to AC_INIT. As I mentioned 
earlier in this chapter, this macro and those that it calls, AC_CANONICAL_BUILD, 
AC_CANONICAL_HOST and AC_CANONICAL_TARGET, are designed to ensure that the 
$host, $build and $target environment variables are defined by the configure 
script, such that they contain appropriate values describing the user's host, build and 
target systems. 



These variables contain canonical values for the host, build and target CPU, vendor and 
operating system. Values like these are very useful to extension macros. If a macro can 
assume these variables are set properly, then it saves quite a bit of code duplication in 
the macro definition. 

The values of these variables are calculated using two helper scripts, config.guess 
and config.sub, which are distributed with Autoconf. The config.guess script uses 
a combination of uname commands to ferret out information about the host system, and 
munge it into a canonical value. The config.sub script is used to reformat host, build 
and target information specified by the user on the configure command line into a 
canonical value. 
The key point here, however, is that I had to use the AC_CANONICAL_SYSTEM macro 
well before I called the ac-archive extension macros in my configure.ac script. 

The xflaim/java directory structure 
The original source layout had the Java JNI and CSharp native sources located in 
entirely different directory structures than xflaim/src. The JNI sources were located in 
xflaim/java/jni, and the CSharp native sources were located in 
xflaim/csharp/xflaim. While Automake has no problem generating rules for 
accessing files well outside the current directory hierarchy, I find it a bit silly to put these 
files so far away from the only library they can really belong to. Thus, I broke my own rule 
of thumb about not rearranging files in this case. I moved the contents of these two 
directories to directories under xflaim/src. I named the JNI directory 
xflaim/src/java and the CSharp native sources directory xflaim/src/cs. 
 

flaim 

  xflaim 

    src 

      cs 

      java 

        wrapper 

          xflaim 

As you can see, I also added a wrapper directory beneath the java directory, in which I 
rooted the xflaim wrapper package hierarchy. Since the Java xflaim wrapper classes are 
part of the Java xflaim package, they have to be located in a directory called xflaim. 
Nevertheless, the build happens in the wrapper directory. There are no build files found 
in the wrapper/xflaim directory, or any directories below that point. 
Note that it doesn't matter how deep your package hierarchy is. You will still build the 
java classes in the wrapper directory--this is the JAVAROOT directory for this project. 

The xflaim/src/Makefile.am file 
At this point the configure.ac script is doing about all it can for me to ensure that I 
have a good Java build environment. If I have a good Java build environment, my build 
system will be able to generate my JNI wrapper classes and header files, and build my 
C++ JNI sources. If my end user's system doesn't provide these tools, then she simply 
can't build or link in the JNI language bindings on that host. 



Have a look at the xflaim/src/Makefile.am file, and examine the portions that are 
relevant to building the Java and CSharp language bindings: 
 

SUBDIRS =  

 

if HAVE_JAVA 

  SUBDIRS += java 

  JNI_LIBADD=java/libxfjni.la 

endif 

 

if HAVE_CSHARP 

  SUBDIRS += cs 

  CSI_LIBADD=cs/libxfcsi.la 

endif 

 

SUBDIRS += . 

... 

libxflaim_la_LIBADD =\ 

 $(JNI_LIBADD) $(CSI_LIBADD) $(FTK_LTLIB) 

... 

I've already explained the use of the conditionals to ensure that the java and cs 
directories only get built if the proper conditions are met. You can now see how this fits 
into the build system I've created so far. 
Notice that I'm also conditionally defining two new library variables. If I can build the Java 
language bindings, then the JNI_LIBADD variable will refer to the library that is built in 
the java directory. If I can build the CSharp language bindings, then the CSI_LIBADD 
variable will refer to the library that is built in the cs directory. In either case, if the 
required tools are not found by the configure script, then the associated variable will 
remain undefined. When an undefined variable is referenced, it expands to nothing, so 
there's no harm in using it in the libxflaim_la_LIBADD variable. 

Building the JNI C++ sources 

Now, allow me to turn your attention to the xflaim/src/java/Makefile.am file: 
 



SUBDIRS = wrapper 

 

XFLAIM_INCLUDE=-I$(srcdir)/.. 

 

noinst_LTLIBRARIES = libxfjni.la 

 

libxfjni_la_SOURCES = \ 

 jbackup.cpp \ 

 jdatavector.cpp \ 

 jdb.cpp \ 

 jdbsystem.cpp \ 

 jdomnode.cpp \ 

 jistream.cpp \ 

 jniftk.cpp \ 

 jniftk.h \ 

 jnirestore.cpp \ 

 jnirestore.h \ 

 jnistatus.cpp \ 

 jnistatus.h \ 

 jostream.cpp \ 

 jquery.cpp 

 

libxfjni_la_CPPFLAGS =\ 

 $(XFLAIM_INCLUDE) $(FTK_INCLUDE) 

Again, I want the wrapper directory to be built first, because it will build the class files 
and JNI header files required by the JNI convenience library sources. This time, it's not 
conditional. If I've made it this far into the build hierarchy, then I know I have all the Java 



tools I need. This Makefile.am file simply builds a convenience library containing my 
JNI C++ interface functions. 
Because of the way Libtool builds both shared and static libraries from the same sources, 
this convenience library will become part of both the xflaim shared and static libraries. 
The original build system makefile accounted for this by linking the JNI and CSharp 
native interface objects into only the shared library. 

The fact that these libraries are added to both the shared and static xflaim libraries is not 
really a problem. Objects in a static library remain unused in applications or libraries 
linking to the static library, as long as code in those objects remain unreferenced. 
However, I'll admit that it's a bit of a "wart" on the side of my new build system. 

The Java wrapper classes and JNI headers 

Finally, the xflaim/src/java/wrapper/Makefile.am file takes us to the heart of 
the matter. I've tried many different configurations for building Java JNI wrappers, and 
this one always comes out on top. Here's the wrapper directory's Automake intput file: 
 

JAVAROOT = . 

 

jarfile = $(PACKAGE)jni-$(VERSION).jar 

jardir = $(datadir)/java 

pkgpath = xflaim 

jhdrout = .. 

