Computer Science from the Bottom Up

lan Wienand

Computer Science from the Bottom Up
lan Wienand
A PDF version is available at http://www.bottomupcs.com/csbu.pdf. The original souces are available at https://

github.com/ianw/bottomupcs
Copyright © 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013 lan Wienand

Abstract

Computer Science from the Bottom Up — A free, online book designed to teach computer science from the bottom end
up. Topics covered include binary and binary logic, operating systems internals, toolchain fundamentals and system
library fundamentals.

This work is licensed under the Creative Commons Attribution-ShareAlike License. To view a copy of this license, visit http://creativecommons.org/
licenses/by-sa/3.0/ or send a letter to Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA.

http://www.bottomupcs.com/csbu.pdf
https://github.com/ianw/bottomupcs
https://github.com/ianw/bottomupcs
http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/3.0/

Table of Contents

1o e [N Tel 1 o] o NPT TRPPPRTIN Xi
MV BICOIME e e e e —————a Xi
PRIlOSOPNY ..o - Xi
Why from the DOOM U ..o e Xi
ENnabling teChNOIOGIESt e Xi
1. General Unix and AVanCed Cc.ouiieiiiiiei e e mn e et 1
Everything is @ filel . ..o e 1.
Implementing abSIraCtioN ... 2
Implementing abstraction With Co, 2
LirArIES e 4
Fle DESCIIPLOIS . ..veite ettt e e et ettt ettt et ettt e s 5
THE Shell L e ———— 8
2. Binary and Number Representationocouieie it eeemr e 11
Binary -- the basis of COMPULINGc.oeiiii e 11
BiINaAry THEOIY ..ot et 11
HEeXadeCIMAl e 16
Practical IMpPlICAtiONS ... e e 17
Types and NUmMber Representationc.o.veieiiiiiiie e 19
C SEANAANAS ...t et 19
Ty P ittt e 20
NUmMber RePreSENationocuiiiiniiiii et st et e i eaeneenas 25
3. Computer ArChItECIUNE et e ettt ettt et e n e 33
THE CPU e e e e e m————— s 33
BranCRiNG ..o e e 33
YIS et e ——— 34
Fetch, Decode, EXECULE, STOIEiviieie ittt et e e e s s e e e et e aaeneeneanens 34
CISC V RISC e e et 37
BN O Y e e m——— 38
MemOry HIIarCRYcuoii e et 38
Cache IN dePth ... 39
Peripherals and DUSSES ...t et et ettt 42
Peripheral BUS CONCEPLSuuiuitiiii ittt ettt e e et e e et e et e e eaenaenas 42
DM A e et 44
OLNEE BUSSES ...ttt ettt et et ettt et et ettt e e 45
SMall t0 DIg SYSIEMS ...ttt e e et 46
Symmetric MUlti-ProCeSSINGuiuiii e 46
CIUSTEIS .ttt e et e e 48
NON-UNIfOrmM MEMOIY ACCESSeuititiiit it ettt et e s et e e e eneaees 49
Memory ordering, locking and atomic Operationsc.covviiiiiiiiiniiiiieennen. 51
4. The OPEerating SYSIEIMeuiuit ittt ettt ettt et ettt e et et e et e e e a et e e et e e amnns 56
The role of the operating SYSIEM e 56
ADSEraction Of NAMAWEATIE ...t s e et eenas 56
MUIEEASKING et et et ettt e 56
Standardised INErfaCeS ..o 56
S CUNIEY ettt e et 57
PeITOIMANCE ...t ettt 57
Operating System Organisation
THE KEINEI e ettt
(UL] 0T (o = PO PP
SYSIEM CallS ..o e ——————
OVEIVIEW .ttt ettt et e et et ettt et e et et e ettt e e e emmnn

Computer Science
from the Bottom Up

Analysing a SyStem Callooiiiiiiii e ———— 62
PV S ottt —————— e m—————— 69
L F= 0 1T = PP 69
Other ways of communicating with the kernelcooiiiiiisieveenn e, (4
Il Sy S BMIS o i e, 74
B T PrOCESS .ttt e ettt ————— e 75
LAY Tz U = o (0 Yo =TS 75
LT =T gL S0 = T o] o Lo = 76
PrOCESS D .o e 77
IO Y e e e —— 77
1L I LYY] o) 0] £ 82
=T 0 15 (=T £ 82
KBIMEL STALE ..ttt e 82
Process HIBIrarCYc.iiii e e e amns 83
0] Q= L [0 3 =P 83
O K e ———— e —————— 83
B C e e —————— 84
How Linux actually handles fork and eXecccoooiiiiiiiiiiiicic e 84
TRE NI PrOCESS vttt et e e e eaaas 86
(070 a1 (=) S 111 (o] 1 o T 88
SCNEAUIING e e e ————— 88
Preemptive v co-operative schedulingccooiiiiiiiiiiii e e 88
REAIIME ..ot e e 88
NICE VAIUE ..ottt i et e e e et e et e e e et s 89
A brief look at the Linux Schedulerooiiiiiii e 89
THE SNl o e e ——————— 90
SIS 1ot —————— e e e m—————— e 20
EXAIMIPIE .o ————— et — 91
STV A 0TI, =T 0T o PSP 93
What Virtual MeMmMOTYISN'T ... e e s e e e e e e e aeeaneaas 93
What VIrtUal MEIMOIYIS ... e e et e e e e e e et et et et ea et e e eeaenens 93
LT3 o] Ao 1 4]0 11] o [93
UsiNg the address SPACEcuiuiriiiii i s e e e e et aea s 94
P GBS it e m—————— e 94
PYSICAl MBIMOTY ..t e e a——- 95
Pages + Frames = Page Tables ... cmsmssmsmsr s e e e e e e ae e 95
VIFTUAL AGOIESSES .. vt e e et e e e e e s 95

Consequences of virtual addresses, pages and page tablescooviinnll 97..
Individual addreSS SPACES ...ouiuiniiiiii e e 97
[(0] (=Y (o] o O 98
)= o P 98
Y =TT N 41T 4T Y/ 99
DISK CaChE . - 99

[F= U0 VY= TR UT o] o o] o PP 99
Physical v Virtual MOGEouiiiii e 99
1T I = PP 101
B = R = T T=To = 1. [T o | 102

] 0 QS 1= o3 o 103
Address SPace LayOULouiuiiiii i e s s e et e et 103
Three Level Page Table ... et e e aeaas 104

Hardware support for virtual MemOrYcoiiiiiii e e o e e e e e e e e eaeaen 105

Computer Science
from the Bottom Up

KBB4 ..ttt — 106
1020 15 o 106
8 1) 2 L= e T]] 1 - 1o P 113
Compiled v Interpreted Programsc.ouiuorieiiii e e e eens 113
Compiled Programsc.iiii e e e e 113
Ta10=Tq o] =1 (= Lo I o] £ o] =1 1 1 113
BUilding an eXeCUtablecooiii e e 113
COMIPIING e e ———— 114
The process of COMPIIING ..o e e 114
)1 €= GO 114
ASSEMDBIY GENEIALION ...\t e 114
(@] 11411 T= 4o) o 1 119
A S BN DT e e ————— 120
LI KT et ————— et —————— a1 120
SYMDOIS ot e ————— e 120
THe lINKING PrOCESS ...vitiiii i e et et e et e et e e et e e e e e e e e aeenenens 121
A PractiCal EXamMPIE ..o e 121
COMIPIIING e - 122
ASSEIMDIY ot ———— e ——— 124
NI et e ——— e e e 125
The EXECULADIEot i e 126
8. BENINA the PrOCESS .. viviiiiiii it e e et e e e e e e s ammmnes 130
Review of executable fileso 130
Representing executable files e 130
Three Standard SECHONSv.iiii e 130
BINAIY FOMMAL ..o e e e i et e e e e e n e et e et e e e et eaeaeaaens 130
Binary FOrmat HiStOrYoviiiiii i e e e 130
B e e e ——————— et ————— e 131
ELF N dePth oo s 131
Debugging
ELF Executables
I A IS et ——————

A B S i ————— e m————
Byte Order
Calling CONVENLIONS . ..uititii i et a e 148
S = L 1] T IR T o] 0 o7 149
Kernel communication t0 Programsccoviiuiiiiiieee et e erere e ieaeneaens 149
Starting the Program ... e e e 150
LS TR) o = o1 (o 0]] o P 155
L0700 [T o= 1 o 155
Dynamic Library DetailScoiiiiiiiiiiiiii e 155
Including libraries in an executablecoiiiiii i 155
The DYNAMIC LINKET ...veii e e s e ettt e e e et e et et et et et e e aaanes 157
REIOCALIONS .. vt e 157
PoSItion INAEPENAENCEo.iii e e s e e e e e e e eaaes 159
Global OffSet TADIES ...veii i e 159
The Global OffSet Tableovieii e e 160
I AT S et ————— 164
The Procedure LOOKUP Tablec.oviiiiii it s e e e a 164
Working with libraries and the INKEer ... s e aes 171
[T 2= U YY1 £ o] 1P 171
FINAING SYMDOIS ... e e 174

Computer Science
from the Bottom Up

10. 1/O FUNAMENTAIS ...viiiti e et e s s 181
File System FUuNdamentalsc.oiiiiiiiiiii e 181
Networking FUNdamentalsccociiiiii e e 181

Computer Science from the Bottom Up GIOSSaArycccciviiiiiiiiiiii i commmmsme e e e e

Vi

List of Figures

O N o 11 = Tod 1 o] PP P PP 2
1.2. Default UniX FIlES ... e e e 6
L.30 ADSIIACTION ..ttt et e ————— 7
R S N o o L= | - Toi 1 o PP 9
2.0 MASKING .ttt e ————— e ————— e 18
22, TS ettt ———— e ———— e 21
3L TRE CPU ot e ——————— 33
3.2, INSIAE the CPU ..ot ettt e ettt ettt ettt ettt e e et et e e s mmmn e 35
3.3. Reorder DBUffer @XampPle ... i e 36
3.4, CaChE ASSOCIALIVITYiveinitii et i et ettt ettt e et e s 40
3D, CACNE TAOS ..ttt ittt e ———— 41
3.6. Overview of handling an INEITUPTouieii e e e e es 43
3.7. Overview of a UHCI controller OPerationc.oeoiuouiiiiiiin et e eeieeneieaneneen 45
3.8, A HYPEICUDE .ot e ——————

3.9. Acquire and Release semantics

4.1. The OpPeratiNng SYSEEIMuiit i ettt s ettt ettt e et e e a e ans

4.2. The OperatiNng SYSEEIMuiit et i ettt ettt et ettt e e aeams

A 3. RINGS . iiit ittt e e ———— ettt e et e a e e

4.4, X86 Segmentation AGIESSINGc.iuuiu ittt et et
4.5, X86 SEOMEINTS ..\ttt e ————

5.1. The EIemMeNntS Of @ PIrOCESSiuiiitiiiii et e e ettt et eeae e
5.2, TRE SEACK ..ot e e —————

5.3. ProCess MEemOIY TaYOULc.iiiuieiiiiii et e e ettt et eeaenes

B4, TRIEAAS ..ot e —————

5.5. The O(1) SChEAUIET ... ettt e

6.1. lllustration of canoniCal AdAIESSESc.iuitiiit it e e eeaes 94
6.2. VIrtual MEIMOIY PAGESuenittiit ettt ettt ettt et e ettt e e et et et et e e et enneans 95
6.3. Virtual Address TranSIationoo.oeiiiiii e 97
6.4, SEOMENTALIONeeteit et oo et ettt et e ettt et et e e e e 100
6.5. LinUX addreSs SPACE TAYOULouiiieiiiiiii ettt ettt e e 104
6.6. Linux Three Level Page Table ... e e 105
6.7. lllustration Itanium regions and Protection KEYScoovuiiiiiiiiiiieiiremeeemeeeeeenn 106
6.8. lllustration of Itanium TLB transIationooiiiiiiiii e e 107
6.9. lllustration of a hierarchical page-table ... —— e 109
6.10. Itanium short-format VHPT implementationcooiiiiiiiiin i e 110
6.11. ltanium PTE entry FOrMALSc.ooiininiiii e et 111
T.0 ALIGNMENT Lot et ettt —————— 115
7.2, ALIGNMEINT Lo et et ettt et et ——— s 116
8.1, ELF OVEIVIEBW ..ottt et e et et et et ettt et ettt ettt e e e 132
9.1. Memory acCess Via the GOT ... e 161
0.2, SOMAIMIES ettt ettt ettt ———— e ——— 173

Vii

List of Tables

1.1. Standard Files Provided DY UNiX ..o 5
1.2. Standard Shell Redirection Facilitiescooiiiiiiiii e e e 8
2. L BN it et e ———— e a e 11
2.2, 203 N DASE 10 et e —————— 11
2.3. 203 N DASE 2 oo ————— e m——————— 11
2.4, CoNVErt 203 10 DINAIY ..ooieiiii e e 12
2. D, By S it ———— e ———— e 13
2.6. Truth table TONOL ... et 14
2.7. Truth table TORNG et 14
2.8. Truth tabIE TODK ... et ettt n 15
2.9, Truth taDIE TOKOLeeie e e e ettt 15
2.10. Boolean Operations iN € ...t et s ettt 16
2.11. Hexadecimal, Binary and DeCimalcc.ouiuiuiiiiiiii e 16
2.12. Convert 203 t0 hexadeCimalc.ouiiiii e 17
2.13. Standard Integer TYPES aNnd SIZESiuiiitiiii it e 22
2.14. Standard Scalar TYpes and SIZESc.cuiiiiiiiiiii e 22
2.15. One's Complement AdditiONooiieiiiinini e et 25
2.16. Two's Complement AdditiONooieiuiii e e 26
2.17. IEEE FIOAting POINTiuiii ettt ettt et e e et e et e et eren e ann 27
2.18. Scientific Notation for 1.98765X10M6euiuiiieiiiiitiiee et emam et 27
2.19. SIigNificands N DINANY ... et 27
2.20. Example of normalising 0.375 ... e 28
3.1, MeMOIY HIETAICRY ..ot e et e et e 38
9.1. Relocation EXAMPIE ... 158
9.2. ELF SYMDBOI fIElUS . .ueinie e 174

viii

List of Examples

1.1. Abstraction with fUNCHION POINLEISieiiii et e e 2
1.2. Abstraction innclude/linux/virtio.h L ———— 4
1.3. Example of major and minor NUMBDEISot e e 7
2.0 USING TlaOS o nenitiiiti e e e —————— 18
2.2. Example of warnings when types are not matched ..o coiiiice e, 24
2.3. Floats Versus DOUDIESiiiiiii e et et 27
2.4, Program to find firSt St DIto e 29
2.5, EXaMINING FIOALScuieiiti et ettt et ettt ettt s 30
2.6. ANAlYSIS OB.45 L. i ———— e 32
N |V =T 40 To) A @ L o [=T ¢ o o PP 52
4.1, getpid() EXamPIe ..o —————— e s 63
4.2. PowerPC system call @XampPle ..o e e 63
4.3. x86 system call @XamMPIe i ————— 67
5.1. Stack pointer eXample ... s et enen e D
5.2, PSIIEE XAMPIE ...t et 83
5.3. ZOMDie @XamMPIE PrOCESSeuieeiiit it e e ettt 87
5.4, SIgnals EXAmMPIE ... e m——— 91
7.1. Struct padding @XaAMPIEo ——————— e 116
7.2. Stack alignment eXamPle 117
7.3. Page alignment manipulationsot o e 118
T4, HEHO WO .o e e et 122
7.5. FUNCHON EXAMPIEoeeiit et s ettt et ettt et e et e s 122
7.6. Compilation EXAMPIEviiei e s 122
7.7. ASSeEMDBIY EXAMPIE ... e 124
7.8. Readelf EXAMPIE ... e e s 124
7.9. LINKING EXBMPIE . ..oeeii ettt e 125
7.10. Executable EXAMPIE ... st e 126
8.1. The ELF HEAUE ...ttt s ettt ettt ettt e e e et e e 133
8.2. The ELF Header, as shown by readelfo e 133
8.3. Inspecting the ELF magiC NUMDET ... e e 134
8.4. Investigating the entry POINT ... e 134
8.5. The Program HEATEN ... et ettt ettt 135
8.8, SECHIONS .. etiit it e —————— 136
8.7 SBCHIONS ..ttt —————— 137
8.8. Sections readelf OULPUL ... ettt 137
8.9. SeCtioNS aNd SEOMENTSiiiiitiiii e e 139
8.10. Example of creating a core dump and using it with gdb™ ST % 0
8.11. Example of stripping debugging information into separate files usmg objcopyT"’I 141
8.12. Example of using readelf™ and eu-readelf™ to examine a coredump.cccovviiiinininnnns 142
8.13. Segments of an executable file 145
8.14. Creating and using a Static lDraryt i e 146
8.15. Disassembley of program STArTUDo.ieeieiiitie e e 150
8.16. CoNnStructors and DESIIUCIOISc.iuiie it e e e et 152
9.1. Specifying DYNamicC LIDIariEsc.oeiiuiiii i 156
9.2. Looking at dynamicC lIBrarieso 156
9.3. Checking the program INEIPreterc. it st e e e e eeae e 157
9.4. Relocation as defined by ELF ... 158
9.5. Specifying DYNamicC LIDIariescuouiieiiiiiii e 159
9.6. USING the GOT et e ettt e 161
9.7. Relocations against the GOT ... e 163
9.8. Hello WOrld PLT @XampIeceiiiii e ettt ettt et e e e e aenas 164

Computer Science
from the Bottom Up

1S IR I o 1= | (o T o I =V) P 165
9.10. Hello WOTIA SECLONSuiiiitiiii e et et et e e ee e 165

1 5 O o 1| o o T o I = O 167
S 1= | (o R o T o] 1 PP 168
9.13. DYNAMIC SOOMENE L.\ttt e e e e e e et e e e e e e e e e et e e an et eteeesamns 169
9.14. Code in the dynamic linker for setting up special values (fronsytxbeps/ia64/dl-

MACHINE. N) oo e e ————————— 170
9.15. Symbol definition from ELF ... e e e 174
9.16. Examples of symbol bindiNgSoiiiii e 175
9.17. EXxample OED_PRELOAD.iuuiiii ittt vt e et e et e a e e e e e aees 177
9.18. Example of symbol VErSIONINGc.oiiiii e s e e aas 178

Introduction

Welcome

Welcome to Computer Science from the Bottom Up

Philosophy

In a nutshell, what you are reading is intended to be a shop class for computer science. Young computer
science students are taught to "drive" the computer; but where do you go to learn what is under the
hood? Trying to understand the operating system is unfortunately not as easy as just opening the bonnet.
The current Linux kernel runs into the millions of lines of code, add to that the other critical parts of

a modern operating system (the compiler, assembler and system libraries) and your code base becomes
unimaginable. Further still, add a University level operating systems course (or four), some good reference
manuals, two or three years of C experience and, just maybe, you might be able to figure out where to
start lookingto make sense of it all.

To keep with the car analogy, the prospective student is starting out trying to work on a Forumla One

engine without ever knowing how a two stroke motor operates. During their shop class the student should
pull apart, twist, turn and put back together that two stroke motor, and consequentially have a pretty good
framework for understanding just how the Formula One engine works. Nobody will expect them to be a

Formula One engineer, but they are well on their way!

Why from the bottom up ?

Not everyone wants to attend shop class. Most people only want to drive the car, not know how to build
one from scratch. Obviously any general computing curriculum has to take this into account else it won't
be relevant to its students. So computer science is taught from the "top down"; applications, high level
programming, software design and development theory, possibly data structures. Students will probably
be exposed to binary, hopefully binary logic, possibly even some low level concepts such as registers,
opcodes and the like at a superficial level.

This book aims to move in completely the opposite direction, working from operating systems
fundamentals through to how those applications are complied and executed.

Enabling technologies

This book is only possible thanks to the developme@p#n Sourcéechnologies. Before Linux it was
like taking a shop course with a car that had it's bonnet welded shut; today we are in a position to open that
bonnet, poke around with the insides and, better still, take that engine and use it to do whatever we want.

Xi

Chapter 1. General Unix and Advanced
C

Everything is a file!
An often quoted tenet of UNIX-like systems such as Linux or BS&ésything is a file

Imagine a file in the context something familiar like a word processor. There are two fundamental
operations we could use on this imaginary word processing file:

1. Read it (existing saved data from the word processor).
2. Write to it (new data from the user).

Consider some of the common things attached to a computer and how they relate to our fundamental file
operations:

1. The screen
2. The keyboard
3. A printer

4. A CDROM

The screen and printer are both like a write-only file, but instead of being stored as bits on a disk the
information is displayed as dots on a screen or lines on a page. The keyboard is like a read only file, with
the data coming from keystrokes provided by the user. The CDROM is similar, but rather than randomly
coming from the user the data is stored directly on the disk.

Thus the concept of a file is a goaldstractionof either a a sink for, or source of, data. As such it is an
excellent abstraction of all the devices one might attach to the computer. This realisation is the great power
of UNIX and is evident across the design of the entire platform. It is one of the fundamental roles of the
operating system to provide this abstraction of the hardware to the programmer.

It is probably not too much of a strech to say abstractitireigrimary concept that underpins all modern
computing. No one person can understand everythinig from designing a modern user-interface to the
internal workings of a modern CPU, much less build it all themselves. To programmers, abstractions are
thelingua francathat allows us to collaborate and invent.

Learning to navigate across abstractions gives one greater insight into heethe abstractions in the

best and most innovative ways. In this book, we are concerned with abstractions at the lowest layers;
bewteen applications and the operating-system and the operating-system and hardware. Above this lies
many more layers, each worthy of their own books. As these chapters progress, you will hopefully gain
some insight into the abstractions presented by a modern operating-system.

General Unix and Advanced C

Figure 1.1. Abstraction

(o) T

7

Spot the difference?

Implementing abstraction

In general, abstraction is implemented by what is generically termefpplication Programming
Interface (API). API is a somewhat nebulous term that means different things in the context of various
programming endavours. Fundamentally, a programmer designs a set of functions and documents their
interface and functionality with the principle that the actual implementation providing the API is opaque.

For example, many large web-applications provide an API accessible via HTTP. Accessing data via this
method surely triggers many complicated series of remote-procedure calls, database queries and data
transfer; all of which is opaque to the end user who simply receives the contracted data.

Those familiar withobject-orientedanguages such as Java, Python or C++ would be familiar with the
abstraction provided lglassesMethods provide the interface to the class, but abstract the implementation.

Implementing abstraction with C

A common method used in the Linux Kernel and other large C code bases, which lacks a built-in concept
of object-orientation, igunction pointersLearning to read this idom is key to navigating most large C
code-bases. By understanding how to read the abstractions provided within the code an understanding of
internal API designs can be built.

Example 1.1. Abstraction with function pointers
#include <stdio.h>

/* The API to implement */
struct greet_api

{

int (*say_hello)(char *name);
int (*say_goodbye)(void);
2

/* Our implementation of the hello function */

General Unix and Advanced C

int say_hello_fn(char *name)
{

printf("Hello %s\n", name);
return O;

}

/* Our implementation of the goodbye function */
int say_goodbye_fn(void)

printf("Goodbye\n");
return O;

}

/* A struct implementing the API */
struct greet_api greet_api =

{

.say_hello = say_hello_fn,
.say_goodbye = say_goodbye fn
¥

/* main() doesn't need to know anything about how the
* say_hello/goodbye works, it just knows that it does */
int main(int argc, char *argv[])

{

greet_api.say_hello(argv[1]);
greet_api.say_goodbye();

printf("%p, %p, %p\n", greet_api.say_hello, say _hello_fn, &say_hello_fn);

exit(0);
}

Code such as the above is the simplest example of constructs used repeatedly through the Linux Kernel
and other C programs. Lets have a look at some specific elements.

We start out with a structure that defines the ARUCtgreet_api). The functions whose names are
encased in parenthesis with a pointer marker descfilction pointejr. The function pointer describes

the prototypeof function it must point to; pointing it at a function without the correct return type or
parameters will generate a compiler warning at least; if left in code will likely lead to incorrect operation
or crashes.

We then have our implementation of the API. Often for more complex functionality you will see an
idiom where API implementation functions will only be a wrapper around another function that is
conventionally prepended with one or or two unders@c(ies say_hello_fn() would call another
function_say_hello_function()). This has several uses; generally it relates to having simpler and
smaller parts of the API (marshalling or checking arguments, for example) separate to more complex
implemenation, which often eases the path to significant changes in the internal workings whilst ensuring
the APl remains constant. Our implementation is very simple however, and doesn't even need it's own
support functions. In various projects, single, double or even triple underscore function prefixes will mean
different things, but universally it is a visual warning that the function is not supposed to be called directly
from "beyond" the API.

Toften you will see that the names of the parameters are omitted, and only the type of the parameter is specified. This allows the implementer to
specify their own parameter names avoiding warnings from the compiler.
2A double-underscore function foo may conversationally be referred to as "dunder foo".

General Unix and Advanced C

Second to last, we fill out the function pointerstiruct greet_api greet_api . The name of the
function is a pointer, therefore there is no need to take the address of the funcmayi.bello fn).

Finally we can call the API functions through the structumaain .

You will see this idiom constantly when navigating the souce code. The tiny example below is taken from
include/linux/virtio.h in the Linux kernel source to illustrate:

Example 1.2. Abstraction ini ncl ude/ | i nux/virtio. h
/**

* virtio_driver - operations for a virtio I/O driver
* @driver: underlying device driver (populate name and owner).
* @id_table: the ids serviced by this driver.
* @feature_table: an array of feature numbers supported by this driver.
* @feature_table_size: number of entries in the feature table array.
* @probe: the function to call when a device is found. Returns 0 or -errno.
* @remove: the function to call when a device is removed.
* @config_changed: optional function to call when the device configuration
* changes; may be called in interrupt context.
*
struct virtio_driver {
struct device_driver driver;
const struct virtio_device_id *id_table;
const unsigned int *feature_table;
unsigned int feature_table_size;
int (*probe)(struct virtio_device *dev);
void (*scan)(struct virtio_device *dev);
void (*remove)(struct virtio_device *dev);
void (*config_changed)(struct virtio_device *dev);
#ifdef CONFIG_PM
int (*freeze)(struct virtio_device *dev);
int (*restore)(struct virtio_device *dev);
#endif

3

It's only necessary to vaguely understand that this structure is a description of a virtual 1/0O device. We can
see the user of this API (the device driver author) is expected to provide a number of functions that will be
called under various conditions during system operation (when probing for new hardware, when hardware
is removed, etc). It also contains a range of data; structures which should be filled with relevant data.

Starting with descriptors like this is usually the easiest way into understanding the various layers of kernel
code.

Libraries

Libraries have two roles which illustrate abstraction.
» Allow programmers to reuse commonly accessed code.
» Act as ablack boximplementing functionality for the programmer.

For example, a library implementing access to the raw data in JPEG files has both the advantage that the
many programs who wish to access image files can all use the same library and the programmers building

General Unix and Advanced C

these programs do not need to worry about the exact details of the JPEG file format, but can concentrate
their efforts on what their program wants to do with the image.

The standard library of a UNIX platform is generically referred tibas . It provides the basic interface

to the system: fundamental calls suchemd() , write() andprintf() . This API is described in

its entirety by a specification call@DSIX. It is freely available online and describes the many calls that
make up the standard UNIX API.

Most UNIX platforms broadly follow the POSIX standard, though often differ small but sometimes
important ways (hence the complexity of the various GNU autotools, which often tries to abstract away
these differences for you). Linux has many interfaces that are not specified by POSIX; writing applications
that use them exclusively will make your application less portable.

Libraries are a fundamental abstraction with many details. Later chapters will describe how libraries work
in much greater detalil.

File Descriptors

One of the first things a UNIX programmer learns is that every running program starts with three files
already opened:

Table 1.1. Standard Files Provided by Unix

Descriptive Name File Number Description

Standard In 0 Input from the keyboard
Standard Out 1 Output to the console
Standard Error 2 Error output to the console

General Unix and Advanced C

Figure 1.2. Default Unix Files

Default Unix Files

Standard Input
Standard Output
Standard Error

£ =\

This raises the question what@pen filerepresents. The value returned byogen call is termed éile
descriptorand is essentially an index into an array of open files kept by the kernel.

General Unix and Advanced C

Figure 1.3. Abstraction

Opening the file Devices register Device Drivers

2 associates a descriptor 1 with the kernel

with the associated device which gives them a file
int fd = open("/dev/sr0"); \ ‘

int ret = read(fd, &input, count);

device_read()

Device Layer device_write()

/dev/input
File Descriptors
Further references Idevitty

3 to the descriptor
0
are routed to the device —_— Idev/sr0
1

device_read()

ﬁ device_write()
3 j —
\\‘
— device_read()
device_write()

File descriptors are an index into a file-descriptor table stored by the kernel. The kernel creates a file-
descriptor in response to @pen call and associates the file-descriptor with some abstraction of an
underlying file-like object; be that an actual hardware device, or a file-system or something else entirely.
Consequently a processesd orwrite calls that reference that file-descriptor are routed to the correct
place by the kernel to ultimately do something useful.

In short, the file-descriptor is the gateway into the kernel's abstractions of underlying hardware. An overall
view of the abstraction for physical-devices is shown in Figure 1.3, “Abstraction”.

Starting at the lowest level, the operating system requires a programmer to dexate-@riverto be able

to communicate with a hardware device. This device-driver is written to an API provided by the kernel
just like in Example 1.2, “Abstraction include/linux/virtio.h " the device-driver will provide

a range of functions which are called by the kernel in response to various requirements. In the simplified
example above, we can see the drivers providaé andwrite function that will be called in response

to the analogous operations on the file-descriptor. The device-driver knows how to convert these generic
requests into specific requests or commands for a particular device.

To provide the abstraction to user-space, the kernel provides a file-interface via what is generically termed
adevice layerPhysical devices on the host are represented by a file in a special file-system'derch as

In UNIX-like systems, so calledevice-nodesiave what are termednaajor and aminor number which

allows the kernel to associate particular nodes with their underlying driver. These can be identgfied via

as illustrated in Example 1.3, “Example of major and minor numbers”.

Example 1.3. Example of major and minor numbers

$ Is -l /dev/null /dev/zero /devitty
crw-rw-rw- 1 root root 1, 3 Aug 26 13:12 /dev/null

General Unix and Advanced C

crw-rw-rw- 1 root root 5, 0 Sep 2 15:06 /dev/ity
crw-rw-rw- 1 root root 1, 5 Aug 26 13:12 /dev/zero

This brings us to the file-descriptor, which is the handle user-space uses to talk to the underlying device.
In a broad-sense, what happens when a fismén ed is that the kernel is using the path information to
map the file-descriptor with something that provides an appropgate andwrite , etc. APl. When

this open is for a device/flev/srO above), the major and minor number of the opened device-node
provides the information the kernel needs to find the correct device-driver and complete the mapping. The
kernel will then know how to route further calls suchreed to the underlying functions provided by

the device-driver.

A non-device file operates similarly, although there are more layers in-between. The abstraction here is
the mount-point mounting a file-system has the dual purpose of setting up a mapping so the file-system
knows the underlying device that provides the storage and the kernel knows that files opened under that
mount-point should be directed to the file-system driver. Like device-drivers, file-systems are written to

a particular generic file-system API provided by the kernel.

There are indeed many other layers that complicate the picture in real-life. For example, the kernel will go
to great efforts to cache as much data from disks as possible in otherwise free-memory; this provides many
speed advantages. It will also try to organise device access in the most efficient ways possible; for example
trying to order disk-access to ensure data stored physically close to each other is retrieved together, even if
the requests did not arrive in such an order. Further, many devices are of a more generic class such as USB
or SCSI devices which provide their own abstraction layers to write too. Thus rather than writing directly

to devices, file-systems will go through these many layers. Understanding the kernel is to understand how
these many APIs interrelate and coexist.

The Shell

The shell is the gateway to interacting with the operating system.ld&sht, zsh , csh or any of the

many other shells, they all fundamentally have only one major task — to allow you to execute programs
(you will begin to understand how the shell actually does this when we talk about some of the internals
of the operating system later).

But shells do much more than allow you to simply execute a program. They have powerful abilities to
redirect files, allow you to execute multiple programs simultaneously and script complete programs. These
all come back to theverything is a filediom.

Redirection

Often we do not want the standard file descriptors mentioned in the section called “File Descriptors” to
point to their default places. For example, you may wish to capture all the output of a program into a file
on disk, or, alternatively have it read its commands from a file you prepared earlier. Another useful task
might like to pass the output of one program to the input of another. With the operating system, the shell
facilitates all this and more.

Table 1.2. Standard Shell Redirection Facilities

Name Command Description Example

Redirect to a file > filename Take all output fromis > filename
standard out and place
it into flename . Note
using >> will append
to the file, rather than
overwrite it.

General Unix and Advanced C

Name Command Description Example

Read from a file <filename Copy all data from thecho < filename
file to the standard input
of the program

Pipe programl | |Take everything fromis | more
program2 standard out of
programl and pass |t
to standard input of
program?2

Implementing pi pe

The implementation ofs | more is just another example of the power of abstraction. What
fundamentally happens here is that instead of associating the file-descriptor for the standard-output with
some sort of underlying device (such as the console, for output to the terminal), the descriptor is pointed
to an in-memory buffer provided by the kernel commonly termpigpea . The trick here is that another
process can associate its standapait with the other-side of this same buffer and effectively consume

the output of the other process. This is illustrated in Figure 1.4, “A pipe in action”

Figure 1.4. A pipe in action

o B T

User

Kernel

D ———

File Descriptors / pipe \ File Descriptors
read() \
—— 0

write()

Buffer

MAX_FD EE MAX_FD

The pipe is an in-memory buffer that connects two processes together. File-descriptors point to the pipe
object, which buffers data sent to it (visvete) to bedrained(via aread)

Writes to the pipe are stored by the kernel until a corresponding read from the otdesiggthe buffer.

This is a very powerful concept and is one of the fundamental fornmesfprocess communication

or IPC in UNIX like operating systems. The pipe allows more than just a data transfer; it can act as a
signaling channel. If a processad s an empty pipe, it will by defauttiock or be put into hibernation

until there is some data available (this is discussed in much greater depth in ChEpdPmcessThus

two processes may use a pipe to communicate that some action has been taken just by writing a byte of
data; rather than the actual data being important, the mere presemgedata in the pipe can signal a
message. Say for example one process requests that another print a file - something that will take some
time. The two processes may setup a pipe between themselves where the requesting proaessidoes a

on the empty pipe; being empty that call blocks and the process does not continue. Once the print is done,
the other process can write a message into the pipe, which effectively wakes up the requesting process
and signals the work is done.

General Unix and Advanced C

Allowing processes to pass data between each other like this springs another common UNIX idiom of
small tools doing one particular thing. Chaining these small tools gives a flexibility that a single monolithic
tool often can not.

10

Chapter 2. Binary and Number
Representation

Binary -- the basis of computing

Binary Theory

Introduction

Binary is a number system which builds numbers from elements té#léeach bit can be represented

by any two mutually exclusive states. Generally, when we write it down or code bits, we represent them
with 1 and0. We also talk about them being true and false, and the computer internally represents bits
with high and low voltages.

We build binary numbers the same way we build numbers in our traditional base 10 system. However,
instead of a one's column, a 10's column, a 100's column (and so on) we have a one's column, a two's
columns, a four's column, an eight's column, and so on, as illustrated below.

Table 2.1. Binary

64 32 16 8 4 2 1

For example, to represent the number 203 in base 10, we know we Blatthal's column, & in the
10's column and 2 in thel00's column. This is expressed with exponents in the table below.

Table 2.2. 203 in base 10

107 10" 10°
2 0 3

Or, in other words, 2 x Tor 3 x 10 = 200 + 3 = 203. To represent the same thing in binary, we would
have the following table.

Table 2.3. 203 in base 2

27

26

25

24

23

22

1

1

0

0

1

0

That equates to’2 P + 2+2' + X =128 + 64 + 8 + 2 + 1 = 203.

Conversion

The easiest way to convert between bases is to use a computer, after all, that's what they're good at!
However, it is often useful to know how to do conversions by hand.

The easiest method to convert between basespiated divisionTo convert, repeatedly divide the
guotient by the base, until the quotient is zero, making note of the remainders at each step. Then, write

11

Binary and Number Representation

the remainders in reverse, starting at the bottom and appending to the right each time. An example should
illustrate; since we are converting to binary we use a base of 2.

Table 2.4. Convert 203 to binary

Quotient Remainder

2039+ 2= 101 1

100+ 2 = 50 1 1
5010+ 2= 25 0 1
2510+ 2= 12 1 1
1210+ 2 = 6 0 1
610+ 2= 3 0 1
3107 2= 1 1 1
lip+2= 0 1 1

Reading from the bottom and appending to the right each timei®€4011 , which we saw from the
previous example was 203.

Bits and Bytes

ASCII

To represent all the letters of the alphabet we would need at least enough different combinations to
represent all the lower case letters, the upper case letters, numbers and punctuation, plus a few extras.
Adding this up means we need probably around 80 different combinations.

If we have two bits, we can represent four possible unique combinadioresl (10 11). If we have
three bits, we can represent 8 different combinations. As we saw abova, biighwe can represegt’
unigue combinations.

8 bits gives ug® = 256 unigue representations, more than enough for our alphabet combinations. We
call a group of 8 bits byte Guess how bit a €har variable is? One byte.

Given that a byte can represent any of the values 0 through 256, anyone could arbitrarily make up a mapping
between characters and numbers. For example, a video card manufacturer could decide that the value 10
represent#\, so when value 10 is sent to the video card it displays a capital 'A’ on the screen.

To avoid this happening, thenerican Standard Code for Information Interchang@&SCIl was invented.
This is a7-bit code, meaning there aré@ 128 available codes.

The range of codes is divided up into two major parts; the non-printable and the printable. Printable
characters are things like characters (upper and lower case), numbers and punctuation. Non-printable codes
are for control, and do things like make a carriage-return, ring the terminal bell or the Npkdialode

which represents nothing at all.

127 unique characters is sufficient for American English, but becomes very restrictive when one wants
to represent characters common in other languages, especially Asian languages which can have many
thousands of unique characters.

To alleviate this, modern systems are moving away from ASQ@Jhtoode which can use up to 4 bytes
to represent a character, givimyichmore room!

12

Binary and Number Representation

Parity

ASCII, being only a 7-bit code, leaves one bit of the byte spare. This can be used to impbaihent

which is a simple form of error checking. Consider a computer using punch-cards for input, where a hole
represents 1 and no hole represents 0. Any inadvertent covering of a hole will cause an incorrect value to
be read, causing undefined behaviour.

Parity allows a simple check of the bits of a byte to ensure they were read correctly. We can implement
eitherodd or evenparity by using the extra bit agarity bit.

In odd parity, if the number of 1's in the 7 bits of information is odd, the parity bit is set, otherwise it is
not set. Even parity is the opposite; if the number of 1's is even the parity bit is set to 1.

In this way, the flipping of one bit will case a parity error, which can be detected.

XXX more about error correcting

16, 32 and 64 bit computers

Numbers do not fit into bytes; hopefully your bank balance in dollars will need more range than can fit
into one byte! Most modern architectures 32ebit computers. This means they work with 4 bytes at a

time when processing and reading or writing to memory. We refer to 4 bytegoag ¢his is analogous

to language where letters (bits) make up words in a sentence, except in computing every word has the
same size! The size of aiC variable is 32 bits. Newer architectures are 64 bits, which doubles the size
the processor works with (8 bytes).

Kilo, Mega and Giga Bytes

Computers deal with a lot of bytes; that's what makes them so powerful!

We need a way to talk about large numbers of bytes, and a natural way is to use the "International System
of Units" (SI) prefixes as used in most other scientific areas. So for example, kilo refefotol 000
units, as in a kilogram has 1000 grams.

1000 is a nice round number in base 10, but in binarylifii101000 which is not a particularly
"round" number. However, 1024 (0?02 is (10000000000), and happens to be quite close to the base
ten meaning of kilo (1000 as opposed to 1024).

Hence 1024 bytes became known &#@byte The first mass market computer was the Commodore 64,
so named because it had 64 kilobytes of storage.

Today, kilobytes of memory would be small for a wrist watch, let alone a personal computer. The next Si
unit is "mega"” forl0°. As it happen2?° is again close to the SI base 10 definition; 1048576 as opposed
to 1000000.

The units keep increasing by powers of 10; each time it diverges further from the base S| meaning.

Table 2.5. Bytes

210 Kilobyte
220 Megabyte
2%0 Gigabyte
240 Terrabyte
250 Petabyte

13

Binary and Number Representation

260 Exabyte

Therefore a 32 bit computer can address up to four gigabytes of memory; the extra two bits can represent
four groups o bytes. . A 64 bit computer can address up to 8 exabytes; you might be interested in
working out just how big a number this is! To get a feel for how bit that number is, calculate how long it
would take to count t@%* if you incremented once per second.

Kilo, Mega and Giga Bits

Apart from the confusion related to the overloading of Sl units between binary and base 10, capacities will
often be quoted in terms bits rather than bytes.

Generally this happens when talking about networking or storage devices; you may have noticed that your
ADSL connection is described as something like 1500 kilobits/second. The calculation is simple; multiply
by 1000 (for the kilo), divide by 8 to get bytes and then 1024 to get kilobytes (so 1500 kilobits/s=183
kilobytes per second).

The Sl standardisation body has recognised these dual uses, and has specified unique prefixes for binary
usage. Under the standard 1024 byteskibiayte , short forkilo binary byte (shortened to KiB). The

other prefixes have a similar prefix (Mebibyte, for example). Tradition largely prevents use of these terms,
but you may seem them in some literature.

Boolean Operations

Not

And

George Boole was a mathematician who discovered a whole area of mathemati&ocddlad Algebra
Whilst he made his discoveries in the mid 1800's, his mathematics are the fundamentals of all computer
science. Boolean algebra is a wide ranging topic, we present here only the bare minimum to get you started.

Boolean operations simply take a particular input and produce a particular output following a rule. For
example, the simplest boolean operatimt, simply inverts the value of the input operand. Other operands
usually take two inputs, and produce a single output.

The fundamental Boolean operations used in computer science are easy to remember and listed below.
We represent them below wittuth tables they simply show all possible inputs and outputs. The term
true simply reflectsl in binary.

Usually represented Hy, not simply inverts the value, €becomed andl become®

Table 2.6. Truth table for not

Input Output
1 0
0 1

To remember how the and operation works think of it as "if one edithe other are true, result is true

Table 2.7. Truth table for and

Input 1 Input 2 Output

0 0 0

14

Binary and Number Representation

Input 1 Input 2 Output
1 0 0
0 1 0
1 1 1

Or

To remember how ther operation works think of it as "if one inpoit the other input is true, the result

is true

Table 2.8. Truth table for or

Input 1 Input 2 Output
0 0 0
1 0 1
0 1 1
1 1 1

Exclusive Or (xor)

Exclusive or, written agor is a special case of where the output is true if one, aodly one, of the
inputs is true. This operation can surprisingly do many interesting tricks, but you will not see a lot of it
in the kernel.

Table 2.9. Truth table for xor

Input 1 Input 2 Output
0 0 0
1 0 1
0 1 1
1 1 0

How computers use boolean operations

Believe it or not, essentially everything your computer does comes back to the above operations. For
example, the half adder is a type of circuit made up from boolean operations that can add bits together
(it is called a half adder because it does not handle carry bits). Put more half adders together, and you
will start to build something that can add together long binary numbers. Add some external memory, and

you have a computer.

Electronically, the boolean operations are implementeghtasmade bytransistors This is why you

might have heard about transistor counts and things like Moores Law. The more transistors, the more gates,
the more things you can add together. To create the modern computer, there are an awful lot of gates, and
an awful lot of transistors. Some of the latest Itanium processors have around 460 million transistors.

Working with binary in C

In C we have a direct interface to all of the above operations. The following table describes the operators

15

Binary and Number Representation

Table 2.10. Boolean operations in C

Operation Usage in C
not !

and &

or |

xor n

We use these operations on variables to modify the bits within the variable. Before we see examples of
this, first we must divert to describe hexadecimal notation.

Hexadecimal

Hexadecimal refers to a base 16 number system. We use this in computer science for only one reason,
it makes it easy for humans to think about binary numbers. Computers only ever deal in binary and
hexadecimal is simply a shortcut for us humans trying to work with the computer.

So why base 16? Well, the most natural choice is base 10, since we are used to thinking in base 10 from
our every day number system. But base 10 does not work well with binary -- to represent 10 different
elements in binary, we need four bits. Four bits, however, gives us sixteen possible combinations. So we
can either take the very tricky road of trying to convert between base 10 and binary, or take the easy road
and make up a base 16 number system -- hexadecimal!

Hexadecimal uses the standard base 10 numerals, buA&ldsD E F which refer tol0 11 12
131415 (n.b. we start from zero).

Traditionally, any time you see a number prefixedkthis will denote a hexadecimal number.
As mentioned, to represent 16 different patterns in binary, we would need exactly four bits. Therefore,

each hexadecimal numeral represents exactly four bits. You should consider it an exercise to learn the
following table off by heart.

Table 2.11. Hexadecimal, Binary and Decimal

Hexadecimal Binary Decimal
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011

OO N| OO0 B~ W|IN|FP|O

N
o

W P> O O N OO B W|N|FP|O

[N
|

16

Binary and Number Representation

Hexadecimal Binary Decimal
C 1100 12
D 1101 13
E 1110 14
F 1111 15

Of course there is no reason not to continue the pattern (say, assign G to the value 16), but 16 values is
an excellent trade off between the vagaries of human memory and the number of bits used by a computer
(occasionally you will also see base 8 used, for example for file permissions under UNIX). We simply
represent larger numbers of bits with more numerals. For example, a sixteen bit variable can be represented
by OxAB12, and to find it in binary simply take each individual numeral, convert it as per the table and
join them all together (sBxAB12 ends up as the 16-bit binary numtb6d0101100010010). We can

use the reverse to convert from binary back to hexadecimal.

