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Preface

The title of this bookAnalysis, Synthesis, and Perception of Musical Soumals

been the subject of many conference sessions (for example, at the 127th Meeting
of the Acoustical Society of America at Cambridge, Massachusetts in May, 1994,
which originally inspired this book) and journal papers, but there has been little
to date which combines these subjects into a single volume. Traditionally, dating
back to Helmholtz (1877), the subject of analysis of musical sounds consisted
solely of harmonic analysis of sustained-tone instruments. However, many other
applications have been developed during the last several decades, and the topics
of analysis, synthesis, and perception (AS&P) are very representative of these
applications.

It almost goes without saying that the principal tool that has facilitated AS&P
is the digital computer, and all of the projects described in this book have used
this indispensible tool. Another common thread is that all of these projects have
used a form of time-varying spectral analysis [usually implemented using a form
of the short-time Fourier transform (STFT)], which models signals as sums of sine
waves (sinusoids).

Indisputably, the first time-varying spectral analysis and synthesis of musi-
cal sounds by a digital computer was accomplished in Melville Clark Jr.s lab
at MIT (Luce, 1963, 1975; Luce and Clark, 1967; Strong and Clark, 1967a,
1967Db). Projects by Beauchamp and Fornango (1966), Freedman (1967, 1968), and
Beauchamp (1969, 1974, 1975) at the University of lllinois at Urbana-Champaign,
Risset and Mathews (1969) at Bell Telephone Laboratories, and Keeler (1972) at
the University of Waterloo soon followed. Some of these projects were described
in the bookMusic by Computer&on Forester and Beauchamp, eds., 1969). Strong
and Clark’s project (1967a, 1967b) was the first to incorporate listening tests in pub-
lications on musical sound synthesis derived from spectral analysis. Luce, Strong,
and Clark were also first to emphasize the importance of musical instrispect
tral envelopeswhich are smoothed versions of sound spectra. Later, John Grey,
James A. Moorer, and John Gordon at Stanford University completed a much more
extensive series of perceptual studies based on spectral analysis/synthesis in the
mid-1970s (Grey, 1975, 1977; Grey and Moorer, 1977; Grey and Gordon, 1978),
including the use of the multidimensional scaling (MDS) method to determine a
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“space” of musical timbres. These were preceded by similar timbre space studies
by Wedin and Goude (1972), Wessel (1973), and Miller and Carterette (1975),

which also used the MDS method but only employed original acoustic sounds or

artificial sounds not obtained by analysis/synthesis.

Thephase vocodela method of time-varying analysis/synthesis similar to that
used by the early music researchers, was first employed for speech applications
by Flanagan and Golden (1966) and Portnoff (1976) and later extended for music
by Moorer (1978) and Dolson (1986). Again for speech, McAulay and Quatieri
(1986) introduced the spectral frequency tracking (SFT) method, and a similar
method (called PARSHL) was developed for music applications by Smith and
Serra (1987). This method (now called SMS) was extended by Serra and Smith
(1990) with the additional feature of extracting a time-varying noise residual from
the sound signal. Separate control of the noise residual offered advantages such
as reduction of artifacts when time-scaling is employed. A freely downloadable
source-code package (called SNDAN) which combines a tunable phase vocoder
and the SFT method was described by Beauchamp (1993). Since then, many new
music analysis/synthesis methods have been developed. A comparison of current
methods was given in Wright et al. (2001).

Other aspects of the history of analysis/synthesis are discussed in the chapter
by Levine and Smith (Chapter 4).

This book consists of eight chapters. In the first chapter James Beauchamp dis-
cusses basic methods of time-varying spectral analysis and synthesis and gives ex-
amples of the analysis of various musical instruments. The two analysis/synthesis
methods presented are the Harmonic Filter Bank (HFB, aka phase vocoder) and
the Spectral Frequency-Tracking (SFT) methods. The HFB method, where the fre-
guencies of analysis can be aligned with frequencies of a harmonic sound, works
best for sounds that are quasiperiodic, i.e., they have nearly constant pitch (i.e.,
fundamental frequency). The SFT method works best for sounds with variable
pitch. Both methods can be used for sounds with inharmonic partials, although the
HFB has the advantage of avoiding problems of excessive amplitude thresholding
and partial frequency mistracking. This chapter also defines several “higher-level”
measures of spectra, which may be useful for classifying instruments. These are
thespectral centroidassociated with “perceptual brightnesspectral irregular-
ity, inharmonicity decay ratespectrotemporal incoherencandinverse spectral
density and examples for different instruments are given. Beauchamp concludes
by showing how the SFT method can be used to track the fundamental frequency
as well as to separate the harmonics of a signal with substantial time-varying pitch.

While the traditional Fourier transform yields frequencies that are uniformly
spaced, it is possible to define a variation on this transform, called the constant-
Q transform, which yields an analysis at logarithmically spaced frequencies. In
Chapter 2, Judith Brown looks at methods of analysis using this transform. She
then shows how fundamental-frequency (pitch) tracking can be based on pattern
matching of the constant-Q transform output, giving examples of violin perfor-
mance analysis. Next, a high-resolution pitch analyzer is described, which is based
on the phase changes of spectral components, to improve the precision of pitch
tracking. This pitch analyzer was applied to the problem of resolving the frequency
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ratios of musical instrument partials in order to determine the degree to which they
were, or were not, harmonic. Finally, a listening experiment was conducted to
determine the perceived pitch center of viola vibrato tones, and results for rela-
tively experienced and inexperienced listeners are compared. This also yielded an
estimate of the pitch JND for these listeners.

In Chapter 3, Lippold Haken, Kelly Fitz, and Paul Christensen describe a novel
analysis/synthesis method and how it can be used as a synthesis engine for a “fin-
gerboard” musical instrument. The method is an extension of the SFT method
described in Chapter 1. The two extensionsraise enhancemeandspectral
reassignmentRather than separate additive noise into a residual as has been done
by Serra and Smith (1990), noise is treated in terms of separable “noise-factor”
signals that are modulated onto individual partials during synthesis. Thus, each
partial is represented by three parameters: amplitude, frequency, and noise fac-
tor. With spectral reassignment, the time and frequency for each time frame and
partial within the frame are reestimated by utilizing centroids of the windowed
time function and its Fourier transform. The overall method results in improved
analysis/synthesis of complex sounds having sharp transients and inharmonic par-
tials. The result is parameter streams that can be easily manipulated in time and
frequency. The method has been been used as the synthesis engine of a new “fin-
gerboard” musical instrument, called tB®ntinuum which, in addition to pitch
and loudness control, affords timbral control by morphing between two target
instrument sounds appropriate for each pitch.

Another method of processing complex, even polyphonic, sounds with increased
perceptual accuracy is described by Scott Levine and Julius Smith in Chapter 4.
Their method builds on the sinusoids-plus-noise model developed by Serra and
Smith (1990). The new method divides the signal into three parts: time-varying
sinusoids, time-varying noise, and transients. The signal is first segmented into
attack-transient and nontransient time regions. The transient segments are coded
using a variation on an MPEG audio transient coder. Nontransient time regions
are analyzed as “multiresolution sinusoids” and noise. “Multiresolution” means
that frequencies below 5000 Hz are analyzed as time-varying sinusoids for the
frequency ranges 0-1250 Hz, 1250-2500 Hz, and 2500-5000 Hz with different
time resolutions of 46 ms, 23 ms, and 11.5 ms, respectively. Overlap regions
between transient and sinusoids are phase-matched to avoid discontinuities. Noise
is modeled in terms of Bark bands, which are critical bands varying in bandwidth
across the spectrum (Zwicker, 1961). Below 5000 Hz noise is based on the residual
between the signal and the sum of analyzed sinusoids. Above 5000 Hz noise is
based on the entire signal. Time variation of the noise is given in terms of a
piecewise linear curve for the amplitude of each Bark-band noise. The method
allows time expansion and other modifications (such as frequency tuning) without
loss of fidelity, including the preservation of sharp attack transients.

In Chapter 5, Xavier Rodet and Diemo Schwarz describe various methods for
representing signals in terms of time-varying spectral envelopes. A tacit assump-
tion is that the spectral envelope provides appropriate spectral variation as the
fundamental frequency (pitch) varies. It is also useful for morphing between dif-
ferent vocal or instrumental spectra. The chapter outlines the importance of the
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sourceffilter model, especially for speech signals, and the importaficetdnts
which are pronounced maxima within spectra or filter response functions at par-
ticular frequencies, usually higher than the fundamental. Source spectra generally
have no formants, but they can vary with time and with intensity; in the latter case,
usually the tilt (i.e., average slope) of the spectrum varies with intensity. Three
important properties of a spectral envelope are given: (1) It should envelope the
spectral maxima,; (2) it should be smooth; and (3) it should adapt to fast variation.
Later, properties of exactness and robustness are added. Then, various spectral-
envelope estimation methods are given, including methods that are derived by
autoregressiorfAR) [also calledlinear predictive codindLPC)], cepstrumdis-
crete cepstrumand several enhancements of the discrete cepstrum method. The
spectral envelope of the residual signal is treated as a special case, because this
is assumed to be nonsinusoidal. Other topics covered are concerned with syn-
thesis: filter coefficients, geometric representations, formants, spectral-envelope
manipulation, morphing, sine-wave additive synthesis, and inverse-FFT synthesis.
In Chapter 6 Andrew Horner discusses methods of data reduction for mul-
tiple wavetable and frequency-modulation (FM) resynthesis based on match-
ing the time-varying spectral analysis of harmonic (or approximately harmonic)
fixed-pitch musical instrument tones. A relative-amplitude spectral error formula
is defined, and the use of a genetic algorithm combined with the well-known
least-squares method to compute a set of near-optimum spectra and associated
amplitude-vs-time envelopes for resynthesis is described. Several different meth-
ods of resynthesis are examined: wavetable indexing, wavetable interpolation,
group additive, formant FM, double FM, and nested FM. Results are shown for
trumpet, tenor voice, and Chinese pipa tone matches using each of the methods.
Wavetable indexing and wavetable interpolation are found to give the best matches.
However, wavetable indexing is found to require the least memory, while wavetable
interpolation is found to be the most computationally efficient of the two methods.
John Hajda reviews recent research on the salience of various timbre-related pa-
rameters in Chapter 7. Two basic methods for studying timbrelassificatiorand
relational measuresSome spectrotemporal parameters that may impact timbre are
time-envelope (attack, steady-state, decay), spectral centroid, spectral irregularity,
and spectral flux. When the attack portions are deleted from 12 sustained (aka con-
tinuant) tones (with attack time measured three different ways), the “remainder
tones” are on average correctly identified almost at the same rate as the original
sounds (85% vs 93% correct) and are better for identification than “attack-only
tones.” Moreover, reverse playback of entire sustained tones does not affect their
identification. These two results indicate the relative importance of steady-state
and decay. Two different relational methods are (1) verbal attribute magnitude
estimation, where timbres are rated on a scale from, say, “dull” to “sharp”; and (2)
numerical ratings of timbre dissimilarity, which can be analyzed by MDS statis-
tical algorithms to produce a “timbre space,” where each timbre occupies a point
in the space and the distance between any two timbres represents their average
perceptual dissimilarity. In the latter case, physical parameters such as attack time,
spectral centroid, and spectral variance have been found to correlate well with
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MDS dimensions. In one study, parameter salience was determined by testing how
well listeners could detect various simplifications to time-varying spectral data
after resynthesis, under the assumption that if a parameter is easily detected when
a parameter is simplified, the parameter must have timbral saliency (McAdams
et al., 1999). Another study with similar simplifications used a similarity rating
method of testing subjects (Hajda, 1999). Both studies agreed that spectral flux,
the amount of variation of the amplitude-normalized spectrum, is the most salient
parameter of the sustained musical instrument sounds tested. The chapter closes
with brief discussions of the effect of musical context on timbre and the perception
of percussion (aka impulse) sounds.

Finally, in Chapter 8 Sophie Donnadieu considers a number of topics related to
timbre perception. She begins by noting the difficulty of studying timbre due to the
absence of a satisfactory definition, its multidimensional nature, and a diversity
of notions about the types of sound sources that produce timbre, whether they be
isolated tones, multiple pitches on a single instrument, combinations of different
instruments, or unfamiliar sounds produced by sound synthesis. Next, the concept
of perceptual dimensions is discussed, with an emphasis on MDS methods, and the
results of several MDS experiments are described (e.g., Grey and Moorer, 1977;
McAdams et al., 1995). Usually two or three dimensions can be resolved and cor-
related (either qualitatively or quantitatively) with spectrotemporal features such
as “temporal envelope,” “spectral envelope,” and “spectral flux.” Next she intro-
duces the concept of “specificities,” whereby different instruments have unique
aspects of timbral quality, such as special types of attacks or special spectral or
formant characteristics. The effect of listener musical experience is also explored,
and musicianship is found to affect the precision and coherence of judgments.
Furthermore, the predictive power of timbre spaces is discussed in terms of in-
terpolating along dimensions using morphing techniques, perception of “timbral
intervals,” auditory streaming, and the effect of context. Finally, attempts to eval-
uate the efficacy of verbal attributes such as “smooth” vs “rough” for describing
timbre are discussed. In the next section Donnadieu looks at the idea of timbral
categorization. According to categorization theory, timbre is mentally organized
by clusters, rather than as a continuum, e.g., any sound with certain characteristics
might be categorized as a “trumpet.” Or it is also plausible that timbres are strictly
grouped by listeners according to physical sound-production characteristics (e.qg.,
instrument size, shape, material, and manner of excitation) which are inferred from
the corresponding sounds. Donnadieu describes her own experiment on catego-
rization processes and finds that timbral categories correspond to perceptual reality
while at the same time they are related to the physical functioning of musical in-
struments. She concludes by describing several studies, including one of her own,
which use a physical parameter continuum (e.g., attack time) to test the relationship
between “identification” and “discrimination.” While most studies seem to suggest
that categorical perception is salient and is based on feature detection, her study
on a rise-time continuum for struck and bowed vibraphones supported a theory of
noncategorical perception. Therefore, the conditions under which categorical vs
noncategorical perception of timbre occur is still an open question.



Xii Preface

These eight chapters give eight different perspectives on the problem of under-
standing musical sounds from an analytical point of view. They hopefully will give
the reader a broad insight into how sounds can be analyzed, illustrated, modified,
synthesized, and perceived.

J.W.B.
Urbana, lllinois, U.S.A.
February, 2005
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Analysis and Synthesis of Musical
Instrument Sounds

JAMES W. BEAUCHAMP

Introduction

For synthesizing a wide variety of musical sounds, it is important to understand
which acoustic properties of musical instrument sounds are related to specific
perceptual features. Some properties are obvious: Amplitude and fundamental
frequency easily control loudness and pitch. Other perceptual features are related
to sound spectra and how they vary with time. For example, tonal “brightness” is
strongly connected to the centroid or tilt of a spectrum. “Attack impact” (sometimes
called “bite” or “attack sharpness”) is strongly connected to spectral features during
the first 20100 ms of sound, as well as the rise time of the sound. Tonal “warmth”
is connected to spectral features such as “incoherence” or “inharmonicity.”

Experienced musical listeners can usually identify which instruments are present
in a music recording, although identification acccuracy varies with the promi-
nence of an instrument (in the music), familiarity, number of instruments, etc.
Listeners can even track an individual instrument, by “pushing other instruments
into the background,” as it moves up and down the pitch scale. Something about
the integrity of an individual instrument’s scope of spectral possibilities makes
experienced musical listeners able to consider a group of notes to be “from
that instrument.” This may be aided by listeners’ ability to visualize the phys-
ical apparatus that produces a group of sounds previously heard. However, it
is also probable that listeners can learn to hear these connections without ever
having seen a physical instrument producing the sounds, simply by listening to
recordings.

Despite the current lack of a comprehensive theory of timbre, it is highly proba-
ble that such a theory will eventually be based on data obtained from time-varying
spectrum analysis. Section 1 of this chapter examines some useful methods for
analysis and synthesis of musical sounds based on the short-time Fourier trans-
form. Section 2 investigates various characteristics of instrumental sound spec-
tra in an effort to gain an understanding of that which makes different musical
sounds sound different, i.e., how they might evoke unique timbres. Throughout,
the SNDAN analysis/synthesis software package (Beauchamp, 1993) is used to
illustrate examples of musical sound spectral analysis.
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1 Analysis/Synthesis Methods

While mathematical representations of musical instrument sounds are not unique,
it is very useful to represent such sounds as a collection of sine waves (sinusoids)
with time-varying amplitudes, frequencies, and phases and possibly also with an
additive noise signal having certain time-varying spectral properties. With this
model, it is assumed that a musical sound sigfdlcan be expressed as

K (t)
s(t) = ) Axl(t) cos@i(t)) + n(t). (1.1a)
k=1
where
t
O (t) = 27 / fi(r)dz + 6y, (1.1b)
0

The various parameters are defined as follows:

t =time.

Ax(t) = amplitude of thekth sine wave (frequency component or partial) at time
k = partial number.

K (t) = number of sinusoidal partials, which may vary with time.

ok(t) = phase of partigk at timet.

fk(t) = frequency of partiak at timet.

6k, = 0k(0) = initial phase of partiak (phase at time= 0).

n(t) = additive noise signal, whose short-term spectrum varies with time.

The instantaneous phase of each partial is intrinsically bound to its initial phase
and its instantaneous frequency. Given the starting phase and the frequency (the
phase derivative), the phase is known, at least theoretically, at each instant of time.
Note that if the time scale or frequencies are altered, the relative phases among the
partials will change.

The noise ternm(t) can be omitted from the model if the noise is considered to
be embedded in the individual partials. The decision about whether noise should
be separate from the sinusoids or contained within them depends on the type of
analysis used, the nature of the noise, and convenience when doing the synthesis,
especially if modifications such as time-stretching are to be done. In most of the
examples presented in this chapter, noise will be assumed to be embedded in the
amplitude and frequency time functions for the individual partials. Therefore, with
this assumption, a musical instrument signal can be represented strictly as

K ()

t
s(t) = Y Ac(t) cos(r / fi(z)dz + 6y,). (1.2)
k=1 0

What remains, given the representation of Eq. 1.2, is to estimate its various pa-
rameters, namel¥ (t), Ag(t), f(t), anddy, for 1 < k < K. In this chapter, two
different methods of analysis, both of which are examples of short-time Fourier
analysis, are presented. One is called the harmonic filter bank or phase vocoder
method and the other the frequency-tracking or McAulay—Quatieri (MQ) method.
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FIGURE 1.1. Overlapping band-pass analysis filter responses centered at harmofics of

1.1 Harmonic Filter Bank (Phase Vocoder)
Analysis/Synthesis

Harmonic filter bank or phase vocoder analysis simulates a bank of overlapping
band-pass filters each centered on an integer multiple of a base freqéigncy

i. e., at harmonic frequencief = kfy, fork =1, ..., K, where f, is referred

to as the analysis frequency, akdis a constant humber of harmonics. Each
filter function W, (f — fy) has a maximum value of unity dt = kf,. Also, each

filter function is zero or very small fof < (k—1)fyandf > (k+ 1) f,. Such a

filter bank, consisting of a series of overlapping bell-shaped curves, one for each
band-pass filter, is depicted in Fig. 1.1. This filter bank has the special property
that for a periodic signal with constant fundamental frequency exactfy ahd

fixed harmonic amplitudesy, each filter will produce a sine wave with frequency

fx = kfy and amplitudeAy, i.e.,

s(t) = Accos(2rk fat + 6,). (1.3)

1.1.1 Frequency Deviation and Inharmonicity

If, on the other hand, the amplitudes and frequencies are allowed to vary with time
(but not too fast!) and eadtth harmonic frequency is confined to a narrow range
aroundkf,, the filter outputs will closely—although not perfectly—replicate the
terms in the summation of Eq. 1.2. In this case, it is useful to define

fi(t) = kfa + Afe(t). (1.42)

whereAfy(t) is a time-varying frequency deviation.
The frequency deviation can be written as

Af(t) = fe(t) — kfa, (1.4b)
and the relative frequency deviation as

Af®)  fil)
=k fa. (1.4c)
Also useful is the normalized frequency deviation
Aft) _ f(®)
kfa — kfa

1, (1.4d)
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which gives the fractional deviation of a frequency with respect to its harmonic
value. For example, ikfy /kf; varies by+0.06 (or 6%), thdth harmonic frequency
varies upward and downward by approximately one semitone with respect to its
center positionkf,. A well-known measure of microtonal pitch is the logarithmic
cents measure, where there are 100 cents per semitone. Normalized frequency
deviation can be expressed in terms of cents deviation using the formula

Acentsf) = 1200- log, (Aljl;it)> . (1.4e)
A sound is instantaneously harmonic if all frequencies track one another such that
Af(t) = kAT (1), (1.5a)
which leads to a definition ahharmonicity
l(t) = kAAfll‘(l(zt)) - (1.5b)

In practice, if the amplitude of the first harmonic is too smalf; may be poorly
defined, and Eqg. (1.5b) may result in a poor estimate of inharmonicity. To cir-
cumvent this problem, a composite fundamental frequency deviation is defined
as

3 Ad)A D/
Afo (t) = =2

3 , (1.5¢)

> A
k=1

which is the relative-amplitude-weighted sum of the harmonic-normalized first
five harmonic frequency deviations. This is an ad hoc formula based on research
on the relative dominance of low harmonics for determining pitch (e.g., Moore
etal., 1985) and the observation that most musical instruments have their strongest
harmonics within the first five. Note that if all the harmonic amplitudes are equal,
the ordinary average of the relative frequency deviations results. But with unequal
amplitudes, stronger amplitudes dominate the formlula. Thus, for cases where

is weak,Afc; should be substituted fak f; in Eq. (1.5b).

Owing to analysis and signal imperfections, some small amount of inharmonic-
ity will appear to be present in the analysis of the most harmonious of tones.
However, Eq. (1.5b) is especially useful for cases when the signal has appreciable
amounts of inharmonicity.

A problem arises when the frequencies of a sound to be analyzed have too
much deviation from harmonic frequency values, whether it be due to frequency
modulations or long-term inharmonicity. For the harmonic case, a fundamental
frequency that deviates byf; from f, translates into a change kAf; from kf;,
which is the center frequency of ttk¢h harmonic analysis filter, also called the
kth bin. WhenkAf; > 0.5 f,, thekth frequency component is reported from the
(k + 1)st bin with as much or greater amplitude than fromktiebin. Meanwhile,
thekth harmonic bin’s output will also include the effect of thke{ 1)st harmonic.
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Thus, while a moderate amount of fundamental frequency deviation typically does
not cause appreciable analysis error in the lower harmonics, at a certain harmonic
the analysis accuracy for the upper partials will be affected. Thisis a basic limitation
of the harmonic filter bank approach.

1.1.2 Heterodyne-Filter Analysis Method

The filter-bank analyzer is implemented by a method known by various names
(e.g., phase vocoder, short-time Fourier transform) including the heterodyne filter
method (Beauchamp and Fornango, 1966; Beauchamp, 1969), which is derived
from traditional Fourier series analysis. Accordingly, the complex amplitude of
thekth harmonic ofs(t) is given by

oo
& (t) = / w(t — 7)e7 17 KkTs(r)dx, (1.6a)
—00

wherew(t) is the impulse response of a low-pass filter. Equation (1.6a) can be
interpreted as being the combination of two operations:

(1) Heterodyne (i.e., multiplication) of the sigrsél) by the complex exponential
functione~ 127kt [which can also be written as cos(Rf,t) — j sin(2rkf,t)],
where f; is the analysis frequency.

(2) Low-pass filtering of this product by convolution with a special “window”
functionw(t), which in general is an even function of

The heterodyne operation shifts the frequekywithin s(t) to f =0 and
frequencies in the vicinity okf, to the vicinity of zero. Then the low-pass filter
attempts to remove all components except those whose frequencies are less than
fal2. To illustrate, let’s define

S (t) = e 12Kfatg(t) (1.6b)
as the heterodyned signal. Then the low-pass operation can be accomplished by
Ce(t) = w(t) = sk(b), (1.6c)
where %’ indicates convolution. Interms of Fouriertransforms Eq. (1.6¢c) becomes
Cu(f) = W(F)Sk(f) = W(F)S(f +kfa). (1.6d)

The Fourier transform ab(t), W(f), is also known as the frequency response or
thefilter characteristic ab(t), wherea$y( f) is the spectral characteristic, or simply
the spectrum, dé(t). Because the low-pass regionwf f) corresponds to the fre-
guency range<0.5f,, 0.5f,) and the frequency rangek(¢ 0.5) f,, (k + 0.5) f5)

of (f) has been translated to this region by virtueSof + kf.), Cc(f) ideally
contains only the portion o§(f) corresponding to a0.5f; band aroundkf,,

and, consequently, is the equivalent of the output of a symmetric band-pass filter.

1.1.2.1 Window Functions

Window functions are particular versionsw(t) that are time-limited and whose
Fourier transforms have “nice” low-pass characteristics. These functions are
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referred to as window functions or simply windows because they can be visualized
as providing a “window” on a particular segment of the signal. These functions are
therefore zero outside a time intervall <t < T. They are also even functions
[i.e., w(t) = w(—t)], with the result that their Fourier transforms are real and their
phase responses are zero.

The simplest possible window is the rectangular window, which for our appli-
cation is defined as

[ fa 1t|<05/fs
“’(t)—{o, it| > 0.5/f, °

Note thatf,, the analysis frequency, is associated with the height and width of the
window. In this case, the window width is fly, and, because the heightfg, the
area of the window is 1.0. [Other windows will be given in termsudf)/ f; in
order to simplify the formulas.] In comparison to other useful window functions,
the rectangular window has a very inferior responseffos f,. However, in a
certain sense, it does afford the best time resolution.

A much better and very convenient window function is the hanning (aka Hann)
window:

(1.7a)

w(t) [ cog(0.57tfy) = 0.5+ 0.5cosfrtfy), |t| <1/fa (1.7b)
fa 0, It| > 1/fa '
The width of this window is %, its peak amplitude is agaify, and its area is
again 1.0.
A variation on this window function is the Hamming window:
w(t)  [0.5+0.426cosftfy), |t| <1/fa
o { 0, it > 1/fa (1.7¢)

Like the hanning, the Hamming is a 2-term window function having a window
width 2/f5, but with a peak amplitude of 0.92%. Note the discontinuity at =
+1/f,. Its area is again 1.0.
A more sophisticated window function is the 4-term Blackman—Harris
window:
w(t) 0.25+ 0.3403 cos(®brrtf,) + 0.0985 cosftfay), +0.0081 cos(Brtfy), |t| <2/fa
fa 0, It] > 2/fa
(1.7d)

The width of this window is 4%, and its peak amplitude is 0.6969. Again the
areais 1.0.

More details on the behavior of these window functions are given in Harris
(1978) and Nuttall (1981). Figure 1.2a compares the four window functions given
above (normalized by,). They can be generalized to the form:

5 , (1.8)

P-1
wt) _ | X apcos(Zpfat/P), It| <

p=0 :
0, [t] >0
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whereP is the number of terms in the summation ad= 1/P. Then, Eq. (1.6a)
for this class of window functions can be written

t+5% w(t —

&(t) = fa V) - iztktrg()de (1.92)

t—% a
P-1 450 )

=fa) ap / cos(2rpfa(t — 7)/P)e 12 *krs(r)dr. (1.9b)
p=0 =2

The frequency responses of these window functions can be calculated easily by
taking their Fourier transforms according to

W(f) /_oo w(t)e 1T dr (1.10a)

oo

P-1 455 )
= fazap/ cos(Zrpfar/P)e 12X 7qr, (1.10b)
p=0  Jt-3

—25

where f is the frequency.
Knowing that

T Ciwrq. _ SIN(@+ B)T) | sin( — B)T)
/_Tcosﬁr)eJ dr = Py + pr
= T [sinc( + B)T) + sinc(w — B)T)], (1.11)

and takingw = 27 f, T = P/(2f,), andg = 2z pf,/P, the general formula for
the frequency response becomes

W(f):% :Xzzap <sinc<n <Pf—:+p))+sinc(n (Pf—af— >>> . (1.12a)

From Eq. (1.12a), considering thag = 1/P and f = 0, it follows thatH (0) =

Pa, = 1.0, the maximum value of the response. Also, if the frequency is a har-
monic of f,, i.e., f =kf;, k=1,2,3,..., it can be seen thav(kf,) = 0. The

first zero, which occurs aft = f,, defines the end of the low-frequency response.
Because of the zero positions, this type of response is perfect for analysis of abso-
lutely periodic signals having fundamental frequetigyAnother interesting result
isthatforf =qfy/P,q=1,2,..., P —1,W(qfs/P) = 0.5P«q. This allows a
quick calculation of some frequency-response values far D < f; (the “pass
band”) in terms of the window function coefficients. Note that the decibel equiva-
lent of W, Wy, = 20log;o(W), is zero forf = 0 and less than zero fdr > 0. The
“half-way” pass-band values ¥iy,( f;/2) are, respectively 3.9,—6.0,—7.4, and
—20.1 dB for the rectangular, hanning, Hamming, and 4-term Blackman—Harris
windows.
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Equation (1.12a) can also be written (Nuttall, 1981) as

P-1
W(f) = Psinc(”Pf> Zﬂ. (1.12b)
- ()
Pt

The sinc function shows that fdr > f, (the “stop band”) the response has zeros
which are separated bj,/P. (Zeros forf < f, are cancelled by singularities
due to particular summation term denominators.) Of particular importance is the
response for frequencies halfway between the zero frequencies &howe, the
“half-way” stop-band values aV((q + .5)fs/P)forg=P,P+1, P +2,....
These values, which are hopefully small, give an idea of how well the filter rejects
unwanted frequencies. It turns out that these maximum stop-band responses (in
terms of Wyp) for the rectangular, hanning, Hamming, and 4-term Blackman—
Harris windows are, respectively,13.5,—31.5,—43.2, and-92.0 dB. TheW(f)
andWjgp( f) responses are compared in Figs. 1.2b and 1.2c.

Another very useful window function is the Kaiser—-Bessel window (Kaiser and
Schafer, 1980; Harris, 1978; Nuttall, 1981), which is defined in the time domain
by

1 « T
)= =———1I 1—(2t/T)2), |t =, 1.13
wO = T grnaye (V1= @/TR). 1t < 5 (1.13a)
wherel, is the zeroth-order modified Bessel function of the first kindk a fixed
parameter, and is the window width. By varying, different frequency responses
can be achieved. The general formula for the frequency response is

W(f) = s'inh@\/l— (rTf/a)?) '
sinh@) /1 — (=T f/a)?
Whenz Tfla > 1, the square roots of this rather peculiar function become imaginary
and the numerator sinh function turns into a sin function. Wh&rf/o = 1, the
roots are zero, and/( f) = «/ sinh). The first zero occurs when the argument

of the sin isw, and this leads td, = /1 + (a/7)2/T. For f > f, the function
approximately follows a sinc function:

o o
W(f) = Sinh@)sinc<aw/(an/a)2 — 1) ~ G e TH. (1:130)
So for a given window widtfT, the first zero frequency and the amount of stop-
band rejection depends on the value of the parametand there is a trade-off
between the two. For example, to mimic a Hamming window, taking 5.441
forces f, = 2/T. The minimum stop-band attenuation is approximately 40 dB,
which is comparable to the Hamming. If the first zero is moved,te- 4/ T, the
stop-band attenuation becomes approximately 92 dB, like the 4-term Blackman—
Harris. Two other things are obvious from Eq. (1.13c): (1) The sidelobe peak
values of the Kaiser—Bessel window are spaced @y, With zero values half-

way in between. (2) The peak values decrease in amplitude by —6 dB/octave. But,

(1.13b)




10 James W. Beauchamp

most importantly, the Kaiser—Bessel window is a chameleon that can mimic other
optimum windows depending on the valuecof

1.1.2.2 Harmonic Analysis Limits

An important problem occurs when the input fundamental frequency is detuned
from f, by an amountf. Then harmonid is detuned byfy; = kAf, and this
becomes the output frequency after heterodyninkfhyas opposed to zero which
occurs when tuning is perfect. Meanwhile, the neighboring harmonics, which
should be rejected, have frequencieskat-(1)(fo + Af) and k + 1)(fa + Af),
and after heterodyning lif, these frequencies beconfg = — fa + (k — 1)Af
andfs = fa + (kK + 1)Af, respectively. Thus, analysis accuracy can be measured
by taking the difference between the amplitude of the desired harnkoai
the amplitudes of the undesired harmorkcs 1 andk + 1, which may corrupt
the kth harmonic amplitude measure. This is tantamount to comp&p@fii)
with Wp( fk2) and Wgp( fks). (Note again, that ifAf = 0O, there is no problem!)
Wip( k1) — Wiap( fkz2) andWgp( 1) — Wan( frs) give measures of the relative rejec-
tion of the unwanted components.

To take a concrete example, let= 0.03f, (approximately a half-semitone) and
k = 3 (third harmonic). Thenfz; = 0.09f,, f3; = —0.94f,, and f33 = 1.12f,.
The rectangular, hanning, Hamming, and 4-term Blackman—Harris window re-
sponses (in decibels) are compared in the following table:

Wab( fa1 = Wianb( fa2 = Wab( faz = Wab( fa1)— Wib( f31)—
Window Type 009f,) —0.94f,) 1.12fy) Win( f32) Wib( f33)
rectangular -0.1 —24.0 —-19.6 23.9 19.5
hanning -0.2 -32.2 -32.3 32.0 36.1
Hamming -0.2 —38.6 —44.1 38.4 43.9
Blackman—Harris -0.4 -70.5 -92.1 70.1 91.7

For another example, again I&tf = 0.03f, and takek = 10 (tenth harmonic).
Then f; = 0.3f,, f, = 0.73f,, and f; = 1.33f,. The four window responses are
now:

Wab( f1 = Wan(f2 = Wab( 3 = Win( f1)— Wab( f1)—
Window Type 03f3) —0.73f3) 1.33f3) Wip( f2) Wip( f3)
rectangular -1.3 -9.7 —-13.7 8.4 12.4
hanning -21 —-14.4 —-35.3 12.3 33.2
Hamming —-25 -17.7 —61.8 15.2 59.3
Blackman—-Harris —-4.9 —-33.4 —-115.7 28.5 110.8

It should be clear from these numbers that it is more difficult to isolate a higher
harmonic. For positive mistuning, harmotie- 1 causes more corruption of har-
monick than harmoni& + 1 does. (However, for negative mistuning the opposite is
true.) Also, isolation of a harmonic improves with the sophistication of the window
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type. For example, the 4-term Blackman—Harris is better than the Hamming, the
Hamming is better than the hanning, and the hanning is better than the rectangular.
However, there are at least a couple more issues to consider in determining the
best window.

For one thing, the hanning-vs-Hamming tradeoff comes out differently if the
corruption caused by several harmonics surrounding the one being analyzed are
considered. That is, harmorkecwith frequencyk(f, + Af) can be corrupted by
harmonics.. k — 3,k — 2,k — 1,k + 1,k + 2,k + 3, ... having frequencies
ok =3)(fa+ AT), (k—2)(fa+ AT), (k—3)(fa+ Af), (k+1)(fa+ AT),
(k+2)(fa+ AT), (k+ 3)(fa+ Af),..., not just the immediate neighbors of
harmonick. From Fig. 1.2c¢, it is evident that the hanning response function pro-
vides better rejection than the Hamming fbff, > 2, which should reduce the
corruption of non-immediate-neighbor harmonics. Thus, the best window to use
depends on the nature of the signal’s spectrum and the particular harmonic to be
analyzed.

Another concern is the narrowness of the 4-term Blackman—Harris response for
the pass-band region® f/f, < 1 and the corresponding opulent time-domain
width (4/f,) of its window function [see Eg. (1.7d)]. Even though its response
side lobes are lower, its main lobe is more sensitive to frequency detuning than
the other window functions. Also, the Blackman—Harris’s relatively wide time-
window can cause time-resolution problems with attendant loss of some detail.
Thus, the hanning and Hamming window functions, in addition to being somewhat
cheaper to compute, have some possible accuracy advantages over the 4-term
Blackman—Hatrris.

In connection with filter response functions, one might ask “Why not use an
ideal rectangular filter response?” Such a response, in its low-pass form, is defined
as

W(f) = 1.0, |f| <05f, (1.142)
10 |fl>05f, '

and gives ideal results in the frequency domain in that it perfectly separates har-
monics of f, is relatively impervious to frequency changes, and still yields a
summed response of 1.0. However, tht¥g f) corresponds to the time-window
function

w(t)  sin(rfat)

1.14b
fa atfy ( )

which is not time-limited and converges very slowly to zero as time increases.
While this window performs very precisely in the frequency domain, it would give
rise to much time-domain distortion.
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1.1.2.3 Synthesis from Harmonic Amplitudes and Frequency Deviations

According to Fourier series theory, an analyzed signal can be synthesized using

§(t) = i §(t) = i & (t)el 2kt (1.15a)
k=—o0 k=—o0
= co(t) + i (E(t)e! Rt &y (t)e 127 (1.15b)
k=1
= Ao(t) + i A (t) cos(Zrk fat + 6k(t)) (1.15¢)
k=1

00 t
= Aot) + Y _ Ax(t) cos(2r (kfat + / Af(t)dt) + 6y,), (1.15d)
k=1 o

where fork > 1,

A(t) = 2[&(t)] = 2v/(ReCx(1)))? + (IM(&(1)))?, (1.15e)
Ok (t) = atan2(Img(t)), Rek(t))), (1.15f)
ko = 0k(0), (1.159)

_ 1 de(t)
Af(t) = T at (1.15h)

and wheré&(t) is defined in Eq. (1.6a).

Note: atan2y,x) is afunction thatis available in C and other computerlanguages,
and unlike atanf/x), it correctly computes the angle (in radians) of the phasor
X + Jy, even wherx is nonpositive.

Eq. (1.15d) gives a general equation for time-varying synthesis, A/,
Afi(t), andéyo are the parameters that must be known in order for synthesis to
proceed. However, for real audio signals, only a finite number of harmoKigs (
are needed. This is usually given by

K = floor(0.5 s/ fa), (1.15i)

where 0.5 is the Nyquist or half-sample frequency (see Section 1.1.4).

1.1.3 Signal Reconstruction (Resynthesis) and the Band-Pass Filter
Bank Equivalent

Theoretically, if all band-pass filter outputs are combined, the original signal can be
accurately reconstructed, regardless of whether the signal’s frequency components
line up with the filter center frequencies, using

[o¢] o0

S =) &) =5+ Y &)+ 3k(b) ~st). (1.16a)
k=—00 k=1

The near identity of Eg. 1.16a becomes a true or approximate identity if the equiv-

alent band-pass filter transfer functions add up to 1.0 or close to it—assuming that,

in practice, one is careful to retain the proper phases of the components in the
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synthesis process, or else improper phase cancellations will occur. These filters
can be derived as follows: Substituting the definitiondgt) given in Eq. (1.6a)
into Eq. (1.15a) gives

§(t) = i gl2rkfat iw(t — 1) 1Zklarg(7)d 1 (1.16b)
K=o =
— i f ~ w(t — 7)elZkhk="g(r)dr (1.16c)
i S
= i (w(t)e? fal) « s(t). (1.16d)
Taking the Fourierlj[;rj;form yields:
f) = ki W(f —kfa)S(f) = S(f)ki W(f —kfa) = S(f)Weun( f).

(1.16€)

Note thatW( f —kf,) is the band-pass transformation of the low-pass window
response function, i.e., th&/( ) response function has just been shifted to the
right by amounkf,. Thus, whether the synthesized sig@) equals the original
signal s(t) hinges on whether the sum of the shifted window functions, which
form a harmonic filter bank (see Fig. 1.1), adds up to unity Weyx( f) = 1.0].
Figure 1.3 shows such sums for four window functions discussed above, where
frequency is normalized by,. Each sum consists of 25 individual band-pass
filter responses, ranging froln= —10 tok = 15, but only 0< k < 5 is shown.

For an infinite number of filters, the rectangular-window summed response is
theoretically 1.0, independent of frequency, but it is slow to converge and shows
some variation for a finite number. The hanning window response converges rapidly
to 1.0. The Hamming window response exhibits a 1.4 dB ripple, which is probably
difficult to detect aurally. However, the 4-term Blackman—Harris window response
varies by 8.1 dB between band centers and half-band centers. Thus, as discussed
above, the Blackman—Harris window, which gives perfect results for a perfectly
periodic signal of frequencyf,, does not perform well for the harmonic filter
bank on periodic signals whose frequencies vary substantially from harmonics of
fa. However, it must be said that if the Blackman—Harris window were narrowed
somewhat, thus widening its low-pass frequency response, a better overall effect
could be obtained, even though the responses at the harmonfgsaafuld no
longer be zero.

1.1.4 Sampled Signal Implementation

Although an analog implementation of the continuous-time analyzer described
above is a possibility, a sampled signal implementation on a computer is much
more practical. This requires that the signal be stored as a series of sa(mplgs
n=0,1,2,...,wherefsisthe sample frequency. Of course, input of samples from
an analog source requires an analog-to-digital convd&a®C), and playback



14 James W. Beauchamp
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FIGURE 1.3. Sums of overlapping band-pass analysis filter respdnget — kf,)/f,) for

k = —10,-9,..., 15:rectangular (upper solid curve), hanning (dotted curve), Hamming
(dashed curve), and Blackman—Harris (lower solid curve). These give the overall resynthesis
frequency responses to an arbitrary input signal.

from the computer requires a digital-to-analog converter (DAC). A typical sample
frequency, which s frequently used in computer applications and for compact discs
(CDs), is 44,100 Hz. This is high enough that signal frequencies up to 20,000 Hz,
a frequency roughly corresponding to the upper limit of human hearing, are well
resolved.

1.1.4.1 Analysis Step

The objective of the analysis step is to compute the starting phases, amplitudes, and
frequency deviations df harmonics of the input signal at a series of time frames
i, which occur at a rate considerably lower than the sample rate. For our phase-
vocoder method the frame rate is equalftg2. Computation corresponds to the
sampled equivalent of Eq. (1.9). First, sample numbexadm are defined to be
series of integers that define timesa& n/fs andty, = m/fs. Then, substituting
t < t, andr <« 1y in EqQ. (1.9) gives:
n+N/2-1
&(n/f) = fa > w/((n—m)/fs)e 1K™ s(m/f)/ 1, (1.17a)
m=n—N/2
whereN = Pf;/f, is the length of the window functiom’ in samples and’ is
the normalized version ab, i.e.,w’() = w()/fa. Eq. (1.17a) gives the complex
amplitude of the&kth harmonic. Note that all of the time functions in this definition
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are sampled at intervals of fs. For the window functions discussed above, recall
that P = 1 for the rectangular windowP = 2 for the Hamming and hanning
window functions, and® = 4 for the fourth-order Blackman—Harris window, so
that N corresponds to 1, 2, or 4 periods of the frequerigyThe center of the
window function occurs when = m. For convenience(n/ fs) can be replaced
by &(n), w’((n — m)/fs) by w’(n — m), ands(m/fs) by s(m), so that Eq. (1.17a)
now reads as:

f n+N/2—1 _

&G === w(n—me ZkmE/fs(m) (1.17b)

S m=n—N/2

p n+N/2-1 2Py 117
— w'(n —m)e” ! s(n). A7c

N m:nZN/z (n—m) (n) (1.17¢)

Equation (1.17c) can be thought of as a discrete approximation to Eq. (1.9) in terms
of the sum ofN values, wheréN is an even number. As can be made obvious by
using a small value oN (e.g.,N = 4), this formula represents an assymetrical
sampling ofw’('), with N/2 points to the left of the middle and /2 —1 points
to the right. This can be easily fixed with a slight shift of ting ) function, by
0.5 point. Also, the fast Fourier transform (FFT) is usually used for computation,
which for most algorithms means that (1) Eq. (1.17c) should be in the form of the
discrete Fourier transform (DFT) and (R)should be a power of 2.

For the requirement th&t be a power-of-two, the signgn) must be resampled
in order to produce exactly = 2™ points, wheréM is an integer. In order to avoid
undersampling, the signal must be resampled at a higher samplé ratefs.
Therefore, let

N = 2M — 2C€i|(|ng(Pfs/fa))’ (118&)
and the new sample rate becomes
N f
f/ = Pa, (1.18b)

For example, if a 261.6 Hz (middle C) tone is digitized at a 44,100 Hz sample rate
and analyzed using a Hamming windo® & 2) of width 2/f,, thenPfy/f, =
337.16, N = 512, and the new sample rate is 66,969.6 Hz. Several methods for
changing the sample rate are available [e.g., see Smith and Gossett (1984)]. The
method programmed by Maher (1989) for use in the SNDAN analysis/synthesis
package (Beauchamp, 1993) convolves a Hamming-windowed sinc function with
the input signal, and the upsampled result is linearly interpolated.

For the DFT requirement, the substitution< m+ n — N/2 is made in Eq.
(1.17c), resulting in

. p N1 _
&(n) = eJ”kF’(l*Z“/N)N > w'(N/2—m)s(m+n — N/2)e 1 Z<PmN - (1.19a)
m=0

With P = 1, the summation of Eq. (1.19a) is in the correct form for the DFT.
However, withP > 1, Eq. (1.19a) indicates analysis only at frequendhl,
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2P/N, 3P/N, ..., whereas the DFT is defined for all frequencies O,12/N,
3/N,....Thisproblemis solved by taking the FFT for all frequencies (repldding

by k’ and lettingk’ = 0, 1, 2, .. .) and then retaining only the components needed
(i.e.,k = P, 2P, 3P, ...). For example, folP = 2, all of the harmonics of 0.5

are first computed, and then the odd-numbered components are thrown away while
keeping the even-numbered ones, which correspond to harmonfgs Bfius, if

the DFT is defined as:

N—-1
X(n.K) =" w/(N/2—m)s(m+n—N/2e ZKWN =0, N-1,

m=0
(1.19b)
Eqg. (1.19a) becomes
: P
&(n) = eJﬂkPﬂ—Zn/N)NX(n, PK), k=1,...,K. (1.19¢)

Another implication of Eq. (1.19a) is th&(n) needs to be computed for all
integer values of. However, it turns out tha(n) can be accurately represented
by considerably fewer samples due to the inherent low bandwidth of this function.
Assuming that the bandwidth §f(n) is confined tof;, which is approximately true

for each of the window functions discussed above (except the rectangular window),
&(n) can be minimally sampled at a frequency df,2which corresponds to two
points per period of the input signal oP2points sampled evenly within thid-

point window. The analysis-sample spacing or hop size (in signal samples) is
thenH = 0.5N/P, i.e., 0.25\ for the Hamming or hanning or 0.1Rbfor the
4-term Blackman—Harris window. Therefore, values only need to be computed for
n = Hi, wherei is the frame number, so that Eq. (1.19c) then becomes

& (Hi) = ej”k(P‘i)£X(Hi, Pk, k=1,...,K. (1.19d)

This is a DFT with a constant multiplierP{N) and an extra phase shift of
7k(P —i). Because the phase shift is always an integer multipte, dtfis equiv-
alent to a shift of eitherOor 180.

Computation of amplitude (magnitude), phase, and frequency follows from Egs.
(1.15e)—(1.15h). First, the real and imaginary par&&@fli ), which naturally result
from an FFT or DFT, are taken to lag(i) andby(i), respectively. Then, fdt > 1,

A(Hi) = 2,/a2(i) + b2(i), (1.20a)

B(Hi) = atan 2Bk (i), a(i)), (1.20b)
Bko = 6k(0). (1.20c¢)

Calculating the frequency deviation from one frame to the next requires some care.
It is essentially a matter of computing the difference between the phase of each
frame and that of the preceding frame and multiplying the result by a suitable
scale factor. However, if the phase is advancing and crossessthboundary,

it will immediately jump negative to be slightly greater tham.-This does not
mean that the frequency is suddenly negative. Conversely, if the phase is receding
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and crosses thewr boundary, it will suddenly jump positive to be slightly less
than+s, which falsely implies a positive frequency. It is better to imagine that
the phase is progressing around a circle and choose the phase difference that is
smallest in that angular regime. One way to handle this problem is by using a
modulo function:

AG(Hi) = mod@(H (i + 1)) — 6k(Hi); -, 7), (1.20d)

which automatically confines the phase to the range,[x].
Another method is to use the identity formula

Ab(HIT) = atan 26 (i + 1)aw(i) — ax(i + 1)bk(i), ac(i)ax(i + 1)
+ by (i)bk(i + 1)), (1.20e)
which obviates having to calculate the individual phases according to Eqg. (1.20b).

Because the time between frames is alwaysfQ,3he slope of the phase with
respect to time, which gives the frequency deviation of harmbniiecomes

Ab(Hi)
T

Af(Hi) = fa, (1.20f)

and the total estimated frequency of harmdnis given by

fe(Hi) = kfa + Af(Hi) = (1+ AQEETHi))kfa. (1.20g)

Finally, givendy(Hi) andAfc(Hi) for framei, the phase for the next framer 1
can be recovered using

Af(Hi)
fa

In this way, except for roundoff error, the initial phasg(0)} and frequency
deviations{ A fc(Hi)} of the harmonics at each frame are sufficient to recover the
phaseg6(Hi)} of allofthe harmonics ateach frame. The frequency deviations are
preferred for file storage over the phases because they are intuitively more useful
for sound data examination and manipulation. Thus, according to this design,
an analysis file contains the initial harmonic phases and for each harmonic and
frame number the amplitude/frequency-deviation pdirdx(Hi), Afe(Hi)}, k =
1,...,K},i =0,...,1 —1}, wherel is the total number of frames.

Figure 1.4 shows the fixed filter bank analysis of atréimpet tone playeff with
analysis frequency, = 350 Hz in terms of harmonic amplitude vs frequency and
time. Fig. 1.4a is a 3D display with amplitude being the vertical dimension (fre-
guency deviations are not shown) and Fig. 1.4b is a 2D display showing harmonic
frequencies vs time with harmonic amplitudes depicted in terms of darkness.

O(H ([ + 1)) = 6c(Hi) + Ab(HI) = Oc(Hi) + 7

. (1.20h)

1.1.4.2 Synthesis Step

Synthesis can be accomplished either by using inverse FFTs and overlap-adds
of adjacent windows or by straightforward sinusoidal (oscillator bank) additive
synthesis.
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FIGURE 1.4. Time-variant analysis of an 350 Hz) trumpet tone play€ftt (a) amplitude-
vs-harmonic number-vs-time (3D) graphs of the harmonic envelopes. (b) Frequency-vs-time
(2D) graphs of the harmonics. Amplitude is indicated by darkness in the 2D graph.

With overlap-add one must take care that the effect of the analysis window
function disappears. This can be shown to be true for the cosine-term windows
considered above when they are overlapped with window centers spacedfiy 0.5/
Assuming no time-scale modification is needed, spectrum data manipulations can
be made on the harmonic amplitude and frequency data, but these data must be
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converted to real and imaginary parts for use with the inverse FFT. Time-scale
modification with this method is not as straightforward as with the oscillator bank,
butitcan be done by resampling in the frequency domain (Rodetand DePalle, 1992;
George and Smith, 1992). The principal advantage of the method over additive
synthesis of sinusoids is the increased speed of synthesis when a large number of
harmonics is used.

With time-varying sinusoidal additive synthesis, computation is very direct and
is based on the following formula, derived from Eq. (1.15d) [with #jgt) term
omitted]:

n-1
§(n) = Z A(n) cos|: (kf n+ Y Afy (m)) +9k0} (1.21a)

m=0

where /" is the synthesis sample frequenéy,(n) and Af;(n) are the synthe-
sis harmonic amplitudes and frequency deviations for harmlorit samplen,
respectively.

With additive synthesis there are a few issues to consider. First, as the sam-
ple countem advances beyond zero, the cosine argument advances(ky,2+
Afg(n))/t{ on each sample, giving

K
8(n) = Y An) cos@x(n)), (1.21b)
k=1
where®y(n), the “total synthesis phase,” is computed recursively using
2
Ok(n + 1) = mod (@k(n) + f—jlrl(kfa + Af(n)); —m, n) . (1.21c)
S

Second, because in the analysis stge@andA fy are only computed for the frame
boundaries, i.e., everll samples at the analysis sample rate, there is the issue
of how to interpolateA and A fy between these boundaries. In the next four
sections methods for phase reconstruction using zeroth-(constant), first-(linear),
second-(quadratic), and third-(cubic) order phase interpolations are examined.

Third, it is desirable to match the analysis frame boundary phases with the
“synthesis offset phase,” which can be defined from Eq. (1.21a) as

O(n) = = Z AFJ(M) + b, . (1.21d)
fS m=0
or recursively using
2
O(n+ 1) = 6, (n) + — Af/(n). (1.21e)

f!

Recall that at each frame bounday can be computed recursively from the
analyzed phase and frequency deviation of the previous frame using Eq. (1.20h).
One would hope, then, that these could be matched using Eq. (1.21d) or (1.21e).
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1.1.4.2.1 Piecewise Constant Amplitudes and Frequentiéth piecewise con-

stant amplitudes and frequencies, the waveform recreated by “identity resynthesis”
(resynthesis without any spectral modifications) is the original signal amplitude-
modulated by the analysis window function. In the Hamming or hanning case,
four frames per window are used, so the portion of the window used in synthesis
varies in amplitude between 0.8536 and 1.0, a variation of about 1.4 dB. This
could be compensated by multiplying by an inverse function. Merely changing the
amplitudes of the spectrum should produce similar results, but when frequencies
or the time scale are altered, unpredictable results can take place.

What happens to the synthesis phase offset for the constant frequency synthesis
case can be seen by looking at the first frame. With the synthesis sample rate of
fS’, the number of samples between framelslis= 0.5f,"/f,. After H' samples
the synthesis offset phase becomes

27

f//

S

fe" 2n (6(H) — a0 .
2f, w 2

= 6 (H). (1.22¢)

OL(H") = O, + H' == AT (0) (1.22a)

= O + (1.22b)

Therefore, the analysis offset phase is exactly matched. However, the primary
objection to this method is the discontinuity of frequency at the boundaries. This
is not a problem under identity conditions but may produce perceptible artifacts
when the time or frequency scale is changed.

1.1.4.2.2 Piecewise Linear Amplitude and Frequency Interpolatidris is the
most commonly used method. Both amplitudes and frequencies are linearly cross-
faded between frame boundaries. Thus,

Aln) = WAK(HD—I— n _H'/* UAGHG + 1), H'i <n < H( + 1),
(1.23a)
and
Af(n) = %Afk(m) i _H'/" ' AR(H( + 1)),
Hi <n<H'(i +1). (1.23b)

While this works very well in general (mainly because human ears are relatively
insensitive to slowly changing phase errors), it can be shown that unless the fre-
guency is constant, Eq. (1.23b) will result in the wrong phase values at the frame
boundaries. In fact, far = 0, it can be shown that successive application of Eqgs.
(1.23b) and (1.21c) will result in

Ox(H") = 6 (H) + 3 A%0,(0), (1.23c)
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where
A%6,(0) = 6 (2H) — 26, (H) + 6,(0). (1.23d)

A20,(Hi) may be thought of as the phase acceleration between frames. Unless the
frequency is fixed, this error will accumulate from frame to frame.

1.1.4.2.3 Piecewise Quadratic Interpolation of Phas@éth this method, the
harmonic phases are matched at the frame boundaries while the frequencies are
matched halfway between the boundaries (Ding and Qian, 1997). As in the previous
section, frequency varies linearly with time although it is not directly matched to
the phase-difference frequency. The offset phase is reconstructed by using a series
of parabolas each of which extend from the midpoint of one frame to the midpoint
of the next. Recalling thatl’ is the number of samples in a synthesis frame, let
parabola 01 extend from= —H’/2 ton = H’/2 with value ath = 0 matching

the original initial phas@(0). Similarly, let parabola 12 extend from= H’/2

ton = 3H’/2 with value ain = 1 matching the original phagg(H). These two

phase parabolas can then be written as

Ao Bo

k' 01(n) = 6k(0) + ?n + N, ——<n<— (1.24a)

2H’ 2 - 7 2

B , H 3H’
n—H), — <n<—,(1.24b
T Vo5 =n= )

whereAg, By, A1, andB; are constants to be determined. Note that these parabolas
give the correct phases whan= 0 andn = H’'.

Then derivatives are taken with respectnt@o reveal the corresponding fre-
guency deviation functions for segments 01 and 12:

W) = 0(H) + 22— H) +

Ao | Bo H’ H’
Afdoi(n) = —+ —n, —— <n=< — 1.24c
k'01(N) > tag™ > == ( )
Ao Bp H’ 3H’
Af 1) = —+ —(M—H'), — <n< 1.24d
k'12(N) 2+H’( ), 5 Sh=—, ( )

where “real frequency” in Hz is related to these by a factof g2 .
Continuity of phase requires théf,,(H'/2) = 6;,,(H’/2), i.e., setting Egs.
(1.24a) and (1.24b) equal at their connecting point gives

AoH' By (H\? Ay (H’ By (H’ 2
00y + 22 = ) coHy+ 22 (L W ALY
0+ 2+2H/<2) K )+2(2 )+2H/<2 )

(1.25a)
resulting in
8 8
2A0+ By +2A; — By = W(Gk(H) —6¢(0)) = WAQk(O), (1.25b)

where the phase differenc&gy(0) = 6k(H) — 6«(0), should be taken in the sense
of mod(A6k(0);—m, ).
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Also, continuity of frequency requires thatf.,,(H'/2) = Af,(H'/2) =
Af/;i.e., setting Egs. (1.24a) and (1.24b) equal at their connecting point gives

Ao By [H Ay By (H AT,
7+W<7>_7+W<7—H>_Afkl (1.26a)
or
A —B
fot B A-Bi_ ag (1.26b)
2 2
resulting in
B; = A1 — (Ao + Bp), (1.26¢)

so that Eq. (1.25b) becomes
3A0+ 2By + A = %AQK(O). (1.27)

The other end points of the 01 and 12 straight lines can be defined as
Ay Bo (—H') _ Ao—Bo

Afk,m(—H//Z):?"’— > >

= = Afl,, (1.28a)

ATLBH2) = 5+ o (5 = =S~ =Af, (128b)

Then, Egs. (1.26b), (1.28a), and (1.28b) combine to yield

Aq B, <3H/ H,) . AL+ B;

B, = Af,, — Afyy, (1.28c¢)
so that Eq. (1.27) becomes
8
Afy+ 6AT, + Af, = WAQK(O). (1.29a)
This equation can be generalized to a sequence of equations
/! / ! 8 H
wherei is the frame number, running from=0toi = | — 1 (there ard frames).

This results inl equations withl + 2 unknowns. However, becausef,, and
Afy, ., are really outside of the legitimate region for frame analysis, values for
them must be extrapolated by extending the 12 land, | straight lines, giving

Afpg = 2A1, — Af, and Aty = 2A1, — Afy, ., (1.29¢c)
so that the equation far= 0 becomes
, 8
8Af,, = W(QK(H) — 6k(0)), (1.29d)

and a similar equation obtains foe= | — 1. Therefore, there are nomequations
with | unknowns, and these can be readily solved by a process of elimination.
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The same process can be applied to interpolation of the amplitude values.

The quadratic interpolation method works very well. However, its one big disad-
vantage is that it must be applied to the signal as a whole rather than recursively as
the signal progresses. Therefore its use is restricted to non-real-time applications
on fairly short sound files. It works fine on single musical instrument tones.

1.1.4.2.4 Piecewise Cubic Interpolation of Phasbksthis case, it is assumed

that both the phases and the frequencies are known at the beginning and end of each
frame. By asserting these, continuity of frequency and phase can be guaranteed,
and unlike the quadratic case, each frame segment is computed independently
(McAulay and Quatieri, 1986). To begin, the equation for phase is postulated in
terms of a cubic function af:

O(n) =64+ y(n—Hi)+an—Hi)2+ B —Hi)3 Hi<n<H(+1).

(1.30a)
At n = H'i the phase is obviously
Ok(Hi) = 0. (1.30b)
At n = H'(i + 1), the phase becomes
Oc(H'(i +1)) =60y +27M = 0, + yH' +aH” + BH". (1.30¢)

The term Z M, whereM is an integer, is added to the computed phase because

it can only be computed in terms of its principal value in the range, (). It

turns out that the bes¥l to use is the one which produces the smoothest phase

function, where smoothness corresponds to the minimum mean-squared average

of the phase function’s second derivative. This is a method of “phase unwrapping.”
The derivative of Eq. (1.30a) with respectri@ives the frequency function

Afi(n) =y 4+ 2a(n — H'i) 4+ 38(n — Hi)?, (1.30d)
which at the two frame boundaries become
Af(Hi) = Afa=y (1.30e)
and
Afi(H'(i + 1)) = Afy = Afa+ 2oH' +38H". (1.30f)
Using Egs. (1.30b), (1.30c), (1.30e), and (1.3@fxnds can be solved to produce
o= %AG — %Azf (1.30g)
and
B = ;/ZSAG + H1,2 A%, (1.30h)
where

A =0y — 60, — AfaH + 27 M (1.30i)
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and
A% = Afy — Af,. (1.30))

Note that the only right-side unknown . This is evaluated by considering it to
be a continuous variable and finding the value of it which minimizes

1 H'(+D) 7 520(n) 2 1 H
M) = dn=— 2o + 68n)%d 1.31
o(M) 4H’/Hq < an? ) "= J, (xTepndn (1313

= Hi / (@® + 6apn + 98°n?)dn = a® + 3¢pH’ + 387H". (1.31b)
0

Substituting Egs. (1.30g) and (1.30h) into (1.31b) gives

3(A0)2 —3H’ - A%f . AG + H?(AZ£)?
g(M):( ) Lh ( )‘

Noting from Eq. (1.30i) thah@ can be writtenad6 = A6, + 27 M, the derivative
of Eq. (1.31c) with respect tM can be taken and set to zero. This gives

(1.31c)

2

This continuous result should be rounded to the nearest integer before substituting
into Egs. (1.30g) and (1.30h) for computation of the cubic polynomial coefficients
a andgB. These coefficients and the fact that= A f, are then used for the phase
formula of Eq. (1.30a).

Compared to the quadratic method, a primary advantage of the cubic interpo-
lation method is that each frame is handled separately, so there is no problem
with real-time applications other than the time involved in computing each frame.
Moreover, because phase as well as frequency is accounted for on each frame
boundary, large relative phase errors between frames should not occur. Thus, the
cubic method ordinarily works well for time-stretching applications. However,
Ding and Qian (1997) have shown that the quadratic method is more stable in the
face of random initial phases and small amounts of noise added to frame-boundary
phase measurements for the case of a fixed-frequency offset.

Figure 1.5 compares the first 50 ms of the originalffrtrumpet tone signal
with resyntheses of the tone using piecewise-linear frequency, piecewise-constant
frequency, quadratic phase, and cubic phase interpolation. It also gives the differ-
ences between the original and the four cases. From the differences, it appears that
piecewise quadratic is much superior to the other methods. However, in listen-
ing to the difference signals, it is apparent that the piecewise cubic produces the

Y (%(Afa + Afy) — (B — ea)> . (1.31d)

FIGURE 1.5. First 50 ms of original (middle top), resynthesized (left), and difference signals
(right) for the R trumpet tone using various methods of phase interpolation: (a) original;
(b) and (c) piecewise-linear frequency; (d) and (e) piecewise-constant frequency; (f) and
(9) piecewise-quadratic phase, (h) and (i) piecewise-cubic phase.
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FIGURE 1.6. Block diagram of the fixed filter bank phase-vocoder analysis/resynthesis
method, wheren = sample numbetk = harmonic number, and= frame number: (a)
analysis method; (b) additive resynthesis method based on harmonic analysis data.

perceptually smaller result because, unlike the other methods that still retain the
pitch of the original, at least in this case, it produces a pitchless broadband residual.

In summary, Fig. 1.6 gives a block diagram of an analysis/synthesis system
based on the fixed filter-bank (phase vocoder) approach.

1.2 Spectral Frequency-Tracking Method

When the input signal is more complex than a single quasiperiodic sound such as a
fixed-pitch trumpet tone, the harmonic analysis/synthesis method may not be suf-
ficient. This is true of sounds that contain inharmonic partials or significant noise,
but it is especially true of signals having large pitch variations or those contain-
ing several instrument tones at different pitches. The frequency-tracking or MQ
method, which was introduced by McAulay and Quatieri (1986) for speech and
extended by Smith and Serra (1987) for music applications, takes the position that
a sound signal is composed of collections of sinusoids having arbitrary frequen-
cies (i.e., with no particular ratios between frequencies) and that each frequency
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component does not necessarily exist during the entire duration of the signal. In
fact, some frequency components may have extremely short lives, typically ones
that form clusters to imitate bursts of noise.

1.2.1 Frequency-Tracking Analysis

It is well known that individual frequency components, i.e., sinusoids or partials,
can be observed and measured as peaks in a discrete Fourier transform if the com-
ponent frequencies are spaced substantially farther apart than the bin frequencies
of the analysis and the bandwidth of the analysis window function. A useful cri-
terion (Smith and Serra, 1987) is that for adjacent component frequencies, e.g.,
f1 and f;, to be resolved, they must be separated by at least the window function
bandwidth given by

f
Af, = Bwﬁs = B, Afp, (1.32)

where B,, is the window bandwidth in binsfs is the sample frequency is
the number of samples in the window function, afnd, is the bin separation
frequency. Based on the window transform’s first zero frequeBgys= 2 for the
rectangular windowB,, = 4 for the hanning and Hamming windows, aRBg = 8
for the 4-term Blackman—Harris window.