 

$(jarfile): $(dist_noinst_JAVA)  

        $(JAR) cf $(JARFLAGS) $@ $(pkgpath)/*.class 

 

jar_DATA = $(jarfile) 

 

java-headers.stamp: $(dist_noinst_JAVA) 

        @list="`echo $(dist_noinst_JAVA) |\ 

         sed -e 's|\.java||g' -e 's|/|.|g'`"; \ 

        for class in $$list; do \ 

          echo "$(JAVAH) -jni -d $(jhdrout)\ 



           $(JAVAHFLAGS) $$class"; \ 

          $(JAVAH) -jni -d $(jhdrout)\ 

           $(JAVAHFLAGS) $$class; \ 

        done 

        @echo "JNI headers generated"\ 

         > java-headers.stamp 

 

all-local: java-headers.stamp 

 

CLEANFILES = $(jarfile) $(pkgpath)/*.class\ 

 java-headers.stamp $(jhdrout)/xflaim_*.h 

 

dist_noinst_JAVA = \ 

 $(pkgpath)/BackupClient.java \ 

 $(pkgpath)/Backup.java \ 

 ... 

 $(pkgpath)/XFlaimException.java \ 

 $(pkgpath)/XPathAxis.java 

I've set the JAVAROOT variable to DOT (.), mainly because I want Automake to be able 
to tell the Java compiler that this is where the package hierarchy begins. The xflaim Java 
wrapper classes are found in the xflaim package. The default value for JAVAROOT is 
$(top_builddir), which would have the wrapper class belong to the 
xflaim.src.java.wrapper.xflaim package. That's not right. 
I then created a variable called jarfile, deriving its value from $(PACKAGE) and 
$(VERSION). This is how the destdir variable is derived also, from which the name of 
the tarball comes. A make rule indicates how the .jar file should be built. Here, I'm 
using the JAR variable, whose value was calculated for me by the results of the 
AC_PROG_TRY_JAR macro in the configure script. This rule is fairly straight forward. 
I've defined a new installation variable called jardir--the place where .jar files are to 
be installed, presumably. And I've used it as the prefix for a DATA primary. Any files that 
Automake doesn't understand--basically, any files that you build using your own rules--
are just considered by Automake to be data files, and are installed as such. 



I'm using another stamp file in the rule that builds the JNI header files from the .class 
files. I'm doing this for the same reason that Automake used a stamp file in the rule that it 
uses to build .class files from .java source files. 
This is the most complex part of this makefile, so I'll try to break it into simple pieces. The 
rule states that the stamp file depends on the files listed in the dist_noinst_JAVA 
variable. The command is a bit of complex shell script that strips the .java extensions 
from the file list, and converts all the SLASH characters in to DOT characters. The 
reason for this is that the javah utility wants a list of class names, not a list of file names. 
The last line, of course, generates the stamp file. 
Finally, I hooked my java-headers.stamp target into the all target by adding it as a 
dependency to the all-local target. When the all target (the default for all 
Automake-generated makefiles) is executed in this makefile, java-headers.stamp will 
be built, along with the JNI headers. 
Here, I've also added the .jar file, all of the .class files, the java-headers.stamp 
file and all of the generated JNI header files to the CLEANFILES variable, so that 
Automake will clean them up for me when make clean is executed on this makefile. 
Again, I can use the CLEANFILES variable here because I'm not trying to delete any 
directories. 

A caveat about using the JAVA primary 
There's one important caveat to using the JAVA primary. You may only define one JAVA 
primary variable per Makefile.am file. The reason for this is that multiple classes may 
be generated from a single .java file, and the only way to know which classes came 
from which .java file would be to parse the .java files. Rather than do this, Automake 
allows only one JAVA primary per file, so all .class files generated within a given build 
directory are installed in the location specified by the single JAVA primary variable prefix. 
Realizing this gives me pause for thought. It seems that I've broken this rule by assuming 
in my java-headers.stamp rule that the source for class information is the list of files 
specified in the dist_noinst_JAVA variable. In reality, I should probably be looking in 
the current build directory for all .class files found after the rules for the JAVA primary 
are executed. 
It's a good thing I don't need to install my JNI header files. I have no way of knowing what 
they're called from within my Makefile.am file! You should by now be able to see the 
problems that Autotools has with Java. In fact, these problems are not so much related to 
the poor design of Autotools, as they are the poor design of the Java language itself. This 
will become clear in the next section, as I cover the rules that build the CSharp native 
interfaces. 

Building the CSharp sources 

Returning now to the xflaim/src/cs directory brings us to a discussion of building 
source for a language for which Automake has no support: CSharp. Here's the 
Makefile.am file that I wrote for the cs directory: 
 

SUBDIRS = wrapper 

 

XFLAIM_INCLUDE=-I$(srcdir)/.. 

 

noinst_LTLIBRARIES = libxfcsi.la 



 

libxfcsi_la_SOURCES = \ 

 Backup.cpp \ 

 DataVector.cpp \ 

 Db.cpp \ 

 DbInfo.cpp \ 

 DbSystem.cpp \ 

 DbSystemStats.cpp \ 

 DOMNode.cpp \ 

 IStream.cpp \ 

 OStream.cpp \ 

 Query.cpp 

 

libxfcsi_la_CPPFLAGS = $(XFLAIM_INCLUDE) $(FTK_INCLUDE) 

Not surprisingly, this looks almost identical to the Makefile.am file found in the 
xflaim/src/java directory. I'm building a simple convenience library from C++ source 
files found in this directory, just as I did in the java directory. As in the java version, this 
makefile is specifying a sub-directory called wrapper, which Automake builds first. 
The wrapper/Makefile.am file looks like this: 
 

EXTRA_DIST = xflaim cstest sample xflaim.ndoc 

 

xfcs_sources = \ 

 xflaim/BackupClient.cs \ 

 xflaim/Backup.cs \ 

 ... 

 xflaim/RestoreClient.cs \ 

 xflaim/RestoreStatus.cs 

 



cstest_sources = \ 

 cstest/BackupDbTest.cs \ 

 cstest/CacheTests.cs \ 

 ... 

 cstest/StreamTests.cs \ 

 cstest/VectorTests.cs 

 

TESTS = cstest_script 

 

AM_CSCFLAGS = -d:mono -nologo -warn:4\ 

 -warnaserror+ -optimize+ 

#AM_CSCFLAGS += -debug+ -debug:full\ 

# -define:FLM_DEBUG 

 

all-local: xflaim_csharp.dll 

 

clean-local: 

