
Mobile Agents
Basic Concepts, Mobility Models,
and the Tracy Toolkit

Peter Braun
Swinburne University of Technology, Victoria, Australia

Wilhelm Rossak
Friedrich Schiller University, Jena, Thuringia, Germany

AMSTERDAM • BOSTON • HEIDELBERG • LONDON • NEW YORK • OXFORD
PARIS • SAN DIEGO • SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO

MORGAN KAUFMANN PUBLISHERS IS AN IMPRINT OF ELSEVIER

HEIDELBERG

Mobile Agents

THIS PAGE INTENTIONALLY LEFT BLANK

Copublished by Morgan Kaufmann Publishers and dpunkt.verlag

Morgan Kaufmann Publishers dpunkt.verlag
Senior Editor Tim Cox Senior Editor Christa Preisendanz
Publishing Services Manager Simon Crump
Assistant Editor Richard Camp
Cover Design Gregory Smith Graphic Design
Cover Image Paper, scissors, rock cover image © Digital Vision
Composition Cepha Imaging Pvt. Ltd.
Technical Illustration Dartmouth Publishing, Inc.
Copyeditor Graphic World Inc.
Proofreader Graphic World Inc.
Indexer Graphic World Inc.
Interior Printer The Maple-Vail Book Manufacturing

Group
Cover Printer Phoenix Color

Morgan Kaufmann Publishers is an imprint of Elsevier.
500 Sansome Street, Suite 400, San Francisco, CA 94111

This book is printed on acid-free paper.
Available in Germany, Austria, and Switzerland from
dpunkt.verlag
Ringstraße 19B
69115 Heidelberg, Germany
http://www.dpunkt.de

© 2005 by Elsevier Inc. (USA) and dpunkt.verlag (Germany)

Designations used by companies to distinguish their products are often claimed as trademarks
or registered trademarks. In all instances in which Morgan Kaufmann Publishers is aware of a
claim, the product names appear in initial capital or all capital letters. Readers, however, should
contact the appropriate companies for more complete information regarding trademarks and
registration.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any
form or by any means—electronic, mechanical, photocopying, scanning, or otherwise—without
prior written permission of the publisher.

Permissions may be sought directly from Elsevier’s Science & Technology Rights Department
in Oxford, UK: phone: (+44) 1865 843830, fax: (+44) 1865 853333, e-mail: permissions@
elsevier.com.uk. You may also complete your request on-line via the Elsevier homepage
(http://elsevier.com) by selecting “Customer Support” and then “Obtaining Permissions.”

Library of Congress Cataloging-in-Publication Data
Application submitted

MK ISBN: 1-55860-817-6
dpunkt ISBN: 3-89864-298-4

For information on all Morgan Kaufmann publications,
visit our Web site at www.mkp.com or www.books.elsevier.com

Printed in the United States of America
04 05 06 07 08 5 4 3 2 1

Dedicated to Ines, my soul and my life.

Willi

For my parents.

Peter

THIS PAGE INTENTIONALLY LEFT BLANK

Preface

The Internet, as we know it and use it today, is a huge repository of infor-
mation about almost any possible topic. However, the full power of available
technologies has not yet been exhausted, and new technologies are integrated
into the World Wide Web on a daily basis. The focus of these technolo-
gies and new features moves more and more toward the easy use of all the
resources provided by the Internet, while the question of simply providing
relatively unstructured information will be of less importance in the future.
Thus, we expect the World Wide Web to evolve dramatically in the future,
improving accessibility, flexibility, and automation most of all.

Currently, the two most used applications on the World Wide Web are
search engines and online shops. Search engines are supposed to help you
navigate through the sheer mass of unstructured information. However, in
most cases they fall short of that goal because they cannot manage the infor-
mation overload in any suitable manner, especially for the professional usage
of the Internet’s resources. Most online shops still act more or less like elec-
tronic catalogs, being a simple copy of what was delivered in plain paper to
our doorsteps for years. They lack the necessary support of customer man-
agement and target a fairly conservative client-server type of network, failing
to acknowledge the advent of new and mobile communication platforms.

The new buzzwords for the Internet community in the future must and
will be automation and mobility. Ubiquitous computing will be the standard,
and products will be ordered and consumed “on demand,” that is, when
and where the need is triggered. This means that the typical customer is no
longer prepared to wait until a fat client with a high-bandwidth connection is
available. Small devices that can be carried around without effort will have to
do, while we expect, of course, to stay connected to the Internet at all times.
Placing an order will not be time-consuming matter of navigating an endless

vii

viii � Preface

number of nodes but rather will be a specification of what we want. The rest
will be left to our trusted, and hopefully personalized, software that will take
care of business in a highly autonomous and professional fashion.

Imagine yourself, for example, instructing your mobile phone to go
shopping on the Internet: A piece of software will search for product infor-
mation, compare prices, hunt down bargains, and, finally, buy the desired
good with electronic cash—all without keeping your phone online for the
next 3 hours and ruining your eyes with a tiny display. In addition, we expect
our software to act in a proactive fashion, that is, to be intelligent enough to
interpret our needs beyond the level of basic keyword matching. Mobility will
be the key issue not only for the hardware platform but also for the software
agent that actually performs the task at hand. The agent should travel to visit
the distributed information sources and perform the proactive filtering right
at the source instead of downloading massive amounts of possibly irrelevant
data to its master’s home platform.

Assume that you want to organize a business trip while you are driving
home in your car. Wouldn’t it be helpful if you could instruct your laptop
software, in a short break, to negotiate a fitting flight, reserve a rental car,
book a hotel, coordinate the date with your business partner, and buy the
tickets for your favorite opera (as you are in town anyway)? The software has,
of course, learned that you prefer to drive a Mercedes rather than a Volk-
swagen and will act accordingly—a fact that is automatically ignored should
you work for a university. The job will be done faster and more efficiently
than any human could do it, all while you are driving home safely. Your lap-
top will act as the starting platform only and go offline, thus avoiding the
need to squeeze possibly relevant data through a low-bandwidth connec-
tion. The agent goes to the data and works in an asynchronous mode. The
results, already checked and filtered for relevance, can then be delivered to a
new destination, for example, the workstation at your office. There they can
checked by you the next morning, in a situation that fits your time frame and
needs.

How will we enable, support, design, and program these new types of
applications? What is the technology that will serve as the infrastructure for
these new features? We want to go further than basic capability; we want a
well-structured and scalable technology based on solid engineering princi-
ples. Thus, we accept arguments that a number of technologies might be
able to solve the tasks involved in our scenario, but we believe strongly
that only one technology has the potential to do it right. As you might have
already guessed reading the title of this book, we believe that mobile agents

Preface � ix

will be the technology to enable this next generation of Web-based software
systems. So what are mobile agents?

Mobile agents are small software entities that can act as your autonomous
representative. They can travel through the World Wide Web, or any
other network, in order to translate your specification—the “what”—into
a possible solution (e.g., tickets for the opera or 50 tons of crude oil for your
refinery). They take care of how that solution is found (i.e., they will do the
browsing, comparing, and negotiating). In more technical terms, mobile
agents have the capacity to work in an asynchronous and autonomous mode,
as long as the basic infrastructure they need is available. This infrastructure
is basically a network of execution platforms and will be discussed at length
in this book.

Using mobile agents means that you, as the owner of such an agent, do
not have to stay glued to your workstation to get the job done; your mobile
agent will do it faster and most likely more completely, giving you a free hand
to do the really important things in life (which means, of course, to do your
job even better).

The most important characteristic of mobile agents is that they will be
able to visit the nodes of the network directly and are not limited to down-
loading information to a fixed platform. Imagine them as a very sophisticated
search engine that works on demand and is able to go where the information
is, not only adding improved flexibility to the search process but also saving
bandwidth, avoiding network latency, and reacting more quickly to a dynamic
network environment. This makes the whole concept extremely flexible and
supports very naturally the need for automation and mobility. Agents are fast,
are smart if necessary, and will accept very small platforms and fairly simple
interfaces to start their task. Later on, while migrating through the Web, they
will simply use the available local computing power of the Web (i.e., that of
hosting servers and other nodes).

Well, this sounds crazy, doesn’t it? Mobile agents are indeed a fascinating
topic. However, although most of the techniques necessary to implement
theses applications are readily available, probably only a few people have
ever used mobile agents for industrial-strength applications. The reasons for
this are that, despite almost 10 years of research all over the world, only a
few systems exist that support the related concepts sufficiently, and some
problem areas (e.g., security questions) are still in discussion.

