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Preface

Artificial neural networks (ANNs) serve as powerful computational tools in a
diversity of applications including: classification, pattern recognition, function
approximation, and the modeling of biological neural networks. Equipped with
procedures for learning from examples, ANNs can solve problems for which no
algorithmic solution is known.

A major shortcoming of ANNs, however, is that the knowledge learned by
the network is represented in an exceedingly opaque form, namely, as a list of
numerical coefficients. This black-box character of ANNs hinders the possibility
of more widespread acceptance of them, and makes them less suitable for medical
and safety-critical applications.

A very different form of knowledge representation is provided by fuzzy rule-
bases (FRBs). These include a collection of If-Then rules, stated in natural lan-
guage. Thus, the knowledge is represented in a form that humans can understand,
verify, and refine. In many cases, FRBs are derived based on questioning a human
expert about the functioning of a given system. Transforming this information
into a complete and consistent set of rules, and determining suitable parameter
values, is a nontrivial challenge.

It is natural to seek a synergy between the plasticity and learning abilities
of ANNs and the transparency of FRBs. Indeed, considerable research attention
has been devoted to the development of various neuro-fuzzy models, but this
synergy is a target yet to be accomplished.

In this monograph, we introduce a novel FRB, referred to as the Fuzzy All-
permutations Rule-Base (FARB). We show that inferring the FARB, using stan-
dard tools from fuzzy logic theory, yields an input-output relationship that is
mathematically equivalent to that of an ANN. Conversely, every standard ANN
has an equivalent FARB. We provide the explicit bidirectional transformation
between the ANN and the corresponding FARB.

The FARB–ANN equivalence integrates the merits of symbolic FRBs and
subsymbolic ANNs. We demonstrate this by using it to design a new approach
for knowledge-based neurocomputing using the FARB. First, by generating the
equivalent FARB for a given (trained) ANN, we immediately obtain a symbolic
representation of the knowledge learned by the network. This provides a novel
and simple method for knowledge extraction from trained ANNs.



VIII Preface

The interpretability of the FARB might be hampered by the existence of
a large number of rules or complicated ones. In order to overcome this, we
also present a systematic procedure for rule reduction and simplification. We
demonstrate the usefulness of this approach by applying it to extract knowledge
from ANNs trained to solve: the Iris classification problem, the LED display
recognition problem, and a formal language recognition problem.

Second, stating initial knowledge in some problem domain as a FARB imme-
diately yields an equivalent ANN. This provides a novel approach for knowledge-
based design of ANNs. We demonstrate this by designing recurrent ANNs that
solve formal language recognition problems including: the AB language, the bal-
anced parentheses language, and the 0n1n language. Note that these languages
are context-free, but not regular, so standard methods for designing RNNs are
not applicable in these cases.

Some of the results described in this work appeared in [89, 88, 90, 91]. We are
grateful to several anonymous reviewers of these papers for providing us with
useful and constructive comments.

We gratefully acknowledge the financial support of the Israeli Ministry of
Science and Technology, the Israel Science Foundation, and the Adams Super
Center for Brain Research at Tel Aviv University.

Tel Aviv, Israel Eyal Kolman
July 2008 Michael Margaliot



Abbreviations

AI Artificial Intelligence
ANN Artificial Neural Network
COG Center Of Gravity
DFA Discrete Finite-state Automaton
DOF Degree Of Firing
FARB Fuzzy All-permutations Rule-Base
FFA Fuzzy Finite-state Automaton
FL Fuzzy Logic
FRB Fuzzy Rule-Base
IFF If and only if
IO Input-Output
KBD Knowledge-Based Design
KBN Knowledge-Based Neurocomputing
KE Knowledge Extraction
LED Light Emitting Diode
MF Membership Function
MLP Multi-Layer Perceptron
MOM Mean Of Maxima
RBFN Radial Basis Function Network
RNN Recurrent Neural Network
SVM Support Vectors Machine



Symbols

x column vector
xT transpose of vector x
xi ith element of the vector x
||x|| Euclidean norm of the vector x
[j :k] set of integers {j, j + 1, . . . , k}
R

n space of n-dimensional real-valued numbers
μterm(·) membership function for the fuzzy set term

i-or interactive-or operator (see p. 8)
σ(·) logistic function (see p. 8)
σL(·) piecewise linear logistic function (see p. 18)
h−1(·) inverse of the function h(·)
& logical and operator
L4 language generated by Tomita‘s 4th grammar
tk(x) truth value of Rule k for input x
Prob(A) probability of event A

E{x} expected value of the random variable x
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1 Introduction

In this chapter, we introduce some of the basic themes of this work. We begin
with some background material on artificial intelligence and the paradigms of
connectionism and symbolism. This is followed by a very brief review of arti-
ficial neural networks (ANNs) and fuzzy rule-based systems (FRBs). This sets
the stage for the presentation of the main tool developed in this work, the fuzzy
all-permutations rule-base (FARB). This is an FRB with a special form. This
form guarantees that the input-output mapping of the FARB is mathemati-
cally equivalent to that of an ANN. This provides a new synergy between the
learning-from-examples ability of ANNs and the high-level symbolic information
processing of FRBs.

The modern field of artificial intelligence (AI) [147] was born at a conference
held at the campus of Dartmouth College in the summer of 1956 [109]. John
McCarthy, who coined the term AI, defined it as “the science and engineering
of making intelligent machines”[108].

A natural approach for developing such intelligent machines is based on an
attempt to mimic the human reasoning process or the behavior of some ideal
rational agent.1 Two paradigms for explaining and imitating the human reason-
ing process are symbolism and connectionism [40, 161, 179]. Symbolism views
reasoning as the process of creating and manipulating a symbolic map of the
outside world. This approach is based on using a formal axiom system for sym-
bol processing. Axioms, theorems, and deductive rules are used to manipulate
symbols in order to derive meaningful conclusions. Examples of successful ap-
plications of symbolism in AI include the use of rule-based systems that imitate
the reasoning process of human experts in some specific, and usually narrow,
domain [70, 147, 159].

The connectionist approach is inspired by biological neural networks. The hu-
man brain information processing ability is thought to emerge primarily from
the interactions of large interconnected networks of neurons. Artificial neural
networks (ANNs) are based on an attempt to imitate this idea. The develop-
ment of suitable training algorithms provided ANNs with the ability to learn

1 Human decision making and rationality are not always congruent [79].

E. Kolman, M. Margaliot: Knowledge-Based Neurocomputing, STUDFUZZ 234, pp. 1–12.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2009



2 Introduction

and generalize from examples. In this respect, ANNs provide a solution to the
problem posed by Arthur Samuel [151] in 1959:

“How can computers be made to do what needs to be done, without being
told exactly how to do it?”

1.1 Artificial Neural Networks

In 1943, McCulloch and Pitts proposed a model for an artificial neural net-
work [110]. Motivated by the theory of finite-state machines, each neuron in
the network had two possible states: ON and OFF. The state is determined
according to the neuron inputs, which are themselves the outputs of neighbor-
ing neurons (see Fig. 1.1). McCulloch and Pitts showed how such an ANN can
perform simple logical functions, and suggested that ANNs may have learning
capabilities.

In 1949, Hebb suggested a simple updating rule for modifying the network
connections [60]: if two neurons are activated at the same time, then their
connection-weight is increased; otherwise, it is decreased. This so-called Heb-
bian learning remains an influential idea in the field of machine learning till
today.

In 1957, Rosenblatt presented the perceptron, which is a linear classifier im-
plemented by a single neuron [141]. A major result was the presentation of a
simple and converging learning algorithm for this classifier. About a decade
later, Minsky and Papert provided a very influential critical overview of the
perceptron [116].

In 1982, Hopfield used techniques from statistical mechanics to analyze the
storage and optimization properties of dynamic ANNs, treating the neurons as
a collection of atoms. A major breakthrough occurred in the mid-1980s, when
several groups reinvented the back-propagation algorithm [95, 130, 144, 180], a
highly efficient training algorithm for multi-layer perceptrons (MLPs).

x2 f

x1

xn

...

y = f(
∑n

i=1 wixi)
w2

w1

wn

Fig. 1.1. An artificial neuron: x1, . . . , xn are the inputs, wi are the neuron weights,
and y is the output



Fuzzy Rule-Bases (FRBs) 3

ANNs proved to be a highly successful distributed computation paradigm,
and were effectively used to solve tasks in the fields of classification, pattern
recognition, function approximation, and more. Many results were gathered in
the influential collection [145].

The ability of ANNs to learn and generalize from examples makes them very
suitable for many real-world applications where exact algorithmic approaches
are either unknown or too difficult to implement. Numerous problems that are
hard to address using conventional algorithms were solved by training MLPs
using the backprop algorithm. ANNs were also extensively used in the modeling
and analysis of biological neural networks [14, 29, 59, 115, 192].

However, the knowledge learned during the training process is embedded in
a complex, distributed, and sometimes self-contradictory form [69]. Whether
the ANN operates properly or not, it is very difficult to comprehend exactly
what it is computing. In this respect, ANNs process information on a “black-
box” and sub-symbolic level.

A very different form of knowledge representation is provided by fuzzy rule-
based systems.

1.2 Fuzzy Rule-Bases

Rule-based systems play an important role in the symbolic approach to AI. The
system knowledge is stated as a collection of If-Then rules. Inferring the rules
provides the system input-output mapping. A typical application of rule-based
systems is the design of expert systems that mimic the reasoning process of
a human expert, in a certain, and usually narrow, knowledge domain. Expert
systems are built by restating the knowledge of the human expert as a suitable
set of rules. Two famous examples are the Dendral system, which was used
to infer the molecular structures of materials from mass spectrometer data [21];
and the Mycin medical diagnostic system. The performance of Mycin was
comparable to that of human physicians [159].

A major difficulty in the design of expert systems is that human experts
explain their reasoning process using natural language which is inherently vague
and imprecise. Transforming this information into logical If-Then rules is a highly
nontrivial task.

In the mid 1960s, Lotfi A. Zadeh pointed out that classical logic theory is not
always appropriate in the context of human reasoning. His principle of incom-
patibility states that if a system is complex enough, precision and relevance (or
meaningfulness) of statements about its behavior are mutually exclusive char-
acteristics [185]. To overcome these difficulties, Zadeh introduced fuzzy sets and
fuzzy logic (FL). Fuzzy sets [184] are a generalization of ordinary sets. The mem-
bership of an element in a fuzzy set is not binary, but rather it is a continuum
grade in the range [0, 1]. FL is an extension of classical logic theory based on
using fuzzy sets and fuzzy logic operators. This provides the machinery needed
to handle propositions whose truth values are not necessarily binary.
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Zadeh pointed out that FL theory is suitable for modeling human language
and the human reasoning process. More recently, Zadeh suggested the notion of
computing with words [187], as opposed to the classic paradigm of computation
with exact numerical values and symbols. Indeed, it soon became evident that
the true power of fuzzy logic lies in its ability to handle and manipulate linguistic
information [33, 107, 174, 186, 187].

In particular, fuzzy rule-bases (FRBs) include a collection of If-Then rules,
stated using natural language, and describing how the input affects the output.
Thus, the knowledge is expressed in a form that humans can easily understand,
verify, and refine. In this respect, FRBs are also useful for expressing partial
or self-contradicting knowledge due to their ability to handle vagueness and
uncertainty [122].

In 1974, Mamdani and his colleagues [103, 104] designed a fuzzy controller
that regulated a steam engine. The engine had two inputs and two outputs. The
inputs were the heat temperature to the boiler and throttle opening of the engine
cylinder. The regulated outputs were the steam pressure and the engine speed.
The fuzzy controller was an FRB composed of rules in the form:

If the outputs are . . . Then the inputs should be . . . .

These rules were derived using common sense and stated using natural language.
An example is the rule:

If speed error is positive big
and change in speed error is not(negative big or negative medium)

Then change in the throttle opening must be negative big.

This first practical application of fuzzy rule-based systems proved to be a
startling success, and quickly led the way to the application of FRBs in numerous
real-world applications, ranging from household electrical devices [72] to subway
trains [165].

In summary, FRBs provide efficient means for transforming verbally-stated
knowledge into an algorithmic form. Thus, FRBs are frequently used to develop
expert systems [54, 164, 165], as well as to transform verbal descriptions of
various phenomena into well-defined mathematical models [136, 143, 174, 175].
However, a major disadvantage of FRBs is the lack of a systematic algorithm for
determining the fuzzy sets and the fuzzy operators suitable for a given problem.
A natural idea is to integrate some kind of learning capability into the FRB.

1.3 The ANN–FRB Synergy

Agreat deal of researchhas been devoted to the design of hybrid intelligent systems
that fuse sub-symbolic and symbolic techniques for information processing [80,
111], and, in particular, to creating an ANN–FRB synergy [118], or neuro-fuzzy
models. The desired goal is a combined system demonstrating the robustness and
learning capabilities of ANNs and the “white-box”2 character of FRBs.
2 “White-box” is the antonym of “black-box”, i.e., a system with behavior and conclu-

sions that can be explained and analyzed in a comprehensible manner.
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Fuzzy logic techniques have been used for improving ANN features, by using
fuzzy preprocessing of the training data, fuzzy clustering of the data, and fuzzy
learning algorithms [132]. Particular attention was devoted to special ANN ar-
chitectures that perform fuzzy information processing [133]. Examples include
the famous Adaptive Network-based Fuzzy Inference System (ANFIS) [73, 75],
which is a feedforward network representation of the fuzzy reasoning process,3

and Lin and Lee’s Neural-Network-Based Fuzzy Logic Control and Decision Sys-
tem [98], which is a neuro-implementation of a fuzzy controller. In both cases,
nodes in different layers perform different tasks corresponding to the different
stages in the fuzzy reasoning process.4

Another form of a neuro-fuzzy synergy that has been extensively discussed in
the literature is based on transforming a given ANN into a corresponding fuzzy
rule-base, and vice versa (see the surveys [4, 71, 118, 166]).

1.4 Knowledge-Based Neurocomputing

Knowledge-based neurocomputing (KBN) concerns the use and representation
of symbolic knowledge within the neurocompting paradigm. The focus of KBN
is therefore on methods to encode prior knowledge, and to extract, refine, and
revise knowledge embedded within an ANN [29]. Cloete sorted KBN techniques
into three types: unified, hybrid, and translational [27]. In unified architectures,
no explicit symbolic functionality is programmed into the ANN. In hybrid archi-
tectures, separate ANNs are responsible for particular functions and knowledge
is transferred between them. Translational architectures maintain two knowledge
representations: subsymbolic and symbolic, and the information flows back and
forth between them.

Extracting and representing the knowledge that was learned by a trained ANN
in the form of symbolic rules is referred to as knowledge extraction (KE), whereas
designing ANNs on the basis of prior knowledge is called knowledge insertion or
knowledge-based design (KBD).

1.4.1 Knowledge Extraction from ANNs

The main drawback of ANNs is their black-box character. The knowledge embed-
ded in the ANN is distributed in the weights and biases of the different neurons,
and it is very difficult to comprehend exactly what the ANN is computing. This
hinders the possibility of more widespread acceptance of ANNs, and makes them
less suitable for certain applications. For example, in many medical applications
black-box decisions are deemed unacceptable [177]. Specifically, the learned in-
termediaries doctrine places on the clinician a responsibility to understand any
inferences derived from an assisting model [38].
3 This is a specific implementation of logic-based neural networks [131], where neurons

apply logical functions.
4 For example, the ANFIS first layer nodes compute membership function values,

whereas nodes in the second layer perform T-norm operations.
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The importance of the KE challenge cannot be overemphasized. Several po-
tential benefits include [30, 32]:

• Validation. Explaining the ANNs functioning in a comprehensible form
provides a validation of its suitability for the given task. This is vital in
safety-critical applications [19] [31].

• Feature extraction. During the training process, ANNs learn to recognize
the relevant features in enormous sets of data. Understanding what these
features are may lead to a deeper theoretical understanding of the problem
at hand. Efficient feature extraction may also lead to an improvement in the
overall accuracy of the system, and to efficient compression schemes [152].

• Refinement and improvement. A comprehensible model can be analyzed
and refined. This can increase precision, reduce inconsistencies, and improve
the overall ability to generalize and predict correctly.

• Scientific discovery. ANNs trained using a set of classified examples can
learn to solve difficult classification problems for which no algorithmic ap-
proach is known. Understanding the functioning of these ANNs can make
them accessible for human review and lead to new discoveries [67].

Currently, all existing KE techniques suffer serious drawbacks, and the prob-
lem is far from being resolved. The overwhelming implications of successful KE
have made this topic the “holy grail” of research in the field. We present a brief
overview of existing KE techniques. For more details, see [4, 29, 166].

Knowledge Extraction from Feedforward ANNs

KE techniques can be sorted into one of three types. The decompositional
methodology [4, 167] generates rules for each hidden or output neuron, by
searching for combinations of inputs whose weighted sum exceeds the neuron
bias. Then, rules are created with the discovered combination as a premise. Ex-
amples include Fu’s KT (Knowledge Translator) [43] and Towell and Shavlik’s
Subset [172] algorithms. A variant is the MofN method, that generates rules of
the form “If at least M of the following N premises are true, Then . . .” [172].

The pedagogical approach [4] treats the ANN as a black-box and generates a
knowledge representation that has the same (or similar) input-output (IO) map-
ping, disregarding the specific architecture of the network. Input-output pairs
are generated using the trained network, and rules are extracted from this new
database. Examples include Craven’s TREPAN (TREes PArroting Networks)
decision tree [30]; dividing the input and output domains to polyhedral regions
and extracting rules that map input polyhedra to output polyhedra [61, 102];
and generating rules that connect inputs and outputs that are active at the same
time [148]. Some techniques analyze the network input-output mapping by com-
puting the derivative of the output with respect to a specific input [68], or by
discrete rule extraction through orthogonal search [38].

Models that use both decompositional and pedagogical approaches, are re-
ferred to as eclectic. For example, the DEDEC algorithm [168] extracts rules



Knowledge-Based Neurocomputing 7

from an ANN based on its IO mapping, but ranks their importance using the
network coefficients.

Several approaches are based on searching for the “most effective” IO paths
in the ANN, and extracting rules that approximate the performance of these
paths [18, 55, 119, 155]. For example, Mitra and Pal presented the Fuzzy-
MLP [117, 119], which is a feedforward network with fuzzified inputs. After
training, fuzzy rules are extracted by finding the input and hidden neurons that
had the largest influence on the output, for a given input.

One reason the KE problem is difficult is that the knowledge learned during
training is embedded in a highly distributed and complex form. A very useful
technique is modification of the training algorithm by adding suitable regulariza-
tion terms to the error criterion [150]. The goal is to force the ANN to develop a
more condensed and skeletal structure, which facilitates subsequent KE [14, 156].
Ishikawa [69, 114] incorporates regularization terms that punish large weights.
Duch et al. [35, 36] use regularization terms that force the weights to one of the
values {-1,1,0}. In both methods, KE is then performed by representing the IO
mapping of each neuron as a Boolean function.

A common drawback of nearly all existing KE techniques is that they use
approximated representations. Indeed, one of the common evaluation criteria for
KE techniques is fidelity [4, 190], i.e., how well one representation mimics the
other. For a KE technique yielding a fidelity error close to zero, but not equal
to zero, see [102]. To the best of our knowledge, there are only two algorithms
that generate representations with a zero fidelity error. We now discuss them in
more detail.

The Jang and Sun model

Jang and Sun [74] noted that the activation functions of radial basis function
networks (RBFNs) are the Gaussian membership functions frequently used in
FRBs. They used this to extract a FRB that is mathematically equivalent to the
RBFN. In other words, the IO mapping of the FRB is mathematically equivalent
to the IO mapping of the original RBFN. Yet, this equivalence holds only for
RBFNs, and each membership function can be used by no more than one rule [3].

The Benitez et al. model

Benitez et al. [12] showed that ANNs with Logistic activation functions are
mathematically equivalent to Mamdani-type FRB, but with some special and
non-standard fuzzy operators. Their method is quite relevant to the approach
presented in this monograph and so we review their model in detail.

Consider a feedforward ANN with k inputs zi, i = 1, . . . , k, a hidden layer
of n neurons with activation function h : R → R, and a single output unit (see
Fig. 1.2). The ANN output is given by

f = c0 +
n∑

j=1

cjh(
k∑

i=1

wjizi + bj). (1.1)
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Fig. 1.2. Feedforward ANN with a single hidden layer

Let σ(x) denote the Logistic function:

σ(x) :=
1

1 + exp(−x)
. (1.2)

Benitez et al. [12] (see also [24]) noted that for the particular case of an ANN
with Logistic activation functions h(x) = σ(x), Eq. (1.1) can be interpreted as
the result of inferencing a set of n fuzzy rules, with rule j, j = 1, . . . , n, in the
form

Rj : If

(
k∑

i=1

wjizi + bj

)
is A Then f = cj . (1.3)

The linguistic term is A is defined using a Logistic membership function, and
the actual output is computed using a weighted (but not normalized) sum of the
Then-parts of the rules.

To further simplify the If-part in the rules, Benitez et al. introduced the
interactive-or (i-or) operator ∗ : R × R · · · × R → R, defined by

a1 ∗ a2 ∗ · · · ∗ an :=
a1a2 . . . an

a1a2 . . . an + (1 − a1)(1 − a2) . . . (1 − an)
. (1.4)

Note that if at least one the ais is zero then a1 ∗ a2 ∗ · · · ∗ an = 0 and that 1 ∗
1 ∗ · · · ∗ 1 = 1.

It is easy to verify using (1.2) that i-or is the σ-dual of the + operation, that
is, σ(

∑n
i=1 ai) = σ(a1) ∗ σ(a2) ∗ · · · ∗ σ(an), so (1.3) can be rewritten as

If (wj1z1 is A)∗(wj2z2 is A)∗ . . . ∗(wjkzk is A)∗(bj is A) Then f = cj . (1.5)

Thus, the If-part in rule Rj is a composition, using the i-or operator, of the k+1
atoms: (wjizi is A), i = 1, . . . , k, and (bj is A).
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This model yields an equivalence between an ANN with Logistic activation
functions and an FRB with rules in the form (1.5). Benitez et al. demonstrated
how this can be used to extract the knowledge embedded in a trained ANN
(with n hidden neurons) in the form of an FRB (with n rules). However, the use
of the i-or operator and the additive inferencing imply that this FRB is not a
standard FRB.

