WORDWARE GAME DEVELOPER’S LIBRARY
BATH 1? RARPH
liH E:l

gRY GOALS
!, E‘L“—Hﬁlwu
f

MEBMEMENT ‘
MEMO R /

SE:L—I:;L'} W =T {i1|

PLANNING

SEAHLMP

Fuzzw

Progrummlg>
Game A‘ b Example

% Mat Buckland

Programming Game
Al by Example

Mat Buckland

Wordware Publishing, Inc.

Library of Congress Cataloging-in-Publication Data

Buckland, Mat.
Programming game Al by example / by Mat Buckland.
p.cm.
Includes index.
ISBN 1-55622-078-2 (pbk.)
1. Computer games—Design. 2. Computer games—Programming. 3. Computer
graphics. I. Title.
QA76.76.C672B85 2004
794.8’1526—dc22 2004015103

© 2005, Wordware Publishing, Inc.
All Rights Reserved

2320 Los Rios Boulevard
Plano, Texas 75074

No part of this book may be reproduced in any form or by any means
without permission in writing from Wordware Publishing, Inc.

Printed in the United States of America

ISBN 1-55622-078-2

10987654321
0409

Black & White, the Black & White logo, Lionhead, and the Lionhead logo are registered trademarks of Lionhead Studios
Limited. Screenshots used with the permission of Lionhead Studios Limited. All rights reserved.

Impossible Creatures and Relic are trademarks and/or registered trademarks of Relic Entertainment, Inc.

NEVERWINTER NIGHTS © 2002 Infogrames Entertainment, S.A. All Rights Reserved. Manufactured and marketed by
Infogrames, Inc., New York, NY. Portions © 2002 BioWare Corp. BioWare and the BioWare Logo are trademarks of BioWare
Corp. All Rights Reserved. Neverwinter Nights is a trademark owned by Wizards of the Coast, Inc., a subsidiary of Hasbro, Inc.
and is used by Infogrames Entertainment, S.A. under license. All Rights Reserved.

Unreal® Tournament 2003 ©2003 Epic Games, Inc. Unreal is aregistered trademark of Epic Games, Inc. All rights reserved.
Other brand names and product names mentioned in this book are trademarks or service marks of their respective companies.
Any omission or misuse (of any kind) of service marks or trademarks should not be regarded as intent to infringe on the property
of others. The publisher recognizes and respects all marks used by companies, manufacturers, and developers as a means to
distinguish their products.

This book is sold as is, without warranty of any kind, either express or implied, respecting the contents of this book and any disks
or programs that may accompany it, including but not limited to implied warranties for the book’s quality, performance,
merchantability, or fitness for any particular purpose. Neither Wordware Publishing, Inc. nor its dealers or distributors shall be
liable to the purchaser or any other person or entity with respect to any liability, loss, or damage caused or alleged to have been
caused directly or indirectly by this book.

All inquiries for volume purchases of this book should be addressed to Wordware Publishing, Inc.,
at the above address. Telephone inquiries may be made by calling:

(972) 423-0090

For Mum and Dad, who bought me my first computer, and therefore must
share some responsibility for turning me into the geek that T am. ©

“Programming Game Al by Example stands out from the pack by providing indus-
trial-strength solutions to difficult problems, like steering and goal-oriented
behavior. Mat guides the reader toward building a foundation robust enough for
real games. This book is a must-have for anyone new to the field, and has tips for
the seasoned professional as well. I wish I [had] read it eight years ago!”

Jeff Orkin
Al architect, Monolith Productions, No One Lives Forever 2 and F.E.A.R.

“...anice combination of a lot of really useful information, put together in a way
that doesn’t make my brain leak.”

Gareth Lewis
Project leader, Lionhead Studios, Black & White 2

“Each chapter of Mat’s book gently introduces the reader to a fundamental game
Al technology before expanding the new idea into a fully formed solution replete
with extensive code and clearly worded examples. The tone of the book is uncom-
plicated and accessible to the reader, allowing a novice programmer the
opportunity to get to grips with the basics of game Al programming by implement-
ing their own systems direct from theory or expanding upon code examples offered
to gain understanding in a sandbox environment. Once individual technologies are
fully understood, the book goes on to combine these ideas into several complete
game environments allowing the reader to understand the relationships between the
interacting systems of an overarching game architecture.”

Mike Ducker
Al programmer, Lionhead Studios, Fable

“Using easy-to-follow and well-described examples, this book shows you how to
use most of the techniques professional Al programmers use. A great introduction
for the beginner and an excellent reference for the more experienced!”

Eric Martel
Al programmer, Ubisoft, Far Cry (XBox)

“Programming Game Al by Example is an excellent book for the game program-
ming neophyte, the intermediate programmer, and even the expert — it doesn’t
hurt to go over familiar ground, does it? The book concisely covers all of the
important areas, including basic maths and physics through to graph theory and
scripting with Lua, to arm any programmer with the tools needed to create some
very sophisticated agent behaviours. Unusually for books of the type, Pro-
gramming Game Al by Example is solid in its software engineering too, with the
example code demonstrating game uses of familiar design patterns. I’d have no
qualms about recommending Programming Game Al by Example to any program-
mer. It’s an excellent read and an excellent springboard for ideas.”

Chris Keegan
Technical director, Climax Studios (Solent)

Contents

Foreword xiii
Acknowledgments xvii
Introduction. Xix
Chapter 1 A Math and Physics Primero oo 1
Mathematics. o v v e e e e 1
Cartesian Coordinates 1

Functions and Equations 3
Exponentsand Powers L. 5

Roots of Numbers (Radicals) 6

Simplifying Equations. L 7

Trigonometry 10

Raysand Line Segments. 10

Angles 11

Triangles L 12

Vectors e 18

Adding and Subtracting Vectors L. 19

Multiplying Vectors 20

Calculating the Magnitude of a Vector. 20

Normalizing Vectors 21

Resolving Vectors 22

The Dot Product 23

A Practical Example of Vector Mathematics. 24

The Vector2D Struct L 25

Local Space and World Space. 26

Physics o 28

Time. 28

Distance.o 29

Mass. e 29

Position 30

VeloCity . . . o o o e 30

Acceleration. 32

Force 38

Summing Up. o o 40
Chapter 2 State-Driven Agent Design 43
What Exactly Is a Finite State Machine?. 44
Implementing a Finite State Machine, 45

State Transition Tables 47
EmbeddedRules 48

The West World Project 50

vi I Contents

The BaseGameEntity Class 52
TheMiner Class. e 53

The Miner States 54

The State Design Pattern Revisited 55

The EnterMineAndDigForNugget State 60

Making the State Base Class Reusable. 62
Global States and State Blips. 63
Creating a State Machine Class 64
Introducing Elsa 67
Adding Messaging Capabilitiesto Your FSM 69
The Telegram Structure 70
Miner Bob and Elsa Communicate 71
Message Dispatch and Management 71

The MessageDispatcher Class 73

Message Handling. 75
ElsaCooks Dinner 78
StepOne e 78

Step Two. e 79

StepThree 80

StepFour. 80

StepFive. 81

Summing Up. oo e 82
Chapter 3 How to Create Autonomously Moving Game Agents 85
What [s an Autonomous Agent? 85
The VehicleModel 87
Updating the Vehicle Physics 89

The Steering Behaviors 91
Seek. . . . L 91

Flee o 92
AITIVE . . o o o o o e e 93
Pursuit. 94
Evade e 96
Wander 96
Obstacle Avoidance. 99
Finding the Closest Intersection Point 100

Calculating the Steering Force 103

Wall Avoidance 104
Interpose. 106

Hide 107

Path Following. e 110
Offset Pursuit e 111
Group Behaviors 113
Separation 115
Alignment L. 116
Cohesion. e 117
Flocking e 118
Combining Steering Behaviors Lo Lo 119
Weighted Truncated Sum 120

Weighted Truncated Running Sum with Prioritization 121

Contents I vii

Prioritized Dithering 123
Ensuring ZeroOverlap 124
Coping with Lots of Vehicles: Spatial Partitioning 126
Smoothing 130

Chapter 4 Sports Simulation — Simple Soccer. 133
The Simple Soccer Environmentand Rules 134

The Soccer Pitch. 135

The Goals e 138

The SoccerBall 138

SoccerBall::FuturePosition 141
SoccerBall::TimeToCoverDistance. 142
Designingthe AL 144
The SoccerTeam Class. oo v e 145

The Receiving Player. 146

The Closest Playertothe Ball 146

The Controlling Player 146

The Supporting Player 146

SoccerTeam States 152
FieldPlayers. 155

Field Player Motion. 155

Field Player States 156

Goalkeepers e e e e 170
Goalkeeper Motion 170

Goalkeeper States. 171

Key Methods Used by the Al 176
SoccerTeam::isPassSafeFromAllOpponents 177
SoccerTeam::CanShoot. 182
SoccerTeam::FindPass 184
SoccerTeam::GetBestPassToReceiver 185

Making Estimates and Assumptions Work for You. 189
Summing Up oo 189
Chapter 5 The Secret Life of Graphs 193
Graphs e 193

A More Formal Description 195

Trees. . . . oo 196

Graph Density 196

Digraphs. 196

Graphsin Game Al 197

Navigation Graphs 198
Dependency Graphs 199
State Graphs 201
Implementing a Graph Class 203

The GraphNode Class o i o 204

The GraphEdge Class 205

The SparseGraph Class v i e 207
Graph Search Algorithms. 209

Uninformed Graph Searches. 210

Depth FirstSearch 210

viii I Contents

Breadth First Search 224

Cost-Based Graph Searches 231
EdgeRelaxation 231

Shortest Path Trees 233

Dijkstra’s Algorithm L 233
Dijkstrawitha Twist: A* 241

Summing Up oL 247
Chapter 6 To Script, or Not to Script, That Is the Question 249
Just What Is a Scripting Language?. 249
What a Scripting Language CanDo for You 251
Dialogue Flow. 253

Stage Direction e e 254
AlLogic. o 255
ScriptinginLua. 255
Setting Up Your Compiler to Work withLua 256
Getting Started. 256
LuaVariables. 258

LuaTypes. o o e 260

Logical Operators. i 263

Conditional Structures L. 264
Rock-Paper-ScissorsinLua Lo 265
Interfacing with C/C++ 268
Accessing Lua Global Variables from within Your C++ Program 269

Accessing a Lua Table from within Your C++ Program 271

Accessing a Lua Function from withinC++ 273

Exposing a C/C++ FunctiontoLua. 274

Exposinga C/C++ClasstoLua 276

Luabind tothe Rescue! 276
SettingUp Luabind. 276

Scopes . .. 277

Exposing C/C++ Functions Using Luabind 278

Exposing C/C++ Classes Using Luabind. 279

Creating Classes in Lua Using LuaBind 281
luabind::object 282

Creating a Scripted Finite State Machine 285
HowltWorks 285

The States 289
GoHome 290

Sleep o 290

GoToMine 291

Useful URLS o 292
It Doesn’t All Smellof Roses. 292
Summing Up o oo 293
Chapter 7 Raven: AnOverview o oo 295
TheGame. 295
Overview of the Game Architecture 296
TheRaven Game Class 297

TheRavenMap 299

Contents I ix

Raven Weapons 301
Projectiles 302
Triggers e 303
TriggerRegion 304

Trigger o o e 305

Respawning Triggers o v v i 307
Giver-Triggers 308

Limited Lifetime Triggers 309

Sound Notification Triggers 310

Managing Triggers: The TriggerSystem Class 311

Al Design Considerations. o v v vt 313
Al lmplementation e 315
DecisionMaking. 315
Movement 315
PathPlanning 315
Perception 316
Target Selection 321
Weapon Handling 323
Putting It All Together. 327
Updating the AlComponents 328
Summing Up o o oL 331
Chapter 8 Practical Path Planning. 333
Navigation Graph Construction.t 333
TileBased 333
Points of Visibility. 334
Expanded Geometry 335
NavMesh.o 335

The Raven Navigation Graph. 336
Coarsely Granulated Graphs. 336
Finely Grained Graphs. 339
Adding Items to the Raven Navigation Graph. 341

Using Spatial Partitioning to Speed Up Proximity Queries 342
Creating a Path Planner Class. 342
Planning a Pathtoa Position. 344
Planninga PathtoanItem Type. 346

Paths as Nodes or Pathsas Edges? 348
An Annotated Edge Class Example 350
Modifying the Path Planner Class to Accommodate Annotated Edges 350

Path Smoothing 353

Path Smoothing Rough but Quick 354

Path Smoothing Precise but Slow. 358

Methods for Reducing CPU Overhead 359
Precalculated Paths Lo o L 359
Precalculated Costs 361

Time-Sliced Path Planning 363

Hierarchical Pathfinding 372

Getting Out of Sticky Situations 374

Summing Up oo 376

X I Contents

Chapter 9 Goal-Driven Agent Behavior 379
The Return of Ericthe Brave 380
Implementation 382

Goal _Composite::ProcessSubgoals 385

Goal _Composite::RemoveAllSubgoals 386
Examples of Goals Used by RavenBots 387
Goal Wander 387

Goal TraverseEdge 388

Goal FollowPath 391

Goal MoveToPosition. 393

Goal AttackTarget. e 395

Goal Arbitration. 398
Calculating the Desirability of Locating a Health Item 400
Calculating the Desirability of Locating a Specific Weapon. 401
Calculating the Desirability of Attacking the Target. 403
Calculating the Desirability of Exploringthe Map 403
Putting It All Together. 404
Spin-offs 405
Personalities 405

State MemoOry e 406
Example One — Automatic Resuming of Interrupted Activities. 407

Example Two — Negotiating Special Path Obstacles 408

Command QUEUING v v v i e e e e 410
Using the Queue to Script Behavior. 412
Summing Up o L 414

Chapter 10 Fuzzy logic. o o i e 415

CrispSets o o 417
Set Operators e 418

Fuzzy Sets. e 419
Defining Fuzzy Boundaries with Membership Functions 419
Fuzzy SetOperators 421
Hedges. o o 423

Fuzzy Linguistic Variables 423
Fuzzy Rules. e 424
Designing FLVs for Weapon Selection 425
Designing the Desirability FLV. 426

Designing the Distance to Target FLV 427

Designing the Ammo Status FLV. 428

Designing the Rule Set for Weapon Selection. 428
FuzzyInference 429
RuleOne 429

RuleTwo e 430

RuleThree 430
Defuzzification L 433

From Theory to Application: Coding a Fuzzy Logic Module 437
The FuzzyModule Class 437

The FuzzySetBase Class 439

The Triangular Fuzzy SetClass 440

The Right Shoulder Fuzzy SetClass. 441

Contents I xi

Creating a Fuzzy Linguistic Variable Class 443

Designing Classes for Building Fuzzy Rules 445

How Raven Uses the Fuzzy LogicClasses 451

The Combs Method. 452

Fuzzy Inference and the Combs Method. 454
Implementation 455

Summing Up L 455

Last Words 457
AppendixA C++Templateso 459
Appendix B UML Class Diagrams 465
Appendix C Setting Up Your Development Environment 475
References e 477
Bugsand Errata e 479

Index e e 481

This page intentionally left blank.

Foreword

Draw the blinds. Turn off the TV set. Shut off your cell phone. Turn on a
little background music. Pour yourself a cup of your favorite “program-
mer’s drink,” and find yourself a nice, cozy chair with your favorite laptop
close at hand. You’re about to go a-learnin’.

Welcome to Programming Game Al by Example.

I must confess I was surprised when Mat contacted me back in 2003
about this book. I wondered to myself, “He already covered all of the new
techniques pretty well...what more is there to do?”

As we exchanged emails Mat expressed that he had a simple desire to
follow up on his first book, Al Techniques for Game Programming, with
something having a completely different focus. Whereas Techniques
explored the more “exotic” biological technologies that a game Al pro-
grammer might be wondering about without bogging down in computer
science minutiae, Mat wanted Example to focus more on what technologies
are actually being used by most game Al programmers in their day-to-day
work. New technologies and new approaches are always to be considered
when it makes sense to do so of course, but developers must always have
the basics at hand to build a firm foundation for any game Al engine.
That’s what this book is all about.

The Surge of Game Al's Importance

Game Al has undergone a quiet revolution in the past few years. No longer
is it something that most developers consider only toward the end of a pro-
ject when shipping deadlines loom and the publisher is pushing to have the
game ship before the next holiday milestone. Now game Al is something
that is planned for, something that developers are deliberately making as
important a part of a game’s development as the graphics or the sound
effects. The market is rife with games of all kinds and developers are look-
ing for every edge they can get to help their game get noticed. A game with
truly smart opponents or non-player characters is one that gets noticed
automatically, no matter what it looks like.

We’ve seen this in the enormous growth in books on the subject, in the
surge in attendance at the Game Developers Conference Al roundtables,
and in the explosion of game Al web sites across the Internet. Where a few
years ago there were only a handful of books that covered Al techniques in

xiii

Xiv I Foreword

terms that a programmer could understand, there are now dozens. Where a
few years ago we weren’t at all sure we could fill a single room at the GDC
with people interested in talking about the techniques they used to build
game Al engines, we now have to turn people away; we just can’t fit
everybody in the sessions. Where there were once only a small — very
small — number of web pages dedicated to game Al on the Internet, there
are now more than I can easily count; a quick Google search as I write this
showed over a hundred dedicated in whole or in part to the topic. Amazing,
absolutely amazing.

And every one of the developers who visits these pages, who comes to

the roundtables, who buys the books is interested in the same things:

B What techniques do other developers use?

B What technologies have other developers found useful?

B What do different games do for AI? Are they all faking it, does
everybody do the same thing, or is there room for improvement?

B What are the stumbling blocks that others have run into so I’'m not
surprised? More importantly, what are the solutions other people
have developed so that / don’t have to?

B How can I make my Als smarter?

B Most importantly of all, how can I make my Als more fun?

This book is for those people. The ones who seek hard, practical examples
and hard, practical answers. There’s more than pure theory here; this book
is about real techniques with real, working examples.

About time, huh?

By Engineers, For Engineers

The most important thing to a good software engineer is to know about
techniques that work and why. Theory is great, but demos and code are
better; a developer can get right into the code and see why something
works and how it might be adapted to his own problem. This is exactly the
kind of thing that game Al developers have been pounding the walls for at
every GDC Al roundtable. And this book delivers exactly this kind of
information, and in spades.

From the initial chapters covering the sturdy finite state machine (FSM)
to the chapters exploring the more exotic areas of fuzzy logic (FL), Mat has
built a text that will serve as a ready reference and source of learning for a
long time to come. Every major technique in use by developers is covered
here, using the context of an innovative agent-based Al engine called
Raven to show how a given approach works and why. Basic reactionary
behaviors are the most obvious ones and Mat covers them in exhaustive
detail, with code showing each evolutionary iteration and demos to help it
all make sense.

Foreword I XV

Mat doesn’t stop there as many books do, however. Example moves on
to cover deeper approaches such as hierarchical goal-based agents, placing
such technologies in the context of the Raven engine and building on previ-
ous examples to show how they can greatly improve a game’s Al. These
are techniques in use in only a handful of games on the market today, but
they can make a game’s Al truly stand out if done properly. This book will
show you why they make a difference and how to use them. Mat even pro-
vides tips for better implementations than used in his examples and
summarizes potential improvements to the techniques covered. To this end
he offers up the occasional practical exercise to point the interested devel-
oper in ways to make a given technique better, helping readers to focus on
how they might use the technology in their own games. After all, code is
never done, it’s just done enough.

All of this makes Programming Game Al by Example a book I think
you’re really going to find useful. If you’re looking for hard code and real
techniques, for a book that covers what game Al developers are really
doing and how, then this is the book for you.

Have fun.

Steven Woodcock
ferretman@gameai.com

This page intentionally left blank.

Acknowledgments

A huge thanks to Steve Woodcock (gameai.com) and Eric Martel (Ubisoft),
who gave up much of their free time to help out with technical reviews of
the text and code, and to Ron Wolfe (Sidney Fire Department), who volun-
teered to be my guinea pig. [owe you guys.

I’d also like to thank Craig Reynolds (Sony), Jeff Hannan
(Codemasters), and William Combs (Boeing) for patiently answering my
questions; and to the team at Wordware for all their expertise.

Thanks also to my old friend Mark Drury for checking over the math
and physics chapter.

Finally, a big thank you and hug to my partner and best friend, Sharon,
for the many hours she spent proofreading, and for all the times I must
have stared vacantly at her moving lips whilst my mind was off visiting
another planet. I don’t know how she puts up with me.

xvii

This page intentionally left blank.

The objective of the book you hold in your hands is to provide a solid and
practical foundation to game Al, giving you the confidence to approach
new challenges with excitement and optimism. Al is an enormous topic, so
don’t expect to come away from this book an expert, but you will have
learned the skills necessary to create entertaining and challenging Al for
the majority of action game genres. Furthermore, you will have a sound
understanding of the key areas of game Al, providing a solid base for any
further learning you undertake. And let me tell you, the learning process is
endless!

Being a good game Al programmer is not just about knowing how to
implement a handful of techniques. Of course, individual techniques are
important, but how they can be made to work together is more vital to the
Al development process. To this end, this book spends a lot of time walk-
ing you through the design of agents capable of playing a team sports game
(Simple Soccer) and a deathmatch type shoot-’em-up (Raven), demonstrat-
ing clearly how each technique is used and integrated with others.
Furthermore, Simple Soccer and Raven provide a convenient test bed for
further experimentation, and within the conclusions of many of the chap-
ters are suggestions for future exploration.

Academic Al vs. Game Al

There is an important distinction to be made between the Al studied by
academics and that used in computer games. Academic research is split
into two camps: strong Al and weak Al. The field of strong Al concerns
itself with trying to create systems that mimic human thought processes
and the field of weak Al (more popular nowadays) with applying Al tech-
nologies to the solution of real-world problems. However, both of these
fields tend to focus on solving a problem optimally, with less emphasis on
hardware or time limitations. For example, some Al researchers are per-
fectly happy to leave a simulation running for hours, days, or even weeks
on their 1000-processor Beowolf cluster so long as it has a happy ending
they can write a paper about. This of course is an extreme case, but you get
my point.

Game Al programmers, on the other hand, have to work with limited
resources. The amount of processor cycles and memory available varies

XiX

XX I Introduction

from platform to platform but more often than not the Al guy will be left,
like Oliver holding out his bowl, begging for more. The upshot of this is
that compromises often have to be made in order to get an acceptable level
of performance. In addition, successful games — the ones making all the
money — do one thing very well: They entertain the player (or they have a
film license ©). Ipso facto, the Al must be entertaining, and to achieve this
must more often than not be designed to be suboptimal. After all, most
players will quickly become frustrated and despondent with an Al that
always gives them a whippin’. To be enjoyable, an Al must put up a good
fight but lose more often than win. It must make the player feel clever, sly,
cunning, and powerful. It must make the player jump from his seat shout-
ing, “Take that, you little shit!”

The lllusion of Intelligence

But what is this mysterious thing we call artificial intelligence? With
regard to game Al I am firmly of the opinion that if the player believes the
agent he’s playing against is intelligent, then it is intelligent. It’s that sim-
ple. Our goal is to design agents that provide the illusion of intelligence,
nothing more.

Because the illusion of intelligence is subjective, sometimes this takes
very little effort at all. The designers of the Al for Halo, for instance, dis-
covered their playtesters could be fooled into thinking the Al agents were
more intelligent simply by increasing the number of hit points required to
kill them. For one test session they allowed the agents to die really easily
(low hit points); the result was that 36 percent of the testers thought the Al
was too easy and 8 percent thought the Al were very intelligent. For the
next test session the agents were made harder to kill (higher hit points).
After just this small change 0 percent of the testers thought the Al was too
easy and 43 percent thought the Al was very intelligent! This is an aston-
ishing result and clearly shows the importance of playtesting throughout
the game development cycle.

It has also been shown that a player’s perception of the level of intelli-
gence of a game agent can be considerably enhanced by providing the
player with some visual and/or auditory clues as to what the agent is
“thinking” about. For example, if the player enters a room and startles an
agent, it should act startled. If your game is a “stealth-’em-up” like Thief
and a game character hears something suspicious, then it should start to
look around and maybe mumble a few words such as “What was that?” or
“Is anyone there?”” Even something simple like making sure that an agent
tracks the movement of neighboring agents with its head can contribute
significantly to a player’s perception of the Al.

You must be careful though when designing your Al not to let the cloak
of illusion slip, since once it does the player’s belief in the game character

Introduction I xxi

will evaporate and the game becomes much less fun to play. This will hap-
pen if the Al is seen to act stupidly (running into walls, getting stuck in
corners, not reacting to obvious stimuli) or is caught “cheating” (seeing
through walls, requiring less gold to build units than the human player,
hearing a pin drop at 500 meters), so you must take great pains to avoid
either of these pitfalls.

A Word ahout the Code

Writing the accompanying source code for this book has necessitated a few
compromises. For starters, the code must be formatted so each line fits in
the width of the printed page. This seems like common sense, but I’ve seen
many books where the formatting is hideous, with huge gaps and spaces
everywhere, making the code difficult to follow as it meanders about the
page. The bottom line is that, unlike your IDE, the printed page has a fixed
width within which printed code must fit: Each line of code must have a
maximum width of 82 characters. Restricting lines of code to this length
can be challenging, particularly when using the STL and templates together
with descriptive class and variable names. For this reason, I’ve had to keep
several names shorter than I would have liked, but wherever this was nec-
essary, ’ve taken the liberty of being generous with my commenting. You
will also notice in some sections of the code a profusion of temporary vari-
ables. These are here to either make the code clearer to read or to split up
long lines of code so they fit within the 82-character limit, or both.

The code and demo executables that accompany this book can be
downloaded from www.wordware.com/files/ai. Then click on Buckland
AlSource.zip and Buckland AlIExecutables.zip.

Appendix C provides instructions on how to set up your development
environment in order to compile the projects.

Practice Makes Perfect

As with all skills, the more you practice using Al techniques and designing
Al systems, the better you get. Those of you who have bought this book
because you are already involved in the development of a game’s Al can
get started with what you learn immediately — you already have the per-
fect test bed to practice on. However, for those of you who are not
currently involved in a project, I’ve included “practicals” at the end of
most chapters for you to try your hand at. These encourage you to experi-
ment with the knowledge you’ve learned, either by creating small
stand-alone examples or by altering or building upon the Simple Soccer

or Raven code projects.

This page intentionally left blank.

Chapter 1

A Math and Physics Primer

here’s no hiding from it — if you want to learn Al, it helps to know

some mathematics and physics. Sure, you can use many Al techniques
in a “cut and paste” fashion, but that’s not doing yourself any favors; the
moment you have to solve a problem slightly different from the one you’ve
borrowed the code from you’re going to run into difficulties. If you under-
stand the theory behind the techniques, however, you will stand a much
better chance of figuring out an alternative solution. Besides, it feels good
to understand the tools you’re working with. What better reason do you
need to learn this stuff but that?

I’'m going to write this chapter assuming you know hardly anything at
all about math or physics. So forgive me if you already know most of it,
but I figure this way I’ll catch everyone, no matter what your experience is.
Skim through the chapter until you come to something you don’t know or
you find a topic where you think your memory needs to be refreshed. At
that point, start reading. If you are already comfortable with vector math
and the physics of motion, I suggest you skip this chapter entirely and
come back later if you find something you don’t understand.

Mathematics

We’ll start with mathematics because trying to learn physics without math
is like trying to fly without wings.

Cartesian Coordinates

You are probably already familiar with the Cartesian coordinate system. If
you’ve ever written a program that draws images to the screen then you
will almost certainly have used the Cartesian coordinate system to describe
the positions of the points, lines, and bitmaps that make up the image.

In two dimensions, the coordinate system is defined by two axes posi-
tioned at right angles to each other and marked off in unit lengths. The
horizontal axis is called the x-axis and the vertical axis, the y-axis. The
point where the axes cross is called the origin. See Figure 1.1.

2 I Chapter 1

Mathematics

10 &

w
|

-5

-10“

Figure 1.1. The Cartesian coordinate system

The arrowheads at each end of the axes in Figure 1.1 indicate they extend
in each direction infinitely. If you imagine yourself holding an infinitely
large sheet of paper with the x and y axes drawn on it, the paper represents
the xy plane — the plane on which all points in the two-dimensional Carte-
sian coordinate system can be plotted. A point in 2D space is represented
by a coordinate pair (x, y). The x and y values represent the distances along
each of the respective axes. Nowadays, a series of points or lines plotted on
the Cartesian coordinate system is usually referred to as a graph, which
saves a lot of typing for sure. :0)

3 NOTE To represent three-dimensional space, another axis is needed — the
z-axis. The z-axis extends from behind your screen to way behind your head,
passing through the origin en route. See Figure 1.2.

A

Vaxis

Z axis

X axis

A
\

| J

Figure 1.2. A three-axis (3D) coordinate system

A Math and Physics Primer I 3

Mathematics

Functions and Equations

The concept of functions is fundamental to mathematics. A function
expresses the relationship between two (or more) terms called variables,
and is typically written in the form of an equation (an algebraic expression
set equal to another algebraic expression). Variables are named as such
because, as the name implies, their values may vary. Variables are usually
expressed with letters of the alphabet. The two most common variables you
will see used in mathematical equations are x and y (although any letter or
symbol is just as valid).

If each value of x can be associated with one value of y, then y is a func-
tion of x. y is said to be the dependent variable since its value depends on
the value of x. Here are a couple of examples:

y=2x (1.1)

y=mx+c (1.2)

In the second example, the m and the ¢ represent constants (sometimes
called coefficients) — values that never change no matter what the value
of x is. They are effectively similar to the 2 in equation (1.1). Therefore, if
a =2, equation (1.1) can be written as follows:

y=ax (1.3)

Given any value of x, the corresponding y value can be calculated by put-
ting the x value into the function. Given x = 5 and x = 7 and the function
y =2x, the y values are:

y=2(5)=10

y=27)=14 14

This type of function, where y is only dependent on one other variable, is
called a single-variable function. Single-variable functions may be visual-
ized by plotting them onto the xy Cartesian plane. To plot a function, all
you have to do is move along the x-axis and for each x value use the func-
tion to calculate the y value. Of course, it’s impossible to plot the graph for
every value of x — that would take forever (literally) — so you must select
a range of values.

The left-hand side of Figure 1.3 shows how function y = 2x looks when
plotted on the xy plane, using the range of x values between —5.0 and 5.0.

4 I Chapter 1

Mathematics

/

A yaxis /

r,/ y=2x+3

3| [r'

X axis / x axis
L -

10 5 5 10 10 5 / 5 0

[}
/
A

oy "y

Figure 1.3. Functions plotted in Cartesian space

To plot the function y = mx + ¢ to a graph, you must first have some values
for the constants m and ¢. Let’s say m = 2 and ¢ = 3, giving the function

vy =2x + 3. The right-hand side of Figure 1.3 shows the resulting graph.

The graphs look very similar, don’t they? That’s because y = mx + ¢ is

the function that defines all straight lines in 2D space. The constant m
defines the line’s gradient, or how steep the slope of the line is, and the
constant ¢ dictates where the line intersects the y-axis. The function y = 2x,
shown on the left in the figure, is equivalent to the function y = mx + ¢,
when m = 2 and ¢ = 0. The plot on the right is almost identical but because
its ¢ value is 3, the point where it intersects the y-axis is shifted up by three

units.
Sometimes you will see a function such as y = mx + ¢ written like this:
f(x)=mx+c (1.5)

The notation f{x) is stating that the dependent variable — in this example,
the y — depends on the variable x in the expression given on the right-hand
side, mx + c. Often, you will see symbols other than an f'to represent the
function, so don’t become confused if you come across something like the
following.

g(x)=x" +bx (1.6)

The g(x) represents exactly the same thing as if the equation was written
as:

f(x)=x>+bx 1.7

A Math and Physics Primer I 5

Mathematics

Functions can depend on more than one variable. Take the calculation for
the area of a rectangle for example. If its length is denoted by the letter /,
and its width by w, then the area A4 is given by the equation:

A=lw (1.8)

To plot a two-variable function like (1.8) on a graph, a third dimension, z,
must be added, perpendicular to the other axes. Now it’s possible to plot 4
to the z-axis, / to the x-axis, and w to the y-axis. See Figure 1.4.

Figure 1.4. The function A = Iw plotted in three dimensions

The volume of a cube is given by the three-variable function:
V =Iwh (1.9)

where the 4 represents the height of the cube. To plot this on a graph you
need to add a fourth axis. Unfortunately, unless under the influence of
psychotropic compounds, humans cannot see in more than three dimen-
sions. However, we do have the ability to imagine them, so that’s what you
have to do if you want to plot functions with more than three variables on a
graph. Mathematicians seem to find this easy to do, but many program-
mers, myself included, don’t!

3 NOTE The space an n-dimensional function occupies, where n is greater
than 3, is often referred to as hyperspace by mathematicians.

Exponents and Powers

An exponential function is defined like this:

f(x)=a" (1.10)

6 I Chapter 1

Mathematics

The a is known as the base and the x as the power. If the equation is spo-
ken, you would say that f{x) equals a to the power x. This means that a is
multiplied with itself x amount of times. So 7> is the same as writing 7x7,
and 3% is the same as writing 3x3x3x3. A number to the power of 2 is
known as the square of that number, and a number to the power of 3 is
known as the cube. Therefore, the cube of 5 is:

5 =5x5x5=125 (1.11)

Figure 1.5 shows equation (1.10) plotted on a graph for a = 2. The curve
clearly shows how the value of y increases rapidly with x. This type of
curve is often referred to as exponential growth.

n
5
n
15
1n

5

]
-4 - i 4

Figure 1.5. The function f(x) = 2* plotted on the xy plane

3 HISTORICAL NOTE For a reason lost to time, mathematicians decided
they would use the latter part of the alphabet to represent variables and the rest
of the alphabet to represent constants. This is why the axes in the Cartesian
coordinate system are labeled x, y, and z.

Roots of Numbers (Radicals)

The square root of a number is a value that when multiplied by itself
results in the original number. Square roots are written using the radical
symbol +/ . Therefore, the square root of 4 is written as:

Ji=2 (1.12)

We can square both sides of this equation to show the relationship between
the power and the root:

4 =22 (1.13)

The square root of a number is also known as the second root of that num-
ber. We can also calculate the third, fourth, fifth, or any size root of a
number. The third root of a number is known as its cube root and is written
like this: 3/ . Notice how we need the 3 there to tell us that the root to be

A Math and Physics Primer I 7

Mathematics

taken is the third. The cube root of a number gives a number that when
multiplied to the power of three gives the original number. For instance:

27 =3 (1.14)

Once again we can cube both sides of the equation to show the relationship
between the power and the root:

27=3 (1.15)

It’s also possible to write the root of a number as a fractiolnal exponent. For
example, the square root of a number can be written as x2, the third root
1

as x3, and so on.

Simplifying Equations

Often, to solve an equation you must first simplify it. One of the golden
rules for achieving this is that you can add, subtract, divide, or multiply
terms to either side. (There is one exception to this rule: The term must not
be zero when multiplying or dividing.) As long as the same thing is done to
both sides, then the sides will remain equal. This is best understood with
the aid of a couple of examples.

Example 1
Consider the following equation:
3x+7=22-2x (1.16)

This equation can be simplified by subtracting 7 from both sides.
3x+7-7=22-2x-7

(1.17)
3x=15-2x
It can be further simplified by adding 2x to both sides:
3x+2x=15-2x+2x (1.18)

5x=15

We can also divide both sides by 5, giving us the answer for x:

5x_15
5 5 (1.19)
x=3

Let’s take a look at a slightly more complex example.

8 I Chapter 1

Mathematics

Example 2

Let’s say we want to solve the following for y:
y=2(3x—5y)+§ (1.20)

First of all we can remove the parentheses by multiplying the term inside
the parentheses (3x — 5y), by the term outside (2), giving:

y=6x—10y+§ (1.21)

Next, it’s a good idea to remove all fractional terms by multiplying all the
terms on both sides with the denominators of the fractions (the denomina-
tors are the values beneath the line). In this example, multiplying all terms
on both sides of equation (1.21) by 3 gives:

3y =18x-30y+x (1.22)

At this point we have a y term on the left and x and y terms on the right.
We need to transpose similar terms so they share the same side of the equa-
tion. In this example we can do this by adding 30y to both sides.

3y+30y=18x—-30y+x+30y

(1.23)
3y+30y =18x+x

Now that like terms are grouped together we can combine them. This
gives:

33y =19x (1.24)

Finally, we should divide both sides by the coefficient in front of the
unknown variable. In this example we are solving for y so we must divide
both sides by 33, giving:

19
=—x 1.25

=% (1.25)
Example 3
Here are a few more rules that come in handy when simplifying equations:

> Ly (1.26)

y oy

a ay +bx

a. b_ (1.27)
Xy X

A Math and Physics Primer I 9

Mathematics

(x+y)Y’=x"+y" +2xp (1.28)
(iJ zfé (1.29)
y) oy

54:12 (1.30)

Let’s take a look at some of the new rules in action. This time the equation
to simplify is:

5x—2y=({ffj (1.31)
X

Using rule (1.29) gives:

S5x-2y= y x)
(J_) (1.32)
5x—2y (y x)

Multiplying both sides by x to dispose of the fractional part gives:
x(5x=2y)=(y—x)’ (1.33)

Now to get rid of the parentheses on the left:
5x* =2xy=(y—x) (1.34)

To remove the parentheses on the right we use the rule from (1.28):

5x* =2xy=x>+y° —2xy (1.35)

Adding 2xy to both sides gives:
5 =x"+)" (1.36)
By subtracting x* from both sides and rearranging we get the simplified

equation:
Y =4x (1.37)

10 I Chapter 1

Mathematics

The final step is to take the square root of both sides:
y=2x (1.38)

Simplifying equations can get a lot harder than this of course, but these few
rules are enough for you to understand any of the simplifications presented
in this book.