Figure 1.7 illustrates the magnitude spectrum analysis of two superimposed si-
nusoids of different frequency for various window types and frequency separations.
Zerofill, whereby the FFT length is artificially increased by added zeros to the left
and to the right of the window function, can be used to reveal the true nature of the
window transform functions. In this case, the magnitude transforms of two window
transform functions, one for each sinusoid frequency, are superimposedfith
taken to be equal th, the bin frequencies have integer values. For the rectangular
window, if f; and f, are set to integers separated by at least 2, the peaks are clearly
discernable. However, if with the same separation they are set to frequencies half-
way between the integers (worst case), they are less distinct unless zero fill is used.
Also, a very significant amount of sidelobe behavior is visible. With a hanning or
Hamming window and the same frequency component spacing, the components
cannot be separated even when zero fill is used. However, when the frequency
spacing is increased to 3, separation is very clear. For the 4-term Blackman—
Harris window, a spacing of 3 also works well. So a separation of 3 bin frequen-
cies is adequate for the three window types. Also, the hanning and Hamming
sidelobe amplitudes are very small, and the Blackman—Harris sidelobes are not
visible.

Therefore, in order to accurately resolve peaks in a magnitude spectrum their fre-
guencies must be separated by at least three bin frequency units. Otherwise, compo-
nents will appear to be merged and cannot be separated easily. A typical situation is
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FIGURE 1.7. Discrete Fourier transform of a windowed signal consisting of two unit-
amplitude sinusoids with frequenciels and f, for various window functions, with
and without zero-fill. In all cases the sampling frequency is 64. (a)—(c) rectangular
window responses: (af; =15, f, =17, no zerofill; (b) f; = 155, f, =175, no
zero-fill; (¢) f, =155, f, = 17.5, with zero-fill. (d)-(f) Hanning window responses:
(d) f; =155, f, =175, no zero-fill; (e) f; =155, f, =175, with zero-fill; (f)

f; = 155, f, = 185, with zero-fill. (g)-(i) Hamming window responses: (gj =

155, f, =175, no zero-fill; (h) f; = 155, f, = 17.5, with zero-fill; (i) f; = 155,

f, = 185, with zero-fill. (j)—(I) Blackman—Harris window responses (all with zero-fill):

() fr =155, f, =175; (k) f; = 155, f, = 185; () f; = 155, f, = 20.5.
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where fg = 44,100 Hz,N = 1024, and the bin separation frequencyAi§, =

43 Hz. Itis clear that under these circumstances the lowest fundamental frequency

of a harmonic tone that can be analyzed properly is about 130 Hz. The time reso-

lution in terms of the window width i® /fs = 23 ms. Going to lower frequencies

by a certain factor compromises the time resolution by the inverse factor.
Because the detected peaks must be at least three window bins apart, for each

framei the maximum number of peals; that can be detected in a spectrum

is N/6. Because the frequency resolutiomi§, = fs/N, the maximum number

of peaks (or partials) is equal té/(6Af,). For example, if a minimum peak

separation of 40 Hz were required at a sample rate of 44,100 Hz, a power-of-2

value of N must first be chosen to yield a value at least that small. The maximum

useable bin separation frequency would b¢34& 13.3 Hz. A bin separation of

10.8 Hz is given byN = 4096, so the corresponding minimum peak separation

would be 32.4 Hz, and the maximum number of peaks that could be resolved would

be 4096/6~ 683. It is assumed that each peak corresponds to a sinusoid in the

signal.

1.2.2 Frequency-Tracking Algorithm

Assuming that frequency components can be resolved, the frequency-tracking
method consists of the following four steps:

1. Successive FFTs (corresponding to frames) of overlapped windowed seg-
ments of the input signal are computed. A window function such as the Kaiser
with « = 6.3 can be used for good peak separation. Usually a zero-fill factor of
at least 1.0 is used, but larger (integer) factors might be useful. This yields an
FFT window size ofN’, as opposed tdl, the width of the window function. The
real and imaginary parts of the FFT are retained and the magnitude values are
computed. [See Egs. (1.13e) and (1.19a.)] The FFTs are overlapped by a hop size
of H samples oAtiame = H/fs S. Also, the FFT bin frequency spacing (after
zero-padding) i\ frer = fs/M'.

2. For each frame, K; spectrum peaks are identified from the magnitude
spectrum. Each peak is determined by three consecutive FFT magnitude values
A:_1, As, and Az 11 (€ is the FFT bin number variable), wherg is the largest
of the three. The estimated frequency and true maximum value are found by
parabolic interpolation. Zero-fill helps the interpolation, because more points are
automatically inserted between the window-function bins, and the interpolation
is band-limited. However, direct interpolation can be implemented by fitting a
smooth curve to the three points. Ideally, a best-fit shifted version of the trans-
formed window function should be used. In practice, it has been found that fit-
ting a quadratic to the log of the magnitude function yields adequate results with
much less computation (Smith and Serra, 1987). Thus, the peak frequency is given

by

fx = (£ + p)Afrer, (1.339)
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where
5 log(As—1A¢11)
Tlog(Ac1Ac 41/ A2’

Next, the amplitude and phase of each peak is calculated. The peak amplitude is
computed using

p=0 (1.33b)

A
A= e A (3%
The corresponding phase is computed by first interpolating the values of the real
and imaginary parts andb;, at the peak frequency using a formula analogous to
Eg. (1.33c), and then computing the phase according to Eq. (1.20b). The frequency,
amplitude, and phase of each ped,( fx, 6¢) are thus computed and retained.
Other FFT bin information is discarded.

Usually not every local maximum is chosen to be a peak. For example, peaks may
be ignored that are not above a predefined threshold. The threshold can vary with
frequency. E.g., a threshold that lowers as frequency increases may be desirable
because even though the higher-frequency components of most musical sounds are
generally weaker than the lower-frequency components, they are still very audible.
This threshold variation can be accomplished by preprocessing the signal with a
simple first-order digital filter and then applying a fixed threshold (Beauchamp,
1993). Serra (1989) discusses the use of two thresholds, one absolute and one
relative to the highest peak of the spectrum of the current frame. He also uses the
log equivalent of a peak-to-valley ratio defined by

Vit (1.33d)
v Affﬁl AE+52
where& — §; andé + §; are the bins corresponding to the first minimum below
and above the peak bin Unlesspvr is above a designated threshold, the peak
would be rejected. Fitz et al. (1992) discuss using logarithmic bands within which
weak peaks may be masked by a strong peak and are therefore discarded.

Figure 1.8 shows a typical magnitude spectrum with peaks above an amplitude
threshold of 100 identified.

3. Frequency-vs-time tracks are formed by connecting peaks of consecutive
frames. This turns out to be the most crucial aspect of the analysis method,
and there is probably no perfect way to do it. Rules for forming tracks form a
heuristic method, which is not guaranteed to be optimal in any sense. The ba-
sic procedure is to find the best match between the peaks of fravith frame
i + 1. Matches are attempted between corresponding frequencies that are close
together. If the number of peaks in frameandi + 1 areKqg and K3, respec-
tively, andKy > K3, some of the tracks will have to end (“death”). On the other
hand, if Ko < K1, some new tracks will begin (“birth”). Tracks could also be-
gin or end because the only available potential matches have excessive frequency
differences. Detailed procedures for peak-tracking are given by McAulay and
Quatieri (1986), Smith and Serra (1987), Serra (1989), and Maher (1989). Fitz
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FIGURE 1.8. Magnitude spectrum of thg Fumpet tone with peaks whose amplitudes are
above a threshold of 100 marked.

et al. (1992) discuss the possibility of hysteresis in tracking, where the end of
a track is not counted as a real end until it persists for several frames. How-
ever, it is obvious that the best frequency tracker should look at the signal as a
whole, or at least in large chunks, rather than just a few frames. Depalle et al.
(1993a, 1993b) developed a method based on a hidden Markov model (HMM)
that uses computed probabilities of peak trajectories to determine improved over-
all tracking.

Figure 1.9a shows a set of tracks for atenor voice sound (sungait@ vibrato.
Note that with the fixed-filter-bank (phase-vocoder) method it would be difficult
to isolate the harmonics because when harmonic frequency deviations exceed
0.5f,—in this case when the harmonic number is greater than about 8—the filter
responses begin to seriously overlap. Frequency tracking alleviates that problem.
Fig. 1.9b shows the same data plotted in three dimensions, which provides a view
of the amplitude of the various tracks, as well as their frequencies, as functions of
time.

4. Peak data for each track are written to a file. For each fiarie number
of peaksK; is given and each pedkis represented by amplitudi ;, frequency
fri, phasey i, and a “link” ki giving the peak number of the next frame to which
it is connected. An alternative to giving the next-frame peak number is to number
the tracks and give the track number of each peak, but a problem with this method
is that the number of tracks usually changes continually throughout the sound, so
that the track numbers soon get out of frequency order.
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1.2.3 Fundamental Frequency (Pitch) Detection

There is some controversy about the use of the fgitoh to mean fundamental
frequency (orfg). Most speech communication researchers [e.g., Hess (1983) and
Schroeder (1999)] use the two terms interchangeably, whereas most auditory sci-
ence researchers insist on a clear distinction between them. According to the latter,
pitch is strictly a percept and should not be confused with frequency. However, the
pitch of a sound corresponds to the frequency of a sine tone that is judged to have
the same pitch. For periodic signals, perceived pitch generally corresponds to its
fundamental frequency, although pathological cases are easy to construct. For ex-
ample, if only a few upper harmonics are resynthesized, the pitch may be associated
either with the center of the harmonic band or with the greatest common divisor of
the harmonic frequencies. Pitch ambiguity can also arise when only odd harmonics
are present and the fundamental component is missing. Moreover, in typical music
performance, pitch is highly variable, and not all sounds are equally harmonic.
Some short sounds may be very noise-like and yet will be perceived (by musi-
cally experienced listeners) as particular musical pitches. Unlike speech, where
pitch tends to change smoothly over time and is restricted in range, in typical solo
musical passages pitches continually change from one relatively constant value to
another, large leaps often occur, and spans of two octaves or more are possible.

What are the requirements of a good musical pitch detector? First, the detector
should yield frequency-vs-time data for recordings of solo acoustical musical
instruments. Recordings with reverberation present difficulties because echoes
overlaying the intended sounds tend to confuse detectors. (Humans seem to have
the uncanny ability to ignore these echoes.) Second, the detector should yield a
pitch-vs-time graph that music experts agree corresponds to what they hear. If the
input signal is a recording of a written score performance, it is reasonably easy to
assess the accuracy of the pitch detector. On the other hand, if the performance is
an improvisation, a transcription of some sort must be produced before evaluation
can be done. A useful form for the transcription is a series of “events,” which gives
the start-time, end-time, and average pitch (in log frequency units) of each note.
Another useful parameter is an estimate of the definiteness of the pitch for each
event. Such a transcription can be produced by using a sound file editor to play
back isolated segments of the file and determining the pitch by comparison to a
tone generator. The pitch-vs-time graph can be compared to these data visually or
by using a computer to tally the errors on a note-by-note or frame-by-frame basis.
Another way to assess the quality of pitch detection is to resynthesize the input
signal using the detected pitch information. If the amplitude is very low when some
errors occur, the pitch errors may be inaudible and can also be easily gated out in
the pitch-vs-time graph. Musical pitch detectors should be evaluated with a large
corpus of material, i.e., recordings of solo passages with little or no reverberation
and corresponding transcriptions. Unfortunately, such a corpus does not currently
exist in the public domain.

Pitch detectors can either work directly with time-domain samples or with
frequency-domain spectra. In the time domain, autocorrelation period detectors
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have proven useful (Moorer, 1974, 1975; Boersma, 1993; de Cheveigné and
Kawahara, 2002). In essence, a signal is compared with a time-delayed version of
itself, either by multiplying the two signals together and averaging or by subtract-
ing the two and averaging the magnitudes of the differences, both over a certain
time window. In the former case, the first significant maximum indicates the pe-
riod, whereas in the latter case the first significant minimum indicates the period.
Assuming that a sufficiently wide window is chosen, frequency-domain spectra
show the positions of the harmonics, and the positions of the harmonics can be
used to predict the fundamental frequency. Frequency-domain harmonic-matching
methods for musical pitch detection have been developed by Piszczalski and Galler
(1979), Dovaland Rodet (1991), Brown (1992), and Maher and Beauchamp (1994).
Another distinct method uses the cepstrum, which seeks to determine the period-
icity of the DFT magnitude by taking its log and then applying a second FFT.
This has been used extensively in speech applications (Noll, 1967) but seldom
for music [for an exception, see Chen (2001)]. All of these methods rely on the
selection of a minimum or maximum of a function. Determining which of several
maxima or minima correspond to the correct fundamental frequency turns out to
be the biggest problem in making these methods reliable. Roads (1996) gives an
extensive overview of several music pitch-detection methods.

Maher and Beauchamp discuss a pitch detector based on spectral peaks called a
Two-Way Mismatch Algorithm (Beauchamp et al., 1993; Maher and Beauchamp,
1994). This method was further developed by Cano (1998). The algorithm com-
pares the frequencies of the peaks with the frequencies of the harmonics of a series
of hypothetical fundamental frequencies. The name of the algorithm comes from
its method of comparing the “measured” peak frequenfigsk =1,..., K}
with the nearest “predicted” harmonic frequencie,, n = 1, ..., N} [(where
N = ceil(max(fx/fo))] and, in reverse, comparing the harmonic frequencies with
the nearest peak frequencies. For example, suppose there are peak frequencies of
90, 180, 270, 360, and 450 Hz and predicted harmonic frequencies of 50, 100, 150,
200, 250, 300, 350, 400, and 450 Hz. Then there are peak-to-harmonic frequencies
90—100, 186-200, 276~250, 366~ 350, and 4568>450. However, in reverse
there are harmonic-to-peak frequencies-880, 106-90, 156- 180, 206-180,
250270, 300-270, 350-360, 406360, and 458>450. While in the first
case the absolute frequency differences are 10, 20, 20, 10, and 0, in the second
case they are 40, 10, 30, 20, 20, 30, 10, 40, and 0. The “measured-to-predicted
error” depends on the first set of numbers, whereas the “predicted-to-measured
error” depends on the second set, and the total error depends on the weighted sum
of the two. However, the amplitudes of the peak components also matter, as weak
amplitude components (which might be spurious) are not as important as strong
amplitudes. Moreover, the actual frequencies of the components may be important.
A general formula for the frequency mismatch error is

Effiotal = EMpm + pEMm_p (1.34a)

1

N K
= 1 2 Ew (Ao, nfo, accn) + % > Ew (Afi. fi. &). (1.34b)
n=1 k=1
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FIGURE 1.10. Fundamental frequendy vs time for the G3 tenor voice sound.

Note that the forms of the two error terms are the same andgthsita factor
used to weight the relative importance of the two terms in calculating the total
error. Af, is the magnitude of the difference between the frequency ohthe
harmonic and th&th peak frequency closest to it, i.&f, = | f,— fk|. ax is the
normalized amplitude of thegh peak component, i.e, = Ad/max(Ax) so thatthe
maximum value o8y is 1.0. For the first summatioay .., refers to the normalized
amplitude of the peak componekthat is closest to the harmonic A fy is the
magnitude of the difference between the frequency okthgeak frequency and
the nth harmonic closest to it, i.eAfy = | f,— fx|. A simplified version of the
error function used by Maher and Beauchamp (1994) is

Afi
fkp ’

Af
4 (1.34c)
fn

1 N K
Effiom = > (140 -8) 5 + 30 > (1+0-a)
n=1 k=1

whereq, p, andp were taken to be 1.4, 0.5, and 0.33, respectively.

For each frame of the analysis, the fundamental frequdpdy varied over a
designated frequency range and the “true” fundamental frequency is deemed to be
the one that yields the lowest value of Ef.

A graph of f, vs time for the tenor voice whose spectral data are shown in
Fig. 1.9 is given in Fig. 1.10. A graph df, vs time for a clarinet solo passage
translated into equal-tempered pitch units is shown in Fig 1.11a. For comparison,
Fig. 1.11b shows the corresponding musical score.



36 James W. Beauchamp

G,

A# -

Musical Pitch

0.0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 3.6 4.0
Time (sec)

@

(b)

FIGURE 1.11. Pitch detection of a solo clarinet passage: (a) fundamental frequency vs time
(from Beauchamp et al., 1993, Fig. 9, reproduced by permission of the Audio Engineering
Society); (b) equivalent musical score. (from Messiaen, 1941)

1.2.4 Reduction of Frequency-Tracking Analysis to Harmonic Analysis

In 1989 Robert Maher wrote a program [described in Beauchamp (1993)] that
reduces frequency-tracking data to harmonic data in a format almost identical
to that used for the harmonic filter bank (aka phase vocoder) analysis/synthesis
described in Section 1.1. This format is known as “mg.an,” as opposed to “mq,”
the format used for frequency-tracking analysis/synthesis, and “pv.an,” used for
the phase vocoder. (These formats are discussed in detail in Section 2.1.)

The principal difference between the “mqg” and “pv.an” formats is that with the
latter the amplitude and associated deviation from fixed harmonic frequency are
stored for each harmonic at each frame, whereas with the “mq” format a set of
amplitudes and corresponding absolute frequencies are given for each frame. Also,
the “pv.an” format assumes that the same number of spectral components are used
throughout the sound, whereas with the “mqg” format the number of components
varies with time. Another difference is that with the “pv.an” format only initial
phases of the harmonics are given, whereas the “mq” format includes the starting
phases for each time frame.
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Frequency-tracking (“mq”) data can be converted to the harmonic for-
mat (“mg.an”) albeit with some loss of spectral information. First, a
fundamental-frequency-vs-time track must be produced (see Section 1.2.3). Then
that track is used to guide the extraction of each harmonic amplitude based on
“mqg” components whose frequencies are within a certain designated neighbor-
hood of the expected harmonic frequency. The neighborhood is specified in terms
of a “harmonic acceptance intervalAk), which is the fraction of departure from
the expected harmonic frequency for a peak to be considered as a valid harmonic.
Given an expected time-varying fundamental frequefigyand harmonid, the
amplitude and frequency of the harmonic are taken from the strongest amplitude
peak component whose frequency lies between @ik)kf, and (1+ Ak)kf,. In
this way, any deviations from perfect harmonicity are preserved as long as they do
not exceed the harmonic acceptance interal.is typically taken to be 0.03 or
3%, corresponding to a semitone acceptance interval.

For each harmonik, the frequency deviation that is actually stored is the dif-
ference between the the extracted frequency kipdwhere f, is the expected
average fundamental given by the user. This is appropriate for signals that have
only one pitch. However, if the signal’s pitch variation exceeds a semitone, it is
usually more appropriate to sét to zero and store absolute frequencies instead
of frequency deviations.

Figure 1.12a, b shows block diagrams of a frequency-tracking analysis system
with “.mq” (tracks) and “.mg.an” (harmonics) outputs.

1.2.5 Frequency-Tracking Synthesis

As with the phase vocoder, frequency-tracking synthesis can proceed either by
sinusoidal additive synthesis (McAulay and Quatieri, 1986; Smith and Serra, 1987)
or overlap-add synthesis (Rodet and Depalle, 1992).

1.2.5.1 Frequency-Tracking Additive Synthesis

Frequency-tracking additive synthesis uses a model similar to Eq. (1.2). Note that,
unlike the phase vocoder, there is not a fixed number of sinusoidal components
for the entire duration of a sound. As Eq. (1.2) only holds for the duration of each
frame, it can be rewritten as

Ki ti+At
s(t + At) = Z Aci(ti + At) cos(2r / fii(r)dt + 6ki). (1.35a)
k=1 i

wheretj = itgame, IS the beginning time of each frame0At < tyameis the time
between frameg is the number of sinusoid partials or tracks, which varies from
one frame to the nex#y ; (t) and fi i (t) are functions that describe the change of
thekth track amplitude and frequency during tlile frame, and ; is thekth track
starting phase for thigh frame.

The discrete implementation follows from Eq. (1.21b):

K\
§(n) = Z A i(n)cos@xi(n)), H'i <n < H'(i +1) (1.35b)
k=1
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FIGURE1.12. Block diagram of frequency-tracking analysis/resynthesis system: (a) analysis
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n is now the sample counter,is the frame counter, antl is the number of
samples per frame. Amplitudes are generally linearly interpolated between frame
boundaries whereas phases are interpolated using cubic interpolation as described
in Section 1.1.4.2.4H’ can be different than the origin& in order to allow
time-scaling or synthesis at a different sample rate. It is desirable that frequencies,
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amplitudes, and phases be matched at the frame boundaries. However, if frequency
shifting is to be done, it is nearly impossible to specify what the most appropriate
phase values should be, so a less complex phase interpolation algorithm may be
sufficient.

Equations (1.35a) and (1.35b) are actually incomplete because they do not show
that thekth partial may actually connect to a different partial number whenever a
track birth or death occurs. In practice this is accomplished by associating a “link”
valuexy with the amplitude, frequency, and phase data for each frame and gives
the partial number of the next frame the current partial is connected to.

Figure 1.12c shows a block diagram for frequency-tracking additive synthesis.

1.2.5.2 Residual Noise Analysis/Synthesis

Many musical sounds seem to have appreciable noise embedded in them. Wind
instruments have varying amounts of attack noise and breath noise. Bowed strings
have scrape noise. Percussion instruments have impact noise and perhaps damping
noise at the ends of sounds. The problem is to make a clear distinction between
noise (the random or stochastic part) and tone (the pitched or deterministic part).
The main idea is to do the best possible analysis of the pitched part of a signal,
sp(t), and then subtract the pitched resynthesis from the original sigft#lto
produce a residual noise(t) = s(t) — sp(t). Hopefully, the pitched components

in s(t) will be cancelled by this subtraction, leaving only a noise component with

no audible pitch. It requires that pure sinusoidal components be properly identified
with proper amplitudes, frequencies, and phases. This separation process was first
implemented by Serra and Smith (1990) and is extended in Chapter 4 by Levine
and Smith to include separate coding of transients.

Another viewpoint is that noise can be considered to be a modulation (amplitude
and/or frequency) of the sinusoidal components. Indeed, if one views the graphs of
amplitude and frequency vs time for various instruments, it is easy to see that the
basically smooth functions are colored by a certain amount of what appears to be
random variation. If these curves are smoothed and the sounds resynthesized, one
can easily hear the reduction in noise (McAdams et al., 1999). Fitz et al. (2000)
and Fitz and Haken (2002) have implemented an analysis/synthesis method that
includes random modulation of sinusoid amplitudes that is described in Chapter 3.

In order to ensure that the deterministic part consists of truly sinusoidal partials,
Serra (1989) and Serra and Smith (1990) eliminate peaks by (1) use of a minimum-
peak-height parameter, (2) specification of ranges where peaks are expected, and
(3) spectral peak continuation (SPC). SPC requires some knowledge of the signal
to be analyzed. Not all peaks are considered to be equally important, and the goal is
to form tracks only from the mostimportant ones. The concept of frequency guides,
which are similar to tracks, is used to assist in the selection of tracks. Because an
individual sound is generally more stable in the middle or end of its time-span,
track formation can start at these locations instead of at the attack, where sound
spectra are frequently much more complex and more difficult to track reliably.
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Once the deterministic tracks are determined, the sound is resynthesized from
these tracks and then subtracted from the original signal to form the stochastic part
of the signal. If the sinusoid phases are not computed accurately, the subtraction
of the deterministic part from the original can be done in the frequency domain on
the magnitude spectrum data.

The stochastic or noise residual signal is then approximated for synthesis. First
the magnitude spectrum of the residual is approximated as a spectral envelope
using a piecewise linear fit. If the residual was formed in the frequency domain,
its magnitude spectrum is readily available; otherwise, it must be computed from
the time-domain version. Synthesis proceeds by overlap-add using the computed
magnitude spectra and random phase which changes on every frame. A hanning
window is used for the overlap-add synthesis. An alternative approach is to use a
linear predictive coding (LPC) approximation to the noise residual spectral enve-
lope which is driven by white noise.

The main virtue of the sinusoid-plus-noise model is that, if separated properly,
the noise part stays noiselike even when the sound is stretched, unlike the situation
when sinusoidal components are time-stretched. In the latter case, the originally
rapid variations of the sinusoids, which may imitate noise well at the original rate,
become audible time variations, significantly changing the character of the sound.

Serra (1997) discusses using the two-way-mismatch pitch detection algorithm
(discussed in Section 1.2.3) to enhance the pitched part separation in the case of
quasiperiodic input signals. Fundamental frequency estimates are used to refine
positions of the peaks and are also used to adjust the sizes of the analysis windows
in an effort to improve the time-frequency tradeoff of the analysis.

1.2.5.3 Frequency-Tracking Overlap-Add Synthesis

Rodet and Depalle (1992) developed a method of overlap-add synthesis called
inverse-FFT synthesis, which operates from arbitrary amplitude/frequency/phase-
vs-time track data. Another way of thinking about the data is that they consist of
a series of spectral envelopes which can be used to represent both sinusoidal and
noise-residual data. The authors claim that with their PRapproach computation
is typically reduced by a factor of 10-30 over that required for the straightforward
additive synthesis approach.

A description of the method begins by looking at the formula for a single sinusoid
or partial of arbitrary amplitudé\, frequencyfy, and zero-time phasg, over a
limited time interval. Such a sinusosd(t) would be defined by

s(t) = Accos(Zr fyt + 6y,), —T/2 <t <T/2, (1.36a)

wheret = time, k = partial (or track) number, antl = window size.

Then the question is, what does this signal look like in the frequency domain?
This can be computed by first multiplyirgy(t) by a window functionw(t), such
as the hanning window,

(2/T)cog(nt/T), |t|<T/2

w(t) = {07 =T/ (1.36b)
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and then applying the short-time Fourier transform,
T/2 )
() = [ wame >t
-T/2

2
= (Ak/2)e1'9ka/ w(t)e @ (T=fidt
2

T2 _
+ (A /2)e % / ; zw(t)e’Jz”(f”k)dt (1.36¢)
=T/

= (A/2)*W(F — fi) + (Ac/2)e %W (f + fi),
whereW( f), the Fourier transform ab(t), is given by
W(f) = sincz fT) + 0.5[sincr (f T — 1)) + sinc@ (f T + 1))]. (1.36d)

The bandwidth of this hanning response in the frequency domaiit idésed on
the response up to the first zerb £ +2/T). However, if the side-lobe response
is required to be below 0.01-40 dB), the width should be extended td 64t
follows that if the frequencyfy of the sine-wave signal in Eq. (1.36a) is greater
than 3T, for the purposes of calculating tHe> 0 response, the second term of
Eq. (1.36¢) can be ignored and rewritten as the following approximation:

& ey~ | ACSW(E — i), |f— fi] <3/T
&(f)z{ 0, |f—fil>3/T

Similarly, for the f < 0 response, the second term would be used exclusively,
resulting in an equation similar to Eq. (1.36e).

It follows that if the window sizeT is greater than 3 divided by the lowest
frequency in the signal, Eq. (1.36e) will be adequate. Keep in mind, however, that
even though the hanning window’s transform is real, unfkss O orx, a rare
occurrenceS( f) will be complex.

For discrete signal synthesis, a sinusoid partial is sampled at frequigacy
partitioned into 50% overlapped windows of sikgé with M = Tf;. Assuming
no zero fill, the frequencies of the DFT are spaced\dfy= fs/M = 1/T. This
means thatV(f — fi) is sampled at six points within its principal nonzero region
defined by Eq. (1.36€) (four points within its main lobe). Therefore, to synthesize
a windowed sine wave at amplitud&, frequencyfy, and phaséy, the sampled
frequency domain functiof (mA f), wherem is the transform bin number in the
range (fkT — 3, fxT + 3), must be constructed first. Next, the complex response
functions for all sinusoid& in the current frame must be summed, making sure
that negative frequency as well as the positive frequency responses are included:

(1.36€)

K
§maf)= Y S(maf). (1.36f)

k=—K

Then, the inverse DFT cfﬁ(mAf) is taken to obtain the samplegn/fs)s(n/fs).
Finally, successive frames, which are separatdd I/samples, are overlap-added.
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This is tantamount to forming

(T/2)w(n/fs)s(n/fs) + (T/2)w((n — M/2)/15)8(n/fs)
= ((T/2w(n/fs) + (T/2)w((n — M/2)/15))8(n/fs) (1.369)
= §(n/fs).

The last step of Eq. (1.369) is true if the window and its shifted version add to
unity. With the definition of Eq. (1.36b) and noting thrat= tfs andM = Tf, we
have

(T/2)w(n/fs) + (T/2)w((n — M/2)/fs)

= cog(nt/T) + co(n(t — T/2)/T)

=1+ Icos(2rt/T)+ 1+ Jcos(2rt/T — ) (1.36h)
=1+ Jcos(Zt/T) — Lcos(xt/T) =1

Atleast this is what would happen if the transforms were taken from actual DFTs of
the signal. However, the assumption implicit in Eq. (1.36a) is that frequencies are
constant during each frame, whereas, in general, frequencies are actually changing
during the frames. Therefore, Eq. (1.369) is only an approximation. In fact, the sec-
ond signal term in the first step of Eq. (1.369) is generally slightly different than the
first. This can cause phase cancellations between corresponding frequency com-
ponents of the two frames, which would cause undesirable amplitude modulation.
Rodet and Depalle (1992) discuss a method of phase adjustment to minimize this
problem. They also discuss implementing linear interpolation between frames by
multiplying the windowed signals of Eq. (1.35g) by ratios of triangular windows
divided by thew() windows. As an extension of the basic technique, Goodwin and
Rodet (1994) discuss changing the basic assumption of Eq. (1.36a) to one where
frequency changes linearly in time over the window. Depending on the amount of
frequency change (it is usually small), the constructed frequency-domain windows
W(f — fy)willbe warped compared to their zero-frequency-change versions. The
payoff is that phases of adjacent frames should now line up and phase cancellation
should no longer be a problem.

Figure 1.13 shows a block diagram of the inverse-FFT system.

2 Analysis Results Using SNDAN

The SNDAN software package, developed for Unix at the University of lllinois

at Urbana-Champaign and ported to DOS by Richard Dobson in the United
Kingdom, can be used to perform spectral analysis, graph the results, and perform
spectrotemporal modifications and resynthesis from the spectral data. Two time-
varying spectrum analyzers are provided, a phase vocoder analyzer (pvan) and a
frequency-tracking (McAulay and Quatieri, 1986) analyzer (mgan). As described
in Section 1.1, the phase vocoder can be tuned for the fundamental frequency of
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FIGURE 1.13. Block diagram of an inverse-FFT synthesis system for resynthesis from a
single frame of amplitudes, frequencies, and phases. Responses for all comxcarents
summed before the inverse FFT occurs. The output signal is achieved by overlap-add of
adjacent frames’ signal segments.

a fixed-pitch input signal so that the bins line up with the harmonics of the input
signal. On the other hand, the frequency-tracking analyzer saves data in the form
of spectral peaks for each frame, where each peak is represented by four numbers:
amplitude, frequency (in Hz), phase (in radians), and a “link” that gives the track
number of the next frame’s track to which the current peak is linked. If it is zero,

it is assumed that the track ends (“dies”) at that frame.

2.1 Analysis File Data Formats

Data saved in an analysis file (by either pvan or mgan) are comprised of three parts.
Parts 1 and 2 comprise the file header. Part 3 comprises the analysis data, which
can be one of three forms: ‘pv.an’ (phase vocoder output), ‘mq’ (frequency-tracker
output), or ‘mg.an’ (‘mqg’ converted to the ‘an’ format).

1 Musicological data. This consists of the following text information:
(a) performer name
(b) instrument played
(c) date of recording
(d) pitch played (e.g., &
(e) performed dynamic (e.df)
(f) vibrato (yes or no)
(g) portion of original sound (e.g., “all” or “all but attack”)
(h) date of analysis
(i) additional comments
2 File-critical data, consisting of
(a) data type (e.g., “simple” for ‘an’ analysis or “MQ” for ‘mq’ analysis)
(b) sample rate of signal analyzed (in samples/second)
(c) sound duration (in seconds)
(d) maximum amplitude of input signal
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(e) analysis frequency (in Hz)
(f) time between analysis frames (in seconds)
(g9) analysis block size (FFT length) (in samples)
(h) number of harmonics (‘an’ data only)
(i) number of channels (e.g., 1 for monaural, 2 for stereo)
(i) number of frames in analysis file
(k) analysis reinterpolation factor (seldom used)
3 The analysis data. This depends on whether the data are ‘an’ or ‘mq’:
(a) ‘an’ data (usually produced by pvan):
(i) initial phase (in radians) for all harmonics.
(i) for each frame{amplitude, frequency deviation or absolute frequency
(in Hz)} for all harmonics.
(b) ‘mq’ data (usually produced by mgan):
for each frame: number of spectral peaks; peak data consisting of
{amplitude, frequency (in Hz), phase (in radians), and Jlifide all
peaks.

As discussed in Section 1.2.4, by using frequency detection (Beauchamp et al.,
1993; Maher and Beauchamp, 1994) and harmonic separation (Beauchamp, 1993),
it is possible to convert an ‘mq’ data file to an ‘mq.an’ data file. When frequency
deviates considerablyf, is usually set to zero and the “frequency deviations”
become the actual partial frequencies. The principal reason for going through this
procedureisthatthe ‘an” harmonic formatis much simpler than the ‘mq’ frequency-
tracking format, and more software has been developed for it. A side benefit is that
the procedure performs a certain amount of noise reduction on the signal.

2.2 Phase-Vocoder Analysis Examples for Fixed-Pitch
Harmonic Musical Sounds

Once a signal has been analyzed by pvan and the analysis data are placed in a data
file, the program monan can display data in a number of different ways. Figure
1.14 shows individual amplitude-vs-time graphs for the first six harmonics of a
long (8 s) trumpet sound. Fig. 1.15 shows the corresponding normalized-frequency-
deviation-vs-time graphs, where the deviations are given in term$,0f(k f,) and
kis the harmonic number. A problem with computing the frequency deviation using
the phase-vocoder method is that, when an amplitude is low, the corresponding
computed frequency becomes very noisy. While the sound can be resynthesized
with high quality using these data, if the amplitude spectrum is altered such that
weak harmonics are amplified, the frequency noise can create noticeable synthesis
artifacts. This noise problem can often be cured by selectively filtering or zeroing
the frequency-deviation data.

The harmonic amplitude and frequency graphs can also be shown in compos-
ite fashion. A three-dimensional harmonic amplitude-vs-time graph for a shorter
trumpet tone at this pitch is shown in Fig. 1.4a. A composite frequency-vs-time
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FIGURE 1.14. Phase vocoder analysis of an F4 (350 Hz) trumpet tone pipyedf > pp:
(a)—(f) harmonic amplitude8y vs time for harmonics k k < 6.

graph for the same tone, where darkness indicates amplitude, is shown in Fig. 1.4b.
Because lower amplitude harmonics register very light on this scale, the attendant
frequency noise is hardly visible.

2.2.1 Spectral Centroid

Many other forms of data display are provided by monan. For example, a well-
known and popular measure of the spectrum is the spectral centroid, which is



HARM T [3RH

HARM 3 DFF

HARM 3 DFF

0010

-0020 1

-0.030

<0000

-2

-0.030

-0.0L0

-0.020

0030 4

46

James W. Beauchamp

0.030

0020

0.010

0.000

0.0 1.0 2.0 kAG 4.0 54 6.0 1.0 8.0
TIME (SEC)
(@)

0.030

0.020

6010

G.004

3000 4000 =00 600 T00

TIME {SEC}

(c)

(.00 1o3 200

0.030 4

0020

naln

G000

00 400 s00 800 T.00 100

TIME {SEC}

fe)

2.00)

0.00

[IARM 2 DEF

1LARM 4 DF:F

1IARM & DF:F

-0.010

-0.010

-0.020

-0.04¢

-0.010

-0.020

050

020

1.010

Q.000

0030

1.0o 200 3000 400 500 600 7.00 5.00

TIME (SEC)
(b)

0020

0010

Q.000

0.0

0.030

400 500 600 700 200
HIME (SEC)

()

200 300

0020

0010

0.000

0,050 7
Q.00

200 300 440 500 600 700 R.00

TIME (SEC)

()

106

FIGURE 1.15. Phase vocoder analysis of thetFumpet tone: (a)—(f) relative frequency
deviationsA fi/(kf ,) vs time for harmonics k k < 6. A relative deviation of 0.03 (i.e.,
3%) corresponds to approximately a half-semitone change of frequency.

closely related to perceptual brightness. For many musical instrument sounds,
it is important that this varies with time. When normalized by the fundamental

frequency, the centroid is defined by

K
Z
BR) =1
2z

Ad(t)

Ac(t)

(1.37a)
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Note thatBR(t) can be thought of as a time-variant spectral-amplitude-averaged
harmonic number, so that Eq. (1.37a) can be rewritten as

K
BR(t) = ) _ax(t)k, (1.37b)
k=1
where
a(t) = KA“(t) . (1.37c)
El A(t)

The time-varying weighty(t) gives the fraction of the total amplitude applied
to the harmonic number variabke providing an amplitude-average value of the
harmonic number in Eqg. (1.37b). (Of course, an ordinary averaggenafuld be
amplitude-independent and would not be useful.) As explained later in this chapter,
amplitude-averaging is a very useful operation, and can be applied to a variety of
situations.

A version of the unnormalized spectral centroid is also useful:

fo(t) = (BR(t) — 1) fa. (1.37d)

The spectral centroid can be thought of as a measure or indicator of the richness
or breadth of the spectrum. Because it is independent of the actual amplitude scale
of a signal, if the amplitudes of Eq. (1.37) were multiplied by a constant factor,
BRwould not change. HoweveBR (or f;) often has a close relationship to the
overall RMS amplitude of the signal, defined as

K
Ams(t) = | > A(D): (1.38)
k=1

Figures 1.16a and 1.16b sh@®®R(t) and Aims(t) for the long trumpet sound, and

Fig. 1.16c show8R(t) plotted againstAms(t). Note that there is a burst of high
BRat the beginning of the sound (occuring at low amplitude) followed by a dip
and then a slower increase, which indicates that upper harmonics become stronger
as time progresses. This can be verified by looking at Figs. 1.4a and 1.4bBRlso,
decays to a low value at the end of the sound. To disguise the effect of background
noise or breath noise at the end of a sound, a small constant can be added to the
numerator and denominator of Eq. (1.37a). The strong relationship beBren

and Arys is evident from Fig. 1.16c¢.

Spectral centroid can be used to quantize the fact that some instruments’ sounds
(at the same pitch) are brighter than others (e.g., trumpet is generally brighter than
French horn). Also, many instrument sounds exhibit significant changes of centroid
during sounds that are very noticeable by listeners (McAdams et al., 1999). Table
1.1 gives maximum and averaB&values for a number of instruments all playing
Eb (311.1 Hz).

Spectral centroid can be modified by replacing the harmonic amplitudes by
those which are multiplied by a monotonic increasing or decreasing function of
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FIGURE 1.16. For the [ trumpet tone: (a) normalized spectral centrBig vs time; (b)
RMS amplitude vs time; (dBRvs RMS amplitude (31 harmonics used in calculations).
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TaBLE 1.1 Average and Maximum Normalized Centroids for 14
Instrument Sounds

Instrument Average centroid Maximum centroid
Bassoon 3.2 8.6
Cello 4.6 14.6
Clarinet 6.4 11.1
Flute 3.4 11.2
Harp 1.6 15.2
Harpsichord 7.9 31.0
Marimba 1.4 6.7
Oboe 4.5 6.3
Recorder 2.0 6.5
Alto saxophone 4.1 9.8
Trumpet 4.9 58
Horn 2.5 54
Vibraphone 1.3 6.7
Violin 4.6 7.5

harmonic, such as
A < kPA. (1.39)

Whenp > 0, the centroid is increased, and wher: 0, the centroid is decreased.
Because the relation between centroid arisimonotonically increasing, virtually

any centroid can be matched using a straightforward optimization technique such
as the Newton method.

For brass tones there are strong nonlinear relationships between harmonic am-
plitudes (Beauchamp, 1975; Benade, 1976). Fig. 1.17 shows graphgtdfvs
Ams(t) for the long trumpet sound for the first six harmonics. Note that as the
harmonic number increases, the curves are pushed to the right. Sampling the spec-
trum at high RMS amplitude automatically yields a spectrum with more relative
energy in the upper partials than at low RMS amplitude.

For the flute, the situation is similar but more complex. When listening to a
long swell tone one can easily hear harmonics popping in and out. Figs. 1.18 and
1.19 and 1.21 and 1.22 show graphs for a flute sound comparable to Figs. 1.14—
1.17 for the trumpet. The more jagged nature of the flute’s harmonic envelopes is
evident from Fig. 1.18. For examplég(t) for the trumpet and the flute can be
seen in Figs. 1.14e and 1.18e, respectively. Note how the trumpet’s harmonic 5
amplitude rises and falls smoothly, whereas the flute’s amplitude suddenly rises
to a peak level at 3.5 s and then falls again at 5.2 s. Also, as seen from Figs.
1.17 and 1.22, a much “tighter” relationship is evident between the individual
harmonic and corresponding RMS amplitude for the trumpet than for the flute.
Nevertheless, while the flute’s normalized spectral centroid and RMS amplitude
(seeFigs. 1.21aand 1.21b) do not vary with time as smoothly as the trumpet’s (Figs.
1.17a and 1.17b), both RMS-vs-centroid curves follow definite trends upward.
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For completeness, Figs. 1.19 and 1.20 show the flute’s original and smoothed
normalized frequency deviations for harmonics 1-6.

2.2.2 Spectral Envelopes

Another important feature of musical sounds is the spectral envelope. Spectra
can be shown as vertical line graphs, which emphasize the individual harmonics,
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FIGURE 1.18. Phase vocoder analysis of an(B30 Hz) flute tone playedp < ff < pp:
(a)—(f) harmonic amplitude8y vs time for harmonics k k < 6.

or as connected line graphs, which show the overall shape of the spectrum.
For the latter, there is a choice of whether to use linear or log frequency for
the horizontal axis. In any case, there is also a choice between linear or deci-
bel amplitude scale for the vertical axis. Fig. 1.23 shows spectral envelopes for
the long trumpet and flute tones, both as vertical lines (linear amplitude vs lin-
ear frequency) and as connected graphs (linear amplitude vs linear frequency
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FIGURE 1.19. Phase vocoder analysis of theflate tone: (a)—(f) relative frequency de-
viations A f/(kf,) vs time for harmonics 1 to 6. A relative deviation of 0.01 (i.e., 1%)
corresponds to approximately a one-sixth-semitone change of frequency.

and decibel amplitude vs log frequency). These were computed at the apexes
of the sounds’ RMS amplitudes. It is apparent, especially from the dB-vs-
log-f plots, that the flute spectrum is much more jagged and that it rolls off
more quickly (has a smaller bandwidth) than the trumpet. Methods for repre-
senting spectral envelopes are discussed in detail in Chapter 5 by Rodet and
Schwarz.
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FIGURE 1.20. For the Eflute tone: (a)—(f) relative frequency deviationsy /(kf ;) vs time
smoothed by a 5-Hz-cutoff low-pass filter for harmonics 1 to 6.

Average spectral envelopes can be computed for groups of tones for the same
instrument. This was first done by Luce (1963), Strong and Clark (1967a,b),
Luce and Clark (1967), and Luce (1975) for tones played at specific dy-
namic levels fp, mf, and ff). Rather than using dynamics to segregate the
spectral envelopes, the spectral envelopes of Fig. 1.24 were clustered and av-
eraged based on the spectral centroids [as defined by Eqg. (1.37d)]. Details
on this type of computation are given by Beauchamp and Horner (1995).
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2.2.3 Spectral Irregularity

A measure of “jaggedness” or spectral irregularity compares the spectrum to a

smoothed version of itself:

K-1
> Al || A= A
SIRji) = ¥=2

, (1.40a)

Kil.-.
Arms(i) Z Ak(i)
k=2
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line graphs.

wherei is the analysis frame number and
Ac(i) = (A1) + Ac(i) + Acsa(i))/3 (1.40D)

is the spectrally smoothed harmonic amplitude. Note that with Eq. (1.40a) the mag-
nitude of the difference between the original harmonic amplitude and its smoothed
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version is amplitude-averaged over the harmonics and then is normalized by the
RMS amplitude so that the value 8fRis independent of any amplitude scaling
and will lie between 0 and 1. Fig. 1.25 sho&#Rvs-time measurements for short
trumpet and flute sounds. In general, the flute spectrum has a greater irregularity
than that of the trumpet. Amplitude-averaging over the entire sounds §ifRes

0.11 for the flute and 0.06 for the trumpet.

Spectral irregularity can be modified. For example, a spectrum can be smoothed
by using the method of Eq. (1.40b). This is tantamount to a simple low-pass filter
operating in the frequency domain. A high-pass filter could be used to increase the
irregularity. Another method is to process the spectrum in a nonlinear fashion. For
example, a harmonic amplitude can be replaced by an exponentiated version:

Ay p
Ay < A (W(AQ) . (1.41)

When p > 0, peak amplitudes are increased relative to weaker amplitudes. The
opposite is true fop < 0. The result is to accentuate or deaccentuate spectral
irregularity. A feature of this formulation is that the maximum spectrum amplitude
is not changed.

Spectral irregularity appears to have a profound effect on a sound’s timbre.
McAdams et al. (1999), found that on average, 96% of the time, subjects could
correctly distinguish between sounds synthesized with full data and those with
spectrally smoothed data. (The lowest figure, 82%, was for the trumpet, which had
a relatively smooth spectrum to begin with.) One might argue that the ability to
distinguish was due to the smoothing operation altering the spectral centroid. How-
ever, except for a marimba sound (which had few partials), the change of centroid
due to this operation was less than about 4%. In another study, Horner et al. (2004)
found that listeners could discriminate random spectral changes, which increase
spectral irregularity, with 78—-90% accuracy if the average random spectral error
was 24%. Still, despite its obvious importance, no particular perceptual attribute
has been found to correspond with spectral irregularity.

2.3 Phase-Vocoder Analysis of Sounds with
Inharmonic Partials

Sounds with inharmonic partials can be divided into three categories:

1. Sounds with nearly harmonic partials. Most plucked (e.g., guitar) or struck
string (e.g., piano) sounds fall into this category. Equations frequently given [e.g.,
Fletcher (1964); Lattard (1993)] for the partial frequencies (aka mode frequencies)
of a plucked or struck string are

fo = kfov/1+ BK2 ~ kfi[1 + (B/2)(K? — 1)], (1.42a)

whereB is the inharmonicity constant, is frequency for a string with no stiffness,
and f; is the actual fundamental frequency. For piano souBds normally in
the range of 0.0001 to 0.001 fd§ below 1000 Hz and 0.001 to 0.01 above that



Analysis and Synthesis of Musical Instrument Sounds 59

0.250 t t t t t t t t }

0.2001 4

0.150+ T

0.100+ T

SPECTRAL IRREG

0.050 T

0.000- t
0.00 0.25

075 100 125 150 1.75 200 225 250
TIME (SEC)

@)

ol
a1
o

0.250 t t t t t t t

0.200+ T

0.1504 1S

0.100+ T

SPECTRAL IRREG

0.050 13

0.000- t t t t t t t
0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

TIME (SEC)
(b)

FIGURE 1.25. Spectral irregularity vs time for (a) the & trumpet tone and (b) an,Ef
flute tone.



60 James W. Beauchamp

frequency. Solving foB in terms of the amount of stretching of théh partial
Afe = fx — kf, gives
2A i
B=-———— k>1. 1.42b
2 —1kh " (1.42b)
2. Sounds with widely spaced (sparse) partials. Wooden and metal bar instru-
ments, such as xylophone, marimba, vibraphone, and chimes, fallinto this category.
An approximate formula for their partial frequencies (Morse, 1976, p. 162) is

fi = fo(2k + 1)%, (1.43)

where f, is a constant that depends on the geometry and type of material used.
Bells, which can be thought of as “deformed thick metal plates,” also fall into
this category, but the formula for their mode frequencies is much more complex
(Morse, 1976).

3. Sounds with closely spaced (dense) partials. Stretched membranes and thin
metal plates, such as drums, cymbals, and gongs (tam-tams), fall into this category.
While simplified formulas for their mode frequencies exist (Morse, 1976), they do
not correspond to actual measurements.

At first glance, it might seem that frequency-tracking analysis would be the
best approach for analysis of sounds with inharmonic partials because that method
is capable of handling arbitrary frequencies. However, there is a problem with
tracking partial frequencies as they continually rise and fall in amplitude. For
sounds with constant mode frequencies, the phase vocoder seems to be more
robust for analysis, even though choosing the best analysis frequency is a non-
trivial problem. For sounds that are nearly harmonic, an analysis frequency close
to the fundamental usually is sufficient. For widely spaced frequenciesitis possible
to choose a frequency that is close to an integer divisor of the partial frequencies.
For closely spaced frequencies it seems best to choose a very low fundamental, in
the neighborhood of 10-20 Hz. This gives a quite good frequency resolution, but
any lower value would seriously compromise time resolution.

2.3.1 Inharmonicity of Slightly Inharmonic Sounds: The Piano

Figure 1.26a shows amplitude-vs-harmonic-vs-time (3D) phase vocoder data for
an A, piano tone, where the phase-vocoder analysis frequépayas chosen

to correspond to the tone’s fundamental frequency. Note that the partials have
different decay rates, and some partials exhibit marked undulatory behavior. Thisis
further shown in the composite frequency-vs-time (2D) graph (i.e., a spectrogram)
of Fig. 1.26b, where darkness indicates amplitude. This does not illustrate the

FIGURE1.26. Phase-vocoder spectral analysis of aflA0 Hz) piano tone. (a) 3D spectro-
gram showing the amplitude-vs-time behaviors of the partials. (b) 2D spectrogram, where
darkness indicates amplitude. (c) Time-averaged spectrum of the piano tone in terms of
amplitude (in dB) vs average normalized frequenty/ ().
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inharmonicity phenomenon very well, however, because the amount by which the
partial frequencies exceed their corresponding harmonics slowly migrates upward
as the partial numbers increase. The inharmonicity con@as#n be measured
by first estimatingA fx = fx — k f; from these frequency data (using amplitude-
averaging over time) and then computiBgusing Eq. (1.42b). Unfortunately, the
results are not as consistent as one might expect, as the lower partials yield values
lower than the higher ones and some individual partials yield values that are much
higher or lower than expected.

Reasons for compromised accuracy in compuBngclude:

First, when a partial is weak or contains a strong oscillation—probably due to it
consisting of two or more closely tuned components—the resulting frequency-
vs-time graph is noisy or may contain a sudden jump due to phase interaction
of the components.

Second, when a partial number reaches a certain value, the corresponding fre-
quency component begins to appear in two adjacent analysis bin outputs, so
that the frequencies appearing in those outputs are actually the same. This is
not a problem with the combined frequency plots, but it is a problem with the
B computation, because the subtractiof &f is now incorrect. The worst case
is when f, = (k 4+ 0.5) f4, which, if the frequencies follow Eqg. (1.42a), occurs
whenkmax = ¥1/B. For example, wheB = 0.0001,knyax = 21 yields this sit-
uation. After this point, each harmonic bin output is actually the sum of two
components, which further obscures the analysis. This lack-of-separation prob-
lem can be alleviated by analyzing with = 0.5f;, thus halving the bin filter
bandwidths, so that each frequency component will appear in only one harmonic
output. However, with the phase vocoder it then becomes cumbersome to de-
termine which partials belong to which harmonic bin. Moreover, untikihs
point is reached, this method yields the same results as analysigwithf,.

Figure 1.26¢ shows the phase-vocoder-measured time-averaged amplitudes and
frequencies of the first 19 partials of a piano tone. Here, the gradually increasing
shift of the partial frequencies with respect to the harmonic positions is very appar-
ent. Calculated values [using Eq. (1.42b)] for individual partials of several piano
tones at different pitches are shown in Table 1.2. It appear®Btina¢asurements
often start out low (even negative) with notable exceptions for partials 2—4 and
then settle into fairly fixed values as partial number increases. At a certain point
the B calculation decreases and then turns negative (not shown) due to the partial
moving into the next analysis bin. By increasing the analysis frequency slightly,
properB calculation can be extended to higher partials at the expense of accuracy
in computing the lower partial frequencies.

2.3.2 Measurement of Tones with Widely Spaced Partials: The Chime

According to Eq. (1.43), the frequencies of a bar afg 95f,, 49f,, 81f,, 121f,,
169f,, 225f,, 289f,, 361f,, ...formodek =1, 2, 3,4,5,6,7,8,9.... Dividing
by 9 gives f] , 278f1 , 545f1 y 900f1 , 1344f1 , 1878f1 , 2500f1 , 3211f1 s
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TABLE 1.2 Calculated Inharmonicity Valuésfor Individual Partials of Several Piano
Tones at Different Pitchés.

Pitch  fa k: 2 3 4 5 6 7 8 9 10 11 12 13 14

Ao 27.1 Bx10® -3.001 —0.017 0.017 0.164 0.230 0.210 0.282 0.292 0.275 0.281 0.273 0.265 0.270
Az 54.7 Bx10°: —0.241 0.291 0.316 0.023 0.080 0.076 0.076 0.080 0.093 0.086 0.083 0.094 0.093
Az 109.6 Bx10®: 0.225 0.012 0.032 0.050 0.051 0.076 0.075 0.089 0.089 0.090 0.097 0.013 0.098
As 219.1 Bx10°®: 0513 0.389 0.355 0.369 0.275 0.301 0.285 0.300 0.274 0.271 0.265 0.262

Ay 440.1 Bx10* -—3.245 —0.237 0.198 0.391 0.537 0.583 0.623 0.579 0.643 0.478

As 875.5 Bx10°: 2393 2731 2.681 2.516 2.747 2.332

As 17547 Bx10®: 7.955 8.424 7.404 3.647

A; 35326 Bx10®: 4.230 9.101 0.242

af, is the fundamental analysis frequency corresponding to the pitch of eactktmnne series of
partial numbers for each tone.

40.11f,, ..., so these frequencies are clearly more separated than a harmonic
series. A chime (or tubular bell) only approximately follows this series, and the
author’s measurements of afidhime tone yielded ratios of 2.82, 5.49, 9.00, 13.23,
18.16, 23.62, 29.70, and 35.82 for modes 2 through 9. (Mode 1 was too weak to
measure. The actual frequencies measured were 230, 449, 736, 1083, 1485, 1931,
2415, and 2930 Hz.) Analyzing d = f4/6 = 122 Hz, these frequencies roughly
corresponded to harmonics 2, 4, 6,9, 12, 16, 20, and 24. Note the gradual spreading
of the position of these partials. The strike-tone pitch of a chime tone is generally
attributed tof,;/2 (Rossing, 1976); in this case, it is 726= 368 Hz, which is

close to the standard frequency fdf @870.0 Hz). The virtual pitch explanation

for this pitch calculation is based on the fact that modes 4, 5, and 6, which in our
analysis correspond to harmonics 6, 9, 12, can be reduced to the ratios 2:3:4, which
form harmonics 2—4 of a harmonic series. The missing fundamental of that series
is then f4/2. However, it could also bds/3 (361 Hz) orfs/4 (371.3 Hz). The
average of these three numbers is 366.8 Hz.

Figure 1.27a shows a 2D spectrogram of tfjeRime tone, where intensity is
indicated by darkness, and Fig. 1.27b shows the amplitude-vs-frequency-vs-time
3D graph. Fig. 1.27c shows the time-averaged spectrum of the sound. Average
frequencies and mode numbers are labeled on Fig. 1.27a. It is evident that the
strongest modes are modes 5 and 6.

Different partials have different rates of decay, as shown in Fig. 1.28a. This
means that the proportion of each harmonic relative to the RMS amplitude changes
over time, as demonstrated by Fig. 1.28b. Modes 7, 8, and 9 have the most rapid
decays—in the range 6f35 to —60 dB/s, whereas the remaining modes decay
much more slowly so that at the end of the sound, only modes 3 through 6 are left.
Relative to the RMS amplitude, at the beginning of the sound the strongest mode
is 6, followed by 5, 7, 8, 9, 4, 3, and 2 in order of strength. In the middle of the
sound (at 1.25 s) the strength order is 5, 6, 4, 3, 7, 2, and 8, whereas at the end of
the sound the order is 4, 5, 3, and 6. Therefore, the quality of the sound changes
dramatically from the beginning to the end of the sound.
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FIGURE 1.27. Phase vocoder spectral analysis of ftfme tone using an analysis fre-
quency of 122 Hz. (a) 2D spectrogram, where darkness indicates amplitude; the frequency
and number (in parentheses) of each mode is given. (b) 3D spectrogram showing the
amplitude-vs-time behaviors of the modes. (c) Time-averaged spectrum of the chime tone
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normalized by the instantaneous RMS amplitude, showing the dominance of modes 6, 5,
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FIGURE1.29. Phase vocoder spectral analysis of a cymbal sound using an analysis frequency
of 20 Hz. (a) 2D spectrogram. (b) 3D spectrogram, showing the complexity of this sound
in terms of the extreme amplitude variation of the individual analysis bins.

2.3.3 Measurement of a Sound with Dense Partials: The Cymbal

The spectra of thin plates and stretched membranes can be very dense. Figs. 1.29a
and 1.29b show 2D and 3D time-varying spectra of a cymbal sound. In this case,
the analysis frequency was taken to be 20 Hz, a compromise that provides adequate
resolution of both time and frequency. The time-varying spectrum graphs indicate
that the cymbal’s modes have a high density. The 3D graph also shows that the
amplitudes of the individual modes are extremely variable.
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As shown in Fig. 1.30a, the average spectrum of the cymbal sound is very
irregular. The greatest concentration of energy is between 800 and 8000 Hz, and it
is particularly strong in the region 800 to 4800 Hz. The strongest vibration modes
are at 1340 and 2200 Hz, corresponding to harmonics 67 and 110 of the analysis.
Figs. 1.30b and 1.30c show that the amplitude-vs-time behavior of these modes
is characterized by an amplitude decay with a superimposed seemingly random
perturbation. The correlation between these curves is weak. However, the RMS
amplitude-vs-time curve of the cymbal sound (shown in Fig. 1.30d), which takes
into account all of the analysis bins, is quite smooth and decays according to an
approximately exponential curve, so that its dB-vs-time curve is almost linear. The
best-fit decay rate of this curve is22.4 dB/sec.

2.3.4 Spectrotemporal Incoherence

For the cymbal sound, it is quite obvious from Figs. 1.29a and 1.29b and also Figs.
1.30b and 1.30c that the amplitude-vs-time behaviors of the various harmonic bins
are not well correlated. Measuring standard correlations between all bin combina-
tions would require< 2| multiplies and adds, whei¢ is the number of bins and

is the number of frames, and it is not obvious how the results of the different bins

should be combined. Spectrotemporal incohereBdec@én be calculated simply

by measuring how well a time-varying spectrum compares with a totally coherent

version of itself. A totally coherent spectrum can be obtained by setting each bin

amplitude to be proportional to the sound’s original average amplitude and to vary
in time according to its RMS amplitude:

Ai) = M (1.44a)
k
J A
k=1
wherei is the frame number, and
-1 )
YA
A = '7"4; (1.44b)
> A

is thekth bin amplitude amplitude-averaged over all frames. Note that accord-
ing to this formulation all of the coherent bin amplitude-vs-time functions are
proportional to the RMS amplitude-vs-time function.

The spectrotemporal incohererghs then defined as

-1

T3 (All) A
Sl = | =0kt . (1.44c)

2 i (A(i))?

i=0k=1
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By design,Slis zero if all harmonic amplitudes are proportional to the RMS
amplitude and to each other. For the cymbal sound illustrated in Figs. 1.29 and 1.30,
Sl = 0.46. By contrastSl values for the trumpet, flute, piano, and chime sounds
discussed above were measured to be 0.19, 0.26, 0.30, and 0.17, respectively. So,
according to the definition of Eq. (1.44c), the cymbal sound is a comparatively
incoherent—i.e., complex—sound.

If the cymbal sound is resynthesized after all harmonic amplitude-vs-time func-
tions are replaced by their RMS equivalents [as defined by Eq. (1.44a)], the result
sounds similar to exponentially decaying white noise, although some of the cymbal
guality remains. Note that with this type of sound, there is no change in spectral
centroid or, in fact, no change in the normalized average spectrum. The noise-like
quality is largely due to the bin frequencies, which vary quite randomly over the
individual bin ranges. If these frequencies are set to their corresponding fixed bin
frequencies (i.e., integer multiples of 20 Hz), the resynthesized sound has a much
more “coherent” character.

2.3.5 Inverse Spectral Density: Cymbal, Chime, and Timpani Compared

Spectral density can be measured by counting the number of spectral peaks above
a certain threshold and dividing by the frequency range of these peaks. A more
convenient measure is inverse spectral den$&p), which, as it implies, is just
the inverse of the spectral density, or, in other words, the average frequency dif-
ference between adjacent spectral peaks. The problem is to adequately define a
“spectral peak.” The simple solution is to define peaks as local maxima of the am-
plitude spectrum that exceed a given threshold. The assumption is that each peak
corresponds to a sinusoid, corresponding to a modal frequency, in the sound. As
long as the threshold is well below the maximum magnitude of the spectrum, the
ISDis quite stable as the threshold is varied, as illustrated by a graf@Dels-
threshold (in decibels) for the cymbal sound shown in Fig. 1.31a. It is also fairly
constant as a function of time for a fixed threshold, as shown in Fig. 1.31b.

For the cymbal sound, tHh8D, appears to be in the range of 60—100 Hz. It would
be larger if minor peaks were ignored. Minor peaks are those that are too close
to major peaks, particularly if they are in valleys in between peaks. Serra (1989)
discusses a way to exclude some peaks based on “peak height,” but this definition
is difficult to implement. Theoretically, peaks below a threshold can be excluded,
but practically, this method fails unless the spectral envelope corresponding to
the desired peaks is relatively flat. Indeed, a spectrum-flattening algorithm might
improve thelSD measurement.

FIGURE 1.30. Further analysis of the cymbal sound. (a) Time-averaged spectrum showing
dominant modes at bins 67 and 110 (frequencies 1340 and 2200 Hz). (b, ¢) Amplitude-
vs time envelopes of bins 67 and 100. (d) RMS amplitude (in dB) vs time, indicating an
exponential decay rate ef22.4 dB/s.
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spectrum level.

By contrast, théSDfor the chime tone is much higher, starting out about 400 Hz
and decreasing to a somewhat lower value during most of its duration, as shown
in Fig. 1.32. This value results from the average difference between its distinctive
mode frequencies.

An E3 (165 Hz) timpani sound was analyzed by the phase vocoder, again with
fa = 20 Hz, and the resulting 2D and 3D spectrum-vs-time graphs are shown
in Figs. 1.33a and 1.33b. The spectrum is again initially very dense, but not as
broadband as that of the cymbal, and certain distinct modes emerge as the sound
progresses. A 3D spectrum graph with amplitudes normalized by the RMS ampli-
tude, as shown in Fig. 33c, makes this even more obvious. In fact, this emergence
of certain prominent frequencies that are more-or-less equally spaced gives rise to
the distinct pitch that is characteristic of the timpani sound.

As indicated by Fig. 1.34a, the decay rate of this timpani sound is faster than that
of the cymbal (see Fig. 1.30d), and a best straight-line fit to the RMS amplitude-
vs-time curve gives-25.3 dB/s. Also, thdSD varies mainly between 80 and
120 Hz, as shown in Fig. 1.34b. Thus, its value is somewhat larger than the cym-
bal's. Inspection of snapshot spectra of the cymbal and timpani (see Figs. 1.35a
and 1.35b) indicates that their spectral peaks are similarly spaced. So why do the
two instruments sound so different? For one thing, for the most prominent modes
the timpani’s peak bands are narrower than those of the cymbal, implying that
they actually represent distinct sinusoidal modes. Also, the 2D and 3D spectra of
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the cymbal and the timpani (Figs. 1.29 and 1.33), show that the timpani's peak
amplitudes decay very smoothly whereas the cymbal’s amplitudes are highly vari-
able. Moreover, as mentioned above, the frequencies of the strong cymbal modes
are also highly variable, while those of the timpani are quite stable. Figs. 1.36a
and 1.36b show a comparison between frequency-vs-time curves for strong modes
of the cymbal and the timpani. The timpani mode obviously displays much less
frequency variation than that of the cymbal.

Based on frequencies up to 2000 Hz and a threshold amplitude of 100, Fig. 1.37
compares the spectral centroids of the cymbal and timpani tones. The timpani’s
centroid is substantially lower than the cymbal’s, and both decline somewhat over
time.

2.4 Frequency-Tracking Analysis of Harmonic Sounds

Virtually any kind of sound can be analyzed using the frequency-tracking (mq)
method. However, success depends on whether frequencies are tracked correctly
or not. The frequency-tracking method works best if partials are not too numerous
or too close together, especially if the partials’ amplitudes fluctuate. When using
SNDAN's mgan program for frequency-tracking analysis, the user must specify
the lowest frequency to be resolved and a threshold value (in dB) below which
spectral peaks are ignored. The programs fdetect and harmformat can be used
to detect the (time-varying) fundamental frequency of the data and separate it
into harmonics so that it can be displayed using SNDAN’s monan program. The
user must specify the range of fundamental frequencies expected and a harmonic
acceptance interval for separation into harmonics.

2.4.1 Frequency-Tracking Analysis of Steady Harmonic Sounds

To demonstrate how this method works for a typical harmonic sound with little
frequency change, Figs. 1.38 and 1.39 show individual harmonic amplitude and
normalized frequency deviation graphs for the first six harmonics oflreifmpet

tone after the frequency-tracking analysis is reduced to harmonics. Comparable
graphs given in Figs. 1.14 and 1.15 obtained by phase-vocoder analysis look very
similar; the only difference is the amount of fine detail noise that occurs in the
phase-vocoder and is missing in the mq graphs. This can be attributed to two
features of the frequency-tracking analysis: thresholding, which effectively gates
out some of the noise, and the relatively wide window, which narrows the FFT
filters.