We can also use the same repeated division scheme to change the base of a number. For example, to find
203 in hexadecimal

Table 2.12. Convert 203 to hexadecimal

Quotient Remainder
2030+ 16 = 12 11 (0xB)
12+ 16 = 0 12 (0xC) N

Hence 203 in hexadecimalisCB.

Practical Implications

Use of binary in code

Whilst binary is the underlying language of every computer, it is entirely practical to program a computer
in high level languages without knowing the first thing about it. However, for the low level code we are
interested in a few fundamental binary principles are used repeatedly.

Masking and Flags

Masking

In low level code, it is often important to keep your structures and variables as space efficient as possible.
In some cases, this can involve effectively packing two (generally related) variables into one.

Remember each bit represents two states, so if we know a variable only has, say, 16 possible states it can
be represented by 4 bits (i.é‘.:ZG unigue values). But the smallest type we can declare in C is 8 bits (a
char), so we can either waste four bits, or find some way to use those left over bits.

We can easily do this by the procesmaisking Remembering the rules of the logical operations, it should
become clear how the values are extracted.

The process is illustrated in the figure below. We are interested in the lower four bits, so set our mask to
have these bits set 1o Since thdogical and operation will only set the bit foth bits arel, those
bits of the mask set 1 effectively hide the bits we are not interested in.

17

Binary and Number Representation

Flags

Figure 2.1. Masking

0 0 0 0 1 1 1 1 OxO0F
& & & & & & & &
0 0 0 0 0 1 0 1 0x05

To get the top (blue) four bits, we would invert the mask. You will note this gives a reBx@Gfwhen
really we want a value @09 . To get the bits into the right position we usertgbt shift operation.

Settingthe bits requires thiegical or operation. However, rather than usibhg as the mask, we
use0's. You should draw a diagram similar to the above figure and work through setting bits with the
logical or operation.

Often a program will have a large number of variables that only exigssto some condition. For
example, a state machine is an algorithm that transitions through a number of different states but may
only be in one at a time. Say it has 8 different states; we could easily declare 8 different variables, one
for each state. But in many cases it is better to deolse3 bit variableand assign each bit flag flag

a particular state.

Flags are a special case of masking, but each bit represents a particular boolean state (on arbiff). An
variable can hold different flags. See the code example below for a typical example of using flags -- you
will see variations on this basic code very often.

Example 2.1. Using flags

1
#include <stdio.h>

/I define all 8 possible flags for an 8 bit variable
5/ name hex binary

#define FLAG1 0x01 // 00000001

#define FLAG2 0x02 // 00000010

#define FLAG3 0x04 // 00000100

#define FLAG4 0x08 // 00001000
10// ... and so on

#define FLAG8 0x80 // 10000000

18

Binary and Number Representation

int main(int argc, char *argv([])

{
15 char flags = 0; //an 8 bit variable

/I set flags with a logical or
flags = flags | FLAG1,; //set flag 1
flags = flags | FLAG3; //set flag 3
20
I/l check flags with a logical and. If the flag is set (1)
[/l then the logical and will return 1, causing the if
/I condition to be true.
if (flags & FLAG1)
25 printf("FLAG1 setl\n");

/I this of course will be untrue.
if (flags & FLAGS)
printf("FLAGS8 set'\n");
30
/I check multiple flags by using a logical or
/I this will pass as FLAGL1 is set
if (flags & (FLAG1|FLAG4))
printf("FLAG1 or FLAG4 set'\n");
35
return O;

}

Types and Number Representation
C Standards

Although a slight divergence, it is important to understand a bit of history about the C language.

Cis thdingua francaof the systems programming world. Every operating system and its associated system
libraries in common use is written in C, and every system provides a C compiler. To stop the language
diverging across each of these systems where each would be sure to make numerous incompatible changes,
a strict standard has been written for the language.

Officially this standard is known as ISO/IEC 9899:1999(E), but is more commonly referred to by its
shortened nam€99. The standard is maintained by the International Standards Organisation (ISO) and
the full standard is available for purchase online. Older standards versions such as C89 (the predecessor
to C99 released in 1989) and ANSI C are no longer in common usage and are encompassed within the
latest standard. The standard documentation is very technical, and details most every part of the language.
For example it explains the syntax (in Backus Naur form), stariafihe values and how operations

should behave.

Itis also important to note what the C standards dotdefine. Most importantly the standard needs to be
appropriate for every architecture, both present and future. Consequently it takest tadefine areas

that are architecture dependent. The "glue" between the C standard and the underlying architecture is the
Application Binary Interface (or ABI) which we discuss below. In several places the standard will mention
that a particular operation or construct has an unspecified or implementation dependent result. Obviously
the programmer can not depend on these outcomes if they are to write portable code.

19

Binary and Number Representation

GNU C

Types

The GNU C Compiler, more commonly referred to as gcc, almost completely implements the C99 standard.
However it also implements a range of extensions to the standard which programmers will often use to
gain extra functionality, at the expense of portability to another compiler. These extensions are usually
related to very low level code and are much more common in the system programming field; the most
common extension being used in this area being inline assembly code. Programmers should read the gcc
documentation and understand when they may be using features that diverge from the standard.

gcc can be directed to adhere strictly to the standardsfilirec99 flag for example) and warn or create
an error when certain things are done that are not in the standard. This is obviously appropriate if you need
to ensure that you can move your code easily to another compiler.

As programmers, we are familiar with using variables to represent an area of memory to hold a value. In a
typedlanguage, such as C, every variable must be declared tyjte d he type tells the compiler about

what we expect to store in a variable; the compiler can then both allocate sufficient space for this usage
and check that the programmer does not violate the rules of the type. In the example below, we see an
example of the space allocated for some common types of variables.

20

Binary and Number Representation

Figure 2.2. Types

1 byte
4 bytes
char ¢ b[o] | *b
int a
int b[2] >
2 X 4 byt
char *h = "hell 0" X yres
h
e
|
6 bytes
|
o]
\0

System Memory

The C99 standard purposely only mentionssimallestpossible size of each of the types defined for C.
This is because across different processor architectures and operating systems the best size for types can
be wildly different.

To be completely safe programmers need to never assume the size of any of their variables, however a
functioning system obviously needs agreements on what sizes types are going to be used in the system.
Each architecture and operating system conforms Apalication Binary Interfacer ABI. The ABI for

a system fills in the details between the C standard and the requirements of the underlying hardware and
operating system. An ABI is written for a specific processor and operating system combination.

21

Binary and Number Representation

64 bit

Table 2.13. Standard Integer Types and Sizes

Type C99 minimum size (bits) Common size (32 bit
architecture)

char 8 8

short 16 16

int 16 32

long 32 32

long long 64 64

Pointers Implementation dependent 32

Above we can see the only divergence from the standard istthas commonly a 32 bit quantity, which
is twice the strict minimum 16 bit size that the C99 requires.

Pointers are really just an address (i.e. their value is an address and thus "points" somewhere else in
memory) therefore a pointer needs to be sufficient in size to be able to address any memory in the system.

One area that causes confusion is the introduction of 64 bit computing. This means that the processor
can handle addresses 64 bits in length (specifically the registers are 64 bits wide; a topic we discuss in
Chapter 3Computer Architectune

This firstly means that all pointers are required to be a 64 bits wide so they can represent any possible

address in the system. However, system implementors must then make decisions about the size of the other
types. Two common models are widely used, as shown below.

Table 2.14. Standard Scalar Types and Sizes

Type C99 minimum size Common size (LP64) |Common size
(bits) (Windows)

char 8 8 8

short 16 16 16

int 16 32 32

long 32 64 32

long long 64 64 64

Pointers Implementation 64 64
dependent

You can see that in the LP64 (long-pointer 64) méated values are defined to be 64 bits wide. This is
different to the 32 bit model we showed previously. The LP64 model is widely used on UNIX systems.

In the other modelpng remains a 32 bit value. This maintains maximum compatibility with 32 code.
This model is in use with 64 bit Windows.

There are good reasons why the sizenbf was not increased to 64 bits in either model. Consider that
if the size ofint is increased to 64 bits you leave programmers no way to obtain a 32 bit variable. The
only possibly is redefininghorts to be a larger 32 bit type.

A 64 bit variable is so large that it is not generally required to represent many variables. For example,
loops very rarely repeat more times than would fitin a 32 bit variable (4294967296 times!). Images usually

22

Binary and Number Representation

are usually represented with 8 bits for each of a red, green and blue value and an extra 8 bits for extra
(alpha channel) information; a total of 32 bits. Consequently for many cases, using a 64 bit variable will

be wasting at least the top 32 bits (if not more). Not only this, but the size of an integer array has now
doubled too. This means programs take up more system memory (and thus more cache; discussed in detail
in Chapter 3Computer Architectunefor no real improvement. For the same reason Windows elected

to keep their long values as 32 bits; since much of the Windows API was originally written to use long
variables on a 32 bit system and hence does not require the extra bits this saves considerable wasted space
in the system without having to re-write all the API.

If we consider the proposed alternative wharert was redefined to be a 32 bit variable; programmers
working on a 64 bit system could use it for variables they know are bounded to smaller values. However,
when moving back to a 32 bit system their saimart variable would now be only 16 bits long, a value
which is much more realistically overflowed (65536).

By making a programmer request larger variables when they know they will be needed strikes a balance
with respect to portability concerns and wasting space in binaries.

Type qualifiers

The C standard also talks about some qualifiers for variable types. For examgie means that a
variable will never be modified from its original value amdatile suggests to the compiler that this

value might change outside program execution flow so the compiler must be careful not to re-order access
to it in any way.

signed andunsigned are probably the two most important qualifiers; and they say if a variable can
take on a negative value or not. We examine this in more detail below.

Qualifiers are all intended to pass extra information about how the variable will be used to the compiler.
This means two things; the compiler can check if you are violating your own rules (e.g. writounst a
value) and it can make optimisations based upon the extra knowledge (examined in later chapters).

Standard Types

C99 realises that all these rules, sizes and portability concerns can become very confusing very quickly.
To help, it provides a series of special types which can specify the exact properties of a variable. These are
defined in<stdint.h> and have the formtypes_t whereq is a qualifiertype is the base typs,

is the width in bits andt is an extension so you know you are using the C99 defined types.

So for examplauint8_t is an unsigned integer exactly 8 bits wide. Many other types are defined; the
complete list is detailed in C99 17.8 or (more cryptically) in the headet file.

It is up to the system implementing the C99 standard to provide these types for you by mapping them to
appropriate sized types on the target system; on Linux these headers are provided by the system libraries.

Types in action

Below we see an example of how types place restrictions on what operations are valid for a variable, and
how the compiler can use this information to warn when variables are used in an incorrect fashion. In this
code, we firstly assign an integer value intthar variable. Since thehar variable is smaller, we loose

the correct value of the integer. Further down, we attempt to assign a pointghaio & memory we
designated as arteger . This operation can be done; but it is not safe. The first example is run on a 32-

INote that C99 also has portability helpersgontf . ThePRI macros ircinttypes.h> can be used as specifiers for types of specified sizes.
Again see the standard or pull apart the headers for full information.

23

Binary and Number Representation

bit Pentium machine, and the correct value is returned. However, as shown in the second example, on a 64-
bit Itanium machine a pointer is 64 bits (8 bytes) long, but an integer is only 4 bytes long. Clearly, 8 bytes
can not fit into 4! We can attempt to "fool" the compilechgtingthe value before assigning it; note that in

this case we have shot ourselves in the foot by doing this cast and ignoring the compiler warning since the
smaller variable can not hold all the information from the pointer and we end up with an invalid address.

Example 2.2. Example of warnings when types are not matched

1
$ cat types.c
#include <stdio.h>
#include <stdint.h>
5
int main(void)
{
char *c;
inti;
10
i=c;
i = (int)c;

return O;
15}

$ uname -m
1686

20 $ gcc -Wall -o types types.c
types.c: In function 'main’:
types.c:19: warning: assignment makes integer from pointer without a cast

$.Jtypes

25iis 52
p is 0x80484e8
p is 0x80484e8

$ uname -m
30 iab4

$ gcc -Wall -o types types.c

types.c: In function 'main’:

types.c:19: warning: assignment makes integer from pointer without a cast
35 types.c:21: warning: cast from pointer to integer of different size

types.c:22: warning: cast to pointer from integer of different size

$.Jtypes
iis 52

40 p is 0x40000000000009e0
p is 0x9e0

24

Binary and Number Representation

Number Representation

Negative Values

Sign Bit

With our modern base 10 numeral system we indicate a negative number by placing a yrsigrsif
front of it. When using binary we need to use a different system to indicate negative numbers.

There is only one scheme in common use on modern hardware, but C99 defines three acceptable methods
for negative value representation.

The most straight forward method is to simply say that one bit of the number indicates either a negative
or positive value depending on it being set or not.

This is analogous to mathematical approach of haviaguad- . This is fairly logical, and some of the
original computers did represent negative numbers in this way. But using binary numbers opens up some
other possibilities which make the life of hardware designers easier.

However, notice that the val@enow has two equivalent values; one with the sign bit set and one without.
Sometimes these values are referred teGaand-0 respectively.

One's Complement

One's complement simply applies thet operation to the positive number to represent the negative
number. So, for example the value -90 (-Ox5A) is represente@1911010 = 10100101

With this scheme the biggest advantage is that to add a negative number to a positive humber no special
logic is required, except that any additional carry left over must be added back to the final value. Consider

Table 2.15. One's Complement Addition

Decimal Binary Op

-90 10100101 +

100 01100100

10 100001001 9
00001010 10

If you add the bits one by one, you find you end up with a carry bit at the end (highlighted above). By
adding this back to the original we end up with the correct value, 10

Again we still have the problem with two zeros being represented. Again no modern computer uses one's
complement, mostly because there is a better scheme.

Two's Complement

Two's complement is just like one's complement, except the negative representatioe ddded to
it and we discard any left over carry bit. So to continue with the example from b&@reyould be
~01011010+1=10100101+1 = 10100110

’The~ operator is the C language operator to apfiyTto the value. It is also occasionally called the one's complement operator, for obvious
reasons now!

25

Binary and Number Representation

This means there is a slightly odd symmetry in the numbers that can be represented; for example with
an 8 bit integer we have"® = 256 possible values; with our sign bit representation we could
represent -127 thru 127 but with two's complement we can represent -127 thru 128. This is because
we have removed the problem of having two zeros; consider that "negative z€r60@0000
+1)=(11111111+1)=00000000 (note discarded carry bit).

Table 2.16. Two's Complement Addition

Decimal Binary Op
-90 10100110 +
100 01100100

10 00001010

You can see that by implementing two's complement hardware designers need only provide logic for
addition circuits; subtraction can be done by two's complement negating the value to be subtracted and
then adding the new value.

Similarly you could implement multiplication with repeated addition and division with repeated
subtraction. Consequently two's complement can reduce all simple mathematical operations down to
addition!

All modern computers use two's complement representation.
Sign-extension

Becuase of two's complement format, when increasing the size of signed value, it is important that the
additional bits beign-extendedhat is, copied from the top-bit of the existing value.

For example, the value of an 32-bit -10 would be represented in two's complement binary as
111122227111112222212711111110110 . If one were to cast this to a 64-lnhg long int ,
we would need to ensure that the additional 32-bits were $dbtmaintain the same sign as the original.

Thanks to two's complement, it is sufficient to take the top bit of the exiting value and replace all the
added bits with this value. This processes is referred sigasextensiorand is usually handled by the
compiler in situations as defined by the language standard, with the processor generally providing special
instructions to take a value an sign-extended it to some larger value.

Floating Point

So far we have only discussed integer or whole numbers; the class of numbers that can represent decimal
values is calledloating point

To create a decimal number, we require some way to represent the concept of the decimal place in binary.
The most common scheme for this is known a$EB#-754 floating point standardecause the standard

is published by the Institute of Electric and Electronics Engineers. The scheme is conceptually quite simple
and is somewhat analogous to "scientific notation".

In scientific notation the valug23.45 might commonly be represented B2345x10 2. We call
1.2345 themantissaor significand 10 is theradix and?2 is theexponent

Inthe IEEE floating point model, we break up the available bits to represent the sign, mantissa and exponent
of a decimal number. A decimal number is representesigoyx significand x 2/ exponent

The sign bit equates to eithkmor-1 . Since we are working in binary, we always have the implied radix
of 2.

26

Binary and Number Representation

There are differing widths for a floating point value -- we examine below at only a 32 bit value. More
bits allows greater precision.

Table 2.17. IEEE Floating Point

Sign Exponent Significand/Mantissa
S EEEEEEEE MMMMMMMMMMMMMMMMMMMMMMM

The other important factor Basof the exponent. The exponent needs to be able to represent both positive
and negative values, thus an implied valuel®7? is subtracted from the exponent. For example, an
exponent o) has an exponent field @27, 128 would represent and126 would representl .

Each bit of the significand adds a little more precision to the values we can represent. Consider the scientific
notation representation of the vall@8765 . We could write this a5.98765x10 ©, which corresponds
to a representation below

Table 2.18. Scientific Notation for 1.98765x10"6

10° . 101 10° 103 10 10°
1 . 9 8 7 6 5

Each additional digit allows a greater range of decimal values we can represent. In base 10, each digit
after the decimal place increases the precision of our number by 10 times. For example, we can represent
0.0 through0.9 (10 values) with one digit of decimal pla€eQ0 through0.99 (100 values) with two

digits, and so on. In binary, rather than each additional digit giving us 10 times the precision, we only get
two times the precision, as illustrated in the table below. This means that our binary representation does
not always map in a straight-forward manner to a decimal representation.

Table 2.19. Significands in binary

20 . 2t 22 23 24 25
1/2 1/4 1/8 1/16 1/32
0.5 0.25 0.125 0.625 0.03125

With only one bit of precision, our fractional precision is not very big; we can only say that the fraction
is either0 or 0.5 . If we add another bit of precision, we can now say that the decimal value is
one of either0,0.25,0.5,0.75 . With another bit of precision we can now represent the values
0,0.125,0.25,0.375,0.5,0.625,0.75,0.875

Increasing the number of bits therefore allows us greater and greater precision. However, since the range
of possible numbers is infinite we will never have enough bits to reprasgpbssible value.

For example, if we only have two bits of precision and need to represent th® x&alwee can only say

thatitis closest t6.25 ; obviously this is insufficient for most any application. With 22 bits of significand

we have a much finer resolution, but it is still not enough for most applicaticimite value increases

the number of significand bits to 52 (it also increases the range of exponent values too). Some hardware
has an 84-bit float, with a full 64 bits of significand. 64 bits allows a tremendous precision and should
be suitable for all but the most demanding of applications (XXX is this sufficient to represent a length to
less than the size of an atom?)

Example 2.3. Floats versus Doubles

1
$ cat float.c
#include <stdio.h>

27

Binary and Number Representation

5 int main(void)
{
float a = 0.45;
float b = 8.0;

10 double ad = 0.45;
double bd = 8.0;

printf("float+float, 6dp : %f\n", a+b);
printf("double+double, 6dp : %f\n", ad+bd);

15 printf(“float+float, 20dp : %10.20f\n", a+b);
printf("dobule+double, 20dp : %10.20f\n", ad+bd);

return O;
}
20
$ gcce -o float float.c

$./float
float+float, 6dp : 8.450000
25 double+double, 6dp : 8.450000
float+float, 20dp : 8.44999998807907104492
dobule+double, 20dp : 8.44999999999999928946

$ python

30 Python 2.4.4 (#2, Oct 20 2006, 00:23:25)
[GCC 4.1.2 20061015 (prerelease) (Debian 4.1.1-16.1)] on linux2
Type "help”, "copyright”, "credits" or "license" for more information.
>>> 8.0 + 0.45
8.4499999999999993

35

A practical example is illustrated above. Notice that for the default 6 decimal places of precision given by
printf both answers are the same, since they are rounded up correctly. However, when asked to give
the results to a larger precision, in this case 20 decimal places, we can see the results start to diverge. The
code usingdoubles has a more accurate result, but it is still @octlycorrect. We can also see that
programmers not explicitly dealing wifloat values still have problems with precision of variables!

Normalised Values

In scientific notation, we can represent a value in many different ways. For exafQ28x10" 0=
1002.3x10 ® = 100.23x10 2. We thus define theormalisedversion as the one whetéradix

<= significand < 1 . In binary this ensures that the leftmost bit of the significamdinays one
Knowing this, we can gain an extra bit of precision by having the standard say that the leftmost bit being
one is implied.

Table 2.20. Example of normalising 0.375

2 . 2t 22 23 24 2° Exponent| Calculation
0 . 0 1 1 0 0 20 (0.25+0.125)
x 1=0.375

28

Binary and Number Representation

2 . 2t 22 23 24 2° Exponent| Calculation
ont (0.5+0.25)%.5=0.375
0 0 0 o~ (1+0.5)x0.25=0.375

As you can see above, we can make the value normalised by moving the bits upwards as long as we
compensate by increasing the exponent.

Normalisation Tricks

A common problem programmers face is finding the first set bit in a bitfield. Consider the Bitf€ld
from the right the first set bit would be Bit(starting from zero, as is conventional).

The standard way to find this value is to shift right, check if the uppermost Hitand either terminate
or repeat. This is a slow process; if the bitfield is 64 bits long and only the very last bit is set, you must
go through all the preceeding 63 bits!

However, if this bitfield value were the signficand of a floating point number and we were to normalise
it, the value of the exponent would tell us how many times it was shifted. The process of normalising
a number is generally built into the floating point hardware unit on the processor, so operates very fast;
usually much faster than the repeated shift and check operations.

The example program below illustrates two methods of finding the first set bit on an Itanium processor.
The Itanium, like most server processors, has support for an 8ftbitdedloating point type, with a

64-bit significand. This meansuasigned long neatly fits into the significand oflang double

When the value is loaded it is normalised, and and thus by reading the exponent value (minus the 16 bit
bias) we can see how far it was shifted.

Example 2.4. Program to find first set bit

1
#include <stdio.h>

int main(void)
5{
/I in binary = 1000 0000 0000 0000
/I bitnum 5432 1098 7654 3210
int i = 0x8000;
int count = 0;
10 while (!(i & 0x1)) {
count ++;
i=i>>1;
}
printf("First non-zero (slow) is %d\n", count);
15
/I this value is normalised when it is loaded
long double d = 0x8000UL;
long exp;

20 /I Itanium "get floating point exponent" instruction
asm ("getf.exp %0=%1" : "=r"(exp) : "f"(d));

/I note exponent include bias
printf("The first non-zero (fast) is %d\n", exp - 65535);
25

29

Binary and Number Representation

Bringing it together

In the example code below we extract the components of a floating point number and print out the value
it represents. This will only work for a 32 bit floating point value in the IEEE format; however this is
common for most architectures with theat type.

Example 2.5. Examining Floats

1
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
5
/* return 2”n */
int two_to_pos(int n)
{
if (n==0)
10 return 1,
return 2 * two_to_pos(n - 1);

}

double two_to_neg(int n)
15
if (n==0)
return 1;
return 1.0 / (two_to_pos(abs(n)));
}
20
double two_to(int n)
{
if (n>=0)
return two_to_pos(n);
25 if(n<0)
return two_to_neg(n);
return O;

}

30 /* Go through some memory "m" which is the 24 bit significand of a
floating point number. We work "backwards” from the bits
furthest on the right, for no particular reason. */

double calc_float(int m, int bit)
{
35 /* 23 bits; this terminates recursion */
if (bit > 23)
return O;

[* if the bit is set, it represents the value 1/2”bit */
40 if ((m >> bit) & 1)
return 1.0L/two_to(23 - bit) + calc_float(m, bit + 1);

30

Binary and Number Representation

/* otherwise go to the next bit */
return calc_float(m, bit + 1);
45}

int main(int argc, char *argv([])

float f;
50 int m,i,sign,exponent,significand;

if (argc = 2)

{

printf("usage: float 123.456\n");
55 exit(1);

}

if (sscanf(argv[1], "%f", &f) 1= 1)
{

60 printf("invalid input\n™);
exit(1);
}

/* We need to "fool" the compiler, as if we start to use casts
65 (e.g. (int)f) it will actually do a conversion for us. We
want access to the raw bits, so we just copy it into a same
sized variable. */
memcpy(&m, &f, 4);

70 /* The sign bit is the first bit */
sign = (m >> 31) & 0x1;

[* Exponent is 8 bits following the sign bit */
exponent = ((m >> 23) & OxFF) - 127;
75
/* Significand fills out the float, the first bit is implied
to be 1, hence the 24 bit OR value below. */
significand = (m & 0x7FFFFF) | 0x800000;

80 /* print out a power representation */
printf("%f = %d * (", f, sign ? -1 : 1);
fori=23;i>=0;i-

{
if ((significand >>1i) & 1)
85 printf("%s1/2"%d", (i==23) ? "™ "+ ",
23-i);

printf(") * 2°%d\n", exponent);

90 /* print out a fractional representation */
printf("%f = %d * (", f, sign ? -1 : 1);
for(i=23;i>=0;i-

{
if ((significand >> i) & 1)
95 printf("%s1/%d", (i==23) 2 "™ :"+",
(int)two_to(23-1));

31

Binary and Number Representation

}
printf(") * 27°%d\n", exponent);

100 /* convert this into decimal and print it out */
printf("%f = %d * %.12g * %f\n",
fl
(sign?-1:1),
calc_float(significand, 0),
105 two_to(exponent));

/* do the math this time */
printf("%f = %.12g\n",
110 (sign?-1:1)*
calc_float(significand, 0) *
two_to(exponent)

);

115 return O;
}

Sample output of the vali@45 , which we previously examined, is shown below.

Example 2.6. Analysis 0B. 45

$./float 8.45

8.450000 =1 * (1/2"0 + 1/2"5 + 1/2"6 + 1/2°7 + 1/2710 + 1/2711 + 1/2"14 + 1/2715 + 1/2718 + 1/2719 + 1/2722
8.450000 =1 * (1/1 + 1/32 + 1/64 + 1/128 + 1/1024 + 1/2048 + 1/16384 + 1/32768 + 1/262144 + 1/524288 + 1//
8.450000 =1 * 1.05624997616 * 8.000000

8.450000 = 8.44999980927

From this example, we get some idea of how the inaccuracies creep into our floating point numbers.

32

Chapter 3. Computer Architecture
The CPU

Figure 3.1. The CPU

MEMORY

0x090 | 0

0x100 | 10

0x110 | 110

0x120 | 0

INSTRUCTIONS

REGISTERS

R1=100

R2=LOAD 0x100

R3=ADD R1,R2

STORE 0x110=R3

The CPU performs instructions on values held in registers. This example shows firstly setting the value
of R1 to 100, loading the value from memory location 0x100 into R2, adding the two values together and
placing the result in R3 and finally storing the new value (110) to R4 (for further use).

To greatly simplify, a computer consists of a central processing unit (CPU) attached to memory. The figure
above illustrates the general principle behind all computer operations.

The CPU executes instructions read from memory. There are two categories of instructions
1. Those thakbad values from memory into registers astdrevalues from registers to memory.

2. Those that operate on values stored in registers. For example adding, subtracting multiplying or dividing
the values in two registers, performing bitwise operations (and, or, xor, etc) or performing other
mathematical operations (square root, sin, cos, tan, etc).

So in the example we are simply adding 100 to a value stored in memory, and storing this new result back
into memory.

Branching

Apart from loading or storing, the other important operation of a CPithisching Internally, the CPU
keeps a record of the next instruction to be executed ims$treiction pointer Usually, the instruction

33

Computer Architecture

pointer is incremented to point to the next instruction sequentially; the branch instruction will usually

check if a specific register is zero or if a flag is set and, if so, will modify the pointer to a different address.
Thus the next instruction to execute will be from a different part of program; this is how loops and decision
statements work.

For example, a statement lik¢x==0) might be implemented by finding tloe of two registers, one

holdingx and the other zero; if the result is zero the comparison is true (i.e. all kitsere zero) and
the body of the statement should be taken, otherwise branch past the body code.

Cycles

We are all familiar with the speed of the computer, given in Megahertz or Gigahertz (millions or thousands
of millions cycles per second). This is called theck speedince it is the speed that an internal clock
within the computer pulses.

The pulses are used within the processor to keep it internally synchronised. On each tick or pulse another
operation can be started; think of the clock like the person beating the drum to keep the rower's oars in sync.

Fetch, Decode, Execute, Store

Executing a single instruction consists of a particular cycle of events; fetching, decoding, executing and
storing.

For example, to do thedd instruction above the CPU must

1. Fetch : get the instruction from memory into the processor.

2. Decode : internally decode what it has to do (in this case add).

3. Execute : take the values from the registers, actually add them together

4. Store : store the result back into another register. You might also see thetiténgnthe instruction.

Looking inside a CPU

Internally the CPU has many different sub components that perform each of the above steps, and generally
they can all happen independently of each other. This is analogous to a physical production line, where
there are many stations where each step has a particular task to perform. Once done it can pass the results
to the next station and take a new input to work on.

34

Computer Architecture

Figure 3.2. Inside the CPU

program code

‘ Decode Instruction ‘
Integer Register File Floating Point Register File SSE/MMX (etc)
¥
FP FP
AGU ALU Load + -
Store * 1
‘ Cache ‘
CPU
‘ RAM ‘

The CPU is made up of many different sub-components, each doing a dedicated task.

Figure 3.2, “Inside the CPU” shows a very simple block diagram illustrating some of the main parts of
a modern CPU.

You can see the instructions come in and are decoded by the processor. The CPU has two main types of
registers, those fantegercalculations and those féipating pointcalculations. Floating point is a way

of representing numbers with a decimal place in binary form, and is handled differently within the CPU.
MMX (multimedia extension) an8SE(Streaming Single Instruction Multiple Data) Altivec registers

are similar to floating point registers.

A register fileis the collective name for the registers inside the CPU. Below that we have the parts of the
CPU which really do all the work.

We said that processors are either loading or storing a value into a register or from a register into memory,
or doing some operation on values in registers.

TheArithmetic Logic Uni{ALU) is the heart of the CPU operation. It takes values in registers and performs
any of the multitude of operations the CPU is capable of. All modern processors have a number of ALUS so
each can be working independently. In fact, processors such as the Pentium hiastdaiklowALUs;

the fast ones are smaller (so you can fit more on the CPU) but can do only the most common operations,
slow ALUs can do all operations but are bigger.

The Address Generation Un{AGU) handles talking to cache and main memory to get values into the
registers for the ALU to operate on and get values out of registers back into main memory.

Floating point registers have the same concepts, but use slightly different terminology for their
components.

35

Computer Architecture

Pipelining

As we can see above, whilst the ALU is adding registers together is completely separate to the AGU
writing values back to memory, so there is no reason why the CPU can not be doing both at once. We also
have multiple ALUs in the system, each which can be working on separate instructions. Finally the CPU
could be doing some floating point operations with its floating point logic whilst integer instructions are in
flight too. This process is calleglﬂpeliningl, and a processor that can do this is referred teaperscalar
architecture All modern processors are superscalar.

Another analogy might be to think of the pipeline like a hose that is being filled with marbles, except our
marbles are instructions for the CPU. Ideally you will be putting your marbles in one end, one after the
other (one per clock pulse), filling up the pipe. Once full, for each marble (instruction) you push in all the
others will move to the next position and one will fall out the end (the result).

Branch instruction play havoc with this model however, since they may or may not cause execution to
start from a different place. If you are pipelining, you will have to basically guess which way the branch
will go, so you know which instructions to bring into the pipeline. If the CPU has predicted correctly,
everything goes finé!Converser, if the processor has predicted incorrectly it has wasted a lot of time
and has to clear the pipeline and start again.

This process is usually referred to agipeline flushand is analogous to having to stop and empty out
all your marbles from your hose!

Branch Prediction

pipeline flush, predict taken, predict not taken, branch delay slots

Reordering
This bit is crap
In fact, if the CPU is the hose, it is free to reorder the marbles within the hose, as long as they pop out the

end in the same order you put them in. We callghigram ordersince this is the order that instructions
are given in the computer program.

Figure 3.3. Reorder buffer example

1:r3=r1*r2
2:r4=r2+1r3
3:r7=r5*r6
4:18=rl1l+17

Consider an instruction stream such as that shown in Figure 3.3, “Reorder buffer example” Instruction
2 needs to wait for instruction 1 to complete fully before it can start. This means that the pipeline has
to stall as it waits for the value to be calculated. Similarly instructions 3 and 4 have a dependency on
r7. However, instructions 2 and 3 have dependencyn each other at all; this means they operate on
completely separate registers. If we swap instructions 2 and 3 we can get a much better ordering for the

Yn fact, any modern processor has many more than four stages it can pipeline, above we have only shown a very simplified view. The more stages
that can be executed at the same time, the deeper the pipeline.

2Processors such as the Pentium usac cacheo keep a track of which way branches are going. Much of the time it can predict which way a
branch will go by remembering its previous result. For example, in a loop that happens 100 times, if you remember the last result of the branch you
will be right 99 times, since only the last time will you actually continue with the program.

36

Computer Architecture

pipeline since the processor can be doing useful work rather than waiting for the pipeline to complete to
get the result of a previous instruction.

However, when writing very low level code some instructions may require some security about how
operations are ordered. We call this requirenmamory semanticdf you requireacquire semantics

this means that for this instruction you must ensure that the results of all previous instructions have been
completed. If you requireeleasesemantics you are saying that all instructions after this one must see the
current result. Another even stricter semantic iseamory barrieror memory fencevhich requires that
operations have been committed to memaory before continuing.

On some architectures these semantics are guaranteed for you by the processor, whilst on others you must
specify them explicitly. Most programmers do not need to worry directly about them, although you may
see the terms.

CISC v RISC

A common way to divide computer architectures is @tamplex Instruction Set Comput@@ISC) and
Reduced Instruction Set Compu(BiSC).

Note in the first example, we have explicitly loaded values into registers, performed an addition and
stored the result value held in another register back to memory. This is an example of a RISC approach to
computing -- only performing operations on values in registers and explicitly loading and storing values
to and from memory.

A CISC approach may only a single instruction taking values from memory, performing the addition
internally and writing the result back. This means the instruction may take many cycles, but ultimately
both approaches achieve the same goal.

All modern architectures would be considered RISC architeétures
There are a number of reasons for this

* Whilst RISC makes assembly programming becomes more complex, since virtually all programmers
use high level languages and leave the hard work of producing assembly code to the compiler, so the
other advantages outweigh this disadvantage.

» Because the instructions in a RISC processor are much more simple, there is more space inside the chip
for registers. As we know from the memory hierarchy, registers are the fastest type of memory and
ultimately all instructions must be performed on values held in registers, so all other things being equal
more registers leads to higher performance.

» Since all instructions execute in the same time, pipelining is possible. We know pipelining requires
streams of instructions being constantly fed into the processor, so if some instructions take a very long
time and others do not, the pipeline becomes far to complex to be effective.

EPIC

The Itanium processor, which is used in many example through this book, is an example of a modified
architecture called Explicitly Parallel Instruction Computing.

We have discussed how superscaler processors have pipelines that have many instructions in flight at the
same time in different parts of the processor. Obviously for this to work as well as possible instructions
should be given the processor in an order that can make best use of the available elements of the CPU.

SEven the most common architecture, the Intel Pentium, whilst having an instruction set that is categorised as CISC, internally breaks down
instructions to RISC style sub-instructions inside the chip before executing.

37

Computer Architecture

Traditionally organising the incoming instruction stream has been the job of the hardware. Instructions are
issued by the program in a sequential manner; the processor must look ahead and try to make decisions
about how to organise the incoming instructions.

The theory behind EPIC is that there is more information available at higher levels which can make these
decisions better than the processor. Analysing a stream of assembly language instructions, as current
processors do, looses a lot of information that the programmer may have provided in the original source
code. Think of it as the difference between studying a Shakespeare play and reading the Cliff's Notes
version of the same. Both give you the same result, but the original has all sorts of extra information that
sets the scene and gives you insight into the characters.

Thus the logic of ordering instructions can be moved from the processor to the compiler. This means

that compiler writers need to be smarter to try and find the best ordering of code for the processor. The
processor is also significantly simplified, since a lot of its work has been moved to the cémpiler.

Memory

Memory Hierarchy

The CPU can only directly fetch instructions and data from cache memory, located directly on the processor
chip. Cache memory must be loaded in from the main system memory (the Random Access Memory, or
RAM). RAM however, only retains it's contents when the power is on, so needs to be stored on more
permanent storage.

We call these layers of memory theemory hierarchy

Table 3.1. Memory Hierarchy

Speed Memory Description

Fastest Cache Cache memory is memory actually
embedded inside the CPU. Cache
memory is very fast, typically
taking only once cycle to access,
but since it is embedded directly
into the CPU there is a limit to
how big it can be. In fact, there
are several sub-levels of cache
memory (termed L1, L2, L3) all
with slightly increasing speeds.

RAM All instructions and storage
addresses for the processor must
come from RAM. Although RAM
is very fast, there is still some
significant time taken for the CRU
to access it (this is terméatency).

“4Another term often used around EPIC is Very Long Instruction World (VLIW), which is where each instruction to the processor is extended to

tell the processor about where it should execute the instruction in it's internal units. The problem with this approach is that code is then completely
dependent on the model of processor is has been compiled for. Companies are always making revisions to hardware, and making customers recompile
their application every single time, and maintain a range of different binaries was impractical.

EPIC solves this in the usual computer science manner by adding a layer of abstraction. Rather than explicitly specifying the exact part of the
processor the instructions should execute on, EPIC creates a simplified view with a few core units like memory, integer and floating point.

38

Computer Architecture

Speed Memory Description
RAM is stored in separate,
dedicated chips attached to the
motherboard, meaning it is much
larger than cache memory.

Slowest Disk We are all familiar with software
arriving on a floppy disk @
CDROM, and saving our files to
the hard disk. We are also familiar
with the long time a program can
take to load from the hard disk
-- having physical mechanisims
such as spinning disks and moving
heads means disks are the slowest
form of storage. But they are also
by far the largest form of storag

=

D

The important point to know about the memory hierarchy is the trade offs between speed an size -- the
faster the memory the smaller it is. Of course, if you can find a way to change this equation, you'll end
up a billionaire!

The reason caches are effective is becuase computer code generally exhibits two forms of locality
1. Spatiallocality suggests that data within blocks is likely to be accessed together.
2. Temporallocality suggests that data that was used recently will likely be used again shortly.

This means that benefits are gained by implementing as much quickly accessible memory (temporal)
storing small blocks of relevant information (spatial) as practically possible.

Cache in depth

Cache is one of the most important elements of the CPU architecture. To write efficient code developers
need to have an understanding of how the cache in their systems works.

The cache is a very fast copy of the slower main system memory. Cache is much smaller than main
memories because it is included inside the processor chip alongside the registers and processor logic. This
is prime real estate in computing terms, and there are both economic and physical limits to it's maximum
size. As manufacturers find more and more ways to cram more and more transistors onto a chip cache
sizes grow considerably, but even the largest caches are tens of megabytes, rather than the gigabytes of
main memory or terrabytes of hard disk otherwise common.

The cache is made up of small chunks of mirrored main memory. The size of these chunks is called the
line size and is typically something like 32 or 64 bytes. When talking about cache, it is very common to
talk about the line size, or a cache line, which refers to one chunk of mirrored main memory. The cache
can only load and store memory in sizes a multiple of a cache line.

Caches have their own hierarchy, commonly termed L1, L2 and L3. L1 cache is the fastest and smallest;
L2 is bigger and slower, and L3 more so.

L1 caches are generally further split into instruction caches and data, known as the "Harvard Architecture”
after the relay based Harvard Mark-1 computer which introduced it. Split caches help to reduce pipeline
bottlenecks as earlier pipeline stages tend to reference the instruction cache and later stages the data cache.

39

Computer Architecture

Apart from reducing contention for a shared resource, providing separate caches for instructions also
allows for alternate implementations which may take advantage of the nature of instruction streaming;
they are read-only so do not need expensive on-chip features such as multi-porting, nor need to handle
handle sub-block reads because the instruction stream generally uses more regular sized accesses.

Figure 3.4. Cache Associativity

Total system memory

- /

Possible locations in cache for shaded values

(N ([— I | set B (h

way

Direct 4 way set associative Fully Associative

A given cache line may find a valid home in one of the shaded entries.

During normal operation the processor is constantly asking the cache to check if a particular address is
stored in the cache, so the cache needs some way to very quickly find if it has a valid line present or not.

If a given address can be cached anywhere within the cache, every cache line needs to be searched every
time a reference is made to determine a hit or a miss. To keep searching fast this is done in parallel in the
cache hardware, but searching every entry is generally far too expensive to implement for a reasonable
sized cache. Thus the cache can be made simpler by enforcing limits on where a particular address must
live. This is a trade-off; the cache is obviously much, much smaller than the system memory, so some
addresses musitias others. If two addresses which alias each other are being constantly updated they
are said tdight over the cache line. Thus we can categorise caches into three general types, illustrated in
Figure 3.4, “Cache Associativity”.

» Direct mappedcaches will allow a cache line to exist only in a singe entry in the cache. This is the
simplest to implement in hardware, but as illustrated in Figure 3.4, “Cache Associativity” there is no
potential to avoid aliasing because the two shaded addresses must share the same cache line.

» Fully Associativeaches will allow a cache line to exist in any entry of the cache. This avoids the problem
with aliasing, since any entry is available for use. But it is very expensive to implement in hardware
because every possible location must be looked up simultaneously to determine if a value is in the cache.

» Set Associativeaches are a hybrid of direct and fully associative caches, and allow a particular cache
value to exist in some subset of the lines within the cache. The cache is divided into even compartments
calledways and a particular address could be located in any way. Thusvap set associative cache
will allow a cache line to exist in any entry of a set sized total blocks mod n — Figure 3.4, “Cache
Associativity” shows a sample 8-element, 4-way set associative cache; in this case the two addresses

40

Computer Architecture

have four possible locations, meaning only half the cache must be searched upon lookup. The more
ways, the more possible locations and the less aliasing, leading to overall better performance.

Once the cache is full the processor needs to get rid of a line to make room for a new line. There are many
algorithms by which the processor can choose which line to evict; for extrapleecently usefL RU)
is an algorithm where the oldest unused line is discarded to make room for the new line.

When data is only read from the cache there is no need to ensure consistency with main memory. However,
when the processor starts writing to cache lines it needs to make some decisions about how to update
the underlying main memory. Write-throughcache will write the changes directly into the main system
memory as the processor updates the cache. This is slower since the process of writing to the main memory
is, as we have seen, slower. Alternativelyréte-backcache delays writing the changes to RAM until
absolutely necessary. The obvious advantage is that less main memory access is required when cache
entries are written. Cache lines that have been written but not committed to memory are referred to as
dirty. The disadvantage is that when a cache entry is evicted, it may require two memory accesses (one to
write dirty data main memory, and another to load the new data).

If an entry exists in both a higher-level and lower-level cache at the same time, we say the higher-level
cache isnclusive Alternatively, if the higher-level cache having a line removes the possibility of a lower
level cache having that line, we say iebdclusive This choice is discussed further in the section called
“Cache exclusivity in SMP systems”.

Cache Addressing

So far we have not discussed how a cache decides if a given address resides in the cache or not. Clearly,
caches must keep a directory of what data currently resides in the cache lines. The cache directory and
data may co-located on the processor, but may also be separate — such as in the case of the POWER5
processor which has an on-core L3 directory, but actually accessing the data requires traversing the L3 bus
to access off-core memory. An arrangement like this can facilitate quicker hit/miss processing without the
other costs of keeping the entire cache on-core.

Figure 3.5. Cache tags

e A

Address _Wayl ~

TAG INDEX

4P

Address

TAG INDEX way 3 X

. . . Way 2
Less set-associativity means more index bits =
Less Associative
N J
s N
I Way 1
I Way 2 ‘

XNW

A
\/

More set-associativity means more tag bits

I Way 4
More Associative
N J

Tags need to be checked in parallel to keep latency times low; more tag bits (i.e. less set associativity)
requires more complex hardware to achieve this. Alternatively more set associativity means less tags, but
the processor now needs hardware to multiplex the output of the many sets, which can also add latency.

41

Computer Architecture

To quickly decide if an address lies within the cache it is separated into three pdag;athe thandex
and theoffset

The offset bits depend on the line size of the cache. For example, a 32-byte line size would use the last 5-
bits (i.e. ?) of the address as the offset into the line.

Theindexis the particular cache line that an entry may reside in. As an example, let us consider a cache
with 256 entries. If this is a direct-mapped cache, we know the data may reside in only one possible line,
so the next 8-bits @after the offset describe the line to check - between 0 and 255.

Now, consider the same 256 element cache, but divided into two ways. This means there are two groups of
128 lines, and the given address may reside in either of these groups. Consequently only 7-bits are required
as an index to offset into the 128-entry ways. For a given cache size, as we increase the number of ways,
we decrease the number of bits required as an index since each way gets smaller.

The cache directory still needs to check if the particular address stored in the cache is the one it is interested
in. Thus the remaining bits of the address aretdbéits which the cache directory checks against the
incoming address tag bits to determine if there is a cache hit or not. This relationship is illustrated in
Figure 3.5, “Cache tags”.