Trigonometry

Trigonometry is based on the study of triangles. The word comes from the
Greek words trigon, for triangle, and metry, for measure. It is an enor-
mously useful field of mathematics and has many practical applications in
computer science. In the game Al field, you will find it used for line-of-
sight (LOS) calculations, collision detection, some aspects of pathfinding,
etc. Lots of Al is really math-dependent when you boil it down; you will be
wise to learn it well.

Rays and Line Segments

A ray is a line with one endpoint. It is of infinite length and is defined by a
direction (usually expressed as a normalized vector; see the section on vec-
tors later in this chapter) and an origin. Figure 1.6 shows a ray situated at
the origin.

A line segment is a piece of a line and is defined by two endpoints. Fig-
ure 1.6 also shows a line segment defined by the two endpoints p1 and p2.

p11.7)

Lin,
€ e
Mg,
e

p2(7.5)

o

Figure 1.6. A line segment and a ray

A Math and Physics Primer I 11

Mathematics

Angles

An angle is defined as the measure of divergence of two rays that share the
same origin. See Figure 1.7.

angle

Figure 1.7. An angle

You may be used to thinking of angles in terms of degrees. Walls in most
homes are typically at 90 degree angles, for example, and circles are 360
degrees around. Mathematicians prefer to measure the magnitude of an
angle using radians. Radians are a unit of measurement based upon a circle
of unit radius — a radius of 1 — centered at the origin. The radius of a cir-
cle is the distance from the center of the circle to its perimeter. Drawing the
two rays from Figure 1.7 onto the same diagram as the unit circle, we get
Figure 1.8. The length of the curved line segment between the two rays —
shown in the diagram as a dotted line — is the angle measured in radians
between them.

radius =1

Figure 1.8. The length of the dotted line is the angle in radians between the two rays.

12

I Chapter 1

Mathematics

Now that you know what a radian is, let’s calculate how many radians there
are in a circle. You may remember the Greek symbol = (pi) from your
school days. It’s a well-known and frequently used mathematical constant,
and has a value of 3.14159 (to five decimal places). You can use pi to cal-
culate the circumference of a circle — the distance around the entire
perimeter — using the equation:

perimeter =21 r (1.39)

Using this equation to determine the perimeter of a unit circle gives the
number of radians in a circle. That’s because the number of radians in a cir-
cle is the length of the perimeter of a circle with a radius of 1. So we just
substitute 1 for 7 in equation (1.39) to get:

perimeter =2nr =21 (1) =21 = num radians (1.40)

Therefore, there are 2 & radians in every circle.

3L TIP Now that you know how many radians make up a circle, you can convert

between radians and degrees if you ever have to. There are 360 degrees in a
circle, so that means:

360° = 2 n rads
Dividing both sides by 360 we get:

1° =2 7 /360 rads

Angles are usually denoted using the Greek letter theta, which looks like
this: 0.

Triangles

A triangle consists of three line segments connected at their ends. A trian-
gle’s inner angles always add up to = radians (180 degrees). Figure 1.9
shows the different types of triangles you can encounter.

A AN

Equilateral Isosceles Right-angled
Acute Obtuse

Figure 1.9. Different types of triangles

A Math and Physics Primer I 13

Mathematics

B An equilateral triangle has sides of equal length. Triangles with this
property also have angles of equal sizes.

B An isosceles triangle has two sides and two angles of equal size.

B A right-angled triangle has one angle that is ©/2 radians (90 degrees)
— aright angle. The right angle is always represented by a box.

B An acute triangle’s inner angles are all acute (less than /2 radians).

B An obtuse triangle has one angle that is obtuse (greater than /2
radians).

Pythagorean Theorem

The triangles you will be using most are of the right-angled variety. They
have many interesting properties you can put to good use. Possibly the
most famous property of right-angled triangles was discovered by Pythago-
ras, a Greek mathematician who lived from 569 to 475 BC. He was a very
clever chap indeed, and is most famous for stating this:

The square of the hypotenuse of a right-angled triangle is equal to the
sum of the squares of the other two sides.

The hypotenuse of a triangle is its longest side, as shown in Figure 1.10.

hypotenuse

N\

b
Figure 1.10

If the hypotenuse is denoted as /4, the Pythagorean theorem can be written
as:

B =a+ b (1.41)

Taking the square root of both sides gives:

h=~a*+b’ (1.42)

This means that if we know the length of any two sides of a right-angled
triangle, we can easily find the third.

14 I Chapter 1

Mathematics

3:@ TIP When working on the Al for games you will frequently find yourself using
the Pythagorean theorem to calculate if Agent A is closer to an object than
Agent B. This would normally require two calls to the square root function,
which, as we all know, is slow and should be avoided wherever possible. Fortu-
nately, when comparing the lengths of the sides of two triangles, if side A is
bigger than side B, then it will always be bigger, whether the lengths are
squared or not. This means that we can avoid taking the square roots and just
compare the squared values instead. This is known as working in squared-
distance space and is something you will see frequently in the code shown in

this book.
A Practical Example of the Pythagorean Theorem

Let’s say you have an archer at position A (8, 4) and his target at position
T (2, 1). The archer can only fire an arrow a maximum distance of 10 units.
Consequently, to determine if he can hit the target, the distance between
them must be calculated. This is easy to determine using the Pythagorean
theorem. First, the lengths of the sides TP and AP shown in Figure 1.11 are
calculated.

10

Figure 1.11

To find the distance AP, the y component of the archer’s position is sub-
tracted from the y component of the target’s position:

AP=4-1=3 (1.43)

To find the distance TP, we do the same, but with the x components:
TP=8-2=6 (1.44)

Now that TP and AP are known, the distance from the archer to the target
can be calculated using the Pythagorean theorem:

A Math and Physics Primer I 15

Mathematics

TA=~ AP* + TP*
=3’ +6’
=J9+36

=6.71
Well within target range. Let that arrow fly!

The Mysteries of SohCahToa Unveiled

If you know the length of one of the sides of a right-angled triangle and
one of the remaining two angles, you can determine everything else about
the triangle using trigonometry. First, take a look at Figure 1.12. It shows
the names of each side of a right-angled triangle.

(1.45)

hypotenuse

opposite

adjacent

Figure 1.12. Names of the sides of a triangle

The side opposite the angle is called the opposite (surprise, surprise), and
the side lying between the angle and the right angle is known as the adja-
cent. There are three trigonometric functions to help calculate the features
of a right-angled triangle. You probably know them from school. They are
sine, cosine, and tangent, and are often abbreviated to sin, cos, and tan.
This is what they represent:

sin(9) = —2PPOSIe (1.46)
hypotenuse

cos(f)) = Adacent_ (1.47)
hypotenuse

tan(9) = 2PPOSIE (1.48)
adjacent

It will pay you well to memorize these three relationships because you’ll be
using them frequently. My math teacher taught me to memorize them as a
mnemonic: Soh-Cah-Toa, pronounced “sowcahtowa” (where “sow” and
“tow” thyme with “know”). Although it looks weird, it’s easy to say, and
very easy to remember.

16 I Chapter 1

Mathematics

The best way of seeing how the sine, cosine, and tangent functions can
be utilized is by looking at some examples.

3B TIP When working out any of the following problems on a calculator, make sure
it's set to work in radians, and not degrees!

Take a look at Figure 1.13.

o=?

0.9 rads

a=6

Figure 1.13

We want to calculate the length of the opposite given the length of the adja-
cent and the angle. From SohCahToa we can remember that the tangent of
an angle is equal to the opposite divided by the adjacent. Rearranging the
equation a little gives us:

o=aTan(@) (1.49)

So all we have to do to get o is pick up a calculator (to determine the tan-
gent) and plug in the numbers, like so:

0=6Tan(0.9)
=7.56

(1.50)

Easy peasy. Okay, let’s try another, only this time you try to solve it first.
Calculate the length of the side 4 shown in Figure 1.14

Figure 1.14

Did you manage it? In this example we know the angle and the opposite.
Remembering SohCahToa, we see that it’s the sine function that should be
used because the sine of the angle is equal to the opposite divided by the
hypotenuse. Rearranging the equation gives:

A Math and Physics Primer I 17

Mathematics

h=_2 (1.51)
sin()

And plugging in the numbers gives:

P
sin(0.3) (1.52)
=10.15

So far so good. How about the problem shown in Figure 1.15? This time
you have to find the angle given the lengths of the adjacent and
hypotenuse.

Figure 1.15

This time our friend is the cosine function, but plugging in the numbers
creates a problem.

cos(?) = % =0.769 (1.53)

We know that the cosine of the angle is 0.769, but what is the angle itself?
How do we find that out? Well, the angle is determined using the inverse
cosine. This is normally written as cos . So, all you do is use the inverse
cosine button on a calculator (if you can’t see cos ' on your calculator, you
may have to press the inverse button before the cosine button) to get the
result:

?=cos ' (0.769) = 0.693 radians (1.54)

At this point I’'m going to end the lesson in trigonometry. Although it is a
vast subject, the Pythagorean theorem and SohCahToa are all the trig the-
ory you are going to need for the rest of this book.

18 I Chapter 1

Mathematics

Vectors

You’ll be using vector math frequently when designing the Al for your
games. Vectors are used everywhere from calculating which direction a
game agent should shoot its gun to expressing the inputs and outputs of an
artificial neural network. Vectors are your friend. You should get to know
them well.

You have learned that a point on the Cartesian plane can be expressed as
two numbers, just like this:

P=(x,y) (1.55)

A 2D vector looks almost the same when written down:
v=(x,) (1.56)

However, although similar, a vector represents two qualities: direction and
magnitude. The right-hand side of Figure 1.16 shows the vector (9, 6) situ-
ated at the origin.

IIIl_J

. [
¥ axis yaxis

*P{96) . V(9.6

¥ axis X axis

Point Vector

Figure 1.16. A point, P and a vector, V

3 NOTE Vectors are typically denoted in bold typeface or as a letter with an
arrow above it like so: v. I'll be using the bold notation throughout this book.
The bearing of the arrow shows the direction of the vector and the length of
the line represents the magnitude of the vector. Okay, so far so good. But
what does this mean? What use is it? Well, for starters, a vector can repre-
sent the velocity of a vehicle. The magnitude of the vector represents the
speed of the vehicle and the direction represents the heading of the vehicle.
That’s quite a lot of information from just two numbers (x, y).

A Math and Physics Primer I 19

Mathematics

Vectors aren’t restricted to two dimensions either. They can be any size
at all. You would use a 3D vector, (x, y, z) for example, to represent the
velocity of a vehicle that moves in three dimensions, like a helicopter.

Let’s take a look at some of the things you can do with vectors.

Adding and Subtracting Vectors

Imagine you are a contestant in a TV reality game. You are standing in a
clearing in the jungle. Several other competitors stand beside you. You’re
all very nervous and excited because the winner gets to date Cameron
Diaz... and the losers have to watch. Sweat is dripping from your forehead,
your hands are clammy, and you cast nervous glances at the other competi-
tors. The bronzed, anvil-chinned TV host steps forward and hands a gold-
trimmed envelope to each competitor. He steps back and orders you all to
rip open your envelopes. The first person to complete the instructions will
be the winner. You frantically tear away at the paper. Inside is a note. It
says:

I’'m waiting for you in a secret location. Please hurry, its very hot in

here. You can reach the location by following the vectors (-5, 5), (0,

-10), (13, 7), (-4, 3).

Cameron

With a smile on your face you watch the rest of the competitors sprint off
in the direction of the first vector. You do a few calculations on the back of
the envelope and then set off in a completely different direction at a lei-
surely stroll. By the time the other competitors reach Cameron’s hideout,
sweating like old cheese and gasping for breath, they can hear your playful
giggles and the splash of cool shower water...

You beat the opposition because you knew how to add vectors together.
Figure 1.17 shows the route all the other competitors took by following the
vectors given in Cameron’s note.

Figure 1.17. The route of the opposition

20 I Chapter 1

Mathematics

You knew, however, that if you added all the vectors together you would
get a single vector as the result: one that takes you directly to the final des-
tination. To add vectors together you simply add up all the x values to give
the result’s x component, and then do the same with the y values to get the
y component. Adding the four vectors in Cameron’s note together we get:

new x=(=5)+(0) +(13)+ (-4 =4

(1.57)
newy=(05)+(-10)+(7)+(3)=5

giving the vector (4, 5), exactly the same result as if we followed each vec-
tor individually. See Figure 1.18.

Figure 1.18. Your route

Multiplying Vectors

Multiplying vectors is a cinch. You just multiply each component by the
value. For example, the vector v (4, 5) multiplied by 2 is (8, 10).

Calculating the Magnitude of a Vector

The magnitude of a vector is its length. In the previous example the magni-
tude of the vector v (4, 5) is the distance from the start point to Cameron’s
hideout.

A Math and Physics Primer I 21

Mathematics

Figure 1.19. Finding the magnitude of a vector

This is easy to calculate using the Pythagorean theorem.

magnitude =4’ +5° = 6.403 (1.58)

If you had a three-dimensional vector then you would use the similar
equation:

magnitude = \|x* +y* +2° (1.59)

Mathematicians place two vertical bars around a vector to denote its length.

magnitude = |V| (1.60)

Normalizing Vectors

When a vector is normalized, it retains its direction but its magnitude is
recalculated so that it is of unit length (a length of 1). To do this you divide
each component of the vector by the magnitude of the vector. Mathemati-
cians write the formula like this:

Nzﬁ (1.61)

Therefore, to normalize the vector (4, 5) you would do this:

new x=4/6.403=0.62

(1.62)
newy=5/6.403=0.78

This may seem a strange thing to do to a vector but in fact, normalized vec-
tors are incredibly useful. You’ll find out why shortly.

22

I Chapter 1

Mathematics

Resolving Vectors

It’s possible to use trigonometry to resolve a vector into two separate vec-
tors, one parallel to the x-axis and one to the y-axis. Take a look at the
vector, v, representing the thrust of the jet-fighter shown in Figure 1.20.

|V|casie)

L

Ol isinie) b

Figure 1.20

To resolve v into its x/y components we need to find Oa and Ob. This will
give us the component of the aircraft’s thrust that is acting along the y-axis,
and the component along the x-axis, respectively. Another way of putting it
is that Oa is the amount of thrust acting along the x-axis, and Ob is the
amount along the y-axis.

First, let’s calculate the amount of thrust along the y-axis: Oa. From trig-
onometry we know that:

cos(p) = Adacent__ Oa (1.63)

hypotenuse - |V|

Rearranged, this gives:

Oa = |V| Cos(0) = y component (1.64)

To calculate Ob this equation is used:

sin(@):ol’p—‘”ite:@ (1.65)
hypotenuse |V|

Giving:
Ob= |V| sin(0) = x component (1.66)

A Math and Physics Primer I 23

Mathematics

The Dot Product

The dot product gives the angle between two vectors — something you
will need to calculate often when programming Al. Given the two 2D vec-
tors u and v, the equation looks like this:

uev=uyv +uyv, (1.67)

The e symbol denotes the dot product. Equation (1.67) doesn’t give us an
angle though. I promised an angle, so you’ll get one! Here’s another way of
calculating the dot product:

uev=|ul[v|cos®) (1.68)

Rearranging we get:

uev
cos(@)=—— (1.69)

Jul|]
Remember, the vertical lines surrounding a vector indicate its magnitude.
Now is the time when you discover one of the useful uses for normalizing
vectors. If v and u are both normalized, then the equation simplifies enor-

mously to:
uev
cos(@) = ™ (1.70)
=uev

Substituting in the equation from (1.67) for the right-hand side gives:

cos(@)=uev=uyv +uyv, (1.71)

giving us an equation for the angle between the vectors.

One great use of the dot product is that it will quickly tell you if one
entity is behind or in front of the facing plane of another. How so? Check
out Figure 1.21.

Facing

+ Facing Plane

Figure 1.21

24 I Chapter 1

Mathematics

The figure shows a game agent facing directly north. The horizontal line is
relative to the agent and describes the facing plane of the agent. Everything
situated ahead of this line can be said to be in front of the agent.

Using the dot product it’s easy to determine if an object is situated in
front or behind the agent. The dot product of the agent’s facing vector and
the vector from the agent to the object will be positive if the object is for-
ward of the facing plane of the agent and negative if it is behind.

A Practical Example of Vector Mathematics

Here’s an example of some of the vector methods you’ve just learned about
working together. Let’s say you have a game agent, Eric the Troll, who
stands at position 7 (the origin) and facing in the direction given by the
normalized vector H (for heading). He can smell a helpless princess at
position P and would very much like to throw his club at her, to tenderize
her a little, before he rips her to pieces. To do this, he needs to know how
many radians he must rotate to face her. Figure 1.22 shows the situation.

Figure 1.22

You’ve discovered that you can calculate the angle between two vectors
using the dot product. However, in this problem you only have one vector
to start with, H. Therefore we need to determine the vector TP — the vec-
tor that points directly at the princess. This is calculated by subtracting
point T from point P. Because T is at the origin (0, 0), in this example P-T
= P. However, the answer P—T is a vector, so let’s show this by typing it in
bold and calling it P.

We know that the cosine of the angle the troll needs to turn to face the
princess is equivalent to the dot product of H and P, provided both vectors
are normalized. H is already normalized so we only need to normalize P.
Remember, to normalize a vector its components are divided by its magni-
tude. Consequently, the normal of P (Np) is:

A Math and Physics Primer I 25

Mathematics

N =— (1.72)

The dot product can now be used to determine the angle.
cos(0)=N, eH (1.73)

So
6 =cos™ (N, o H) (1.74)

To clarify the process, let’s do the whole thing again but with some num-
bers. Let’s say the troll is situated at the origin 7' (0, 0) and has a heading of
H (1, 0). The princess is standing at the point P (4, 5). How many radians
does the troll have to turn to face the princess?

We know that we can use equation (1.74) to calculate the angle but first
we need to determine the vector, TP, between the troll and the princess and
normalize it. To obtain TP we subtract 7 from P, resulting in the vector (4,
5). To normalize TP we divide it by its magnitude. This calculation was
shown earlier in equation (1.62), resulting in Np (0.62, 0.78).

Finally we plug the numbers into equation (1.74), substituting equation
(1.71) for the dot product.

6 =cos™ (N, oH)

6 =cos™ ((0.62x1)+(0.78x0))
6 =cos™' (0.62)

0 =0.902 radians

The Vector2D Struct

All the examples given in this book make use of the Vector2D struct. It’s
very straightforward and implements all the vector operations we’ve dis-
cussed. I’ll list the majority of its declaration here so you can familiarize
yourself with it.

struct Vector2D
{
double x;
double y;

Vector2D():x(0.0),y(0.0){}
Vector2D(double a, double b):x(a),y(b){}

//sets x and y to zero
inline void Zero();

//returns true if both x and y are zero
inline bool isZero()const;

26 I Chapter 1

hg

Mathematics

//returns the length of the vector
inline double Length()const;

//returns the squared length of the vector (thereby avoiding the sqrt)
inline double LengthSq()const;

inline void Normalize();

//returns the dot product of this and v2
inline double Dot (const Vector2D& v2)const;

//returns positive if v2 is clockwise of this vector,

//negative if counterclockwise (assuming the Y axis is pointing down,
//X axis to right Tike a Window app)

inline int Sign(const Vector2D& v2)const;

//returns the vector that is perpendicular to this one
inline Vector2D Perp()const;

//adjusts x and y so that the length of the vector does not exceed max
inline void Truncate(double max);

//returns the distance between this vector and the one passed as a parameter
inline double Distance(const Vector2D &v2)const;

//squared version of above
inline double DistanceSq(const Vector2D &v2)const;

//returns the vector that is the reverse of this vector
inline Vector2D GetReverse()const;

//we need some operators

const Vector2D& operator+=(const Vector2D &rhs);
const Vector2D& operator-=(const Vector2D &rhs);
const Vector2D& operator*=(const double& rhs);
const Vector2D& operator/=(const double& rhs;
bool operator==(const Vector2D& rhs)const;

bool operator!=(const Vector2D& rhs)const;

Local Space and World Space

It

’s important you understand the difference between local space and world

space. The world space representation is normally what you see rendered
to your screen. Every object is defined by a position and orientation rela-
tive to the origin of the world coordinate system (see Figure 1.23). A
soldier is using world space when he describes the position of a tank with a
grid reference, for instance.

A Math and Physics Primer I 27

Mathematics

J

(0.0

v

Figure 1.23. Some obstacles and a vehicle shown in world space

Local space, however, describes the position and orientation of objects rel-
ative to a specific entity’s local coordinate system. In two dimensions, an
entity’s local coordinate system can be defined by a facing vector and a
side vector (representing the local x- and y-axis, respectively), with the ori-
gin positioned at the center of the entity (for three dimensions an additional
up vector is required). Figure 1.24 shows the axis describing the local coor-
dinate system of the dart-shaped object.

A

J

(0,0

v

Figure 1.24. The vehicle’s local coordinate system

Using this local coordinate system we can transform the world so that all
the objects in it describe their position and orientation relative to it (see
Figure 1.25). This is just like viewing the world through the eyes of the
entity. Soldiers are using local space when they say stuff like “Target 50m

28 I Chapter 1
Physics

away at 10 o’clock.” They are describing the location of the target relative
to their own position and facing direction.

A

'y
y
Y

0,0

Y

Figure 1.25. Obijects transformed into the vehicle’s local space

This ability to transform objects between local and world space can help
simplify many calculations as you’ll see later in the book. (Although you
need to understand the concept, how it’s actually done is beyond the scope
of this book — check out the matrix transformations chapter of a computer
graphics book.)

Physics

My dictionary defines the science of physics as:

The science of matter and energy and of the interactions between the
two.

As a game Al programmer you’ll frequently be working with the laws of
physics, and especially ones concerned with motion, which is what will be
covered in this section. You’ll often find yourself creating algorithms for
predicting where an object or agent will be at some time in the future, for
calculating what the best angle is to fire a weapon, or what heading and
force an agent should kick a ball with to pass it to a receiver. This isn’t Al
per se of course, but it is all part of creating the illusion of intelligence and
is normally part of the Al programmer’s workload, so you need to know
this stuff.

Let’s take a look at some of the fundamental concepts used in physics.

Time
Time is a scalar quantity (completely specified by its magnitude and with

no direction) measured in seconds, abbreviated to s. Until recently, a sec-
ond was defined in terms of the rotational spin of the Earth, but as the

Physics

A Math and Physics Primer I 29

Earth’s rotation is slowing down slightly every year, by the late sixties this
became problematic for scientists who needed increasingly precise mea-
surements for their experiments. Today, therefore, a second is measured as:

The duration of 9,192,631,770 periods of the radiation corresponding to
the transition between the two hyperfine levels of the ground state of the
cesium 133 atom.

This definition provides today’s scientists with the constant time interval
they require for their precise experiments.

Time in computer games is measured in one of two ways: either in sec-
onds (just as in the real world) or by using the time interval between
updates as a kind of virtual second. The latter measurement can simplify
many equations but you have to be careful because, unless the update rate
is locked, the physics will differ between machines of varying speeds!
Therefore, if you choose to use a virtual second, make sure your game’s
physics update frequency is locked to a reasonable rate — usually the rate
of the slowest machine you’re developing for.

3 NOTE Not all that long ago the majority of computer games used a fixed

frame rate and every component — rendering, physics, Al, etc. — was updated
at the same frequency. Many of today’s sophisticated games, however, specify a
unique rate for each component. For example, the physics might be updated 30
times a second, the Al 10 times a second, and the rendering code allowed to go
as fast as the machine it runs on. Therefore, whenever | refer to an “update
rate” in the text, if | don't specify a context, it will be in the context of the subject
I'm talking about.

Distance

The standard unit of distance — a scalar quantity — is the meter, abbrevi-
ated to m.

Mass

Mass is a scalar quantity measured in kilograms, abbreviated to kg. Mass is
the measure of an amount of something. This can be a confusing quality to
measure since the mass of an object is calculated by weighing it, yet mass
is not a unit of weight; it is a unit of matter. The weight of an object is a
measurement of how much force gravity is exerting on that object. Because
gravity varies from place to place (even here on Earth), this means the
weight of an object can vary in different places, even though its mass never
changes. So how can mass be measured accurately?

Scientists have overcome this problem by creating a platinum-iridium
cylinder that everyone has agreed to call THE kilogram. This cylinder is
kept in Paris and all measurements are made relative to it. In other words,
you can go to France and have your own duplicate kilogram made, which
weighs exactly the same as THE kilogram. Now you know that wherever

30 I Chapter 1
Physics

you are located, no matter what the gravity, your duplicate will have
exactly the same mass as THE kilogram back in France. Problem solved.

Position

You might think the position of an object is an easy property to measure,
but where exactly do you measure its position from? For example, if you
wanted to specify your body’s position in space, from where would you
take the measurement? Would it be from your feet, your stomach, or your
head? This presents a problem because there would be a big discrepancy
between the position of your head and that of your feet.

Physicists solve this problem by taking the location of the center of
mass of the object as its position. The center of mass is the object’s balance
point. This would be the place where you could attach an imaginary piece
of string to the object and it would balance in any position. Another good
way of thinking about the center of mass is that it is the average location of
all the mass in a body.

Velocity

Velocity is a vector quantity (a quantity that has magnitude and direction)
that expresses the rate of change of distance over time. The standard unit of
measurement of velocity is meters per second, abbreviated to m/s. This can
be expressed mathematically as:

Ax

N (1.75)

The Greek capital letter A, read as delta, is used in mathematics to denote a
change in quantity. Therefore, At in equation (1.75) represents a change in
time (a time interval) and Ax a change in distance (a displacement). A is
calculated as the after quantity minus the before quantity. Therefore if an
object’s position at t = 0 is 2 (before) and att = 1 is 5 (after), Axis 5—2 =
3. This can also result in negative values. For instance if an object’s posi-
tion at t = 0 is 7 (before) and at t = 1 is 3 (after), Axis 3 —7 =—4.

3 NOTE Delta’s little brother, the lowercase letter delta, written as 3§, is used to
represent very small changes. You often see § used in calculus. Because 5 looks
similar to the letter d, to prevent confusion, mathematicians tend to avoid using
d to represent distance or displacement in their equations. Instead, a less
ambiguous symbol such as Ax is used.

Using equation (1.75), it’s easy to calculate the average velocity of an
object. Let’s say you want to work out the average velocity of a ball as it
rolls between two points. First calculate the displacement between the two
points, then divide by the amount of time it takes the ball to cover that

Physics

A Math and Physics Primer I 31

distance. For instance, if the distance between the points is 5 m and the
time taken for the ball to travel between points is 2 s, then the velocity is:

v=%=2.5 m/s (1.76)

It’s also easy to calculate how far an object has traveled if we know its
average speed and the length of time it has been traveling. Let’s say you
are driving your car at 35 mph and you’d like to know how far you’ve
moved in the last half hour. Rearranging equation (1.75) gives:

Ax =vAt (1.77)
Popping in the numbers gives:

distance traveled = 35 x % =17.5 miles (1.78)

Relating this to computer games, if you have a vehicle at position P at time
t traveling at constant velocity V, we can calculate its position at the next
update step (at time ¢ + /) by:

P, =P + VAl (1.79)

Where VAf represents the displacement between update steps (from equa-
tion (1.77)).

Let’s make this crystal clear by showing you a code example. Following
is a listing for a Vehicle class that encapsulates the motion of a vehicle
traveling with constant velocity.

class Vehicle

{
//a vector representing its position in space
vector m_vPosition;

//a vector representing its velocity
vector m_vVelocity;

public:

//called each frame to update the position of the vehicle
void Update(float TimeElapsedSincelLastUpdate)
{

m vPosition += m vVelocity * TimeElapsedSincelastUpdate;
}
b
Note that if your game uses a fixed update rate for the physics, as do many
of the examples in this book, At will be constant and can be eliminated
from the equation. This results in the simplified Update method as follows:

32

I Chapter 1

Physics

//update for a simulation using a constant update step
void Vehicle::Update()
{

m vPosition += m vVelocity;

}

Remember though, that if you choose to eliminate At like this, the unit of
time you will be using in any calculations is no longer the second but rather
the time interval between update steps.

Acceleration

Acceleration is a vector quantity that expresses the rate of change of veloc-
ity over time and is measured in meters per second per second, written as
m/s”. Acceleration can be expressed mathematically as:

v

a=
At

(1.80)

This equation is stating that acceleration is equivalent to the change in
velocity of an object divided by the time interval during which the change
in velocity occurred.

For example, if a car starts from rest and accelerates at 2 m/s, then
every second, 2 m/s is added to its velocity. See Table 1.1.

Table 1.1

Time(s) Velocity(m/s)
0 0

1 2

2 4

3 6

4 8

5 10

Plotting this data to a velocity versus time graph, we get Figure 1.26. If we
examine a time interval, say the interval between ¢t = 1 and ¢ = 4, we can
see that the gradient of the slope, given by 2V s equivalent to the accel-
eration during that interval. Al

A Math and Physics Primer I 33
Physics

10 1 velocity (m/s)

time (s}

Figure 1.26. The velocity of the car plotted against time

You learned earlier how the equation y = mx + ¢ defines all straight lines in
the 2D Cartesian plane, where m is the gradient and ¢ the intersection on
the y-axis. Because we can infer from Figure 1.26 that constant accelera-
tion is always plotted as a straight line, we can relate that equation to the
acceleration of the car. We know that the y-axis represents the velocity, v,
and that the x-axis represents time, z. We also know that the gradient m
relates to the acceleration. This gives the equation:

v=at+u (1.81)

The constant u represents the velocity of the car at time ¢ = 0, which can be
shown as the intersection of the line on the y-axis. For instance, if the car in
the example started off with a velocity of 3 m/s, then the graph would be
identical but offset upward by 3 as shown in Figure 1.27.

b
10 7 velocity (m/s)

T T T T ™
1 2 3 4 5

time (s}

Figure 1.27. The same car but traveling with an initial velocity of 3 m/s at timet = 0

34 I Chapter 1
Physics

To test the equation let’s determine what the velocity of a car starting with
a velocity of 3 m/s and accelerating at 2 m/s* will be after 3 seconds.
Plugging in the numbers to equation (1.81) gives:

v=2x3+3

1.82
v=9m/s ()

This is exactly what we can infer from the graph. See Figure 1.28.

10 7 velodty (m/s)

1 2 3 4 5

time (s}

Figure 1.28

Another interesting thing about a velocity-time graph is that the area under
the graph between two times is equivalent to the distance traveled by the
object during that time. Let’s look at a simple example first. Figure 1.29
shows the time versus velocity graph for a vehicle that spends 2 seconds at

4 m/s then stops.
b
10 7 velodty (m/s)
5
6
t=2
R
4
3 - v=4
1 1 T T >
v 1 2 3 4 5
time (s}

Figure 1.29

Physics

A Math and Physics Primer I 35

The area under the graph (the region shaded in gray) is given by height X
width, which is equivalent to velocity X time, which as you can see gives
the result of 8 meters. This is the same result from using the equation
Ax = vAt.

Figure 1.30 shows the example from earlier where a vehicle accelerates
from rest with a constant acceleration of 2 m/s”. Let’s say we’d like to cal-
culate the distance traveled between the times # = 1 and 7 = 3.

X

10 1 velocity (m/s)
=1 =3
8 7 :
]
:‘l—ﬁ
1
6 ! t
1
i
4 v-u
B
2 -
A u
1 T I >
v T 2 3 4 5
time (s}
Figure 1.30

We know that the distance traveled between =1 and ¢ = 3 is the area
beneath the graph between those times. As is clearly shown in the figure,
this is the sum of the areas of rectangle A and triangle B.

The area of A is given by the time displacement, #, multiplied by the
starting velocity, u, written as:

Area(A) = At xu (1.83)

The area of B, a triangle, is half the area of the rectangle described by the
sides of the triangle. The sides of the triangle are given by the time dis-
placement, ¢, and the difference between the finish velocity and the start
velocity, v — u. This can be written as:

Area(B) = %(V —u)At (1.84)

Therefore, the total area under the graph between times =1 and ¢ = 3,
which is equivalent to the distance traveled, is the sum of these two terms,
given as:

szuAt+%(v—u)At (1.85)

36 I Chapter 1

Physics

We know that v — u is equivalent to the change in velocity Av, and that,
from equation (1.80)

v—u=Av=alAt (1.86)

This value for v — u can be substituted into equation (1.85) to give us an
equation that relates distance to time and acceleration.

szuAt+%aAt2 (1.87)

Putting the numbers into this equation gives:

Ax:2x2+lxzx22
Ax=4+4 ’ (1.88)

Ax=8 m
We can do another useful thing with this equation: We can factor time out

to give us an equation relating velocity to distance traveled. Here’s how.
From equation (1.81) we know that:

v—u
At =

(1.89)
a

We can substitute this value for At in equation (1.87) to give:

2
Ax:u(v_“j+la[v_“j (1.90)
a 2 a
This nasty-looking equation can be simplified greatly. (If you are new to

algebra I suggest trying to simplify it yourself. If you find yourself getting
stuck, the full simplification is given at the end of the chapter.)

Vi =u’ +2alAx (1.91)

This equation is extremely useful. For example, we can use it to determine
how fast a ball dropped from the top of the Empire State Building will be
traveling when it hits the ground (assuming no air resistance due to wind or
velocity). The acceleration of a falling object is due to the force exerted
upon it by the Earth’s gravitational field and is equivalent to approximately
9.8 m/s’. The starting velocity of the ball is 0 and the height of the Empire
State Building is 381 m. Putting these values into the equation gives:

v =07 +2x9.8x381

v=1/7467.6 (1.92)

v=286.41m/s

Physics

A Math and Physics Primer I 37

The preceding equations hold true for all objects moving with a constant
acceleration but of course it’s also possible for objects to travel with vary-
ing acceleration. For example, an aircraft when taking off from a runway
has a high acceleration at the beginning of its run (which you can feel as a
force pushing you into the back of your seat), which decreases as the limits
of its engine’s power are reached. This type of acceleration would look
something like that shown in Figure 1.31.

r Y
velocity (kmih)

0 time (s)

Figure 1.31. An aircraft accelerating up the runway

As another example, Figure 1.32 shows the velocity versus time graph for a
car that accelerates to 30 km/h, brakes sharply to avoid a stray dog, and
then accelerates back to 30 km/h.

r Y
50 wvelocity (km/h)

40
30

204

0 time (s)

Figure 1.32

38 I Chapter 1
Physics

When you have varying accelerations like these it’s only possible to deter-
mine the acceleration at a specific time. This is achieved by calculating the
gradient of the tangent to the curve at that point.

Force
According to Isaac Newton:

An impressed force is an action exerted upon a body in order to change
its state, either of rest, or of uniform motion in a right line.

Therefore, force is that quality that can alter an object’s speed or line of
motion. Force has nothing to do with motion itself though. For example, a
flying arrow does not need a constant force applied to it to keep it flying
(as was thought by Aristotle). Force is only present where changes in
motion occur, such as when the arrow is stopped by an object or when a
drag racer accelerates along the strip. The unit of force is the Newton,
abbreviated to N, and is defined as:

The force required to make a one-kilogram mass move from rest to a
speed of one meter per second in one second.

There are two different types of force: contact and non-contact forces. Con-
tact forces occur between objects that are touching each other, such as the
frictional force present between the snow and skis of a downhill skier.
Non-contact forces are those that occur between objects not touching each
other, such as the gravitational force of the Earth upon your body or the
magnetic force of the Earth upon a compass needle.

It’s important to note that many forces can act upon a single object
simultaneously. If the sum of those forces equals zero, the object remains
in motion with the same velocity in the same direction. In other words, if
an object is stationary or moving in a straight line with a constant velocity,
the sum of all the forces acting upon it must be zero. If, however, the sum
of the forces is not equal to zero, the object will accelerate in the direction
of the resultant force. This can be confusing, especially in relation to static
objects. For instance, how can there be any forces acting upon an apple sit-
ting on a table? After all, it’s not moving! The answer is that there are two
forces acting upon the apple: the force of gravity trying to pull the apple
toward the Earth and an equal and opposite force from the table pushing it
away from the Earth. This is why the apple remains motionless. Figure
1.33 shows examples of varying amounts of forces acting upon everyday
objects.