2.4.2 Frequency-Tracking Analysis of Vibrato Sounds: The Singing Voice

While small amounts of vibrato can be handled well by the phase vocoder, large
amounts cause problems. Fig. 1.40 compares the 3D spectrunydéads voice

sound (singing the vowel “ah”) obtained by harmonic phase-vocoder analysis with
analysis frequency 192 Hz with result of the harmonic-reduced frequency-tracking
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FIGURE 1.36. Frequency-vs-time of a prominent mode for (a) the cymbal (bin 67, 1340 Hz)
and (b) the timpani (bin 13, 260 Hz).
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FIGURE 1.37. Spectral centroid vs time for (a) cymbal, (b) timpani, based on frequencies
below 2000 Hz with amp= 100 threshold.
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FIGURE 1.38. Frequency-tracking analysis of thg pp < ff > pp trumpet tone reduced to
harmonics of 350 Hz: (a)—(f) amplitude-vs-time curves for harmonics 1-6. Comparison to
Fig. 1.14 shows very close correspondence of the frequency-tracking and phase-vocoder
methods for this case.

method. It is obvious that frequency-tracking achieves by far the clearer analysis
in this case. For this sound, harmonics 13 and 14 are very strong and coincide
with the “singer’s formant” (Sundberg, 1974), with harmonic 13 operating on the

low side and harmonic 14 operating on the high side of the formant resonance
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FIGURE 1.39. Same analysis as Fig. 1.38: (a)—(f) Normalized frequency deviations for
harmonics 1-6. Comparison to Fig. 1.15 shows very close correspondence of the frequency-
tracking and phase-vocoder methods, except that the data obtained from frequency-tracking
analysis exhibit less noise.

curve, respectively. Because the frequency of the fundamental, as shown in the
pitch detection result of Fig. 1.41a, swings from roughly 183 to 207 Hz, it is
expected that the 14th harmonic will swing over 14 times those numbers, i.e.,
from 2562 to 2898, and this result is confirmed by the frequency-tracking result
of Fig. 1.41b. But these numbers exceed the bandwidth of the phase-vocoder bin
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FIGURE 1.40. Analysis of the &(192 Hz) tenor voice tone: (a) 3D spectrum obtained from
phase-vocoder analysis = 192 Hz. (b) 3D spectrum obtained from frequency-tracking
analysis reduced to harmonics.

centered on the 14th harmonic, which essentially extends from 2592 to 2754 Hz.
So while the problem with phase-vocoder analysis on this type of sound is small
for the fundamental, shown in Fig. 1.41c, it becomes enormous for upper partials
such as the 14th harmonic, as seen in Fig. 1.41d, which is seriously corrupted by
neighboring harmonic bins.

The frequency-tracking amplitude- and frequency-vs-time data of Figs. 1.40
and 1.41 can be combined with superimposed grapig@j vs f(t) as shownin
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FIGURE 1.41. Analysis of the & (192 Hz) tenor voice tone: (a, bf, fi4 vs time for
frequency-tracking analysis. (c, ), f14vstime for phase-vocoder analysidat= 192 Hz.

Fig. 1.42. This composite graph illustrates the formant nature of the vocal sound,
where the first and second formants and the singer’s formant stand out at about
700, 1100, and 2800 Hz, respectively. The overall curve may also be described as
a “low-pass filter” with a cutoff at about 700 Hz followed by a rolloff of about
—12 dB/octave. Maher and Beauchamp (1990) give other similar voice analysis
examples.

2.4.3 Frequency-Tracking Analysis of Variable-Pitch Sounds

The frequency-tracking method is especially useful when pitch varies by a semi-
tone (approximately 6% change) or more. The two-way-mismatch pitch-detection
algorithm is described in Section 1.2.3, and results for the tenor voice and a clar-
inet passage are given in Figs. 1.10 and 1.11. Fig. 1.43a shows the 2D display of
the frequency-tracking analysis of a solo saxophone passage. Note that harmonic
tracks corresponding to a changing fundamental dominate the display. The pitch-
vs-time graph for this sample is shown in Fig. 1.43b. These data can be used in
conjunction with the frequency-tracking analysis data to separate the harmonics
from other spectral information and write a file in the same format as that produced
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FIGURE 1.42. Further analysis of the;G192 Hz) tenor voice tone: SuperimposAg(t)-
vs-fi(t) patterns (obtained from frequency-tracking analysis) which trace out a “formant
characteristic” of the voice spectrum.

by the phase-vocoder program. The separated harmonics can then be resynthesized
to produce a sound that consists solely of harmonic partials and excludes any in-
cidental inharmonic frequencies or noises, including the effects of reverberation.
Besides producing a “cleaned-up” version of the sound track, resynthesis is a good
test of the pitch detection algorithm, because inaccuracies in the fundamental-
frequency data in the resynthesized sound are immediately obvious to the ear. For
comparison to Fig. 1.43b, Fig. 1.43c shows the result of pitch detection using the
Praat program written by Paul Boersma and David Weenink (Boersma, 1993),
based on the time-domain autocorrelation method.

3 Summary

The methods for analysis and synthesis of monophonic sound signals described
in this chapter are based on the sum-of-sinusoids model and rely heavily on the

FIGURE 1.43. Frequency-tracking analysis of an alto saxophone solo: (a) 2D time-varying
spectrum; (b) musical-pitch vs. time obtained by two-way-mismatch analysis of time-
varying spectrum data; (c) log-frequency vs time obtained by the time-domain autocor-
relation method.
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short-time Fourier transform as implemented in digital form on acomputer. The two
principal methods are the harmonic filter bank (phase-vocoder) and the frequency-
tracking (mqg) method.

The phase vocoder relies on the intrinsic harmonic filtering characteristic of
the short-time Fourier transform. While the Fourier transform algorithm basically
converts a signal waveform into a collection of complex terms, one for each har-
monic, these are easily converted into amplitude and phase form. Then, using an
approximation to the phase derivative, frequency deviation can be computed from
the phases of adjacent time frames. The window size for Fourier analysis is cho-
sen to be an integer multiple of the expected period of the input signal. For the
harmonics to be cleanly separated, a multiple of 2 is appropriate for the hanning
or Hamming window functions while 4 is appropriate for the 4-term Blackman—
Harris window. The method is akin to classic Fourier series, except that, unlike
the perfectly periodic case, it is expected that the harmonic amplitudes (and to a
much lesser extent, the frequencies) vary with time. The method can be visualized
as a bank of band-pass filters each of which is centered on a harmonic of the fixed
analysis frequency. The frequencies of the input signal’s harmonics can only vary
a small amount from the band centers; otherwise the separation of the harmonics
will be compromised.

The phase-vocoder analysis data, consisting of fixed analysis frequency, initial
harmonic phases, followed by amplitude and frequency-deviation values for each
harmonic on each frame, can be used to resynthesize the input signal. Generally,
the output sound is difficult to discriminate from that of the input signal.

The phase vocoder is not restricted to the analysis of harmonic signals. This
method can be used beneficially with any sound consisting of nearly constant
frequency partials. The three cases are (1) sounds with nearly harmonic partials,
(2) sounds with widely spaced partials, and (3) sounds with closely spaced par-
tials. For sounds with nearly harmonic but progressively stretched partials, normal
harmonic analysis will usually suffice, although itis true that the inharmonic upper
partials will begin to line up with bins greater than those harmonically related to the
fundamental. For sounds with widely spaced partials, choosing a sufficiently low
fundamental or one which approximately divides the significant partial frequen-
cies evenly yields an accurate analysis. For sounds with closely spaced partials,
choosing a low fundamental around 20 Hz will result in a series of time-varying
harmonic bands that capture the sound’s essential spectral features.

The frequency-tracking method also relies on the STFT, but there is no require-
ment that the input signal consists of harmonically related sinusoids or that the
signal has fixed frequencies. The window size, which is fixed, is set to be ap-
proximately three times the largest expected period, corresponding to the lowest
spectral frequency, of the input signal. Provided that frequencies are not too close
together, this method provides good separation between components. For each
frame, amplitudes, frequencies, and phases of the components are estimated from
the magnitude spectrum by quadratic interpolation of three points in the vicinity of
each spectral peak. However, only peaks above a designated threshold are accepted.
Component phases are estimated by interpolation of the phase-vs-frequency data.
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Components are tracked from frame to frame using a heuristic algorithm based on
connecting peaks whose frequencies are similar while attempting to maximize the
lengths of the resulting tracks.

For pitch extraction of monophonic sounds consisting solely of harmonic par-
tials, spectral peak data can be used to estimate a fundamental-frequency-vs-time
function using the two-way-mismatch algorithm whereby the component peak fre-
guencies are compared to the harmonics of a trial fundamental varied over a desig-
nated frequency range. For each frame, the fundamental frequency is chosen which
minimizes an error function based on component-frequency/harmonic-frequency
differences as well as the component amplitudes.

The fundamental-frequency-vs-time data in conjunction with the frequency-
tracking analysis data can be used to produce a harmonic data set that is identical
in form to that produced by the phase vocoder. However, the frequencies, while
harmonically related, are not confined to small neighborhoods around fixed har-
monic values. The same program used for phase-vocoder additive synthesis can
be used to resynthesize sounds from these data. The resulting signal may sound
“cleaned up” compared to the original.

For frequency-tracking resynthesis, component sinusoids are reconstructed us-
ing the amplitude, frequency, and phase data for each spectral track on each pair of
frames. Between frames the sinusoid phases are computed using a cubic method
that matches the frequencies (phase slopes) and phases at the end points. Although
resynthesis quality is generally good to excellent, quality can be compromised by
poor tracking. Also, some additive noise is usually lost due to associated spectral
peaks below the designated threshold being ignored. With careful resynthesis, itis
possible to subtract the resynthesized signal from the original to produce a noise
residual. The residual, which can be separately modeled, may be added to the
sinusoidal resynthesis to produce a more natural-sounding output signal.

It has been found that the phase-vocoder method is most robust for sounds
with fixed frequencies, even if they are inharmonically related. On the other hand,
for sounds with widely varying frequencies, the frequency-tracking method is
clearly superior. For example, vocal sounds with vibrato are served well by the
frequency-tracking method as are sounds with extremely variable pitch. In the
latter case, a separate pitch detection step can be done which may be used for
music transcription and to steer reduction to a harmonic-only format. However,
the frequency-tracking method may suffer from momentary drop-outs, which if
they occur in the higher frequencies are particularly audible, and poor partial track-
ing, which produces artifacts when time-stretching is employed. For fixed-pitch
harmonic sounds, the frequency-tracking and phase-vocoder analysis/synthesis
methods have been found to give comparable results.

Various measures of the time-varying spectrum are useful and are correlated
with listener ability to distinguish among musical sounds. Two that have proven
useful are the spectral centroid and spectral irregularity, both of which can be
measured as functions of time. Spectral centroid is a measure of an instrument’s
bandwidth and is strongly associated with the perception of “brightness.” Some
instrument sounds tend to be brighter than others (e.g., trumpetis generally brighter
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than French horn), and many exhibit significant changes of centroid during sounds
that are very noticeable by listeners. While reduction in spectral irregularity (by
spectral smoothing) is highly discriminable for sounds that exhibit high values of it,
no particular timbral percept has been associated with it. However, brass instrument
sounds generally have smoother spectra than those of woodwinds and strings.

Spectra can be altered or simplified in various ways. Variation of the normalized
spectrum can be eliminated by replacing the original time-varying spectrum with
one which is proportional to the product of the RMS amplitude-vs-time envelope
and the average spectrum. Spectral centroid can be altered by multiplying the
spectral amplitudes by a function which increases or decreases with respect to
frequency, with a positive or negative trending exponential function being a logical
choice. Using an optimization method, the average or instantaneous centroid can
be matched to an arbitrary value, provided there is sufficient harmonic energy to
begin with. Spectral irregularity can be decreased by spectral smoothing, but it can
also be increased or decreased by replacing the spectral amplitudes by the same
ones raised to a positive power, where powers less than 1 will diminish and powers
greater than 1 will accentuate spectrum peaks.

Two other sound spectrum measurements on sound which may prove important
for timbre perception are spectro-temporal incohere&deand inverse spectral
density (SD). Slis a measurement of how well individual partial amplitudes track
the RMS amplitude envelope and can be applied to both harmonic and inharmonic
soundsISD is a measurement of the average distance between significant par-
tials and is most applicable to sounds with inharmonic partials. For meaningful
ISD measurement, problems remain in determining the best way to determine the
threshold above which components are considered to be significant and how to
deal with extreme variations in the spectral envelope.
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Fundamental Frequency Tracking and
Applications to Musical Signal Analysis

JubpiTH C. BROWN

1 Introduction to Musical Signal Analysis in the
Frequency Domain

The constant-Q spectral transform (Brown, 1991) can be used to analyze musical
signals and can be effectively employed as a front end for measurements of funda-
mental frequency. This transform also has advantages for the analysis of musical
signals over the conventional discrete Fourier transform, or FFT in its fast-Fourier-
transform implementation. Because the FFT computes frequency components on
a linear scale with a particular fixed resolution or bandwidth (frequency spacing
between components), it frequently results in too little resolution for low musical
frequencies and better resolution than needed at high frequencies.

For example, if we consider a sampling frequenty équal to 22050 Hz and a
window size () of 512 samples, then the frequency resolutiofjgdN = 43 Hz
for the entire range of frequencies from 0 to 11025 Hz. For the fundamental of
the lowest note of the violin, &at 196 Hz, this is 22% of its frequency, whereas
a musical semitone corresponds to a 6 % spacing. Therefore, all the information
about three to four adjacent musical notes is contained in one frequency bin. At the
upper end of the piano the frequency of the no§és@186 Hz, and the next lowest
note would have a 6% frequency separation equal to 251 Hz. With the same 43 Hz
frequency resolution, roughly six bins correspond to this single note difference,
giving excess and unneeded information.

Thus, it is clear that the conventional discrete Fourier transform (DFT) is inef-
ficient for musical applications. What is needed is information about the spectral
components contained within a musical instrument’s full frequency range. For
example, piano notes are tuned approximately in equal temperament with fre-
quenciesfy = fmin - (2/12K), where fin is the frequency of the lowest note and
fk is the frequency of the notk semitones abovédn,,. For our calculations,
we can choose analysis frequencigs= fmin - (2/24), giving two frequency
bins per musical note (quartertone spacing). Because the frequency resolution in
Hz is equal to the frequency difference between bins, the resolution is given by
Afy = fj — f; = 2Y24. f; — f;, and the ratio of frequency to resolution@r
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TABLE 2.1. Frequencies of
Musical Notes of the Octave
Beginning on Middle C on a Piano

Note Frequency (Hz)
Cy 261.63
ci 277.18
D4 293.66
D} 311.13
Es 329.63
Fa 349.23
34 369.99
Gy 392.00
Gh 415.30
A, 440.00
Af 466.16
Ba 493.88
Cs 523.25

defined asf;/Af; = 1/(2%?4 — 1) = 34, is a constant. Thus, the transform is
equivalent to a A24th octave constant-Q filter bank.

For a musical example, see Table 2.1, where the note frequencies for the octave
beginning on middle C (akafrare shown. The frequencies are given by

fi = (2Y12)*261.63, (2.1)
wherek = 0 to 12 for this octave. It is also clear that
log(2
log(fi) = %;)k +10g(26163). 2.2)

Thus, the log-frequencies of the notes are linearly related to note nlknber

An extremely important property of the constant-Q transform which follows
is that for sounds made up of harmonic frequency components, the non-uniform
spacing of the components shown as a function of bin number is independent
of fundamental frequency. The spacing pattern is shown in Fig. 2.1, which is
the plot of a hypothetical spectrum with equal amplitude frequency components
at 100 Hz, 200 Hz, 300 Hz,..., 1000 Hz. The positions on the horizontal axis
corresponding to log(frequency) are spaced the same for any set of harmonically
related components. For example, the spacing between the first two harmonics is
100910(200) — l0g;,(100) = log,o(2), that between the second and third harmonics
is log10(3/2), and so forth.

Although this was shown for the example of a fundamental frequency of 100 Hz
and log base 10, it holds for any fundamental. That is, the absolute positions on the
log-frequency axis depend on the frequency of the fundamental, but the relative
positions of the harmonics with respect to each other are invariant. Thus, these
spectral components form an invariant “pattern” in the log-frequency domain, and
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FIGURE 2.1. A Fourier transform pattern of 10 equal-amplitude harmonic frequency com-
ponents plotted against log frequency (constant-Q bin number) for a bin spacing of 24 bins
peroctave.

this pattern is the same for all sounds with harmonic frequency components. Of
course, the amplitudes of the components may vary from one harmonic to the next,
reflecting differences in the timbres of the sounds analyzed.

By comparison, the conventional DFT in a linear plot against frequency ex-
hibits a constant separation between component frequencies for harmonic musical
sounds. This is the dominant feature of the spectral patterns produced, and both
the component separations and the overall positions of the patterns vary with fun-
damental frequency. The result is that it is difficult to pick out differences in other
features of the sound, such as spectral shape, attack, decay, and absolute position
in the frequency domain, which identifies the fundamental frequency.

The log-frequency representation, on the other hand, gives a unique spacing
pattern for harmonic spectral components, and thus, the problem of fundamental
frequency tracking becomes a problem of recognizing this pattern. In addition to
its practical advantages, this idea has theoretical appeal for its similarity to modern
theories of pitch perception based on pattern recognition (Gerson and Goldstein,
1978). In one of these theories, the perception of the pitch of a sound with a missing
fundamental is explained by the “pattern” formed by the remaining harmonics on
the basilar membrane. In Section 3 a computer algorithm that recognizes the pattern
made by these harmonics in the log-frequency domain will be discussed. We will
see that it can correctly identify the fundamental frequency even in those cases
where there is no spectral energy at the frequency of the fundamental.

Next, we will discuss how the constant-Q transform can be implemented in a
straightforward calculation. Then, we will apply pattern-matching techniques to
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the pitch detector problem. After that, we will describe how a phase-vocoder-based
method can be used for extremely accurate fundamental frequency measurements.
Finally, this method will be applied to answer two questions: First, how precisely
harmonic are musical sounds, i.e., how close to exact integers are the ratios of the
frequency components? Second, what exact pitch is perceived when sounds are
played with vibrato or frequency modulation?

2 Calculation of a Constant-Q Transform for
Musical Analysis

2.1 Background

The constant-Q filter bank and its similarity to the auditory system has been ex-
plored in several theses (Petersen, 1980; Seneff, 1985; Stautner, 1983), each of
which reference the literature extensively. For those who wish to review tech-
niques of digital signal processing, an article by Higgins (1976) is recommended
as a background discussion of sampling effects in the calculation of the discrete
Fourier Transform. The theory of the short-time Fourier transform was originally
developed by Schroeder and Atal (1962) and was extensively reviewed by Nawob
et al. (1983).

Various schemes for implementing constant-Q spectral analysis outside a mu-
sical context have been published (Braccini and Oppenheim, 1974; Gambardella,
1971, 1979; Harris, 1976; Helms, 1976; Oppenheim, et al., 1971; Youngberg and
Boll, 1978). Music researchers at the Center for Computer Research in Music and
Acoustics (CCRMA) at Stanford have used a “bounded Q" Transform (Kashima
and Mont-Reynaud, 1985, cited in Chafe et al., 1985) similar to that of Harris
(1976). Kronland-Martinet (1988) and his group at Marseilles have employed a
wavelet transform for musical analysis and synthesis. This is a constant-Q method
similar to the Fourier transform and to the method described in this chapter, but it
is based on the use of wavelets as generalized basis functions.

The method described below has two advantages over previous methods: The
first is its simplicity; and the second is that it is calculated for frequencies that
are exponentially spaced with two frequency components per musical half-step,
giving exactly the information that is needed for musical analysis with sufficient
resolution to distinguish adjacent musical notes. Furthermore, a sound with har-
monic frequency components results in a constant pattern in the log-frequency
domain.

2.2 Calculations

As mentioned in the introduction, the optimum spacing of frequency components
for musical analysis corresponds to quarter-tone spacing of the equal-tempered
scale. The frequency of theth spectral component din numbeiis thus given by

fic = (224" finin, (2.3)
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where fy varies from f,i, to an upper frequency chosen to be below the Nyquist
frequency. The minimum frequenci,, is an adjustable parameter and can be
chosen to be the lowest frequency about which information is desired, for example,
a frequency conveniently below that of the open G string for calculations on
sound produced by a violin. If desired, the bin number can be calculated from
the frequency using

k = 24100,( fi/ fmin) = 79.73 100y fi/ Frin)- (2.4)

The resolution or bandwidth f, is defined as the difference between consecutive
bin frequencies, an@ is the ratio of frequency to bandwidth. Then for quarter
tone & 3%) resolution, we have

Q= fi/Afi = f/((2¥** - 1)) = 34 (2.5)

However, for the discrete Fourier transform, the bandwidth is equal to the sample
rate divided by the window size (the number of samples analyzed in the time
domain). Thus, the window sizBl[K] is equal to the sample rate divided by
the bandwidth. If the ratio of frequency to bandwith is a constant (constant-Q), the
window size varies inversely with the bin frequency:

N[K] = fs/Afc = fs/(f/Q) = fsQ/fk, (2.6)

where fs is the sampling rate.
From Eg. (2.6) we see that for the constant-Q case that

fi = Qfs/N[K]. (2.7)

This corresponds to a digital frequency of@Q/N[K].

Because the period in samples for frequerigys fs/fy, it follows from Eg.
(2.6) that a window of length[k] containsQ complete cycles for each frequency
fk, This makes physical sense, because in order to distinguish betiweeand
f, when their ratio is ¥24 = 34/33, we must examine at least 33 cycles.

For comparison, it is interesting to consider the conventional discrete Fourier
transform in terms of the quality facto@ = fy/Afc. Here, becausefy =
kfs/N,whereN is fixed, andAfy = fs/N = Af, a fixed quantity, we see that
fx/Af is equal to the bin numbeds, and this is also the number of periods of
frequencyfx which occur in the fixed window.

An expression for th&th spectral component for the constant-Q transform can
be derived by considering the corresponding component for the short-time DFT
(Oppenheim and Schafer, 1975):

N-1
X[kl = wn]x[n]e 1 ZkVN (2.8)
n=0
Herex[n] is the nth sample of the digitized temporal function being analyzed.
The digital frequency is2k/N. For eachk the period in samples ibl/k, and
the number of cycles analyzed is equaktav[n] gives the shape of the window
function, which is discussed below.
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According to Eq. (2.7), the digital frequency of the constarktcomponent
is 2tQ/N[Kk]. The window function has the same shape for each component, but
its length is determined bM[k] so it is a function ok as well am. We must also
normalize by dividing the sum bl [k] since the number of terms varies with
Equation (2.8) thus can be rewritten as

Cark] = i At k —j2rkn/N[K]
X = ag 2 I Kixinle : (2.9)
n=0

which is the constant-Q transform of the sigrfh] (see Appendix A).

For each bin frequency the period in samplehl[&]/Q, so we always analyze
Q cycles. A comparison of variables used in the calculation of the constant-Q and
the conventional Fourier transforms is given in Table 2.2.

TABLE 2.2. Comparison of the discrete Fourier transform (DFT) and the constant-Q
transform

Parameter DFT Constant-Q transform
Frequencyfy kAT (Linear ink) (2Y2%k . fin (Exponential ink)
Window size Constant N Variable= N[K] = fsQ/ fk
ResolutionA f Constant= fs/N Variable= fx/Q

Af—'f‘k Variable= k Constant= Q

Cycles in window Variable= k Constant= Q

In practice, Eq. (2.9) is used as the basis for our calculations Nlj =
Nmax/(2Y2%%. Nmax is Q times the period of the lowest analysis frequency in
samples. The Nyquist condition becomes®/ N[k] < 7r, which meandN[k] >
2Q. This is identical to the usual statement that there must be at least two samples
per period to avoid aliasing.

The simple choice of a window functian[n,k] equal to unity over the interval
(0, N[Kk] — 1), results in the rectangular window, which can be shown to have
maximum “spillover” into adjacent frequency bins (Harris, 1978). Instead, we use
a Hamming window

w[n, K] = o 4+ (1 — «)cos(2in/N[K]), (2.10)

where o = 25/46 and O< n < N[k] — 1. This choice results in a worst case
spillover of —42 dB.

The calculation of the constant-Q transform described in this section is very
straightforward both computationally and conceptually. It does not, however, take
advantage of the computational efficiency of the fast Fourier transform. It is pos-
sible to transform a DFT into a constant-Q transform as described by Brown and
Puckette (1992), thus taking advantage of the speed of the FFT calculation. This
method involves the calculation of kernels which are applied to each subsequent
FFT. Only a few multiplications are required for the calculation of each compo-
nent of the constant-Q transform, so this transformation adds a small amount to
the computation time. Details are given in Appendix A.
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2.3 Results

Most examples were taken from sounds of musical instruments digitized from
live performances. Other examples were generated using Barry Vercoe’s Csound
software (Boulanger, 2000; Vercoe, 1986). Calculations were carried out every 500
samples, corresponding to about 15 ms at a sample frequency of 32000 samples
per second.

Figures 2.2 and 2.3 are graphs of the constant-Q transform amplitude on the
left vertical axis plotted against bin number on the horizontal axis and time on
the right vertical axis. Fig. 2.2 is for a violin performance of a G major diatonic
scale starting at gand ending at @ Note that the maxima for the fundamental
frequencies start at 196 Hz, corresponding to bin 13 (a very weak fundamental)
and end at 784 Hz, corresponding to bin 61. This follows from Eq. (2.4) when
fmin = 134.65 Hz. An important consideration is the percentage difference of
nearby frequencies that can be resolved. Note that frequencies are resolved up to
the 20th harmonic, where the frequencies differ by about 5%. In Fig. 2.3 the violin
starts at [3, corresponding to 587 Hz at bin 51, and glissandosit@érresponding
to 880 Hz at bin 65. Associated spectral changes are also apparent. This example
of continuous fundamental frequency change will be referred to again in the next
section on fundamental frequency tracking.

Constant Q Transform of Violin Scale
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FIGURE 2.2. Constant-Q transform of violin playing a G major diatonic scale fron G
(196 Hz) to G (784 Hz).
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Constant Q Transform of Violin Glissando
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FIGURE 2.3. Constant-Q transform of violin glissando frorg (887 Hz) to A (880 Hz).

Figure 2.4 shows the constant-Q transform of three octave-related nates (G
196 Hz, G = 392 Hz, and G = 784 Hz) generated by software. Each sound
contains 20 harmonics of equal amplitude. Note that, as shown in the figure, the
amplitudes differ slightly due to the positions of the corresponding frequencies
relative to the center frequencies of the bins into which they fall. However, it
is clear that the patterns, in terms of frequency spacings, are identical; only the
relative positions on the frequency axis indicate that the notes are different. Fig.
2.5 represents a 512-point traditional DFT of this same sound for comparison.
Here the harmonics are equally spaced, and this is the major feature that stands
out. The resolution for this case is 62.5 Hz, allowing the harmonics of even the
lowest note to be resolved.

Figures 2.6 and 2.2 offer a comparison of the traditional (Fig. 2.6) and constant-Q
(Fig. 2.2) transforms for the sound of a violin. Each shows the transform magnitude
for the G major diatonic scale played fromy ® Gs. It is very difficult to say
anything at all about spectral content for the conventional plot of Fig. 2.6; it is
even difficult to determine note changes for the low-frequency notes. On the other
hand, Fig. 2.2 very clearly indicates not only the note changes but also the spectral
content; for example, §gand A; have almost undetectable fundamentals. Most
striking of the spectral features is the formant in the region of 3000 Hz.

Figure 2.7 shows the constant-Q transform for the violin playing the ngte D
587 Hz (bin 51) with vibrato. The second harmonic is considerably weaker for the
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Constant Q Transform of Complex Sounds in Octave Relationship
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FIGURE 2.4. Constant-Q transforms of three complex sounds with fundamentals G
(196 Hz), G (392 Hz), and G (784 Hz), each having 20 harmonics of equal amplitude.
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FIGURE 2.5. Discrete Fourier transforms of three complex sounds with fundamengals G
(196 Hz), G (392 Hz), and G (784 Hz), each having 20 harmonics of equal amplitude.
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FIGURE 2.6. Discrete Fourier transform of violin playing a G major diatonic scale fram G
(196 Hz) to G (784 Hz).

higher region of the vibrato while the 7th and 9th harmonics (bins 118 and 126)
are weaker for the lower-frequency region. Most remarkable in the spectrum is the
extremely strong 6th harmonic (bin 113). This harmonic falls right in the 3000 Hz
formant region mentioned above and is amplified by a violin body resonance which
occurs in this region.

3 Musical Fundamental-Frequency Tracking Using a
Pattern-Recognition Method

3.1 Background

The problem of musical pitch tracking has received relatively little attention in
comparison to the massive efforts carried out by the speech community for use
with various speech encoders for communications purposes. Musical applications
have, for the most part, been in the area of intelligent systems, where an accurate
pitch tracker is a necessity at the front end. For a more complete review of previous
work in the field of musical pitch tracking see Brown and Zhang (1991).

Most efforts at musical pitch tracking have taken place in the frequency domain
(Amuedo, 1985; Chafe and Jaffe, 1986; Terhardt, 1979; Terhardt et al., 1982) and



100 Judith C. Brown
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FIGURE 2.7. Constant-Q transform of violin playings[587 Hz) with vibrato.

have used a method similar to that of the Schroeder (1968) histogram method.
After the calculation of a fast Fourier transform, a hypothesis is asserted for each
frequency component of all possible fundamental frequencies for which it could be

a harmonic, e.g., each frequency component is divided by integers and the results
are entered in a table. The entries are weighted, and a decision is made based on
criteria involving the number of components and their weights. The frequency is
chosen that most closely meets previously determined criteria.

A similar pitch tracker (Piszczalski and Galler, 1979) took ratios of pairs of
components to form their hypotheses for the fundamental and then proceeded as
above. Duifhuis et al., (1982) studied speech segments using a method which most
closely approaches that of this article. Following an FFT they kept a maximum of
six peaks and then used a “harmonic sieve” to determine which of these peaks best
fit the logarithmic spacing obtained with harmonic frequency components. This
method was later refined by Scheffers (1983). Another method of this type was de-
scribed by Maher and Beauchamp (1994), where pitch was chosen to minimize an
error function based on the differences between spectrum peaks and corresponding
harmonics of candidate fundamental frequencies.

3.2 Calculations

This method is based on the property summarized in Fig. 2.1 that a sound with
harmonic frequency components has Fourier components with spacings in the
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log-frequency domain that are independent of the fundamental frequency. If we
assume that the frequencies in question are integer multiplégiofthe corre-
sponding constant-Q bin numbers (for 10 harmonics) given by Eqg. (2.4) are 0, 24,
38,48,55.7,62,67.4,72,76,and 79.7. Because this “pattern of 1's” is constant for
harmonic frequency components, it can be cross-correlated with the constant-Q
transform of a sound, and a maximum should occur at the position of the funda-
mental. This is tantamount to shifting the template pattern of Fig. 2.1 to the right
while multiplying it with the constant-Q magnitude spectritff of the signal

and adding the results. The fundamental is detected when the maximum value of
the sum occurs. In other words, we wish to fiagy as the value of the bin number

k which maximizes the expression

Nmax

D IXk + 24 logy(h)] . (2.11a)
h=1

whereh is the harmonic number a5« is the maximum harmonic number. The
actual fundamental frequency would be calculated using

fo = (2Y/24)kmax f . (2.11b)

We see that as the convolution is computed, the first component of the harmonic
pattern at some point coincides with the fundamental of the analyzed sound. This
“asserts” the fundamental frequency corresponding to that position of the tem-
plate as a hypothesis. As the template slides across the magnitude spectrum,
the convolution obtains a number for each frequency corresponding to the sum
of all the frequency components of the sound that are at harmonics of the test
fundamental. Thus, in a very elegant and complete way we obtain results that
previous researchers approached with the histogram method. There is a compu-
tational advantage as well in that we simply add components with appropriate
spacing.

Note that this pitch tracker solves the problem of the “missing fundamental” in
much the same manner as that hypothesized for humans. It essentially compares
the harmonics present in the signal to a template and finds the best match. This
is consistent with the pattern-matching theory (Gerson and Goldstein, 1978) of
human pitch perception.

3.3 Results

As with any pattern-matching method, cross-correlation most unambiguously es-
tablishes the position of the pattern when it is close in shape to the “ideal pattern”
(Duda and Hart, 1973). Thus, it is best if the number of components in the ideal
pattern matches the average number of nonzero Fourier components for the partic-
ular instrument analyzed. This number therefore becomes an adjustable parameter
to be optimized for each instrument.

Figures 2.8 and 2.9 show the spectrum and cross-correlation functions for two
instruments with very different spectra. In Fig. 2.8 six components of the ideal
pattern were used, while in Fig. 2.9 ten components were needed. For the effect
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Constant Q Transform and Cross Correlation of Piano
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FIGURE2.8. Constant-Q magnitude spectrum vs bin number for a 15 ms portionof@€
produced by a piano (above) and the result of cross-correlation (below) of this spectrum
with the function shown in Fig. 2.1.

of varying the number of components in the cross-correlation template on the
frequency-tracking results for a particular instrument, see Brown (1992).

Figure 2.10 gives the pitch-tracking result in terms of fundamental frequency
vs time for the violin scale spectrum shown in Fig. 2.2. Each point in this graph
represents the peak of a cross-correlation calculation on an analysis frame similar
to that of Fig. 2.9, corresponding to approximately 15 ms of sound. Because this
is a diatonic scale, perfect results would consist of a sequential set of horizontal
lines rising by one or two semitones corresponding to a half or a whole step in
the scale. Thus, errors made by the pitch tracker are easily distinguished as points

Constant Q Transform and Cross Correlation of Violin
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FIGURE2.9. Constant-Q magnitude spectrum vs bin number for a 15 ms portion,of@€
produced by a violin (above) and the result of cross-correlation (below) of this spectrum
with the function shown in Fig.2.1.
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FIGURE 2.10. Pitch tracking results for a violin G major scale fromt@ Gs using cross-
correlation with a pattern consisting of seven harmonics.

off the appropriate horizontal line. It can be seen that few errors occur, and these
occur at note transitions, when more than one tone may be present.

The cross-correlation pattern recognition method has produced excellent pitch-
tracking results for a variety of musical sounds whose spectra varied from a simple
spectrum consisting of a strong fundamental with a few higher harmonics to an
extremely complex spectrum where the fundamental was often weak and most
energy was concentrated in higher harmonics over 2000 Hz. This success indicates
that the algorithm has an ability to deal with a wide variety of musical sounds.

4 High-Resolution Frequency Calculation Based
on Phase Differences

4.1 Introduction

The method of frequency determination described in the previous section [see
also Brown (1992)] works extremely well for instruments playing discrete notes
belonging to the equal-tempered scale. In that case, the smallest difference
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between frequencies is approximately 6%, and the results can be reported as
notes of the equal-tempered scale. However, a very different situation can arise in
passages played by stringed or wind instruments. Unlike keyboard instruments,
these instruments are not constrained to play discrete frequencies. Thus, frequency
can vary continuously as in, for example, a glissando or vibrato. (See Figs. 2.3
and 2.7.) Moreover, even keyboard instruments can be tuned to temperaments
other than equal-tempered. For all of these cases, in order to track the fundamental
frequency accurately, the frequency determination must be much more accurate
than a half-semitone or 3%.

The frequency of a particular Fourier component as obtained from the bin into
which it falls in the magnitude spectrum is only as accurate as the resolution or
frequency difference between bins, in our case 3%. This estimate can be improved
by using the maximum of a quadratic fit to a maximum-amplitude bin and its two
adjacent bins to estimate the amplitude and frequency of the underlying sinusoid
(Smith and Serra, 1987). Even more accurate is a method we have developed which
approximates frequency in terms of the phase change of a Fourier component. In
our case, thisis the component that our frequency tracker has selected as the correct
fundamental frequency.

It has been long known that frequency can be determined much more accurately
from phase change than by interpolation of the magnitude spectrum (Flanagan and
Golden, 1966). However, there is a problem with determining the frequency from
the phase difference over a reasonable hop size (samples between frames). This
problem, called phase unwrapping, is caused by the fact that the phase change is
only known modulo 2. However, the problem does not arise with a hop size of
one sample, because the highest digital frequeneyredians/sample. The only
drawback is that this method requires the computation of an additional FFT.

Appendix B describes a method of obtaining an extremely precise value for
the frequency of a particular bin. In our case, it is chosen to correspond to the
fundamental frequency of the sound analyzed based on the phase difference cor-
responding to a hop of one sample. This is denthout the calculation of an
additional FFT by using an approximation based on periodicity. With this method
we can accurately follow continuous frequency changes with low computational
cost.

4.2 Results Using the High-Resolution Frequency Tracker

Precise frequency determination as described in Appendix B increases the total
computation time by a negligible amount, because it is only carried out for three of
the constant-Q bins used in the calculation. Once this bin is selected, a calculation
is made to determine the corresponding bin number for the FFT. The real and
imaginary parts of the FFT for this bin and those on either side of it were previously
calculated, and only these three complex numbers are needed for the evaluation of
the transform.

The power of this method is apparent when itis applied to the acoustic sounds for
which itis intended. The circles shown in Figs. 2.11 and 2.12 indicate frequencies
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FIGURE 2.11. High-resolution frequency plotted against time for a violin executing a glis-
sando. Squares represent the results of the fundamental-frequency tracker, and circles give
the high-resolution results.

refined using the method of Appendix B, based on the frequency tracker output
as described in Section 2, which is shown by the square symbols. The spectra of
these sounds are shown in Fig. 2.3 (violin glissando) and Fig. 2.7 (violin vibrato).

5 Applications of the High-Resolution Pitch Tracker

Two of the applications that our high-resolution method has made possible are the
measurement of the frequency ratios of musical sounds and a perception experi-
ment with natural acoustic (as opposed to synthetic) sounds.

5.1 Frequency Ratios of Spectral Components
of Musical Sounds
Aknowledge ofthe exact ratios of the frequencies of the partials of sounds produced

by musical instruments is important for an understanding of the underlying physics
for producing these sounds. Also important is the application to the production of
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FIGURE2.12. High-resolution frequency plotted against time for a violin executing vibrato.
Symbols have the same meanings as in Fig. 2.11.

synthetic sounds that may be used in musical compositions for computers (Fletcher
etal., 1962, 1965; Fletcher and Sanders, 1967).

5.1.1 Background

Early work by Fletcher et al., (1965) reported that the frequencies of the partials
in steady tones produced by members of the string family “were found to be
harmonic—that is, integral multiples of the fundamental frequency.” Almost a
decade later, Beauchamp (1974) used “relative phase curves” to show that violin
tone harmonics are locked together in the steady-state portions of open string
tones but not during attack and decay transients or during vibrato. Soon after, in
his textbook on musical acoustics, Benade (1976) stated that there is a wide class of
instruments whose frequency ratios are related by precisely whole numbers, and
these are the instruments producing sustained sounds. More recently Ando and
Yamaguchi (1993) measured the statistical fluctuations of the npfErdiuced

by a number of instruments both with and without vibrato. They found that, for a
given sound, the standard deviations of the frequencies of all of its harmonics are
nearly equal and conjecture that the reason for this is that they vary synchronously
with the fundamental. However, Schumacher (1992) stated that sounds produced
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by stringed instruments are aperiodic with the origin lying in the fundamental
mechanisms of sound production, such as bow hair inhomogeneity for the bowed
instruments.

Thus, while the existence of harmonic ratios in instrument tones had been both
asserted or disclaimed widely in the past, there was little systematic effort to
actually measure the frequencies of a variety of instruments purported to produce
sounds with harmonics in integer or near-integer ratios and report them along with
an assessmentofthe accuracy of the measurements. It was therefore of greatinterest
for this author to measure the fluctuations in frequency for the fundamental and
at the same time determine experimentally whether the higher harmonics exhibit
identical fluctuations at integer ratios for various sustained-tone instruments.

5.1.2 Calculation

The single-frame approximation (Appendix B) described for determination of a
precise value for the fundamental frequency can be equally well applied to de-
termine the frequency of a component in any other FFT bin. In this calculation,
the first step is a calculation of the “high-resolution” fundamental frequency. This
frequency is then converted to a fractional FFT bin, and the original FFT is then
tested for maxima at integer multiples of the fundamental. If a maximum is found,
the frequency of that component is determined using the single-frame approxima-
tion. If no maximum is found, the two adjacent bins on either side are checked
for maxima, and, if one was found, the frequency of that bin is recorded. If no
maximum is found, a large negative frequency value is returned that goes off scale
in the graphs.

Frequency measurements were made with a Hanning window of 25-100 ms,
depending on the frequency range of the instrument, and a time advance or hop
size of about 6 ms. Roughly 175 frequency measurements per second were made
for each harmonic. Frequencies of the harmonics were then plotted in cents after
first dividing each harmonic by its harmonic number. Thus, if all curves coincide,
exact integer ratios must obtain to within 0.1%, which is the visual resolution of
the curves. Results are presented graphically rather than in a table of averages with
standard deviations because important information on frequency fluctuations is
preserved in the graphs, which would be lost by taking numerical averages.

Calculations were carried out on digitized sounds produced by a clarinet, alto
flute, voice, piano, violin, viola, and cello. The sounds produced by the stringed
instruments included examples played pizzicato and bowed both with and without
vibrato.

5.1.3 Results

Measured ratios were exactly equal to integers for all instruments except for the
piano and string instruments played pizzicato. Anomalous behavior was observed
in some regions for the fundamental frequency for vibrato sounds played by

stringed instruments with the frequency deviation exceeding the extrema of the
other harmonics divided by their harmonic number by about 1% on average.
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FIGURE 2.13. Measured frequency (in cents with respect $6=®5.41 Hz) of the fun-
damental and harmonics 2-5 normalized by their harmonic numbers and plotted against
time, for a cello executing the note; With vibrato. The fundamental deviates from the
normalized harmonics mainly at the extrema.

Graphical results for the cello are presented in Figs. 2.13 and 2.14. Figure 2.13
is rather typical of the results with vibrato where the fundamental is higher than the
frequency of the other harmonics divided by their harmonic number at the position
of some of the frequency maxima. For complete results see Brown (1996).

5.1.3.1 Cello

Vibrato: The graph of Fig. 2.13 shows harmonic frequency detection results from
two sucessive £notes performed with vibrato on a cello. The first note isatC

the top of an ascending scale, immediately followed by atChe beginning of a
descending scale. The region of the bow change between notes (occutriag at
1.2 s) was very noisy as are the frequency measurements in this region.

Note that with the exception of the fundamental, all of the harmonics are in
exact integer ratios, within the accuracy of the measurement method. The frequen-
cies for this vibrato note show the same behavior seen for vibrato executed by the
other stringed instruments in that the excursions of the fundamental exceed those
of the other components. Here, in addition, there is highly anomalous behavior
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FIGURE 2.14. Measured frequency (in cents with respect4e=3%5.41 Hz) of the funda-
mental and harmonics 2 to 15 normalized by harmonic number and plotted against time,
for a cello playing the note Swithout vibrato.

at the position of the amplitude minima of the fundamental. [For corresponding
amplitude plots see Brown (1996)]. At these points, the frequency of the funda-
mental can rise to as much as 40 cents or more above the frequencies of the other
harmonics divided by their harmonic numbers.

The sounds with vibrato played on stringed instruments were the most difficult
for the fundamental-frequency tracker for several reasons. First, the frequency is
constantly changing due to the frequency modulation, and only an average can be
measured due to the finite number of samples in the FFT window. Second, it is
the motion of the performer’s finger on the string which is causing this change in
effective length, and there will always be unwanted fluctuations in bow pressure
because humans are not mechanically perfect. Third, there may be more bow noise
due to the varying conditions.

Open String: The result shown in Fig. 2.14 is a real tour-de-force. This sound
was recorded at MIT with Yo-Yo Ma playing &(zan open string tone with minimal
frequency fluctuations. There are no errors in the frequency determinations out of
over 1800 values. Measurements indicating exact harmonicity witfdircents
were possible up to the 25th harmonic.
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FIGURE2.15. Measured frequency (in cents with respectfe-~440 Hz) of the fundamen-

tal and harmonics 2 through 5 normalized by harmonic humber and plotted against time,
for an alto flute playing the notefDwithout vibrato. The fourth and fifth harmonics are
represented by dotted lines.

5.1.3.2 Alto Flute

The alto flute is a member of the woodwind family of instruments. A sound was
played by this instrument without vibrato, and Fig. 2.15 clearly shows the small
fluctuations that are characteristic of any musical note generated by a human
performer. Exact integer ratios are made evident by the coincidence of solid curves
in Fig. 2.15 for the first three harmonics. A number of strong deviations appear
in harmonics 4 and 5 (dotted curves), especially in the 4th harmonic, which has
the lowest amplitude, but these are probably due to breath noise in the sound.
These results indicate near-perfect harmonicity and are a consequence of the flute’s
periodic tone production mechanism, often called an “air-reed.”

5.1.4 Discussion

Continuously driven instruments such as bowed strings, winds, and the voice have
phase-locked frequency components whose frequencies can be expressed as ratios
ofintegers to within the currently achievable measurement accuracy of about 0.2%.
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Because frequency fluctuations greater than the measurementaccuracy are inherent
in any sound produced by a human performer, improvement of the measurements
is unnecessary. In fact, when we compare these results with measurements on
synthetic sounds, where deviations from perfect harmonicity are an order of mag-
nitude or more smaller, we see that frequency fluctuations are the limiting factor

in this study rather than the accuracy of the frequency tracker.

On the other hand, sounds of impulsively driven instruments, such as the piano
and pizzicato strings, have partials that deviate from integer ratios. These deviations
(i.e., inharmonicities) are predicted by vibration theory and can easily be confirmed
by measurement. In these cases, a brief excitation is followed by an independent
decay for each component. The mechanism causing frequency deviations is the
stiffness of the strings, and measurements were shown in detail to be in agreement
with vibration theory by Fletcher (1964), where piano inharmonicity was found to
be proportional to partial number squared.

It is generally believed that machine perception is inferior to that of the human
perceptual system. In the case of pitch perception, a human perceives a sound with
a complex spectrum as having a single pitch corresponding to the frequency of the
fundamental. We have demonstrated that a computer can do this as well, and in
addition is capable of extracting frequencies of the higher harmonics with as high
precision as that of the fundamental.

5.2 Perceived Pitch Center of Bowed String
Instrument Vibrato Tones

In this application, the precise measurement of fundamental frequency is not the
final goal but an essential first step in determining the properties of the input signal,
which is then used in a perception experiment.

The determination of the pitch center of frequency-modulated sounds has been
the focus of a number of previous studies. The sources have usually been pure
tones or synthetic complex sounds with well-defined spectral compositions. These
synthetic sounds differ in temporal and spectral properties from sounds produced
by musical instruments, and it is the latter acoustic sounds that performers are
trained to produce and perceive in order to make intonation choices. Thus, sound
samples played by a virtuoso violist were recorded specifically for this study and
analyzed using our high-resolution-frequency method.

5.2.1 Background

The problem of determining the pitch center or the perceived pitch of frequency-
modulated sounds has been studied over a long period of time by a number of
researchers. The problem is of interest to psychoacousticians for giving them
insightinto the mechanisms of pitch perception. An understanding is also necessary
for the study of intonation choices by string performers because most of their notes
are played with vibrato. In fact, for a meaningful study of intonation, the following
guestions must be answered:
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What pitch is perceived by experienced musical performers and listeners when a
musical sound with vibrato is presented?

How do the accuracy and standard deviation of the responses of these experts
compare for modulated and unmodulated sounds?

Results of three different experiments in recent decades (lwamiya et al., 1983;
Shonle and Horan, 1980; Sundberg, 1978) indicate that there is some question
as to whether the mean pitch corresponds to the geometric or arithmetic mean
frequency of avibrato tone. All three experiments were conducted using the method
of adjustment, which has certain problems in its rational underpinnings (Hake and
Rodwan, 1966).

A study with a musical emphasis is a more meaningful way to address the
guestion of the just noticeable difference (JND) of natural sounds because itis on
these sounds that experts are trained. The study described here differs from the
previous ones in that it was conducted with actual musical sounds. All subjects
had experience performing on musical instruments whose tunings are continually
adjusted during performance (in contrast to playing keyboard instruments, where
the performer is not responsible for intonation). The two-interval/two-alternative
forced choice experimental method was used, which has a distinct advantage over
the method of adjustment.

Results are reported for two groups of subjects, divided according to their mu-
sical experience. The first group consisted of non-professional performers from
the MIT Media Lab (MIT group). The second group consisted of advanced string
players, graduate students studying violin at New England Conservatory (NEC),
and a professional violinist from the Boston area (NEC group).

5.2.2 Experimental Method
5.2.2.1 Sound Production and Manipulation

All of the sounds used in this study were recorded at MIT with the professional
violist (MT) playing a number of notes both with and without vibrato on a viola.
They were analyzed using the high resolution fundamental frequency tracker de-
scribed in Section 4. For the notes without vibrato, sound segments were chosen
that had frequencies constant within a standard deviation of 2 cents or less.

5.2.2.2 Listening Experiments

Each listener was presented with the notgs a:g As, and G with or without
vibrato followed by the same note without vibrato at 10 pitch levels in arandomized
order. The pitch levels in cents consisted-ef5, -9, —6, —3, 0,+3, +6, +9,

+15, and+-21 relative to standard equal-tempered pitch. The mean (in cents) of
the vibrato note corresponded to the 0 level of the non-vibrato note. The subject’s
task was to respond whether the second note was higher or lower in pitch than
the first. Randomly mixed with these trials were an equal number of similar trials
where the first note was replaced by a non-vibrato note. The purpose of these trials
was to see how well listeners can distinguish between pitches without vibrato in
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FIGURE 2.16. Fraction of subject responses (Experiment 1) that the target (non-vibrato)
tone has a “higher” pitch than the vibrato tone plotted against target pitch level where 0
cents corresponds to the mean of the vibrato. The diamond points (solid curve) represent
responses to control stimuli pairs both with no vibrato, whereas the circle points (dotted
curve) represent the vibrato/non-vibrato case. The average peak-to-peak vibrato amplitude
(frequency deviation) is included below the curves for comparison.

order to ascertain whether comparisons to the vibrato trials are meaningful. In all,
each trial occurred eight times for a total of 640 trials for each subject.

5.2.3 Results
5.2.3.1 Experiment 1: Nonprofessional-Performer Listeners

The average psychometric curve for this group of listeners is presented in Fig. 2.16,
where “fraction of ‘higher’ responses” are plotted vs the “pitch level” of the second
(non-vibrato) sound whose pitch is the “target pitch.”

Note that if the frequency of the fixed target (second) sound is in fact higher than
the mean frequency of the vibrato (first) sound (positive half of the abscissa) and alll
eight subjects’ responses were “higher,” this would correspond to a perfect score
with an ordinate of 1. Similarly if the frequency of the target sound were lower
(negative half of the abscissa), all subjects responding “lower” would correspond
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to an ordinate 0. The abscissa value corresponding to an ordinate of 0.5 (meaning
50% responses higher) represents the pitch level judged to be the same as that of the
vibrato sound. Recall that with our notation, a vibrato sound is labeled by its mean
frequency. So an ordinate of 0.5 occurring at a value of O signifies that the pitch
center of the vibrato was at its mean for that listener. For the non-vibrato curve,
identical sounds were compared for the pitch level 0 position, and any deviation
from ordinate 0.5 was statistical or indicated a bias on the part of the listener.

The similarity of the vibrato and non-vibrato pitch judgment curves in Fig.
2.16 is very striking. The two curves are almost identical. This is all the more
impressive in view of the fact that the actual peak-to-peak vibrato deviation ranges
up to twice the total extent of the pitch level axis. (For comparison, the average
peak-to-peak vibrato deviation of the vibrato is indicated on the figure.) Yet the
similarity of the curves implies that the average frequency of the vibrato sounds
are perceived in exactly the same manner as the fixed-frequency sounds. There is
not even a difference between the shapes of the judgment curves, which would
have indicated more uncertainty in identifying the pitch of the sound with vibrato.

5.2.3.2 Experiment 2: Graduate-Level and Professional Violinist Listeners

This second group was chosen to determine whether string players perceive vibrato
produced by stringed instruments in the same way that other musicians do. The
average psychometric curve for this group is not pictured, but along with the first
group of listeners, the data supported the conclusion that the pitch center of vibrato
is at its mean. This psychometric curve is steeper around pitch level 0 than that of
Fig. 2.16 indicating that these subjects are a little better at pitch discrimination than
the first group. Alternatively, this could be due to the fact that the stimuli were
produced by a stringed instrument, and these listeners had far more experience
judging intonation of string sounds than those of the first group.

5.2.3.3 Experiment 3: Determination of JND for Pitch

Although the principal goal of this study was to determine the pitch center of
vibrato musical tones, the simultaneous control experiment comparing frequency-
modulated with unmodulated sounds provided an estimate of the JND for pitch for
these subjects. This was estimated from the 76% correct point on the psychometric
curve for the non-vibrato case resulting in JNDs of 2.8 cents for the MIT group
and 2.5 cents for the NEC group with an upper bound on the errarlofent.

The error was estimated from differences in the values at 24% and 76%, which
represent the same sounds heard in reverse order. Therefore, the difference in the
pitch center judgments by the moderately trained and highly trained groups seems
inconsequential.

These JND values are slightly lower than values of 3.5-4 cents previously
found for pure tones, summarized by Moore (1989), as would be expected for
complex sounds (Spiegel and Watson, 1984). They fall within the range 1.7-7.5
cents reported by Spiegel and Watson (1984) for musicians discriminating square-
wave stimuli, although they are smaller than their average values of 4.5 and 5.0
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TaBLE 2.3. Summary of Frequency Tracking Results on Viola Sounds

Freq Vnv  Vib Freq Vnv Vib
Note (cents) ETD Diff PP Note (cents) ETD Diff PP
A4 open -2 D4 open —-702
A4 stpd 8 8 D stpd —705 -5
Agq vib 3 3 -5 Dy vib -716 -16 -11 30
Ay stpd (2) 5.5 Qstpd (2) —706
Gs —1400 0 G(2) —1414 -14
Gs vib —1414 -14 -14 34 Gvib(2) -1422 -22 -8 38
Gy —200 0 GI(2) —-208 -8
Gy vib —200 0 Gvib(2 -208 -8 0
Gs 998 -2 Gs(2) 998 -2
Gs vib 908 -2 0 76 G vib (2) 998 —-12 -10 36
Ge 2200 0 G(2) 2213 13
Gg vib 2208 8 8 37 G vib (2) 2214 14 1 43
=4 -1816 -16 B@  -1815 -15
ES vib —1836 —36 —20 43 Bvib(2) -1827 -27 -12 33
= —618 -18 B (2) —614 —14
E2 vib -617 -17 1 100 Bvib(2 -611 -11 3 80
=4 592 -8 E(2) 593 -7
E? vib 588 —12 -4 65 B vib (2) 583 —17 -10 57
EE 1783 -17 2 (2) 1790 -10
E2 vib 1794 -6 1 40 Evib(2 1798 -2 8 ©

Abbreviations: ETD= Difference from equal temperament; Vnv Dif Vibrato—non-
vibrato; Vib PP= peak-to-peak amplitude of the vibrato
aFrequencies are given in cents relative to 440 Hz) (A

cents for frequencies 430-910 Hz. Moore and Glasberg (1990) report a JND of
roughly 3 cents for complex tones containing the first six harmonics.

Although these results are in agreement with previous studies, it should be
recalled that our experiments involve stimuli with a small frequency variation
inherent in the use of actual musical sounds. In fact, these JNDs are only slightly
greater than the standard deviations of the sounds being compared.

It is interesting to compare the JND to the control of a performer in repeating
notes with the same frequency. The average of standard deviations of notes in
Table 2.3 with respect to the same note (unmodulated) is432 cents. Thus,
we can speculate that limits on intonation control are due in part to limits of
motor control as well as pitch perception. There is also an inherent uncertainty of
about 2 cents in the frequency produced by a bowed instrument due to the bowing
mechanism (inhomogeneity of the bow hair, etc.) (Mcintyre, Schumacher, and
Woodhouse, 1981; Mcintyre and Woodhouse, 1978).

The data reported here support the hypothesis that the pitch corresponding to the
mean frequency of a frequency-modulated sound is the one which best matches
that of an unmodulated sound. Furthermore, this modulated sound gives rise to
nearly the same psychometric curve as that which results when a fixed-frequency
sound is substituted for it. That is, for purposes of comparisons with a second
sound, the vibrato tone is equivalent to a fixed-frequency sound having its mean
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frequency. Equivalently, it can be stated that a human functioning as a frequency
meter performs identically on an unmodulated sound and the mean of a frequency-
modulated sound.

6 Summary and Conclusions

Calculation of a constant-Q transform (CQT) for musical analysis is described in
Section 2 and Appendix A and compared to the discrete Fourier transform in detail.
The resolution and flexibility in choice of analysis frequencies of the CQT make

it advantageous as a tool for studying musical signals. Several graphical examples
of violin sounds show clearly its advantage in visualizing timbral features as well.
In addition to being accurate, it is esthetically attractive for its similarity to one
of the prominent theories of human pitch perception. Another attractive feature is
its versatility in choice of template: Different numbers of harmonics with varying
amplitudes make it applicable for tracking any musical instrument.

The constant-Q transform lends itself to an elegant, as well as accurate, method
of pitch tracking using pattern matching with an ideal template. As described
in Section 3, the pattern-recognition pitch-tracking method for musical passages
has been found to be accurate to the nearest quarter tone. Then a high-resolution-
frequency determination method, described in Section 4 and Appendix B, based on
the phase difference of adjacent frames, can be used as a post-processor where high
precision is desired. Applications range from analysis of sounds with continuous
frequency variation to the determination of temperament for performance studies
in cognitive psychology.

Further applications of the high-resolution pitch tracker are described in Sec-
tion 5. Exploitation of the accuracy of a phase-based method makes possible the
calculation of an extremely accurate value of the frequency chosen by the tem-
plate method. This accuracy makes it possible to carry out valuable experiments
in many fields. Two examples are described: First, the direct determination of the
harmonicity of higher harmonics for continuously excited and impulsively ex-
cited instruments. Second, a pitch perception experiment using acoustic sounds,
rather than synthesized ones, to determine the pitch center of frequency-modulated
sounds and to compare their JND with that of unmodulated sounds. Many future
applications are possible based on these methods.

Appendix A: An Efficient Algorithm for the Calculation of a
Constant-Q Transform

The calculation is based on a form of Parseval's equation (Oppenheim and Schafer,
1975), which states that for any two discrete functions of tkjrg and y[n]:

N-—-1 1 N—-1
> xInly*[n] = N > XIKIY[K], (2.12)
n=0 k=0
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where X[k] and Y[k] are the discrete Fourier transforms>di] and y[n], and
Y*[K] and y*[n] are the complex conjugates gffin] and Y[K] respectively.
Equation (2.9) can be rewritten as
N[keq] -1 _
Xkeg] = Y wln, keg]X[n]e I, (2.13)

n=0

where X®I[Kkq] is thekeq component of the constant-Q transform. As before, the
exponential has the effect of a filter for center frequesgy.
Using Eq. (2.12), Eq. (2.13) can be evaluated as follows: First, let

wln, kegle 1% = k[N, keq]. (2.14)
Then, Eg. (2.12) can be written as

N-1 N-1
XMheal = 3 X[AT, kel = ¢ 3 XIKIKTK, kgl (2.15)
n=0 k=0

where X®I[keq] is the keqth constant-Q coefficient anid [k, keg] is the discrete
Fourier transform ok[n, k], i.e.,

N-1 N-1
Kk, kegl = D [N, kegle 12N =5 wn, kegle) a1 ZVN. - (2.16)
n=0 n=0

We will refer to {K[k, kegl} in the frequency domain as the set of spectral
kernels of the transformation and to the[n,kcq] } as the set of temporal kernels.
We have used a Hamming window as discussed in Section 2.

The kernels can be evaluated initially and do not contribute further to compu-
tation time. Furthermore, their values are close to zero outside a limited range
and can be dropped, leading to only a few multiplications for each constant-Q
coefficientX®I[keq]. For further details see Brown and Puckette (1992).

Appendix B: Single-Frame Approximation—Calculation of
Phase Change for a Hop Size of One Sample

If we assume that the signa[n] is periodic, the phase change for a hop size
of one sample can be obtained from the following identity (Charpentier, 1986;
Oppenheim and Schafer, 1975).T{x[n]} = X[K] is the kth component of the
discrete Fourier transform ofn], then

T{xX[n + m]} = el7kWN X [K] (2.17)

is the DFT after m samples.

The above equation applies to an unwindowed DFT. It is possible to use this
result to obtain a hanning-windowed transform, because the effect of windowing
can be calculated in the frequency domain for this window. We will use the notation
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XH[k, ny] to denote the hanning-windowed Fourier transform evaluated for a
window beginning on sample,, that is,

N-1
XMk, no] = > x[n + noJw[n]e 12N, (2.18a)
n=0

where

w[n] = 1/2 — 1/2 cos(2rn/N) = 1/2[1 — (1/2)e/Z*VN — (1/2)e"1Z7"/N].
(2.18b)

Substituting this expression for the window into the preceding equation leads to
X[k, no] = (1/2)(X[K] — (1/2)X[k + 1] — (1/2)X[k — 1]}. ~ (2.19)

Substituting Eg. (2.17) witm = 1 into Eq. (2.19), the approximation for the
hanning-windowed DFT after one sample is

X"k, no + 1]
= (1/2){ N X[K] — (1/2) 2 EFDN X[k + 1]
— (1/2)el 7 &=D/N X[k — 1] (2.20a)
= (1/2) eZK/N{X[K] — (1/2) &@Z/N X[k + 1]
—(1/2) e 1Z/N X[k — 1]}. (2.20b)

The digital frequency in radians per sample for ktle bin corresponding to the
phase difference for a time advance of one sample is

w(k, ng) = modfp(k, N, + 1) — ¢(k, no); 0, 271, (2.21a)
where
#(k, no + 1) = atar{Im(X [k, n, + 1])/Re(X [k, n, + 1])} (2.21b)
and
¢(k. no) = atar(Im(X 'k, no)/Re(X " [k. n])}. (2.21c)

This expression for the phase difference holds for any DFT bin with the bin
indicated byk. For use with a fundamental-frequency tracker, the calculation
would only be used on the bin selected as winner by the tracker. This method is
referred to as the single-frame approximation (SFA). Note that the frequency in
Hz is given by

f(k, no) = [(k, no)/(27)] fs, (2.22)

where fg is the sample frequency.
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Beyond Traditional Sampling Synthesis:
Real-Time Timbre Morphing Using
Additive Synthesis

LiPPOLD HAKEN, KELLY FiTZ, AND PAUL CHRISTENSEN

1 Introduction

Because of its theoretical advantage for making timbral manipulations, sine wave
additive synthesis is an attractive alternative to sampling synthesis, which is cur-
rently the most popular method for real-time synthesizers. Nevertheless, until
recently performers have seldom used additive synthesis because of the practical
difficulty of accomplishing these timbral manipulations, which inherently require
modification of large numbers of time-varying amplitude and frequency control
functions.

While sampling synthesis is easy to use, it suffers from limited nuance. First
of all, a sampling synthesizer employs a limited set of source recordings to syn-
thesize each acoustic instrument. When a performer plays a note on a synthesizer,
the synthesizer attempts to select and play an appropriate recording, i.e., one
that is closest to the intended pitch and dynamic. However, a note that does not
correspond to an available source recording must be synthesized by playing a
similarly pitched recording at a modified amplitude and sample rate. Even if
the synthesizer has a large set of source recordings in its memory, its sound is
generally easily distinguishable from that of acoustical instruments. This short-
coming is mainly due to an inability to produce all the spectral variations as-
sociated with the dynamic and pitch changes of acoustical instruments. Simply
varying the amplitude and the sample rate of a recording, as is done in sam-
pling synthesis, does not capture these changes. The basic problem is that because
sampling synthesis operates strictly in the time domain, it is incapable of intelli-
gently interpolating between stored sounds to produce sounds that are not in the
source set.

Additive sine wave synthesis, on the other hand, allows independent fine control
of the amplitude- and frequency-vs-time characteristics of each partial in a sound.
This makes it convenient to implement a wide variety of modifications such as
frequency shifting, time stretching, cross synthesis, and timbre morphing. While
in the past additive synthesis has been too slow or too expensive for real-time
applications, this method is now easily within the capability of current digital
(DSP) technology.
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In this chapter we present several topics related to the operation of a real-
time additive synthesizer we have recently developed. Like traditional sampling
synthesizers, our instrument utilizes a set of source recordings for synthesis. These
recordings are manipulated in real-time to control synthesis timbre.

In order to implement efficient real-time spectral manipulations, we have de-
veloped a stream-based representation of partial envelopes. Envelope parameter
streams are our counterpart to the sample streams used in sampling synthesis.
They provide amplitude, frequency, and noise information for each partial. Noise
envelopes represent noise associated with each partial and constitute an important
extension to traditional additive sine wave synthesis. In addition, time envelopes
are used to achieve time dilation, i.e., warping of envelope data with respect to
time.

Our spectral analysis software extracts amplitude, frequency, and noise en-
velopes for each partial. This method uses spectral reassignment to improve time
and frequency accuracy for the partials.

We use a simple and intuitive interface for the performer. The performer navi-
gates the timbres of the source recordings using a timbre control space, where the
dimensions correspond to pitch, loudness, and timbre. Notes that do not correspond
to available source recordings are synthesized by combining timbral aspects from
recordings that are “nearby” in terms of pitch, loudness, and timbre. We implement
morphing synthesis using movements in the timbre control space, which produces
continual timbre changes in response to these movements.