        -rm xflaim_csharp.dll xflaim_csharp.xml 

        -rm cstest_script cstest.exe libxflaim.so 

        -rm Output_Stream  

        -rm -rf abc backup test.* 

 

check-local: cstest.exe cstest_script 

 

install-exec-local: 

        test -z "$(libdir)" || \ 



         $(MKDIR_P) "$(DESTDIR)$(libdir)" 

        $(INSTALL_PROGRAM) xflaim_csharp.dll\ 

        "$(DESTDIR)$(libdir)" 

 

install-data-local: 

        test -z "$(docdir)" || \ 

         $(MKDIR_P) "$(DESTDIR)$(docdir)" 

        $(INSTALL_DATA) xflaim_csharp.xml\ 

          "$(DESTDIR)$(docdir)" 

 

uninstall-local: 

        rm "$(DESTDIR)$(libdir)/xflaim_csharp.dll" 

        rm "$(DESTDIR)$(docdir)/xflaim_csharp.xml" 

 

xflaim_csharp.dll: $(xfcs_sources) 

        @list1='$+'; list2=; \ 

        if test -n "$$list1"; then \ 

          for p in $$list1; do \ 

            if test -f $$p; then d=; \ 

            else d="$(srcdir)/"; fi; \ 

            list2="$$list2 $$d$$p"; \ 

          done; \ 

          echo '$(CSC) -target:library\ 

           $(AM_CSCFLAGS) $(CSCFLAGS) -out:$@\ 

           -doc:$(@:.dll=.xml) '"$$list2"; \ 

          $(CSC) -target:library $(AM_CSCFLAGS)\ 



           $(CSCFLAGS) -out:$@ -doc:$(@:.dll=.xml)\ 

           $$list2; \ 

        else :; fi 

 

cstest.exe: xflaim_csharp.dll $(cstest_sources) 

        @list1='$(cstest_sources)'; \ 

         list2=; if test -n "$$list1"; then \ 

          for p in $$list1; do \ 

            if test -f $$p; then d=; \ 

            else d="$(srcdir)/"; fi; \ 

            list2="$$list2 $$d$$p"; \ 

          done; \ 

          echo '$(CSC) $(AM_CSCFLAGS) $(CSCFLAGS)\ 

           -out:$@ '"$$list2"'\ 

           -reference:xflaim_csharp.dll'; \ 

          $(CSC) $(AM_CSCFLAGS) $(CSCFLAGS)\ 

           -out:$@ $$list2\ 

           -reference:xflaim_csharp.dll; \ 

        else :; fi 

 

libxflaim.so: 

        $(LN_S) ../../.libs/libxflaim.so\ 

         libxflaim.so 

 

cstest_script: cstest.exe libxflaim.so 

        echo "#!/bin/sh" > cstest_script 



        echo "$(CSVM) cstest.exe" >> cstest_script 

        chmod 0755 cstest_script 

The default target for this Makefile.am file is, of course, the all target. I've hooked the 
all target with my own code by implementing the all-local target, which depends on 
a file named xflaim_csharp.dll. 
NOTE: This executable file name may be a bit confusing to those who are new to CSharp. 
In essence, the creators of CSharp (Microsoft) designed the CSharp VM to execute 
Microsoft native (or almost native) binaries. In porting the CSharp virtual machine to Unix, 
the Mono team decided against breaking the naming conventions defined by Microsoft, 
so that Microsoft generated programs could be executed by the Mono CSharp virtual 
machine implementation. Nevertheless, it still suffers from problems that need to be 
managed occasionally by name-mapping configuration files. 
 

... 

xfcs_sources = ... 

... 

all-local: xflaim_csharp.dll 

... 

xflaim_csharp.dll: $(xfcs_sources) 

        @list1='$+'; list2=; \ 

        if test -n "$$list1"; then \ 

          for p in $$list1; do \ 

            if test -f $$p; then d=; \ 

            else d="$(srcdir)/"; fi; \ 

            list2="$$list2 $$d$$p"; \ 

          done; \ 

          echo '$(CSC) -target:library\ 

           $(AM_CSCFLAGS) $(CSCFLAGS) -out:$@\ 

           -doc:$(@:.dll=.xml) '"$$list2"; \ 

          $(CSC) -target:library $(AM_CSCFLAGS)\ 

           $(CSCFLAGS) -out:$@ -doc:$(@:.dll=.xml)\ 



           $$list2; \ 

        else :; fi 

... 

The xflaim_csharp.dll binary depends on the list of CSharp source files specified in 
the xfcs_sources variable. I take no credit for the commands in this rule. They're 
copied from the Automake-generated java/wrapper/Makefile, and slightly modified 
to build CSharp binaries from CSharp source files. 
This isn't a lesson in building CSharp sources--the point here is that the default target is 
automatically built by hooking the all target via the all-local target. 
This Makefile.am file also builds a set of unit tests in CSharp that test the CSharp 
language bindings. Here are the relevant portions of the file: 
 

... 

cstest_sources = ... 

 

TESTS = cstest_script 

... 

check-local: cstest.exe cstest_script 

... 

cstest.exe: xflaim_csharp.dll $(cstest_sources) 

        @list1='$(cstest_sources)'; \ 

         list2=; if test -n "$$list1"; then \ 

          for p in $$list1; do \ 

            if test -f $$p; then d=; \ 

            else d="$(srcdir)/"; fi; \ 

            list2="$$list2 $$d$$p"; \ 

          done; \ 

          echo '$(CSC) $(AM_CSCFLAGS) $(CSCFLAGS)\ 

           -out:$@ '"$$list2"'\ 

           -reference:xflaim_csharp.dll'; \ 



          $(CSC) $(AM_CSCFLAGS) $(CSCFLAGS)\ 

           -out:$@ $$list2\ 

           -reference:xflaim_csharp.dll; \ 

        else :; fi 

 

libxflaim.so: 

        $(LN_S) ../../.libs/libxflaim.so\ 

         libxflaim.so 

 

cstest_script: cstest.exe libxflaim.so 

        echo "#!/bin/sh" > cstest_script 

        echo "$(CSVM) cstest.exe" >> cstest_script 

        chmod 0755 cstest_script 

The test sources are built into a CSharp executable named cstest.exe. The rules state 
that cstest.exe depends on xflaim_csharp.dll and the source files. I again 
copied the commands from the rule for building xflaim_csharp.dll, and modified 
them for building CSharp programs. 
Ultimately, the Automake-generated makefile will attempt to execute the scripts or 
executables listed in the TESTS variable, so the idea here is to ensure that all necessary 
components get built before these files are executed. The cstest_script is a script 
built for the sole purpose of executing the cstest.exe binary in the CSharp virtual 
machine referenced by the CSVM variable. This variable was defined in my configure 
script by the code generated by the AC_PROG_TRY_CSVM macro. 
The script depends on the executable, and on a link to the libxflaim.so file. This file 
must be present in the current directory, or its location must be specified somehow on the 
mono ($CSVM) command line. I chose to simply create a link in the current directory to the 
location of the actual built library--located up a few directories, and then down into the 
xflaim/src/.libs directory. 