Physics

A Math and Physics Primer I 39

1 Force 2 Forces

force from table

force due to gravity l
farce due to gravity

3 Forces 4 Forces
frictional force
from table
force from
inclined table force from

i air on sail
force fram’ \ —
busyancy of

waler [)
! A
frictional force ~1 A
from watar e B

force due to gravity

force due to gravity

Figure 1.33. From left to right and top to bottom: a falling
apple, an apple resting on a table, a ball rolling down an
inclined table, and a yacht sailing on water

We know that if the sum of the forces acting upon an object is non-zero, an
acceleration will be imparted in the direction of the force; but how much
acceleration? The answer is that the amount of acceleration, a, is propor-
tional to the object’s mass, m, and to the total force applied, F. This
relationship is given by the equation:

a== (1.93)

More commonly though, you will see this equation written as:
F = ma (1.949)

Using this equation, if we know how fast an object is accelerating and its
mass, we can calculate the total force acting upon it. For instance, if the
boat in Figure 1.33 has a mass of 2000 kg, and it is accelerating at a rate of
1.5 m/s?, the total force acting upon it is:

F_ =2000x1.5=3000 N

total

Also using the equations for force, acceleration, velocity, and position, if
we know how much force is acting on an object, we can determine the
acceleration due to that force and update the object’s position and velocity
accordingly. For example, let’s say you have a spaceship class with attrib-
utes for its mass, current velocity, and current position. Something like this:

40 I Chapter 1
Summing Up

class SpaceShip
{

private:
vector m_Position;
vector m Velocity;
float m fMass;

public:

b

Given the time interval since the last update and a force to be applied, we
can create a method that updates the ship’s position and velocity. Here’s
how:

void SpaceShip::Update(float TimeElapsedSincelLastUpdate, float ForceOnShip)
{

float acceleration = ForceOnShip / m_fMass;

First of all, calculate the acceleration due to the force using equation
(1.93).

m Velocity += acceleration * TimeElapsedSincelastUpdate;

Next, update the velocity from the acceleration using equation (1.80).
m vPosition += m Velocity * TimeElapsedSincelastUpdate;
}
Finally, the position can be updated with the updated velocity using equa-
tion (1.77).

This chapter covers a lot of ground. If much of this stuff is new to you,
you’ll be feeling slightly confused and perhaps a little intimidated. Don’t
worry though. Soldier on and, as you read through the book, you’ll see how
each principle is applied to a practical problem. When you see the theory
used in real-world contexts, you’ll find it a lot easier to understand.

A Math and Physics Primer I 41

Summing Up

Simplification of Equation (1.90)

Let me show you how that pesky-looking equation is simplified. Here it is
again in all its glory.

v—u 1 (v-uY
a 2 a

First, let’s work on the rightmost term. From the rule shown by equation
(1.29) we can change the equation to read:

szu(v_uj+la(v_u)z

a 2 a’

We can now tidy up the a’s a little:

Ax:u(v—u}r(v—u)2

a 2a

Let’s now dispose of the parentheses in the (v — u)* term using the rule
given by equation (1.28).

Ax:u(v u}rv +u”—2vu

a 2a

Let’s remove the other parentheses too.

2 2 2
uv—u Vv +u® —2vu
Ax = +

a 2a

Now to get rid of the fractional parts by multiplying every term by 2a:

2 2 2
2an=2a[w u J+2a(v +u 2vuJ
a 2a

2aAx =2uv —2u* +v: +u’ —2vu

Almost there now! We just need to group like terms together.
2aAx =Vv* —u’
And rearrange to give the final equation.

v =u’ 4+ 2aAx

This page intentionally left blank.

Chapter 2

State-Driven Agent Design

inite state machines, or FSMs as they are usually referred to, have for

many years been the Al coder’s instrument of choice to imbue a game
agent with the illusion of intelligence. You will find FSMs of one kind or
another in just about every game to hit the shelves since the early days of
video games, and despite the increasing popularity of more esoteric agent
architectures, they are going to be around for a long time to come. Here are
just some of the reasons why:

They are quick and simple to code. There are many ways of program-
ming a finite state machine and almost all of them are reasonably simple to
implement. You’ll see several alternatives described in this chapter together
with the pros and cons of using them.

They are easy to debug. Because a game agent’s behavior is broken
down into easily manageable chunks, if an agent starts acting strangely, it
can be debugged by adding tracer code to each state. In this way, the Al
programmer can easily follow the sequence of events that precedes the
buggy behavior and take action accordingly.

They have little computational overhead. Finite state machines use
hardly any precious processor time because they essentially follow hard-
coded rules. There is no real “thinking” involved beyond the if-this-then-
that sort of thought process.

They are intuitive. It’s human nature to think about things as being in
one state or another and we often refer to ourselves as being in such and
such a state. How many times have you “got yourself into a state” or found
yourself in “the right state of mind”? Humans don’t really work like finite
state machines of course, but sometimes we find it useful to think of our
behavior in this way. Similarly, it is fairly easy to break down a game
agent’s behavior into a number of states and to create the rules required for
manipulating them. For the same reason, finite state machines also make it
easy for you to discuss the design of your Al with non-programmers (with
game producers and level designers for example), providing improved
communication and exchange of ideas.

They are flexible. A game agent’s finite state machine can easily be
adjusted and tweaked by the programmer to provide the behavior required
by the game designer. It’s also a simple matter to expand the scope of an
agent’s behavior by adding new states and rules. In addition, as your Al

43

44 I Chapter 2

What Exactly Is a Finite State Machine?

skills grow you’ll find that finite state machines provide a solid backbone
with which you can combine other techniques such as fuzzy logic or neural
networks.

What Exactly Is a Finite State Machine?

Historically, a finite state machine is a rigidly formalized device used by
mathematicians to solve problems. The most famous finite state machine is
probably Alan Turing’s hypothetical device: the Turing machine, which he
wrote about in his 1936 paper, “On Computable Numbers.” This was a
machine presaging modern-day programmable computers that could per-
form any logical operation by reading, writing, and erasing symbols on an
infinitely long strip of tape. Fortunately, as Al programmers, we can forgo
the formal mathematical definition of a finite state machine; a descriptive
one will suffice:

A finite state machine is a device, or a model of a device, which has a
finite number of states it can be in at any given time and can operate on
input to either make transitions from one state to another or to cause an
output or action to take place. A finite state machine can only be in one
state at any moment in time.

The idea behind a finite state machine, therefore, is to decompose an
object’s behavior into easily manageable “chunks” or states. The light
switch on your wall, for example, is a very simple finite state machine. It
has two states: on and off. Transitions between states are made by the input
of your finger. By flicking the switch up it makes the transition from off to
on, and by flicking the switch down it makes the transition from on to off.
There is no output or action associated with the off state (unless you con-
sider the bulb being off as an action), but when it is in the on state
electricity is allowed to flow through the switch and light up your room via
the filament in a lightbulb. See Figure 2.1.

~
7/
E

=

m
e

7
(on) (off)
St ot N s

Lip switch u

w/'_l/

[
At

Figure 2.1. A light switch is a finite state machine. (Note that the switches are reversed
in Europe and many other parts of the world.)

State-Driven Agent Design I 45

Implementing a Finite State Machine

Of course, the behavior of a game agent is usually much more complex
than a lightbulb (thank goodness!). Here are some examples of how finite
state machines have been used in games.

B The ghosts’ behavior in Pac-Man is implemented as a finite state
machine. There is one Evade state, which is the same for all ghosts,
and then each ghost has its own Chase state, the actions of which are
implemented differently for each ghost. The input of the player eat-
ing one of the power pills is the condition for the transition from
Chase to Evade. The input of a timer running down is the condition
for the transition from Evade to Chase.

B Quake-style bots are implemented as finite state machines. They
have states such as FindArmor, FindHealth, SeekCover, and Run-
Away. Even the weapons in Quake implement their own mini finite
state machines. For example, a rocket may implement states such as
Move, TouchObject, and Die.

B Players in sports simulations such as the soccer game FIFA2002 are
implemented as state machines. They have states such as Strike,
Dribble, ChaseBall, and MarkPlayer. In addition, the teams them-
selves are often implemented as FSMs and can have states such as
KickOff, Defend, or WalkOutOnField.

B The NPCs (non-player characters) in RTSs (real-time strategy
games) such as Warcraft make use of finite state machines. They
have states such as MoveToPosition, Patrol, and FollowPath.

Implementing a Finite State Machine

There are a number of ways of implementing finite state machines. A naive
approach is to use a series of if-then statements or the slightly tidier mecha-
nism of a switch statement. Using a switch with an enumerated type to
represent the states looks something like this:

enum StateType{RunAway, Patrol, Attack};

void Agent::UpdateState(StateType CurrentState)

{
switch(CurrentState)

{

case state RunAway:
EvadeEnemy () ;
if (Safe())

{
ChangeState(state Patrol);

}

break;

46 I Chapter 2

Implementing a Finite State Machine

case state Patrol:
FollowPatrolPath();

if (Threatened())

{
if (StrongerThanEnemy())

{
ChangeState(state Attack);

}

else

{
ChangeState(state RunAway);

}
}

break;
case state Attack:

if (WeakerThanEnemy())

{
ChangeState(state RunAway);

}

else

{
BashEnemyOverHead() ;

}

break;

}//end switch

}
Although at first glance this approach seems reasonable, when applied
practically to anything more complicated than the simplest of game
objects, the switch/if-then solution becomes a monster lurking in the shad-
ows waiting to pounce. As more states and conditions are added, this sort
of structure ends up looking like spaghetti very quickly, making the pro-
gram flow difficult to understand and creating a debugging nightmare. In
addition, it’s inflexible and difficult to extend beyond the scope of its origi-
nal design, should that be desirable... and as we all know, it most often is.
Unless you are designing a state machine to implement very simple behav-
ior (or you are a genius), you will almost certainly find yourself first
tweaking the agent to cope with unplanned-for circumstances before hon-
ing the behavior to get the results you thought you were going to get when
you first planned out the state machine!

Additionally, as an Al coder, you will often require that a state perform a
specific action (or actions) when it’s initially entered or when the state is
exited. For example, when an agent enters the state RunAway you may

State-Driven Agent Design I 47

Implementing a Finite State Machine

want it to wave its arms in the air and scream “Arghhhhhhh!” When it
finally escapes and changes state to Patrol, you may want it to emit a sigh,
wipe its forehead, and say “Phew!” These are actions that only occur when
the RunAway state is entered or exited and not during the usual update
step. Consequently, this additional functionality must ideally be built into
your state machine architecture. To do this within the framework of a
switch or if-then architecture would be accompanied by lots of teeth grind-
ing and waves of nausea, and produce very ugly code indeed.

State Transition Tables

A better mechanism for organizing states and affecting state transitions is a
state transition table. This is just what it says it is: a table of conditions and
the states those conditions lead to. Table 2.1 shows an example of the map-
ping for the states and conditions shown in the previous example.

Table 2.1. A simple state transition table

Current State Condition State Transition
Runaway Safe Patrol

Attack WeakerThanEnemy RunAway

Patrol Threatened AND StrongerThanEnemy Attack

Patrol Threatened AND WeakerThanEnemy RunAway

This table can be queried by an agent at regular intervals, enabling it to
make any necessary state transitions based on the stimulus it receives from
the game environment. Each state can be modeled as a separate object or
function existing external to the agent, providing a clean and flexible archi-
tecture. One that is much less prone to spaghettification than the
if-then/switch approach discussed in the previous section.

Someone once told me a vivid and silly visualization can help people to
understand an abstract concept. Let’s see if it works...

Imagine a robot kitten. It’s shiny yet cute, and has wire for whiskers and
a slot in its stomach where cartridges — analogous to its states — can be
plugged in. Each of these cartridges is programmed with logic, enabling
the kitten to perform a specific set of actions. Each set of actions encodes a
different behavior; for example, “play with string,” “eat fish,” or “poo on
carpet.” Without a cartridge stuffed inside its belly the kitten is an inani-
mate metallic sculpture, only able to sit there and look cute... in a Metal
Mickey kind of way.

The kitten is very dexterous and has the ability to autonomously
exchange its cartridge for another if instructed to do so. By providing the
rules that dictate when a cartridge should be switched, it’s possible to string
together sequences of cartridge insertions permitting the creation of all

48 I Chapter 2

Implementing a Finite State Machine

sorts of interesting and complicated behavior. These rules are programmed
onto a tiny chip situated inside the kitten’s head, which is analogous to the
state transition table we discussed earlier. The chip communicates with the
kitten’s internal functions to retrieve the information necessary to process
the rules (such as how hungry Kitty is or how playful it’s feeling).

As a result, the state transition chip can be programmed with rules like:

IF Kitty Hungry AND NOT Kitty Playful
SWITCH_CARTRIDGE eat_fish

All the rules in the table are tested each time step and instructions are sent
to Kitty to switch cartridges accordingly.

This type of architecture is very flexible, making it easy to expand the
kitten’s repertoire by adding new cartridges. Each time a new cartridge is
added, the owner is only required to take a screwdriver to the kitten’s head
in order to remove and reprogram the state transition rule chip. It is not
necessary to interfere with any other internal circuitry.

Embedded Rules

An alternative approach is to embed the rules for the state transitions
within the states themselves. Applying this concept to Robo-Kitty, the state
transition chip can be dispensed with and the rules moved directly into the
cartridges. For instance, the cartridge for “play with string” can monitor
the kitty’s level of hunger and instruct it to switch cartridges for the “eat
fish” cartridge when it senses hunger rising. In turn the “eat fish” cartridge
can monitor the kitten’s bowel and instruct it to switch to the “poo on car-
pet” cartridge when it senses poo levels are running dangerously high.

Although each cartridge may be aware of the existence of any of the
other cartridges, each is a self-contained unit and not reliant on any exter-
nal logic to decide whether or not it should allow itself to be swapped for
an alternative. As a consequence, it’s a straightforward matter to add states
or even to swap the whole set of cartridges for a completely new set
(maybe ones that make little Kitty behave like a raptor). There’s no need to
take a screwdriver to the kitten’s head, only to a few of the cartridges
themselves.

Let’s take a look at how this approach is implemented within the context
of a video game. Just like Kitty’s cartridges, states are encapsulated as
objects and contain the logic required to facilitate state transitions. In addi-
tion, all state objects share a common interface: a pure virtual class named
State. Here’s a version that provides a simple interface:

class State

{
public:

State-Driven Agent Design I 49

Implementing a Finite State Machine

virtual void Execute (Troll* troll) = 0;
b
Now imagine a Trol11 class that has member variables for attributes such as
health, anger, stamina, etc., and an interface allowing a client to query and
adjust those values. A Trol1 can be given the functionality of a finite state
machine by adding a pointer to an instance of a derived object of the State
class, and a method permitting a client to change the instance the pointer is
pointing to.
class Troll

{
/* ATTRIBUTES OMITTED */

State* m_pCurrentState;
public:
/* INTERFACE TO ATTRIBUTES OMITTED */

void Update()
{
m_pCurrentState->Execute(this);

}

void ChangeState(const State* pNewState)
{
delete m pCurrentState;
m_pCurrentState = pNewState;
}
b
When the Update method of a Tro11 is called, it in turn calls the Execute
method of the current state type with the this pointer. The current state
may then use the Tro11 interface to query its owner, to adjust its owner’s
attributes, or to effect a state transition. In other words, how a Tro11
behaves when updated can be made completely dependent on the logic in
its current state. This is best illustrated with an example, so let’s create a
couple of states to enable a troll to run away from enemies when it feels
threatened and to sleep when it feels safe.
[=== mm e State RunAway

class State RunAway : public State

{
public:

void Execute(Trol1* troll)
{
if (troll->isSafe())
{
trol1->ChangeState(new State Sleep());
}

50 I Chapter 2
The West World Project

else

{

trol1->MoveAwayFromEnemy () ;

[=== mm e State Sleep
class State Sleep : public State

{
public:

void Execute(Troll* troll)
{
if (troll->isThreatened())
{
trol1->ChangeState(new State RunAway())
}

else

{

trol1->Snore();
}
}
b
As you can see, when updated, a troll will behave differently depending on
which of the states m_pCurrentState points to. Both states are encapsulated
as objects and both provide the rules effecting state transition. All very neat
and tidy.

This architecture is known as the state design pattern and provides an
elegant way of implementing state-driven behavior. Although this is a
departure from the mathematical formalization of an FSM, it is intuitive,
simple to code, and easily extensible. It also makes it extremely easy to add
enter and exit actions to each state; all you have to do is create Enter and
Exit methods and adjust the agent’s ChangeState method accordingly.
You’ll see the code that does exactly this very shortly.

The West World Project

As a practical example of how to create agents that utilize finite state
machines, we are going to look at a game environment where agents
inhabit an Old West-style gold mining town named West World. Initially
there will only be one inhabitant — a gold miner named Miner Bob — but
later in the chapter his wife will also make an appearance. You will have to
imagine the tumbleweeds, creakin’ mine props, and desert dust blowin’ in
your eyes because West World is implemented as a simple text-based con-
sole application. Any state changes or output from state actions will be sent
as text to the console window. I’m using this plaintext-only approach as it

State-Driven Agent Design I 51

The West World Project

demonstrates clearly the mechanism of a finite state machine without add-
ing the code clutter of a more complex environment.

There are four locations in West World: a gold mine, a bank where Bob
can deposit any nuggets he finds, a saloon in which he can quench his
thirst, and home-sweet-home where he can sleep the fatigue of the day
away. Exactly where he goes, and what he does when he gets there, is
determined by Bob’s current state. He will change states depending on
variables like thirst, fatigue, and how much gold he has found hacking
away down in the gold mine.

Before we delve into the source code, check out the following sample
output from the WestWorld1 executable.

Miner
Miner
Miner
Miner
Miner
Miner
Miner
Miner
Miner
Miner
Miner
Miner
Miner
Miner
Miner
Miner
Miner
Miner
Miner
Miner
Miner
Miner
Miner
Miner
Miner
Miner
Miner
Miner
Miner
Miner
Miner
Miner
Miner
Miner
Miner
Miner
Miner
Miner
Miner

Bob:
Bob:
Bob:
Bob:
Bob:
Bob:
Bob:
Bob:
Bob:
Bob:
Bob:
Bob:
Bob:
Bob:
Bob:
Bob:
Bob:
Bob:
Bob:
Bob:
Bob:
Bob:
Bob:
Bob:
Bob:
Bob:
Bob:
Bob:
Bob:
Bob:
Bob:
Bob:
Bob:
Bob:
Bob:
Bob:
Bob:
Bob:
Bob:

Pickin' up a nugget

Pickin' up a nugget

Ah'm leavin' the gold mine with mah pockets full o' sweet gold
Goin' to the bank. Yes siree

Depositin' gold. Total savings now: 3

Leavin' the bank

Walkin' to the gold mine

Pickin' up a nugget

Ah'm leavin' the gold mine with mah pockets full o' sweet gold
Boy, ah sure is thusty! Walkin' to the saloon

That's mighty fine sippin liquor

Leavin' the saloon, feelin' good

Walkin' to the gold mine

Pickin' up a nugget

Pickin' up a nugget

Ah'm leavin' the gold mine with mah pockets full o' sweet gold
Goin' to the bank. Yes siree

Depositin' gold. Total savings now: 4

Leavin' the bank

Walkin' to the gold mine

Pickin' up a nugget

Pickin' up a nugget

Ah'm leavin' the gold mine with mah pockets full o' sweet gold
Boy, ah sure is thusty! Walkin' to the saloon

That's mighty fine sippin' Tiquor

Leavin' the saloon, feelin' good

Walkin' to the gold mine

Pickin' up a nugget

Ah'm leavin' the gold mine with mah pockets full o' sweet gold
Goin' to the bank. Yes siree

Depositin' gold. Total savings now: 5

Woohoo! Rich enough for now. Back home to mah 1i'l Tady
Leavin' the bank

Walkin' home

1771...

7771...

77717...

1771...

What a God-darn fantastic nap! Time to find more gold

52

I Chapter 2

The West World Project

In the output from the program, each time you see Miner Bob change loca-
tion he is changing state. All the other events are the actions that take place
within the states. We’ll examine each of Miner Bob’s potential states in just
a moment, but for now, let me explain a little about the code structure of
the demo.

The BaseGameEntity Class

All inhabitants of West World are derived from the base class
BaseGameEntity. This is a simple class with a private member for storing an
ID number. It also specifies a pure virtual member function, Update, that
must be implemented by all subclasses. Update is a function that gets called
every update step and will be used by subclasses to update their state
machine along with any other data that must be updated each time step.
The BaseGameEntity class declaration looks like this:
class BaseGameEntity

{

private:

//every entity has a unique identifying number
int m_ID;

//this is the next valid ID. Each time a BaseGameEntity is instantiated
//this value is updated
static int m_iNextValidID;

//this is called within the constructor to make sure the ID is set
//correctly. It verifies that the value passed to the method is greater
//or equal to the next valid ID, before setting the ID and incrementing
//the next valid ID

void SetID(int val);

public:

BaseGameEntity(int id)

{
SetID(id);

}

virtual ~BaseGameEntity(){}

//all entities must implement an update function
virtual void Update()=0;

int ID()const{return m_ID;}
bs
For reasons that will become obvious later in the chapter, it’s very impor-
tant for each entity in your game to have a unique identifier. Therefore, on
instantiation, the ID passed to the constructor is tested in the SetID method
to make sure it’s unique. If it is not, the program will exit with an assertion

State-Driven Agent Design I 53
The West World Project

failure. In the example given in this chapter, the entities will use an enu-
merated value as their unique identifier. These can be found in the file
EntityNames.h as ent_Miner Bob and ent_Elsa.

The Miner Class

The Miner class is derived from the BaseGameEntity class and contains data
members representing the various attributes a Miner possesses, such as its
health, its level of fatigue, its position, and so forth. Like the troll example
shown earlier in the chapter, a Miner owns a pointer to an instance of a
State class in addition to a method for changing what State that pointer
points to.

class Miner : public BaseGameEntity

{

private:

//a pointer to an instance of a State
State* m_pCurrentState;

// the place where the miner is currently situated
location_type m_Location;

//how many nuggets the miner has in his pockets
int m_iGoldCarried;

//how much money the miner has deposited in the bank
int m_iMoneyInBank;

//the higher the value, the thirstier the miner
int m_iThirst;

//the higher the value, the more tired the miner
int m_iFatigue;

public:
Miner(int ID);

//this must be implemented
void Update();

//this method changes the current state to the new state
void ChangeState(State* pNewState);

/* bulk of interface omitted */
b
The Miner: :Update method is straightforward; it simply increments the
m_iThirst value before calling the Execute method of the current state. It
looks like this:

54 I Chapter 2
The West World Project

void Miner: :Update()
{

m_iThirst += 1;

if (m_pCurrentState)
{

m_pCurrentState->Execute(this);
}
}
Now that you’ve seen how the Miner class operates, let’s take a look at
each of the states a miner can find itself in.

The Miner States

The gold miner will be able to enter one of four states. Here are the names
of those states followed by a description of the actions and state transitions
that occur within those states:

B EnterMineAndDigForNugget: If the miner is not located at the
gold mine, he changes location. If already at the gold mine, he digs
for nuggets of gold. When his pockets are full, Bob changes state to
VisitBankAndDepositGold, and if while digging he finds himself
thirsty, he will stop and change state to QuenchThirst.

B VisitBankAndDepositGold: In this state the miner will walk to the
bank and deposit any nuggets he is carrying. If he then considers
himself wealthy enough, he will change state to GoHomeAnd-
SleepTilRested. Otherwise he will change state to EnterMine-
AndDigForNugget.

B GoHomeAndSleepTilRested: In this state the miner will return to
his shack and sleep until his fatigue level drops below an acceptable
level. He will then change state to EnterMineAndDigForNugget.

B QuenchThirst: If at any time the miner feels thirsty (diggin’ for
gold is thusty work, don’t ya know), he changes to this state and vis-
its the saloon in order to buy a whiskey. When his thirst is quenched,
he changes state to EnterMineAndDigForNugget.

Sometimes it’s hard to follow the flow of the state logic from reading a text
description like this, so it’s often helpful to pick up pen and paper and draw
a state transition diagram for your game agents. Figure 2.2 shows the state
transition diagram for the gold miner. The bubbles represent the individual
states and the lines between them the available transitions.

A diagram like this is better on the eyes and can make it much easier to
spot any errors in the logic flow.

State-Driven Agent Design I 55
The West World Project

EnterMineAndDigForNugget

-
S

'
=

y thirsty
Qe_u

QuenchThirst

Rested

GoHomeAndSleepTilRested

Figure 2.2. Miner Bob's state transition diagram

The State Design Pattern Revisited

You saw a brief description of this design pattern a few pages back, but it
won’t hurt to recap. Each of a game agent’s states is implemented as a
unique class and each agent holds a pointer to an instance of its current
state. An agent also implements a ChangeState member function that can be
called to facilitate the switching of states whenever a state transition is
required. The logic for determining any state transitions is contained within
each State class. All state classes are derived from an abstract base class,
thereby defining a common interface. So far so good. You know this much
already.

Earlier in the chapter it was mentioned that it’s usually favorable for
each state to have associated enter and exit actions. This permits the pro-
grammer to write logic that is only executed once at state entry or exit and
increases the flexibility of an FSM a great deal. With these features in
mind, let’s take a look at an enhanced State base class.

class State

{
public:
virtual ~State(){}

//this will execute when the state is entered
virtual void Enter(Miner*)=0;

//this is called by the miner's update function each update step
virtual void Execute(Miner*)=0;

//this will execute when the state is exited
virtual void Exit(Miner*)=0;

56 I Chapter 2
The West World Project

These additional methods are only called when a Miner changes state.
When a state transition occurs, the Miner: :ChangeState method first calls
the Exit method of the current state, then it assigns the new state to the cur-
rent state, and finishes by calling the Enter method of the new state (which
is now the current state). I think code is clearer than words in this instance,
so here’s the listing for the ChangeState method:

void Miner::ChangeState(State* pNewState)
{

//make sure both states are valid before attempting to
//call their methods
assert (m pCurrentState && pNewState);

//call the exit method of the existing state
m_pCurrentState->Exit(this);

//change state to the new state
m_pCurrentState = pNewState;

//call the entry method of the new state

m_pCurrentState->Enter(this);
}
Notice how a Miner passes the this pointer to each state, enabling the state
to use the Miner interface to access any relevant data.

3:@ TIP The state design pattern is also useful for structuring the main components
of your game flow. For example, you could have a menu state, a save state, a
paused state, an options state, a run state, etc.
Each of the four possible states a Miner may access are derived from the
State class, giving us these concrete classes: EnterMineAndDigForNugget,
VisitBankAndDepositGold, GoHomeAndSleepTilRested, and QuenchThirst.
The Miner::m_pCurrentState pointer is able to point to any of these states.
When the Update method of Miner is called, it in turn calls the Execute
method of the currently active state with the this pointer as a parameter.
These class relationships may be easier to understand if you examine the
simplified UML class diagram shown in Figure 2.3.

Each concrete state is implemented as a singleton object. This is to
ensure that there is only one instance of each state, which agents share
(those of you unsure of what a singleton is, please read the sidebar on page
58). Using singletons makes the design more efficient because they remove
the need to allocate and deallocate memory every time a state change is
made. This is particularly important if you have many agents sharing a
complex FSM and/or you are developing for a machine with limited
resources.

The West World Project

BaseGameEntity

State-Driven Agent Design I 57

Miner

Update() - void

Update() : void -
ChangeState(State” pNewState) : void

Thirst +=1;

CurrentState->Exacute(this)

B)EISILUBIIND

CurrentState-=Exit{this);
CurrentState = pNewState;

CurrentState-=Enter(this);

7
&
&

Enter{Miner*) : void;
Execute{Miner®) : void
Exit{Miner*) : void

i

EnterMineAndDigForMNugget

VisitBankAndDepositGold

GoHomeAndSleepTilRested

QuenchThirst

Enter{iiner*) : void
Execute(Miner*} : void
Exit{Miner*} : void
Instance():this

EnteriMinar~) : void
Executa{Miner®) : void
Exit(Miner™) : void
Instance(:this

Enter{Miner*} : void
Execute(Miner*) : void
Exit{Miner*) : void
Instance():this

EnteriMiner) : void
Execute(Miner™) : void
Exit{Miner*) : void
Instance(}:this

Figure 2.3. UML class diagram for Miner Bob’s state machine implementation

< NOTE

| prefer to use singletons for the states for the reasons I've already

given, but there is one drawback. Because they are shared between clients, sin-
gleton states are unable to make use of their own local, agent-specific data. For
instance, if an agent uses a state that when entered should move it to an arbi-
trary position, the position cannot be stored in the state itself (because the
position may be different for each agent that is using the state). Instead, it
would have to be stored somewhere externally and be accessed by the state via
the agent’s interface. This is not really a problem if your states are accessing
only one or two pieces of data, but if you find that the states you have designed
are repeatedly accessing lots of external data, it’s probably worth considering
disposing of the singleton design and writing a few lines of code to manage the
allocation and deallocation of state memory.

Chapter 2
The West World Project

The Singleton Design Pattern

Often it's useful to guarantee that an object is only instantiated once
and/or that it is globally accessible. For example, in game designs that
have environments consisting of many different entity types — players,
monsters, projectiles, plant pots, etc. — there is usually a “manager”
object that handles the creation, deletion, and management of such
objects. It is only necessary to have one instance of this object — a sin-
gleton — and it is convenient to make it globally accessible because
many other objects will require access to it.

The singleton pattern ensures both these qualities. There are many
ways of implementing a singleton (do a search at google.com and you'll
see what | mean). | prefer to use a static method, Instance, that returns
a pointer to a static instance of the class. Here’s an example:

J* mmmmmmm e MyClass.h -==-==-—=mmommemmn */

#ifndef MY_SINGLETON
#define MY_SINGLETON

class MyClass

{

private:

// member data
int m_iNum;

//constructor is private
MyClass(){}

//copy ctor and assignment should be private
MyClass(const MyClass &);
MyClass& operator=(const MyClass &);

pubTic:

//strictly speaking, the destructor of a singleton should be private but some
//compilers have problems with this so I've left them as public in all the
//examples in this book

~MyClass();

//methods
int GetVal()const{return m_iNum;}

State-Driven Agent Design I 59
The West World Project

static MyClass* Instance();

}s

#endif

//this must reside in the cpp file; otherwise, an instance will be created
//for every file in which the header is included

MyClass* MyClass::Instance()

{

static MyClass instance;

return &instance;

}

Member variables and methods can now be accessed via the Instance
method like so:

int num = MyClass::Instance()->GetVal();

Because I'm lazy and don't like writing out all that syntax each time |
want to access a singleton, | usually #define something like this:

#define MyCls MyClass::Instance()
Using this new syntax | can simply write:

int num = MyCls->GetVal();
Much easier, don’t you think?

3 NOTE If singletons are a new concept to you, and you decide to
search the Internet for further information, you will discover they fuel
many a good argument about the design of object-oriented software.
Oh yes, programmers love to argue about this stuff, and nothing
stokes a dispute better than the discussion of global variables or
objects that masquerade as globals, such as singletons. My own stance
on the matter is to use them wherever | think they provide a conve-
nience and, in my opinion, do not compromise the design. |
recommend you read the arguments for and against though, and
come to your own conclusions. A good starting place is here:

http://c2.com/cgi/wiki2SingletonPattern

60 I Chapter 2
The West World Project

Okay, let’s see how everything fits together by examining the complete
code for one of the miner states.

The EnterMineAndDigForNugget State

In this state the miner should change location to be at the gold mine.
Once at the gold mine he should dig for gold until his pockets are full,
when he should change state to VisitBankAndDepositNugget. If the
miner gets thirsty while digging he should change state to
QuenchThirst.

Because concrete states simply implement the interface defined in the vir-
tual base class State, their declarations are very straightforward:

class EnterMineAndDigForNugget : public State
{

private:

EnterMineAndDigForNugget () {}

/* copy ctor and assignment op omitted */
public:

//this is a singleton
static EnterMineAndDigForNugget* Instance();

virtual void Enter(Miner* pMiner);
virtual void Execute(Miner* pMiner);

virtual void Exit(Miner* pMiner);
b
As you can see, it’s just a formality. Let’s take a look at each of the meth-
ods in turn.

EnterMineAndDigForNugget::Enter

The code for the Enter method of EnterMineAndDigForNugget is as follows:

void EnterMineAndDigForNugget::Enter(Miner* pMiner)
{
//if the miner is not already located at the gold mine, he must
//change location to the gold mine
if (pMiner->Location() != goldmine)
{
cout << "\n" << GetNameOfEntity(pMiner->ID()) << ": "
<< "Walkin' to the gold mine";

pMiner->ChangelLocation(goldmine);
}
}
This method is called when a miner first enters the EnterMineAndDig-
ForNugget state. It ensures that the gold miner is located at the gold mine.

State-Driven Agent Design I 61
The West World Project

An agent stores its location as an enumerated type and the ChangeLocation
method changes this value to switch locations.

EnterMineAndDigForNugget::Execute

The Execute method is a little more complicated and contains logic that can
change a miner’s state. (Don’t forget that Execute is the method called each
update step from Miner: :Update.)
void EnterMineAndDigForNugget: :Execute(Miner* pMiner)
{

//the miner digs for gold until he is carrying in excess of MaxNuggets.

//1f he gets thirsty during his digging he stops work and

//changes state to go to the saloon for a whiskey.

pMiner->AddToGoldCarried(1);

//diggin' is hard work
pMiner->IncreaseFatigue();

cout << "\n" << GetNameOfEntity(pMiner->ID()) << ": "
<< "Pickin' up a nugget";

//if enough gold mined, go and put it in the bank
if (pMiner->PocketsFull())
{
pMiner->ChangeState (VisitBankAndDepositGold: : Instance());
}

//if thirsty go and get a whiskey

if (pMiner->Thirsty())

{

pMiner->ChangeState (QuenchThirst::Instance());

}
}
Note here how the Miner: :ChangeState method is called using
QuenchThirst’s or VisitBankAndDepositGold’s Instance member, which
provides a pointer to the unique instance of that class.

EnterMineAndDigForNugget::Exit

The Exit method of EnterMineAndDigForNugget outputs a message telling us
that the gold miner is leaving the mine.

void EnterMineAndDigForNugget::Exit(Miner* pMiner)
{
cout << "\n" << GetNameOfEntity(pMiner->ID()) << ": "
<< "Ah'm leavin' the gold mine with mah pockets full o' sweet gold";

}

I hope an examination of the preceding three methods helps clear up any
confusion you may have been experiencing and that you can now see how
each state is able to modify the behavior of an agent or effect a transition
into another state. You may find it useful at this stage to load up the
WestWorld1 project into your IDE and scan the code. In particular, check

62

I Chapter 2

Making the State Base Class Reusable

out all the states in MinerOwnedStates.cpp and examine the Miner class to
familiarize yourself with its member variables. Above all else, make sure
you understand how the state design pattern works before you read any fur-
ther. If you are a little unsure, please take the time to go over the previous
few pages until you feel comfortable with the concept.

You have seen how the use of the state design pattern provides a very
flexible mechanism for state-driven agents. It’s extremely easy to add addi-
tional states as and when required. Indeed, should you so wish, you can
switch an agent’s entire state architecture for an alternative one. This can
be useful if you have a very complicated design that would be better orga-
nized as a collection of several separate smaller state machines. For
example, the state machine for a first-person shooter (FPS) like Unreal 2
tends to be large and complex. When designing the Al for a game of this
sort you may find it preferable to think in terms of several smaller state
machines representing functionality like “defend the flag” or “explore
map,” which can be switched in and out when appropriate. The state design
pattern makes this easy to do.

Making the State Base Class Reusable

As the design stands, it’s necessary to create a separate State base class for
each character type to derive its states from. Instead, let’s make it reusable
by turning it into a class template.

template <class entity type>
class State

{
public:

virtual void Enter(entity type*)=0;
virtual void Execute(entity type*)=0;
virtual void Exit(entity type*)=0;

virtual ~State(){}
b
The declaration for a concrete state — using the EnterMineAndDigFor-
Nugget miner state as an example — now looks like this:
class EnterMineAndDigForNugget : public State<Miner>
{

public:

/* OMITTED */
hg

This, as you will see shortly, makes life easier in the long run.

State-Driven Agent Design I 63
Global States and State Blips

Global States and State Blips

More often than not, when designing finite state machines you will end up
with code that is duplicated in every state. For example, in the popular
game The Sims by Maxis, a Sim may feel the urge of nature come upon it
and have to visit the bathroom to relieve itself. This urge may occur in any
state the Sim may be in and at any time. Given the current design, to
bestow the gold miner with this type of behavior, duplicate conditional
logic would have to be added to every one of his states, or alternatively,
placed into the Miner: :Update function. While the latter solution is accept-
able, it’s better to create a global state that is called every time the FSM is
updated. That way, all the logic for the FSM is contained within the states
and not in the agent class that owns the FSM.

To implement a global state, an additional member variable is required:
//notice how now that State is a class template we have to declare the entity type
State<Miner>* m pGlobalState;

In addition to global behavior, occasionally it will be convenient for an
agent to enter a state with the condition that when the state is exited, the
agent returns to its previous state. I call this behavior a state blip. For
example, just as in The Sims, you may insist that your agent can visit the
bathroom at any time, yet make sure it always returns to its prior state. To
give an FSM this type of functionality it must keep a record of the previous
state so the state blip can revert to it. This is easy to do as all that is
required is another member variable and some additional logic in the
Miner::ChangeState method.

By now though, to implement these additions, the Miner class has
acquired two extra member variables and one additional method. It has
ended up looking something like this (extraneous detail omitted):
class Miner : public BaseGameEntity

{

private:
State<Miner>* m pCurrentState;

State<Miner>* m pPreviousState;
State<Miner>* m pGlobalState;

public:

void ChangeState(State<Miner>* pNewState);
void RevertToPreviousState();

};...
Hmm, looks like it’s time to tidy up a little.

64 I Chapter 2

Creating a State Machine Class

Creating a State Machine Class

The design can be made a lot cleaner by encapsulating all the state related
data and methods into a state machine class. This way an agent can own an
instance of a state machine and delegate the management of current states,
global states, and previous states to it.