When there are multiple ways, this check must happen in parallel within each way, which then passes its
result into a multiplexor which outputs a firrat or missresult. As describe above, the more associative a
cache is, the less bits are required for index and the more as tag bits — to the extreme of a fully-associative
cache where no bits are used as index bits. The parallel matching of tags bits is the expensive component
of cache design and generally the limiting factor on how many lines (i.e, how big) a cache may grow.

Peripherals and busses

Peripherals are any of the many external devices that connect to your computer. Obviously, the processor
must have some way of talking to the peripherals to make them useful.

The communication channel between the processor and the peripherals is lsafled a

Peripheral Bus concepts

A device requires both input and output to be useful. There are a number of common concepts required
for useful communication with peripherals.

Interrupts

An interrupt allows the device to literally interrupt the processor to flag some information. For example,
when a key is pressed, an interrupt is generated to deliver the key-press event to the operating system.
Each device is assigned an interrupt by some combination of the operating system and BIOS.

Devices are generally connected tgpamgrammable interrupt controllgiPIC), a separate chip that is part

of the motherboard which buffers and communicates interrupt information to the main processor. Each
device has a physicaterrupt linebetween it an one of the PIC's provided by the system. When the device
wants to interrupt, it will modify the voltage on this line.

A very broad description of the PIC's role is that it receives this interrupt and converts it to a message for
consumption by the main processor. While the exact procedure varies by architecture, the general principle
is that the operating system has configurechterrupt descriptor tablavhich pairs each of the possible

42

Computer Architecture

interrupts with a code address to jump to when the interrupt is received. This is illustrated in Figure 3.6,
“Overview of handling an interrupt”.

Writing this interrupt handleris the job of the device driver author in conjunction with the operating
system.

Figure 3.6. Overview of handling an interrupt

* P

Device Driver

®
old

. Operating System
Device

IiESH

CPU

A generic overview of handling an interrupt. The device raises the interrupt to the interrupt controller,
which passes the information onto the processor. The processor looks at its descriptor table, filled out by
the operating system, to find the code to handle the fault.

Most drivers will spilt up handling of interrupts intmttom and top halves. The bottom half will
acknowledge the interrupt, queue actions for processing and return the processor to what it was doing
quickly. The top half will then run later when the CPU is free and do the more intensive processing. This
is to stop an interrupt hogging the entire CPU.

Saving state

Since an interrupt can happen at any time, it is important that you can return to the running operation when
finished handling the interrupt. It is generally the job of the operating system to ensure that upon entry to
the interrupt handler, it saves astate i.e. registers, and restores them when returning from the interrupt
handler. In this way, apart from some lost time, the interrupt is completely transparent to whatever happens
to be running at the time.

Interrupts v traps and exceptions

While an interrupt is generally associated with an external event from a physical device, the same
mechanism is useful for handling internal system operations. For example, if the processor detects
conditions such as an access to invalid memory, an attempt to divide-by-zero or an invalid instruction,
it can internally raise aexceptiorto be handled by the operating system. It is also the mechanism used
to trap into the operating system &ystem callsas discussed in the section called “System Calls” and

to implement virtual memory, as discussed in Chapt¥iréjal Memory Although generated internally

rather than from an external source, the principles of asynchronously interrupting the running code remains
the same.

Types of interrupts
There are two main ways of signalling interrupts on a linkevelandedgetriggered.

Level-triggered interrupts define voltage of the interrupt line being held high to indicate an interrupt is
pending. Edge-triggered interrupts detieahsitionson the bus; that is when the line voltage goes from

43

Computer Architecture

low to high. With an edge-triggered interrupt, a square-wave pulse is detected by the PIC as signalling
and interrupt has been raised.

The difference is pronounced when devices share an interrupt line. In a level-triggered system, the interrupt
line will be high until all devices that have raised an interrupt have been processed and un-asserted their
interrupt.

In an edge-triggered system, a pulse on the line will indicate to the PIC that an interrupt has occurred,
which it will signal to the operating system for handling. However, if further pulses come in on the already
asserted line from another device.

The issue with level-triggered interrupts is that it may require some considerable amount of time to handle
an interrupt for a device. During this time, the interrupt line remains high and it is not possible to determine

if any other device has raised an interrupt on the line. This means there can be considerable unpredictable
latency in servicing interrupts.

With edge-triggered interrupts, a long-running interrupt can be noticed and queued, but other devices
sharing the line can still transition (and hence raise interrupts) while this happens. However, this introduces
new problems; if two devices interrupt at the same time it may be possible to miss one of the interrupts,
or environmental or other interference may creatpuaiousinterrupt which should be ignored.

Non-maskable interrupts

It is important for the system to be ablemaskor prevent interrupts at certain times. Generally, it is
possible to put interrupts on hold, but a particular class of interrupts, watetiaskable interrup{®Ml),
are the exception to this rule. The typical example isaketinterrupt.

NMlIs can be useful forimplementing things such as a system watchdog, where a NMl is raised periodically
and sets some flag that must be acknowledged by the operating system. If the acknowledgement is not seen
before the next periodic NMI, then system can be considered to be not making forward progress. Another
common usage is for profiling a system. A periodic NMI can be raised and used to evaluate what code
the processor is currently running; over time this builds a profile of what code is being run and create a
very useful insight into system performance.

IO Space

DMA

Obviously the processor will need to communicate with the peripheral device, and it does this via 10
operations. The most common form of 1O is so catfesnory mapped I@here registers on the device
aremappednto memory.

This means that to communicate with the device, you need simply read or write to a specific address in
memory. TODO: expand

Since the speed of devices is far below the speed of processors, there needs to be some way to avoid
making the CPU wait around for data from devices.

Direct Memory Access (DMA) is a method of transferring data directly between an peripheral and system
RAM.

The driver can setup a device to do a DMA transfer by giving it the area of RAM to put it's data into. It
can then start the DMA transfer and allow the CPU to continue with other tasks.

44

Computer Architecture

Once the device is finished, it will raise an interrupt and signal to the driver the transfer is complete. From
this time the data from the device (say a file from a disk, or frames from a video capture card) is in memory
and ready to be used.

Other Busses

Other buses connect between the PCI bus and external devices.

USB

From an operating system point of view, a USB device is a group of end-points grouped together into an
interface. An end-point can be eithiror out and hence transfers data in one direction only. End-points
can have a number of different types:

Control end-points are for configuring the device, etc.

Interrupt end-points are for transferring small amounts of data. They have higher priority than ...

Bulk end-points, which transfer large amounts of data but do not get guaranteed time constraints.

 Isochronoudransfers are high-priority real-time transfers, but if they are missed they are not re-tried.
This is for streaming data like video or audio where there is no point sending data again.

There can be many interfaces (made of multiple end-points) and interfaces are growmediquations
However Most devices only have a single configuration.

Figure 3.7. Overview of a UHCI controller operation

Frame List Base Frame
Address Register Counter
31 i 121 l 2
| Base | Index |00| Queue Heads Queue Heads
— Interrupt Control and Bulk
Isochronous /& /_//R
Transfer Descriptors Execution By Breadth
(Horizontal Execution)
Horizontal Execution >

e e

Link Link

Frame List

Frame Pointer IQ |T

. Execution

By Depth
(Vertical
Execution)

L Frame Pointer [Q |T
Frame Pointer QT

Frame Pointer QT

T=Terminate
Q=Transfer Descriptor or Queue Head

An overview of a UCHI controller, taken from Intel documentation [http://download.intel.com/
technology/usb/UHCI11D.pdf].

45

http://download.intel.com/technology/usb/UHCI11D.pdf
http://download.intel.com/technology/usb/UHCI11D.pdf
http://download.intel.com/technology/usb/UHCI11D.pdf

Computer Architecture

Figure 3.7, “Overview of a UHCI controller operation” shows an overview of a universal host controller
interface, or UHCI. It provides an overview of how USB data is moved out of the system by a combination
of hardware and software. Essentially, the software sets up a template of data in a specified format for the
host controller to read and send across the USB bus.

Starting at the top-left of the overview, the controller hasame register with a counter which is
incremented periodically — every millisecond. This value is used to index iinton& listcreated by
software. Each entry in this table points to a queueaosfer descriptorsSoftware sets up this data in
memory, and it is read by the host controller which is a separate chip the drives the USB bus. Software
needs to schedule the work queues so that 90% of a frame time is given to isochronous data, and 10% left
for interrupt, control and bulk data..

As you can see from the diagram, the way the data is linked means that transfer descriptors for isochronous
data are associated with only one particular frame pointer — in other words only one particular time period
— and after that will be discarded. However, the interrupt, control and bulk data quewddafter the
isochronous data and thus if not transmitted in one frame (time period) will be done in the next.

The USB layer communicates through Uguest blocksor URBs. A URB contains information about

what end-point this request relates to, data, any related information or attributes and a call-back function to
be called when the URB is complete. USB drivers submit URBs in a fixed format to the USB core, which
manages them in co-ordination with the USB host controller as above. Your data gets sent off to the USB
device by the USB core, and when its done your call-back is triggered.

Small to big systems

As Moore's law has predicted, computing power has been growing at a furious pace and shows no signs
of slowing down. It is relatively uncommon for any high end servers to contain only a single CPU. This
is achieved in a number of different fashions.

Symmetric Multi-Processing

Symmetric Multi-Processing, commonly shortene&kdP, is currently the most common configuration
for including multiple CPUs in a single system.

The symmetric term refers to the fact that all the CPUs in the system are the same (e.g. architecture, clock
speed). In a SMP system there are multiple processors that share other all other system resources (memory,
disk, etc).

Cache Coherency

For the most part, the CPUs in the system work independently; each has its own set of registers, program
counter, etc. Despite running separately, there is one component that requires strict synchronisation.

This is the CPU cache; remember the cache is a small area of quickly access able memory that mirrors
values stored in main system memory. If one CPU modifies data in main memory and another CPU has
an old copy of that memory in its cache the system will obviously not be in a consistent state. Note that

the problem only occurs when processors are writing to memory, since if a value is only read the data

will be consistent.

To co-ordinate keeping the cache coherent on all processors an SMP systenvopig Snooping is
where a processor listens on a bus which all processors are connected to for cache events, and updates
its cache accordingly.

46

Computer Architecture

One protocol for doing this is tHdOESI protocol; standing for Modified, Owner, Exclusive, Shared,
Invalid. Each of these is a state that a cache line can be in on a processor in the system. There are other
protocols for doing as much, however they all share similar concepts. Below we examine MOESI so you
have an idea of what the process entails.

When a processor requires reading a cache line from main memory, it firstly has to snoop all other
processors in the system to see if they currently know anything about that area of memory (e.g. have it
cached). If it does not exist in any other process, then the processor can load the memory into cache and
mark it asexclusive When it writes to the cache, it then changes state iodafied Here the specific

details of the cache come into play; some caches will immediately write back the modified cache to system
memory (known as warite-throughcache, because writes go through to main memory). Others will not,

and leave the modified value only in the cache until it is evicted, when the cache becomes full for example.

The other case is where the processor snoops and finds that the value is in another processors cache. If this
value has already been markedraxlified it will copy the data into its own cache and mark isleared

It will send a message for the other processor (that we got the data from) to mark its cactenlimex as

Now imagine that a third processor in the system wants to use that memory too. It will snoop and find both
asharedand aownercopy; it will thus take its value from tlwevnervalue. While all the other processors

are only reading the value, the cache line sthgsedin the system. However, when one processor needs

to update the value it sends iamalidate message through the system. Any processors with that cache
line must then mark it as invalid, because it not longer reflects the "true" value. When the processor sends
the invalidate message, it marks the cache limeadfiedin its cache and all others will markiasalid

(note that if the cache line éxclusivethe processor knows that no other processor is depending on it so
can avoid sending an invalidate message).

From this point the process starts all over. Thus whichever processor hasdified value has the
responsibility of writing the true value back to RAM when it is evicted from the cache. By thinking through
the protocol you can see that this ensures consistency of cache lines between processors.

There are several issues with this system as the number of processors starts to increase. With only a few
processors, the overhead of checking if another processor has the cache line (a read snoop) or invalidating
the data in every other processor (invalidate snoop) is manageable; but as the number of processors increase
so does the bus traffic. This is why SMP systems usually only scale up to around 8 processors.

Having the processors all on the same bus starts to present physical problems as well. Physical properties
of wires only allow them to be laid out at certain distances from each other and to only have certain lengths.
With processors that run at many gigahertz the speed of light starts to become a real consideration in how
long it takes messages to move around a system.

Note that system software usually has no part in this process, although programmers should be aware of
what the hardware is doing underneath in response to the programs they design to maximise performance.

Cache exclusivity in SMP systems

In the section called “Cache in depth” we describetlsivev exclusivecaches. In general, L1 caches are
usually inclusive — that is all data in the L1 cache also resides in the L2 cache. In a multiprocessor system,
an inclusive L1 cache means that only the L2 cache need snoop memory traffic to maintain coherency,
since any changes in L2 will be guaranteed to be reflected by L1. This reduces the complexity of the L1
and de-couples it from the snooping process allowing it to be faster.

Again, in general, most all modern high-end (e.g. not targeted at embedded) processors have a write-
through policy for the L1 cache, and a write-back policy for the lower level caches. There are several
reasons for this. Since in this class of processors L2 caches are almost exclusively on-chip and generally
quite fast the penalties from having L1 write-through are not the major consideration. Further, since L1
sizes are small, pools of written data unlikely to be read in the future could cause pollution of the limited

47

Computer Architecture

L1 resource. Additionally, a write-through L1 does not have to be concerned if it has outstanding dirty
data, hence can pass the extra coherency logic to the L2 (which, as we mentioned, already has a larger
part to play in cache coherency).

Hyperthreading

Much of the time of a modern processor is spent waiting for much slower devices in the memory hierarchy
to deliver data for processing.

Thus strategies to keep the pipeline of the processor full are paramount. One strategy is to include enough
registers and state logic such that two instruction streams can be processed at the same time. This makes
one CPU look for all intents and purposes like two CPUs.

While each CPU has its own registers, they still have to share the core logic, cache and input and output
bandwidth from the CPU to memory. So while two instruction streams can keep the core logic of the
processor busier, the performance increase will not be as great has having two physically separate CPUs.
Typically the performance improvement is below 20% (XXX check), however it can be drastically better

or worse depending on the workloads.

Multi Core

With increased ability to fit more and more transistors on a chip, it became possible to put two or more
processors in the same physical package. Most common is dual-core, where two processor cores are in
the same chip. These cores, unlike hyperthreading, are full processors and so appear as two physically
separate processors a la a SMP system.

While generally the processors have their own L1 cache, they do have to share the bus connecting to
main memory and other devices. Thus performance is not as great as a full SMP system, but considerably
better than a hyperthreading system (in fact, each core can still implement hyperthreading for an additional

enhancement).

Multi core processors also have some advantages not performance related. As we mentioned, external
physical busses between processors have physical limits; by containing the processors on the same piece
of silicon extremely close to each other some of these problems can be worked around. The power
requirements for multi core processors are much less than for two separate processors. This means that
there is less heat needing to be dissipated which can be a big advantage in data centre applications where
computers are packed together and cooling considerations can be considerable. By having the cores in the
same physical package it makes muti-processing practical in applications where it otherwise would not
be, such as laptops. It is also considerably cheaper to only have to produce one chip rather than two.

Clusters

Many applications require systems much larger than the number of processors a SMP system can scale to.
One way of scaling up the system further cduster.

A cluster is simply a number of individual computers which have some ability to talk to each other. At the
hardware level the systems have no knowledge of each other; the task of stitching the individual computers
together is left up to software.

Software such as MPI allow programmers to write their software and then "farm out" parts of the
program to other computers in the system. For example, image a loop that executes several thousand
times performing independent action (that is no iteration of the loop affects any other iteration). With four
computers in a cluster, the software could make each computer do 250 loops each.

48

Computer Architecture

The interconnect between the computers varies, and may be as slow as an internet link or as fast as
dedicated, special busses (Infiniband). Whatever the interconnect, however, it is still going to be further
down the memory hierarchy and much, much slower than RAM. Thus a cluster will not perform well in

a situation when each CPU requires access to data that may be stored in the RAM of another computer;
since each time this happens the software will need to request a copy of the data from the other computer,
copy across the slow link and into local RAM before the processor can get any work done.

However, many applicatiordo notrequire this constant copying around between computers. One large
scale example is SETI@Home, where data collected from a radio antenna is analysed for signs of Alien
life. Each computer can be distributed a few minutes of data to analyse, and only needs report back a
summary of what it found. SETI@Home is effectively a very large, dedicated cluster.

Another application is rendering of images, especially for special effects in films. Each computer can be
handed a single frame of the movie which contains the wire-frame models, textures and light sources which
needs to be combined (rendered) into the amazing special effects we now take for grained. Since each
frame is static, once the computer has the initial input it does not need any more communication until the
final frame is ready to be sent back and combined into the move. For example the block-buster Lord of
the Rings had their special effects rendered on a huge cluster running Linux.

Non-Uniform Memory Access

Non-Uniform Memory Access, more commonly abbreviated to NUMA, is almost the opposite of a cluster
system mentioned above. As in a cluster system it is made up of individual nodes linked together, however
the linkage between nodes is highly specialised (and expensive!). As opposed to a cluster system where
the hardware has no knowledge of the linkage between nodes, in a NUMA systftwiaeehas no

(well, less) knowledge about the layout of the system and the hardware does all the work to link the nodes
together.

The termnon uniform memory accessmes from the fact that RAM may not be local to the CPU and

so data may need to be accessed from a node some distance away. This obviously takes longer, and is in
contrast to a single processor or SMP system where RAM is directly attached and always takes a constant
(uniform) time to access.

NUMA Machine Layout

With so many nodes talking to each other in a system, minimising the distance between each node is of
paramount importance. Obviously it is best if every single node has a direct link to every other node as
this minimises the distance any one node needs to go to find data. This is not a practical situation when
the number of nodes starts growing into the hundreds and thousands as it does with large supercomputers;
if you remember your high school maths the problem is basically a combination taken two at a time (each
node talking to another), and will graw/2*(n-2)!

To combat this exponential growth alternative layouts are used to trade off the distance between nodes with
the interconnects required. One such layout common in modern NUMA architectures is the hypercube.

A hypercube has a strict mathematical definition (way beyond this discussion) but as a cube is a 3
dimensional counterpart of a square, so a hypercube is a 4 dimensional counterpart of a cube.

49

Computer Architecture

Figure 3.8. A Hypercube

An example of a hypercube. Hypercubes provide a good trade off between distance between nodes and
number of interconnections required.

Above we can see the outer cube contains four 8 nodes. The maximum number of paths required for any
node to talk to another node is 3. When another cube is placed inside this cube, we now have double the
number of processors but the maximum path cost has only increased to 4. This means as the number of
processors grow by'2he maximum path cost grows only linearly.

Cache Coherency

Cache coherency can still be maintained in a NUMA system (this is referred to as a cache-coherent NUMA
system, or ccNUMA). As we mentioned, the broadcast based scheme used to keep the processor caches
coherent in an SMP system does not scale to hundreds or even thousands of processors in a large NUMA
system. One common scheme for cache coherency in a NUMA system is referredireasty based

model In this model processors in the system communicate to special cache directory hardware. The
directory hardware maintains a consistent picture to each processor; this abstraction hides the working of
the NUMA system from the processor.

The Censier and Feautrier directory based scheme maintains a central directory where each memory block
has a flag bit known as thvalid bit for each processor and a sindigy bit. When a processor reads the
memory into its cache, the directory sets the valid bit for that processor.

50

Computer Architecture

When a processor wishes to write to the cache line the directory needs to set the dirty bit for the memory
block. This involves sending an invalidate message to those processors who are using the cache line (and
only those processors whose flag are set; avoiding broadcast traffic).

After this should any other processor try to read the memory block the directory will find the dirty bit
set. The directory will need to get the updated cache line from the processor with the valid bit currently
set, write the dirty data back to main memory and then provide that data back to the requesting processor,
setting the valid bit for the requesting processor in the process. Note that this is transparent to the requesting
processor and the directory may need to get that data from somewhere very close or somewhere very far
away.

Obviously having thousands of processors communicating to a single directory does also not scale well.
Extensions to the scheme involve having a hierarchy of directories that communicate between each other
using a separate protocol. The directories can use a more general purpose communications network to talk
between each other, rather than a CPU bus, allowing scaling to much larger systems.

NUMA Applications

NUMA systems are best suited to the types of problems that require much interaction between processor
and memory. For example, in weather simulations a common idiom is to divide the environment up into
small "boxes" which respond in different ways (oceans and land reflect or store different amounts of heat,
for example). As simulations are run, small variations will be fed in to see what the overall result is. As
each box influences the surrounding boxes (e.g. a bit more sun means a particular box puts out more
heat, affecting the boxes next to it) there will be much communication (contrast that with the individual
image frames for a rendering process, each of which does not influence the other). A similar process might
happen if you were modelling a car crash, where each small box of the simulated car folds in some way
and absorbs some amount of energy.

Although the software has no directly knowledge that the underlying system is a NUMA system,
programmers need to be careful when programming for the system to get maximum performance.
Obviously keeping memory close to the processor that is going to use it will result in the best performance.
Programmers need to use techniques sucprafling to analyse the code paths taken and what
consequences their code is causing for the system to extract best performance.

Memory ordering, locking and atomic operations

The multi-level cache, superscalar multi-processor architecture brings with it some insteresting issues
relating to how a programmer sees the processor running code.

Imagine program code is running on two processors simultaneously, both processors sharing effectively
one large area of memory. If one processor issues a store instruction, to put a register value into memory,
when can it be sure that the other processor does a load of that memory it will see the correct value?

In the simplest situation the system could guarantee that if a program executes a store instruction, any
subsequent load instructions will see this value. This is referredstimi@smemory orderingsince the

rules allow no room for movement. You should be starting to realise why this sort of thing is a serious
impediment to performance of the system.

Much of the time, the memory ordering is not required to be so strict. The programmer can identify points
where they need to be sure that all outstanding operations are seen globally, but in between these points
there may be many instructions where the semantics are not important.

Take, for example, the following situation.

51

Computer Architecture

Example 3.1. Memory Ordering

1
typedef struct {
int a;
int b;
5} a_struct;
/*
* Pass in a pointer to be allocated as a new structure
*/
10 void get_struct(a_struct *new_struct)
{

void *p = malloc(sizeof(a_struct));

/* We don't particularly care what order the following two
15 *instructions end up acutally executing in */

p->a = 100;

p->b = 150;

/* However, they must be done before this instruction.
20 * Otherwise, another processor who looks at the value of p
* could find it pointing into a structure whose values have
* not been filled out.
*/
new_struct = p;
25}

In this example, we have two stores that can be done in any particular order, as it suits the processor.
However, in the final case, the pointer must only be updated once the two previous stores are known to have
been done. Otherwise another processor might look at the vatydadiow the pointer to the memory,

load it, and get some completely incorrect value!

To indicate this, loads and stores have to temreanticghat describe what behaviour they must have.
Memory semantics are described in term$eotesthat dictate how loads and stores may be reordered
around the load or store.

By default, a load or store can be re-ordered anywhere.

Acquiresemantics is like a fence that only allows load and stores to move downwards through it. That is,
when this load or store is complete you can be gaurnteed that any later load or stores will see the value
(since they can not be moved above it).

Releasesemantics is the opposite, that is a fence that allows any load or stores to be done before it (move
upwards), but nothing before it to move downwards past it. Thus, when load or store with release semantics
is processed, you can be store that any earlier load or stores will have been complete.

52

Computer Architecture

Figure 3.9. Acquire and Release semantics

Load

Store

Load

Load

All later operations must be able to
Load see the result of this operation.

Store

Store

Load

Load

Load Release
All ealier operations must be complete

before this operation completes.

Store

Store

QValid Reordering Load
& Invalid Reordering Load

An illustration of valid reorderings around operations with acquire and release semantics.

A full memory fencés a combination of both; where no loads or stores can be reordered in any direction
around the current load or store.

The strictest memory model would use a full memory fence for every operation. The weakest model would
leave every load and store as a nhormal re-orderable instruction.

Processors and memory models
Different processors implement different memory models.
The x86 (and AMDG64) processor has a quite strict memory model; all stores have release semantics (that is,
the result of a store is guaranteed to be seen by any later load or store) but all loads have normal semantics.

lock prefix gives memory fence.

Itanium allows all load and stores to be normal, unless explicitly told. XXX

53

Computer Architecture

Locking

Knowing the memory ordering requirements of each architecture is no practical for all programmers, and
would make programs difficult to port and debug across different processor types.

Programmers use a higher level of abstraction chilgdngto allow simultaneous operation of programs
when there are multiple CPUs.

When a program acquires a lock over a piece of code, no other processor can obtain the lock until it is
released. Before any critical pieces of code, the processor must attempt to take the lock; if it can not have
it, it does not continue.

You can see how this is tied into the naming of the memory ordering semantics in the previous section.
We want to ensure that before aeqguirea lock, no operations that should be protected by the lock are
re-ordered before it. This is how acquire semantics works.

Conversly, when weeleasethe lock, we must be sure that every operation we have done whilst we held the
lock is complete (remember the example of updating the pointer previously?). This is release semantics.

There are many software libraries available that allow programmers to not have to worry about the details
of memory semantics and simply use the higher level of abstractiockgf andunlock()

Locking difficulties

Locking schemes make programming more complicated, as it is possil@adimckprograms. Imagine

if one processor is currently holding a lock over some data, and is currently waiting for a lock for some
other piece of data. If that other processor is waiting for the lock the first processor holds before unlocking
the second lock, we have a deadlock situation. Each processor is waiting for the other and neither can
continue without the others lock.

Often this situation arises because of a subktie conditionone of the hardest bugs to track down. If two
processors are relying on operations happening in a specific order in time, there is always the possiblity
of a race condition occuring. A gamma ray from an exploding star in a different galaxy might hit one of
the processors, making it skip a beat, throwing the ordering of operations out. What will often happen is a
deadlock situation like above. It is for this reason that program ordering needs to be ensured by semantics,
and not by relying on one time specific behaviours. (XXX not sure how i can better word that).

A similar situation is the oppostie of deadlock, calieelock One strategy to avoid deadlock might be to

have a "polite” lock; one that you give up to anyone who asks. This politeness might cause two threads to
be constantly giving each other the lock, without either ever taking the lock long enough to get the critical
work done and be finished with the lock (a similar situation in real life might be two people who meet at
a door at the same time, both saying "no, you first, | insist". Neither ends up going through the door!).

Locking strategies
Underneath, there are many different strategies for implementing the behaviour of locks.

A simple lock that simply has two states - locked or unlocked, is refered tmate(short for mutual
exclusion; that is if one person has it the other can not have it).

There are, however, a number of ways to implement a mutex lock. In the simplest case, we have what its
commonly called &pinlock With this type of lock, the processor sits in a tight loop waiting to take the
lock; equivalent to it saying "can | have it now" constanly much as a young child might ask of a parent.

The problem with this strategy is that it essentially wastes time. Whilst the processor is sitting constanly
asking for the lock, it is not doing any useful work. For locks that are likely to be only held locked for a

54

Computer Architecture

very short amount of time this may be appropriate, but in many cases the amount of time the lock is held
might be considerably longer.

Thus another strategy is $teepon a lock. In this case, if the processor can not have the lock it will start
doing some other work, waiting for notification that the lock is available for use (we see in future chapters
how the operating system can switch processes and give the processsor more work to do).

A mutex is however just a special case sémaphorgfamously invented by the Dutch computer scientist
Dijkstra. In a case where there are multiple resources available, a semaphore can be set to count accesses
to the resources. In the case where the number of resources is one, you have a mutex. The operation of
semaphores can be detailed in any agorithms book.

These locking schemes still have some problems however. In many cases, most people only want to read
data which is updated only rarely. Having all the processors wanting to only read data require taking a

lock can lead tdock contentiorwhere less work gets done because everyone is waiting to obtain the same
lock for some data.

Atomic Operations

Explain what it is.

55

Chapter 4. The Operating System

The role of the operating system

The operating system underpins the entire operation of the modern computer.

Abstraction of hardware

The fundamental operation of the operating system (OS) is to abstract the hardware to the programmer and
user. The operating system provides generic interfaces to services provided by the underlying hardware.

In a world without operating systems, every programmer would need to know the most intimate details
of the underlying hardware to get anything to run. Worse still, their programs would not run on other
hardware, even if that hardware has only slight differences.

Multitasking

We expect modern computers to do many different things at once, and we need some way to arbitrate
between all the different programs running on the system. It is the operating systems job to allow this to
happen seamlessly.

The operating system is responsible fesource managementithin the system. Many tasks will be
competing for the resources of the system as it runs, including processor time, memory, disk and user
input. The job of the operating system is to arbitrate these resources to the multiple tasks and allow them
access in an orderly fashion. You have probably experienced whdailthas it usually ends up with

your computer crashing (the famous "blue screen of death" for example).

Standardised Interfaces

Programmers want to write programs that will run on as many different hardware platforms as possible.
By having operating system support for standardised interfaces, programmers can get this functionality.

For example, if the function to open a file on one systepés() , on another ispen_file() and on
yet anotheppenf() programmers will have the dual problem of having to remember what each system
does and their programs will not work on multiple systems.

The Portable Operating System Interface (POéIQ()i very important standard implemented by UNIX
type operating systems. Microsoft Windows has similar proprietary standards.

The X comes fronunix, from which the standard grew. Today, POSIX is the same thing as the Single UNIX Specification Version 3 or ISO/
IEC 9945:2002. This is a free standard, available online.

Once upon a time, the Single UNIX specification and the POSIX Standards were separate entities. The Single UNIX specification was released
by a consortium called the "Open Group", and was freely available as per their requirements. The latest version is The Single Unix Specification
Version 3.

The IEEE POSIX standards were released as IEEE Std 1003.[insert various years, revisions here], and were not freely available. The latest version
is IEEE 1003.1-2001 and is equivalent to the Single Unix Specification Version 3.

Thus finally the two separate standards were merged into what is known as the Single UNIX Specification Version 3, which is also standardised
by the ISO under ISO/IEC 9945:2002. This happened early in 2002. So when people talk about POSIX, SUS3 or ISO/IEC 9945:2002 they all
mean the same thing!

56

The Operating System

Security

On multi-user systems, security is very important. As the arbitrator of access to the system the operating
system is responsible for ensuring that only those with the correct permissions can access resources.

For example if a file is owned by one user, another user should not be allowed to open and read it. However
there also need to be mechanisms to share that file safely between the users should they want it.

Operating systems are large and complex programs, and often security issues will be found. Often a virus
or worm will take advantage of these bugs to access resources it should not be allowed to, such as your
files or network connection; to fight them you must ingtalichesor updates provided by your operating
system vendor.

Performance

As the operating system provides so many services to the computer, it's performance is critical. Many parts
of the operating system run extremely frequently, so even an overhead of just a few processor cycles can
add up to a big decrease in overall system performance.

The operating system needs to exploit the features of the underlying hardware to make sure it is getting the
best possible performance for the operations, and consequently systems programmers need to understand
the intimate details of the architecture they are building for.

In many cases the systems programmers job is about deciding on policies for the system. Often the case
that the side effects of making one part of the operating system run faster will make another part run slower

or less efficiently. Systems programmers need to understand all these trade offs when they are building
their operating system.

Operating System Organisation

The operating system is roughly organised as in the figure below.

57

The Operating System

Figure 4.1. The Operating System

: Userspace !
: — — c !
! X~ ~ X 1
| [7)] (7] (7] 1
: © « © :
; [- - !
T AJ T
Kernel
4 4
Al
Drivers
4
y ,
Hardware

The organisation of the kernel. Processes the kernel is running ligerispaceand the kernel talks both
directly to hardware and throughivers

The Kernel

The kernelis the operating system. As the figure illustrates, the kernel communicates to hardware both
directly and throughrivers

Just as the kernel abstracts the hardware to user programs, drivers abstract hardware to the kernel. For
example there are many different types of graphic card, each one with slightly different features. As long
as the kernel exports an API, people who have access to the specifications for the hardware can write
drivers to implement that API. This way the kernel can access many different types of hardware.

The kernel is generally what we callpdvileged As you will learn, the hardware has important roles to
play in running multiple tasks and keeping the system secure, but these rules do not apply to the kernel. We
know that the kernel must handle programs that crash (remember it is the operating systems job arbitrate

58

The Operating System

between multiple programs running on the same system, and there is no guarantee that they will behave),
but if any internal part of the operating system crashes chances are the entire system will become useless.
Similarly security issues can be exploited by user processes to escalate themselves to the privilege level
of the kernel; at that point they can access any part of the system completely unchecked.

Monolithic v Microkernels

One debate that is often comes up surrounding operating systems is whether the kernel should be a
microkernelor monolithic

The monolithic approach is the most common, as taken by most common Unixes (such as Linux). In
this model the core privileged kernel is large, containing hardware drivers, file system accesses controls,
permissions checking and services such as Network File System (NFS).

Since the kernel is always privileged, if any part of it crashes the whole system has the potential to comes
to a halt. If one driver has a bug it can overwrite any memory in the system with no problems, ultimately
causing the system to crash.

A microkernel architecture tries to minimise this possibility by making the privileged part of the kernel as
small as possible. This means that most of the system runs as unprivileged programs, limiting the harm
that any one crashing component can influence. For example, drivers for hardware can run in separate
processes, so if one goes astray it can not overwrite any memory but that allocated to it.

Whilst this sounds like the most obvious idea, the problem comes back two main issues
1. Performance is decreased. Talking between many different components can decrease performance.
2. It is slightly more difficult for the programmer.

Both of these criticisms come because to keep separation between components most microkernels are
implemented with anessage passirzased system, commonly referred tnéer-process communication

or IPC. Communicating between individual components happens via discrete messages which must be
bundled up, sent to the other component, unbundled, operated upon, re-bundled up and sent back, and then
unbundled again to get the result.

This is a lot of steps for what might be a fairly simple request from a foreign component. Obviously one
request might make the other component do more requests of even more components, and the problem
can multiply. Slow message passing implementations were largely responsible for the poor performance
of early microkernel systems, and the concepts of passing messages are slightly harder for programmers
to program for. The enhanced protection from having components run separately was not sufficient to
overcome these hurdles in early microkernel systems, so they fell out of fashion.

In a monolithic kernel calls between components are simple function calls, as all programmers are familiar
with.

There is no definitive answer as to which is the best organisation, and it has started many arguments in
both academic and non-academic circles. Hopefully as you learn more about operating systems you will
be able to make up your own mind!

Modules

The Linux kernel implements a module system, where drivers can loaded into the running kernel "on the
fly" as they are required. This is good in that drivers, which make up a large part of operating system code,
are not loaded for devices that are not present in the system. Someone who wants to make the most generic
kernel possible (i.e. runs on lots of different hardware, such as RedHat or Debian) can include most drivers
as modules which are only loaded if the system it is running on has the hardware available.

59

The Operating System

However, the modules are loaded directly in the privileged kernel and operate at the same privilege level
as the rest of the kernel, so the system is still considered a monolithic kernel.

Virtualisation

Closely related to kernel is the concept of virtualisation of hardware. Modern computers are very powerful,
and often it is useful to not thing of them as one whole system but split a single physical computer up
into separate "virtual" machines. Each of these virtual machines looks for all intents and purposes as a
completely separate machine, although physically they are all in the same box, in the same place.

Figure 4.2. The Operating System

1s9N9
1s8N9

waishs Buiterado
1s9n9

o
k1
@
B
S
@
%)
<
@
@
3

waisAs Bunesado

waishs Bunesado
1s8N9

waishs Bunesado
1s8N9

waishs Bunesado

‘ Memory E:E ‘ ‘ CPUs H@ Disk ‘ ‘ Memory E

Virtual Machine Monitor

CPUs ‘ ‘ ﬁj Disk

Hypervisor

waisAs bunesado
1s0n9

waisAs Buneiado
1s8n9

Virtual Virtual

B

Hardware

Hardware

>
o
=
=
m
3
3

3
Application Application
A A

‘ Memory E ‘ ‘ CPUs ‘ ‘ ﬁj Disk ‘

Operating System

Some different virtualisation methods.

This can be organised in many different ways. In the simplest case, aiistmallmachine monitorcan

run directly on the hardware and provide an interface to the guest operating systems running on top. This
VMM is often often called a hypervisor (from the word "supervi@orl'r) fact, the operating system on

top may have no idea that the hypervisor is even there at all, as the hypervisor presents what appears to
be a complete system. It intercepts operations between the guest operating system and hardware and only
presents a subset of the system resources to each.

This is often used on large machines (with many CPUs and much RAM) to impleanétndning. This

means the machine can be split up into smaller virtual machines. Often you can allocate more resources
to running systems on the fly, as requirements dictate. The hypervisors on many large IBM machines are
actually quite complicated affairs, with many millions of lines of code. It provides a multitude of system
management services.

2In fact, the hypervisor shares much in common with a micro-kernel; both strive to be small layers to present the hardware in a safe fashion to
layers above it.

60

The Operating System

Another option is to have the operating system aware of the underlying hypervisor, and request system
resources through it. This is sometimes referred fmaeavirtualisationdue to it's halfway nature. This

is similar to the way early versions of the Xen system works and is a compromise solution. It hopefully
provides better performance since the operating system is explicitly asking for system resources from the
hypervisor when required, rather than the hypervisor having to work things out dynamically.

Finally, you may have a situation where an application running on top of the existing operating system
presents a virtualised system (including CPU, memory, BIOS, disk, etc) which a plain operating system
can run on. The application converts the requests to hardware through to the underlying hardware via the
existing operating system. This is similar to how VMWare works. This approach has many overheads,
as the application process has to emulate an entire system and convert everything to requests from the
underlying operating system. However, this lets you emulate an entirely different architecture all together,
as you can dynamically translate the instructions from one processor type to another (as the Rosetta system
does with Apple software which moved from the PowerPC processor to Intel based processors).

Performance is major concern when using any of these virtualisation techniques, as what was once fast
operations directly on hardware need to make their way through layers of abstraction.

Intel have discussed hardware support for virtualisation soon to be coming in their latest processors. These
extensions work by raising a special exception for operations that might require the intervention of a virtual
machine monitor. Thus the processor looks the same as a non-virtualised processor to the application
running on it, but when that application makes requests for resources that might be shared between other
guest operating systems the virtual machine monitor can be invoked.

This provides superior performance because the virtual machine monitor does not need to monitor every
operation to see if it is safe, but can wait until the processor notifies that sometbaighas happened.

Covert Channels

This is a digression, but an interesting security flaw relating to virtualised machines. If the partitioning of
the system is not static, but ratlignamic there is a potential security issue involved.

In a dynamic system, resources are allocated to the operating systems running on top as required. Thus
if one is doing particularly CPU intensive operations whilst the other is waiting on data to come from
disks, more of the CPU power will be given to the first task. In a static system, each would get 50% an
the unused portion would go to waste.

Dynamic allocation actually opens up a communications channel between the two operating systems.
Anywhere that two states can be indicated is sufficient to communicate in binary. Imagine both systems
are extremely secure, and no information should be able to pass between one and the other, ever. Two
people with access could collude to pass information between themselves by writing two programs that
try to take large amounts of resources at the same time.

When one takes a large amount of memory there is less available for the other. If both keep track of the
maximum allocations, a bit of information can be transferred. Say they make a pact to check every second
if they can allocate this large amount of memory. If the target can, that is considered binary 0, and if it can

not (the other machine has all the memory), that is considered binary 1. A data rate of one bit per second
is not astounding, but information is flowing.

This is called aovert channeland whilst admittedly far fetched there have been examples of security
breaches from such mechanisms. It just goes to show that the life of a systems programmer is never simple!

Userspace

We call the theoretical place where programs run by theussespaceEach program runs in userspace,
talking to the kernel througbystem call¢discussed below).

61

The Operating System

As previously discussed, userspaceriprivileged User programs can only do a limited range of things,
and should never be able to crash other programs, even if they crash themselves.

System Calls

Overview

System calls are how userspace programs interact with the kernel. The general principle behind how they
work is described below.

System call numbers

Each and every system call hagyatem call numbevhich is known by both the userspace and the kernel.
For example, both know that system call number bpén() , system call number 11isad() , etc.

The Application Binary Interfac€ABI) is very similar to an API but rather than being for software is for
hardware. The API will define which register the system call number should be put in so the kernel can
find it when it is asked to do the system call.

Arguments

System calls are no good without arguments; for exaog@a() needs to tell the kernel exactiatfile
to open. Once again the ABI will define which registers arguments should be put into for the system call.

The trap

To actually perform the system call, there needs to be some way to communicate to the kernel we wish
to make a system call. All architectures define an instruction, usually ba#lall or something similar,
that signals to the hardware we wish to make a system call.

Specifically, this instruction will tell the hardware to modify the instruction pointer to point to the kernels
system call handler (when the operating system sets its self up it tells the hardware where its system call
handler lives). So once the userspace calls the break instruction, it has lost control of the program and
passed it over to the kernel.

The rest of the operation is fairly straight forward. The kernel looks in the predefined register for the system
call number, and looks it up in a table to see which function it should call. This function is called, does what
it needs to do, and places it's return value amotherregister defined by the ABI as the return register.

The final step is for the kernel to make a jump instruction back to the userspace program, so it can continue
off where it left from. The userpsace program gets the data it needs from the return register, and continues
happily on it's way!

Although the details of the process can get quite hairy, this is basically all their is to a system call.
libc

Although you can do all of the above by hand for each system call, system libraries usually do most of the
work for you. The standard library that deals with system calls on UNIX like systdins is we will
learn more about it's roles in future weeks.

Analysing a system call

As the system libraries usually deal with making systems call for you, we need to do some low level
hacking to illustrate exactly how the system calls work.

62

The Operating System

We will illustrate how probably the most simple system agdpid() , works. This call takes no
arguments and returns the ID of the currently running program (or process; we'll look more at the process
in later weeks).

Example 4.1. getpid() example

1
#include <stdio.h>

[* for syscall() */
5 #include <sys/syscall.h>
#include <unistd.h>

/* system call numbers */

#include <asm/unistd.h>
10

void function(void)

{
int pid;

15 pid = __ syscall(__NR_getpid);
}

We start by writing a small C program which we can start to illustrate the mechanism behind system calls.
The first thing to note is that there isyscall argument provided by the system libraries for directly
making system calls. This provides an easy way for programmers to directly make systems calls without
having to know the exact assembly language routines for making the call on their hardware. So why do we
usegetpid() at all? Firstly, it is much clearer to use a symbolic function name in your code. However,
more importantlygetpid() may work in very different ways on different systems. For example, on
Linux thegetpid() call can be cached, so if it is run twice the system library will not take the penalty

of having to make an entire system call to find out the same information again.

By convention under Linux, system calls numbers are defined asthaunistd.h file from the kernel
source. Being in thasm subdirectory, this is different for each architecture Linux runs on. Again by
convention, system calls numbers are givédefine name consisting of NR_. Thus you can see our
code will be making thgetpid system call, storing the valuepid .

We will have a look at how several architectures implement this code under the hood. We're going to look
at real code, so things can get quite hairy. But stick with it -- tleisastlyhow your system works!

PowerPC

PowerPC is a RISC architecture common in older Apple computers, and the core of devices such as the
latest version of the Xbox.

Example 4.2. PowerPC system call example

1

/* On powerpc a system call basically clobbers the same registers like a
* function call, with the exception of LR (which is needed for the
5 *"sc; bnslr" sequence) and CR (where only CR0.SO is clobbered to signal

63

The Operating System

* an error return status).
*

#define __syscall_nr(nr, type, name, args...) \
10 unsigned long __sc_ret, __sc_err; \
{ \
register unsigned long __sc_ 0 __asm__ ("r0"); \
register unsigned long __sc_ 3 __asm__ ("r3"); \
register unsigned long __sc_ 4 __asm__ ("r4"); \
15 register unsignedlong __sc 5 __asm__ ("'r5"); \
register unsigned long __sc 6 __asm__ ("r6"); \
register unsigned long __sc_ 7 __asm__ ("r7"); \
\
__sc_loadargs_##nr(name, args); \
20 __asm___ volatile_ \
("sc \n\t" \
"mfcr %0 "\
("=&r" (__sc_0), \
"=&r" (__sc_3), "=&r (__sc_4), \
25 "=&r" (__sc_5), "=&r" (__sc_6), \
"=&r"(__sc_7) \
__Sc_asm_input_##nr \
:"crQ", "ctr”, "memory”, \
"rg8", "r9", "r10","r11", "r12"); \
30 _scret=_sc 3; \
_sc err=_sc 0; \

} \
if (__sc_err & 0x10000000) \
{ \

35 errno=_sc ret; \
_sc_ret=-1; \
} \

return (type) __sc_ret

40 #define __sc_loadargs_0(name, dummy...) \
__sc_0=__NR_##name
#define __sc_loadargs_1(name, argl) \
__sc_loadargs_0O(name); \
__sc_3 = (unsigned long) (argl)
45 #define __sc_loadargs_2(name, argl, arg2) \
__sc_loadargs_1(name, argl); \
__sc_4 = (unsigned long) (arg2)
#define __sc_loadargs_3(name, argl, arg2, arg3) \
__sc_loadargs_2(name, argl, arg2); \
50 __sc_5 = (unsigned long) (arg3)
#define __sc_loadargs_4(name, argl, arg2, arg3, arg4) \
__sc_loadargs_3(name, arg1, arg2, arg3); \
__sc_6 = (unsigned long) (arg4)
#define __sc_loadargs_5(name, argl, arg2, arg3, arg4, arg5) \
55 _ sc_loadargs_4(name, argl, arg2, arg3, arg4); \
__sc_7 = (unsigned long) (argb)

#define __sc_asm_input_0"0" (__sc_0)
#define __sc_asm_input_ 1 sc_asm_input_0, "1" (__sc_3)

64

The Operating System

60 #define __sc_asm_input_ 2 _sc_asm_input_1, "2" (__sc_4)
#define __sc_asm_input_3 __sc_asm_input_2, "3" (__sc_5)
#define __sc_asm_input_ 4 _ sc_asm_input_3, "4" (__sc_6)
#define __sc_asm_input 5 __sc_asm_input_4, "5" (__sc_7)

65 #define _syscallO(type,name) \
type name(void) \
{ \
__syscall_nr(0, type, name); \
}
70
#define _syscalll(type,name,typel,argl) \
type name(typel argl) \
{ \
__syscall_nr(1, type, name, argl); \
751}

#define _syscall2(type,name,typel,argl,type2,arg2) \
type name(typel argl, type2 arg2) \

{ \
80 _ syscall_nr(2, type, name, argl, arg2); \
}

#define _syscall3(type,name,typel,argl,type2,arg2,type3,arg3) \
type name(typel argl, type2 arg2, type3 arg3) \
85{ \
__syscall_nr(3, type, name, argl, arg2, arg3); \
}

#define _syscall4(type,name,typel,argl,type2,arg2,type3,arg3,typed,arg4) \
90 type name(typel argl, type2 arg2, type3 arg3, typed arg4) \

{ \

__syscall_nr(4, type, name, argl, arg2, arg3, arg4); \

}

95 #define _syscall5(type,name,typel,argl,type2,arg2,type3,arg3,typed,arg4,type5,arg5) \
type name(typel argl, type2 arg2, type3 arg3, type4 arg4, typeb arg5) \
{ \
__syscall_nr(5, type, name, arg1, arg2, arg3, arg4, arg5); \

}
100

This code snippet from the kernel headerd8en/unistd.h shows how we can implement system calls
on PowerPC. It looks very complicated, but it can be broken down step by step.