Additive synthesis has great promise for performers. As an example of new
possibilities, the Continuum Fingerboard, a polyphonic performance instrument
that borrows from both the traditional piano keyboard and the fretless fingerboard,
has continuous control parameters that are especially suited for additive synthesis.
It can also be used to control any MIDI real-time synthesizer.

2 Additive Synthesis Model

Many synthesis systems allow the sound designer to operate on streams of samples.
In our real-time implementation we also work with streams of data, but the data are
not time-domain samples. Rather, the streams contain parameters for each partial
component in additive synthesis.

Much of the strength of systems that operate on sample streams is derived
from the uniformity of the data. This data homogeneity gives the sound designer
great flexibility with a few general-purpose processing elements. In our encoding
of additive parameter streams, data homogeneity is also of prime importance.
We have avoided the use of separate models to represent noise and transients.
Although hybrid additive models are a proven success (Serra and Smith, 1990),
we have developed a single homogeneous model that is well-suited to stream-based
processing.

Our streams encode envelope parameters for each partial. The envelope param-
eters for all the partials in a sound are encoded sequentially. Typically, a stream has
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a frame size of 128, which means the parameters for each partial are updated every
128 samples, or every 2.9 ms at a 44.1 kHz sampling rate. Sample streams gener-
ally do not have frame sizes associated with them, but this concept is necessary in
our additive stream implementation.

Envelope parameter streams are typically generated by traversing files contain-
ing data from non-real-time analyses of source recordings. The parameter streams
may also be generated by real-time analysis, or by real-time algorithms, but that
processing is beyond the scope of this discussion. A parameter stream will typ-
ically pass through several processing elements. These processing elements can
combine multiple streams in a variety of ways, and they can modify values within
a stream. The stream finally reaches a synthesis element that produces a sample
stream at its output based on the envelope parameter stream at its input.

The synthesis element implements the sum

K
y(t) = Z(Ak(t) + Nk(t)b(t)) sin@«(t)), (3.1a)
k=1
where
O(t) = Ot — 1)+ 270 t >0 (3.1b)
and where

y is the time domain waveform of the synthesized sound,;

t is the sample number;

k is the sinusoid partial number in the sound;

K is the total number of partials in the sound (usually 20-160);

A is partialk’s amplitude envelope;

Nk is partialk’s noise envelope;

b is a zero-mean noise factor variable having a low-pass spectrum (e.g., white
noise through a 4-pole low-pass IIR filter with 1 kHz cutoff);

Fx is partialk’s log frequency envelope;

6k(t) is the running phase of partik) which depends on the partial’s frequency
envelope;

6k(0) is the initial phase, which is specified.

2.1 Real-Time Synthesis

We have implemented real-time synthesis in Symbolic Sound’s Kyma sound design
environment (Scaletti, 1987; Hebel and Scaletti, 1994). Together with Symbolic
Sound Corporation, we developed Kyma Sound Objects that generate, process,
and synthesize envelope parameter streams (Haken, 1995). While it is possible to
use processing elements originally designed for sample streams with our envelope
parameter streams, the additive synthesis method described in this chapter was
implemented on symbolic Sound’s Capybara synthesizer module.
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2.2 Envelope Parameter Streams

As mentioned above, values for envelopgét), Nk(t), andF(t) are updated from

the parameter stream every 2.9 ms. The synthesis element performs linear interpo-
lation between updates, so that, Nk, andFy are piecewise linear envelopes with

2.9 ms linear segments (Haken, 1992). The sinusoidal portion of the synthesis is
implemented using conventional oscillator table lookup with linear interpolation
between frames.

2.3 Noise Envelopes

The noise envelopé&lk is an important extension to our original additive sine
wave model (Fitz and Haken, 1995). Rather than use a separate model to represent
noise in our sounds, we define this third envelope to retain a homogeneous data
stream. There are several advantages of this representation over the purely sinu-
soidal representation, which requires many short partials to represent noisy parts
of a sound. We simplify the representation of noisy parts of the sound, and, more
importantly, we obtain an intuitive parameter for timbre manipulation. Quasihar-
monic sounds, even those with noisy attacks, have just one partial per harmonic in
our representation.

Noise envelopes allow a sound designer to manipulate noise-like components of
sound in an intuitive way, using a familiar set of controls. The control parameters for
each partial are amplitude, (center) frequency, and relative noise. These can be used
to manipulate and transform both sinusoidal and noise-like components of a sound.

3 Additive Sound Analysis

3.1 Sinusoidal Analysis

With our method, analysis of the sinusoid parts of sounds follows the well-known
frequency-tracking algorithm invented by MacAulay and Quatieri (1986) and
Smith and Serra (1987) and further developed by Maher (1989) and Fitz and Haken
(1995, 2002). In this method spectral peaks are retained and tracked from frame-to-
frame to form partial tracks. However, with our method, time and frequency values
are enhanced by the method of spectral reassignment, which is discussed below.

3.2 Noise-Enhanced Sinusoidal Analysis

Purely sinusoidal analysis techniques such as McAulay and Quatieri’s and our
first implementation represent noise as many short partials with widely varying
frequencies and amplitudes. These short partials are capable of producing good
guality syntheses of the noisy parts of many sounds, but this approach has short-
comings: When noisy sounds are stretched in time, the partials representing the
noise are also stretched and can be heard as rapidly modulated sine waves. Noisy
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sounds analyzed and stretched in this way may be described as “wormy.” In ad-
dition, the noisy character of a sound is carried mostly in the phase contributions
from these many short partials. Because time- or frequency-scale modifications in-
evitably change the phase portraits of the partials, such operations tend to destroy
subtle properties of the noise and result in unacceptable quality. Moreover, the
representation of noise as a collection of short partials is intuitively unsatisfactory
because it provides no means for manipulating useful parameters of the noise, such
as noise energy and center frequency, and no means for separating the noise into
distinct components.

Serra and Smith (1990) proposed a method for separating a noise component
from a sinusoidal representation. Their algorithm performs a sinusoidal analysis
and resynthesis of the signal and then computes the spectral difference between
the original signal and the resynthesized signal that is inverted to produce a dif-
ference signal called the “residual.” The residual may be stored and used in future
resyntheses, or its short-time spectra may be stored and synthesis performed using
inverse spectral analysis (stochastic modeling). This method yields a very high
fidelity synthesis, but Serra and Smith’s noise representation is problematic for
our purposes.

The Smith—Serra and other stochastic methods of accommodating noise, in-
cluding those which represent noise energy in fixed frequency bands, do not pro-
vide homogeneous representations of sinusoidal and noise components. With our
envelope-parameter streams the noise components of a sound are combined with
the same data stream as the deterministic components and are manipulated by
introducing a noise envelope for each partial.

In our current analysis program, Loris (Fitz et al., 2000), we divide the short-
time frequency spectrum into overlapping regions in order to associate noise energy
with nearby sinusoidal components. Each region contains strong-magnitude peaks,
selected according to the McAulay—Quatieri (1986) process. However, the total
spectral energy of the weak-magnitude peaks in each region is represented as
noise energy associated with the strong-magnitude peaks. Thus, a bandwidth-
enhanced component results, corresponding to each strong-magnitude peak. The
frequency of each component is found using the spectral reassignment method
described below. The amplitude of each component is equivalent to that of a
sinusoid containing both the strong-magnitude peak’s energy and a proportion of
the region’s spectral energy contained in weak-magnitude peaks. The noise factor
of each component specifies the ratio of noise energy (from the weak-magnitude
peaks) to sinusoidal energy (from the strong-magnitude peaks).

While this method of energy association is not analytically rigorous—i. e.,
the noise energy associated with each partial is only an approximation of the
spectral energy in the partial’s frequency region—the approximation is reasonable
for signals having mostly sinusoidal energy, and it preserves both the brightness
and the total energy of the overall spectrum.

As mentioned above, we represent quasiharmonic sounds with one partial per
harmonic, as shown in Fig. 3.1. The use of noise envelopes in our analysis allows
this, even for noisy parts of the sound.
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FIGURE 3.1. Spectrograms of an original flute recording (top), sine-only synthigiset

to 0) (middle), and complete synthesis using Eq. (3.1) (bottom). The low-frequency rumble
present in the original flute recording was omitted from the synthesis. The horizontal axis
is frequency in kHz, the vertical axis is relative amplitude, and the front-to-back axis is
approximately 2.3 s of time. Strong low-frequency components are clipped and appear to
have unnaturally flat amplitudes due to the high gain used to make low-amplitude high-
frequency partials visible. These plots were made using SoundMaker by Alberto Ricci.
[From Fitz and Haken (2002), Figs. 13, 14, and 15].
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For nonharmonic sounds, any peak that is “left over” (not part of a partial)
will be a contributor to the noise of nearby partials. In Loris, one of the analysis
parameters controls the maximum density of partials in frequency in order to limit
the amount of data obtained using this mechanism. If many peaks occur at a similar
time and are too close in frequency, some of them will not become partials but will
be contributors to the noise of nearby partials.

3.3 Spectral Reassignment

The analysis and representation of transients is a well-known problem for additive
synthesis. The onset of a sound, in particular, is perceptually important (Berger,
1964; Saldanha and Corso, 1964) and is difficult to analyze with sufficient time
accuracy. The time-domain shape of an attack deteriorates because the window
used in the analysis of the sound cannot be perfectly time-localized. This problem
occurs even if, at each window, the analysis guarantees phase-correctness of each
partial. Verma et al. (1997) have developed a transient analysis method that may be
used together with a deterministic sine model and a stochastic noise model (for re-
lated work, also see Chapter 4 by Levine and Smith in this book). In our work,
however, we use envelope-parameter streams, which allow us to control ampli-
tude, frequency, and noise envelopes for each partial. We avoid a separate transient
model in ourimplementation by taking a different approach to improving transients
within the few parameters of our model. We produce improved envelope-parameter
streams by incorporating spectral reassignment into our analysis method.

Spectral reassignment in time and frequency has been used for sharpening
blurred speech spectrograms (Auger and Flandrin, 1995; Plante¥9%8). Each
point of the spectrogram is moved to a new point that represents the distribution
of the energy in the time-frequency window more accurately. We apply spectral
reassignment in our analysis to sharpen attack transients that would otherwise be
blurred due to the length of our analysis window.

3.3.1 Time Reassignment

Our analysis first performs a sequence of short-time Fourier transforms. Tradition-
ally, the result of each Fourier transform is assigned to the center of the window in

time and frequency. However, this approach has a limitation, as shown in Fig. 3.2.
In the case where a window is positioned such that samples in the left-hand portion
of the window occur just before the beginning of a sound’s attack, whereas sam-
ples in the right-hand portion correspond to the beginning of the attack, traditional

analysis methods do not explicitly detect this situation.

As a solution to this problem, the center of gravity of each bin in the transform
may be computed. For our example this would show that the sound is only present
in the right part of the window, because the center of gravity would occur after the
window’s midpoint. We can use this information to resynthesize sharper attacks,
thereby avoiding “mushy” or blurry attacks that heretofore have plagued most
sinusoid-based analysis systems.
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FIGURE 3.2. Two waveform(t) (dashed lines) that have the same magnitude spectrum.
The sustained quasiperiodic waveform on the left (a) yields time corrections near zero,
while the strong transient on the right (b) yields components needing large time corrections
(positive in this case because the transient is near the right tail of the winki@yvjs the
window function used for analysis.

A reassignment formula for time based on Auger and Flandrin [1995,
Eqg. (3.26a)] and Plante et al. [1998, Eqg. (3.4)] is

/ (t — O)x()h(t — 7)e 177 dr
t(xt, )=t —fe{ = , (3.2)

o0

/ x(z)h(t — r)e 127 7 dr

—0Q

wherex(t) is the signal waveform function aridt) is the window function used
for analysis. (The use of in the equation as the dummy integration variable;
this has no connection to the use of this symbol for a time-dilation function used
later in this chapter.) In actual computer implementations, the integrals would be
replaced by finite summations with limits dictated by the window functitsthen
the frame time, and the second term on the right-hand side of Eq. (3.2) gives the
fraction of the window length needed to correct it. These offset times are different
for each frequency bin and can be larger than the frame duration.

The denominator of Eq. (3.2) corresponds to the short-time Fourier transform
(STFT) of the signal centered gtusing the following definition:

STFTh(X;t, f):/x(r)h(t—r)e‘jz”f’dt. (3.3)

Note that the numerator of Eq. (3.2) is similar to the denominator, except that
the numerator’s integrand includes an extra multiplicatiort byz. This time
weighting has the effect of emphasizing data in the right (later) part of the STFT
window differently than data in the left (earlier) part of the window. The ratio of
the numerator to the denominator indicates where within the window the center of
gravity of the bin’s data is concentrated. The time-corrected valseomputed by
adding the window’s midpoint time to this ratio. Thus, if all the data are contained
in the right half of the windowt, will be greater than; and if all the data are in

the left part of the windowt, will be less thart.
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If we define a new window function that incorporates time-weighting
g(tr) = th(z), sothatg{ — ) = (t — )h(t — 1), (3.4)

then Eq. (3.2) can be rewritten in terms of Fourier transforms to speed up the
calculation:

(3.5)

STFT,(x;t, f
tr(x;t,f)=t—:)’te{ gt )}.

STFTh(X;t, )
By using the time correction, we can avoid spreading out attacks over the analysis
window length. As we move the window so that it covers more and more of the
onset of the sound, the time correction moves from the right side of the window
toward the center. Note that because the window size ordinarily exceeds the frame
(or hop) size, the time correction can actually exceed the frame size.

3.3.2 Frequency Reassignment

In addition to reassigned time, we can calculate a reassigned frequency. The fre-
guency correction equation is as follows [Plante et al. (1998), Eq. (5)]:

[ ex@me - nerae
fo(xt, )= f +9Re — , (3.6)
/x(f)h(t—r)e—ﬂﬂffdr

—0Q
wheref is the bin center frequency ant{¢) and H (&) are Fourier transforms of
x(t) andh(t), respectively. Heref; is the frequency center of gravity for each bin.
Equation (3.6) is similar to the time reassignment equation [Eq. (3.2)], except that
the numerator uses a multiplication by frequency rather than time. It follows that
we can define a new window function which takes into account this multiplication
by noting that it corresponds to a derivative in the time domain:

dh(z)
dr

Auger and Flandrin [1995, Eq. (3.26b)] show that we can rewrite the frequency-
correction equation using STFTs:

c(r) = (3.7)

(3.8)

fo(x;t, f) = f —Sm{STFTc(XJL f)}'

STFTh(x;t, )
An alternative parabolic interpolation method for refining frequency estimates is
based on a single FFT (Smith and Serra, 1987). We have yet to do a detailed

comparison of the two approaches to refining frequency and are currently using
the Auger—Flandrin method.

3.3.3 Spectral-Reassignment Summary

Our time- and frequency-reassigned short-time analysis requires three times as
many FFTs as a traditional short-time analysis, assuming the same overlap between
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FIGURE 3.3. Window functions used by the three different short-time transforms used to
compute reassigned times [Eq. (3.5)] and frequencies [Eq. (3.8)]. Function (a) is the original
continuous-time window functioh(t), (b) is the time-weighted window functiog(t) =

th(t), and (c) is the frequency-weighted window function computed in the time domain by
c(t) = dh(t)/dt.

successive analysis windows. Fig. 3.3 shows the window functions for the three
FFTs used to compute a time- and frequency-corrected spectrum for a particular
analysis window.

The amplitude, noise, and frequency envelopes for each partial are found by
following ridges in the time-frequency surface resulting from successive time-
and frequency-reassigned spectra, as shown in Fig. 3.4. Note that the envelope
breakpoints are not evenly spaced in time or frequency.

4 Navigating Source Timbres: Timbre Control Space

A real-time additive synthesizer has been implemented that uses a large number
of recordings to provide the source material for synthesis. A timbre control space
gives the performer a simple and intuitive way to navigate among the available
sounds (Haken, 1992).

Pitch, loudness, and timbre are normally defined to be what the listener hears.
However, in our case they refer to physical quantities that correspond to what the
listener hears in a more-or-less one-to-one fashion.

We define timbre to be the collection of characteristics of a sound, other than its
pitch, loudness, and duration, which distinguish it from other sounds. Two sounds
with the same fundamental frequency and the same amplitude often have different
timbres, even if they are produced by the same instrument. For example, bowing
a cello near the fingerboard results in a mellower timbre than bowing near the
bridge.
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FIGURE 3.4. A portion of a Loris analysis of a low cello tone. Lines indicate ridges present

in the time-frequency surface during analysis. Dots indicate time-frequency data points that
make up the ridges; all other data points from the time-frequency surface are not shown.
Note that the dots are not at regular intervals due to the method of reassignment. Each
ridge corresponds to a partial, and is synthesized with a bandwidth-enhanced oscillator as
indicated in Eq. (3.1). Darker lines correspond to higher ridges (Iakgeand lighter lines
indicates wider ridges (largey).

For example, a source timbre is a time-varying spectrum derived from a partic-
ular instrument tone. A timbral quality refers to a collection of timbres produced
by a particular instrument at different pitches and loudnesses. A timbral blend cor-
responds to a blend between the timbres of two different instruments or possibly
the same instrument played two different ways.

On our synthesizer, we generally vary timbre with pitch and loudness, as it does
on acoustic instruments. The spectrum of a loud note on a cello, for instance, is not
just a scaled version of the spectrum of a quiet cello note. Similarly, the spectrum
of a high-pitched cello note is not just a frequency-shifted version of the spectrum
of a low-pitched cello note.
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FIGURE 3.5. A timbre control space cube with source timbres derived from four cello and
four trombone tones corresponding to the corners of the cube. [From Haken et al. (1998),
Fig. 16.]

We define a three-dimensional timbre control space to be a space in which
one dimension corresponds to pitch, another to loudness, and the third dimension
to timbral quality. During performance, when one moves a point along a pitch
axis (where loudness and timbral quality are fixed), the resulting timbres approx-
imate those associated with playing different pitches on the same instrument. The
spectrum is not simply shifted in frequency. Similarly, moving a point along the
loudness axis (where pitch and timbral quality are fixed and blend is set to one end
point) approximates the timbral changes associated with playing at different loud-
nesses on the same instrument. The spectrum is not simply scaled in amplitude.
Moving along the third axis (keeping loudness and pitch fixed) produces timbral
changes corresponding to a blend between two source timbres.

It should be noted here that our timbre control space is quite different from a
timbre spacelerived from multidimensional (MDS) perception experiments (Grey,
1975; Wessel, 1979; Risset and Wessel, 1982). Our intention is merely to provide
an intuitive and practical method for controlling the parameters used to generate
each tone rather than to categorize the properties of the resultant timbres. Itis quite
possible, in fact, for nearby tones in the timbre control space to be located far apart
in a perceptual timbre space, although we hope this wouldn’t be so.

The performer controls the y, andz positions associated with any note played
in the timbre control space. We can divide the three-dimensional timbre control
space into cubes, with each neighboring cube sharing one face. Figure 3.5 shows
one cube of a timbre control space illustrating the use of time-variant spectral anal-
yses of four cello tones and four trombone tones, each performed at two different
pitches and two different loudnesses. Each corner of the cube is characterized by
a set of amplitude, frequency, and noise envelopes derived from an analyzed tone.
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FIGURE 3.6. A timbre control space made up of 24 cubes, based on 78 source timbres (39
trombone tones and 39 cello tones). The cubes have unequal widths because the pitches of
the source recordings were not equally spaced. The pitches correspond to the open strings
of the cello, a half-step up and down from the open strings, and some higher pitches. [From
Haken et al. (1998), Fig. 17.]

These eight sets of envelopes completely define this part of the timbre control
space.

The timbre of a note corresponding to a point located within this cube will
possess a blend of characteristics of the source timbres at all eight corners of the
cube. If the note is exactly at the center of the cube, it should share equally the
characteristics of all eight source timbres. The note’s location may change over
time, corresponding to crescendo, glissando, vibrato, or other performer actions.
As the note’s location moves toward one face of the cube, the four source timbres
of that face should contribute proportionally more to the note’s timbre, while the
four source timbres of the opposite face contribute proportionally less. If the note’s
location is exactly at the center of one face of the cube, it should share equally
the characteristics of the four source timbres at the corners of that square. In
this manner, the timbre control space provides a method for arranging the source
timbres into a framework for describing new timbres.

Figure 3.6 shows an example of a complete three-dimensional timbre control
space made of 24 cubes. The complete timbre control space is based on the analyses
of 78 tones (39 trombone tones and 39 cello tones). When a note is played, the
note’'sx, y, andz location falls within one of the cubes in the timbre control space.
For example, if the note’s location corresponds to the pit&tf and itsz location
corresponds to the dynamigit falls into cube 16 in Fig. 3.6. The synthesized
sound is created by combining timbral characteristics of the eight preanalyzed
source recordings at the eight corners of cube 16.

If the X, y, or z location gradually changes during a note, this corresponds to a
gradual change of location, usually within a cube of the timbre control space. If the
X, ¥, andzlocation changes greatly during a note, the timbre control space location
of the sound is likely to travel through the face of one cube into a neighboring cube.
In all cases, the timbral changes associated with changiggandz are smooth
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and continuous. This aspect—continuous timbre change—is the motivation for
using additive synthesis in place of traditional sampling synthesis.

4.1 Creating a New Timbre Control Space

The simplest timbre control space consists of a single cube based on the analyses
of eight recorded sounds. More timbral variation is possible when the timbre con-
trol space consists of several cubes. However, in practice, it is difficult to create
a cohesive timbre control space because it is difficult to obtain recordings that
are perfectly matched in terms of pitch, loudness, duration, and manner of perfor-
mance, and source timbres of such recordings are needed to define the corners of
each cube. For example, it could be desired to have available a set of trombone tone
recordings that differ only in pitch. They would be matched in terms of loudness
and manner of performance, and the timbre would not change excessively from one
note to the next. To some extent, side-by-side listening comparisons together with
editing operations (amplitude multiplication, pitch shifting, time compression, ex-
pansion, or cutting) can be used to reduce the differences among the recordings
(Grey, 1975). Because the perceived similarity between timbres depends on many
psychoacoustic effects, this process cannot be completely automatic. Therefore,
building a new timbre control space is a time-consuming process. Moreover, each
timbre control space defines a very different overall sound and feel for the per-
former, so, once he or she learns to perform with one timbre control space, learning
to play in a new one is not necessarily a trivial undertaking.

4.2 Timbre Control Space with More Control Dimensions

While pitch, loudness, and timbral quality are perhaps the most obvious choices
for control dimensions, the choice of the control dimensions in a timbre control
space is actually arbitrary. Also, any number of control dimensions can be defined.
The meaning of any control dimension depends only on the source recordings that
are used and where the source recordings are assigned in the timbre control space.

4.3 Producing Intermediate Timbres: Timbre Morphing

We use a note’s position in the timbre control space to determine the timbral blend,
or morph between previously analyzed source recordings. Timbre morphing is
the process of combining several sounds to create a new sound with intermediate
timbre. The process differs from simply mixing sounds, because only a single
sound, having some of the characteristics of each original sound, is heard as the
morphed sound. Timbre morphing is a topic that has been discussed by many
researchers. Itis sometimes called “timbre interpolation,” and the resulting sounds
are sometimes referred to as “hybrid sounds.” We now list a few previous studies
before we present our implementation.

In perhaps the first attempt at timbre morphing, Grey (1975) developed a method
for transition between two original sounds to create new intermediate sounds.
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Schindler (1984) described sounds as a hierarchical tree of timbre frames, and
discussed a morphing algorithm that operates on this representation. Time-varying
filters have been used to combine timbres (Peterson, 1975; Depalle and Poirot,
1991). With multiple wavetable synthesis, timbre morphing can be implemented
as a straight mix because all harmonics are phase-locked (Horner et al., 1993).

4.4 Weighting Functions for Real-Time Morphing

As described in the previous section, amplitude, frequency, and noise envelopes
for each partial of the source recordings are defined at the eight corners of a cube,
and weighted averages of these are used to synthesize a sound. This process-
ing is straightforward to implement in real time using envelope parameter stream
weighted averages, which are continually computed according to the sound’s lo-
cation within the cube. If we normalize the y, andz position within the cube

such that O< X, Y, Z < 1, then interpolation weights for each corner of the cube

are defined as

Wo = XY Z (3.9a)
Wi = XY(1 - 2), (3.9b)
W = X(1-Y) Z, (3.9¢)
Wi = X(1—Y)(1-2), (3.9d)
W, =(1-X)YZ (3.9¢)
Ws = (1— X)Y(1 - 2), (3.9f)
We = (1— X)(1-Y)Z, (3.99)
Wy = 1 — (Wo + Wi + Wa + Wa + Wy + Ws + W). (3.9h)

Note thatW; is computed by subtracting the sum of the other weights from 1,
in order to avoid roundoff error problems.

These weights implement a rectilinear distance measure to the corners of the
cube, not a Cartesian measure. We use the rectilinear measure to avoid disconti-
nuities when the sound’s coordinates in the timbre space travel through the face of
a cube into an adjacent cube.

4.5 Time Dilation using Time Envelopes

Acoustic instrument sounds vary in their rates of attack. A trumpet sound may have

a fast attack while a French horn sound may have a slower attack. If the morphing
process simply averaged the envelopes of these two sounds, the new sound would
have two averaged attack peaks, rather than a single attack of intermediate speed.
To handle this problem, we define a new envelope, called the time envelope, which
gives the time rate of change for a partial of a particular source sound. Then, we
average these envelopes to produce a single averaged attack rate. We use time-
normalized amplitude, frequency, and noise envelopes in this processing.
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At synthesis time we computg(t) to index into time-normalized partial en-
velopes:

7
M) =7t — 1)+ ) Wy(t)Eq(z(t — 1)) (3.10)
g=0

where

t is the sample number,

7(t) is the running index into the time-normalized partial envelopes at sample
number t,

W;is the weighting for corner (timbrej of the cube based on currenty, and
z location,

Eq is the time envelope (time dilation function) for corrpof the cube.

These are the steps involved to produce and use time-normalized envelopes:

(1) All the source recordings in the timbre control space are analyzed with the
Loris program, producing a set of analyzed source timbres.

(2) Corresponding time points are manually specified for each analyzed source
timbre. Any number of time points may be used; common ones are
start of attack, peak of attack, sustain times, start of release, and end of
release.

(3) At load time, all the source timbres are time-stretched and/or compressed
to produce intermediate time-normalized envelopas;| ¢k.q, and fyq in
Eqg. (3.11)] that have time points separated by a normalized amount of time.
As part of this process, the time envelolgg is computed for each analyzed
source timbre, to indicate how much time stretch/compression is to be applied
in each part of the analyzed source timbre.

(4) Atsynthesis time, a weighted average of time envelopes is used to produce the
proper final timing according to Eq. (3.10).

Source recordings containing vibrato present further problems. Care must be
taken when morphing between differing vibrato rates, to avoid producing an ir-
regular vibrato. Equation (3.10) allows us to produce a regular vibrato because we
manipulate time-normalized envelopes in order to perform an important part of
vibrato morphing (Tellman et al., 1995). However, for our real-time application,
performers often prefer source recordings without vibrato so that they can produce
vibrato, if they wish, solely by movements in the timbre control space.

4.6 Morphed Envelopes

The weights from Eq. (3.9) and the running time index from Eq. (3.10) are used
to compute the envelope functiodg, Ny, andFy of Eq. (3.1) as follows:

7
At) =Y Wo(t)aw q(z (1)), (3.11a)
q=0
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7
Ne(t) = ) Wa(t)Ba(z (), (3.11b)
q=0
7
() = Y Wo(t)ga(r (1)), (3.11c)
q=0

where

t is the sample number,

7(t) is the running time index into the partial envelopes,

k is the partial number in the sound,

ak q is partialk’s time-normalized amplitude envelope in the source timbre at
cornerq,

¢« q is partialk’s time-normalized log-frequency envelope in the source timbre
at corner,

Bk.qis partialk’s time-normalized noise envelope in the source timbre at corner
q,

W is the weighting for corngy of the cube based on the currenty, zlocation,

Agis the partial’'s real-time morphed amplitude envelope,

Fy is the partial's real-time morphed log-frequency envelope,

Nk is the partial’s real-time morphed noise envelope.

4.7 Low-Amplitude Partials

The analysis process cannot accurately determine the frequency of very-low-
amplitude partials. Such partials are generally so quiet that they are inaudible
in the original sound. A problem occurs, however, when a low-amplitude partial
containing inaccurate frequency information is morphed with a high-amplitude
partial with accurate frequency information. In this case, the morphed partial will
be a medium amplitude partial with audibly inaccurate frequency information.

This problem is avoided by not relying exclusively on the analysis for frequency
information. For very quiet partials of quasiharmonic sounds, the frequency of the
nearest harmonic (suitably scaled) is used for interpolation. For sufficiently loud
partials, the frequency from the analysis is used in interpolation. However, for
intermediate-amplitude partials, the frequency used in interpolation is derived from
both the analysis frequency and the nearest integer multiple of the time-varying
fundamental frequency (Tellman et,a995):

Su(7) = { (1 — a(r)/€)10gy(fn(7)) + (ak(r)/€) logy(fi(z)). if aw(z) < ¢

100, (1)), otherwis(e3 12)

where
7 is the time index into the partial envelopes,

ak is the partial number in the sound,
¢k is the partial's frequency from the analysis,
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fy is the nearest integer multiple of the fundamental frequency,

€ is the amplitude threshold below which analyzed frequencies are unreliable,
ay is the partial’'s amplitude,

¢k is the partial's log frequency in Eq. (3.11), adjusted for low amplitudes.

As a partial gradually increases in amplitude, more of the frequency used in
morphing is taken from the analysis of that component. Consequently, there is no
abrupt change between a calculated frequency and an analyzed frequency when a
partial reaches the threshold beyond which only the analyzed frequency is used.

5 New Possibilities for the Performer: The Continuum
Fingerboard

Real-time additive synthesis can be controlled by a standard MIDI keyboard. If
a performer plays our additive sine-wave synthesizer using a MIDI keyboard, the
performer’s use of aftertouch and pitch bend corresponds to movements in the
timbre control space. Aftertouch and pitch bend will result not only in volume
and pitch changes, but also in corresponding timbre changes. Pedals or other
continuous controllers can correspond to movements in the third dimension of the
timbre control space.

As an alternative to a MIDI keyboard, we have developed a new performance
device that allows the performer more continuous control than that offered by a
MIDI keyboard (Haken et al 1992, Haken, 1998). The Continuum Fingerboard,
shown in Fig. 3.7, resembles a traditional keyboard in that it is approximately the
same size and is played with 10 fingers. Like keyboards supporting MIDI's poly-
phonic aftertouch, it continually measures each finger’s pressure. It also resembles
a fretless string instrument in that it has no discrete pitches; any pitch may be
played, and smooth glissandi are easily produced.

FIGURE 3.7. The Continuum Fingerboard is approximately the same size as a traditional
music keyboard, but it has no discrete keys. It has a pitch range of nearly eight octaves. The
white markings indicate the white key pattern of a traditional keyboard.
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The Continuum Fingerboard tracksxary, zposition for each finger. The output
of the fingerboard can be used to control any synthesis technique. Because of its
continuous three-dimensional nature, the output of the fingerboard works well with
a three-dimensional timbre control space.

The x (side-to-side) position of each finger provides continuous pitch control
for a note. One inch in the direction corresponds to a pitch range of 160 cents.
The performer must place fingers accurately to play in tune and can slide or rock
fingers for glissando and vibrato.

The z (pressure) position of each finger provides dynamic control. Tremolo is
produced by changing the amount of finger pressure. An experienced performer
may simultaneously play a crescendo and decrescendo on different notes.

They (front-to-back) position of each finger provides timbral control for each
note in a chord. By sliding fingers in thedirection while notes are sounding, the
performer can create timbral glides.

Depending on the source timbres used in the timbre control spageptisition
can produce a variety of effects. One possibility is to select source timbres so that
they position on the Continuum Fingerboard corresponds to the bowing position
on a string instrument, where bowing near the fingerboard produces a mellower
sound and bowing near the bridge produces a brighter sound. Another possibility is
to select source timbres so that hposition morphs between timbres of different
acoustic instruments. In either case, the performer can bring out certain notes in
a chord not only by playing them more loudly, as on a piano, but also by playing
them with a different timbral quality.

5.1 Previous Work

Interest in keyboard instruments with dynamic and timbre control has a long his-
tory. Fifteenth century clavichords, although very quiet, provided dynamic control
over individual notes as well as a sort of “aftertouch.” By varying the amount of
pressure on a key after initially striking it, the performer could produce a vibrato,
because, unlike the pianoforte, the clavicord’s plectrum remains in contact with the
string after plucking. Eighteenth and nineteenth century pianos were loud enough
to fill a recital hall, and they too provided dynamic control over individual notes
in a chord. To this day, the piano remains the most popular acoustic keyboard in-
strument. However, the limitations of the piano action make crescendo and vibrato
during sustained notes impossible.

In the twentieth century, analog synthesizers were built with ribbon controllers.
These provided one-dimensional continuous control but could not track more than
one finger. More recently, electronic keyboards offered key velocity polyphonic af-
tertouch. These capabilities have been extended by certain experimental keyboards,
such as Moog’s Clavier (Moog, 1982), which responds to additional parameters in-
cluding the exact horizontal and vertical location of the finger on each key. Several
other innovative keyboard designs have been developed over the last two decades
(Snell, 1983; Johnstone, 1985; Keislar, 1987; Fortuin, 1995). Our work on the
Continuum Fingerboard began in the early 1980s, with initial attempts incorpo-
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FIGURE 3.8. The Continuum Fingerboard’s Hall-effect sensors, which detect the positions
of magnets mounted on each rod. [Adapted from Haken et al. (1998), Fig. 7.]
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rating photoelastics, conductive rubbers, and capacitive techniques (Haken et al
1992). These initial attempts were of limited success compared to our more recent
approach described below.

5.2 Mechanical Design of the Playing Surface

The Continuum Fingerboard, although roughly the size of a standard piano key-

board, is a continuous playing surface rather than a keyboard. The playing surface is
constructed using 256 rods, each 5.75in. long, mounted on piano-wire springs. The
rods are covered by a Mylar and Mylon sheath so that the performer has the impres-
sion of a continuous surface rather than discrete keys. A magnet is mounted at both
ends of each rod, and the rods are placed between two rows of Hall-effect sensors.

Figure 3.8 shows a portion of the mechanical design of the Continuum Finger-
board’s playing surface. The Hall-effect sensors are used to measure the positions
of the magnets. When the performer applies finger pressure, the rods under the
finger are depressed, and the magnets on those rods move closer to the sensors.

Scanning software running on a controller computer detects finger position by
looking for any bar that has normalized pressure values greater than both of its
neighboring bars. We call this the center bar, and the neighboring bars the left
bar and right bar. The, y, z coordinates of the finger are calculated from the
six sensor values on these three bars as follows: The software tracks the front-to-
back position ¥ position) by summing the normalized sensor values of the back
sensors on the left, center, and right bars and then dividing that sum by the sum of
the normalized sensor values for all six sensors on these bars. Ripdsifion)
and loudnessz(position) are estimated using parabolic interpolation. A parabola
is assigned to the normalized sensor values of the left, center, and right bars, and
the location of the minimum point of this parabola providesxttendz positions
for the note.

Figure 3.9 illustrates the use of these parabolas in detextirmgiation during
vibrato. In this example, the center bar is always the same bar because it is always
more depressed than its right and left neighbors. Stillxtpesition is accurately
tracked as the performer rocks the finger back and forth, because the movement
of the neighboring bars affects the minimum point of the parabola.
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FIGURE 3.9. Continuous pitch tracking using parabolic interpolation: A finger rocking left,
centered, and rocking right. [From Haken et al. (1998), Fig. 12.]

6 Final Summary

We have discussed the concepts of timbre control space, envelope parameter
streams, noise envelopes, time envelopes, and timbre morphing. We have also
described the Continuum Fingerboard, which may be used to control a real-time
synthesizer utilizing these concepts possibly in combination with synthesis meth-
ods offered by other synthesizers.

We have shown that additive synthesis is a viable alternative to conventional
sampling synthesis. Like the sampling synthesizer, our additive system uses a
collection of source recordings in synthesis. However, in our case, real-time timbre
manipulations of these source timbres are implemented using streams of envelope
parameters. The envelope parameters include traditional amplitude and frequency
information as well as noise information. This noise information simplifies timbral
manipulation of noisy sounds. The performer navigates the source timbres using
a timbre control space. We retain much of the generality of sampling synthesis
because the timbre control space is completely defined by the source recordings.

The Continuum Fingerboard is a new type of performance device that provides
more control over real-time pitch, loudness, and timbre than a traditional MIDI
keyboard. However, performing on the Continuum Fingerboard is challenging
because performers mustrely on audio feedback and manual dexterity to place their
fingers for accurate intonation and expression. Like the Theremin, the Continuum
Fingerboard requires extensive practice.

A major advantage of our additive approach over traditional sampling is that it
allows improved continuous morphs between source timbres. We believe that this
approach is not only a practical way to implement real-time additive synthesis, but
also one that holds promise for further development.
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A Compact and Malleable
SinestTransients-Noise Model
for Sound

ScoTT N. LEVINE AND JuLIUS O. SviTH 1l

1 Introduction

This chapter describes an audio representation which supports time and frequency
scale modifications in a compressed domain. The input audio is segregated into
three component representations: sinusoids, transients, and noise. Each component
can be individually quantized and/or time-scaled and/or pitch-shifted.

Parametric models of sound are useful in a variety of applications. For the com-
poser using recorded sounds as raw materials in a composition, control parame-
ters are necessary for musically transforming the sound in an intelligible manner.
For the telecommunications engineer, parametric sound models can provide a
high degree of data compression, with little or no loss of quality, by transmitting
sound parameters in place of the sound itself. For the audio engineer, there are
many applications for time-scale modification, i.e., speeding up or slowing down
a sound playback without changing musical pitch; examples include synchroniz-
ing a sound track to a film or providing a high-quality “fast forward” feature in a
sound “browser.”

One of the oldest and most successful parametric models for sound is the sinu-
soidal model. Conceptually, sinusoidal models are rooted in basic Fourier theory,
which states that any periodic sous) can be expressed mathematically as a
sum of sinusoids:

K
s(t) = ) Au(t) cosat + (1)) (4.2)
k=1

wheret denotes timewx = 27k/P thekth harmonic radian frequency, whelre

is the sinusoidal period in second&(t), andgk(t) are the amplitude and phase

of the kth harmonic sinusoidal component, aKkdis the number of the highest
audible harmonic. Sinusoidal models are most appropriate for “tonal” sounds such
as spoken or sung vowels, or the sounds of musical instruments in the string, wind,
brass, and “tonal percussion” families. Ideally, only one sinusoid is needed to
represent each harmonic or overtone in the sound. To represent the “attack” and
“decay” of natural tones, sinusoidal components are multiplied by an amplitude
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envelope that varies over time. That is, the amplitdgé) is a slowly varying
function of time. Similarly, to allow pitch variations such as vibrato, the plgase
may be modulated in various ways. (The frequency deviation from the harmonic
frequency may be defined as the time derivative of the phase.)

Sinusoidal models are extremely effective. Perhaps the main reason for this is
that the ear focuses most acutely on peaks (amplitude maxima) in the spectrum of a
sound. For example, when there is a strong spectral peak at a particular frequency, it
tends to mask lower-level sound energy at nearby frequencies. As a result, the ear—
brain systemis, to afirstapproximation, a “spectral peak analyzer.” In modern audio
coders (Painter and Spanias, 2000), exploiting masking has resulted in an order-
of-magnitude data compression, averaged across various styles of popular music,
with no loss of quality, according to listening tests (Brandenburg and Bosi, 1997).

However, for noise-like sounds, such as wind, scraping sounds, or breath noise
in a flute, sinusoidal models are relatively expensive, requiring many sinusoids
across the audio band. It is therefore helpful to combine a sinusoidal model with
some kind of noise model, such as pseudo-random numbers passed through a filter
(Serra and Smith, 1990).

Another situation where sinusoidal models become inefficient occurs at sudden
transients in a sound, such as the click-like onset of a percussive sound. From
Fourier theory, we know that transients too can be modeled exactly, but only
by using large numbers of sinusoids at exactly the right phases and amplitudes.
However, to keep the model compact, it is better to introduce an explicit transient
model that works together with sinusoids and filtered noise to represent the sound
more parsimoniously. Another advantage of an explicit transient model is that
transients can be preserved during time-compression or expansion. That is, when
a sound is stretched (without altering its pitch), it is usually desirable to keep the
transients sharp (i.e., to preserve their time scales) and simply translate them to
new times.

1.1 History of Sinusoidal Modeling

In the 1930s, Russian “futurists” used “syntones” to synthesize film soundtracks
by means of a sum of sinusoidal components (Smirnov, 1998). (Fourier transforms
for analyzing periodic sounds had to be carried out by hand.) Atrtificial synthesis
of film soundtracks employed professional animators to “draw” sounds directly to
produce photographic masks.

Also in the 1930s, theocoder(“voice coder”) was developed by Homer Dudley
at Bell Telephone Laboratories as a means of reducing the bandwidth required to
transmit speech (Dudley, 1939). The vocoder could be regarded as a sinasoidal
a noise model, in that it switched between a tonal and a noise signal depending
on whether the speech was voiced or unvoiced. Amplitude-vs-time controls for
the vocoder’s band-pass filters used for synthesis were measured by means of
amplitude followers at the outputs of the band-pass filters used for analysis. A
simplified version of Dudley’s system, called the “voder,” was manually operated
by trained technicians and was demonstrated at the 1939 World's Fair. The name
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“vocoder,” however, can be applied to any automatic system that synthesizes speech
(or music) based on the results of analysis, i.e., coder-driven synthesis.

In the 1960s, the phase vocoder was introduced by Flanagan and Golden (1966)
based oninterpreting the classical vocoder filter bank as a sliding short-time Fourier
transform. A digital computer made it possible for the phase vocoder to easily
support phase modulation of the synthesis oscillators as well as implementing their
amplitude envelopes. Thus, in addition to computing the instantaneous amplitude
at the output of each (complex) band-pass filter, the instantaneous phase was
also computed. Moreover, time-varying phase could be converted to time-varying
frequency by taking atime derivative. Complex band-pass filters were implemented
by first multiplying the incoming signal by!, wherewy is the kth channel
radian center frequency, and then by low-pass filtering it using convolution with
the impulse response of a sixth-order Bessel filter.

The phase vocoder also relaxed the requirement of pitch-following (needed in
the vocoder), because the phase modulation computed by the analysis stage auto-
matically fine-tuned each sinusoidal component within its filter bank channel. The
main remaining requirement was that only one sinusoidal component be present
in any given channel of the filter bank; otherwise, the instantaneous amplitude and
frequency computations would be based on “beating” waveforms instead of single
sinusoids that produce smooth amplitude and frequency envelopes necessary for
good data compression.

In the early 1960s, sine wave summation synthesis (otherwise known as “addi-
tive synthesis”) was one of the first general methods of sound synthesis used in
computer music. In fact, it is extensively described in the first article of the first is-
sue of the Computer Music Journal (Moorer, 1978). Some of the first high-quality
synthetic musical instrument tones using additive synthesis were developed in the
1960s by Jean-Claude Risset (1985).

Inthe 1970s, the phase vocoder was reimplemented using the FFT for increased
computational efficiency (Portnoff, 1976). The FFT window (analysis low-pass fil-
ter) was also improved to yield exact reconstruction of the original signal when syn-
thesizing without modifications. Shortly thereafter, the FFT-based phase vocoder
was adopted as the analysis method of choice for additive synthesis in computer
music (Moorer, 1978). Since then, numerous variations and improvements of the
phase vocoder have appeared (Griffin and Lim, 1988; Laroche and Dolson, 1999).
For an excellent introductory tutorial, see Dolson (1986). A summary of vocoder
research from the 1930s through the mid-1960s is given by Schroeder (1966).

With the phase vocoder, the instantaneous amplitude and frequency are normally
computed only for each “channelfilter.” A consequence of using a fixed-frequency
filter bank is that the frequency of each sinusoid is not normally allowed to vary
outside the bandwidth of its channel band-pass filter. Ordinarily, the band-pass
center frequencies are harmonically spaced, i.e., they are integer multiples of
a base frequency. So, for example, when analyzing a piano tone, the intrinsic
progressive sharpening of its overtones leads to some sinusoids falling “in the
cracks” between adjacent filter channels. This is not an insurmountable condition
because the adjacent bins can be combined in a straightforward manner to provide
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accurate amplitude and frequency envelopes (e.g., Horner et al., 1997), but it is
inconvenient and outside the original scope of the phase vocoder. Moreover, it is
unwieldy to work with the instantaneous amplitude and frequency signals from alll
of the filter-bank channels.

Many modern sinusoidal models can be thought of as “pruned phase vocoders”
in that they follow only the peaks of the short-time spectrum rather than the in-
stantaneous amplitude and frequency from every channel of a uniform filter bank.
Peak-tracking with a sliding short-time Fourier transform has a very long history
going back almost half a century (Peterson and Cooper, 1957; General Electric
Co., 1977). Peak-tracking sinusoidal modeling of speech signals was introduced
by McAulay and Quatieri (1984, 1985, 1986), application of this method to mu-
sical sounds was initiated by Smith and Serra (1987), and inverse-FFT methods
were introduced by Rodet and Depalle (1992).

Historically, both vocoders and sinusoidal models have focused on modeling
monophonic sound sources such as a single saxophone tone. By going to mul-
tiresolution sinusoidal modeling (described in Section 3), it is possible to encode
general polyphonic sound sources with a single unified system (Levine, 1998).

In the late 1980s, Serra and Smith combined sinusoidal modeling with noise
modeling to enable more efficient synthesis of the noise-like components of sounds
(Serra, 1989; Serra and Smith, 1990, 1991). In this extension, the output of the
sinusoidal model is subtracted from the original signal, leaving a residual signal.
Assuming that the residual is a random signal, it is modeled as filtered white
noise where the magnitude envelope of its short-time spectrum becomes the filter
characteristic through which white noise is passed during resynthesis.

A more recent addition to the sines-plus-noise model is transient modeling
(Ali, 1996; Verma et al., 1997; Levine, 1998; Levine et al., 1998; Levine and
Smith, 1998, 1999). These methods address the principal remaining deficiency
in sines-plus-noise modeling which is preserving crisp “attacks,” “clicks,” and
the like, without having to use hundreds or thousands of sinusoids to accurately
resynthesize the transient. (In general, the noise component cannot be used for
transient modeling because no matter how much resolution is provided in the
amplitude envelope of the noise, there is usually no guarantee that the noise, being
random, will have the desired amplitude at the critical time it is needed.)

A 74-page summary of sinusoidal modeling, including sines-plus-noise mod-
eling is given by Quatieri and McAulay (1998). Additional references related
to sinusoidal modeling include George and Smith (1987, 1992); McAulay and
Quatieri (1989, 1990, 1991); Roads et al. (1997); Rodet and DePalle (1992); and
Wang (1995).

1.2 Audio Signal Models for Data Compression and
Transformation

Audio representations for data compression are not always desirable when the
main goal is manipulation and transformation of the audio signal. However, when
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such a representation is based on a good signal model, it can be quite valuable for
transformational purposes as well.

It often happens that the model that is natural from a conceptual (and manip-
ulative) point of view is also very effective from a compression point of view.
This is because, in the “right” signal model for a natural sound, the model’s pa-
rameters tend to vary slowly. As an example, physical models of the human voice
and musical instruments have led to expressive synthesis algorithms that can also
represent high-quality sound at much lower bit rates (such as MIDI event rates)
than normally obtained by encoding the sound directly (Smith, 1998, 2004).

In the present context, the signal model follows a natural perceptual decomposi-
tion of sound into three qualitatively different components: “tones,” “noises,” and
“clicks.” A successful signal model should naturally represent the essence of any
sound, and a compact representation of sonic essence is simultaneously valuable
for purposes of both transformation and compression.

1.3 Chapter Overview

The goal of this chapter is to present a new representation for audio signals that
allows for low-bit-rate coding while still allowing for high-quality compressed-
domain time-scaling and pitch-shifting modifications. In this system, the target bit-
rates are from 16 to 48 kbps, while allowing for high audio bandwidth (44.1 kHz
sampling rate) and high-quality time- and pitch-scale modifications. This com-
pares to the 44.1 kHx 16 bits/channek 705.6 kbps/channel rate needed for
uncompressed 16-bit audio.

To achieve these data compression rates and wide-band modifications, we first
segment the audio (in time and frequency) into three separate signals: (1) a sig-
nal which models all sinusoidal content with a sum of time-varying sinusoids
(Levine et al., 1998), (2) a signal which models all attack transients present using
transform coding (Bosi et al1997), and (3) a Bark-band noise signal (Zwicker,
1961; Goodwin, 1996) which models all of the input signal not modeled by the
sines or transients. Each of these three signals can be individually quantized using
psychoacoustic principles pertaining to each representation.

High-quality time-scale and pitch-scale modifications become possible because
the signal has been split into sinusoids, transients, and noise. The sinusoids and
noise can be stretched or compressed with good results, and the transients can be
time-translated while still maintaining their original temporal envelopes. Using
phase-matching algorithms, the system can switch between sines and transients
seamlessly. In time-scaled (slowed) polyphonic music with percussion or drums,
this results in slowed harmonic instruments and voice, with the drums still having
sharp attacks.

In the following sections, the system is first described from a high-level point of
view, showing how an input audio signal is segmented in time and frequency. Then,
each of the three signal models, sines, transients, and noise, is described along with
their separate methods of parameter quantization. Finally, the last section is devoted
to a particular application: compressed-domain time-scale modifications.
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2 System Overview

The analysis/resynthesis system is designed to perform high-quality modifications,
such as time-scale modification and pitch-shifting, on full-bandwidth audio while
being able to maintain low bit-rates. Before delving into this hybrid system, other
successful current data-compression systems are described, including discussions
of their advantages and disadvantages.

2.1 Related Current Systems

Current state-of-the-art transform compression algorithms can achieve very high-
quality results (perceptually lossless at 64 kbits/s/channel) but cannot achieve
time- or pitch-scale modifications without independent post-processing modifica-
tion algorithms (Bosi et al., 1997).

The most recent phase vocoders can achieve high-quality time- and pitch-
scale modifications, but they currently impose a data expansion rather than a
data compression (Laroche and Dolson, 1999). The parameters in this class of
modeling method arex2-over-sampled FFT coefficients (i.e., the hop size is
equal to half the window size). Once expressed in magnitude and phase form,
they can be time-scaled and pitch-scaled. Because of the oversampling, there are
now twice as many FFT coefficients as original time coefficients [or correspond-
ing modified discrete cosine transform (MDCT) coefficients (Malvar, 1992)].

In addition, it has not been shown how well these time- and pitch-scale mod-
ifications will perform if the FFT magnitude and phase coefficients are quan-
tized to very low bit-rates. Phase vocoders do not separately model transients or
noise, so they generally suffer from the disadvantages of any purely sinusoidal
model.

Sinusoids-plus-noise modeling (Serra and Smith, 1990) has been developed
for high-quality time- and pitch-scale modifications for full-band audio, but it is
currently limited to single-sound sources and necessitates hand-tweaking of the
analysis parameters by the user. This user interaction would be unacceptable for
a general purpose audio system. The system also has difficulties modeling sharp,
percussive attacks. These attack signals are not efficiently represented as a sum
of sinusoids, and the attack time is too sharp for the frame-based noise modeling
used in the system. In addition, this method typically gives a data expansion rather
than a data compression, because its goal is to achieve a transformable audio
representation rather than compression.

Sinusoidal modeling has also been used effectively for very-low bit-rate
speech (2 to 16 kbps/channel) (McAulay and Quatieri, 1986) and audio cod-
ing (Edler et al., 1996). In addition, these systems are able to achieve time-
and pitch-scale modifications. But these systems were designed for band-limited
(0—4 kHz) monophonic (i.e., single source) signals. If the bandwidth is increased
or if a polyphonic input signal is used, the results are not of sufficiently high
quality.
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2.2 Time-Frequency Segmentation

None of the individual algorithms mentioned in the previous section can han-
dle both high-quality compression and modifications. While sinusoidal modeling
works well for steady-state signals, it is not the best representation for attack
transients or very high frequencies (above 5 kHz). For this reason, we segment
the time-frequency plane into three general regions: sines, transients, and noise. In
each time-frequency region, we use a different signal representation and a different
guantization algorithm.

The first step in the segmentation process is to analyze the signal with a transient
detector. (Details of the transient detector are discussed in Section 4.1.) This step
time-segments the input signal into attack-transient and non-transient signals. Be-
low 5000 Hz, the non-transients are modeled as multiresolution sinusoids (Levine
et al., 1998) (described in Section 3). Also below 5000 Hz, a Bark-band-noise
algorithm models the residual signal between the original audio and the sinusoidal
data. Above 5000 Hz, the non-transients are completely modeled using only Bark-
band-noise envelopes, similar to the techniques developed by Goodwin (1996).
(These noise-modeling algorithms are described in Section 5.) Between 0 and 16
kHz, the transient signals are modeled using variants of current transform coding
techniques (Bosi et al., 1997) (described in Section 4).

Time-frequency segmentation is illustrated in Fig. 4.1. Overlap regions between
the sinusoids and the transients are phase-matched, so no discontinuities can be
heard. (This is further discussed in Section 3.) Incremental improvements to the
time-frequency segmentation, which allow for lower bit-rates and higher fidelity
synthesis, are possible (described later in the chapter).

2.3 Reasons for the Different Models

Sinusoidal modeling is used only for the non-transient segments of the audio

signal because attack transients cannot be efficiently modeled by a set of lin-
early ramped sinusoids. It is possible to model transients with a set of sinu-

soids, but such a system would typically need hundreds of sinusoidal parameters,
consisting of amplitudes, frequencies, and phases. In this system, we attempt to
model only steady-state signals with sinusoids, thus allowing for a more efficient

representation.

Sinusoidal modeling is only used below 5000 Hz because most music (but
not all), seldom contains isolated, definite-pitched sinusoidal components with
frequencies above 5000 Hz. This is consistent with results found in the speech
world (Laroche et al., 1993). Also, while pitch pipes and glockenspiels certainly
have stable high-frequency sinusoids, this is not the case for most popular music.
In the future, this cutoff frequency could become signal adaptive, perhaps relying
on a measure dbnality (Bosi and Goldberg, 2003). Moreover, itis very inefficient
to model high-frequency noise with sinusoids, and it is also very difficult to track
stable, high-frequency sinusoids reliably, especially when high-amplitude, high-
frequency background noise is present. Still, to increase signal modeling flexibility
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FIGURE 4.1. The lower plot shows 250 ms of a drum attack in a piece of pop music. The
upper plot shows the time-frequency segmentation of this signal. During the attack portion
of the signal, transform coding is used over all frequencies and for about 66 ms. During
the non-transient regions, multiresolution sinusoidal modeling is used below 5 kHz and
Bark-band noise modeling is used from 0-16 kHz.

at the expense of the overall data rate, an additional higher octave of sinusoids may
be utilized.

For transient modeling, bit allocation is minimized by a method of transform
coding (Bosi et al., 1997). Because transform coding is a waveform coder, it
can be used to give a high-precision representation over a short time duration
(about 66 ms). Whenever an audio signal is to be time-scaled, we simply translate
transform-coded, short-time transients to their correct new positions in time. (More
details are provided in Section 6.)

3 Multiresolution Sinusoidal Modeling

Sinusoidal modeling has proved to be a good representation for modeling mono-
phonic music (Smith and Serra, 1987) and speech (McAulay and Quatieri, 1985,
1986), but has only recently been used for general purpose wide-band audio
compression (Hamdy et al., 1996). Certain problems arise when switching from
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FIGURE 4.2. Pre-echo error resulting from sinusoidal modeling. Because in synthesis the
sinusoidal amplitude is linearly ramped from frame to frame, the synthesized onset time is
limited by the length of the analysis window.

monophonic speech/audio (i.e., single voice) to polyphonic audio. For example,
a single fundamental frequency can no longer be assumed, and thus no pitch-
synchronous analysis can be performed in general.

One problem is to choose a proper analysis window length. While long windows
guarantee good frequency resolution at low frequencies, short windows tend to
reduce pre-echo artifacts (see Fig. 4.2). With pitch-synchronous analysis, one
could choose an adaptive window length that is two to three times longer than the
current fundamental period.

However, because multiple pitches and instruments may be present, we use
a multi-resolution sinusoidal modeling algorithm (Levine, et al., 1998). This al-
gorithm splits the signal into three different frequency ranges and uses different
window lengths for each range. Each range uses 50% overlap between window
computations. See Table 4.1 for the parameters used in this system.

Figure 4.3 shows how the frequency range segmentation can be visualized in
the time-frequency plane. Each rectangle indicates the times at which the sinu-
soidal {amp, freq, phaseparameters can be updated. For example, in the low-
est frequency range sinusoidal parameters are only updated every 23 ms (the
hop size in that range). But in the highest range, parameters are updated every
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TABLE 4.1. Window Length and Hop Size for Each Frequency Band

Frequency range Window length Hop size
0-1250 Hz 46 ms 23 ms
1250-2500 Hz 23 ms 11.5ms
2500-5000 Hz 11.5ms 5.75ms

5.75 ms. Usually, there are about 5 to 20 sinusoids present in each range at any one
time.

3.1 Analysis Filter Bank

In order to obtain the multiresolution sinusoidal parametess2aver-sampled,
octave-spaced, filter-bank front end is used. Each octave output of the filter bank is
analyzed separately by the sinusoidal-modeling algorithm with a different window
length. The filter outputs are over-sampled by a factor of 2 in order to attenuate the
aliasing energy between the octaves below the threshold of audibility. Note that
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FIGURE 4.3. The time-frequency segmentation of multiresolution sinusoidal modeling.
Each rectangle shows the update rate of sinusoidal parameters at different frequencies.
In the top frequency range, parameters are updated every 5.75 ms, while in the lowest range
the update rate is only 23 ms. Usually, there are 5 to 20 sets of sinusoidal parameters present
in any one time-frequency rectangle.
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for a critically sampled filter bank, such as a discrete-time wavelet transform, each
octave output would contain aliased energy from the neighboring octaves. This
aliased energy would introduce errors in the sinusoidal modeling. More details on
thefilter bank design are given by Fliege and Zolzer (1993) and Levine et al. (1998).

3.2 Sinusoidal Parameters

For eachlth frame of analyzed audio, in a given frequency range, the system
producesR[l] sets of sinusoidal parameter triaggl] = {A/[I], »[l], ¢ [I]} (@am-
plitude, frequency, phase), whares the sinusoidal component index, based on
maximum likelihood techniques developed by Thomson (1982) and previously
used for sinusoidal modeling by Hamdy et @996). Assuming that component
amplitudes and frequencies are constant during each framne starting phases
are given by, [1], the synthesized sound during the frame is given by

R[]
s(m+18) = > Alllcosa [l + ¢ [1). m=0,....S-1 (4.2
r=1

whereSis a frequency-range-dependent hop size (number of samples per hop), as
given by Table 4.1. However, in order to synthesize a signal without discontinuities
atframe boundaries, the sinusoidal parameters must be interpolated for each sample
m from the observed frame-boundary parameter values occurring=a and

m = S. While amplitudes are simply linearly interpolated from frame-to-frame,
phase and frequency interpolations are more complex and are discussed in Section
3.3.

In Sections 3.2.1-3.2.4, we show first how sinusoids are tracked from frame-to-
frame and then give a method for computing a psychoacoustic masking threshold
for each sinusoid. Based on this information, decisions are made about which
sinusoids to eliminate from the system and how to quantize the remaining sinusoids.

3.2.1 Sinusoidal Tracking

Between frame$ and ( — 1), the sets of sinusoidal parameters are processed
through a simple peak continuation algorithm|A[l] — A;[l — 1]| < AMQBnresh
and|wi[l] — wj[l — 1]| < Fregy,es, then the parameter triagg[l — 1] and p;[l]

are combined into a single sinusoidal trajectory. If a parameter giflcannot

be joined with another triad in adjacent frafg [l — 1], j = 1,..., R[l — 1]} or
frame{p[l + 1],k =1, ..., R[l + 1]}, then this parameter triad becomes a tra-
jectory of length one. The sinusoidal trajectory lengths coupled with their psychoa-
coustic masking properties (discussed in the following subsection) will determine
which sinusoids are kept and which are discarded from the audio representation.

3.2.2 Masking

Thefirststepin reducing the bit-rate for the sinusoidsis to estimate which sine-wave
amplitudes are above the psychoacoustic masking threshold for the synthesized
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signal. In each frequency range, a separate masking threshold is computed based on
the MPEG psychoacoustic model Il [see the ISO/IEC 11172-3 standard (ISE/IEC,
1993)]. In each frequency range, the masking threshold is computed on an approx-
imate third-Bark-band scale or Threshold Calculation Partition Domain as defined
by the standard. From 0 to 5 kHz, there are about 50 non-uniformly spaced fre-
guency divisions within which the thresholds are computed. Therefore,igach
sinusoidal parameter trigg|[1] in framel obtains another parameter, the signal-
to-masking thresholdn;[I]. This threshold is the difference between the energy

of theith sinusoid (correctly scaled to match the psychoacoustic model) and the
masking threshold of its third-Bark band (in dB).

Not all of the sinusoids estimated in the initial analysis are stable (Thomson,
1982). Because we only desire to encode stable sinusoidaamdodel noisy
signals represented by many closely spaced short-lived sinusoids, we use a psy-
choacoustic model that provides a tonality measure (Bosi and Goldberg, 2003)
based on the prediction of FFT magnitudes and phases (ISE/IEC, 1993) to double-
check the results of the initial sinusoidal estimations.

As can be seen in Fig. 4.4, shorter sinusoidal trajectories have (on average)
lower signal-to-masking thresholds. This means that many shorter trajectories will

15 T T

average masking threshold [dB]

0 5 10 15
trajectory length [in frames]

FIGURE 4.4. Average maximum signal-to-masking threshold (in decibels) vs sinusoidal
trajectory length. Note that the longer a trajectory lasts, the higher its signal-to-masking
threshold. These data were derived from the top frequency rdi@gaf popmusic, where

each frame length is approximately 6 ms.
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FIGURE4.5. The original spectral energy vs the masking threshold for three pure sinusoids
at frequencies 500, 1500, and 3200 Hz. Note that the masking threshold is approximately
18 dB below each sinusoidal peak.

be masked by those that are longer and more stable. A likely reason for this trend
is that the shorter trajectories attempt to model noise, while the longer trajectories
model true sinusoids. As illustrated in the IEC/ISO standard (ISE/IEC, 1993), a
stable sinusoid typically has a signal-to-masking thresholdi8 dB in its third-

Bark band, whereas a noisy signal typically has only6adB masking threshold.
Therefore, tonal signals have a lower signal-masking threshold than noisy signals
(Zwicker and Fastl 1990). A simple graphical example of the masking thresholds
for stable sinusoids can be seen in Fig. 4.5. As mentioned above, these signal-
to-masking thresholds and sinusoidal trajectory lengths are important factors for
determining which trajectories to eliminate and the number of bits to assign to the
remaining parameters.

3.2.3 Sinusoidal Trajectory Elimination

Not all sinusoidal trajectories constructed as described in Section 3.2.1 are retained.
For example, a trajectory is eliminated if it is completely masked, meaning its
time-averaged energy is below the masking thresholds of the third-Bark bands that
contain it. By eliminating the completely masked trajectories, the sinusoidal bit-
rate is decreased by approximately 10% in typical audio input signals. Trajectories
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that are near the masking threshold and have sufficiently short duration are also
eliminated, typically reducing the sinusoidal bit-rate by approximately 40%. Most
of these masked (or nearly masked) trajectories have very short trajectory lengths
and are most likely attempts to model noise. For more details on the trajectory
selection process, see Levine (1998) and Levine and Smith (1999). Section 5
discusses how signal energy corresponding to the eliminated sinusoidal trajectories
is modeled by residual noise.

3.2.4 Sinusoidal Trajectory Quantization

Once masked and short-length trajectories have been eliminated, the remaining
ones are quantized. In this section we focus only on amplitude and frequency
guantization. Phase quantization is discussed in Section 3.3. Initially, amplitudes
are quantized to 5 bits, in increments of 1.5 dB, giving a dynamic range of 96 dB.
Frequencies are quantized to an approximate just-noticeable-difference frequency
(JNDF) scale using 9 bits. Because amplitude and frequency trajectories vary
slowly, temporal first-order differences across each trajectory can be efficiently
guantized. These are then Huffman-encoded (Huffman, 1952; Ali, 1996).

Inthe previous section, we discussed how masked or short-length near-masking-
threshold trajectories are eliminated while retaining all other trajectories even those
whose energies are just barely higher than their Bark-band masking thresholds
with longer duration. In principle, these lower-energy trajectories should not be
allocated as many bits as the more perceptually important trajectorieshase
having energies much higher than their masking thresholds. A solution found to
be bit-rate efficient, which did not impair sound quality, was to down-sample
the lower-energy sinusoidal trajectories by a factor of 2. Thus, their sinusoidal
parameters are updated at half of the original rate. At the decoder, the missing
parameters are linearly interpolated. This effectively reduces the bit-rate of these
trajectories by 50% and the total sinusoidal bit-rate by an additional 25%.

After testing several different kinds of music, we were able to quantize the three
frequency ranges within 0-5 kHz (see Table 4.1) of the multiresolution sinusoids at
bit-rates between 12 and 16 kbps. In practice, these numbers depend on how much
of the signal from 0 to 5 kHz is encoded using transient modeling, as discussed
in Section 4. As a tradeoff, more transients per unit time lowers the sinusoidal
bit-rate, while increasing the transient-modeling bit-rate.