With this in mind take a look at the following StateMachine class
template.

template <class entity type>
class StateMachine
{

private:

//a pointer to the agent that owns this instance
entity type* m_pOwner;

State<entity type>* m pCurrentState;

//a record of the last state the agent was in
State<entity type>* m pPreviousState;

//this state logic is called every time the FSM is updated
State<entity type>* m pGlobalState;

public:

StateMachine(entity type* owner):m _pOwner(owner),
m_pCurrentState(NULL),
m _pPreviousState(NULL),
m_pGlobalState(NULL)

{}

//use these methods to initialize the FSM

void SetCurrentState(State<entity type>* s){m pCurrentState = s;}
void SetGlobalState(State<entity type>* s) {m pGlobalState = s;}
void SetPreviousState(State<entity type>* s){m pPreviousState = s;}

//call this to update the FSM
void Update()const
{
//if a global state exists, call its execute method
if (m_pGlobalState) m pGlobalState->Execute(m_pOwner);

//same for the current state
if (m_pCurrentState) m pCurrentState->Execute(m_pOwner);

}

//change to a new state
void ChangeState(State<entity type>* pNewState)
{
assert (pNewState &&
"<StateMachine::ChangeState>: trying to change to a null state");

State-Driven Agent Design I 65

Creating a State Machine Class

//keep a record of the previous state
m_pPreviousState = m pCurrentState;

//call the exit method of the existing state
m_pCurrentState->Exit(m_pOwner) ;

//change state to the new state
m_pCurrentState = pNewState;

//call the entry method of the new state
m_pCurrentState->Enter(m pOwner);

}

//change state back to the previous state
void RevertToPreviousState()
{
ChangeState(m pPreviousState);
}

//accessors

State<entity type>* CurrentState() const{return m pCurrentState;}
State<entity type>* GlobalState() const{return m pGlobalState;}
State<entity type>* PreviousState() const{return m pPreviousState;}

//returns true if the current state's type is equal to the type of the
//class passed as a parameter.
bool isInState(const State<entity type>& st)const;

bs

Now all an agent has to do is to own an instance of a StateMachine and
implement a method to update the state machine to get full FSM
functionality.

66 I Chapter 2

Creating a State Machine Class

The improved Miner class now looks like this:

class Miner : public BaseGameEntity

{

private:

//an instance of the state machine class
StateMachine<Miner>* m pStateMachine;

/* EXTRANEOUS DETAIL OMITTED */
public:

Miner(int id):m Location(shack),
m_iGoldCarried(0),
m_iMoneyInBank(0),
m iThirst(0),
m_iFatigue(0),
BaseGameEntity(id)

{
//set up state machine
m pStateMachine = new StateMachine<Miner>(this);

m_pStateMachine->SetCurrentState(GoHomeAndST1eepTilRested: : Instance());
m_pStateMachine->SetGlobalState(MinerGlobalState::Instance());
}

~Miner() {delete m pStateMachine;}

void Update()
{
++m_iThirst;
m_pStateMachine->Update();
}

StateMachine<Miner>* GetFSM()const{return m pStateMachine;}

/* EXTRANEOUS DETAIL OMITTED */
bs
Notice how the current and global states must be set explicitly when a
StateMachine is instantiated.
The class hierarchy is now like that shown in Figure 2.4.

State-Driven Agent Design I 67

Introducing Elsa

Miner

BaseGameEntity

Update{) :void ~ ====== | -~ Thirst +=1;

Update() : void GelFSM() : StateMachine<Miner="

StateMachine->Update()

Owner

suIEEIEIS

StateMachine<Miner>

SetGlobalState(State<Miner=") : void GlobalState->Execute(Owner)

CurrentState-=Execute{Owner)

Update() : void

ChangeState{State<Miner=*) : void
Rever{ToPreviousState() : void

-

g %’ ©

o o

g 2 |2

W 7] 7]

=1 & o

R L L) MinerGlobalState

State<Miner>
Enter{Minar”) : void
Entar{Miner®) : void l<}——— Execule{Miner®) : void

............ Execute(Miner®) : void Exit(Minar*) : void
=<parameter=> | ExitiMinert) - void Instance() : this

T
|

VisitBankAndDepositGold

EnterMineAndDigForNugget GoHomeAndSleepTilRested QuenchThirst

Enter{Miner*} : void
Execute(Miner*) : void
Exit{Miner*) : void
Instance() : this

Enter{Miner*) : void
Execute(Miner*) : void
Exit{Miner*) : void
Instance() : this

Enter{Miner*) : void
Execute{Miner*) : void
ExitiMiner*} : void
Instance() : this

Enter{Miner) : void
Execute(Miner*) : void
Exit{Miner*} : void
Instancel) : this

Figure 2.4. The updated design

Introducing Elsa

To demonstrate these improvements, I’ve created the second project for
this chapter: WestWorldWithWoman. In this project, West World has
gained another inhabitant, Elsa, the gold miner’s wife. Elsa doesn’t do
much just yet; she’s mainly preoccupied with cleaning the shack and emp-
tying her bladder (she drinks way too much cawfee). The state transition
diagram for Elsa is shown in Figure 2.5.

68 I Chapter 2

Introducing Elsa

VisitBathroom &ex

x'\(\ 10 Cf]af]Ck?

DoHousework

Figure 2.5. Elsd’s state transition diagram. The global state is not shown in the figure
because its logic is effectively implemented in any state and never changed.

When you boot up the project into your IDE, notice how the VisitBathroom
state is implemented as a blip state (i.e., it always reverts back to the previ-
ous state). Also note that a global state has been defined, WifesGlobalState,
which contains the logic required for Elsa’s bathroom visits. This logic is
contained in a global state because Elsa may feel the call of nature during
any state and at any time.

Here is a sample of the output from WestWorldWithWoman. Elsa’s
actions are shown italicized.

Miner Bob: Pickin' up a nugget

Miner Bob: Ah'm leavin' the gold mine with mah pockets full o' sweet gold
Miner Bob: Goin' to the bank. Yes siree

Elsa: Walkin' to the can. Need to powda mah pretty li'l nose

Elsa: Ahhhhhh! Sweet relief!

Elsa: Leavin' the john

Miner Bob: Depositin' gold. Total savings now: 4

Miner Bob: Leavin' the bank

Miner Bob: Walkin' to the gold mine

Elsa: Walkin' to the can. Need to powda mah pretty li'l nose

Elsa: Ahhhhhh! Sweet relief!

Elsa: Leavin' the john

Miner Bob: Pickin' up a nugget

Elsa: Moppin' the floor

Miner Bob: Pickin' up a nugget

Miner Bob: Ah'm leavin' the gold mine with mah pockets full o' sweet gold
Miner Bob: Boy, ah sure is thusty! Walkin' to the saloon

Elsa: Moppin' the floor

Miner Bob: That's mighty fine sippin' Tiquor

Miner Bob: Leavin' the saloon, feelin' good

Miner Bob: Walkin' to the gold mine

Elsa: Makin' the bed

Miner Bob: Pickin' up a nugget

Miner Bob: Ah'm leavin' the gold mine with mah pockets full o' sweet gold
Miner Bob: Goin' to the bank. Yes siree

State-Driven Agent Design
Adding Messaging Capabilities to Your FSM

Elsa: Walkin' to the can. Need to powda mah pretty li'l nose
Elsa: Ahhhhhh! Sweet relief!

Elsa: Leavin' the john

Miner Bob: Depositin' gold. Total savings now: 5

Miner Bob: Woohoo! Rich enough for now. Back home to mah 1i'l Tlady
Miner Bob: Leavin' the bank

Miner Bob: Walkin' home

Elsa: Walkin' to the can. Need to powda mah pretty li'l nose
Elsa: Ahhhhhh! Sweet relief!

Elsa: Leavin' the john

Miner Bob: ZZZZ...

Adding Messaging Capabilities to Your FSM

Well-designed games tend to be event driven. That is to say, when an

event

occurs — a weapon is fired, a lever is pulled, an alarm tripped, etc. — the
event is broadcast to the relevant objects in the game so that they may
respond appropriately. These events are typically sent in the form of a

packet of data that contains information about the event such as what

sent

it, what objects should respond to it, what the actual event is, a time stamp,

and so forth.

The reason event-driven architectures are generally preferred is because
they are efficient. Without event handling, objects have to continuously
poll the game world to see if a particular action has occurred. With event

handling, objects can simply get on with their business until an event

mes-

sage is broadcast to them. Then, if that message is pertinent, they can act

upon it.

Intelligent game agents can use the same idea to communicate with each

other. When endowed with the power to send, handle, and respond to
events, it’s easy to design behavior like the following:

B A wizard throws a fireball at an orc. The wizard sends a message
to the orc informing it of its impending doom so it may respond

accordingly, i.e., die horribly and in magnificent style.

B A football player makes a pass to a teammate. The passer can
send a message to the receiver, letting it know where it should move
to intercept the ball and at what time it should be at that position.

B A gruntis injured. It dispatches a message to each of its comrades

requesting help. When one arrives with aid, another message is

broadcast to let the others know they can resume their activities.

B A character strikes a match to help light its way along a gloomy
corridor. A delayed message is dispatched to warn that the match
will burn down to his fingers in thirty seconds. If he is still holding
the match when he receives the message, he reacts by dropping the

match and shouting out in pain.

70 I Chapter 2
Adding Messaging Capabilities to Your FSM

Good, eh? The remainder of this chapter will demonstrate how agents can
be given the ability to handle messages like this. But before we can figure
out how to transmit them and handle them, the first thing to do is to define
exactly what a message is.

The Telegram Structure

A message is simply an enumerated type. This could be just about any-
thing. You could have agents sending messages like Msg_ReturnToBase,

Msg MoveToPosition, or Msg HelpNeeded. Additional information also needs
to be packaged along with the message. For example, we should record
information about who sent it, who the recipient is, what the actual mes-
sage is, a time stamp, and so forth. To do this, all the relevant information
is kept together in a structure called Telegram. The code is shown below.
Examine each member variable and get a feel for what sort of information
the game agents will be passing around.

struct Telegram

{
//the entity that sent this telegram
int Sender;

//the entity that is to receive this telegram
int Receiver;

//the message itself. These are all enumerated in the file
//"MessageTypes.h"
int Msg;

//messages can be dispatched immediately or delayed for a specified amount
//of time. If a delay is necessary, this field is stamped with the time
//the message should be dispatched.

double DispatchTime;

//any additional information that may accompany the message
void* Extralnfo;

/* CONSTRUCTORS OMITTED */
hg
The Telegram structure should be reusable, but because it’s impossible to
know in advance what sort of additional information future game designs
will need to pass in a message, a void pointer ExtraInfo is provided. This
can be used to pass any amount of additional information between charac-
ters. For example, if a platoon leader sends the message Msg_MoveToPosi-
tion to all his men, ExtraInfo can be used to store the coordinates of that
position.

State-Driven Agent Design I 71
Adding Messaging Capabilities to Your FSM

Miner Bob and Elsa Communicate

For the purposes of this chapter, I’ve kept the communication between
Miner Bob and Elsa simple. They only have two messages they can use,
and they are enumerated as:

enum message_type

{ Msg_HiHoneyImHome,

Msg_StewReady
bg
The gold miner will send Msg_HiHoneyImHome to his wife to let her know
he’s back at the shack. Msg_StewReady is utilized by the wife to let herself
know when to take dinner out of the oven and for her to communicate to
Miner Bob that food is on the table.

The new state transition diagram for Elsa is shown in Figure 2.6.

Figure 2.6. Elsa’s new state transition diagram

Before I show you how telegram events are handled by an agent, let me
demonstrate how they are created, managed, and dispatched.

Message Dispatch and Management

The creation, dispatch, and management of telegrams is handled by a class
named MessageDispatcher. Whenever an agent needs to send a message, it
calls MessageDispatcher: :DispatchMessage with all the necessary informa-
tion, such as the message type, the time the message is to be dispatched,
the ID of the recipient, and so on. The MessageDispatcher uses this infor-
mation to create a Telegram, which it either dispatches immediately or
stores in a queue ready to be dispatched at the correct time.

72

I Chapter 2

Adding Messaging Capabilities to Your FSM

Before it can dispatch a message, the MessageDispatcher must obtain a
pointer to the entity specified by the sender. Therefore, there must be some
sort of database of instantiated entities provided for the MessageDispatcher
to refer to — a sort of telephone book where pointers to agents are cross-
referenced by their ID. The database used for the demo is a singleton class
called EntityManager. Its declaration looks like this:
class EntityManager

{

private:

//to save the ol' fingers
typedef std::map<int, BaseGameEntity*> EntityMap;

private:

//to facilitate quick Tookup the entities are stored in a std::map, in
//which pointers to entities are cross-referenced by their identifying
//number

EntityMap m_EntityMap;

EntityManager() {}

//copy ctor and assignment should be private
EntityManager(const EntityManager&);
EntityManager& operator=(const EntityManagerd);

public:
static EntityManager* Instance();

//this method stores a pointer to the entity in the std::vector
//m Entities at the index position indicated by the entity's ID
//(makes for faster access)

void RegisterEntity(BaseGameEntity* NewEntity);

//returns a pointer to the entity with the ID given as a parameter
BaseGameEntity* GetEntityFromID(int id)const;

//this method removes the entity from the 1ist
void RemoveEntity(BaseGameEntity* pEntity);
hg

//provide easy access to the instance of the EntityManager
#define EntityMgr EntityManager::Instance()

When an entity is created it is registered with the entity manager like so:
Miner* Bob = new Miner(ent Miner Bob); //enumerated ID
EntityMgr->RegisterEntity(Bob);

A client can now request a pointer to a specific entity by passing its ID to

the method EntityManager: :GetEntityFromID in this way:

Entity* pBob = EntityMgr->GetEntityFromID(ent Miner_Bob);

State-Driven Agent Design I 73
Adding Messaging Capabilities to Your FSM

The client can then use this pointer to call the message handler for that par-
ticular entity. More on this in a moment, but first let’s look at the way
messages are created and routed between entities.

The MessageDispatcher Class

The class that manages the dispatch of messages is a singleton named
MessageDispatcher. Take a look at the declaration of this class:
class MessageDispatcher

{

private:

//a std::set is used as the container for the delayed messages
//because of the benefit of automatic sorting and avoidance
//of duplicates. Messages are sorted by their dispatch time.
std::set<Telegram> PriorityQ;

//this method is utilized by DispatchMessage or DispatchDelayedMessages.
//This method calls the message handling member function of the receiving
//entity, pReceiver, with the newly created telegram
void Discharge(Entity* pReceiver, const Telegram& msg);
MessageDispatcher(){}

public:

//this class is a singleton
static MessageDispatcher* Instance();

//send a message to another agent.

void DispatchMessage(double delay,
int sender,
int receiver,
int msg,
void* Extralnfo);

//send out any delayed messages. This method is called each time through
// the main game Toop.
void DispatchDelayedMessages();

bg

//to make 1ife easier...

#define Dispatch MessageDispatcher::Instance()

The MessageDispatcher class handles messages to be dispatched immedi-
ately and time stamped messages, which are messages to be delivered at a
specified time in the future. Both these types of messages are created and
managed by the same method: DispatchMessage. Let’s go through the
source. (In the companion file this method has some additional lines of
code for outputting some informative text to the console. I’ve omitted them
here for clarity.)

74 I Chapter 2
Adding Messaging Capabilities to Your FSM

void MessageDispatcher::DispatchMessage(double delay,
int sender,
int receiver,
int msg,
void* Extralnfo)

{

This method is called when an entity sends a message to another entity.
The message sender must provide as parameters the details required to cre-
ate a Telegram structure. In addition to the sender’s ID, the receiver’s ID,
and the message itself, this function must be given a time delay and a
pointer to any additional info, if any. If the message is to be sent immedi-
ately, the method should be called with a zero or negative delay.

//get a pointer to the receiver of the message
Entity* pReceiver = EntityMgr->GetEntityFromID(receiver);

//create the telegram
Telegram telegram(0, sender, receiver, msg, Extralnfo);

//if there is no delay, route the telegram immediately

if (delay <= 0.0)

{ //send the telegram to the recipient

Discharge(pReceiver, telegram);

}
After a pointer to the recipient is obtained via the entity manager and a
Telegram is created using the appropriate information, the message is ready
to be dispatched. If the message is for immediate dispatch, the Discharge
method is called straight away. The Discharge method passes the newly
created Telegram to the message handling method of the receiving entity
(more on this shortly). Most of the messages your agents will be sending
will be created and immediately dispatched in this way. For example, if a
troll hits a human over the head with a club, it could send an instant mes-
sage to the human telling it that it had been hit. The human would then
respond using the appropriate action, sound, and animation.

//else calculate the time when the telegram should be dispatched
else

{

double CurrentTime = Clock->GetCurrentTime();
telegram.DispatchTime = CurrentTime + delay;

//and put it in the queue
PriorityQ.insert(telegram);
}
}
If the message is to be dispatched at some time in the future, then these few
lines of code calculate the time it should be delivered before inserting the
new telegram into a priority queue — a data structure that keeps its

State-Driven Agent Design I 75
Adding Messaging Capabilities to Your FSM

elements sorted in order of precedence. I have utilized a std: :set as the
priority queue in this example because it automatically discards duplicate
telegrams.

Telegrams are sorted with respect to their time stamp and to this effect,
if you take a look at Telegram.h, you will find that the < and == operators
have been overloaded. Also note how telegrams with time stamps less than
a quarter of a second apart are to be considered identical. This prevents
many similar telegrams bunching up in the queue and being delivered en
masse, thereby flooding an agent with identical messages. Of course, this
delay will vary according to your game. Games with lots of action produc-
ing a high frequency of messages will probably require a smaller gap.

The queued telegrams are examined each update step by the method
DispatchDelayedMessages. This function checks the front of the priority
queue to see if any telegrams have expired time stamps. If so, they are dis-
patched to their recipient and removed from the queue. The code for this
method looks like this:
void MessageDispatcher::DispatchDelayedMessages ()

{
//first get current time
double CurrentTime = Clock->GetCurrentTime();

//now peek at the queue to see if any telegrams need dispatching.

//remove all telegrams from the front of the queue that have gone

//past their sell-by date

while((PriorityQ.begin()->DispatchTime < CurrentTime) &&
(PriorityQ.begin()->DispatchTime > 0))

{
//read the telegram from the front of the queue

Telegram telegram = *PriorityQ.begin();

//find the recipient
Entity* pReceiver = EntityMgr->GetEntityFromID(telegram.Receiver);

//send the telegram to the recipient
Discharge(pReceiver, telegram);

//and remove it from the queue
PriorityQ.erase(PriorityQ.begin());
}
}
A call to this method must be placed in the game’s main update loop to
facilitate the correct and timely dispatch of any delayed messages.

Message Handling

Once a system for creating and dispatching messages is in place, the han-
dling of them is relatively easy. The BaseGameEntity class must be modified
so any subclass can receive messages. This is achieved by declaring
another pure virtual function, Hand1eMessage, which all derived classes

76 I Chapter 2
Adding Messaging Capabilities to Your FSM

must implement. The revised BaseGameEntity base class now looks like
this:

class BaseGameEntity

{

private:

int m ID;

/* EXTRANEOUS DETAIL REMOVED FOR CLARITY*/
public:

//all subclasses can communicate using messages.
virtual bool HandleMessage(const Telegram& msg)=0;

/* EXTRANEOUS DETAIL REMOVED FOR CLARITY*/

bg
In addition, the State base class must also be modified so that a
BaseGameEntity’s states can choose to accept and handle messages. The
revised State class includes an additional OnMessage method as follows:
template <class entity type>
class State

{
public:

//this executes if the agent receives a message from the
//message dispatcher
virtual bool OnMessage(entity type*, const Telegram&)=0;

/* EXTRANEOUS DETAIL REMOVED FOR CLARITY*/
hg

Finally, the StateMachine class is modified to contain a Hand1eMessage
method. When a telegram is received by an entity, it is first routed to the
entity’s current state. If the current state does not have code in place to deal
with the message, it’s routed to the entity’s global state’s message handler.
You probably noticed that OnMessage returns a bool. This is to indicate
whether or not the message has been handled successfully and enables the
code to route the message accordingly.
Here is the listing of the StateMachine: :Hand1eMessage method:
bool StateMachine::HandleMessage(const Telegram& msg)const

{
//first see if the current state is valid and that it can handle
//the message
if (m_pCurrentState & m pCurrentState->OnMessage(m pOwner, msg))
{
return true;

}

//if not, and if a global state has been implemented, send
//the message to the global state

State-Driven Agent Design I 77
Adding Messaging Capabilities to Your FSM

if (m pGlobalState & m pGlobalState->OnMessage(m pOwner, msg))
{

return true;

return false;
}
And here’s how the Miner class routes messages sent to it:

bool Miner::HandleMessage(const Telegram& msg)

{

return m_pStateMachine->HandleMessage (msg) ;

}
Figure 2.7 shows the new class architecture.

BaseGarneEntity MinersWife = .
Uipdataf) : vaid Updatel) : void
HandleMeassage(Telagram&) © boo! HandleMeszageiTelegram) © boal -
| * T
|:‘|E 5 @
z
£
e

StateMachine<MinersWife>

EntityManager Update() : void T {Curren Sl = Onbdrssage Ooner, magl)
ChangeState{State<Miners\Wife=") : void .
RegisterEntity(BaseGameEntity™) HandleMessage(Telegram&) : boal —..__ e

GetEntityFromlD{int): BaseGameEntity*
RemoveEntity{BaseGameEntity™)

T (GlabalState = Onbnssagel Twner, mugl)

rabum trus;

ratum false;

EEISENOEL
apEgILEINg
EEIS|EQO|S

State<MinersWife>

Entar{MinersWife®) : void
ExecuteiMinarsWife*] : vaid
ExifiMinersWife*) - void
OnMessageMinersWife®, Telegram&} : bool

1

WifesGlobalState VisitBathroom
Entar{MinersWifa*) : void Entar{MinersWifa®) : vaid
Execute(MinersWife*) : void Execute(Miners\Wife*) - void
Exit{Miners\Wife”) : void Exit{MinersiWife*} : void
Oniessage(Miners\Wife”, Telegram&) ; bool OnMessageMinersWile®, Telegram&) © bool

DoHouseWork CookStew
Enter{MinersWife™) : void Enter{MinersWife*) : void
Execute(MinersWife™) : void Execute|MinersWife®) : void
Exit{MinarsWifa™) : void Exit{MinersWifa®) : void
OnMessage|Miners\Wife®, Telegram&) : bool Cnhessage{Miners\Wife®, Telegram&) : beol
i
i
|
______________________________________ MessageDispatcher H
|
Telegram Discharpe(BaseGameEntity*, Telegrama) é_,:
Dispalehiflloal,inl, inlinlvoid*)
DispatchDalayadh 1as() wwsends messagesr . H
*

Figure 2.7. The updated design incorporating messaging

78 I Chapter 2
Adding Messaging Capabilities to Your FSM

Elsa Cooks Dinner

At this point it’s probably a good idea to take a look at a concrete example
of how messaging works, so let’s examine how it can be integrated into the
West World project. In the final version of this demo, WestWorldWith-
Messaging, there is a message sequence that proceeds like this:

1. Miner Bob enters the shack and sends a Msg_HiHoneyImHome message
to Elsa to let her know he’s arrived home.

2. Elsareceives the Msg_HiHoneyImHome message, stops what she’s cur-
rently doing, and changes state to CookStew.

3. When Elsa enters the CookStew state, she puts the stew in the oven
and sends a delayed Msg_StewReady message to herself to remind her-
self that the stew needs to be taken out of the oven at a specific time in
the future. (Normally a good stew takes at least an hour to cook, but in
cyberspace Elsa can rustle one up in just a fraction of a second!)

4. Elsareceives the Msg_StewReady message. She responds to this mes-
sage by taking the stew out of the oven and dispatching a message to
Miner Bob to inform him that dinner is on the table. Miner Bob will
only respond to this message if he is in the GoHomeAndSleepTil-
Rested state (because in this state he is always located at the shack). If
he is anywhere else, such as at the gold mine or the saloon, this mes-
sage would be dispatched and dismissed.

5. Miner Bob receives the Msg_StewReady message and changes state to
EatStew.

Let me run through the code that executes each of these steps.

Step One

Miner Bob enters the shack and sends a Msg_HiHoneyImHome message to
Elsa to let her know he s arrived home.

Additional code has been added to the Enter method of the GoHomeAnd-
SleepTilRested state to facilitate sending a message to Elsa. Here is the
listing:
void GoHomeAndSleepTilRested::Enter(Miner* pMiner)
{

if (pMiner->Location() != shack)

{

cout << "\n" << GetNameOfEntity(pMiner->ID()) << ": "
<< "Walkin' home";

pMiner->ChangelLocation(shack) ;

//1et the wife know I'm home

Dispatch->DispatchMessage (SEND_MSG_IMMEDIATELY, //time delay
pMiner->ID(), //1D of sender
ent Elsa, //1D/name of recipient

State-Driven Agent Design I 79
Adding Messaging Capabilities to Your FSM

Msg_HiHoneyImHome, //the message
NO_ADDITIONAL INFO); //no extra info attached
}
}
As you can see, when Miner Bob changes to this state the first thing he
does is change location. He then dispatches Msg_HiHoneyImHome to Elsa by
calling the DispatchMessage method of the MessageDispatcher singleton
class. Because the message is to be dispatched immediately, the first
parameter of DispatchMessage is set to zero. No additional information is
attached to the telegram. (The constants SEND_MSG_IMMEDIATELY and
NO_ADDITIONAL_INFO are defined with the value O in the file
MessageDispatcher.h to aid legibility.)

3:@ TIP You don't have to restrict the messaging system to game characters such as
orcs, archers, and wizards. Provided an object is derived from a class that
enforces a unique identifier (like BaseGameEntity) it's possible to send mes-
sages to it. Objects such as treasure chests, traps, magical doors, or even trees
are all items that may benefit from the ability to receive and process messages.

For example, you could derive an OakTree class from the BaseGameEntity
class and implement a message handling function to react to messages such as
HitWithAxe or StormyWeather. The oak tree can then react to these messages by
toppling over or by rustling its leaves and creaking. The possibilities you can
construct with this sort of messaging system are almost endless.

Step Two

Elsa receives the Msg_HiHoneyImHome message, stops what she s currently
doing, and changes state to CookStew.

Because she never leaves the shack, Elsa should respond to Msg_HiHoney-
ImHome when in any state. The easiest way to implement this is to let her
global state take care of this message. (Remember, the global state is exe-
cuted each update along with the current state.)

bool WifesGlobalState::0OnMessage(MinersWife* wife, const Telegram& msg)

{
switch(msg.Msg)

{

case Msg HiHoneyImHome:

{
cout << "\nMessage handled by " << GetNameOfEntity(wife->ID())
<< " at time: " << Clock->GetCurrentTime();

cout << "\n" << GetNameOfEntity(wife->ID()) <<
": Hi honey. Let me make you some of mah fine country stew";

wife->GetFSM()->ChangeState (CookStew: : Instance());
}

return true;

}//end switch

80 I Chapter 2
Adding Messaging Capabilities to Your FSM

return false;

}

Step Three

When Elsa enters the CookStew state, she puts the stew in the oven and
sends a delayed Msg_StewReady message to herself as a reminder to take
the stew out before it burns and upsets Bob.

This is a demonstration of how delayed messages can be used. In this
example, Elsa puts the stew in the oven and then sends a delayed message
to herself as a reminder to take the stew out. As we discussed earlier, this
message will be stamped with the correct time for dispatch and stored in a
priority queue. Each time through the game loop there is a call to
MessageDispatcher: :DispatchDelayedMessages. This method checks to see
if any telegrams have exceeded their time stamp and dispatches them to
their appropriate recipients where necessary.

void CookStew: :Enter(MinersWife* wife)

{
//if not already cooking put the stew in the oven
if (!lwife->Cooking())
{
cout << "\n" << GetNameOfEntity (wife->ID())
<< ": Puttin' the stew in the oven";

//send a delayed message to myself so that I know when to take the stew
//out of the oven

Dispatch->DispatchMessage(1.5, //time delay
wife->ID(), //sender ID
wife->ID(), //receiver 1D
Msg_StewReady, //the message

NO_ADDITIONAL INFO); //no extra info attached

wife->SetCooking(true);
}
}

Step Four

Elsa receives the Msg_StewReady message. She responds by taking the
stew out of the oven and dispatching a message to Miner Bob to inform
him that dinner is on the table. Miner Bob will only respond to this mes-
sage if he is in the GoHomeAndSleepTilRested state (to ensure he is
located at the shack).

Because Miner Bob does not have bionic ears, he will only be able to hear
Elsa calling him for dinner if he is at home. Therefore, Bob will only
respond to this message if he is in the GoHomeAndSleepTilRested state.
bool CookStew: :0nMessage (MinersWife* wife, const Telegram& msg)

{

State-Driven Agent Design I 81
Adding Messaging Capabilities to Your FSM

switch(msg.Msg)

{
case Msg StewReady:

{
cout << "\nMessage received by " << GetNameOfEntity(wife->ID()) <<
" at time: " << Clock->GetCurrentTime();
cout << "\n" << GetNameOfEntity(wife->ID())
<< ": Stew ready! Let's eat";

//1et hubby know the stew is ready
Dispatch->DispatchMessage (SEND_MSG_IMMEDIATELY,
wife->ID(),
ent Miner Bob,
Msg StewReady,
NO_ADDITIONAL INFO);

wife->SetCooking(false);

wife->GetFSM()->ChangeState (DoHouseWork: : Instance());
}

return true;
}//end switch

return false;

}

Step Five

Miner Bob receives the Msg_StewReady message and changes state to
EatStew.

When Miner Bob receives Msg_StewReady he stops whatever he’s doing,
changes state to EatStew, and settles down at the table ready to eat a
mighty fine and fillin’ bowl of stew.

bool GoHomeAndSleepTilRested: :0nMessage(Miner* pMiner, const Telegram& msg)
{

switch(msg.Msg)

{

case Msg StewReady:

cout << "\nMessage handled by " << GetNameOfEntity(pMiner->ID())
<< " at time: " << Clock->GetCurrentTime();

cout << "\n" << GetNameOfEntity(pMiner->ID())
<< ": Okay hun, ahm a-comin'!";

pMiner->GetFSM()->ChangeState (EatStew: : Instance());
return true;

}//end switch

82 I Chapter 2

Summing Up

return false; //send message to global message handler

}

Here is some example output from the WestWorldWithMessaging program.
You can see clearly where the preceding message sequence occurs.

Miner Bob: Goin' to the bank. Yes siree

Elsa: Moppin' the floor

Miner Bob: Depositin' gold. Total savings now: 5

Miner Bob: Woohoo! Rich enough for now. Back home to mah 1i'l Tady

Miner Bob: Leavin' the bank

Miner Bob: Walkin' home

Instant telegram dispatched at time: 4.20062 by Miner Bob for Elsa. Msg is

Message received by Elsa at time: 4.20062
Elsa: Hi honey. Let me make you some of mah fine country stew

Elsa: Puttin' the stew in the oven

Elsa: Fussin' over food

Miner Bob: 7Z77Z...

Elsa: Fussin' over food

Miner Bob: ZZ7Z...

Elsa: Fussin' over food

Miner Bob: 7777...

Elsa: Fussin' over food

Queued telegram ready for dispatch: Sent to Elsa. Msg is StewReady]
Message received by Elsa at time: 5.10162
Elsa: Stew ready! Let's eat

Instant telegram dispatched at time: 5.10162 by Elsa for Miner Bob. Msg is

Message received by Miner Bob at time: 5.10162
Miner Bob: Okay hun, ahm a-comin'!

Miner Bob: Smells reaaal goood, Elsa!

Elsa: Puttin' the stew on the table

Elsa: Time to do some more housework!

Miner Bob: Tastes real good too!

Miner Bob: Thank ya 1i'l lady. Ah better get back to whatever ah wuz doin'
Elsa: Washin' the dishes

Miner Bob: ZZZZ...

Elsa: Makin' the bed

Miner Bob: A1l mah fatigue has drained away. Time to find more gold!

Miner Bob: Walkin' to the gold mine

This chapter has shown you the skills required to create very flexible and
extensible finite state machines for your own games. As you have seen, the
addition of messaging has enhanced the illusion of intelligence a great deal
— the output from the WestWorldWithMessaging program is starting to
look like the actions and interactions of two real people. What’s more, this
is only a very simple example. The complexity of the behavior you can cre-
ate with finite state machines is only limited by your imagination. You
don’t have to restrict your game agents to just one finite state machine

State-Driven Agent Design I 83

Summing Up

either. Sometimes it may be a good idea to use two FSMs working in paral-
lel: one to control a character’s movement and one to control the weapon
selection, aiming, and firing, for example. It’s even possible to have a state
itself contain a state machine. This is known as a hierarchical state
machine. For instance, your game agent may have the states Explore,
Combat, and Patrol. In turn, the Combat state may own a state machine
that manages the states required for combat such as Dodge, ChaseEnemy,
and Shoot.

Practice Makes Perfect

Before you dash away and start coding your own finite state machines, you
may find it good practice to expand the WestWorldWithMessaging project
to include an additional character. For example, you could add a Bar Fly
who insults Miner Bob in the saloon and they get into a fight. Before you
write the code, grab a pencil and a sheet of paper and sketch out the state
transition diagrams for each new character. Have fun!

This page intentionally left blank.

Chapter 3

How to Create Autonomously
Moving Game Agents

D uring the late *80s I remember watching a BBC Horizon documen-
tary about state-of-the-art computer graphics and animation. There
was lots of exciting stuff covered in that program, but the thing I remember
most vividly was an amazing demonstration of the flocking behavior of
birds. It was based on very simple rules, yet it looked so spontaneous and
natural and was mesmerizing to watch. The programmer who designed the
behavior is named Craig Reynolds. He called the flocking birds “boids,”
and the simple rules the flocking behavior emerged from he called “steer-
ing behaviors.”

Since that time Reynolds has published a number of articles on various
types of steering behaviors, all of them fascinating. Most, if not all, of his
steering behaviors have direct relevance to games, which is why I’'m going
to spend a considerable amount of time describing them and showing you
how to code and use them.

What Is an Autonomous Agent?

I’ve seen many definitions for what an autonomous agent is, but probably
the best is this:

An autonomous agent is a system situated within and a part of an envi-
ronment that senses that environment and acts on it, over time, in pur-
suit of its own agenda and so as to effect what it senses in the future.

Throughout this chapter I will use the term “autonomous agent” in refer-
ence to agents that possess a degree of autonomous movement. If an
autonomous agent stumbles upon an unexpected situation, like finding a
wall in its way, it will have the ability to respond and adjust its motion
accordingly. For example, you might design one autonomous agent to
behave like a rabbit and one like a fox. If while munching happily on the
fresh dewy grass, the rabbit happens to spot the fox, it will autonomously
attempt to evade it. At the same time the fox will autonomously pursue the
rabbit. Both these events occur without any further intervention from the

85

86 I Chapter 3

What Is an Autonomous Agent?

programmer; once up and running, autonomous agents simply look after
themselves.

This is not to say that an autonomous agent siould be able to cope with
absolutely any situation at all (although that might be one of your goals),
but it is often very useful to be able to bestow an amount of autonomy. For
example, a common problem when writing pathfinding code is how to deal
with dynamic obstacles. Dynamic obstacles are those objects in your game
world that move around or change position, like other agents, sliding doors,
and so forth. Given a suitable environment, incorporating the correct steer-
ing behavior into a game character will preclude writing special path-
finding code to handle dynamic obstacles — an autonomous agent will
have the ability to deal with them if and when it has to.

The movement of an autonomous agent can be broken down into three
layers:

B Action Selection: This is the part of the agent’s behavior responsible

for choosing its goals and deciding what plan to follow. It is the part
that says “go here” and “do A, B, and then C.”

B Steering: This layer is responsible for calculating the desired trajec-
tories required to satisfy the goals and plans set by the action selec-
tion layer. Steering behaviors are the implementation of this layer.
They produce a steering force that describes where an agent should
move and how fast it should travel to get there.

B Locomotion: The bottom layer, locomotion, represents the more
mechanical aspects of an agent’s movement. It is the how of travel-
ing from A to B. For example, if you had implemented the mechan-
ics of a camel, a tank, and a goldfish and then gave a command for
them to travel north, they would all use different mechanical pro-
cesses to create motion even though their intent (to move north) is
identical. By separating this layer from the steering layer, it’s possi-
ble to utilize, with little modification, the same steering behaviors
for completely different types of locomotion.

Reynolds makes use of an excellent analogy to describe the roles of each of
these layers in his paper “Steering Behaviors for Autonomous Characters.”

“Consider, for example, some cowboys tending a herd of cattle out on
the range. A cow wanders away from the herd. The trail boss tells a
cowboy to fetch the stray. The cowboy says ‘giddy-up’ to his horse and
guides it to the cow, possibly avoiding obstacles along the way. In this
example, the trail boss represents action selection: noticing that the
state of the world has changed (a cow left the herd) and setting a goal
(vetrieve the stray). The steering level is represented by the cowboy, who
decomposes the goal into a series of simple sub-goals (approach the
cow, avoid obstacles, retrieve the cow). A sub-goal corresponds to a
steering behavior for the cowboy-and-horse team. Using various control

How to Create Autonomously Moving Game Agents I 87
The Vehicle Model

signals (vocal commands, spurs, reins), the cowboy steers his horse
toward the target. In general terms, these signals express concepts like:
go faster, go slower, turn right, turn left, and so on. The horse imple-
ments the locomotion level. Taking the cowboy’s control signals as
input, the horse moves in the indicated direction. This motion is the
result of a complex interaction of the horse’s visual perception, its sense
of balance, and its muscles applying torques to the joints of its skeleton.
From an engineering point of view, legged locomotion is a very hard
problem, but neither the cowboy nor the horse give it a second thought.