More recently, extensions of Benitez’ model to Takagi-Sugeno-type fuzzy sys-
tems also appeared [24, 189]. As noted in [118], models using Takagi-Sugeno-type
rules are more difficult to interpret than Mamdani-type models.

Knowledge Extraction from Recurrent ANNs

The existence of feedback connections makes recurrent neural networks (RNNs)
more powerful than feedforward ANNs, but also more complicated to train and
analyze. RNNs are widely used in various domains, including financial forecast-
ing [49, 93], control [112], speech recognition [138], visual pattern recognition [96],
and more.

Knowledge extraction from RNNs is more difficult due to the intricate feed-
back connections [71]. Consequently, common KE techniques for RNNs are based
not on rule extraction, but rather on transforming the RNN into a corresponding
deterministic finite-state automaton (DFA). This is carried out in four steps [71]:

1. Quantization of the continuous state space of the RNN, resulting in a set of
discrete locations.

2. Feeding the RNN with input patterns and generating the resulting states
and outputs.

3. Construction of the corresponding DFA, based on the observed transitions.
4. Minimization of the DFA.

Variants of this approach include: quantization using equipartitioning of the state
space [50, 126] and vector quantization [41, 52, 188]; generating the state and
output of the DFA by sampling the state space [105, 178]; extracting stochastic
state machines [169, 170]; extracting fuzzy state machines [16], and more [71].

However, this form of KE has several drawbacks. First, RNNs are continuous-
valued and it is not at all obvious whether they can be suitably modeled using
discrete-valued mechanisms such as DFAs [86, 87]. Second, the resulting DFA
depends crucially on the quantization level. Coarse quantization may cause large
inconsistencies between the RNN and the extracted DFA, while fine quantization
may result in an overly large and complicated DFA. Finally, the comprehensibil-
ity of the extracted DFA is questionable. This is particularly true for DFAs with
many states, as the meaning of every state/state-transition is not necessarily ob-
vious. These disadvantages encourage the development of alternative techniques
for KE from RNNs [139, 140].

1.4.2 Knowledge-Based Design of ANNs

In many real-world problems, certain prior knowledge on a suitable solution
exists. Using this information in the design of an ANN for solving the problem
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is important because the initial architecture and parameter values of a network
can have a critical effect on its functioning. If the initial network is too simple,
it may not be able to solve the given problem for any set of parameters. If
the network is too complicated, the training algorithm may not converge at all
or may lead to overfitting. Additionally, standard training algorithms do not
guarantee convergence to a global minimum, and are highly dependent on the
initial values of the network parameters. Successful KBD can improve various
features of the trained ANN (e.g., generalization capability) as well as reduce
training times [8, 44, 117, 162, 173].

Knowledge-Based Design of Feedforward ANNs

A common KBD approach is based on mapping rule-based systems into a neural-
like architecture: final hypotheses are represented using output neurons; data
attributes become input neurons; and the rule strength is mapped into the
weight of the corresponding connection. The rules are then modified using back-
propagation learning. For example, Fu and Fu [45] used this scheme to map
expert systems into ANNs, and Gallant [47] represented hypotheses that are
either True, False, or Unknown by constraining the neuron values to {1,-1,0},
respectively.

Fuzzy rule-bases are often represented in the form of a feedforward network.
The first layer fuzzifies the input. In the second layer, each neuron implements
a fuzzy rule. The rules are aggregated in the third layer, and defuzzification is
performed in the output layer. Examples include Towell and Shavlik’s Knowledge-
Based Artificial Neural Network (KBANN) [172], Fu’s Knowledge-Based Connec-
tionist Neural Network (KBCNN) [42], Cloete’s VL1ANN [28], and the Fuzzy
Neural Network (FuNN) of Kasabov et al. [81]. The rule-base is sometimes con-
strained, so that its implementation in the network form is straightforward [46].

Knowledge-Based Design of Recurrent ANNs

Training algorithms for RNNs are less efficient than those used for training
feedforward networks [17]. Thus, the use of prior knowledge–that can improve
both training and generalization performance–becomes quite important.

The most common KBD technique for RNNs is based on representing prior
knowledge in the form of a deterministic finite-state automaton (DFA) [2, 125,
127]. The DFA can also be designed using learning from examples [94]. The next
step is to transform the DFA into an RNN: the state-variables are realized as
neurons, and the state-transitions as suitable connections between the neurons.
This yields what is known as the orthogonal internal representation [124, 127],
i.e., at every time step, only one neuron has a value ≈ 1, while all the others
have values ≈ 0. Variants of this technique include: applying it to KBD of radial
basis function RNNs [41]; and using gradient information in the weight space in
the direction of the prior knowledge [163].

A fundamental drawback of these approaches stems from the fact that RNNs
are continuous-valued and are therefore inherently different from discrete-valued
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mechanisms such as DFAs [86, 87]. Furthermore, the solution of certain prob-
lems, such as recognizing non-regular languages (see Section 5.3.1), cannot be
represented in the form of a standard DFA at all.

Fuzzy finite-state automata (FFA) can be regarded as a continuous-valued
generalization of DFAs, as state variables take values in the continuum [0, 1],
rather than in {0, 1}. A natural extension of the DFA-to-RNN KBD technique is
based on representing the prior knowledge as an FFA, and transforming this into
an RNN. This is carried out either using an intermediate FFA-to-DFA conversion
(and then applying the DFA-to-RNN method [128]), or using a direct FFA-to-
RNN transformation [51]. However, FFAs may include ambiguities that make
the RNN implementation difficult [51].

We note in passing that RNNs have also been analyzed using the theory of
dynamic systems [15, 17, 139, 140, 181], and that this approach may assist in
developing new KBD methods [139].

Most of the existing neuro-fuzzy models are not relevant to KBN in RNNs,
as feedback connections are rarely used [83].

1.5 The FARB: A Neuro-fuzzy Equivalence

In this work, we introduce a novel FRB, referred to as the Fuzzy All-permutations
Rule-Base (FARB). We show that inferring the FARB, using standard tools from
fuzzy logic theory,5 yields an input-output relationship that is mathematically
equivalent to that of a standard ANN. Conversely, every standard ANN has an
equivalent FARB. We provide an explicit transformation T such that

T (ANN) = FARB and T−1(FARB) = ANN. (1.6)

Eq. (1.6) implies a bidirectional flow of information between an ANN and a
corresponding FARB. This has several advantages:

• It enables KE from standard ANNs, in the form of standard fuzzy rules.
Given an ANN, (1.6) immediately yields a suitable FARB with the same IO
mapping, thus providing a symbolic representation of the ANN functioning.

• It enables KBD of ANNs. If the prior knowledge is stated as a FARB, the
corresponding ANN follows immediately from (1.6). Note that the resulting
ANN has exactly the same IO mapping as that of the original FARB.

• It enables the application of methods and tools from the field of ANNs
to FARBs, and vice versa. Indeed, since the equivalence is valid for stan-
dard FRBs and standard ANNs,6 any method used in one domain can be
used in the other domain.

• It is applicable to a large range of ANN architectures, including feedforward
and recurrent nets, regardless of the specific parameter values, connectivity,
and network size.

5 e.g., Gaussian membership functions, center of gravity defuzzification.
6 Which is not the case for most neuro-fuzzy models.
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Bidirectional knowledge transformation between ANNs and FRBs has many
potential applications. For example, there exist many approaches for ANN prun-
ing and for rule-base simplification. Equivalence (1.6) enables the use of ANN
pruning techniques on FARBs, and the application of FARB simplification meth-
ods on ANNs. To demonstrate this, consider an algorithm that simplifies FARBs.
This immediately yields an algorithm for simplifying ANNs as follows: (1) given
an ANN, Compute FARB = T (ANN); (2) use the algorithm to simplify the
FARB to, say, FARB’; and (3) compute ANN’ = T−1(FARB’). Then, ANN’ is
a simplified version of ANN.

Another potential application is knowledge refinement using the FARB–ANN
equivalence. This can be done as follows: (1) state the initial knowledge as a
FARB;7 (2) obtain the corresponding ANN by computing ANN = T−1(FARB);
(3) train the network using the given data to obtain a modified network, say,
ANN’; and (4) use the FARB–ANN equivalence again to extract the refined
knowledge base, by calculating FARB’ = T (ANN’).

The remainder of this book is organized as follows. In Chapter 2, we formally
define the FARB and provide a closed-form formula for its input-output (IO)
mapping. In Chapter 3, we show that the IO mapping of various ANNs is math-
ematically equivalent to the IO mapping of the FARB. We demonstrate using
simple examples how this can be used to develop a new approach to KBN in
ANNs. The remainder of the book is devoted to scaling this approach to larger
scale ANNs. Given an ANN, the transformation T (ANN) = FARB immediately
yields a symbolic representation of the ANN input-output mapping. The com-
prehensibility of this representation can be increased by simplifying the FARB.
A simplification procedure is presented in Chapter 4. In Chapter 5, the FARB is
used for KE from ANNs that were trained to solve several benchmark problems.
Chapter 6 describes two new KBD methods, and demonstrates their usefulness
by designing ANNs that solve language recognition problems. In particular, we
use our approach to systematically design an RNN that solves the AB language
recognition problem. It is important to note that standard KBD methods of
RNNs, that are based on converting a DFA that solves the problem into an RNN,
cannot be used here. Indeed, since the AB language is context-free, there does
not exist a DFA that solves the associated recognition problem. Chapter 7 con-
cludes and discusses several potential directions for further research.

7 As noted above, FRBs are particularly suitable for representing partial and self-
contradicting knowledge due to their inherent ability to handle vagueness and un-
certainty [122].



2 The FARB

In this chapter, we formally define the main tool developed in this work: the
fuzzy all-permutations rule-base (FARB). We show that the special structure of
the FARB implies that its IO mapping can be described using a relatively simple
closed-form formula.

To motivate the definition of the FARB, we first consider a simple example
adapted from [106; 107].

Example 2.1. Consider the following four-rule FRB:
R1: If x1 is smaller than 5 and x2 equals 1, Then f = −4,
R2: If x1 is larger than 5 and x2 equals 1, Then f = 0,
R3: If x1 is smaller than 5 and x2 equals 7, Then f = 2,
R4: If x1 is larger than 5 and x2 equals 7, Then f = 6.

Assume that the pair of terms {equals 1, equals 7} in the rules are modeled
using the Gaussian membership function (MF):

μ=k(y) := exp
(

− (y − k)2

2σ2

)
, (2.1)

with k = 1 and k = 7, and that the terms {larger than k, smaller than k} are
modeled using the Logistic functions:

μ>k(y) :=
1

1 + exp (−α(y − k))
and μ<k(y) :=

1
1 + exp (α(y − k))

,

with α > 0 (see Fig. 2.1).
Applying the product-inference rule, singleton fuzzifier, and the center of grav-

ity (COG) defuzzifier [164] to this rule-base yields: f(x) = u(x)/d(x), where

u(x) = −4μ<5(x1)μ=1(x2) + 2μ<5(x1)μ=7(x2) + 6μ>5(x1)μ=7(x2),
d(x) = μ<5(x1)μ=1(x2) + μ>5(x1)μ=1(x2) + μ<5(x1)μ=7(x2)

+ μ>5(x1)μ=7(x2). (2.2)

E. Kolman, M. Margaliot: Knowledge-Based Neurocomputing, STUDFUZZ 234, pp. 13–19.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2009
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Fig. 2.2. Graphical representation of the FRB input-output mapping

Rewriting u(x) as

u(x) = (1 − 2 − 3)μ<5(x1)μ=1(x2) + (1 + 2 − 3)μ>5(x1)μ=1(x2)
+ (1 − 2 + 3)μ<5(x1)μ=7(x2) + (1 + 2 + 3)μ>5(x1)μ=7(x2),

and using (2.2) yields

f(x) = u(x)/d(x)

= 1 + 2
(μ>5(x1) − μ<5(x1))(μ=1(x2) + μ=7(x2))
(μ>5(x1) + μ<5(x1))(μ=1(x2) + μ=7(x2))

+ 3
(μ>5(x1) + μ<5(x1))(−μ=1(x2) + μ=7(x2))
(μ>5(x1) + μ<5(x1))(μ=1(x2) + μ=7(x2))

.
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A direct calculation shows that for our MFs:

μ>k(y) − μ<k(y)
μ>k(y) + μ<k(y)

= tanh(
α(y − k)

2
),

μ=a(y) − μ=b(y)
μ=a(y) + μ=b(y)

= tanh(
(2y − a − b)(a − b)

4σ2 ),

so

f(x) = 1 + 2 tanh((x1 − 5)α/2) + 3 tanh(3(x2 − 4)/σ2).

Thus, the IO mapping (x1, x2) → f(x1, x2) of the FRB is mathematically equiv-
alent to the IO mapping of a feedforward ANN with two hidden neurons (see
Fig. 2.2). Conversely, the ANN depicted in Fig. 2.2 is mathematically equivalent
to the aforementioned FRB. Note that the network parameters are directly re-
lated to the parameters of the FRB, and vice versa. ��

2.1 Definition

We say that a function g(·) : R → R is sigmoid if g is continuous, and the limits
lim

y→−∞ g(y) and lim
y→+∞ g(y) exist. Example 2.1 motivates the search for an FRB

whose IO mapping is equivalent to a linear combination of sigmoid functions, as
this is the mapping of an ANN with a single hidden layer. This is the FARB. For
the sake of simplicity, we consider a FARB with output f ∈ R; the generalization
to the case of multiple outputs is straightforward.

Definition 2.2. An FRB with time-varying inputs x1(t), . . . , xm(t) and out-
put f(t) is called a FARB if the following three conditions hold.
1. Every input variable xi(t) is characterized by two verbal terms, say, termi

−
and termi

+. These terms are modeled using two membership functions (MFs):
μi
−(·) and μi

+(·). Define

βi(y) :=
μi

+(y) − μi
−(y)

μi
+(y) + μi−(y)

.

The MFs satisfy the following constraint: there exist sigmoid functions gi(·) :
R → R, and qi, ri, ui, vi ∈ R such that

βi(y) = qigi(uiy − vi) + ri, for all y ∈ R. (2.3)

2. The rule-base contains 2m fuzzy rules spanning, in their If-part, all the possible
verbal assignments of the m input variables.
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3. There exist ai(t) : R → R, i = 0, 1, . . . , m, such that the Then-part of each
rule is a combination of these functions. Specifically, the rules are:

R1 : If (x1(t) is term1
−) & (x2(t) is term2

−) & . . . & (xm(t) is termm
− )

Then f(t) = a0(t) − a1(t) − a2(t) − · · · − am(t),

R2 : If (x1(t) is term1
+) & (x2(t) is term2

−) & . . . & (xm(t) is termm
− )

Then f(t) = a0(t) + a1(t) − a2(t) − · · · − am(t),
...

R2m : If (x1(t) is term1
+) & (x2(t) is term2

+) & . . . & (xm(t) is termm
+ )

Then f(t) = a0(t) + a1(t) + a2(t) + · · · + am(t), (2.4)

where & denotes “and”. Note that the signs in the Then-part are determined in
the following manner: if the term characterizing xi(t) in the If-part is termi

+,
then in the Then-part, ai(t) is preceded by a plus sign; otherwise, ai(t) is preceded
by a minus sign.

Summarizing, the FARB is a standard FRB satisfying several additional con-
straints: each input variable is characterized by two verbal terms; the terms are
modeled using MFs that satisfy (2.3); the rule-base contains exactly 2m rules;
and the values in the Then-part of the rules are not independent, but rather
they are a linear combination of the m + 1 functions a0(t), . . . , am(t). ��

As we will see below, the IO mapping of the FARB is a weighted sum of the gis.
We will be particularly interested in the case where each gi is a function that is
commonly used as an activation function in ANNs (e.g., the hyperbolic tangent
function, the Logistic function).

Remark 2.3. It is easy to verify that the FRB defined in Example 2.1 is a FARB
with m = 2, a0(t) ≡ 1, a1(t) ≡ 2, and a2(t) ≡ 3. ��

Remark 2.4. It may seem that the constraint (2.3) is very restrictive. In fact,
several MFs that are commonly used in FRBs satisfy (2.3). Relevant examples
include the following.

1. If the terms {term+, term−} are {equals k1, equals k2}, respectively, where
the term equals k is modeled using the Gaussian MF (2.1), then it is easy
to verify that

β(y) = tanh(ay − b), (2.5)

with

a := (k1 − k2)/(2σ2),

b := (k2
1 − k2

2)/(4σ2).

Thus, Eq. (2.3) holds with

g(z) = tanh(z), u = a, v = b, q = 1, and r = 0.
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Note that (2.5) can also be written as

β(y) = 2σ(2ay − 2b) − 1,

where σ(·) is the logistic function:

σ(z) := (1 + exp(−z))−1.

Thus, Eq. (2.3) holds with

g(z) = σ(z), u = 2a, v = 2b, q = 2, and r = −1.

2. If the two MFs satisfy
μ−(y) = 1 − μ+(y), (2.6)

(a common choice for two contradictory fuzzy terms), then β(y) = 2μ+(y)−1,
so (2.3) holds. Interesting special cases include:
a) If the terms {term+, term−} are {equals k, not equals k}, respectively,

modeled using the MFs:

μ=k(y) := exp
(

− (y − k)2

2σ2

)
, μ�=k(y) := 1 − μ=k(y),

then

β(y) = 2 exp
(

− (y − k)2

2σ2

)
− 1.

Thus, (2.3) holds with

g(z) = exp(−z2), u =

√
1

2σ2 , v =

√
k2

2σ2 , q = 2, and r = −1.

b) If the terms {term+, term−} are {larger than k, smaller than k},
respectively, modeled using the Logistic functions:

μ>k(y) := σ(α(y − k)), μ<k(y) := σ(−α(y − k)), (2.7)

with α > 0,1 then

β(y) = 2σ(α(y − k)) − 1. (2.8)

Thus, (2.3) holds with

g(z) = σ(z), u = α, v = αk, q = 2, and r = −1. (2.9)

Note that (2.8) can also be written as

β(y) = tanh(α(y − k)/2),

which implies that (2.3) holds with

g(z) = tanh(z), u = α/2, v = αk/2, q = 1, and r = 0.

1 Note that the MFs in (2.7) satisfy (2.6).



18 The FARB

c) If the terms {term+, term−} are {positive, negative}, respectively, mod-
eled using:

μpos(y) :=

⎧⎪⎨
⎪⎩

0, if − ∞ < y < −Δ,

(1 + y/Δ)/2, if − Δ ≤ y ≤ Δ,

1, if Δ < y < ∞,

μneg(y) := 1 − μpos(y), (2.10)

with Δ > 0, then

β(y) = 2σL(y/(2Δ) + 1/2) − 1,

where σL(·) is the standard piecewise linear Logistic function:

σL (y) :=

⎧⎪⎨
⎪⎩

0, if − ∞ < y < 0,

y, if 0 ≤ y ≤ 1,

1, if 1 < y < ∞.

(2.11)

This implies that (2.3) holds with

g(z) = σL(z), u = 1/(2Δ), v = −1/2, q = 2, and r = −1.

d) If the terms {term+, term−} are {larger than k, smaller than k},
modeled using:

μ>k(y) := μpos (y − k) , and μ<k(y) := μneg (y − k) , (2.12)

with μpos, μneg defined in (2.10), then

β(y) = 2σL((y − k)/(2Δ) + 1/2) − 1, (2.13)

so (2.3) holds with

g(z) = σL(z), u = 1/(2Δ), v =
k − Δ

2Δ
, q = 2, and r = −1.

Summarizing, all the above verbal terms can be modeled using MFs that
satisfy (2.3). ��

2.2 Input-Output Mapping

The next result provides a closed-form formula for the IO mapping of the FARB.

Theorem 2.5. Applying the product-inference rule, singleton fuzzifier, and the
COG defuzzifier to a FARB yields the output:

f = a0(t) +
m∑

i=1

riai(t) +
m∑

i=1

qiai(t)gi(uixi(t) − vi). (2.14)
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Fig. 2.3. Graphical representation of the FARB input-output mapping

Proof. For the sake of notational convenience, we omit from hereon the de-
pendence of the variables on t. Definition 2.2 implies that inferring the FARB
yields f(x) = u(x)/d(x), with

u(x) := (a0 + a1 + a2 + . . . + am)μ1
+(x1)μ2

+(x2) . . . μm
+ (xm)

+ (a0 − a1 + a2 + . . . + am)μ1
−(x1)μ2

+(x2) . . . μm
+ (xm)

...
+ (a0 − a1 − a2 − . . . − am)μ1

−(x1)μ2
−(x2) . . . μm

− (xm),

and
d(x) := μ1

+(x1)μ2
+(x2) . . . μm

+ (xm) + μ1−(x1)μ2
+(x2) . . . μm

+ (xm)
+ . . . + μ1

−(x1)μ2
−(x2) . . . μm

− (xm),

where both u and d include 2m terms.
Let

p(x) := a0 +
m∑

i=1

aiβi(xi). (2.15)

It is easy to verify, by expanding the sum, that p = u/d. Thus, f = p. Eqs (2.3)
and (2.15) yield p(x) = a0 +

∑m
i=1 ai (qigi(uixi − vi) + ri) , and this completes

the proof. ��

Eq. (2.14) implies that the FARB output f can be obtained by first feeding
the (scaled and biased) inputs uixi(t) − vi to a layer of units computing the
activation functions gi(·), and then computing a weighted (and biased) sum of
the units outputs (see Fig. 2.3). Applications of this resemblance between FARBs
and ANNs for knowledge-based neurocomputing are presented in the following
chapter.