Firstly, jump to the end of the example where thgscallN macros are defined. You can see there

are many macros, each one taking progressively one more argument. We'll concentrate on the most
simple version, syscall0 to start with. It only takes two arguments, the return type of the system
call (e.g. a dnt orchar , etc) and the name of the system call. §etpid this would be done as
_syscall0(int,getpid)

Easy so far!l We now have to start pulling aparsyscall_nr macro. This is not dissimilar to where
we were before, we take the number of arguments as the first parameter, the type, name and then the actual
arguments.

65

The Operating System

The first step is declaring some names for registers. What this essentially does isssafls refers
tor0 (i.e. register 0). The compiler will usually use registers how it wants, so it is important we give it
constraints so that it doesn't decide to go using register we need in some ad-hoc manner.

We then calbc_loadargs with the interestingt# parameter. That is jusip@stecommand, which gets
replaced by thar variable. Thus for our example it expands tec_loadargs_0(name, args);
__sc_loadargs we can see below setssc_0 to be the system call number; notice the paste operator
again with the NR_ prefix we talked about, and the variable name that refers to a specific register.

So, all this tricky looking code actually does is puts the system call number in register 0! Following the
code through, we can see that the other macros will place the system call argumestshintaghr7
(you can only have a maximum of 5 arguments to your system call).

Now we are ready to tackle theasm__ section. What we have here is callelihe assemblypecause
it is assembler code mixed right in with source code. The exact syntax is a little to complicated to go into
right here, but we can point out the important parts.

Just ignore the volatile bit for now; it is telling the compiler that this code is unpredictable so

it shouldn't try and be clever with it. Again we'll start at the end and work backwards. All the stuff after
the colons is a way of communicating to the compiler about what the inline assembly is doing to the CPU
registers. The compiler needs to know so that it doesn't try using any of these registers in ways that might
cause a crash.

But the interesting part is the two assembly statements in the first argument. The one that does all the work
is thesc call. That's all you need to do to make your system call!

So what happens when this call is made? Well, the processor is interrupted knows to transfer control to a
specific piece of code setup at system boot time to handle interrupts. There are many interrupts; system
calls are just one. This code will then look in register 0 to find the system call number; it then looks up a
table and finds the right function to jump to to handle that system call. This function receives it's arguments
in registers 3 - 7.

So, what happens once the system call handler runs and completes? Control returns to the next instruction
after thesc, in this case amemory fencenstruction. What this essentially says is "make sure everything

is committed to memory"; remember how we talked about pipelines in the superscalar architecture? This
instruction ensures that everything we think has been written to memory actually has been, and isn't making
it's way through a pipeline somewhere.

Well, we're almost done! The only thing left is to return the value from the system call. We see that
__sc_ret issetfromr3and sc_err is setfrom rO. This is interesting; what are these two values
all about?

One is the return value, and one is the error value. Why do we need two variables? System calls can fall,
just as any other function. The problem is that a system call can return any possible value; we can not
say "a negative value indicates failure" since a negative value might be perfectly acceptable for some
particular system call.

So our system call function, before returning, ensures its result is in register r3 and any error code is in
register r0. We check the error code to see if the top bit is set; this would indicate a negative number. If
so, we set the globakrno value to it (this is the standard variable for getting error information on call
failure) and set the return to k. Of course, if a valid result is received we return it directly.

So our calling function should check the return value ishoff it is it can check errno to find the exact
reason why the call failed.

And that is an entire system call on a PowerPC!

66

The Operating System

x86 system calls

Below we have the same interface as implemented for the x86 processor.

Example 4.3. x86 system call example

1
[* user-visible error numbers are in the range -1 - -124: see <asm-i386/errno.h> */

#define __syscall_return(type, res) \
5do { \
if ((unsigned long)(res) >= (unsigned long)(-125)) {\
errno = -(res); \

res=-1; \
} \
10 return (type) (res); \
} while (0)

/* XXX - _foo needs to be __foo, while __NR_bar could be NR_bar. */
#define _syscallO(type,name) \
15 type name(void) \
{ \
long __res; \
__asm___volatile ("int $0x80" \

:"=a" (__res) \
20 :"0" (_NR_##name)); \
__syscall_return(type,__res);

}

#define _syscalll(type,name,typel,argl) \
25 type name(typel argl) \
{ \
long __res; \
__asm___volatile ("int $0x80" \
:"=a" (__res) \
30 :"0" (_NR_##name),"b" ((long)(argl))); \
__syscall_return(type,__res);

}

#define _syscall2(type,name,typel,argl,type2,arg2) \
35 type name(typel argl,type2 arg2) \

{ \
long __ res; \
__asm__ volatile ("int $0x80" \
:"=a" (__res) \
40 :"0" (_NR_##name),"b" ((long)(argl)),"c" ((long)(arg2))); \
__syscall_return(type,__res);
}

#define _syscall3(type,name,typel,argl,type2,arg2,type3,arg3) \
45 type name(typel argl,type2 arg2,type3 arg3) \

{ \

long __ res; \

__asm__ volatile ("int $0x80" \

67

The Operating System

:"=a" (__res) \
50 :"0" (_NR_##name),"b" ((long)(argl)),"c" ((long)(arg2)), \
"d" ((long)(arg3))); \
__syscall_return(type,__res); \

}

55 #define _syscall4(type,name,typel,argl,type2,arg2,type3,arg3,typed,args) \
type name (typel argl, type2 arg2, type3 arg3, type4 arg4) \

{ \

long __res; \

__asm___volatile ("int $0x80" \
60 :"=a" (__res) \

1 "0" (__NR_##name),"b" ((long)(argl)),"c" ((long)(arg2)), \
"d" ((long)(arg3)),"S" ((long)(arg4))); \
__syscall_return(type,__res); \
}
65
#define _syscall5(type,name,typel,argl,type2,arg2,type3,arg3,typed,arg4, \
typeb,arg5) \
type name (typel argl,type2 arg2,type3 arg3,type4 arg4,type5 arg5) \

{ \
70 long __res; \
__asm___volatile ("int $0x80" \
:"=a" (__res) \

:"0" (_NR_##name),"b" ((long)(argl)),"c" ((long)(arg2)), \
"d" ((long)(arg3)),"S" ((long)(arg4)),"D" ((long)(args))); \
75 __syscall_return(type,__res); \

}

#define _syscall6(type,name,typel,argl,type2,arg2,type3,arg3,typed,arg4, \
typeb,arg5,type6,arg6) \
80 type name (typel argl,type2 arg2,type3 arg3,typed arg4,type5 argb,type6 arg6) \
{ \

long __res; \
__asm___volatile ("push %%ebp ; movl %%eax,%%ebp ; movl %1,%%eax ; int $0x80 ; pop %%ebp" \
:"=a" (__res) \
85 "M (__NR_##name),"b" ((long)(argl)),"c" ((long)(arg2)), \

"d" ((long)(arg3)),"S" ((long)(arg4)),"D" ((long)(args)), \
"0" ((long)(arg6))); \
__syscall_return(type,__res); \

}
90

The x86 architecture is very different from the PowerPC that we looked at previously. The x86 is classed
as a CISC processor as opposed to the RISC PowerPC, and has dramatically less registers.

Start by looking at the most simplsyscall0 macro. It simply calls thet instruction with a value of
0x80 . This instruction makes the CPU raise interrupt 0x80, which will jump to code that handles system
calls in the kernel.

We can start inspecting how to pass arguments with the longer macros. Notice how the PowerPC
implementation cascaded macros downwards, adding one argument per time. This implementation has
slightly more copied code, but is a little easier to follow.

68

The Operating System

x86 register names are based around letters, rather than the numerical based register names of PowerPC.
We can see from the zero argument macro that onlj tiegister gets loaded; from this we can tell that

the system call number is expected in BAeXregister. As we start loading registers in the other macros

you can see the short names of the registers in the arguments tasne _ call.

We see something a little more interesting irsyscall6 , the macro taking 6 arguments. Notice the

push andpop instructions? These work with the stack on x86, "pushing" a value onto the top of the stack

in memory, and popping the value from the stack back into memory. Thus in the case of having six registers
we need to store the value of thigp register in memory, put our argument in in (thev instruction),

make our system call and then restore the original valuebygio Here you can see the disadvantage of

not having enough registers; stores to memory are expensive so the more you can avoid them, the better.

Another thing you might notice there is nothing like themory fencenstruction we saw previously with
the PowerPC. This is because on x86 the effect of all instructions will be guaranteed to be visible when
the complete. This is easier for the compiler (and programmer) to program for, but offers less flexibility.

The only thing left to contrast is the return value. On the PowerPC we had two registers with return values
from the kernel, one with the value and one with an error code. However on x86 we only have one return
value that is passed into syscall_return . That macro casts the return valuaitsigned long

and compares it to an (architecture and kernel dependent) range of negative values that might represent
error codes (note that therno value is positive, so the negative result from the kernel is negated).
However, this means that system calls can not return small negative values, since they are indistinguishable
from error codes. Some system calls that have this requirement, getpraarity() , add an offset

to their return value to force it to always be positive; it is up to the userspace to realise this and subtract
this constant value to get back to the "real" value.

Privileges

Hardware

We mentioned how one of the major tasks of the operating system is to implement security; that is to
not allow one application or user to interfere with any other that is running in the system. This means
applications should not be able to overwrite each others memory or files, and only access system resources
as dictated by system policy.

However, when an application is running it has exclusive use of the processor. We see how this works
when we examine processes in the next chapter. Ensuring the application only accesses memory it owns
is implemented by the virtual memory system, which we examine in the chapter after next. The essential
point is that the hardware is responsible for enforcing these rules.

The system call interface we have examined is the gateway to the application getting to system resources.
By forcing the application to request resources through a system call into the kernel, the kernel can enforce
rules about what sort of access can be provided. For example, when an application noglesg)an

system call to open a file on disk, it will check the permissions of the user against the file permissions
and allow or deny access.

Privilege Levels

Hardware protection can usually be seen as a set of concentric rings around a core set of operations.

69

The Operating System

Figure 4.3. Rings

Privilege levels on x86

In the inner most ring are the most protected instructions; those that only the kernel should be allowed
to call. For example, thidLT instruction to halt the processor should not be allowed to be run by a user
application, since it would stop the entire computer from working. However, the kernel needs to be able
to call this instruction when the computer is legitimately shut down.

Each inner ring can access any instructions protected by a further out ring, but not any protected by a
further in ring. Not all architectures have multiple levels of rings as above, but most will either provide
for at least a "kernel" and "user" level.

SWhat happens when a "naughty" application calls that instruction anyway? The hardware will usually raise an exception, which will involve
jumping to a specified handler in the operating system similar to the system call handler. The operating system will then probably terminate the
program, usually giving the user some error about how the application has crashed.

70

The Operating System

386 protection model

The 386 protection model has four rings, though most operating systems (such as Linux and Windows)
only use two of the rings to maintain compatibility with other architectures that do now allow as many
discrete protection levels.

386 maintains privileges by making each piece of application code running in the system have a small
descriptor, called @ode descriptgrwhich describes, amongst other things, its privilege level. When
running application code makes a jump into some other code outside the region described by its code
descriptor, the privilege level of the target is checked. If it is higher than the currently running code, the
jump is disallowed by the hardware (and the application will crash).

Raising Privilege

Applications may only raise their privilege level by specific calls that allow it, such as the instruction

to implement a system call. These are usually referred tccalh gate because they function just as a
physical gate; a small entry through an otherwise impenetrable wall. When that instruction is called we
have seen how the hardware completely stops the running application and hands control over to the kernel.
The kernel must act as a gatekeeper; ensuring that nothing nasty is coming through the gate. This means
it must check system call arguments carefully to make sure it will not be fooled into doing anything it
shouldn't (if it can be, that is a security bug). As the kernel runs in the innermost ring, it has permissions
to do any operation it wants; when it is finished it will return control back to the application which will
again be running with it's lower privilege level.

Fast System Calls

One problem with traps as described above is that they are very expensive for the processor to implement.
There is a lot of state to be saved before context can switch. Modern processors have realised this overhead
and strive to reduce it.

To understand the call-gate mechanism described above requires investigation of the ingenious but
complicated segmentation scheme used by the processor. The original reason for segmentation was to be
able to use more than the 16 bits available in a register for an address, as illustrated in Figure 4.4, “x86
Segmentation Adressing”.

71

The Operating System

Figure 4.4. x86 Segmentation Adressing

4 N\

4 bits
16 bits

SEGMENT ADDRESS 270

20 bits (1MiB)

[«— CS: 0x1000

[«— DS: 0x4000
| CODE

| DATA

64K (2716)

AN

| STACK

L CPU

<+<— SS: 0x10000

2720

64KiB Segments

Segmentation expanding the address space of a processor by dividing it into chunks. The processor keeps
special segment registers, and addresses are specified by a segment register and offset combination. The
value of the segment register is added to the offset portion to find a final address.

When x86 moved to 32 bit registers, the segmentation scheme remained but in a different format. Rather
than fixed segment sizes, segments are allowed to be any size. This means the processor needs to keep track
of all these different segments and their sizes, which it does degwgiptors The segment descriptors

available to everyone are kept in tilebal descriptor tabler GDT for short. Each process has a number

of registers which point to entries in the GDT; these are the segments the process can access (there are
alsolocal descriptor tables, and it all interacts with task state segments, but that's not important now). The
overall situation is illustrated in Figure 4.5, “x86 segments”.

72

The Operating System

Figure 4.5. x86 segments

4
l
Start : 0x1000
? Size : 0x1000
t; [
@ 8 Ring :0
°° T CODE
& ype :
—p»
i i
I I
I I
” ‘ |
I I
I I
I I
I I
I I
I I
1 i
I I
i i
I I
I I
I I
: :
Protection rings ensure outer Call gate invokes
. . . Target
rings can not see inner rings code at given offset
_ o Target Offset
8 8 Protection
<
Type : GATE N
“Far" call invokes a call gate
Start : 0x2000 which redirects to another segment
a Size : 0x1000
8 2 Ring :3
ing :
° g R
CODE & O Type : CODE
DATA Start : 0x3000
a Size : 0x1000
@
]
STACK § = Ring 13
a o =
Type : DATA w =
S5
s B
Start : 0x4000 <4 SR
o
a Size : 0x1000 s =
2% g g g
Registers, etc [<2:] Ring :3 o c
& 9 Type : STACK &3
— >
o
Start : 0x5000
a Size : 0x1000 Backing store for process
b 5 —> .
rocess © ¢ Ring :3 state on context switch
<] 9
e Type : TSS
! i
! i
! 1
! 1
! 1
! 1
! 1
! T
! T
! '
! T
! i
Global Descriptor Table

x86 segments in action. Notice how a "far-call" passes via a call-gate which redirects to a segment of
code running at a lower ring level. The only way to modify the code-segment selector, implicitly used

for all code addresses, is via the call mechanism. Thus the call-gate mechanism ensures that to choose a
new segment descriptor, and hence possibly change protection levels, you must transition via a known
entry point.

Since the operating system assigns the segment registers as part of the process state, the processor hardware
knows what segments of memory the currently running process can access and caprenéataanto

ensure the process doesn't touch anything it is not supposed to. If it does go out of bounds, you receive a
segmentation faulivhich most programmers are familiar with.

The picture becomes more interesting when running code needs to make calls into code that resides in
anothersegment. As discussed in the section called “386 protection model”, x86 does thimgsth

where ring 0 is the highest permission, ring 3 is the lowest, and inner rings can access outer rings but
not vice-versa.

As discussed in the section called “Raising Privilege”, when ring 3 code wants to jump into ring 0 code, it
is essentially modifying its code segment selector to point to a different segment. To do this, it must use a

73

The Operating System

specialfar-call instruction which hardware ensures passes through the call gate. There is no other way for
the running process to choose a new code-segment descriptor, and hence the processor will start executing
code at the known offset within the ring 0 segment, which is responsible for maintaining integrity (e.g. not
reading arbitrary and possibly malicious code and executing it. Of course nefarious attackers will always
look for ways to make your code do what you did not intend it to!).

This allows a whole hierarchy of segments and permissions between them. You might have noticed a cross
segment call sounds exactly like a system call. If you've ever looked at Linux x86 assembly the standard
way to make a system callirg Ox80 , which raises interrux80 . An interrupt stops the processor

and goes to an interrupt gate, which then works the same as a call gate -- it changes privilege level and
bounces you off to some other area of code .

The problem with this scheme is that islew. It takes a lot of effort to do all this checking, and many
registers need to be saved to get into the new code. And on the way back out, it all needs to be restored
again.

On a modern x86 system segmentation and the four-level ring system is not used thanks to virtual memory,
discussed fully in Chapter &/irtual Memory The only thing that really happens with segmentation
switching is system calls, which essentially switch from mode 3 (userspace) to mode 0 and jump to the
system call handler code inside the kernel. Thus the processor providdasbaystem calhstructions
calledsysenter (andsysexit to get back) which speed up the whole process ove¢i0a80 call

by removing the general nature of a far-call — that is the possibility of transitioning into any segment at
any ring level — and restricting the call to only transition to ring 0 code at a specific segment and offset,
as stored in registers.

Because the general nature has been replaced with so much prior-known information, the whole process
can be speed up, and hence we have a the aforemerfaghegstem callThe other thing to note is that

state is not preserved when the kernel gets control. The kernel has to be careful to not to destroy state,
but it also means it is free to only save as little state as is required to do the job, so can be much more
efficient about it. This is a very RISC philosophy, and illustrates how the line blurs between RISC and
CISC processors.

For more information on how this is implemented in the Linux kernel, see the section called “Kernel
Library”.

Other ways of communicating with the kernel

ioctl

about ioctls

File Systems

about proc, sysfs, debugfs, etc

74

Chapter 5. The Process

What is a process?

We are all familiar with the modern operating system running many tasks all at ona#itasking

We can think of each process as a bundle of elements kept by the kernel to keep track of all these running
tasks.

75

\

The Process

Elem:

PNLS

-
of a process
Files

\
-

Registers
-
-

Kernel State

76

The Process

Process ID

Theprocess ID(or the PID) is assigned by the operating system and is unique to each running process.

Memory

We will learn exactly how a process gets it's memory in the following weeks -- it is one of the most
fundamental parts of how the operating system works. However, for now it is sufficient to know that each
process gets it's own section of memory.

In this memory all the program code is stored, along with variables and any other allocated storage.

Parts of the memory can be shared between process (called, not surpsisargty memoly You will
often see this calle8ystem Five Shared Memdor SysV SHM) after the original implementation in an
older operating system.

Another important concept a process may utilise is thatnoépng a file on disk to memory. This means

that instead of having to open the file and use commands steddds andwrite() the file looks as

if it were any other type of RAMmmapedareas have permissions such as read, write and execute which
need to be kept track of. As we know, it is the job of the operating system to maintain security and stability,
so it needs to check if a process tries to write to a read only area and return an error.

Code and Data

A process can be further divided intodeanddata sections. Program code and data should be kept
separately since they require different permissions from the operating system and separation facilitates
sharing of code (as you see later). The operating system needs to give program code permission to be
read and executed, but generally not written to. On the other hand data (variables) require read and write
permissions but should not be executhble

The Stack

One other very important part of a process is an area of memory ttedlsthck This can be considered
part of the data section of a process, and is intimately involved in the execution of any program.

A stack is generic data structure that works exactly like a stack of plates; youstam item (put a plate
on top of a stack of plates), which then becomes the top item, or yqnopam item (take a plate off,
exposing the previous plate).

Stacks are fundamental to function calls. Each time a function is called it getstaoeWwame . This
is an area of memory which usually contains, at a minimum, the address to return to when complete, the
input arguments to the function and space for local variables.

By convention, stacks usualiyow dowr . This means that the stack starts at a high address in memory
and progressively gets lower.

INot all architectures support this, however. This has lead to a wide range of security problems on many architectures.
2Some architectures, such as PA-RISC from HP, have stacks that grow upwards. On some other architectures, such as 1A64, there are other storage
areas (the register backing store) that grow from the bottom toward the stack.

77

The Process

Figure 5.2. The Stack

....................................... l
High N -
Address return addr 7 -
® function1(int x, int y
g input (x) {
E . int z
° input (y) //z = function2(x+vy)
n /
local (z) /
y / int function2(int a)
return addr {
return a+ 100
v input (a) —~ }

We can see how having a stack brings about many of the features of functions.

Each function has its own copy of its input arguments. This is because each function is allocated a new
stack frame with its arguments in a fresh area of memory.

This is the reason why a variable defined inside a function can not be seen by other functions. Global
variables (which can be seen by any function) are kept in a separate area of data memory.

This facilitatesrecursivecalls. This means a function is free to call its self again, because a new stack
frame will be created for all its local variables.

Each frame contains the address to return to. C only allows a single value to be returned from a function,
so by convention this value is returned to the calling function in a specified register, rather than on the
stack.

Because each frame has a reference to the one before it, a debugger can "walk" backwards, following
the pointers up the stack. From this it can prodwstaek tracevhich shows you all functions that were
called leading into this function. This is extremely useful for debugging.

You can see how the way functions works fits exactly into the nature of a stack. Any function can call
any other function, which then becomes the up most function (put on top of the stack). Eventually that
function will return to the function that called it (takes itself off the stack).

Stacks do make calling functions slower, because values must be moved out of registers and into
memory. Some architectures allow arguments to be passed in registers directly; however to keep the
semantics that each function gets a unique copy of each argument the registestateust

You may have heard of the terrstack overflowThis is a common way of hacking a system by passing
bogus values. If you as a programmer accept arbitrary input into a stack variable (say, reading from the
keyboard or over the network) you need to explicitly say how big that data is going to be.

78

The Process

Allowing any amount of data unchecked will simply overwrite memory. Generally this leads to a crash,
but some people realised that if they overwrote just enough memory to place a specific value in the
return address part of the stack frame, when the function completed rather than returning to the correct
place (where it was called from) they could make it return into the data they just sent. If that data contains
binary executable code that hacks the system (e.g. starts a terminal for the user with root privileges)
then your computer has been compromised.

This happens because the stack grows downwards, but data is read in "upwards" (i.e. from lower address
to higher addresses).

There are several ways around this; firstly as a programmer you must ensure that you always check the
amount of data you are receiving into a variable. The operating system can help to avoid this on behalf
of the programmer by ensuring that the stack is markadtasxecutablethat is that the processor will

not run any code, even if a malicious user tries to pass some into your program. Modern architectures
and operating systems support this functionality.

 Stacks are ultimately managed by the compiler, as it is responsible for generating the program code. To
the operating system the stack just looks like any other area of memory for the process.

To keep track of the current growth of the stack, the hardware defines a registestaskiipointer The

compiler (or the programmer, when writing in assembler) uses this register to keep track of the current
top of the stack.

Example 5.1. Stack pointer example

1
$ cat sp.c
void function(void)
{
5 inti=100;
intj = 200;
int k = 300;
}
10 $ gcc -fomit-frame-pointer -S sp.c
$ cat sp.s
file "sp.c"
text

15 .globl function

.type function, @function
function:

subl $16, %esp
movl $100, 4(%esp)

20 movl $200, 8(%esp)
movl $300, 12(%esp)
addl $16, %esp

ret
.Size function, .-function

25 .ident "GCC: (GNU) 4.0.2 20050806 (prerelease) (Debian 4.0.1-4)"
.section .note.GNU-stack,™,@progbits

79

The Process

Above we show a simple function allocating three variables on the stack. The disassembly illustrates the
use of the stack pointer on the x86 archite@td?'ﬁrstly we allocate some space on the stack for our local
variables. Since the stack grows down, we subtract from the value held in the stack pointer. The value 16
is a value large enough to hold our local variables, but may not be exactly the size required (for example
with 3 4 byteint values we really only need 12 bytes, not 16) to keep alignment of the stack in memory
on certain boundaries as the compiler requires.

Then we move the values into the stack memory (and in a real function, use them). Finally, before returning
to our parent function we "pop" the values off the stack by moving the stack pointer back to where it was
before we started.

The Heap

The heap is an area of memory that is managed by the process for on the fly memory allocation. This is
for variables whose memory requirements are not known at compile time.

The bottom of the heap is known as bk, so called for the system call which modifies it. By using the
brk call to grow the area downwards the process can request the kernel allocate more memory for it to use.

The heap is most commonly managed byntladloc library call. This makes managing the heap easy for
the programmer by allowing them to simply allocate and free (vifxdbe call) heap memorymalloc

can use schemes likebaddy allocatorto manage the heap memory for the uswlloc can also be
smarter about allocation and potentially as@nymous mmager extra process memory. This is where
instead of mmaping file into the process memory it directly maps an area of system RAM. This can be
more efficient. Due to the complexity of managing memory correctly, it is very uncommon for any modern
program to have a reason to dak directly.

3Note we used the special flag to géemit-frame-pointer which specifies that an extra register shawtibe used to keep a pointer to
the start of the stack frame. Having this pointer helps debuggers to walk upwards through the stack frames, however it makes one less register
available for other applications.

80

The Process

brk

abew| weiboid \

o’

=

Shared Libraries

mmap area

Stack

Heap

malloc()

BSS

Data

y

Code

%

Process Memory

Memor)‘:_/l avolit

81

The Process

As we have seen a process has smaller areas of memory allocated to it, each with a specific purpose.

An example of how the process is laid out in memory by the kernel is given above. Starting from the top,
the kernel reserves its self some memory at the top of the process (we see with virtual memory how this
memory is actually shared between all processes).

Underneath that is room fonmapedfiles and libraries. Underneath that is the stack, and below that the
heap.

At the bottom is the program image, as loaded from the executable file on disk. We take a closer look at
the process of loading this data in later chapters.

File Descriptors

In the first week we learnt abostidin , stdout andstderr ; the default files given to each process.
You will remember that these files always have the same file descriptor number (0,1,2 respectively).

Thus, file descriptors are kept by the kernel individually for each process.

File descriptors also have permissions. For example, you may be able to read from a file but not write to
it. When the file is opened, the operating system keeps a record of the processes permissions to that file
in the file descriptor and doesn't allow the process to do anything it shouldn't.

Registers

We know from the previous chapter that the processor essentially performs generally simple operations
on values in registers. These values are read (and written) to memory -- we mentioned above that each
process is allocated memory which the kernel keeps track of.

So the other side of the equation is keeping track of the registers. When it comes time for the currently
running process to give up the processor so another process can run, it needs to save it's current state.
Equally, we need to be able to restore this state when the process is given more time to run on the CPU.
To do this the operating system needs to store a copy of the CPU registers to memory. When it is time for
the process to run again, the operating system will copy the register values back from memory to the CPU
registers and the process will be right back where it left off.

Kernel State

Internally, the kernel needs to keep track of a number of elements for each process.
Process State

Another important element for the operating system to keep track of is the process state. If the process is
currently running it makes sense to have it iaraing state.

However, if the process has requested to read a file from disk we know from our memory hierarchy that
this may take a significant amount of time. The process should give up it's current execution to allow
another process to run, but the kernel need not let the process run again until the data from the disk is
available in memory. Thus it can mark the procesfiskcswait(or similar) until the data is ready.

Priority

Some processes are more important than others, and get a higher priority. See the discussion on the
scheduler below.

82

The Process

Statistics

The kernel can keep statistics on each processes behaviour which can help it make decisions about how the
process behaves; for example does it mostly read from disk or does it mostly do CPU intensive operations?

Process Hierarchy

Whilst the operating system can run many processes at the same time, in fact it only ever directly starts
one process called thit (short for initial) process. This isn't a particularly special process except that
it's PID is always 0 and it willwaysbe running.

All other processes can be considecbddren of this initial process. Processes have a family tree just
like any other; each process hapagentand can have marsiblings which are processes creé‘tdny
the same parent.

Certainly children can create more children and so on and so forth.

Example 5.2. pstree example

1
init-+-apmd

|-atd
[-cron

5 ..
[-dhclient
|-firefox-bin-+-firefox-bin---2*[firefox-bin]
| |-java_vm---java_vm---13*[java_vm]
| -swf_play

10

Fork and Exec

New processes are created by the two related inteffiates andexec .

Fork

When you come to metaphorical "fork in the road" you generally have two options to take, and your
decision effects your future. Computer programs reach this fork in the road when theyfdrikghe
system call.

At this point, the operating system will create a new process that is exactly the same as the parent process.
This means all the state that was talked about previously is copied, including open files, register state and
all memory allocations, which includes the program code.

The return value from the system call is the only way the process can determine if it was the existing
process or a new one. The return value to the parent process will be the Process ID (PID) of the child,
whilst the child will get a return value of 0.

At this point, we say the process fiaked and we have the parent-child relationship as described above.

“The termspawnis often used when talking about parent processes creating children; as in "the process spawned a child".

83

The Process

Exec

Forking provides a way for an existing process to start a new one, but what about the case where the new
process is not part of the same program as parent process? This is the case in the shell; when a user starts
a command it needs to run in a new process, but it is unrelated to the shell.

This is where thexec system call comes into plagxec will replacethe contents of the currently
running process with the information from a program binary.

Thus the process the shell follows when launching a new program is to finstly, creating a new
process, and thezxec (i.e. load into memory and execute) the program binary it is supposed to run.

How Linux actually handles fork and exec

cl one

Threads

In the kernel, fork is actually implemented bglane system call. Thiglone interfaces effectively
provides a level of abstraction in how the Linux kernel can create processes.

clone allows you to explicitly specify which parts of the new process are copied into the new process,
and which parts are shared between the two processes. This may seem a bit strange at first, but allows us
to easily implementhreadswith one very simple interface.

Whilefork copies all of the attributes we mentioned above, imagine if everything was copied for the new
procesexceptfor the memory. This means the parent and child share the same memory, which includes

program code and data.

84

The Process

Figure 5.4. Threads

Process ID

Memory

J
Files }

Thread ID Thread ID

- ~ - ~

Registers Registers

Kernel State Kernel State

This hybrid child is called thread Threads have a number of advantages over where you mightkise

1. Separate processes can not see each others memory. They can only communicate with each other via
other system calls.

85

The Process

Threads however, share the same memory. So you have the advantage of multiple processes, with the
expense of having to use system calls to communicate between them.

The problem that this raises is that threads can very easily step on each others toes. One thread might
increment a variable, and another may decrease it without informing the first thread. These type of
problems are calledoncurrency problemand they are many and varied.

To help with this, there are userspace libraries that help programmers work with threads properly. The
most common one is call&®DSIX threads or, as it more commonly referredgthreads

2. Switching processes is quite expensive, and one of the major expenses is keeping track of what memory
each process is using. By sharing the memory this overhead is avoided and performance can be
significantly increased.

There are many different ways to implement threads. On the one hand, a userspace implementation could
implement threads within a process without the kernel having any idea about it. The threads all look like
they are running in a single process to the kernel.

This is suboptimal mainly because the kernel is being withheld information about what is running in the
system. It is the kernels job to make sure that the system resources are utilised in the best way possible, and
if what the kernel thinks is a single process is actually running multiple threads it may make suboptimal
decisions.

Thus the other method is that the kernel has full knowledge of the thread. Under Linux, this is established
by making all processes able to share resources vitothee system call. Each thread still has associated
kernel resources, so the kernel can take it into account when doing resource allocations.

Other operating systems have a hybrid method, where some threads can be specified to run in userspace
only ("hidden" from the kernel) and others might bliight weight processa similar indication to the
kernel that the processes is part of a thread group.

Copy on write

As we mentioned, copying the entire memory of one process to anotherfavkenis called is an
expensive operation.

One optimisation is callecbpy on write This means that similar to threads above, the memory is actually
shared, rather than copied, between the two processes when fork is called. If the processes are only going
to be reading the memory, then actually copying the data is unnecessary.

However, when a process writes to it's memory, it needs to be a private copy that is not shared. As the
name suggests, copy on write optimises this by only doing the actual copy of the memory at the point
when it is written to.

Copy on write also has a big advantagesfagc . Sinceexec will simply be overwriting all the memory
with the new program, actually copying the memory would waste a lot of time. Copy on write saves us
actually doing the copy.

The init process

We discussed the overall goal of the init process previously, and we are now in a position to understand
how it works.

On boot the kernel starts the init process, which then forks and execs the systems boot scripts. These fork
and exec more programs, eventually ending up forking a login process.

86

The Process

The other job of thait process is "reaping”. When a process @&ils with a return code, the parent
usually wants to check this code to see if the child exited correctly or not.

However, this exit code is part of the process which has just edied. So the process is "dead" (e.g.
not running) but still needs to stay around until the return code is collected. A process in this state is called
azombie(the traits of which you can contrast with a mystical zombie!)

A process stays as a zombie until the parent collects the return code withittheall. However, if the
parent exits before collecting this return code, the zombie process is still around, waiting aimlessly to give
it's status to someone.

In this case, the zombie child will beparentedo the init process which has a special handlendzats
the return value. Thus the process is finally free and can the descriptor can be removed from the kernels
process table.

Zombie example

Example 5.3. Zombie example process

1
$ cat zombie.c
#include <stdio.h>
#include <stdlib.h>
5
int main(void)
{
pid_t pid;

10 printf("parent : %d\n", getpid());

pid = fork();
if (pid == 0) {

15 printf(“child : %d\n", getpid());
sleep(2);
printf("child exit\n");
exit(1);

}
20
[* in parent */
while (1)
sleep(1);
25 }
}

ianw@lime:~$ ps ax | grep [z]Jombie
16168 pts/9 S 0:00 ./zombie
3016169 pts/9 Z 0:00 [zombie] <defunct>

Above we create a zombie process. The parent process will sleep forever, whilst the child will exit after
a few seconds.

87

The Process

Below the code you can see the results of running the program. The parent process (16168) & in state
for sleep (as we expect) and the child is in sfafier zombie. The ps output also tells us that the process
isdefunct in the process descriptién.

Context Switching

Context switching refers to the process the kernel undertakes to switch from one process to another. XXX ?

Scheduling

A running system has many processes, maybe even into the hundreds or thousands. The part of the kernel
that keeps track of all these processes is calleddedulebecause it schedules which process should
be run next.

Scheduling algorithms are many and varied. Most users have different goals relating to what they want
their computer to do, so this affects scheduling decisions. For example, for a desktop PC you want to
make sure that your graphical applications for your desktop are given plenty of time to run, even if system
processes take a little longer. This will increase the responsiveness the user feels, as their actions will have
more immediate responses. For a server, you might want your web server application to be given priority.

People are always coming up with new algorithms, and you can probably think of your own fairly easily.
But there are a number of different components of scheduling.

Preemptive v co-operative scheduling

Scheduling strategies can broadly fall into two categories

1. Co-operativescheduling is where the currently running process voluntarily gives up executing to allow
another process to run. The obvious disadvantage of this is that the process may decide to never give
up execution, probably because of a bug causing some form of infinite loop, and consequently nothing
else can ever run.

2. Preemptivescheduling is where the process is interrupted to stop it an allow another process to run.
Each process getdimesliceto run in; at the point of each context switch a timer will be reset and will
deliver and interrupt when the timeslice is over.

We know that the hardware handles the interrupt independently of the running process, and so at this
point control will return to the operating system. At this point, the scheduler can decide which process
to run next.

This is the type of scheduling used by all modern operating systems.

Realtime

Some processes heed to know exactly how long their timeslice will be, and how long it will be before they
get another timeslice to run. Say you have a system running a heart-lung machine; you don't want the next
pulse to be delayed because something else decided to run in the system!

Hard realtime systems make guarantees about scheduling decisions like the maximum amount of time a
process will be interrupted before it can run again. They are often used in life critical applications like
medical, aircraft and military applications.

SThe square brackets around the "z" of "zombie" are a little trick to remove the grep processes its self from the ps output. grep interprets everything
between the square brackets as a character class, but because the process name will be "grep [zZ]Jombie" (with the brackets) this will not match!

88

The Process

Soft realtime is a variation on this, where guarantees aren't as strict but general system behaviour is
predictable. Linux can be used like this, and it is often used in systems dealing with audio and video. If
you are recording an audio stream, you don't want to be interrupted for long periods of time as you will
loose audio data which can not be retrieved.

Nice value

UNIX systems assign each processcevalue. The scheduler looks at the nice value and can give priority
to those processes that have a higher "niceness".

A brief look at the Linux Scheduler

The Linux scheduler has and is constantly undergoing many changes as new developers attempt to improve
its behaviour.

The current scheduler is known as the O(1) scheduler, which refers to the property that no many how many
processes the scheduler has to choose from, it will choose the next one to run in a constant amdunt of time

Previous incarnations of the Linux scheduler used the concgpbdhess$o determine which process to

run next. All possible tasks are kept orua queuewhich is simply a linked list of processes which the

kernel knows are in a "runnable" state (i.e. not waiting on disk activity or otherwise asleep). The problem
arises that to calculate the next process to run, every possible runnable process must have its goodness
calculated and the one with the highest goodness ““wins". You can see that for more tasks, it will take
longer and longer to decide which processes will run next.

Figure 5.5. The O(1) scheduler

Highest Priority P | owest Priority
Process

In contrast, the O(1) scheduler uses a run queue structure as shown above. The run queue has a number of
bucketsn priority order and a bitmap that flags which buckets have processes available. Finding the next
process to run is a matter of reading the bitmap to find the first bucket with processes, then picking the
first process off that bucket's queue. The scheduler keeps two such structaotiseamdexpiredarray

for processes that are runnable and those which have utilised their entire time slice respectively. These can
be swapped by simply modifying pointers when all processes have had some CPU time.

The really interesting part, however, is how it is decided where in the run queue a process should go. Some
of the things that need to be taken into account are the nice level, processor affinity (keeping processes
tied to the processor they are running on, since moving a process to another CPU in a SMP system can

6Big—O notation is a way of describing how long an algorithm takes to run given increasing inputs. If the algorithm takes twice as long to run for
twice as much input, this is increasing linearly. If another algorithm takes four times as long to run given twice as much input, then it is increasing
exponentially. Finally if it takes the same amount of time now matter how much input, then the algorithm runs in constant time. Intuitively you can
see that the slower the algorithm grows for more input, the better it is. Computer science text books deal with algorithm analysis in more detail.

89

The Process

be an expensive operation) and better support for identifying interactive programs (applications such as
a GUI which may spend much time sleeping, waiting for user input, but when thdoesget around
to interacting with it wants a fast response).

The Shell

On a UNIX system, the shell is the standard interface to handling processes on your system. Once the
shell was the primary interface, however modern Linux systems have a GUI and provide a shell via a
"terminal application” or similar. The primary job of the shell is to help the user handle starting, stopping
and otherwise controlling processes running in the system.

When you type a command at the prompt of the shell, itfaik a copy of it's self anédxec the
command that you have specified.

The shell then, by default, waits for that process to finish running before returning to a prompt to start
the whole process over again.

As an enhancement, the shell also allows yobaitkgrounda job, usually by placing a& after the
command name. This is simply a signal that the shell should fork and execute the comnaotdyditit
for the command to complete before showing you the prompt again.

The new process runs in the background, and the shell is ready waiting to start a new process should you
desire. You can usually tell the shellfavegrounda process, which means we do actually want to wait
for it to finish.

XXX : a bit of history about bourne shell

Signals

Processes running in the system require a way to be told about events that influence them. On UNIX
there is infrastructure between the kernel and processes sigitedswhich allows a process to receive
notification about events important to it.

When a signal is sent to a process, the kernel invokasa@derwhich the process must register with the
kernel to deal with that signal. A handler is simply a designed function in the code that has been written to
specifically deal with interrupt. Often the signal will be sent from inside the kernel its self, however it is
also common for one process to send a signal to another process (onerfiterprafcess communicatipn

The signal handler gets calladynchronoustythat is the currently running program is interrupted from
what it is doing to process the signal event.

For example, one type of signal isiaterrupt (defined in system headers@ISINT) is delivered to the
process when thetrl-c ~ combination is pressed.

As a process uses thead system call to read input from the keyboard, the kernel will be watching the
input stream looking for special characters. Should it se&@ it will jump into signal handling mode.

The kernel will look to see if the process has registered a handler for this interrupt. If it has, then execution
will be passed to that function where the function hahdleit. Should the process have not registered a
handler for this particular signal, then the kernel will take some default actionciith the default

action is to terminate the process.

A process can choose to ignore some signals, but other signals are not allowed to be ignored. For example,
SIGKILL is the signal sent when a process should be terminated. The kernel will see that the process has
been sent this signal and terminate the process from running, no questions asked. The process can not ask
the kernel to ignore this signal, and the kernel is very careful about which process is allowed to send this

90

The Process

signal to another process; you may only send it to processes owned by you unless you are the root user.
You may have seen the commaiidi-9 ; this comes from the implementati8HGKILL signal. It is
commonly known thaBIGKILL is actually defined to b@x9, and so when specified as an argument to
thekill program means that the process specified is going to be stopped immediately. Since the process
can not choose to ignore or handle this signal, it is seen as an avenue of last resort, since the program will
have no chance to clean up or exit cleanly. It is considered better to first SEBEERM(for terminate)

to the process first, and if it has crashed or otherwise will not exit then resorSIGKEL . As a matter

of convention, most programs will install a handler$6&HUP (hangup -- a left over from days of serial
terminals and modems) which will reload the program, perhaps to pick up changes in a configuration file
or similar.

If you have programmed on a Unix system you would be familiarseigmentation faults when

you try to read or write to memory that has not been allocated to you. When the kernel notices that you
are touching memory outside your allocation, it will send you the segmentation fault signal. Usually the
process will not have a handler installed for this, and so the default action to terminate the program ensues
(hence your program “"crashes"). In some cases a program may install a handler for segmentation faults,
although reasons for doing this are limited.

This raises the question of what happens after the signal is received. Once the signal handler has finished
running, control is returned to the process which continues on from where it left off.

Example
The following simple program introduces a lot of signals to run!

Example 5.4. Signals Example

1
$ cat signal.c
#include <stdio.h>
#include <unistd.h>
5 #include <signal.h>

void sigint_handler(int signum)

{

10}

printf("got SIGINT\n");

int main(void)

{
signal(SIGINT, sigint_handler);
15 printf("pid is %d\n", getpid());
while (1)
sleep(1);
}
$ gcc -Wall -o signal signal.c
20 $./signal
pid is 2859
got SIGINT # press ctrl-c
press ctrl-z
[1]+ Stopped Jsignal
25
$ kill -SIGINT 2859
$fg

91

The Process

Jsignal
got SIGINT
30 Quit # press ctrl-\

$

We have simple program that simply defines a handler foBIB&NT signal, which is sent when the
user pressestrl-c . All the signals for the system are definedsignal.h , including thesignal
function which allows us to register the handling function.

The program simply sits in a tight loop doing nothing until it quits. When we start the program, we try
pressingctrl-c - to make it quit. Rather than taking the default action, or handler is invoked and we get
the output as expected.

We then presstrl-z which sends &IGSTOPwhich by default puts the process to sleep. This means
it is not put in the queue for the scheduler to run and is thus dormant in the system.

As an illustration, we use the kill program to send the same signal from another terminal window. This is
actually implemented with thigll system call, which takes a signal and PID to send to (this function

is a little misnamed because not all signals do actually kill the process, as we are seeingignalthe
function was already taken to register the handler). As the process is stopped, the sigonaugefer

the process. This means the kernel takes note of the signal and will deliver it when appropriate.

At this point we wake the process up by using the comrgandhis actually sends®IGCONTsignal to
the process, which by default will wake the process back up. The kernel knows to put the process on the
run queue and give it CPU time again. We see at this point the queued signal is delivered.

In desperation to get rid of the program, we finallydiny-\ which sends 8IGABRT (abort) to the
process. But if the process has aborted, where diQulte output come from?

You guessed it, more signals! When a parent child has a process that dies, 8 G&siaDsignal back.