2

Not all is rosy and sweet in the world of autonomous agents though. The
implementation of steering behaviors can beset the programmer with a
truckload of new problems to deal with. Some behaviors may involve
heavy manual tweaking, while others have to be carefully coded to avoid
using large portions of CPU time. When combining behaviors, care usually
must be taken to avoid the possibility that two or more of them may cancel
each other out. There are means and ways around most of these problems
though (well, all except for the tweaking — but that’s fun anyway), and
most often the benefits of steering behaviors far outweigh any
disadvantages.

The Vehicle Model

Before I discuss each individual steering behavior I’'m going to spend a lit-
tle time explaining the code and class design for the vehicle model (the
locomotion). MovingEntity is a base class from which all moving game
agents are derived. It encapsulates the data that describes a basic vehicle
with point mass. Let me run you through the class declaration:

class MovingEntity : public BaseGameEntity
{

protected:

The MovingEntity class is derived from the BaseGameEntity class, which
defines an entity with an ID, a type, a position, a bounding radius, and a
scale. All game entities from here onward in this book will be derived from
BaseGameEntity. A BaseGameEntity also has an additional Boolean member
variable, m_bTag, which will be utilized in a variety of ways, some of which
will be described very shortly. I’m not going to list the class declaration
here, but I recommend you take a quick look at the BaseGameEntity.h
header sometime during your read through this chapter.

SVector2D m vVelocity;

//a normalized vector pointing in the direction the entity is heading.
SVector2D m_vHeading;

//a vector perpendicular to the heading vector
SVector2D m vSide;

88 I Chapter 3
The Vehicle Model

The heading and side vectors define a local coordinate system for the mov-
ing entity. In the examples given in this chapter, a vehicle’s heading will
always be aligned with its velocity (for example, a train has a velocity
aligned heading). These values will be used often by the steering behavior
algorithms and are updated every frame.

double m_dMass;

//the maximum speed at which this entity may travel.
double m_dMaxSpeed;

//the maximum force this entity can produce to power itself
//(think rockets and thrust)
double m_dMaxForce;

//the maximum rate (radians per second) at which this vehicle can rotate
double m_dMaxTurnRate;

public:

/* EXTRANEOUS DETAIL OMITTED */

hg

Although this is enough data to represent a moving object, we still need a
way of giving a moving entity access to the various types of steering
behaviors. I have chosen to create a class, Vehicle, which inherits from
MovingEntity and owns an instance of the steering behavior class,
SteeringBehaviors. SteeringBehaviors encapsulates all the different steer-
ing behaviors I’ll be discussing throughout this chapter. More on that in a
moment though; first, let’s take a look at the Vehicle class declaration.

class Vehicle : public MovingEntity
{

private:

//a pointer to the world data enabling a vehicle to access any obstacle

//path, wall, or agent data

GameWor1d* m_pWorld;
The GameWorld class contains all the data and objects pertinent to the envi-
ronment the agents are situated in, such as walls, obstacles, and so on. |
won’t list the declaration here to save space, but it might be a good idea to
check out GameWorld.h in your IDE at some point to get a feel for it.

//the steering behavior class
SteeringBehaviors* m pSteering;

A vehicle has access to all available steering behaviors through its own
instance of the steering behavior class.
public:

//updates the vehicle's position and orientation
void Update(double time_elapsed);

How to Create Autonomously Moving Game Agents I 89

The Vehicle Model

/* EXTRANEOUS DETAIL OMITTED */
b
You can see the class relationships clearly in the simplified UML diagram
shown in Figure 3.1.

SteeringBehaviors

BaseGameEntity -Seek(Vector2D&) : Vector2D
-Flee(Vector2D&) : Vector2D
-Arrive(Vector2D&) : Vector2D

+Update(time_slapsed) | void
+Render() : void

+ID() : int

+Pos() : Vectar2D

+Scale() - float

+Bradius() : floal

+Calculate() : Vector2D
+ForwardComponent() : Vector2D
+SideComponent() : Vector2D

+SetPath() : void
+SetTarget{Vector2D) : void
+SetTargetAgent1{Vehicle®) ; void
+SetTargetAgent2{Vehicle®) : void

MovingEntity +SeekOn() : void
+Update(time_elapsed) | void +Fleeln() : void
+Render() : void +Arrive0n() : void
+Welocity() : Vector2D)
+Mass!"] : float Vehicle +Seek0ﬁ(]‘. vqud
+Heading() : Vector2D +FleeOff{) : void

-y

+MaxSpeed() : float +ArriveOffl) © void

+MaxForce() : float
+MaxTumRate() : float

+Update(time_elapsed) : void |
+Render() : void

GameWorld

+Update(time_elapsed) : void
+Render() : void

Figure 3.1. The Vehicle and SteeringBehaviors class relationships

Updating the Vehicle Physics

Before we move on to the steering behaviors themselves, I’d just like to
walk you through the Vehicle::Update method. It’s important that you
understand every line of code in this function because it’s the main work-
horse of the Vehicle class. (If you do not know Newton’s laws of force and
motion, I would strongly recommend you read the relevant part of Chapter
1 before continuing.)

bool Vehicle::Update(double time elapsed)
{

//calculate the combined force from each steering behavior in the
//vehicle's 1ist
SVector2D SteeringForce = m pSteering->Calculate();

90 I Chapter 3
The Vehicle Model

First the steering force for this simulation step is calculated. The Calculate
method sums all a vehicle’s active steering behaviors and returns the total
steering force.

//Acceleration = Force/Mass

SVector2D acceleration = SteeringForce / m_dMass;
Using Newton’s laws of physics, the steering force is converted into an
acceleration (see equation 1.93, Chapter 1).

//update velocity

m vVelocity += acceleration * time_elapsed;
Using the acceleration, the vehicle’s velocity can be updated (see equation
1.81, Chapter 1).

//make sure vehicle does not exceed maximum velocity
m vVelocity.Truncate(m dMaxSpeed);

//update the position
m vPos += m vVelocity * time elapsed;
The vehicle’s position can now be updated using the new velocity (see
equation 1.77, Chapter 1).
//update the heading if the vehicle has a velocity greater than a very small
//value

if (m_vVelocity.LengthSq() > 0.00000001)
{

m vHeading = Vec2DNormalize(m vVelocity);

m vSide = m_vHeading.Perp();

}
As mentioned earlier, a MovingEntity has a local coordinate system that
must be kept updated each simulation step. A vehicle’s heading should
always be aligned with its velocity so this is updated, making it equal to the
normalized velocity vector. But — and this is important — the heading is
only calculated if the vehicle's velocity is above a very small threshold
value. This is because if the magnitude of the velocity is zero, the program
will crash with a divide by zero error, and if the magnitude is non-zero but
very small, the vehicle may (depending on the platform and operating sys-
tem) start to move erratically a few seconds after it has stopped.

The side component of the local coordinate system is easily calculated
by calling SVector2D: : Perp.

//treat the screen as a toroid
WrapAround(m_vPos, m_pWorld->cxClient(), m pWorld->cyClient());

}

Finally, the display area is considered to wrap around from top to bottom
and from left to right (if you were to imagine it in 3D it would be toroidal
— doughnut shaped). Therefore, a check is made to see if the updated

How to Create Autonomously Moving Game Agents I 91

The Steering Behaviors

position of the vehicle has exceeded the screen boundaries. If so, the posi-
tion is wrapped around accordingly.

That’s the boring stuff out of the way — let’s move on and have some
fun!

The Steering Behaviors

I’'m now going to describe each steering behavior individually. Once I've
covered all of them I’ll explain the SteeringBehaviors class that encapsu-
lates them and show you the different methods available for combining
them. Toward the end of the chapter I’ll demonstrate a few tips and tricks
for getting the most out of steering behaviors.

Seek

The seek steering behavior returns a force that directs an agent toward a
target position. It is very simple to program. The code looks like this (note
that m_pVehicle points to the Vehicle that owns the SteeringBehaviors
class):

Vector2D SteeringBehaviors::Seek(Vector2D TargetPos)

{
Vector2D DesiredVelocity = Vec2DNormalize(TargetPos - m pVehicle->Pos())
* m_pVehicle->MaxSpeed() ;

return (DesiredVelocity - m pVehicle->Velocity());
}
First the desired velocity is calculated. This is the velocity the agent would
need to reach the target position in an ideal world. It represents the vector
from the agent to the target, scaled to be the length of the maximum possi-
ble speed of the agent.

The steering force returned by this method is the force required, which
when added to the agent’s current velocity vector gives the desired veloc-
ity. To achieve this you simply subtract the agent’s current velocity from
the desired velocity. See Figure 3.2.

Figure 3.2. Calcu-
-$- lating vectors for the

seek behavior. The
dotted vector shows
how the addition of

Desired Velocity the steering force to
the current velocity
produces the desired
result.

Current Velacity

Desired Velocity - Current Velocity

92

I Chapter 3

The Steering Behaviors

You can observe this behavior in action by running the Seek.exe execut-
able. Click with the left mouse button to alter the position of the target.
Notice how the agent will overshoot the target and then turn around to
approach again. The amount of overshoot is determined by the ratio of
MaxSpeed to MaxForce. You can change the magnitude of these values by
pressing the Ins/Del and Home/End keys.

Seek comes in handy for all sorts of things. As you’ll see, many of the
other steering behaviors will make use of it.

Flee is the opposite of seek. Instead of producing a steering force to steer
the agent toward a target position, flee creates a force that steers the agent
away. Here’s the code:

Vector2D SteeringBehaviors::Flee(Vector2D TargetPos)

{

Vector2D DesiredVelocity = Vec2DNormalize(m pVehicle->Pos() - TargetPos)
* m_pVehicle->MaxSpeed() ;

return (DesiredVelocity - m pVehicle->Velocity());

}

Note how the only difference is that the DesiredVelocity is calculated
using a vector pointing in the opposite direction (m_pVehicle->Pos() —
TargetPos instead of TargetPos — m_pVehicle->Pos()).

Flee can be easily adjusted to generate a fleeing force only when a vehi-
cle comes within a certain range of the target. All it takes is a couple of
extra lines of code.

Vector2D SteeringBehaviors::Flee(Vector2D TargetPos)
{ //only flee if the target is within 'panic distance'. Work in distance
//squared space.

const double PanicDistanceSq = 100.0 * 100.0;

if (Vec2DDistanceSq(m pVehicle->Pos(), target) > PanicDistanceSq)
{

return Vector2D(0,0);
}

Vector2D DesiredVelocity = Vec2DNormalize(m pVehicle->Pos() - TargetPos)
* m_pVehicle->MaxSpeed() ;

return (DesiredVelocity - m pVehicle->Velocity());

}

Notice how the distance to the target is calculated in distance squared
space. As you saw in Chapter 1, this is to save calculating a square root.

How to Create Autonomously Moving Game Agents I 93

The Steering Behaviors

Arrive

Seek is useful for getting an agent moving in the right direction, but often
you’ll want your agents to come to a gentle halt at the target position, and
as you’ve seen, seek is not too great at stopping gracefully. Arrive is a
behavior that steers the agent in such a way it decelerates onto the target
position.

In addition to the target, this function takes a parameter of the enumer-
ated type Deceleration, given by:

enum Deceleration{slow = 3, normal = 2, fast = 1};

Arrive uses this value to calculate how much time the agent desires to take
to reach the target. From this value we can calculate at what speed the
agent must travel to reach the target position in the desired amount of time.
After that, the calculations proceed just like they did for seek.
Vector2D SteeringBehaviors::Arrive(Vector2D TargetPos,

Deceleration deceleration)

{
Vector2D ToTarget = TargetPos - m pVehicle->Pos();

//calculate the distance to the target position
double dist = ToTarget.Length();

if (dist > 0)

{
//because Deceleration is enumerated as an int, this value is required
//to provide fine tweaking of the deceleration.
const double DecelerationTweaker = 0.3;

//calculate the speed required to reach the target given the desired
//deceleration
double speed = dist / ((double)deceleration * DecelerationTweaker);

//make sure the velocity does not exceed the max
speed = min(speed, m pVehicle->MaxSpeed());

//from here proceed just like Seek except we don't need to normalize
//the ToTarget vector because we have already gone to the trouble
//of calculating its Tength: dist.

Vector2D DesiredVelocity = ToTarget * speed / dist;

return (DesiredVelocity - m pVehicle->Velocity());

}

return Vector2D(0,0);
}
Now that you know what it does, have a look at the demo executable.
Notice how when the vehicle is far away from the target the arrive behav-
ior acts just the same as seek, and how the deceleration only comes into
effect when the vehicle gets close to the target.

94 I Chapter 3

The Steering Behaviors

Pursuit

Pursuit behavior is useful when an agent is required to intercept a moving
target. It could keep seeking to the current position of the target of course,
but this wouldn’t really help to create the illusion of intelligence. Imagine
you’re a child again and playing tag in the schoolyard. When you want to
tag someone, you don’t just run straight at their current position (which is
effectively seeking toward them); you predict where they are going to be in
the future and run toward that offset, making adjustments as you narrow
the gap. See Figure 3.3. This is the sort of behavior we want our agents to
demonstrate.

Predicted position

P

Evader

Velocity

5 Steering
Pursuer Desired

Figure 3.3. Calculating the vectors for the pursuit steering behavior. Once again, the
dotted vector shows how the addition of the steering force to the current velocity pro-
duces the desired result.

The success of the pursuit function depends on how well the pursuer can
predict the evader’s trajectory. This can get very complicated, so a compro-
mise must be made to obtain adequate performance without eating up too
many clock cycles.

There is one situation the pursuer may face that enables an early out: If
the evader is ahead and almost directly facing the agent, the agent should
head directly for the evader’s current position. This can be calculated
quickly using dot products (see Chapter 1). In the example code, the
evader’s inverted heading must be within 20 degrees (approximately) of
the agent’s to be considered “facing.”

One of the difficulties in creating a good predictor is deciding how far
into the future the agent should predict. Clearly, the amount of look-ahead
should be proportional to the separation between the pursuer and its evader,
and inversely proportional to the pursuer’s and evader’s speeds. Once this
time has been decided, an estimated future position can be calculated for
the pursuer to seek to. Let’s take a look at the code for this behavior:
Vector2D SteeringBehaviors::Pursuit(const Vehicle* evader)

{

//if the evader is ahead and facing the agent then we can just seek

How to Create Autonomously Moving Game Agents I 95

The Steering Behaviors

//for the evader's current position.
Vector2D ToEvader = evader->Pos() - m pVehicle->Pos();

double RelativeHeading = m pVehicle->Heading() .Dot (evader->Heading());

if ((ToEvader.Dot(m pVehicle->Heading()) > 0) &&
(RelativeHeading < -0.95)) //acos(0.95)=18 degs
{
return Seek(evader->Pos());

}
//Not considered ahead so we predict where the evader will be.

//the Took-ahead time is proportional to the distance between the evader
//and the pursuer; and is inversely proportional to the sum of the
//agents' velocities
double LookAheadTime = ToEvader.Length() /

(m_pVehicle->MaxSpeed() + evader->Speed());

//now seek to the predicted future position of the evader
return Seek(evader->Pos() + evader->Velocity() * LookAheadTime);

3:@ TIP Some locomotion models may also require that you factor in some time for
turning the agent to face the offset. You can do this fairly simply by increasing
the LookAheadTime by a value proportional to the dot product of the two head-
ings and to the maximum turn rate of the vehicle. Something like:

LookAheadTime += TurnAroundTime(m pVehicle, evader->Pos());
Where TurnAroundTime is the function:

double TurnaroundTime(const Vehicle* pAgent, Vector2D TargetPos)
{

//determine the normalized vector to the target

Vector2D toTarget = Vec2DNormalize(TargetPos - pAgent->Pos());

double dot = pAgent->Heading().Dot(toTarget);

//change this value to get the desired behavior. The higher the max turn
//rate of the vehicle, the higher this value should be. If the vehicle is
//heading in the opposite direction to its target position then a value
//of 0.5 means that this function will return a time of 1 second for the
//vehicle to turn around.

const double coefficient = 0.5;

//the dot product gives a value of 1 if the target is directly ahead and -1
//if it is directly behind. Subtracting 1 and multiplying by the negative of
//the coefficient gives a positive value proportional to the rotational
//displacement of the vehicle and target.

return (dot - 1.0) * -coefficient;

}

The pursuit demo shows a small vehicle being pursued by a larger one.
The crosshair indicates the estimated future position of the evader. (The
evader is utilizing a small amount of wander steering behavior to affect its
motion. I’ll be covering wander in just a moment.)

96 I Chapter 3

The Steering Behaviors

A pursuer’s prey is set by passing the relevant method a pointer to the
target in question. To set up a situation similar to the demo for this behav-
ior you’d create two agents, one to pursue and the other to wander, just like
this:

Vehicle* prey = new Vehicle(/* params omitted */);
prey->Steering()->WanderOn();

Vehicle* predator = new Vehicle(/* params omitted */);
predator->Steering()->PursuitOn(prey);

Got that? Okay, let’s move on to pursuit’s opposite: evade.

Evade

Evade is almost the same as pursuit except that this time the evader flees
from the estimated future position.

Vector2D SteeringBehaviors::Evade(const Vehicle* pursuer)
{

/* Not necessary to include the check for facing direction this time */
Vector2D ToPursuer = pursuer->Pos() - m pVehicle->Pos();

//the Took-ahead time is proportional to the distance between the pursuer
//and the evader; and is inversely proportional to the sum of the
//agents' velocities
double LookAheadTime = ToPursuer.Length() /

(m_pVehicle->MaxSpeed() + pursuer->Speed());

//now flee away from predicted future position of the pursuer

return Flee(pursuer->Pos() + pursuer->Velocity() * LookAheadTime);
}
Note that it is not necessary to include the check for facing direction this
time.

Wander

You’ll often find wander a useful ingredient when creating an agent’s
behavior. It’s designed to produce a steering force that will give the impres-
sion of a random walk through the agent’s environment.

A naive approach is to calculate a random steering force each time step,
but this produces jittery behavior with no ability to achieve long persistent
turns. (Actually, a rather nifty sort of random function, Perlin noise, can be
used to produce smooth turning but this isn’t very CPU friendly. It’s still
something for you to look into though if you get bored on a rainy day —
Perlin noise has many applications.)

Reynolds’ solution is to project a circle in front of the vehicle and steer
toward a target that is constrained to move along the perimeter. Each time
step, a small random displacement is added to this target, and over time it
moves backward and forward along the circumference of the circle,

How to Create Autonomously Moving Game Agents I 97

The Steering Behaviors

creating a lovely jitter-free alternating motion. This method can be used to
produce a whole range of random motion, from very smooth undulating
turns to wild Strictly Ballroom type whirls and pirouettes depending on the
size of the circle, its distance from the vehicle, and the amount of random
displacement each frame. As they say, a picture is worth a thousand words,
so it’s probably a good idea for you to examine Figure 3.4 to get a better
understanding.

Wander Radius

Wander Distance

Figure 3.4

Let me take you through the code step by step. First there are three member
variables wander makes use of:

double m_dWanderRadius;

This is the radius of the constraining circle.

double m_dWanderDistance;

This is the distance the wander circle is projected in front of the agent.

double m_dWanderJitter;

Finally, m_dWanderdJitter is the maximum amount of random displacement
that can be added to the target each second. Now for the method itself:
SVector2D SteeringBehaviors::Wander()

{
//first, add a small random vector to the target's position (RandomClamped
//returns a value between -1 and 1)
m vWanderTarget += SVector2D(RandomClamped() * m dWanderJditter,

RandomClamped() * m_dWanderditter);
m_vWanderTarget is a point constrained to the parameter of a circle of radius
m_dWanderRadius, centered on the vehicle (m_vWanderTarget’s initial posi-
tion is set in the constructor of SteeringBehaviors). Each time step, a small
random displacement is added to the wander target’s position. See Figure
3.5A.

//reproject this new vector back onto a unit circle
m_vWanderTarget.Normalize();

98 I Chapter 3

The Steering Behaviors

//increase the length of the vector to the same as the radius

//of the wander circle

m vWanderTarget *= m dWanderRadius;
The next step is to reproject this new target back onto the wander circle.
This is achieved by normalizing the vector and multiplying it by the radius
of the wander circle. See Figure 3.5B.

//move the target into a position WanderDist in front of the agent
SVector2D targetLocal = m vWanderTarget + SVector2D(m dWanderDistance, 0);

//project the target into world space

SVector2D targetWorld = PointToWorldSpace(targetLocal,
m_pVehicle->Heading(),
m pVehicle->Side(),
m pVehicle->Pos());

//and steer toward it

return targetWorld - m pVehicle->Pos();

}

Finally, the new target is moved in front of the vehicle by an amount equal
tom_dWanderDistance and projected into world space. The steering force is
then calculated as the vector to this position. See Figure 3.5C.

D ®)

A) Adding a small random displacement
to the target.

7

Q

=

B) Re-projecting the target back cnto the
wander circle.

Wander Distance

-

€} Prajecting the target in front of the
wehicle.

Figure 3.5. Steps toward calculating the wander behavior

How to Create Autonomously Moving Game Agents I 99

The Steering Behaviors

If you have a computer at hand I recommend you check out the demo for
this behavior. The green circle is the constraining “wander circle” and the
red dot the target. The demo allows you to adjust the size of the wander cir-
cle, the amount of jitter, and the wander distance so you can observe the
effect they have on the behavior. Notice the relationship between the wan-
der distance and the variation in angle of the steering force returned from
the method. When the wander circle is far away from the vehicle, the
method produces small variations in angle, thereby limiting the vehicle to
small turns. As the circle is moved closer to the vehicle, the amount it can
turn becomes less and less restricted.

3£ 3D TIP If you require your agents to wander in three dimensions (like a space-
ship patrolling its territory), all you have to do is constrain the wander target to
a sphere instead of a circle.

Obstacle Avoidance

Obstacle avoidance is a behavior that steers a vehicle to avoid obstacles
lying in its path. An obstacle is any object that can be approximated by a
circle (or sphere, if you are working in 3D). This is achieved by steering
the vehicle so as to keep a rectangular area — a detection box, extending
forward from the vehicle — free of collisions. The detection box’s width is
equal to the bounding radius of the vehicle, and its length is proportional to
the vehicle’s current speed — the faster it goes, the longer the detection
box.

I think before I describe this process any further it would be a good idea
to show you a diagram. Figure 3.6 shows a vehicle, some obstacles, and the
detection box used in the calculations.

|//_\'I
.

AN,

- hY
>

<
~ 1)
_/ <7// N

Figure 3.6. Setup for the obstacle avoidance steering behavior

100 I Chapter 3

The Steering Behaviors

Finding the Closest Intersection Point

The process of checking for intersections with obstacles is quite compli-
cated, so let’s take this step by step.

A) The vehicle should only consider those obstacles within range of its
detection box. Initially, the obstacle avoidance algorithm iterates
through all the obstacles in the game world and tags those that are
within this range for further consideration.

B) The algorithm then transforms all the tagged obstacles into the vehi-
cle’s local space (for an explanation of local space, see Chapter 1).
This makes life much easier as after transformation any objects with a
negative local x-coordinate can be dismissed.

C) The algorithm now has to check to see if any obstacles overlap the
detection box. Local coordinates are useful here as all you need to do
is expand the bounding radius of an obstacle by half the width of the
detection box (the vehicle’s bounding radius) and then check to see if
its local y value is smaller than this value. If it isn’t, then it won’t
intersect the detection box and can subsequently be discarded from
further consideration.

Figure 3.7 should help clear up these first three steps for you. The letters on
the obstacles in the diagram correspond to the descriptions.

5] fed: Negative local x value
Discarded: Local y value greater
than expanded radius
| Ty !
| il

Local y value smaller than expanded
radius. Test further A

Discarded: Out of range

Figure 3.7. Steps A, B, and C

D) At this point there are only those obstacles remaining that intersect the
detection box. It’s now necessary to find the intersection point closest
to the vehicle. Once more, local space comes to the rescue. Step C
expanded an object’s bounding radius. Using this, a simple line/circle
intersection test can be used to find where the expanded circle inter-
sects the x-axis. There will be two intersection points, as shown in
Figure 3.8. (We don’t have to worry about the case where there is one

How to Create Autonomously Moving Game Agents I 101

The Steering Behaviors

intersection tangent to the circle — the vehicle will appear to just
glance off the obstacle.) Note that it is possible to have an obstacle in
front of the vehicle, but it will have an intersection point to the rear of
the vehicle. This is shown in the figure by obstacle A. The algorithm
discards these cases and only considers intersection points laying on
the positive x-axis.

Y axis

L
&
¥ 4

- X axis

[& = Intersection point

Figure 3.8. Intersection points

The algorithm tests all the remaining obstacles to find the one with the
closest (positive) intersection point.

Before I show you how the steering force is calculated, let me list the
part of the obstacle avoidance algorithm code that implements steps A to
D.

Vector2D
SteeringBehaviors: :0bstacleAvoidance(const std::vector<BaseGameEntity*>
&obstacles)

{
//the detection box length is proportional to the agent's velocity
m_dDBoxLength = Prm.MinDetectionBoxLength +
(m_pVehicle->Speed()/m pVehicle->MaxSpeed()) *
Prm.MinDetectionBoxLength;
All the parameters used by the project are read from an initialization file
called Params.ini and stored in the singleton class ParamLoader. All the data
in this class is public and is easily accessible through the #definition of Prm
(#define Prm (*ParamLoader::Instance())). If further clarification is
needed, see the ParamLoader.h file.

//tag all obstacles within range of the box for processing
m_pVehicle->World()->TagObstaclesWithinViewRange(m pVehicle, m dDBoxLength);

//this will keep track of the closest intersecting obstacle (CIB)
BaseGameEntity* ClosestIntersectingObstacle = NULL;

102

I Chapter 3

The Steering Behaviors

//this will be used to track the distance to the CIB
double DistToClosestIP = MaxDouble;

//this will record the transformed local coordinates of the CIB
Vector2D LocalPosOfClosestObstacle;

std: :vector<BaseGameEntity*>::const_iterator curOb = obstacles.begin();

while(curOb != obstacles.end())
{
//if the obstacle has been tagged within range proceed
if ((*curOb)->IsTagged())
{
//calculate this obstacle's position in Tocal space
Vector2D LocalPos = PointTolocalSpace((*curOb)->Pos(),
m pVehicle->Heading(),
m pVehicle->Side(),
m pVehicle->Pos());

//if the local position has a negative x value then it must lay
//behind the agent. (in which case it can be ignored)
if (LocalPos.x >= 0)
{
//if the distance from the x axis to the object's position is Tess
//than its radius + half the width of the detection box then there
//is a potential intersection.
double ExpandedRadius = (*curOb)->BRadius() + m pVehicle->BRadius();

if (fabs(LocalPos.y) < ExpandedRadius)

{
//now to do a Tine/circle intersection test. The center of the
//circle is represented by (cX, cY). The intersection points are
//given by the formula x = cX +/-sqrt(r*2-c¥~2) for y=0.
//We only need to Took at the smallest positive value of x because
//that will be the closest point of intersection.
double cX = LocalPos.x;
double cY = LocalPos.y;

//we only need to calculate the sqrt part of the above equation once
double SqrtPart = sqrt(ExpandedRadius*ExpandedRadius - cY*cY);

double ip = A - SqrtPart;

if (ip <= 0)
{

ip = A + SqrtPart;
}

//test to see if this is the closest so far. If it is, keep a
//record of the obstacle and its local coordinates
if (ip < DistToClosestIP)
{
DistToClosestIP = ip;

ClosestIntersectingObstacle = *curOb;

How to Create Autonomously Moving Game Agents I 103

The Steering Behaviors

LocalPosOfClosestObstacle = LocalPos;
}
}
}
}

++curOb;

}

Calculating the Steering Force

Determining the steering force is easy. It’s calculated in two parts: a lateral
Jforce and a braking force. See Figure 3.9.

Y axis
Lateral force

|
L

Braking Force

X axis

Figure 3.9. Calculating the steering force

There are a number of ways to calculate the lateral force but the one I pre-
fer is to subtract the y value of the obstacle’s local position from its radius.
This results in a lateral steering force away from the obstacle that dimin-
ishes with the obstacle’s distance from the x-axis. This force is scaled in
proportion to the vehicle’s distance from the obstacle (because the closer
the vehicle is to an obstacle the quicker it should react).

The next component of the steering force is the braking force. This is a
force acting backward, along the horizontal axis as shown in the figure, and
is also scaled in proportion to the vehicle’s distance from the obstacle.

The steering force is finally transformed into world space, resulting in
the value returned from the method. The code is as follows

//if we have found an intersecting obstacle, calculate a steering
//force away from it
Vector2D SteeringForce;

if (ClosestIntersectingObstacle)
{

//the closer the agent is to an object, the stronger the steering force

104 I Chapter 3

The Steering Behaviors

//should be
double multiplier = 1.0 + (m dDBoxLength - LocalPosOfClosestObstacle.x) /
m_dDBoxLength;

//calculate the lateral force
SteeringForce.y = (ClosestIntersectingObstacle->BRadius ()-
LocalPosOfClosestObstacle.y) * multiplier;

//apply a braking force proportional to the obstacle's distance from
//the vehicle.
const double BrakingWeight = 0.2;

SteeringForce.x = (ClosestIntersectingObstacle->BRadius() -
LocalPosOfClosestObstacle.x) *
BrakingWeight;
}

//finally, convert the steering vector from local to world space
return VectorToWorldSpace(SteeringForce,
m_pVehicle->Heading(),
m_pVehicle->Side());

3:@ 3D TIP When implementing obstacle avoidance in three dimensions, use
spheres to approximate the obstacles and a cylinder in place of the detection
box. The math to check against a sphere is not that much different than that to
check against a circle. Once the obstacles have been converted into local space,
steps A and B are the same as you have already seen, and step C just involves
checking against another axis.

Wall Avoidance

A wall is a line segment (in 3D, a polygon) with a normal pointing in the
direction it is facing. Wall avoidance steers to avoid potential collisions
with a wall. It does this by projecting three “feelers” out in front of the
vehicle and testing to see if any of them intersect with any walls in the
game world. See Figure 3.10. (The little “stub” halfway along the wall
indicates the direction of the wall normal.) This is similar to how cats and
rodents use their whiskers to navigate their environment in the dark.

Force

\Penetration depth

Wall

Figure 3.10. Wall avoidance

How to Create Autonomously Moving Game Agents I 105

The Steering Behaviors

When the closest intersecting wall has been found (if there is one of
course), a steering force is calculated. This is deduced by calculating how
far the feeler tip has penetrated through the wall and then by creating a
force of that magnitude in the direction of the wall normal.

Vector2D SteeringBehaviors::WallAvoidance(const std::vector<Wall2D>& walls)
{

//the feelers are contained in a std::vector, m Feelers

CreateFeelers();

double DistToThisIP 0.0;
double DistToClosestIP = MaxDouble;

//this will hold an index into the vector of walls
int ClosestWall = -1;

Vector2D SteeringForce,
point, //used for storing temporary info
ClosestPoint; //holds the closest intersection point

//examine each feeler in turn
for (int flr=0; flr<m Feelers.size(); ++flr)
{
//run through each wall checking for any intersection points
for (int w=0; w<walls.size(); ++w)
{
if (LineIntersection2D(m pVehicle->Pos(),
m Feelers[flr],
walls[w].From(),
walls[w].To(),
DistToThisIP,
point))
{
//is this the closest found so far? If so keep a record
if (DistToThisIP < DistToClosestIP)
{
DistToClosestIP = DistToThisIP;

ClosestWall = w;

ClosestPoint = point;
}
}
}//next wall

//if an intersection point has been detected, calculate a force
//that will direct the agent away
if (ClosestWall >=0)
{
//calculate by what distance the projected position of the agent
//will overshoot the wall
Vector2D OverShoot = m Feelers[flr] - ClosestPoint;

//create a force in the direction of the wall normal, with a

106 I Chapter 3

The Steering Behaviors

//magnitude of the overshoot
SteeringForce = walls[ClosestWall].Normal() * OverShoot.Length();
}

}//next feeler

return SteeringForce;
}
I have found the three feeler approach to give good results, but it’s possible
to achieve reasonable performance with just one feeler that continuously
scans left and right in front of the vehicle. It all depends on how many pro-
cessor cycles you have to play with and how accurate you require the
behavior to be.

3 NOTE If you are the impatient sort and have already looked at the source
code, you may have noticed that the final update function in the source is a little
more complicated than the basic update function listed earlier. This is because
many of the techniques | will be describing toward the end of this chapter
involve adding to, or even changing, this function. All the steering behaviors
listed over the next few pages, however, just use this basic skeleton.

Interpose

Interpose returns a steering force that moves a vehicle to the midpoint of
the imaginary line connecting two other agents (or points in space, or of an
agent and a point). A bodyguard taking a bullet for his employer or a soc-
cer player intercepting a pass are examples of this type of behavior.

Like pursuit, the vehicle must estimate where the two agents are going
to be located at a time 7 in the future. It
can then steer toward that position. But
how do we know what the best value of T
is to use? The answer is, we don’t, so we
make a calculated guess instead.

The first step in calculating this force
is to determine the midpoint of a line con-
necting the positions of the agents at the
current time step. The distance from this
point is computed and the value divided

by the vehicle’s maximum speed to give -'\7
" \\.

the time required to travel the distance.
This is our 7 value. See Figure 3.11, top.

Using 7, the agents’ positions are |
extrapolated into the future. The midpoint <.
of these predicted positions is determined
and finally the vehicle uses the arrive
behavior to steer toward that point. See ~ Figure 3.11. Predicting the inter-
Figure 3.11, bottom. pose point

How to Create Autonomously Moving Game Agents I 107

The Steering Behaviors

Here’s the listing:

Vector2D SteeringBehaviors::Interpose(const Vehicle* AgentA,
const Vehicle* AgentB)
{
//first we need to figure out where the two agents are going to be at
//time T in the future. This is approximated by determining the time
//taken to reach the midway point at the current time at max speed.
Vector2D MidPoint = (AgentA->Pos() + AgentB->Pos()) / 2.0;

double TimeToReachMidPoint = Vec2DDistance(m pVehicle->Pos(), MidPoint) /
m_pVehicle->MaxSpeed();

//now we have T, we assume that agent A and agent B will continue on a
//straight trajectory and extrapolate to get their future positions
Vector2D APos = AgentA->Pos() + AgentA->Velocity() * TimeToReachMidPoint;
Vector2D BPos = AgentB->Pos() + AgentB->Velocity() * TimeToReachMidPoint;

//calculate the midpoint of these predicted positions
MidPoint = (APos + BPos) / 2.0;

//then steer to arrive at it
return Arrive(MidPoint, fast);
}
Note that arrive is called with fast deceleration, allowing the vehicle to
reach the target position as quickly as possible.
The demo for this behavior shows a red vehicle attempting to interpose
itself between two blue wandering vehicles.

Hide
Hide attempts to position a vehicle so that an obstacle is always between
itself and the agent — the hunter — it’s trying to hide from. You can use
this behavior not only for situations where you require an NPC to hide
from the player — like find cover when fired at — but also in situations
where you would like an NPC to sneak up on a player. For example, you
can create an NPC capable of stalking a player through a gloomy forest,
darting from tree to tree. Creepy!

The method I prefer to effect this behavior is as follows:

Step One. For each of the obstacles, a hiding spot is determined. See Fig-
ure 3.12.

108 I Chapter 3

The Steering Behaviors

4

Hiding positions

Figure 3.12. Potential hiding spots

These are calculated by the method GetHidingPosition, which looks like
this:
SVector2D SteeringBehaviors::GetHidingPosition(const SVector2D& posOb,

const double radiusOb,
const SVector2D& posTarget)

//calculate how far away the agent is to be from the chosen obstacle's
//bounding radius
const double DistanceFromBoundary = 30.0;

double DistAway = radiusOb + DistanceFromBoundary;

//calculate the heading toward the object from the target
SVector2D ToOb = Vec2DNormalize(posOb - posTarget);

//scale it to size and add to the obstacle's position to get

//the hiding spot.

return (ToOb * DistAway) + posOb;
}
Given the position of a target and the position and radius of an obstacle,
this method calculates a position DistanceFromBoundary away from the
object’s bounding radius and directly opposite the target. It does this by
scaling the normalized “to obstacle” vector by the required distance away
from the center of the obstacle and then adding the result to the obstacle’s
position. The black dots in Figure 3.12 show the hiding spots returned by
this method for that example.

Step Two. The distance to each of these spots is determined. The vehicle
then uses the arrive behavior to steer toward the closest. If no appropriate
obstacles can be found, the vehicle evades the target.