3 The FARB–ANN Equivalence

In this chapter, we consider several special cases of the FARB. In each of these
cases, the IO mapping of the FARB is mathematically equivalent to that of
a specific type of ANN. This provides a symbolic representation of the ANN
functioning. As a corollary, we obtain results that can be used for KE from,
and KBD of, ANNs. Simple examples are used to demonstrate the main ideas.
The remainder of this work is devoted to extending this approach to larger-scale
networks.

3.1 The FARB and Feedforward ANNs

Consider a feedforward ANN with: inputs z1, . . . , zk, n hidden neurons with
activation function h(·), weights wij and a single output o (see Fig. 3.1). For

notational convenience, denote wi0 = bi, and yi :=
k∑

j=1
wijzj . Then

o = c0 +
n∑

i=1

cih (yi + wi0) . (3.1)

Consider (2.14) in the particular case where xi and ai are time-invariant,1 so,

f = a0 +
m∑

i=1

airi +
m∑

i=1

aiqigi(uixi − vi). (3.2)

Comparing (3.1) and (3.2) yields the following results. We use the notation [j :k]
for the set {j, j + 1, . . . , k}.

Corollary 3.1. (KE from Feedforward ANNs)
Consider the feedforward ANN (3.1). Let f denote the output of a FARB with:
MFs that satisfy (2.3) with gi = h, m = n inputs xi = yi/ui, and parameters

1 Note that in this special case, the FARB reduces to the APFRB defined in [90; 91].

E. Kolman, M. Margaliot: Knowledge-Based Neurocomputing, STUDFUZZ 234, pp. 21–35.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2009
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Fig. 3.1. Feedforward ANN with a single hidden layer

vi = −wi0, ai = ci/qi for i ∈ [1 :n],

a0 = c0 −
n∑

i=1

ciri/qi.

Then f = o.

Corollary 3.1 implies that given a feedforward ANN in the form (3.1), we can
immediately design a FARB whose IO mapping is mathematically equivalent
to that of the ANN. This provides a symbolic representation of the ANN’s IO
mapping. The next example demonstrates this.

3.1.1 Example 1: Knowledge Extraction from a Feedforward ANN

Consider the two-input-one-output ANN depicted in Fig. 3.2. The ANN output
is given by

o = σ(4z1 + 4z2 − 2) − σ(4z1 + 4z2 − 6). (3.3)

We assume that the inputs are binary, that is, zi ∈ {0, 1}, and declare the ANN
decision to be one if o > 1/2, and zero otherwise.Unfortunately, both Fig. 3.2
and Eq. (3.3) provide little insight as to what the ANN is actually computing.
In this simple case, however, we can easily calculate f for the four possible input
combinations, and find that o > 1/2 if and only if (iff) (z1 xor z2) = 1, so the
ANN is computing the xor function.

We now transform this ANN into an equivalent FARB. Denote yi := 4z1+4z2,
i = 1, 2, that is, the inputs to the hidden neurons, and rewrite (3.3) as

o = σ(y1 − 2) − σ(y2 − 6).
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Fig. 3.2. A feedforward ANN

Note that this is in the form (3.1) with

n = 2, c0 = 0, c1 = 1, c2 = −1, w10 = −2, w20 = −6, and h = σ.

We apply Corollary 3.1 to design a FARB with m = n = 2 inputs xi, and
IO mapping (x1, x2) → f(x1, x2) that is equivalent to the mapping (y1, y2) →
o(y1, y2). Suppose that for input xi, i = 1, 2, we choose to use the verbal
terms larger than ki and smaller than ki, modeled using (2.7) with, say, α = 4.
Then (2.8) yields

β(yi) = 2σ(4(yi − ki)) − 1,

so the parameters in (2.3) are

qi = 2, gi = σ, ui = 4, vi = 4ki, ri = −1. (3.4)

Applying Corollary 3.1 implies that the equivalent FARB has inputs x1 = y/4,
x2 = y/4, and parameters: a0 = 0, a1 = 1/2, a2 = −1/2, v1 = 2, and v2 = 6,
so (3.4) yields k1 = 1/2 and k2 = 3/2. Summarizing, the equivalent FARB is:

R1: If y/4 is smaller than 1/2 & y/4 is smaller than 3/2, Then f = 0,
R2: If y/4 is smaller than 1/2 & y/4 is larger than 3/2, Then f = −1,
R3: If y/4 is larger than 1/2 & y/4 is smaller than 3/2, Then f = 1,
R4: If y/4 is larger than 1/2 & y/4 is larger than 3/2, Then f = 0,

where ‘&’ denotes ‘and’.
This FARB provides a symbolic description of the ANN’s IO mapping. It can

be further simplified as follows. Rule R2 is self-contradicting and can be deleted.
The remaining three rules can be summarized as:

If z1 + z2 is larger than 1/2 and smaller than 3/2, Then f = 1;
Else f = 0.

Recalling that zi ∈ {0, 1}, we see that this single rule is indeed an intuitive
description of the function f(z1, z2) = z1 xor z2. Thus, the transformation from
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an ANN to an equivalent FARB yields a comprehensible representation of the
network operation. ��
The next result is the converse of Corollary 3.1, namely, it states that given a
FARB, we can represent its IO mapping in the form of an ANN.

Corollary 3.2. (KBD of Feedforward ANNs)
Consider a FARB with m inputs x1, . . . , xm and output f . Suppose that (2.3)
holds for all i ∈ [1, m] such that g1 = · · · = gm. Define n = m, yi = uixi,

wi0 = −vi, ci = aiqi, for i ∈ [1 : n], c0 = a0 +
n∑

i=1
airi, and the activation

function h = g1. Then the FARB’s output f satisfies f = o, where o is given
by (3.1).

This result provides a useful tool for KBD of feedforward ANNs. The next ex-
ample demonstrates this.

3.1.2 Example 2: Knowledge-Based Design of a Feedforward ANN

Consider the problem of designing an ANN with two binary inputs z1, z2 ∈
{0, 1}, and a single output f = not(z1 xor z2). In other words, the ANN should
compute the xornot function.

Suppose that our initial knowledge is the truth table of the function xornot
(z1, z2), shown graphically in Fig. 3.3. It is easy to see that the two input com-
binations for which xornot(z1, z2) = 1 (denoted by ×) are inside the region
bounded by the two parallel lines z2 − z1 = 1/2 and z2 − z1 = −1/2. Hence,
letting p := z2 − z1, we can state the required operation in symbolic form as:

If −1/2 < p < 1/2 then f = 1; otherwise f = 0.

Motivated by (2.4), we restate this using the following set of rules:

R1: If p is smaller than 1/2 and p is larger than −1/2, Then f = 1,
R2: If p is smaller than 1/2 and p is smaller than −1/2, Then f = 0,
R3 : If p is larger than 1/2 and p is larger than −1/2, Then f = 0.

To transform this FRB into a FARB, we must first find ai, i = 0, 1, 2, such
that:

a0 − a1 + a2 = 1, a0 − a1 − a2 = 0, and a0 + a1 + a2 = 0.

This yields
a0 = 0, a1 = −1/2, and a2 = 1/2. (3.5)

We also need to add the fourth rule:

R4: If p is larger than 1/2 and p is smaller than −1/2,
Then f = a0 + a1 − a2 = −1.

Note that the degree-of-firing of this rule will always be very low, suggesting
that adding it to the rule-base is harmless.
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Fig. 3.3. The function xornot(z1, z2). ◦ denotes zero and × denotes one. Also shown
are the lines z2 − z1 = 1/2, and z2 − z1 = −1/2.
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Fig. 3.4. Contour plot of o = (tanh(y2 − y1 + 1/2) − tanh(y2 − y1 − 1/2))/2

Suppose that we model the linguistic terms {larger than k, smaller than k} as
in (2.7) with, say, α = 2. Then (2.8) yields β(y) = tanh(y−k), so (2.3) holds with:

q = 1, g = tanh, u = 1, v = k, and r = 0.

Our four-rule FRB is now a FARB with m = 2 inputs x1 = x2 = p, gi = tanh,
ui = 1, v1 = 1/2, v2 = −1/2, ri = 0, qi = 1, and the ais given in (3.5).

Applying Corollary 3.2 shows that the IO mapping (x1, x2) → f(x1, x2) of
this FARB is equivalent to the mapping (y1, y2) → o(y1, y2) of the ANN:

o = −1
2

tanh(y1 − 1/2) +
1
2

tanh(y2 + 1/2), (3.6)
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where y1 = y2 = p = z2 − z1. It is clear that (3.6) describes an ANN with two
neurons in the hidden layer, and a hyperbolic tangent as the activation function.

To make the output binary, we declare the ANN decision to be one if o > 1/2
and zero, otherwise. A contour plot of o (see Fig. 3.4) shows that o can indeed
be used to compute the xornot function.

Summarizing, we were able to systematically design a suitable ANN by stating
our initial knowledge as a FARB, and then using the mathematical equivalence
between the FARB and a feedforward ANN. ��

The FARB–ANN equivalence can also be used for KBN in RNNs.

3.2 The FARB and First-Order RNNs

Consider a first-order RNN [127] with hidden neurons s1, . . . , sk, activation func-
tion h, input neurons sk+1, . . . , sn, and weights wij (see Fig. 3.5). Denoting, for

convenience, yi(t) :=
n∑

j=1
wijsj(t), s0(t) ≡ 1, and wi0 = bi yields

si(t + 1) = h (yi(t) + wi0)

= h(
n∑

j=0

wijsj(t)), (3.7)

for all i ∈ [1 :k]. We now consider several types of FARBs with an equivalent IO
mapping.

3.2.1 First Approach

Consider a two-rule FARB (that is, m = 1) with time-invariant parameters
a0, a1, q1, and r1 satisfying:

a1q1 = 1, and a0 + r1a1 = 0. (3.8)

w11

wkk

z−1

z−1

w1k

wk1

sn

w1k+1

b1

bk

s1(t + 1)
h

h

sk+1

s1(t)

wkn sk(t + 1) sk(t)

Fig. 3.5. A first-order RNN
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Substituting (3.8) in (2.14) shows that the output of this FARB is

f = g1(u1x1(t) − v1). (3.9)

Comparing (3.9) and (3.7) yields the following results.

Corollary 3.3. (KE from a First-Order RNN)
Consider the first-order RNN (3.7). Let f denote the output of a two-rule FARB
with: MFs that satisfy (2.3) with g1 = h, input x1(t) = yi(t)/u1, parameters that
satisfy (3.8), and v1 = −wi0. Then

f = si(t + 1).

This result can be used for KE from RNNs. The next example demonstrates
this.

3.2.2 Example 3: Knowledge Extraction from a Simple RNN

Consider the RNN
si(t + 1) = σ(wi1s1(t) + wi0). (3.10)

Note that this is in the form (3.7) with n = 1, h = σ, and y1 = wi1s1(t).
Corollary 3.3 can be applied to yield a single-input two-rule FARB with an

equivalent IO mapping. Suppose that we use the fuzzy terms {larger than k,
smaller than k}, modeled using the MFs defined in (2.7), with α > 0. Then (2.9)
implies that

g(z) = σ(z), u1 = α, v1 = αk, q1 = 2, and r1 = −1,

so (3.8) yields
a0 = a1 = 1/2.

Applying Corollary 3.3 implies that the equivalent FARB is:

R1: If wi1s1(t)
α is larger than −wi0

α , Then si(t + 1) = 1,
R2: If wi1s1(t)

α is smaller than −wi0
α , Then si(t + 1) = 0.

In other words, the IO mapping of this FARB is identical to the mapping given
in (3.10). This provides a symbolic representation of the RNN (3.10). ��

The next result is the converse of Corollary 3.3.

Corollary 3.4. (KBD of a First-Order RNN)
Consider a two-rule FARB with input x1(t), output f(t), and parameters sat-
isfying (3.8). Define yi(t) = u1x1(t), wi0 = −v1, and the activation function
h = g1. Then the FARB’s output satisfies f = si(t + 1), where si(t + 1) is given
by (3.7).

Corollaries 3.3 and 3.4 show that the IO mapping of every neuron in a first-order
RNN is equivalent to that of a FARB with two rules. However, a two-rule FARB
is usually too simple to provide useful information on the equivalent RNN. The
next section describes an alternative approach.
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3.2.3 Second Approach

Let h−1(·) denote the inverse of h(·). We assume that the inverse exists either
globally, or at least in some relevant operation domain of the network. We re-
state (3.7) as follows. For any i ∈ [1 :k]:

h−1(si(t + 1)) =
n∑

j=0

wijsj(t) (3.11)

= wi0s0(t) +
k∑

j=1

wijsj(t) +
n∑

j=k+1

wijsj(t)

= wi0s0(t) +
k∑

j=1

wijh(
n∑

p=0

wjpsp(t − 1)) +
n∑

j=k+1

wijsj(t).

It will be useful to express this in the form:

h−1(si(t + 1)) = wi0h(w00 + h−1(s0(t)))

+
k∑

j=1

wijh(wj0 +
n∑

p=1

wjpsp(t − 1))

+
n∑

j=k+1

wijh(wj0 + h−1(sj(t))),

where we used the fact that wj0 = 0 for j = 0 and for j = [k + 1:n]. Letting

ỹj(t) :=

⎧⎨
⎩

n∑
p=1

wjpsp(t − 1), if j ∈ [1 :k],

h−1(si(t)), if j = 0 or j ∈ [k + 1:n],
(3.12)

yields

h−1 (si(t + 1)) =
n∑

j=0

wijh (ỹj(t) + wj0), for all i ∈ [1 :k]. (3.13)

Eq. (3.13) implies that h−1(si(t + 1)) can be represented as the output of a
suitable feedforward ANN (see Fig. 3.6).

Comparing (3.13) and (2.14) yields the following results.

Corollary 3.5. (KE from a First-Order RNN)
Consider the first-order RNN given by (3.12) and (3.13). Let f(t) denote the
output of a FARB with: MFs that satisfy (2.3) with gi = h, m = n inputs xj(t) =
ỹj(t)/uj, for j ∈ [1 :n], and parameters

a0 = wi0 −
m∑

j=1

wijrj/qj , aj = wij/qj , and vj = −wj0, j ∈ [1 :n].

Then f(t) = h−1 (si(t + 1)).
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Fig. 3.6. Graphical representation of Eq. (3.13)

Corollary 3.6. (KBD of a First-Order RNN)
Consider a FARB with inputs x1(t), . . . , xm(t) and output f(t). Define n = m,
ỹj(t) = xj(t)uj, and h = gj, for j ∈ [1 :n], and

wi0 = a0 +
m∑

j=1

ajrj , wij = ajqj , and wj0 = −vj , j ∈ [1 :n].

Then f(t) = h−1 (si(t + 1)), where h−1 (si(t + 1)) is given in (3.13).

Another approach for converting the RNN into a FARB or vice-versa is possible
when the function g in (2.3) is piecewise-linear.

3.2.4 Third Approach

Assume that each gi in (2.3) is a linear function (the results below can be gen-
eralized to the case where gi is piecewise-linear), that is, there exist ũi, ṽi ∈ R

such that
gi(uixi(t) − vi) = ũixi(t) − ṽi. (3.14)

Then, the FARB output given in (3.2) can be restated as

f(t) = a0 +
m∑

i=1

airi +
m∑

i=1

aiqi(ũixi(t) − ṽi)

= a0 +
m∑

i=1

ai(ri − qiṽi) +
m∑

i=1

aiqiũixi(t). (3.15)

On the other-hand, recall that the first-order RNN (3.7) can be described
by (3.11), that is,

h−1 (si(t + 1)) =
n∑

j=0

wijsj(t). (3.16)

Comparing (3.15) to (3.16) yields the following result.
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Corollary 3.7. (KE from a First-Order RNN)
Consider the first-order RNN given by (3.16). Let f(t) denote the output of
a FARB with: MFs that satisfy (2.3) with gi satisfying (3.14), m = n in-
puts xj(t) = sj(t)/ũj, for j ∈ [1 :n], and parameters

a0 = wi0 −
m∑

j=1

wij(rj − qj ṽj)/qj, and aj = wij/qj, j ∈ [1 :n].

Then f(t) = h−1 (si(t + 1)).

This result provides a useful mechanism for KE from RNNs. The next example
demonstrates this.

3.2.5 Example 4: Knowledge Extraction from an RNN

Consider the one-input-one-output RNN depicted in Fig. 3.7. Assume that the
initial condition is s(1) = 1. The RNN is then described by:

s(t + 1) = σL(s(t) + I(t) − 1), s(1) = 1. (3.17)

We consider the case where the input is binary: I(t) ∈ {0, 1} for all t.
We now transform this RNN into an equivalent FARB. It will be convenient

to rewrite (3.17) in the form

s1(t + 1) = σL(s1(t) + s2(t) − 1), (3.18)

with s1(t) := s(t), and s2(t) := I(t). Note that this is a special case of (3.16)
with: k = 1, n = 2, h = σL, and the weights:

w10 = −1, w11 = 1, w12 = 1. (3.19)

Suppose that we characterize all the variables in the equivalent FARB using
the fuzzy terms {equals 1, equals 0}, modeled using the MFs:

μ=1(u) := σL(u) and μ=0(u) := σL(1 − u). (3.20)

The definition of β(·) yields

β(z) =
σL(z) − σL(1 − z)
σL(z) + σL(1 − z)

= σL(z) − σL(1 − z).

Note that σL(z) = z for any z ∈ [0, 1]. Thus, in this linear range:

β(z) = 2z − 1
= 2σL(z) − 1,
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Fig. 3.7. A simple RNN

so (2.3) and (3.14) hold with:

g = σL, u = 1, v = 0, q = 2, r = −1, ũ = u = 1, and ṽ = v = 0. (3.21)

Corollary 3.7 now implies that the RNN (3.18) is equivalent to a four-rule
FARB with m = 2 inputs x1(t) = s1(t)/ũ1 = s(t), x2(t) = s2(t)/ũ2 = I(t), and
parameters

a1 = w11/q1,

a2 = w12/q2,

a0 = w10 − (w11(r1 − q1ṽ1)/q1 + w12(r2 − q2ṽ2)/q2).

Using (3.19) and (3.21) yields

a0 = 0, a1 = a2 = 1/2.

Summarizing, the equivalent FARB is

R1: If s(t) equals 1 and I(t) equals 1, Then σ−1
L (s(t + 1)) = 1,

R2: If s(t) equals 1 and I(t) equals 0, Then σ−1
L (s(t + 1)) = 0,

R3: If s(t) equals 0 and I(t) equals 1, Then σ−1
L (s(t + 1)) = 0,

R4: If s(t) equals 0 and I(t) equals 0, Then σ−1
L (s(t + 1)) = −1.

This provides a symbolic representation of the RNN (3.17). This FARB can
be further simplified as follows. Since σL(−1) = σL(0) = 0, and since rule R1 is
the only rule where the Then-part satisfies σ−1

L (s(t + 1)) > 0, the FARB can be
summarized as:

If s(t) equals 1 and I(t) equals 1, Then s(t + 1) = σL(1) = 1;
Else s(t + 1) = 0.

This can be stated as:

If I(t) equals 1, Then s(t + 1) = s(t);
Else s(t + 1) = 0.

Using this description, it is straightforward to understand the RNN function-
ing. Recall that s(t) is initialized to 1. It follows that s(t) will remain 1 until the
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first time the input is I(t) = 0. Once this happens, s(t + 1) is set to zero, and
will remain 0 from thereon. In other words, the RNN output is:

s(t + 1) =

{
1, if I(τ) = 1 for all τ ≤ t,

0, otherwise.

If we regard the RNN as a formal language recognizer (see Section 5.3.1 be-
low), with s(t+1) = 1 interpreted as Accept, and s(t+1) = 0 as Reject, then the
RNN accepts a binary string iff it does not include any zero bits. Summarizing,
the transformation into a FARB provides a comprehensible explanation of the
RNN functioning. ��

By comparing (3.15) to (3.16), it is also possible to derive the following result
which is the converse of Corollary 3.7.

Corollary 3.8. (KBD of a First-Order RNN)
Consider a FARB with inputs x1(t), . . . , xm(t), output f(t) and functions gi

satisfying (3.14). Define n = m, sj(t) = xj(t)uj for j ∈ [1 :n], and

wi0 = a0 +
m∑

j=1

aj(rj − qj ṽj), and wij = ajqj , j ∈ [1 :n].

Then
f(t) = h−1 (si(t + 1)) ,

where h−1 (si(t + 1)) is given in (3.16).

This result can be used for KBD of RNNs. The next example demonstrates this.

3.2.6 Example 5: Knowledge-Based Design of an RNN

Consider the following problem. Design an RNN that accepts a binary string
I(1), I(2), . . . as an input. If the input string contained the bit 1, the RNN’s
output should be s(t+1) = 0. Otherwise, that is, if I(1) = I(2) = · · · = I(t) = 0,
the RNN’s output should be s(t + 1) = 1.

Our design is based on stating the required functioning as a FARB and then
using Corollary 3.8 to obtain the equivalent RNN. The design concept is simple.
We initialize s(1) = 1. If I(t) = 1, then we set s(t + 1) = 0; if I(t) = 0, then s
is unchanged. Thus, once a 1 appears in the input, s(·) will be set to zero, and
remain zero from thereon.

We can state the desired behavior of s(t) in the following form:

R1: If I(t) equals 1, Then s(t + 1) = 0,
R2: If I(t) equals 0, Then s(t + 1) = s(t).

This is a two-rule FARB with a single input x1(t) = I(t), and

a0(t) = s(t)/2,

a1(t) = −s(t)/2.
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σL×I(t)
1 −1 s(t + 1)

z−1

s(t)

1

Fig. 3.8. Graphical representation of the RNN described by Eq. (3.22)

We model the fuzzy terms {equals 1, equals 0} as in (3.20), so (2.3) and (3.14)
hold with:

g1 = σL, u1 = 1, v1 = 0, q1 = 2, r1 = −1, ũ1 = u1 = 1, ṽ1 = v1 = 0.