In this case the shell was the parent process and so it got the signal. Remember how we have the zombie
process that needs to be reaped withwith2 call to get the return code from the child process? Well
another thing it also gives the parent is the signal number that the child may have died from. Thus the
shell knows that child process died fror8I&ABRTand as an informational service prints as much for

the user (the same process happens to print out "Segmentation Fault" when the child process dies from
aSIGSEGV,.

You can see how in even a simple program, around 5 different signals were used to communicate between
processes and the kernel and keep things running. There are many other signals, but these are certainly
amongst the most common. Most have system functions defined by the kernel, but there are a few signals
reserved for users to use for their own purposes within their prog8si@86R).

92

Chapter 6. Virtual Memory
What Virtual Memory isn't

Virtual memory is often naively discussed as a way to extended your RAM by using the hard drive as
extra, slower, system memory. That is, once your system runs out of memory, it flows over onto the hard
drive which is used as "virtual" memory.

In modern operating systems, this is commonly referredswag spaceébecause unused parts of memory
as swapped out to disk to free up main memory (remember, programs can only execute from main
memory).

Indeed, the ability to swap out memory to disk is an important capability, but as you will see it is not the
purpose of virtual memory, but rather a very useful side effect!

What virtual memory is

Virtual memory is all about making useaddress space

The address space of a processor refers the range of possible addresses that it can use when loading and
storing to memory. The address space is limited by the width of the registers, since as we know to load an
address we need to issuead instruction with the address to load from stored in a register. For example,
registers that are 32 bits wide can hold addresses in a register ran@e@@000000 to OxFFFFFFF.

2"32s equal to 4GB, so a 32 bit processor can load or store to up to 4GB of memory.

64 bit computing

New processors are generally all 64-bit processors, which as the name suggests has registers 64 bits wide.
As an exercise, you should work out the address space available to these processors (hint: it's big!).

64-bit computing does have some trade-offs against using smaller bit-width processors. Every program

compiled in 64-bit mode requires 8-byte pointers, which can increase code and data size, and hence impact
both instruction and data cache performance. However, 64-bit processers tend to have more registers,
which means less need to save temporary variables to memory when the compiler is under register pressure.

Canonical Addresses

While 64-bit processors have 64-bit wide registers, systems generally do not implement all 64-bits for
addressing — it is not actually possible toload or store to all 16 exabytes of theoretical physical
memory!

Thus most architectures define ammplementedegion of the address space which the processor will
consider invalid for use. x86-64 and Itanium both define the most-significant valid bit of an address, which
must then be sign-extended (see the section called “Sign-extension”) to create a valid address. The result
of this is that the total address space is effectively divided into two parts, an upper and a lower portion, with
the addresses in-between considered invalid. This is illustrated in Figure 6.1, “lllustration of canonical
addresses”. Valid addresses are tero@mtbnical addresse#valid addresses beimpncanonical).

93

Virtual Memory

Figure 6.1. lllustration of canonical addresses

Full address

Implementations define the most significant
‘ implemented bit, which must be
sign-extended to create a full address

Unimplemented bits Most significant implemented bit

1111111... 1 ‘

UPPER

This has the effect of partitioning
the total address space into an
upper and lower portion, with

addresses inbetween considered
invalid

@oeds ssaippe [e10L

LOWER

0000000... 0

?

All higher bits must be the same as this bit

The exact most-significant bit value for the processor can usually be found by querying the processor itself
using its informational instructions. Although the exact value is implementation dependent, a typical value
would be 48; providing4§ = 256 TiB of usable address-space.

Reducing the possible address-space like this means that significant savings can be made with all parts
of the addressing logic in the processor and related components, as they know they will not need to deal
with full 64-bit addresses. Since the implementation defines the upper-bits as being signed-extended, this
prevents portable operating systems using these bits to store or flag additional information and ensuring
compatibility if the implementation wishes to implement more address-space in the future.

Using the address space

As with most components of the operating system, virtual memory acts as an abstraction between the
address space and the physical memory available in the system. This means that when a program uses an
address that address does not refer to the bits in an actual physical location in memory.

So to this end, we say that all addresses a program usegwak The operating system keeps track of
virtual addresses and how they are allocatgzhigicaladdresses. When a program does a load or store
from an address, the processor and operating system work together to convert this virtual address to the
actual address in the system memory chips.

Pages

The total address-space is divided into indivicheajes Pages can be many different sizes; generally they
are around 4 KiB, but this is not a hard and fast rule and they can be much larger but generally not any
smaller. The page is the smallest unit of memory that the operating system and hardware can deal with.

Additionally, each page has a number of attributes set by the operating system. Generally, these include
read, write and execute permissions for the current page. For example, the operating system can generally
mark the code pages of a process with an executable flag and the processor can choose to not execute any
code from pages without this bit set.

94

Virtual Memory

Figure 6.2. Virtual memory pages

Page

Page

Virtual Address Space

Page

Page

Programmers may at this point be thinking that they can easily allocate small amounts of memory, much
smaller than 4 KiB, usingralloc or similar calls. Thisveapmemory is actually backed by page-size
allocations, which thenalloc implementation divides up and manages for you in an efficient manner.

Physical Memory

Just as the operating system divides the possible address space up into pages, it divides the available
physical memory up inttrames A frame is just the conventional name for a hunk of physical memory
the same size as the system page size.

The operating system keepframe-tablewhich is a list of all possible pages of physical memory and if
they are free (available for allocation) or not. When memory is allocated to a process, it is marked as used
in the frame-table. In this way, the operating-system keeps track of all memory allocations.

How does the operating system know what memory is available? This information about where memory
is located, how much, attributes and so forth is passed to the operating system by the BIOS during
initialisation.

Pages + Frames = Page Tables

It is the job of the operating system is to keep track of which of virtual-page points to which physical
frame. This information is kept ingage-tablewhich, in its simplest form, could simply be a table where

each row contains its associated frame — this is terrfieda page-tablelf you were to use this simple

system, with a 32 bit address-space and 4 KiB pages there would be 1048576 possible pages to keep track
of in the page table f§+ 4096); hence the table would be 1048576 entries long to ensure we can always
map a virtual page to a physical page.

Page tables can have many different structures and are highly optimised, as the process of finding a page
in the page table can be a lengthly process. We will examine page-tables in more depth later.

The page-table for a process is under the exclusive control of the operating system. When a process requests
memory, the operating system finds it a free page of physical memory and records the virtual-to-physical
translation in the processes page-table. Conversely, when the process gives up memory, the virtual-to-
physical record is removed and the underlying frame becomes free for allocation to another process.

Virtual Addresses

When a program accesses memory, it does not know or care where the physical memory backing the
address is stored. It knows it is up to the operating system and hardware to work together to map locate the

95

Virtual Memory

right physical address and thus provide access to the data it wants. Thus we term the address a program is
using to access memoryatual addressA virtual address consists of two parts; the page and an offset
into that page.

Page

Since the entire possible address space is divided up into regular sized pages, every possible address resides
within a page. The page component of the virtual address acts as an index into the page table. Since the
page is the smallest unit of memory allocation within the system there is a trade-off between making pages
very small, and thus having very many pages for the operating-system to manage, and making pages larger
but potentially wasting memory

Offset

The last bits of the virtual address are calledaffi@etwhich is the location difference between the byte
address you want and the start of the page. You require enough bits in the offset to be able to get to any byte
in the page. For a 4K page you require (4K == (4 * 1024) == 40961%3 12 bits of offset. Remember

that the smallest amount of memory that the operating system or hardware deals with is a page, so each of
these 4096 bytes reside within a single page and are dealt with as "one".

Virtual Address Translation

Virtual address translation refers to the process of finding out which physical page maps to which virtual
page.

When translating a virtual-address to a physical-address we only deal widgghaumber The essence

of the procedure is to take the page number of the given address and look it upaigettiableto find

a pointer to a physical address, to which the offset from the virtual address is added, giving the actual
location in system memory.

Since the page-tables are under the control of the operating system, if the virtual-address doesn't exist in
the page-table then the operating-system knows the process is trying to access memory that has not been
allocated to it and the access will not be allowed.

96

Virtual Memory

Figure 6.3. Virtual Address Translation

1
Virtual Address I e S
! O] :
'l I
= ho|o
Page Pointer Offset | g Bl
1 O m} N
! O] |
vl g 0|
' O] !
| g] :
1 O] h
: O m] |
Page Table | !
il AR ! ! ; 0x10001000
1
1 | | :
: Page Physical Page Number : : I
1
1 1 1
. X | | g
! Page Physical Page Number ! ! 5
| | ! n
1 1 T : g
1 1 I
1 1 1 "o
1 1 1 !
1 | h 1
1 1 1 !
1 1 1 :
: Page Physical Page Number : 1 0x10000000
1
| | = =
"""""""""""""""""""""" | g gl
1 O] h
! O] |
= oo
\ O] !
| g Bl
! O] .
: O] 1
| O] 1
\ O] !
| g Pl
! 1
! 1

Physical Page Frames
(System Memory)

We can follow this through for our previous example of a sirfipkar page-table. We calculated that

a 32-bit address-space would require a table of 1048576 entries when using 4KiB pages. Thus to map
a theoretical address of 0x80001234, the first step would be to remove the offset bits. In this case, with
4KiB pages, we know we have 12-bit§2(2: 4096) of offset. So we would right-shift out 12-bits of the
virtual address, leaving us with 0x80001. Thus (in decimal) the value in row 524289 of the linear page
table would be the physical frame corresponding to this page.

You might see a problem with a linear page-table : since every page must be accounted for, whether in use
or not, a physically linear page-table is completely impractical with a 64-bit address space. Consider a 64-
bit address space divided into (generously large) 64 KiB pages criiml2 2 ages to be managed,;

assuming each page requires an 8-byte pointer to a physical location a totet’of 2*° or 512 GiB of
contiguous memory is required just for the page table!

Consequences of virtual addresses, pages and
page tables

Virtual addressing, pages and page-tables are the basis of every modern operating system. It under-pins
most of the things we use our systems for.

Individual address spaces

By giving each process its own page table, every process can pretend that it has access to the entire address
space available from the processor. It doesn't matter that two processes might use the same address, since

97

Virtual Memory

different page-tables for each process will map it to a different frame of physical memory. Every modern
operating system provides each process with its own address space like this.

Over time, physical memory becomieagmented meaning that there are "holes" of free space in the
physical memory. Having to work around these holes would be at best annoying and would become a
serious limit to programmers. For example, if yoalloc 8 KiB of memory; requiring the backing of two

4 KiB frames, it would be a huge inconvience if those frames had to be contiguous (i.e., physically next to
each other). Using virutal-addresses it does not matter; as far as the process is concerned it has 8 KiB of
contiguous memory, even if those pages are backed by frames very far apart. By assigning a virtual address
space to each process the programmer can leave working around fragmentation up to the operating system.

Protection

Swap

mmap

We previously mentioned that the virtual mode of the 386 processor is called protected mode, and this
name arises from the protection that virtual memory can offer to processes running on it.

In a system without virtual memory, every process has complete access to all of system memory. This

means that there is nothing stopping one process from overwriting another processes memory, causing
it to crash (or perhaps worse, return incorrect values, especially if that program is managing your bank

account!)

This level of protection is provided because the operating system is now the layer of abstraction between
the process and memory access. If a process gives a virtual address that is not covered by its page-table,
then the operating system knows that that process is doing something wrong and can inform the process
it has stepped out of its bounds.

Since each page has extra attributes, a page can be set read only, write only or have any number of other
interesting properties. When the process tries to access the page, the operating system can check if it has
sufficient permissions and stop it if it does not (writing to a read only page, for example).

Systems that use virtual memory are inherently more stable because, assuming the perfect operating
system, a process can only crash itself and not the entire system (of course, humans write operating systems
and we inevitably overlook bugs that can still cause entire systems to crash).

We can also now see how the swap memory is implemented. If instead of pointing to an area of system
memory the page pointer can be changed to point to a location on a disk.

When this page is referenced, the operating system needs to move it from the disk back into system memory
(remember, program code can only execute from system memory). If system memory is fatipthen

page needs to be kicked out of system memory and put into the swap disk before the required page can be
put in memory. If another process wants that page that was just kicked out back again, the process repeats.

This can be a major issue for swap memory. Loading from the hard disk is very slow (compared to
operations done in memory) and most people will be familiar with sitting in front of the computer whilst
the hard disk churns and churns whilst the system remains unresponsive.

A different but related process is the memory mapnarap(from the system call name). If instead of
the page table pointing to physical memory or swap the page table points to a file, on disk, we say the
file is mmayed.

Normally, you need topen a file on disk to obtain a file descriptor, and thead andwrite itin a
sequential form. When a file is mmaped it can be accessed just like system RAM.

98

Virtual Memory

Sharing memory

Usually, each process gets its own page table, so any address it uses is mapped to a unique frame in physical
memory. But what if the operating system points two page table-entries to the same frame? This means
that this frame will be shared; and any changes that one process makes will be visible to the other.

wn

You can see now how threads are implemented. In the section cdtfee “” we said that the Linux

clone() function could share as much or as little of a new process with the old process as it required. If
a process callslone() to create a new process, but requests that the two processes share the same page
table, then you effectively havalaeadas both processes see the same underlying physical memory.

You can also see now how copy on write is done. If you set the permissions of a page to be read-only,
when a process tries to write to the page the operating system will be notified. If it knows that this page is
a copy-on-write page, then it needs to make a new copy of the page in system memory and point the page
in the page table to this new page. This can then have its attributes updated to have write permissions and
the process has its own unique copy of the page.

Disk Cache

In a modern system, it is often the case that rather than having too little memory and having to swap
memory out, there is more memory available than the system is currently using.

The memory hierarchy tells us that disk access is much slower than memory access, so it makes sense to
move as much data from disk into system memory if possible.

Linux, and many other systems, will copy data from files on disk into memory when they are used. Even
if a program only initially requests a small part of the file, it is highly likely that as it continues processing
it will want to access the rest of file. When the operating system has to read or write to a file, it first checks
if the file is in it's memory cache.

These pages should be the first to be removed as memory pressure in the system increases.

Page Cache

A term you might hear when discussing the kernel ip#ue cache

Thepage cacheefers to a list of pages the kernel keeps that refer to files on disk. From above, swap page,
mmaped pages and disk cache pages all fall into this category. The kernel keeps this list because it needs
to be able to look them up quickly in response to read and write requests XXX: this bit doesn't file?

Hardware Support

So far, we have only mentioned that hardware works with the operating system to implement virtual
memory. However we have glossed over the details of exactly how this happens.

Virtual memory is necessarily quite dependent on the hardware architecture, and each architecture has its
own subtleties. However, there are are a few universal elements to virtual memory in hardware.

Physical v Virtual Mode

All processors have some concept of either operatipdpysicalor virtual mode. In physical mode, the
hardware expects that any address will refer to an address in actual system memory. In virtual mode, the
hardware knows that addresses will need to be translated to find their physical address.

99

Virtual Memory

In many processors, this two modes are simply referred to as physical and virtual mode. Itanium is one such
example. The most common processor, the x86, has a lot of baggage from days before virtual memory and
so the two modes are referred ta@al andprotectedmode. The first processor to implement protected
mode was the 386, and even the most modern processors in the x86 family line can still do real mode,
though it is not used. In real mode the processor implements a form of memory organisation called
segmentation.

Issues with segmentation

Segmentation is really only interesting as a historical note, since virtual memory has made it less relevant.
Segmentation has a number of drawbacks, not the least of which it is very confusing for inexperienced
programmers, which virtual memory systems were largely invented to get around.

In segmentation there are a number of registers which hold an address that is the start of a segment. The
only way to get to an address in memory is to specify it as an offset from one of these segment registers.
The size of the segment (and hence the maximum offset you can specify) is determined by the number
of bits available to offset from segment base register. In the x86, the maximum offset is 16 bits, or only
64K . This causes all sorts of havoc if one wants to use an address that is more than 64K away, which
as memory grew into the megabytes (and now gigabytes) became more than a slight inconvenience to a
complete failure.

Figure 6.4. Segmentation

How do we get this address?

S g—— Segment Register

1
I
! Segment Register CPU

|
Segment Register
Naa :
Na
N\ A |

1Imagine that the maximum offset was 32 bits; in this case the entire address space could be accessed as an offset from0aGe@MHEA0at
and you would essentially have a flat layout -- but it still isn't as good as virtual memory as you will see. In fact, the only reason it is 16 bits is
because the original Intel processors were limited to this, and the chips maintain backwards compatibility.

100

Virtual Memory

In the above figure, there are three segment registers which are all pointing to segments. The maximum

offset (constrained by the number of bits available) is shown by shading. If the program wants an address

outside this range, the segment registers must be reconfigured. This quickly becomes a major annoyance.
Virtual memory, on the other hand, allows the program to specify any address and the operating system

and hardware do the hard work of translating to a physical address.

The TLB

The Translation Lookaside Bufféor TLB for short) is the main component of the processor responsible
for virtual-memory. It is a cache of virtual-page to physical-frame translations inside the processor. The
operating system and hardware work together to manage the TLB as the system runs.

Page Faults

When a virtual address is requested of the hardware — sayodd ainstruction requesting to get some

data — the processor looks for the virtual-address to physical-address translation in its TLB. If it has a
valid translation it can then combine this with the offset portion to go straight to the physical address and
complete the load.

However, if the processor cantfind a translation in the TLB, the processor must rajs&ge fault This
is similar to an interrupt (as discussed before) which the operating system must handle.

When the operating system gets a page fault, it needs to go through it's page-table to find the correct
translation and insert it into the TLB.

In the case that the operating system can not find a translation in the page table, or alternatively if the
operating system checks the permissions of the page in question and the process is not authorised to access
it, the operating system must kill the process. If you have ever seen a segmentation fault (or a segfault)
this is the operating system killing a process that has overstepped its bounds.

Should the translation be found, and the TLB currently be full, then one translation needs to be removed
before another can be inserted. It does not make sense to remove a translation that is likely to be used in
the future, as you will incur the cost of finding the entry in the page-tables all over again. TLBs usually
use something like laeast Recently Usemt LRU algorithm, where the oldest translation that has not been
used is ejected in favour of the new one.

The access can then be tried again, and, all going well, should be found in the TLB and translated correctly.
Finding the page table

When we say that the operating system finds the translation in the page table, it is logical to ask how the
operating system finds the memory that has the page table.

The base of the page table will be kept in a register associated with each process. This is usally called the
page-table base-register or similar. By taking the address in this register and adding the page number to
it, the correct entry can be located.

Other page related faults

There are two other important faults that the TLB can generally generate which help to mange accessed
and dirty pages. Each page generally contains an attribute in the form of a single bit which flags if the
page has been accessed or is dirty.

101

Virtual Memory

An accessed page is simply any page that has been accessed. When a page translation is initially loaded
into the TLB the page can be marked as having been accessed (else why were you Ioa%)ing itin?

The operating system can periodically go throaljlthe pages and clear the accessed bit to get an idea of

what pages are currently in use. When system memory becomes full and it comes time for the operating
system to choose pages to be swapped out to disk, obviously those pages whose accessed bit has not been
reset are the best candidates for removal, because they have not been used the longest.

A dirty page is one that has data written to it, and so does not match any data already on disk. For example,
if a page is loaded in from swap and then written to by a process, before it can be moved out of swap it
needs to have its on disk copy updated. A page that is clean has had no changes, so we do not need the
overhead of copying the page back to disk.

Both are similar in that they help the operating system to manage pages. The general concept is that a page
has two extra bits; the dirty bit and the accessed bit. When the page is put into the TLB, these bits are set
to indicate that the CPU should raise a fault .

When a process tries to reference memory, the hardware does the usual translation process. However,
it also does an extra check to see if the accessed ftag $t. If so, it raises a fault to the operating
system, which should set the bit and allow the process to continue. Similarly if the hardware detects that
it is writing to a page that does not have the dirty bit set, it will raise a fault for the operating system to
mark the page as dirty.

TLB Management

We can say that the TLB used by the hardware but managed by software. It is up to the operating system
to load the TLB with correct entries and remove old entries.

Flushing the TLB

The process of removing entries from the TLB is caflaghing Updating the TLB is a crucial part

of maintaining separate address spaces for processes; since each process can be using the same virtual
address not updating the TLB would mean a process might end up overwriting another processes memory
(conversely, in the case thireadssharing the address-space is what you want, thus the Tidsflashed

when switching between threads in the same process).

On some processors, every time there is a context switch the entire TLB is flushed. This can be quite
expensive, since this means the new process will have to go through the whole process of taking a page
fault, finding the page in the page tables and inserting the translation.

Other processors implement an exddlress space IDASID) which is added to each TLB translation

to make it unique. This means each address space (usually each process, but remember threads want to
share the same address space) gets its own ID which is stored along with any translations in the TLB.
Thus on a context switch the TLB doest need to be flushed, since the next process will have a different
address space ID and even if it asks for the same virtual address, the address space ID will differ and so the
translation to physical page will be different. This scheme reduces flushing and increases overall system
performance, but requires more TLB hardware to hold the ASID bits.

Generally, this is implemented by having an additional register as part of the process state that includes
the ASID. When performing a virtual-to-physical translation, the TLB consults this register and will only

2Actua||y, if you were loading it in without a pending access this would be cgisziilationwhich is where you do something with the expectation
that it will pay off. For example, if code was reading along memory linearly putting the next page translation in the TLB might save time and give
a performance improvement.

102

Virtual Memory

match those entries that have the same ASID as the currently running process. Of course the width of
this register determines the number of ASID's available and thus has performance implications. For an
example of ASID's in a processor architecture see the section called “Address spaces”.

Hardware v Software loaded TLB

While the control of what ends up in the TLB is the domain of the operating system; it is not the whole
story. The process described in the section called “Page Faults” describes a page-fault being raised to the
operating system, which traverses the page-table to find the virtual-to-physical translation and installs it in
the TLB. This would be termedsaftware-loaded TLB- but there is another alternative; trerdware-

loaded TLB

In a hardware loaded TLB, the processor architecture defines a particular layout of page-table information
(the section called “Pages + Frames = Page Tables” which must be followed for virtual address translation
to proceed. In response to access to a virtual-address that is not present in the TLB, the processor will
atomatically walk the page-tables to load the correct translation entry. Only if the translation entry does
not exist will the processor raise an exception to be handled by the operating system.

Implementing the page-table traversal in specialised hardware gives speed advantages when finding
translations, but removes flexibility from operating-systems implementors who might like to implement
alternative schemes for page-tables.

All architectures can be broadly categorised into these two methodlogies. Later, we will examine some
common architectures and their virtual-memory support.

Linux Specifics

Although the basic concepts of virtual memory remain constant, the specifics of implementations are
highly dependent on the operating system and hardware.

Address Space Layout

Linux divides the available address space up into a shared kernel component and private user space
addresses. This means that addresses in the kernel port of the address space map to the same physical
memory for each process, whilst userspace addresses are private to the process. On Linux, the shared
kernel space is at the very top of the available address space. On the most common processor, the 32 bit
x86, this split happens at the 3GB point. As 32 bits can map a maximum of 4GB, this leaves the top 1GB
for the shared kernel regi%n

This is unfortunately an over-simplification, because many machines wanted to support more than 4GB petigtocessiorysupport allows
processors to get access to a full 4GB via special extensions.

103

Virtual Memory

Figure 6.5. Linux address space layout

A

I BN N S oo

Kernel
Kernel Space

Process Process Process Process

User Space

(Private)

Processor Address Space

Pages

E
| . . —_——
A E

Three Level Page Table

Physical Memory Frame \j

There are many different ways for an operating system to organise the page tables but Linux chooses to
use ahierarchical system.

As the page tables use a heirarchy that is three levels deep, the Linux scheme is most commonly referred
to as thethree level page tabl@he three level page table has proven to be robust choice, although it is
not without it's criticism. The details of the virtual memory implementation of each processor vary widley
meaning that the generic page table Linux chooses must be portable and relatively generic.

The concept of the three level page table is not difficult. We already know that a virtual address consists of
a page number and an offset in the physical memory page. In a three level page table, the virtual address
is further split up into a numbévels

Each level is a page table of it's own right; i.e. it maps a page number of a physical page. In a single level
page table the "level 1" entry would directly map to the physical frame. In the multilevel version each of
the upper levels gives the address of the physical memory frame holding the next lower levels page table.

104

Virtual Memory

Figure 6.6. Linux Three Level Page Table

Virtual Address

‘ Level 1 ‘ Level 2 ‘ Level 3 ‘ Offset ‘

i Levell

i
HH . '
;- Level 2 /i : 1 0x10001000
b g !
Page ’ Physical Page - Page # H H F& Physical Page B . .
e . S\
)

Physical Page _4

Page Physical Page i Page Physical Page H : Page Physical Page

Page Size

10x10000000

,,,,,,,,,,,,,

Physical Page Frames
(System Memory)

So a sample reference involves going to the top level page table, finding the physical frame that the next
level address is on, reading that levels table and finding the physical frame that the next levels page table
lives on, and so on.

At first, this model seems to be needlessly complex. The main reason this model is implemented is for size
considerations. Imagine the theoretical situation of a process with only one single page mapped right near
the end of it's virtual address space. We said before that the page table entry is found as an offset from
the page table base register, so the page table needs to be a contiguous array in memory. So the single
page near the end of the address space requires the entire array, which might take up considerable space
(many, many physical pages of memory).

In a three level system, the first level is only one physical frame of memory. This maps to a second level,
which is again only a single frame of memory, and again with the third. Consequently, the three level
system reduces the number of pages required to only a fraction of those required for the single level system.

There are obvious disadvantages to the system. Looking up a single address takes more references, which
can be expensive. Linux understands that this system may not be appropriate on many different types of
processor, so each architecture callapsethe page table to have less levels easily (for example, the most
common architecture, the x86, only uses a two level system in its implementation).

Hardware support for virtual memory

As covered in the section called “The TLB”, the processor hardware provides a lookup-table that links
virtual addresses to physical addresses. Each processor architecture defines different ways to manage the
TLB with various advantages and disadvantages.

The part of the processor that deals with virtual memory is generally referred td/esitbey Managment
Unit or MMU

105

Virtual Memory

x86-64

XXX

ltanium

The Itanium MMU provides many interesting features for the operating system to work with virtual
memory.

Address spaces

the section called “Flushing the TLB” introduced the concept ofatdress-space IDo reduce the
overheads of flushing the TLB when context switching. However, programmers ofthnazsisto allow

execution contexts to share an address space. Each thread has the same ASID and hence shares TLB entries,
leading to increased performance. However, a single ASID prevents the TLB from enforcing protection;
sharing becomes an "all or nothing" approach. To share even a few bytes, threads must forgo all protection
from each other (see also the section called “Protection”).

Figure 6.7. lllustration Itanium regions and protection keys

0x0000 0000 0000 0000

Region 0

Region 1
0x1000 Shared Region 0x1000

0x4000 0000 0000 0000

/ / % Region 2

7
000
S S S)

0x6000 0000 0000 0000

Region 3

Protection Keys

Protection Keys

0x8000 0000 0000 0000
7

%/////% Region 4

0xA000 0000 0000 0000

Region 5

0xC000 0000 0000 0000

Shared Key Region 6

Process 1 Process 2

0xE000 0000 0000 0000

Region 7

The Itanium MMU considers these problems and provides the ability to share an address space (and hence
translation entries) at a much lower granularity whilst still maintaining protection within the hardware. The
Itanium divides the 64-bit address space up imag®ns as illustrated in Figure 6.7, “lllustration Itanium

regions and protection keys”. Each process has eight 2dgiin registersas part of its state, which each

hold aregion ID (RID) for each of the eight regions of the process address space. TLB translations are
tagged with the RID and thus will only match if the process also holds this RID, as illustrated in Figure 6.8,
“lllustration of Itanium TLB translation”.

106

Virtual Memory

Figure 6.8. lllustration of Itanium TLB translation

Region Registers Virtual Address
. Index Virtual
Region ID
Virtual Region # (VRN) Page # (VPN)

]

Search Search

Region ID Key Virtual Page # (VPN) Rights Physical Page # (PPN)

Translation Lookaside Buffer (TLB)

| | | | |
R

Search

Key Rights Protection
Key Registers

Physical Page # (PPN) Offset

Physical Address

Further to this, the top three bits (the region bits) are not considered in virtual address translation. Therefore,
if two processes share a RID (i.e., hold the same value in one of their region registers) then they have an
aliased view of that region. For example, if process-A holds@RIMO in region-register 3 and process-

B holds the same RIDx100 in region-register 5 then process-A, region 3 is aliased to process-B, region

5. This limited sharing means both processes receive the benefits of shared TLB entries without having

to grant access to their entire address space.

Protection Keys

To allow for even finer grained sharing, each TLB entry on the Itanium is also taggedpndtiection
key. Each process has an additional numbegrafection key registensnder operating-system control.

When a series of pages is to be shared (e.g., code for a shared system library), each page is tagged with a
unique key and the OS grants any processes allowed to access the pages that key. When a page is referenced
the TLB will check the key associated with the translation entry against the keys the process holds in its
protection key registers, allowing the access if the key is present or otherwise rausigctionfault

to the operating system.

The key can also enforce permissions; for example, one process may have a key which grants write
permissions and another may have a read-only key. This allows for sharing of translation entries in a much
wider range of situations with granularity right down to a single-page level, leading to large potential
improvements in TLB performance.

107

Virtual Memory

Itanium Hardware Page-Table Walker

Switching context to the OS when resolving a TLB miss adds significant overhead to the fault processing
path. To combat this, Itanium allows the option of using built-in hardware to read the page-table and
automatically load virtual-to-physical translations into the TLB. The hardware page-table walker (HPW)
avoids the expensive transition to the OS, but requires translations to be in a fixed format suitable for the
hardware to understand.

The Itanium HPW is referred to in Intel's documentation asvittigally hashed page-table walker

VHPT walker, for reasons which should become clear. Itanium gives developers the option of two mutually
exclusive HPW implementations; one based on a virtual linear page-table and the other based on a hash
table.

It should be noted it is possible to operate with no hardware page-table walker; in this case each TLB miss is
resolved by the OS and the processor becomes a software-loaded architecture. However, the performance
impact of disabling the HPW is so considerable it is very unlikely any benefit could be gained from doing so

Virtual Linear Page-Table

The virtual linear page-table implementation is referred to in documentationsiwtihéormat virtually
hashed page-tablSF-VHPT). It is the default HPW model used by Linux on Itanium.

The usual solution is a multi-level or hierarchical page-table, where the bits comprising the virtual page
number are used as an index into intermediate levels of the page-table (see the section called “Three
Level Page Table”). Empty regions of the virtual address space simply do not exist in the hierarchical
page-table. Compared to a linear page-table, for the (realistic) case of a tightly-clustered and sparsely-
filled address space, relatively little space is wasted in overheads. The major disadvantage is the multiple
memory references required for lookup.

108

Virtual Memory

Figure 6.9. lllustration of a hierarchical page-table

Virtual Address

0x123400

Virtual Page Number

b

Offset

0x123 0x400
Page Global Directory Page Middle Directory Page Translation Entries
Ox1 0x2 0x3 0x400
Page Table Base
’ v
L.
0
3 EE
b)
«
®
v p—
m o
o
Q
3%
o o
=3
>
mo
5 o
3 o
@

With a 64-bit address space, even a 512~GiB linear table identified in the section called “Virtual Address
Translation” takes only 0.003% of the 16-exabytes available. Thiusial linear page-tabl¢VLPT) can

be created in a contiguous areaviofual address space.

Just as for a physically linear page-table, on a TLB miss the hardware uses the virtual page number to
offset from the page-table base. If this entry is valid, the translation is read and inserted directly into the

TLB. However, with a VLPT the address of the translation entry is itself a virtual address and thus there is

the possibility that the virtual page which it resides in is not present in the TLB. In thisrestedfault

is raised to the operating system. The software must then correct this fault by mapping the page holding

the translation entry into the VLPT.

109

Virtual Memory

Figure 6.10. Itanium short-format VHPT implementation

pommmm e) 280
PTE's entry for a virtual page is found
via simple offset from VLPT base
PGD PGD
PMD PMD
PVID
PTR PTE I
Conceptual f H
-«
hierarchial page table
PTE
VLPT Base
T
PTE <
L §
PTEs for a contiguous =
region of virtual addresses B §
PTE PTE H
5
&
&
2764
Physica Virtual Address Space

This process can be made quite straight forward if the operating system keeps a hierarchical page-table.
The leaf page of a hierarchical page-table holds translation entries for a virtually contiguous region of
addresses and can thus be mapped by the TLB to create the VLPT as described in Figure 6.10, “ltanium
short-format VHPT implementation”.

110

Virtual Memory

Figure 6.11. Iltanium PTE entry formats

Per-region VHPT VPN | |VPN Global VHPT
| | Jn
€
Hash
Short Format Long Format
PPN PPN
— —/ PKEY psize
64 bits Tag
Chain
N _J
4 x 64 bits

The major advantage of a VLPT occurs when an application makes repeated or contiguous accesses to
memory. Consider that for a walk of virtually contiguous memory, the first fault will map a page full

of translation entries into the virtual linear page-table. A subsequent access to the next virtual page will
require the next translation entry to be loaded into the TLB, which is now available in the VLPT and thus
loaded very quickly and without invoking the operating system. Overall, this will be an advantage if the
cost of the initial nested fault is amortised over subsequent HPW hits.

Themajor drawback is that the VLPT now requires TLB entries which causes an increase on TLB pressure.
Since each address space requires its own page table the overheads become greater as the system becomes
more active. However, any increase in TLB capacity misses should be more than regained in lower refill
costs from the efficient hardware walker. Note that a pathological case could skjpageesize -+
translation_size entries, causing repeated nested faults, but this is a very unlikely access pattern.

The hardware walker expects translation entries in a specific format as illustrated on the left of Figure 6.11,
“Iltanium PTE entry formats”. The VLPT requires translations in the so-called &hygteformat If the
operating system is to use its page-table as backing for the VLPT (as in Figure 6.10, “Itanium short-format
VHPT implementation”) it must use this translation format. The architecture describes a limited number
of bits in this format as ignored and thus available for use by software, but significant modification is
not possible.

A linear page-table is premised on the idea of a fixed page size. Multiple page-size support is problematic
since it means the translation for a given virtual page is no longer at a constant offset. To combat this,
each of the 8-regions of the address space (Figure 6.7, “lllustration Itanium regions and protection keys”)
has a separate VLPT which only maps addresses for that region. A default page-size can be given for each
region (indeed, with Linux HugeTLB, discussed below, one region is dedicated to larger pages). However,
page sizes can not be mixed within a region.

111

Virtual Memory

Virtual Hash Table

Using TLB entries in an effort to reduce TLB refill costs, as done with the SF-VHPT, may or may not
be an effective tradeoff. Itanium also implementsaahed page-tablwith the potential to lower TLB
overheads. In this scheme, the procebhaghes virtual address to find an offset into a contiguous table.

The previously described physically linear page-table can be considered a hash page-talperfeith a

hash function which will never produce a collision. However, as explained, this requires an impractical
tradeoff of huge areas of contiguous physical memory. However, constraining the memory requirements
of the page table raises the possibility of collisions when two virtual addresses hash to the same offset.
Colliding translations require ehain pointer to build a linked-list of alternative possible entries. To
distinguish which entry in the linked-list is the correct one requitag @erived from the incoming virtual
address.

The extra information required for each translation entry gives rise to the mionigdormatVHPT (LF-
VHPT). Translation entries grow to 32-bytes as illustrated on the right hand side of Figure 6.11, “Itanium
PTE entry formats”.

The main advantage of this approach is the global hash table can be pinned with a single TLB entry.
Since all processes share the table it should scale better than the SF-VHPT, where each process requires
increasing numbers of TLB entries for VLPT pages. However, the larger entries are less cache friendly;
consider we can fit four 8-byte short-format entries for every 32-byte long-format entry. The very large
caches on the Itanium processor may help mitigate this impact, however.

One advantage of the SF-VHPT is that the operating system can keep translations in a hierarchical page-
table and, as long as the hardware translation format is maintained, can map leaf pages directly to the
VLPT. With the LF-VHPT the OS must either use the hash table as the primary source of translation
entries or otherwise keep the hash table as a cache of its own translation information. Keeping the LF-
VHPT hash table as a cache is somewhat suboptimal because of increased overheads on time critical fault
paths, however advantages are gained from the table requiring only a single TLB entry.

112

Chapter 7. The Toolchain

Compiled v Interpreted Programs

Compiled Programs

So far we have discussed how a program is loaded into virtual memory, started as a process kept track of
by the operating system and interacts with via system calls.

A program that can be loaded directly into memory needs to be in a stimgthytformat. The process
of converting source code, written in a language such as C, to a binary file ready to be executed is called
compiling Not surprisingly, the process is done lgoapiler, the most widespread example being gcc™.

Interpreted programs

Compiled programs have some disadvantages for modern software development. Every time a developer
makes a change, the compiler must be invoked to recreate the executable file. It is a logical extension to
design a compiled program that can raadtherprogram listing and execute the code line by line.

We call this type of compiled programirdgerpreterbecause it interprets each line of the input file and
executes it as code. This way the program does does not need to be compiled, and any changes will be
seen the next time the interpreter runs the code.

For their convenience, interpreted programs usually run slower than a compiled counterpart. The overhead
in the program reading and interpreting the code each time is only encountered once for a compiled
program, whilst an interpreted program encounters it each time it is run.

But interpreted languages have many positive aspects. Many interpreted languages actually run in a

virtual machine that is abstracted from the underlying hardware. Python and Perl 6 are languages
that implement a virtual machine that interpreted code runs on.

Virtual Machines

A compiled program is completely dependent on the hardware of the machine it is compiled for, since it
must be able to simply be copied to memory an executed. A virtual machine is an abstraction of hardware
into software.

For example, Java is a hybrid language that is partly compiled and partly interpreted. Java code is complied
into a program that runs insideJava Virtual Machineor more commonly referred to as a JVM. This

means that a compiled program can run on any hardware that has a JVM written for it; sarialled
one, run anywhere

Building an executable

When we talk about the compiler, there are actually three separate steps involved in creating the executable
file.

1. Compiling

2. Assembling

113

The Toolchain

3. Linking

The components involved in this process are collectively callemdhehainbecause the toothainthe
output of one to the input of the other to create the final output.

Each link in the chain takes the source code progressively closer to being binary code suitable for execution.

Compiling

The process of compiling

C code

The first step of compiling a source file to an executable file is converting the code from the high level,
human understandable languagassembly codéVe know from previous chapters than assembly code
works directly with the instructions and registers provided by the processor.

The compiler is the most complex step of process for a number of reasons. Firstly, humans are very
unpredictable and have their source code in many different forms. The compiler is only interested the
actual code, however humans need things like comments and whitespace (spaces, tabs, indents, etc) to
understand code. The process that the compiler takes to convert the human-written source code to its
internal representation is callpdrsing

With C code, there is actually a stieeforeparsing the source code called fire-processarThe pre-
processor is at its core a text replacement program. For example, any variable dedlaefthas
variable text will havevariable replaced withtext . This preprocessed code is then passed
into the compiler.

Syntax

Any computing language has a particidgntaxthat describes the rules of the language. Both you and

the compiler know the syntax rules, and all going well you will understand each other. Humans, being
as they are, often forget the rules or break them, leading the compiler to be unable to understand your
intentions. For example, if you were to leave the closing bracketibff @ondition, the compiler does

not know where the actual conditional is.

Syntax is most often described Backus-Naur Form{BNF)! which is a language with which you can
describe languages!

Assembly Generation

The job of the compiler is to translate the higher level language into assembely code suitable for the target

being compiled for. Obviously each different architecture has a different instruction set, different numbers
of registers and different rules for correct operation.

Yn fact the most common form is Extended Backus-Naur Form, or EBNF, as it allows some extra rules which are more suitable for modern languages.

114

The Toolchain

Alignment

Figure 7.1. Alignment

(7
0 4 8 12
Aligned Unaligned
Memory

- J

(7

Registers
L CPU)

Alignment of variables in memory is an important consideration for the compiler. Systems programmers
need to be aware of alignment constratins to help the compiler create the most efficient code it can.

CPUs can generally not load a value into a register from an aribtrary memory location. It requires that
variables balignedon certain boundaries. In the example above, we can see how a 32 bit (4 byte) value
is loaded into a register on a machine that requires 4 byte alignment of variables.

The first variable can be directly loaded into a register, as it falls between 4 byte boundaries. The second
variable, however, spans the 4 byte boundary. This means that at minimum two loads will be required to
get the variable into a single register; firstly the lower half and then the upper half.

Some architectures, such as x86, can handle unaligned loads in hardware and the only symptoms will
be lower performance as the hardware does the extra work to get the value into the register. Others
architectures can not have alignment rules violated and will raise an exception which is generally caught by
the operating system which then has to manually load the register in parts, causing even more overheads.

Structure Padding
Programmers need to consider alignment especially when cretiticg s. Whilst the compiler knows
the alignment rules for the architecture it is building for, at times programmers can cause suboptimal

behaviour.

The C99 standard only says that structures will be ordered in memory in the same order as they are specified
in the declaration, and that in an array of structures all elements will be the same size.

115

The Toolchain

Example 7.1. Struct padding example

1
$ cat struct.c
#include <stdio.h>

5 struct a_struct {
char char_one;
char char_two;

int int_one;
¥
10
int main(void)
{
struct a_struct s;
15
printf("%p : s.char_one\n" \
"%p : s.char_two\n" \
"%p : s.int_one\n", &s.char_one,
&s.char_two, &s.int_one);
20
return O;
}

25 $ gcc -0 struct struct.c
$ gcc -fpack-struct -o struct-packed struct.c

$.[struct

30 0x7fdf6798 : s.char_one
0x7fdf6799 : s.char_two
0x7fdf679c : s.int_one

$./struct-packed

35 0x7fcd2778 : s.char_one
0x7fcd2779 : s.char_two
Ox7fcd277a: s.int_one

In the example above, we contrive a structure that has two loytess (followed by a 4 byte integer.
The compiler pads the structure as below.

Figure 7.2. Alignment

s.char_one
B scharwo

Y s.int_one

0x7fdf6798 0x7fdf6799 Ox7fdf679A 0x7fdf679B 0x7fdf679C 0 x7fdf679D 0x7fdf679E 0x7fdf679F 0x7fdf6700

116

The Toolchain

In the other example we direct the compriietto pad structures and correspondingly we can see that the
integer starts directly after the twbars .

Cache line alignment

We talked previously about aliasing in the cache, and how several addresses may map to the same cache
line. Programmers need to be sure that when they write their programs they do ndstoceuesegof
cache lines.

This situation occurs when a program constantly accesses two areas of memory that map to the same cache
line. This effectively wastes the cache line, as it gets loaded in, used for a short time and then must be
kicked out and the other cache line loaded into the same place in the cache.

Obviously if this situation repeats the performance will be significantly reduced. The situation would be
releaved if the confilicting data were organised in slightly different ways to avoid the cache line conflict.

One possible way to detect this sort of situatiopragiling. When you profile your code you "watch" it

to analyse what code paths are taken and how long they take to execufgoi@lyuided optimisation

(PGO) the compiler can put special extra bits of code in the first binary it builds, which runs and makes a
record of the branches taken, etc. You can then recompile the binary with the extra information to possibly
create a better performing binary. Otherwise the programmer can look at the output of the profile and
possibly detect situations such as cache line bouncing. (XXX somewhere else?)

Space - Speed Trade off

What the compiler has done above is traded off using some extra memory to gain a speed improvement
in running our code. The compiler knows the rules of the architecture and can make decisions about the
best way to align data, possibly by trading off small amounts of wasted memory for increased (or perhaps
even just correct) performance.

Consequently as a programmer you should never make assumptions about the way variables and data will
be layed out by the compiler. To do so is not portable, as a different architecture may have different rules
and the compiler may make different decisions based on expicit commands or optimisation levels.

Making Assumptions

Thus, as a C programmer you need to be familiar with what you can assume about what the compiler will
do and what may be variable. What exactly you can assume and can not assume is detailed in the C99
standard; if you are programming in C it is certainly worth the investment in becoming familiar with the
rules to avoid writing non-portable or buggy code.

Example 7.2. Stack alignment example

1
$ cat stack.c
#include <stdio.h>

5 struct a_struct {

int a;
int b;
%
10 int main(void)
{ . .
inti;

117

The Toolchain

struct a_struct s;
printf("%p\n%p\ndiff %ld\n", &i, &s, (unsigned long)&s - (unsigned long)&i);
15 return O;
}
$ gce-3.3 -Wall -o stack-3.3 ./stack.c
$ gce-4.0 -o stack-4.0 stack.c

20 $./stack-3.3
0x60000fffffc2b510
0x60000fffffc2b520
diff 16

25 $./stack-4.0
0x60000fffff89b520
0x60000fffff89b524
diff 4

30

In the example above, taken from an Itanium machine, we can see that the padding and aligment of the
stack has changed considerably between gcc versions. This type of thing is to be expected and must be
considered by the programmer.

Generally you should ensure that you do not make assumptions about the size of types or alignment rules.

C Idioms with alignment

There are a few common sequences of code that deal with alignment; generally most programs will
consider it in some ways. You may see these "code idioms" in many places outside the kernel when dealing
with programs that deal with chunks of data in some form or another, so it is worth investigating.

We can take some examples from the Linux kernel, which often has to deal with alignment of pages of
memory within the system.