How to Create Autonomously Moving Game Agents I 109

The Steering Behaviors

Here’s how it’s done in code:

SVector2D SteeringBehaviors::Hide(const Vehicle* target,
vector<BaseGameEntity*>& obstacles)

{
double DistToClosest = MaxDouble

SVector2D BestHidingSpot;

std: :vector<BaseGameEntity*>::iterator curOb = obstacles.begin();
while(curOb != obstacles.end())

{
//calculate the position of the hiding spot for this obstacle
SVector2D HidingSpot = GetHidingPosition((*curOb)->Pos(),
(*curOb) ->BRadius (),
target->Pos());

//work in distance-squared space to find the closest hiding
//spot to the agent
double dist = Vec2DDistanceSq(HidingSpot, m pVehicle->Pos());

if (dist < DistToClosest)

{
DistToClosest = dist;

BestHidingSpot = HidingSpot;
}

++curOb;
}//end while

//if no suitable obstacles found then evade the target
if (DistToClosest == MaxDouble)
{

return Evade(target);

}

//else use Arrive on the hiding spot
return Arrive(BestHidingSpot, fast);
}
The demo executable shows two vehicles hiding from a slower, wandering
vehicle.
There are a few modifications you can make to this algorithm:

1. You can allow the vehicle to hide only if the target is within its field
of view. This tends to produce unsatisfactory performance though,
because the vehicle starts to act like a child hiding from monsters
beneath the bed sheets. I’'m sure you remember the feeling — the “if
you can’t see it, then it can’t see you” effect. It might work when
you’re a kid, but this sort of behavior just makes the vehicle look
dumb. This can be countered slightly though by adding in a time
effect so that the vehicle will hide if the target is visible or if it has

110 I Chapter 3

The Steering Behaviors

seen the target within the last n seconds. This gives it a sort of mem-
ory and produces reasonable-looking behavior.

2. The same as above, but this time the vehicle only tries to hide if the
vehicle can see the target and the target can see the vehicle.

3. It might be desirable to produce a force that steers a vehicle so that it
always favors hiding positions that are to the side or rear of the pur-
suer. This can be achieved easily using your friend the dot product to
bias the distances returned from GetHidingPosition.

4. At the beginning of any of the methods a check can be made to test if
the target is within a “threat distance” before proceeding with any fur-
ther calculations. If the target is not a threat, then the method can
return immediately with a zero vector.

Path Following

Path following creates a steering force that moves a vehicle along a series
of waypoints forming a path. Sometimes paths have a start and end point,
and other times they loop back around on themselves forming a never-
ending, closed path. See Figure 3.13.

<\ 7 Normal Path
%

Start

.-'-""’-'-'-~

Looped Path
4-_._,_______

Figure 3.13. Different types of paths

You’ll find countless uses for using paths in your game. You can use them
to create agents that patrol important areas of a map, to enable units to tra-
verse difficult terrain, or to help racing cars navigate around a racetrack.
They are useful in most situations where an agent must visit a series of
checkpoints.

The paths the vehicles described in this chapter follow are described by
a std::1ist of Vector2Ds. In addition, the vehicle also needs to know what
the current waypoint is and whether it is a closed path or not to enable it to
take the appropriate action when it reaches the final waypoint. If it is a
closed path, it should head back to the first waypoint in the list and start all

How to Create Autonomously Moving Game Agents I 111

The Steering Behaviors

over again. If it’s an open path, the vehicle should just decelerate to a stop
(arrive) over the final waypoint.

Path is a class that looks after all these details. I’'m not going to list it
here but you may like to examine it in your IDE. You can find it in the file
Path.h.

The simplest way of following a path is to set the current waypoint to
the first in the list, steer toward that using seek until the vehicle comes
within a target distance of it, then grab the next waypoint and seek to that,
and so on, until the current waypoint is the last waypoint in the list. When
this happens the vehicle should either arrive at the current waypoint, or, if
the path is a closed loop, the current waypoint should be set to the first in
the list again, and the vehicle just keeps on seeking. Here’s the code for
path following:

SVector2D SteeringBehaviors::FollowPath()

{ //move to next target if close enough to current target (working in
//distance squared space)
if(Vec2DDistanceSq(m pPath->CurrentWaypoint(), m pVehicle->Pos()) <

m_WaypointSeekDistSq)

{
m_pPath->SetNextWaypoint();

}

if (!m_pPath->Finished())
{
return Seek(m_pPath->CurrentWaypoint());

}

else

{

return Arrive(m _pPath->CurrentWaypoint(), normal);

}
}
You have to be very careful when implementing path following. The
behavior is very sensitive to the max steering force/max speed ratio and
also the variable m WaypointSeekDistSq. The demo executable for this
behavior allows you to alter these values to see what effect they have. As
you will discover, it’s easy to create behavior that is sloppy. How tight you
need the path following to be depends entirely on your game environment.
If you have a game with lots of gloomy tight corridors, then you’re (proba-
bly) going to need stricter path following than a game set in the Sahara.

Offset Pursvit

Offset pursuit calculates the steering force required to keep a vehicle posi-
tioned at a specified offset from a target vehicle. This is particularly useful

for creating formations. When you watch an air display, such as the British
Red Arrows, many of the spectacular maneuvers require that the aircraft

112 I Chapter 3

The Steering Behaviors

remain in the same relative positions to the lead aircraft. See Figure 3.14.
This is the sort of behavior we want to emulate.

X

B

R

\

et
A

>
AN >
&

Figure 3.14. Offset pursuit. The leader is shown in dark gray.

The offset is always defined in “leader” space, so the first thing to do when
calculating this steering force is to determine the offset’s position in world

space. After that the function proceeds similar to pursuit: A future position
for the offset is predicted and the vehicle arrives at that position.

SVector2D SteeringBehaviors::0ffsetPursuit(const Vehicle* Tleader,
const SVector2D offset)

{

//calculate the offset's position in world space

SVector2D WorldOffsetPos = PointToWorldSpace(offset,
leader->Heading(),
leader->Side(),
leader->Pos());

SVector2D ToOffset = WorldOffsetPos - m pVehicle->Pos();

//the look-ahead time is proportional to the distance between the leader
//and the pursuer; and is inversely proportional to the sum of both
//agents' velocities
double LookAheadTime = ToOffset.Length() /

(m_pVehicle->MaxSpeed() + leader->Speed());

//now arrive at the predicted future position of the offset
return Arrive(WorldOffsetPos + leader->Velocity() * LookAheadTime, fast);

}

Arrive is used instead of seek as it gives far smoother motion and isn’t so
reliant on the max speed and max force settings of the vehicles. Seek can
give some rather bizarre results at times — orderly formations can turn into
what looks like a swarm of bees attacking the formation leader!

How to Create Autonomously Moving Game Agents I 113

Group Behaviors

Offset pursuit is useful for all kinds of situations. Here are a few:
B Marking an opponent in a sports simulation

B Docking with a spaceship

B Shadowing an aircraft

B Implementing battle formations

The demo executable for offset pursuit shows three smaller vehicles
attempting to remain at offsets to the larger lead vehicle. The lead vehicle
is using arrive to follow the crosshair (click the left mouse button to posi-
tion the crosshair).

Group Behaviors

Group behaviors are steering behaviors that take into consideration some
or all of the other vehicles in the game world. The flocking behavior I
described at the beginning of this chapter is a good example of a group
behavior. In fact, flocking is a combination of three group behaviors —
cohesion, separation, and alignment — all working together. We’ll take a
look at these specific behaviors in detail shortly, but first let me show you
how a group is defined.

To determine the steering force for a group behavior, a vehicle will con-
sider all other vehicles within a circular area of predefined size — known
as the neighborhood radius — centered on the vehicle. Figure 3.15 should
help clarify. The white vehicle is the steering agent and the gray circle
shows the extent of its neighborhood. Consequently, all the vehicles shown
in black are considered to be its neighbors and the vehicles shown in gray

are not.
I Neighberhood

v

4 p

Figure 3.15. The neighborhood radius

Before a steering force can be calculated, a vehicle’s neighbors must be
determined and either stored in a container or tagged ready for processing.
In the demo code for this chapter, the neighboring vehicles are tagged

114 I Chapter 3

Group Behaviors

using the BaseGameEntity::Tag method. This is done by the TagNeighbors
function template. Here’s the code:

template <class T, class conT>
void TagNeighbors(const T* entity, conT& ContainerOfEntities, double radius)
{
//iterate through all entities checking for range
for (typename conT::iterator curEntity = ContainerOfEntities.begin();
curEntity != ContainerOfEntities.end();
++curEntity)

//first clear any current tag
(*curEntity)->UnTag();

Vector2D to = (*curEntity)->Pos() - entity->Pos();

//the bounding radius of the other is taken into account by adding it
//to the range
double range = radius + (*curEntity)->BRadius();

//if entity within range, tag for further consideration. (working in
//distance-squared space to avoid sqrts)
if (((*curEntity) != entity) && (to.LengthSq() < range*range))
{
(*curEntity)->Tag();
}

}//next entity
}

Most of the group behaviors utilize a similar neighborhood radius, so we
can save a little time by calling this method only once prior to a call to any
of the group behaviors.

if (On(separation) || On(alignment) || On(cohesion))
{

TagNeighbors(m pVehicle, m pVehicle->World()->Agents(), ViewDistance);
}

3L TIP You can pep up the realism slightly for group behaviors by adding a
field-of-view constraint to your agent. For example you can restrict the vehicles
included in the neighboring region by only tagging those that are within, say,
270 degrees of the heading of the steering agent. You can implement this easily
by testing against the dot product of the steering agent’s heading and the vector
to the potential neighbor.

It's even possible to adjust an agent’s FOV dynamically and make it into a
feature of the Al. For example, in a war game a soldier’s FOV may be detrimen-
tally affected by its fatigue, thereby affecting its ability to perceive its
environment. | don’t think this idea has been used in a commercial game but
it's certainly food for thought.

Now that you know how a group is defined let’s take a look at some of the
behaviors that operate on them.

How to Create Autonomously Moving Game Agents I 115

Group Behaviors

Separation creates a force that steers a vehicle away from those in its
neighborhood region. When applied to a number of vehicles, they will
spread out, trying to maximize their distance from every other vehicle. See
Figure 3.16, top.

<
4
b > L
A v *
Separation ‘
< | 4
4 v
Alignment
! 4
L » "’f;w‘.‘
A 4
Cohesion

Figure 3.16. The separation, alignment, and cohesion group behaviors

This is an easy behavior to implement. Prior to calling separation, all the
agents situated within a vehicle’s neighborhood are tagged. Separation
then iterates through the tagged vehicles, examining each one. The vector
to each vehicle under consideration is normalized, divided by the distance
to the neighbor, and added to the steering force.

Vector2D SteeringBehaviors::Separation(const std::vector<Vehicle*>& neighbors)

{

Vector2D SteeringForce;

for (int a=0; a<neighbors.size(); ++a)
{
//make sure this agent isn't included in the calculations and that
//the agent being examined is close enough.
if((neighbors[a] != m pVehicle) && neighbors[a]->IsTagged())
{
Vector2D ToAgent = m_pVehicle->Pos() - neighbors[a]->Pos();

//scale the force inversely proportional to the agent's distance
//from its neighbor.
SteeringForce += Vec2DNormalize(ToAgent)/ToAgent.Length();

116 I Chapter 3

Group Behaviors

}
}

return SteeringForce;

}

Alignment

Alignment attempts to keep a vehicle’s heading aligned with its neighbors.
See Figure 3.16, middle. The force is calculated by first iterating through
all the neighbors and averaging their heading vectors. This value is the
desired heading, so we just subtract the vehicle’s heading to get the steer-
ing force.

Vector2D SteeringBehaviors::Alignment(const std::vector<Vehicle*>& neighbors)
{

//used to record the average heading of the neighbors

Vector2D AverageHeading;

//used to count the number of vehicles in the neighborhood
int NeighborCount = 0

//iterate through all the tagged vehicles and sum their heading vectors
for (int a=0; a<neighbors.size(); ++a)
{
//make sure *this* agent isn't included in the calculations and that
//the agent being examined is close enough
if((neighbors[a] != m pVehicle) && neighbors[a]->IsTagged)
{

AverageHeading += neighbors[a]->Heading();

++NeighborCount;
}
}

//if the neighborhood contained one or more vehicles, average their
//heading vectors.
if (NeighborCount > 0)
{
AverageHeading /= (double)NeighborCount;

AverageHeading -= m _pVehicle->Heading();

}

return AverageHeading;

}

Cars moving along roads demonstrate alignment type behavior. They also
demonstrate separation as they try to keep a minimum distance from each
other.

How to Create Autonomously Moving Game Agents I 117

Group Behaviors

Cohesion

Cohesion produces a steering force that moves a vehicle toward the center
of mass of its neighbors. See Figure 3.16, bottom. A sheep running after its
flock is demonstrating cohesive behavior. Use this force to keep a group of
vehicles together.

This method proceeds similarly to the last, except this time we calculate

the average of the position vectors of the neighbors. This gives us the cen-
ter of mass of the neighbors — the place the vehicle wants to get to — so it
seeks to that position.

Vector2D SteeringBehaviors::Cohesion(const std::vector<Vehicle*>& neighbors)

{

}

//first find the center of mass of all the agents
Vector2D CenterOfMass, SteeringForce;

int NeighborCount = 0;

//iterate through the neighbors and sum up all the position vectors
for (int a=0; a<neighbors.size(); ++a)
{
//make sure *this* agent isn't included in the calculations and that
//the agent being examined is a neighbor
if((neighbors[a] != m pVehicle) && neighbors[a]->IsTagged())
{

CenterOfMass += neighbors[a]->Pos();

++NeighborCount;
}
}

if (NeighborCount > 0)

{
//the center of mass is the average of the sum of positions
CenterOfMass /= (double)NeighborCount;

//now seek toward that position
SteeringForce = Seek(CenterOfMass);

}

return SteeringForce;

You might be a little disappointed that I haven’t included demos for separa-
tion, cohesion, and alignment. Well, there’s a reason for that: Like Itchy
and Scratchy, they are not particularly interesting on their own; they are
much better appreciated when they are combined, which takes us nicely
into flocking.

118 I Chapter 3

Group Behaviors

Flocking

Flocking is the behavior I mentioned at the beginning of this chapter —
the one I saw on the BBC documentary. It’s a beautiful demonstration of
what has become known as emergent behavior. Emergent behavior is
behavior that looks complex and/or purposeful to the observer but is actu-
ally derived spontaneously from fairly simple rules. The lower-level
entities following the rules have no idea of the bigger picture; they are only
aware of themselves and maybe a few of their neighbors.

One good example of emergence is an experiment undertaken by Chris
Melhuish and Owen Holland at the University of the West of England.
Melhuish and Holland are interested in stigmergy, the field of science
partly occupied with emergent behavior in social insects like ants, termites,
and bees. They became interested in the way ants gather their dead, eggs,
and other material into piles, and specifically the ant Leptothorax, because
it lives among the cracks in rocks and operates, for all intents and purposes,
in 2D... just like a wheeled robot. When observing Leptothorax in the lab-
oratory, bustling about in their simulated crack — two sheets of glass —
they noticed the ants had a tendency to push small granules of rock mate-
rial together into clusters and wondered if they could design robots capable
of doing the same.

After a little sweat and toil they managed to create robots operating on
very simple rules, capable of gathering randomly scattered Frisbees into
clusters. The robots had no knowledge of each other and didn’t know what
a cluster, or even a Frisbee, was. They couldn’t even see the Frisbees. They
could only push Frisbees using a U-shaped arm situated in front of them.

So how does the clustering behavior happen? Well, when the robots are
switched on, they wander about until they bump into a Frisbee. A single
Frisbee doesn’t change a robot’s behavior. However, when a Frisbee-
pushing robot bumps into a second Frisbee, it immediately leaves the two
Frisbees where they are, backs up a little, rotates by a random amount, and
then wanders off again. Using just these simple rules and a little time, a
few robots will push all the Frisbees into a few large clusters. Just like the
ants.

Anyhow, let me abandon all this talk of Frisbees and get back to the
flocking. Flocking, as originally described by Reynolds, is a combination
of the three previously described group behaviors: separation, alignment,
and cohesion. This works okay but, because of the limited view distance of
a vehicle, it’s possible for an agent to become isolated from its flock. If this
happens, it will just sit still and do nothing. To prevent this from happen-
ing, I prefer to add in the wander behavior too. This way, all the agents
keep moving all the time.

Tweaking the magnitudes of each of the contributing behaviors will give
you different effects such as shoals of fish, loose swirling flocks of birds,

How to Create Autonomously Moving Game Agents I 119

Combining Steering Behaviors

or bustling close-knit herds of sheep. I’ve even managed to produce dense
flocks of hundreds of tiny particles that are reminiscent of jellyfish. As this
behavior is better seen than described, I recommend you open up the demo
executable and play around for a while. Beware though — flocking is
addictive! (Maybe that’s why some animals like to do it so much...) You
can adjust the influence of each behavior with the “A/Z,” “S/X,” and
“D/C” keys. In addition you can view the neighbors of one of the agents by
pressing the “G” key.

3 INTERESTING FACT Steering behaviors are often used to create special
effects for films. The first film to use the flocking behavior was Batman Returns,
where you can see flocks of bats and herds of penguins. The most recent films
to use steering behaviors are The Lord of the Rings trilogy, directed by Peter
Jackson. The movement of the orc armies in those films is created using steering
behaviors via a piece of software called Massive.
Now that you’ve seen the benefits, let’s take a look at exactly how steering

behaviors can be combined.

Combining Steering Behaviors

Often you will be using a combination of steering behaviors to get the
behavior you desire. Very rarely will you only use one behavior in isola-
tion. For example, you might like to implement an FPS bot that will run
from A to B (path following) while avoiding any other bots (separation)
and walls (wall avoidance) that may try to impede its progress (see Chap-
ter 7, “Raven: An Overview”). Or you might want the sheep you’ve
implemented as a food resource in your RTS game to flock together (flock-
ing) while simultaneously wandering around the environment (wander),
avoiding trees (obstacle avoidance), and scattering (evade) whenever a
human or dog comes near.

All the steering behaviors described in this chapter are methods of one
class: SteeringBehaviors. A Vehicle owns an instance of this class and
activates/deactivates the various behaviors by switching them on and off
using accessor methods. For example, to set up one of the sheep for the sit-
uation described in the previous paragraph, you may do something like this
(assuming a dog-like agent has already been created):

Vehicle* Sheep = new Vehicle();

Sheep->Steering()->SeparationOn();
Sheep->Steering()->AlignmentOn() ;
Sheep->Steering()->CohesionOn();
Sheep->Steering()->0bstacleAvoidanceOn();
Sheep->Steering () ->Wander0On() ;
Sheep->Steering()->EvadeOn(Dog) ;

And from now on the sheep will look after itself! (You may have to shear it
in the summer though.)

120 I Chapter 3

Combining Steering Behaviors

3 NOTE Because of the number of demos I've created for this chapter, the
SteeringBehaviors class is enormous and contains much more code than
would ever get used in a single project. Very rarely will you use more than a
handful of behaviors for each game you design. Therefore, whenever | use
steering behaviors in later chapters, | will use a cut-down version of the
SteeringBehaviors class, custom made for the task at hand. | suggest you do
the same. (Another approach is to define a separate class for each behavior and
add them to a std::container as you need them.)

Inside the Vehicle: :Update method you will see this line:

SVector2D SteeringForce = m pSteering->Calculate();

This call determines the resultant force from all the active behaviors. This
is not simply a sum of all the steering forces though. Don’t forget that the
vehicle is constrained by a maximum steering force, so this sum must be
truncated in some way to make sure its magnitude never exceeds the limit.
There are a number of ways you can do this. It’s impossible to say if one
method is better than another because it depends on what behaviors you
need to work with and what CPU resources you have to spare. They all
have their pros and cons. I strongly recommend you experiment for
yourself.

Weighted Truncated Sum

The simplest approach is to multiply each steering behavior with a weight,
sum them all together, and then truncate the result to the maximum allow-
able steering force. Like this:

SVector2D Calculate()
{

SVector2D SteeringForce;

SteeringForce += Wander() * dWanderAmount ;
SteeringForce += ObstacleAvoidance() * dObstacleAvoidanceAmount;
SteeringForce += Separation() * dSeparationAmount;

return SteeringForce.Truncate(MAX STEERING FORCE);
}
This can work fine, but the trade-off is that it comes with a few problems.
The first problem is that because every active behavior is calculated every
time step, this is a very costly method to process. Additionally, the behav-
ior weights can be very difficult to tweak. (Did I say difficult? Sorry, I
mean very difficult! ©) The biggest problem, however, happens with con-
flicting forces — a common scenario is where a vehicle is backed up
against a wall by several other vehicles. In this example, the separating
forces from the neighboring vehicles can be greater than the repulsive force
from the wall and the vehicle can end up being pushed through the wall
boundary. This is almost certainly not going to be favorable. Sure you can
make the weights for the wall avoidance huge, but then your vehicle may
behave strangely next time it finds itself alone and next to a wall. Like I

How to Create Autonomously Moving Game Agents I 121

Combining Steering Behaviors

mentioned, tweaking the parameters for a weighted sum can be quite a jug-
gling act!

Weighted Truncated Running Sum with Prioritization

What a mouthful! This is the method used to determine the steering forces
for all the examples used in this book, chosen mainly because it gives a
good compromise between speed and accuracy. This method involves cal-
culating a prioritized weighted running total that is truncated after the
addition of each force to make sure the magnitude of the steering force
does not exceed the maximum available.

The steering behaviors are prioritized since some behaviors can be con-
sidered much more important than others. Let’s say a vehicle is using the
behaviors separation, alignment, cohesion, wall avoidance, and obstacle
avoidance. The wall avoidance and obstacle avoidance behaviors should
be given priority over the others as the vehicle should try not to intersect a
wall or an obstacle — it’s more important for a vehicle to avoid a wall than
it is for it to align itself with another vehicle. If what it takes to avoid a wall
is higgledy-piggledy alignment, then that’s probably going to be okay and
certainly preferable to colliding with a wall. It’s also more important for
vehicles to maintain some separation from each other than it is for them to
align. But it’s probably less important for vehicles to maintain separation
than avoid walls. See where I’'m going with this? Each behavior is priori-
tized and processed in order. The behaviors with the highest priority are
processed first, the ones with the lowest, last.

In addition to the prioritization, this method iterates through every active
behavior, summing up the forces (with weighting) as it goes. Immediately
after the calculation of each new behavior, the resultant force, together with
the running total, is dispatched to a method called AccumulateForce. This
function first determines how much of the maximum available steering
force is remaining, and then one of the following happens:

B [f there is a surplus remaining, the new force is added to the running

total.

B [f there is no surplus remaining, the method returns false. When this
happens, Calculate returns the current value of m_vSteeringForce
immediately and without considering any further active behaviors.

B [f there is still some steering force available, but the magnitude
remaining is less than the magnitude of the new force, the new force
is truncated to the remaining magnitude before it is added.

Here is a snippet of code from the SteeringBehaviors::Calculate method
to help you better understand what I’'m talking about.

SVector2D SteeringBehaviors::Calculate()

{

//reset the force.

122

}

Chapter 3

Combining Steering Behaviors

m vSteeringForce.Zero();

SVector2D force;
if (On(wall_avoidance))
{
force = WallAvoidance(m pVehicle->World()->Walls()) *
m_dMultWallAvoidance;

if (!AccumulateForce(m vSteeringForce, force)) return m vSteeringForce;

}

if (On(obstacle avoidance))
{
force = ObstacleAvoidance(m pVehicle->World()->0Obstacles()) *
m_dMultObstacleAvoidance;

if (!AccumulateForce(m vSteeringForce, force)) return m vSteeringForce;

}

if (On(separation))
{
force = Separation(m _pVehicle->World()->Agents()) *
m_dMultSeparation;

if (!AccumulateForce(m vSteeringForce, force)) return m vSteeringForce;

}

/* EXTRANEOUS STEERING FORCES OMITTED */
return m_vSteeringForce;

This doesn’t show all the steering forces, just a few so you can get the gen-
eral idea. To see the list of all behaviors and the order of their
prioritization, check out the SteeringBehaviors::Calculate method in your
IDE. The AccumulateForce method may also be better explained in code.
Take your time looking over this method and make sure you understand
what it’s doing.

bool SteeringBehaviors::AccumulateForce(Vector2D &RunningTot,

{

Vector2D ForceToAdd)
//calculate how much steering force the vehicle has used so far
double MagnitudeSoFar = RunningTot.Length();

//calculate how much steering force remains to be used by this vehicle
double MagnitudeRemaining = m pVehicle->MaxForce() - MagnitudeSoFar;

//return false if there is no more force left to use
if (MagnitudeRemaining <= 0.0) return false;

//calculate the magnitude of the force we want to add
double MagnitudeToAdd = ForceToAdd.Length();

//if the magnitude of the sum of ForceToAdd and the running total

How to Create Autonomously Moving Game Agents I 123

Combining Steering Behaviors

//does not exceed the maximum force available to this vehicle, just
//add together. Otherwise add as much of the ForceToAdd vector as
//possible without going over the max.

if (MagnitudeToAdd < MagnitudeRemaining)

{
RunningTot += ForceToAdd;

}

else

{

//add it to the steering force
RunningTot += (Vec2DNormalize(ForceToAdd) * MagnitudeRemaining);

}

return true;

Prioritized Dithering

In his paper, Reynolds suggests a method of force combination he calls pri-
oritized dithering. When used, this method checks to see if the first priority
behavior is going to be evaluated this simulation step, dependent on a pre-
set probability. If it is and the result is non-zero, the method returns the
calculated force and no other active behaviors are considered. If the result
is zero or if that behavior has been skipped over due to its probability of
being evaluated, the next priority behavior is considered and so on, for all
the active behaviors. This is a little snippet of code to help you understand
the concept:

SVector2D SteeringBehaviors::CalculateDithered()
{

//reset the steering force
m_vSteeringForce.Zero();

//the behavior probabilities

const double prWallAvoidance =
const double prObstacleAvoidance =
const double prSeparation =
const double prAlignment =
const double prCohesion =
const double prWander =

O O O O o o
(o BN S, IS, B oo JNeale)

if (On(wall_avoidance) && RandFloat() > prWallAvoidance)
{

m_vSteeringForce = WallAvoidance(m pVehicle->World()->Walls()) *
m_dWeightWallAvoidance / priallAvoidance;

if (!m_vSteeringForce.IsZero())
{

m_vSteeringForce.Truncate(m pVehicle->MaxForce());

return m_vSteeringForce;

124 I Chapter 3

Ensuring Zero Overlap

}
}

if (On(obstacle avoidance) && RandFloat() > prObstacleAvoidance)
{

m_vSteeringForce += ObstacleAvoidance(m pVehicle->World()->Obstacles()) *
m_dWeightObstacleAvoidance / prObstacleAvoidance;

if (!m_vSteeringForce.IsZero())

{

m_vSteeringForce.Truncate(m pVehicle->MaxForce());

return m_vSteeringForce;
}
}

if (On(separation) && RandFloat() > prSeparation)
{

m vSteeringForce += Separation(m pVehicle->World()->Agents()) *
m_dWeightSeparation / prSeparation;

if (!m_vSteeringForce.IsZero())

{

m_vSteeringForce.Truncate(m pVehicle->MaxForce());

return m_vSteeringForce;
}
}

/* ETC ETC */

This method requires far less CPU time than the others, but at the cost of
accuracy. Additionally, you will have to tweak the probabilities a fair bit
before you get the behavior just as you want it. Nevertheless, if you are low
on resources and it’s not imperative your agent’s movements are precise,
this method is certainly worth experimenting with. You can see the effect
of each of the three summing methods I’ve described by running the demo
Big Shoal/Big Shoal.exe. This demonstration shows a shoal of 300 small
vehicles (think fish) being wary of a single larger wandering vehicle (think
shark). You can switch between the various summing methods to observe
how they affect the frame rate and accuracy of the behaviors. You can also
add walls or obstacles to the environment to see how the agents handle
those using the different summing methods.

Ensuring Zero Overlap

Often when combining behaviors, the vehicles will occasionally overlap
one another. The separation steering force alone is not enough to prevent
this from happening. Most of the time this is okay — a little overlap will
go unnoticed by the player — but sometimes it’s necessary to ensure that
whatever happens, vehicles cannot pass through one another’s bounding

How to Create Autonomously Moving Game Agents I 125

Ensuring Zero Overlap

radii. This can be prevented with the use of a non-penetration constraint.
This is a function that tests for overlap. If there is any, the vehicles are
moved apart in a direction away from the point of contact (and without
regard to their mass, velocity, or any other physical constraints). See Figure
3.17.

AR/ ,@
K/J </

Figure 3.17. The non-penetration constraint in action

The constraint is implemented as a function template and can be used for
any objects derived from a BaseGameEntity. You can find the code in the
EntityFunctionTemplates.h header and it looks like this:

template <class T, class conT>
void EnforceNonPenetrationConstraint(const T& entity,
const conT& ContainerOfEntities)
{
//iterate through all entities checking for any overlap of bounding radii
for (typename conT::const_iterator curEntity =ContainerOfEntities.begin();
curEntity != ContainerOfEntities.end();
++curkntity)

//make sure we don't check against the individual
if (*curEntity == entity) continue;

//calculate the distance between the positions of the entities
Vector2D ToEntity = entity->Pos() - (*curEntity)->Pos();

double DistFromEachOther = ToEntity.Length();

//if this distance is smaller than the sum of their radii then this

//entity must be moved away in the direction parallel to the

//ToEntity vector

double AmountOfOverLap = (*curEntity)->BRadius() + entity->BRadius() -

DistFromEachOther;

if (AmountOfOverLap >= 0)

{
//move the entity a distance away equivalent to the amount of overlap.
entity->SetPos(entity->Pos() + (ToEntity/DistFromEachOther) *

AmountOfOverLap) ;
}
}//next entity
}

126 I Chapter 3

Coping with Lots of Vehicles: Spatial Partitioning

You can watch the non-penetration constraint in action by running the
craftily named Non Penetration Constraint.exe demo. Try altering the
amount of separation to see what effect it has on the vehicles.

3 NOTE For large numbers of densely packed vehicles such as you would see
in big congested flocks, the non-penetration constraint will fail occasionally and
there will be some overlap. Fortunately, this is not usually a problem as the
overlap is difficult to see with the human eye.

Coping with Lots of Vehicles: Spatial Partitioning

When you have many interacting vehicles, it becomes increasingly ineffi-
cient to tag neighboring entities by comparing each one with every other
one. In algorithm theory, something called Big O notation is used to
express the relationship of time taken to the number of objects being pro-
cessed. The all-pairs method we have been using to search for neighboring
vehicles can be said to work in O(x?) time. This means that as the number
of vehicles grows, the time taken to compare them increases in proportion
to the square of their number. You can easily see how the time taken will
escalate rapidly. If processing one object takes 10 seconds, then processing
10 objects will take 100 seconds. Not good, if you want a flock of several
hundred birds!

Large speed improvements can be made by partitioning the world space.
There are many different techniques to choose from. You’ve probably
heard of many of them — BSP trees, quad-trees, oct-trees, etc. — and may
even have used them, in which case you’ll be familiar with their advan-
tages. The method I use here is called cell-space partitioning, sometimes
called bin-space partitioning (that’s not short for binary space partitioning
by the way; in this case “bin” really means bin). With this method, 2D
space is divided up into a number of cells (or bins). Each cell contains a list
of pointers to all the entities it contains. This is updated (in an entity’s
update method) every time an entity changes position. If an entity moves
into a new cell, it is removed from its old cell’s list and added to the current
one.

This way, instead of having to test every vehicle against every other, we
can just determine which cells lie within a vehicle’s neighborhood and test
against the vehicles contained in those cells. Here is how it’s done step by
step:

1. First of all, an entity’s bounding radius is approximated with a box.
See Figure 3.18.

2. The cells that intersect with this box are tested to see if they contain
any entities.

How to Create Autonomously Moving Game Agents I 127

Coping with Lots of Vehicles: Spatial Partitioning

3. All the entities contained within the cells from step 2 are examined to
see if they are positioned within the neighborhood radius. If they are,
they are added to the neighborhood list.

Vo

[} .
/

£

A

Figure 3.18. Cell-space partitioning. The circled vehicles are those within the white
vehicle’s neighborhood region.

3 3D NOTE If you are working in 3D, simply make the cells cubes and use a
sphere as the neighborhood region.
If entities maintain a minimum separation distance from each other, then
the number of entities each cell can contain is finite and cell space parti-
tioning will operate in O(n) time. This means the time taken to process the
algorithm is directly proportional to the number of objects it’s operating on.
If the number of objects is doubled, the time taken is only doubled and not
squared as with O(n”) algorithms. This implies the advantage you gain
using space partitioning over the standard all-pairs technique is dependent
on how many agents you have moving around. For small numbers, say less
than fifty, there is no real advantage; but for large numbers, cell-space par-
titioning can be much faster. Even if the entities do not maintain a
minimum separation distance and there is occasional overlap, on average
the algorithm will perform much better than O(n?).

I have implemented cell-space partitioning as a class template:
CellSpacePartition. This class uses another class template, Ce11, to define
the cell structure.
template <class entity>

struct Cell

{
//all the entities inhabiting this cell
std::Tist<entity> Members;

//the cell's bounding box (it's inverted because the Windows' default
//coordinate system has a y-axis that increases as it descends)
InvertedAABBox2D BBox;

128 I Chapter 3

Coping with Lots of Vehicles: Spatial Partitioning

Cell(Vector2D topleft,
Vector2D botright):BBox (InvertedAABBox2D(topleft, botright))

{}
bg
A Cell is a very simple structure. It contains an instance of a bounding box
class, which defines its extents, and a list of pointers to all those entities
that are situated within this bounding area.

The Cel1SpacePartition class definition is as follows:

template <class entity>
class CellSpacePartition

{

private:

//the required number of cells in the space
std::vector<Cell<entity> > m Cells;

//this is used to store any valid neighbors when an agent searches
//its neighboring space
std::vector<entity> m_Neighbors;

//this iterator will be used by the methods next and begin to traverse
//through the above vector of neighbors
std::vector<entity>::iterator m_curNeighbor;

//the width and height of the world space the entities inhabit
double m_dSpaceWidth;
double m dSpaceHeight;

//the number of cells the space is going to be divided into
int m_iNumCel1sX;
int m_iNumCellsY;

double m dCellSizeX;
double m dCellSizeY;

//given a position in the game space, this method determines the
//relevant cell's index
inline int PositionToIndex(const Vector2D& pos)const;

public:
CellSpacePartition(double width, //width of the environment
double height, //height ...
int cellsX, //number of cells horizontally
int cellsY, //number of cells vertically

int MaxEntitys); //maximum number of entities to add

//adds entities to the class by allocating them to the appropriate cell
inline void AddEntity(const entity& ent);

//update an entity's cell by calling this from your entity's Update method

How to Create Autonomously Moving Game Agents I 129

Coping with Lots of Vehicles: Spatial Partitioning

inline void UpdateEntity(const entity& ent, Vector2D 01dPos);

//this method calculates all a target's neighbors and stores them in
//the neighbor vector. After you have called this method use the begin,
//next, and end methods to iterate through the vector.

inline void CalculateNeighbors(Vector2D TargetPos, double QueryRadius);

//returns a reference to the entity at the front of the neighbor vector
inline entity& begin();

//this returns the next entity in the neighbor vector
inline entity& next();

//returns true if the end of the vector is found (a zero value marks the end)
inline bool end();

//empties the cells of entities

void EmptyCells();
b
The class initializes m_Neighbors to have a maximum size equal to the total
number of entities in the world. The iterator methods begin, next, and end
and the CalculateNeighbors method manually keep track of valid elements
inside this vector. This is to prevent the slowdown associated with the
memory allocation and deallocation costs of repeatedly calling std: :vec-
tor::clear() and std::vector::push back() many times a second. Instead,
previous values are simply overwritten and a zero value is used to mark the
end of the vector.

Here is the listing for the CalculateNeighbors method. Notice how it fol-

lows the steps described earlier to determine a vehicle’s neighbors.

template<class entity>
void CellSpacePartition<entity>::CalculateNeighbors(Vector2D TargetPos,
double QueryRadius)
{
//create an iterator and set it to the beginning of the neighbor Tist
std::1ist<entity>::iterator curNbor = m Neighbors.begin();

//create the query box that is the bounding box of the target's query

//area

InvertedAABBox2D QueryBox(TargetPos - Vector2D(QueryRadius, QueryRadius),
TargetPos + Vector2D(QueryRadius, QueryRadius));

//iterate through each cell and test to see if its bounding box overlaps
//with the query box. If it does and it also contains entities then
//make further proximity tests.
std::vector<Cell<entity> >::iterator curCell;
for (curCell=m Cells.begin(); curCell!=m Cells.end(); ++curCell)
{
//test to see if this cell contains members and if it overlaps the
//query box
if (curCell->pBBox->isOverlappedWith(QueryBox) &&
IcurCell->Members.empty())

{

130 I Chapter 3

Smoothing

//add any entities found within query radius to the neighbor 1ist
std::1ist<entity>::iterator it = curCell->Members.begin();
for (it; it!=curCell->Members.end(); ++it)
{

if (Vec2DDistanceSq((*it)->Pos(), TargetPos) <

QueryRadius*QueryRadius)
{
*curNbor++ = *it;

}

}
}
}//next cell

//mark the end of the 1ist with a zero.

*curNbor = 0;
}
You can find the full implementation of this class in Common/misc/
CellSpacePartition.h. I have added cell space partitioning to the demo
Big_Shoal.exe. It’s now called Another Big Shoal.exe. You can toggle the
partitioning on and off and see the difference it makes to the frame rate.
There is also an option to view how the space is divided (default is 7 x 7
cells) and to see the query box and neighborhood radius of one of the
agents.