Thus, the intention of our book is twofold. On one hand, we want to
introduce you to this fascinating topic and survey the current state-of-the-
art technology in a wide area of mobile agent–related research. As fans

x � Preface

of the technology, we will present the far reaching possibilities this new
technology offers, especially for the future of advanced distributed (infor-
mation) systems. In doing this, we hope to encourage practitioners to use
this technology and to compare it with alternatives. We are sure that the
evaluation will be quite favorable for mobile agent systems.

However, we also want to pinpoint the limits and shortcomings of the
currently available mobile agent technology. This should help you miti-
gate risks and make an educated decision about whether mobile agents
are the right solution for your problem. Through this discussion, we hope
to provide the mobile agent community with links and ideas for future
improvements.

This book is the first attempt we are aware of to provide a common intro-
duction to the technology of mobile agents. Earlier books about this topic
typically have dealt with specific mobile agent toolkits and/or introduced
mostly the programming perspective of mobile agents without discussing
the technological infrastructure.

The most valuable and complete book we know of is Programming and

Deploying Java Mobile Agents with Aglets, by ?. It introduces the Aglets
mobile agent toolkit developed by IBM. After a short presentation of soft-
ware agents and mobile agents, the more technical advantages of mobile
agents are explained. The rest of this book serves as a very good introduc-
tion into programming the Aglets systems. Another good book is Mobile

Agents: Explanations and Examples, by ?, but it is rather outdated by
now. Their book focuses on programming aspects of four mobile mobile
agent toolkits (Telescript, Ara, AgentTCL, and Aglets). Two of them are no
longer available products or ongoing projects. Aglets is now an open-source
project (see aglets.sourceforge.net for more information), and AgentTCL,
now named D’Agents, is an ongoing project at Dartmouth College (see
www.agent.cs.dartmouth.edu for more information). This book also intro-
duces briefly the technology on which the whole mobile agent paradigm is
based and touches on the problems that come along with the mobility of
agents.

Of course, some good books about specialized topics in the area of mobile
agent systems do exist, for example, discussing security or agent communi-
cation. These books complement the more general focus of our presentation
nicely. We provide links to them in Part II of our book, where we present the
technological framework for mobile agents and refer to the individual related
topics.

Preface � xi

Who Should Read This Book?

Our book is designed to be useful for different audiences. First, it can be
used as an introduction to the wide field of mobile agent technology, for
researchers, students, and practitioners alike. It can help to get the big pic-
ture and to understand trade-offs and capabilities. Second, it can be used by
researchers who work in a particular subdomain and want to get an overview
of related ongoing research and topics. Finally, it can be used to get some
detailed hands-on experience in programming mobile agents within a work-
ing environment that has reached industrial strength. We have set up a Web
site from which our Tracy mobile agent toolkit can be downloaded.

We assume that you have some basic understanding of object-oriented
programming languages in general, and specifically of the Java programming
language. Java has been for some years now the de facto standard program-
ming language for mobile agents. We will introduce and explain techniques
such as object serialization, dynamic downloading, and reflection, where
necessary, but we will not provide a Java beginner’s course.

Contents

The following outline shows the structure of our book. We recommend
that you read it first to determine the sequence of chapters that suits your
needs best.

Part I: Motivation for and Introduction to Mobile Agents This part provides a brief
introduction to mobile software agents. We encourage the use of mobile
agents by drawing a picture of the requirements of future distributed sys-
tems and comparing mobile agents to some other techniques currently
used on the Internet.

Part II: Mobile Agents—Concepts, Functions, and Possible Problems This part of our
book is intended to establish a firm understanding of mobile agents as
a technology. We abstract from specific toolkits and establish a common
framework of basic concepts, functions, and features. We also address
problems common to most mobile agent systems and characterize the
current state-of-the-art technology.

Part III: The Kalong Mobility Model This part contains a detailed specifica-
tion of our new mobility model, Kalong, and the underlying network

xii � Preface

protocol, SATP. A reference implementation as independent software
component is presented.

Part IV: The Tracy Mobile Agent Toolkit In the last part of this book, we will show
how to actually work with a mobile agent toolkit, called Tracy, which we
developed. We will also present architecture and implementation details,
using Tracy as a test bed and example.

Acknowledgments

First, our thanks go to all the members of the Tracy research team for the
many years of devoted work they invested into the project and their constant
belief in a new and still little-known technology. It is sometimes not easy to
be asked for the hundredth time what this is all about and whether you really
believe that it is a good idea to specialize in this research domain. You did the
right thing, guys! We would like to include a short list of names of the most
important team members.

Thanks to Christian Erfurth for his work on the first version of Tracy and
on letting agents communicate. Thanks to Jan Eismann for his work on the
domain manager concept and for never-ending discussions on the architec-
ture of mobile agent toolkits, which led to the idea for the second version of
Tracy and the new plugin-oriented software architecture.

Many thanks to Sven Geisenhainer for his unfatiguing work on Tracy2.
Sven was mainly involved in the development of the kernel and did a great
job with developing some of the main plugins, in particular the command line
user interface. Thanks to Volkmar Schau for his initial work in implementing
the new Tracy architecture and thanks to Ingo Müller for this work on the
application level of mobile agents by designing an electronic marketplace on
top of Tracy.

Many thanks to Christian Fensch and Steffen Schlötzer for their work
on ByCAl, a Java Application Programming Interface (API) to analyze Java
byte code; Steffen Kern for his work on migration optimization techniques;
and Tino Schlegel for designing and implementing Tiffany, the Web-based
graphical user interface, and for developing a whole test suite for Tracy.
Thanks to Matthias Heunecke for implementing the pipeline concept in
the migration plugin. Thanks to Carsten Panzner for implementing some of
the security enhancements. Finally, thanks to Arndt Döhler for interesting

Preface � xiii

discussions about possible improvements of Tracy with regard to Web
services and Grid computing.

Beyond the core Tracy team, we would also like to thank Bill Buchanan,
Ulrich Pinsdorf, and Corinna Flues. Their feedback and support, as well as
their always-constructive criticism, helped us to keep going and to strive
for the better solution, even if the easier one might have been good enough
for internal purposes. You helped us take a big step toward a framework in
which theory and practice coexist in a healthy balance. Finally, many thanks
to Tim Cox and Richard Camp at Morgan Kaufmann and Sarah Hager at
Graphic World for all of their assistance and advice, which has been a real
help to us.

Peter Braun Willi Rossak
Melbourne, Australia Jena, Germany

How to Contact Us

We have verified all information and tested all examples presented in this
book to the best of our ability, but you might find a mistake or an omission,
or you might just have suggestions for future editions. Please contact us by
writing an e mail to

braun@mobile-agents.org or rossak@mobile-agents.org.

We have a Web page for this book, where you can find all source code
examples and where we will list known errors and frequently asked ques-
tions. You will also find links to all projects and persons mentioned in this
book. You can access this page at:

www.mobile-agents.org.

At this Web site, you can also download the latest version of the Tracy
mobile agent toolkit, in an evaluation version, for free.

THIS PAGE INTENTIONALLY LEFT BLANK

About the Authors

Peter Braun is a postdoctoral research fellow at the Center for Intelligent
and Multi-Agent Systems in the Faculty of Information and Communication
Technology at Swinburne University of Technology, Melbourne, Australia. He
received an M.S. and a Ph.D. in computer science from Friedrich Schiller
University of Jena, Germany. His research interests include mobile agents,
especially agent migration protocols, and Grid services.

Willi Rossak is a professor of Software and Systems Engineering at Friedrich
Schiller University Jena, Germany. He received his diploma and Ph.D.
in computer science from the Vienna University of Technology, Austria.
He specializes in the modeling and development of distributed dynamic
systems with a focus on the upstream tasks of the software life cycle and
has published more than sixty research papers on a wide variety of topics in
software and systems engineering.