Applying Corollary 3.8 yields n = 1, s1(t) = I(t), w10 = s(t), and w11 =
−s(t). Substituting these parameters in (3.16) yields

σ−1
L (s(t + 1)) = s(t) − I(t)s(t),

or
s(t + 1) = σL (s(t) − I(t)s(t)) . (3.22)

Clearly, this describes the dynamics of an RNN with a single neuron s(t) and a
single input I(t) (see Fig. 3.8). Recalling that s(1) = 1, it is easy to verify that
s(t + 1) = 0 iff there exists j ∈ [1 :t] such that I(j) = 1. Otherwise, s(t + 1) = 1.
Thus, the designed RNN indeed solves the given problem. ��

The next section describes a connection between the FARB and another type of
RNN.

3.3 The FARB and Second-Order RNNs

Second-order RNNs, introduced by Pollack in 1987 [134], are a generalization of
first-order RNNs, and, in particular, can solve problems that first-order RNNs
cannot [53]. In second-order RNNs, the connection weights are linear functions
of the neurons values [135]:

wij(t) =
n∑

l=0

wijlsl(t).

Denote the hidden neurons by s1, . . . , sk, the bias neuron by s0(t) ≡ 1, and
the input neurons by sk+1 . . . , sn, then the dynamics of a second-order RNN is
given by

si(t + 1) = h(
n∑

j=0

wij(t)sj(t))

= h(
n∑

j=0

n∑
l=0

wijlsl(t)sj(t)), i ∈ [1 :k], (3.23)
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where h is the activation function. The parameter wij0 is the weight of the
connection from neuron j to neuron i, and wi00 is the bias of neuron i. Note
that, by definition,

wij0 = wi0j . (3.24)

Eq. (3.23) yields

h−1 (si(t + 1)) =
n∑

j=0

n∑
l=0

wijlsl(t)sj(t)

= wi00 + 2
n∑

j=1

wij0sj(t) +
n∑

j=1

n∑
l=1

wijlsl(t)sj(t), (3.25)

where the last equation follows from (3.24).
To determine a FARB with an equivalent IO mapping, consider the case where

the FARB parameters satisfy:

ak(t) = dk +
m∑

j=1

dkjxj(t), k ∈ [0 :m]. (3.26)

For the sake of convenience, denote x0(t) ≡ 1 and dk0 = dk, so ak(t) =
m∑

j=0
dkjxj(t). Then, (2.14) yields

f =
m∑

j=0

d0jxj(t) +
m∑

k=1

m∑
j=0

dkjrkxj(t)

+
m∑

k=1

m∑
j=0

dkjqkxj(t)gk(ukxk(t) − vk).

Assume also that each gk is a linear function so that (3.14) holds. Then

f = d00 +
m∑

k=1

dk0(rk − qkṽk)

+
m∑

j=1

(
d0j + dj0qj ũj +

m∑
k=1

dkj(rk − qkṽk)

)
xj(t)

+
m∑

k=1

m∑
l=1

dklqkũkxk(t)xl(t). (3.27)

Comparing (3.27) and (3.25) yields the following results.

Corollary 3.9. (KE from a Second-Order RNN)
Consider the second-order RNN (3.25). Let f denote the output of a FARB with:
m = n inputs xj(t) = sj(t), MFs that satisfy (2.3) and (3.14) and parameters
that satisfy (3.26) and
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dkl = wikl/(qkũk),

d0l + dl0qlũl +
m∑

k=1

wikl

qkũk
(rk − qkṽk) = 2wil0,

d00 +
m∑

k=1

dk0(rk − qkṽk) = wi00,

for k, l ∈ [1 :m]. Then f = h−1 (si(t + 1)).

In other words, we can transform the dynamics of every neuron si in the second-
order RNN into an equivalent FARB.

The next result is the converse of Corollary 3.9, namely, it provides a trans-
formation from a FARB into an equivalent second-order RNN.

Corollary 3.10. (KBD of a Second-Order RNN)
Consider a FARB with inputs x1(t), . . . , xm(t), output f(t), MFs such that (3.14)
holds, and parameters that satisfy (3.26). Define n = m, h = gi, sj(t) = xj(t)
for j ∈ [1 :n], and weights

wikl = dklqkũk,

wil0 = (d0l + dl0qlũl +
m∑

k=1

dkl(rk − qkṽk))/2,

wi00 = d00 +
m∑

k=1

dk0(rk − qkṽk),

for k, l ∈ [1 : n]. Then f(t) = h−1 (si(t + 1)), where h−1 (si(t + 1)) is given
in (3.25).

3.4 Summary

In this chapter we studied in detail the mathematical equivalence between the
FARB and various types of ANNs. We showed that the FARB–ANN equivalence
holds for a large variety of ANNs, regardless of their specific architecture and pa-
rameter values. Since the FARB is a standard FRB, this enables the application
of tools from the theory of ANNs to FARBs, and vice versa.

Given an ANN, we can immediately determine a suitable FARB with the same
IO mapping, and thus provide a a symbolic description of the ANN functioning.

Conversely, consider the problem of designing an ANN for solving a given
problem. In many cases, some initial knowledge about the problem domain is
known. Designing a symbolic FARB based on this knowledge yields an IO map-
ping that can be immediately realized as a suitable ANN.

These ides were demonstrated using simple examples. Applications to larger-
scale problems are studied in Chapters 5 and 6 below.
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The interpretability of FRBs might be hampered by the existence of a large
number of rules or complicated ones. Thus, any attempt to use the FARB–ANN
equivalence for knowledge extraction from large-scale networks must include a
systematic approach for rule reduction and simplification.

Simplification procedures usually lead to a more interpretable rule-base with
the cost of a degradation in the FRB performance. This tradeoff between com-
plexity and interpretability can be viewed as one manifestation of Zadeh’s prin-
ciple of incompatibility (see Section 1.2).

Existing procedures for simplifying rule-bases include: deleting rules with
a small effect on the output determined using the singular value decomposi-
tion [10]; deleting similar, contradictory or inactive rules [77, 78, 149, 156, 191];
using the correlation between the inputs to delete or simplify the rules [153];
restricting the number of antecedents [77, 191]; and using evolution strategies to
search for a simpler rule-base [78].

In the context of this work, procedures for simplifying ANNs are also quite
relevant. These include: deleting connections with small weights [155]; clustering
smaller sub-networks [156]; clustering the weights [156, 172] or the neurons out-
puts [156]. The simplification can also be integrated with the training process by
constraining the architecture [47, 172], the training algorithm [47], the weight
values [14, 36, 47, 156], the connectivity [14, 69], and the activation functions [36].

In this chapter, we describe a procedure for simplifying a FARB. We begin by
presenting some results on the sensitivity of the FARB IO mapping to modifi-
cations of its rules, atoms, and parameters. These results will be applied below
to bound the error incurred by the simplification procedure.

4.1 Sensitivity Analysis

Consider a FARB with input x ∈ R
m, q := 2m rules, and output f ∈ R (we omit

the dependence of x and f on t for notational convenience). Let ti(x) and fi

denote the degree of firing (DOF) and the value in the Then-part, respectively,
of rule i. The fuzzy inferencing process yields the output f(x) = u(x)/d(x),
where u(x) :=

∑q
i=1 ti(x)fi, and d(x) :=

∑q
i=1 ti(x).

E. Kolman, M. Margaliot: Knowledge-Based Neurocomputing, STUDFUZZ 234, pp. 37–40.
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The next result analyzes the effect of perturbing the DOF of a single rule.
Note that removing rule k from the FARB altogether amounts to changing tk(x)
to t′k(x) ≡ 0.

Proposition 4.1. Fix an arbitrary input x ∈ R
m. Suppose that the DOF of

rule k is modified from tk(x) to t′k(x), and let f ′(x) denote the output of the
modified FARB. Then,

|f(x) − f ′(x)| ≤ ck(x)|tk(x) − t′k(x)|,

where
ck(x) := (1/d(x)) max

1≤i≤q
{|fi(x) − fk(x)|} . (4.1)

Proof. Denoting �tk(x) := t′k(x) − tk(x), u′(x) := u(x) + fk�tk(x), and d′

(x) := d(x) + �tk(x), yields

f − f ′ = (u/d) − (u′/d′)

=
(u′ − d′fk)�tk

dd′

= (f ′ − fk)
�tk
d

. (4.2)

Clearly, min
1≤i≤q

{fi} ≤ f ′ ≤ max
1≤i≤q

{fi}, so (4.2) yields

|f − f ′| ≤ (1/d)|�tk| max{| max
1≤i≤q

{fi} − fk|, | min
1≤i≤q

{fi} − fk|},

since the DOF is always in the range [0, 1], |�tk| ≤ 1, and this completes the
proof. ��

If one of the |ak|s is very small, then we might expect the corresponding input xk

to have a small effect on the FARB output f . This is quantified by the following
result.

Proposition 4.2. Suppose that the atoms containing xk are removed from the
If-part of all the rules and that ak is removed from the Then-part of all the rules.
Let f ′(x) denote the output of the resulting FARB. Then,

|f(x) − f ′(x)| ≤ |akηk|, for all x, (4.3)

where ηk := max
xk

{rk + qkgk(ukxk − vk)} (see (2.3)).

Proof. It is easy to see that f ′ is also the output of a FARB, so Theorem 2.5
implies that

f ′(x) = a0 +
m∑

i=1
i�=k

riai +
m∑

i=1
i�=k

qiaigi(uixi − vi).
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Note that f ′(x) is a function of the variables x1, . . . , xk−1, xk+1, . . . , xm only.
Hence,

f(x) − f ′(x) = ak(rk + qkgk(ukxk − vk)),

which proves (4.3). ��

The rules in the FARB describe a partition of the input space. Roughly speaking,
for any given input x, only a few rules will fire substantially, and the other
rules will have a weaker effect on f(x). This is analyzed more rigorously in the
following result.

Proposition 4.3. Fix an arbitrary x ∈ R
m. Denote

k(x) = arg max
1≤i≤q

ti(x),

that is, the index of the rule with the highest DOF for the input x, and let

b(x) := max
1≤i≤q

|fi − fk(x)|. (4.4)

Then

|f(x) − fk(x)| ≤ b(x)
1 + tk(x)/

∑
i�=k

ti(x)
. (4.5)

Note that the bound (4.5) has a clear intuitive interpretation. The difference
|f(x)−fk(x)| will be small if the DOF of rule k is high (with respect to the DOFs
of the other rules) or if all the rules outputs are more or less equal to fk(x).

Proof

|f(x) − fk(x)| =
∣∣∣∣
∑

i ti(x)fi∑
i ti(x)

− fk(x)

∣∣∣∣
=

∣∣∣∣∣
∑

i�=k(x) ti(x)(fi − fk(x))

tk(x)(x) +
∑

i�=k(x) ti(x)

∣∣∣∣∣
≤

∣∣∣∣∣
∑

i�=k(x) ti(x)

tk(x)(x) +
∑

i�=k(x) ti(x)

∣∣∣∣∣ b(x),

which implies (4.5). ��

4.2 A Procedure for Simplifying a FARB

We now describe a step-by-step procedure for simplifying a given FARB. Let
D = {xi ∈ R

m}s
i=1 denote the training set.

Step 1. For each k ∈ [1 : m], if |ak| is small (with respect to the other |ai|s),
remove the atoms containing xk in the rules If-part, and remove ak from the
Then-part of all the rules. Note that Proposition 4.2 implies that the resulting
error is smaller than |akηk|.1

1 In the terminology of [111], this step may be considered a form of rule resolution.
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Step 2. For rule k, k ∈ [1 : q], compute mk := maxx∈D tk(x), and lk :=
maxx∈D ck(x) (see (4.1)). If mklk is small, then delete rule k from the FARB.
Note that Proposition 4.1 implies that the resulting error is smaller than mklk.
Step 3. Let k(x) := argmaxi ti(x). Compute e := maxx∈D b(x) and r := 1 +
minx∈D tk(x)/

∑
i�=k ti(x) (see (4.4)). If e/r is small, then set the output to fk(x)

instead of f(x). This is equivalent to replacing the COG defuzzifier with the
mean of maxima (MOM) defuzzifier [78, 164]. Note that Proposition 4.3 implies
that the resulting error is bounded by e/r.
Step 4. If a specific atom (e.g., ‘x1 is smaller than 7’) appears in all the q rules,
then delete it from them all. It is easy to verify that in such a case, this atom
has no effect on the output.
Step 5. If the ith atom of Rule j is ‘xi is T ermi

+’ (Termi−), and in all the other
rules the ith atom is ‘xi is T ermi

−’ (Termi
+), then: (1) remove all the atoms,

except for atom i, from the If-part of Rule j; (2) delete the ith atom from all
the other rules; and (3) place Rule j as the first rule, and add an Else clause
followed by all the other rules.
Step 6. If the FARB is used for classification, define one class as the default
class, delete all the rules whose output is this class, and add the clause: “Else,
class is the default class” to the rule-base [92].
Step 7. Recall that the jth input to the FARB is xj =

∑n
i=1 wjizi. If |wji| is

small, then replace the term wjizi with the term wjiz̄i, where z̄i is the expectation
of zi over the input space. This step yields a simpler description of the rule-base
in terms of the original inputs zi. It should be noted, however, that this may
result in a substantial approximation error.

This completes the description of the simplification procedure. To justify
Step 5, suppose that ‘xi is T ermi

+’ appears in Rule j and ‘xi is T ermi
−’

appears in all the other rules. Roughly speaking, this implies that the input
space is divided into two regions. In the region where μi

+(x) is high, f(x) ≈ fj ,
so the other rules can be ignored. In the region where μi

+(x) ≈ 0, Rule j can be
ignored, and we can also ignore the identical atom i in all the other rules (see
Step 4).

In classification problems, as opposed to function approximation (or regres-
sion) problems, |f(x)−f ′(x)| is not necessarily a suitable error criterion. A more
appropriate measure is the number of misclassification. Thus, large changes in
the output can be tolerated, as long as the actual classification remains un-
changed (see Section 5.2.2 below for a modified application of Step 2, suitable
for FARBs used for classification problems).

In the next chapter, we apply the FARB–ANN equivalence for knowledge
extraction from trained ANNs. This is combined with the simplification proce-
dure described above in order to increase the comprehensibility for the extracted
FARB.



5 Knowledge Extraction Using the FARB

The FARB–ANN equivalence immediately yields a representation of the IO
mapping of a given trained ANN in a symbolic form. The fuzzy rules and their
parameters are determined by the network structure and parameters. This trans-
forms the knowledge embedded in the network into a set of symbolic rules stated
using natural language. If necessary, the FARB can be further simplified to in-
crease its comprehensibility.

In Chapter 3, we demonstrated the usefulness of this approach using sim-
ple examples. In this chapter, we apply this method to extract knowledge from
ANNs trained to solve three benchmark problems: The Iris classification prob-
lem, the LED display recognition problem, and a language recognition problem.
All these problems have been intensively discussed in the literature, and are
often used as examples for demonstrating the performance of various machine
learning algorithms.

5.1 The Iris Classification Problem

The Iris classification problem [39] is a well-known benchmark for machine learn-
ing algorithms. The data1 is the description of 150 flowers as vectors in the
form (z1, z2, z3, z4, v). The zis are the size (in centimeters) of the four at-
tributes: Petal width, Petal length, Sepal width, and Sepal length, respectively.
The value v describes the flowers class (Setosa, Versicolor, or Virginica). One
class is linearly separable from the other two, which are not linearly separable
from each other.

We trained the 4-3-1 feedforward network depicted in Fig. 5.1, using the back-
propagation algorithm; the values v = −1, 0, and 1 were used for the classes
Versicolor, Virginica, and Setosa, respectively. The output f was used to classify
the input: if f < −0.5 then Versicolor; if f ∈ [−0.5, 0.5] then Virginica; and
if f > 0.5 then Setosa.

1 The data is available online at the UCI Machine Learning Repository [6].
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∑
c1

c3

z4

z2

b2

b3

c2

z1

z3

w11

w34

b1

tanh

tanh

tanh

f

Fig. 5.1. ANN for the Iris classification problem

The trained network, with parameters2

W := {wij} =

⎡
⎢⎣−0.4 −5 −0.3 0.7

150 150 −67 −44
−5 9 −7 2

⎤
⎥⎦ , b =

⎡
⎢⎣ −7

−520
−11

⎤
⎥⎦ , and c =

⎡
⎢⎣−0.5

0.5
−1

⎤
⎥⎦ ,

classifies the data set with 99% accuracy (149 correct classifications out of the
150 samples).

As in the previous examples, the network architecture and list of parameter
values do not provide any explanation of its functioning. It is possible, of course,
to express the network output as a mathematical formula

f =
3∑

j=1

cj tanh(
3∑

i=1

wjizi + bj),

but this does not seem to provide much intuition either. Hence, a more compre-
hensible representation is needed.

Let yi, i ∈ [1 : 3], denote the hidden neuron inputs, that is, yi := (wi)T z,
where z := (z1, z2, z3, z4)T , and (wi)T is the ith row of the matrix W . Corol-
lary 3.6 implies that the feedforward ANN is equivalent to an eight-rule FARB
with: a0 = 0, ai = ci, vi = −bi and xi = yi, i = [1:3], that is:

R1: If x1 is st 7 and x2 is st 520 and x3 is st 11, Then f = 1,
R2: If x1 is st 7 and x2 is st 520 and x3 is lt 11, Then f = -1,

2 The numerical values were rounded to one decimal digit, without affecting the ac-
curacy of the classification.
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R3: If x1 is st 7 and x2 is lt 520 and x3 is st 11, Then f = 2,
R4: If x1 is st 7 and x2 is lt 520 and x3 is lt 11, Then f = 0,
R5: If x1 is lt 7 and x2 is st 520 and x3 is st 11, Then f = 0,
R6: If x1 is lt 7 and x2 is st 520 and x3 is lt 11, Then f = -2,
R7: If x1 is lt 7 and x2 is lt 520 and x3 is st 11, Then f = 1,
R8: If x1 is lt 7 and x2 is lt 520 and x3 is lt 11, Then f = -1,

where {lt, st} stands for {larger than, smaller than}, respectively, defined as
in (2.7) with α = 2.

These rules provide a complete symbolic description of the network operation.
In order to increase the FARB comprehensibility, we apply the step-by-step
simplification procedure described in Section 4.2.

Step 1. Here, a1 = −0.5, a2 = 0.5, and a3 = −1, so all the ais are of the
same magnitude, and none of them may be deleted.

Step 2. A calculation yields {mklk}8
k=1 = {3, 3, 7e−6, 2, 1e−4, 2e−8, 6e−18,

3e−12}. Hence, we delete rules 3,5,6,7, and 8. We are left with three rules.
Renumbering these rules as R1 to R3 yields:

R1: If x1 is st 7 and x2 is st 520 and x3 is st 11, Then f = 1,
R2: If x1 is st 7 and x2 is st 520 and x3 is lt 11, Then f = -1,
R3: If x1 is st 7 and x2 is lt 520 and x3 is lt 11, Then f = 0.

Step 3. A calculation yields e/r = 0.12 (in fact, e/r ≤ 0.01 for 97% of the
examples in the training set), so we replace the COG defuzzifier with the MOM
defuzzifier.

Step 4. All three rules have the same first atom and, therefore, this atom is
deleted.

Step 5. The atom ‘x3 is st 11’ appears only in the first rule, and the opposite
atom ‘x3 is lt 11’ appears in the other rules. Hence, the simplification yields

If x3 is st 11, Then Class is Setosa;
Else, If x2 is st 520, Then Class is Versicolor;

If x2 is lt 520, Then Class is Virginica

(where we also replaced the numeric values in the Then-part with the names of
the corresponding classes).

Step 6. Defining the class Virginica as the default class yields

If x3 is st 11, Then Class is Setosa;
Else, If x2 is st 520, Then Class is Versicolor;

Else, Class is Virginica.

Note that the rule-base is now hierarchical: every rule is either valid (and then
the corresponding class is immediately determined) or invalid (and then the next
rule is examined). Hence, we can consider the truth values as belonging to {0, 1}
rather than [0, 1]. To do that, we set tj(x) to one (zero) if tj(x) ≥ 0.9 (otherwise).
This yields
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If (x3 < 9), Then Class is Setosa;
Else, If (x2 < 518), Then Class is Versicolor;

Else, Class is Virginica.

The classification accuracy of this simple rule-base is still identical to that of the
trained ANN, that is, 99%.

Step 7. The attribute values satisfy z1 ∈ [0.1, 2.5], z2 ∈ [1.0, 6.9], z3 ∈
[2.0, 4.4], and z4 ∈ [4.3, 7.9]. Denoting the lower (upper) value of zi by zmin

i

(zmax
i ), and defining normalized variables z̃i := (zi−zmin

i )/(zmax
i −zmin

i ), yields

x2 = 360z̃1 + 885z̃2 − 160.8z̃3 − 158.4z̃4 − 158.2,

and
x3 = −12z̃1 + 53.1z̃2 − 16.8z̃3 + 7.2z̃4 + 3.1.

Calculating over the training set, we find that
1

150

∑
z∈D

(−160.8z̃3 − 158.4z̃4 − 158.2) = −296.7,

and 1
150

∑
z∈D

(−12z̃1 − 16.8z̃3 + 7.2z̃4 + 3.1) = −6.7.

Hence, we replace x3 in the first rule by 53.1z̃2 − 6.7 and x2 in the second rule
by 360z̃1 + 885z̃2 − 296.7. Restating our rule-base, using the original attribute
names, yields the final rule-base:

If (Petal length < 2.75cm), Then Class is Setosa;
Else, If (Petal length + Petal width < 6.53cm),

Then Class is Versicolor;
Else, Class is Virginica.

This set of rules has a classification accuracy of 97% (146 out of 150 samples).
Thus, Step 7 considerably increased the interpretability of the rule-base at the
cost of a 2% accuracy loss.3 ��

Summarizing, transforming the ANN into an equivalent FARB, and simplifying
the set of rules, led to a highly comprehensible description of the knowledge
embedded in the trained network.

The Iris classification problem can be solved by a relatively small ANN. In
the following section, we demonstrate the efficiency of our approach using a
larger-scale ANN.