Manual installation 

Since I'm doing everything myself here, I can't rely on Automake to install files for me. I 
have to write my own installation rules. Here again are the relevant portions of the 
makefile: 

 

... 

install-exec-local: 



        test -z "$(libdir)" || \ 

         $(MKDIR_P) "$(DESTDIR)$(libdir)" 

        $(INSTALL_PROGRAM) xflaim_csharp.dll\ 

        "$(DESTDIR)$(libdir)" 

 

install-data-local: 

        test -z "$(docdir)" || \ 

         $(MKDIR_P) "$(DESTDIR)$(docdir)" 

        $(INSTALL_DATA) xflaim_csharp.xml\ 

          "$(DESTDIR)$(docdir)" 

 

uninstall-local: 

        rm "$(DESTDIR)$(libdir)/xflaim_csharp.dll" 

        rm "$(DESTDIR)$(docdir)/xflaim_csharp.xml" 

... 

Note that, as per the rules defined in the GNU Coding Standards, the installation targets 
do not depend on the binaries they install. I don't want make install to build anything. 
If they haven't been built yet, I'll have to exit out of the root account, back into my own 
user account and build the binaries with make all first. 

Cleaning up again 

As usual, things must be cleaned up properly. The clean-local target handles this 
nicely for me: 
 

... 

clean-local: 

        -rm xflaim_csharp.dll xflaim_csharp.xml 

        -rm cstest_script cstest.exe libxflaim.so 

        -rm Output_Stream  

        -rm -rf abc backup test.* 



... 

Configuring compiler options 

The original GNU build system was doing a lot for the user. By specifying a list of 
auxiliary targets on the make command line, the user could indicate that she wanted a 
debug or release build, force a 32-bit build on a 64-bit system, indicate that she wanted 
to generate generic SPARC code on a Solaris sytem, etc. 
Oddly, this turn-key approach to build systems is quite common in commercial code. 
Whereas, in open source code, the more common practice is to omit much of this 
framework, allowing the user to set her own options in the standard user variables, CC, 
CPP, CXX, CFLAGS, CXXFLAGS, CPPFLAGS and others. What's strange about this 
situation is that commercial software is developed by experts working in the industry, 
while open source software is often built and consumed by hobbyists. And yet the 
experts are the ones using the menu-driven rigid-options framework, while the hobbyists 
have to manually configure their compiler options. 
I suppose the most reasonable explanation for this is that commercial software relies on 
carefully crafted builds that must be able to be duplicated. Open source hobbyists are 
more carefree, and would rather not give up the flexibility afforded by the lack of such 
turn-key systems. 

To this end, I've added some of the options supported by the original GNU makefile-
based build system, but left others out. Here's the portion of the configure.ac file that 
I'm talking about: 
 

... 

# Configure global pre-processor definitions. 

AC_DEFINE([_REENTRANT], [],  

  [Define for reentrant code]) 

AC_DEFINE([_LARGEFILE64_SOURCE], [],  

  [Define for 64-bit data files]) 

AC_DEFINE([_LARGEFILE_SOURCE], [],  

  [Define for 64-bit data files]) 

 

# Configure supported platforms' compiler and li... 

case $host in 

  sparc-*-solaris*) 

    LDFLAGS="$LDFLAGS -R /usr/lib/lwp" 



    if "x$CXX" != "xg++"; then 

      if "x$debug" = xno; then 

        CXXFLAGS="$CXXFLAGS -xO3" 

      fi 

      SUN_STUDIO=`"$CXX" -V | grep "Sun C++"` 

      if "x$SUN_STUDIO" = "xSun C++"; then 

        CXXFLAGS="$CXXFLAGS -errwarn=%all\ 

 

 -errtags -erroff=hidef,inllargeuse,doubunder" 

      fi 

    fi ;; 

 

  *-apple-darwin*) 

    AC_DEFINE([OSX], [],  

      [Define if building on Apple OSX.]) ;; 

 

  *-*-aix*) 

    if "x$CXX" != "xg++"; then 

      CXXFLAGS="$CXXFLAGS -qthreaded -qstrict" 

    fi ;; 

 

  *-*-hpux*) 

    if "x$CXX" != "xg++"; then 

      # Disable "Placement operator delete 

      # invocation is not yet implemented" warning 

      CXXFLAGS="$CXXFLAGS +W930" 



    fi ;; 

esac 

... 

Here, I've used the $host variable to determine the type of system for which I'm building. 
The config.guess and config.sub files are your friends here. If you need to write 
code like for your project, then you'll need to examine these files to find common traits for 
the processes and systems for which you'd like to set various compiler and linker options. 
Note also that in each of these cases (except for the definition of the OSX preprocessor 
variable on Apple Darwin systems), I'm really only setting flags for native compilers. The 
GNU compiler tools seem to be able to handle any sort of code thrown at them without 
monkeying around with compiler options. This is a good thing, and a lesson could be 
learned by compiler vendors from this fact. 

Hooking Doxygen into the build process 

I wanted to generate documentation as part of my build process, if possible. That is, if the 
user has doxygen installed on her system, then the build system will use it to build 
doxygen documentation as part of the make all process. As I've already mentioned, I 
used the AM_CONDITIONAL macro to conditionally build the docs directory. 
Now, relative to the xflaim project, this is probably not the right thing to do, as I want non-
doxygen documentation to be installed even if doxygen isn't available. The right approach 
to this problem would be to have a doxygen directory beneath the docs directory that 
handles only generated documentation. The docs directory itself would be limited to 
simply installing existing documentation. I've combined them to save space in this book, 
but I'll probably fix this problem before committing my build system to the project. 
For the FLAIM tool kit project, this configuration works fine for now, because there is no 
other documentation to be installed. I say "for now" because at some point in the future, 
someone may write some tool kit documentation, and then I'll have to move things 
around to get the end-user experience I want. 