3.3 Switched Phase Reconstruction

In sinusoidal modeling, computing and saving correct phase information is usually
only necessary for one of two reasons: The first reason is to assist in creating a
residual error signal obtained by subtracting the synthesized sinusoids from the
original signal (Serra, 1989; Serra and Smith, 1990). If the synthesized phases are
not correct, much of original sinusoids will “leak” into the residual. However, this is
only required at the encoder, not at the decoder. Thus, we need not transmit phases
for this purpose. The second reason phase information is important is for improved
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FIGURE4.6. How sines and transients are combined: The top plot shows the multiresolution
sinusoidal modeling component of the original signal. The sinusoids are faded-out during the
transient region. The second plot shows a transform-coded transient. The third plot shows
the sum of the sines plus the transient. For comparison, the bottom plot is the original
signal. The original signal has a sung vowel through the entire section, with a snare drum
hit occurring at = 60 ms. Note that between 0 and 30 ms, the sines@nghase-matched

with the original signal, but they do become phase-matched between 30 and 60 ms, when
the transient signal is cross-faded in.

modeling of attack transients. During sharp attacks, the phases of sinusoids can
be perceptually important. But in our system sharp attacks are not modeled by
sinusoids; instead they are modeled by a transform coder. Thus, phase information
is not needed for this purpose.

A simple example of switching between sines and transients is depicted in
Fig. 4.6. At timet = 40 ms, the sinusoids are cross-faded out and the transients
are cross-faded in. Near the end of the transients region attt&n@0 ms, the
sinusoids are cross-faded back in. The trick is to phase-match the sinusoids during
the cross-fade in/out times while only transmitting the phase information for the
frames at the boundaries of the transient region.

To accomplish this goal, cubic-polynomial phase interpolation (McAulay and
Quatieri, 1986) is used at the boundaries between the sinusoidal and transient
regions. At all other times, we perform phaseless reconstruction (see Section 3.3.2)
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sinusoidal synthesis. Because transient boundaries only occur at most several times
a second, the contribution of phase information to the total bit-rate is extremely
small.

Next, we describe the cubic-polynomial phase reconstruction and then show the
differences between it and phaseless phase reconstruction. Then, we show how we
can switch seamlessly between the two methods.

3.3.1 Cubic-Polynomial Phase Reconstruction

As discussed in Section 3.2, at edtinframe, R[] triad sets of parametens [I]

= {Al], o [11¢¢[I]} are estimated. These parameters must be interpolated from
frame-to-frame to eliminate any discontinuities at the frame boundaries. While the
amplitude is simply linearly interpolated from frame-to-frame, the phase interpo-
lation is more complicated. At each samphethe instantaneous phagg[l, m]

is computed as a function of surrounding frequendies[l], o[l — 1]} and
surrounding phase§g,[l], ¢([l — 1]}. Because the instantaneous phase is de-
rived from four parameters, a cubic-polynomial interpolation function is used [see
McAulay and Quatieri (1986) or Chapter 1 by Beauchamp]. Finally, the recon-
struction for framé becomes

RII]
s(m+1S) = ZA,[I,m]cos(@r[l,m]),mzo, ...,S-1 (4.3)

r=1

where A [I, m] = A [I1+ m(A [l + 1] — A/[l]) is the linearly interpolated am-
plitude and, [I, m] is the cubic-interpolated phase.

3.3.2 Phaseless Reconstruction

With “phaseless” reconstruction, explicit phase information is not required for
signal resynthesis. The resulting signal is not phase-aligned with the original signal,
but, on the other hand, it is guaranteed not to have any discontinuities at frame
boundaries.

Instead of deriving the instantaneous phase from frame-boundary phases and fre-
guencies, phaseless reconstruction derives instantaneous phase as the cumulative
sum of the instantaneous frequency (Serra, 1989). The instantaneous frequency,
or[l, m], is first obtained by linear interpolation from the frame boundary values:

(@l +10-ol)
! m=

Then, the instantaneous phase forittetrajectory in théth frame is

0,..,5-1 (4.4)

o[l m] = o [IT+

1, ml =6[,m—1]+ o[, m,m=0,...,S—1, (4.5)

where the ternd, [, m — 1] refers to the instantaneous phase at the last sample of
the previous sample frame. The signal is then synthesized using Eqg. (4.3), but using
0:[l, m] from Eq. (4.5) instead of the result of a cubic-polynomial interpolation
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function. For the first frame of phaseless reconstruction, the initial instantaneous
phase is randomly picked from the ranged, ).

3.3.3 Phase Switching

As a simple example of “seamless” switching between the cubic-polynomial or
“phaseless” phase reconstruction algorithms, consider the following case: First,
all frames (01, ...,| — 2) are synthesized using the phaseless reconstruction al-
gorithm outlined in Section 3.3.2. Then, if we assume that a transient begins
at framel, our task is to seamlessly interpolate between the estimated parame-
ters{w; [l — 1]} and{ex[l], ¢¢[I]} during framd — 1 using the cubic interpolation
method of Section 3.3.1. Because frame bountlarnl has no transmitted phases,
we letg [I — 1] = 6;[I — 1, § atthe last sample of the instantaneous phase of that
frame. Then, in framé, cubic interpolation is performed betweén, [1], ¢, [I11}
and{ay [l + 1], ¢ [l + 1]}. Becausen,[I] = w;[l + 1], and¢, [l + 1] can be de-
rived from{w;[l1], ¢¢[1], S} as shown by Quatieri and McAulay (1986), we need
only the phase parameters[l], forr = 1,2, ..., R[l] for each transient onset
detected.

To graphically describe this scenario, see Fig. 4.7. Two consecutive 1024 sample
framesl — 1 andl are shown. A decay transient beginsnat= 1024 samples
relative to the beginning of framle— 1, or the beginning of framle The top plot
shows a signal with explicit phase parameters transmitted for each frame boundary.
The phase within each frame is interpolated using the cubic-polynomial phase
reconstruction method as described in Section 3.3.1. The middle plot shows a signal
with no explicit phase parameters transmitted except at the transient boundary at
time m = 1024 samples. At all non-transient times, the phase of this signal is
interpolated using phaseless reconstruction as described in Section 3.3.2. During
the first 1024 samples of the figure, comprising frame No. 1, the middle signal
slowly becomes phase-locked to the top signal. By the beginning of frame No. 2,
whichis the transient onset frame, the top two signals are phase-locked. The bottom
signal shows the difference signal between the two top plots. A similar algorithm is
performed at the end of the transient region to ensure that the ramped-on sinusoids
are phase-matched to the final ramped-off transient frame.

4 Transform-Coded Transients

Because sinusoidal modeling does not model transients efficiently, transients are
instead represented by a short-time transform code. The length of transform-coded
sections could be varied, but in the current system it is 66 ms. This assumes that
most transients last less than this amount of time and that after an initial attack,
most sighals become somewhat periodic and can be well-modeled using sinusoids.
First, we discuss our transient detector, which decides when to switch between
sinusoidal modeling and transform coding. Then, we describe the basic transform
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FIGURE 4.7. The top signal shows a signal synthesized with phase parameters, where the
phase is interpolated between frame boundaries using a cubic-polynomial interpolation
function (McAulay and Quatieri, 1986). The middle signal is synthesized using no explicit
phase information except at the transient boundary, which is-at024 samples. The initial

phase is random, and is otherwise interpolated using the switched method of Section 3.3.
Over the time range shown there are two frames, each 1024 samples long. Frame 1 shows
the middle signal slowly becoming phase-locked to the signal above. By the beginning of
frame 2, the top two signals are phase-locked. The bottom plot is the difference between
the top two signals.

coder used in the system. In the following subsection, we then discuss methods to
further reduce the number of bits needed to encode the transients.

4.1 Transient Detection

Design of the transient detector is very important to the overall performance of
the system. The transient detector should only flag a transient during attacks that
are not well modeled with sinusoids. If too many parts of the signal are mod-
eled by transients, the overall bit-rate will become excessive because transform
coding inherently requires a higher bit-rate than multiresolution sinusoidal mod-
eling. In addition, this will degrade the quality of an audio signal after time-scale
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modification has been applied (as discussed in Section 6). On the other hand, if
too few transients are tagged, some attacks will sound dull or exhibit pre-echo
problems due to limitations of sinusoidal modeling.

The system’s transient detection algorithm combines two methods. The first
method is a conventional frame-based energy measure. It looks for a suitably fast-
rising edge in the energy envelope of the original signal over short frames. The sec-
ond method involves a residual signal, which is the difference between the original
signal and the multiresolution sinusoidal-modeled signal (with cubic-polynomial-
interpolated phase). This method measures the ratio of short-time energies of the
residual and the original signal. If the residual energy is very small relative to the
original energy, then that portion of the signal is most likely tonal and is modeled
well by sinusoidal modeling. On the other hand, if the ratio is high, it concludes
that the energy in the original signal was not modeled well by the sinusoids and
that an attack transient might be present.

The final transient detector uses both methods, i.e., it takes into account both the
rising edge of the original signal’s short-time energy and the ratio of the residual
to the original short-time energy. The system declares a region to be a transient
region when both of these methods agree that a transient is present.

4.2 A Simplified Transform Coder

The transform coder used in this system is a simplified version of the MPEG-AAC
(Advanced Audio Coding) system (Bosi et al., 1997). It has been simplified to
reduce the system’s overall complexity. In this study we did not wish to improve
the current state of the art in transform coding, but rather to use transform coding
as a tool to encode transient signals. In the future, we plan to further optimize this
simplified coder by reducing the bit-rate of the transients and by introducing a bit
reservoir to be shared among the sines, transients, and noise modeling algorithms.
In this system, a transient signal is defined as the residual that occurs during the
duration of a detected transient after the off-ramping and on-ramping sinusoids
are subtracted from the original signal. A graphical example of a transient can be
seen in the second graph of Fig. 4.6.

In more detail, the transient coding occurs as follows: First, the transient is win-
dowed into a series of short (256-point) segments, using a raised cosine window
function. At 44.1 kHz, the current system encodes each transient with 24 short
overlapping 256-point windows, for a total duration of 66 ms. There is no win-
dow length switching as done with the MPEG-AAC method, because the system
has already identified the transient as such. Then, each segment is processed by
a modified discrete cosine transform (MDCT) algorithm (Princen and Bradley,
1986) to convert from the time domain to a critically sampled frequency domain.

A psychoacoustic model (ISE/IEC, 1993) is performed in parallel on the short seg-
ments in order to create the masking thresholds necessary for perceptually lossless
subband quantization.

Next, the MDCT coefficients are quantized using scale factors and a global gain
asinthe AAC system. However, there are no iterated rate-distortion loops. A single
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binary search quantizes each scale-factor band of MDCT coefficients, resulting
in a mean-squared error just less than the psychoacoustic threshold allows. The
resulting quantization noise should now be completely masked. Finally, we use
a simplified version of the MPEG-AAC noiseless coding to Huffman-encode the
MDCT coefficients, along with the differentially encoded scale factors.

4.3 Time-Frequency Pruning

As mentioned above, transients are encoded in this system for durations of 66 ms.
However, in principle, a transient’s duration should be frequency-dependent. At
lower frequencies, the time duration required to encompass a transient is usually
longer than it is at higher frequencies. Note that while we do not have a rigor-
ous definition for determining when a signal should be considered a transient, in
general we construe it to be the time during which a signal is quite aperiodic.
Therefore, because a single transient does not actually have the same duration
at all frequencies, there is no need to encode all 66 ms of the transient in every
frequency range. In particular, we can construct a tighter time-frequency range of
transform coding around the attack of the transient. While, for example, as shown
in Fig. 4.8, our algorithm transform-encodes the signal’s 0 to 5 kHz region for a
total of 66 ms, it only transform-encodes the 5-16 kHz region for a total of 29 ms.
The remaining time-frequency region above 5 kHz is modeled as Bark-band noise
(discussed in Section 5).

This pruning of the time-frequency plane greatly reduces the number of bits nec-
essary to encode transients. As will be shown, Bark-band noise modeling offers a
much lower bit-rate representation than transform coding. After informal listening
tests on many different kinds of music, no differences were detected between using
transform coding over all frequency ranges for the full durations of transients vs
using the reduced regions in the time-frequency plane.

As shown in Fig. 4.8, we currently only use two frequency regions that have
different transform-encoded transient durations. But this could easily be gener-
alized to more bands, octave-spaced bands, or even bands spaced according to a
Bark-band scale. By only using transform coding for time-frequency regions where
it is required, bit-rates can be lowered further. The remaining time-frequency re-
gions are modeled using multiresolution sinusoidal modeling and Bark-band noise
modeling, both of which have lower bit-rate requirements.

5 Noise Modeling

As we previously mentioned, in order to reduce the total system bit-rate, we do not
model energy above 5 kHz as tonal (i.e., with sinusoids). Above 5 kHz the signal
is either modeled as a transform-coded transient or as Bark-band filtered noise,
depending on the state of the transient detector. With Bark-band noise modeling, the
original signal’'s 5-16 kHz range is filtered into six Bark-spaced bands (Goodwin,
1996). Note that for a noisy signal, the ear is sensitive only to the total amount
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FIGURE 4.8. How to prune the time-frequency plane for transform coding of a transient.
Like Fig. 4.1, the lower plot shows 250 ms of a drum attack in a piece of pop music. The
upper plot shows the time-frequency segmentation of this signal. During the attack portion
of the signal, transform coding is used for about 66 ms between 0 and 5 kHz, but for only
29 ms between 5 and 16 kHz. By reducing the time-frequency region of transform coding,
the bit-rate is reduced as well. During the non-transient regions, multiresolution sinusoidal
modeling is used below 5 kHz, and Bark-band noise modeling is used from 0 to 16 kHz.

of short-time energy in a Bark band and not the specific distribution of energy
within the Bark band. Therefore, every 128 samples (3 ms at 44.1 kHz) an rms
amplitude is measured from each of the six Bark-band-pass filters. To synthesize
the noise, white noise is passed through the same Bark-spaced filters, and their
outputs are amplitude-modulated using the individual rms-amplitude envelopes.
Similarly, below 5 kHz the sinusoidal residual signal is modeled as Bark-band
noise as well, but it uses a much longer frame duration of 1024 samples.

5.1 Bark-Band Quantization

After some informal listening tests, we determined that the coarsest useable quan-
tization without introducing audible artifacts was achieved by employing 1.5-dB
Bark-band amplitude-level steps. An example of a Bark-band amplitude envelope
can be seen in the top graph of Fig. 4.9. Then, when we Huffman-encode this
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FIGURE 4.9. The top plot shows a Bark-band (8000-9200 Hz) rms-level amplitude enve-
lope (in dB) for about 300 ms. The bottom plot shows the corresponding line-segment-
approximated envelope. The circled points are the transmitted envelope points, and the
remaining points are linearly interpolated using the transmitted points.

information, the total data rate is reduced to the neighborhood of 10 kbps. How-
ever, it does not seem perceptually important to sample the envelope every 128
samples (345 frames/s). It seems more important perceptually to preserve the ris-
ing and falling edges of the envelopes. Small deviations in Bark-band amplitude
envelopes can be smoothed without audible consequence. The goal is to transmit
only a small subset of the original envelope points and linearly interpolate the
missing points at the decoder.

5.2 Line-Segment Approximation

Samples of the transmitted Bark-band amplitude-level envelopes are called break-
points, because they are points at which the straight lines “break” to change slope.
A greedy algorithm (Horner and Beauchamp, 1996) is used to iteratively decide
where a new breakpoint in the envelope best minimizes the error between the orig-
inal and approximated envelopes. The number of breakpoints is set to 20% of the
length of the envelope itself. We found that while using fewer breakpoints lowered
the bit-rate, it introduced audible artifacts in the synthesized noise. An example of
an amplitude-level envelope reduced by line-segment approximation can be seen
in the lower graph of Fig. 4.9.
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There are now two sets of data to quantize: the times and amplitudes of the
breakpoints. Time and amplitude differences between consecutive breakpoints
are Huffman-encoded (Huffman, 1952), and, in addition, a Huffman table is
used to encode the first amplitude of each envelope. The initial time of each
envelope is inferred from time information obtained from the preceding transform-
coded transient signal. If there is a possibility of losing some data in transmis-
sion, the time-differential methods will obviously need to be changed. For most
noise signals, quantization of all Bark-bands results in a bit-rate of approximately
6 kbps.

6 Applications

The sines-plus-transients-plus-noise representation allows musicians and engi-
neers to easily modify any input music source, whether it be a simple monophonic
harmonic instrument or a complex polyphonic work, using only a relatively small
number of meaningful parameters. Time-scale and pitch-scale modifications are
relatively simple to perform on the compressed data because the input audio has
been segregated into three separate parametric representations, all of which are
well-behaved under time-frequency compression/expansion.

In this section we will concentrate on the time-scale modification. For more
details on pitch shifting capabilities, see Levine (1998). Because the transients
have been separated from the rest of the signal, they can be treated differently
than the sines or the noise. To time-scale the audio, the sines and noise compo-
nents are stretched linearly in time, while the transients are simply translated in
time. How each of the three models is time-scale-modified is discussed in detail
in the next three subsections. (See Figs. 4.10 and 4.11 for graphical examples and
further explanation.) Apart from conventional time- and pitch-scaling modifica-
tions, there are many other kinds of transformations available for musical con-
texts, especially when applied to monophonic sounds, such as discussed by Serra
(1989):

¢ Retuning the individual harmonics of a sound (e.g., to make a harmonic sound
inharmonic, or vice versa).

¢ Making the noise component louder or softer than it was in the original analyzed
sound, or independently filtering it.

e Making the transient component louder or softer, or slightly time-shifted.

 Replacing the noise or transients of one sound with the noise/transients of another
sound (a new kind of “cross-synthesis”).

¢ Retuning a pitched sound without altering the transient or noise component.

¢ Automatically synchronizing an audio soundtrack using the transient location
information.

These are only a few examples of what can be accomplished with software utilizing
the sines-plus-noise-plus-transients audio representation.
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FIGURE4.10. How time-scale modification is performed: The original signal, shown at top
left, shows two transients: first a hi-hat cymbal hit and then a bass drum hit. There are also
vocals present throughout the sample. The left-side plots show the full synthesized signal
at top and then the sines, transients, and noise independently. They were all synthesized
with no time-scale modification, at= 1. The right-side plots show the same synthesized
signals, but with the time-scale modified by= 2, or twice as slow with the same pitch.

Note how the sines and noise are stretched, but the transients are translated. Also, the vertical
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FIGURE4.11. These figures illustrate the time-frequency plane segmentations used for Fig.
4.10. The figure on the top is synthesized with no time-scaling,1. The figure on the right

is slowed down by a factor of 2, i.ex,= 2. Note how the grid spacing of the transform-
coded regions are not stretched, but rather shifted in time. However, the time-frequency
regions of the multiresolution sinusoids and the Bark-band noise have been stretched in
time in the bottom plot. Each of the rectangles in those regions is now twice as wide in
time. The exception to this rule is the Bark-band noise modeled within the time span of
the low-frequency transform-coded samples. These Bark-band noise parameters are shifted
(not stretched), so that they remain synchronized with the rest of the transient. No sinusoids
are used during the transform-coded segments.
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6.1 Sinusoidal Time-Scale Modification

Since the earliest sinusoidal modeling systems for speech and audio have become
available, methods for time-scaling signals by additive sine-wave synthesis have
been quite obvious. For example, fiie frame in Eq. (4.3) can be slightly altered
by scaling the hop siz8 by a time-stretch factar. Thus, we have
R[]
s(m+1Sa) = Z Al, mlcos@ I, m),m=0,...,a(S—1) (4.6)
r=1

Whena = 1, no time-stretching is applied. When> 1, the playback speed is
slowed butthe pitch remains the same. Similarly, wiaen 1, the playback speedis
faster with the same pitch. The amplitude parameters are still linearly interpolated,
but over a different frame length. In addition, the frequency/phase interpolation
described in Section 3.3.3 is computed over a different frame length, matching
both frequency and phase and ends of the new frame.

6.2 Transient Time-Scale Modification

To keep transients precise, the transform-coded transients are simply translated in
time rather than stretched in time. Therefore, Modified Discrete Cosine Transform
frames are moved to their new places in time and played at the original playback
speed. Because these signals are so short in time (66 ms), transients sound natural
and blend well with time-stretched sinusoids and noise. Thus, attacks are still
sharp, no matter how much the music has been slowed down.

While time-scale modification causes the cross-fade regions between sinusoids
and transients to appear at different regions in time, phase-locking is preserved
by the frequency/phase interpolation algorithm (Section 3.3.3) when the sinusoids
overlap with the transient signal.

6.3 Noise Time-Scale Modification

Because the noise has been parametrized by envelopes, it is very simple to time-
scale the noise. Breakpoints in the Bark-band temporal envelopes are stretched
according to the time-scale facterUsing linear interpolation between the break-
points, new stretched envelopes are formed. Six channels of Bark-band filtered
noise are then amplitude-modulated by these new stretched envelopes and summed
to form the final stretched noise. Similarly, efficient inverse-FFT methods could
be used (Rodet and Depalle, 1992; Goodwin, 1996).

7 Conclusions

A system that allows both data compression and high-quality compressed-domain
modifications has been described. By providing a separate representation for
sines, transients, and noise, large data reductions typical of perceptually based
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guantization schemes are obtained, while retaining the ability to perform
compressed-domain processing such as time-scaling. In addition, sharp attack
transients are preserved, even with large time-scale modification factors. To hear
demonstrations of the data compression and modifications described in this chap-
ter, see Levine (1998).
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Spectral Envelopes and Additive
Residual Analysis/Synthesis

XAVIER RODET AND DIEMO SCHWARZ

1 Introduction

The subject of this chapter is the estimation, representation, modification,
and use ofpectral envelopeim the context of sinusoidal-additive-plus-residual
analysis/synthesis. A spectral envelope is an amplitude-vs-frequency function,
which may be obtained from the envelope of a short-time spectrum (Rodet et al.,
1987; Schwarz, 1998). [Precise definitions of such an envelope and short-time spec-
trum (STS) are given in Section 2.] The additive-plus-residual analysis/synthesis
method is based on a representation of signals in terms of a sum of time-varying
sinusoids and of a non-sinusoidal residual signal [e.g., see Serra (1989), Laroche
et al. (1993), McAulay and Quatieri (1995), and Ding and Qian (1997)]. Many
musical sound signals may be described as a combination of a nearly periodic
waveform and colored noise. The nearly periodic part of the signal can be viewed
as a sum of sinusoidal components, called partials, with time-varying frequency
and amplitude. Such sinusoidal components are easily observed on a spectral anal-
ysis display (Fig. 5.1) as obtained, for instance, from a discrete Fourier transform.

In consequence, some of the first attempts at sound synthesis were based on the
additive synthesis methode., the summation of time-varying sinusoidal compo-
nents [e.g., Risset and Mathews (1969)]. This signal-modeling approach inherits
a rich history of signal processing techniques. For example, harmonic or inhar-
monic partials are easy to characterize and easy to synthesize. Also, there exist
many methods to automatically analyze sounds in terms of partials and noise that
can then be used directly for additive synthesis [e.g., Serra and Smith (1990)].
Another interesting aspect of additive synthesis is its ease for mapping partial pa-
rameters (frequency and amplitude) into the human perceptual space. Also, these
parameters are meaningful and easily understood by musicians. Furthermore, be-
cause independent control of every component is available in additive synthesis, it
is possible to implement models of perceptually significant features of sound such
as inharmonicity and roughness. Thus, additive synthesis is accepted as perhaps
the most powerful and flexible sound synthesis method available.

A drawback of the classical sinusoidal oscillator (i.e., simple addition of sine
waves) implementation of additive synthesis (Moore, 1990) is its computational
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FIGURE 5.1. Spectrum and spectral envelope of the vowel /e/.

cost that can easily be seen by considering a sound such as a low-pitched piano
tone, which can sometimes require more than a hundred partials to properly repre-
sent it. However, another additive synthesis technique (Rodet and Depalle, 1992)
will be examined in Section 6.3. This method, named FfTs based on the
inverse fast Fourier transform and allows an efficiency gain of 10-30 compared
to the classical method. A second drawback of the oscillator method of additive
synthesis is its difficulty for introducing precisely controlled noise components
that are very important for realistic sounds and musical timbres such as speech
or Japanese shakuhachi flute sounds, which cannot be created without noise. The
FFT-Ytechnique and spectral envelopes make noisy components easy to describe
and cheap to compute. Last but not least, controlling hundreds of sinusoids is a
great challenge for the computer musician. Spectral envelopes render this con-
trol more simple, direct, and user-friendly, and are easily implemented with the
FFT method.

As mentioned above, speech and musical sounds always have random compo-
nents, often heard as anoise, superposed on the harmonic orinharmonic parts. Since
a second assumption underlying the sinusoidal additive model is that the number
of sinusoidal partials is limited, a purely sinusoidal modg) with slowly vary-
ing parameters cannot completely represent a real sgftjadnd therefore must
be complemented by a non-sinusoidal residual p@ytaimed at representing the
random components:

r(t) = st) — d(t). (5.1)

Even though the term spectral envelope is commonly used only for the envelope
of the magnitude of the short-time spectrum, we will also consider envelopes that
include the phase of the STS and even the frequencies of nearly harmonic partials
as a function of their harmonic number. Such envelopes are called generalized
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spectral envelopes (Rodet et al., 1987). One of the main features of generalized
spectral envelopes is that several important properties of sounds are captured in
a simple and powerful representation. Note that if a reduction of memory size is
required, spectral envelopes need only be defined at a small number of specific
times such as at the beginning of an attack, the end of attack, the end of sustain, and
so on. Then, at any time, the synthesis algorithm may use envelopes interpolated
between the defined envelopes. This procedure also yields an economical and
efficient user control.

As explained in Section 2, the usefulness of spectral envelopes is primarily
due to theoretical reasons: The concept of spectral envelope is connected with the
production models (signal models and physical models) of musical instruments
as well as with the perception of musical sounds. Spectral envelopes also offer a
simple and concise representation of important sound properties that largely ease
the control of synthesis models for musical applications. As an example, in speech
or in the singing voice, the spectral envelope is rather independent of the pitch.
This concept is violated if we use time-domain resampling to transpose a vowel
up by, for instance, an octave, which results in the partials’ frequencies being
multiplied by 2 while not changing their amplitudes. Then, the spectral envelope
will necessarily also be transposed. This effect sounds quite unnatural because all
resonances (i.efgrmantg are shifted up by an octave, corresponding to shrinking
the vocal tract to half its length, the size of a young child’s vocal tract compared
to that of an adult. Obviously, this is not the natural behavior of the vocal tract.
To avoid this, the spectral envelope has to be kept constant. This means that the
amplitude of a transposed patrtial is no longer determined by the amplitude of the
original partial, but by the value of the spectral envelope at the frequency of the
transposed partial.

From the viewpoint of spectral analysis, our interest in spectral envelopes is due
to the existence of many envelope estimation techniques. For an arbitrary sound
signal, the spectral envelope at a given time is not knewpriori. Therefore,
it has to be estimated by using one of several techniques that will be described
in Section 3. This estimation step is crucial because it governs any further use
of the estimated spectral envelopes, whether it be for feature extraction, such
as timbre characterization, or for resynthesis. As detailed in Section 4, spectral
envelopes can be coded in one of several representations that differ by the memory
space and the computational power they require. In Section 4.6, transcoding and
manipulation of spectral envelopes are explained. It appears that the choice of these
methods depends on the chosen representation. The use of spectral envelopes for
the synthesis of sinusoidal and of non-sinusoidal parts of the signal are presented
in Section 6.

At this point, it is worth noting that sinusoidal partials on one hand and non-
sinusoidal components on the other hand are usually created by the human voice,
as well as by musical instruments, using different mechanisms. Therefore, the
sinusoidal part and the non-sinusoidal part should be treated separately for all
steps from estimation to synthesis. That is to say, specific estimation techniques
are used for each of these two parts, and each one is attributed a different spectral
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envelope. Also, modifications applied to the two types of spectral envelope are
usually different. Finally, the synthesis methods used for the two parts are not the
same. Some examples of spectral envelope applications for additive-plus-residual
analysis and synthesis, in various contexts and software systems, are given in
Section 7. Finally, Section 8 gives a few conclusions and perspectives for future
development and research concerning spectral envelopes in musical sound signal
synthesis.

2 Spectral Envelopes and Source—Filter Models

2.1 Source-Filter Models

The concept of spectral envelope is closely related to the concept of the source—
filter model (Depalle, 1991). In such a model, one considers that a source signal,
or excitationx(t), is the input to a filter or resonatdt, the output of which is
the signals(t) under consideration. Source—filter models have been used exten-
sively for speech analysis, processing, and synthesis (Fant, 1970; Flanagan, 1972).
Moreover, since the birth of electronic music, sources and filters have been used
in many synthesizers and programs, but often in limited and relatively imprecise
ways because of strong accuracy limitations that analog filters and controllers
impose. Digital signal processing and estimation techniques have allowed many
developments and applications of source—filter models, often inspired by speech
research (Moorer, 1979; Rodet and Delatre, 1979; Rodet, 1980; Rodet and Depalle,
1986). Source—filter models can be considered as models for the production and
the perception of musical sounds. On the one hand, by means of a rather simple
signal representation, they take into account some physical properties of musical
instruments. On the other hand, they also take into account some of the proper-
ties of human perception of musical sounds. Finally, they benefit from the huge
developments of theory and applications in the field of digital signal processing.
For the majority of acoustic instruments, there is an exciter and a resonator. Un-
der the assumption (which is not rigorously true but often reasonably valid) that
the interaction between the exciter and the resonator modifies little of their individ-
ual behaviors, the sound production scheme can be simplified into a source—filter
model. From the point of view of human perception, it has been shown that the ear
is, above all, sensitive to the short-time spectrum of sounds and to the evolution
of this spectrum. More precisely, we can look at the spectral characteristics of a
sound on two frequency scales: On a small scale, the fine structure of a spectrum
is characterized by sinusoidal partials, which appear as sharp peaks in the spec-
trum (see Fig. 5.1), and by non-sinusoidal components, which comprise a residual
characterized by a random aspect of the spectrum. On a large frequency scale, the
spectral envelope, which traces the connection between the peaks (see Fig. 5.1),
indicates the broad structure of the spectrum (Rodet, 1984; Marin and McAdams,
1991), giving the distribution of energy in spectral bands to which the ear is very
sensitive.
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Partials with harmonically related frequencies are found in periodic sound sig-
nals with well-defined perceived pitch. Inharmonically distributed partials are
characteristic of sounds with several pitches, such as multiphonics of musical in-
struments, or with no well-defined pitch, such as some metallic percussion sounds.
Because peaks corresponding to sinusoidal partials appear at precise frequency
values and in limited number, the corresponding spectrum is said to be discrete.
Random aspects of the fine structure of the spectrum are characteristic of noise,
such as noise due to air turbulence in a wind instrument. The corresponding spec-
trum is spread continuously on the frequency axis and is said to be continuous.

The importance of spectral envelopes for sound perception has been shown in
many circumstances. For example, vowels are essentially perceived according to
their spectral envelopes, and, in more detail, according to the frequency positions
of some of the peaks of this envelope, called formants. This can be related to the
fact, already mentioned in the introduction, that spectral envelopes of speech and
singing voice sounds are quite independent of pitch. The vocal source is a train of
pulses of air passing through the vibrating vocal folds while the resonator is the
vocal tract that acts as a steady filter as long as the articulation remains unchanged.
If, ignoring this production model, we transpose the vowel in Fig. 5.1 up by an
octave by doubling all partial frequencies and performing additive resynthesis (as
discussed in Section 1), the spectral envelope will also be transposed. Figure 5.2
shows this effect in comparison to Fig. 5.1, and the resulting signal sounds quite
unnatural. This unnaturalness comes from the fact that the formants are shifted
up one octave, corresponding to shrinking the vocal tract to half of its length,
obviously not a natural behavior of the vocal tract.

To avoid this unnaturalness, the spectral envelope needs to be kept constant
while the partials slide under it, taking on new values. This means that the ampli-
tudes of the transposed partials should not be determined by the amplitudes of the
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FIGURE 5.2. Transposition of voice without spectral envelope correction.
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FIGURE 5.3. Transposition of voice with spectral envelope correction.

original partials, but rather by values of the spectral envelope samples at the fre-
guencies of the transposed partials, as shown in Fig. 5.3. This way, only the partial
frequencies are shifted, while the spectral envelope and thus the formant locations
are preserved, and the resulting vowel sounds natural. For an easier comparison,
Fig. 5.4 shows a superposition of the spectral envelopes of the transposed sound,
with and without a constant spectral envelope, applied on a frequency grid spaced
at 366 Hz, the fundamental frequency of the transposed sound. It can be clearly
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FIGURE 5.4. Transposition of voice: The spectral envelopes Figs. 5.2 and 5.3 are overlaid
to show the effect of transposition with and without envelope correction.



Spectral Envelopes and Additive Residual Analysis/Synthesis 181

seen that, with a fixed spectral envelope applied, each partial receives a different
amplitude, and that the spectral envelopes are stretched versions of each other.

2.2 Source—Filter Models Represented
by Spectral Envelopes

The properties concerning the production and perception of sounds, explained
above, have motivated our study and use of source—filter models for sound syn-
thesis. From production and perceptual viewpoints, the excitation or source signal
is important because it implements the fine structure of the spectrum. The source
signal consists of sinusoidal partials and noise components, usually considered as
random signals. The source signal serves as input to a filter that implements the
broad structure of the spectrum, again important from a perceptual point of view.
Multiplication of a filter transfer functiorH () by the source spectral envelope
X(w) results in the output sound’s spectral envel&te), i.e.,

S(w) = H(w) - X(w). (5.2)

Note thatH () is a complex function of radian frequenay(where f = w/2r
is the frequency in Hz). Its magnitudél (w)| and its phase ar¢f{(w)) are both
important as shown below. Even though the term spectral envelope is commonly
used for the magnitude only, we will also consider the phase spectral envelope or
the complex spectral envelope, which includes both magnitude and phase.

In sinusoidal-additive-plus-residual source—filter synthesis, the source is a sum
of sinusoids and random signals, which usually has a flat spectral envelope. Ideally
this would be

X(w) = 1. (5.3)

Therefore, the transfer function of the filter directly defines the spectral envelope
of the resulting sound:

S(w) = H(w) (5.4)

Equation (5.2) shows that, in the frequency domain, the spectral envelope applica-
tion reduces to a simple multiplication of the amplitude of each source component,
atafrequencwy, by the value of the spectral envelope at this frequed¢y). Con-
sequently, the use of spectral envelopes directly in the frequency domain appears
particularly cost effective and attractive (see Section 6.2).

As noted earlier, sinusoidal partials and non-sinusoidal components are usually
created in voice and musical instruments by different mechanisms. Sinusoidal
partials result from a nearly periodic process, such as the oscillation of a reed or
the stick-slip cycle of a bow-string interaction. Non-sinusoidal components result
from other mechanisms, such as air-flow-turbulence or friction noise. Therefore,
the spectral envelopes of the sinusoidal and the non-sinusoidal parts of the signal
have to be treated separately at all steps from estimation to synthesis. Indeed, before
estimation can be applied, it is necessary to distinguish between the sinusoidal
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and non-sinusoidal components. (This step is referred to as “voicing estimation”
in the speech field and “sinusoidality” or “tonality” for audio signals in general.)
(Griffinand Lim, 1985; Rodet etal., 1987; Peeters and Rodet, 1998). Then, spectral
envelopes can be estimated for the sinusoidal and non-sinusoidal parts, with the
estimation technique adapted individually to the properties of each part.

The resonator has a strong influence on the produced sound. In the case of
the male voice, vocal tract resonances (formants) have mean separations of about
1000 Hz with 3-dB bandwidths on the order of 40-100 Hz or more. Consequently,
the corresponding filter transfer function, or spectral envelope, is described by the
general outline of the pattern of peaks in the short-time spectrum of the voice
sound (Fig. 5.1). It also appears in the variations of the amplitudes of sinusoidal
partials as a function of frequency (Maher and Beauchamp, 1990).

As an example of amplitude variations being caused by frequency variations,
consider the signal of any sinusoidal partit) of a source with time-varying
frequencyw(t) and constant amplitudg

p(t) =y sin (/ w(t) dt) . (5.5)

Then, we can approximate [under the assumptiondifigtis slowly varying] the
output of the filterH (w) as the sinusoidal partial

at) =y IH (@) -sin(f o (t)dt +arg(H (o (1)))) (5.6)
=b(t) sin(fwt)dt+e(t)). '

We observe that the amplitud¥t) of the output partiatj(t) is a function of its
frequency

b(t) =y IH (). (5.7)

Asaconsequence, ifthefilter's resposand the amplitude of the source are fixed
with respectto time, the variation of the amplitude of an output partial as a function
of its frequency simply traces a portion of the filter amplitude transfer function,
i.e., the amplitude spectral envelodéw) multiplied by the input amplitudg. As

an example, let us examine a singing voice signal whose fundamental frequency
is varying aroundfy with a vibrato rated and an excursion. The instantaneous
fundamental frequency is given by

Fo(t) = fo+ asin(2rpt). (5.8)

Then, each harmonic partial with harmonic numkéras approximately the fre-
guency

fi (t) = ;"—k — kFo (t) = kfo + ka sin(2pt), (5.9)
T
which varies betweekf, — ke andkfy 4+ ke, and has the time-varying ampli-
tude yk |H (wx (t))|, whereyy is the amplitude of théth partial of the source.
An example of this effect is shown in Fig. 5.5 for a baritone singing voice. The
amplitude of each harmonic partial vs its frequency literally traces the spectral
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FIGURES.5. Amplitude-vs-frequency curves for partials 1 to 16 of a baritone singing voice.
The dotted line has been added to better show the complete spectral envelope.

envelope. Note that this spectral envelope would be impossible to obtain from a
short-time estimation commonly done on a signal window of some 20 ms. This
technique for obtaining the spectral envelope of high pitched sounds has been
used for the creation of a synthetic voice singing the The Queen of the Night's aria
“Der Holle Rach&in Mozart’s operalhe Magic FlutgBennett and Rodet, 1989).
Automatic estimation using this technique can be performed by using discrete
cepstrum estimation as explained in Section 3.

Finally, partial-indexed spectral envelopes can be defined for nearly harmonic
sounds. Guitar and piano strings as well as acoustic tubes have resonances, or
modes, whose center frequencies do not fall into an exact harmonic relationship.
For a perfectly harmonic distribution with fundamental frequerigythe center
frequency of a mode is a linear function of its harmonic partial nurkber

fu = fo -k (5.10)

For nearly harmonic sounds, deviation-vs-partial can be defined as a fugadfon
the partial number, as in

fu = fo-k+9(k), (5.11)
or in terms of frequency, as in
fu=fo-k+g(fo-K), (5.12)

and can be considered to be a partial-indexed spectral envelope. Such spectral en-
velopes provide easy control of the distribution of the frequencies of partials. They
can also be used in order to algorithmically define the frequencies of inharmonic
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FIGURE 5.6. Relative frequency deviations from harmonicity for eight partials of a piano
tone (courtesy J. P. Lambert). The continuous line is an exponential approximation of the
relative frequency deviations. This is an example of a generalized envelope for frequency.

partials, such as the modes of metal plates (Benade, 1976; Potard et al., 1986) or
stiff strings (Fig. 5.6).

2.3 Spectral Envelopes and Perception

Interestingly enough, the importance for human perception of the spectral envelope
outlining the partial amplitudes can be easily demonstrated. Itis remarkable that we
are ableto hearthe change of the vocal tract shape of a singer even at very high pitch,
i.e., when the spectral envelope would be impossible to obtain from a short-time
estimation as explained above. This suggests that perception somehow deduces
spectral envelope shape from partial frequency variations (similar to the method
explained in Section 2.2). To demonstrate this effect, McAdams and Rodet (1988)
tested the perception of synthetic sung vowels with similar spectral envelopes.
These envelopes differed only by the magnitude of the envelope segment traced by
the second partial when vibrato was applied, crossing exactly at the mean frequency
of the second patrtial. In the absence of vibrato, the value at this frequency was the
same for the two envelopes, so that the sounds were identical. However, for one
sound the spectral envelope in the neighborhood of the second patrtial increased
with frequency, while, for the other sound, it decreased with frequency. Listening
tests showed that a vibrato with an excursion of one percent of the fundamental
frequency was sufficient to hear these sounds as two different vowels.

Resonances of a violin or a cello body are more densely distributed and narrower
than those of the vocal tract. In consequence, the corresponding filter transfer
function or spectral envelope does not appear so directly in the general shape of
the short-time spectrum of the violin sound. But its influence on partial amplitudes
is similar to that of the voice (Beauchamp, 1974; Mellody and Wakefield, 1997,
2000; Dubnov and Rodet, 1997).
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FIGURE 5.7. Relative phase variations of harmonic partials 2, 4, and 6 corresponding to
their frequency variations (vibrato) of a cello sound (from Dubnov and Rodet, 1997).

Resonances also affect phase variations (Beauchamp, 1974). From Eq. (5.6), the
relative phase of an output partial similarly varies with its frequeneyaccording
to

¢ () = arg(H (e (1)) - (5.13)

In the vicinity of a resonance center frequency, &r0)) changes rapidly with
w. Therefore, the phase of an output partial also changes rapidlywwidimd its
variation depends on the position of the resonance center frequency relative to the
interval on whichw varies. Different partial frequencies (t) may exhibit phase
variations that appear uncoupled (Dubnov and Rodet, 1997). An example from the
analysis of a cello sound with vibrato is shown in Fig. 5.7, where phase variations
of harmonic partials number 2, 4, and 6 are superposed. In a simulation with a
source—filter model, similar phase variations have been obtained for the phase of
output partials when a similar amount of vibrato is applied (Fig. 5.8). These phase
variations are easily perceived and are important features that allow the distinction
of sounds from different instruments, such as cello (uncoupled phases) and trumpet
(coupled phases) as detailed in Dubnov and Rodet (1997). The importance of the
phase spectral envelope is also demonstrated when an inadequate phase spectral
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FIGURE 5.8. Relative phase variations of harmonic partials 2, 4, and 6 corresponding to
frequency variations (vibrato) of a source—filter model based on the cello sound of Fig. 5.7
[from Dubnov and Rodet (1997)].

envelope is obtained by an estimation technique that does not reflect the underlying
physical model (see Giron, 1990, pp. 40—-47).

2.4 Source and Spectrum Tilt

In the preceding discussion we have noted that if the source has a flat spectral enve-
lope [i.e.,X(w) = 1], the transfer function of the filter directly defines the spectral
envelope of the resulting sound [Eq. (5.4)]. However, acoustic instruments, such
as the trumpet and the voice, have source spectra that can vary greatly, especially
according to the intensity at which the instrument is played (Beauchamp, 1975,
1980; Benade, 1976; Bennett and Rodet, 1989; Fletcher and Tarnopolsky, 1999).
The louder the sound, the stronger the high-frequency components become. This
is often referred to as a downward spectrum tilt (or slope) that decreases with
loudness. Therefore, instead of being flat, the source should be represented by a
spectrum shape which is a function of the intended intensity level

X (@) = E(w,1). (5.14)
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where B is a function whose tilt decreases with increadinghen, the spectral
envelope is the product:

S() = E(,1)- H (). (5.15)

This formula demonstrates how the concept of spectral envelope can permit an
easy control of both the resonator and the exciter of simulated instruments, real or
imagined.

2.5 Properties of Spectral Envelopes
Three important properties for spectral envelopes are:

Envelope fit A spectral envelope is a curve that envelopes the spectrum, i.e., it
wraps tightly around the magnitude spectrum, linking the peaks (for the sinu-
soidal or discrete part of the spectrum) or passing close to the maxima (for the
residual or continuous part of the spectrum).

SmoothnessA certain smoothness of the curve is required. This means that the
spectral envelope does not oscillate too much, but gives a general idea of the
distribution of energy of the signal over frequency.

Adaptation to fast spectrum variations: A spectral envelope is defined for a
short segment of signal as the envelope of a short-time spectrum (STS). When
the signal’s STS varies rapidly from one analysis frame to the next, the spectral
envelope should precisely follows its fast-time variation. (See Section 3.2.)

Examples of musical instrument and speech spectra with overlaid spectral en-
velopes are shown in Figs. 5.9-5.13.
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FIGURE 5.9. Spectrum and spectral envelope of a clarinet sound.
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FIGURE 5.10. Spectrum and spectral envelope of a piano sound.

3 Spectral Envelope Estimation Methods

Because, in general, the short-time spectrum of a sound is not stationary, the
corresponding spectral envelope varies with time. Estimation of a time-varying
spectral envelope is usually obtained by estimating a spectral env@lapeon a
short-time window (typically 5-40 ms) centered on a titnehen advancing the
window by a fraction of its size$, to the timet; ;1 = t; + § where a new estimation
S.1(w) is done, and so on. Such a repetitive operation is called sliding window

P

100 | 5
110

Amplitude [dB]

1 1 1 1 1 1 1 1 1 1 1
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000
Frequency [Hz]

FIGURE5.11. Spectrum and spectral envelope of a violin sound.



Spectral Envelopes and Additive Residual Analysis/Synthesis 189

10
20 -
30

A
§§ "l;" M i
o] “ 1 YM MhiMtha

100 [

110 1 1 1 1 1 ]
0 2000 4000 6000 8000 10000 12000

Frequency [Hz]

Amplitude [dB]

FIGURE5.12. Spectrum and spectral envelope of the vowel /a/.

The general requirements for spectral envelope estimation are introduced in
Section 3.1. Then various estimation methods, autoregression (AR), cepstrum,
and discrete cepstrum, are described in the following Sections 3.2-3.5. These
descriptions will proceed from a non-formal introduction (what the algorithm
does) to a detailed formal development (how it is done).

All of the methods for spectral envelope estimation described in this section have
their strong and weak points, depending on the signal and the needs of the user. In
particular, some methods are better suited for sinusoidal components (the discrete
part of the spectrum) and others are better suited for non-sinusoidal components
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FIGURE 5.13. Spectrum and spectral envelope of the vowel /o/.
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(the continuous part of the spectrum). Also, a method is usually more effective if
the analysis model takes into account the physical model which has produced the
sound.

3.1 Requirements

The requirements for spectral envelope estimation are basically the fulfillment
of the three properties of spectral envelopes described in Section 2.5, with some
additions and more details.

Exactness For each sinusoidal partial, the spectral envelope should precisely
intersect the point, in the frequency—amplitude plane, defined by the spectral
magnitude maximum associated with that partial. In Section 2.5 this was called
the envelope fit property, in that the spectral envelope wraps tightly around
the magnitude spectrum, linking the peaks. The required degree of exactness is
determined by the perceptual abilities of human audition. In the lower frequency
range, humans can distinguish differences in amplitude as small as 1 dB (Moore,
1997). For higher frequencies, the sensitivity is a little lower. It may not be
necessary to link every peak in a group of peaks close to each other in the
upper frequency range. Then, the spectral envelope should find a reasonable
intermediate path, e.g., through the center-of-gravity of peaks in each frequency
band such as a critical band or a fraction of it. Finally, a spectral envelope should
also precisely follow rapid variations of the signal spectrum in time.

Robustness The estimation method has to be applicable to a wide range of sig-
nals with very different characteristics, from high-pitched harmonic sounds
with their widely spaced partials to noisy sounds or mixtures of harmonic and
noisy sounds. Very often, problems come from additive analysis when very-low-
amplitude peaks are identified as sinusoidal partials, although they pertain to the
residual noise or even to the noise floor of the recording. This is also a question
of choosing the right parameters for spectral analysis, e.g., the threshold for
accepting partial amplitudes.

SmoothnessA certain smoothness is required. This means that the spectral enve-
lope must not oscillate too much over its frequency range, but rather it should
give a general idea of the distribution of the energy of the signal over frequency.
This translates to a restriction on the slope of the envelope (given by its first
derivative), which may be dependent on context.

3.2 Autoregression Spectral Envelope

Autoregression (AR) estimation is a well-known digital-signal-processing method
(Oppenheim and Schafer, 1975; Oppenheim, 1978; Markel and Gray, 1980). It
is widely used for speech transmission and compression under the name linear
predictive coding (LPC). Special properties of the method allow it to be used
for spectral envelope estimation. The idea behind AR analysis is to represent each
sample of a signa(n) in the time-domain by a linear combination of the preceding



Spectral Envelopes and Additive Residual Analysis/Synthesis 191

valuess(n — p — 1) throughs(n—1) (Kay, 1988). The valu@ is called the order

of the AR model. The estimated val&@) is computed from the preceding values
using the AR coefficients (also called predictor-coefficients or LPC-coefficients)
a; as follows:

p

)= as(n-i) (5.16)

i=1

For each analysis frame, the coefficieatsre computed in order to minimize, in
some sense, the prediction error, or LPC-residual, defineqrjy= §(n) — s(n).

When the residual sign@n) is minimized, an analysis filteA given by the
Z-transform transfer function,

A2 =1-— Xp: az, (5.17)
i=1

attempts to attenuate the frequency components in the input signahat have

high magnitudes in order to achieve a maximally flat spectrum (this is sometimes
called “whitening” a spectrum). The corresponding synthesis filter is the inverse
of the analysis filter, given by

1 1
= . (5.18)
A(2) p r
1 _ . 1
5%

This filter restores the amplitudes of the frequency components that have been
attenuated by the transfer function of the analysis filter. It is an all-pole filter
because its transfer function is defined by a rational function with no zeros in the
numerator ang zeros (callegholeg in the denominator. Most of these poles come

in complex-conjugate pairs resulting in the magnitude of the filter transfer function
showing several peaks corresponding to these pairs. An LPC analysis/synthesis
system block diagram is shown in Fig. 5.14.

As the analysis filter attempts to flatten the spectrum, it adapts to it in such a
way that its inverse filter describes the spectral envelope of the signal. As the filter
order is increased (i.e., more poles become available), the approximation of the
spectral envelope becomes more precise. The envelope obtained with a low order
will nevertheless reflect the rough distribution of energy in the spectrum. This can
be seenin Fig. 5.15.

Several methods exist for the actual evaluation of the predictor coefficients
to minimize the prediction error, such as the autocovariance method and the

s(n) e(n) s(n)

—> Analysis Filter ------------>  Synthesis Filter |——

FIGURE 5.14. LPC-analysis and synthesis system used for data transmission.
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FIGURE 5.15. The LPC spectral envelope for a Mongolian chant spectrum. As the order
increases, more poles are available for the model and the spectral envelope follows the
spectrum in more detail.

autocorrelation method (Makoul, 1975; Markel and Gray, 1980; Kay, 1988). The
autocorrelation method is more widely used and can be efficiently implemented
using Durbin—Levinson recursion (Markel and Gray, 1980). We will not elaborate
on the methods here, because they are amply described in the literature. However,
we will give a typical example used for envelope estimation of musical signals.
In order to obtain envelopes as exactly as possible, which adapt rapidly to signal
changes, an adaptive method with a particular time-window has been developed
by Rodet et al. (1987) and Depalle (1991). They used a recursive-adaptive lattice
LPC method proposed by Vishwanathan and Makhoul (1978) combined with the
left half of a Blackman—Harris window (Harris, 1978). To accurately model fast
transitions, such as in consonants, it is necessary that the LPC’s whitening filter
adapt itself as fast as possible. Classically, in adaptive techniques, an exponential
sliding window is applied on the error signal. The value of the exponential decay
coefficient is usually chosen close to 1.0 (typically 0.995 at 16 kHz).

However, one can sometimes observe, especially when the energy of the signal
is abruptly attenuated (for instance, in occlusives), that the filter tends to main-
tain characteristics of the past, so that the synthesized signal exhibits a kind of
reverberant quality. Conversely, if the exponential decay coefficient is too small,
the optimization criterion does not remain valid, and the spectral envelope is not
representative of the power spectral density of the signal. This motivates the use of
awindow with better properties for the analysis: i.e., one which is close to the value
1.0 on the right end and smoothly damped to zero on the left end. This window is
applied either to the sound signal itself or to the error signal. In the former case,
the windowed signal is analyzed by the method cited above. In the latter case, the
analysis method is itself modified because the optimization criterion is modified.



Spectral Envelopes and Additive Residual Analysis/Synthesis 193

This leads to an extremely accurate estimation, even on a segment as short as
20 ms.

In the course of evaluation of the predictor-coefficients, an intermediate set of
parameters, the reflection coefficiek{sare obtained, which, in fact, correspond
to the reflection of acoustic waves at the boundaries between successive sections
of an acoustic tube. These coefficients have advantages for synthesis, and can be
interpolated without stability problems for the resulting synthesis filter.

Various other parameter sets exist (Markel and Gray, 1980), e.g., the roots of
the analysis filtetA(z) and log area ratios (LAR), i.e., the logarithm of the ratios
of the areas of the sections of the acoustic tube model given by

A 1-K
A 1+k'
Also, there are line spectral pairs (LSP) (Itakura, 1975; Soong and Juang, 1984)

and others. Because it is possible to convert between these parameter sets, they do
not need to be considered separately for representation. (See also Section 4.2.)

(5.19)

3.2.1 Disadvantage of AR Spectral Envelope Estimation

A disadvantage of the AR method for sound analysis of signals with a limited

number of dominant partials is that even though the method will tend to envelope
the spectrum as tightly as possible, under certain conditions it will descend down to
the level of residual noise in gaps between adjacent partials. As shown in Fig. 5.16,
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FIGURE5.16. Problematic behavior of the LPC spectral envelope estimation when the par-
tials are spaced far apart. The order-40 LPC spectral envelope reaches most of the peaks
but “hangs down” in between, while the order-16 version reaches only two peaks exactly
and describes the average between peaks and residual noise for the rest.
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this will happen whenever the space between partials is large, as in high-pitched
sounds, or when the order is high enough, i.e., when there are enough poles to
correspond to every partial peak. To tackle this difficulty, some methods have been
proposed, such as discrete all-pole modeling (El-Jaroudy and Makhoul, 1991;

Gallas and Rodet, 1991b). However, these methods have not yet been applied
widely in practice.

3.3 Cepstrum Spectral Envelope

To explain the general idea of the cepstrum method used for spectral envelope esti-
mation, two approaches are possible. First, we can envision obtaining the spectral
envelope from a Fourier magnitude spectrum by smoothing its curve to elimi-
nate rapid fluctuations. This can be accomplished by applying a low-pass filter to
the spectrum, interpreted as a signal, thus letting only the slow fluctuations (low-
frequency oscillations of the curve) remain. Second, considering the signal as the
convolution of a source signal with a filter impulse response, we can attempt to
separate the source spectrum from the filter transfer function, which we assume is
a good estimate of the spectral envelope.

According to the source—filter model introduced in Section 2, a sigmdlcan
be expressed in terms of the convolution of a source or excitation sigmeand
the impulse response of a filt(n) as

s(n)=h(n)xx(n). (5.20)

In the frequency domain, this convolution becomes the multiplication of the re-
spective Fourier transforms:

S(w) = H (@) - X (). (5.21)

Taking the logarithm of the absolute value of the Fourier transforms (the magnitude
spectra), the multiplication of Eq. (5.21) is converted to an addition:

log|S(w)| = log|H (w)| + log| X (w)] . (5.22)

If we now apply aninverse Fourier transform'fo the log magnitude spectrum, we
get the frequency distribution of the fluctuations in the curve of the log magnitude
spectrum, which is called theepstrum(Bogert et al., 1963):

c=F1(log|S)) = F1(log|H|) + F~1(log|X]). (5.23)

The independent variable ofis called “quefrency,” and because we have taken
two Fourier transforms of the original signal, it is in units of time. Also, because
we are using discrete transforntsis defined at discrete quefrencies with values

o, 0%, ...,0%_4,60,05¢_4,...,0.5,...,wherec_x = ¢ . The{ck, k =

0,1, ...} are called the cepstral coefficients.

The independent contributions bff(w) and X(w) to ¢ are easy to see from Eq.
(5.23). Under the reasonable assumption that the source spectrum has only rapid
fluctuations, its contribution to is concentrated in its higher-quefrency regions,
while the contribution oH, due to its slow fluctuations, is therefore concentrated
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FIGURES.17. The cepstruraof the Mongolian chant magnitude spectrum. Tjuefrency

is given as the indek of the cepstral coefficientx (the abscissa could be labeled in time

as well). It can be seen that most information is concentrated in the left part, up to order 20.
The sharp peak at about index 84 corresponds to the distance between the regularly spaced
lobes in the log magnitude spectrum corresponding to the harmonic partials. In other words,
itis due to the contribution of the source spectrum and indicates the fundamental frequency
of the sound.

only in the lower part o€, as can be seen in Fig. 5.17. Thus, the separation of the
two components becomes quite trivial.

Normally we retain only the firgh + 1 cepstral coefficients, ¢y, . . . ,Cp, and the
cepstrum is said to be of ordgr These coefficients represent the low-quefrency
components, which we assume are due to the slowly changing fluctuations of
|H(w)|. Note thatcy represents the average energy on the signal frame. By com-
puting the forward Fourier transform of the truncatedhe spectrum lod(w)|
becomes smoothed, resulting in a valid spectral envelope. This smoothing effect
can be seen in Fig. 5.18.

Interestingly, the spectral envelope may be obtained directly from the cepstral
coefficients. First, let us define the frequencieat which values of the envelope
are to be obtained (the bins of the envelope). Usually, one vidrquidistant bin
frequencies up to the Nyquist frequenty 2:

fs/2
fi =i s/ , i=1,2...,M. (5.24)
M
Then, the equivalent angular frequencies are
fi i
w =21 — = —m. (5.25)
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FIGURE 5.18. The cepstrum spectral envelope for the Mongolian chant spectrum. With
increasing order, more of the rapid fluctuations of the magnitude spectrum will show up.

Because the truncated cepstrum is an even function, the forward transform consists
only of cosine terms. Also, the exponential function can be used to nullify the log.
Therefore, the spectral envelope valligs= |H(w;)| for frequenciesf; are given

by

Hi = exp (Xp: Cx coskwi )) ) (5.26)

k=0

While, in general, thex must be recomputed for every analysis frame, the cosine
terms can be precomputed as\, (p + 1) matrix® with elements

¢ik = cos(kw;) = cosKin/M) (5.27)
so that, as a vector-matrix equation, Eq. (5.26) becomes
H =exp(®c). (5.28)

3.3.1 Disadvantages of the Cepstrum Method

There are two disadvantages of the cepstrum method of spectral envelope estima-
tion, described in the previous subsection. First, as this method essentially carries
out low-pass filtering of the magnitude spectrum interpreted as a signal, it actually
averages out the fluctuations of this curve. The effect can be seen in Fig. 5.19,
where the envelope curves fall well below the peaks. What we want is for the
envelope curves to link the peaks of the spectrum (cf. Section 3.1). Second, similar
to the AR method, when analyzing harmonic sounds with partials spaced far apart,
as is the case for high-pitched sounds, high-ordered cepstral envelopes follow the



Spectral Envelopes and Additive Residual Analysis/Synthesis 197

10
20

---------- Log magnitude spectrum
----- —  Cepstrum envelope (order 16)

30} : — — — — Cepstrum envelope (order 40)
" — Cepstrum envelope (order 120)

40
50
60f 7/
70 Y
80F:"
90
100
110
120

Amplitude [dB]

0 2000 4000 6000 8000 10000 12000
Frequency [Hz]

FIGURE 5.19. Problematic behavior of the cepstrum spectral envelope estimation when
partials are spaced far apart.

spectra down to the residual noise level in gaps between adjacent partials. Again,
see Fig. 5.19 for an example of this behavior.

3.4 Discrete Cepstrum Spectral Envelope

Contrary to the last two methods discussed, AR and cepstrum, which are com-
puted from uniformly sampled representations of the signal, the discrete cepstrum
spectral envelope (Galas and Rodet, 1990) is computed from nonuniformly spaced
discrete points in the frequency domain. These points correspond to the spectral
peaks of a sound, which most often correspond to sinusoidal partials in the sound.
As described at the ends of Sections 3.2 and 3.3, the AR and cepstrum spectral
envelopes both exhibit the problem of descending down to the level of residual
noise between partials that are spaced too far apart, as can be seen in Fig. 5.16 and
Fig. 5.19. The discrete cepstrum, on the other hand, adheres only to the underly-
ing sinusoidal partials and generates a smoothly interpolated curve that links the
partial peaks, as shown in Fig. 5.20.

Let us briefly explain the discrete cepstrum estimation method (Galas and Rodet,
1991a, 1991b). First, a given setEpectral peaks (partials) with amplitudgs
at frequencies;,i =1, ...,N, defines a magnitude spectri8w) as

N
Sw) =Y S8 - w), (5.29)
i=1
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FIGURE 5.20. Example of a discrete cepstrum spectral envelope. (The control points are
explained at the end of Section 3.5.2.)

wheres(w — w;) is the Dirac delta function. If we consid&w) to be the result
of the product

S(w) = H(®) - X(w), (5.30)

whereX(w) is the source spectrum with amplitudésat the same frequencies
as forS, then we can express

N
X(@) =Y Xid(w — @) (5.31)
i=1

Also, by generalization of Eq. (5.26), let us talKéw) to be the transfer function
of a filter modeled by

H(w) = exp (i Ck coskw)) , (5.32)
k=0

wherep is the order of the discrete cepstrum.

We only need to find filter parametetg that minimize the quadratic errd
between samples of the log spectrum of the model and those of the signal. This
error criterion is developed from the idea of a spectral distance:

N
E =) (log(XiH(w)) — log(S))?
i—1 (5.33)

N /P 2
= < ¢k cos(kwi) + log(X;) — |Og(3)> .
ki

i=1 =0
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To achieve this minimization, we use least squares (Press et al., 1992) to formulate
a matrix equation

W c=h, (5.34)
whereVW is a square matrix of sizp + 1, given by
N
Y =Y coskwi)- cos{w), withk,| =0, -, p, (5.35)
i=1

¢, the column vector of the filter parameters, is

Co
c=|: |, (5.36)
Cp
andb is a column vector given by
by = zN: log (i cos(«oi)), withk =0, ---, p. (5.37)
i=1 Xi

Most often we will only have measurements of theavailable, in which case we

can, without loss of generality, s&t = 1, V i, thus simplifying Egs. (5.33) and

(5.37). However, we retaiK; in those equations for those cases where source spec-

trum measurements are available, as in the case of glottal source measurements.
The matrix¥ can be computed very efficiently by using an intermediate vector

T given by

1 N
b= > coska) withk=0, -, 2p, (5.38)
i=1

so that
Y =t + te- (5.39)

The matrix given by Eq. (5.34) can be efficiently solved applying Cholesky de-
composition (Press et al., 1992), which factérsuch that

w=UDU, (5.40)

whereU is an inferior triangular matrix whose diagonal elements até’1s the

transposed matrix dd (i.e., it is a superior triangular matrix), amlis a diagonal

matrix. Now the matrix equation can be solved by simple substitution and division.
The asymptotic complexity of the discrete cepstrum method described above

is O(N p+ p3), which means that the number of partiélss not a big concern,

because the complexity is linear i, but that the ordep has to be kept as small

as possible, because of its cubic influence.
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FIGURE 5.21. The effect of regularization: The unregularized discrete cepstrum spectral
envelope f = 0) shows a large hump between 3500 and 4000 Hz, whereas the curve
regularized by a factgs = 0.0005 behaves nicely.

3.5 Improvements on the Discrete Cepstrum Method
3.5.1 Regularization

The technique of regularization, developed by Campedel-Oudot et al. (2001), im-
proves the smoothness of the spectral envelope. Its idea is to penalize a spectral
envelope slope that is too steep by adding a regularization mdrig the matrix

v, defined by Eg. (5.35), whegeis a regularization coefficient aridis a square
matrix of sizep + 1, whose diagonal is defined by

e = 8r2(k — 1)2. (5.41)

Then, the discrete cepstrum algorithm proceeds as in Section 3.4.

The effect of regularization can be seen in Fig. 5.21. The disadvantage of regu-
larization is that sometimes a steep slope is necessary to reach a single extremely
situated peak, as with the low peak at about 3400 Hz in Fig. 5.21. With regular-
ization, the curve falls short of reaching it.

3.5.2 Stochastic Smoothing (the Cloud Method)

The cloud method developed by Galas and Rodet (1990) is a way to avoid abnormal
behavior of the spectral envelope that sometimes results from the discrete cepstrum
algorithm. The method generates a cloud of points around each partial on the
frequency—amplitude plane to give the discrete cepstrum algorithm more freedom
trying to fit a curve that links all the partials. Added points are displaced from each
original point @i, §) at frequencyw; and amplitudeS by a frequency shif
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FIGURE 5.22. The cloud of four points around the original partial generated by stochastic
smoothing with indifferent slope (left) and with a hint for a rising slope (right).

and an amplitude factar as shown in Fig. 5.22 (left). Furthermore, if additional
information is known, the shape of the cloud can be used to influence the behavior
of the spectral envelope, as shown in Fig. 5.22 (right). For example, if a point is
known to be situated within the rising slope of a formant, the spectral envelope
could be influenced to also prefer a rising slope. However, to avoid too strong a
deviation of the spectral envelope from the original point, weighting is introduced
in the discrete cepstrum algorithm to attenuate the influence of the added points
with respect to the original point. For example, the original point could be weighted
with a factor of 5, whereas the added points would be weighted with a factor of
1, as expressed by the thickness of the points in Fig. 5.22. In general, weighting
factorsw; can be introduced into the error formula of Eq. (5.33):

N
E =) wi(log(XiH (@)) - log(S))*. (5.42)
i=1
Thus, Eq. (5.35) becomes
N
Y = _ wi cos ki) cos(lan), (5.43)
i=1
and Eq. (5.37) is changed to
§ S
by = ; wi log <7i coskoi )). (5.44)

From a more formal point of view, the cloud method is in fact a replacement of
each original spectral peakyi( S), by a probability distributionr; (w, S). This is
necessary because of the uncertainty of the precise position of spectral peaks. The
uncertainty is reflected by a probability distribution instead of a perfect knowledge
of the spectral peak.