Example 7.3. Page alignment manipulations

1
[include/asm-ia64/page.h]

/*
5 * PAGE_SHIFT determines the actual kernel page size.
*/
#if defined(CONFIG_IA64_PAGE_SIZE_4KB)
define PAGE_SHIFT 12
#elif defined(CONFIG_IA64_PAGE_SIZE_8KB)
10 # define PAGE_SHIFT 13
#elif defined(CONFIG_IA64_PAGE_SIZE_16KB)
define PAGE_SHIFT 14
#elif defined(CONFIG_IA64_PAGE_SIZE_64KB)
define PAGE_SHIFT 16

15 #else
error Unsupported page size!
#endif
#define PAGE_SIZE (__IA64_UL_CONST(1) << PAGE_SHIFT)

118

The Toolchain

20 #define PAGE_MASK (~(PAGE_SIZE - 1))
#define PAGE_ALIGN(addr) (((addr) + PAGE_SIZE - 1) & PAGE_MASK)

Above we can see that there are a number of different options for page sizes within the kernel, ranging
from 4KB through 64KB.

ThePAGE_SIZE macro is fairly self explanatory, giving the current page size selected within the system
by shifting a value of 1 by the shift number given (remember, this is the equivalent of 2Ayimgre
n is thePAGE_SHIFT).

Next we have a definition fdPAGE_MASKThe PAGE_MASHllows us to find just those bits that are
within the current page, that is thfset of an address within its page.

XXX continue short discussion
Optimisation

Once the compiler has an internal representation of the codesatheinteresting part of the compiler
starts. The compiler wants to find the most optimised assembly language output for the given input code.
This is a large and varied problem and requires knowledge of everything from efficient algorithms based
in computer science to deep knowledge about the particular processor the code is to be run on.

There are some common optimisations the compiler can look at when generating output. There are many,
many more strategies for generating the best code, and it is always an active research area.

General Optimising

The compiler can often see that a particular piece of code can not be used and so leave it out optimise a
particular language construct into something smaller with the same outcome.

Unrolling loops

If code contains a loop, such afba orwhile loop and the compiler has some idea how many times it

will execute, it may be more efficient tmroll the loop so that it executes sequentially. This means that
instead of doing the inside of the loop and then branching back to the start to do repeat the process, the
inner loop code is duplicated to be executed again.

Whilst this increases the size of the code, it may allow the processor to work through the instructions more
efficiently as branches can cause inefficiencies in the pipeline of instructions coming into the processor.

Inlining functions
Similar to unrolling loops, it is possible to put embed called functions within the callee. The programmer

can specify that the compiler should try to do this by specifying the functiotiress in the function
definition. Once again, you may trade code size for sequentiality in the code by doing this.

Branch Prediction
Any time the computer comes acrossfanstatement there are two possible outcomes; true or false. The

processor wants to keep its incoming pipes as full as possible, so it can not wait for the outcome of the
test before putting code into the pipeline.

119

The Toolchain

Thus the compiler can make a prediction about what way the test is likely to go. There are some simple
rules the compiler can use to guess things like this, for exahfyde==-1) is probablynotlikely
to be true, since -1 usually indicates an error code and hopefully that will not be triggered too often.

Some compilers can actually compile the program, have the user run it and take note of which way the
branches go under real conditions. It can then re-compile it based on what it has seen.

Assembler

The assembly code outputted by the compiler is still in a human readable form, should you know the
specifics of the assembly code for the processor. Developers will often take a peek at the assembly output
to manually check that the code is the most optimised or to discover any bugs in the compiler (this is more
common than one might think, especially when the compiler is being very aggressive with optimisations).

The assembler is a more mechanical process of converting the assembly code into a binary form.
Essentially, the assembler keeps a large table of each possible instruction and its binary counterpart (called
anop codefor operation code). It combines these opcodes with the registers specified in the assembly to
produce a binary output file.

This code is calledbbject codeand, at this stage, is not executable. Object code is simply a binary
representation of specific input source code file. Good programming practice dictates that a programmer
should not "put all the eggs in one basket" by placing all your source code in one file.

Linker

Often in a large program, you will separate out code into multiple files to keep related functions together.
Each of these files can be compiled into object code: but your final goal is to create a single executable!
There needs to be some way combining each of these object files into a single executable. We call this
linking.

Note that even if your program does fit in one file it still needs to be linked against certain system libraries
to operate correctly. For example, grentf call is kept in a library which must be combined with your
executable to work. So although you do not explicilty have to worry about linking in this case, there is
most certainly still a linking process happening to create your executable.

In the following sections we explain some terms essential to understanding linking.

Symbols
Symbols

Variables and functions all have names in source code which we refer to them by. One way of thinking
of a statement declaring a variabiea is that you are telling the compiler "set aside some memory of
sizeof(int) and from now on when | useit will refer to this allocated memory. Similarly a function

says "store this code in memory, and when Ifcaittion() jump to and execute this code".

In this case, we call andfunction symbolssince they are a symbolic representation of an area of
memory.

Symbols help humans to understand programming. You could say that the primary job of the compilation
process is to remove symbols -- the processor doesn't knowawblptesents, all it knows is that it has

120

The Toolchain

some data at a particular memory address. The compilation process needs t@eern®erto something
like "increment the value in memory@ABCDEDby 2.

Symbol Visibility

In some C programs, you may have seen the tetatie andextern used with variables. These
modifiers can effect what we call the visibility of symbols.

Imagine you have split up your program in two files, but some functions need to share a variable. You
only want onedefinition (i.e. memory location) of the shared variable (otherwise it wouldn't be shared!),
but both files need to reference it.

To enable this, we declare the variable in one file, and then in the other file declare a variable of the same
name but with the prefigxtern .extern stands foexternaland to a human means that this variable
is declared somewhere else.

Whatextern says to a compiler is that it should not allocate any space in memory for this variable, and
leave this symbol in the object code where it will be fixed up later. The compiler can not possibly know
where the symbol is actually defined but lih&erdoes, since it is it's job to look at all object files together

and combine them into a single executable. So the linker will see the symbol left over in the second file,
and say "I've seen that symbol before in file 1, and | know that it refers to memory |@batk345 ".

Thus it can modify the symbol value to be the memory value of the variable in the first file.

static is almost the opposite ektern . It places restrictions on the visiblity of the symbol it modifies.

If you declare a variable witstatic that says to the compiler "don't leave any symbols for this in the
object code". This means that when the linker is linking together object files it will never see that symbol
(and so can't make that "I've seen this before!" connectitatlc is good for separation and reducing
conflicts -- by declaring a variab$tatic ~ you can reuse the variable name in other files and not end up
with symbol clashes. We say we aestricting the visiblityof the symbol, because we are not allowing

the linker to see it. Contrast this with a more visible symbol (one not declarestatith) which can

be seen by the linker.

The linking process

Thus the linking process is really two steps; combining all object files into one exectuable file and then
going through each object file tesolveany symbols. This usually requires two passes; one to read all
the symbol definitions and take note of unresolved symbols and a second to fix up all those unresolved
symbols to the right place.

The final executable should end up with no unresolved symbols; the linker will fail with an error if there
are any’

A practical example

We can walk through the steps taken to build a simple application step by step.

Note that when you typgcc that actually runs a driver program that hides most of the steps from you.
Under normal circumstances this is exactly what you want, because the exact commands and options to
get a real life working executable on a real system can be quite complicated and architecture specific.

We will show the compliation process with the two following examples. Both are C source files, one
defined thenain() function for the inital program entry point, and another declares a helper type function.
There is one global variable too, just for illustration.

2We call thisstatic linking Dynamic linking is a similar concept done at executable runtime, and is described a little later on.

121

The Toolchain

Example 7.4. Hello World

1
#include <stdio.h>

/* We need a prototype so the compiler knows what types function() takes */
5 int function(char *input);

/* Since this is static, we can define it in both hello.c and function.c */
static int i = 100;

10 /* This is a global variable */
int global = 10;

int main(void)
{
15 /* function() should return the value of global */
int ret = function("Hello, World!");
exit(ret);

}

20

Example 7.5. Function Example

1
#include <stdio.h>

static int i = 100;
5

/* Declard as extern since defined in hello.c */
extern int global;

int function(char *input)
10 {

printf("%s\n", input);

return global,

}

15

Compiling

All compilers have an option to only execute the first step of compilation. Usually this is somethiBg like
and the output will generally be put into a file with the same name as the input file butsvigxgension.

Thus we can show the first step wigbc -S as illustrated in the example below.

Example 7.6. Compilation Example

1

ianw@lime:~/programs/csbu/wk7/code$ gcc -S hello.c
ianw@Ilime:~/programs/csbu/wk7/code$ gcc -S function.c

122

The Toolchain

ianw@Ilime:~/programs/csbu/wk7/code$ cat function.s
5 file "function.c"
.pred.safe_across_calls p1-p5,p16-p63
.section .sdata,"aw",@progbits
.align 4
type i#, @object
10 .Size i#, 4
i:
data4 100
.section .rodata
.align 8
15 .LCO:
stringz "%s\n"
text
.align 16
.global function#
20 .proc function#
function:
.prologue 14, 33
.save ar.pfs, r34
allocr34 = ar.pfs, 1,4,2,0
25 .vframe r35
mov r35 =r12
adds r12 = -16, r12
mov r36 =rl
.save rp, r33
30 mov r33 = b0
.body

st8 [r35] =r32
addl r14 = @Itoffx(.LCO), r1

35 "
[d8.mov r37 = [r14], .LCO
1d8 r38 =[r35]
br.call.sptk.many b0 = printf#
mov rl =r36

40 "

addl r15 = @ltoffx(global#), rl

[d8.mov r14 = [r15], global#

45 ld4 r14 = [r14]

mov r8 =rl14
mov ar.pfs =r34
mov b0 =r33
50 .restore sp
mov r12 =r35
br.ret.sptk.many b0
.endp function#
55 .ident "GCC: (GNU) 3.3.5 (Debian 1:3.3.5-11)"

123

The Toolchain

The assembly is a little to complex to fully describe, but you should be able to see where i is defined as
adata4 (i.e. 4 bytes or 32 bits, the size ofiah), wherefunction is defined function:) and
a call toprintf()

We now have two assembly files ready to be assembled into machine code!

Assembly

Assembly is a fairly straight forward process. The assembler is usually asli®ad takes arguments in
a similar fasion tgcc

Example 7.7. Assembly Example

1
ianw@lime:~/programs/csbu/wk7/code$ as -o function.o function.s
ianw@lime:~/programs/csbu/wk7/code$ as -o hello.o hello.s
ianw@lime:~/programs/csbu/wk7/code$ Is
5 function.c function.o function.s hello.c hello.o hello.s

After assembling we hawbjectcode, which is ready to be linked together into the final executable. You
can usually skip having to use the assembler by hand by calling the compiler withich will directly
convert the input file to object code, putting it in a file with the same prefixobais an extension.

We can't inspect the object code directly, as it is in a binary format (in future weeks we will learn about
this binary format). However we can use some tools to inspect the object files, for eseadplé--
symbols will show us symbols in the object file.

Example 7.8. Readelf Example

1
ianw@lime:~/programs/csbu/wk7/code$ readelf --symbols ./hello.o

Symbol table '.symtab’ contains 15 entries:
5 Num: Value Size Type Bind Vis Ndx Name
0: 0000000000000000 0 NOTYPE LOCAL DEFAULT UND
1: 0000000000000000 O FILE LOCAL DEFAULT ABS hello.c
2: 0000000000000000 0 SECTION LOCAL DEFAULT 1
3: 0000000000000000 0 SECTION LOCAL DEFAULT 3
10 4: 0000000000000000 O SECTION LOCAL DEFAULT 4
5: 0000000000000000 0 SECTION LOCAL DEFAULT 5
6: 0000000000000000 4 OBJECT LOCAL DEFAULT 5i
7: 0000000000000000 0 SECTION LOCAL DEFAULT 6
8: 0000000000000000 0 SECTION LOCAL DEFAULT 7
15 9: 0000000000000000 0 SECTION LOCAL DEFAULT 8
10: 0000000000000000 0O SECTION LOCAL DEFAULT 10
11: 0000000000000004 4 OBJECT GLOBAL DEFAULT 5 global
12: 0000000000000000 96 FUNC GLOBAL DEFAULT 1 main
13: 0000000000000000 O NOTYPE GLOBAL DEFAULT UND function
20 14:0000000000000000 O NOTYPE GLOBAL DEFAULT UND exit

ianw@lime:~/programs/csbu/wk7/code$ readelf --symbols ./function.o

124

The Toolchain

Symbol table '.symtab’ contains 14 entries:
25 Num: Value Size Type Bind Vis Ndx Name
0: 0000000000000000 0 NOTYPE LOCAL DEFAULT UND
1: 0000000000000000 O FILE LOCAL DEFAULT ABS function.c
2: 0000000000000000 0 SECTION LOCAL DEFAULT 1
3: 0000000000000000 0 SECTION LOCAL DEFAULT 3
30 4:0000000000000000 O SECTION LOCAL DEFAULT 4
5: 0000000000000000 0 SECTION LOCAL DEFAULT 5
6: 0000000000000000 4 OBJECT LOCAL DEFAULT 5i
7: 0000000000000000 0 SECTION LOCAL DEFAULT 6
8: 0000000000000000 0 SECTION LOCAL DEFAULT 7
35 9:0000000000000000 O SECTION LOCAL DEFAULT 8
10: 0000000000000000 0O SECTION LOCAL DEFAULT 10
11: 0000000000000000 128 FUNC GLOBAL DEFAULT 1 function
12: 0000000000000000 O NOTYPE GLOBAL DEFAULT UND printf
13: 0000000000000000 O NOTYPE GLOBAL DEFAULT UND global
40

Although the output is quite complicated (again!) you should be able to understand much of it. For example

* Inthe output ohello.o have a look at the symbol with nameNotice how it says it IEKOCAL? That
is because we declaredstatic and as such it has been flagged as being local to this object file.

* In the same output, notice that tfiebal variable is defined as@LOBAL meaning that it is visible
outside this file. Similarly thenain() function is externally visable.

* Notice that thdunction symbol (for the call tdunction() is left hasUNDor undefined This
means that it has been left for the linker to find the address of the function.

» Have a look at the symbols in thenction.c file and how they fit into the output.
Linking

Actually invoking the linker, callettl , is a very complicated process on a real system (are you sick of
hearing this yet?). This is why we leave the linking process gpdo

But of course we can spy on whigtc is doing under the hood with the (verbose) flag.

Example 7.9. Linking Example

1
{usr/lib/gcc-lib/ia64-linux/3.3.5/collect? -static
Jusr/lib/gcc-lib/ia64-linux/3.3.5/../../../crt1.0
Jusr/lib/gcc-lib/ia64-linux/3.3.5/../../..[crti.0
5 Just/lib/gcc-lib/ia64-linux/3.3.5/crtbegin.o
-L/usr/lib/gcc-lib/ia64-linux/3.3.5
-L/usr/lib/gcc-lib/ia64-linux/3.3.5/../..1..
hello.o
function.o
10 --start-group
-lgcc
-lgcc_eh
-lunwind
-lc

125

The Toolchain

15 --end-group
lusr/lib/gcc-lib/ia64-linux/3.3.5/crtend.o
lusr/lib/gcc-lib/ia64-linux/3.3.5/../../../crtn.o

The first thing you notice is that a program called collect2 is being called. This is a simple wrapper around
Id that is used internally by gcc.

The next thing you notice is object files starting with being specified to the linker. These functions

are provided by gcc and the system libraries and contain code required to start the program. In actuality,
themain() function is not the first one called when a program runs, but a function cateeti which

is in thecrt object files. This function does some generic setup which application programmers do not
need to worry about.

The path heirarchy is quite complicated, but in essence we can see that the final step is to link in some
extra object files, namely

e crtl.o : provided by the system libraries (libc) this object file contains #@t function which
is actually the first thing called within the program.

crti.o :provided by the system libraries
crtbegin.o
crtsaveres.o
crtend.o
crtn.o
We discuss how these are used to start the program a little later.

Next you can see that we link in our two object filed]o.o andfunction.o . After that we specify
some extra libraries with flags. These libraries are system specific and required for every program. The
major one islc which brings in the C library, which has all common functionsitistf()

After that we again link in some more system object files which do some cleanup after programs exit.

Although the details are complicated, the concept is straight forward. All the object files will be linked
together into a single executable file, ready to run!

The Executable

We will go into more details about the executable in the short future, but we can do some inspection in a
similar fashion to the object files to see what has happened.

Example 7.10. Executable Example

1
ianw@lime:~/programs/csbu/wk7/code$ gcc -o program hello.c function.c
ianw@lime:~/programs/csbu/wk7/code$ readelf --symbols ./program

5 Symbol table '.dynsym' contains 11 entries:
Num: Value Size Type Bind Vis Ndx Name
0: 0000000000000000 0 NOTYPE LOCAL DEFAULT UND

126

The Toolchain

1: 6000000000000de0 0 OBJECT GLOBAL DEFAULT ABS _DYNAMIC
2: 0000000000000000 176 FUNC GLOBAL DEFAULT UND printf@GLIBC_2.2 (2)
10 3: 600000000000109¢c O NOTYPE GLOBAL DEFAULT ABS __bss_start
4: 0000000000000000 704 FUNC GLOBAL DEFAULT UND exit@GLIBC_2.2 (2)
5: 600000000000109c 0 NOTYPE GLOBAL DEFAULT ABS _edata
6: 6000000000000fe8 0 OBJECT GLOBAL DEFAULT ABS _GLOBAL_OFFSET_TABLE_ 7: 60000
8: 0000000000000000 O NOTYPE WEAK DEFAULT UND _Jv_RegisterClasses
15 9: 0000000000000000 544 FUNC GLOBAL DEFAULT UND __libc_start_ main@GLIBC_2.2 (2)
10: 0000000000000000 0 NOTYPE WEAK DEFAULT UND __gmon_start__

Symbol table '.symtab’ contains 127 entries:
Num: Value Size Type Bind Vis Ndx Name
20 0: 0000000000000000 O NOTYPE LOCAL DEFAULT UND
1: 40000000000001c8 0O SECTION LOCAL DEFAULT 1
2:40000000000001e0 0 SECTION LOCAL DEFAULT 2
3: 4000000000000200 0 SECTION LOCAL DEFAULT 3
4: 4000000000000240 O SECTION LOCAL DEFAULT 4
25 5:4000000000000348 0O SECTION LOCAL DEFAULT 5
6: 40000000000003d8 0 SECTION LOCAL DEFAULT 6
7: 40000000000003f0 0 SECTION LOCAL DEFAULT 7
8: 4000000000000410 0 SECTION LOCAL DEFAULT 8
9: 4000000000000440 0 SECTION LOCAL DEFAULT 9
30 10: 40000000000004a0 O SECTION LOCAL DEFAULT 10
11: 40000000000004e0 0O SECTION LOCAL DEFAULT 11
12: 40000000000005e0 O SECTION LOCAL DEFAULT 12
13: 4000000000000000 O SECTION LOCAL DEFAULT 13
14: 4000000000000b40 O SECTION LOCAL DEFAULT 14
35 15:4000000000000060 O SECTION LOCAL DEFAULT 15
16: 4000000000000bd0 O SECTION LOCAL DEFAULT 16
17: 4000000000000ce0 0 SECTION LOCAL DEFAULT 17
18: 6000000000000db8 0O SECTION LOCAL DEFAULT 18
19: 6000000000000dd0 O SECTION LOCAL DEFAULT 19
40 20: 6000000000000dd8 0O SECTION LOCAL DEFAULT 20
21: 6000000000000de0 O SECTION LOCAL DEFAULT 21
22: 6000000000000fcO 0 SECTION LOCAL DEFAULT 22
23: 6000000000000fd0 0 SECTION LOCAL DEFAULT 23
24: 6000000000000fe0 0 SECTION LOCAL DEFAULT 24
45 25: 6000000000000fe8 0 SECTION LOCAL DEFAULT 25
26: 6000000000001040 O SECTION LOCAL DEFAULT 26
27: 6000000000001080 O SECTION LOCAL DEFAULT 27
28: 60000000000010a0 O SECTION LOCAL DEFAULT 28
29: 60000000000010a8 O SECTION LOCAL DEFAULT 29
50 30: 0000000000000000 0 SECTION LOCAL DEFAULT 30
31: 0000000000000000 0 SECTION LOCAL DEFAULT 31
32: 0000000000000000 0 SECTION LOCAL DEFAULT 32
33: 0000000000000000 0 SECTION LOCAL DEFAULT 33
34: 0000000000000000 0 SECTION LOCAL DEFAULT 34
55 35:0000000000000000 0O SECTION LOCAL DEFAULT 35
36: 0000000000000000 0 SECTION LOCAL DEFAULT 36
37: 0000000000000000 0 SECTION LOCAL DEFAULT 37
38: 0000000000000000 0 SECTION LOCAL DEFAULT 38
39: 0000000000000000 0 SECTION LOCAL DEFAULT 39
60 40: 0000000000000000 O FILE LOCAL DEFAULT ABS /build/buildd/glibc-2.3.2
41: 0000000000000000 O FILE LOCAL DEFAULT ABS /build/buildd/glibc-2.3.2

127

The Toolchain

42: 0000000000000000 O FILE LOCAL DEFAULT ABS /build/buildd/glibc-2.3.2
43: 0000000000000000 O FILE LOCAL DEFAULT ABS /build/buildd/glibc-2.3.2
44: 0000000000000000 O FILE LOCAL DEFAULT ABS /build/buildd/glibc-2.3.2
65 45: 0000000000000000 OFILE LOCAL DEFAULT ABS /build/buildd/glibc-2.3.2
46: 0000000000000000 O FILE LOCAL DEFAULT ABS <command line>
47: 0000000000000000 O FILE LOCAL DEFAULT ABS /build/buildd/glibc-2.3.2
48: 0000000000000000 O FILE LOCAL DEFAULT ABS <command line>
49: 0000000000000000 O FILE LOCAL DEFAULT ABS <built-in>
70 50: 0000000000000000 O FILE LOCAL DEFAULT ABS abi-note.S
51: 0000000000000000 O FILE LOCAL DEFAULT ABS /build/buildd/glibc-2.3.2
52: 0000000000000000 O FILE LOCAL DEFAULT ABS abi-note.S
53: 0000000000000000 O FILE LOCAL DEFAULT ABS /build/buildd/glibc-2.3.2
54: 0000000000000000 O FILE LOCAL DEFAULT ABS abi-note.S
75 55:0000000000000000 OFILE LOCAL DEFAULT ABS <command line>
56: 0000000000000000 O FILE LOCAL DEFAULT ABS /build/buildd/glibc-2.3.2
57: 0000000000000000 OFILE LOCAL DEFAULT ABS <command line>
58: 0000000000000000 O FILE LOCAL DEFAULT ABS <built-in>
59: 0000000000000000 O FILE LOCAL DEFAULT ABS abi-note.S
80 60: 0000000000000000 O FILE LOCAL DEFAULT ABS init.c
61: 0000000000000000 OFILE LOCAL DEFAULT ABS /build/buildd/glibc-2.3.2
62: 0000000000000000 O FILE LOCAL DEFAULT ABS /build/buildd/glibc-2.3.2
63: 0000000000000000 O FILE LOCAL DEFAULT ABS initfini.c
64: 0000000000000000 O FILE LOCAL DEFAULT ABS /build/buildd/glibc-2.3.2
85 65: 0000000000000000 OFILE LOCAL DEFAULT ABS <command line>
66: 0000000000000000 O FILE LOCAL DEFAULT ABS /build/buildd/glibc-2.3.2
67: 0000000000000000 OFILE LOCAL DEFAULT ABS <command line>
68: 0000000000000000 O FILE LOCAL DEFAULT ABS <built-in>
69: 0000000000000000 O FILE LOCAL DEFAULT ABS /build/buildd/glibc-2.3.2
90 70: 4000000000000670 128 FUNC LOCAL DEFAULT 12 gmon_linitializer
71: 0000000000000000 OFILE LOCAL DEFAULT ABS /build/buildd/glibc-2.3.2
72: 0000000000000000 OFILE LOCAL DEFAULT ABS /build/buildd/glibc-2.3.2
73: 0000000000000000 O FILE LOCAL DEFAULT ABS initfini.c
74: 0000000000000000 OFILE LOCAL DEFAULT ABS /build/buildd/glibc-2.3.2
95 75:0000000000000000 OFILE LOCAL DEFAULT ABS <command line>
76: 0000000000000000 O FILE LOCAL DEFAULT ABS /build/buildd/glibc-2.3.2
77: 0000000000000000 OFILE LOCAL DEFAULT ABS <command line>
78: 0000000000000000 O FILE LOCAL DEFAULT ABS <built-in>
79: 0000000000000000 O FILE LOCAL DEFAULT ABS /build/buildd/glibc-2.3.2
100 80: 0000000000000000 O FILE LOCAL DEFAULT ABS auto-host.h
81: 0000000000000000 O FILE LOCAL DEFAULT ABS <command line>
82: 0000000000000000 O FILE LOCAL DEFAULT ABS <built-in>
83: 6000000000000fc0 0 NOTYPE LOCAL DEFAULT 22 _ CTOR_LIST__
84: 6000000000000fd0 O NOTYPE LOCAL DEFAULT 23 _ DTOR_LIST__
105 85: 6000000000000fe0 0 NOTYPE LOCAL DEFAULT 24 _ JCR_LIST__
86: 6000000000001088 8 OBJECT LOCAL DEFAULT 27 dtor_ptr
87: 40000000000006f0 128 FUNC LOCAL DEFAULT 12 _ do_global_dtors_aux
88: 4000000000000770 128 FUNC LOCAL DEFAULT 12 _ do_jv_register_classes
89: 0000000000000000 O FILE LOCAL DEFAULT ABS hello.c
110 90: 6000000000001090 4 OBJECT LOCAL DEFAULT 27i
91: 0000000000000000 O FILE LOCAL DEFAULT ABS function.c
92: 6000000000001098 4 OBJECT LOCAL DEFAULT 27i
93: 0000000000000000 O FILE LOCAL DEFAULT ABS auto-host.h
94: 0000000000000000 OFILE LOCAL DEFAULT ABS <command line>
115 95: 0000000000000000 O FILE LOCAL DEFAULT ABS <built-in>

128

The Toolchain

96: 6000000000000fc8 O NOTYPE LOCAL DEFAULT 22 __ CTOR_END__
97: 6000000000000fd8 O NOTYPE LOCAL DEFAULT 23 _ DTOR_END__
98: 6000000000000fe0 O NOTYPE LOCAL DEFAULT 24 _ JCR_END__
99: 6000000000000de0 0 OBJECT GLOBAL DEFAULT ABS _DYNAMIC
120 100: 4000000000000a70 144 FUNC GLOBAL HIDDEN 12 _ do_global_ctors_aux
101: 6000000000000dd8 0 NOTYPE GLOBAL DEFAULT ABS __fini_array_end
102: 60000000000010a8 8 OBJECT GLOBAL HIDDEN 29 _ dso_handle
103: 40000000000009a0 208 FUNC GLOBAL DEFAULT 12 _ libc_csu_fini
104: 0000000000000000 176 FUNC GLOBAL DEFAULT UND printf@ @GLIBC_2.2
125 105: 40000000000004a0 32 FUNC GLOBAL DEFAULT 10 _init
106: 4000000000000850 128 FUNC GLOBAL DEFAULT 12 function
107: 40000000000005e0 144 FUNC GLOBAL DEFAULT 12 _start
108: 6000000000001094 4 OBJECT GLOBAL DEFAULT 27 global
109: 6000000000000dd0 0 NOTYPE GLOBAL DEFAULT ABS __fini_array_start
130 110: 40000000000008d0 208 FUNC GLOBAL DEFAULT 12 _ libc_csu_init
111: 600000000000109c O NOTYPE GLOBAL DEFAULT ABS _ bss_start
112: 40000000000007f0 96 FUNC GLOBAL DEFAULT 12 main
113: 6000000000000dd0 0 NOTYPE GLOBAL DEFAULT ABS __init_array_end
114: 6000000000000dd8 0O NOTYPE WEAK DEFAULT 20 data_start
135 115:4000000000000b00 32 FUNC GLOBAL DEFAULT 13 _fini
116: 0000000000000000 704 FUNC GLOBAL DEFAULT UND exit@@GLIBC_2.2
117: 600000000000109c O NOTYPE GLOBAL DEFAULT ABS _edata
118: 6000000000000fe8 0 OBJECT GLOBAL DEFAULT ABS _GLOBAL_OFFSET_TABLE_
119: 60000000000010b0 0 NOTYPE GLOBAL DEFAULT ABS _end
140 120: 6000000000000db8 0O NOTYPE GLOBAL DEFAULT ABS __init_array_start
121: 6000000000001080 4 OBJECT GLOBAL DEFAULT 27 _IO_stdin_used
122: 60000000000010a0 8 OBJECT GLOBAL DEFAULT 28 __libc_ia64_register_back
123: 6000000000000dd8 0O NOTYPE GLOBAL DEFAULT 20 __ data_start
124: 0000000000000000 0O NOTYPE WEAK DEFAULT UND _Jv_RegisterClasses
145 125: 0000000000000000 544 FUNC GLOBAL DEFAULT UND __libc_start_main@@GLIBC_
126: 0000000000000000 O NOTYPE WEAK DEFAULT UND __gmon_start__

Some things to note
* Note | built the executable the "easy" way!

» See there are two symbol tables;dlgasym andsymtab ones. We explain how tlilyynsym symbols
work soon, but notice that some of themaesionedwith an@symbol.

* Note the many symbols that have been included from the extra object files. Many of them start with
to avoid clashing with any names the programmer might choose. Read through and pick out the symbols
we mentioned before from the object files and see if they have changed in any way.

129

Chapter 8. Behind the process

Review of executable files

We know that a program running in memory has two major componectsiéfalso commonly known

as atextfor historical reasons) ardhta We also know, however, an executable does not live its life in
memory, but spends most of its life as a file on a disk. This file is in what is referred to as a binary format,
since the bits and bytes of the file are to be interpreted directly by processor hardware.

Representing executable files

Three Standard Sections

Any executable file format will need to specify where the code and data are in the binary file.

One additional component we have not mentioned until now is storage space of uninitialised global
variables. If we declare a variable and give it an initial value this obviously needs to be stored in the
executable file so that upon execution the value is correct. However many variables are uninitialised (or
zero) when the program is first executed. Making space for these in the executable and then simply storing
zero or NULL values in it is a waste of space, needlessly bloating the executable file size. Thus each
executable file can define a BSS section which simply gives a size for the uninitialised data; on program
load the extra memory can be allocated (and set to fero!).

Binary Format

The executable is created by the toolchain from the source code. This file needs to be in a format explicitly
defined such that the compiler can create it and the operating system can identify it and load into memory,
turning it into a running process that the operating system can managexddusable file formatan be

specific to the operating system, as we would not normally expect that a program compiled for one system
will execute on another (for example, you don't expect your Windows programs to run on Linux, or your
Linux programs to run on OS X).

However, the common thread between all executable file formats is that they include a predefined,
standardised header which describes how program code and data are stored in the rest of the file. In words,
it would generally describe "the program code starts 20 bytes into this file, and is 50 kilobytes long. The
program data follows it and is 20 kilobytes long".

In recent times one particular format has become the defacto standard for executable representation for
modern UNIX type systems. It is called trecutable and Linker Format , or ELF for short;
we'll be looking at it in more detail soon.

Binary Format History

a.out

ELF was not always the standard; original UNIX systems used a file format aalled . We can see
the vestiges of this if you compile a program without-theoption to specify an output file name; the
executable will be created with a default nama.ofit 2

Bss probably stands for Block Started by Symbol, an assembly command for a old IBM computer.
2In fact,a.out is the default output filename from thieker. The compiler generally uses randomly generated file names as intermediate files
for assembly and object code.

130

Behind the process

COFF

ELF

a.out is a very simple header format that only allows a single data, code and bss section. As you will
come to see, this is insufficient for modern systems with dynamic libraries.

The Common Object File Format, or COFF, was the precursor to ELF. It's header format was more flexible,
allowing an more (but limited) sections in the file.

COFF also has difficulties with elegant support of shared libraries, and ELF was selected as an alternative
implementation on Linux.

However, COFF lives on in Microsoft Windows as Bartable Executable or PE format. PE is
to Windows as ELF is to Linux.

ELF is an extremely flexible format for representing binary code in a system. By following the ELF
standard you can represent a kernel binary just as easily as a normal executable or a system library. The
same tools can be used to inspect and operate on all ELF files and developers who understand the ELF file
format can translate their skills to most modern UNIX systems.

ELF in depth

ELF extends on COFF and gives the header sufficient flexibility to define an arbitrary number of sections,
each with it's own properties. This facilitates easier dynamic linking and debugging.

131

Behind the process

Figure 8.1. ELF Overview

Header

Header

Header

ELF File Header

Overall, the file has file headerwhich describes the file in general and then has pointers to each of the
individual sections that make up the file.

132

Behind the process

Example 8.1. The ELF Header

1
typedef struct {
unsigned char e_ident[El_NIDENT];
ElIf32_Half e_type;

5 Elf32_Half e_machine;
ElIf32_Word e _version;
Elf32_Addr e_entry;
ElIf32_Off e_phoff;
Elf32_Off e_shoff;

10 ElIf32_Word e _flags;
Elf32_Half e_ehsize;
Elf32_Half e_phentsize;
Elf32_Half e_phnum;
Elf32_Half e_shentsize;

15 Elf32_Half e_shnum;
Elf32_Half e_shstrndx;

} EIf32_Ehdr;

Above is the description as given in the APl documentation. This is the layout of the C structure which
defines a ELF header.

Example 8.2. The ELF Header, as shown by readelf

1
$ readelf --header /bin/ls
ELF Header:
5 Magic: 7f45 4c 46 01 02 01 00 00 00 00 00 00 00 00 00
Class: ELF32
Data: 2's complement, big endian
Version: 1 (current)
OS/ABI: UNIX - System V
10 ABI Version: 0
Type: EXEC (Executable file)
Machine: PowerPC
Version: 0x1
Entry point address: 0x10002640
15 Start of program headers: 52 (bytes into file)
Start of section headers: 87460 (bytes into file)
Flags: 0x0
Size of this header: 52 (bytes)
Size of program headers: 32 (bytes)
20 Number of program headers: 8
Size of section headers: 40 (bytes)
Number of section headers: 29

Section header string table index: 28

25 [..]

133

Behind the process

Above is a more human readable form as present by the readelf program, which is part of GNU binutils.

Thee_ident array is the first thing at the start of any ELF file, and always starts with a few "magic"
bytes. The first byte is 0x7F and then the next three bytes are "ELF". You can inspect an ELF binary to
see this for yourself with something like thexdump command.

Example 8.3. Inspecting the ELF magic number

1
ianw@mingus:~$ hexdump -C /bin/ls | more
00000000 7f45 4c 46 01 02 01 00 00 00 00 00 00 00 00 00 |.ELF............

5 ... (rest of the program follows) ...

Note the Ox7F to start, then the ASCIl encoded "ELF" string. Have a look at the standard and see what the
rest of the array defines and what the values are in a binary.

Next we have some flags for the type of machine this binary is created for. The first thing we can see is
that ELF defines different type sized versions, one for 32 bit and one for 64 bit versions; here we inspect
the 32 bit version. The difference is mostly that on 64 bit machines addresses obviously required to be
held in 64 bit variables. We can see that the binary has been created for a big endian machine that uses
2's complement to represent negative numbers. Skipping down a bit we can\daehtine tells us this

is a PowerPC binary.

The apparently innocuous entry point address seems straight forward enough; this is the address in memory
that the program code starts at.

Beginning C programmers are told thain()is the first program called in your program. Using the entry
point address we can actually verify thasit't

Example 8.4. Investigating the entry point

1
$ cat test.c
#include <stdio.h>

5 int main(void)
{
printf("main is : %p\n“, &main);
return O;
}
10
$ gcc -Wall -o test test.c

$.Jtest
main is : 0x10000430
15
$ readelf --headers ./test | grep 'Entry point'
Entry point address: 0x100002b0

$ objdump --disassemble ./test | grep 100002b0
20 100002b0 <_start>:
100002b0: 7¢290b78 mr r9rl

134

Behind the process

Above we can see that the entry point is actually a function cadtad . Our program didn't define this
at all, and the leading underscore suggests that it is in a separaEepace/Ne examine how a program
starts up below.

After that the header contians pointers to where in the file other important parts of the ELF file start, like
a table of contents.

Symbols and Relocations

The ELF specification provides faymbol tablesvhich are simply mappings of strings (symbols) to
locations in the file. Symbols are required for linking; for example assigning a value to a Viaxdable
declared asxternintfoo; would require the linker to find the addres$oaf , which would involve
looking up "foo" in the symbol table and finding the address.

Closely related to symbols ameocations A relocation is simply a blank space left to be patched up later.

In the previous example, until the addres®of is known it can not be used. However, on a 32-bit system,

we know theaddressof foo must be a 4-byte value, so any time the compiler needs to use that address (to
say, assign a value) it can simply leave 4-byes of blank space and keep a relocation that essentially says
to the linker "place the real value of "foo" into the 4 bytes at this address". As mentioned, this requires the
symbol "foo" to be resolved. the section called “Relocations” contains further information on relocations.

Sections and Segments

The ELF format specifies two "views" of an ELF file -- that which is used for linking and that which is
used for execution. This affords significant flexibility for systems designers.

We talk abousectionsn object code waiting to be linked into an executable. One or more sections map
to asegmenin the executable.

Segments

As we have done before, it is sometimes easier to look at the higher level of abstraction (segments) before
inspecting the lower layers.

As we mentioned the ELF file has an header that describes the overall layout of the file. The ELF header
actually points to another group of headers calledbtbgram headersThese headers describe to the
operating system anything that might be required for it to load the binary into memory and execute it.
Segments are described by program headers, but so are some other things reuquired to get the executable
running.

Example 8.5. The Program Header

1
typedef struct {
ElIf32_Word p_type;
EIf32_Off p_offset;

5 EIf32_Addr p_vaddr;
ElIf32_Addr p_paddr;
Elf32_Word p_filesz;
Elf32_Word p_memsz;

135

Behind the process

Elf32_Word p_flags;
10 Elf32_Word p_align;

The definition of the program header is seen above. You might have noticed from the ELF header definition
above how there were fields phoff , e_phnum ande_phentsize ; these are simply the offset in

the file where the program headers start, how many program headers there are and how big each program
header is. With these three bits of information you can easily find and read the program headers.

As we mentioned, program headers more than just segmentg. fipe field defines just what the
program header is defining. For example, if this fiel@Ts INTERP the header is defined as meaning

a string pointer to aimterpreterfor the binary file. We discussed compiled versus interpreted languages
previously and made the distinction that a compiler builds a binary which can be run in a stand alone
fashion. Why should it need an interpreter? As always, the true picture is a little more complicated. There
are several reasons why a modern system wants flexibility when loading executable files, and to do this
some information can only be adequately acquired at the actual time the program is set up to run. We see
this in future chapters where we look into dynamic linking. Consequently some minor changes might need
to be made to the binary to allow it to work properly at runtime. Thus the usual interpreter of a binary file
is thedyanmic loaderso called because it takes the final steps to complete loading of the exectable and
prepare the binary image for running.

Segments are described with a valu®df LOADIn thep_type field. Each segment is then described

by the other fields in the program header. pheffset field tells you how far into the file on disk the

data for the segment is. Thevaddr field tells you what address that data is to live at in virtual memory
(p_addr describes the physical address, which is only really useful for small embedded systems that do
not implement virtual memory). The two flagsfilesz ~ andp_memsz work to tell you how big the
segment is on disk and how big it should be in memory. If the memory size is greater than the disk size,
then the overlap should be filled with zeros. In this way you can save considerable space in your binaries
by not having to waste space for empty global variables. Fipaflggs indicates the permissions on

the segment. Execute, read and write permissions can be specified in any combiation; for example code
segements should be marked as read and execute only, data sections as read and write with no exectue.

There are a few other segment types defined in the program headers, they are described more fully in the
standards specification (XXX).

Sections
As we have mentioned, sections make up segments. Sections are a way to organise the binary into logical
areas to communicate information between the compiler and the linker. In some special binaries, such as

the linux kernel, sections are used in more specific ways.

We've seen how segments utimatley come down to a blob of data in a file on disk with some descriptions
about where it should be loaded and what permissions it has. (XXX)

Sections have a similar header to segments.

Example 8.6. Sections

1
typedef struct {
ElIf32_Word sh_name;
EIf32_Word sh_type;

136

Behind the process

5 Elf32_Word sh_flags;
Elf32_Addr sh_addr;
ElIf32_Off sh_offset;
Elf32_Word sh_size;
ElIf32_Word sh_link;

10 EIf32_Word sh_info;
EIf32_Word sh_addralign;
Elf32_Word sh_entsize;

}
15

Sections have a few more types defined for shetype field; for example a section of type
SH_PROGBITSs defined as a section that hold binary data for use by the program. Other flags say if
this section is a symbol table (used by the linker or debugger for example) or maybe something for the
dynamic loader.

There are also more attributes, such aslibeateattribute which flags that this section will need memory
allocated for it.

It is probably best to examine sections through an example of them in use. Consier the following program.

Example 8.7. Sections

1
#include <stdio.h>

int big_big_array[10*1024*1024];
5
char *a_string = "Hello, World!";

inta_var_with_value = 0x100;

10 int main(void)
{
big_big_array[0] = 100;
printf("%s\n", a_string);
a_var_with_value += 20;
15}

Example 8.8. Sections readelf output

1
$ readelf --all ./sections
ELF Header:
5 Size of section headers: 40 (bytes)
Number of section headers: 37

Section header string table index: 34

Section Headers:
10 [Nr] Name Type Addr Off Size ES Flg Lk Inf Al

137

Behind the process

[O] NULL 00000000 000000 00000000 0O 0 O
[1] .interp PROGBITS 10000114 000114 00000d 00 A 0 01
[2] .note.ABI-tag NOTE 10000124 000124 00002000 A 0 0 4
[3] .hash HASH 10000144 000144 00002c 04 A 4 0 4
15 [4].dynsym DYNSYM 10000170 000170 00006010 A 5 1 4
[5] .dynstr STRTAB 100001d0 0001d0 00005e 00 A 0 0 1
[6] .gnu.version VERSYM 1000022e 00022e 00000c 02 A 4 0 2
[7] .gnu.version_r VERNEED

1000023c 00023c 00002000 A 5 1 4

[8] .rela.dyn RELA 1000025c 00025c 00000cO0c A 4 0 4

20 [9] .rela.plt RELA

10000268 000268 000018 Oc A 4 25 4
[10] .init PROGBITS 10000280 000280 000028 00 AX 0 0 4
[11] .text PROGBITS 100002b0 0002b0 000560 00 AX 0 0 16
[12] fini PROGBITS 10000810 000810 000020 00 AX 0 0 4
[13] .rodata PROGBITS 10000830 000830 00002400 A 0 0 4
25 [14] .sdata2 PROGBITS 10000854 000854 00000000 A 0 0 4
[15] .eh_frame PROGBITS 10000854 000854 00000400 A 0 0 4
[16] .ctors PROGBITS 10010858 000858 000008 00 WA 0 0 4
[17] .dtors PROGBITS 10010860 000860 000008 00 WA 0 0 4
[18] .jcr PROGBITS 10010868 000868 000004 00 WA 0 0 4
30 [19].got2 PROGBITS 1001086¢ 00086¢ 000010 00 WA 0 0 1
[20] .dynamic DYNAMIC 1001087¢ 00087c 0000c8 08 WA 5 0 4
[21] .data PROGBITS 10010944 000944 000008 00 WA 0 0 4
[22] .got PROGBITS 1001094c 00094c 000014 04 WAX 0 0 4
[23] .sdata PROGBITS 10010960 000960 000008 00 WA 0 0 4
35 [24] .sbss NOBITS 10010968 000968 000000 00 WA 0 0 1
[25] .plt NOBITS 10010968 000968 000060 00 WAX 0 0 4
[26] .bss NOBITS

100109c8 000968 2800004 00 WA 0 0 4
[27] .comment PROGBITS 00000000 000968 00018f00 O

01
[28] .debug_aranges PROGBITS 00000000 000af8 00007800 0 0 8
40 [29] .debug_pubnames PROGBITS 00000000 000b70 00002500 0 01
[30] .debug_info PROGBITS 00000000 000b95 0002e500 0 01
[31] .debug_abbrev PROGBITS 00000000 000e7a 000076 00 0 0 1
[32] .debug_line PROGBITS 00000000 000ef0 0001de 00 0 0 1
[33] .debug_str PROGBITS 00000000 0010ce 0000f0 01 MS 0 0 1
45 [34] .shstrtab STRTAB 00000000 0011be 00013b00 0 0 1
[35] .symtab SYMTAB 00000000 0018c4 000c90 10 36 65 4
[36] .strtab STRTAB 00000000 002554 00090900 0 01
Key to Flags:

W (write), A (alloc), X (execute), M (merge), S (strings)
50

I (info), L (link order), G (group), x (unknown)
O (extra OS processing required) o (OS specific), p (processor specific)

There are no section groups in this file.
55
Symbol table '.symtab’ contains 201 entries:

Num: Value Size Type Bind Vis Ndx Name

99: 100109cc 0x2800000 OBJECT GLOBAL DEFAULT 26 big_big_array
60 ..

110: 10010960 4 OBJECT GLOBAL DEFAULT 23 a_string

130: 10010964 4 OBJECT GLOBAL DEFAULT 23 a_var_with_value

138

Behind the process

65 144:10000430 96 FUNC GLOBAL DEFAULT 11 main

Above we have stripped some parts of the readelf output for clarity. We can analyse each part of our simple
program and see what happens to it.

Firstly, let us look at the variableg_big_array , which as the name suggests is a fairly large global
array. If we skip down to the symbol table we can see that the variable is at |6z40&109cc which

we can correlate to thbess section in the section listing, since it starts just below0(x&00109c8 .