Doxygen uses a configuration file (often called doxyfile) to configure literally hundreds 
of doxygen options. This configuration file contains some information that is known to 
Autoconf. This sounds like the perfect opportunity to use an Autoconf-generated file. To 
this end, I've written a file called doxyfile.in that contains most of what a normal 
doxyfile would contain, except it also has a few Autoconf substitution variable references: 
 

... 

PROJECT_NAME           = @PACKAGE_NAME@ 

PROJECT_NUMBER         = @PACKAGE_VERSION@  

... 

STRIP_FROM_PATH        = @top_srcdir@ 

... 

There are many other lines in this file, but they are all identical to the output file, so I've 
omitted them for the sake of space and clarity. The key here is that Autoconf will replace 



these values with those defined in configure.ac, and by Autoconf itself. If these 
values change in configure.ac, the generated file will be written with the new values. 
I've added a reference to ftk/docs/doxyfile to the AC_CONFIG_FILES list in ftk's 
configure.ac file. That's all it takes. 
Here's the ftk/docs/Makefile.am file: 
 

docpkg = $(PACKAGE_TARNAME)-doxy-$(PACKAGE_VERSION).tar.gz 

 

doc_DATA = $(docpkg) 

 

$(docpkg): doxygen.stamp 

        tar chof - html | gzip -9 -c >$@ 

 

doxygen.stamp: doxyfile 

        $(DOXYGEN) $(DOXYFLAGS) $< 

        echo Timestamp > $@ 

 

CLEANFILES = doxywarn.txt doxygen.stamp $(docpkg) 

 

clean-local: 

        -rm -rf html 

In this file, I've created a package name for the tarball that will contain the doxygen 
documentation files. It's basically the same as the distribution tarball for the ftk project, 
except that it contains the text -doxy after the package name. 
I've also defined a doc_DATA variable containing the name of the doxygen tarball. This 
file will be installed in the $(docdir) directory, which by default is 
$(datarootdir)/doc/$PACKAGE_TARNAME. And $(datarootdir) is configured as 
$(prefix)/share, by default. 
Note again here that the DATA primary brings with it significant Automake functionality--
installation is managed automatically. And, while I must build the doxygen documentation 
package myself, the DATA primary automatically hooks the all target for me, so that my 
package is built when the user executes make all. 
I'm using another stamp file here because doxygen generates literally hundreds of html 
files from my input file (and from the source tree). Rather then attempt to figure out a 
rational way to assign dependencies, I simply generate one stamp file, and then use that 
to determine whether or not the documentation is out of date. 



Note that this is wrong, but much simpler than attempting to list every source file used in 
the generation of the documentation as a dependency of the stamp file. (In fact, this is 
quite trivial in this project because the only source file currently containing documentation 
markup, and thus, listed in the doxyfile as an input file, is the flaimtk.h header file. 
However, this could easily change in the future.) 
For cleaning my generated files, I've used a combination of the CLEANFILES variable 
and a clean-local rule--just to show you that it can be done. 

Adding a new rpms target 
Adding a new non-standard target is a little different than hooking an existing target. In 
the first place, you don't need to use AM_CONDITIONAL and Autoconf checks to see if 
you have the tools you need. You may do everything from the Makefile.am file, if you 
wish. After all, if the user was building on a Debian system, why in the world did she type 
make rpms in the first place?! Nonetheless, you still have to account for the possibility 
that the user will experiment. 
First, I created a directory called obs to contain the Makefile.am file for building RPM 
package files. OBS is an acronym for "Opensuse Build Service", which is an online 
package building service (found at http://build.opensuse.org) that I fell in love with almost 
as soon as it came out. I've had some experience building distro packages, and I can tell 
you, it's far less painful with the OBS than it is using more traditional techniques. 
Furthermore, packages built with the OBS can be published on the OBS web site for 
others to access immediately after they're built (in this case, 
http://software.opensuse.org/search). 

Building RPM package files is done using a configuration file, called a "spec" file, which is 
very much like the doxyfile is used to configure doxygen for a specific project. As with the 
doxyfile, the rpm spec file contains information that Autoconf knows about regarding the 
project package. So, I wrote an ftk.spec.in file, adding substitution variables where 
appropriate, and then I added another file reference to the AC_CONFIG_FILES macro. 
Here is the relevant portion of the ftk.spec.in file: 
 

Name: @PACKAGE_TARNAME@ 

BuildRequires: gcc-c++ libstdc++ libstdc++-devel doxygen 

Summary: FTK is the FLAIM cross-platfomr toolkit. 

URL: http://forge.novell.com/modules/xfmod/project/?flaim 

Version: @PACKAGE_VERSION@ 

Release: 1 

License: GPL 

Vendor: Novell, Inc. 

Group: Development/Libraries/C and C++ 

Source: %{name}-%{version}.tar.gz 

BuildRoot: %{_tmppath}/%{name}-%{version}-build 



... 

I used @PACKAGE_TARNAME@ and @PACKAGE_VERSION@. Now the tar name is not likely 
to change much over the life time of this project, but the version will change quite often. 
Without the Autoconf substitution mechanism, I'd have to remember to update this 
version number whenever I updated the version in the configure.ac file. Here's the 
obs/Makefile.am file: 
 

rpmspec = $(PACKAGE_TARNAME).spec 

 

rpmmacros =\ 

 --define='_rpmdir $(PWD)'\ 

 --define='_srcrpmdir $(PWD)'\ 

 --define='_sourcedir $(PWD)'\ 

 --define='_specdir $(PWD)'\ 

 --define='_builddir $(PWD)' 

 

rpmopts = --nodeps --buildroot='$(PWD)/_rpm' 

 

rpmcheck: 