202 Xavier Rodet and Diemo Schwarz

Discrete cepstrum (order 40, Cloud)
10r + Partial peaks
20 — — — — Discrete cepstrum (order 40, Regularized)

30
40
50
60
70
80
90
100
110

Amplitude [dB]

0 1000 2000 3000 4000 5000 6000 7000 8000
Frequency [Hz]

FIGURES.23. Improvement of discrete cepstrum spectral envelope estimation with stochas-
tic smoothing. The envelope smoothed by the cloud algorithm reaches the two peaks below
1500 Hz, while the regularized envelope is too restrained.

Thus, the new error criterion becomes

N
£=Y [ [ mio. 9000 Hiw) - og)Pduss. (a9

The distributionzr; can be sampled; that is, each spectral peak §) can be
replaced by a set of peaksit, Sk), to yield the cloud of points described at the
beginning of this section.

Figure 5.23 shows the improvement of the discrete cepstrum spectral envelope
estimation when stochastic smoothing is employed. The cloud method can also be
combined with regularization, described in Section 3.5.1, to further improve the
results.

Complementary points can be added to the partials before discrete cepstrum
estimation in order to control the resulting spectral envelope. For example, it is
advised to add points at the zero and Nyquist frequencies and between the highest
partial and the Nyquist frequency (Schwarz, 1998) in order to prevent an unjustified
oscillation in the spectral envelope, which would disturb the smoothness.

3.5.3 Nonlinear Frequency Scaling

When estimating the spectral envelope, a nonlinear frequency scale, similar to the
Mel or theBark scale, is appealing because it reflects some properties of human
perception. As we have seen in Section 3.4, the discrete cepstrum algorithm is
of cubic complexity inp, the order of the discrete cepstrum. This means that in

order to keep computation times short and the amount of data small, we must try to
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reduce the order necessary for a good estimation of the spectral envelope. One way
to achieve this is to judiciously concentrate the precision or resolution where it
is most needed and reduce it where it is not so important, in accordance with the
properties of the human auditory system.

Owing to the approximately logarithmic frequency resolution of human hearing,
we do not need to be very exact with the spectral envelope in higher-frequency
ranges. Whereas in the low frequencies, very slight deviations in frequency and am-
plitude are perceptible, in the higher frequencies it suffices to represent the rough
location of energy. Therefore, as suggested by Galas and Rodet (1991b), we can
introduce a frequency-warping function which is linear below a given break fre-
guencyfy, and logarithmic above. Our frequency warping functios defined by

(f)— Olf/fb, f < fb (546)
YT e (@410 (F/ ). | > fo '

wherea is a normalization factor given by

f3/2
o = .
1+109;0(fs/21p)

(5.47)

The effect of nonlinear frequency scaling can be seen in Fig. 5.24 fyitaken
to be 2500 Hz.

Discrete cepstrum (order 40, log. freq.)
30k + Partial peaks
— — — — Discrete cepstrum (order 40, lin. freq.)
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0 1000 2000 3000 4000 5000 6000 7000 8000
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FIGURE 5.24. Effect of nonlinear frequency scaling with a break frequency of 2500 Hz on
discrete cepstrum estimation. The higher-frequency part of the spectral envelope is rather
inaccurate, while accuracy is much better in the low-frequency range below the break
frequency.
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As an additional advantage, for a given amount of precision, spectral envelopes
represented in terms of logarithmically spaced frequencies require fewer matching
parameters, reducing the space necessary for storage or transmission. Also, the
complexity of synthesis can be reduced when fewer points are needed to represent
a spectral envelope.

To obtain the spectral envelope from cepstral coefficients based on nonlinear
frequency scaling, the frequencidsof the spectral-envelope samples [see Eq.
(5.24)] are converted using

i =y (f) (5.48)
and then converted to the corresponding angular frequencies,
!
w =21+, (5.49)
fs

Computation then proceeds with Egs. (5.26)—(5.28).

There is one pitfall to avoid in the application of nonlinear frequency scaling:
Performing the nonlinear transformation before applying the cloud deteriorates the
results slightly. To see why this is so, remember that the cloud algorithm (Section
3.5.2) adds points with a constant linear shift around each peak frequency, which
will subsequently be stretched for the linear part or asymmetrically converted
to the logarithmic scale for the rest, thus distorting the underlying probability
distribution.

3.6 Estimation of the Spectral Envelope of the
Residual Signal

The non-sinusoidal residual sign&lt) [see Eg. (5.1)] is often considered as a
random signal. Therefore, its spectrum is continuous and AR estimation techniques
are well suited for this kind of spectrum. Estimation of the spectral envégjpe)
of the residual signal around tintecan be done with any of the well-known AR
estimation techniques [see Section 3.2 (Kay, 1988)]. Such a technique provides the
p coefficientsg; (t) of an all-pole filter with magnitude transfer functi@(w, t).
In practice, they (t) are only estimated around successive tilmgs=1, 2, 3, ...,
with stepsik1 —tx in the order of 5-20 ms. At the resynthesis stage, the coefficients
a; (t) are well suited for computing the residual by time-domain filtering of a white-
noise signal. Cepstral estimation can also be used and provides cepstral coefficients
that are well suited for frequency domain filtering of a noise at the synthesis stage.
However, a correct spectral-envelope estimation of the residual usually requires
that the sinusoidal partials have been completely separated from the random com-
ponent, and such separation is nota simple task (Peeters and Rodet, 1998). Another
difficulty is that, as we have seen, the estimation methods are different for the si-
nusoidal and residual components. Therefore, Oudot et al. (1997) have proposed
a method for estimating a unique envelope, simultaneously taking into account
sinusoidal partials and nonsinusoidal components with a convenient estimation
criterion for each type.
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For easy envelope estimation of the residual, some authors (Freed, 1995;
Goodwin, 1996) have proposed to simply represent the short-time spectrum mag-
nitude| R(w, t)| of the signal (t) by its mean valu& (w, t) taken over frequency
for each of several channels distributed on a nonlinear scale. This representation
also is well suited for frequency-domain filtering at the synthesis stage, because it
only requires multiplication of a white-noise signal’'s STFT®Yw, t).

4 Representation of Spectral Envelopes

Representation of spectral envelopes is essential for their use in musical synthesis.
As we have seen in the previous section, various estimation methods resultin very
different parametrizations of spectral envelopes. However, the choice of a single
canonical representation is essential for the flexibility of further processing (see
Section 7).

Also, the choice of a good canonical representation for spectral envelopes is
crucial for their applicability to a specific task. Important concerns include the
ability to manipulate the envelopes in a useful and easy way as well as the speed of
synthesis, both of which depend heavily on the representation. Toward achieving
these goals, the requirements of locality, flexibility, speed of synthesis, and space
are laid out in Section 4.1. They are then tested against the different possible
representations, filter coefficients (4.2), sampled representation (4.3), geometric
representation (4.4), and formants (4.5). Finally, a comparative table gives an
overview of the fulfillment of the requirements by the different representations in
Section 4.6.

4.1 Requirements

Precisiont Naturally, the representation must describe an arbitrary spectral en-
velope as precisely as possible, whether it is obtained by estimation or given
manually. Methods that do not fulfill this basic requirement have not been con-
sidered here.

Stability : The requirement of stability mandates that the representation be resilient
to small changes in the data to be represented. Small changes, e.g., due to intro-
duced noise, must not lead to big changes in the representation, but must result
in equally small changes in the representation. Stability is of great importance,
especially if we consider that the data to be represented may result from differ-
ent estimation methods, such as cepstral or AR analysis, or even from manual
input, and that some noise is always present.

Locality in frequency: This requirement states that it must be possible to easily
achieve a local change of the spectral envelope by a change in a small subset
of the representation parameters. Here, “local” means “without affecting the
intensity of frequency components far away from the point of manipulation.”

Flexibility and ease of manipulatiort A representation must allow easy ma-
nipulation for achieving an exactly defined outcome, such as the production
of a certain formant in voice synthesis. For manipulation to be really useful
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in musical applications, the relationship between manipulation parameters and
spectral effect must be easily understood.

Synthesis speedAs much as possible, the representation should be directly
usable for sound synthesis, without first having to be converted to a different
form at high computational cost. This requirement is heavily dependent on the
type of synthesis, e.g., additive synthesis or filtering. While no ideal solution
can be presented, a compromise can be found which is not the fastest choice
for each synthesis type, but which does not penalize speed or quality too much,
even in the worst case.

Memory space It is important for file storage and even more so for transmission
that the representation not take up too much memory space.

Manual input : Finally, the representation should be easy to specify manually, e.g.,
either by drawing a curve, selecting primitive shapes, or by parameter text input.

4.2 Filter Parameters

When a spectral envelope is directly estimated from a signal, the most straightfor-
ward representation is the set of filter parameters that characterizes the output of
the estimation, whether it be cepstral coefficiant{Section 3.3), or one of the AR
coefficient setsg;, ki, I; (Section 3.2). These are, in general, very precise repre-
sentations. Filter parameters are advantageous for fulfilling the space requirement
(only orderp values) and for being very efficient for filtering synthesis, because
they can be directly used for fast time-domain filtering.

However, there are spectral-envelope shapes that are not easily represented by
filter parameters. An extreme example is the ideal rectangular low-pass filter. In
these cases, representation by filter parameters is stable, but not local. The non-
locality is due to the fact that these methods essentially represent a spectral envelope
as atime-domainimpulse response or reflection function (by one of several possible
filter models). It is easy to demonstrate that changing one filter parameter will
change the spectral envelope’s values at all frequencies. Filter parameters are also
not easy to manipulate for obtaining a desired effect, especially when the effect
is specified in the frequency domain. In addition, they are costly for evaluation of
additive synthesis parameters, because at [gassines have to be computed for
each frequency selected from the spectral envelope.

Various types of filter structures can be used (see Section 6.1). Each structure
leads to different types of filter parameters.

4.3 Frequency Domain Sampled Representation

A sampled representation gives the amplitude val{fg) of a spectral envelope

at M equidistant or logarithmically spaced frequency poifits.. ., fu. (Each of

the M grid points is also called a frequency bin.) It is obtained by either sampling
a continuous spectral envelope obtained by estimation or by directly using given
values. Care must be taken to ensure Mas high enough to avoid aliasing of the
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sampled spectral envelope due to rapidly varying components of the continuous
spectral envelope.

This representation is as stable as the filter parameter representation and can be
derived directly from the parameters. It obviously satisfies the locality criterion
because the amplitude at each frequency can be changed independently from the
others. It is the most flexible representation (due to the high locality), but not very
easy to manipulate, because locality demands that values at all frequencies within
a certain frequency range be specified. Especially when we think of an application
for the singing voice, the preferred manipulations are changes of the position and
bandwidth of formants, which means that new amplitude values must be specified
for the range of frequencies occupied by the formant.

This approach is fastest for additive synthesis and fast for filtering in the fre-
guency domain. It is reasonably compact, because the data required can be as low
as 100 points, even less when a logarithmic frequency scale is used, and manual
input is easy.

4.4 Geometric Representation

Starting from a sampled spectral-envelope representation, a geometrical represen-
tation can be derived that attempts to describe the amplitude curve of the spectral
envelope in the frequency domain with fewer points not spaced at equidistant
frequencies. The geometrical representation can be of the form of a break-point
function or of splines, as described as follows:

Break-point functions: A break-point (or piecewise linear) function (BPF) is a
general method of representing a function, be it in the time or frequency domain,
by a set of connected linear segments. It consistsbwak pointd; at (x;, V).

In our frequency-domain casg; is the frequency ang; is the amplitude.
Then — 1 segments between the break points are interpolated linearly. [For a
discussion of BPFs in the time domain see Horner and Beauchamp (1996).]

Splines These are similar to break-point functions, but they provide for quadratic
or cubic interpolation of each section between the poRitgiven, using a
polynomial of degree 2 or 3 (Unser et al., 1993). The value and slope should be
continuous at each point. The slope can also be accessible as a parameter for
manipulation.

Itis usefulto apply splinesto spectral-envelope representations in such away that
the pointsP, are placed on the maxima and minima of the sampled representation,
where the slope is zero, and on the inflection points, where the curvature changes
direction.

In general, a weak point of geometric representations is that they do not model
spectral envelopes in a way relevant to the signals from which they are derived,
but rather simply as curves in Euclidean space. Especially, they do not take into
account interdependencies between given points that arise from the time-varying
character of the spectral envelope.
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The stability of geometric representations is seriously disturbed by the fact that
small parameter changes can cause sudden changes of the maxima found. These
changes are quite local and can be made more stable by manually adding points.
In general, the representations are flexible, easy to manipulate, and always result
in smooth curves. However, there is a tradeoff between ease of manipulation and
precision: A parameter which is useful to manipulate but affects a broad region
often causes precision to suffer because of the large stretch of the spectral envelope
that must be interpolated.

Regarding speed, geometric representations are slightly more costly for syn-
thesis than the sampled representation is. For splines, evaluation of interpolating
polynomials must be taken into account. The amount of space needed is less than
for the sampled representation and even less if redundant points are pruned (again
at the cost of precision).

Finally, geometric representations are very well suited for specifying spectral
envelopes manually by drawing.

4.5 Formants

Maxima of voice spectral envelopes are known to convey most of the perceptual
information concerning the vocal tract. Therefore, spectral envelopes can be con-
veniently coded in terms of their maxima or peaks. It is assumed that these peaks
result from vocal tract resonances, and we will, for simplicity, refer to them as
“basic formants.” In general, a resonance is characterized by a complex transfer
functionH (w), which has a magnitude and a phase. In the case of a basic formant,
we only consider the magnitude. Because, normally, several formant functions
are needed to represent a spectral envelope, how they combine to form the to-
tal envelope must be decided. For example, formant functions can be added or
multiplied. Note that these two algorithms correspond to two different synthesis
filter structures: Addition corresponds to the parallel structure and multiplication
corresponds to the serial or cascade structure. These two structures have different
properties, which have been much discussed in the literature [see for instance Klatt
(1980), Holmes (1983), and Section 6.2]

Three convenient ways to represent formants are detailed in the following
sections (see Fig. 5.25 for an overview).

45.1 Formant Wave Functions

An FOF, from the Frenchorme d’Onde Formantiqu@odet, 1984), was originally
a waveform used in voice synthesis and in general sound synthesis. It constitutes
the basic synthesis model of thel&NT synthesis system (Rodet et al., 1984) and

! Use of aparallel formant synthesizer leads to well-known problems sucteasscreated
between two formants. The skirts of formants are also not easy to control in the parallel
structure. In aerial formant synthesizer, the amplitude of formants are difficult to handle.
Furthermore, when using automatic formant extraction, formants may appear or disappear
during transitions, and this can hardly be handled by a serial synthesizer.
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FIGURE 5.25. An FOF (left), a basic formant (middle), and a fuzzy formant (right), with
their frequency-domain parameters.

corresponds to the time-domain representation of a single formant as an elementary
waveform, i.e., to the impulse response of a resonance. Several FOFs can be added
up to build a desired spectrum (typically five to seven are used for voice synthesis).
The FOF has parameters in both the frequency domain and the time domain.
The frequency-domain parameters, shown in Fig. 5.25, are center freqaency
amplitudea, bandwidthb, and skirt widths (which can be controlled independently
from the bandwidth). The time-domain parameters are phase, excitation time, and
attenuation time. Although FOFs give a very precise way to define a spectrum for
singing voice and general music synthesis, they contain more information than
required to represent a spectral envelope.

4.5.2 Basic Formants

A basic responsa may be described in terms of parametgr&enter frequency),

by (bandwidth), andax (maximum amplitude in dB). Bandwidth specifies the
—3 dB frequency width of the formant (the frequency range over which the for-
mant’s response is not less than 3 dB below the maximum amplitude). With these
parameters, the spectral envelope forktiteformant can be defined as a function

of frequencyf using the formula

o (F) = 102 . (5.50)

3 c—f 2
1+ (108 -3) (1)
This function approximates very well the magnitude transfer function of a two-

pole filter? the usual model for a resonance. The final spectral envelope is then
obtained by summation of the basic formant functiogd).

4.5.3 Fuzzy Formants
Representing real-life spectral envelopes precisely in terms of formants is often dif-
ficult. However, the approximate locations and bandwidths of formants, in vowels

2 The smaller skirt width ofy ( f) compared to that of the magnitude transfer function of a
two-pole filter is in fact an advantage, because itincreases the locality of the representation.
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forinstance, are fairly well known. This motivates an augmentation of the sampled
representation (Section 4.3) by defining a fuzzy formant as a formant region within
a sampled spectral envelope where it is believed or known that a formant lies. This
knowledge can come from observation of spectral data or from source material
labels (e. g., a recording of the voice with annotations on what phonemes were
uttered), or from an automatic formant estimation that includes an estimate of the
uncertainty of the estimate.

A fuzzy formant is specified by three frequency parameters, the lower bound
[, the upper bound, and the centeg, if known. The center corresponds to the
frequency location of the formant peak in the spectrum. Additionally, a bookkeep-
ing parameter is used to identify the formants, so that they can be associated into
(fuzzy) formant tracks.

4.5.4 Discussion of Formant Representation

Because a small spectral dip can suddenly create a new formant candidate in the
estimation procedure, the formant representation is not stable. However, with the
fuzzy formant representation, such instabilities are not damaging. They are local,
flexible, and very easy to manipulate. Synthesis is reasonably fast, both for the
frequency domain and, except for fuzzy formants, for the time domain. If a pure
formant representation is sufficient, FOFs and basic formants are very compact for
storage. Otherwise, they need a residual spectral envelope, which is the difference
between the complete spectral envelope and the spectral envelope expressed with
formants, in sampled representation to be stored along with them.

In summary, formant representations are very well suited for specifying spectral
envelopes manually, especially for convincing synthesis of the voice.

4.6 Comparison of Representations

Table 5.1 (Schwarz and Rodet, 1999) shows a condensed comparison of the repre-
sentations discussed in the preceding sections. The sgefes{(, 0,—, —) indicate

the authors’ judgment of the degree to which the requirements from Section 4.1
have been fullfilled. The precision requirement is not listed, as it is fulfilled by all
methods.

TABLE 5.1. Comparison of spectral envelope representations.
Flexibility / Speed of

ease of synthesis Memory Manual
Representation Stability Locality manipulation TD/FD space input
Filter ++ - -=/= ++/0 + -
coefficients
Sampled ++ ++ ++/+ -/ ++ 0 +
Geometric — + +/4++ —/+ + ++

Formants - + ++/++ +/0 ++ ++
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5 Transcoding and Manipulation of Spectral Envelopes

“Transcoding” (Section 5.1) is the conversion of a spectral envelope from one
representation to another representation, with the least possible change of its form.
“Manipulation” (Section 5.2) is the deliberate change of it for musical purposes.
“Morphing” (Section 5.3) is a special kind of manipulation that gradually changes
one spectral envelope into another.

5.1 Transcodings

Transcoding of a spectral envelope from any type of representation into the sam-
pled representation (Section 4.3) is performed simply by sampling the curve gen-
erated by the defining equation of its original representation. Transcoding from
the sampled representation to other types of representations can be achieved by
re-estimating the spectral envelope with an appropriate estimation method. Di-
rect conversion of a sampled representation into other representations, or conver-
sions among other representations, are less trivial, and only one example is given
here.

5.1.1 Converting Formants to AR-Filter Coefficients

For voice synthesis, the ability to directly calculate AR-filter coefficients from
spectral envelope data represented in terms of basic formants is important. From
the formant parameters, we first compute the magnitude transfer funktias)|

that should be applied to an excitation function. It is the summ @fdividual
magnitude transfer functions corresponding to each formant (Rodet, 1984). A
serial filter P with magnitude transfer functiofP(w)|, which is the product of
individual formant transfer functions (each corresponding to a conjugate pair of
poles according to the formant frequency and bandwidth), yields peak amplitudes
somewhat different from the desired ones. But, owing to the similarity of peaks
in |P(w)| and|H (w)|, the ratioQ(w) = |H(w)|/|P(w)| is a smooth function ab.

We can then easily compute a few autocorrelation coefficenessociated with
Q(w). Then, by using the Durbin—Levinson method (Markel and Gray, 1980), we
can derive coefficienty for afilter with a magnitude transfer functioB ()| very

close toQ(w). Hence, the product filteD - P has a magnitude transfer function
very close to the desired magnitude transfer functlétw)| (Depalle, 1991).

5.1.2 Formant Estimation

Estimating the parameters of formants from the sampled representation has been
studied by Depalle (1991) using spectral peaks and inflection points, followed
by hidden Markov model (HMM) tracking of formant paths (Depalle et al.,
1993).

Formants can also be determined from all-pole filters obtained by autoregressive
analysis. A large number of methods have been developed for formant estimation
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from speech signals [see, for instance Schafer and Rabiner, 1970; Olive, 1971;
Atal and Hanauer, 1971; Atal, 1974; Chandra and Lin, 1974; McCandleem, 1974;
Markel and Gray, 1980; Rodet and Depalle, 1985; Kopec, 1986; Sandler, 1989; and
Niranjan and Cox, 1994)]. As an example, starting from an all-pole filta)/

we can find the roots of the denominator. Then, the roots are separated into two
sets: The first has only real poles, the global contribution of which represents the
tilt of the source spectrum. Thecomplex pole-pairs of the second set are sorted
into m classesr < p) corresponding tan maxima, because several pole-pairs
may contribute to the same maximum, corresponding to a unique “formant.”

5.2 Manipulations

Manipulation of spectral envelopes is at the heart of the creative process. It allows
composers and musicians to surpass the limitations of recorded sounds, either
by creating sounds extremely different than the originals, to subtly modify given
sounds, or to merge characteristics of different sounds.

While ordinary amplification or attenuation of a spectral envelope is easily
implemented by multiplication by a constant, frequency-selective amplification
or attenuation can be implemented by multiplying by another spectral envelope,
which is equivalent to applying a filter:

v (f)=v(f) va(f). (5.51)

One example is to modify thepectral tilt the overall slope of a speech or
instrument spectrum. For speech, itis one of the acoustic correlates of intensity. For
the singing voice, it is related to vocal effort. For instruments, it can be dependent
on performance dynamic or the relative force with which an instrument is played.
To tilt a spectral envelope by decibels betweerf; > 0 and f, > f;, we can
multiply it by a frequency ramp;( f) (Bennett and Rodet, 1989):

: 1, f < f1
v (f) = In(10) In(f/fy (5.52)
exp(T ngo)l:((fz//fl))) Pz h

For example, ifT = —20 dB,v;( f,) = 107%.

5.3 Morphing

In general, morphing means performing a gradual transition from one parameter set
to another, in our case moving from one spectral envelope to another. The simplest
method for morphing between envelopes is linear interpolation, i.e., computing a
weighted sum of the spectral envelopes. If the envelopes are giver gsand

vo( ) at frequencyf, and the interpolation factor g, then

V(f)=@Q-—m)vy (f)+ mua(f) (5.53)

is the linearly interpolated envelope.
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5.3.1 Shifting Formants

When dealing with the spectral envelope of speech or the singing voice, we want
to preserve the formant structure of the envelope. Therefore, to morph between
two spectral envelopes, we do not want to linearly interpolate the amplitudes at
each frequency as in Eq. (5.53), but rather shift the formants from their place in
the original spectral envelope to that in the target spectral envelope. In fact, we
want to simulate the effect of morphing the articulatory parameters of the vocal
tract. Figure 5.26 compares straightforward linear interpolation with true formant
shifting.

The prerequisites for properly shifting formants are that we know, first, the
original formant locations and, second, which formant in the original spectral
envelope is associated with which formant in the target spectral envelope. The
former is not at all obvious and is a question of formant detection. The latter is
equally difficult for a formant-tracking algorithm without providing manual input,
i.e., the ability to label the formants of successive time frames to define the tracks.
However, an automatic procedure for matching formants between two spectral
envelopes has been proposed in Laura and Rodet (1989).

Fortunately, for some applications, we knawriori where the formants should
be. For example, when treating the voice in a piece with given lyrics, it is known
which vowels are sung at which moment, and thus we can look up the formant
center positions and bandwidths in the phonetics literature. These would be used
to partition the spectral envelope into formant regions so that we can obtain a fuzzy
formant representation, as described in Section 4.5.3.

Spectral Envelope Interpolation Formant Parameter Interpolation

FIGURES.26. Formant interpolation versus formant shift: The dashed curves in both figures
show two spectral envelopes consisting of one formant each. In the left figure we see the
result of direct interpolation of the spectral envelopes, which is a weighted sum of the two
curves, here with an interpolation factor of 0.5. The figure to the right shows what is really
desired: interpolation of the parameters of the formants, resulting in a formant frequency
shift.
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5.3.2 Shifting Fuzzy Formants

The fuzzy formant representation of spectral envelopes consists of an envelope in
sampled representation partitioned into several formant regions, which are indexed
for identification. Given two spectral envelopes each having two fuzzy formants
with the same indices, it is nevertheless not trivial to determine exactly how the
intermediate spectral envelopes, with their formants moving from their positions
in the original envelope to those in the target envelope, are to be generated.

Fortunately, for the special case of two sample-represented envelopes, each
having a single formant, there is an alternative automatic morphing method which
does not require formant indexing. The idea is to first integrate over the envelopes
and then to linearly interpolate between the integrals. Finally, we retrieve the
interpolated formant by subsequent differentiation of the interpolated integral. The
result is that the envelopes are morphed to appropriately shift the single formant.
How this idea works is illustrated in Fig. 5.27.

Formant 1 and Integral Formant 2 and Integral
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FIGURE 5.27. Interpolation of formants by linear interpolation of the spectral integral. All
amplitudes are normalized. The upper row shows the integrals (the cumulative sum) of the
two formants shown as dashed spectral envelopes. The lower left figure shows the linear
interpolation by a factor of 0.5 of the integrals, drawn again as dashed lines. Taking the
derivative of the result in the lower right figure reveals an almost perfectly shifted formant.
(The original formants are shown again in dashed lines for clarity.)
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FIGURE 5.28. Interpolation of two formants by linear interpolation of the integral. Obvi-
ously, the result in the lower right graph does not correspond to the interpolation of the
formant parameters.

Unfortunately, spectral integral morphing fails when there is more than one for-
mant, as can be seen in Fig. 5.28, where two formants are attempted. Nevertheless,
we could do better if we used formant region information. In this case, we could
restrict the technique of linear interpolation of the integral independently to each
of the given formant regions, with an appropriate fade-in and fade-out applied at
the region borders.

5.3.3 Morphing Between Well-Defined Formants

If both the original and target spectral envelopes to be morphed are well defined
in terms of formants with indices, center frequencies, amplitudes, and bandwidths
given as parameters, vocal-tract-like morphing becomes trivial. Simply the formant
parameters of formants with the same index need to be linearly interpolated, as
shown in Fig. 5.26 (right half).

5.3.4 Summary of Formant Morphing

We can recognize a hierarchy in the spectral-envelope representations in
regard to formant morphing. The hierarchy is, from highest to lowest degree of
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structure:

1. Well-defined formants: can be morphed perfectly.

2. Fuzzy formants: can be morphed reasonably well.

3. Sampled representations of envelopes: can be morphed well only if both original
and target spectral envelopes are characterized by a single formant.

With each step down, we lose some information necessary for formant interpola-
tion. This means that when two spectral envelopes to be morphed have represen-
tations of different hierarchy, we must convert the higher one down to the lower
one’s representation, discarding the higher one’s formant information.

6 Synthesis with Spectral Envelopes

In synthesis by rule (i. e., using a synthesis model rather than analysis data), a
spectral envelope may be given directly as part of the synthesis parameters. With
resynthesis, an input signal may be modified, while taking into account the desired

spectral envelope. Depending on the structure of the synthesis system, several
methods may be used to apply the spectral envelope.

6.1 Filter Synthesis

Various filter implementations have been used for sound synthesis, such as all-pole
filters (Moorer, 1979), simple second-order sections (Beauchamp, 1979, 1982;
Horner and Beauchamp, 1995), second-order sections in cascade (Pierucci and
Paladin, 1997) or in parallel (Klatt, 1980; Holmes, 1983; Rodet et al., 1984; Allen
et al., 1987; Sandler, 1989), and a combination of poles and zeros (Massie and
Stonick, 1992). We will not detail these different types which are abundantly
described in the literature [see for instance Hamming (1977) or Smith (1985)].

If the sound to be changed is in the form of a signal (i.e., not as a spectrum), the
spectral envelope to be applied should be converted to filter parameters. The filter
can be given by its impulse resporiga) for time-domain filtering by convolution
or as a transfer functiohl (w) for filtering in the frequency domain.

If the spectral envelope is represented as AR coefficients, the coeffigiamats
be directly used for time-domain filtering. The transfer functié(w) is defined
proportional to ¥ A with gain factorg:

g g

= P
A(a)) l_ Zaie_jwl
i=1

H (w) = (5.54)

For time-domain filtering of an input sign&(n), we can directly apply the predictor
coefficients to recursively obtain the output samsigs:

p
s(n):gx(n)+Za.—s(n—i) (5.55)

i=1
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Alternatively, by using reflection coefficienks, we can apply a preferred lattice
filter structure [see Markel and Gray, 1980].

If the spectral envelope is given in terms of cepstral coefficiegtshen H
becomes

H = exp(F~*(c)) (5.56)

which by the properties of cepstrum estimation (Section 3.3) is evaluated at the
desired bin frequencies; as

p
H (wj) = exp (Z Ck coska)i> . (5.57)
k=1
If the spectral envelope is defined by any representation other than filter coefficients
(e.g., by conversion, especially from formants, to filter coefficients), the frequency-
domain filterH (w;) is given directly by the evaluation of the appropriate spectral-
envelope formula at the desired frequency hinsThe time-domain filteh can

then be obtained by inverse Fourier transform:

h(t) = F~ (H(w)) (5.58)

6.2 Additive Synthesis

In additive synthesis, the synthetic signal is a sum of the sinusoidal partials,

di(t) = vi(t) sin </ " (t)dt) : (5.59)

whose amplitudes are specified by the sinusoidal spectral envelope, plus a residual
noise whose spectral density (in squared-amplitude per Hertz) is given by a noise
spectral envelope. The residual can be easily synthesized by filtering white noise.
For the sinusoidal part, the amplitude for each partial is equal to the value of the
spectral envelope taken at the frequency of the pattial.

6.3 Additive Synthesis with the FFTF Method

Additive synthesis is usually done with one sinusoidal oscillator for each partial
(Moore, 1990). The cost of this oscillator method is high for sounds that have alarge
number of partials, such as alow-pitched piano tone. To alleviate the computational

3 For resynthesis, instead of imposing the spectral envelope, a mixture (weighted sum)
between the original partial amplitudes, and one or more spectral envelopes is possible,
governed by a mix factan. Considering the mix factor as a functior( f), dependent on
frequency, allows frequency-selective application of spectral envelopes. If the input partials
and the modifying spectral envelope are from different sounds, this is usually called cross-
synthesis, because it crosses the characteristics of two distinct sounds: the partial structure
(presence and frequency location of partials and their development in time) of the input
sound with the spectral envelope estimated from the partial amplitudes of the other sound.
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cost of the oscillator method, one can use the so-called FREthod (Rodet and
Depalle, 1992), based on the short-term Fourier (STF) model of sound signals,
which allows an efficiency gain of 10-30 compared to the oscillator method. It
is implemented in various musical sound synthesis systems (Freed et al., 1993;
Serra et al., 1997; Wanderley et al., 1998). In the FFethod, computation

of partials is done by an inverse fast Fourier transform, a transformation of each
short-term spectrum (STSJ,(k) for framel and FFT-birk, into the corresponding
time-domain signal framsg (n).

To implement this, leN be the number of partials of the signal to be computed
at a certain sample, and letf; (n) yi(n), and¢; (n) be the frequency, the ampli-
tude, and the phase of thi partial, whereé = 1, 2, ..., N. Assuming that these
functions vary slowly in time, for each short time frainey can be replaced by
their mean values, saiy |, yi; andg; . From these values a good approximation
of the short-time spectrurg (k) can be constructed at low cost. The franuo the
signal,s (n), is then computed by an inverse fast Fourier transform, and the signal
s(n) is obtained by overlap-add of successive framedl, I, 1 + 1, ... (Rodetand
Depalle, 1992).

With the FFT! synthesis method, introducing noise components in any narrow
or wide frequency band and with any amplitude is easy and inexpensive. It suffices
to add random complex values to the corresponding bins of the short-time spectrum
under construction before performing the inverse Fourier transfornk hetthe
bin of the STS where noise should be added with an amplituddhenry el ¢«
is simply added t& (k), wheregy | is a random phase. There exist several ways to
obtainel#', which differ by a more or less precise noise distribution and by their
computational and memory cost (Rodet and Depalle, 1992; Freed, 1999).

Similarly, applying a spectral envelope is easy and inexpensive. For each partial
(or for each noise band) at frequengy, it suffices to compute the value of the
spectral envelope( f; ) at this frequency and to use this value as the amplitude
y.1 of the partial (or of the bin of the short time spectrum) in the FFalgorithm.

7 Applications

This section will present some applications of spectral envelopes for sound transfor-
mation and synthesis. Note that using the standardized, open, and extensible Sound
Description Interchange Format (SDIF) (Wright et al., 1998; Virolle et al., 2001)
there is now a way to exchange spectral-envelope data with well-defined semantics
(Schwarz, 1998) among programs, hardware architectures, and institutions.

7.1 Controlling Additive Synthesis

Additive analysis/synthesis is a powerful way to parametrize a sound event into

sinusoidal partials with their frequencies, amplitudes, and phases. This benefit is
also its curse: It puts every minute detail of a sound event at our disposal, but leaves
us with the task to control and manipulate this mass of parameters in a sensible way.



Spectral Envelopes and Additive Residual Analysis/Synthesis 219

So far, control is done by specifying the change of every single parameter over time
by break-pointfunctions [e.g. Fitz etal. (1995) and Horner and Beauchamp (1996)].
Because the number of partials can easily rise into the hundreds, modifications are
tedious. Moreover, doing valid manipulations with regard to signal processing and
from a musical perspective is not obvious, and, what is more, the parameters are
interdependent (e.g., changing the frequency of the partials changes the spectral
envelope, often with undesirable results, as shown in Section 2.1).

Freed et al. (1993) suggest using spectral envelopes to control the amplitudes
of the partials for resynthesis. This drastically reduces the number of parameters,
provides parameter sets that are easily understandable (e.g., formants), and renders
frequency and amplitude control independent from each other.

Also, modeling the residual noise part by filtering white noise with spectral
envelopes makes this component of sound accessible to manipulation. This has
not been possible before in the sampled signal representation of the residual.

The most significant advantage, however, lies in the unified handling of the
noise and sinusoidal parts, because the spectral envelopes of the two parts are
represented in the same way. Therefore, the very same manipulation can affect
both parts synchronously, if this is desired (Rodet et al., 1995).

7.2 Synthesis and Transformation of the Singing Voice

One of the primary applications of spectral-envelope control is high-quality syn-
thesis of the singing voice. Within the additive-synthesis paradigm, synthesis is
often a resynthesis of the previously analyzed and modified voice signal. For mod-
ifications to be effective, constraints posed by the human vocal apparatus should
be taken into account.

For example, as demonstrated in Section 2.1, pitch transpositions of the voice
sound very unnatural when spectral envelopes are not corrected, because they
reflect the configuration, especially the length, of the vocal tract. To avoid this, itis
necessary to estimate the spectral envelope of the original sound and reconstitute
it by applying it to the transposed sound.

Also, many aspects of the expressivity of the singing voice depend on the spectral
envelope, such as timbral variations due to changes of spectral tilt, rather than on
pitch and amplitude alone.

With the methods of morphing between spectral envelopes and formants de-
scribed in Section 5.3, a new type of high-quality additive synthesis of the voice
is possible. It uses two representations, each one suited for a specific part of the
voice. The first one follows a very general harmonic-sinusoids-plus-noise model
(Laroche et al., 1993; Oudot, 1998), controlled by envelopes in a sampled repre-
sentation, to preserve rapid changes in transients (e.g., plosives) and noise spectral
envelopes in fricatives. The second one represents spectral envelopes in terms of
formants in order to preserve precise formant characteristics in the steady part of
vowels. It is then possible to combine the two representations and to interpolate
between precise formants and spectral envelopes with marked formant regions
(i.e., fuzzy formants, see Section 4.5.3). This combines the excellent generation
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of vowels by precise formant synthesis [which is available, e.g., in thenC
synthesizer (Rodet et al., 1984)] with the flexibility of general additive synthesis
[e.g., inthe graphical generalized diphone control and synthesis progreronlE
(Rodet et al., 1988; Rodet and Lefevre, 1997)].

8 Conclusions

In Section 4.1 we stated that a good representation should offer spectral-envelope
parameters that are flexible and easy to manipulate. However, what does it mean
for parameters to be easy to manipulate? For singing voice and speech applications
this is quite clear, but for the large multitude of possible musical applications a
good guess is to offer the greatest possible flexibility. As more applications for
spectral envelope manipulation appear, the concept of “best representation for
manipulation” will become more clear.

In the context of computer music, the control of spectral envelopes offers
the possibility of influencing a sound’s timbre to a great degree, allowing com-
posers to obtain a desired effect or characteristic of a sound by the use of a
flexible, unconstrained representation. To the performer, the real-time applica-
tion of spectral-envelope manipulation greatly enhances expressivity through eas-
ily understandable and “musically significant” parameters, i.e., parameters that
pertain to a model (e.g., the source—filter model) that is valid for many musical
instruments.

Between the creation of completely new sounds and the modification of exist-
ing sounds lies the possibility for combining features of different sounds. Cross-
synthesis using spectral envelopes can be used to combine characteristics of two
distinct sounds: For example, the partial-frequency structure may be taken from
one sound and the spectral envelope from another.

Finally, we would like to consider the application of spectral-envelope manipu-
lation for the creation of music. To this end, we asked computer music composers
and performers what types of operations for manipulating spectral envelopes they
would like to have available, and they invariably came up with ideas about chang-
ing spectral envelopes in time. Therefore, for worthwhile artistic applications, we
must raise our point of view above the one-dimensional perspective adopted in
most of this chapter, where the richness and complexity of sound has only been
viewed through the keyhole of a single time-frame. Alas, this is beyond the scope
of this chapter. Although we have developed here several mechanisms for control-
ling time variations, the question of how to apply and manipulate them will have
to be answered elsewhere.

9 Summary

In this chapter, we gave a definition of spectral envelopes and their relation to
source—filter models and perception (Section 2). We examined various methods
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for estimating, representing, transcoding, and manipulating spectral envelopes,
and their application to sines-plus-residual analysis and synthesis of musical
sounds.

For estimation of spectral envelopes (Section 3), we first stated requirements
for exactness, robustness, and smoothness, and then described the AR, cepstrum,
and discrete cepstrum methods in detail. Also, we examined various distinct possi-
bilities for improving the discrete cepstrum method: regularization, stochastic (or
probabilistic) smoothing, nonlinear frequency scaling, and adding control points
to the envelope.

After defining requirements for the representation of spectral envelopes
(Section 4), we examined several representations including those which use filter
parameters, frequency-domain sampling, geometric representations (break-point
functions and splines), and formant representations. A sampled representation,
combined with indications of the regions of formants (called “fuzzy formants”)
was defined to allow combining spectral envelopes with precise formant descrip-
tions (FOFs and basic formants).

Methods of transcoding between the different representations of spectral en-
velopes, and some types of manipulations were examined in Section 5. Special
attention has been given to morphing between spectral envelopes including those
with formants. Other manipulations, based on primitive operations on amplitudes
of spectral envelopes were covered.

For applying spectral envelopes to sound synthesis, two cases of filter synthesis
(AR and cepstral) and additive synthesis (direct and PfFivere examined in
Section 6. For the former, methods for converting different representations to
time-domain or frequency-domain filters were given.

Appendix: List of Symbols

t continuous time

n sample number

s(t), s(n) continuous, discrete signal

X(t), x(n) continuous, discrete excitation or source signal
h(t), h(n) filter impulse response

d(t), d(n) continuous, discrete sinusoidal signal
r(t), r(n) continuous, discrete residual noise signal
p(t), q(t) sinusoid partial continuous signal

Y w) signal spectral envelope

X(w) excitation or source spectral envelope
H(w) filter transfer function

A(w), A(2) all-pole filter transfer function

g AR predictor coefficients

ki AR reflection coefficients

g LPC gain factor

Ck kth cepstral coefficient
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p order of spectral envelope estimation
N number of partials

M number of frequency bins

w, f angular, Hertz frequencies

X, Vi i th sinusoid partial amplitudes

vi, v(f) spectral envelope bin, in frequency—amplitude plane
3() Dirac delta function

F,F1 forward, inverse Fourier transform

10 phase of sinusoid partial

o) cosine matrix

v cosine product matrix

o normalization factor

y(f) frequency-scaling function

7i(w, Y) probability distribution function

T spectrum tilt (in decibels)
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A Comparison of Wavetable and FM
Data Reduction Methods for
Resynthesis of Musical Sounds

ANDREW HORNER

1 Introduction

An ideal music-synthesis technique provides both high-level spectral control and
efficient computation. Simple playback of recorded samples lacks spectral con-
trol, while additive sine-wave synthesis is inefficient. Wavetable and frequency-
modulation synthesis, however, are two popular synthesis techniques that are very
efficient and use only a few control parameters.

The term “wavetable synthesis” is currently often used synonymously with
“sampling synthesis” in the music industry. However, throughout this chapter the
classical computer music meaning of “wavetable synthesis” is used, based on the
use of oscillator tables loaded with sums of harmonic sinusoids and indexed by
phase functions that depend on a fundamental frequency. With multiple wavetable
synthesis, several wavetables can be independently amplitude-controlled and
summed (wavetable indexing) or simply crossfaded one after the other (wavetable
interpolation) to produce time-varying spectral changes.

There are several types of frequency-modulation (FM) synthesis, including for-
mant FM with multiple carriers, double FM with multiple parallel modulators,
and nested FM with serial modulators (see Fig. 6.1). During the height of FM’s
popularity in the 1980s, synthesizers such as Yamaha's DX7 allowed users great
flexibility in mixing and matching with these models.

A fundamental problem of computer music is to automatically generate good
parameters for resynthesizing recorded instrument tones. Recent work has also
shown how to optimize wavetable and FM parameters (Serra et al., 1990; Horner
et al., 1993a, b; Horner and Beauchamp, 1996; Horner, 1996a, b; Horner, 1998)
for best matching resynthesized tones to specific original tones.

So, which type of wavetable or FM synthesis is best? Which uses the least
memory, and which uses the least computation? This chapter compares methods
for matching harmonic instrument tones with various wavetable and FM models.
Section 2 describes the optimization methods used and the metric employed to
measure how well a synthesis method matches instrument time-varying spectra.
Section 3 reviews various wavetable and FM synthesis and parameter-matching
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FIGURE 6.1. Block diagrams of three basic FM synthesis methods.

methods. Section 4 gives results for trumpet, tenor voice, and Chinese pipa sounds.
In each case, wavetable and FM results are compared and conclusions about their
effectiveness for matching acoustic instrument tones are given in terms of the
number of modules required for a given synthesis error and the amount of table
lookups required.

2 Evaluation of Wavetable and FM Methods

The performance of a synthesis method can be measured in terms of how well
it can resynthesize particular musical instrument tones. Synthesis parameters are
evaluated according to methods developed in previous parameter-matching studies
using genetic algorithms (GA) (e.g., Horner et al., 1993a, b). Figure 6.2 shows the
evaluation procedure overview.

First, original sounds are transformed into corresponding time-varying
frequency-domain spectra using phase vocoder (Allen, 1977; Dolson, 1986) or
frequency-tracking (McAulay and Quatieri, 1986) short-time spectral analysis
techniques. Beauchamp (1993) gives more details on the application of these meth-
ods for the analysis of quasiharmonic sounds.

Next, parameter sets for a particular synthesis method are postulated and cor-
responding spectra are computed. For each parameter set synthetic and original
spectra are compared. The collection of parameter sets to be examined is called a
parameter space. Wavetable and FM parameter spaces are generally too big to allow
brute-force enumeration of all the possible parameter combinations. For example,
if each of 20 harmonics in a wavetable were allowed to take on relative amplitudes
between 0.00 and 1.00 with a resolution of 0.01,2@@mbinations would have
to be tested, a task not possible in a lifetime, even with current technology. Special
optimization algorithms are necessary to arrive at parameters that allow low-cost
synthesizers to closely approximate an original complex sound.
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FIGURE 6.2. Overview of the analysis, matching synthesis, and evaluation procedure.

An efficient approach is to choose certain fixed (time-invariant) synthesis pa-
rameters using GA optimization (Holland 1975; Goldberg 1989) or by using an
enumerative method in the few instances when the search space is small enough
to explore by brute force. However, to match a time-varying spectrum with fixed
parameters (which determine wavetable or FM carrier outputs), the time-varying
amplitude envelopes associated with each wavetable or FM carrier must be com-
puted. Fortunately, it turns out that calculating amplitude envelopes is a linear
problem that can be solved by the method of least-squares (Press et al., 1985),
thus easily providing a set of amplitude envelopes that minimize the spectral error
between the original and synthetic signals (Horner et al., 1993b).

Next, the time-varying spectrum of the synthetic signal is determined from the
synthesis parameters and amplitude envelopesliafive-amplitude spectral error
function is then used to evaluate the difference between the original and synthetic
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signals, averaged over time:

N 1/2
hars , 2
1 Nirames kZ:]_ (bk(tl) - bk(ti ))
Erel = Ns - Nh ) (6.1)
rames ; _ ars
- > B

whereby(t) andb, (t) are the time-varyingth harmonic amplitudes of the original
and synthetic spectrum, respectively, thare times at which these functions are
sampled NramesiS the number of time values used in the measurementNagd

is the number of harmonics.

The timest; used in the error calculation yield a relatively small number of
representative test spectra and are not necessarily equally spaced. Judicious choice
of these times allows the error function to be weighted appropriately. For example,
times taken from the attack portion of a tone are very good choices, because the
attack is a perceptually critical and a fast-changing portion of the tone (Clark
etal., 1963; Berger, 1964; Grey and Moorer, 1977). After some experimentation, a
simple method was determined where half of the times are taken (equally spaced)
from the attack portion of the tone (where peak RMS amplitude defines the end
of the attack) and the others (again, equally spaced) are taken from the rest of the
tone. In practice, 20 error measurement times are taken altogether, with 10 equally
spaced times selected from each of the two time regions.

Note that the relative-amplitude spectral error returns zero if an exact match
occurs, and an error of 0.1 represents a 10% average spectral error. An error of 1.0
results from comparing silence to the original tone. The relative-amplitude spectral
error is not necessarily a perfect measure of a match’s subjective quality. It is possi-
ble that a match with slightly more error may sound more like an original tone than
one with less error. However, Eq. (6.1) is reasonably accurate and very efficient.

3 Comparison of Wavetable and FM Methods

This section gives a brief overview of the generalized wavetable, wavetable index-
ing, wavetable interpolation, group additive, formant FM, double FM, and nested
FM matching synthesis methods. Section 4 shows how well each of these methods
can simulate three different original musical instrument tones.

Figure 6.3 shows the relation of the different parameter spaces to one another.
These spaces are subsets of all spectra possible in generalized wavetable space.
For example, FM is a subset of this space because a wavetable can simulate the
spectrum produced by an FM module with fixed modulation indices and integer
carrier-modulator ratios. Also, double and nested FM contain formant FM as a
special case at their intersection, where the second modulator has a modulation
index of zero. There may be some overlap between spaces such as wavetable
indexing and FM, but that depends on the original tone under consideration.
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FIGURE 6.3. Spectral subspace relationships of the various wavetable and FM synthesis
methods.

3.1 Generalized Wavetable Matching

The most straightforward approach to wavetable matching is to attempt direct op-
timization of the harmonic amplitudes used as basis spectra (Horner et al., 1993b),
a method called generalized wavetable matching (also called “raw wavetable”
matching), since it considers solutions throughout the entire wavetable space.
Figure 6.4 shows the generalized wavetable parameters in a multiple wavetable
block diagram. Because it is impractical to consider all possible matches, even for
the one wavetable case, some sort of optimization procedure is always necessary.

3.2 Wavetable-Index Matching

Wavetable-index matching refers to a method of selecting spectra (or correspond-
ing wavetables) from an ensemble of spectra that represent a sound. For this
method, an index corresponds to a frame number of a time-varying spectrum
used in the matching process. Instead of postulating spectra using some arbitrary
method, this method selects a limited number of spectra from the original tone’s
time-varying spectrum as basis spectra. This approach is intuitive, guarantees an
exact match at the times corresponding to these selected “spectral snapshots,” and
usually makes excellent matches at neighboring points as well. Wavetable indexing
in a sense “cheats” by taking parameters directly from the original sound, rather
than postulating some general synthesis parameters. Figure 6.5 illustrates a mul-
tiple wavetable synthesizer containing three hypothetical basis spectra. These are
first converted into three waveforms, then they are amplitude-controlled by three
corresponding envelope functions, and finally they are summed to form the final
output. Note that with wavetable indexing there is no restriction on the envelope
functions other than that the resulting time-varying spectrum should be as close as
possible to that of the original sound.

With typically 500—2000 spectral snapshots to choose from for each tone, brute-
force enumeration of indices can actually be used to test all the possible index
choices for 1- or 2-table matches in a reasonable amount of time. For example, for
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FIGUREG.5. Wavetable-index-synthesis block diagram (with three basis spectra) and typical
parameters. Basis spectra are taken from original sound.

the 1-table case, it is simply a matter of determining which frame gives the least
error according to Eq. (6.1). In this case, the synthetic harmonic amplibydes

would vary in time, but their ratios would always correspond to the single selected
spectrum. For the 2-table case, some spectral variation is possible. [Recall that each
harmonic amplitude corresponds to a sum of weights derived from a least-squares
calculation multiplied by the fixed harmonic amplitudes of the basis wavetable

spectra. See Horner et al. (1993b) for details.] However, for three or more tables,
optimization is required.

3.3 Wavetable-Interpolation Matching

Wavetable interpolation is a special case of wavetable indexing where waveta-
bles cross-fade two-at-a-time (Serra et al., 1990; Horner and Beauchamp, 1996).
Again, the wavetable spectra are taken directly from the original sound’s
time-varying spectrum, so like wavetable indexing, wavetable interpolation
“cheats” by limiting the wavetable space to waveforms in the actual sig-
nal. In addition, only linear cross-fade interpolation, the simplest interpolation
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amplitude
=
o

time

FIGURE 6.6. Example set of cross-fading amplitude envelopes used for wavetable-
interpolation synthesis. The numbers refer to the wavetable numbers.

method, is considered in this chapter. Figure 6.6 shows a typical set of linear-
wavetable-interpolation amplitude envelopes, showing that each new wavetable
begins to fade in at the same time the previous one begins to fade out. Figure 6.7
depicts a wavetable interpolation synthesizer with a complete set of parameters
for the three-wavetable case. Note that it is identical to Fig. 6.5 except for the
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FIGUREG.7. Wavetable-interpolation-synthesis block diagram (with three basis spectra) and
typical parameters. Basis spectra are taken from original sound.
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amplitude envelopes. However, for the same synthesis accuracy, the total number
of basis spectra usually must be much larger for wavetable interpolation than for
wavetable indexing.

As a more general approach, wavetable indexing generally performs better than
simple wavetable interpolation when the same number of total wavetables is used.
This is because wavetable indexing can use more than two active wavetables at
any given time, and its amplitude envelopes are not restricted to linear cross-fades
(they can even go negative). However, wavetable interpolation is more intuitive
for these same reasons. Also, because wavetable interpolation only uses two ac-
tive wavetables at any given time, it is better for situations with limited com-
putation capability. Still, can wavetable interpolation achieve a match almost as
good as wavetable indexing, or is it always much worse? Or, on the other hand,
can wavetable indexing achieve almost the same level of efficiency as wavetable
interpolation?

Like wavetable indexing, wavetable-interpolation matching initially selects
from typically 500-2000 spectral snapshots of an original tone and then, in syn-
thesis, cross-fades between a few spectra chosen from this group. As mentioned
previously, brute-force enumeration can be used to pick one or two basis spectra
(wavetables), but special optimization methods are required for the case of three
or more wavetables.

3.4 Formant-FM Matching

Formant FM is achieved by a single modulator oscillator driving one or more
carrier oscillators whose carrier frequencies are integer multiples of the mod-
ulator frequency (Chowning, 1973, 1980). The name stems from the fact that
when modulation indices are low and the modulation frequency is equal to or
lower than a carrier frequency, each carrier produces a relatively narrow band
of components corresponding to a spectral resonance or formant. While many
FM-synthesis patches (including the DX7 patches) use time-varying modulation
indices, spectral oscillations resulting from time-varying indices make it difficult
to match acoustic instruments (Horner et al., 1993a). Therefore, only fixed mod-
ulation indices are considered here. The GA optimization procedure restricted
modulator frequency ratios to integer values between 0 and 15 and modulation
indices to values between 0 and 12.7, in increments of 0.1.

FM-generated spectra often produce negative-amplitude partials, corresponding
to 180 phase shifts from their positive amplitude counterparts (see Fig. 6.8).
Unfortunately, negative-amplitude components can cause spectral differences due
to cancellations between carriers even if the absolute values of the components
match the originals exactly. Whether components are positive or negative must
be determined before the amplitude envelopes can be constructed and a match
evaluated. More details about FM signs are given in previous papers (Horner et al.,
1993a; Horner, 1996a). Figure 6.9 shows a formant FM block diagram with typical
parameters. For this FM case a relative-amplitude spectral error function somewhat
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FIGURE 6.8. FM-generated spectrum with both positive and negative amplitude compo-
nents.

different than that of Eq. (6.1) was constructed. It takes longer to compute than the
wavetable fitness functions because of the importance of spectral sign selection.

3.5 Double-FM Matching

Double-modulator FM (Schottstaedt, 1977; LeBrun, 1977) uses two modulators
for each carrier instead of one as used in formant FM. Recent work has shown
how to compute double-FM parameters (Tan and Lim, 1996; Horner, 1996a) for
matching acoustic instrument sounds. Again, only fixed-modulation indices are
considered, as in the case of formant FM. Figure 6.10 shows a double-FM block
diagram and parameters for the three-carrier case. Note that in this configura-
tion each carrier, whose frequency is tuned to an integer multiple of the funda-
mental frequencyf;, receives phase information from one common modulator
tuned to f; and one independent modulator tuned to an integer multipl§ .of
Thus, there are two indices and two integer frequency ratios to determine for each
carrier.

The GA-optimization procedure restricts each carrier’s second modulator to take
on integer frequency ratios between 1 and 4, because modulation-frequency ratios
greater than about 4 produce spectra with strong formants in upper harmonics, not
a common feature of acoustic instruments. It allows both modulation index values
to range between 0 and 12.7, in increments of 0.1.
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FIGURE 6.9. Formant-FM synthesis block diagram (with three carriers) and typical param-
eters.

3.6 Nested-FM Matching

Justice (1979) introduced a nested-modulator FM model, which utilized two mod-
ulators connected in serial rather than parallel. Payne (1987) extended Justice’s
model to a pair of carriers with nested modulators. The second carrier was added
so that the two carriers could contribute to independent frequency regions. While
this allows a more accurate match than a single carrier, it doubles the amount
of computation required for resynthesis. Horner (1998) described how to match
nested-FM parameters for an arbitrary number of carriers. Figure 6.11 shows a
nested FM block diagram and parameters for the case of three carriers. Note that
each carrier's independent modulator receives phase information from a common
modulator tuned to the fundamenthl. Again, two indices and two integer fre-
guency ratios must be determined for each carrier.
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FIGURE 6.10. Double-FM synthesis block diagram (with three carriers) and typical param-
eters.

The number of modulators is not necessarily restricted to two in nested modula-
tor FM. In fact, Justice’s method interactively added nested modulators. Of course,
each modulator adds more complexity to the model, making optimization more
difficult. In this chapter, investigation is limited to a single nested modulator.

Again, only fixed modulation indices are used. Both modulators are restricted
to take on integer frequency ratios between 1 and 4, allowing the carrier’s formant
to range up to the fourth harmonic. Smaller frequency ratios tend to be the most
useful in nested FM, because they help concentrate the energy in the lower har-
monics as in most instrument tones. Both modulation index values range between
0 and 6.3, in increments of 0.1.
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FIGURE 6.11. Nested-FM synthesis block diagram (with three carriers) and typical param-
eters.

4 Results

The wavetable and FM matching procedures were tested on several musical in-
strument sounds including those of the trumpet, tenor voice, and Chinese pipa. For
each sound, the relative-amplitude spectral error is plotted against the number of
wavetables/carriers to show how the error decreases as more units are added to the
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FIGURE 6.12. Time-varying amplitude spectrum of a 350 Hz)({Fumpet tone.

synthesis model. To compare the computational efficiency of the various wavetable
and FM models, error is also plotted against the number of table lookups for each
method. For each instrument sound, 20 harmonics were used in the matching
process.

4.1 The Trumpet

Figure 6.12 shows the amplitude-vs-time envelopes of A(B60 Hz) trumpet
tone’s first 10 harmonics. Note that harmonic envelopes 3 and 4 have differ-
ent shapes from the others. Also, the higher harmonics reach their peak more
slowly and decay faster than the lower harmonics, a common characteristic of brass
instruments.

Graphs of relative-amplitude error vs number of wavetables or FM carriers used
by the various synthesis methods for the trumpet tone are overlayed in Fig. 6.13.
The knees of the curves generally occur between four and five wavetables or carri-
ers. The wavetable index method consistently returns the lowest error, with nested
FM the next best for three or more carriers. Figure 6.13 compares the methods for
cases where hardware is already available for wavetable or FM synthesis, and it
provides useful data for making a decision on the number of wavetables or carriers
necessary to achieve a desired spectral error. However, it does not make a fair
comparison in terms of total synthesis computation.

Figure 6.14 compares the computational efficiency of the different synthe-
sis methods by plotting relative-amplitude error against the number of table
lookups required to compute each output sample. Note that wavetable inter-
polation uses only two lookups no matter how many wavetables are installed
and is therefore the best choice if computation is the main concern, as is often
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FIGURE 6.15. Time-varying amplitude spectrum of a G3 tenor voice tone.

the case in software synthesis applications. For the trumpet tone, wavetable in-
terpolation was able to reduce the error to 2% with 12 wavetables. Wavetable
indexing required six wavetables to reach the same accuracy level, correspond-
ing to about three times the amount of computation as wavetable interpola-
tion.

4.2 The Tenor Voice

Figure 6.15 shows the time-varying amplitude spectrum o§ 4192 Hz) tenor

voice tone. This tone has a wide frequency vibrato with accompanying amplitude
modulation which is very strong for harmonics 3—-6 and 12-15, while having little
effect on harmonics 1-2 and 7-11. There is a prominent formant resonance around
harmonics 13 and 14 (approximately 2600 Hz), corresponding to the “singing
formant” (Sundberg, 1974).

Figure 6.16 shows relative error plotted against numbers of wavetables or FM
carriers. Wavetable indexing again gives the best results, but wavetable interpola-
tionis a close second. This makes sense because as the tenor’s harmonic frequencies
swing back and forth they cause the harmonic amplitudes to swing between two
different sets of points on a fixed spectral envelope (Maher and Beauchamp, 1990).
Thus, wavetable interpolation can easily cross-fade back and forth in synchroniza-
tion with the tenor’s amplitude modulation.

Figure 6.17 shows relative error plotted against number of table lookups.
Wavetable indexing with two wavetables requires about the same computation as
wavetable interpolation. In general, wavetable indexing and interpolation perform
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very comparably on this tenor sound. Even generalized wavetable synthesis per-
forms better than the FM methods, indicating that the tenor tone is difficult to
simulate with FM.

4.3 The Pipa

The pipa is a classical Chinese instrument that looks a little like a guitar but
has a “twanging” sound more like an Indian sitar. Figure 6.18 shows the time-
varying amplitude spectrum of @8 Hz) pipa sound, which like a guitar decays
exponentially albeit with some slowly varying oscillations (which may account for
the twanging). These oscillations are out of phase with one another, making this a
more difficult matching problem than the previous two examples.

Figure 6.19 shows the decrease of relative error with more GA-optimized
wavetables or FM carriers for the pipa sound. The wavetable errors are much
higher for the pipa than for the trumpet and tenor because of the difficulty of
matching the spectral oscillations. Again, wavetable indexing performs best.

Figure 6.20 shows relative error plotted against number of table lookups. Results
for the pipa are similar to those of the trumpet, with wavetable interpolation able
to reduce the error down to about 10% by using 12 wavetables, while wavetable
indexing requires aboutthree times as much computation to achieve the same result.

5 Conclusions

The ability of various wavetable and FM synthesis methods to match the dy-
namic spectra of musical instrument tones such as those of a trumpet, a tenor
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voice, and a Chinese pipa have been compared. Wavetable indexing and interpo-
lation consistently perform the best in terms of memory and computation.

In terms of the number of wavetables or carrier oscillators required for a given
error level, wavetable indexing yields the best matches. This indicates that when
computational resources are modest, wavetable indexing is probably the best all-
around method.

However, for the same number of table lookups per sample computation,
wavetable interpolation consistently yields the best matches. This indicates that
wavetable interpolation is a good choice for situations where computation is
overwhelmingly the main factor, such as with PC sound cards affording limited
computation that must be shared between several voices.

The FM methods give much worse results for matching the three tones investi-
gated. Because these tones are quite representative of the variety one would expect
to encounter, it appears that FM methods are not intrinsically as well suited for
simulating acoustic instruments as wavetable synthesis. However, efficiency and
hardware issues can increase the desirability of such apparently inferior synthesis
techniques. For example, a big advantage of FM is that it requires little wavetable
memory (only one sine-wave table), making it especially useful in sound cards
with limited on-board memory and in other real-time systems. The memory sav-
ings might well be worth the cost of using extra carriers to achieve more accuracy.
Also, wavetable and FM synthesis each have certain types of sounds they can
do especially well (and not so well). Adding more wavetables or carriers always
improves the match.

High-quality matching to original sounds may not be important if one desires
to mutate a sound into something exotically different. Both wavetable and FM
matching provide interesting points of departure for instrument designers in ap-
plications such as timbre hybridization (Beauchamp and Horner, 1998).
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The Effect of Dynamic Acoustical
Features on Musical Timbre

JOHN M. HAJDA

1 Introduction

Timbre has been an important concept for scientific exploration of music at least
since the time of Helmholtz ([1877] 1954). Since Helmholtz's time, a number
of studies have defined and investigated acoustical features of musical instrument
tones to determine their perceptual importance, or salience (e.g., Grey, 1975, 1977;
Kendall, 1986; Kendall et 311999; Luce and Clark, 1965; McAdams et al., 1995,
1999; Saldanha and Corso, 1964; Wedin and Goude, 1972). Most of these studies
have considered only nonpercussive continuant tones of Western orchestral
instruments (or emulations thereof). In the past few years, advances in computing
power and programming have made possible and affordable the definition and
control of new acoustical variables. This chapter gives an overview of past and
current research, with a special emphasis on the time-variant aspects of musical
timbre. According to common observation, “music is made of tones in time”
(Spaeth, 1933). We will also consider the fact that music is made of “time in
tones.”

The famous music psychologist Carl Seashore recognized that, of the four major
perceptual attributes of tone—pitch, loudness, duration, and timbre—timbre is
“by far the most important aspect of tone and introduces the largest number of
problems and variables” (Seashore, 1938/1967, p. 21). There are many facets to
the complexity of timbre, one of these being the dual categorical and continuous
nature of timbre as it is used in real-life musical situations. We categorize familiar
musical instruments when we hearthem: “that’s a piano” or “that’'s atrumpet.” Also,
even if we do not know the exact name of an instrument, we can often categorize its
sound into its correct instrument family, such as bowed string, woodwind, or brass
(Clark et al., 1964). However, musical timbres can also be placed along continua,
or dimensions, such that one timbre is said to have more or less of a particular
perceptual attribute (or simply attributes) than another does. This concept is more
elusive than simple categorization but can be easily demonstrated by auditory
morphing [e.g., Slaney et al. (1995)]. Finally, we can assign a considerable range
of sounds to the same instrument label; consider, for example;hthleimeau
versugclarino registers of the clarinet, aul tastoversussul ponticelloplaying on
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the violin. Sandell (1998) posits that an instrument’s characteristic aural signature,
or macrotimbre, is learned by exposure to that instrument playing a variety of
spectra over different pitches. A single note may be insufficient to satisfactorily
code a macrotimbre after a listener has been exposed to different performances,
pitches, loudnesses, and durations.

Researchers have used two basic sets of methods for studying the categorical
and continuous nature of timbre. The first set of methods falls under the global
term classification, which, as its basic operation, is the partitioning of a collection
of objects into groups (Estes, 1994). Therefore, categorization, recognition, and
identification are all subsets of classification. The second set of methods utilizes
what may be called relational measures. Here, an interval or ratio measure allows
for comparisons between classes of objects. A measure of similarity, in which a
subject hears a pair of sounds and rates them along a scale between “similar” and
“not similar,” is one such example. Another example is Verbal Attribute Magnitude
Estimation (Kendall and Carterette, 1993a), in which a subject rates a sound along
a scale that is anchored by a verbal attribute and its negation, such as “nasal” and
“not nasal.” Although the boundaries between classification and certain relational
measures such as similarity become blurred in theories of cognition [e.g., Estes
(1994)], from the point of methodological operations the distinction is still useful.