3:@ TIP When applying the steering force to some vehicle types it can be useful to
resolve the steering vector into forward and side components. For a car, for
example, this would be analogous to creating the throttle and steering forces,
respectively. To this end, you will find the methods ForwardComponent and
SideComponent in the 2D SteeringBehaviors class used in this chapter’s
accompanying project file.

Smoothing

When playing with the demos, you may have noticed that sometimes a
vehicle can twitch or jitter slightly when it finds itself in a situation with
conflicting responses from different behaviors. For example, if you run one
of the Big Shoal demos and switch the obstacles and walls on, you will see
that sometimes when the “shark™ agent approaches a wall or an obstacle,
its nose shudders or trembles a little. This is because in one update step the
obstacle avoidance behavior returns a steering force away from the obsta-
cle but in the next update step there is no threat from the obstacle, so one of
the agent’s other active behaviors may return a steering force pulling its
heading back toward the obstruction, and so on, creating unwanted oscilla-
tions in the vehicle’s heading. Figure 3.19 shows how these oscillations can
be started with just two conflicting behaviors: obstacle avoidance and
seek.

How to Create Autonomously Moving Game Agents I 131

Smoothing

Steering Force -
i
& (\ E Seek Target

R + SeskTarget

t=2

Ay
b = \ @ Seek Targat

t=3

Figure 3.19. Conflicting behaviors can produce “judder.”

This shakiness is usually not too noticeable. Occasionally though, there
will be times when it will be preferable for the shaking not to occur. So
how do you stop it? Well, as the vehicle’s velocity is always aligned with
its heading, stopping the shaking is not trivial. To negotiate the scenario
given in Figure 3.19 successfully and smoothly, the vehicle needs to be
able to foresee the conflict ahead of time and change behavior accordingly.
Although this can be done, the solution can require a lot of calculation and
additional baggage. A simple alternative suggested by Robin Green of
Sony is to decouple the heading from the velocity vector and to average its
value over several update steps. While this solution isn’t perfect, it pro-
duces adequate results at low cost (relative to any other solution I know
about). To facilitate this, another member variable is added to the Vehicle
class: m_vSmoothedHeading. This vector records the average of a vehicle’s
heading vector and is updated each simulation step (in Vehicle::Update),
using a call to an instance of a Smoother — a class that samples a value
over a range and returns the average. This is what the call looks like:

if (SmoothingIsOn())

{
m_vSmoothedHeading = m pHeadingSmoother->Update(Heading());

}
This smoothed heading vector is used by the world transform function in
the render call to transform a vehicle’s vertices to the screen. The number
of update steps the Smoother uses to calculate the average is set in

132

I Chapter 3

Smoothing

params.ini and is assigned to the variable NumSamplesForSmoothing. When
adjusting this value, you should try to keep it as low as possible to avoid
unnecessary calculations and memory use. Using very high values pro-
duces weird behavior. Try using a value of 100 for NumSamplesForSmoothing
and you’ll see what I mean. It reminds me of a quote from The Hitch-
hiker’s Guide to the Galaxy:

“You know, ” said Arthur with a slight cough, “if this is
Southend, there's something very odd about it...”

“You mean the way the sea stays steady and the buildings keep
washing up and down?” said Ford. “Yes, I thought that was odd too.”

You can see the difference smoothing makes if you run the Another Big
Shoal with Smoothing executable.

Practice Makes Perfect

In his paper “Steering Behaviors for Autonomous Characters,” Reynolds
describes a behavior called leader following. Leader following is a behav-
ior that creates a steering force to keep multiple vehicles moving in single
file behind a leader vehicle. If you’ve ever watched goslings follow their
mother you’ll know what [mean. To create this sort of behavior the follow-
ers must arrive at an offset position behind the vehicle in front while using
separation to remain apart from one another. See Figure 3.20.

v A
v <
) |

Leader following can be improved further by creating a behavior that steers
a vehicle laterally away from the direction of the leader if it finds itself in
the leader’s path.

Create a group of 20 vehicles that behave like a flock of sheep. Now add
a user-controlled vehicle you can steer using the keyboard. Program your
sheep so they believe the vehicle is a dog. Can you get the flock’s behavior
to look realistic?

Figure 3.20. Leader following

Chapter 4

Sporis Simulation —
Simple Soccer

D esigning team sport Al, and particularly Al to play soccer, is not
easy. To create agents capable of playing a game anything like their
professional human counterparts takes a serious amount of hard work.
Many high-tech teams from notable universities around the world have
been competing in a robotic soccer tournament, Robocup, since the early
nineties. Although the ambitious goal of the tournament is to produce
robots capable of winning the World Cup by the year 2050 (I’'m not kid-
ding), there is also a simulated soccer tournament running alongside the
robotic one, where teams of simulated soccer players compete on virtual
turf. Many of these teams use cutting-edge Al technology, much of it spe-
cially developed for soccer. If you were to attend a tournament, you would
hear, between the cheers and the groans, teams discussing the merits of
fuzzy-Q learning, the design of multi-agent coordination graphs, and situa-
tion-based strategic positioning.

Fortunately, as game programmers, we don’t have to concern ourselves
with all the detail of a properly simulated soccer environment. Our goal is
not to win the World Cup but to produce agents capable of playing soccer
well enough to provide an entertaining challenge to the game player. This
chapter will walk you through the creation of game agents capable of play-
ing a simplified version of soccer — Simple Soccer — using only the skills
you’ve learned so far in this book.

My intention is not to demonstrate how every tactic and skill should be
modeled, but to show you how to design and implement a team sports Al
framework capable of supporting your own ideas. With this in mind, I’ve
kept the game environment and the rules for Simple Soccer, well... very
simple. I have also chosen to omit some obvious tactics. Partly because it
will reduce the complexity of the Al and therefore make it easier for you to
understand the flow of the state machine logic, but mainly because it will
give you the opportunity of consolidating the skills you have learned in a
proper, real-life, full-blown game Al project if you decide to tackle the
exercises at the end of this chapter.

133

134 I Chapter 4

The Simple Soccer Environment and Rules

By the time you’ve finished this chapter you will have the ability to cre-
ate Al agents capable of playing most team games. Ice hockey, rugby,
cricket, American football, and even capture-the-flag — you name it,
you’ll be able to code an entertaining Al for it.

The Simple Soccer Environment and Rules

The rules of the game are uncomplicated. There are two teams: red and
blue. Each team contains four field players and one goalkeeper. The objec-
tive of the game is to score as many goals as possible. A goal is scored by
kicking the ball over the opposing team’s goal line.

The sides of a Simple Soccer playing area (called a “pitch”) are walled
in (like ice hockey) so the ball cannot travel outside the playing area, but
simply rebounds off the walls. This means that unlike normal soccer, there
are no corners or throw-ins. Oh, and there’s definitely no offside rule! Fig-
ure 4.1 shows the setup at the start of a typical game.

Q@ @ e o

@ @ ® o

Figure 4.1. Kick-off positions (players are shown at increased scale for clarity)

The game environment consists of the following items:
B A soccer pitch

Two goals

One ball

Two teams

Eight field players

B Two goalkeepers

Each item type is encapsulated as an object. You can see how they are all
related to each other by studying the simplified UML class diagram shown
in Figure 4.2.

Sports Simulation — Simple Soccer I 135

The Simple Soccer Environment and Rules

SoccerPitch

+Update() : void
+Render(] : void

i <<paramatar=> i
7 2 \i.r
Goal SoccerTeam SoccerBall
+Scored(SoccerBall™) © bool +Update() : void +Update() : void
+Render(} : void +Render() : void
+CanShoot{from, to, heading, power) : boaol +HKick (direction, force) - void
+RequestPass{FPlayerBasa®) : void +FuturePosition {time) : Vactor2D
+Trap() : void
? +TimeToCoverDistance (A, B, force) : float
FieldPlayer GoalKeeper

StateMachine

+Update(} : void
+Render() : void -
+HandlelMessage(telegram) : bool

+Update() : vaid
4 +Render() : void
+HandleMessage(telegram) : bool

+UpdateStatelMachine(}
+ChangaStata{MNewStata)

MovingEntity

+Updale() : void
+Rendsr(] void

+HandleMessage(felegram) - boo!

PlayerBase
+CanPassForward(recaivar, target, power) : hoal

+CanPassBackward{raceiver, target, power) : boal
+WithinShootingRange() : boaol
+AlTargel() : bool

Figure 4.2. The Simple Soccer high-level object hierarchy

The player and goalkeeper objects are similar to the game agents you’ve
already encountered in this book. I’ll be describing them in detail very
shortly, but first I’d like to show you how the soccer pitch, goals, and soc-
cer ball are implemented. This should give you a feel for the environment
the game agents occupy and then I can move on to the nitty-gritty of the Al
itself.

The Soccer Pitch

The soccer pitch is a rectangular playing area enclosed by walls. At each of
the short ends of the pitch, there is a goal centrally positioned. See Figure
4.1. The small circle at the center of the playing area is referred to as the
center-spot. The ball is positioned on the center-spot prior to the start of the
match. When a goal is scored both teams relinquish control of the ball and
it’s repositioned on the center-spot ready for another “kick-off.” (For those
soccer fans among my readers, please forgive my elaborate descriptions,
but if I didn’t go to this trouble I just know the moment this book is
released I’ll receive a dozen emails from the inhabitants of some hidden
Himalayan valley wondering what on earth I’'m talking about!)

136 I Chapter 4

The Simple Soccer Environment and Rules

The playing area is encapsulated by the class SoccerPitch. A single
instance of this class is instantiated in main.cpp. The SoccerPitch object
owns instances of SoccerTeam, SoccerBall, and Goal objects.

Here’s the class declaration:

class SoccerPitch

{

public:
SoccerBall* m pBall;
SoccerTeam* m_pRedTeam;
SoccerTeam* m_pBlueTeam;
Goal* m_pRedGoal;
Goal* m_pBlueGoal;

These first few members are self explanatory and I’ll be describing the rel-
evant classes in detail in a few pages.

//container for the boundary walls

std::vector<Wall2D> m vecWalls;
The pitch boundaries in the Simple Soccer environment are represented by
Wa112Ds. Walls are described by a line segment with two endpoints and a
normal to the line segment representing the facing direction. You may
remember them from the wall avoidance steering behavior description.

//defines the dimensions of the playing area

Region* m_pPlayingArea;
A Region object is used to describe the dimensions of the soccer pitch. A
Region stores the top left, right bottom, and center positions of the declared
area, and also an identifying number (ID).

std::vector<Region*> m Regions;

Soccer players have to know where they are on the soccer pitch and
although their x, y coordinates give a very specific position, it’s also useful
to split the pitch up into regions players can make use of to implement
strategies. To facilitate this, the pitch is divided into eighteen areas as
shown in Figure 4.3.

At the beginning of a game, each player is assigned a region to be its
home region. This will be the region it returns to after a goal is scored or
when it has finished making a play with the ball. A player’s home region
may vary during a game depending on the team strategy. For example,
when attacking, it’s advantageous for a team to occupy positions farther
forward on the field (upfield) than when defending.

Sports Simulation — Simple Soccer I 137

The Simple Soccer Environment and Rules

17 14 11 8 5 2
TN

16 13 10 ¢ 7 4 1

_‘__//
15 12 9 6 3 0

Figure 4.3. The pitch divided into regions

bool m_bGameOn;

Teams can query this value to see if the game is in play or not. (The game
is not on if a goal has just been scored and all the players are returning to
their kick-off positions.)

bool m_bGoalKeeperHasBall;
This value is set to true if either team’s goalkeeper has the ball. Players can
query this value to help them select an appropriate behavior. For example,
if a goalkeeper has possession of the ball, a nearby opponent will not
attempt to kick it.

/* EXTRANEQUS DETAIL OMITTED */

public:
SoccerPitch(int cxClient, int cyClient);
~SoccerPitch();
void Update();
bool Render();
/* EXTRANEOUS DETAIL OMITTED */
b
The SoccerPitch: :Update and SoccerPitch::Render functions are at the top
of the update and render hierarchy. Each update step, these methods are

called from within the main game loop and, in turn, the appropriate Render
and Update methods of every other game entity is called.

138 I Chapter 4

The Simple Soccer Environment and Rules

The Goals

A goal on a real-life soccer pitch is defined by a left goal post and a right
goal post. A goal is scored if any part of the ball crosses the goal line —
the line connecting the goal posts. A rectangular area in front of each goal
is drawn in the relevant team’s color to make distinguishing each team’s
side easy. The goal line is the line that describes the rear of this box.

Here is the class declaration:

class Goal

{

private:

Vector2D m vLeftPost;
Vector2D m vRightPost;

//a vector representing the facing direction of the goal
Vector2D m_vFacing;

//the position of the center of the goal Tine
Vector2D m_vCenter;

//each time Scored() detects a goal this is incremented
int m_iNumGoalsScored;

public:

Goal(Vector2D left, Vector2D right):m vLeftPost(left),
m_VRightPost(right),
m vCenter((Teft+right)/2.0),
m_iNumGoalsScored(0)

{
m vFacing = Vec2DNormalize(right-left).Perp();

}

//Given the current ball position and the previous ball position,
//this method returns true if the ball has crossed the goal Tine
//and increments m_iNumGoalsScored

inline bool Scored(const SoccerBall*const ball);

/* ACCESSOR METHODS OMITTED */
bs
Each time step, the Scored method of each team’s goal is called from
within SoccerPitch::Update. If a goal is detected, then the players and ball
are reset to their start positions ready for kick-off.

The Soccer Ball

A soccer ball is a little more interesting. The data and methods to encapsu-
late a soccer ball are encoded in the SoccerBall class. A soccer ball moves,
so its class inherits from the MovingEntity class we used in Chapter 3. In

addition to the functionality provided by MovingEntity, SoccerBall also has

Sports Simulation — Simple Soccer I 139

The Simple Soccer Environment and Rules

data members for recording the ball’s last updated position and methods
for kicking the ball, testing for collisions, and calculating the future posi-
tion of the ball.

When a real soccer ball is kicked it gently decelerates to rest because of
the friction from the ground and the air resistance acting upon it. Simple
Soccer balls don’t live in the real world, but we can model a similar effect
by applying a constant deceleration (a negative acceleration) to the ball’s
motion. The amount of deceleration is set in Params.ini as the value
Friction.

Here is the complete declaration of the SoccerBall class followed by
descriptions of a couple of its important methods.

class SoccerBall : public MovingEntity

{

private:

//keeps a record of the ball's position at the last update
Vector2D m_v01dPos;

//a pointer to the player(or goalkeeper) who possesses the ball
PlayerBase* m_pOwner;

//a local reference to the walls that make up the pitch boundary
//(used in the collision detection)
const std::vector<Wal12D>& m PitchBoundary;

//tests to see if the ball has collided with a wall and reflects

//the ball's velocity accordingly

void TestCollisionWithWalls(const std::vector<Wall2D>& walls);
The soccer ball only checks for collisions with the pitch boundary; it
doesn’t test for collisions against the players, as the ball must be able to
move freely around and through their “feet.”

public:
SoccerBall (Vector2D pos,
doubTle BallSize,
double mass,

std::vector<Wal12D>& PitchBoundary):

//set up the base class

MovingEntity (pos,
BallSize,
Vector2D(0,0),
-1.0, //max speed - unused
Vector2D(0,1),
mass,
Vector2D(1.0,1.0), //scale - unused
0, //turn rate - unused
0), //max force - unused

m_PitchBoundary (PitchBoundary),

m_pOwner (NULL)

140 I Chapter 4

The Simple Soccer Environment and Rules

{}

//implement base class Update
void Update(double time elapsed);

//implement base class Render
void Render() ;

//a soccer ball doesn't need to handle messages
bool HandleMessage(const Telegram& msg) {return false;}

//this method applies a directional force to the ball (kicks it!)
void Kick(Vector2D direction, double force);

//given a kicking force and a distance to traverse defined by start
//and finish points, this method calculates how long it will take the
//ball to cover the distance.
double TimeToCoverDistance(Vector2D from,

Vector2D to,

double force)const;

//this method calculates where the ball will be at a given time
Vector2D FuturePosition(double time)const;

//this is used by players and goalkeepers to "trap" a ball -- to stop
//it dead. The trapping player is then assumed to be in possession of
//the ball and m pOwner is adjusted accordingly

void Trap(PlayerBase* owner){m vVelocity.Zero(); m pOwner = owner;}

Vector2D 01dPos()const{return m vOldPos;}

//this places the ball at the desired location and sets its velocity to zero
void PlaceAtPosition(Vector2D NewPos);
b
Before I move on to describe the player and team classes, I’d just like to go
over a couple of the SoccerBall’s public methods to make sure you under-
stand the math they contain. These methods are frequently used by players
to predict where the ball will be at some time in the future or to predict
how long it will take the ball to reach a position. When you design the Al
for a sports game/simulation you will be using your math and physics skills
a lot. Oh yes! So if you don’t know your theory, now’s the time to head
back to Chapter 1 and read up on it; otherwise you’ll be more lost than a
rapper in a rainforest.

3 3D Note: Although the demo has been coded in 2D, you would apply
exactly the same techniques to a 3D game. There is a little more complexity
because the ball will bounce and may travel above the players’ heads, so you
would have to add additional player skills for making chip shots and “heading”
the ball, but these are mainly physics considerations. The Al is more or less the
same; you would just have to add a few more states to the FSM and some addi-
tional logic to check for the height of the ball when calculating intercepts and
the like.

Sports Simulation — Simple Soccer I 141

The Simple Soccer Environment and Rules

SoccerBall::FuturePosition

Given a length of time as a parameter, FuturePosition calculates where the
ball will be at that time in the future — assuming its trajectory continues
uninterrupted. Don’t forget that the ball experiences a frictional force with
the ground, which must be taken into consideration. The frictional force is
expressed as a constant acceleration acting opposite to the direction the ball
is moving (deceleration, in other words). This constant is defined in
params.ini as Friction.

To determine the position P; of the ball at time ¢, we must calculate how
far it travels using equation (1.87) from Chapter 1:

1,
Ax =ulAt + —alt
> 4.1)

where Ax is the distance traveled, u is the velocity of the ball when kicked,
and a is the deceleration due to friction.

Py

Figure 4.4. Calculating distance traveled

Once the distance traveled has been calculated, we know how much to add
to the ball’s position, but not in which direction. However, we do know the
ball is traveling in the direction of its velocity vector. Therefore, if we nor-
malize the ball’s velocity vector and multiply it by the distance traveled,
we end up with a vector that gives us the distance and direction. If this vec-
tor is added to the ball’s position, the result is the predicted position. Here
is the calculation in code:

Vector2D SoccerBall::FuturePosition(double time)const

{
//using the equation x = ut + 1/2at~2, where x = distance, a = friction
//u = start velocity

//calculate the ut term, which is a vector
Vector2D ut = m_vVelocity * time;

//calculate the 1/2at”~2 term, which is scalar

142

I Chapter 4

The Simple Soccer Environment and Rules

double half _a t squared = 0.5 * Prm.Friction * time * time;

//turn the scalar quantity into a vector by multiplying the value with
//the normalized velocity vector (because that gives the direction)
Vector2D ScalarToVector = half a t squared * Vec2DNormalize(m vVelocity);

//the predicted position is the ball's position plus these two terms
return Pos() + ut + ScalarToVector;

}

3 NOTE Many of the methods and functions shown throughout this book con-

tain unnecessary temporary variables. They are there to aid your understanding,
as their removal often obfuscates the underlying calculation(s) or makes the line
of code too long to fit comfortably on the pages of this book.

SoccerBall::TimeToCoverDistance

Given two positions, A and B, and a kicking force, this method returns a
double indicating how long it will take for the ball to travel between the
two. Of course, given a large distance and a small kicking force, it may not
be possible for the ball to cover the distance at all. In this event, the method
returns a negative value.

This time the equation to use is this:

v=u+alAt (4.2)

Rearranging the variables gives the equation for time taken:

vV—u
At =
; (4.3)

We know a = Friction, so we have to find v and u, where v = velocity at
point B, and u will be the speed of the ball immediately after it has been
kicked. In Simple Soccer, velocities are not accumulative. The ball is
assumed to always have a zero velocity immediately prior to a kick.
Although technically this is unrealistic — if the ball has just been passed to
the kicking player, it will not have a zero velocity — in practice, this
method results in easier calculations, while stil/ looking realistic to the
observer. With this in mind, u is equal to the instantaneous acceleration
applied to the ball by the force of the kick. Therefore:

u:a:Z 4.4)

Now that # and a have been calculated, we only have to calculate v, and all
three values can be popped into equation (4.3) to solve for Az. To deter-
mine v (the velocity at point B), the following equation is used:

v =u’ +2aAx 4.5)

Sports Simulation — Simple Soccer I 143

The Simple Soccer Environment and Rules

Taking the square root of both sides gives:
v=+u®+2aAx (4.6)

Don’t forget Ax is the distance between A and B. If the term u” + 2aAx is
negative, the velocity is not a real number (you can’t calculate the square
root of a negative number... well, you can, that’s what complex numbers
are for, but for the purposes of this book we’ll pretend you can’t). This
means the ball cannot cover the distance from A to B. If the term is posi-
tive, then we have found v and it’s a simple matter to put all the values into
equation (4.3) to solve for Az.

Below is the source code for you to examine.

double SoccerBall::TimeToCoverDistance(Vector2D A,
Vector2D B,
double force)const

//this will be the velocity of the ball in the next time step *if*
//the player was to make the pass.

double speed = force / m dMass;

//calculate the velocity at B using the equation

//

/] V2 = u"2 + 2ax

/]

//first calculate s (the distance between the two positions)
double DistanceToCover = Vec2DDistance(A, B);

double term = speed*speed + 2.0*DistanceToCover*Prm.Friction;

//if (u”2 + 2ax) is negative it means the ball cannot reach point B.
if (term <= 0) return -1.0;

double v = sqrt(term);

//it's possible for the ball to reach B and we know its speed when it
//gets there, so now it's easy to calculate the time using the equation

return (v-speed)/Prm.Friction;

144 I Chapter 4

Designing the Al

Designing the Al

There are two types of soccer players on a Simple Soccer team: field play-
ers and goalkeepers. Both of these types derive from the same base class,
PlayerBase. Both make use of a cut-down version of the SteeringBehaviors
class you saw in the last chapter and both own finite state machines, with
their own set of states. See Figure 4.5.

v

MessageDispatcher

MovingEntity

+Updater)
+Render|)
+HandlelMessage(telegram) | bool

T

PlayerBase

-m_p3teering ; SteeringBehaviors®
-m_pTeam : SoccerTeam®
-m_iHomeRegion :int

SteeringBehaviors

+CanPassForward() : bool
+CanPassBackward(} : boal
+lsThreatened() : bool
+BallWithinPlayerRange() : bool
+BallWithinKickingRange() : bool
+BallWithinReceivingRange() : bool
+InHomeRegion() : bool
+isWithinSupportSpotRange() : bool
+sWithinTargetRange() : bool
+isClosesiTeamMemberToBall() : bool
+isClosestPlayerOnPitchTaBall() - bool

-m pBall : SoccerBall*
-m_pPitch - Soccerpitch®
-m_pPlayer ; PlayerBasa*

+Calculate(): Vector2D
+Arrivedn()
+ArriveOff()
+3eekOn()
+SeekOff()
+SeparationOn()
+SeparationOff()
+InterPoseCn()
+InterPoseOff()
+PursuitOn()
+PursuitOffi)

FialdPlayer

+HandleMeassage(telegram) : bool

7 |+Render()

+CanShoot() : boal
+RequestPass()
+GetSupportSpot() : Vector2D
+InCaontral() : boal

+Receiver() : PlayerBase*
+3etReceaiver()
+3SupportingPlayer{) : PlayerBase”
+SetSuppaortingPlayer()

[;'?\ +AtTarget() : bool

| ! +isCaontrollingPlayer{) : bool

! i

! |

i ; P17

i :

i GoalKeeper

| -m_vLookAt +Update()
| +Update() +Render()
i +Render()

! +HandleMessage(telegram) : bool

! 4
i

: 4

i SoccerTeam

! StateMachine _[+Update()

|

I

I

!

|

I

!

|

I

!

————— +ControllingPlayer() : PlayerBase*

+3etControllingPlayer()
+PlayerClosestToBall(} : PlayerBase”
+SetPlayerClosestToBall(}

Figure 4.5. Class relationships at the agent level

Sports Simulation — Simple Soccer I 145
Designing the Al

Not all the methods of every class are shown, but it gives a good idea of
the design. The majority of the methods that are listed for P1ayerBase and
SoccerTeam comprise the interface a player’s state machine uses to route its
Al logic. (I’ve omitted each method’s parameters to permit me to fit the
diagram on one page!)

Notice how a SoccerTeam also owns a StateMachine, giving a team the
ability to change its behavior depending on the current state of play. Imple-
menting Al at the team level in addition to the player level creates what is
known as tiered Al. This type of Al is used in all sorts of computer games.
You will often find tiered Al in real-time strategy (RTS) games where the
enemy Al is commonly implemented in several layers at, say, the unit,
troop, and commander levels.

Notice also how the players and their teams have the ability to send
messages. Messages may be passed from player to player (including goal-
keepers) or from soccer team to player. In this demo players do not pass
messages to their team. (Although there is no reason why they couldn’t. If
you have a good reason for your players messaging their team, go ahead
and do it.) All messages dispatched to field players or goalkeepers are han-
dled via each class’s respective global state, as you shall see later on in the
chapter.

Since a player’s team state dictates to some extent how the player should
behave, your journey into the guts of the Al of Simple Soccer is probably
best commenced with a description of the SoccerTeam class. After you
understand what makes a team tick, I’ll move on to describe how the play-
ers and goalkeepers work their soccer magic.

The SoccerTeam Class

The SoccerTeam class owns instances of the players that comprise the soc-
cer team. It has pointers to the soccer pitch, the opposing team, the team’s
home goal, and its opponent’s goal. Additionally, it has pointers to the
“key” players on the pitch. Individual players can query their soccer team
and use this information in their state machine logic.

First of all, I’ll describe the roles of these key players and then move on
to discuss the various states a Simple Soccer team utilizes. Here’s how the
key player pointers are declared in the class prototype:

class SoccerTeam

{

private:
/* EXTRANEOUS DETAIL OMITTED */

//pointers to "key" players

PlayerBase* m_pReceivingPlayer;
PlayerBase* m_pPlayerClosestToBall;
PlayerBase* m_pControllingPlayer;

146 I Chapter 4
Designing the Al

PlayerBase* m_pSupportingPlayer;

/* EXTRANEOUS DETAIL OMITTED */
hg

The Receiving Player

When a player kicks the ball toward another player, the player waiting to
receive the ball is, not surprisingly, known as the receiver. There will only
ever be one receiver allocated at any one time. If there is no allocated
receiver, this value is set to NULL.

The Closest Player to the Ball

This pointer points to the team member who is currently closest to the ball.
As you can imagine, knowing this sort of information is useful when a
player has to decide if he should chase after the ball or leave it for another
team member to pursue. Each time step, the soccer team will calculate
which player is the closest and keep this pointer continuously updated.
Therefore, during play, m_pPlayerClosestToBall will never be NULL.

The Controlling Player

The controlling player is the player who is in command of the soccer ball.
An obvious example of a controlling player is one who is about to make a
pass to a teammate. A less obvious example is the player waiting to receive
the ball once the pass has been made. In the latter example, even though
the ball may be nowhere near the receiving player, the player is said to be
in control since unless intercepted by an opponent, the receiver will be the
next player able to kick the ball. The controlling player, when moving
upfield toward the opponent’s goal, is often referred to as the attacking
player or, even more simply, as just the attacker. If the team does not con-
trol the ball, this pointer will be set to NULL.

The Supporting Player

When a player gains control of the ball, the team will designate a support-
ing player. The supporting player will attempt to move into a useful
position farther upfield from the attacker. Supporting positions are rated
based on certain qualities such as how easy it is for the attacker to pass the
ball to the position and the likelihood of scoring a goal from the position.
For example, position B in Figure 4.6 would be considered a good support-
ing position (good view of the opponent’s goal, easy to pass to), position C
a s0-s0 supporting position (fair view of the opponent’s goal, poor passing
potential), and position D a very poor support position (little passing poten-
tial, no shot at the goal, not upfield of the attacker).

If there is no allocated supporting player, this pointer will point to NULL.

Sports Simulation — Simple Soccer I 147

Designing the Al

On

Figure 4.6. Support positions: the good, the bad, and the ugly

The supporting positions are calculated by sampling a series of locations
on the playing field and running several tests on them, resulting in a cumu-
lative score. The position with the highest score is deemed the best
supporting spot, or BSS as I shall sometimes refer to it. This is achieved
with the aid of a class named the SupportSpotCalculator. I guess right now
might be a good time to go off on a small but important tangent to show
you how this class operates.

Calculating the Best Support Spot

The SupportSpotCalculator class calculates the BSS by scoring a number
of spot positions sampled from the opponent’s half of the pitch. The default
spot locations (for the red team) are shown in Figure 4.7.

N U

Figure 4.7. The red team considers these potential support spots.

148 I Chapter 4
Designing the Al

As you can see, all the spots are located in the opponent’s half of the pitch.
There is no need to sample positions farther downfield, as the supporting
player will always be trying to find the location that gives the best opportu-
nity of a goal shot, and that will inevitably be situated close to the
opponent’s goal.

A support spot has a position and a score, like so:

struct SupportSpot
{

Vector2D m vPos;
double m_dScore;

SupportSpot (Vector2D pos, double val):m_vPos(pos),
m_dScore(value)

{}
b
The spots are scored by examining each one in turn and scoring them for a
particular quality, such as whether or not a goal is possible from the spot’s
position or how far away from the controlling player the spot is situated.
The scores for each quality are accumulated and the spot with the highest
score is marked as the best supporting spot. The supporting player can then
move toward the BSS’s position in readiness for a pass from the attacker.

3 NOTE It's not essential that the BSS is calculated every update step;
therefore the number of times the calculation is made is regulated to Support-
SpotUpdateFreq times per second. The default value, set in params.ini, is once
per second.

To determine exactly what these qualities should be, you have to think like
a soccer player. If you were running up that soccer pitch trying to put your-
self in an advantageous support position, what factors would you consider?
Probably you would value positions where your fellow teammates could
pass the ball to you. In your mental map of the soccer pitch, you would
imagine yourself at each location and consider those positions where you
think it would be safe for the attacker to pass the ball to you as good posi-
tions in which to place yourself. The SupportSpotCalculator does the same
by giving each spot that satisfies this condition a score equivalent to the
value: Spot_CanPassScore (set as 2.0 in params.ini). Figure 4.8 shows a typ-
ical position during a game, highlighting all the spots that have been rated
for passing potential.

In addition, positions from which a goal can be scored are worthy of
attention. Therefore the SupportSpotCalculator assigns a score of
Spot_CanScoreFromPositionScore to each spot passing the goal-shot-is-pos-
sible test. I’'m no expert soccer player (far from it!) but I reckon the ability
to make a pass to a spot should be ranked higher than the ability to make a
goal shot from a spot — after all, the attacker must be able to pass the ball

Sports Simulation — Simple Soccer I 149
Designing the Al

Figure 4.8. Spots rated for passing potential

to the supporting player before a goal attempt can be made. With this in
mind, the default value for Spot_CanScoreFromPositionScore is 1.0. Figure
4.9 shows the same position as Figure 4.8 with the spots rated for goal shot
potential.

Figure 4.9. Spots rated by their goal scoring potential

Another consideration a supporting player may make is to aim for a posi-
tion a specific distance away from its teammate. Not too far away to make
the pass difficult and risky, and not too close to make the pass wasteful.
I’ve used a value of 200 pixels as the optimal distance a supporting
player should be away from the controlling player. At this distance a spot
will receive an optimal score of Spot_DistFromControllingPlayerScore

150 I Chapter 4

Designing the Al

(default 2.0), with scores trailing off for distances any closer or farther
away. See Figure 4.10.

- JOO
7 c @ o
e @ @ e
ey _
- B N
: e Q9 O e

Figure 4.10. Spots rated according to their distance from
the attacker. The larger the spot, the higher its score.

When each position has been examined and all the scores have been accu-
mulated, the spot with the highest score is considered to be the best
supporting spot, and the supporting attacker will move to occupy this posi-
tion in readiness to receive a pass.

This procedure of determining the BSS is undertaken in the method
SupportSpotCalculator: :DetermineBestSupportingPosition. Here is the
source code for you to examine:

Vector2D SupportSpotCalculator::DetermineBestSupportingPosition()
{
//only update the spots every few frames
if (!m_pRegulator->AllowCodeFlow()&& m pBestSupportingSpot)
{
return m_pBestSupportingSpot->m vPos;

}

//reset the best supporting spot
m_pBestSupportingSpot = NULL;

double BestScoreSoFar = 0.0;
std::vector<SupportSpot>::iterator curSpot;

for (curSpot = m Spots.begin(); curSpot != m Spots.end(); ++curSpot)
{
//first remove any previous score. (the score is set to one so that
//the viewer can see the positions of all the spots if he has the
//aids turned on)
curSpot->m dScore = 1.0;

Sports Simulation — Simple Soccer I 151

Designing the Al

//Test 1. is it possible to make a safe pass from the ball's position

//to this position?

if(m_pTeam->isPassSafeFromAl10pponents(m pTeam->ControllingPlayer()->Pos(),
curSpot->m vPos,
NULL,
Prm.MaxPassingForce))

it

curSpot->m dScore += Prm.Spot PassSafeStrength;

}

//Test 2. Determine if a goal can be scored from this position.
if(m_pTeam->CanShoot (curSpot->m_vPos,
Prm.MaxShootingForce))
{
curSpot->m dScore += Prm.Spot CanScoreStrength;

}

//Test 3. calculate how far this spot is away from the controlling
//player. The farther away, the higher the score. Any distances farther
//away than OptimalDistance pixels do not receive a score.
if (m_pTeam->SupportingPlayer())
{

const double OptimalDistance = 200.0;

double dist = Vec2DDistance(m pTeam->ControllingPlayer()->Pos(),
curSpot->m_vPos);

double temp = fabs(OptimalDistance - dist);

if (temp < OptimalDistance)
{

//normalize the distance and add it to the score
curSpot->m _dScore += Prm.Spot DistFromControllingPlayerStrength *
(OptimalDistance-temp) /OptimalDistance;

}
}

//check to see if this spot has the highest score so far
if (curSpot->m dScore > BestScoreSoFar)

{

BestScoreSoFar = curSpot->m dScore;

m_pBestSupportingSpot = &(*curSpot);
}

}

return m_pBestSupportingSpot->m vPos;
}
Well, I guess that “little tangent™ to discuss the subject of support spots
turned into quite a large one! Before I got distracted, I was telling you how
the SoccerTeam class did its stuff, remember? As I’ve mentioned, a
SoccerTeam owns a state machine. This gives it the ability to change its

152

I Chapter 4

Designing the Al

behavior according to what state it’s in. Let’s now take a close look at a
team’s available states and how they can affect the behavior of its players.

SoccerTeam States

At any moment in time, a soccer team can be in one of three states:
Defending, Attacking, or PrepareForKickOff. I've kept the logic of
these states very simple — my intention is to show you how to implement
a tiered Al and not to demonstrate how to create complex soccer tactics —
although they can be easily added to and modified to create just about any
type of team behavior you can imagine.

As [mentioned earlier, players use the idea of “regions” to help position
themselves correctly on the playing field. The team states use these regions
to control where players should move if they are not in possession of the
ball or supporting/attacking. When defending, for example, it’s sensible for
a soccer team to move its players closer to the home goal, and when attack-
ing, the players should move farther upfield, closer to the opponent’s goal.

Here are descriptions of each team state in detail.

PrepareForKickOff

A team enters this state immediately after a goal has been scored. The
Enter method sets all the key player pointers to NULL, changes their home
regions back to the kick-off positions, and sends each player a message
requesting they move back to their home regions. Something like this, in
fact:

void PrepareForKickOff::Enter(SoccerTeam* team)
{
//reset key player pointers
team->SetControllingPlayer(NULL);
team->SetSupportingPlayer (NULL) ;
team->SetReceiver(NULL) ;
team->SetPlayerClosestToBall (NULL);

//send Msg_GoHome to each player.
team->ReturnAl1FieldPlayersToHome() ;
}

Each Execute cycle, the team waits until all the players from both teams are
situated within their home regions, at which point it changes state to
Defending and the match recommences.

void PrepareForKickOff::Execute(SoccerTeam* team)
{
//if both teams in position, start the game
if (team->AT1PlayersAtHome() && team->Opponents()->A11PlayersAtHome())
{
team->ChangeState(team, Defending::Instance());
}
}

Sports Simulation — Simple Soccer I 153
Designing the Al

Defending

The Enter method of a soccer team’s Defending state changes the home
positions of all the team members to be located in the team’s half of the
pitch. Bringing all the players close to the home goal like this makes it
harder for the opposing team to maneuver the ball through and score a
goal. Figure 4.11 shows the home positions for the red team when they are
in the Defending state.

@ 6

@ Q

Figure 4.11. Players in their home regions for the Defending team state

void Defending::Enter(SoccerTeam* team)

{
//these define the home regions for this state of each of the players
const int BlueRegions[TeamSize] = {1,6,8,3,5};
const int RedRegions[TeamSize] = {16,9,11,12,14};

//set up the player's home regions
if (team->Color() == SoccerTeam::blue)

{

ChangePlayerHomeRegions (team, BlueRegions);

}

else

{
ChangePlayerHomeRegions (team, RedRegions);

}

//if a player is in either the Wait or ReturnToHomeRegion states, its
//steering target must be updated to that of its new home region
team->UpdateTargetsOfWaitingPlayers();

}

The Execute method of the Defending state continuously queries the team
to see if it has gained control of the ball. As soon as the team has control,
the team changes state to Attacking.