5.2 The LED Display Recognition Problem

Consider the problem of learning to identify the digit produced by a seven-
segment light emitting diodes (LED) display [20]. This is a well-known problem
3 For other classification rules obtained for this problem, see, e.g., [12; 24; 36; 37; 176;

191].
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Fig. 5.2. LED display

in machine learning [101], and several pattern recognition algorithms have been
applied in order to solve it, including classification trees [20], instance-based
learning algorithms [1], ANNs [18], evolutionary strategies [13; 100], and sup-
port vector machines [13]. This problem was also used to demonstrate the per-
formance of algorithms for noise rejection [101], dimensionality reduction [65],
and knowledge acquisition [56].

The input to the learning algorithm is a set of supervised examples in the
form (z1, z2, . . . , z24, v). Here, z1, . . . , z7 are the states of the seven diodes (1 =
ON, 0 = OFF) of the LED display (see Fig. 5.2).For example, the vector
(1, 1, 0, 1, 1, 1, 1) represents the digit 6, and (1, 1, 1, 1, 0, 1, 1) represents the
digit 9. The value v ∈ [0 : 9] is the displayed digit. The inputs z8, . . . , z24 are
independent random variables with Prob(zi = 0) = Prob(zi = 1) = 1/2. These
noise inputs make the problem more challenging, as the classification algorithm
must also learn to discriminate between the meaningful and the useless inputs.

A trial and error approach suggested that the minimal number of hidden neu-
rons needed for solving the LED recognition problem is six, so we used a 24-6-10
ANN.4 The hidden neurons employ the hyperbolic tangent activation function,
and the ten output neurons are linear. Preprocessing included converting the
inputs from {0, 1} to {−1, 1}.

The network was trained using a set of 2050 supervised examples.5 Each of
the ten outputs f0, . . . , f9 corresponds to a different digit and the classification is
based on the winner-takes-all approach [59]. After training, the ANN correctly
classified all the examples. However, its architecture and parameter values do
not provide any insight into the ANN functioning.

The ANN contains 220 parameters (204 weights and 16 biases), and extracting
the embedded knowledge is a challenging task. Note that other fuzzy rule extrac-
tion methods were applied to smaller ANNs. In [97], fuzzy rules were extracted
from a fuzzy neural network with up to 10 neurons and 60 parameters; in [129],
interpretable fuzzy models were extracted from two neuro-fuzzy networks, with

4 A similar network was used in [18]. Recently, a smaller ANN was successfully used
in [157].

5 For more details on the training process and the ANN parameters, see Appendix B.
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28 and 92 parameters; and in [7; 66], fuzzy rules were extracted from a neural
network with 36 parameters.

5.2.1 Knowledge Extraction Using the FARB

Let wji denote the weight connecting the input zi, i ∈ [1 : 24], to the jth
hidden neuron, j ∈ [1 : 6]. The net input of the jth hidden neuron is then
yj :=

∑24
i=1 wjizi. Applying Corollary 3.6 transforms the ANN into an equiv-

alent FARB with inputs xj = yj, j ∈ [1 : 6], 26 = 64 fuzzy rules, and out-
put f = (f0, . . . , f9)T . For example, Rule 53 in this FARB is:6

R53: If x1 ≈ 1 & x2 ≈ 1 & x3 ≈ −1 & x4 ≈ 1 & x5 ≈ −1 & x6 ≈ 1,
Then f53 = (−1.4, −2.5, −0.6, −0.7, −0.2, −0.5, −11, −1.4, 0, 0.4)T ,

where & denotes “and”, f i ∈ R
10 is the value in the Then-part of rule i, and

xi ≈ k is shorthand for ‘xi equals k’. The terms {equals 1, equals -1} are
modeled as in (2.1) with σ2 = 1. The inferencing amounts to computing a
weighted sum, f = (f0, . . . , f9)T , of the 64 vectors in the Then-part of the rules,
and the final classification is i := arg max

l∈[0:9]
{fl}.

This rule-set provides a complete symbolic representation of the ANN func-
tioning, so we immediately obtain a fuzzy classifier that solves the LED recog-
nition problem. However, its comprehensibility is hindered by the large number
and the complexity of the rules. To gain more insight, we simplify this FARB.

5.2.2 FARB Simplification

We apply the step-by-step simplification procedure described in Section 4.2.

Step 1. None of the ais may be deleted.
Step 2. We iteratively apply a slightly modified version of this step, which is
more suitable for classification problems. Consider a FARB with input x ∈ R

m,
q := 2m rules, and output f ∈ R

l. Let ti(x) denote the DOF of rule i. Inferring
yields f(x) = u(x)/

∑q
i=1 ti(x), where u(x) :=

∑q
i=1 ti(x)f i.

Modifying tk(x) to t̂k(x) yields the modified output:

f̂(x) =
t̂k(x)fk +

∑
i∈[1:q]

i�=k

ti(x)f i

t̂k(x) +
∑

i∈[1:q]
i�=k

ti(x)
.

The classification decision will not change as long as arg max
i∈[1:l]

{f̂ i(x)} = arg

max
i∈[1:l]

{f i(x)}, that is, if arg max
i∈[1:l]

{ui(x)− (tk(x)− t̂k(x))fk
i } = arg max

i∈[1:l]
{ui(x)}.7

6 The numerical values were rounded to one decimal digit, without affecting the ac-
curacy of the classification.

7 Recall that deleting rule k from the FARB altogether amounts to setting t̂k(x) ≡ 0.
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Set R(l, j) = 1, for all l, j
While (there is no index l such that R(l, j) = 0, for all j)

For j = 0 to 9
Q ← {k|R(k, j) = 1} /* rules in Q are significant for digit j */
q ← arg min

k∈Q
pk

j

R(q, j) ← 0 /* mark rule q as insignificant for digit j */
EndFor

EndWhile
Output(l) /* rule l is insignificant for all the digits */

Fig. 5.3. Simplification procedure

Let D denote the training set, and let (fk)j be the jth element of the output
vector in rule k. It follows from the analysis above that if pk

j := maxx∈D tk(x)
(fk)j is small, then the kth rule has a small positive effect on the classification
of digit j. This suggests the procedure depicted in Fig. 5.3. This procedure
calculates a matrix R(·, ·) such that R(l, j) = 1 (R(l, j) = 0) indicates that rule l
is “significant” (“insignificant”) for the correct classification of digit j.

The procedure output is an index l indicating that rule l has a small effect
on classifying all the ten digits. Then, rule l is deleted if removing it from the
rule-base does not change the classification for all the training examples.

Applying this procedure repeatedly to our rule-base leads to the deletion
of 54 out of the 64 rules. The result is a simplified FRB with only ten rules that
correctly classifies the training set.
Steps 3-6. The conditions for applying these steps are not satisfied.
Step 7. Examining the wjis yields

mini≤7 |wji|
maxi≥8 |wji|

> 240, for all j ∈ [1 :6].

Thus, we replace the term wjizi with the term wjiz̄i = wji/2, for all i ∈ [8 :24],
and all j ∈ [1 :6].

At this point, each xj in the ten-rule FRB is a linear combination of only
seven inputs: z1, . . . , z7. The noise inputs z8, . . . , z24 were correctly identified
as meaningless. Of course, this step is identical to setting weak connections in
the ANN to zero. However, note that the symbolic structure of the FARB also
allowed us to perform simplification steps that cannot be carried out in terms
of the weights of the ANN.

Evidently, the FRB obtained at this point is much simpler than the original
one, as the number of rules is reduced from 64 to 10, and the number of an-
tecedents in each rule is reduced from 24 to 7 (see Table 5.1). Furthermore, this
FRB is simple enough to allow us to interpret its functioning.
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Table 5.1. The ten fuzzy rules. R denotes the rule number in the final FRB, xi = 1
(xi = −1) implies that the rule includes the term ‘xi equals 1’ (‘xi equals − 1’) in
its If-part. f is the rule output vector. Bold font denotes the largest element in each
vector.

R x1 x2 x3 x4 x5 x6 f

0 -1 -1 -1 -1 1 1 (1.3,0.1,-1.6,-2,-1.4,-0.1,-0.8,-1.2,-1.2,-0.9)
1 -1 -1 -1 -1 1 -1 (-0.1,0.9,-1.6,-1.1,-1.5,-0.9,0.2,0,-1.5,-2.3)
2 1 -1 1 -1 -1 1 (-1.1,0.2,0.6,-1.5,-0.1,-1.3,-1.7,-0.5,-1.5,-1.1)
3 1 1 1 -1 1 -1 (-1.4,-1.1,-0.5,1.4,-1.4,-1.6,-0.8,-1.4,-0.2,-1.1)
4 1 1 1 1 -1 1 (-2.3,-2,-0.1,-0.4,0,-0.1,-0.7,-1.5,-0.8,-0.1)
5 -1 1 1 1 1 1 (-0.7,-1.7,-1.8,-0.7,-1,1.3,0.6,-2.2,-1.3,-0.5)
6 -1 1 1 -1 -1 1 (-0.6,-0.5,-0.8,-2.8,-0.1,-0.4,1,-1.5,-0.5,-1.7)
7 1 -1 -1 1 -1 -1 (-1.5,-0.8,-1.1,-0.8,-0.7,-1.5,-1.4,1.1,-0.6,-0.7)
8 1 1 -1 -1 -1 -1 (-1.2,-1.3,-0.6,-0.6,-0.7,-2.6,-0.7,-0.3,1,-1.2)
9 1 -1 -1 1 1 1 (-0.3,-1.4,-0.9,0.4,-1.3,0,-2.4,-1.2,-1.5,0.7)

5.2.3 Analysis of the FRB

The symbolic structure of FRBs makes them much easier to understand than
ANNs. In particular, we can analyze the operation of an FRB by examining the
If-part and the Then-part of each rule.

The If-part

To understand the If-part of the rules, consider their DOF for each possible
input, i.e., the 128 possible binary vectors (z1, . . . , z7). The ratio between the
highest DOF and the second highest DOF for the ten rules is: 9.3, 12.7, 3.4,
1.5, 5.4, 5.4, 4.5, 2.3, 19.4, and 2.4, respectively. Thus, with the exception of R3
(recall that the rules in our example are numbered R0 to R9), every rule is tuned
to a specific input pattern and yields a much lower DOF for any other pattern.

Fig. 5.4 depicts the pattern yielding the highest DOF for each rule. It may
be seen that rules R1, R5, R6, and R8 are tuned to recognize the digits 1, 5, 6
and 8, respectively. Rules R0 and R7 are tuned to patterns that are one Hamming
distance away from the real digits 0 and 7.

Comparing the DOFs for only the ten patterns representing the digits [0 : 9]
shows that R2 and R3 have the highest DOF when the input is the digit one,
and R4 has the highest DOF when the input is the digit five. For all other rules,
Ri obtains the highest DOF when the input is digit i.

The Then-part

It is easy to verify that arg maxk(f i)k = i for all i. In other words, if only rule i
fired, the FRB classification decision would be digit i. In most rules, there is a
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Fig. 5.4. Input pattern yielding maximal DOF

considerable difference between entry i and the second largest entry in f i. In five
of the ten rules, the largest entry is positive while all other entries are negative.
When such a rule fires it contributes not only to the classification as a specific
digit, but also contributes negatively to all other possible classifications.

The analysis of the If- and Then-parts of the rules indicates that the FRB
includes seven rules that are tuned to a specific digit: 0, 1, 5, 6, 7, 8, and 9.
Each of these rules has a high DOF when the input is the appropriate digit.
On the other hand, rules R2, R3, and R4 are not tuned to the corresponding
digit (for example, R2 displays the highest DOF when the input is actually the
digit one).8 This behavior motivated us to try and understand the distinction
between the two sets of digits:

S1 := {0, 1, 5, 6, 7, 8, 9}, and S2 := {2, 3, 4}. (5.1)

Let H(d1, d2) denote the Hamming distance between the LED representations
of digits d1 and d2 (e.g., H(1, 7) = 1). Let Mi denote the set of digits with closest
digit at distance i, i.e.,

Mi = {d : min
j∈[0:9]

j �=d

H(d, j) = i}.

Then,
M1 = {0, 1, 3, 5, 6, 7, 8, 9}, and M2 = {2, 4}. (5.2)

Comparing (5.1) and (5.2) shows that there is a high correspondence between
the sets Mi and Si. Also, the definition of Mi suggests that digits in M1 may be
more difficult to recognize correctly than those in M2. Thus, the FRB (or the
original ANN) dedicates specially tuned rules for the more “tricky” digits.

8 The rule-base correctly classifies all ten digits (including the digits 2, 3, and 4) be-
cause of the weighted combination of all the rules outputs.
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The notion that digits that are more difficult to recognize deserve more atten-
tion is quite intuitive. However, understanding that the ANN implements this
notion by observing its weights and biases is all but impossible. It is only through
the knowledge extraction process that this notion emerges.

Summarizing, we demonstrated our knowledge extraction approach by apply-
ing it to an ANN trained to solve the LED recognition problem. The 24-6-10
network was transformed into a set of 64 fuzzy rules. Simplification of this rule-
set led to a comprehensible representation of the ANN functioning. We showed,
for example, that it is possible to conclude that the ANN learned to place an
emphasis on the specific digits that are more difficult to recognize.

5.3 The L4 Language Recognition Problem

We now describe an application of the ANN–FARB equivalence for knowledge
extraction from an ANN trained to solve a language recognition problem. For
the sake of completeness, we briefly review some ideas from the field of formal
languages.

5.3.1 Formal Languages

Let Σ denote some set of symbols (e.g., Σ = {a, b, c, . . . , z} or Σ = {0, 1}). A
string is a finite-length sequence of symbols from Σ. Let ∗ denote the Kleene clo-
sure operator [84], so Σ∗ is the (infinite) set of all the strings constructed over Σ.

Definition 5.1. [62] A formal language is a set of strings L ⊆ Σ∗.

A formal language can be naturally associated with the grammar that generates
the language.

Definition 5.2. A formal grammar is a quadruple G = 〈S, N, T, P 〉, where S is
the start symbol, N and T are non-terminal and terminal symbols, respectively,
and P is a set of production rules of the form u → v, where u, v ∈ (N ∪T )∗, and
u contains at least one non-terminal symbol.

Note that repeatedly applying the production rules generates a specific set of
strings, that is, a language. This language is denoted L(G).

Chomsky and Schützenberger [25; 26] sorted formal languages into four types:
recursive, context-sensitive, context-free, and regular. Each class is strictly con-
tained in its predecessor (e.g., the set of regular languages is strictly contained
in the set of context-free languages). The classes are defined by the type of pro-
duction rules allowed in the grammar. Regular languages, generated by regular
grammars, represent the smallest class in the hierarchy of formal languages.

Definition 5.3. [128] A regular grammar G is a formal grammar with produc-
tion rules of the form A → a or A → aB, where A, B ∈ N and a ∈ T .
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Example 5.4. Tomita’s 4th grammar [171] is the regular grammar defined by:

S is the start symbol,
N = {S, A, B},
T = {0, 1},
P = {S → 1S, S → 0A, A → 1S, A → 0B, B → 1S, S → ε,

A → ε, B → ε },

where ε denotes the empty string. This grammar generates a regular language,
denoted L4, which is the set of all binary strings that do not include ’000’ as a
substring. ��

It is natural to associate a regular language with a deterministic finite-state au-
tomaton (DFA) that can distinguish between strings that belong/do not belong
to the language.

Definition 5.5. A DFA is a 5-tuple M = 〈Σ, Q, R, F, δ〉, where Σ is the alpha-
bet, Q = {s1, . . . , sm} is a set of states, R ∈ Q is the start state, F ⊆ Q is a set
of accepting states, and δ : Q × Σ → Q defines the state transitions.

We say that a string x is accepted by a DFA M iff s(x), the state that is reached
after x has been read by M , is an accepting state [126]. For each regular lan-
guage L(G), there is an associated DFA M , such that a string x is accepted by
M iff x ∈ L(G).

5.3.2 Formal Languages and RNNs

RNNs are often used for recognizing formal languages. The training is performed
using a set containing pairs of the form {string, label}, where label indicates
whether the string belongs to the language or not. KE techniques are commonly
demonstrated by applying them to RNNs that have learned to recognize formal
languages [5; 50; 113].

Usually, the knowledge embedded in the RNN is extracted in the form of a
DFA, that represents the underlying regular grammar. For example, Giles et al.
[50; 124] trained RNNs with 3 to 5 hidden neurons to recognize L4. Figure 5.5
depicts a four-state DFA extracted from one of those networks [124]. It is easy
to see that this DFA indeed correctly recognizes L4. Some disadvantages of this
KE approach were described in Section 1.4.1 above.

To demonstrate the efficiency of KE based on the FARB–ANN equivalence,
we trained an RNN to recognize L4, and then extracted the knowledge embedded
within the RNN as a FARB.

5.3.3 The Trained RNN

The architecture included three hidden neurons, one input neuron and one bias
neuron. The network is thus described by: s0(t) ≡ 1,

si(t) = σ

⎛
⎝ 4∑

j=0

wijsj(t − 1)

⎞
⎠ , i = 1, 2, 3, (5.3)
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Fig. 5.5. A DFA that recognizes L4. State 1 is the starting state, states 1 − 3 are
accepting states, and state 0 is a rejecting state. Arrows indicate state transitions.

with the input neuron

s4(t) =

{
1, if I(t) = 0,

−1, if I(t) = 1,
(5.4)

where I(t) is the value of the input at time t.
The RNN was trained using real time recurrent learning (RTRL) [183], with

learning rate η = 0.1, momentum γ = 0.05, and an added regularization term
10−3 ∑

i,j

w2
ij [69].

We generated 2000 RNNs with initial weights and biases drawn from a uniform
probability distribution over [−2, 2] and [−1, 1], respectively. Each RNN was
trained for 700 epochs, where each epoch consisted of presenting the full training
set to the RNN, and updating the weights after each presented string.

The data set contained all the 8184 binary strings with length 3 ≤ l ≤ 12 (of
which 54% do not belong to L4, i.e., include ‘000’ as a substring), and was split
into training and test sets. The training set included all the 248 binary strings
with length 3 ≤ l ≤ 7 (of which 32% do not belong to L4), and the test set
included the 7936 binary strings with length 8 ≤ l ≤ 12 (of which 55% do not
belong to L4).9 Our main focus is on extracting the knowledge from the trained
network, and not on finding the optimal RNN for the given task. Therefore,
we used the simple holdout approach rather than more sophisticated and time
consuming approaches, such as bootstrap or cross-validation [14; 85].

9 Since the performance of the RTRL algorithm deteriorates for longer strings, it is
common to use shorter strings for training and then test the generalization capability
of the trained network on longer strings.
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After training, the RNN with the best performance had the following
parameters:10

W =

⎡
⎢⎣−7.6 15.2 8.4 0.2 3

−4.7 0.2 −0.2 4.5 1.5
−0.2 0 0 0 4

⎤
⎥⎦ . (5.5)

This RNN correctly classifies all the strings in the data set. Furthermore, the
following result establishes the correctness of the RNN.

Proposition 5.6. The RNN defined by (5.3), (5.4), and (5.5) correctly classifies
any given binary string according to L4.

Proof. See Appendix A.
Although this RNN functions quite well, it is very difficult to understand

exactly what it does. To gain more understanding, we represent the dynamic
behavior of each neuron as an equivalent FARB, and then simplify the FARB.

5.3.4 Knowledge Extraction Using the FARB

Extracting rules for s3(t)

The dynamic equation for s3(t) is

s3(t) = σ (4s4(t − 1) − 0.2) . (5.6)

Corollary 3.3 implies that this is equivalent to the FARB:

R1: If 2s4(t − 1) is larger than 0.1, Then s3(t) = 1,
R2: If 2s4(t − 1) is smaller than 0.1, Then s3(t) = 0,

where the fuzzy terms {larger than, smaller than} are modeled (from hereon)
using the Logistic functions (2.7) with α = 2.

Rule Simplification

We now apply the simplification procedure described in Section 4.2 to the two-
rule FARB above.

Step 1. The FARB parameters are a0 = a1 = 1/2, so none of the ais may be
deleted.
Step 2. mklk = 0.98 for k = 1, 2, so none of the rules may be deleted.
Step 3. e/r = 0.0219, so we replace the COG defuzzifier with the MOM de-
fuzzifier. Since s4(t) can attain only two values, this yields the crisp rules:

R1: If s4(t − 1) = 1, Then s3(t) = 1,
R2: If s4(t − 1) = −1, Then s3(t) = 0.

10 The numerical values were rounded to one decimal digit, without affecting the ac-
curacy of the classification.
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Restating this in terms of the input yields:

R1: If I(t − 1) = 0, Then s3(t) = 1,
R2: If I(t − 1) = 1, Then s3(t) = 0.

Step 4. There is no atom that appears in both rules.
Step 5. Applying this step does not affect the rules.
Step 6. Setting the case s3(t) = 0 as the default class yields

If I(t − 1) = 0, Then s3(t) = 1; Else, s3(t) = 0.

This rule provides a clear interpretation of the functioning of this neuron, namely,
s3(t) is ON (i.e., equals 1) iff the last input bit was ‘0’.

Extracting rules for s2(t)

The dynamic equation for s2(t) is

s2(t) = σ
(
0.2s1(t − 1) − 0.2s2(t − 1) + 4.5s3(t − 1)

+ 1.5s4(t − 1) − 4.7
)
.

Replacing the relatively small variables with their expectation yields11

s2(t) = σ (4.5s3(t − 1) + 1.5s4(t − 1) − 4.7) + e1 (s1(t − 1), s2(t − 1)) , (5.7)

where |e1 (s1(t − 1), s2(t − 1)) | ≤ 0.04. Neglecting e1 has no effect on the net-
work classification results over the test set. That is, the simplified RNN correctly
classifies all the examples in the test set. Substituting (5.6) in (5.7) and neglect-
ing e1 yields

σ−1 (s2(t)) = 4.5σ (4s4(t − 2) − 0.2) + 1.5s4(t − 1) − 4.7. (5.8)

The right hand side of this equation is not a sum of sigmoid functions, and
thus cannot be interpreted using a suitable FARB. To overcome this, note that
if v ∈ {−1, 1} then v = 2σ(5v) − 1 + e2, with |e2| ≤ 0.014. We can thus write:

s4(t − 1) = 2σ (5s4(t − 1)) − 1 + e2. (5.9)

Substituting this in (5.8) and neglecting e2 yields

σ−1 (s2(t)) = 4.5σ (4s4(t − 2) − 0.2) + 1.5 (2σ (5s4(t − 1)) − 1) − 4.7
= 4.5σ (4s4(t − 2) − 0.2) + 3σ (5s4(t − 1)) − 6.2.