As mentioned above, most previous research has considered only single, iso-
lated, continuant tones. Researchers have investigated the relative salience of both
global time-envelope and spectral characteristics of these tones. In general, the
global time-envelope constituents are the attack, the steady state, and the decay.
The spectral characteristics are more varied, but generally include the relative
energy of upper- and lower-frequency components, frequently measured by the
spectral centroid; a feature of the spectral envelope shape called spectral irregu-
larity; and various measures of how the individual frequency components change
through time, including mean coefficient of variation and spectral flux. The fol-
lowing section will consider each of these parameters.

2 Global Time-Envelope and Spectral Parameters

What we know is largely determined by what we ask and how we ask it (Kendall
and Carterette, 1992). In empirical studies of musical timbre, the types of tones
researchers choose to investigate and the way in which their parameters are op-
erationally defined can lead to ambiguous—or even conflicting—results. This is
illustrated in the ongoing debate regarding the relative perceptual importance of
the global envelope constituents of continuant tones.

2.1 Salience of Partitioned Time Segments

In most research, the global time envelope of an isolated continuant tone con-
sists of its attack, steady state, and decay segments. With regard to the attack
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and steady-state segments, past and current findings have supported one of the
following three hypotheses:

1. The attack is more salient than the steady state.
2. The attack and steady state are equally salient.
3. The steady state is more salient than the attack.

In many studies, tone segments are artificially created by the imposition of a
constant time interval from the beginning (for the attack) or from the end (for
the decay) of the musical signal. These time intervals are deterraipgdri and
sometimes arbitrarily; most researchers choose either a time from onset that is well
into the steady-state portion of each stimulus or a time from onset that covers the
longest global amplitude rise-time (e.g., time from onset to the first “significant”
local maximum) among the stimuli.

Generally, stimuli are presented one at a time to subjects over loudspeakers
or headphones, and subjects employ a classification procedure. For a number of
studies that date from the 1960s and 1970s, subjects were asked to nhame—with
or without the aid of a word list—the instrument that most likely produced the
tone that they heard. In the literature, this procedure is commonly referred to as
identification, although, unless the number of choices is equal to the number of
stimuli, a more proper term in experimental psychology is name categorization.

In the early identification studies (Berger, 1964; Clark et al., 1963; Elliott, 1975;
Saldanha and Corso, 1964; Wedin and Goude, 1972), the durations of attack- and
decay-time segments varied from study to study and were usually on the order of a
few hundred milliseconds or less. These segments were imposed on every instru-
ment tone, regardless of the type of instrument. These researchers assumed, for
the most part, that attack or decay transient segments occurred within these spec-
ified segments; the remainder of the signal was considered to be the steady state.
Overall, they found that the removal of the attack segments hindered identification,
whereas the removal of the decay segments did not affect identification.

Iverson and Krumhansl (1993) examined the role of onsets in similarity-type
judgments. Subjects heard consecutive pairs of tones and rated along a scale of “a
little” to “a lot” the degree to which they would have to “change the first sound
to make it sound like the second sound” (Iverson and Krumhansl, 1993, p. 2597).
Three different stimulus contexts were used: the complete tones, onsets only (the
segment measured as 80 ms from the beginning of the signal); onsets removed
(the complete tone minus the 80-ms onset segment). The authors found that mean
subject ratings for all three contexts corresponded highly with one another. They
concluded that “the attributes that are salient for timbral similarity judgments are
present throughout tones” (Iverson and Krumhansl, 1993, p. 2602). They surmised
that the reason their findings did not jibe with those of the earlier identification
studies might have been the difference in subject task.

Campbell and Heller (1978, 1979) introduced the influence of melodic context
into the onset role issue. Their stimuli were generated from performances of two-
note legato phrases {Fat 349.2 Hz to A at 440 Hz) played on six different
instruments, including piano. The transitional segment between the two notes was
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called the legato transient. This transient was operationally defined as a constant
time segment before the start of the second steady state, applied uniformly to
each instrument recording. The length of the time segment varied from 20 to
110 ms. They also created constant attack-alone and steady-state-alone contexts—
generated from the first tone of the sequence. The authors found that the 110-ms
legato transients yielded higher identification than either the attacks, steady states,
or any of the other shorter legato transients.

Kendall (1986) pursued this issue in two unique ways: (1) He compared the
role of transients and steady state across single-note and legato musical phrase
contexts, and (2) he included signal characteristics for each stimulus as bases for
his operational definitions of transients. Because he also tested for the effect of
musical training (musicians vs nonmusicians), Kendall used a non-verbal matching
procedure instead of identification. In musical (melodic) contexts, the steady-state-
alone contexts—with the attack and legato transients removed—were matched at
a mean level (81%) that was statistically equivalent to the unaltered signals (84%).
However, in the single-note contexts, both the steady-state-alone @@tdthe
attack-alone (51%) contexts were matched at the same level as the unaltered single
tones (54%). In comparing his results to those of the earlier identification studies,
Kendall (1986, p. 210) concluded that “the perceptual importance of transients in
defining the characteristic sounds of instruments has been overstated.”

The contradictory results given by the myriad of studies that have explored the
salience of time-envelope characteristics—with the exception of Kendall (1986)—
are most likely directly due to the lack of robust operational definitions based on
signal characteristics. The attack is not a duration; it is a transient part of the
signal that lasts from onset until a more-or-less stable periodicity and modes of
vibration are established. This “steady state” is generally achieved well before
the end of the initial rise time, as determined by amplitude. Contemporary with
many of the identification studies in the 1960s, Luce (1963) descriptively examined
the characteristic attacks and steady states for 14 nonpercussive instruments of the
Western orchestra. Notes were recorded across the entire range of each instrument.
His associate, William Strong used two methods to calculate the attack durations
(Luce, 1963, p. 90):

1. Amplitude transient: the time from onset to the time when the amplitude reached
90% of the amplitude of the steady state.

2. Structure transient: the time from onset to the time when the waveform had
essentially the same shape or structural characteristics as the steady state.

For every instrument except the tuba, the structure transient was measured as
shorter than the amplitude transient was. In the case of the flute, the structure
transient could not be ascertained because “rather large intensity modulations
were present” (p. 92). Strong’s measurements for 13 instruments (piccolo was
excluded) are presented in abbreviated form in Table 7.1.

On average, Strong’s structure transients in Table 1 are 53% as long as the ampli-
tude transients. Luce and Clark (1965) modified the amplitude transient definition
to the time necessary for the amplitude to reach 56% B IL) of the amplitude
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TABLE 7.1. Mean Durations of Amplitude and Structure Attack Transfents

Instrument Mean-amplitude transient (ms) Mean-structure transient (ms)
Violin 218 88

Viola 106 41

Cello 350 124
Double bass 96 84
Oboe 21 16
English horn 52 29
Bassoon 41 30
Clarinet 60 42

Flute 179 not measured
Trumpet 96 24
French horn 34 24
Trombone 51 36
Tuba 73 95

aData adapted from William Strong (Luce, 1963, Table 8.1.1., p. 91). [From Hajda (1999); used
by permission.]

at a point 133 ms further into the signal. So if the measured amplitude transient
was 30 ms, the amplitude at 30 ms was equal to 50% of the amplitude at 163 ms. In
general, this modification brought the new transients into closer concordance with
Strong’s structure transients. It is likely, therefore, that contemporary researchers
who identify the attack as the time from onset to the global or first “significant” lo-
cal maximum (e.g., McAdams, et al., 1995; Sandell, 1998) have included a sizable
segment of the tone in which periodicity (i.e., pitch) and characteristic harmonic
relationships (i.e., timbre) are discernable, even though they have based their op-
erational definition on signal characteristics. It is important to note that the effect
of using an amplitude transient over a structure transient depends on the subjective
tasks and the manner in which the stimuli were constructed.

Ideally, every constituent segment of a musical tone has a structural elementin its
operational definition; in other words, the evolution of both global amplitude and
spectral components should be considered. In addition, the operational definitions
of these segments must be perceptually relevant. Hajda et al. (1997) proposed such
a model for the signal partitioning of continuant tones. Part of the impetus for this
model, called the “amplitude/centroid trajectory” (ACT), was the observation by
Beauchamp (1982) that, for certain continuant signals, RMS amplitude and spectral
centroid have a monotonic relationship throughout the steady-state portion of a
tone.

The ACT model considers the relationship of amplitude and spectral centroid
throughout the duration of a tone. Hajda et al. (1997) identified four consecutive
contiguous partitions that are evident in the analyses of most continuant musical
instrument signals:

1. Attack: that portion of the signal in which the global RMS amplitude is rising
and the spectral centroid is falling after an initial maximum.
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FIGURE 7.1. The RMS-amplitude and spectral-centroid trajectories for a contrived contin-
uant tone. |: Attack; II: Attack/Steady-State Transition; Ill. Steady State; IV. Decay. [From
Hajda (1998), used by permission.]

2. Attack/steady-state transition: the segment from the end of the attack to the first
local RMS amplitude maximum.

3. Steady state: the segment during which the amplitude and the centroid both
vary around mean values.

4. Decay: the final segment during which the amplitude and centroid both rapidly
decrease.

Figure 7.1 illustrates the four ACT segments for a contrived instrument.

Hajda (1996, 1997, 1999) tested the efficacy of this model in a controlled ex-
periment that used single isolated tone stimuli consisting of six “impulse tones”
(performed on classical guitar, marimba, piano, pizzicato violin, tubular bell, and
xylophone) and six continuant tones (performed on clarinet, flute, oboe, tenor
saxophone, trumpet, and bowed violin). The tones were played at corﬁc(em)B
proximately 466 Hz) in an auditorium and digitally recorded. Two tones from
each continuant instrument were used: sustained (about 3.5 s) and staccato (about
600 ms). One tone was recorded from each impulse instrument; because of their
different acoustical dampings, the durations of these tones varied. There were 18
unedited tones in all; 12 continuant and 6 impulse. All of the continuant tones
used in this study except one manifested characteristics that were consistent with
the ACT model. The one exception was a sustained violin tone that was played
without an articulated attack.

Continuant tones were partitioned based on three different definitions of attack:
(1) fixed attack time from onset to 80 ms into the signal; (2) attack time based
on 50% of the average steady-state RMS amplitude, adapted from the operational
definition given by Luce and Clark (1965); and (3) the ACT model (Hajda et al.,
1997). The partitions for the first two conditions can be described as attack alone
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and remainders alone. The partitions for the ACT condition included all possible
combinations of the four segments—attack, attack/steady-state transition, steady
state, and decay—plus each segment alone. The continuant tones were also sub-
jected to two reverse playback conditions: the entire tone and a 500 ms segment
extracted from sustained tones beginning one second after onset.

Nine subjects identified each of the 246 randomly presented stimuli by selecting
from a list of the 12 instruments used in the experiment (forced-choice). The
probability for a “chance” identification of each stimulus was 8.3%.

The results for continuant tones can be summarized as follows:

1. The unedited signals were correctly identified 93% of the time. The overall
results were the same for the unedited sustained and unedited staccato signals,
although individual instruments yielded slightly different identifications for
different tone durations.

2. For the sustained continuant tones, all three attack-removed conditions yielded
a higher percentage of correct identifications than the attack-alone conditions.
In addition, the attack-removed conditions yielded results that approached those
for the unedited signals. Based on these data, we can conclude that, for these
sustained tones, the remainders are more salient than the attacks.

3. For the staccato continuant tones, divergent results were found. For the fixed-
80-ms-attack condition, the attacks-alone were identified at a much higher rate
than the remainders. In previous studies, the researcher might assume that the
removal of the attack adversely affected identification. However, an examina-
tion of the raw data showed that the remainders of many of the short signals
were confused with impulse instruments (classical guitar, marimba, piano, and
pizzicato violin). In fact, removal of the attack was tantamount to imposing
an impulse envelope on the staccato tones. In this case, the poor identification
results were due to a confounding variable, not experimental control.

4. Therefore, the discussion of the effect of ACT-editing is restricted to the sus-
tained tones. For the sustained ACT conditions, the steady-state-alone edits
were identified best. Only the steady-state-alone edits approached the identifi-
cation rate of the unedited sustained signals (85%—93%). Given all of the above
discussion, Hajda (1996, 1997, 1999) concluded that the time-variant steady-
state alone is necessary and sufficient for the identification of these isolated
sustained continuant tones.

5. For the sustained continuant tones, reverse playback never affected identifica-
tion.

It seems clear that the process of human identification of an instrument from one

of its tones is complex. Listeners can apply a number of strategies, based on the
information available. Many of these strategies are determined by the listener’s

previous knowledge of the instruments’ capabilities. Other strategies may stem

from basic, seemingly pre-musical distinctions, such as distinguishing an impulse

from a continuant envelope. Even in these contrived contexts, it is clear that a

single rule will not apply between classes of instruments.
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Given the above caveat, it seems that, for sustained continuant tones, the time-
variant steady state usually provides sufficient and necessary information for the
identification of an instrument. The co-evolution of the amplitude and spectral
centroid seems important here, but the direction (i.e., regular vs reverse playback)
does not.

The acoustical analyses conducted for this study indicate that when one consid-
ers the universe of timbres produced by musical instruments, the issue of attack vs
steady state bears little relevance, because impulse instruments cannot be usefully
partitioned in such a manner. However, the global RMS amplitude and spectral
centroid trajectories and their functional relationship are characteristics of all mu-
sical (i.e., time-variant) sounds. Research by Hajda (1998, 1999) focused on the
salience of these—and other—trajectories; the results of this preliminary work are
reported in the following section.

A caveat should be issued regarding the nature of the attacks of nonpercussive
instrument tones. A plethora of measurements made by Luce and his colleagues
showed that “the duration of the attack transients depends upon the instrument
played, upon the note played on the instrument, and upon the performer, but very
little on the dynamic marking at which the instrument is sounded or the duration
of the notes played, or whether or not the instrument is played with vibrato” (Luce
and Clark, 1965, p. 199). We can add other variables that will probably affect the
duration of attack transients, including characteristics of the musical phrase (legato,
staccato, etc.), musical style, texture (counterpoint, homophony, heterophony), and
other musical contexts.

Finally, although various classification paradigms are simple to operationalize
and implement in laboratory experiments, we should question the relevance of
classification to the “real world” of musical timbre. To what extent do performers
or listeners recognize, categorize, or even identify timbres in the course of their
musical experience, Benjamin Britter¥oung Person’s Guide to the Orchestra
(1946) notwithstanding? Certainly, orchestration requires a high level of knowl-
edge regarding the timbral characteristics of each instrument of the ensemble.
However, more often than not in Western music, timbres are heard in combination.
It is not enough to “know” the timbre of a®Brumpet that is playing “open middle
C”; the orchestrator must know how that trumpet tone will sound in the context of
a brass quintet, or as part of a jazz ensemble, or part of a marching band. Musical
timbre does not operate as a series of unrelated, isolated entities. Every ensem-
ble operates within its own timbral framework, or palette (see Martens, 1985),
in a manner analogous to a painter’s palette of color. Even a solo instrumental-
ist manipulates timbre in order to produce “coloristic” effettdore often than

! This is particularly true for instruments with multiple degrees of freedom. Consider the
classical guitar, on which a given note can be alternatively fingered (stopped) on several
strings. Each fingering produces a slightly different timbre due to the physical characteristics
(thickness, winding) of the different strings and resonant properties of the instrument. In
addition, the right hand can produce a myriad of tonal qualities by plucking the string with
different combinations of flesh and nail as well as varying locations relative to the bridge.
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not, however, the physical correlates for a palette of timbre are more difficult to
determine than those for visual color.

2.2 Relational Timbre Studies

Relational measures have been used since the middle part of the 20th century in a
variety of experimental contexts. Although this review is by no means exhaustive,
it is intended to give the reader an idea about the types of timbre studies that have
been conducted as well as a convergence of the findings.

In order to find a palette (or representative geometric structure) for timbre,
we must be able to determine its dimensions. Such a determination has been
made for pitch. Shepard (1982) has summarized and demonstrated models of
Western musical pitch structures that can be expressed in two dimensions (circle
of fifths), three dimensions (simple helix), four dimensions (double helix wrapped
around a torus), and even five dimensions (double helix wrapped around a helical
cylinder)! For a number of reasons, the dimensions for timbre are not nearly so
well delineated.

Researchers have used two basic approaches to uncovering the structure of tim-
bre. The first is to directly measure specified attributes of timbre by means of a
subject’'s assignment of a value along a scale of adjectival polar opposites, such
as “dullness” and “brightness.” This technique, commonly known as the semantic
differential (Osgood et al., 1957), is considered a measurement of the meaning
of a stimulus and has been used to study other facets of music besides timbre.
Lichte (1941) and von Bismarck (1974) used versions of this approach. They con-
structed steady-state synthetic stimuli with varying spectral characteristics and
constant temporal envelopes in order to isolate verbal factors that would identify
salient perceptual features. Lichte (1941) found a primary relationship between
“brightness” and the midpoint of the energy distribution among frequency par-
tials; von Bismarck (1974) found a similar primary relationship for his stimuli
and “sharpness.” In their study with dyads produced by recording natural wind in-
strument performances, Kendall and Carterette (1993a) used English translations
of von Bismarck’s (1974) semantic differential. They found that these adjectives
did not significantly differentiate their stimuli. They replicated the study but re-
placed the semantic differential adjectives, for example, “dull” and “sharp,” with
an adjective and its negation, such as “sharp” and “not sharp.” This procedure,
known as Verbal Attribute Magnitude Estimation (VAME), was used on the same
stimuli in a subsequent experiment (Kendall and Carterette, 1993b). This time,
the verbal attributes came from a descriptive text on orchestration (Piston, 1955).
These final ratings produced the most interpretable results, among them a primary

Other instruments, such as the trumpet, maintain timbral control by the prolonged coupling
between the energy source (player) and vibrating body. Some of these instruments can also
take advantage of additional physical couplings, such as a mute, in order to significantly
alter their aural characteristics. From this perspective, instruments such as the piano are
impoverished in terms of their degrees of freedom with respect to timbre.
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relationship between “nasality” and the relative amount of steady-state energy in
the upper frequency partials as compared to the fundamental.

The second approach to determining timbral structures is based on obtaining
perceptual qualitative relationships between stimuli, as opposed to directly mea-
suring timbral attributes. Subjects’ rating scores are obtained from a direct method
of similarity analysis (Ekman, 1965). After hearing a pair of consecutively pre-
sented tones, the subject rates how similar those tones sound in relation to the other
pairs in the stimuli set. The ratings for every possible paired comparison are then
mathematically transformed into distances in a geometrical (usually Euclidean)
space. This statistical analysis is commonly referred to as multidimensional scal-
ing, or MDS. There are a number of MDS algorithms, each of which differs slightly
in its intricacies® The basic purpose of these procedures is the same: Produce a
geometric configuration in which stimuli that are similar appear close together and
those that are dissimilar appear far apart. Then, it is up to the researcher to interpret
this configuration in terms of the characteristics of the stimuli.

In general, the nature and number of the stimuli limit the number of interpretable
dimensions. In a paired-comparisons paradigm, the number of judgments that a
subject must make is

s(s+1)

n= 5
wheres is the number of stimuli. The quantitg ¢ 1) is used for experiments
that include identities—stimulusis paired with itself—andq — 1) without iden-
tities3 Therefore, a paired-comparison similarity experiment with 25 stimuli re-
quires 325 judgments by a subject with identities, 300 without. If each stimulus
is 3 s and a subject requires 5 s for each response, the entire experiment will take
about 1 h, not including the time needed for instructions and any practice experi-
ments. In this author’s experience, many subjects cannot remain focused for such
a duration. In fact, most of the similarity studies conducted for musical timbre
have used between 10 and 20 stimuli. The MDS spaces for these experiments have
produced interpretable solutions for two or three dimensions. Such is the case with
Fig. 7.2, a space generated by the similarity ratings for 11 continuant instruments
of the Western orchestra (Kendall et al., 1999).

The interpretation of the dimensions of an MDS space requires a good deal
of intuition on the part of the researcher. In general, researchers attempt to find
musical and extramusical correlates with each dimension of the solution. The mu-
sical correlates might include proximity groupings by instrument family (Wessel,
1973; Grey, 1975), pitch (Miller and Carterette, 1975), or the degree of blend
for two simultaneously produced timbres (Kendall and Carterette, 1993c, Sandell,
1995). The extramusical variables are typically verbal attributes (Faure et al., 1996;

(7.1)

2 For an overview of MDS and related procedures, see Kruskal and Wish (1978) and Arabie
et al. (1987).

3 Although the case of stimuluspaired with itself is obviously trivial, it may be advanta-
geous to include such a pairing in order to identify subjects who produce outlying data.
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FIGURE 7.2. Two-dimensional MDS solution for similarity ratings of eleven natural instru-
ment tones played at concet} 8a. 466 Hz). [Reprinted from Kendall et al. (199@)1999
by The Regents of the University of California. All rights reserved. Used with permission.]

Kendall et al., 1999) or acoustical parameters. The focus here will be on the cor-
relation of acoustical parameters to the dimensions of MDS solutions.

In general, three acoustical parameters repeatedly appear as correlates to dimen-
sional solutions in timbre studies:

1. Amplitude-vs-time (temporal) envelope, usually expressed in terms of attack
or rise times.

2. Spectral energy distribution across frequency components.

3. Spectral variance in terms of the amplitudes of frequency components.

2.2.1 Temporal Envelope

In studies that include both continuant and impulse stimuli, the amplitude-vs-
time envelope (aka temporal envelope or amplitude envelope)—in one manifes-
tation or another—is the acoustical correlate to the primary perceptual dimension
(Krumhansl, 1989; Iverson and Krumhansl, 1993; McAdams et al., 1995; Kendall
et al., 1999). For the most part, researchers have characterized the envelope phe-
nomenon as an issue of attack time; after all, impulse instruments have very brief
attacks (less than 10 ms) in comparison to continuant instruments. Therefore, most
measures of attack should yield high correlations with a dimension that separates
percussive from nonpercussive stimuli. Krimphoff (1993) and McAdams et al.
(1995) found precisely such a relationship when they correlated the primary di-
mension of an MDS space generated by the similarity scaling of impulse and
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continuant timbres [from Krumhansl (1989)] with the log-rise-time (“logarithme
du temps de montée”) of each stimulus. They defined log-rise-time as

Log-rise-time= 10g;(tmax — tihresn (7.2)

wheretmax is the time from onset to maximum RMS amplitude dapdshis the
time from onset to a threshold taken as 2% of the amplitudg,at

2.2.2 Spectral Energy Distribution

Many acousticians have described the steady-state portion of continuant tones in
terms of a long-time-average spectrum. The amplitude and frequency components
of the two-dimensional spectrum are analogous to a series of weights and distances
along a beam. The point at which the sum of moments (weigttistance) equals

zero is the fulcrum, or, in the case of the spectrum, the spectral centroid. Such
an index for measuring the “quality of a musical instrument” was first described
by Knopoff (1963, p. 229%.To this author’s knowledge, the first correlations of
spectral centroid and a perceptual dimension were published by Ehresman and
Wessel (1978) and Grey and Gordon (1978). Although the formulas vary in detail,
these and later studies use a representative long-time average spectrum such that

N
Z fn . An
LN , (7.3)
> An
=1

n

fcentroid =

wheref, is the frequency and, is the amplitude (usually linear) of tim¢h partial

of a spectrum withN frequency components. This equation yields a measure in
frequency units, which will suffice in instances where the fundamental frequencies
of the stimuli are the same. Itis also possible to produce a unitless measure by (1)
replacingf, with the harmonic number or (2) multiplying the denominator by the
fundamental frequency.

The Pearson correlation of spectral centroid with Dimension 1 of the two-
dimensional MDS space shown in Fig. 2 is 0.9 (Kendall et al., 1999). This result is
consistent with other research that has yielded strong correlations between spectral
centroid and the primary perceptual dimension of MDS spaces for continuant
stimuli [e.g., Ehresman & Wessel (1978); Grey & Gordon (1978)] and secondary
perceptual dimension of spaces for mixed impulse and continuant stimuli [e.g.,
McAdams et al. (1995); Lakatos (2000)].

4 Knopoff (1963) used the terraenter of gravity(from engineering statics) instead of
spectral centroidIn fact, his measure involved taking the ratio of (1) a theoretical center of
gravity calculated by replacing the amplitude of each frequency partial with the moment of
that frequency in the original signal, and (2) the center of gravity from the original signal.
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2.2.3 Spectral Time Variance

The individual amplitudes of frequency components for many continuant signals
vary significantly throughout the duration of a tone. This dynamic feature has
been given a number of labels, among them: Spectral Fluctuation (Grey, 1977);
Spectral Variation (Ehresman and Wessel, 1978); Spectral Flux (Krumhansl, 1989);
and Time Variance (Kendall and Carterette, 1993b). In spite of the number of
phenomenological observations made since Grey (1975), spectral time variance
was not quantified until the 1990s.

Kendall and Carterette (1993b) calculated a mean coefficient of variation
(MCV):

P4
||

9

On

n

MCV= "=t 7.4
N (7.4)

1™

in which o, is the standard deviation of the amplitude of frequency compament
across timepu,, is the mean amplitude of componeantandN is the number of
frequency components analyzed, in this clse 9. The mean coefficient of vari-
ation yielded a moderately strong correlation£ 0.7) with the second dimension
of the perceptual space generated by Kendall et al. (1999) shown in Fig. 2.

Krimphoff (1993) examined three different measures of spectral flux (“flux spec-
tral”) in order to find the strongest relationship with the third dimension of an MDS
space generated by Krumhansl (1989). The first, Spectral Variation (“variation
spectrale”), was determined by taking the correlation of respective harmonics of
adjacent instantaneous spectra (each corresponding to a single window of analysis
of durationAt = 16 ms). The absolute values of these correlations were summed
and averaged across the entire duration of the tone. The second parameter, Flu
(“flux™), was measured as the mean deviation of the spectral centroid of each anal-
ysis window with respect to the long-time average measure of spectral centroid.
The final parameter, Coherence (“cohérence”), is a measure of the difference in
onset times for each harmonic. The term, however, is a bit misleading because a
signal in which every harmonic has the same time-to-onset has a coherence value
equal to zero; a signal in which harmonics do not have the same time-to-onset has
a coherence value greater than zero.

Krimphoff (1993) also examined the relationship of two measures of Fine Spec-
tral Structure (“structure fine du spectrale”) to the third dimension of the Krumhansl|
(1989) MDS space. The first measure was taken from Guyot (1992). Itis essentially
a ratio with the sum of the energy in the odd-numbered harmonics above the funda-
mental taken to be the numerator and the sum of the energy in the fundamental plus
the energy in the even-numbered harmonics taken to be the denominator. The final
parameter, which Krimphoff (1993) called the Spectral Deviation (“déviation”), is
the sum of deviations of each harmonic log-amplitude from the mean of three con-
secutive harmonic log-amplitudes (centered on that harmonic), normalized by a
global mean log-amplitude. This parameter, which yielded the highest correlation
with Krumhansl's perceptual dimension, has been renamed by Krimphoff et al.
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(1994) and McAdams et a{1995) as Spectral Irregularity and most recently as
Spectral Envelope Smoothness by McAdams €18989). Kendall and Carterette
(1996) used the following linear version of Krimphoff et al.'s (1994) log-based for-
mula to calculate the linear spectral irregularity (LSI) of static synthetic stimuli:

Nz_l A Anp1+ An+ A
.
- 3
LSl = =2 _ , (7.5)
A

where A, is the linear amplitude of thath harmonic andN is the number of
harmonics. A spectral smoothing paradigm used by McAdams et al. (1999) also
used linear amplitudes.

In summary, depending on the nature of the stimuli, both long-time average
(spectral centroid, spectral irregularity) and time-variant (rise time, mean coef-
ficient of variation) acoustical measures are principal correlates with perceptual
spaces generated by relational measures. The experimental control of these acous-
tical variables has only begun in recent years. Kendall and Carterette (1996) de-
termined difference thresholds for synthetic timbres that varied only in spectral
centroid. Jeong and Fricke (1998) found an effect of listening position and rever-
beration on these difference thresholds. In a separate study, Kendall and Carterette
(1996) synthesized timbres with the same centroid but different spectral shapes.
These timbres were compared in a separate relational study; as might be expected,
spectral irregularity [defined by Eq. (7.5)] correlated very highly with the principal
MDS dimension.

3 The Experimental Control of Acoustical Variables

Two recent studies have examined—at least in part—the experimental control
of time-variant acoustical variables for tones that were originally produced by
acoustical instruments.

McAdams et al. (1999) applied six basic data simplifications and five com-
binations of these simplifications to seven instrument tones. Five of the instru-
ments were continuant—clarinet, flute, oboe, trumpet, and violin—and two were
impulse—harpsichord and marimba. The simplifications are briefly described as
follows:

1. Amplitude-Envelope Smoothing: removal of micro time-variations of harmonic
amplitudes over the steady-state and decay portions of the tone.

2. Amplitude-Envelope Coherence (spectral envelope fixing): removal of spectral
flux while preserving the average spectrum and global RMS envelope over the
entire duration of the tone.

3. Spectral-Envelope Smoothness: linear smoothing of the jaggedness or
irregularity of a spectral envelope over the entire duration of the tone.
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4. Frequency-Envelope Smoothness: removal of micro time-variations of the
frequencies of harmonics over the entire duration of the tone.

5. Frequency-Envelope Coherence (harmonic frequency tracking): removal of
inharmonicity over the entire duration of the tone.

6. Frequency-Envelope Flatness: removal of frequency variations and inharmonic-
ity over the entire duration of the tone.

Of these six data reduction techniques, humbers 1, 2, 4, and 6 remove a certain
amount of time-variance. In all, McAdams et al. (1999) tested the salience of
11 methods of signal simplification: the six methods mentioned above and five
combinations of these methods. Listeners were asked to discriminate between
(1) sounds that were resynthesized with simplified data and (2) reference sounds
that were synthesized versions of the original signal. All analyses and syntheses
were conducted with phase-vocoder analysis and oscillator-bank additive synthe-
sis algorithms contained in the SNDAN music sound analysis/synthesis pack-
age (Beauchamp, 1993). Overall, the authors found that only amplitude envelope
coherence, or the removal of spectral flux, yielded a “very good” proportional
mean discrimination (0.91) among the variables that controlled for time-variance.
The means of discrimination for other time-variant variables ranged between 0.66
and 0.71; the probability of discrimination due to chance was 0.50. The high-
est mean discrimination was for spectral envelope smoothing (0.96). In general,
edits that combined methods of simplification yielded means of discrimination
that were equal to or slightly higher than those for the most salient individual
method.

Hajda’s pilot study (1998, 1999) investigated the effects of controlling certain
time-variant acoustical parameters of continuant tones. The 10 instrument tones
used forthis research come from the McGill University Master Samples, or MUMS,
set of digital recordings (Opolko and Wapnick, 1989): alto flute, cello, clarinet,
C trumpet? English horn, French horn, flute, oboe, trombone, and violin. The
sustained tones were played at concé;l;tcB approximately 466 Hz. This pitch is
within the normal playing range of all of these instruments although it is toward
the high end of the range for some of the instruments.

Three time-variant parameters were controlled in this experiment: global RMS
amplitude, spectral amplitude envelope, and frequency deviation for each spectral
component. The MUMS signals were trimmed by imposing a 40 dB threshold
below the maximum amplitude so that noise floor effects would be minimized
when the experimental controls were implemented. Segments of 1.1 s duration
were extracted for each of the nine edits beginning 500 ms into each signal.
The rationale for this was the finding that relevant timbral information is present
in the steady-state portions of sustained continuant tones (Hajda, 1996, 1997,
1999). Linear 50 ms fade-ins and fade-outs were imposed on each edit. The
original digital signal was edited in the same fashion for experimental control
purposes.

5 The more common Btrumpet is not available from the MUMS recordings.
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TABLE 7.2. Summary of edits used in Hajda (1998)

Simplification Frequency deviation Spectral flux Global RMS amplitude
SYNTH Varies Varies Varies

FRQ Controlled Varies Varies

SPC Varies Controlled Varies

AMP Varies Varies Controlled
FR/SP Controlled Controlled Varies
FR/AM Controlled Varies Controlled
AM/SP Varies Controlled Controlled
S.S. Controlled Controlled Controlled

aSYNTH = full phase-vocoder synthesis; FRQremove all frequency deviations; SREremove
spectral flux; AMP= remove global amplitude variation; FR/SPcombined removal of frequency
deviations and spectral flux; FR/AM combined removal of frequency deviations and global amplitude
variation; AM/SP= combined removal of global amplitude and spectral flux; S 8ue steady state.
[From Hajda (1999); used by permission.]

The following spectrotemporal simplifications were made using SNDAN
(Beauchamp, 1993, 1998):

1. SYNTH: full (unmodified) phase-vocoder resynthesis.

2. FRQ: replace all frequency deviations by a fixed average frequency for each
harmonic.

3. SPC: remove spectral flux by imposing an average spectrum for the duration of
the signal during which relative amplitudes of the harmonics are fixed, but the
overall RMS amplitude time-variation is preserved.

4. AMP: remove global amplitude variation by imposing a fixed average RMS
amplitude on the overall signal while allowing the harmonic relationships to
vary relatively as in the original sound.

5. FR/SP: combination of 2 and 3.

6. FR/AM: combination of 2 and 4.

7. AM/SP: combination of 3 and 4.

8. S.S.: combination of 2, 3, and 4 (a steady-state condition).

These simplifications are summarized in Table 7.2.

A relational procedure was employed in which seven subjects rated the dis-
similarity of the original digital tone with each of the eight synthesized edits. A
zero rating indicated no discriminable difference between the original tone and
the synthesized edit. A 100 rating indicated maximum dissimilarity (among all
90 comparisons).

Figures 7.3 and 7.4 show the mean dissimilarity ratings for the alto flute and
clarinet edits. For the alto flute (Fig. 7.3), zeroing frequency deviation (FRQ)
has no real effect on subject ratings, fixing global RMS amplitude (AMP) has a
moderate effect, and removing spectral flux (SPC) has the strongest effect. Multiple
controls increase the dissimilarities between the original and edited tones. By
comparison, none of the edits for the clarinet tone (Fig. 7.4) has a significant effect
on dissimilarity ratings. Informal listening indicated that the alto flute was played
with a deep vibrato while the clarinet tone was played without vibrato.
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Mean dissimilarity ratings for ALTO FLUTE edits (n=7)

100

TRQ FR/AM TR/ SP AMP AM/SP SPC 8.8 SYNTH

FIGURE 7.3. Mean dissimilarity ratings of seven subjects for the comparison of the original
alto flute tone with nine synthetic edits. FR€removal of all frequency deviations; FR/AM

= combined removal of frequency deviations and global amplitude variation; FR/SP
combined removal of frequency deviations and spectral flux; AMRemoval of global
amplitude variation; AM/SP= combined removal of global amplitude and spectral flux;
SPC= removal of spectral flux; S.S= true steady state; SYNTH full phase-vocoder
resynthesis. [From Hajda (1999); used by permission.]

Mean dissimilarity ratings for CLARINET edits (n=7)

100
B [
B0 [
0 [

20 [

i =

FRQ FR/AM FR/SP AMP AM/SP SPC 5.5. SYNIH

FIGURE 7.4. Mean dissimilarity ratings of seven subjects for the comparison of the original
clarinet tone with nine synthetic edits. FR€removal of all frequency deviations; FR/AM

= combined removal of frequency deviations and global amplitude variation; FR/SP
combined removal of frequency deviations and spectral flux; AMRemoval of global
amplitude variation; AM/SP= combined removal of global amplitude and spectral flux;
SPC= removal of spectral flux; S.S= true steady state; SYNTH full phase-vocoder
resynthesis. [From Hajda (1999); used by permission.]
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Data analysis indicates the following trends:

1. As one might expect, instruments played with vibrato were affected the most
by the acoustical simplifications. However, several instruments played without
vibrato—the English horn, oboe, and C trumpet—were affected a moderate
amount by the controls. Other instruments played without vibrato—namely,
the clarinet, French horn, and trombone—were not affected by the controls.

2. Averaged across all 10 instruments, the mean dissimilarity ratings for zeroing
frequency deviationsy{ = 20.0) and global amplitude variationg (= 22.5)
are not much different from those of the full resyntheges=(16.0). Removal
of spectral flux has a much greater effect on the dissimilarity ratipgs: (
42.7), and, as one might expect, the greatest effect occurs with the steady-state
condition ( = 47.5).

These results are consistent with the findings of McAdams et al. (1999); this is
especially interesting given the difference in method (dissimilarity rating versus
discrimination).

4 Conclusions and Directions for Future Research

At this point, we can conclude that spectral flux (time variation of the normalized
spectrum) is the most salient time-variant parameter of natural continuant tones
(Hajda, 1998; Kendall et al., 1999; McAdams et al., 1999). McAdams et al. (1999)
foundthatdiscrimination of a controlled acoustical variable was strongly correlated
to the extent to which it actually varied in the original signal. By a common
sense extension, if a parameter varies significantly in a signal, we can hypothesize
that a signal resynthesized with the parameter made static will be perceived as
significantly different from the original.

In spite of current advances, the salience of time-variant parameters in musical
tones is far from fully understood. Part of this is due to the complexity of the musical
instrument as a vibrational system, especially in instances in which the performer
(driver) maintains a coupling with the generator and resonator. Such is the case with
continuant instruments, where the performer controls the time-variant aspect of
timbre in an expressive fashion that itself varies from one performance to another.

The next logical extension of this line of research involves musical context.
Campbell and Heller (1979) and Kendall (1986) have already conducted work
regarding the effect of legato melodic phrases on the classification of timbre. While
it is clear that the connection of notes in a melody is important, the manner by
which these notes connect has not been investigated in a systematic and controlled
fashion. The roles of the time-variant aspects of timbre in a host of other musical
contexts, such as expressiveness, dynamics, style, etc., have not been addressed.
In addition, orchestral instruments rarely play in an isolated context. The effect
of time variance in the presence of vertical combinations of timbres must also be
considered.



268 John M. Hajda

To this point, the time-variant parameters of impulse signals have not been
discussed. This is due to the lack of systematic research on this class of tones.
Hajda (1995, 1996, 1997, 1999) found that impulse tones differ from continuant
tones in several important ways:

1. Operational definitions of tone segments for continuant signals do not apply
to impulse tones, since impulse signals contain no steady state (Hajda, 1996,
1997, 1999).

2. The identification of impulse signals is significantly affected by reverse play-
back; the identification of continuant signals is not (Hajda, 1996, 1997, 1999).

3. The identification of impulse tones is not affected by any type of partitioning,
whether the segment that is presented to listeners is taken from the beginning
or middle of a signal; the identification of continuant tones is affected by such
signal editing (Hajda, 1997, 1999).

4. The long-time average spectral centroid is the strongest correlate to the primary
perceptual dimension of an MDS space generated from the ratings of continuant
tones; thehangen centroid over time is one of several correlates for the primary
perceptual dimension of an MDS space generated from the ratings of impulse
tones (Hajda, 1995).

The above findings do not jibe entirely with other research (Freed, 1990; Serafini,
1995; Lakatos, 2000). Even if they did, the paucity of research would not warrant
generalizations to the entire class of impulse instruments.

As stated by McAdams et al. (1999), two overall goals of research on the time-
variant parameters of musical instrument tones are:

1. Tofacilitate realistic sounding resyntheses with a minimum of control variables.
2. To increase our understanding of the perception of timbre.

As such, musicians of diverse genres—from electronic music composers to or-
chestrators to music theorists—may benefit from these studies. However, because
of the interdisciplinary nature of the research questions, musicians must team with
physicists, engineers, and psychologists in order to unravel the mysteries of the
“time in tones.”
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Mental Representation of the Timbre
of Complex Sounds

SOPHIE DONNADIEU

“Un des paradoxes les plus frapparagpropos du timbre est que, lorsqu’on en savait
moins sur lui, il ne posait pas beaucoup de peshks . .”
[One of the most striking paradoxes concerning timbre is that when we knew less about it,
it didn’t pose much of a problem . ]
Philippe Manoury (1991)

1 Timbre: A Problematic Definition

Timbre, in contrast to pitch and loudness, remains a poorly understood auditory
attribute. Persons attempting to understand it may be confused as much by its
nature as its definition. Indeed, timbre is a “strange and multiple” attribute of sound
(Cadoz, 1991, p. 17), defined by what it is not: it is neither pitch, nor loudness, nor
duration. Consider the definition proposed by the American National Standards
Institute (1973, p. 56): “Timbre is that attribute of auditory sensation in terms of
which a subject can judge that two sounds similarly presented and having the same
loudness and pitch are dissimilar.” Therefore, timbre is that perceptual attribute
by which we can distinguish the instruments of the orchestra even if they play the
same note with the same dynamics.

The absence of a satisfactory definition of timbre is primarily due to two major
problems. The first one concerns the multidimensional nature of timbre. Indeed, it
is timbre’s “strangeness” and, even more, its “multiplicity” that make it impossible
to measure timbre along a single continuum, in contrast to pitch (low to high), du-
ration (short to long), or loudness (soft to loud). The vocabulary used to describe
the timbres of musical instrument sounds indicates the multidimensional aspect
of timbre. For example, “attack quality,” “brightness,” and “clarity” are terms fre-
guently used to describe musical sounds. The second problem concerns timbre as a
concept that refers to different levels of analysis. Schaeffer (1966, p. 232) observed
that one can talk about “the timbre of a sound without attributing it to a given instru-
ment, but rather in considering it as a proper characteristic of this sound, perceived
per se.” He noted that “we shouldn’t confuse two notions of timbre: one related to
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the instrument, an indication of the source that is given to us by ordinary listening,
and the other related to each of the objects provided by the instrument, appreci-
ation of the musical effects in the objects themselves, effects desired by musical
listening as well as by musical activity. We have even gone further, attaching this
word timbre to an element of the object: timbre of the attack, distinguished from
its stiffness.” So, the concept of timbre is much more general than the ability to
distinguish instruments. The problem is that only one term refers to many different
notions: Timbre can be described in terms of (1) a set of sounds of an instrument
and also of the specific timbre of each sound of a particular instrument, (2) an
isolated sound, (3) a combination of different instruments, (4) the composition
of a complex sound structure, or (5) in the case of timbres produced by analysis/
resynthesis, hybrid timbres or chimeras, sounds never heard before, which can
be associated with no known natural source. For the purposes of this chapter,
we refer to timbre in terms of sound sources or multidimensional perceptual
attributes.

Timbre conveys the identity of a sound source. In other words, the timbre of a
complex sound comprises the relevant information for identifying sound sources
or events, even in a musical context. As Schaeffer (1966) said: “It is denying the
evidence to believe that pure music can exempt the ear from its principal function:
to inform humans about the events that are occurring” (cited by Cadoz, 1991,
p. 17). In the same way, we do not have any difficulty knowing that someone is
playing a violin in the neighboring room or that a car has suddenly arrived behind
us. This capacity to identify sound objects is necessary to our survival. Indeed,
when we hear a motor noise while crossing a street, our reaction is to immediately
step back onto the sidewalk to avoid an accident. Most certainly, in everyday life,
we use all the sensory systems at the same time. However, the events mentioned
above can be identified even if they occur outside our visual field and outside
any context likely to facilitate our interpretation of the sound objects (McAdams,
1993).

Most studies of musical timbre have used single, isolated instrument tones,
which are easy to manipulate for experimentation. Our discussion of these stud-
ies is organized by the theoretical models adopted by the researchers. The
first model is information processing (Lindsay and Norman, 1977), which de-
scribes the perceptual dimensions of timbre in terms of abstract attributes
of sounds. In other words, the acoustical parameters (spectral, temporal, and
spectrotemporal) of the signal are processed by the sensory system, and the per-
ceptual result is the timbre of complex sounds. Multidimensional scaling has
been fruitful in determining these different perceptual dimensions of timbre.
The second approach, based exological theoryproposed by Gibson (1966,
1979), has only recently resulted in systematic experimentation in auditory per-
ception. According to this viewpoint, timbre perception is a direct function of
the physical properties of the sound object. The aim of these studies is to de-
scribe the physical parameters that are perceptually relevant to the vibrating
object.
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2 The Notion of Timbre Space

2.1 Continuous Perceptual Dimensions

Multidimensional scaling (MDS) has been a effective tool for studying the timbral
relationships among stimuli possessing multiple attributes. The principal advan-
tage of this exploratory technique is tlagiriori hypotheses concerning the number

of dimensions and their psychophysical nature are not required. Generally, MDS
is used in an auditory study in the following manner: A set of sound stimuli—in
this case, the sounds of musical instruments—are presented in all possible pairs.
The listener’s task is to judge the dissimilarity between the timbres for each pair of
sounds. The dissimilarity is measured generally on a numerical scale (for example,
1to 9, with 1 being very similar and 9 being very dissimilar) or on a bounded,
continuous scale (for example, indicated with a cursor varied continuously on a
scale between “very similar” and “very dissimilar,” which is subsequently coded
numerically). The pitch, subjective duration, and loudness of all the sounds are
usually equalized so that the subject’s ratings concern only timbral differences. At
the end of the experiment, a dissimilarity matrix is tabulated. The aim of MDS is
to produce a geometric configuration that best represents, in terms of metric dis-
tances, the perceptual dissimilarities between the timbres of the sounds. So, two
timbres judged on average to be very similar should appear close together in the
space, and two timbres judged to be very dissimilar should appear far apart in the
space. The number of dimensions required for the spatial solution is determined
by using a goodness-of-fit measure or statistical criterion.

The last step in the MDS analysis is the psychophysical interpretation. The goal
is to find a relationship between some acoustical parameters and the perceptual
dimensions of the MDS solution. Typically, we measure a number of physical
parameters, such as spectral envelope, temporal envelope, and so on, for all of
the stimuli. Then we compute correlations between the positions of the timbres
relative to the perceptual axes and the physical parameters.

2.1.1 Spectral Attributes of Timbre

Scientists have devoted themselves to the psychophysical analysis of musical
sounds for several decades. These studies showed that spectral characteristics have
animportantinfluence on timbre. The influence of such spectral factors is revealed
by multidimensional analyses. Plomp (1970, 1976) used multidimensional tech-
nigues to study synthesized steady-state spectra derived from recordings of musical
instrument tones. He found a two-dimensional solution for a set of synthetic organ-
pipe stimuli and a three-dimensional solution for a set of wind and bowed-string
stimuli. He did not give a psychoacoustical interpretation of the individual MDS
axes, but he showed that the spectral distances (calculated as differences in energy
levels across a bank of 1/3-octave filters) were similar to those for the dissimi-
larity ratings for each stimulus set. This result suggests that global activity level
present in the human auditory system’s array of frequency-specific nerve fibers
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may constitute a sufficient sensory representation from which a small number of
perceptual factors related to the spectral envelope may be extracted. De Brujin
(1978) found a correlation between the spectral envelope of synthesized tones and
dissimilarity judgments.

Preis (1984) asked listeners to judge the degree of dissimilarity between syn-
thetic and original musical instrumenttones. Inthis case, a correlation was observed
between the metric distances separating the tones and a measure of the degree
of dissimilarity between the tones’ spectral envelopes. In the same way, Wedin
and Goude (1972) observed that spectral-envelope properties explained the three-
dimensional perceptual structure of similarity relations among musical instrument
tones (winds and bowed strings). In one of their experiments on synthesized tones,
Miller and Carterette (1975) varied the number of harmonics, a spectral property.
This spectral property corresponded with two of three perceptual dimensions. The
remaining acoustical variables employed corresponded with the third perceptual
dimension. These were the amplitude-vs-time envelope (temporal) and the pattern
of onset asynchrony of the harmonics (spectrotemporal). The results of this study
suggested a perceptual predominance of spectral characteristics in timbre judg-
ments. In the same way, Samson et al. (1996) observed a two-dimensional space
in which the organization of timbres reflected spectral and temporal differences.
Nine hybrid synthetic sounds were created, derived from crossing three levels of
spectral change corresponding to a change in the number of harmonics. (The tones
were comprised of one, four, or eight harmonics.) The authors observed that the
positions of tones along one of the dimensions corresponded closely to the number
of harmonics. These results suggest that the manipulation of certain parameters
influences subjects’ perception of complex sounds.

Grey (1975, 1977) and Wessel (1979) observed similar multidimensional spaces
with relatively complex synthesized tones meant to imitate conventional musi-
cal instruments (winds, bowed strings, plucked strings, or mallet percussion).
Figure 8.1 shows the timbre space constructed by Grey (1975). The first axis is in-
terpretable in terms of the spectral energy distribution. At one extreme, instruments
like the French horn or the cello had low spectral bandwidths and concentrations
of low-frequency energy. At the other extreme, the oboe has a very wide spectral
bandwidth and less concentration of energy in the lowest harmonics.

Grey and Gordon (1978) were the first to propose a quantitative interpreta-
tion of spectral energy distribution. They found that the centroid of a loudness
function based on time-averaged amplitudes of stimulus harmonics correlated
strongly with the first dimension of MDS models for tones interpolated acous-
tically between Grey’s (1975, 1977) original acoustic instrument tones and their
spectral modifications of some of these tones. Iverson and Krumhansl (1993),
using complete synthetic tones, those with attack portion only, and those with at-
tacks removed, gave a similar interpretation of the second dimension of their three
spaces.

Krimphoff (1993) and Krimphoff et al. (1994) conducted acoustical analyses
on the set of 21 sounds created by Wessel et al. (1987) and used by Krumhansl
(1989) in an MDS timbre study. Most of these synthetic sounds imitated traditional
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FIGURE 8.1. Three-dimensional INDSCAL solution derived from similarity ratings for

16 musical instrument tones. Two-dimensional projections of the configuration appear on
the wall and the floor. Abbreviations for the instruments: O1 and O2, two different oboes;
Cland C2, Eand bass clarinets; X1 and X2, alto saxophone playing softly and moderately
loud, and X3, soprano saxophone, respectively; EH, English horn; FH, French horn; S1,
S2, and S3, cello playing with three different bowing stykad:tasto, normale, sul ponti-

cello, respectively; TP, trumpet; TM, muted trombone; FL, flute; BN, bassoon. Dimension

| (top-bottom) represents spectral envelope or brightness (brighter sounds at the bottom).
Dimension Il (left-right) represents spectral flux (greater flux to the right). Dimension Il|
(front-back) represents degree of presence of attack transients (more transients at the front).
Hierarchical clustering is represented by connecting lines, decreasing in strength in the or-
der: solid, dashed, and dotted. [From Grey (1977), Fig. 1, used by permission of Acoustical
Society of America.]

instruments, but some were chimerical hybrids (e.g., a “trumpar” created
by combining spectrotemporal characteristics of the trumpet and the guitar).
Krumhansl (1989) did not attempt to give a quantitative interpretation of her MDS
solution, but she intuitively interpreted each of its axes according to the positions
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FIGURE 8.2. Three-dimensional EXSCAL solution derived from dissimilarity ratings for
21 synthesized musical instrument tones. Abbreviations for the instruments: BSN, bassoon;
CAN, English horn; CNT, clarinet; GTN, guitarnet (hybrid between GTR and CNT); GTR,
guitar; HCD, harpsichord; HRN, French horn; HRP, harp; OBC, obochord (hybrid between
OBO and HCD); OBO, oboe; OLS, oboleste (hybrid between OBO and celeste); PNO,
piano; POB, bowed piano; SNO, striano (hybrid between STG and PNO); SPO, sampled
piano; STG, string; TBN, trombone; TPR, trumpar (hybrid between TPT and GTR); TPT,
trumpet; VBN, vibrone (hybrid between VBS and TBN); VBS, vibraphone. Dimension |
(left-right) represents the Temporal Envelope or attack quality of the sounds (blown-bowed
sounds at the right and plucked-struck sounds on the left). Dimension Il (front-back) rep-
resents the Spectral Envelope of the sounds (brighter sounds at the back). Dimension Ill
(top-bottom) represents Spectral Flux (more spectral flux on the top). [From Krumhansl
(1989), Fig. 1, used by permission of Excerpta Medica]

of the different timbres (see Fig. 8.2). Krimphoff aimed to find the acoustic pa-

rameters that correlated most strongly to the three dimensions that Krumhansl|
qualitatively referred to as Temporal Envelope, Spectral Envelope, and Spectral
Flux. Thus, two of the three dimensions were expected to correlate with spectral
characteristics. Krimphoff found that Dimension 2 (Spectral Envelope) correlated
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FIGURE 8.3. Spectra of two extreme sounds positioned along the second perceptual dimen-
sion of timbre spaces in Figs. 8.1 and 8.2 illustrating the “spectral centroid” parameter. On
the left a trombone spectrum has a lower spectral centroid value, and on the right an oboe
spectrum has a higher spectral centroid value.

very strongly { = 0.94) with thespectral centroidmeasured as the time-average

of the instantaneous spectral centroid over the duration of the tone. A comparison
of spectra with low and high spectral centroids is shown in Fig. 8.3.) However,
as discussed further in Section 2.1.3, none of Krimphoff's several measures of
spectral variation over time corroborated Krumhansl's suggestion that the third
dimension could be interpreted in terms of “spectral flux,” a variation of the spec-
trum over time. Krimphoff’s best measure of spectral flux explained only 34% of
the variancer( = 0.59).

In an attempt to quantify the acoustic nature of Krumhansl’s third dimension,
Krimphoff proposed two new acoustic parameters related to the spectral envelope.
First, he tested an acoustic parameter proposed by Guyot (1992) that measures
the ratio between the amplitudes of even and odd harmonics. The clarinet, for
example, has a high value for this parameter, because its odd-numbered spectral
components have higher energy than its even-numbered ones. On the other hand,
the trumpet’s value for this parameter is low, because its spectrum is more homo-
geneous with regard to the amplitudes of the various harmonics. Krimphoff found
that the odd/even parameter explained 51%:(—0.71) of the MDS variance for
the third dimension. However, a second parameter corresponding to a measure of
thespectral irregularityof the spectrum (taken as the log of the standard deviation
of component amplitudes from a global spectral envelope derived from a running
mean of the amplitudes of three adjacent harmonics) yielded a stronger correlation,
explaining 73% 1 = —0.85) of the variance along Krumhansl’s third dimension.

(A comparison of spectra with low and high spectral irregularity is shown in
Fig. 8.4.) Krimphoff’s spectral envelope result suggested a new interpretation of
the third dimension.
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FIGURE 8.4. Spectra of two extreme sounds positioned along the second perceptual dimen-
sion of the timbre space in Fig. 8.2 illustrating the “spectral irregularity” parameter. On the
left a trumpet spectrum has a lower spectral irregularity value, and on the right a clarinet
spectrum has a higher spectral irregularity value (i.e., a more jagged spectral envelope).

One of the aims of a study by McAdams et al. (1995) was to replicate the
Krumhansl (1989) study with a large set of listeners having varying degrees of
musical training and to check whether any of the acoustic correlates described
by Krimphoff (1993) and Krimphoff et al. (1994) could explain the resulting
dimensions of the timbre space. Figure 8.5 shows the three-dimensional tim-
bre space produced by McAdams et al. (1995). They correlated several acous-
tical parameters with derived MDS dimensions for 18 sounds (drawn from the
21 sounds used by Krumhansl and Krimphoff). They found that spectral centroid
accounted for 88% of the variance £ —0.94) along Dimension 2 of the fig-
ure. However, spectral irregularity did not correlate well with Dimension 3 (only
r = 0.13), whereas spectral flux gave the highest Dimension 3 correlation (
0.54).

Grey and Moorer (1977) and Charbonneau (1981) used a different approach,
where controlled modifications of acoustical analyses of instrument tones were
used as the basis for resynthesis. Grey and Moorer used a computer resynthesis
technique based on a heterodyne-filter analysis method to first produce a set of
intermediate data for additive synthesis consisting of time-varying amplitude and
frequency functions for the set of partials of each tone. Then, from those data
they produced synthetic musical instrument stimuli that were used to evaluate the
perceptual discriminability of original and resynthesized tones taken from a wide
class of orchestral instruments. Sixteen versions of each tone were presented to
listeners: (1) original tones; (2) tones resynthesized with line-segment approxima-
tions of the amplitude and frequency variations; (3) line-segment approximations
with deletion of initial transients; and (4) line-segment approximations with flat-
tening of the frequency variations. Instrument tones from the string, woodwind,
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FIGURE8.5. Three-dimensional CLASCAL solution with specificities and five latent classes
derived from dissimilarity ratings on 18 timbres by 88 subjects. The acoustic parameters
correlated to the dimensions are indicated in parentheses. Hashed lines connect two of the
hybrid timbres (vbn and sno) to their progenitors. [From McAdams et al. (1995), Fig. 1,
used by permission of Springer-Verlag.]

and brass families were modified. The pitch, subjective duration, and loudness of
these tones were equalized.

Three identical tones and one different tone were presented in an AA-AB vs
AB-AA discrimination procedure. Musically trained listeners were asked to dis-
criminate which tone pair was “different” and to rate how different it was on
a numerical scale. The data showed that: (1) simplifying the pattern of varia-
tion of the amplitudes and frequencies of individual components in a complex
sound had an effect on discrimination for some instruments but not for others;
(2) tones in which the attack transients were removed were easily discriminated
from the originals; and (3) tones in which frequency variations were suppressed
were easily discriminated as well. These results suggest that microvariations in
frequency and intensity functions are not always essential to timbre and that a
reduction of the data can be applied without affecting the perception of some
sounds.
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Charbonneau (1981) extended Grey and Moorer’s study by constructing instru-
mental sounds that maintained their original global structure, while simplifying the
microstructure of the amplitude and frequency envelopes of each harmonic partial.
Listeners were asked to evaluate the timbral differences between original sounds
and three types of simplifications: (1) replacing the harmonics’ amplitude-vs-time
envelopes so that each had the same amplitude shape (calculated as the average
harmonic-amplitude envelope) but scaled to preserve its original peak value and
start- and end-times; (2) replacing the frequency-vs-time envelopes so that each
had the same relative frequency variation as the fundamental, meaning that the
sound remained perfectly harmonic throughout its duration; and (3) fitting the
start- and end-time data to fourth-order polynomials. Results indicated that the
amplitude-envelope simplification had the greatest effect. However, as with the
Grey and Moorer study, the strength of the effect depended on the instrument.
These studies showed that simplifications performed on temporal parameters, and
specifically on time-varying functions of amplitude and frequency, influence to a
greater or lesser degree the discrimination of musical sounds.

McAdams et al. (1999) attempted to determine the extent to which simplified
spectral parameters, without the use of straight-line approximations, affected the
perception of synthesized instrumental sounds produced by instruments of var-
ious families of resonators (air column, string, or bar) and types of excitation
(bowed, blown, or struck). Listeners were asked to discriminate sounds resyn-
thesized with full data from sounds resynthesized with six basic data simplifi-
cations: (1) harmonic-amplitude variation smoothing; (2) coherent variation of
harmonic-amplitudes over time; (3) spectral-envelope smoothing; (4) coherent
harmonic-frequency variation; (5) harmonic-frequency variation smoothing; and
(6) harmonic-frequency flattening. (Methods 2 and 4 were similar to Charbon-
neau’s methods 1 and 2.) The results showed very good discrimination for spectral-
envelope smoothing and coherent harmonic-amplitude variation, demonstrating,
in a negative way, the importance of spectral-envelope detail and spectral flux.
However, for coherent harmonic-frequency variation, harmonic-frequency varia-
tion smoothing, harmonic-frequency flattening, and harmonic-amplitude variation
smoothing, discrimination was moderate to poor in decreasing order.

These techniques appear to be important for the study of timbre perception
because they allow modification of the different spectrotemporal parameters of
sound in order to reveal which are most important for timbre perception.

2.1.2 Temporal Attributes of Timbre

The classical point of view associates timbre with the spectrum of a sound signal.
However, this point of view remains limited because it ignores the importance of
temporal factors in timbre. Indeed, instrumental tones physically and perceptually
evolve over time. Moreover, the classical conception runs into serious obstacles
because musical instruments can be recognized or identified even when their spec-
tra are seriously distorted. This happens in the case of mediocre recordings and
when instruments are performed in normal reverberant rooms, where the spectra
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of sounds vary a great deal throughout the space. Indeed, when we move about in
a room, timbres are not transformed as much as we would expect if they depended
exclusively on the precise structure of the source spectra. Nevertheless, spectral
factors are undeniably important in timbre, while temporal factors seem to play a
role only in certain contexts or for certain instruments.

Let us first examine the extent to which temporal factors are important in the
timbre of musical sounds. We often consider musical sounds as composed of three
parts: an initial attack portion, a middle sustain portion, and a final decay (the
sustain portion being absent, of course, in resonant percussion sounds). The tem-
poral shape of the sound of a piano is an important factor in the definition of its
timbre. This is proven by listening to a sound presented in reverse-time. While
its long-term average spectrum is identical to that of the original sound, the time-
reversed version is often totally unrecognizable (George, 1954; Schaeffer, 1966).
In the same way, Berger (1964) showed that suppressing the initial portion of
sounds perturbs their recognition. Listeners were asked to discriminate between
original musical instrument tones and modified versions with either their initial
portions (attacks) or their final ones (decays) removed. Identification was poorest
for sounds without attack. Also, Saldanha and Corso (1964) evaluated the relative
importance of onset and offset transients, spectral envelope of the sustain portion,
and vibrato for identifying musical instruments playing isolated notes. Identifica-
tion was particularly affected when the attack portions were removed. However,
identification was affected less if the instruments were performed with vibrato than
if they were performed without vibrato. These results suggest that the attack plays
a major role in the identification of instruments, but in the absence of the attack,
additional information still exists in the sustain portion (McAdams, 1993). The
studies of Grey and Moorer (1977) and Charbonneau (1981) described above also
demonstrated the importance of such temporal factors. For example, tones with the
attack transients removed were easily discriminated from originals in their studies.

As part of a multidimensional analysis, Samson et al. (1996) produced a two-
dimensional space in which each dimension corresponded to temporal factors.
The authors observed that the duration of the attack (1, 100, or 190 ms) correlated
strongly with one of the perceptual dimensions. Grey (1977) and Wessel (1979)
also observed a dimension of this nature. Wessel (1979) determined that the sec-
ond dimension of his perceptual space corresponded to “attack rapidity.” Grey
(1977) interpreted two of his three dimensions to be related to attack features, the
second of which corresponded to the “presence of inharmonic transients in the
high frequencies just before the onset of the main harmonic portion of the tone.”
Strings, flutes, and clarinet, for example, have low-amplitude, high-frequency en-
ergy near their tone onsets, contrary to those of the bassoon or the English horn.
Krimphoff (1993) and Krimphoff et al. (1994) confirmed this finding in their in-
terpretation of the “Temporal Envelope” dimension of Krumhansl's (1989) space
(see Fig. 8.2). The positions of timbres along this axis were strongly correlated
(r = 0.94) with the logarithm of the rise time of the temporal envelope (where
rise time was measured as the difference between the time at which the amplitude
reaches athreshold of 2% of the maximum amplitude to the time it attains maximum
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FIGURE8.6. Temporal envelope of two extreme sounds positioned along the first perceptual
dimension of the timbre spaces shown in Figs. 8.2 and 8.5 illustrating the “log-attack time”
parameter. On the left, the pianbow has a long attack time (about 190 ms) similar to those
for wind and bowed string instruments. On the right, the vibraphone has a short attack time
(about 4 ms) similar to those for the set of struck and plucked instruments.

amplitude). The first dimension of McAdams et al.'s (1995) timbre space (Fig. 8.5)

is also strongly correlated to this acoustical parameter with 88% of the variance
(r = —0.94) explained by it. Examples of the measurement of rise time are shown
in Fig. 8.6.

2.1.3 Spectrotemporal Attributes of Timbre

Multidimensional scaling in timbre studies has often revealed three perceptual di-
mensions. While two of these are often easily characterized by acoustical param-
eters, the third one remains poorly defined. This lack of satisfactory interpretation
is probably due to the variability in stimulus sets or listener characteristics across
studies. Not all studies have found a valid third dimension (e.g., Wessel, 1979),
and those that have interpreted this perceptual axis differently from one study to
the next. Some authors have proposed that this dimension corresponds to a spectral
factor other than spectral centroid (Krimphoff et al., 1994; McAdams et al., 1995),
and others have proposed that it corresponds to a temporal variation in the spectral
envelope (Grey, 1977; Krumhansl, 1989) (see Figs. 8.1, 8.2, and 8.5).

Up to this point, this chapter has presented the influence of temporal and spectral
factors, considered independently, on timbre. Nevertheless, these factors are not
generally independent, and their association may also play arole in musical timbre.
Risset and Mathews (1969) notably observed that synthesized trumpet sounds with
static spectra and a common amplitude-vs-time envelope, applied synchronously
to all frequency components, did not give a satisfactory perceptual result. They
demonstrated the necessity of taking into account the variations of the different
spectral components over time for certain timbres. Grey (1977) also suggested
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FIGURE 8.7. Time-frequency perspective plots illustrating the “spectral flux” parameter for
two extreme sounds positioned along the third perceptual dimension of the timbre space
of Fig. 8.2. On the left, the obochord (hybrid between the oboe and the harpsichord) has a
high spectral flux value and on the right, the striano (hybrid between a string and a piano)
has a low value.

that the physical nature of one of the perceptual dimensions of timbre could be a
spectrotemporal factor. The interpretation of the second dimension of his solution
was a combination of the degree of fluctuation in the spectral envelope over the
duration of a tone and the synchrony of onset of its different harmonics. The
woodwinds were at one extreme and tended to have upper harmonics that reached
their maximum during the attack but were often in close alignment during the
decay. Also, their spectra tended to have little fluctuation over time contrary to the
strings or brass situated at the other extreme of this axis.