xv

THIS PAGE INTENTIONALLY LEFT BLANK

Contents

Preface vii

Part I

Motivation for and Introduction to Mobile Agents

Chapter 1 Designing Innovative Distributed Systems 3

Chapter 2 From Client-Server to Mobile Agents 7

2.1 A First Look at Mobile Agents 7

2.1.1 The Artificial Intelligence Point of View 8

2.1.2 The Distributed Systems Point of View 11

2.2 A Short History of Mobile Agents 17

2.2.1 The Early Approaches of Mobile Code 17

2.2.2 Remote Evaluation 18

2.2.3 Mobile Objects 19

2.2.4 Mobile Processes 19

2.2.5 Mobile Agents 20

2.3 Similar but Different Concepts 24

2.3.1 Internet Agents, Worms, and Spiders 24

2.3.2 Java Applets 24

2.3.3 Java Servlets 25

2.4 Why Are Mobile Agents a Good Idea? 26

2.5 Possible Application Domains of Mobile Agents 27

xvii

xviii � Contents

Part II

Mobile Agents—Concepts, Functions,

and Possible Problems

Chapter 3 Mobile Agent Migration 35

3.1 The Mobile Agent Migration Process 36

3.1.1 Generic Framework for Agent Migration 36

3.1.2 Migration in the Tracy Mobile Agent Toolkit 40

3.2 Effective Migration as a Core Feature of Mobile Agent Toolkits 51

3.2.1 Mobile Agents versus Client-Server 51

3.2.2 Performance Analysis of Simple Mobile Agents versus

Client-Server 54

3.2.3 Discussion of Our Results and a Further Literature Review 68

3.3 Design Issues of Agent Migration 74

3.3.1 Mobility Models 75

3.3.2 Examples for Mobility Models 93

3.3.3 Related Work—Other Classification Approaches 97

3.4 Reasoning about Improved Mobility Models 98

3.4.1 Drawbacks of Simple Migration Techniques, and Current

Implementations 98

3.4.2 Improving the Performance of Mobile Agents 102

3.4.3 Performance and Migration Strategies 110

3.4.4 The Kalong Mobility Model 116

3.4.5 Kalong’s Advantages 125

3.4.6 Migration Optimization Techniques Proposed in the Literature 127

Chapter 4 Mobile Agent Communication 131

4.1 Introduction 132

4.2 Classification of Communication Models for Mobile Agents 137

4.2.1 Message Passing 137

4.2.2 Information Space 139

4.3 Solutions to Provide Location-Transparent Communication 141

4.3.1 Central Server and Home Agency Solutions 144

4.3.2 Forwarding Pointers 146

4.3.3 Broadcast-Based Approaches 151

4.3.4 Hierarchical Approaches 154

Contents � xix

Chapter 5 Mobile Agent Security 159

5.1 Security Requirements and Cryptographic Techniques 160

5.1.1 Authenticity 162

5.1.2 Confidentiality 164

5.1.3 Integrity 165

5.1.4 Accountability 166

5.1.5 Availability 166

5.1.6 Anonymity 166

5.2 Taxonomy of Possible Attacks 167

5.2.1 Malicious Agents 167

5.2.2 Malicious Agencies 170

5.3 Introduction to the Proposed Solutions 174

5.4 Organizational Solutions 175

5.4.1 Trusted Agencies 176

5.4.2 Agency Reputation 177

5.4.3 Law 178

5.5 Protecting Mobile Agents 178

5.5.1 Preventing Attacks on Mobile Agents 178

5.5.2 Detecting Attacks on Mobile Agents 184

5.6 Protecting Agencies 198

5.6.1 Introduction—Java and Security 199

5.6.2 Agent Authentication and Authorization 204

5.6.3 Agent Execution 210

Part III

The Kalong Mobility Model—Specification

and Implementation

Chapter 6 Specifications of the Kalong Mobility Model 217

6.1 Introduction 217

6.2 Kalong Vocabulary 220

6.3 Agent Model 221

6.3.1 Agents and Agent Contexts 221

6.3.2 Agencies 226

6.4 Application Programming Interfaces 228

6.4.1 Interface IKalong 228

6.4.2 Interface IAgentManager 242

xx � Contents

6.4.3 Interface INetwork 242

6.4.4 Interface IServer 243

6.5 The SATP Migration Protocol 243

6.5.1 Introduction 244

6.5.2 The SATP Request and Reply Messages 245

6.5.3 Specification of All SATP Messages 246

Chapter 7 Using Kalong 255

7.1 Introduction 255

7.1.1 Kalong as a Software Component 256

7.1.2 Kalong as a Virtual Machine 257

7.2 Using the Kalong Component 258

7.2.1 Starting and Configuring Kalong 258

7.2.2 Interface IKalong 261

7.2.3 Interface IAgentManager 263

7.2.4 Examples to Use Interface IKalong 264

7.2.5 Push Agent Class and Load Other Classes 268

7.3 Extending Kalong 274

7.3.1 The Kalong Extension Interface 275

7.3.2 A First Example: Compression of All SATP Messages 278

7.3.3 How to Implement Security Solutions with Kalong 281

Chapter 8 Evaluation 293

8.1 Related Work 294

8.1.1 Performance Evaluation of Existing Mobile Agent Toolkits 294

8.1.2 Performance Comparison of Mobile Agent Toolkits 295

8.2 Methodology 295

8.2.1 Experiments and Measurements 295

8.2.2 Programming Agents for the Measurements 296

8.2.3 Test Environment 297

8.3 Results of the Basic Experiments 298

8.3.1 Transmission Time with Regard to Code Size and

Network Quality 298

8.3.2 Transmission Time with Regard to Data Compression 302

8.3.3 Transmission Time with Regard to Security 304

8.3.4 Effect of Migration Strategies 307

8.3.5 Effect of Caching 310

8.3.6 Effect of Data Uploading 311

8.3.7 Effect of Code Servers 312

8.3.8 Effect of Mirrors 315

Contents � xxi

Part IV

The Tracy Mobile Agent Toolkit

Chapter 9 Running a Tracy Agency 327

9.1 Welcome to Tracy 327

9.2 Installation of Tracy 332

9.2.1 Before You Start the Installation 332

9.2.2 Installation 333

9.2.3 Configuration 334

9.2.4 Configure JAAS 337

9.3 Starting and Stopping a Tracy Agency 339

9.4 Installation and Usage of Basic Plugins 340

9.4.1 AgencyShell 341

9.4.2 AgentLauncher 348

Chapter 10 Programming Agents with Tracy 351

10.1 The First Agent 351

10.1.1 Creating a Tracy Agent 352

10.1.2 How to Use Services 355

10.1.3 How to Register with a Service 357

10.2 Survival 359

10.3 Place 361

10.4 Messaging 363

10.4.1 Introduction 363

10.4.2 The Message plugin API 364

10.5 Migration 368

10.5.1 Introduction 368

10.5.2 Installation 370

10.5.3 Programming Mobile Agents 374

10.5.4 Programming Kalong Scripts 383

10.5.5 Programming Migration Strategies 385

10.6 Managing Logical-Agency Networks 391

10.6.1 Introduction 391

10.6.2 Installing the DomainManager plugin 393

10.6.3 The DomainManager API 396

Bibliography 401

Index 419

THIS PAGE INTENTIONALLY LEFT BLANK

PartI
Motivation for
and Introduction
to Mobile Agents

THIS PAGE INTENTIONALLY LEFT BLANK

Chapter1
Designing Innovative
Distributed Systems

Until some years ago, the term distributed system was mainly used to
describe a network of several computer systems with separated memory
that are connected to each other by a dedicated network. The computers
used in such a distributed system are almost homogeneous, which means
that they have the same type of processor and the same type of operat-
ing system. The network is more or less static: Computers are only rarely
switched off, network connections between hosts are always reliable and
provide constant bandwidths, each computer has a fixed IP address, and net-
work packet routing is done via local switches. This type of network is still
typical for most applications.

Currently, we see rapidly evolving network and computer technologies.
The Internet as a network of networks with heterogeneous computers has
become widely accepted as a very important medium for any kind of infor-
mation exchange. The number of people and companies providing services
on the Internet increases continuously and is even surpassed by the number
of Internet users. Many different types of services are offered on the Internet,
first of all electronic mail and electronic file exchange. Without any doubt,
the most successful Internet service is the World Wide Web. Whereas in the
beginning the Web was only a medium to publish your data on your Web
site, we now see novel applications in theWeb that involve a growing amount
of computation, dynamics, and interdependencies.

Most of these applications are part of the electronic commerce domain,
for example, online shops or electronic marketplaces. However, they are
still built using a traditional design technique called client-server, in which

4 � Chapter 1 Designing Innovative Distributed Systems

a single powerful computer system (server) holds data to be shared over
the network and less powerful computer systems (clients) access the server
using a network. In Internet applications the server not only holds data but
also executes application code in the form of Java servlets or some other kind
of server-based language. In this paradigm the client is responsible only for
the graphical user interface, which is, in Internet applications, some kind of
Web interface using HTML pages.

We believe that what we know as a distributed system has to be expanded.
Again, the Web can be considered a predecessor of these future distributed
systems, as we notice an exponential growth of services available on the
Internet already. In the future we will see hundreds of millions of people
getting online by different means, using hundreds of millions of services
on the Internet. Only in the network’s core, the portion that remains sta-
ble for most of the time it exists, will connections be of copper or fiber;
on the edges of the network, wireless connections based on new standards
such as Bluetooth, WLAN, and UMTS will become popular. Bandwidth in
the center of the network will increase dramatically in the future, and it will
cover upcoming demands for the transmission of large amounts of data as
needed, for example, in video streaming. On the outskirts of the network,
however, available bandwidth will not increase as quickly as in the center.
People still use, and perhaps will continue to use, Internet connections via
ISDN or xDSL. Therefore, the bandwidth gap between backbone and end-
user connection will increase. Because backbone connections are frequently
renewed compared with the local bandwidths, this trend will continue in
the future.