11 This is equivalent to applying Step 7 of the simplification procedure to the
corresponding FARB.
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By Corollary 3.5, this is equivalent to the four-rule FARB:

R1: If 2s4(t − 2) is larger than 0.1 and 2.5s4(t − 1) is larger than 0,
Then σ−1(s2(t)) = 1.3,

R2: If 2s4(t − 2) is larger than 0.1 and 2.5s4(t − 1) is smaller than 0,
Then σ−1(s2(t)) = −1.7,

R3: If 2s4(t − 2) is smaller than 0.1 and 2.5s4(t − 1) is larger than 0,
Then σ−1(s2(t)) = −3.2,

R4: If 2s4(t − 2) is smaller than 0.1 and 2.5s4(t − 1) is smaller than 0,
Then σ−1(s2(t)) = −6.2.

The next step is to simplify this FARB.

Rule Simplification

Step 1. The FARB parameters are a0 = −2.45, a1 = 2.25, and a2 = 1.5, so
none of the ais may be deleted.
Step 2. {mklk}4

k=1 = {7.29, 4.37, 4.4, 7.34}, so no rule may be deleted.
Step 3. e/r = 0.16, so we replace the COG defuzzifier with the MOM defuzzifier.
Using (5.4) yields the crisp rules:

R1: If I(t − 2) = 0 and I(t − 1) = 0, Then s2(t) = σ(1.3) ≈ 0.8,
R2: If I(t − 2) = 0 and I(t − 1) = 1, Then s2(t) = σ(−1.7) ≈ 0.15,
R3: If I(t − 2) = 1 and I(t − 1) = 0, Then s2(t) = σ(−3.2) ≈ 0,
R4: If I(t − 2) = 1 and I(t − 1) = 1, Then s2(t) = σ(−6.2) ≈ 0.

Steps 4,5. The conditions for applying these steps are not satisfied here.
Step 6. Defining the output s2(t) = 0 as the default value, and approximating
the output of the second rule by s2(t) = 0, yields

If I(t − 2) = 0 and I(t − 1) = 0, Then s2(t) = 0.8; Else, s2(t) = 0.

It is now easy to understand the functioning of this neuron, namely, s2(t) is ON
iff the last two input bits were ‘00’.

Extracting rules for s1(t)

The dynamic equation for s1 is

s1(t) = σ (15.2s1(t − 1) + 8.4s2(t − 1) + 0.2s3(t − 1) + 3s4(t − 1) − 7.6) .
(5.10)

There is one term with a relatively small weight: 0.2s3(t − 1). Using (5.6) yields

s3(t − 1) = σ (4s4(t − 2) − 0.2)

=

{
0.98, if s4(t − 2) = 1,

0.01, if s4(t − 2) = −1.

Assuming a symmetric distribution

Prob (s4(t − 2) = 1) = Prob (s4(t − 2) = −1) = 1/2
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yields E{0.2s3(t − 1)} = 0.1, so we simplify (5.10) to

s1(t) = σ (15.2s1(t − 1) + 8.4s2(t − 1) + 3s4(t − 1) − 7.5) . (5.11)

This approximation does not affect the network classification results on the test
set. Combining (5.11) with (5.6),(5.7), and (5.9) yields

σ−1 (s1(t)) =15.2s1(t − 1) + 8.4s2(t − 1) + 3s4(t − 1) − 7.5
=15.2s1(t − 1)

+ 8.4σ (4.5σ (4s4(t − 3) − 0.2) + 1.5s4(t − 2) − 4.7)
+ 6σ (5s4(t − 1)) − 10.5. (5.12)

Since
σ (4s4(t − 3) − 0.2) = 0.48s4(t − 3) + 0.5 + e3 (s4(t − 3)) ,

with |e3 (s4(t − 3)) | < 0.005, Eq. (5.12) can be simplified to

σ−1 (s1(t)) = 8.4σ (2.16s4(t − 3) + 1.5s4(t − 2) − 2.45)
+ 6σ (5s4(t − 1)) + 15.2s1(t − 1) − 10.5. (5.13)

Applying Corollary 3.5 to (5.13) yields the FARB:

R1: If 1.08s4(t − 3) + 0.75s4(t − 2) is lt 1.23 and 2.5s4(t − 1) is lt 0,
Then σ−1(s1(t)) = 3.9 + 15.2s1(t − 1),

R2: If 1.08s4(t − 3) + 0.75s4(t − 2) is lt 1.23 and 2.5s4(t − 1) is st 0,
Then σ−1(s1(t)) = −2.1 + 15.2s1(t − 1),

R3: If 1.08s4(t − 3) + 0.75s4(t − 2) is st 1.23 and 2.5s4(t − 1) is lt 0,
Then σ−1(s1(t)) = −4.5 + 15.2s1(t − 1),

R4: If 1.08s4(t − 3) + 0.75s4(t − 2) is st 1.23 and 2.5s4(t − 1) is st 0,
Then σ−1(s1(t)) = −10.5 + 15.2s1(t − 1),

where lt (st) stands for larger than (smaller than).

Rule Simplification

Step 1. The FARB parameters are a0 = −3.3 + 15.2s1(t − 1), a1 = 4.2, a2 = 3,
so none of the ais may be deleted.
Step 2. {mklk}4

k=1 = {10.99, 6.41, 8.33, 14.27}, so no rule may be deleted.
Steps 3-6. The conditions for applying these steps are not satisfied. Specifically,
e/r = 3.41, so the MOM inferencing approximation cannot be used.

Restating the fuzzy rules in terms of the input yields:

R1: If 2.16I(t − 3) + 1.5I(t − 2) is st 0.6 and 5I(t − 1) is st 2.5,
Then σ−1(s1(t)) = f1,

R2: If 2.16I(t − 3) + 1.5I(t − 2) is st 0.6 and 5I(t − 1) is lt 2.5,
Then σ−1(s1(t)) = f2,

R3: If 2.16I(t − 3) + 1.5I(t − 2) is lt 0.6 and 5I(t − 1) is st 2.5,
Then σ−1(s1(t)) = f3,

R4: If 2.16I(t − 3) + 1.5I(t − 2) is lt 0.6 and 5I(t − 1) is lt 2.5,
Then σ−1(s1(t)) = f4,
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where f = (f1, f2, f3, f4)T = (3.9 + 15.2s1(t − 1), −2.1 + 15.2s1(t − 1), −4.5 +
15.2s1(t − 1), −10.5+15.2s1(t − 1))T . To better understand this FARB, we con-
sider two extreme cases: s1(t − 1) = 0.9 and s1(t − 1) = 0.1.

• For s1(t − 1) = 0.9, the output is f = (17.6, 11.6, 9.2, 3.2)T . Since the infer-
encing yields a weighted sum of the fis, with non-negative weights, σ−1(s1(t))
≥ 3.2, so s1(t) ≥ 0.96. Roughly speaking, this implies that if s1(t − 1) is ON,
then s1(t) is also ON, regardless of the input.

• For s1(t − 1) = 0.1, the output is f = (5.4, −0.6, −3, −9)T , and σ(f ) = (1,
0.35, 0.05, 0)T . This implies that σ(f ) > 0.5 iff the first rule has a high
DOF. Examining the If-part of the first rule, we see that this happens only
if I(t − 1) = I(t − 2) = I(t − 3) = 0. In other words, s1(t) will be turned ON
only if the last three consecutive inputs were zero.

Recalling that the network rejects a string iff fout–the value of s1 after the entire
string was fed into the network–is larger than 0.5, we can now easily explain the
entire RNN functioning as follows. The value of neuron s1 is initialized to OFF.
It switches to ON whenever three consecutive zeros are encountered. Once it is
ON, it remains ON, regardless of the input. Thus, the RNN recognizes strings
containing a ‘000’ substring.

Summarizing, in these three examples–the Iris classification problem, the
LED recognition problem, and the L4 recognition problem–the FARB–ANN
equivalence was applied to extract fuzzy rules that describe the ANN behav-
ior. Simplifying these symbolic rules provided a comprehensible explanation of
the ANNs internal features and performance.



6 Knowledge-Based Design of ANNs

Corollaries 3.1-3.10 in Chapter 3 provide a transformation between a FARB and
an ANN. The ANN type (i.e., feedforward, first-order RNN, or second-order
RNN), structure, and parameter values, are determined directly from the FARB
structure and parameters.

This suggests a novel scheme for knowledge-based design (KBD) of ANNs.
Given the initial knowledge, determine the relevant inputs, denoted x1, . . . , xm,
and the number of outputs. For each output, restate the initial knowledge in the
form of an FRB relating some subset of the inputs {y1, . . . , yk} ⊆ {x1, . . . , xm}
to this output. In this FRB, each yi must be characterized using two fuzzy terms.
The Then-part of each rule must be decomposed as a sum a0 ± a1 ± · · · ± ak,
where the signs are determined according to the If-part of the rule. More rules
are added to the FRB, if necessary, until it contains 2k fuzzy rules, expanding
all the possible permutations of the input variables. The output of each added
rule is again a linear sum of the ais with appropriate signs. MFs for each input
variable are chosen such that (2.3) holds.

At this point, the FRB becomes a FARB, and inferring yields an IO mapping
that can be realized by an ANN. Thus, the initial knowledge on the problem
domain was converted into an ANN.

The most delicate stage is finding suitable values for the parameters ai, i ∈
[0 :k]. If the number of fuzzy rules obtained from the initial knowledge is denoted
by p, determining the ais amounts to solving p equations in k + 1 unknowns.
If this set of equations does not have a solution, then the Then-part of the
rules must be modified, without significantly altering the knowledge embedded
in them. This can be done, for example, by adding small correction terms, that
is changing the output from f to f + ε, or by setting the rules outputs to the
value r(f), for some suitable function r.

In this chapter, we show how this general scheme can be used in practice.
We present two novel KBD approaches. The direct approach follows the above
scheme quite closely. This is somewhat ad-hoc and each design problem must be
treated from scratch. In order to overcome these difficulties, we also introduce
a modular approach. This is based on designing basic functional modules and
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realizing them using a suitable ANN once and for all. Then, the KBD problem
is addressed by suitably combining the basic modules.

The efficiency of these approaches is demonstrated by using them to design
RNNs that solve formal recognition problems. These include the recognition
of non-regular languages, so common KBD techniques, that are based on the
DFA-to-RNN conversion, cannot be applied at all.

6.1 The Direct Approach

The direct approach is based on expressing the solution of the given problem
using a suitable FRB, and then transforming it into a FARB. It is useful to
decompose the original design problem into a subset of smaller and simpler
sub-problems, and then design a FARB that solves each sub-problem. We now
demonstrate how this works by designing an RNN that recognizes the L4 lan-
guage (see Section 5.3.1).

6.1.1 KBD of an ANN Recognizing L4

The design is based on using four state variables: s1(t), . . . , s4(t). The basic idea
is simple: s4(t), s3(t), and s2(t) will serve as memory cells that record the values
of the input bits I(t), I(t − 1), and I(t − 2), respectively. The variable s1(t) will
combine this information to indicate whether the substring ‘000’ was detected
or not. Thus, s1(t) = 1 if either s1(t − 1) = 1 (i.e., a ‘000’ substring was already
detected previously) or if s4(t), s3(t), s2(t) indicate that the last three consecutive
input digits were ‘000’. After feeding an input string x, with length l, s1(l + 1)
will be ON iff x contains the substring ‘000’.

We define s4(t) as in (5.4), i.e., s4(t) is ON iff the current input bit is zero.
We state the required functioning of si(t), i = 1, 2, 3, in terms of a suitable FRB.

Designing a FARB for s3(t)

The variable s3(t) should be ON (OFF) if s4(t − 1) = 1 (s4(t − 1) = −1). This
can be stated as:

R1: If s4(t − 1) equals 1, Then s3(t) = 1,
R2: If s4(t − 1) equals −1, Then s3(t) = 0.

This is a two-rule FARB with a0 = a1 = 1/2. The terms {equals 1, equals −1}
are modeled (from hereon) as in (2.1) with σ2 = 1, i. e.

μ=1(y) := exp

(
− (y − 1)2

2

)
, and μ=−1(y) := exp

(
− (y + 1)2

2

)
.

Inferring yields
s3(t) = σ (2s4(t − 1)) . (6.1)

Note that since s4(t) ∈ {−1, 1} for all t (see (5.4)),

s3(t) ∈ {σ(−2), σ(2)} = {0.12, 0.88}, for all t > 1.
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Designing a FARB for s2(t)

The variable s2(t) should be ON (OFF) if s4(t − 2) = 1 (s4(t − 2) = −1). This
can be stated as:

R1: If s4(t − 2) equals 1, Then s2(t) = 1,
R2: If s4(t − 2) equals −1, Then s2(t) = 0.

This is a FARB, yet it is not suitable for our purposes, since the If-part should
only include values at time t − 1. To overcome this, we note that (6.1) yields

s4(t − 2) =

{
1, if s3(t − 1) = 0.88,
−1, if s3(t − 1) = 0.12.

We therefore use the linear approximation s4(t − 2) = 2.63s3(t − 1) − 1.31 + e.
Using this, and neglecting the error term e, yields the rules:

R1: If 2.63s3(t − 1) equals 2.31, Then s2(t) = 1,
R2: If 2.63s3(t − 1) equals 0.31, Then s2(t) = 0.

This is a FARB and inferring, with the terms {equals 2.31, equals 0.31} modeled
using (2.1) with σ2 = 1, yields:

s2(t) = σ (5.26s3(t − 1) − 2.62) . (6.2)

Designing a FARB for s1(t)

The variable s1(t) should be ON if either s4(t − 3) = s4(t − 2) = s4(t − 1) = 1,
or if s1(t − 1) is ON. This can be stated in a symbolic form as:

R1: If s1(t − 1) is larger than 1/2, Then s1(t) = 1,
R2: If s4(t − 3) equals 1 and s4(t − 2) equals 1 and s4(t − 1) equals 1,

Then s1(t) = 1,
R3: Else, s1(t) = 0.

We now modify this FRB in order to make it a FARB. In view of Corollary 3.6,
we replace the output term s1(t) = 1 [s1(t) = 0] by σ−1(s1(t)) ≥ α [σ−1(s1(t)) ≤
−α], where α � 0.1 Note that s1(t − 1) ∈ [0, 1], whereas s4(t) ∈ {−1, 1}. It is
therefore convenient to define S1(t) := 2s1(t) − 1, so that S1(t) ∈ [−1, 1]. The
condition ‘s1(t − 1) is larger than 1/2’ then becomes ‘S1(t − 1) is larger than 0’.

Modifying the If-part

The If-parts of the rules include four variables: s1(t − 1), s4(t − 3), s4(t − 2),
and s4(t − 1), so the FARB must include 24 rules. The If-part of the first rule
includes only one variable s1(t − 1). We transform this into an equivalent set
of eight rules by adding all the possible assignment combinations for the other
three variables, while keeping the same output in all these rules. The other two
rules are handled similarly. For example, one added rule is:
1 It is also possible to use conditions in the form σ−1(s1(t)) = α and σ−1(s1(t)) = −α.

However, using inequalities makes it easier to transform this FRB into a FARB.
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R9: If S1(t − 1) is smaller than 0 and s4(t − 3) equals 1
and s4(t − 2) equals 1 and s4(t − 1) equals 1,
Then σ−1(s1(t)) ≥ α.

This yields an FRB with sixteen rules.

Modifying the Then-part

The output of every rule in the 16-rule FRB is either

σ−1(s1(t)) ≥ α, or σ−1(s1(t)) ≤ −α.

To make it a FARB, we must change every output to

σ−1(s1(t)) = a0 ± a1 ± a2 ± a3 ± a4,

with the actual + or − sign determined according to the If-part. For example,
the output of R9 above is modified from σ−1(s1(t)) ≥ α to σ−1(s1(t)) = a0 −
a1 + a2 + a3 + a4. Of course, the meaning of the Then-part should not change,
so the values of the ais must be chosen such that a0 − a1 + a2 + a3 + a4 ≥ α.
In this way, the sixteen rules yield sixteen inequalities on the ais. It is easy to
verify that one possible solution, satisfying all these inequalities, is:

a0 = a2 = a3 = a4 = α, and a1 = 3α.

With these modifications, the set of fuzzy rules is now a FARB. Inferring, with
the terms {larger than, smaller than} modeled as in (2.7), with α = 2, yields

σ−1(s1(t)) = 2a1σ(2S1(t − 1)) + 2a2σ(2s4(t − 3)) + 2a3σ(2s4(t − 2))

+2a4σ(2s4(t − 1)) + a0 −
4∑

i=1
ai

= 6ασ(4s1(t − 1) − 2) + 2ασ(2s4(t − 3)) + 2ασ(2s4(t − 2))
+2ασ(2s4(t − 1)) − 5α.

Again, we approximate the functions on the right-hand side using linear func-
tions. This yields

s1(t) =σ
(
5.04αs1(t − 1) + 2αs2(t − 1) + 2αs3(t − 1)

+ 0.76αs4(t − 1) − 3.52α
)
. (6.3)

Summarizing, stating the required functioning of each neuron si as a FARB
yields (6.1), (6.2), and (6.3). Letting s0 ≡ 1 (the bias neuron), these equations
can be written in the form:

si(t) = σ

⎛
⎝ 4∑

j=0

wijsj(t − 1)

⎞
⎠ , i = 1, 2, 3, (6.4)
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with

W =

⎡
⎢⎣−3.52α 5.04α 2α 2α 0.76α

−2.62 0 0 5.26 0
0 0 0 0 2

⎤
⎥⎦ , α � 0. (6.5)

Clearly, this is an RNN. Given an input string x with length l, the RNN output
is fout := s1(l + 1). The string is accepted if fout ≤ 0.5, and rejected, otherwise.
The network is initialized with s1(1) = s2(1) = s3(1) = 0.

The design of this RNN, although systematic, included several simplifications
and omissions of small error terms. Nevertheless, the following result establishes
the correctness of the final RNN.

Proposition 6.1. Consider the RNN defined by (5.4), (6.4), and (6.5). For any
α ≥ 5.7 this RNN correctly classifies any given binary string according to L4.

Proof. See Appendix A.

6.2 The Modular Approach

The modular approach is based on using the FARB–ANN equivalence to realize
basic functional modules using ANNs. These modules are designed once and for
all, and their correctness is verified. The modules are then used as basic building
blocks in designing more complex ANNs. This approach is motivated by the
method used by Siegelmann to analyze the computational power of ANNs [160].

In this section, we describe the design of six basic modules, and then use
them to design four compound RNNs that solve language recognition problems.
For each of the designed modules, we describe its input, output, and desired
functioning. We then restate the desired functioning in terms of an FRB, and
transform this into a suitable FARB. Since the IO mapping of the FARB is
equivalent to that of an ANN, this immediately yields a realization of the module
as an ANN.

Throughout, we use FARBs that are equivalent to RNNs with activation
function σL (see (2.11)). Note that

σL(z) = z, for all z ∈ [0, 1]. (6.6)

6.2.1 The Counter Module

Input: A vector x ∈ {0, 1}m, and a sequence I(t) ∈ {0, 1}m, t = 1, 2, . . ..
Output: f(n(t)), where n(t) := |{k ∈ [1 :t] : I(k) = x}|, and f is some invertible
function.
In other words, the module counts the number of occurrences, n(t), of the binary
vector x in the stream of inputs: I(1), I(2), . . . , I(t). It returns f(n(t)), and n(t)
itself can be retrieved by calculating f−1(f(n(t))).

We use the specific function f(z) := 2−z. To realize this module using an
RNN, we restate the required functioning as a FARB with two output functions:
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the first, s1(t), indicates whether I(t) equals x or not. The second, s2(t), is
initialized to 1, and multiplied by 1/2 at each time τ such that I(τ) = x.

We design an FRB for each of these outputs. For s1(t), the rules are:

R1 : If I1(t) equals x1 and . . . and Im(t) equals xm,

Then s1(t + 1) = 1, (6.7)
R2 : Else, s1(t + 1) = 0.

We modify this into a FARB as follows. First, we state 2m rules covering, in their
If-part, all the possible combinations of ‘Ij(t) equals xj ’ and ‘Ij(t) not equals
xj ’. We change the Then-part to σ−1

L (s1(t + 1)) = a0 ± a1 ± . . . ± am, with the
actual signs determined by the If-part. This yields the FARB:

R1: If I1(t) equals x1 and . . . and Im(t) equals xm,
Then σ−1

L (s1(t + 1)) = a0 + a1 + . . . + am,
...

R2m : If I1(t) not equals x1 and . . . and Im(t) not equals xm,
Then σ−1

L (s1(t + 1)) = a0 − a1 − . . . − am.

The ais are determined as follows. We require that the output of Rule R1 is ≥ 1,
and that the output of all the other rules is ≤ 0. This yields 2m conditions. It is
easy to verify that

a0 = 1 − m, a1 = a2 = · · · = am = 1 (6.8)

is a valid solution.
For u, v ∈ [0, 1], the terms ‘u equals v’ and ‘u not equals v’ are modeled using

the MFs:

μ=(u, v) :=

{
1 − |u − v| , if |u − v| ≤ 1,

0, if |u − v| > 1,

μ�=(u, v) := 1 − μ=(u, v). (6.9)

In particular, the terms {equals 1, equals 0} are modeled by

μ=(u, 1) = u, and μ=(u, 0) = 1 − u, (6.10)

respectively.
If u and v are binary then

β(u, v) :=
μ=(u, v) − μ�=(u, v)
μ=(u, v) + μ�=(u, v)

= 2μ=(u, v) − 1
= 1 − 2|u − v|
= 1 − 2σL(u + v − 2uv).
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Thus, inferring the FARB and using (6.8) yields

σ−1
L (s1(t + 1)) = 1 − 2

m∑
j=1

σL(Ij(t) + xj − 2Ij(t)xj),

or

s1(t + 1) = σL(1 − 2
m∑

j=1

σL(Ij(t) + xj − 2Ij(t)xj)). (6.11)

Clearly, this describes a second-order RNN with inputs I1(t), . . . , Im(t) and
x1, . . . , xm. It is easy to verify, using the definition of the function σL, that
if Ij(t) = xj , for all j ∈ [1 :m], then s1(t + 1) = 1, and that s1(t + 1) = 0, other-
wise. In other words, s1(t) in the RNN functions exactly as described in (6.7).