As mentioned in Section 2.1.1, Krumhansl (1989) named the first two dimen-
sions obtained in her MDS study Temporal Envelope and Spectral Envelope, and
the third dimension was called Spectral Flux, because the distribution of timbres
along this dimension was presumed to correspond to the degree of spectral vari-
ation over time. (Time-variant spectra with high and low spectral variation are
compared in Fig. 8.7). This interpretation agreed for the most part with the one
proposed by Grey (1977) for simplified, resynthesized instrument sounds. The
psychophysical interpretation proposed by Krimphoff (1993) and Krimphoff et al.
(1994) for the first two dimensions agreed with the qualitative interpretation of
Krumhansl, as previously discussed.

For analysis of Krumhansl's third dimension, Krimphoff (1993) tested three
acoustical parameters that quantified spectral fluctuation over the duration of a
sound. These parameters were: (1) “spectral flux,” defined, in this case, as the rms
variation of instantaneous spectral centroid around the mean spectral centroid;
(2) “spectral variation,” defined as the average of correlations between amplitude
spectra in adjacent time windows (note that the smaller the degree of variation of
the spectrum over time, the higher the correlation); and (3) “coherence,” defined as
the standard error of the onset times across all harmonics. Correlations observed
between these three parameters and the third dimension of Krumhansl's (1989)
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solution were not significant, except for spectral flux, which only explained 34%
(r = 0.59) of the variance along this dimension. Krimphoff (1993) and Krimphoff

et al. (1994) found that spectral irregularity, a spectral rather than spectrotemporal
parameter, best explained Krumhansl’s third dimension. On the contrary, spectral
irregularity was not best correlated to the third dimension of the McAdams et al.’s
(1995) timbre space, which used 18 of the same 21 sounds in Krumhansl’s study.
Indeed, spectral variation was the only acoustical parameter in McAdams et al.'s
(1995) study that significantly correlated with the third dimension, even though it
accounted for only 29%r (= 0.54) of the variance along this dimension. When
four of the timbres (clarinet, trombone, guitarnet, and vibrone) were removed, the
variance increased to 39%, and their removal did not affect the correlations of
attack time and spectral centroid with Dimensions 1 and 2.

2.2 The Notion of Specificities

The degree of variability in similarity data from the early scaling studies on tim-
bre leads us to think that two or three common dimensions are not enough to
describe the perception of timbre. Moreover, one may question the validity of the
assumption that two or three dimensions can explain all the differences among
extremely complex sounds like musical instrument tones. To take into account this
complexity, some authors suggest that each timbre may also be defined by unique
characteristics (Krumhansl, 1989; McAdams, 1993). On the other hand, it will
be important to take these specificities into account in the modeling of the mental
structure of timbre because they might play a major role in the identification of mu-
sical instruments. For example, when the spectral envelope is unique (e.g., clarinet
Vs trumpet), it seems to contribute more to identification than when the temporal
envelope is distinguished (e.g., flute vs trombone). This suggests that listeners use
characteristics that specify the instrument with the least ambiguity and that they
are not constrained to listening for a single cue across all possible sources (Strong
and Clark, 1967a,b). For example, in a study on string instruments, Mathews et al.
(1965) found an initial inharmonic frequency component corresponding to the ir-
regular vibration that appears when the bow first sets the string into vibration. Such
details can be characteristic of particular sound sources, and the auditory system
seems to be sensitive to these identifying details.

Timbre may thus be defined by not only two or three common, continuous di-
mensions but also by distinguishing features or dimensions that are specific to a
given sound. To test this notion, Krumhansl| (1989) applied an extended Euclidean
model developed by Winsberg and Carroll (1989). By postulating the existence
of unique features for certain timbres, this model was designed to provide an ex-
planation of the variability in similarity judgments that could not be attributed to
the three principal MDS dimensions derived from dissimilarity judgments based
on 21 synthesized imitations and hybrids of conventional Western musical instru-
ments. Globally, 60% of the timbres yielded non-zero specificity values. Specific
examples are the harpsichord, the clarinet, and some of the hybrid timbres such
as the “pianobox” (bowed piano), the “guitarnet” (guitar/clarinet hybrid), and the
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“vibrone” (vibraphone/trombone hybrid) that yielded high values of specificity.
While no attempt was made to interpret these specificity values by systematically
relating them to acoustic properties, Krumhansl conjectured that the specificities
of certain instruments reflected specific mechanical characteristics that could be
important for their identification. For example, the return of the jack in the harpsi-
chord mechanism or the cylindrical geometry of the air column of clarinet could
have important perceptual ramifications.

McAdams et al. (1995) attempted to find a qualitative interpretation of the
specificities captured by their model on the same set of sounds. First, the authors
noted a monotonic relationship between the specificity values and the perceptual
strength of the specificities. However, this relationship was not tested systemat-
ically. Second, the authors distinguished: (1) continuous features that varied by
degree (such as “raspiness” of attack, inharmonicity, “graininess” deviation of
pitch glide, and “hollowness” of tone color); and (2) discrete features that varied
by perceptual strength (such as a high-frequency chiff on the onset, a suddenly
damped or pinched offset, or the presence of a clunk or thud during the sound).
The authors concluded that such specificities may account for both additional
continuous dimensions and discrete features of variable perceptual salience.

Another hypothesis was that specificities may reflect unfamiliarity of sounds to
listeners, and, therefore, hybrid timbres should yield a high value of specificity.
However, on average, in the two models (Krumhansl, 1989; McAdams et al.,
1995), hybrid timbres did not yield higher specificities than those of conventional
instruments. Actually, half of the hybrid timbres tested yielded lower specificities
thanthe average value. Moreover, this hypothetical relationship between specificity
and familiarity was not supported by the (very familiar) piano timbre, which yielded
a high value in both studies. In fact, the piano is probably one of the most familiar
instruments to the primarily European listeners who participated in these studies.

To conclude, these results suggest that structural sound characteristics influence
dissimilarity judgments made by subjects. These characteristics may be common
to all the timbres within a stimulus set or specific to some timbres. A classical
Euclidean model could not take these specific features into account and an extended
model is, therefore, more appropriate. Acoustical analyses must still be conducted
in order to give a psychoacoustical interpretation of the specificities that were
found.

2.3 Individual and Group Listener Differences

Most of the timbre spaces described above were derived exclusively from musician
listeners (Grey, 1977; Wessel, 1979; Krumhansl|, 1989). A few studies have tried
to determine whether perceptual differences between auditory classes correspond
to biographical factors, such as the level of musical training or cultural origin,
but they have found no systematic differences related to musical training (Miller
and Carterette, 1975; Wedin and Goude, 1972). However, whereas most of us,
musician or not, can distinguish a guitar from a clarinet, we might suppose that
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the mental structure of the perceptual relations among different timbres would not
be the same depending on the musical competence of the listener.

Musical competence potential differences might be found by analysis of weight
patterns attributed to the different dimensions and specificities of a common space.
The weights’ interpretation could be based on biographical factors such as musical
experience. The INDSCAL (INdividual Differences SCALing) model, proposed
by Carroll and Chang (1970), can account for such individual perceptual differ-
ences. Serafini (1993) used individual-differences scaling to test two groups of
Western musician listeners on a set of Javanese percussion sounds (xylophones,
gongs, and metalophones) and a plucked-string sound. One group was familiar with
Indonesian gamelan music (they had played Javanese Gamelan music for at least
two years), and the other was unfamiliar with this type of music. The task was
to judge the dissimilarity between pairs of isolated notes and pairs of melodies
played by these instruments. Stimulus and subject INDSCAL two-dimensional
solutions yielded one dimension (Dimension 1) corresponding to the spectral cen-
troid of the attack portion of tones and a second dimension (Dimension 2) to the
mean amplitude level of the resonant portion of the tone (a dimension related to
loudness). For isolated tones (see Figs. 8.8a and 8.8b), no differences were found
between the two groups of listeners. However, for melodies, the group unfamiliar
with gamelan music gave equal weight to the two dimensions, whereas gamelan
players weighted the attack dimension more heavily (see Figs. 8.8c and 8.8d).

McAdams et al. (1995) conducted a study on a large number of listeners of
varying levels of musical training with an analysidatent-class structurel he aim
was to examine whether listeners could be sorted into different classes according
to their perceptual data and whether a relation between the class structure and
musical training of the listeners could be found. For musical pitch, Shepard (1982)
had observed a dimensional structure that was different for musicians and non-
musicians. The structure was richer, i.e., had higher dimensionality, for musicians
than for non-musicians. This result led McAdams et al. (1995) to hypothesize
that the same type of result could be observed for timbre perception: either the
number of dimensions would be greater for the musicians’ dimensional structure,
or the weights on the dimensions would be more evenly distributed. However,
in fact, musicians, amateurs, and non-musicians did not fall into separate latent
classes even if some differences were observed in the proportional distribution of
biographical factors. The analysis of the different weights across dimensions and
specificities showed that two of the five classes observed among 98 listeners gave
roughly equal weights across dimensions and specificities, while the other classes
gave high weights on two dimensions, or on one dimension and the specificities,
and low weights on the others, respectively (see Fig. 8.9).

Two different interpretations of this weight pattern were proposed by the au-
thors. First, the weight pattern observed could reflect a strategy difference between
subjects over the course of the experimental session. Equal weights across the three
dimensions and specificities observed for two of the five classes could be due to
the subjects in these classes shifting their attention among the different dimensions
and specificities, while the subjects in the other classes may have adopted more
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FIGURE 8.8. (a) Two-dimensional stimulus space derived from an INDSCAL analysis on
similarity ratings on six isolated gamelan sounds. (b) Subject space observed for the six
isolated gamelan sounds. (c) Two-dimensional stimulus space derived from an INDSCAL
analysis on similarity ratings on six melodies played by six gamelan sounds. (d) Subject
space observed for the six melodies. (“G” refers to listeners familiar with Indonesian game-
lan music.) “W” refers to “Western” listeners unfamiliar with gamelan music. [From Serafini
(1993), adapted with permission of Waterloo University.]

consistent strategies of judgment that focused on a smaller number of dimensions
and stuck to them throughout the experimental session. The second interpreta-
tion suggested a difference between subjects in different classes in their cognitive
capacity to process different aspects of sounds in parallel. According to this in-
terpretation, subjects in the two classes who equally weighted the dimensions and
specificities were able to focus on more dimensions at a time than could members
of the other classes, and one might prediptiori that these would be principally
musicians. However, the authors observed that both musicians and non-musicians
were able eitherto equally weight all dimensions or to give special attention to some
dimensions like the attack time or the spectral centroid. Thus, the distribution of
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FIGURE 8.9. Class weights (mean weights across dimensions and specificities for each
class) for spatial model plotted for each of five classes. Weights were estimated in a three-
dimensional space for five latent classes. [Derived from McAdams et al. (1995), Table 4

used by permission of the author.]

the three original classes of listeners (musician, amateur, and non-musician) within
each latent class was roughly equivalent to their distribution in the whole subject
population employed. The pattern of weighting of a given subject cannot be pre-
dicted simply from the biographical data related to that subject concerning their
degree of musicianship or their years of music training, performing, or listening.

The only differences observed between musicians, amateurs, and non-musicians
were the variances about the model distances, observed for the solutions computed
separately for musician and non-musician groups: The variance for non-musicians
and amateurs combined was greater than that for musicians. However, the variances
observed for individual latent classes, composed of musicians, amateurs, and non-
musicians, were less than the variance of the musician group, suggesting that the
inclusion of class weights in the dimensional models is justified in terms of model
fit because it reduces the overall variance. This pattern of results suggests that
the effect of musicianship is, among other things, one of variance. Latent classes
do not differ with respect to variance, but musicians and non-musicians do. So
musicianship appears to affect judgment precision and coherence.
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2.4 Evaluating the Predictive Power of Timbre Spaces

In some studies that attempted to evaluate timbre space as a predictive model, the
explicit aim was to determine the validity of the model. In others, the idea was to
see if timbre space could be used to test other hypotheses. Four types of research
will be discussed that support the validity and utility of such models.

2.4.1 Perceptual Effects of Sound Modifications

An assumption of the timbre space model is that specific acoustic properties un-
derlie the continuous perceptual dimensions. If we modify the acoustic properties
for a single perceptual dimension in a systematic way, we should observe per-
ceptually interpretable changes of the positions of stimuli along that dimension.
A study conducted by Grey and Gordon (1978) confirmed this assumption. They
exchanged the spectral envelopes of pairs of instruments drawn from the Grey
(1975, 1977) study, while trying to preserve other properties, and conducted a new
multidimensional study with half of the original sounds modified and the other
half intact. The hypothesis was that the positions of the original and hybrid sounds
should change along the dimension that best correlated with a measure of the spec-
tral envelope. The results demonstrated that in all cases the tones exchanged places
along the “brightness” (or spectral-centroid) dimension, although in some cases
displacements along other dimensions also occurred. These displacements still
respected the nature of the perceptual dimensions: Temporal-envelope changes re-
sulting from the way the spectral envelope varied with time resulted in appropriate
changes along the dimension that best correlated with spectral flux.

On the other hand, the most natural way to move in a timbre space would be
to attach the handles of control directly to the different dimensions of the space.
Wessel and colleagues (1979, 1983, 1987) examined such a control scheme in a
real-time context. A two-dimensional timbre space was represented on a computer
graphics terminal allowing control of a digital processor. One dimension of the
space was used to manipulate the shape ofthe spectral-energy distribution. Thiswas
accomplished by appropriately scaling line-segment spectral envelopes according
to a shaping function. The other axis of the space was used to control either the
attack rate or the extent of synchronicity among the various components. Overall,
the timbral trajectories in these spaces were reported by the author to be smooth
and otherwise perceptually well-behaved.

All of these results and observations suggest that some intermediate regions of
the timbre space could be filled in and that regular, finely graded transitions are
conceivable, thus supporting the hypothesis that timbre perception can be modeled
by continuous physical dimensions that underlie a small number of perceptual
dimensions.

2.4.2 Perception of Timbral Intervals

Classical musical structures are based on the separation and the grouping of sound
events according their relative differences in pitch (melody), intensity (dynamics),
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duration (rhythm), and timbre (instrument). Research on timbre tries to expand this
conception of the organization of musical sequences. Indeed, transposing timbral
sequences may be heard by listeners and used consciously by composers. The aim
of the following studies was to test the idea of the composer Arnold Schoenberg
(1911) that musical phrases can be formed by notes which differ only in timbre.
Once a timbre space has been quantified, one might ask whether the structure of
the common dimensions is useful as a tool for predicting listeners’ abilities to
compare relations among the different timbres.

Ehresman and Wessel (1978) were among the first to apply Rumelhart and
Abrahamson’s (1973) parallelogram model of analogical reasoning with a two-
dimensional space composed of traditional musical instrument sounds (Grey,
1977). This model predicts that if the relation between two objects A and B is
represented as the vector A-B in the space, another vector C-D will be perceived
as analogous if it has the same magnitude and orientation as A-B. In the analogy
task, vector A-B is presented and a series of vectorg @®presented. According
to the model, the subjects will choose thetbat is closest to the end point of a
vector starting at C and having the same magnitude and direction as A-B. This
ideal point is called | and the vectors A-B and C-I thus form a parallelogram in
the space. Analogies of the form A, B, C{M,, D3, D), where D was varied
according to its distance from |, were constructed. The probability of choosing D
as the best solution was found to be a monotonically decreasing function of the
absolute distance of;Orom I, thus supporting the parallelogram model. Ehres-
man and Wessel proceeded in analogous fashion with musical instrument tones.
The two perceptual dimensions of their space corresponded to (1) “spectral energy
distribution” of the tones and (2) “nature of the onset transients.” The results were
better predicted by this model than a number of other models. In addition, timbral
vectors were computed from a two-dimensional solution and only relative vector
magnitude (corresponding to the estimated perceived dissimilarity) was tested,
ignoring the direction components.

McAdams and Cunibile (1992) tested a similar geometric model for the three-
dimensional space observed by Krumhansl (1989) taking into account separately
the magnitude and orientation of the different timbral vectors. Sequences of four
timbres of the perceptual space (five different sets for each experimental condition)
were constructed according to four experimental conditions differing in the degree
to which they corresponded to the “good” analogy defined by the model: (1) good
magnitude, good orientation; (2) good magnitude, bad orientation; (3) bad mag-
nitude, good orientation; and (4) bad magnitude, bad orientation (see Fig. 8.10).
Two sequences of four timbres, where only the last varied between the two se-
guences, were presented to listeners (musicians and non-musicians). The task was
to choose the sequence that best corresponded to an analogy of the form: timbre
A is to timbre B as timbre C is to timbre D. The hypotheses were: (1) sequences
in which the A-B and C-D vectors formed a parallelogram would be preferred; (2)
sequences in which the C-D vector had a good magnitude but a bad orientation
would be preferred over those with bad magnitude and orientation; (3) sequences
in which the C-D vector had a bad magnitude but a good orientation would be
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FIGURE 8.10. Parallelogram model of timbre analogies. (The two-dimensional case is
shown.) A to B is a given change in timbre; C to D is a desired timbral analogy, with

C given. D1, D2, D3, D4 are the different analogies offered to the listeners with D1 corre-
sponding to the ideal point according to the model.

preferred over those with bad magnitude and orientation; and (4) there would be
no differences among the different versions of each comparison type because the
analogy judgment is based on a perception of abstract relations among the timbres
of the stimulus tones. The results showed that: (1) the listeners preferred sequences
with good magnitude and orientation; (2) sequences with either good magnitude
and bad orientation or bad magnitude and good orientation were preferred signifi-
cantly more often than those with bad magnitude and bad orientation; (3) however,
the judgments for the different versions of each comparison differed significantly
from one another. According to the authors, these latter differences may have been
due to the presence of specificities that were not taken into account in comput-
ing the vectors in this experiment. Indeed, if we consider that certain timbres had
specificities, this would distort the vector established on the basis of the common
dimensions alone.

Overall the results were encouraging, indicating an ability to perceive timbral
analogies onthe basis of atimbre space describing the dissimilarity relations among
differenttimbres. However, these studies lacked control for specificities, which can
influence the dissimilarity between timbres and thus the distances separating them
in the space. They also needed to control for the positions of vector pairs in the
perceptual space by using a synthetic space in which the timbres are distributed in
a homogeneous fashion.

2.4.3 The Role of Timbre in Auditory Streaming

We know now that many aspects of sound are important in auditory streaming:
intensity (Van Noorden, 1975), fundamental frequency (Bregman, 1990; Bregman
et al., 1990; Miller and Heise, 1950; Singh, 1987; Van Noorden, 1975), spectral
factors (Hartmann and Johnson, 1991; McAdams and Bregman, 1979), and tem-
poral factors (Hartmann and Johnson, 1991). Even if the majority of reseachers
consider timbre to be an attribute of sound processed after auditory grouping, it
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seems that the spectral, temporal, or spectrotemporal properties giving rise to tim-
bral attributes may also contribute to auditory stream segregation. A hypothesis
may be made that sequential groupings of complex sounds are based on the spec-
tral or temporal similarity of the sounds. In these cases, the auditory system would
organize sound events in the same stream when they are sufficiently similar.

Several researchers (McAdams and Bregman, 1979; Wessel, 1979; Iverson,
1993; Gregory, 1994; Bey and McAdams, 2003) have studied streaming by musical
timbre. Wessel (1979) conducted an early demonstration of streaming employing
16 synthetic instrument tones. In a previous experiment he had subjects rate the
similarity of these tones and used MDS to fit the judgments to a two-dimensional
space with one dimension corresponding to spectra and the other to onset tran-
sients. To test the relationship between similarity judgments and streaming, he
constructed repeated sequences of three ascending notes with alternate notes dif-
fering in timbre, but otherwise the pitch sequence and rhythmic timing remained
fixed. When the timbral distance between the adjacent notes was small along the
spectral dimension, a repeating, ascending pitch line was heard. However, when
the timbral distance was enlarged along this same dimension, listeners heard two
streams with one stream comprised of timbre A and the other of timbre B. This
phenomenon is called “melodic fission” or “auditory stream segregation.” On the
other hand, a different effect was obtained when the note timings were modified. In
this case, a single stream with perceptually irregular rhythm was perceived regard-
less of the timbral distance separating the different notes. This result suggested that
the spectral dimension influenced auditory streaming but the temporal dimension
did not.

Iverson (1993) also conducted a series of experiments to test the relationship
between similarity judgments and auditory streaming. In a previous study, the au-
thor examined 16 tones using a standard similarity-scaling technique and found
a two-dimensional MDS space where the 16 tones were represented. The second
experiment assessed the relationship between similarity judgments and streaming.
Pairs of sequences, constructed with the same 16 tones used in the first experiment,
were presented to listeners. The task was to rate the degree of streaming of each
sequence on a continuous scale, resulting in a triangular matrix giving the relative
streaming of each pair of tones. The streaming ratings were used as a similarity
metric for MDS, so tones that formed one stream were closer in the space than
tones that formed two streams. A two-dimensional space was obtained similar
to those observed with the similarity ratings on single tones. The first dimension
corresponded to attack quality and the second to the perceived brightness of the
sounds. Acoustical attributes were identified and correlated with the judgments.
Iverson showed that sounds with similar spectral or temporal envelopes were in-
tegrated into one stream and sounds with different spectral or temporal envelopes
were segregated into different streams. This result showed the importance of tem-
poral factors in auditory streaming, contrary to the results observed by Wessel
(1979) and Hartmann and Johnson (1991).

Gregory (1994) tested the influence of each perceptual dimension of timbre
in auditory streaming. The three dimensions of his MDS space were “relative
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percentage of energy in the first three partials,” “decay duration,” and “relative
strengths of odd to even partials.” Listeners were tested to determine their abilities
to separate streams according to the perceptual distances of timbres observed in
the timbre space. When the timbral difference was increased, auditory streaming
was not based on the pitch difference but on timbral difference. Moreover, the
temporal dimension seemed more important than the two other spectral dimensions
in auditory streaming.

A study conducted by Bey and McAdams (2003) confirmed the role of temporal
factors. The subjects’ task corresponded to a recognition of interleaved melodies.
Sequences were composed of two melodies with timbres that were more or less
distant in Krumhansl's (1989) perceptual space. Results showed that differences
along the spectral and spectrotemporal dimensions were not sufficient to separate
the two melodies, and recognition of the embedded melodies was thus not possible.
However, if sounds also varied on the temporal dimension, listeners could separate
the two melodies, and recognition performance was improved. Furthermore, the
authors showed that a timbre difference combined with a pitch difference led
listeners to separate the two melodies even more than if only a timbre or pitch
difference distinguished them.

The studies conducted by Gregory (1994), Iverson (1993), and Bey and
McAdams (2003) illustrate the contribution of temporal factors to listeners’ abil-
ities to separate sound streams and counter the idea that only spectral factors
are significant in auditory streaming (Bregman, 1990; Bregman et al., 1990;
McAdams and Bregman, 1979; Miller and Heise, 1950; Singh, 1987; Van Noorden,
1975; Wessel, 1979).

2.4.4 Context Effects

While spectral factors seem to systematically influence timbre perception, depend-
ing on context, temporal factors are not always as salient. Wedin and Goude (1972)
observed that the presence or absence of attack transients did not influence the per-
ceptual representation of a set of musical timbres. The mean dissimilarity of the
two tested conditions was highly correlated=£ 0.92).

Miller and Carterette (1975) attempted to demonstrate the perceptual impor-
tance of temporal parameters of timbre. Their stimuli were synthetic tones with
variable harmonic spectra, variable amplitude-vs-time envelope, and variable onset
delays for the harmonics (temporal properties). They obtained a three-dimensional
MDS solution that accounted only for harmonic structure (in dimensions 1 and 2)
and the amplitude-vs-time envelopes (in dimension 3), so that the contribution of
harmonic onset delay pattern on timbre perception remained in doubt. However,
their temporal properties were indeed organized and combined along the third
dimension.

According to Iverson and Krumhansl (1991), when sounds are isolated, the at-
tack seems essential to their recognition but does not seem to be the determining
factor in similarity judgments. Iverson and Krumhansl| (1993) confirmed these re-
sults showing that attributes on which listeners based their dissimilarity judgments
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among different timbres were present in the duration of the sound. Indeed, they
observed similar multidimensional spaces for sounds in which only the first 80 ms
were presented, sounds where only the first 80 ms were removed, as well as original
sounds.

Many studies have shown that temporal aspects of sounds are perceptually less
pertinentwhen situated in a musical context. Grey (1978) used simplified sounds of
three instruments: bassoon, trumpet, and clarinet. He first created notes of different
pitches by transposing each instrument’s spectrum to higher or lower frequencies.
He then asked listeners to distinguish simplifications applied for isolated instru-
ment sounds or for the same sounds placed in different musical configurations,
differing in the number of simultaneous melodic lines, rhythm variety, and tempo-
ral density. The musical context effect was measured by noting the difference in
discrimination ability for the various conditions. While for the bassoon no effect of
musical context was observed on discrimination between the original and modified
versions, discrimination performance was found to decrease with musical context
for the clarinet and trumpet. An acoustical analysis of the original and modified
bassoon sounds showed that the simplification involved changes in the spectral
envelope, which was not the case for the other instruments. For the bassoon, the
changes were described by listeners as brightness differences, which corresponded
to spectral envelope changes. On the other hand, changes described for the trum-
pet and clarinet were located in the “attack” or in the articulation. Small spectral
differences were thus slightly enhanced in single-voice contexts compared with
isolated tones and multivoiced contexts, although discrimination remained high.
Articulation differences, on the other hand, were increasingly disregarded as the
complexity and density of the context increased.

Similarly, Kendall (1986) conducted an experiment in which tone modifica-
tions were made by time-domain editing. Two different note sequences were
presented to listeners whose task was to decide which instrument in the sec-
ond sequence corresponded to the instrument sounded in the first sequence. The
first sequence was an edited version of the same melody played by one of the
three instruments used: clarinet, trumpet, or violin. The second sequence con-
sisted of the melody played in unedited form in random order by each of the
three instruments under the following conditions: (1) normal tones, (2) sustain
portion only (cut attacks and decays), or (3) transients only (with either a silent
gap in the sustain portion or an artificially stabilized sustain portion). The re-
sults suggested that transients in isolated notes enhance instrument recognition
when they were alone or coupled with a natural (time-varying) sustain portion
but were of little value when coupled with a static sustain part. They were also
of less value in continuous musical phrases where the information present in
the sustain portion (probably related to the spectral envelope) was more im-
portant. This conclusion confirmed Grey’s (1978) discrimination study and was
verified by McAdams’s (1993) study, which utilized stimuli with more realistic
variations.

In comparison to studies on isolated sounds (Berger, 1964; Charbonneau, 1981;
Grey and Moorer, 1977; Saldanha and Corso, 1964), these results suggest that
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attack transients play a less important perceptual role for musical phrases than
they do for isolated tones.

2.5 Verbal Attributes of Timbre
2.5.1 Semantic Differential Analyses

One approach to the study of timbre perception of complex sounds is the analysis
of verbal attributes used to describe them. Some authors (Lichte, 1941; Solomon,
1959; Terhardt, 1974; Vogel, 1974; von Bismark, 1974) have hypothesized that
timbre can be described by semantic scales. For example, scales can be presented
to listeners in which the extremities are two opposing verbal attributes such as
“smooth—-rough” or “light—dark.” They are asked to rate each timbre on each scale.

A factor analysis is used to identify a number of factors or scales contributing

to explaining variance in the judgments. The remaining scales are considered to
describe the different timbres used.

Semantic studies began with Lichte (1941) study of the “bright/dull” and
“thin/full” scales using synthetic harmonic tones. Solomon (1959) investigated
seven timbral attributes of sonar recordings and the contribution of each spectral
region made to each attribute. Terhardt (1974) and Vogel (1974) both examined
the notion of “roughness” for the steady-state portion of synthetic sounds.

One of the most complete psychophysical timbre studies was performed by von
Bismark (1974) in which subjects had to rate 35 speech sounds (having equal
loudness but different spectral envelopes) on 30 verbal scales such as “brilliant-
dull” or “wide-narrow.” A factor analysis showed that four orthogonal factors were
sufficient to account for 90% of the variance. Timbre would have, according to this
study, four dimensions: (1) thick/thin; (2) compact/diffuse; (3) colorful/colorless;
and (4) full/empty. A major problem with this type of study is that the choice of
the verbal attributes characterizing the scales does not always correspond to scales
that subjects would choose spontaneously. A timbral dimension correlating with
a specific acoustic parameter such as spectral fine structure cannot be revealed by
such a study. Moreover, the meaning of certain terms is likely to vary according
to the musical culture of the subject.

2.5.2 Relations between Verbal and Perceptual Attributes or Analyses
of Verbal Protocols

To eliminate some problems posed by semantic differential studies, Faure et al.
(1996) and Faure (2000) used subjects’ free verbalizations analyzed by a paradigm
developed by Samoylenko et al. (1996). Free verbalization does not impose a vo-
cabulary on the listener. The aim was to define the verbal correlates of the different
perceptual dimensions of timbre. The listeners (musicians, non-musicians, and am-
ateurs) were asked to judge the degree of dissimilarity of pairs of timbres [a subset
of Krumhansl’'s sounds (1989)] and then to describe all the dissimilarities and
similarities between the timbres. The listeners could modify their dissimilarity
judgment after their verbalization.
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Two different multidimensional analyses were performed on the ratings given
before and after the verbalization. The two resulting timbre spaces were similar
suggesting that the verbalization process did not affect the mental structure of
timbre. This result allowed a comparison of the dissimilarity judgments to the
verbalization.

To find verbal correlates, 22 descriptors were extracted from expressions
of the form: “sound 1 is more (or less) X than sound 2". These descriptors
were /high/-/sharp/-/shrill/, /low/-/deep/, /long/, /clean/-/distinct/, /mussed/-/dull/,
/round/, /clear/-/light/, /resonant/, /nasal/, /metallic/, /vibrated/, /strong/-/loud/,
[dryl, Isoft/, Irich/, /high/, /low/, Iwide/, /diffuse/, /brilliant/-/bright/, /plucked/ and
/blown/. Some descriptors were correlated with one MDS dimension while others
were correlated with more than one dimension.

Coefficients from multiple regressions were used to project verbal vectors in
the multidimensional timbre space. If a descriptor’s vector was correlated to only
one dimension, it was aligned along the axis of this dimension. If a descriptor
was partially correlated to two different dimensions, the vector formed an angle
with the two dimension axes, the slope reflecting the ratio between the regres-
sion coefficients. Only a few descriptors were correlated to only one dimension.
These descriptors were /dry/—correlated with the log of the attack time dimension;
/round/—correlated to the spectral centroid; and /brilliant/-/bright/—correlated to
the spectral flux. The other descriptors were correlated to more than one dimen-
sion: /metallic/, for example, was correlated with three perceptual dimensions. The
authors explained these multiple correlations by the fact that sounds characterized
as /metallic/ generally have a fast attack, a resonance with much energy in the
high frequencies, and a spectral evolution that reflects more rapid damping of high
frequencies. On the other hand, the descriptor /mussed/-/dull/ was very often the
antonym of /metallic/. Indeed, its vector formed a 180gle with that descriptor.

This result suggests that Faure’s approach may be very useful for research to de-
termine verbal antonyms and synonyms describing the timbre of complex sounds.

3 Categories of Timbre

A different view of perceptual activity will now be presented. According to this
view, when we are subjected to multiple physical stimulation coming from the en-
vironment, we experience multiple sensations. In order to behave coherently when
faced with this environment, we need to classify the stimuli. How is this done
and what is the structure of our mental representation when this classification is
accomplished? Numerous authors have proposed the existence of categorization
processes which could be at the origin of a categorical structure of the perceptual
representation of most stimuli. An example is the categorical perceptual phe-
nomenon of speech, in which the capacity to discriminate differences between
speech sounds is determined by the capacity to differently categorize these kinds
of sounds. In this case, we seem to transform initial continuous information into
a discrete form. Some authors postulate that the conversion from a continuous
variation of a stimulus to a discrete form is based on a late stage of the recognition
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process, while others postulate that this conversion occurs during low-level stages
of the perceptual process.

Besides spatial models used to determine the mental structure of the timbre
of complex tones presented in the last section, there are non-spatial models in
which each object is described in terms of its common and distinctive features
and represented by discrete clusters. Tversky (1977) proposed a “feature matching
model” based on the idea that when faced with a set of objects, subjects often
sort them into clusters to reduce information load and facilitate further processing.
This model is based on a similarity relation that is very different from that of the
geometric models. According to Tversky, each object is represented by a set of
features or attributes. Thus, the degree of similarity s(A, B) between objects A and
B, for all distinct A and B, is defined by a matching function between the common
and distinctive features of the two compared objects. This function is composed
of three arguments: (1) A intersect B: the features that are common to the two
compared objects A and B; (2) A minus B: the features belonging to A but not B;
and (3) B minus A: the features belonging to B but not A.

This approach is formalized by cluster analysis. In a cluster analysis, objects
that are similar belong to the same cluster and objects that are dissimilar belong
to different clusters. Clustering of objects can be hierarchical or nonhierarchical.
In the case of nonhierarchical clustering, objects can belong to one and only one
cluster. However, with hierarchical clustering, objects can belong to more than
one cluster as long as they are hierarchically nested; i.e., all members of a lower-
level cluster belong to a higher-level cluster. One way to represent hierarchical
clustering is with a tree, a graph in which the similarity between two objects is
represented by the length or the height of the link joining the two objects. In
a hierarchical representation obtained by the application of the HICLUS model
proposed by Johnson (1967), objects that are most similar are joined at lower levels
inthe tree, whereas dissimilar objects are joined together only at higher levels in the
tree. Also, the ADCLUS model proposed by Shepard and Arabie (1979) provides a
representation that allows partial overlapping of clusters. Finally, there are additive
trees in which similarity between objects is given by the lengths of links between
nodes in the trees.

Other authors (Gibson, 1966, 1979; Rosch, 1973a,b), have postulated that the
physical world that surrounds us has discontinuities, which eliminates the problem
of determining the level at which such a categorization occurs. According to Gibson
(1966, 1979), all information necessary for visual perception is present in the
environment and the perceiving subject has only to pick it up. This conception
leads us to consider only natural situations (from which the term “ecological”
is derived) and to reject the general validity of laboratory experiments. Gibson’s
theory is opposed to all constructivist positions according to which information
is extracted from sense systems (visual, auditory, and the like) by computational
procedures and processes. All these processes are judged to be useless because
information given by the physical environment to the perceiving subject is already
structured and organized in a coherent manner. Perception is thus direct because
the information is presorted and does not need to be processed.
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For auditory nonverbal perception, this conception suggests that the physical
nature of the sound object, the means by which it is set into vibration, and its
function for the listener are perceived directly, without intermediate processes. In
other words, there is no analysis of the individual elements that comprise a sound
event; nor is there a reconstruction of an auditory image that is compared to a
representation in memory (McAdams, 1993). Thus, the approach for ecological
psychologists is to describe the structure of the physical world in order to un-
derstand perceived properties as invariants. Note that we can usually recognize a
saxophone or a piano played on the radio even if the signal is modified by bad
transmission. If invariants can be isolated, then the task of the psychologist is to
determine how the listeners detect these properties. This approach allows us to
evoke a mechanism of “causality inference”: Received data are indices consid-
ered as effects of a causality, which is the perceived object. This conception thus
suggests a strong relation between the mental representation of a sound event, its
production mode, and its perceptual identity.

The question whether perception of timbre is categorical is not neutral with
respect to causality. Historically, the relation between the physical production of
a sound event and its auditory result has been obvious. Indeed, at one time the
term “timbre” designated a particular instrument, a sort of drum with stretched
strings that gave a characteristic “color” to its sound (Dictionnaire de I’Acadamie
Francaise, 1835). But the predominance of pitch in most musical cultures has rele-
gated timbre to a secondary role. Classical instruments, excluding some percussion
instruments, were constructed so that anything that disturbed pitch recognition was
eliminated. In the absence of an explicit musical function, itis natural that “timbre”
tends to no longer refer to a particular sound source or instrument. However, even
today, classical instruments are categorized, and if categorization appears at a per-
ceptual level, itis likely to be due to the type of sound source. While it is difficult to
physically construct an intermediate instrument between a percussive instrument
and a sustained instrument, electronic synthesis allows us to create hybrid timbres
and place perception outside of the mechano-acoustical instrument categories.
Even so, the perception of timbre as revealed by multidimensional space analysis,
where continua of timbre are theoretically possible, seems partially categorical.
According to Grey (1975) “the scaling for sets of naturalistic tones suggests a hy-
brid space, where some dimensions are based on low-level perceptual distinctions
made with respect to obvious physical properties of tones, while other dimensions
can be explained only on the basis of a higher level distinction, like musical in-
strument families” [cited by Risset and Wessel (1982, p. 48)]. The intervention
of cognitive processes, such as familiarity with or recognition of an instrument,
shows that it is perhaps impossible to obtain a totally continuous timbre space.

3.1 Studies of the Perception of Causality of Sound Events

An alternative approach for studying timbre perception is to consider that mu-
sical instruments are often grouped on the basis of their belonging to resonator
and/or exciter categories and that the mechanical properties of sound sources could
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influence dissimilarity judgments among different timbres. Indeed, some catego-
rization processes may be likely to influence listeners’ dissimilarity judgments
on which the notion of timbre space is based. The aim of an experiment per-
formed by Donnadieu (1997) was to examine such categorization processes by
a classification task and to specify the relation that could exist between a mul-
tidimensional representation of timbre and a categorical representation. In other
words, the study’s goal was to determine the perceptual categories underlying 36
digitally recorded musical instrument sounds selected from the McGill University
Master Samples compact disk (Opolko & Wapnick, 1987). These included tones
produced by traditional pitched sustained instruments (e.g., flute, trumpet, piano),
tones of strongly pitched percussion instruments (e.g., celesta, marimba, vibra-
phone bowed, vibraphone struck, tympani), weakly pitched (e.g., bowed cymbal,
log drum), and unpitched (e.g., tam-tam, bamboo chimes), representing most of
the types of exciters and resonators used in the orchestra. The objective was to
determine whether listeners based their classifications on instrument families or on
certain physical attributes of sound objects. A multidimensional representation of
the categorical structure was used in order to define how timbre categories are par-
titioned in a timbre space and to evaluate the influence of the physical functioning
of instruments on perceptual categorical structure.

Sixty subjects were asked to perform a free classification task. Two advantages
ofthis type of task are that it is easily performed by listeners and it can help to deter-
mine the kinds of sound properties that are worth investigating more systematically.
All stimuli were first presented to the subjects, and they were asked to create their
own categories and to assign similar stimuli to the same category and dissimilar
stimuli to different categories. In a free classification task, subjects can create as
many categories as they want and can assign as many stimuli as they wish in each
category. To determine the categorical structure of this set of stimuli, an ADTREE
analysis (Barthélemy and Guénoche, 1988) was used, which allowed the develop-
ment of an additive tree, a graph in which the similarity between any two nodes,
corresponding to the objects, is given by the length of the link between those nodes.
The observed tree for the 36 orchestral instruments is represented in Fig. 8.11. Ac-
cording to Tversky’s model (1977), the nodes can be interpreted as the prototype
of a category which corresponds to the object that shares common features with
the objects belonging to this category, while the length of the link between two
nodes corresponds to the weight of the features belonging to class A but not to
class B, for example. This last model was used because it was particularly easy to
interpret this type of representation according to the model proposed by Tversky.
Trees were established for all the subjects. An attempt was made to establish a re-
lation between different perceptual categories and the stimulus properties, most of
the time by seeking structural similarities among stimuli classed together and dif-
ferences between stimuli classed in different categories. Such a classification was
observed with all impulsive excitation (percussion) instruments in one category
and all sustained excitation instruments in another category. Classifications were
also observed according to each instrument’s resonator type, with strings, plates,
and bowed membranes placed in different categories. Influence of resonator type
was particularly evident when two types of vibraphone sounds were examined:
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FIGURE 8.11. Hierarchical representation of the timbral classification tree structure for 36
acoustic sounds derived from an ADTREE analysis of free classifications by 60 subjects.
Numbers from 1 to 36 correspond to the 36 sounds used and numbers from 37 to 53 are
nodes computed by the algorithm.

They fell in the same category even if the type of excitation was very different
[e.g., see Fig. 8.11, numbers 33 (vibraphone bowed) and 34 (vibraphone struck)].

In summary, we can conclude that the notion of categories of timbre corresponds
to a perceptual reality and that these categories seem in most cases to be based on
the physical functioning of the different instruments. This result suggests that an
implicit knowledge of the physical functioning of instruments has a strong corre-
lation with perceptual classification of their corresponding sounds. An idea worth
exploring would be to systematically define these perceptual categories within a
timbre space. This space could probably be continuous in that the boundaries be-
tween categories could be fuzzy. Still, discrimination within and between those
boundaries would be possible.

3.2 Categorical Perception: A Speech-Specific Phenomenon
3.2.1 Definition of the Categorical Perception Phenomenon

The categorical phenomenofiirst described by Liberman (1957), refers to a sit-
uation where it is possible to identify and discriminate two objects belonging to
two distinctive categories, but not possible to discriminate two objects belong-
ing to the same category. A procedure generally employed to demonstrate such
a phenomenon is the following: A continuum Nf stimuli is constructedN is
typically equal to 10) by variation of a control parameter. This stimuli continuum

is composed of two distinct end-point stimuli (e.g., two distinct phonemes) at the
extremes of the continuum and different intermediate synthetic stimuli between
the extremes. Listeners are asked to perform two tasks: (ibeatificationtask

for them to identify each stimulus according to two contrasted categories; and
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FIGURE 8.12. Theoretical discrimination and identification functions are shown for stimuli
gradually changing from “bowed” (left) to “struck” (right). Stimuli 1-5 are categorically
identified as “bowed,” whereas stimuli 7-11 are categorically identified as “struck.” How-
ever, percent correct discrimination between adjacent stimuli is 50% (guessing) except at
the category boundary corresponding to stimulus 6, where discrimination is 100%.

(2) adiscriminationtask where stimuli are presented in pairs and subjects are
asked to respond whether the stimuli are identical or not.

According to Studdert-Kennedy et al. (1970), three criteria are necessary to
conclude that categorical perception exists in a continuum: (1) “peaks,” regions of
high discriminability in the discrimination function; (2) “troughs,” regions where
discrimination is near the chance level; and (3) a correspondence between the
peaks and troughs and the shape of the identification function, with peaks occur-
ring at the identification boundaries and troughs within each category. In other
words, in contrast to continuous perception, categorical perception occurs when
intracategorical discrimination is absent: Subjects discriminate two neighboring
stimuli only if they (or their control parameters) are situated on either side of the
boundary separating the two categories. Fig. 8.12 represents hypothetical results
of such a categorical perception experiment.

3.2.2 Musical Categories: Plucking and Striking vs Bowing

Ithas been asserted that one of the mostimportant differences between speech stim-
uli and non-speech stimuli is that the former are categorically perceived whereas
the latter are not. However, it seems possible to observe this categorical percep-
tion phenomenon for non-speech stimuli. Miller et al. (1976) used noise and buzz
sounds, with the onset of the noise varying frerh0 to +80 ms with respect to

the onset of the buzz. Discrimination was best when the noise led the buzz by
about 16 ms, which was about the same amount of delay as the category bound-
ary in a labeling task. Pisoni (1977) and Pastore (1976) also observed such a
phenomenon for two-tone stimuli and critical-flicker fusion, respectively. Locke
and Kellar (1973) and Siegel and Siegel (1977), as well as others, have observed
categorical perception for musical intervals.
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Cutting and Rosner (1974, 1976) used sawtooth waveforms varying in rise time
from 0 to 80 ms in increments of 10 ms and found that best discrimination occurred
between tones whose rise times straddled 40 ms, the position of the plucked/bowed
perception category boundary between where subjects had identified rapid (O to
30 ms) rise-time stimuli as plucked strings and slower (50 to 80 ms) rise-time
stimuli as bowed strings. While discriminations between the plucked and bowed
category regions were easy to make, subjects were not able to discriminate rise time
differences very well within the bowed and plucked category regions. Also, Remez
(1978) created a plucked-to-bowed continuum by tailoring natural tokens of mu-
sical sounds played on a bass viol. These, too, were perceived categorically. How-
ever, his continuum was a rise-time-by-amplitude-at-onset continuum rather than
simply a rise-time continuum. Macmillan (1979), using analog-generated stimuli
of considerably lower fundamental frequency, also found categorical perception.
However, the boundaries fell at 25 ms rather than 40 ms for the discrimination and
identification functions.

Cutting etal. (1976) extended their previous findings (Cutting and Rosner, 1974,
1976) by demonstrating selective adaptation effects with the same stimuli. Sub-
jects had to categorize stimuli before and after repeated exposureattaptor,
which corresponded to either a stimulus with the same spectral envelope, a stim-
ulus with the same frequency, or a stimulus with the same spectral envelope and
frequency. The boundary between the two categories shifted as expected after the
exposure to the adaptor, and the greatest shift was observed when the adapting
stimulus shared all dimensions with the test continuum. Remez et al. (1980) found
reliable adaptation by using end-point adaptors on a plucked-bowed continuum.
More recently, Pitt (1995) found such an effect on identification and reaction-time
performance using a trumpet-to-piano continuum of acoustic sounds. He showed
that after the exposure to adaptors corresponding to the end-points of the contin-
uum, the categorization boundary indicated by the identification function shifted
significantly, and reaction times were significantly faster for stimuli situated near
the end-points of the continuum. Direct comparison of the identification results
with those from previous timbre adaptation studies is not possible because differ-
ent measures of adaptation magnitude were used. However, visual comparison of
identification functions suggests that the trumpet-to-piano continuum produced a
larger boundary shift than the pluck-to-bow continuum of Cutting et al. (1976).

Such results suggest that categorical perception of music-like sounds may be
explained by a theory based on feature detection. Indeed, according to such a
theory, the repetitive presentation of a stimulus belonging to a perceptual category
would lead to a decrease in the rate response of the detector for other stimuli in
the same category.

3.2.2.1 Are the Same Feature Detectors Used for Speech and
Nonspeech Sounds?

In the light of these results, one might ask whether specific detectors involved in
the processing of speech sounds and nonverbal sounds are the same. Some authors
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have indeed demonstrated a similar adaptation for verbal stimuli using nonverbal
stimuli as adaptors (Diehl, 1976; Kat and Samuel, 1984; Samuel, 1988; Samuel
and Newport, 1979), although other authors (Remez et al., 1980) have not observed
such a phenomenon. For example, Diehl (1976) showed that the spectrum of a
plucked string could influence the perception of a continuum from /ba/ to /wa/, but
that the spectrum of a bowed string did not influence the result. Samuel and New-
port (1979) conducted this experiment with continua from /ba/ to /wa/ and from
ItJ al to [f al. They used four types of nonverbal adaptors: two periodic sounds
(where the fundamental frequency was different from that of the verbal sounds)
both imitating either a plucked or a bowed string. Results showed that periodic
sounds with rapid attack times had an influence if they shared properties with the
/ba/ sound but not with theita/ sound, while the sounds with slow attack times
had an effect if they shared a property with thiea/ sound but not with the /wa/
sound.

Nonetheless, results observed by Remez et al. (1980) argue against the hypothe-
sis of common specific detectors for nonspeech and speech stimuli. In their study,
the authors crossed adaptor stimuli, which could be either verbal or nonverbal,
with test stimuli that were either verbal or not. Adaptor stimuli were either ex-
treme stimuli of the two types of tested continua or difference stimuli according
to their acoustical properties. Adaptor stimuli differed from the continuum neither
in attack time, nor in fundamental frequency, but only in terms of their spectral
envelopes. This difference gave rise to a difference in source identity. Results
showed adaptation only when the type of the adaptor (e.g., verbal vs nonverbal)
corresponded to that of the test stimuli; i.e., adaptation occurred for verbal test stim-
uli with a verbal adaptor and for nonverbal test stimuli with a nonverbal adapter,
while nonverbal and verbal adaptor stimuli did not influence the verbal and non-
verbal test stimuli, respectively. These results thus suggest that specific detectors
involved in the processing of verbal sounds and those involved with nonverbal
sounds are different in nature, confirming the idea formulated by Cutting et al.
(1976) that the importance of the adaptation effect is a function of the number of
auditory attributes shared by the continuum and the adaptor.

These results suggest that nonspeech stimuli could be categorically perceived
and could be explained by a feature-detector theory (Cutting et al., 1976; Pitt,
1995; Remez et al., 1980). However, it is difficult to make any conclusions about
existence of common feature detectors for speech and nonspeech stimuli (Diehl,
1976; Remez et al., 1980; Samuel and Newport, 1979).

3.2.2.2 Categorical Perception in Young Infants

Infants, like adults, seem to perceive nonspeech stimuli in a categorical manner.
Jusczyk etal. (1977) used a high-amplitude sucking technique to explore 2-month-
olds’ perception of rise-time differences for the same stimuli used by Cutting and
Rosner (1974, 1976). The authors observed that the sucking rate did not vary if the
change was within one of the two categories, but that it was significantly higher
when the change was across the two categories: “bowed” vs “plucked.” More
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specifically, infants seemed to perceive a difference between stimuli with 30-ms
to 60-ms rise times, which corresponded to the boundaries observed by Cutting
and Rosner (1974) for adults, but not for stimuli between 0 to 30 ms and 60—90 ms
rise times. Like adults, infants discriminated rise-time differences between the two
category boundaries but not equal differences within either category. The presence
of such categorical perception in 2-month-old infants suggests that it is relatively
independent of auditory experience. To account for similar results in infants for
verbal stimuli, Eimas (1975) proposed the hypothesis that newborns are equipped
with specific detectors which respond to relevant acoustical properties of verbal
sounds. Results observed for nonverbal sounds lead to a similar interpretation.
However, research on prenatal audition (Granier-Deferre & Busnel, 1981; Granier-
Deferre & Lecanuet, 1987; Lecanuet et al., 1988; Lecanuet et al., 1992) has shown
that newborn infants do not begin their auditory experience at birth, but actually
several months before, therefore providing several months of auditory experience
during which perceptual learning can take place.

3.2.2.3 The McGurk Effect for Timbre

McGurk and MacDonald (1976) and MacDonald and McGurk (1978) showed
that the perception of an acoustic syllable could be affected by the simultaneous
presentation of visual information specifying a speaker’s articulatory movement
of a different syllable. For example, if the auditory syllable is a /ba/ and if the
subjects see a video tape of a speaker producing a /ga/, they report having heard
a /da/. This /da/ syllable is an intermediate syllable, the place of articulation of
which is between those of /ba/ and /ga/. This effect, called the “McGurk effect,”
clearly shows that visual and auditory information can be integrated by subjects,
the response being a compromise between normal responses to two opposing
stimuli. Moreover, Kuhl and Meltzoff (1982) observed that young infants show

a preference for pairs of stimuli in which auditory and visual information are
matched. Infants look longer at a mouth which presents the articulatory movement
of the heard syllable than at one whose articulatory movement does not correspond
to the sound. This result suggests a predisposed functional relationship between
the perception and the production of language.

For nonverbal sounds, Rosenblum and Fowler (1991) observed that visual infor-
mation could have an influence on auditory judgment. They showed, for example,
using the McGurk paradigm, that loudness judgments of syllables or hand-clapping
could be influenced by visual information. More recently, Saldana and Rosenblum
(1993) observed the same type of effect for plucked and bowed string sounds.
In their first experiment, they presented each sound along a continuum between
a plucked and a bowed string. At each presentation of a sound, the subject had
to estimate whether the sound was plucked or bowed on a continuous scale. The
instructions were to use the middle of this scale if the sound was ambiguous. In
one condition, the sound was presented simultaneously with a video tape showing
a player plucking or bowing a string. Results showed that subjects’ responses were
greatly influenced by the visual information. Indeed, the identification function for
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judgments based only on the auditory presentation of the sound was significantly
different from that based on the audiovisual presentation. In fact, the authors ob-
served that the identification function corresponding to the audiovisual condition
shifted to the plucked response scale and inversely for the condition where the
video tape presented a bowed string. However, this study did not include the op-
posite possibility of allowing the subjects to identify a plucked string as a bowed
string when the visual information described a bowed string. The hypothesis of the
authors was that the effect could be explained by the ecological theory according
to which the influence of the visual information would be in direct relation with
the production mode of the sound event. To test this last hypothesis they replaced
the visual information by a visual presentation of the two words “plucked” and
“bowed.” In this last case no effect was observed.

3.2.3 Is There a Perceptual Categorization of Timbre?

In contrast to the above discussion, some researchers argue that nonspeech sounds
are not categorically perceived. Van Heuven and van den Broecke (1979) mea-
sured the variability of settings in a rise-time reproduction task. They found that
the standard deviation of adjustments was an increasing linear function of rise
time. They felt that the differences between their results and Cutting and Rosner’s
could be attributed to differences in stimulus generation techniques. Rosen and
Howell (1981) synthesized a new continuum of sawtooth waves differing in linear
increments of rise time, analogous to the array reported by Cutting and Rosner
(1974). In order to test the hypothesis that a different generation technique could
produce different results, Van Heuven and van den Broecke (1979) included a con-
dition in which stimuli were recorded before presentation to the subjects. They did
not obtain results consistent with categorical perception. Although they obtained
a similar identification function, they did not observe a peak in the discrimination
function. Instead, they found a discrimination function that might be predicted
better on the basis of a Weber fraction for rise time. So, the method of stimulus
generation and presentation was not responsible for the discrepancies between the
results. Using the original tapes of Cutting and Rosner (1974) to replicate their
results, they found categorical perception of these stimuli. To reconcile the differ-
ence in the two findings, they measured the original stimuli and found that the rise
times differed from those reported in the Cutting and Rosner paper. Moreover, the
discrepancies were such that they predicted nonlinearities in the discrimination
results. Thus, they concluded that plucked and bowed music-like sounds are not
categorically perceived.

According to Hary and Massaro (1982), categorical perception results do not
necessarily imply categorical perception. Indeed, they showed that a bipolar con-
tinuum of increasing and decreasing onset times yielded traditional categorical
results but that when only half of this continuum was tested, the same sounds were
perceived continuously. On the other hand, contradictory results for the identifi-
cation function have also been found. Smurzynski (1985) asked subjects to learn
envelopes by rise-time value and later to identify them. Analysis of responses
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showed that trained subjects did not classify a continuum of sawtooth waveforms
varying in rise time into two sharply defined categories, but were able to resolve
rise-time values with much greater accuracy than would be achieved by simply
dividing the continuum into two categories such as “plucked” and “bowed.” To
conclude, Cutting (1982) found that stimuli with equal linear increments of rise
time were not categorically perceived, but stimuli with logarithmic increments
of rise time were categorically perceived. The stimuli and the results observed by
Rosen and Howell (1981) are shown in Figs. 8.13a and 8.13b, and the results found
by Cutting and Rosner (1974) are represented in Fig. 8.13c.

Donnadieu and McAdams (1996), Donnadieu et al. (1996), and Donnadieu
(1997) confirmed the idea of noncategorical perception of rise time using two
continua of attack time constructed on the basis of two original vibraphone sounds.
One sound resulted from a vibraphone struck by a hard mallet, and the other came
from the vibraphone bowed with a violin bow on its edge. (Both sounds were
taken from a McGill University Master Samples compact disk.) Most studies on
categorical perception of rise time have utilized synthesized sounds. We chose
to use acoustic sounds even though in this case the definition of attack time is
somewhat arbitrary. For both sounds, 10 stimuli were constructed in which only
the rise time of the amplitude-vs-time envelope differed. Utilizing a phase-vocoder
analysis/resynthesis program (Beauchamp, 1993), a “struck” continuum was con-
structed by successively modifying the rise time of the struck vibraphone sound so
that it started at 0.13 s, increasing from step to step by a factor of 1.29, and ending
at 1.30 s. A corresponding “bowed” continuum was constructed by decreasing the
rise time of a bowed vibraphone sound, starting at 0.35 s, decreasing by factors of
0.76, and ending at 0.03 s. For each continuum, the rapid-onset stimuli tended to
sound like a struck instrument and the slower onset stimuli like a bowed instrument.

Subjects were asked to perform three tasks: (1) discriminate pairs of stimuli
along the two continua, (2) identify (or categorize) them as one of the end-points
(“struck” or “bowed”), and (3) judge the perceptual dissimilarity of the stimulus
pairs. The stimulus pairs were separated by two steps on each continuum. The three
tasks were performed separately for each of the two continua (“reduced contexts”)
and for the combined set of these two continua stimuli (“extended context”). The
discrimination task was of type AX. For this task, the subjects heard each stimulus
pair with a 1-s interstimulus interval (ISI) and were asked to judge if the stimuli
were “same” or “different.” Raw discrimination scores were adjusted by subtract-
ing “false alarm” scores (responding “different” when the sounds were identical).
For the identification task, subjects were asked to label the stimuli as “struck” or
“bowed.” For the dissimilarity task, subjects judged the degree of dissimilarity (on
a scale varying from very similar to very dissimilar) of stimuli pairs (1-3, 2-4,
etc.). A scale was presented on a computer screen and listeners had to push the
button at the desired position. For each task, subjects participated in three sessions
corresponding to the three contexts: (1) stimuli from the “bowed” continuum (“re-
duced context”), (2) stimuli from the “struck” continuum (“reduced context”), and
(3) stimuli from the union of these two continua (“extended context”). Subjects
completed all three types of tasks (discrimination, identification, and dissimilarity)
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in each session. From the results, it was clear that although subjects on average
gradually changed their classification from bowed vibraphone to struck vibra-
phone and vice versa along the two continua, discrimination performance was
fairly constant along the continua. Figures 8.14 and 8.15 give the results of the
discrimination and identification experiments, respectively. Note that two sets of
data were extracted from the extended context session: one which focused on the
listener’s ability to correctly identify or discriminate the “struck” continuum data

in the presence of the “bowed” continuum data, and vice versa.

These results were not consistent with the numerous studies that have shown
categorical perception of rise time (Cutting, 1982; Cutting and Rosner, 1974, 1976;
Cutting et al., 1976; Jusczyk et al., 1977; Macmillan, 1979; Miller et al., 1976;
Pitt, 1995; Remez, 1978; Remez et al., 1980). However, Rosen and Howell (1981)
observed that discrimination performance for equally spaced stimuli is always
best for shortest rise times. Our results were partially consistent with these results
because, although we did not observe a categorical perception of the rise time of
acoustic struck or bowed vibraphones, we did observe that discrimination perfor-
mance was relatively constant across the two continua tested. The difference in our
results could be due to the fact that our continua were constructed by logarithmic
rather than linear rise time increments. We chose logarithmic increments first be-
cause Cutting’s last results showed that only in this case is categorical perception
observed for the attack time of nonspeech sounds and second because the first
dimension of timbre is generally more correlated with a measure of the logarithm
of the attack time than with linear rise time of the temporal envelope (McAdams
et al., 1995). On the other hand, category boundaries observed in previous stud-
ies were very different from our category boundaries. This difference could be
due to the fact that our stimuli corresponded to resynthesized transformations of
recorded acoustic sounds. Moreover, in this experiment we used a bowed bar (a
vibraphone) rather than a bowed string. The modes of vibration of a metal bar are
very different than that of a string and take more time to be set into vibration when
bowed.

We also noted during the construction of the stimuli that there was a large
difference between the attack times of the two continua endpoints. Indeed, to
induce a perception of the bowed vibraphone we had to considerably augment the
rise time of the temporal envelope of the original struck vibraphone beyond that of
the rise time of the original bowed vibraphone. Moreover, the boundary between
the “struck” and “bowed” categories was quite different for the struck and bowed
continua. This calls into question the definition of the attack as being characterized
uniquely by rise time and suggests that other factors in addition to the logarithm of
the attack time of the sounds contributed to the identity of the type of excitation.
Indeed, the attack epochs of these sounds may include many characteristics, such
as the presence of a high-frequency component or the presence of noise produced
by the contact between mallet and bar. These characteristics could be used by the
auditory system to identify an instrument’s resonator (e.g., as a bar or a string)
or the type of exciters used. These aspects would correspond to the structural
invariants of the ecological approach.
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stimuli presented in “reduced context” (each continuum alone) and “extended context”
(continua stimuli combined). (a) Discrimination of stimuli pairs (1 and 3, 2 and 4, etc.) along
continua of gradually increasing rise time of struck vibraphone sounds. (b) Discrimination
of stimuli pairs along continua of gradually decreasing rise time of bowed vibraphone
sounds. 0% discrimination corresponds to the guessing level. Note that in the “extended
context” responses to the same stimuli are scored as in the “reduced context,” but in the
former case the stimuli are intermixed with stimuli from the other continuum.
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FIGURE8.15. Mean identification functions for identifying the same stimuli as given in Fig.
8.14 as either “struck” or “bowed” vs attack time of the stimuli for the “reduced” and “ex-
tended” contexts. (a) Identification of struck vibraphone continua stimuli. (b) Identification
of bowed vibraphone continua stimuli.
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The fact that attack quality of sounds seems to be perceived along a continuum
suggests thatthe mental structure of musical timbre could be represented in terms of
several perceptually continuous dimensions. However, the fact that we can classify
the timbres of vibraphone as struck or bowed, as the identification function shows,
suggests that this type of representation could be influenced by a higher-level
process of categorization.

4 Conclusions

This chapter describes studies on the perception of timbre of complex tones. Two
approaches were presented corresponding to two ways of understanding the per-
ceptual representation of musical timbre.

The first approach describes different perceptual dimensions of timbre in terms
of abstract properties. It seeks to determine which acoustical parameters of the
complex signal are processed by the auditory system and in the end contribute
to the perception of timbre. Multidimensional scaling has been particularly fruit-
ful for this type of study. Results suggest that essentially three dimensions can
be used to describe the timbres of a given set of musical complex tones. The
physical correlates of the different dimensions seem to be well identified, corre-
sponding to spectral, temporal, and spectrotemporal aspects of the acoustical signal
(Grey, 1975, 1977; Krumhansl, 1989; Miller and Carterette, 1975; Plomp, 1970,
1976; Samson et al., 1996; Wedin and Goude, 1972; Wessel, 1979). However,
if the contribution of spectral aspects of the sounds is clear today, the influence
of temporal aspects is less clear. Indeed, some multidimensional studies call into
guestion the perceptual importance of such temporal aspects in the perception of
timbre. Wedin and Goude’s (1972), Miller and Carterette’'s (1975), and lverson
and Krumhansl’'s (1991) results suggest a predominance of spectral factors. More-
over, it seems that the perceptual salience of temporal judgments depends largely
on context, and, in particular, on the musical context in which the sounds are
presented (Grey, 1978; Kendall, 1986). Nevertheless, for the case where sounds
are presented in isolation, we cannot doubt the importance of such factors. Results
from experiments based on deletion of parts of sounds (Berger, 1964; Saldanha and
Corso, 1964), those based on spectral modifications associated with discrimination
tasks (Charbonneau, 1981; Grey and Moorer, 1977), and observations from some
multidimensional studies (Grey, 1977; Krumhansl, 1989; Wessel, 1979) support
the importance of the influence of temporal aspects on timbre perception.

Results from multidimensional studies suggest a continuous representation of
the timbre of complex sounds. In the same way, studies based on sound modifica-
tions (Saldanha and Corso, 1964; Grey and Moorer, 1977; Grey, 1978; Kendall,
1986) have shown that the capacity of listeners to identify sounds diminishes when
acoustical parameters are manipulated. This degradation of identification efficacy
may depend on whether an auditory stimulus varies continuously along dimen-
sions related to specific acoustical parameters and whether the categories involved
have fuzzy boundaries. Moreover, it appears from studies of timbral analogies



Mental Representation of the Timbre of Complex Sounds 313

(Ehresman and Wessel, 1978; McAdams and Cunibile, 1992) and studies involv-
ing modification of sounds to examine their consequences on timbre space (Grey
and Gordon, 1978; Wessel, 1979, 1983), that intermediate areas of a timbre space
can be filled in and that regular perceptual transitions based on a few physical
dimensions are possible. In the same way, studies on the role played by timbre in
auditory organization (Bey and McAdams, 2003; Gregory, 1994; Hartmann and
Johnson, 1991; Iverson, 1993; McAdams and Bregman, 1979; Wessel, 1979) indi-
cate that the auditory-stream-segregation process is based on the same perceptual
attributes as those used by listeners when they were asked to do dissimilarity judg-
ments between different timbres. These results suggest that MDS timbre spaces
can account for the similarity relations between different timbres. Fusion and seg-
regation processes could be based on the metric distance separating timbres in a
geometric space, and the perceptual dimensions of timbres may be related to the
representation upon which such processes operate. Finally, the development of
verbal attributes of timbre (Faure et al., 1996; Samoylenko et al., 1996) allow us
to complete our knowledge concerning timbre space and to establish the relation
between perceptual representations and semantic representations.

The second approach is related to ecological considerations (Gibson, 1966) and
the notion of perceptual categories of timbre. According to this approach, timbre
perception is a direct function of the physical properties of the sound source. In this
case, the aim of various studies (e.g., Donnadieu, 1997; Lakatos, 2000) has been to
describe perceptually relevant physical properties of sound objects and their rela-
tive roles in the perception of musical instrument sounds, in addition to the major
roles played by perceptual attributes such as pitch salience, spectral envelope, and
roughness. The idea is that the auditory system can code the timbre of complex
sounds in terms of the details of physical source sound production. Indeed, this
research suggests that the relation between timbre and physical causality could
be a fundamental aspect of our perception and of the categorical organization of
the perceptual structure of timbre. However, studies that investigated whether the
attack quality of complex sounds is categorically perceived gave contradictory
results. In summary, these results suggest that attack qualities can be continu-
ously perceived and support a model of perceptually continuous timbre space, but
they do not exclude the possibility that higher-level classification organizations
could be present and that timbre categories could be organized in such a timbre
space.
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