        @which rpmbuild &> /dev/null; \ 

        if [ $$? -ne 0 ]; then \ 

          echo "*** This make target requires an rpm-based linux 
distribution."; \ 

          (exit 1); exit 1; \ 

        fi 

 

srcrpm: rpmcheck $(rpmspec) 

        rpmbuild -bs $(rpmmacros) $(rpmopts) $(rpmspec) 

 



rpms: rpmcheck $(rpmspec) 

        rpmbuild -ba $(rpmmacros) $(rpmopts) $(rpmspec) 

 

.PHONY: rpmcheck srcrpm rpms 

Building RPM package files is rather simple, as you can see. The targets provided by this 
makefile include srcrpm and rpms. The rpmcheck target is only used internally. How 
can you tell? Well, you can't really tell from here. In order to find out which targets in a 
lower-level Makefile.am file are supported by a top-level build, you have to look at the 
top-level Makefile.am file: 
 

... 

rpms srcrpm: dist 

        $(MAKE) -C obs $(AM_MAKEFLAGS) $@ 

        rpmarch=`rpm --showrc | grep ^build\ arch | sed 's/\(.*: 
\)\(.*\)/\2/'`; \ 

        test -z $$rpmarch || ( mv $$rpmarch/* .; rm -rf 
$$rpmarch ) 

        -rm -rf $(distdir) 

... 

.PHONY: srcrpm rpms 

As you can see from the first command in this rule, when a user targets rpms or srcrpm 
from the top-level build directory, the commands are recursively passed on to the 
obs/Makefile. The remaining commands simply remove droppings left behind by the 
RPM build process that are simpler to remove at this level. (Try building an rpm 
sometime, and you'll see what I mean!) 
Notice also that both of these top-level makefile targets depend on the dist target. 
That's because the RPM build process requires the distribution tarball. Adding it as a 
dependency simply ensures that the distribution tarball is there when the rpmbuild 
utility needs it. 

Summary 

While using Autotools, there are a myriad of details to manage, most of which, as they 
say in the free software world, "can wait for the next release!" The take-away lesson here 
is that a build system is never really finished. It should be incrementally improved over 
time, as you find time in your schedule to work on it. And it can be rewarding to do so. 

I've shown you a number of new features--features I didn't cover directly in the earlier 
chapters on the individual tools. There are many many more features that I couldn't begin 
to cover. You'll need to study the GNU Autotools manuals to become truly proficient. At 
this point, it should be pretty simple to pick up this additional information yourself. 



Source Code 

You can access the entire flaim project source hierarchy, along with the new build system 
defined in this chapter from the attached source archive. 

‹ Chapter 5: Building shared libraries with Libtool up Chapter 7: A catalog of reusable 
solutions › 

 



Chapter 7: A catalog of reusable 
solutions 
Mon, 2008-03-10 20:35 -- John Calcote 

This chapter started out as a catalog of reusable solutions--canned macros, if you will. 
But as I finished chapter after chapter preceeding this one, it became clear to me that I 
really needed to broaden my definition of a "canned solution". Instead of just cataloging 
interesting macros here (which has been done before anyway), this chapter lists several 
unrelated, but important tips for creating great projects in general. Some of these are 
related to the GNU Autotools, but others are merely good programming practice with 
respect to open source and free software projects. 

Never expose config.h in a public interface 
At times, I've come across poorly designed library interfaces where a project's config.h 
file is required by the project's public header files. This presents a real problem when 
more than one such library is required by a consumer. Which config.h file should be 
included? Both are named the same, and chances are good that both provide similar--
even identically named--definitions. 
When you carefully consider the original purpose of config.h, then you can see that it 
makes little sense to expose it in a library's public interface (by including it in any of the 
library's public header files). Its purpose is to provide platform-specific definitions to a 
particular build of the library. On the other hand, the public interface of a portable library 
is, by definition, platform-independent. 
Interface design is a fairly general topic in computer science. This item focuses a bit 
more specifically on designing great Application Programmer Interfaces (API's) for GNU 
Autotools library projects. Specifically, how to avoid including config.h in your public 
interfaces. 
But this item provides some more or less generic advice, as well. When designing a 
library for consumption by other projects, you have a great responsibility to not polute 
your consumers' symbol spaces with useless garbage from your header files. I once 
worked on a project that consumed a library interface from another team. This team 
provided both a Win32 and a Unix version of their library, with the header file being 
"portable" between the two platforms. Unfortunately, they didn't understand the definition 
of a clean interface. At some point in their public header files, they had a bit of code that 
looked like this: 

 

#ifdef _WIN32 

# include <windows.h> 

#else 

# typedef void * HANDLE 

#endif 

Ouch! Did they really need to include windows.h--just for the definition of HANDLE? Not 
only should they not have done this, but in fact, they probably should have used a 
different name for the handle object in their public interface. Why? Because HANDLE is 



too generic, and could easily conflict with a dozen other library interfaces. Why not use 
XYZ_HANDLE, or something a little more specific to the XYZ library? 
In C++ this concept is even simpler to implement with the use of namespaces. Anyone 
who properly understands the rationale behind C++ namespaces will have no problem 
understanding the value of this advice. 

To properly design a library, first design the public interface such that it exposes as little 
of the internals of your library implementation as is reasonable. Now, you'll have to 
determine the definition of reasonable, but it will most probably involve a compromise 
between abstraction and performance. 
When designing an API, start with the functionality you wish to expose from your library. 
Design functions that will maximize ease of use for your consumers. If you find yourself 
trying to decide between a simpler implementation and a simpler user experience, always 
err on the side of ease of use for your consumers. They'll thank you by actually using 
your library. Of course, if the interface is already defined by a software standard, then 
much of your work is done for you, but often this is not the case and you will have to 
make these decisions. 
Next, try to abstract away internal details. Everyone knows that the C language doesn't 
make it very easy to do this. You often need to pass structure references in public API's 
which contain internal details of your implementation that consumers have no business 
seeing. Ironically, C++ is just as bad in this area. C++ classes define public interfaces 
and private implementation details in the same class definition. 