Two major trends can already be seen entering the mainstream of interest.
Pervasive computing means that everything might become a node in a dis-
tributed system. As computers become smaller and smaller, they can be
found not only on desks but also in cars to regulate speed control, on wrists
to show the time and control pulse, and in refrigerators to monitor the
temperature.

In the future, even more devices and appliances will be equipped with
small computers, for example, your coffee machine might be able to learn

that you always have two cups of coffee at 6:30 AM and make them for you, an
intelligent light switch could recognize you coming into a room and switch
on the light the way you prefer it, or intelligent cloth might monitor your vital
functions and notify you (or your doctor) in case of any serious event. These
computer systems are characterized by limited resources, especially in regard
to memory and processing power.

Designing Innovative Distributed Systems � 5

Moreover, all these tiny computer systems will be able to communicate
to each other using spontaneous ad hoc networks: Your refrigerator will
inform your personal digital assistant (PDA) to ask for fresh groceries; your
PDA will order them in the supermarket, should you be there anyway to pick
up other items, or will contact your preferred market via a remote message
(or better, an agent that will be able to negotiate the best price and qual-
ity) should you run out of time; finally, your refrigerator will be notified that
the groceries were delivered, perhaps by the PDA of the delivery service.
Your T-shirt will set up a meeting with your physician if your heart rate and
blood pressure go through the roof too often, or it might cut the chips and
the donuts from your shopping list, even though your refrigerator wanted to
order them for you. All these transactions will have to use, at least partially,
wireless networks, and they will be characterized by small bandwidth and
low reliability. (Thus, if you are lucky, your chips will never be successfully
cut from the list, but it could also mean that your doctor appointment was
never set up!)

The second trend we want to mention here is nomadic computing, which
means that users move from place to place while working, logging into the
system from very different computer systems (e.g., first from a system in the
office over the company-wide LAN, later from home over an ISDN dial-up
connection). Nevertheless, users want to see nearly the same working envi-
ronment, the same applications, and, above all, the same data. In addition,
nomadic users demand a seamless integration of different devices, making it
possible to change the working environment from a desktop computer to a
PDA in a few seconds.

All these new trends require new network-centric programming tech-
niques that are based on a true peer-to-peer principle. The client-server
design pattern, successfully used for distributed systems in LANs, is not able
to face all the challenges of future distributed systems described previously
and is, in its basic concept, still a centralized paradigm.

As we mentioned, many technologies have the potential to solve some
of the new problems encountered, such as proxy-based concepts. However,
most of them are just variations of the centralized approach or invoke, by
definition, network centered penalties. Thus, they will, as we see it, not
be able to manage the task at hand and lack the elegance and natural fit
necessary to survive in a dynamic and fully distributed world of networked
information sources.

Because something is possible does not mean that it is appropriate for
the task at hand; we usually do not program large applications on the level

6 � Chapter 1 Designing Innovative Distributed Systems

of assembler code anymore, even though we could. Today we use object-
oriented methods and languages, because they come much closer to the
concepts and needs of our customers and our own, relatively high, level of
thinking during systems development. In a similar fashion you could look
at mobile code as a paradigm that inherently accepts distribution and net-
working as a basic concept and, thus, fits our new network-centric projects
well, giving us the chance to reach a new level of abstraction and quality.
This argument, above all technical details and discussions, is what drives
our belief in the mobile agent approach.

Mobile agents are a special type of mobile code. Mobile code is a tech-
nique in which code is transferred from the computer system that stores the
code files to the computer system that will execute the code. A well-known
example of mobile code is Java applets, which are small programs available
in a portable and interpretable byte code format. Applets are transferred
from a Web server to a Web browser in order to be executed as part of an
HTML page.

A mobile agent is a program that can migrate from a starting host to
many other hosts in a network of heterogeneous computer systems and ful-
fill a task specified by its owner. It works autonomously and communicates
with other agents and host systems. During the self-initiated migration, the
agent carries all its code and data, and in some systems it also carries some
kind of execution state.

One difference between Java applets and mobile agents is the fact that
mobile agents initiate the migration process, whereas the migration of Java
applets is initiated from other software components (e.g., the Web browser).
Another difference is that Java applets migrate only from a server to a client
and do not leave the client to migrate to another client or back to the server.
An applet’s lifetime is bound to the lifetime of the Web page it is part of
and dies when the browser terminates or another Web page is requested.
In contrast to this, mobile agents usually migrate more than once. Think
of a mobile agent that travels to several hosts to collect prices for a desired
product.

As a consequence, the software components we design will have to
be as dynamic and mobile as the end users and the networks. They will
have to be proactive and act in a very autonomous fashion, or even better
“intelligently.” The concept of software agents emerges from these demands.

Chapter2
From Client-Server to
Mobile Agents

We start our exploration of mobile agents at the origin of the notion agent,
and we compare the already widespread term of intelligent agents to our
understanding of mobile agents.When looking at the history of mobile agents
we will learn that this research topic has its roots in distributed computing
rather than in artificial intelligence.

After reading this chapter, you will have a basic understanding of the most
important technical terms and will have a general idea of the main advantages
of mobile agents compared with other, more traditional paradigms to design
distributed systems, such as client-server.

Contents

2.1 A First Look at Mobile Agents . 7

2.2 A Short History of Mobile Agents . 17

2.3 Similar but Different Concepts . 24

2.4 Why Are Mobile Agents a Good Idea? . 26

2.5 Possible Application Domains of Mobile Agents . 27

2.1 A First Look at Mobile Agents

In this section we try to converge on the idea of mobile agents from two
sides. First, we discuss software agents as a concept developed in the area
of artificial intelligence in the mid-1970s. People from artificial intelligence
disciplines define software agents as having some mandatory features, which
do not include mobility. Sometimes, it is mentioned that there might arise

8 � Chapter 2 From Client-Server to Mobile Agents

some benefits from using mobile agents in the future; otherwise it is claimed
that agent mobility is a pretty useless feature. This view can be best described
by the statement that mobile agents are a solution in search of a problem.1

Second, we try to define mobile agents from the viewpoint of software
engineering and distributed systems. We will see that mobile agents in our
understanding do not have much to do with artificial intelligence but are
to be considered another design paradigm for a special type of distributed
systems. From this viewpoint, emphasis lies on research of the consequences

of the mobility of code, and it is these consequences that we focus on in
this book.

Naturally, both research communities can benefit from each other. Some
work has already been done to add intelligent agents with mobility as
a common feature, and recently people have begun to work to make mobile
agents more intelligent, for example, to help them plan their itineraries.
Hopefully, both branches of research will join each other eventually.

2.1.1 The Artificial Intelligence Point of View

Let’s start with the notion of software agents. The word agent derives from
the Latin word for actor, meaning a person who acts on behalf of another.
In different languages the notion agent is used with different meanings. In
English-speaking countries, for example, the word agent is often used in
a more general context, whereas in German-speaking countries an agent
mostly works for the secret service. Usually, a real estate agent is employed
to aid in renting or buying a house, and a travel agent is visited to aid in
planning a vacation. In physical science, an agent can be an active sub-
stance that causes a reaction. Other sciences also use the term agent. For
example, in legal sciences an agent provocateur is a person hired to incite
suspected persons to commit some illegal action that will make them liable
for punishment.

In computer science, the term agent has been used since the mid-1970s.
It was introduced to the area of artificial intelligence. Most authors refer to a
paper written by Hewitt [1977] as origin of the term agent. According to Foner
[1997], the first reference can be traced back to Vannevar Bush and Douglas
Engelbart in the late 1950s and early 1960s.

1. Stated by John Ousterhout during an interview that is published online [IEEE IC-Online, 1997].

2.1 A First Look at Mobile Agents � 9

Nowadays, the term agent has (unfortunately) become a buzzword to
signal innovative system characteristics. For example, some electronic mail
clients are called mail agents, although they do nothing aside from the usual
task of delivering and collecting emails from your mailbox.

A software agent is a software entity that continuously performs tasks
given by a user within a particular restricted environment. The involved soft-
ware entity can be a computer program, a software component, or, in the
meaning of object-oriented programming languages, just a simple object.
However, true software agents must be seen as an extension of the more gen-
eral concept of objects or software components. Whereas software objects
are passive, agents are active.