154 I Chapter 4
Designing the Al

void Defending::Execute(SoccerTeam* team)

{
//if in control change states
if (team->InControl())
{

team->ChangeState(team, Attacking::Instance()); return;
}
}

Attacking

As the Enter method of the Attacking state looks identical to that for the
Defending state, [’'m not going to waste space and list it here. The only
difference is that the players are assigned different home regions. The
regions assigned to the red team’s players when Attacking are shown in
Figure 4.12.

Q

Q Q

Figure 4.12. Players in their home regions for the Attacking team state

As you can see, the players position themselves much closer to the oppo-
nent’s goal. This gives them an increased chance of keeping the ball in the
opponent’s half of the pitch and therefore more chance of scoring a goal.
Notice how one player is kept back, positioned just ahead of the goal-
keeper, in order to provide a modicum of defense should an opponent break
free with the ball and make a run for the team’s goal.

The Execute method of the Attacking state is also similar to that for the
Defending state with one addition. When a team gains control of the ball,
the team immediately iterates through all the players to determine which
one will provide the best support for the attacker. Once a support player has
been assigned, it will merrily move off toward the best supporting spot, as
determined by the process we discussed earlier.

Sports Simulation — Simple Soccer I 155
Designing the Al

void Attacking::Execute(SoccerTeam* team)

{
//if this team is no longer in control change states
if (!team->InControl())
{

team->ChangeState(team, Defending::Instance()); return;

}

//calculate the best position for any supporting attacker to move to
team->DetermineBestSupportingPosition();
}
That’s enough about the SoccerTeam class for now. Let’s take a look at how
the players are implemented.

Field Players

The field players are the guys who run around the field, passing the ball
and taking shots at their opponent’s goal. There are two types of field play-
ers: attackers and defenders. Both are instantiated as objects of the same
class, FieldPlayer, but an enumerated member variable is set to determine
their role. Defenders mainly stay to the rear of the field protecting the
home goal, and attackers are given more freedom to move up the field,
toward the opponent’s goal.

Field Player Motion

A field player has a velocity-aligned heading and utilizes steering behav-
iors to move into position and to chase the ball. When motionless, a field
player rotates to face the ball. It doesn’t do this to perceive the ball, as it
always knows where the ball is (from querying the game world directly),
but because it has a better chance of passing immediately after an intercept
and because it looks better to our human eyes. Remember, this is about
creating the illusion of intelligence, and not hard-core Al as studied by
academics. Most human players will assume that if a computer player is
tracking the ball with its head, then it must be “watching” the ball. By cre-
ating players that always track the ball we also ensure nothing odd happens
— like a player receiving and controlling the ball when it’s facing in the
opposite direction. That sort of thing would break the illusion, leaving a
human player feeling cheated and dissatisfied. I’'m sure you have experi-
enced this feeling yourself when playing games. It only takes a small
dodgy-looking event to damage a player’s confidence in the Al.

The field players move around the pitch utilizing the arrive and seek
behaviors to steer toward the steering behavior target or using pursuit to
chase the ball’s predicted future position. Any required steering behavior is
typically switched on in a state’s Enter method and switched off in its Exit
method, which brings me nicely around to discussing the states a field
player can occupy.

156 I Chapter 4
Designing the Al

Field Player States

In real life, soccer players must learn a set of skills in order to control the
ball well enough to coordinate team play and to score goals. They do this
by endless hours of practice and repetition of the same moves. Simple Soc-
cer players don’t have to practice, but they do rely on you, the programmer,
to bestow them with the skills they need to play well.

A field player’s finite state machine utilizes eight states:

B GlobalPlayerState
Wait
ReceiveBall
KickBall
Dribble
ChaseBall
ReturnToHomeRegion
B SupportAttacker

State changes are made either in the logic of a state itself or when a player
is sent a message by another player (to receive a ball for example).

GlobalPlayerState

The main purpose of the field player’s global state is to be a message

router. Although much of a player’s behavior is implemented by the logic

contained within each of its states, it’s also desirable to implement some

form of player cooperation via a communication system. A good example

of this is when a supporting player finds itself in an advantageous position

and requests a pass from a teammate. To facilitate player communication,

the trusty messaging system you learned about in Chapter 2 is implemented.
There are five messages used in Simple Soccer. They are:

Msg_ SupportAttacker

Msg_GoHome

Msg ReceiveBall

Msg_PassToMe

B Msg Wait

The messages are enumerated in the file SoccerMessages.h. Let’s take a
look at how each of them is processed.

bool GlobalPlayerState::0nMessage(FieldPlayer* player, const Telegram& telegram)

{
switch(telegram.Msg)

{

case Msg ReceiveBall:

{
//set the target
player->Steering()->SetTarget (* (Vector2D*) (telegram.Extralnfo));

//change state
player->ChangeState(player, ReceiveBall::Instance());

Sports Simulation — Simple Soccer I 157
Designing the Al

return true;

}

break;

Msg_ReceiveBall is sent to the receiving player when a pass is made. The
position of the pass target is stored as the receiver’s steering behavior tar-
get. The receiving player acknowledges the message by changing state to
ReceiveBall.

case Msg SupportAttacker:

{
//if already supporting just return
if (player->CurrentState() == SupportAttacker::Instance()) return true;

//set the target to be the best supporting position
player->Steering()->SetTarget (player->Team()->GetSupportSpot());

//change the state
player->ChangeState(player, SupportAttacker::Instance());

return true;

}

break;

Msg_SupportAttacker is sent by the controlling player to request support as
it attempts to move the ball farther up the field. When a player receives this
message, it sets its steering target to the best supporting spot and then
changes state to SupportAttacker.

case Msg GoHome:

{
player->SetDefaultHomeRegion() ;

player->ChangeState(player, ReturnToHomeRegion::Instance());

return true;

}

break;

When a player receives this message, it moves back to its home region. It’s
frequently broadcast by the goalkeepers prior to goal kicks and by the
“pitch” to move the players back into their kick-off positions between
goals.

case Msg Wait:

{
//change the state
player->ChangeState(player, Wait::Instance());

return true;

}

break;

158 I Chapter 4
Designing the Al

Msg_Wait instructs a player to wait at its current position.

case Msg PassToMe:

{
//get the position of the player requesting the pass
FieldPlayer* receiver = (FieldPlayer*) (telegram.Extralnfo);

//if the ball is not within kicking range or the player does not have
//a window within which he can make the kick, this player cannot pass
//the ball to the player making the request.

if (!player->BallWithinKickingRange())

{

return true;

}

//make the pass
player->Ball()->Kick(receiver->Pos() - player->Ball()->Pos(),
Prm.MaxPassingForce) ;

//1et the receiver know a pass is coming
Dispatch->DispatchMsg(SEND MSG_IMMEDIATELY,
player->ID(),
receiver->ID(),
Msg ReceiveBall,
NO_SCOPE,
&receiver->Pos());

//change state
player->ChangeState(player, Wait::Instance());

player->FindSupport();

return true;

}

break;

Msg_PassToMe is used in a couple of situations, mainly when a supporting
player has moved into position and thinks it has a good chance of scoring a
goal. When a player receives this message, it passes the ball to the request-
ing player (if the pass can be made safely).

}//end switch

return false;
}
In addition to OnMessage, the global state also implements the Execute
method. This lowers the maximum speed of a player if it’s close to the ball
to simulate the way that soccer players move slower when they have
possession.

void GlobalPlayerState::Execute(FieldPlayer* player)
{

//if a player is in possession and close to the ball reduce his max speed

Sports Simulation — Simple Soccer I 159
Designing the Al

if((player->BallWithinReceivingRange()) &&
(player->Team()->ControllingPlayer() == player))

{
player->SetMaxSpeed (Prm.PlayerMaxSpeedWithBall) ;

}

else

{
player->SetMaxSpeed (Prm.PlayerMaxSpeedWithoutBall) ;

}
}

ChaseBall

When a player is in the ChaseBall state, it will seek to the ball’s current
position, attempting to get within kicking range.
When a player enters this state its seek behavior is activated like so:

void ChaseBall::Enter(FieldPlayer* player)

{
player->Steering()->SeekOn();

}

During an update of the Execute method a player will change state to
KickBall if the ball comes within kicking range. If the ball is not within
range, a player will continue to chase the ball as long as that player remains
the closest member of its team to the ball.

void ChaseBall::Execute(FieldPlayer* player)

{
//if the ball is within kicking range the player changes state to KickBall.

if (player->BallWithinKickingRange())
{
player->ChangeState(player, KickBall::Instance());

return;

}

//if the player is the closest player to the ball then he should keep
//chasing it
if (player->isClosestTeamMemberToBall())

{
player->Steering()->SetTarget (player->Ball()->Pos());

return;

}

//if the player is not closest to the ball anymore, he should return back
//to his home region and wait for another opportunity
player->ChangeState(player, ReturnToHomeRegion::Instance());

}

When a player exits this state, the seek behavior is deactivated.

void ChaseBall::Exit(FieldPlayer* player)
{

160 I Chapter 4

Designing the Al

player->Steering()->Seek0ff();
}

Woait

When in the Wait state a player will stay positioned at the location given by
its steering behavior target. If the player gets jostled out of position by
another player, it will move back into position.

There are a couple of exit conditions for this state:

B [f a waiting player finds itself upfield of a teammate that is control-
ling the ball, it will message the teammate with a request for it to
pass the ball. This is because it’s desirable to get the ball as far
upfield as possible and as quickly as possible. If safe, the teammate
will make the pass and the waiting player will change state to
receive the ball.

B [f the ball becomes closer to the waiting player than any other team-
mate and there is no allocated receiving player, it will change state to
ChaseBall.

void Wait::Execute(FieldPlayer* player)

{
//if the player has been jostled out of position, get back in position
if (!player->AtTarget())
{

player->Steering()->ArriveOn();

return;

}

else

{
player->Steering()->Arrive0ff();

player->SetVelocity(Vector2D(0,0));

//the player should keep his eyes on the ball!
player->TrackBall();
}

//if this player's team is controlling AND this player is not the attacker
//AND is farther up the field than the attacker he should request a pass.
if (player->Team()->InControl () 88
(!player->isControllingPlayer()) &&
player->isAheadOfAttacker())
{

player->Team()->RequestPass(player);

return;

}

if (player->Pitch()->GameOn())
{
//if the ball is nearer this player than any other team member AND

Sports Simulation — Simple Soccer I 161
Designing the Al

//there is not an assigned receiver AND neither goalkeeper has

//the ball, go chase it

if (player->isClosestTeamMemberToBall() &&
player->Team()->Receiver() == NULL &&
Iplayer->Pitch()->GoalKeeperHasBall())

{
player->ChangeState(player, ChaseBall::Instance());

return;
}
}
}

ReceiveBall

A player enters the ReceiveBall state when it processes a Msg_ReceiveBall
message. This message is sent to the receiving player by the player that has
just made the pass. The Extralnfo field of the Telegram contains the target
position of the ball so the receiving player’s steering target can be set
accordingly, allowing the receiver to move into position, ready to intercept
the ball.

There can only ever be one player from each team in the ReceiveBall
state — it wouldn’t be good tactics to have two or more players attempting
to intercept the same pass, so the first thing the Enter method of this state
does is update the appropriate SoccerTeam pointers to enable the other team
members to query them if necessary.

To create more interesting and natural-looking play, there are two
methods of receiving a ball. One method uses the arrive behavior to steer
toward the ball’s target position; the other uses the pursuit behavior to
pursue the ball. A player chooses between them depending on the value
ChanceOfUsingArriveTypeReceiveBehavior, whether or not an opposing
player is within a threatening radius, and whether or not the receiver is
positioned in the third of the pitch closest to the opponent’s goal (I call this
area the “hot region”).

void ReceiveBall::Enter(FieldPlayer* player)

{
//1et the team know this player is receiving the ball
player->Team()->SetReceiver(player);

//this player is also now the controlling player
player->Team()->SetControllingPlayer(player);

//there are two types of receive behavior. One uses arrive to direct

//the receiver to the position sent by the passer in its telegram. The
//other uses the pursuit behavior to pursue the ball.

//This statement selects between them dependent on the probability
//Chance0fUsingArriveTypeReceiveBehavior, whether or not an opposing
//player is close to the receiving player, and whether or not the receiving
//player is in the opponent's "hot region" (the third of the pitch closest
//to the opponent's goal)

const double PassThreatRadius = 70.0;

162

I Chapter 4

Designing the Al

if ((player->InHotRegion() ||
RandFloat() < Prm.ChanceOfUsingArriveTypeReceiveBehavior) &&
Iplayer->Team()->isOpponentWithinRadius (player->Pos(), PassThreatRadius))
{
player->Steering()->ArriveOn();
}

else

{
player->Steering()->PursuitOn();

}
}

The Execute method is straightforward. A receiving player will move into
position and will remain there unless the soccer ball comes within a speci-
fied distance or if its team loses control of the ball, at which time the player
will change to the ChaseBall state.

void ReceiveBall::Execute(FieldPlayer* player)
{
//if the ball comes close enough to the player or if his team loses control
//he should change state to chase the ball
if (player->BallWithinReceivingRange() || !player->Team()->InControl())
{
player->ChangeState(player, ChaseBall::Instance());

return;

}

//the player's target must be continuously updated with the ball position
//if the pursuit steering behavior is used to pursue the ball.
if (player->Steering()->PursuitIsOn())
{
player->Steering()->SetTarget (player->Ball()->Pos());
}

//if the player has "arrived" at the steering target he should wait and
//turn to face the ball
if (player->AtTarget())
{
player->Steering()->Arrive0ff();
player->Steering()->Pursuit0ff();
player->TrackBall();
player->SetVelocity(Vector2D(0,0));
}
}

KickBall

If there’s one thing that soccer players like doing more than getting drunk
and hugging each other, it’s kicking soccer balls. Oh yes. They love it.
Simple Soccer players are no different. Well, I guess they don’t get drunk
and hug each other, but they do enjoy a good kick around.

A Simple Soccer player must be able to control and kick the ball in a
number of ways. It must be able to attempt shots at the opponent’s goal,

Sports Simulation — Simple Soccer I 163
Designing the Al

have the skills necessary to pass the ball to another player, and be able to
dribble. When a player obtains control of the ball it should select the most
appropriate option to use at any time.

The KickBall state implements the logic for goal shots and passing. If
for some reason a player cannot take a shot or a pass is not necessary, the
player’s state will be changed to Dribble. A player cannot remain in the
KickBall state for longer than one update cycle; whether the ball is kicked
or not, the player will always change state somewhere in the journey
through the state logic. A player enters this state if the ball comes within
PlayerKickingDistance of its position.

Let me walk you through the source code:
void KickBall::Enter(FieldPlayer* player)

{

//1et the team know this player is controlling
player->Team()->SetControllingPlayer(player);

//the player can only make so many kick attempts per second.
if (!player->isReadyForNextKick())
{

player->ChangeState(player, ChaseBall::Instance());

}
}

The Enter method first lets the team know that this player is the controlling
player and then checks to see if the player is permitted to kick the ball this
update step. Players are only allowed to make kick attempts a few times a
second, at a frequency stored in the variable P1ayerKickFrequency. If the
player cannot make a kick attempt, its state is changed to ChaseBall and it
will continue running after the ball.

The number of times a player may kick a ball per second is restricted to
prevent anomalies in behavior. For example, with no restriction, situations
can occur where the ball is kicked, the player goes into the wait state, and
then, because the ball is still in kicking range, a split second later the play-
ers kicks it again. Because of the way the ball physics is handled, this can
result in jerky, unnatural ball motion.

void KickBall::Execute(FieldPlayer* player)
{
//calculate the dot product of the vector pointing to the ball
//and the player's heading
Vector2D ToBall = player->Ball()->Pos() - player->Pos();
double dot = player->Heading() .Dot (Vec2DNormalize(ToBall));

//cannot kick the ball if the goalkeeper is in possession or if it's
//behind the player or if there is already an assigned receiver. So just
//continue chasing the ball
if (player->Team()->Receiver() != NULL ||
player->Pitch()->GoalKeeperHasBall() ||
(dot < 0))

164 I Chapter 4
Designing the Al

player->ChangeState(player, ChaseBall::Instance());
return;

}

When the Execute method is entered, the dot product of the player’s head-
ing and the vector pointing toward the ball is calculated to determine if the
ball is behind or in front of the player. If the ball is behind, or there is
already a player waiting to receive the ball, or one of the goalkeepers has
the ball, the player’s state is changed so that it continues to chase the ball.

If the player is able to kick the ball, the state logic determines if there is
a possible goal shot to be made. After all, goals are the aim of the game, so
it naturally should be the first thing considered when a player obtains con-
trol of the ball.

/* Attempt a shot at the goal */

//the dot product is used to adjust the shooting force. The more
//directly the ball is ahead of the player, the more forceful the kick
double power = Prm.MaxShootingForce * dot;

Notice how the power of the shot is proportional to how directly ahead of
the player the ball is. If the ball is situated to the side, the power with
which the shot can be made is reduced.

//if a shot is possible, this vector will hold the position along the

//opponent's goal Tine the player should aim for.
Vector2D BallTarget;

//if it's determined that the player could score a goal from this position
//OR if he should just kick the ball anyway, the player will attempt
//to make the shot
if (player->Team()->CanShoot (player->Ball()->Pos(),
power,
BallTarget) [
(RandFloat() < Prm.ChancePlayerAttemptsPotShot))
{

The CanShoot method determines if there is a potential shot at the goal.
(You will find a detailed description of the CanShoot method toward the end
of this chapter.) If there is a potential shot, CanShoot will return true and
store the position the player should aim for in the vector Bal1Target. If it
returns false, we check to see whether or not a “cosmetic” potshot should
be made (Ball1Target will hold the location of the last position found
invalid by CanShoot, so we know the shot is guaranteed to fail). The reason
for making the occasional potshot is to liven up the gameplay, making it
look far more exciting to the human observer; it can get tedious quickly if
the computer players always score from a goal attempt. The occasional ran-
dom potshot introduces a little uncertainty, and makes the game a much
more enjoyable experience.

//add some noise to the kick. We don't want players who are
//too accurate! The amount of noise can be adjusted by altering

Sports Simulation — Simple Soccer I 165
Designing the Al

//Prm.PlayerKickingAccuracy
BallTarget = AddNoiseToKick(player->Ball()->Pos(), BallTarget);

//this is the direction the ball will be kicked
Vector2D KickDirection = BallTarget - player->Ball()->Pos();

player->Ball()->Kick(KickDirection, power);

The ball is kicked by calling the SoccerBall::Kick method with the desired
heading. Because perfect players making perfect kicks all the time does not
make for very realistic-looking soccer, an amount of noise is added to the
kick direction. This ensures the players will occasionally make poor kicks.

//change state
player->ChangeState(player, Wait::Instance());

player->FindSupport();

return;

}
Once the ball has been kicked, the player changes to the Wait state and
requests assistance from another teammate by calling the
PlayerBase: : FindSupport method. FindSupport “asks” the team to deter-
mine the teammate best suited to provide support, and to send a request via
the messaging system for the team member to enter the SupportAttacker
state. The state then returns control to the player’s Update method.

If no shot at the goal is possible, the player considers a pass. A player
will only consider this option if it’s threatened by an opposing player. A
player is deemed to be threatened by another when the two are less than
PlayerComfortZone pixels apart and the opponent is ahead of the facing
plane of the player. The default is set in params.ini at 60 pixels. A larger
value will result in players making more passes and a smaller value will
result in more successful tackles.

/* Attempt a pass to a player */

//if a receiver is found, this will point to it
PlayerBase* receiver = NULL;

power = Prm.MaxPassingForce * dot;

//test if there are any potential candidates available to receive a pass
if (player->isThreatened() &&
player->Team()->CanPass(player,
receiver,
BallTarget,
power,
Prm.MinPassDist))
{
//add some noise to the kick
BallTarget = AddNoiseToKick(player->Ball()->Pos(), BallTarget);

166 I Chapter 4
Designing the Al

Vector2D KickDirection = BallTarget - player->Ball()->Pos();
player->Ball()->Kick(KickDirection, power);

//1et the receiver know a pass is coming
Dispatch->DispatchMsg(SEND_MSG_IMMEDIATELY,
player->ID(),
receiver->ID(),
Msg ReceiveBall,
NO_SCOPE,
&BallTarget);
The method FindPass examines all the friendly players to find the team-
mate farthest up the playing field situated in a position where a pass can be
made without getting intercepted. (A detailed description of FindPass can
be found toward the end of this chapter.) If a valid pass is found, the kick is
made (with added noise as before), and the receiver is notified by sending
it a message to change state to ReceiveBall.

//the player should wait at his current position unless instructed
//otherwise
player->ChangeState(player, Wait::Instance());

player->FindSupport () ;

return;
}
If the game logic flows to this point, then neither an appropriate pass nor a
goal attempt has been found. The player still has the ball though, so it
enters the Dribble state. (It’s worth noting that this is not the only time
passes are made — teammates can request passes from players by sending
them the appropriate message.)

//cannot shoot or pass, so dribble the ball upfield
else

{
player->FindSupport();

player->ChangeState(player, Dribble::Instance());
}
}

Dribble

Dribbling is something babies are excellent at, from both ends... but the
word has also been adopted by the game of soccer to describe the art of
moving a ball along the field in a series of small kicks and dashes. Using
this skill, a player is able to rotate on the spot or move agilely around an
opponent while retaining control of the ball.

Because one of the exercises at the end of this chapter will be for you to
try to improve this skill, I’ve only implemented a simple method of

Sports Simulation — Simple Soccer I 167
Designing the Al

dribbling, giving a player just enough ability to move the game along at a
reasonable pace.

The Enter method simply lets the rest of the team know that the drib-
bling player is assumed to be in control of the ball.

void Dribble::Enter(FieldPlayer* player)

{
//1et the team know this player is controlling
player->Team()->SetControl1ingPlayer(player);
}

The Execute method contains the majority of the Al logic. First, a check is
made to see if the ball is between the player and its home goal (downfield
of the player). This situation is undesirable, because the player wants to
move the ball as far upfield as possible. Therefore the player must turn
around while still retaining control of the ball. To achieve this, players
make a series of very small kicks in a direction 2 (45 degrees) away from

their facing direction. After making each small kick, the player changes
state to ChaseBall. When done several times in quick succession, this has
the effect of rotating the player and ball until they are heading in the cor-
rect direction (toward the opponent’s goal).

If the ball is positioned upfield of the player, the player will nudge it a
short distance forward and then change state to ChaseBall in order to fol-
low it.

void Dribble::Execute(FieldPlayer* player)

{
double dot = player->Team()->HomeGoal ()->Facing().Dot(player->Heading());

//if the ball is between the player and the home goal, it needs to swivel
//the ball around by doing multiple small kicks and turns until the player
//is facing in the correct direction
if (dot < 0)
{
//the player's heading is going to be rotated by a small amount (Pi/4)
//and then the ball will be kicked in that direction
Vector2D direction = player->Heading();

//calculate the sign (+/-) of the angle between the player heading and the

//facing direction of the goal so that the player rotates around in the

//correct direction

double angle = QuarterPi * -1 *
player->Team()->HomeGoal () ->Facing() .Sign(player->Heading());

Vec2DRotateAroundOrigin(direction, angle);
//this value works well when the player is attempting to control the
//ball and turn at the same time

const double KickingForce = 0.8;

player->Ball()->Kick(direction, KickingForce);

168 I Chapter 4
Designing the Al

//kick the ball down the field
else

{
player->Ball()->Kick(player->Team()->HomeGoal ()->Facing(),
Prm.MaxDribbleForce) ;

}

//the player has kicked the ball so he must now change state to follow it
player->ChangeState(player, ChaseBall::Instance());

return;

}
SupportAttacker

When a player obtains control of the ball he immediately requests support

by calling the PlayerBase: :FindSupport method. FindSupport examines

each team member in turn to determine which player is closest to the

best supporting spot (calculated every few time steps by SupportSpot-

Calculator) and messages that player to change state to SupportAttacker.
On entering this state, the player’s arrive behavior is switched on and

its steering target is set to the location of the BSS.

void SupportAttacker::Enter(FieldPlayer* player)
{

player->Steering()->ArriveOn();

player->Steering()->SetTarget (player->Team()->GetSupportSpot());
}

There are a number of conditions that make up the logic of the Execute
method. Let’s step through them.

void SupportAttacker::Execute(FieldPlayer* player)
{

//if his team loses control go back home
if (!player->Team()->InControl())
{

player->ChangeState(player, ReturnToHomeRegion::Instance()); return;

}
If a player’s team loses control, the player should change state to move
back toward its home position.

//if the best supporting spot changes, change the steering target
if (player->Team()->GetSupportSpot() != player->Steering()->Target())
{

player->Steering()->SetTarget (player->Team()->GetSupportSpot());

player->Steering()->ArriveOn();

}

Sports Simulation — Simple Soccer I 169
Designing the Al

As you have seen, the position of the best supporting spot changes accord-
ing to many factors, so any supporting player must always make sure its
steering target is kept updated with the latest position.

//if this player has a shot at the goal AND the attacker can pass

//the ball to him the attacker should pass the ball to this player

if(player->Team()->CanShoot (player->Pos(),

Prm.MaxShootingForce))
{
player->Team()->RequestPass(player);

}
A supporting player spends the majority of its time in the opponent’s half
of the pitch. Therefore it should always be on the lookout for the possibility
of a shot at the opponent’s goal. These few lines use the SoccerTeam: : Can-
Shoot method to determine if there is a potential goal shot. If the result is
affirmative, the player requests a pass from the player controlling the ball.
In turn, if RequestPass determines that a pass from the controlling player to
this player is possible without being intercepted, a Msg_ReceiveBall mes-
sage will be sent and the player will change state accordingly in readiness
to receive the ball.

//if this player is located at the support spot and his team still has

//possession, he should remain still and turn to face the ball

if (player->AtTarget())

{
player->Steering()->Arrive0ff();

//the player should keep his eyes on the ball!
player->TrackBall();

player->SetVelocity(Vector2D(0,0));

//if not threatened by another player request a pass
if (!player->isThreatened())
{
player->Team()->RequestPass(player) ;
}
}
}

Finally, if the supporting player reaches the position of the BSS, it waits
and makes sure it’s always facing the ball. If there are no opponents within
its immediate vicinity and it doesn’t feel threatened, it requests a pass from
the controlling player.

3 NOTE Note that a request for a pass does not mean a pass will be made. A
pass will only be made if the pass is considered safe from interception.

170 I Chapter 4
Designing the Al

Goalkeepers

A goalkeeper’s job is to keep the ball from traveling over the goal line. To
do this, a goalkeeper utilizes a different set of skills than a field player and
is therefore implemented as a separate class, GoalKeeper. A goalkeeper will
move backward and forward along the goal mouth until the ball comes
within a specific range, at which point it will move outward toward the ball
in an attempt to intercept it. If a goalkeeper attains possession of the ball, it
puts the ball back in play by kicking it to an appropriate team member.

A Simple Soccer goalkeeper is assigned to the region that overlaps its
team’s goal. Therefore the red goalkeeper is assigned to region 16 and the
blue goalkeeper to region 1.

Goalkeeper Motion

Along with having a completely different set of states than a field player,
the GoalKeeper class must employ a slightly different setup for its motion.
If you observe a goalkeeper playing soccer you will notice that he is almost
always looking directly at the ball and that many of his movements are
from side to side, rather than along his facing direction like a field player.
Because an entity using steering behaviors has a velocity aligned heading,
a goalkeeper utilizes another vector, m_vLookAt, to indicate facing direction,
and it’s this vector that is passed to the Render function in order to trans-
form the goalkeeper’s vertices. The end result is an entity that appears to be
always facing the ball and can move laterally from side to side as well as
along its heading axis. See Figure 4.13.

Figure 4.13. Goalkeeper movement

Sports Simulation — Simple Soccer I 171

Designing the Al

Goalkeeper States

A goalkeeper utilizes five states. These are:
B GlobalKeeperState
B TendGoal
B ReturnHome
B PutBallBackInPlay
B InterceptBall

Let’s take a look at each one of these in detail to see what makes a goal-
keeper tick.

GlobalKeeperState

Like the FieldPlayer global state, the GoalKeeper global state is used as the
router for all the messages it can receive. A goalkeeper only listens for two
messages: Msg_GoHome and Msg ReceiveBall.

I think the code can speak for itself here:
bool GlobalKeeperState::0nMessage(GoalKeeper* keeper, const Telegram& telegram)

{
switch(telegram.Msg)

{

case Msg GoHome:

{
keeper->SetDefaultHomeRegion() ;

keeper->ChangeState (keeper, ReturnHome::Instance());

}
break;

case Msg ReceiveBall:

{
keeper->ChangeState (keeper, InterceptBall::Instance());

}

break;
}//end switch

return false;

}
TendGoal

When in the TendGoal state, a goalkeeper will move laterally across the
front of the goal mouth, attempting to keep its body between the ball and a
moving position located to its rear somewhere along the goal line. Here is
the state’s Enter method:

void TendGoal::Enter(GoalKeeper* keeper)

{
//turn interpose on
keeper->Steering()->InterposeOn(Prm.GoalKeeperTendingDistance) ;

172

I Chapter 4

Designing the Al

//interpose will position the agent between the ball position and a target

//position situated along the goal mouth. This call sets the target

keeper->Steering()->SetTarget (keeper->GetRearInterposeTarget());
}
First, the interpose steering behavior is activated. Interpose will return a
steering force that attempts to position the goalkeeper between the ball and
a position situated along the goal mouth. This position is determined by the
GoalKeeper: :GetRearInterposeTarget method, which assigns a position to
the target proportionally as far up the length of the goal mouth as the ball is
positioned up the width of the pitch. (I hope that sentence made sense
because I agonized over it for ten minutes and it’s the best I could do!)
Hopefully Figure 4.14 will help your understanding. From the goalkeeper’s
perspective, the farther the ball is to the left, the farther to the left along the
goal line is the interpose rear target. As the ball moves to the goalkeeper’s
right, the interpose rear target moves to the right of the goal mouth with it.

—
GoalKeeperTendingDistange
.‘i""-i# L <|
i T - nterpose
- o rear target

Figure 4.14. Tending the goal

The black double-headed arrow indicates the distance the goalkeeper
attempts to keep between itself and the back of the net. This value is set in
params.ini as GoalKeeperTendingDistance.

Let’s move on to the Execute method.

void TendGoal::Execute(GoalKeeper* keeper)

{
//the rear interpose target will change as the ball's position changes
//so it must be updated each update step
keeper->Steering()->SetTarget (keeper->GetRearInterposeTarget());

Sports Simulation — Simple Soccer I 173
Designing the Al

//if the ball comes in range the keeper traps it and then changes state
//to put the ball back in play
if (keeper->BallWithinPlayerRange())

{
keeper->Ball()->Trap();

keeper->Pitch()->SetGoalKeeperHasBall(true);
keeper->ChangeState (keeper, PutBallBackInPlay::Instance());

return;

}

//if ball is within a predefined distance, the keeper moves out from
//position to try to intercept it.

if (keeper->BallWithinRangeForIntercept())

{

keeper->ChangeState (keeper, InterceptBall::Instance());
}
First, a check is made to see if the ball is close enough for the goalkeeper
to grab hold of. If so, the ball is trapped and the keeper changes state to
PutBallBackInPlay. Next, if the ball comes within intercept range, shown
in Figure 4.14 as the area in light gray and set in params.ini as
GoalKeeperInterceptRange, the keeper changes state to InterceptBall.

//if the keeper has ventured too far away from the goal Tine and there
//is no threat from the opponents he should move back toward it

if (keeper->TooFarFromGoalMouth() && keeper->Team()->InControl())

{

keeper->ChangeState (keeper, ReturnHome::Instance());

return;
}
}
Occasionally, following a state change from InterceptBall to TendGoal,
the goalkeeper can find itself too far away from the goal. The last few lines
of code check for this eventuality and, if safe to do so, changes the keeper’s
state to ReturnHome.
The TendGoal::Exit method is very simple; it just deactivates the inter-
pose steering behavior.
void TendGoal::Exit(GoalKeeper* keeper)

{
keeper->Steering()->Interpose0ff();

}
ReturnHome

The ReturnHome state moves the goalkeeper back toward its home
region. When the home region is reached or if the opponents gain control
over the ball, the keeper is put back into the TendGoal state.

174 I Chapter 4
Designing the Al

void ReturnHome: :Enter(GoalKeeper* keeper)

{

keeper->Steering()->ArriveOn();

}

void ReturnHome: :Execute(GoalKeeper* keeper)

{

keeper->Steering()->SetTarget (keeper->HomeRegion()->Center());

//if close enough to home or the opponents get control over the ball,
//change state to tend goal
if (keeper->InHomeRegion() || !keeper->Team()->InControl())

{

keeper->ChangeState (keeper, TendGoal::Instance());
}
}

void ReturnHome::Exit(GoalKeeper* keeper)

{
keeper->Steering()->Arrive0ff();

}
PutBallBackinPlay

When a goalkeeper gains possession of the ball, it enters the PutBallBack-
InPlay state. A couple of things happen in the Enter method of this state.
First, the keeper lets its team know it has the ball, then all the field players
are instructed to go back to their home regions via the call to the
SoccerTeam: :ReturnAl11FieldPlayersToHome method. This ensures that there
will be enough free space between the keeper and the players to make a
goal kick.

void PutBallBackInPlay::Enter(GoalKeeper* keeper)
{

//1et the team know that the keeper is in control
keeper->Team()->SetControllingPlayer(keeper);

//send all the players home
keeper->Team() ->Opponents () ->ReturnAl1FieldPlayersToHome() ;
keeper->Team() ->ReturnAl1FieldPlayersToHome() ;

}

The goalkeeper now waits until all the other players have moved far
enough away and it can make a clean pass to one of its team members. As
soon as an opportunity to pass becomes available, the keeper passes the
ball, sends a message to the receiving player to let it know the ball is on its
way, and then changes state to return to tending the goal.

void PutBallBackInPlay::Execute(GoalKeeper* keeper)
{

PlayerBase* receiver = NULL;
Vector2D BallTarget;

//test if there are players farther forward on the field we might
//be able to pass to. If so, make a pass.

Sports Simulation — Simple Soccer I 175
Designing the Al

if (keeper->Team()->FindPass (keeper,
receiver,
BallTarget,
Prm.MaxPassingForce,
Prm.GoalkeeperMinPassDist))

//make the pass
keeper->Ball()->Kick(Vec2DNormalize(BallTarget - keeper->Ball()->Pos()),
Prm.MaxPassingForce) ;

//g0alkeeper no Tonger has ball
keeper->Pitch()->SetGoalKeeperHasBall(false);

//1et the receiving player know the ball's comin' at him
Dispatcher->DispatchMsg(SEND_MSG_IMMEDIATELY,
keeper->ID(),
receiver->ID(),
Msg ReceiveBall,
&BallTarget);

//90 back to tending the goal
keeper->GetFSM() ->ChangeState (TendGoal: : Instance());

return;

}

keeper->SetVelocity(Vector2D());
}

InterceptBall

A goalkeeper will attempt to intercept the ball if the opponents have con-
trol and if it comes into “threat range” — the gray area shown in Figure
4.15. It uses the pursuit steering behavior to steer it toward the ball.

Figure 4.15. A goalkeeper’s “threat range”

176 I Chapter 4

Designing the Al

void InterceptBall::Enter(GoalKeeper* keeper)

{

keeper->Steering()->PursuitOn();

}
As the goalkeeper moves outward, toward the ball, it keeps checking the
distance to the goal to make sure it doesn’t travel too far. If the goalkeeper
does find itself out of goal range it changes state to ReturnHome. There is
one exception to this: If the goalkeeper is out of goal range yet is the clos-
est player on the pitch to the ball, he keeps running after it.

If the ball comes in range of the goalkeeper, he stops the ball using the
SoccerBall::Trap method, lets everyone know he is in possession, and
changes state in order to put the ball back in play.

void InterceptBall::Execute(GoalKeeper* keeper)

{
//if the goalkeeper moves too far away from the goal he should return to his
//home region UNLESS he is the closest player to the ball, in which case
//he should keep trying to intercept it.
if (keeper->TooFarFromGoalMouth() && !keeper->ClosestPlayerOnPitchToBall())
{

keeper->ChangeState (keeper, ReturnHome::Instance());

return;

}

//if the ball becomes in range of the goalkeeper's hands he traps the
//ball and puts it back in play
if (keeper->BallWithinPlayerRange())

{
keeper->Ball()->Trap();

keeper->Pitch()->SetGoalKeeperHasBall (true);
keeper->ChangeState (keeper, PutBallBackInPlay::Instance());

return;
}
}

The exit method of InterceptBall turns off the pursuit behavior.

Key Methods Used by the Al

A number of the methods of the SoccerTeam class are used frequently by
the Al, and thus a full description is important to your complete under-
standing of how the Al works. With this in mind, I’ll spend the next few
pages taking you through each one step by step. Put your math hat back
on...

Sports Simulation — Simple Soccer I 177
Designing the Al

SoccerTeam::isPassSafeFromAllOpponents

A soccer player, whatever his role in the game, is continually assessing his
position in relation to those around him and maki