The rules for the second output, s2(t), follow directly from the description of
its required functioning:

R1: If s1(t) equals 1, Then s2(t + 1) = s2(t)/2,
R2: If s1(t) equals 0, Then s2(t + 1) = s2(t),

with s2(1) = 1. This is actually a FARB with a0(t) = 3s2(t)/4, a1(t) = −s2(t)/4,
and

β=1(y) = −1 + 2μ=1(y)
= −1 + 2y

= −1 + 2σl(y),

where the last equation holds for any y ∈ [0, 1]. Inferring yields

s2(t + 1) = s2(t) − s1(t)s2(t)/2.

Since s1(t) ∈ {0, 1}, this implies that s2(t) ∈ [0, 1] for all t ≥ 1, so using (6.6)
yields

s2(t + 1) = σL(s2(t) − s1(t)s2(t)/2), s2(1) = 1. (6.12)

Summarizing, the counter module is realized by (6.11) and (6.12). Note that
these two equations describe a second-order RNN. It is easy to verify that
s2(t + 2) = 2−n(t), where n(t) is the number of occurrences of x in the set
{I(1), I(2), . . . , I(t)}.

Two interesting particular cases are:

1. The case m = 1, i.e., the input is a scalar I(t) ∈ {0, 1}. Then (6.11) becomes

s1(t + 1) = σL(1 − 2σL((1 − 2x)I(t) + x)). (6.13)

The resulting RNN is depicted in Fig. 6.1.
2. The case m = 0, i.e., there are no inputs. In this case, if we define s1(t) ≡ 1

then (6.12) yields

s2(t + 1) = σL(s2(t)/2), s2(1) = 1, (6.14)

so clearly s2(t + 1) = 2−t.
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s2(t + 1)s2(t + 2)
×

1

s1(t + 1)

σL

σL z−1
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−2

−1/2

1

+

I(t)

x1

1 − 2x

Fig. 6.1. Graphical representation of the counter module when m = 1

6.2.2 The Sequence-Counter Module

Input: a vector x ∈ {0, 1}m, and a sequence I(t) ∈ {0, 1}m, t = 1, 2, . . .
Output: f(l(t)), where f is some invertible function and l(t) is defined as follows.
If I(t) �= x then l(t) = 0. If I(t) = x then l(t) = l(t − 1) + 1.
In other words, l(t) is the length of the maximal sequence {I(t), I(t − 1), . . . },
such that every element in this sequence equals x.

To realize this using an FRB, we use two variables. The first, s1(t), indicates
whether I(t) = x or not, and so it is defined just as in the counter module above.
The second variable, s2(t), is initialized to 1; divided by 2 at any time τ such
that I(τ) = x; and reset back to 1 if I(τ) �= x. Stating this as an FRB yields:

R1: If s1(t) equals 1, Then s2(t + 1) = s2(t)/2,
R2: If s1(t) equals 0, Then s2(t + 1) = 1,

with initial values s1(1) = 0, s2(1) = 1.
This rule-base is a FARB. Inferring, using the MFs (6.10), and (6.6) yields

s2(t + 1) = σL(s1(t)s2(t)/2 − s1(t) + 1), s2(1) = 1. (6.15)

Summarizing, the sequence-counter is realized by (6.11) and (6.15). Note that
these two equations describe a second-order RNN. It is easy to verify that indeed
s2(t + 2) = f(l(t)), with f(z) = 2−z.

6.2.3 The String-Comparator Module

Input: two binary sequences I1(t), I2(t) ∈ {0, 1}, t = 1, 2, . . ..
Output: at time t + 1 the output is 1 if I1(τ) = I2(τ) for all τ ∈ [1 : t], and 0,
otherwise.
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In other words, this module indicates whether the two binary input sequences
are identical or not.

We realize this module using a single variable s1(t). Stating the required
functioning in terms of symbolic rules yields:

R1: If I1(t) equals I2(t), Then s1(t + 1) = s1(t),
R2: If I1(t) not equals I2(t), Then s1(t + 1) = 0,

with the initial value s1(1) = 1.
This rule-base is a FARB. Inferring, using the MFs (6.9), and applying (6.6)

yields

s1(t + 1) = σL(s1(t)(1 − |I1(t) − I2(t)|)).

Since I1(t), I2(t) ∈ {0, 1}, this is equivalent to

s1(t + 1) = σL(s1(t)s2(t)), s1(1) = 1, (6.16)

where

s2(t) := σL(1 − I1(t) − I2(t) + 2I1(t)I2(t)). (6.17)

Summarizing, the string-comparator module is realized using the second-order
RNN given by (6.16) and (6.17). It is easy to verify that if I1(τ) = I2(τ), for
all τ ∈ [1 :t], then s1(t + 1) = 1, and that s1(t + 1) = 0, otherwise.

6.2.4 The String-to-Num Converter Module

Input: I(t) ∈ {0, 1}, t = 1, 2, . . ..

Output: the output at time t is f(t) :=
t∑

τ=1
I(τ)2−τ .

In other words, this module calculates the value represented by the input binary
string.

To realize this, we use an FRB with output s1(t), initialized to s1(t) = 0.
If I(τ) = 1, then 2−τ is added to s1(t). If I(τ) = 0, s1(t) is left unchanged.
Stating this as an FRB yields:

R1: If I(t) equals 1, Then s1(t + 1) = s1(t) + s2(t)/2,
R2: If I(t) equals 0, Then s1(t + 1) = s1(t),

where s2(t) is defined by (6.14).
This rule-base is a FARB. Inferring, using the MFs (6.10), and applying (6.6)

yields

s1(t + 1) = σL(s1(t) + I(t)s2(t)/2), s1(1) = 0. (6.18)

Summarizing, this module is realized using the second-order RNN given by

(6.14) and (6.18). It is easy to verify that indeed s1(t + 1) =
t∑

τ=1
I(τ)2−τ .
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6.2.5 The Num-to-String Converter Module

Input: a value x ∈ [0, 1].
Output: at time t the output is y(t) ∈ {0, 1} such that 0.y(1)y(2) . . . is the
binary representation of x. In other words, this module is just the opposite of
the String-to-Num module.

We realize this module using two FRBs. The first FRB has output s1(t),
initialized to s1(1) = x. At each time t, the value of s1(t) indicates whether the
next digit, i.e., y(t+1) should be zero or one. The second FRB, with output s2(t),
keeps track of the digit itself and shifts the value stored in s1(t) one bit to the
left, in order to expose the next digit.

Stating the required functioning of these two variables as FRBs yields:

Rs2
1 : If s1(t) is larger than 1/2, Then s2(t + 1) = 1,

Rs2
2 : If s1(t) is smaller than 1/2, Then s2(t + 1) = 0,

and

Rs1
1 : If s2(t) equals 1, Then s1(t + 1) = 2(s1(t) − 1/2),

Rs1
2 : If s2(t) equals 0, Then s1(t + 1) = 2s1(t),

with s1(1) = x and s2(1) = 0.
Both these rule-bases are FARBs. For the first FARB, we use the MFs (2.12),

with Δ = 1/2 and k = 1, for the terms {larger than 1/2, smaller than 1/2}.
Then (2.13) yields β = 2σL(y − 1/2) − 1. For the second FARB, we use the
MFs (6.10) for the terms {equals 1, equals 0}. Inferring and using (6.6) then
yields

s1(t + 1) = σL(2s1(t) − s2(t)), s1(1) = x,

s2(t + 1) = σL(s1(t) − 1/2), s2(1) = 0.
(6.19)

The binary representation itself is obtained by:

y(t) =

{
1, if s2(t) ≥ 0,

0, if s2(t) < 0.
(6.20)

It is easy to verify that the RNN given by (6.19) and (6.20) indeed realizes the
Num-to-String module.

All the modules designed above were defined in a crisp manner. Stating the re-
quired functioning in terms of a FARB can also lead, quite naturally, to modules
with a fuzzy mode of operation. This is demonstrated in the next module.

6.2.6 The Soft Threshold Module

Input: a value b ∈ [0, 1] and a sequence I(t) ∈ [0, 1], t = 1, 2, . . .
Output: the output at time t + 1 is 1 if I(τ) is much larger than b for all
τ ∈ [1 :t]. Otherwise, the output is 0.

Note the deliberate use of the verbal term much larger here. We realize this
using an FRB with output s1(t), initialized to s1(1) = 1. If I(t) is much larger
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than b, then s1(t + 1) is left unchanged. If I(t) is not much larger than b, then
s1(t + 1) is set to 0. We state this as:

R1: If (I(t) − b) is positive, Then s1(t + 1) = s1(t),
R2: If (I(t) − b) is negative, Then s1(t + 1) = 0.

This is a FARB. Inferring, using the MFs (2.10) for the terms {positive, nega-
tive}, and applying (6.6) yields

s1(t + 1) = σL(s1(t)s2(t)), s1(1) = 1, (6.21)

with

s2(t) := σL

(
1
2

+
I(t) − b

2Δ

)
. (6.22)

Summarizing, the soft threshold module is realized by the second-order RNN
given by (6.21) and (6.22). If I(t) � b, s2(t) ≈ 1 and then s1(t+1) ≈ s1(t). Thus,
if I(t) � b for all t, then s1(t + 1) ≈ s1(1) = 1. On the other-hand, if I(t) 
 b,
s2(t) ≈ 0 and then s1(t + 1) ≈ 0. This agrees with the desired functioning of the
soft-threshold module.

Note that

lim
Δ→0

s2(t) =

⎧⎪⎨
⎪⎩

0, if I(t) < b,

1/2, if I(t) = b,

1, if I(t) > b,

and then (6.21) implies that the module becomes a hard threshold unit.
The modular approach to KBD of RNNs is based on using the basic modules

as building blocks. Since each module is realized as an RNN, the result is a
hierarchal network that constitutes several simple RNNs. The following examples
demonstrate how our set of modules can be used to design RNNs that solve
nontrivial problems.

6.2.7 KBD of an RNN for Recognizing the Extended L4 Language

Fix an integer n > 0. The extended L4 language is the set of all binary strings that
do not contain a substring of n consecutive zeros (for the particular case n = 3,
this is just the L4 language). We apply the modular approach to design an RNN
that recognizes this language.

Detecting that an input string I(1), I(2), . . . contains a substring of n consec-
utive zeros can be easily done using a Sequence-Counter Module followed by a
Soft Threshold Module (see Fig. 6.2). In the Sequence-Counter Module, x = 0,
so that its output is 2−l(t), where l(t) is the length of the maximal subsequence
of consecutive zeros in the input sequence.
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Soft Threshold
Module

Sequence−Counter
Module

I(t)
s2(t + 2) = 2−l(t)

b,Δ

s3(t + 3)

x = 0

Fig. 6.2. Modular RNN for recognizing the extended L4 language

Expressing the modules in terms of the RNNs that realize them (see (6.13),
(6.15), (6.21), and (6.22)) yields the complete network:

s1(t + 1) = σL(1 − 2σL(I(t))),
s2(t + 1) = σL(s1(t)s2(t)/2 − s1(t) + 1),
s3(t + 1) = σL(s3(t)s4(t)),

s4(t) = σL

(
1
2

+
s2(t) − b

2Δ

)
, (6.23)

with s2(1) = s3(1) = 1. We set b = (2−n + 2−(n−1))/2. Then s2(t + 2) − b =
2−l(t) − b changes sign exactly when l(t) = n. Furthermore, since s2(t + 2) ∈
{20, 2−1, 2−2, . . . }, we can find Δ > 0 small enough such that σL(1/2 + (s2(t) −
b)/2Δ) ∈ {0, 1}, and then s3 and s4 actually realize a hard threshold unit.

1 0 1 1 0 0 1 1 1 1 1 1 0 0 0 1 1 1 1 1 0 0 0 0 1 1 1 1
0

0.2

0.4

0.6

0.8

1

I(t)

Fig. 6.3. Output s3(t) of RNN (6.23) for the input sequence shown on the x axis
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Finally, the classification rule is: Accept a given string of length k, if s3
(k + 3) = 1,2 and Reject, otherwise. The correctness of this RNN follows
immediately from the correctness of the constituting modules.

Note that increasing the value of Δ (i.e., “softening” the threshold module)
turns (6.23) into a fuzzy recognizer. Strings with sequences of zeros much longer
than n will be rejected, and strings with sequences of zeros much shorter than n
will be accepted. For the intermediate cases, the output is s3(k + 3) ∈ (0, 1),
with the exact value depending on the number and length of the zero sequences
in the input.

To demonstrate this, Fig. 6.3 depicts the output of the RNN (6.23) with
n = 3, b = (2−n +2−(n−1))/2 = 3/16, and Δ = 0.2, for the input shown on the x
axis. It may be seen that s3(k + 3) decreases whenever a sequence of two or
more consecutive zeros appears in the output. Longer sequences yield a greater
decrease in s3(k + 3).

6.2.8 KBD of an RNN for Recognizing the AB Language

The AB language is the set of all binary strings that include an equal number
of zeros and ones (e.g., “010110”). We apply the modular approach to design an
RNN that recognizes this language. Note that the AB language is context-free,
and not a regular language, so common KBD techniques that are based on the
DFA-to-RNN conversion [2; 127] cannot be applied at all.

We realize a suitable RNN by feeding the input string I(1), I(2), . . . into two
counter modules. The first with x = 0, so that its output is 2−n0(t), where n0
denotes the number of zeros in the input sequence. The second counter has x = 1.
The string is accepted iff the counter outputs are equal (see Fig. 6.4). Expressing
each module in terms of the RNN that realizes it yields the complete network:

Counter Module

Counter Module

I(t) +

x = 0

x = 1

s2(t + 2) = 2−n0(t)

s4(t + 2) = 2−n1(t)

−1

+1

s5

Fig. 6.4. Modular RNN for recognizing the AB language

2 The shift to time k +3 is required to accommodate the processing time of the RNN.
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s1(t + 1) = σL(1 − 2σL(I(t))),
s2(t + 1) = σL(s2(t) − s1(t)s2(t)/2),
s3(t + 1) = σL(1 − 2σL(1 − I(t))), (6.24)
s4(t + 1) = σL(s4(t) − s3(t)s4(t)/2),
s5(t + 1) = s4(t) − s2(t),

with si(1) = 1, i = [1:4].
The classification rule for a string of length k is: Accept if s5(k + 3) = 0,

and Reject, otherwise. The correctness of (6.24) follows immediately from the
correctness of the constituting modules.

6.2.9 KBD of an RNN for Recognizing the Balanced Parentheses
Language

Let n0(t) (n1(t)) denote the number of zeros (ones) in the input string
{I(0), . . . , I(t)}. The balanced parentheses language (BPL) includes all the
strings that satisfy: n0(t) = n1(t), and n0(τ) ≥ n1(τ) for all τ ≤ t. If the
symbol 0 (1) represents left (right) parenthesis, then a string is in the BPL if
each right parenthesis has a corresponding left parenthesis that occurs before it.

We use the modular approach to design an RNN for recognizing the BPL.
Note that the BPL is a non-regular, context-free, language, so common KBD-
to-RNN techniques cannot be applied for KBD of an RNN that recognizes this
language.

The RNN contains two counters for calculating 2−n0(t) and 2−n1(t). The dif-
ference 2−n1(t) − 2−n0(t) is fed into a soft threshold module (see Fig. 6.5). The
values b and Δ are set so that the output of this module will be 1 only if

Counter
Module

Module
Counter

Soft
Treshold
Module

+I(t)
x = 1

x = 0

b,Δ
s9

s7

−1

+1

s2(t + 2) = 2−n0(t)

s4(t + 2) = 2−n1(t)

z−1

s5
+

s6

Fig. 6.5. Modular RNN for recognizing the balanced parentheses language
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n0(τ) ≥ n1(τ), for all τ ≤ t,

or, equivalently,
2−n0(τ) ≤ 2−n1(τ), for all τ ≤ t.

Expressing each basic module in the terms of the RNN that realizes it yields
the complete network:

s1(t + 1) = σL(1 − 2σL(I(t))),
s2(t + 1) = σL(s2(t) − s1(t)s2(t)/2),
s3(t + 1) = σL(1 − 2σL(1 − I(t))),
s4(t + 1) = σL(s4(t) − s3(t)s4(t)/2),
s5(t + 1) = s4(t) − s2(t), (6.25)
s6(t + 1) = s5(t),
s7(t + 1) = σL(s7(t)s8(t)),

s8(t) = σL

(
1
2

+
s5(t) − b

2Δ

)
,

s9(t + 1) = s7(t) + s6(t),

with si(1) = 1, i ∈ [1 : 9]. Here the neuron s6 realizes a pure delay which
is needed to synchronize the output streams of the counters and of the soft
threshold module.

The classification rule for a string of length k is: Accept if s9(k + 5) = 1, and
Reject, otherwise. The following result analyzes the correctness of the RNN.

Proposition 6.2. Fix an integer l > 0. Suppose that the parameters b and Δ of
the soft threshold module satisfy

Δ > 0, Δ − 2−l ≤ b ≤ −Δ. (6.26)

Then the RNN (6.25) correctly classifies all strings with length ≤ l according to
the BPL.

Proof. Consider a string with length l. It follows from (6.25) that

s9(l + 5) = s7(l + 4) + s6(l + 4)
= s7(l + 4) + s5(l + 3)
= s7(l + 4) + s4(l + 2) − s2(l + 2)

= σL(s7(l + 3)s8(l + 3)) + 2−n1(l) − 2−n0(l). (6.27)

We consider two cases.

Case 1. The string belongs to the BPL. In this case, n0(l) = n1(l) and 2−n0(τ) ≤
2−n1(τ) for all τ ∈ [1, l]. It follows that s5(τ) = s4(τ −1)−s2(τ −1) ≥ 0, so (6.26)
yields

s5(τ) − b

2Δ
≥ −b

2Δ
≥ 1/2, for all τ.
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Hence, s8(τ) = 1 and s7(τ) = 1 for all τ ∈ [1, l], and (6.27) yields

s9(l + 5) = 1,

i.e., the RNN classification is correct.
Case 2. The string does not belong to the BPL. That is, either n0(τ) < n1(τ)
for some τ ∈ [1, l], or n0(l) �= n1(l). We will show that in this case s9(l + 5) �= 1.
We consider two sub-cases.
Case 2.1. Suppose that n0(τ) < n1(τ) for some τ ∈ [1, l]. Then, n0(τ) ≤ n1(τ)−1,
so 2−n1(τ) − 2−n0(τ) ≤ −2−n1(τ). This implies that

2−n1(τ) − 2−n0(τ) ≤ −2−τ ≤ −2−l. (6.28)

Substituting (6.28) in (6.25) yields

s8(τ + 3) = σL

(
1
2

+
2−n1(τ) − 2−n0(τ) − b

2Δ

)

≤ σL

(
1
2

+
−2−l − b

2Δ

)
.

It follows from (6.26) that s8(τ + 3) = 0. This implies that s7(t) = 0 for all
t ≥ τ + 3, so

s9(l + 5) = 2−n1(l) − 2−n0(l) �= 1.

Case 2.2. Suppose that n0(l) �= n1(l). The analysis above shows that σL(s7(l +
3)s8(l + 3)) ∈ {0, 1}. Thus, either s9(l + 5) = 2−n1(l) − 2−n0(l) or s9(l + 5) =
1 + 2−n1(l) − 2−n0(l). This implies that when n0(l) �= n1(l), s9(l + 5) �= 1.

This completes the proof for the case where the length of the string is l. It is
straightforward to see that the same result holds when the length is ≤ l. ��

6.2.10 KBD of an RNN for Recognizing the 0n1n Language

The 0n1n language is the set of all binary strings of the form

00 . . .0︸ ︷︷ ︸
n times

11 . . .1︸ ︷︷ ︸
n times

for some n. The 0n1n language is context-free.
We now apply the modular approach to design an RNN that recognizes

this language. Let n0(t) (n1(t)) denote the number of 0s (1s) in the input
string {I(1), . . . , I(t)}, and let l1(t) denote the length of the maximal sequence
{I(t), I(t − 1), . . . }, such that every element in this sequence equals 1. A string
{I(1), . . . , I(t)} is in the 0n1n language iff it satisfies two conditions:

n0(t) = n1(t),
l1(t) = n1(t).
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Fig. 6.6. Modular RNN for recognizing the 0n1n language

It follows that we can realize a suitable RNN by feeding the input string into
two counters and one sequence-counter. The counters output n0 and n1. The
sequence counter outputs l1. The input string belongs to the 0n1n language iff the
outputs of the counters are equal, and the outputs of the counter calculating n1
equals the output of the sequence counter. The resulting RNN is depicted in
Fig. 6.6.

Expressing each module in terms of the RNN that realizes it yields the
complete network:

s1(t + 1) = σL(1 − 2σL(I(t))),
s2(t + 1) = σL(s2(t) − s1(t)s2(t)/2),
s3(t + 1) = σL(1 − 2σL(1 − I(t))),
s4(t + 1) = σL(s4(t) − s3(t)s4(t)/2), (6.29)
s5(t + 1) = σL(s3(t)s5(t)/2 − s3(t) + 1),
s6(t + 1) = s4(t) − s2(t),
s7(t + 1) = s4(t) − s5(t),
s8(t + 1) = s6(t) + s7(t).

The classification rule for a string of length k is: Accept if s8(k + 4) = 0,
and Reject, otherwise. The next result shows that the RNN indeed functions
properly.