The definition of what exactly constitutes a software agent has been
intensely debated in the research community for several years. Although this
debate continues, there is a common understanding that a software entity
must exhibit certain minimal features to qualify as an agent:

Autonomy Agents operate and behave according to a self-made plan that is
generated in accordance with the user-given task. Agents do not need
every step of this plan stipulated by their owner in advance, and they do
not ask their owner for confirmation of every step.

Social behavior Agents are able to communicate with other agents or human
beings by means of an agent communication language. Communication
can be restricted to pure exchange of information or can include sophis-
ticated protocols for negotiation, for example, when trading the price for
a good or joining an auction. A separate branch of research deals with the
problem of multiple agents working together on a single task in so-called
multi-agent systems. In this case, benevolent behavior is necessary for a
successful undertaking.

Reactivity Agents perceive their environment by some kind of sensors and
are able to react to identified events.

Proactivity Not only do agents react to stimuli from their environment, but
they are also able to take initiative and actively plan. B. Le Du explains
this with the following metaphor: “The difference between an automa-

ton and an agent is somewhat like the difference between a dog and a

butler. If you send your dog to buy a copy of the New York Times every

morning, it will come back with its mouth empty if the news stand

happens to have run out of this specific newspaper one day. In con-

trast, the butler will probably take the initiative and buy a copy of the

10 � Chapter 2 From Client-Server to Mobile Agents

Washington Post, since he knows, that sometimes you read it instead.”

[Bradshaw, 1996, p. 16]

The interested reader is referred to some books that serve as comprehen-
sive introductions to all fields of intelligent software agent research and from
which more information about these topics can be gleaned and also more
definitions for software agents found. Software Agents, edited by Bradshaw
[1996], contains a collection of papers concerning the areas of agent-
supported user interfaces, agents for learning and intelligent assistance, and
a summary of agent communication, collaboration, and mobility. Second,
Agent Technology Handbook, by Chorafas [1997] also gives an introduction
to many agent-related topics. In addition, the book contains several links
to real-world projects. It describes possible application areas for software
agents. A part of it is dedicated to application areas in business, for example,
information filtering agents. Readings in Agents, edited by Huhns and Singh
[1997], contains articles concerning a wide area of software agent topics,
especially including a chapter in which possible agent-based applications are
described. Finally, we would like to mention two books which focus on multi-
agent systems. The first is Multi-agent Systems. Introduction to Distributed

Artificial Intelligence by Jacques Ferber [1999]. It is a wonderful introduc-
tion to multi-agent systems and distributed artificial intelligence, and covers
topics like cooperation, organization, and communication between agents.
The second is Multiagent Systems: A Modern Approach to Distributed Arti-

ficial Intelligence, edited by Gerhard Weiss [2000]. This book provides a
comprehensive introduction multi-agent systems. Many important top-
ics, from distributed problem solving and searching algorithms for agents,
to learning in multi-agent systems, are covered. Good overview papers
for software agents, from the point of view of artificial intelligence, are
given by Wooldridge and Jennings [1995a,b]. Another paper that can serve
as an introduction to the wider field of software agents is the presenta-
tion of Green et al. [1997]. The authors provide a good overview of the
various areas of agent research, and they already mention the concept of
mobile agents.

We can now try to add mobility to our definitions of software agents:

Mobile software agents are computer programs that act as representatives in the global

network of computer systems. The agent knows its owner, knows his or her prefer-

ences, and learns by communicating with its owner. The user can delegate tasks to

the agent, which is able to search the network efficiently by moving to the service or

information provider. Mobile agents support nomadic users because the agent can work

2.1 A First Look at Mobile Agents � 11

asynchronously while the user is offline. Finally, the agent reports results of its work to

the user through different communication channels such as electronic mails, Web sites,

pagers, or mobile phones.

In this definition, many of the characteristics of software agents that we
described earlier can be found. A mobile agent acts on behalf of a user; it
knows its user and gets to know him or her better over time. It has social
behavior because it is able to communicate with the user, services, or even
other agents. It works proactively, because it can, for example, contact its
owner by many means of communication. The additional property of mobil-
ity can be seen as a very straightforward extension, at least from a human
point of view, as it goes well with our natural understanding of how to search
for information in a distributed environment.

2.1.2 The Distributed Systems Point of View

In contrast to the more end-user–oriented definition for mobile agents given
in the last section, in which mobility was just a nice-to-have feature, we start
here with a definition that draws more attention on the technical aspects of
agent mobility.

Mobile agents refer to self-contained and identifiable computer programs, bundled with

their code, data, and execution state, that can move within a heterogeneous network of

computer systems. They can suspend their execution on an arbitrary point and transport

themselves to another computer system. During this migration the agent is transmitted

completely, that is, as a set of code, data, and execution state. At the destination

computer system, an agent’s execution is resumed at exactly the point where it was

suspended before.

There is nothing left in this definition from the characteristics of a soft-
ware agent. We simply talk about computer programs or processes in the
meaning of operating systems that are able to freeze themselves, move to
other computer systems, and resume execution there. This more technical
definition can be seen as a complement of the user-driven definition, simply
targeting a lower level of abstraction.

In this case, mobile agents are seen from the viewpoint of software
engineering and distributed systems. They can be considered an addi-
tional design paradigm in the area of distributed programming and a useful
supplement of traditional techniques such as the client-server architecture.

12 � Chapter 2 From Client-Server to Mobile Agents

Traditional Techniques for Distributed Computing

In this section we summarize three very important design paradigms used
for the development of today’s distributed systems. In this short discussion
we restrict ourselves to approaches regarding distribution of functions in
contrast to distribution of data. In the first group of approaches, we focus on
client-server–based design paradigms as an example, where all code com-
ponents are immobile, and introduce two early approaches of paradigms
based on the idea of mobile code. We do not consider implementation and
language details in this section; we describe only the architecture of sys-
tems based on these paradigms. In this overview, we are not interested in
approaches to distribute data, as, for example, distributed database systems
or peer-to-peer file sharing.2

In particular, we use the following definitions.3 A site represents
the notion of location in a distributed system, for example, a sin-
gle computer as part of a network. A site hosts resources, which are
any kind of immovable files, databases, or any external devices. A site
also hosts and executes code, for example, by using a virtual machine

or simply a microprocessor. We assume virtual machines to be immo-
bile too,4 although moving processes is possible in distributed operating
systems. The code contains the know-how to perform a specific com-
putation. Note that a computation can be successful only if code and
necessary resources are located at the same site. Finally, we have inter-

actions between code, resources, and virtual machines on the same or on
different sites.

2. We are aware of the fact that we disregard some aspects of peer-to-peer systems when we restrict
ourselves to file-sharing approaches. The peer-to-peer network architecture is built on the idea
of having almost identical computer systems with regard to capabilities and responsibilities. This
type of architecture must obviously be seen in contrast to client-server built systems, in which
we have a clear separation of both capabilities and responsibility between client and server. In a
peer-to-peer network, each user publishes resources (e.g., files, computing power) that are going
to be shared with other users directly, without management of some central server. However,
peer-to-peer systems neither imply nor prohibit code mobility as we will describe it. Compare,
for example, Seti@home [Anderson, 2001] as a project where clients offer their computing power,
or Napster [Shirky, 2001] and Freenet [Langley, 2001] as file-sharing approaches. None of these
projects makes use of code mobility. For a comprehensive introduction into the ideas of peer-to-
peer systems, we refer to the book by Oram [2001].

3. For the following, we were inspired by Vigna [1998, p. 36] and Picco [1998, p. 38].

4. Vigna and Picco define a computational component as “active executors capable to carry out
a computation,” which are allowed to migrate to other sites, whereas in our approach virtual

machines are immobile.

2.1 A First Look at Mobile Agents � 13

In the following, we write SA for a site with name A, RM
A for a resource with

name M at SA, CN for code with name N, CN
A for code with name N at SA, and

MN
A for a virtual machine executing code CN

A at site SA.

Client-Server Paradigm

Client-server is the most common paradigm of distributed computing at
present. In this paradigm (Fig. 2.1(a)), there is code CS executed by a virtual

C

M

F

Client

(a) Client-server

(c) Code-on-demand

Request (1)

Reply (2)

C

M

Site A

Server

C R

M

Site B

Client

Code (1)

Reply (2)

C

M

Site A

Server

RCFF

M

Site B

Client
Code

request (1)

Code (2)
M

Site A

Server

R C F

Site B

(b) Remote-evaluation: Code fragment F, which is not executed
at site A, is sent to site B and executed there. Dashed lines
indicate that a component is dynamically loaded at site B

Figure 2.1 Examples for traditional design paradigms. M stands for a virtual machine,
R for a resource, C for a code component, and F for a code fragment. Lines between
components indicate interactions; numbers indicate the order. No numbers are needed
for a simple request/reply interaction.