In C, a common solution for this problem is to define a public alias for a private structure 
in terms of a void pointer. Many developers don't care for this approach because it 
reduces type safety in the interface. Such losses of type safety occur often in C 
programming. It's the nature of the language. The loss of type safety is significantly offset 
by the increase in interface abstraction. Here's an example of this technique: 

Private C source file 

 

#include <abc_pub.h> 

 

#if HAVE_CONFIG_H 

# include <config.h> 

#endif 

 

typedef struct { 

   /* private details */ 

} abc_impl; 

 

int abc_func(abc * p) 



{ 

   abc_impl * ip = (abc_impl *)p; 

   /* use 'p' through 'ip' */ 

} 

Public C header file - abc_pub.h 
 

typedef void abc; 

int abc_func(abc * p); 

Notice how the abstraction so conveniently alleviates the need to include a bunch of 
really private definitions in the library's public interface. 

In C++, this can be done using a few different techniques, including virtual interfaces, and 
the PIMPL (Private IMPLementation) pattern. 

In the PIMPL pattern, implementation details are hidden behind a pointer to a private 
implementation class stored as private data within the public interface class. Here's an 
example of the PIMPL pattern: 

Private C++ source file 

 

#include <abc_pub.h> 

 

#if HAVE_CONFIG_H 

# include <config.h> 

#endif 

 

class abc_impl { 

   /* private details */ 

}; 

 

int abc::func(void) 



{ 

   /* use 'pimpl' pointer */ 

} 

Public C++ header file - abc_pub.h 
 

class abc_impl; 

class abc { 

  abc_impl * pimpl; 

public: 

  int func(void); 

}; 

The C++ language allows the use of a forward declaration for any types used only 
through references or pointers, but never dereferenced in the public interface. Thus, the 
definition of the implementation class need not be exposed in the public interface, 
because the compiler is quite happy to compile the public interface files without the 
definition of the private implementation class. 

The performance trade-off here generally involves the dynamic allocation of an instance 
of the private implementation class, and then accessing class data indirectly through this 
pointer, rather than directly in the public structure. Again, however, notice how all internal 
details are now conveniently hidden, and thus not required by the public interface. 

Another approach when using C++ is to define a public "interface" class, most (if not all) 
of whose methods are declared pure virtual. The interface is then implemented internally 
by the library. To access an object of this class, consumers call a public factory function, 
whose job it is to return a pointer to the implementation class in terms of the interface 
definition: 

Private C++ source file 

 

#include <abc_pub.h> 

 

#if HAVE_CONFIG_H 

# include <config.h> 

#endif 

 



class abc_impl : public abc { 

   /* implementation of virtual methods */ 

}; 

Public C++ header file - abc_pub.h 
 

#define interface class 

 

interface abc { 

public: 

  virtual int func(void) = 0; 

}; 

 

abc * abc_instantiate(/* abc_impl ctor params */); 

To show the policy in practice here, I've used the C++ preprocessor to define a new 
keyword, interface. By definition, interface is synonymous with class, so they may be 
used interchangably. The idea here is that an interface doesn't expose any 
implementation details to the consumer. The public library function abc_instantiate 
returns a pointer to a new object of type abc_impl, except in terms of abc. Thus, nothing 
internal need be shown to the caller in the public header file. 
You may think the interface class method is more efficient than the PIMPL method, but 
the fact is most compilers implement virtual function calls as tables of function pointers 
referred to by a hidden "vptr" address within the implementation class, so you still end up 
calling all of your public methods indirectly through a pointer. Which of these techniques 
you choose to use to help you hide your implementation details is more a matter of taste 
than performance. 

When I design a library, I start by designing a minimal but complete functional interface, 
with as much of my internal implementation abstracted away as is reasonable. I try to use 
only standard library basic types, if possible, in my function prototypes, and then include 
only the C or C++ standard header files required by the use of those types and definitions. 
This technique is the fastest way I've found to creating a highly portable and maintainable 
interface. 

If you still can't see the value in the advice offered by this item, then let me give you one 
more scenario to ponder. Consider what happens when a Linux distro packager decides 
to create a 'devel' package for your library - that is, a package containing static libraries 
and header files, designed to be installed into the /user/lib and /usr/include 
directories on a target system. Every header file required by your library must be installed 
into the /user/include directory. If your library's public interface requires the inclusion 
of your config.h file, then by extension, your config.h must be installed into the 



/usr/include directory. Now consider what happens when multiple such libraries need 
to be installed. 
I've seen message threads on the Autotools mailing list defending the need to do this sort 
of thing, and providing techniques for naming config.h in a package-specific manner. 
These techniques often involve some form of post-processing of this file to rename the 
macros it contains such that they don't conflict with other packages' installed config.h 
macros. While this can be done, and while there are a few good reasons for doing so 
(usually involving a legacy code base that can't be modified much), these situations 
should be considered the exception, not the rule. 

Implementing recursive extension targets 

When you add a new top-level target to your build system, you have to either tie it into an 
existing Automake target, or add your own make code to the target to recurse into the 
sub-directory structure provided by Automake in your build system. 

The SUBDIRS variable can be used to recurse all sub-directories of the current directory, 
passing the build command into the makefiles in these directories. This works great for 
targets that must be built based on configuration options, because after configuration the 
SUBDIRS variable contains only those directories configured to be built. 
If you need to execute your new recursive target in all sub-directories, regardless of any 
conditional configuration, which might exclude one or more sub-directories specified in 
the SUBDIRS variable, then use the DISTDIRS variable instead. This variable is derived 
by Automake from all conditional and non-conditional additions to the SUBDIRS variable. 
There are various ways to recurse, including some really simple one-liners provided by 
GNU Make specific syntax. but the most portable way is to use the technique that 
Automake itself uses: 

 

recursive-target: 

  $preorder_commands 

  for dir in $(SUBDIRS); do \ 

    (cd $$dir && $(MAKE) $(AM_MAKEFLAGS) $@) || exit 1; \ 

  done 

  $postorder_commands 

 

.PHONY: recursive-target 

The $preorder_commands macro can be used to do things that must be done before 
recursing to lower-level directories. The $postorder_commands macro can likewise be 
used to do additional things once you return from the lower-level directories. At some 
point in the hierarchy, you'll need to actually do something useful besides calling down to 
lower levels. Use these two macros to encode the actual functionality of this technique. 
For example, assuming you want to build some generated documentation, you might 
have a special target called doxygen. Even if you happen to be okay with building your 
documentation in the top-level directory, there may be cases where you need to 



distribute the generation of your documentation to various directories within your project 
hierarchy. You might use the following code in each Makefile.am file in your project: 
 

# uncomment if doxyfile exists in this directory 

# postorder_commands = $(DOXYGEN) $(DOXYFLAGS) doxyfile 

 

doxygen: 

  $preorder_commands 

  for dir in $(SUBDIRS); do \ 

    (cd $$dir && $(MAKE) $(AM_MAKEFLAGS) $@) || exit 1; \ 

  done 

  $postorder_commands 

 

.PHONY: doxygen 

For directories where doxyfile doesn't exist, you may comment out (or better yet, 
simply omit) the postorder_commands macro definition. The doxygen target will be 
harmlessly propagated to the next lower level in the build tree. 
This code ensures that the build terminates when a lower-level makefile fails on the 
recursive target, propagating the shell error code (1) back up to each parent until the top-
level shell is reached. This is important, or the build may continue at some levels until a 
different error is encountered. 