Proposition 6.3. The RNN (6.29) correctly classifies any string according to
the 0n1n language.
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Proof. Let t denote the length of the input string. It follows from (6.29) and
the correctness of the constituting modules that

s8(t + 4) = s6(t + 3) + s7(t + 3)
= 2s4(t + 2) − s2(t + 2) − s5(t + 2)

= 2 · 2−n1(t) − 2−n0(t) − 2−l1(t). (6.30)

We consider two cases.
Case 1. Suppose that the input string belongs to the 0n1n language. In other
words, n0(t) = n1(t) = l1(t). Eq. (6.30) implies that s8(t + 4) = 0, i.e. the RNN
classification is correct.
Case 2. Suppose that the input string does not belong to the 0n1n language. We
need to show that s8(t+4) �= 0. Seeking a contradiction, assume that s8(t+4) =
0. Then (6.30) yields

2 − 2n1(t)−n0(t) = 2n1(t)−l1(t). (6.31)

If n1(t) = l1(t) then (6.31) yields n1(t) = n0(t), but this contradicts the fact that
the string does not belong to the 0n1n language. If n1(t) �= l1(t), then by the
definition of n1(t) and l1(t), n1(t) > l1(t). Now (6.31) implies that 2n1(t)−n0(t) <
0, which is a contradiction. ��



7 Conclusions and Future Research

The ability of ANNs to learn and generalize from examples, and to generate
robust solutions, makes them very suitable in a diversity of applications where
algorithmic approaches are either unknown or difficult to implement. A major
drawback, however, is that the knowledge learned by the network is represented
in an exceedingly opaque form, namely, as a list of numerical coefficients. This
black-box character of ANNs hinders the possibility of their more wide-spread
acceptance. The problem of extracting the knowledge embedded in the ANN in
a comprehensible form has been intensively addressed in the literature.

Another drawback of ANNs is that standard training algorithms do not guar-
antee convergence, and are highly dependent on the initial values of the networks
parameters. Efficient methods for determining the initial architecture and param-
eter values of ANNs are quite important, as they may improve the trained ANN
generalization capability, and reduce training times. In many problems some ini-
tial information is known, and an important problem is how this knowledge can
be used in order to design an initial ANN.

In this work, we introduced a novel fuzzy rule-base, the FARB, and showed
that its IO mapping is mathematically equivalent to that of an ANN. We used
this equivalence to develop new approaches for: (1) extracting knowledge from
trained ANNs, and representing it in a comprehensible form; and (2) knowledge-
based design of ANNs based on prior knowledge. These applications were illus-
trated for both feedforward ANNs and first- and second-order recurrent ANNs.

For large-scale networks, the corresponding FARB may include either a large
number of rules or complicated rules, and thus hamper the FARB comprehen-
sibility. In order to minimize the effect of this manifestation of the curse of
dimensionality [11], we also presented a systematic procedure for rule reduction
and simplification.

7.1 Future Research

The FARB is based on standard tools from the field of fuzzy logic, and the
FARB–ANN equivalence holds for a large variety of standard ANNs. This opens
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the door to many more potential applications which are based on transferring
concepts and ideas from fuzzy logic theory to ANNs, and vice versa.

7.1.1 Regularization of Network Training

The ANN–FARB equivalence provides a convenient tool for extracting symbolic
knowledge from trained ANNs. It is highly desirable that the extracted rule-base
include a small number of rules that are as simple as possible. Two potential
approaches for achieving this goal are: (1) first extract the FARB and then
apply some simplification procedure (as described in Chapter 4); and (2) during
training, add regularization terms [150] that will force the ANN to develop a
skeletal form, and then extract the equivalent FARB.

When using the latter approach, it is of course possible to use regularization
terms that are standard in the ANN literature, e.g.,

∑
i,j

w2
ij [69]. However, if we

know beforehand that the KE approach is based on the ANN–FARB equivalence,
then it is natural to try and develop specialized regularization terms that are
particularly suitable for this approach, that is, terms that will potentially yield
a simple as possible FARB.

To make this more concrete, consider a FARB with the fuzzy terms larger
than 0 and smaller than 0 (we assume that the bias terms are included in the
xis). A typical rule is then:
Rk: If x1 is larger than 0 and x2 is larger than 0 and . . . and xm is larger than
0, Then f = . . .
Suppose that there exist two indexes i �= j and a number α > 0 such that

xi
∼= αxj , (7.1)

for all the training samples.
Let R′

k denote the rule that is obtained from Rk by deleting the the jth atom.
Condition (7.1) then implies that Rk and R′

k will have similar DOFs, since a
high (low) truth value for the atom ‘xi is larger than 0’ will correspond to a high
(low) truth value for the atom ‘xi is smaller than 0’. Thus, the jth atom can
be deleted from the FARB, yielding a simpler FARB, with little effect on the
output.

We would like to add a regularization term that will force the ANN to sat-
isfy (7.1). For two vectors g,h ∈ R

n \ {0}, let

b(g,h) :=
gT h

||g|| ||h|| ,

that is, b = cos(θ), where θ is the angle between g and h. Recalling that
xi = (wi)T z, where wi = (wi1, . . . , win)T , and z is the ANN input, we see
that requiring (7.1) is identical to requiring that b(wi,wj) is maximized.

This suggests that a suitable cost criterion might be

E − λ
∑
i,j

b(wi,wj),
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where E is a standard error function (e.g., the squared difference between the
desired and actual output), and λ > 0 is a weighting factor. It may be interesting
to study the effect of using this, or other specially designed regularization terms,
on the comprehensibility of the extracted FARB.

7.1.2 Extracting Knowledge during the Learning Process

Standard learning algorithms for ANNs have several drawbacks. Convergence
is not guaranteed, and even if it occurs, the stopping point might be a local
minimum in the weights space. Furthermore, it is not clear when to terminate the
learning process and how to assess the generalization capability of the network.

ANN training is a dynamic process and there is considerable interest in un-
derstanding how it evolves in time, and how different parameter values (e.g., the
momentum factor) affect it. For example, Pollack [135] has studied training an
ANN to recognize binary strings with an odd number of 1s, and showed that the
trained ANN goes through a type of phase-transition. At a certain point during
the training, there is a sharp transition from parameter values that yield poor
performance to values that yield good generalization.

Since the equivalence between the ANN and a suitable FARB holds at any
moment, it is possible to express the knowledge embedded in the ANN after each
iteration of the learning algorithm. In this way, the time evolution of the ANN
during training becomes a time evolution of a symbolic rule-base. Analyzing this
dynamic symbolic representation of the knowledge embedded in the ANN may
provide a deeper understanding of the learning process.

7.1.3 Knowledge Extraction from Support Vector Machines

One of the most successful descendants of ANNs are support vector machines
(SVMs) [22; 158]. SVMs have been widely applied for pattern recognition, regres-
sion, and classification. SVMs can be trained using a set of classified examples
{xi, yi}n

i=1, where yi is the desired output when the input is xi. The input vec-
tors are mapped into a higher dimensional space, and are then classified using
a maximal separating hyperplane. After training, the SVM output is a function
of a subset of the samples, called the support vectors. SVMs have demonstrated
an impressive success in various classification problems, but their comprehen-
sibility is quite poor. This raises the problem of KE from trained SVMS (see,
e.g., [9; 123]).

An SVM realizes a mapping in the form:

f(x) = b +
∑
xi∈S

αiyiK
(
x,xi

)
, (7.2)

where S is the set of support vectors, K(·, ·) is a kernel function, and αi, b ∈
R. Commonly used kernel functions include radial basis functions K(x,xi) =
exp(−γ

∥∥x − xi
∥∥2), and sigmoid functions K(x,xi) = tanh(κxT xi + c).
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Comparing (7.2) with (3.1) reveals a similarity between the IO mapping of
SVMs and feedforward ANNs. Hence, techniques that extract knowledge from
feedforward ANNs may potentially be adapted for KE from SVMs [23]. It would
be interesting to explore possible connections between SVMs and FARBs.

7.1.4 Knowledge Extraction from Trained Networks

Neural networks have been successfully applied in numerous applications (see,
e.g., [99; 120]). In many cases it would be beneficial to extract the knowledge
from the trained networks and represent it in a comprehensible form. Specific
examples include the following.

• Biological and medical systems. Neural modeling of biological and medical
systems is a very active research area (see, e.g., [137; 63]). However, a major
obstacle to medical applications is the black-box character of ANNs. Ob-
taining more knowledge on the internal features and the IO mapping of the
network is highly desirable. Extracting the knowledge embedded in an ANN
that models a biological system may lead to a deeper understanding of this
system. Interesting examples include ANNs that model the effect of vari-
ous diseases by inducing specific artificial “damage” to the ANN. Using the
ANN–FARB equivalence makes it possible to extract symbolic information
from both the original and damaged ANNs. Comparing this information may
lead to a more comprehensible description of what exactly the damage is, and
thus improve the understanding of the actual effect caused by the disease.

More specifically, Alzheimer’s disease, the most common form of demen-
tia, is intensively investigated and modeled using various techniques. Two
neural models are the synaptic deletion and compensation [64; 146], and the
synaptic runaway [57; 58], both with interesting results and comparisons
to clinical observations. These models were even used to derive therapeu-
tic suggestions [34] (e.g., minimize new memory load). Exploring such net-
works using the FARB–ANN equivalence may offer new directions for further
research.

• High-level image processing. Neural networks are used for facial detection
[142], land cover classification [82], and more [99]. It is interesting to under-
stand which visual features the ANN learned to detect and use. The FARB
formulation may be useful for addressing this issue.

• Speech and language modeling. The recognition and understanding of hu-
man speech and natural language is a necessary step toward many AI sys-
tems and human-machine interfaces. Neural networks have been used for
speaker recognition and classification [48; 76], text-to-speech and speech-to-
text transformations [154], and more [99]. Again, understanding the network
modus operandi might help to improve the system robustness, performance,
and widespread use.

• Stochastic networks. In stochastic ANNs, the output is a random variable.
Its value is drawn from some probability function parametrized by the neu-
rons inputs [182]. Logistic functions are commonly used as probability mass
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functions, so the network can be modeled using a FARB, whose output is
the probability function. Thus, the FARB formulation may be a useful tool
for KBN in stochastic nets.

• Knowledge refinement. In many practical engineering tasks, prior knowledge
about the problem is used. However, this knowledge is often vague, partial,
and may contain incorrect information. Improving this knowledge may lead
to better solutions, faster convergence, etc. If a classified set of samples con-
cerning the problem is available, knowledge refinement can be used to modify
the prior knowledge by making it more consistent with the given examples.
The FARB–ANN equivalence may also be used for knowledge refinement via
the following procedure: (1) state the initial knowledge as a FARB; (2) in-
ference to obtain the corresponding ANN; (3) train this ANN using given
data; and (4) use the FARB–ANN equivalence again to extract the refined
knowledge in symbolic form. Note that FRBs may be particularly useful for
expressing initial knowledge due to their inherent ability to handle vagueness
and uncertainty [122].

• Automating the KE process. The conversion of an ANN into the correspond-
ing FARB and the FARB simplification procedure are well-defined and struc-
tured processes. An interesting research direction is to code these processes
as computer procedures and thus to develop a fully automatic approach for
extracting comprehensible information from ANNs.

• KBN of ANNs with several hidden layers. In this work, we considered using
the FARB–ANN equivalence for KBN in ANNs with a single hidden layer.
Yet, the approach can be extended to handle ANNs with several hidden
layers. Indeed, we can represent the output fi of each neuron in the first
hidden layer using an appropriate FARB, say, FARBi. The output ti of each
neuron in the second hidden layer can now be described as a FARB with
inputs fi, and so on. Thus, an ANN with multiple hidden layers is equivalent
to a hierarchy of FARBs.
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Proof of Proposition 5.6

We require the following result.

Lemma A.1. Consider the RNN defined by (5.3) and (5.4) with si(1) = 0,
i ∈ [1 : 3]. Suppose that there exist ε1, ε2 ∈ [0, 1/2) such that the following
conditions hold:

1. If s1(t − 1) ≥ 1 − ε1, then s1(t) ≥ 1 − ε1,
2. If s4(t − 1) = s4(t − 2) = s4(t − 3) = 1, then s1(t) ≥ 1 − ε1,
3. If Conditions 1 and 2 do not hold, and s1(t − 1) ≤ ε2, then s1(t) ≤ ε2.

Then, the RNN correctly classifies any given binary string according to the L4
language.

Proof. Consider an arbitrary input string. Denote its length by l. We consider
two cases.

Case 1: The string does not include ’000’ as a substring. In this case, the If-
part in Condition 2 is never satisfied. Since s1(1) = 0, Condition 3 implies that
s1(t) ≤ ε2, for t = 1, 2, 3 . . ., hence, s1(l + 1) ≤ ε2. Recalling that the network
output is fout = s1(l + 1), yields fout ≤ ε2.
Case 2: The string contains a ’000’ substring, say, I(m − 2)I(m − 1)I(m) =’000’,
for some m ≤ l. Then, according to Condition 2, s1(m + 1) ≥ 1−ε1. Condition 1
implies that s1(t) ≥ 1 − ε1 for t = m + 1, m + 2, . . ., so fout ≥ 1 − ε1.

Summarizing, if the input string includes a ’000’ substring, then fout ≥ 1 − ε1 >
1/2, otherwise, fout ≤ ε2 < 1/2, so the RNN accepts (rejects) all the strings that
do (not) belong to the language. ��
We now prove Proposition 5.6 by showing that the RNN defined by (5.3), (5.4),
and (5.5) indeed satisfies the three conditions in Lemma A.1. Note that us-
ing (5.5) yields

s1(t) = σ (15.2s1(t − 1) + 8.4s2(t − 1) + 0.2s3(t − 1) + 3s4(t − 1) − 7.6) ,
(A.1)
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whereas substituting (5.4) in (5.6) and (5.7) yields

s4(t) ∈ {−1, 1}, s3(t) ∈ {0.015, 0.98}, and s2(t) ∈ [0, 0.8]. (A.2)

Suppose that
s1(t − 1) ≥ 1 − ε1. (A.3)

Since σ(·) is a monotonically increasing function, we can lower bound s1(t) by
substituting the minimal value for the expression inside the brackets in (A.1).
In this case, (A.1), (A.2), and (A.3) yield

s1(t) ≥ σ
(
15.2(1 − ε1) + 8.4 · 0 + 0.2 · 0.015 − 3 − 7.6

)
= σ(−15.2ε1 + 4.6).

Thus, Condition 1 in Lemma A.1 holds if σ(−15.2ε1 + 4.6) ≥ 1 − ε1. It is easy
to verify that this indeed holds for any ε1 ∈ (0.01, 0.219).

To analyze the second condition in Lemma A.1, suppose that s4(t − 1) =
s4(t − 2) = s4(t − 3) = 1. It follows from (5.3) and (5.5) that s3(t − 1) =
σ(3.8) = 0.98, and

s2(t − 1) ≥ σ (−0.2 · 0.8 + 4.5σ(3.8) + 1.5 − 4.7)
= 0.73.

Substituting these values in (A.1) yields

s1(t) = σ
(
15.2s1(t − 1) + 8.4s1(t − 1) + 0.2 · 0.98 + 3 − 7.6

)
≥ σ

(
15.2s1(t − 1) + 8.4 · 0.73 + 0.2 · 0.98 + 3 − 7.6

)
≥ σ(1.72),

where the last inequality follows from the fact that s1(t − 1), being the output of
a Logistic function, is non-negative. Thus, Condition 2 in Lemma A.1 will hold
if σ(1.72) ≥ 1 − ε1, or ε1 ≥ 0.152.

To analyze Condition 3 of the lemma, suppose that s1(t − 1) ≤ ε2. Then (A.1)
yields

s1(t) ≤ σ
(
15.2ε2 + 8.4s2(t − 1) + 0.2s3(t − 1) + 3s4(t − 1) − 7.6

)
.

We can upper bound this by substituting the maximal values for the expres-
sion inside the brackets. Note, however, that Condition 3 does not apply when
s4(t − 1) = s4(t − 2) = s4(t − 3) = 1 (as this case is covered by Condition 2).
Under this constraint, applying (A.2) yields

s1(t) ≤ σ
(
15.2ε2 + 8.4 · 0.8 + 0.2 · 0.98 − 3 − 7.6

)
= σ(15.2ε2 − 3.684).

Thus, Condition 3 of Lemma A.1 will hold if σ(15.2ε2 − 3.684) ≤ ε2, and it is
easy to verify that this indeed holds for any ε2 ∈ (0.06, 0.09).

Summarizing, for ε1 ∈ [0.152, 0.219) and ε2 ∈ (0.06, 0.09), the trained RNN
satisfies all the conditions of Lemma A.1. This completes the proof of
Proposition 5.6. ��
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Proof of Proposition 6.1

The proof is similar to the proof of Proposition 5.6, namely, we show that the
RNN defined by (5.4), (6.4), and (6.5) indeed satisfies the three conditions in
Lemma A.1. Note that using (6.5) yields

s1(t) = σ
(
5.04αs1(t − 1) + 2αs2(t − 1) + 2αs3(t − 1)

+ 0.76αs4(t − 1) − 3.52α
)
, (A.4)

whereas substituting (5.4) in (6.1) and (6.2) yields

s4(t) ∈ {−1, 1}, and s2(t), s3(t) ∈ {0.12, 0.88}. (A.5)

Suppose that
s1(t − 1) ≥ 1 − ε1. (A.6)

Since σ(·) is a monotonically increasing function, we can lower bound s1(t) by
substituting the minimal value for the expression inside the brackets in (A.4).
In this case, (A.4), (A.5), and (A.6) yield

s1(t) ≥ σ
(
5.04α(1 − ε1) + 0.24α + 0.24α − 0.76α − 3.52α

)
= σ(−5.04αε1 + 1.24α).

Thus, Condition 1 in Lemma A.1 holds if σ(−5.04αε1 + 1.24α) ≥ 1 − ε1. It is
easy to verify that this indeed holds for any α ≥ 5.7, with ε1 = 0.036.

To analyze the second condition in Lemma A.1, suppose that s4(t − 1) =
s4(t − 2) = s4(t − 3) = 1. It follows from (6.4) and (6.5) that s3(t − 1) =
σ(2) = 0.88, and s2(t − 1) = σ (5.26σ(2) − 2.62) = 0.88. Substituting these
values in (A.4) yields

s1(t) = σ
(
5.04αs1(t − 1) + 1.76α + 1.76α + 0.76α − 3.52α

)
≥ σ(0.76α),

where the inequality follows from the fact that s1(t − 1) is non-negative. Thus,
Condition 2 in Lemma A.1 will hold if σ(0.76α) ≥ 1− ε1, and it is easy to verify
that this indeed holds for any α ≥ 5.7, with ε1 = 0.036.

To analyze Condition 3 in Lemma A.1, suppose that s1(t − 1) ≤ ε2. Then (A.4)
yields

s1(t) ≤ σ
(
5.04αε2 + 2αs2(t − 1) + 2αs3(t − 1) + 0.76αs4(t − 1) − 3.52α

)
.

We can upper bound this by substituting the maximal values for the expres-
sion inside the brackets. Note, however, that Condition 3 does not apply when
s4(t − 1) = s4(t − 2) = s4(t − 3) = 1 (as this case is covered by Condition 2).
Under this constraint, applying (A.5) yields

s1(t) ≤ σ
(
5.04αε2 + 1.76α + 1.76α − 0.76α − 3.52α

)
= σ(5.04αε2 − 0.76α).
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Thus, Condition 3 of Lemma A.1 will hold if σ(5.04αε2 − 0.76α) ≤ ε2 and it is
easy to verify that this indeed holds for any α ≥ 5.7, with ε2 = 0.036.

Summarizing, for α ≥ 5.7 the designed RNN satisfies all the conditions of
Lemma A.1 for the specific values ε1 = ε2 = 0.036. This completes the proof of
Proposition 6.1. ��
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The 24-6-10 ANN was trained using MATLAB’s Neural Network Toolbox. Pa-
rameter values were initialized using the “init” command with “net.layers{i}.
initFcn” set to “initnw” (implementing the Nguyen-Widrow algorithm [121]).
Training was performed using the “trainlm” command (Levenberg-Marquardt
backprop), with “net.performFcn” set to “msereg” (that is, using the regular-
ization factor

∑
w2

ij [69]).
The parameters of the trained ANN are as follows.1 The weights from the

inputs to the hidden neurons are:

W =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.23 −0.04 0.45 0.30 −0.17 −0.52 −0.14 . . .

−1.31 −0.25 −0.06 0.77 0.70 0.73 1.07 . . .

−1.09 −2.05 −1.86 1.58 0.60 −0.15 −0.63 . . .

2.99 0.59 −0.17 0.40 −0.79 1.08 −2.50 . . .

−0.57 −2.02 −0.25 −0.65 −0.09 2.08 2.90 . . .

−0.49 0.89 0.02 −0.44 −0.62 −1.65 0.55 . . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The values wij , j ∈ [8 : 24], i ∈ [1 : 6], are omitted since they satisfy |wij | ≤
8.3E − 5. The hidden neurons biases are

b = (0.33, −0.59, 1.63, −2.20, −1.90, 1.59)T.

The weights from the hidden to the output neurons are:

C =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−0.43 −0.32 0.62 0.95 0.02 −0.38 −0.89 0.1 0.07 0.46

−0.22 −0.69 −0.07 0.32 0.05 0.05 0.43 −0.59 0.59 0.13

−0.43 0.24 0.25 0.13 0.12 0.21 0.21 −0.04 −0.42 −0.26

−0.38 −0.43 −0.31 0.22 0.01 0.57 0.07 0.12 −0.23 0.35

0.34 −0.14 −0.22 0.85 −0.49 0.28 −0.24 −0.49 −0.17 0.28

0.28 −0.18 0.27 −0.28 0.2 0.47 −0.26 −0.66 −0.27 0.44

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

and the output neurons biases are:

Φ = − (0.74, 0.78, 1.13, 0.92, 0.89, 0.71, 0.45, 0.68, 0.74, 0.96)T .

1 All the numerical values were rounded to two decimal digits, without affecting the
classification accuracy.
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