14 � Chapter 2 From Client-Server to Mobile Agents

machine MS
B (server) offering a set of services (e.g., access to resources Rx

B)
at SB and code CC executed by virtual machine MC

A (client) that needs these
services to accomplish its task. Therefore, it sends a request to the server
using an interaction in which it asks for execution of a specific service,
supplemented by some additional parameters. MS

B executes the requested
service using resources located at SB and sends the result back to MC

A using
an additional interaction.

In this paradigm, all components are stationary with respect to exe-
cution. The request usually contains the name of the service along with
some additional parameters. This concept is comparable to a procedure
call in programming languages; therefore, several programming concepts
were developed that offer convenient use of the client-server concept in pro-
gramming languages, for example Remote Procedure Call (RPC) [Birrell and
Nelson, 1984; Nelson, 1981], CORBA [OMG, 2002], or Java Remote Method

Invocation (RMI) [Sun, 2002]. In recent years, a new technique for client-
server–based distributed computing is gaining more and more popularity,
that is,Web Services [Newcomer, 2002].Whereas CORBA or RMI-based appli-
cations are mainly developed to be executed in intranet-scale networks, Web
services target at the development of applications that are glued together
from software components widely distributed in the Internet.

Remote-Evaluation Paradigm

In the remote-evaluation paradigm the same distinction is made between
server and client as in the client-server paradigm (Fig. 2.1(b)). Thus, there
is code CS executed by virtual machine MS

B at site SB having access to local
resources and code CC executed by virtual machine MC

A at site SA. Important
resources are located at site SB. In contrast to the client-server paradigm,
virtual machine MS

B does not offer a suitable application-specific service that
the client MC

A could use. Instead, the client sends code fragment CF (which
has not been executed so far) to the server to be executed there. Virtual
machine MS

B executes this piece of code, for example, by simply initiating
a new virtual machine MF

B . During execution, local resources at site SB are
used, and afterward the result is sent back to the client using an additional
interaction.

In this paradigm the code fragment CF is mobile and sent from the client
to the server. The type of code depends on the concrete implementation
of this paradigm and might be either some kind of script language that is
transmitted as source code or some intermediate code format that can be

2.1 A First Look at Mobile Agents � 15

easily interpreted at the server. This technique is described by Stamos [1986];
similar approaches were already published earlier. Examples are described
in Section 2.2, A Short History of Mobile Agents.

Code-on-Demand Paradigm

In the code-on-demand paradigm, roles are switched compared with those of
the remote-evaluation paradigm (Fig. 2.1(c)). Here, virtual machine MC

A has
access to some resources Rx

A but lacks the know-how to access them. The code
to access the resources is currently located at SB. Thus, MC

A interacts with MS
B

by requesting the information in form of code CF . The code is executed at
SA by MF

A .
In this paradigm the code fragment F is mobile and sent from the server

to the client. Concerning the type of code, the same remarks as given in the
last section apply. Java applets are a very prominent example of this design
paradigm.

Characteristics of Mobile Agents

Recalling our definition of mobile agents and considering them as a new
design paradigm for distributed systems that supplement more traditional
techniques, we can now identify four characteristics of mobile agents:

1. Mobile agents are typically used in wide-area and heterogeneous net-
works in which no assumptions can be made concerning either the
reliability of the connected computers or the security of the network
connections.

2. The mobile agent’s migration is initiated by the agent (more pre-
cisely, its programmer), in contrast to mobile object systems, in which
object migration is initiated by the underlying operating system or
middleware.

3. Migration of mobile agents is done to access resources available only at
other servers in the network and not just for load-balancing, as in mobile
object systems.

4. Mobile agents are able to migrate more than once—this characteristic
is sometimes called multi-hop ability. After a mobile agent has visited the
first server, it might migrate further to other servers to continue its task,

16 � Chapter 2 From Client-Server to Mobile Agents

whereas mobile code is transferred only once in the remote-evaluation
paradigm and the code-on-demand paradigm.

Let’s have a closer look at this technical definition before moving on:
By the term code we mean some kind of executable representation of
computer programs. With script languages, such as Perl or TCL, this could be
the source code; with the Java programming language [Arnold et al., 2000],
it is the portable intermediate Java byte code format; and with the C pro-
gramming language, it could be the executable machine language format
for a single processor. By the term data we mean all variables of the agent (in
object-oriented languages, it is the set of all attributes of the corresponding
object). Finally, by the term state we mean information about the execution
state of the agent. We leave open what exactly comprises the execution state.
It might be quite complete information from within the underlying (virtual)
machine about call stack, register values, and instruction pointers. As we will
discuss in detail later in this book, most Java-based mobile agent toolkits do
not provide a sophisticated determination of the execution stack, because of
some limitations of the Java virtual machine.

Mobile Agents as a New Design Paradigm

In the notion we introduced in Section 2.1.2, The Distributed Systems Point
of View, we can describe the mobile agents paradigm as follows (see Fig. 2.2).
At site SA a virtual machine MT

A has the know-how in the form of code, which
is then executed. During this execution the code realizes that it needs access
to some other resources currently located at site SB. Thus, MT

A interacts with
MU

B to transmit the code, together with some information about the current

Site C

C

M

Site A

C

M

Migration
(1)

Migration
(2)

Migration (3)

Site B

M

R RC

Figure 2.2 The mobile agent paradigm. Agents are represented as small figures, like
pieces of a board game and are shown above other, stationary code components
(agencies) to indicate that they are dynamically bound to this code.

2.2 A Short History of Mobile Agents � 17

execution state. At site SB, virtual machine MU
B executes the code, providing

access to the resources located at SB. Later, the code may decide that it needs
other resources at other sites, (e.g., SC), in which case the code will migrate
to another computer again.

Mobile Agents Need an Environment

Obviously, mobile agents need some kind of environment to become “alive.”
What we have simplified as virtual machine in Figure 2.2 actually consists
not only of the interpreter for the programming language but also of the
execution environment for agents, which is called the agent server or agency.

An agency is responsible for hosting and executing agents in parallel and
provides them with an environment so that they can access services, commu-
nicate with each other, and, of course, migrate to other agencies. An agency
also controls the execution of agents and protects the underlying hardware
from unauthorized access by malicious agents.

Today, many different types of agencies exist. Many universities and also
some companies have developed their own product, and we will use the
name mobile agent toolkit in the following to describe such a product. The
most prominent examples today are Aglets by IBM and Grasshopper by IKV.
Later in this book, we introduce Tracy, which is the mobile agent toolkit that
was developed by our team at the University of Jena.

A single agency only rarely makes sense, particularly in the case of mobile
agents. In addition, even a network of several agencies is still not thrilling
unless some mobile agents are roaming the network, using services to fulfill
some task. Therefore, we will discuss at least two agencies, which then form
a mobile agent system that defines the space in which agents live.

2.2 A Short History of Mobile Agents

As we have pointed out, the mobile agent paradigm relies heavily on the idea
of mobile code. Thus, to some extent, we must consider mobile code as an
ancestor of mobile agents.

2.2.1 The Early Approaches of Mobile Code

The idea of sending code in an architecture-independent format to dif-
ferent hosts via a network was mentioned, probably for the first time, by

18 � Chapter 2 From Client-Server to Mobile Agents

Rulifson [1969]. He and his colleagues introduced the Decode-Encode-
Language (DEL), which was published as RFC 5.5 The idea was to download
an interpretative program at the beginning of a session while communi-
cating to a remote host. The downloaded program, written in DEL, could
then control the communication and efficiently use the small bandwidth
available between the user’s local host and the remote host. Later, Michael
Elie improved this concept and proposed the Network Interchange Language
(NIL) as RFC 51 in 1970.

About 10 years later, a group at Linkoping University in Sweden had
the idea to build a packet-oriented radio network they called Softnet. Each
packet sent over the network was a program written in the FORTH program-
ming language, and each network node that received a packet immediately
executed this FORTH program. Using this technique, every user was able
to instruct every network node to provide new services. More information
can be found in a paper by Zander and Forchheimer [1983]. Shoch and
Hupp did the first experiments with mobile software at Xerox, where they
wrote worms to traverse their local area network seeking idle processors
[Shoch and Hupp, 1982].