Note the size, and how it is quite large. We mentioned that BSS is a standard part of a binary image since
it would be silly to require that binary on disk have 10 megabytes of space allocated to it, when all of
that space is going to be zero. Note that this section has a t)@BITS meaning that it does not have

any bytes on disk.

Thus thebss section is defined for global variables whose value should be zero when the program starts.
We have seen how the memory size can be different to the on disk size in our discussion of segments;
variables being in thdoss section are an indication that they will be given zero value on program start.

Thea_string variable lives in thesdata section, which stands femall data Small data (and the
correspondingsbss section) are sections that can be reached by an offset from some known pointer.
This means it is much faster to get to data in the sections as there are no extra lookups and loading of
addresses into memory required. On the other hand, most architectures are limited to the size of immediate
values you can add to a register (e.g. sayingadd r2, 70; 70 is an immediate value, as opposed

to say, adding two values stored in registérsadd r2,r3) and can thus only offset a certain "small"
distance from an address (XXX).

We can also see that carvar_with_value lives in the same place.

main however lives in thetext section, as we expect (remeber the name "text" and "code" are used
interchanably to refer to a program in memory.

Sections and Segments together

Example 8.9. Sections and Segments

1
$ readelf --segments /bin/Is

Elf file type is EXEC (Executable file)
5 Entry point 0x100026¢c0
There are 8 program headers, starting at offset 52

Program Headers:
Type Offset VirtAddr PhysAddr FileSiz MemSiz Flg Align
10 PHDR 0x000034 0x10000034 0x10000034 0x00100 0x00100 R E 0x4
INTERP 0x000154 0x10000154 0x10000154 0x0000d 0x0000d R 0Ox1
[Requesting program interpreter: /lib/ld.so.1]

LOAD 0x000000 0x10000000 0x10000000 0x14d5c Ox14d5c R E 0x10000
LOAD 0x014d60 0x10024d60 0x10024d60 0x002b0 0x00b7c RWE 0x10000

15 DYNAMIC 0x014f00 0x10024f00 0x10024f00 0x000d8 0x000d8 RW 0Ox4
NOTE 0x000164 0x10000164 0x10000164 0x00020 0x00020 R 0x4

GNU_EH_FRAME 0x014d30 0x10014d30 0x10014d30 0x0002c 0x0002c R 0x4
GNU_STACK 0x000000 0x00000000 0x00000000 0x00000 0x00000 RWE 0x4

139

Behind the process

20 Section to Segment mapping:
Segment Sections...
00
01 .interp
02 .interp .note.ABl-tag .hash .dynsym .dynstr .gnu.version .gnu.version_ r .rela.dyn .rela.plt .init .text .fin
25 03 .data.eh_frame .got2 .dynamic .ctors .dtors .jcr .got .sdata .sbss .p It .bss
04 .dynamic
05 .note.ABl-tag
06 .eh_frame_hdr
07
30

readelf shows us the segments and section mappings in the ELF file for the/bindsy

Skipping to the bottom of the output, we can see what sections have been moved into what segments. So,
for example theinterp section is placed into dNTERP flagged segment. Notice that readelf tells

us it is requesting the interpreféb/Id.so.1 ; this is the dynamic linker which is run to prepare the
binary for execution.

Looking at the twd_OADsegments we can see the distinction between text and data. Notice how the
first one has only "read" and "execute" permissions, whilst the next one has read, write and execute
permissions? These describe the code (r/w) and data (r/w/e) segments.

But data should not need to be executable! Indeed, on most architectures (for example, the most common
x86) the data section will not be marked as having the data section executable. However, the example
output above was taken from a PowerPC machine which has a slightly different programming model (ABI,
see below) requiring that the data section be executa®leh is the life of a systems programmer, where

rules were made to be broken!

The other intereseting thing to note is that the file size is the same as the memory size for the code segment,
however memory size is greater than the file size for the data segment. This comes from the BSS section
which holds zeroed global variables.

Debugging

Tradionally the primary method of post mortem debugging is referred to asrthdumpThe termcore
comes from the original physical characteristics of magnetic core memory, which uses the orientation of
small magnetic rings to store state.

Thus a core dump is simply a complete snapshot of the program as it was running at a particular time.
A debuggercan then be used to examine this dump and reconstruct the program state. Example 8.10,
“Example of creating a core dump and using it with gdb™” shows a sample program that writes to a

random memory location in order to force a crash. At this point the processes will be halted and a dump
of the current state is recorded.

Example 8.10. Example of creating a core dump and using it with gdb™

1
$ cat coredump.c

3For those that are curious, the PowerPC ABI calls stubs for functions in dynamic libraries directly in the GOT, rather than having them bounce
through a seperate PLT entry. Thus the processor needs exectute permissions for the GOT section, which you can see is embedded in the data
segment. This should make sense after reading the dyanmic linking chapter!

140

Behind the process

int main(void) {
char *foo = (char*)0x12345;
5 *foo ='a’

return O;

}

10 $ gcc -Wall -g -0 coredump coredump.c

$./coredump
Segmentation fault (core dumped)

15 $ file ./core
Jcore: ELF 32-bit LSB core file Intel 80386, version 1 (SYSV), SVR4-style, from "./coredump’

$ gdb ./coredump

20 (gdb) core core
[New LWP 31614]
Core was generated by "./coredump'.
Program terminated with signal 11, Segmentation fault.
#0 0x080483c4 in main () at coredump.c:3
25 3 *foo ='a;
(gdb)

Symbols and Debugging Information

As the example shows, the debugger gdb™ requires the original executable and the core dump to provide
the debugging session. Note that the original executable was built wit) tfi@g, which instructs the
compiler to include alliebugging informatiorDebugging information created by the compiler and is kept

in special sections of the ELF file. It describes in detail things like what register values currently hold
which variables used in the code, size of variables, length of arrays, etc. It is generally in the standard
DWARFformat (a pun on the homonym ELF).

Including debugging information can make executable files and libraries very large; although this data is
not required resident in memory for actually running it can still take up considerable disk space. Thus the
usual process is ttrip this information from the ELF file. While it is possible to arrange for shipping

of both stripped and unstripped files, most all current binary distribution methods provide the debugging
information in separate files. The objcopy™ tool can be used to extract the debugging information (
only-keep-debug) andthen add a link in the original executable to this stripped informaiiatu{
gnu-debuglink). After this is done, a special section caligau_debuglink will be present in the

original executable, which contains a hash so that when a debugging sessions starts the debugger can be
sure it associates the right debugging information with the right executable.

Example 8.11. Example of stripping debugging information into separate files using
objcopy™

1
$ gcc -g -shared -o libtest.so libtest.c
$ objcopy --only-keep-debug libtest.so libtest.debug
$ objcopy --add-gnu-debuglink=libtest.debug libtest.so
5 $ objdump -s -j .gnu_debuglink libtest.so

141

Behind the process

libtest.so: file format elf32-i386

Contents of section .gnu_debuglink:
10 0000 6¢c696274 6573742e 64656275 67000000 libtest.debug...
0010 52a7fd0a R...

Symbols take up much less space, but are also targets for removal from final output. Once the individual
object files of an executable are linked into the single final image there is generally no need for most
symbols to remain. As discussed in the section called “Symbols and Relocations” symbols are required
to fix up relocation entries, but once this is done the symbols are not strictly necessary for running the
final program. On Linux the GNU toolchain strip™ program provides options to remove symbols. Note
that some symbols are required to be resolved at run-timéyifiamic linking the focus of Chapter 9,
Dynamic Linking but these are put in separdimamicsymbol tables so they will not be removed and
render the final output useless.

Inside coredumps

A coredump is really just another ELF file; this illustrates the flexibility of ELF as a binary format.

Example 8.12. Example of using readelf™ and eu-readelf™ to examine a coredump.

1
$ readelf --all ./core
ELF Header:
Magic: 7f 45 4c 46 01 01 01 00 00 00 00 00 00 00 00 00
5 Class: ELF32
Data: 2's complement, little endian
Version: 1 (current)
OS/ABI: UNIX - System V
ABI Version: 0
10 Type: CORE (Core file)
Machine: Intel 80386
Version: 0x1
Entry point address: 0x0
Start of program headers: 52 (bytes into file)
15 Start of section headers: 0 (bytes into file)
Flags: 0x0
Size of this header: 52 (bytes)
Size of program headers: 32 (bytes)
Number of program headers: 15
20 Size of section headers: 0 (bytes)
Number of section headers: 0

Section header string table index: 0

There are no sections in this file.
25
There are no sections to group in this file.

Program Headers:
Type Offset VirtAddr PhysAddr FileSiz MemSiz Flg Align
30 NOTE 0x000214 0x00000000 0x00000000 0x0022c 0x00000 O

142

Behind the process

LOAD 0x001000 0x08048000 0x00000000 0x01000 0x01000 R E 0x1000
LOAD 0x002000 0x08049000 0x00000000 0x01000 0x01000 RW 0x1000
LOAD 0x003000 0x489fc000 0x00000000 0x01000 Ox1b000 R E 0x1000
LOAD 0x004000 0x48a17000 0x00000000 0x01000 0x01000 R 0x1000
35 LOAD 0x005000 0x48a18000 0x00000000 0x01000 0x01000 RW 0x1000
LOAD 0x006000 0x48a1f000 0x00000000 0x01000 0x153000 R E 0x1000
LOAD 0x007000 0x48b72000 0x00000000 0x00000 0x01000 0x1000
LOAD 0x007000 0x48b73000 0x00000000 0x02000 0x02000 R 0x1000
LOAD 0x009000 0x48b75000 0x00000000 0x01000 0x01000 RW 0x1000
40 LOAD 0x00a000 0x48b76000 0x00000000 0x03000 0x03000 RW 0x1000
LOAD 0x00d000 0xb771c000 0x00000000 0x01000 0x01000 RW 0x1000
LOAD 0x00e000 0xb774d000 0x00000000 0x02000 0x02000 RW 0x1000
LOAD 0x010000 0xb774f000 0x00000000 0x01000 0x01000 R E 0x1000
LOAD 0x011000 Oxbfeac000 0x00000000 0x22000 0x22000 RW 0x1000
45

There is no dynamic section in this file.
There are no relocations in this file.

50 There are no unwind sections in this file.
No version information found in this file.

Notes at offset 0x00000214 with length 0x0000022c:

55 Owner Data size Description
CORE 0x00000090 NT_PRSTATUS (prstatus structure)
CORE 0x0000007c NT_PRPSINFO (prpsinfo structure)
CORE 0x000000a0 NT_AUXV (auxiliary vector)
LINUX 0x00000030 Unknown note type: (0x00000200)
60

$ eu-readelf -n ./core

Note segment of 556 bytes at offset 0x214:
Owner Data size Type

65 CORE 144 PRSTATUS
info.si_signo: 11, info.si_code: 0, info.si_errno: 0, cursig: 11
sigpend: <>
sighold: <>
pid: 31614, ppid: 31544, pgrp: 31614, sid: 31544

70 utime: 0.000000, stime: 0.000000, cutime: 0.000000, cstime: 0.000000
orig_eax: -1, fpvalid: O

ebx: 1219973108 ecx: 1243440144 edx: 1
esi: 0 edi: 0 ebp: Oxbfech828
eax: 74565 eip: 0x080483c4 eflags: 0x00010286

75 esp: Oxbfecb818
ds: 0x007b es: 0x007b fs: 0xO000 gs: 0x0033 cs: 0x0073 ss: 0x007b
CORE 124 PRPSINFO
state: 0, sname: R, zomb: 0, nice: 0, flag: 0x00400400
uid: 1000, gid: 1000, pid: 31614, ppid: 31544, pgrp: 31614, sid: 31544
80 fname: coredump, psargs: ./coredump
CORE 160 AUXV
SYSINFO: 0xb774f414
SYSINFO_EHDR: 0xb774f000
HWCAP: Oxafe8fbff <fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov clflush dts acpi mi

143

Behind the process

85 PAGESZ: 4096
CLKTCK: 100
PHDR: 0x8048034
PHENT: 32
PHNUM: 8
90 BASE: 0
FLAGS: 0
ENTRY: 0x8048300
UID: 1000
EUID: 1000
95 GID: 1000
EGID: 1000
SECURE: 0
RANDOM: Oxbfecbalb
EXECFN: Oxbfecdffl
100 PLATFORM: Oxbfecba2b
NULL
LINUX 48 386_TLS
index: 6, base: 0xb771c8d0, limit: 0x000fffff, flags: 0x00000051
index: 7, base: 0x00000000, limit: 0x00000000, flags: 0x00000028
105 index: 8, base: 0x00000000, limit: 0x00000000, flags: 0x00000028

In Example 8.12, “Example of using readelf™ and eu-readelf™ to examine a coredump.” we can see an
examination of the core file produced by Example 8.10, “Example of creating a core dump and using it with
gdb™” using firstly the readelf™ tool. There are no sections, relocations or other extraneous information
in the file that may be required for loading an executable or library; it simply consists of a series of program
headers describingDADsegments. These segments are raw data dumps, created by the kernel, of the
current memory allocations.

The other component of the core dump isNI@&TEsections which contain data necessary for debugging
but not necessarily captured in straight snapshot of the memory allocations. The eu-readelf™ program
used in the second part of the figure provides a more complete view of the data by decoding it.

The PRSTATUShote gives a range of interesting information about the process as it was running; for
example we can see frooursig that the program received a signal 11, or segmentation fault, as we
would expect. Along with process number information, it also includes a dump of all the current registers.
Given the register values, the debugger can reconstruct the stack state and hence peamkitaca
combined with the symbol and debugging information from the original binary the debugger can show
exactly how you reached the current point of execution.

Another interesting output is the currexnixiliary vector(AUXV, discussed in the section called “Kernel
communication to programs”. TI886_TLS describeglobal descriptor tableentries used for the x86
implementation ofhread-local storagésee the section called “Fast System Calls” for more information
on use of segmentation, and the section called “Threads” for information on fmreads

The kernel creates the core dump file within the bounds of the culiraitt settings — since a program

using a lot of memory could result in a very large dump, potentially filling up disk and making problems
even worse, generally théimit is set low or even at zero, since most non-developers have little use
for a core dump file. However the core dump remains the single most useful way to debug an unexpected
situation in a postmortem fashion.

“For a multi-threaded application, there would be duplicate entries for each thread running. The debugger will understand this, and it is how gdb™
implements théhread command to show and switch between threads.

144

Behind the process

ELF Executables

Executables are of course one of the primary uses of the ELF format. Contained withimatiyas
everything required for the operating system to execute the code as intended.

Since an executable is designed to be run in a process with a unique address space (see\GQtagter 6,
Memory the code can make assumptions about where the various parts of the program will be loaded in
memory. Example 8.13, “Segments of an executable file” shows an example using the readelf™ tool to
examine the segments of an executable file. We can see the virtual addresses at Whisbsegments

are required to be placed at. We can further see that one segment is for code — it has read and execute
permissions only — and one is for data, unsurprisingly with read and write permissions, but importantly no
execute permissions (without execute permissions, even if a bug allowed an attacker to introduce arbitrary
data the pages backing it would not be marked with execute permissions, and most processors will hence
disallow any execution of code in those pages).

Example 8.13. Segments of an executable file

1
$ readelf --segments /bin/Is

Elf file type is EXEC (Executable file)
5 Entry point 0x4046d4
There are 8 program headers, starting at offset 64

Program Headers:

Type Offset VirtAddr PhysAddr
10 FileSiz MemsSiz Flags Align
PHDR 0x0000000000000040 0x0000000000400040 0x0000000000400040

0x00000000000001c0 0x00000000000001c0 RE 8

INTERP 0x0000000000000200 0x0000000000400200 0x0000000000400200
0x000000000000001c 0x000000000000001c R 1
15 [Requesting program interpreter: /lib64/ld-linux-x86-64.s0.2]

LOAD 0x0000000000000000 0x0000000000400000 0x0000000000400000
0x0000000000019ef4 0x0000000000019ef4 R E 200000
LOAD 0x000000000001a000 0x000000000061a000 0x000000000061a000

0x000000000000077c 0x0000000000001500 RW 200000
20 DYNAMIC 0x000000000001a028 0x000000000061a028 0x000000000061a028
0x00000000000001d0 0x00000000000001d0 RW 8
NOTE 0x000000000000021c 0x000000000040021c 0x000000000040021c
0x0000000000000044 0x0000000000000044 R 4
GNU_EH_FRAME 0x0000000000017768 0x0000000000417768 0x0000000000417768
25 0x00000000000006fc 0x00000000000006fc R 4
GNU_STACK 0x0000000000000000 0x0000000000000000 0x0000000000000000
0x0000000000000000 0xO000000000000000 RW 8

Section to Segment mapping:
30 Segment Sections...
00
01 .interp
02 .interp .note.ABl-tag .note.gnu.build-id .hash .gnu.hash .dynsym .dynstr .gnu.version .gnu.version_r .r
03 .ctors .dtors .jcr .dynamic .got .got.plt .data .bss
35 04 .dynamic
05 .note.ABl-tag .note.gnu.build-id

145

Behind the process

06 .eh_frame_hdr
07

40

The program segments must be loaded at these addresses; the last step of the linker is to resolve most
relocations (the section called “Symbols and Relocations”) and patch them with the assumed absolute
addresses — the data describing the relocation is then discarded in the final binary and there is no longer
a way to find this information.

In reality, executables generally have external dependencisisaned libraries or pieces of common

code abstracted and shared among the entire system — almost all of the confusing parts of Example 8.13,
“Segments of an executable file” relate to the use of shared libraries. Libraries are discussed in the section
called “Libraries”, dynamic libraries in Chapter@ynamic Linking

Libraries

Developers soon tired of having to write everything from scratch, so one of the first inventions of computer
science wasbraries.

A library is simply a collection of functions which you can call from your program. Obviously a library

has many advantages, not least of which is that you can save much time by reusing work someone else has
already done and generally be more confident that it has fewer bugs (since probably many other people
use the libraries too, and you benefit from having them finding and fixing bugs). A library is exactly like

an executable, except instead of running directly the library functions are invoked with parameters from
your executable.

Static Libraries

The most straight forward way of using a library function is to have the object files from the library
linked directly into your final executable, just as with those you have compiled yourself. When linked like
this the library is called atatic library, because the library will remain unchanged unless the program
is recompiled.

This is the most straight forward way of using a library as the final result is a simple executable with no
dependencies.

Inside static libraries

A static library is simply a group of object files. The object files are keptamamive which leads to their
usual.a suffix extension. You can think of archives as similar tipdile, but without compression.

Below we show the creation of basic static library and introduce some common tools for working with
libraries.

Example 8.14. Creating and using a static library

1
$ cat library.c
/* Library Function */
int function(int input)
5{
return input + 10;

}

146

Behind the process

$ cat library.h
10 /* Function Definition */
int function(int);

$ cat program.c
#include <stdio.h>

15 /* Library header file */
#include "library.h"

int main(void)

{
20 int d = function(100);
printf("%d\n", d);
}

25 $ gcc -c library.c
$ ar rc libtest.a library.o
$ ranlib Jlibtest.a
$ nm --print-armap ./libtest.a

30 Archive index:
function in library.o

library.o:
00000000 T function
35
$ gcc -L . program.c -ltest -0 program
$./program
110
40

Firstly we compile or library to an object file, just as we have seen in the previous chapter.

Notice that we define the library API in the header file. The API consists of function definitions for the
functions in the library; this is so that the compiler knows what types the functions take when building
object files that reference the library (gpgogram.c , which#include s the header file).

We create the library ar (short for "archive™) command. By convention static library file names are prefixed
with lib and have the extensioa . Thec argument tells the program to create the archiveaatetls
archive to add the object files specified into the Iibrary5file.

Next we use the ranlib application to make a header in the library with the symbols of the object file
contents. This helps the compiler to quickly reference symbols; in the case where we just have one this
step may seem a little redundant; however a large library may have thousands of symbols meaning an
index can significantly speed up finding references. We inspect this new header with the nm application.
We see théunction symbol for thefunction() function at offset zero, as we expect.

SArchives created with ar pop up in a few different places around Linux systems other than just creating static libraries. One widely used application
is in the.deb packaging format used with Debian, Ubuntu and some other Linux systems is one edab®plese archives to keep all the
application files together in the one package file. Redhat RPM packages use an alternate but similar format called cpio. Of course the canonical
application for keeping files together is tae file, which is a common format to distribute source code.

147

Behind the process

You then specify the library to the compiler wihame where name is the filename of the library without
the prefixlib . We also provide an extra search directory for libraries, namely the current directory (
L .), since by default the current directory is not searched for libraries.

The final result is a single executable with our new library included.

Static Linking Drawbacks

Static linking is very straight forward, but has a number of drawbacks.

There are two main disadvantages; firstly if the library code is updated (to fix a bug, say) you have to
recompile your program into a new executable and secondly, every program in the system that uses that
library contains a copy in it's executable. This is very inefficient (and a pain if you find a bug and have
to recompile, as per point one).

For example, the C library (glibc) is included in all programs, and provides all the common functions such
asprintf

Shared Libraries

Shared libraries are an elegant way around the problems posed by a static library. A shared library is a
library that is loaded dynamically at runtime for each application that requires it.

The application simply leaves pointers that it will require a certain library, and when the function call

is made the library is loaded into memory and executed. If the library is already loaded for another
application, the code can be shared between the two, saving considerable resources with commonly used
libraries.

This process, called dynamic linking, is one of the more intricate parts of a modern operating system. As
such, we dedicate the next chapter to investigating the dynamic linking process.

ABI's

An ABI is a term you will hear a lot about when working with systems programming. We have talked
extensively aboul\Pl, which are interfaces the programmer sees to your code.

ABI's refer to lower level interfaces which the compiler, operating system and, to some extent, processor,
must agree on to communicate together. Below we introduce a number of concepts which are important
to understanding ABI considerations.

Byte Order

Endianess

Calling Conventions
Passing parameters
registers or stack?

Function Descriptors

On many architectures you must call a function throufymetion descriptgrrather than directly.

148

Behind the process

For example, on 1A64 a function descriptor consists of two components; the address of the function (that
being a 64 bit, or 8 byte value) and the address afltiml pointer(gp). The ABI specifies that rl1 should
always contain the gp value for a function. This means that when you call a function,dbitetbe job

to save their gp value, set rl to be the new value (from the function descripttr@andall the function.

This may seem like a strange way to do things, but it has very useful practical implications as you will see
in the next chapter about global offset tables. On 1A64dzh instruction can only take a maximum 22

bit immediate valu® An immediate value is one that is specified directly, rather than in a register (e.g. in
add r1 + 100 100 is the immediate value).

You might recognise 22 bits as being able to represent 4194304 bytes, or 4MB. Thus each function can
directly offset into an area of memory 4MB big without having to take the penalty of loading any values
into a register. If the compiler, linker and loader all agree on what the global pointer is pointing to (as
specified in the ABI) performance can be improved by less loading.

Starting a process

We mentioned before that simply saying the program starts withah®) function is not quite true.
Below we exaime what happens to a typical dynamically linked program when it is loaded and run
(statically linked programs are similar but different XXX should we go into this?).

Firstly, in response to eaxec system call the kernel allocates the structures for a new process and reads
the ELF file specified from disk.

We mentioned that ELF has a program interpreter fiéld,INTERP, which can be set to 'interpret' the
program. For dynamically linked applications that interpreter is the dynamic linker, namely Id.so, which
allows some of the linking process to be done on the fly before the program starts.

In this case, the kernalsoreads in the dynamic linker code, and starts the program from the entry point
address as specified by it. We examine the role of the dynamic linker in depth in the next chapter, but
suffice to say it does some setup like loading any libraries required by the application (as specified in the
dynamic section of the binary) and then starts execution of the program binary at it's entry point address
(i.e. the_init function).

Kernel communication to programs

The kernel needs to communicate some things to programs when they start up; namely the arguments to the
program, the current environment variables and a special structure calfaakxitiery Vector or

auxv (you can request the the dynamic linker show you some debugging outpuwithby specifying

the environment valueD_SHOW_AUXV31

The arguments and environment at fairly straight forward, and the various incarnatiorexetthsystem
call allow you to specify these for the program.

The kernel communicates this by putting all the required information on the stack for the newly created
program to pick up. Thus when the program starts it can use it's stack pointer to find the all the startup
information required.

The auxiliary vector is a special structure that is for passing information directly from the kernel to the
newly running program. It contains system specific information that may be required, such as the default
size of a virtual memory page on the systenmandware capabilitiesthat is specific features that the
kernel has identified the underlying hardware has that userspace programs can take advantage of.

6Technically this is because of the way IA64 bundles instructions. Three instructions are put into each bundle, and there is only enough room to
keep a 22 bit value to keep the bundle together.

149

Behind the process

Kernel Library

We mentioned previously that system calls are slow, and modern systems have mechanisms to avoid the
overheads of calling a trap to the processor.

In Linux, this is implemented by a neat trick between the dyanmic loader and the kernel, all communicated
with the AUXYV structure. The kernel actually adds a small shared library into the address space of every
newly created process which contains a function that makes system calls for you. The beauty of this system
is that if the underlying hardware supports a fast system call mechanism the kernel (being the creater of the
library) can use it, otherwise it can use the old scheme of generating a trap. This library ismamed
gate.so.1 , so called because it igatewayto the inner workings of the kernel.

When the kernel starts the dynamic linker it adds an entry to the auxvA&alI&Y SINFO_EHDRwhich

is the address in memory that the special kernel library lives in. When the dynamic linker starts it can look
for theAT_SYSINFO_EHDPRointer, and if found load that library for the program. The program has no
idea this library exists; this is a private arrangement between the dynamic linker and the kernel.

We mentioned that programmers make system calls indirectly through calling functions in the system

libraries, namely libc. libc can check to see if the special kernel binary is loaded, and if so use the functions
within that to make system calls. As we mentioned, if the kernel determines the hardware is capable, this
will use the fast sytem call method.

Starting the program

Once the kernel has loaded the interpreter it passes it to the entry point as given in the interpreter file
(note will not examine how the dynamic linker starts at this stage; see Chaptgra®nic Linkingfor

a full discussion of dyanmic linking). The dynamic linker will jump to the entry point address as given

in the ELF binary.

Example 8.15. Disassembley of program startup

1
$ cat test.c

int main(void)

5{
return O;
}
$ gce -o test test.c
10
$ readelf --headers ./test | grep Entry
Entry point address: 0x80482b0

$ objdump --disassemble ./test
15

[.]

080482b0 <_start>:

80482b0: 3led xor %ebp,%ebp

20 80482b2: 5e pop %esi
80482b3: 89el mov %esp,%ecx
80482h5: 83 e4 f0 and $Oxfffffff0,%esp

150

Behind the process

80482b8: 50 push %eax
80482b9: 54 push %esp
25 80482ba: 52 push %edx

80482bb: 68 00 84 04 08 push $0x8048400
80482c0: 68 90 83 04 08 push $0x8048390

80482c5: 51 push %ecx
80482c6: 56 push %esi

30 80482c7: 68 68 83 04 08 push $0x8048368
80482cc: e8 b3 ff ff ff call 8048284 <__libc_start_main@plt>
80482d1: f4 hit
80482d2: 90 nop
80482d3: 90 nop

35
08048368 <main>:
8048368: 55 push %ebp
8048369: 89 e5 mov %esp,%ebp
804836h: 83 ec 08 sub $0x8,%esp

40 804836e: 83 e4f0 and $Oxfffffff0,%esp
8048371: b8 00 00 00 00 mov $0x0,%eax
8048376: 83 c0 Of add $0xf,%eax
8048379: 83 c0 Of add $0xf,%eax
804837c: cle8 04 shr $0x4,%eax

45 804837f: cle004 shl $0x4,%eax
8048382: 29c4 sub %eax,%esp
8048384: b8 00 00 00 00 mov $0x0,%eax
8048389: c9 leave
804838a: c3 ret

50 804838h: 90 nop
804838c: 90 nop
804838d: 90 nop
804838e: 90 nop
804838f: 90 nop

55
08048390 <__libc_csu_init>:
8048390: 55 push %ebp
8048391: 89 e5 mov %esp,%ebp
[.-]

60
08048400 <__libc_csu_fini>:
8048400: 55 push %ebp

[.]

Above we investigate the very simplest program. Using readelf we can see that the entry point is the
start function in the binary. At this point we can see in the disassembley some values are pushed

onto the stack. The first valuex8048400 is the libc_csu_fini function; 0x8048390 is
the _ libc_csu_init and then finally0x8048368 , the main() function. After this the value
__libc_start_main function is called.

__libc_start_main is defined in the glibc sourceysdeps/generic/libc-start.c . The

file function is quite complicated and hidden between a large number of defines, as it needs to be portable
across the very wide number of systems and architectures that glibc can run on. It does a number of specific
things related to setting up the C library which the average programmer does not need to worry about. The
next point where the library calls back into the program is to hamitlle code.

151

Behind the process

init andfini are two special concepts that call parts of code in shared libraries that may need to
be called before the library starts or if the library is unloaded respectivley. You can see how this might
be useful for library programmers to setup variables when the library is started, or to clean up at the
end. Originally the functionsinit and_fini were looked for in the library; however this became
somewhat limiting as everything was required to be in these functions. Below we will examine just how
theinit /fini process works.

At this stage we can see that thelibc_start_main function will receive quite a few input
paramaters on the stack. Firstly it will have access to the program arguments, environment variables and
auxiliary vector from the kernel. Then the initalization function will have pushed onto the stack addresses
for functions to handlait , fini , and finally the address of the main function it's self.

We need some way to indicate in the source code that a function should be cialied oy fini . With
gcc we usattributesto label two functions asonstructorsanddestructorsin our main program. These
terms are more commonly used with object orientent langauges to describe object lifecycles.

Example 8.16. Constructors and Destructors

1
$ cat test.c
#include <stdio.h>

5void __attribute__ ((constructor)) program_init(void) {
printf("init\n");
}

void __attribute__ ((destructor)) program_fini(void) {
10 printf("*fini\n™);
}

int main(void)

{
15 return O;

}

$ gcc -Wall -o test test.c
20 $./test

init

fini

$ objdump --disassemble ./test | grep program_init
25 08048398 <program_init>:

$ objdump --disassemble ./test | grep program_fini
080483b0 <program_fini>:

30 $ objdump --disassemble ./test

[..]
08048280 <_init>:

8048280: 55 push %ebp
35 8048281: 89 e5 mov %esp,%ebp
8048283: 83 ec 08 sub $0x8,%esp

152

Behind the process

8048286: e8 79 00 00 00 call 8048304 <call_gmon_start>

804828b: €8 e0 00 00 00 call 8048370 <frame_dummy>

8048290: e8 2b 02 00 00 call 80484c0 <__do_global_ctors_aux>
40 8048295: c9 leave

8048296: c3 ret

[..]

080484c0 <__do_global_ctors_aux>:

45 80484c0: 55 push %ebp
80484cl: 89 e5 mov %esp,%ebp
80484c3: 53 push %ebx
80484c4: 52 push %edx
80484c5: al2c 9504 08 mov 0x804952c,%eax
50 80484ca: 83 8 ff cmp $Oxffffffff,%eax
80484cd: 74 1e je 80484ed <__do_global_ctors_aux+0x2d>
80484cf: bb 2c 95 04 08 mov $0x804952c,%ebx

80484d4: 8d b6 00 00 00 00 lea O0xO(%esi),%esi
80484da: 8d bf 00 00 00 00 lea 0x0(%edi),%edi

55 80484e0: ff dO call *%eax
80484e2: 8b 43 fc mov Oxfffffffc(Yoebx),%eax
80484e5: 83 eb 04 sub $0x4,%ebx
80484e8: 83 f8 ff cmp $Oxffffffff,%eax
80484eb: 753 jne 80484e0 <__do_global_ctors_aux+0x20>
60 80484ed: 58 pop %eax
80484ee: 5b pop %ebx
80484ef: 5d pop %ebp
80484f0: c3 ret
80484f1: 90 nop
65 80484f2: 90 nop
8048413: 90 nop

$ readelf --sections ./test
70 There are 34 section headers, starting at offset 0xfbO:

Section Headers:

[Nr] Name Type Addr Off Size ES Flg Lk Inf Al
[O] NULL 00000000 000000 00000000 0 0 O
75 [1] .interp PROGBITS 08048114 000114 00001300 A0 01
[2] .note.ABI-tag NOTE 08048128 000128 00002000 A O 0 4
[3] .hash HASH 08048148 000148 00002c 04 A 4 0 4
[4] .dynsym DYNSYM 08048174 000174 00006010 A5 1 4
[5] .dynstr STRTAB 080481d4 0001d4 00005e 00 A 0 01
80 [6].gnu.version VERSYM 08048232 000232 00000c 02 A 4 0 2
[7] .gnu.version_r VERNEED 08048240 000240 00002000 A5 1 4
[8] .rel.dyn REL 08048260 000260 00000808 A 4 0 4
[9] .rel.plt REL 08048268 000268 00001808 A 4 11 4
[10] .init PROGBITS 08048280 000280 00001700 AX 0 0 4
85 [11] .plt PROGBITS 08048298 000298 00004004 AX 0 0 4
[12] .text PROGBITS 080482e0 0002e0 00021400 AX 0 016
[13] fini PROGBITS 080484f4 0004f4 00001a 00 AX 0 0 4
[14] .rodata PROGBITS 08048510 000510 00001200 A O 0 4
[15] .eh_frame PROGBITS 08048524 000524 00000400 A 0 0 4
90 [16] .ctors PROGBITS 08049528 000528 00000c 00 WA 0 0 4

153

Behind the process

[17] .dtors PROGBITS 08049534 000534 00000c 00 WA 0 0 4
[18] .jer PROGBITS 08049540 000540 000004 00 WA 0 0 4
[19] .dynamic DYNAMIC 08049544 000544 0000c8 08 WA 5 0 4
[20] .got PROGBITS 0804960c 00060c 000004 04 WA O 0 4

95 [21] .got.plt PROGBITS 08049610 000610 000018 04 WA O 0 4
[22] .data PROGBITS 08049628 000628 00000c 00 WA 0 0 4
[23] .bss NOBITS 08049634 000634 000004 00 WA 0 0 4
[24] .comment PROGBITS 00000000 000634 00018f00 0 O
[25] .debug_aranges PROGBITS 00000000 0007c8 00007800 O 8

[27] .debug_info PROGBITS 00000000 000865 0002e1 00 O O
[28] .debug_abbrev PROGBITS 00000000 000b46 000076 00 O
[29] .debug_line PROGBITS 00000000 000bbc 0001da00 0 O

1
0

100 [26] .debug_pubnames PROGBITS 00000000 000840 00002500 0 01
1
01
1

[30] .debug_str PROGBITS 00000000 000d96 0000f301 MS 0 0 1
105 [31] .shstrtab STRTAB 00000000 000e89 00012700 0 01
[32] .symtab SYMTAB 00000000 001500 000490 10 33 53 4
[33] .strtab STRTAB 00000000 001990 00021800 0 01
Key to Flags:
W (write), A (alloc), X (execute), M (merge), S (strings)
110 I (info), L (link order), G (group), x (unknown)
O (extra OS processing required) o (OS specific), p (processor specific)
$ objdump --disassemble-all --section .ctors ./test
115 ./test: file format elf32-i386
Contents of section .ctors:
8049528 ffffffff 98830408 00000000
120
The last value pushed onto the stack for thébc_start main was the initalisation function
__libc_csu_init . If we follow the call chain through from libc_csu_init we can see it does
some setup and then calls theit function in the executable. Thénit function eventually calls a
function called__do_global_ctors_aux . Looking at the disassembley of this function we can see

that it appears to start at addreg804952¢c and loop along, reading an value and calling it. We can see
that this starting address is in tlitors section of the file; if we have a look inside this we see that it
contains the first valuel , a function address (in big endian format) and the value zero.

The address in big endian forma008048398 , or the address @rogram_init function! So the

format of thectors section is firstly a -1, and then the address of functions to be called on initalisation,
and finally a zero to indicate the list is complete. Each entry will be called (in this case we only have the
one funtion).

Once__libc_start_main has completed with thenit call it finally calls themain() function!
Remember that it had the stack setup initially with the arguments and environment pointers from the kernel;
this is how main gets itargc, argv[], envpl] arguments. The process now runs and the setup
phase is complete.

A similar process is enacted with theltors for destructors when the program exits.
__libc_start_main calls these when thmain() function completes.

As you can see, a lot is done before the program gets to start, and even a little after you think it is finished!

154

Chapter 9. Dynamic Linking
Code Sharing

We know that for the operating system code is considered read only, and separate from data. It seems
logical then that if programs can not modify code and have large amounts of common code, instead of
replicating it for every executable it should be shared between many executables.

With virtual memory this can be easily done. The physical pages of memory the library code is loaded
into can be easily referenced by any number of virtual pages in any number of address spaces. So while
you only have one physical copy of the library code in system memory, every process can have access to
that library code at any virtual address it likes.

Thus people quickly came up with the idea shared librarywhich, as the name suggests, is shared by
multiple executables. Each executable contains a reference essentially saying "I need library foo". When
the program is loaded, it is up to the system to either check if some other program has already loaded the
code for library foo into memory, and thus share it by mapping pages into the executable for that physical
memory, or otherwise load the library into memory for the executable.

This process is calledlynamic linkingoecause it does part of the linking process "on the fly" as programs
are executed in the system.

Dynamic Library Details

Libraries are very much like a program that never gets started. They have code and data sections (functions
and variables) just like every executable; but no where to start running. They just provide a library of
functions for developers to call.

Thus ELF can represent a dynamic library just as it does an executable. There are some fundamental
differences, such as there is no pointer to where execution should start, but all shared libraries are just ELF
objects like any other executable.

The ELF header has two mutually exclusive fldgjs, EXECandET_DYNto mark an ELF file as either
an executable or a shared object file.

Including libraries in an executable

Compilation

When you compile your program that uses a dynamic library, object files are left with references to the
library functions just as for any other external reference.

You need to include theeaderfor the library so that the compiler knows the specific types of the functions
you are calling. Note the compiler only needs to know the types associated with a function (such as, it
takes annt and returns ahar *) so that it can correctly allocate space for the function'-call.

This has not always been the case with the C standard. Previously, compilers would assume that any function it did not know about returned an
int . On a 32 bit system, the size of a pointer is the same sizeir@s aso there was no problem. However, with a 64 bit system, the size of a
pointer is generally twice the size ofiah so if the function actually returns a pointer, its value will be destroyed. This is clearly not acceptable, as

the pointer will thus not point to valid memory. The C99 standard has changed such that you are required to specify the types of included functions.

155

Dynamic Linking

Linking

Even though thelynamic linkerdoes a lot of the work for shared libraries, the traditional linker still has
a role to play in creating the executable.

The traditional linker needs to leave a pointer in the executable so that the dynamic linker knows what
library will satisfy the dependencies at runtime.

The dynamic section of the executable requiresNEEDEDentry for each shared library that the
executable depends on.

Again, we can inspect these fields with teadelf program. Below we have a look at a very standard
binary,/bin/ls

Example 9.1. Specifying Dynamic Libraries

1
$ readelf --dynamic /bin/ls

Dynamic segment at offset 0x22f78 contains 27 entries:

5 Tag Type Name/Value
0x0000000000000001 (NEEDED) Shared library: [librt.so.1]
0x0000000000000001 (NEEDED) Shared library: [libacl.so.1]
0x0000000000000001 (NEEDED) Shared library: [libc.s0.6.1]
0x000000000000000c (INIT) 0x4000000000001e30

10 ... snip ...

You can see that it specifies three libraries. The most common library shared by most, if not all, programs
on the system ibc . There are also some other libraries that the program needs to run correctly.

Reading the ELF file directly is sometimes useful, but the usual way to inspect a dynamically linked
executable is vitddd . Idd "walks" the dependencies of libraries for you; that is if a library depends on
another library, it will show it to you.

Example 9.2. Looking at dynamic libraries

1
$ Idd /bin/ls
librt.so.1 => /lib/tls/librt.s0.1 (0x2000000000058000)
libacl.so.1 => /lib/libacl.so0.1 (0x2000000000078000)

5 libc.s0.6.1 => /lib/tls/libc.s0.6.1 (0x2000000000098000)
libpthread.so0.0 => /lib/tls/libpthread.so.0 (0x20000000002e0000)
/lib/ld-linux-ia64.s0.2 => /lib/ld-linux-ia64.s0.2 (0x2000000000000000)
libattr.so.1 => /lib/libattr.so.1 (0x2000000000310000)

$ readelf --dynamic /lib/librt.so.1
10
Dynamic segment at offset Oxd600 contains 30 entries:
Tag Type Name/Value
0x0000000000000001 (NEEDED) Shared library: [libc.s0.6.1]
0x0000000000000001 (NEEDED) Shared library: [libpthread.so0.0]
15 ... snip ...

156

Dynamic Linking

We can see above thiipthread has been required from somewhere. If we do a little digging, we
can see that the requirement comes flibn

The Dynamic Linker

The dynamic linker is the program that manages shared dynamic libraries on behalf of an executable. It
works to load libraries into memory and modify the program at runtime to call the functions in the library.

ELF allows executables to specify amerpreter, which is a program that should be used to run the

executable. The compiler and static linker set the interpreter of executables that rely on dynamic libraries
to be the dynamic linker.

Example 9.3. Checking the program interpreter

1
ianw@lime:~/programs/csbu$ readelf --headers /bin/ls

Program Headers:

5 Type Offset VirtAddr PhysAddr
FileSiz MemSiz Flags Align
PHDR 0x0000000000000040 0x4000000000000040 0x4000000000000040

0x0000000000000188 0x0000000000000188 RE 8
INTERP 0x00000000000001c8 0x40000000000001c8 0x40000000000001c8

10 0x0000000000000018 0x0000000000000018 R 1
[Requesting program interpreter: /lib/Id-linux-ia64.s0.2]
LOAD 0x0000000000000000 0x4000000000000000 0x4000000000000000
0x0000000000022e40 0x0000000000022e40 R E 10000
LOAD 0x0000000000022e40 0x6000000000002e40 0x6000000000002e40
15 0x0000000000001138 0x00000000000017b8 RW 10000

DYNAMIC 0x0000000000022f78 0x6000000000002f78 0x6000000000002f78
0x0000000000000200 0x0000000000000200 RW 8
NOTE 0x00000000000001e0 0x40000000000001e0 0x40000000000001e0
0x0000000000000020 0x0000000000000020 R 4
20 1A_64_UNWIND 0x0000000000022018 0x4000000000022018 0x4000000000022018
0x0000000000000e28 0x0000000000000e28 R 8

You can see above that the interpreter is set to be /lib/ld-linux-ia64.s0.2, which is the dynamic linker.
When the kernel loads the binary for execution, it will check ifReINTERP field is present, and if
so load what it points to into memory and start it.

We mentioned that dynamically linked executables leave behind references that need to be fixed with

information that isn't available until runtime, such as the address of a function in a shared library. The
references that are left behind are catkddcations

Relocations

The essential part of the dynamic linker is fixing up addresses at runtime, which is the only time you can
know for certain where you are loaded in memory. A relocation can simply be thought of as a note that a

157

Dynamic Linking

particular address will need to be fixed at load time. Before the code is ready to run you will need to go
through and read all the relocations and fix the addresses it refers to to point to the right place.

Table 9.1. Relocation Example

Address Action
0x123456 Address of symbol "x"
0x564773 Function X

There are many types of relocation for each architecture, and each types exact behaviour is documented
as part of the ABI for the system. The definition of a relocation is quite straight forward.

Example 9.4. Relocation as defined by ELF

1
typedef struct {
Elf32_Addr r_offset; <--- address to fix

Elf32_Word r_info; <--- symbol table pointer and relocation type
5}

typedef struct {
ElIf32_Addr r_offset;
ElIf32_Word r_info;
10 EIf32_Sword r_addend;
} EIf32_Rela

Ther_offset field refers to the offset in the file that needs to be fixed upt Tihto field specifies the

type of relocation which describes what exactly must be done to fix this code up. The simplest relocation
usually defined for an architecture is simply the value of the symbol. In this case you simply substitute the
address of the symbol at the location specified, and the relocation has been “fixed-up".

The two types, one with an addend and one without specify different ways for the relocation to operate.
An addend is simply something that should be added to the fixed up address to find the correct address.
For example, if the relocation is for the symbddecause the original code is doing somethingi[&e

the addend will be set to 8. This means "“find the addressasfd go 8 past it".

That addend value needs to be stored somewhere. The two solutions are covered by the two forms. In the
REL form the addend is actually store in the program code in the place where the fixed up address should

be. This means that to fix up the address properly, you need to first read the memory you are about to fix

up to get any addend, store that, find the "real” address, add the addend to it and then write it back (over
the addend). ThRELAformat specifies the addend right there in the relocation.

The trade offs of each approach should be clear. REhyou need to do an extra memory reference to

find the addend before the fixup, but you don't waste space in the binary because you use relocation target
memory. WithRELAyou keep the addend with the relocation, but waste that space in the on disk binary.
Most modern systems uBdELArelocations.

Relocations in action

The example below shows how relocations work. We create two very simple shared libraries and reference
one from in the other.

158

Dynamic Linking

Example 9.5. Specifying Dynamic Libraries

1
$ cat addendtest.c
extern int i[4];
int*j=i+2;
5
$ cat addendtest2.c
int i[4];

$ gcc -nostdlib -shared -fpic -s -0 addendtest2.so addendtest2.c
10 $ gcc -nostdlib -shared -fpic -0 addendtest.so addendtest.c ./addendtest2.so

$ readelf -r ./addendtest.so

Relocation section ".rela.dyn' at offset 0x3b8 contains 1 entries:
15 Offset Info Type Sym. Value Sym. Name + Addend
0000000104f8 000f00000027 R_IA64_DIR64LSB 0000000000000000i + 8

We thus have one relocationaddendtest.so of typeR_IA64 DIR64LSB . If you look this up in
the 1A64 ABI, the acronym can be broken down to

1. R_IA64: all relocations start with this prefix.
2. DIR64: a 64 bit direct type relocation

3. LSB: Since IA64 can operate in big and little endian modes, this relocation is little endian (least
significant byte).