Also note that I don't use the somewhat less portable -C make command line option to 
change directories before running the sub-make operation. 
Allow me to emphasize here that if you choose to implement a completely recursive 
global target in this manner, then you must include this code snippet in every single 
Makefile.am file in your project, even if it has nothing to do with the generation of 
documentation. If you don't, then make will fail on that makefile because no such target 
exists within that makefile. The commands may do nothing, but the target must exist. 

If you want to do something simpler, such as pass the target down to a single sub-
directory beneath the top-level directory--say, a doc directory just below the top--then life 
is simpler: 

Top-level Makefile.am 
 

doxygen: 

  (cd doc && $(MAKE) $(AM_MAKEFLAGS) $@) || exit 1 

 



.PHONY: doxygen 

doc directory Makefile.am 
 

doxygen: 

  $(DOXYGEN) $(DOXYFLAGS) doxyfile 

 

.PHONY: doxygen 

NOTE: The variables, DOXYGEN and DOXYFLAGS are assumed to exist by virtue of some 
macro or shell code executed within the configure script. 

Using a repository revision number 

Arguments to the Autoconf AC_INIT macro must be static text. That is, they can't be 
shell variables, and Autoconf will flag attempts to use shell variables in these arguments 
as errors. This is all well and good until you want to calculate any portion of your 
package's version number during the configuration process. 
I once tried to use a shell variable in the VERSION argument so that I could substitute my 
Subversion revision number into the VERSION argument when configure was executed. I 
spent a couple of days trying to figure out how to trick Autoconf into letting me use a shell 
variable as a sort of "revision" field in my package's version number. Eventually, I 
discovered the following trick, which I implemented in my configure.ac script, and in 
my top-level Makefile.am file: 
configure.ac 
 

SVNREV=`svnversion $srcdir | sed 's/:.*//'` 

which svnversion > /dev/null; \ 

if [ $? -ne 0 ] || [ "x$SVNREV" = "xexported" ] 

  then SVNREV=`cat $srcdir/SVNREV` 

  else echo -n $SVNREV>$srcdir/SVNREV 

fi 

AC_SUBST(SVNREV) 

First, the shell variable SVNREV is set to the output of the svnversion command, as 
executed on the project top-level source directory. The output is piped through the sed 
utility to remove all text following an embedded COLON (:) character. This gives us a raw 
Subversion revision number--that is, if the code is executed in a true Subversion work 
area, which isn't always the case. 
When a user executes this configure script from a distribution tarball, Subversion may 
not even be installed on her workstation. Even if it is, the top-level project directory 
comes from the tarball, not a Subversion repository. To handle these situations, the next 



line checks to see if either Subversion is not installed, or if the output from the first line 
was the word, "exported", which is the result of executing the svnversion utility on a 
non-work-area directory. 
If either of these cases is true, then the SVNREV variable is populated from the contents 
of a file called SVNREV. This file actually ships with a distribution tarball containing this 
configuration code. This is true because if the svnversion command works properly, 
generating a true Subversion repository revision number, then that value is immediately 
written to the SVNREV file by the else clause of this if statement. 
Finally, AC_SUBST is used to cause Autoconf to substitute the SVNREV variable so that it 
becomes available to the makefile as a make variable (all AC_SUBST variables are 
converted to make variables by Automake). 
In the top-level Makefile.am file, I then ensure that the SVNREV file becomes part of the 
distribution tarball by adding it to the EXTRA_DIST list. This means that when a 
distribution tarball is created and published by the maintainer, it contains an SVNREV file 
that contains the source tree revision number to be used when generating a tarball from 
this source code. It's accurate because the tarball was actually generated from a this 
revision of the SVN repository. 
Generally, it's not particularly important that a tarball be able to generate a proper tarball, 
but an Automake-generated tarball can do so without this code, so it should be able to do 
so with this code. 

Top-level Makefile.am 
 

EXTRA_DIST = SVNREV 

distdir = $(PACKAGE)-$(VERSION).$(SVNREV) 

The distdir make variable controls the name of the distribution directory and the tarball 
file name generated by Automake. Setting this variable in the top-level Makefile.am file 
affects the generation of the distribution tarball, because the top-level Makefile.am is 
where this functionality is located. 
If you have a particular need for the distdir variable to be formatted correctly in any 
other Makefile.am file in your project, you should set this variable in that file as well. 
For most purposes, setting it in the top-level Makefile.am file should be sufficient. 

Ensure your distribution packages are "clean" 

Have you ever downloaded and unpacked an open source package, and tried to run 
configure; make only to have it fail half way through one of these steps? As you dug 
into the problem, you perhaps discovered that there were missing files in the tarball. How 
sad to have this happen on an Autotools project, when the Autotools make it so easy to 
ensure that this simply doesn't happen. 
Ensure that your distribution tarballs are always clean and complete by running the 
distcheck target on a newly created tarball. Don't be satisified with what you believe 
about your package. Allow Automake to run the distribution unit tests, so to speak. I call 
these tests "unit tests" because they provide the same testing functionality for a 
distribution package that regular unit tests provide for your code. 
You'd never make a code change and ship a package without running your unit tests, 
would you? (If so, then you can safely skip this section.) So don't ship your tarballs 
without running the build system unit tests either - run make distcheck on your project 
before posting your new tarballs. 

Cross-compilation 



Emulating autoconf replacement techniques 

Using the ac-archive project 

...MORE TO COME... 

‹ Chapter 6: FLAIM: an Autotools example up Appendix A: An overview of the M4 macro 
processor › 
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