2.2.2 Remote Evaluation

Joseph R. Falcone faced the problem of providing client-specific interfaces to
remote services across a heterogeneous distributed system [Falcone, 1987].
In contrast to offering a single interface with many small functions to sat-
isfy the possibly high number of clients, Falcone wanted to enable clients
to program their specific interfaces themselves, using a well-defined new
programming language NCL (network command language). In NCL a client
sends an NCL expression to a server, which then executes this expression
using standard functions provided in form of a library. The server sends the
result (again an expression) to the client, which can start a computing process
again. Thus, what we have here is primitive mobile code in both directions.
Independently of Falcone, Stamos developed the remote-evaluation (REV)
approach, which extends the idea of remote procedure calls introduced by
Birrell and Nelson (Birrell and Nelson [1984]; Nelson [1981]). The motivation
for REV is the same as that for NCL. In REV a client sends a request to a

5. Request For Comments, see www.rfc-editor.org for more information about RFCs.

2.2 A Short History of Mobile Agents � 19

server in the form of a program. The server executes the program and sends
the result back to the client. Other examples of mobile code sent within net-
worked computer systems are remote batch job submission [Boggs, 1973],
stored procedure in SQL [Melton, 1998], and the PostScript language used to
control printers [Adobe Systems, Inc., 1999].

2.2.3 Mobile Objects

A second step toward mobile agents was the addition of a minimal kind of
autonomy to the messaging concept. We refer to this technique as mobile

objects, although nowadays the term mobile objects is often associated with
Java RMI. The idea was to create active messages, that is, messages that
are able to migrate to a remote host. A message contained data and some
program code that was executed on each server. However, the data portion
was still dominant in this concept, whereas the active portion (i.e., the code)
was more or less an add-on. As opposed to the mobile code approach, a
mobile agent typically migrates more than once in its lifetime, and migration
is initiated by the agent itself.

The MESSENGERS project [Fukuda et al., 1996] proposed the concept of
autonomous objects, which were called Messengers. Messengers are able to
migrate autonomously through a LAN of dedicated servers that accept these
objects. The difference from the techniques described previously is that a
messenger not only is transferred to a single remote server but is able to
autonomously roam a complete network. However, the concept was limited
to static LANs and did not include any notion of application-level intelligence.
A messenger’s autonomy was limited to the level of technological and system-
level needs and not targeted at solving a user’s problem.

2.2.4 Mobile Processes

A third predecessor of mobile agents are mobile processes from which
mobile agents inherited the ability to capture the actual execution state of
the processor or virtual machine they currently use. The idea was devel-
oped in the area of distributed operating systems in the late 1980s. In this
framework a process that is currently executed on a single computer sys-
tem can be moved to another system to balance the load of the distributed
system as a whole. An example of operating systems with process migra-
tion is Sprite [Douglis and Ousterhout, 1991]. One technique to implement

20 � Chapter 2 From Client-Server to Mobile Agents

process migration is checkpointing. At regular time periods an image of
an active process is captured and stored permanently. To migrate a pro-
cess to another host, the last checkpoint is transmitted and the process is
reactivated. If we compare, it has to be noted again that in mobile agents
the motivation for migration not only derives from load balancing or other
low-level technical goals but is typically driven by the demand to facilitate
the use of various available services on the network’s application layer via
the agent.

2.2.5 Mobile Agents

It was in 1994 that James E. White, affiliated with General Magic Inc. at that
time, published a white paper that initiated dedicated research on what
we call mobile agents today. This paper was later republished in a book
edited by Bradshaw [1996]. In it, White introduced the Telescript technol-
ogy, which comprises a runtime environment and a dedicated programming
language for mobile agents. This language already offered most of the very
important aspects and abstractions of all current mobile agent toolkits.
The further development of Telescript was nevertheless dropped when it
became clear that this technology would not be able to compete with Java
as the common basis for most mobile agent toolkits. For their work on
mobile agents, General Magic received a U.S. patent in 1997 [White et al.,
1997].

The next milestone in mobile agents research was the paper by Chess
et al. [1997a], which described a framework for itinerant agents as an exten-
sion of the client-server model. Itinerant agents are dispatched from a
source computer and then roam a network of servers until they have ful-
filled the user task. Along with a short discussion of the benefits of itinerant
agents, the authors describe possible application domains, the architecture
of agent meeting points, languages to develop such agents, and a discussion
of security issues. A second important paper, published at about the same
time, discussed the advantages of mobile agents against client-server–based
techniques. The paper was later published by Chess et al. [1997b], and the
authors conclude:

While none of the individual advantages of mobile agents given above is overwhelmingly

strong, we believe that the aggregate advantage of mobile agents is overwhelmingly

strong, because: . . . While alternatives to mobile agents can be advanced for each of the

2.2 A Short History of Mobile Agents � 21

individual advantages, there is no single alternative to all of the functionality supported

by a mobile agent framework. . . . [Harrison et al., 1995, p. 17]

Since General Magic’s initial project, the research community interested
in mobile agents has been steadily growing, which is related to many inter-
esting research questions, for example, in the area of security, which are a
consequence of the simple idea of moving code.

Available Mobile Agent Toolkits

Many different mobile agent toolkits have been developed since then, and
it is impossible to provide even an almost-complete list of available mobile
agent toolkits. On the World Wide Web you can find some link lists. Some
of them are confined to mobile agent toolkits; others list any kind of agent
toolkits.

■ As part of the Mole project the University of Stuttgart started to main-
tain the Mobile Agent List several years ago. The list is available at
mole.informatik.uni-stuttgart.de/mal/mal.html and contains about 70
different toolkits. However, the list was not updated for at least 3 years,
and several toolkits listed there are no longer available.

■ The AgentLink project (www.agentlink.org) maintains a list of ongoing
projects with regard to any kind of agent-related topics.

■ IEEE distributed systems online (www.dsonline.computer.org) also main-
tains a list of available agent toolkits.

In the following, we will give a very concise and inevitably incomplete
list (Table 2.1) of mobile agent toolkits. We selected those toolkits that in
our opinion have been or still are very important to the research community
and for industrial projects. Later in this book, when describing particular
concepts or techniques, we will mention several other toolkits or prototype
implementations. See Kiniry and Zimmerman [1997], and Wong et al. [1998]
for a comprehensive review of Java-based mobile agent toolkits, although
they are quite old. A comparison of object-oriented mobile agent toolkits
was done by Gschwind [2000].

One of the mobile agent toolkits developed in the last few years is
Aglets, by IBM. Aglets is perhaps the most famous mobile agent toolkit, not
least because of the book by Lange and Oshima [1998], which describes

22 � Chapter 2 From Client-Server to Mobile Agents

Table 2.1 Overview of some existing mobile agent toolkits and projects

Toolkit Organization URL

ADK Tryllian www.tryllian.com
Aglets Open Source aglets.sourceforge.net
Ajanta University of Michigan www.cs.umn.edu/Ajanta/
Concordia Mitsubishi www.merl.com/projects/concordia/
D’Agents Dartmouth College agent.cs.dartmouth.edu
Grasshopper IKV www.grasshopper.de
Mole University of Stuttgart mole.informatik.uni-stuttgart.de
Semoa Fraunhofer Society www.semoa.org
Tacoma Uni Tromso www.cs.uit.no/forskning/DOS/Tacoma/
Tracy University of Jena www.mobile-agents.org
Voyager ObjectSpace/Recursion www.recursionsw.com

programming concepts for mobile agents chiefly related to this toolkit.
The project became an open source project at Sourceforge some years
ago. The latest version of Aglets is 2.0.2 (February 2002). Voyager, another
toolkit, was originally developed by ObjectSpace, and the product was pur-
chased by Recursion Software, Inc. (USA). The latest version of Voyager
is 4.7, and it is available for free from the given URL. Unfortunately, no
white paper or any other documentation is available online. Two white
papers [ObjectSpace, 1997, 1998] are related to earlier versions of Voyager
(1.0 and 2.0). Mitsuibishi was developing a toolkit called Concordia, but the
project has been discontinued. See the given URL for more information.
The main publication about Concordia is by Koblick [1999].

Two mobile agent toolkits are real commercial products: Grasshopper
by IKV and ADK by Tryllian. The Grasshopper mobile agent toolkit was
redesigned to become part of a new IKV product, named enago; go to
www.ikv.de for more information. Information about Grasshopper can also
be found in Bäumer et al. [1999] and the IKV manuals [IKV, 2001a,b].

Systems have also been developed for university-based research.
Mole [Baumann et al., 1998; Straßer et al., 1997] was one of the first Java-
based mobile agent toolkits. The project was completed in 2000, but its
Web site is still available. Tacoma [Johansen et al., 1995] is an example of
a toolkit that supports multiple languages. D’Agents [Gray et al., 2002] is
the name of the former AgentTCL [Gray, 1997a] toolkit, which was one of
the first mobile agent toolkits. It also supports multiple languages, and the
project now focuses on the development of applications in addition to mobile
agents. Two toolkits chiefly focus on security issues: Ajanta [Karnik and
Tripathi, 2001] and Semoa [Roth and Jalali, 2001]. Finally, our research group

2.2 A Short History of Mobile Agents � 23

has developed its own agent toolkit named Tracy, which will be introduced
in Part IV, The Mobile Agent Toolkit Tracy.