The ABI continues to say that that relocation means "the value of the symbol pointed to by the relocation,
plus any addend". We can see we have an addend of 8sgieciint) == and we have moved

two int's into the array*{=i + 2). So at runtime, to fix this relocation you need to find the address

of symboli and put it's value, plus 8 infx104f8 .

Position Independence

In anexecutabldile, the code and data segment is given a specified base address in virtual memory. The
executable code is not shared, and each executable gets its own fresh address space. This means that the
compiler knows exactly where the data section will be, and can reference it directly.

Libraries have no such guarantee. They can know that their data section will be a spiés#itrdm the
base address; but exactly where that base address is can only be known at runtime.

Consequently all libraries must be produced with code that can execute no matter where it is put into
memory, known aposition independent coder PIC for short). Note that the data section is still a fixed
offset from the code section; but to actually find the address of data the offset needs to be added to the
load address.

Global Offset Tables

You might have noticed a critical problem with relocations when thinking about the goals of a shared
library. We mentioned previously that the big advantage of a shared library with virtual memory is that
multiple programs can use the code in memory by sharing of pages.

159

Dynamic Linking

The problem stems from the fact that libraries have no guarantee about where they will be put into memory.
The dynamic linker will find the most convenient place in virtual memory for each library required and
place it there. Think about the alternative if this weoeto happen; every library in the system would
require its own chunk of virtual memory so that no two overlapped. Every time a new library were added
to the system it would require allocation. Someone could potentially be a hog and kwrifeli@rary,

not leaving enough space for other libraries! And chances are, your program doesn't ever want to use that
library anyway.

Thus, if you modify the code of a shared library with a relocation, that code no longer becomes sharable.
We've lost the advantage of our shared library.

Below we explain the mechanism for doing this.

The Global Offset Table

So imagine the situation where we take the value of a symbol. With only relocations, we would have the
dynamic linker look up the memory address of that symbol and re-write the code to load that address.

A fairly straight forward enhancement would be to set aside space in our binary to hold the address of that
symbol, and have the dynamic linker put the address there rather than in the code directly. This way we
never need to touch the code part of the binary.

The area that is set aside for these addresses is called the Global Offset Table, or GOT. The GOT lives
in a section of the ELF file calledot .

160

Dynamic Linking

Figure 9.1. Memory access via the GOT

LIBRARY CODE

i

\/'l SHARED VARIABLE |

ffffffffffffffffffffffffff g Y B
O m]
O]
O m]
O m]
O m]
O m]
O]
O]
O m]
O m]
O]
PHYSICAL
MEMORY

VIRTUAL ADDRESSES

The GOT is private to each process, and the process must have write permissions to it. Conversely the
library code is shared and the process should have only read and execute permissions on the code; it would
be a serious security breach if the process could modify code.

The GOT in action

Example 9.6. Using the GOT

1
$ cat got.c
extern int i;

5 void test(void)

161

Dynamic Linking

{
}

10 $ gcc -nostdlib -shared -o got.so ./got.c

i = 100;

$ objdump --disassemble ./got.so

Jgot.so: file format elf64-ia64-little
15
Disassembly of section .text:

0000000000000410 <test>:
410: 0d 1000 18 00 21 [MFI] mov r2=r12

20 416: 00 00 00 02 00 cO nop.f Ox0
41c: 8109 0090 addl r14=24,r1;;
420: 0d 7800 1c 18 10 [MFI] Id8 r15=[r14]
426: 00 00 00 02 00 cO nop.f Ox0
42c: 4106 00 90 mov r14=100;;

25 430: 110038 1e 9011 [MIB] st4 [r15]=r14
436: c000 08004280 mov r12=r2
43c: 08 0084 00 br.ret.sptk.many b0;;

$ readelf --sections ./got.so
30 There are 17 section headers, starting at offset 0x640:

Section Headers:

[Nr] Name Type Address Offset
Size EntSize Flags Link Info Align
35 [0] NULL 0000000000000000 00000000
0000000000000000 0000000000000000 0 0 O
[1] .hash HASH 0000000000000120 00000120
00000000000000a0 0000000000000004 A 2 0 8
[2] .dynsym DYNSYM 00000000000001c0 000001cO
40 00000000000001f8 0000000000000018 A 3 e 8
[3] .dynstr STRTAB 00000000000003b8 000003b8
000000000000003f 0000000000000000 A 0 0 1
[4] .rela.dyn RELA 00000000000003f8 000003f8
0000000000000018 0000000000000018 A 2 0 8
45 [5] .text PROGBITS 0000000000000410 00000410

0000000000000030 0000000000000000 AX 0 0 16
[6] .JIA_64.unwind_inf PROGBITS 0000000000000440 00000440
0000000000000018 0000000000000000 A 0O 0 8
[7] JA_64.unwind 1A_64_UNWIND 0000000000000458 00000458
50 0000000000000018 0000000000000000 AL 5 5 8

[8] .data PROGBITS 0000000000010470 00000470
0000000000000000 0000000000000000 WA 0 0 1
[9] .dynamic DYNAMIC 0000000000010470 00000470
0000000000000100 0000000000000010 WA 3 0 8
55 [10] .got PROGBITS 0000000000010570 00000570
0000000000000020 0000000000000000 WAP 0O 0 8
[11] .sbss NOBITS 0000000000010590 00000590
0000000000000000 0000000000000000 W 0O 0 1
[12] .bss NOBITS 0000000000010590 00000590

162

Dynamic Linking

60 0000000000000000 0000000000000000 WA 0 0 1

[13] .comment PROGBITS 0000000000000000 00000590
0000000000000026 0000000000000000 0 0 1

[14] .shstrtab STRTAB 0000000000000000 000005b6
000000000000008a 0000000000000000 0 0 1

65 [15] .symtab SYMTAB 0000000000000000 00000a80

0000000000000258 0000000000000018 16 12 8

[16] .strtab STRTAB 0000000000000000 00000cd8
0000000000000045 0000000000000000 0 0 1

Key to Flags:

70 W (write), A (alloc), X (execute), M (merge), S (strings)
I (info), L (link order), G (group), x (unknown)
O (extra OS processing required) o (OS specific), p (processor specific)

Above we create a simple shared library which refers to an external symbol. We do not know the address
of this symbol at compile time, so we leave it for the dynamic linker to fix up at runtime.

But we want our code to remain sharable, in case other processes want to use our code as well.

The disassembly reveals just how we do this withgbé . On IA64 (the architecture which the library
was compiled for) the registet is known as thglobal pointerand always points to where thgot
section is loaded into memory.

If we have a look at theeadelf output we can see that tltgot section starts 0x10570 bytes past
where library was loaded into memory. Thus if the library were to be loaded into memory at address
0x6000000000000000 thgot would be at 0x6000000000010570, and regigtewould always point

to this address.

Working backwards through the disassembly, we can see that we store the value 100 into the memory
address held in registet5 . If we look back we can see that register 15 holds the value of the memory
address stored in register 14. Going back one more step, we see we load this address is found by adding
a small number to register 1. The GOT is simply a big long list of entries, one for each external variable.
This means that the GOT entry for the external variah¢estored 24 bytes (that is 3 64 bit addresses).

Example 9.7. Relocations against the GOT

1
$ readelf --relocs ./got.so

Relocation section ".rela.dyn' at offset 0x3f8 contains 1 entries:
5 Offset Info Type Sym. Value Sym. Name + Addend
000000010588 000f00000027 R_IA64_DIR64LSB 0000000000000000i + 0

We can also check out the relocation for this entry too. The relocation says "replace the value at offset
10588 with the memory location that symbol i is stored at".

We know that thegot starts at offset 0x10570 from the previous output. We have also seen how the
code loads an address 0x18 (24 in decimal) past this, giving us an address of 0x10570 + 0x18 = 0x10588 ...
the address which the relocation is for!

So before the program begins, the dynamic linker will have fixed up the relocation to ensure that the value
of the memory at offset 0x10588 is the address of the global variable

163

Dynamic Linking

Libraries
The Procedure Lookup Table

Libraries may contain many functions, and a program may end up including many libraries to get its work
done. A program may only use one or two functions from each library of the many available, and depending
on the run-time path through the code may use some functions and not others.

As we have seen, the process of dynamic linking is a fairly computationally intensive one, since it involves
looking up and searching through many tables. Anything that can be done to reduce the overheads will
increase performance.

The Procedure Lookup Table (PLT) facilitates what is caldey bindingin programs. Binding is
synonymous with the fix-up process described above for variables located in the GOT. When an entry has
been "fixed-up" it is said to be "bound" to its real address.

As we mentioned, sometimes a program will include a function from a library but never actually call that
function, depending on user input. The process of binding this function is quite intensive, involving loading
code, searching through tables and writing memory. To go through the process of binding a function that
is not used is simply a waste of time.

Lazy binding defers this expense until the actual function is called by using a PLT.

Each library function has an entry in the PLT, which initially points to some special dummy code. When
the program calls the function, it actually calls the PLT entry (in the same was as variables are referenced
through the GOT).

This dummy function will load a few parameters that need to be passed to the dynamic linker for it to
resolve the function and then call into a special lookup function of the dynamic linker. The dynamic linker
finds the real address of the function, and writes that location into the calling binary over the top of the
dummy function call.

Thus, the next time the function is called the address can be loaded without having to go back into the
dynamic loader again. If a function is never called, then the PLT entry will never be modified but there
will be no runtime overhead.

The PLT in action

Things start to get a bit hairy here! If nothing else, you should begin to appreciate that there is a fair bit
of work in resolving a dynamic symbol!

Let us consider the simple "hello World" application. This will only make one library gafirtti ~ to
output the string to the user.

Example 9.8. Hello World PLT example

1
$ cat hello.c
#include <stdio.h>

5 int main(void)
{
printf("Hello, World'\n");
return O;

164

Dynamic Linking

10
$ gce -o hello hello.c

$ readelf --relocs ./hello

15 Relocation section ".rela.dyn' at offset 0x3f0 contains 2 entries:
Offset Info Type Sym. Value Sym. Name + Addend
6000000000000ed8 000700000047 R_IA64_FPTR64LSB 0000000000000000 _Jv_RegisterClasses + 0
6000000000000ee0 000900000047 R_IA64_FPTR64LSB 0000000000000000 __gmon_start__ +0

20 Relocation section ".rela.lA_64.pltoff' at offset 0x420 contains 3 entries:
Offset Info Type Sym. Value Sym. Name + Addend
6000000000000f10 000200000081 R_IA64_IPLTLSB 0000000000000000 printf + 0
6000000000000f20 000800000081 R_IA64_IPLTLSB 0000000000000000 __libc_start_main + 0
6000000000000f30 000900000081 R_IA64_IPLTLSB 0000000000000000 _ _gmon_start__+0
25

We can see above that we hayR dA64 IPLTLSB relocation for ouprintf ~ symbol. This is saying
"put the address of symbol printf into memory address 0x6000000000000f10". We have to start digging
deeper to find the exact procedure that gets us the function.

Below we have a look at the disassembly ofrttaén() function of the program.

Example 9.9. Hello world main()

1
4000000000000790 <main>:
4000000000000790: 00 08 15 08 80 05 [MIN] alloc r33=ar.pfs,5,4,0
4000000000000796: 20 02 30 00 42 60 mov r34=r12

5 400000000000079c: 04 08 00 84 mov r35=rl
40000000000007a0: 01 00 00 00 01 00 [MIN] nop.m 0x0
40000000000007a6: 00 02 00 62 00 cO mov r32=b0
40000000000007ac: 81 0c 00 90 addl r14=72,r1;;
40000000000007h0: 1c20011c 1810 [MFB] 1d8 r36=[r14]

10 40000000000007b6: 00 00 00 02 00 00 nop.f 0x0
40000000000007bc: 78 fd ff 58 br.call.sptk.many b0=4000000000000520 <_init+0xb0>
40000000000007c0: 02 08 00 46 00 21 [MIN] mov r1=r35
40000000000007c6: €0 00 00 00 42 00 mov r14=r0;;
40000000000007cc: 017000 84 mov r8=r14

15 40000000000007d0: 00 00 00 00 01 00 [MIN] nop.m 0x0
40000000000007d6: 00 08 01 55 00 00 mov.i ar.pfs=r33
40000000000007dc: 00 0a 00 07 mov b0=r32
40000000000007€0: 1d 60 00 44 00 21 [MFB] mov r12=r34
40000000000007€6: 00 00 00 02 00 80 nop.f 0x0

20 40000000000007ec: 08 00 84 00 br.ret.sptk.many b0;;

The call to 0x4000000000000520 must be us callingptigf function. We can find out where this
is by looking at the sections witkadelf

Example 9.10. Hello world sections

1

165

Dynamic Linking

$ readelf --sections ./hello
There are 40 section headers, starting at offset 0x25c0:

5 Section Headers:

[Nr] Name Type Address Offset
Size EntSize Flags Link Info Align
[O] NULL 0000000000000000 00000000
0000000000000000 0000000000000000 0 0 O
10 ...
[11] .plt PROGBITS 40000000000004c0 000004c0
00000000000000cO0 0000000000000000 AX 0 0 32
[12] .text PROGBITS 4000000000000580 00000580
00000000000004a0 0000000000000000 AX 0 0 32
15 [13] fini PROGBITS 4000000000000a20 00000a20
0000000000000040 0000000000000000 AX 0 0 16
[14] .rodata PROGBITS 4000000000000a60 00000a60
000000000000000f 0000000000000000 A 0O 0 8
[15] .opd PROGBITS 4000000000000a70 00000a70

20 0000000000000070 0000000000000000 A 0 0 16
[16] .IA_64.unwind_inf PROGBITS 4000000000000ae0 00000ae0
00000000000000f0 0000000000000000 A 0O 0 8
[17] JA_64.unwind IA_64_UNWIND 4000000000000bd0 00000bdO
00000000000000cO 0000000000000000 AL 12 ¢ 8
25 [18] .init_array INIT_ARRAY 6000000000000c90 00000c90
0000000000000018 0000000000000000 WA 0O O 8
[19] .fini_array FINI_ARRAY 6000000000000ca8 00000ca8
0000000000000008 0000000000000000 WA 0O O 8
[20] .data PROGBITS 6000000000000cb0 00000chO
30 0000000000000004 0000000000000000 WA 0O 0 4
[21] .dynamic DYNAMIC 6000000000000cb8 00000ch8
00000000000001e0 0000000000000010 WA 5 0 8
[22] .ctors PROGBITS 6000000000000€98 00000e98
0000000000000010 0000000000000000 WA 0O O 8
35 [23] .dtors PROGBITS 6000000000000ea8 00000ea8
0000000000000010 0000000000000000 WA 0O O 8
[24] .jer PROGBITS 6000000000000eh8 00000eh8
0000000000000008 0000000000000000 WA 0O O 8
[25] .got PROGBITS 6000000000000ecO 00000ecO
40 0000000000000050 0000000000000000 WAP 0O O 8
[26] .IA_64.pltoff PROGBITS 6000000000000f10 00000f10
0000000000000030 0000000000000000 WAP 0O 0 16
[27] .sdata PROGBITS 6000000000000f40 00000f40
0000000000000010 0000000000000000 WAP 0O 0 8
45 [28] .sbss NOBITS 6000000000000f50 0000050
0000000000000008 0000000000000000 WA 0O O 8
[29] .bss NOBITS 6000000000000f58 00000f50
0000000000000008 0000000000000000 WA 0O O 8
[30] .comment PROGBITS 0000000000000000 0000050
50 00000000000000b9 0000000000000000 0 0 1
[31] .debug_aranges PROGBITS 0000000000000000 00001010
0000000000000090 0000000000000000 0 0 16
[32] .debug_pubnames PROGBITS 0000000000000000 000010a0
0000000000000025 0000000000000000 0 0 1
55 [33] .debug_info PROGBITS 0000000000000000 000010c5

166

Dynamic Linking

00000000000009c4 0000000000000000 0 0 1
[34] .debug_abbrev PROGBITS 0000000000000000 00001289

0000000000000124 0000000000000000 0O 0 1
[35] .debug_line PROGBITS 0000000000000000 00001bad

60 00000000000001fe 0000000000000000 0 0 1
[36] .debug_str PROGBITS 0000000000000000 00001dab

00000000000006a1 0000000000000001 MS 0 0 1

[37] .shstrtab STRTAB 0000000000000000 0000244c
000000000000016f 0000000000000000 0 0 1
65 [38] .symtab SYMTAB 0000000000000000 00002fc0
0000000000000b58 0000000000000018 39 60 8
[39] .strtab STRTAB 0000000000000000 00003b18
0000000000000479 0000000000000000 0 0 1
Key to Flags:

70 W (write), A (alloc), X (execute), M (merge), S (strings)
I (info), L (link order), G (group), x (unknown)
O (extra OS processing required) o (OS specific), p (processor specific)

That address is (unsurprisingly) in thidt section. So there we have our call into the PLT! But we're
not satisfied with that, let's keep digging further to see what we can uncover. We disassemltle the
section to see what that call actually does.

Example 9.11. Hello world PLT

1

40000000000004c0 <.plt>:

40000000000004c0:
40000000000004c6:
5 40000000000004cc:
40000000000004d0:
40000000000004d6:
40000000000004dc:
40000000000004¢€0:

10 40000000000004¢€6:

40000000000004ec:
40000000000004f0:
40000000000004f6:
40000000000004fc:

15 4000000000000500:

4000000000000506:
400000000000050c:
4000000000000510:
4000000000000516:

20 400000000000051c:

4000000000000520:
4000000000000526:
400000000000052c:
4000000000000530:

25 4000000000000536:

400000000000053c:
4000000000000540:
4000000000000546:

Ob 1000 1c 00 21
€0 00 08 00 48 00
00 00 04 00
0b 8020 1c 18 14
1041 38 30 28 00
00 00 04 00
1108 00 1c 18 10
60 88 04 80 03 00
60 00 80 00
1178 00 00 00 24
00 00 00 02 00 00
do ff ff 48
1178 04 00 00 24
00 00 00 02 00 00
cO ff ff 48
11 78 08 00 00 24
00 00 00 02 00 00
bO ff ff 48
0b 78 40 03 00 24
0041 3c7029c0O
01 08 00 84
1108 00 1e 18 10
60 80 04 80 03 00
60 00 80 00
0Ob 78 80 03 00 24
0041 3c7029c0O

[MMI] mov r2=r14;,
addl r14=0,r2
nop.i 0x0;;
[MMI] 1d8 r16=[r14],8;;
1d8 r17=[r14],8
nop.i 0x0;;
[MIB] 1d8 r1=[r14]
mov b6=r17
br.few b6;;
[MIB] mov r15=0
nop.i 0x0
br.few 40000000000004c0 <_init+0x50>;;
[MIB] mov r15=1
nop.i 0x0
br.few 40000000000004c0 <_init+0x50>;;
[MIB] mov r15=2
nop.i 0x0

br.few 40000000000004c0 <_init+0x50>;;
[MMI] addl r15=80,r1;;
|d8.acq r16=[r15],8
mov rl4=rl;;
[MIB] [d8 r1=[r15]
mov b6=r16
br.few b6;;
[MMI] addl r15=96,r1;;
|d8.acq r16=[r15],8

167

Dynamic Linking

400000000000054c: 01 08 00 84 mov r14=rl;,

30 4000000000000550: 1108 00 1e 18 10 [MIB] [d8 r1=[r15]
4000000000000556: 60 80 04 80 03 00 mov b6=r16
400000000000055c: 60 00 80 00 br.few b6;;
4000000000000560: Ob 78 c0 03 00 24 [MMI] addl r15=112,r1;;
4000000000000566: 0041 3c7029c0O |d8.acq r16=[r15],8

35 400000000000056¢: 01 08 00 84 mov r14=rl;,
4000000000000570: 1108 00 1e 18 10 [MIB] [d8 r1=[r15]
4000000000000576: 60 80 04 80 03 00 mov b6=r16
400000000000057c: 60 00 80 00 br.few b6;;

40

Let us step through the instructions. Firstly, we add 80 to the value in r1, storing it in r15. We know from
before that r1 will be pointing to the GOT, so this is saying "store in r15 80 bytes into the GOT". The next
thing we do is load into r16 the value stored in this location in the GOT, and post increment the value in
r15 by 8 bytes. We then store rl (the location of the GOT) in r14 and set rl to be the value in the next 8
bytes after r15. Then we branch to r16.

In the previous chapter we discussed how functions are actually called through a function descriptor which
contains the function address and the address of the global pointer. Here we can see that the PLT entry is
first loading the function value, moving on 8 bytes to the second part of the function descriptor and then
loading that value into the gp register before calling the function.

But what exactly are we loading? We know that r1 will be pointing to the GOT. We go 80 bytes past
the got (0x50)

Example 9.12. Hello world GOT

1
$ objdump --disassemble-all ./hello
Disassembly of section .got:
5 6000000000000ec0 <.got>:

6000000000000€e€8: 80 0a 00 00 00 00 data8 0x02a000000

6000000000000€eee: 00 40 90 Oa dep r0=r0,r0,63,1
6000000000000ef2: 00 00 00 00 00 40 [MIB] (p20) break.m 0x1
10 6000000000000ef8: a0 0a 00 00 00 00 data8 0x02a810000
6000000000000¢fe: 00 40 50 of br.few 6000000000000ef0 <_GLOBAL_OFFSET_TABLE
6000000000000f02: 00 00 00 00 00 60 [MIB] (p58) break.m 0x1
6000000000000f08: 60 0a 00 00 00 00 data8 0x029818000
6000000000000f0e: 00 40 90 06 br.few 6000000000000f00 <_GLOBAL_OFFSET_TABLE

15 Disassembly of section .I1A_64.pltoff:

6000000000000f10 <.lA_64.pltoff>:
6000000000000f10: fO 04 00 00 00 00 [MIB] (p39) break.m 0x0

6000000000000f16: 00 40 c0 Oe 00 00 data8 0x03b010000

20 6000000000000f1c: 00 00 00 60 data8 0xc000000000
6000000000000f20: 00 05 00 00 00 00 [MII] (p40) break.m 0x0
6000000000000f26: 00 40 c0 Oe 00 00 data8 0x03b010000
6000000000000f2c: 00 00 00 60 data8 0xc000000000
6000000000000f30: 10 05 00 00 00 00 [MIB] (p40) break.m 0x0

25 6000000000000f36: 00 40 c0 Oe 00 00 data8 0x03b010000
6000000000000f3c: 00 00 00 60 data8 0xc000000000

168

Dynamic Linking

0x6000000000000ec0 + 0x50 = 0x6000000000000f10, orl#hes4.pltoff section. Now we're
starting to get somewhere!

We can decode the objdump output so we can see exactly what is being loaded here. Swapping the byte
order of the first 8 byte® 04 00 00 00 00 00 40 we end up wittdx4000000000004f0
Now that address looks familiar! Looking back up at the assemble output of the PLT we see that address.

The code alx4000000000004f0 firstly puts a zero value into rl5, and then branches back to
0x40000000000004c0 . Wait a minute! That's the start of our PLT section.

We can trace this code through too. Firstly we save the value of the global p@interefn we load three
8 byte values intol6 , r17 and finally,rl . We then branch to the addressli . What we are seeing
here is the actual call into the dynamic linker!

We need to delve into the ABI to understand exactly what is being loaded at this point. The
ABI says two things -- dynamically linked programs must have a special section (called the
DT _IA 64 _PLT_RESERVE section) that can hold three 8 byte values. There is a pointer where this
reserved area in the dynamic segment of the binary.

Example 9.13. Dynamic Segment

1

Dynamic segment at offset Oxcb8 contains 25 entries:

Tag Type Name/Value

5 0x0000000000000001 (NEEDED) Shared library: [libc.s0.6.1]
0x000000000000000c (INIT) 0x4000000000000470
0x000000000000000d (FINI) 0x4000000000000a20

0x0000000000000019 (INIT_ARRAY) 0x6000000000000c90
0x000000000000001b (INIT_ARRAYSZ) 24 (bytes)

10 0x000000000000001a (FINI_ARRAY) 0x6000000000000ca8
0x000000000000001c (FINI_ARRAYSZ) 8 (bytes)

0x0000000000000004 (HASH) 0x4000000000000200
0x0000000000000005 (STRTAB) 0x4000000000000330
0x0000000000000006 (SYMTAB) 0x4000000000000240

15 0x000000000000000a (STRSZ) 138 (bytes)
0x000000000000000b (SYMENT) 24 (bytes)
0x0000000000000015 (DEBUG) 0x0
0x0000000070000000 (IA_64 PLT_RESERVE) 0x6000000000000ec0 -- 0x6000000000000ed8
0x0000000000000003 (PLTGOT) 0x6000000000000ec0

20 0x0000000000000002 (PLTRELSZ) 72 (bytes)
0x0000000000000014 (PLTREL) RELA
0x0000000000000017 (JMPREL) 0x4000000000000420
0x0000000000000007 (RELA) 0x40000000000003f0
0x0000000000000008 (RELASZ) 48 (bytes)

25 0x0000000000000009 (RELAENT) 24 (bytes)
0x000000006ffffffe (VERNEED) 0x40000000000003d0
0x000000006fffffff (VERNEEDNUM) 1
0x000000006fffff0 (VERSYM) 0x40000000000003ba
0x0000000000000000 (NULL) 0x0

30

169

Dynamic Linking

Do you notice anything about it? It's the same value as the GOT. This means that the first three 8 byte
entries in the GOT are actually the reserved area; thus will always be pointed to by the global pointer.

When the dynamic linker starts it is its duty to fill these values in. The ABI says that the first value will be
filled in by the dynamic linker giving thimodulea unique ID. The second value is the global pointer value
for the dynamic linker, and the third value is the address of the function that finds and fixes up the symbol.

Example 9.14. Code in the dynamic linker for setting up special values (from libc
sysdeps/i a64/ dl - machi ne. h)

1
/* Set up the loaded object described by L so its unrelocated PLT
entries will jump to the on-demand fixup code in dl-runtime.c. */

5 static inline int __attribute__ ((unused, always_inline))
elf_machine_runtime_setup (struct link_map *I, int lazy, int profile)
{
extern void _dl_runtime_resolve (void);
extern void _dl_runtime_profile (void);
10
if (lazy)
{
register EIf64_Addrgp __asm__ ("gp");
ElIf64_Addr *reserve, doit;
15
/*
* Careful with the typecast here or it will try to add I-I_addr
* pointer elements
*/
20 reserve = ((EIf64_Addr *)
(I->l_info[DT_IA_64 (PLT_RESERVE)]->d_un.d_ptr + |->_addr));
[* Identify this shared object. */
reserve[0] = (EIf64_Addr) [;

25 /* This function will be called to perform the relocation. */

if (Iprofile)
doit = (EIf64_Addr) ((struct fdesc *) & dI_runtime_resolve)->ip;
else

{
30 if (GLRO(dI_profile) '= NULL
&& _dl_name_match_p (GLRO(dI_profile), 1))
{
[* This is the object we are looking for. Say that we really
want profiling and the timers are started. */
35 GL(dl_profile_map) = 1;
}
doit = (EIf64_Addr) ((struct fdesc *) &_dI_runtime_profile)->ip;

}

40 reserve[l] = doit;
reserve[2] = gp;

}

return lazy;

170

Dynamic Linking

45}

We can see how this gets setup by the dynamic linker by looking at the function that does this for the
binary. Thereserve variable is set from the PLT_RESERVE section pointer in the binary. The unique
value (put intoreserve[0]) is the address of tHmk mapfor this object. Link maps are the internal
representation withiglibc for shared objects. We then put in the addresdlofuntime_resolve

to the second value (assuming we are not using profiliagerve[2] is finally set to gp, which has

been found from r2 with the asm__ call.

Looking back at the ABI, we see that tledocation index for the entry must be placedrits and
the unique identifier must be passedlf .

rl5 has previously been set in the stub code, before we jumped back to the start of the PLT. Have a look
down the entries, and notice how each PLT entry lohSiswith an incremented value? It should come
as no surprise if you look at the relocationsghietf relocation is humber zero.

rl6 we load up from the values that have been initialised by the dynamic linker, as previously discussed.
Once that is ready, we can load the function address and global pointer and branch into the function.

What happens at this point is the dynamic linker functidin runtime_resolve is run. It finds the
relocation; remember how the relocation specified the name of the symbol? It uses this name to find the
right function; this might involve loading the library from disk if it is not already in memory, or otherwise
sharing the code.

The relocation record provides the dynamic linker with the address it needs to "fix up"; remember it was in
the GOT and loaded by the initial PLT stub? This means that after the first time the function is called, the
secondime it is loaded it will get the direct address of the function; short circuiting the dynamic linker.

Summary

You've seen thexactmechanism behind the PLT, and consequently the inner workings of the dynamic
linker. The important points to remember are

« Library calls in your program actually call a stub of code in the PLT of the binary.
e That stub code loads an address and jumps to it.

« Initially, that address points to a function in the dynamic linker which is capable of looking up the "real"
function, given the information in the relocation entry for that function.

» The dynamic linker re-writes the address that the stub code reads, so that the next time the function is
called it will go straight to the right address.

Working with libraries and the linker

The presence of the dynamic linker provides both some advantages we can utilise and some extra issues
that need to be resolved to get a functional system.

Library versions

One potential issue is different versions of libraries. With only static libraries there is much less potential
for problems, as all library code is built directly into the binary of the application. If you want to use a new
version of the library you need to recompile it into a new binary, replacing the old one.

171

Dynamic Linking

This is obviously fairly impractical for common libraries, the most common of course being libc which
is included in most all applications. If it were only available as a static library any change would require
every single application in the system be rebuilt.

However, changes in the way the dynamic library work could cause multiple problems. In the best case, the
modifications are completely compatible and nothing externally visible is changed. On the other hand the
changes might cause the application to crash; for example if a function that used tartekelaanges to

take anint* . Worse, the new library version could have changed semantics and suddenly start silently
returning different, possibly wrong values. This can be a very nasty bug to try and track down; when an
application crashes you can use a debugger to isolate where the error occurs whilst data corruption or
modification may only show up in seemingly unrelated parts of the application.

The dynamic linker requires a way to determine the version of libraries within the system so that newer
revisions can be identified. There are a number of schemes a modern dynamic linker can use to find the
right versions of libraries.

sonanes
Usingsonames we can add some extra information to a library to help identify versions.

As we have seen previously, an application lists the libraries it requii@$_iNEEDEields in the
dynamic section of the binary. The actual library is held in a file on disc, usudily infor core system
libraries orfusr/lib for optional libraries.

To allow multiple versions of the library to exist on disk, they obviously require differing file names. The
soname scheme uses a combination of names and file system links to build a hierarchy of libraries.

This is done by introducing the conceptnojor andminor library revisions. A minor revision is one
wholly backwards compatible with a previous version of the library; this usually consists of only bug fixes.
A major revision is therefore any revision that is not compatible; e.g. changes the inputs to functions or
the way a function behaves.

As each library revision, major or minor, will need to be kept in a separate file on disk, this forms the basis
of the library hierarchy. The library name is by convenliibtNAME.so.MAJOR.MINOR 2 However, if

every application were directly linked against this file we would have the same issue as with a static library;
every time a minor change happened we would need to rebuild the application to point to the new library.

What we really want to refer to is timeajor number of the library. If this changes, we reasonably are
required to recompile our application, since we need to make sure our program is still compatible with
the new library.

Thus thesoname is thelibNAME.so.MAJOR . Thesoname should be set in thBT_SONAMHield
of the dynamic section in a shared library; the library author can specify this version when they build the
library.

Thus each minor version library file on disc can specify the same major version numbBTnSGNAME
field, allowing the dynamic linker to know that this particular library file implements a particular major
revision of the library API and ABI.

To keep track of this, an application called Idconfig is commonly run to create symbolic links named for
the major version to the latest minor version on the system. Idconfig works by running through all the
libraries that implement a particular major revision number, and then picks out the one with the highest
minor revision. It then creates a symbolic link fribNAME.so.MAJOR to the actual library file on

disc, i.e libNAME.s0.MAJOR.MINOR .

2You can optionally haveraleaseas a final identifier after the minor number. Generally this is enough to distinguish all the various versions library.

172

Dynamic Linking

XXX : talk about libtool versions

The final piece of the hierarchy is thempile namdor the library. When you compile your program, to

link against a library you use tAIJAME flag, which goes off searching for tieNAME.so file in the

library search path. Notice however, we have not specified any version number; we just want to link against
the latest library on the system. It is up to the installation procedure for the library to create the symbolic
link between the compilebNAME.so name and the latest library code on the system. Usually this is
handled by your package management system (dpkg or rpm). This is not an automated process because it
is possible that the latest library on the system may not be the one you wish to always compile against; for
example if the latest installed library were a development version not appropriate for general use.

The general process is illustrated below.

Figure 9.2.sonanes

New Build P

$ gce -o test test.c -Ifoo
|'i bf 00.s0.2.0

Major Revision

Minor Revision

[fusr/lib/libfoo.so } libfoo.so.2

|'i bf 00.s0.1.2

Major Revision

Minor Revision

[/usr/lib/libfoo.so.z

libfoo.so.1

Old Application)1 5if@ra, 0, 4o 4

Major Revision

Minor Revision

DT_NEEDED
libfoo.so.1

libfoo.so.1

lusr/lib

| EOUE
B o

How the dynamic linker looks up libraries

When the application starts, the dynamic linker looks dbtheNEEDED[ield to find the required libraries.
This field contains theoname of the library, so the next step is for the dynamic linker to walk through
all the libraries in its search path looking for it.

173

Dynamic Linking

This process conceptually involves two steps. Firstly the dynamic linker needs to search through all the
libraries to find those that implement the givemame. Secondly the file names for the minor revisions
need to be compared to find the latest version, which is then ready to be loaded.

We mentioned previously that there is a symbolic link setup by Idconfig between thedidmarge and

the latest minor revision. Thus the dynamic linker should need to only follow that link to find the correct
file to load, rather than having to open all possible libraries and decide which one to go with each time
the application is required.

Since file system access is so slow, ldconfig also createsteeof libraries installed in the system.
This cache is simply a list gonames of libraries available to the dynamic linker and a pointer to the
major version link on disk, saving the dynamic linker having to read entire directories full of files to
locate the correct link. You can analyse this with /sbin/ldconfig -p; it actually lives in thiettile

Idconfig.so.cache . If the library is not found in the cache the dynamic linker will fall back to the
slower option of walking the file system, thus it is important to re-run Idconfig when new libraries are
installed.

Finding symbols

We've already discussed how the dynamic linker gets the address of a library function and puts it in the
PLT for the program to use. But so far we haven't discusseldgughe dynamic linker finds the address

of the function. The whole process is call@dding because the symbol name is bound to the address

it represents.

The dynamic linker has a few pieces of information; firstlysymabolhat it is searching for, and secondly
a list of libraries that that symbol might be in, as defined byptheNEEDEDields in the binary.

Each shared object library has a section, magt¢ti DYNSYMnd calleddynsym which is the minimal
set of symbols required for dynamic linking -- that is any symbol in the library that may be called by an
external program.

Dynamic Symbol Table

In fact, there are three sections that all play a part in describing the dynamic symbols. Firstly, let us look
at the definition of a symbol from the ELF specification

Example 9.15. Symbol definition from ELF

1
typedef struct {
EIf32_Word st_name;
EIf32_Addr st value;
5 Elf32_Word st_size;
unsigned char st_info;
unsigned char st_other;
EIf32_Half st_shndx;
} EIf32_Sym;
10

Table 9.2. ELF symbol fields

Field Value
st_name An index to the string table

174

Dynamic Linking

Field Value

st_value Value - in a relocatable shared object this holds the
offset from the section of index givensh shndx

st_size Any associated size of the symbol

st_info Information on the binding of the symbol (described
below) and what type of symbol this is (a function,
object, etc).

st_other Not currently used

st_shndx Index of the section this symbol resides in (see
st_value

As you can see, the actual string of the symbol name is held in a separate shet&in (; the entry in
the.dynsym section only holds an index into the string section. This creates some level of overhead for
the dynamic linker; the dynamic linker must read all of the symbol entries idytheym section and

then follow the index pointer to find the symbol name for comparison.

To speed this process up, a third section calladh is introduced, containing lzash tableof symbol
names to symbol table entries. This hash table is pre-computed when the library is built and allows the
dynamic linker to find the symbol entry much faster, generally with only one or two lookups.

Symbol Binding

Whilst we usually say the process of finding the address of a symbol refers is the process of binding that
symbol, thesymbol bindindhas a separate meaning.

The binding of a symbol dictates its external visibility during the dynamic linking procéssalssymbol
is not visible outside the object file it is defined ingldbal symbol is visible to other object files, and
can satisfy undefined references in other objects.

A weakreference is a special type of lower priority global reference. This means it is designed to be
overridden, as we will see shortly.

Below we have an example C program which we analyse to inspect the symbol bindings.

Example 9.16. Examples of symbol bindings

1
$ cat test.c
static int static_variable;

5 extern int extern_variable;
int external_function(void);

int function(void)
10 {
return external_function();

}

static int static_function(void)
15
return 10;

175

Dynamic Linking

}

#pragma weak weak_function
20 int weak_function(void)

{
}

25 $ gce -c test.c
$ objdump --syms test.o

return 10;

test.o: file format elf32-powerpc

30 SYMBOL TABLE:
00000000 | df *ABS* 00000000 test.c
000000001 d .text 00000000 .text
000000001 d .data 00000000 .data
000000001 d .bss 00000000 .bss
35000000381 F .text 00000024 static_function
000000001 d .sbss 00000000 .sbss
000000001 O .shss 00000004 static_variable
000000001 d .note.GNU-stack 00000000 .note.GNU-stack
000000001 d .comment 00000000 .comment
40 00000000g F .text 00000038 function
00000000 *UND* 00000000 external_function
0000005¢c w F .text 00000024 weak_function

$ nm test.o
45 U external_function
00000000 T function
00000038 t static_function
00000000 s static_variable
0000005¢ W weak_function
50

Notice the use offpragma to define the weak symbol. pragma is a way of communicating extra
information to the compiler; its use is not common but occasionally is required to get the compiler to do
out of the ordinary operations.x

We inspect the symbols with two different tools; in both cases the binding is shown in the second column;
the codes should be quite straight forward (are are documented in the tools man page).

Overriding symbols

It is often very useful for a programmer to be ableverridea symbol in a library; that is to subvert the
normal symbol with a different definition.

We mentioned that the order that libraries is searched is given by the ordeDdf tNEEDEDields
within the library. However, it is possible to insert libraries adaktibraries to be searched; this means
that any symbols within them will be found as the final reference.

This is done via an environment variable call&dl PRELOADw~hich specifies libraries that the linker
should load last.

176

Dynamic Linking

Example 9.17. Example of.D_PRELOAD

1
$ cat override.c

#define _GNU_SOURCE 1
#include <stdio.h>

5 #include <stdlib.h>
#include <unistd.h>
#include <sys/types.h>
#include <dlfcn.h>

10 pid_t getpid(void)
{
pid_t (*orig_getpid)(void) = dlsym(RTLD_NEXT, "getpid");
printf("Calling GETPID\n");

15 return orig_getpid();
}

$ cat test.c

#include <stdio.h>
20 #include <stdlib.h>

#include <unistd.h>

int main(void)
{

25 printf("%d\n", getpid());
}

$ gcc -shared -fPIC -o liboverride.so override.c -IdI
$ gcc -o test test.c
30 $ LD_PRELOAD-=./liboverride.so ./test
Calling GETPID
15187

In the above example we override tietpid function to print out a small statement when it is called.
We use thallysm function provided byibc with an argument telling it to continue on and find the
nextsymbol calledyetpid

Weak symbols over time

The concept of theveaksymbol is that the symbol is marked as a lower priority and can be overridden by
another symbol. Only if no other implementation is found will the weak symbol be the one that it used.

The logical extension of this for the dynamic loader is that all libraries should be loaded, and any weak
symbols in those libraries should be ignored for normal symbols in any other library. This was indeed how
weak symbol handling was originally implemented in Linux by glibc.

However, this was actually incorrect to the letter of the Unix standard at theStysiérd. The standard
actually dictates that weak symbols should only be handled bygtdtie linker; they should remain
irrelevant to the dynamic linker (see the section on binding order below).

At the time, the Linux implementation of making the dynamic linker override weak symbols matched with
SGI's IRIX platform, but differed to others such as Solaris and AIX. When the developers realised this

177

Dynamic Linking

behaviour violated the standard it was reversed, and the old behaviour relegated to requiring a special
environment flagl{D_DYNAMIC_WEAIKbe set.

Specifying binding order

We have seen how we can override a function in another librgmebyadinganother shared library with
the same symbol defined. The symbol that gets resolved as the final one is the last one in the order that
the dynamic loader loads the libraries.

Libraries are loaded in the order they are specified ilDIheNEEDEDIag of the binary. This in turn is
decided from the order that libraries are passed in on the command line when the object is built. When
symbols are to be located, the dynamic linker starts at the last loaded library and works backwards until
the symbol is found.

Some shared libraries, however, need a way to override this behaviour. They need to say to the dynamic
linker "look first inside me for these symbols, rather than working backwards from the last loaded library".
Libraries can set thBT_SYMBOLICflag in their dynamic section header to get this behaviour (this is
usually set by passing tiBsymbolic flag on the static linkers command line when building the shared
library).

What this flag is doing is controllingymbol visibility The symbols in the library can not be overridden
so could be considered private to the library that is being loaded.

However, this loses a lot of granularity since the library is either flagged for this behaviour, or it is not. A
better system would allow us to make some symbols private and some symbols public.

Symbol Versioning

That better system comes from symbol versioning. With symbol versioning we specify some extra input
to the static linker to give it some more information about the symbols in our shared library.

Example 9.18. Example of symbol versioning

1
$ cat Makefile
all: test testsym

5 clean:
rm -f *.so test testsym

liboverride.so : override.c
$(CC) -shared -fPIC -o liboverride.so override.c
10
libtest.so : libtest.c
$(CC) -shared -fPIC -o libtest.so libtest.c

libtestsym.so : libtest.c
15 $(CC) -shared -fPIC -WI,-Bsymbolic -o libtestsym.so libtest.c

test : test.c libtest.so liboverride.so
$(CC) -L. -ltest -o test test.c

20 testsym : test.c libtestsym.so liboverride.so
$(CC) -L. -ltestsym -0 testsym test.c

178

Dynamic Linking

$ cat libtest.c
#include <stdio.h>
25
int foo(void) {
printf("libtest foo called\n™);

return 1,
}
30
int test_foo(void)
{
return foo();
}
35

$ cat override.c
#include <stdio.h>

int foo(void)
40 {
printf("override foo called\n™);
return O;

}

45 $ cat test.c
#include <stdio.h>

int main(void)
{
50 printf("%d\n", test_foo());

}

$ cat Versions
{global: test_foo; local: *; };
55
$ gcc -shared -fPIC -WI,-version-script=Versions -o libtestver.so libtest.c

$ gcc -L. -Itestver -o testver test.c

60 $ LD_LIBRARY_PATH=. LD_PRELOAD=./liboverride.so ./testver
libtest foo called

1000005741 F .text 00000054 foo
000005c8 g F .text 00000038 test_foo
65

In the simplest case as above, we simply state if the symbldhal or local. Thus in the case above
thefoo function is most likely a support function ftest foo ; whilst we are happy for the overall
functionality of thetest foo function to be overridden, if we do use the shared library version it needs
to have unaltered access nobody should modify the support function.

This allows us to keep onamespacbetter organised. Many libraries might want to implement something
that could be named like a common function fiék@d orwrite ; however if they all did the actual version
given to the program might be completely wrong. By specifying symbtisalonly the developer can be

179

Dynamic Linking

sure that nothing will conflict with that internal name, and conversely the name he chose will not influence
any other program.

An extension of this schemesgmbol versioningwith this you can specify multiple versions of the same
symbol in the same library. The static linker appends some version information after the symbol name
(something like@VERdescribing what version the symbol is given.

If the developer implements a function that has the same name but possibly a binary or programatically
different implementation he can increase the version number. When new applications are built against
the shared library, they will pick up the latest version of the symbol. However, applications built against
earlier versions of the same library will be requesting older versions (e.g. will havepiieRtrings in

the symbol hame they request) and thus get the original implementation. XXX : example

180

Chapter 10. I/O Fundamentals

File System Fundamentals

File System Funamentals

Networking Fundamentals

Networking Fundamentals

181

Computer Science from the Bottom Up
Glossary

A

Application Programming The set of variables and functions used to communicate between different parts
Interface of programs.
See Also Application Binary Interface.

Application Binary Interface A technical description of how the operating system should interface with
hardware.
See Also Application Programming Interface.

E

Extensible Markup Language Some reasonable definition here.
See Also Standardised Generalised Markup Language.

Standardised Generalised The grand daddy of all documents
Markup Language See Also Extensible Markup Language.
Mutually Exclusive When a number of things are mutually exclusive, only one can be valid at a time.

The fact that one of the things is valid makes the others invalid.

MMU The memory managment uibmponent of the hardware architecture.
Open Source Software distributed in source form under licenses guaranteeing anybody rights to

freely use, modify, and redistribute the code.

S

Shell The interface used to interact with the operating system.

182