All these toolkits differ widely in architecture and implementation, not to
mention features related to agent security, communication, and, of course,
mobility aspects. Some of these toolkits are tailored to a specific research
topic, for example, security, while neglecting several other basic features of a
mobile agent toolkit. Interoperability between different toolkits was and still
is a major requirement for rapid proliferation of this technology, for which
standardization is naturally a good solution.

Standardization

The first standardization approach to mobile agent toolkits was published
by Milojicic et al. in 1999. The Mobile Agent System Interoperability Facility

(MASIF), formerly known as Mobile Agent Facility (MAF), was backed by
companies and research departments that were active in mobile agent
research in the early years (e.g., IBM, GeneralMagic, and GMD Fokus) and
was published as an OMG standard in 1998. MASIF bases on CORBA as sys-
tem infrastructure. Several agent toolkits are available that are, or at least
claim they are, MASIF compliant. The two most famous ones are Aglets and
Grasshopper.

MASIF is actually a set of definitions and interfaces for interoperable
mobile agent toolkits. It consists of an interface for agent transfer and
management (MAFAgentSystem) and one interface for locating and nam-
ing mobile agents (MAFFinder). The standard defines how to understand
notions such as agent, agent system, places, regions,6 and several other
basic concepts and notions. MASIF does not define anything related to
agent communication, because this issue is extensively addressed by CORBA.
To handle security issues of mobile agents, MASIF also relies on CORBA
principles. It cannot be said that MASIF failed, but only few toolkits were
developed to comply with this standard. One of the reasons for this might
be the tight relationship with CORBA.

Another standardization approach in agent technology is FIPA
(www.fipa.org), which chiefly focuses on issues related to the interop-
erability of agents and, therefore, defines issues on agent communica-
tion, including agent communication languages (ACL), message transport

6. Some of these notions are used differently in this book.

24 � Chapter 2 From Client-Server to Mobile Agents

protocols, and ontologies, but does not consider agent mobility. The basic
FIPA specification for an abstract architecture (FIPA 00001) for an agent
system explicitly omits agent mobility.

In 2000 a new set of FIPA specifications, which included FIPA 00087 for
agent mobility, was released. In the appendix of the specification some
issues are discussed related to the problem of integrating MASIF and FIPA.
However, the current status of this specification is deprecated (May 2002).
Refer to Ametller et al. [2003] for more information about the FIPA standard
and agent mobility issues.

2.3 Similar but Different Concepts

2.3.1 Internet Agents, Worms, and Spiders

Internet agents, also called worms, robots, spiders, or crawlers, are computer
programs used by search engines, such as www.google.com, to search the
Web and catalogWeb pages.When starting the search engine, the user usually
defines some keywords and the search engine answers with a more or less
useful list of Web pages that contain the given words. We do not want to
discuss whether this kind of software is worthy of being called a software
agent; we only want to assess whether it is a mobile agent.

Let’s look at the actual techniques used by common search engines.
A Web robot is a program that works on the computer system of the search
engine provider. A robot continuously loads Web pages, parses them into
words, and stores the result in a very huge database. From each Web page,
all hyperlinks are traversed to get new Web pages to archive. When a user
wants to search for Web pages, this database is queried with very sophisti-
cated techniques to find the relevant Web pages, that is, the Web pages with
the highest information value for the user.

Internet agents are, obviously, not mobile agents according to our defi-
nition. They are hardly agents at all. Even if accepted as agents, they would
still lack the aspect of mobility, because they work only from the computer
system they were started on and never migrate to another platform.

2.3.2 Java Applets

Java applets are Java programs bound to a Web page that is written in
HTML. When a user views such a Web page with Web browser software that
has a Java plugin installed, the applet is downloaded from the Web server

2.3 Similar but Different Concepts � 25

automatically and executed on the client’s computer system. Java applets
extend the functionality of a common Web browser by offering restricted
access to the capabilities of the Java programming language, such as graphical
user interfaces, complex business logic, and network access.

In this scenario a well-known mobile code technique is used: code on

demand. The code of an applet usually consists of a set of single classes that
are loaded dynamically on demand; that is, each class is transmitted only if
it is really needed on the client’s computer system. Since Java 2, several Java
byte code classes can be bundled and archived in a so-called Java ARchive

(JAR) file that is transmitted completely if at least one class from this archive
is needed.

Java applets are not mobile agents, because they are not agents at all
and have only limited mobility. Applets are not used as a representative of
the user that executes some tasks in an autonomous fashion. As mentioned
previously, they simply extend your browser’s capabilities and work with an
application on demand. Applets have limited mobility, because they migrate
only once from a server to a client computer system. The migration is not
initiated by the applet itself, but by the user (browser) who loaded the corre-
sponding Web page. Applets cannot migrate several times but rather stay on
the client computer system until another Web page is loaded or the browser
software is terminated. No data is sent along with the applet, only code.
Therefore, an applet has no state and is incomplete as an agent. (Although
it is possible to send a serialized object as initial starting value for an applet,
this is rarely used in practice.)

2.3.3 Java Servlets

Finally, a technology we have mentioned before, but that has no relation to
mobile agents at all, are Java servlets. Servlets, and Java server pages as a
special form of servlets, are a very popular means to design and program
dynamic Web applications.

Java servlets are programs that are executed as part of a Web server or
an application container. They form an intermediate layer between the Web
browser or other HTTP clients and databases or other types of applications
running as part of a Web application. Servlets accept user requests using a
CGI interface and produce HTML pages as their result, which are sent back
to the Web client.

Java servlets are not mobile agents at all. They are normal Java programs
that are executed as part of an application container, and they are immobile.

26 � Chapter 2 From Client-Server to Mobile Agents

However, Java servlets could employ mobile agents transparently to the user
to complete a task.

2.4 Why Are Mobile Agents a Good Idea?

Now we want to describe some major advantages of mobile agents and try
to explain why they will meet the demands of future distributed systems.

Although mobile agents provide a new and interesting approach to
distributed systems, there must be clear arguments in favor of mobile
agents before they are substituted for more traditional techniques. However,
although we believe that mobile agents are the most promising technology
to solve most of the problems of the networked future, it should be said that
we also believe that mobile agents will supplement many older techniques
rather than replace them.

We present four major technical advantages in detail. It is this set of
basic technical advantages that opens the chance for improved and typical
applications.

1. Delegation of tasks. Because mobile agents are simply a more specific
type of software agent, a user can employ a mobile agent as a represen-
tative to which the user may delegate tasks. Instead of using computer
systems as interactive tools that are able to work only under direct con-
trol by a user, autonomous software agents aim at taking care of entire
tasks and working without permanent contact and control. As a result,
the user can devote time and attention to other, more important things.
Thus, mobile software agents are a good means to cope with the steady
information overload we experience.

2. Asynchronous processing. Once mobile agents have been initialized and
set up for a specific task, they physically leave their owner’s computer sys-
tem and from then on roam freely through the Internet. Only for this first
migration must a network connection be established. This feature makes
mobile agents suitable for nomadic computing, meaning mobile users
can start their agents from mobile devices that offer only limited band-
width and volatile network links. Because the agent is less dependent on
the network, it will be more stable than client-server–based applications.

3. Adaptable service interfaces. Current techniques in distributed sys-
tems that offer application service interfaces, usually as a collection of

2.5 Possible Application Domains of Mobile Agents � 27

functions, constitute only the least common denominator of all possible
clients. As a consequence, most of the interface functions are more or
less primitive, and clients will probably have to use a workflow connect-
ing these functions in order to execute a complex, user-driven operation.
If the communication overhead for exchanging messages between client
and server is high compared with the execution time of each function,
it would make sense to offer aggregated and more advanced functions
as combinations of the primitive ones. However, because it is difficult
to track down every possible scenario in advance or even during runtime,
these functions are usually not offered by the server’s multi-purpose inter-
face. Mobile agents can help in this situation by offering a chance to design
a client-driven interface that is optimized for the client (user) but that is
adaptable to different server interfaces. The key is to use a mobile agent to
translate the more complex and user-driven functions of the client inter-
face into the fitting primitive functions offered at the server node. The
mobile agent will simulate a constant and highly specialized interface for
the client (user) while talking to each server in its own language, which
will allow servers to become simpler and more generalized.

4. Code-shipping versus data-shipping. This is the probably most cited
advantage of mobile agents, and it stands in close relationship to
adaptable service interfaces. Service interfaces frequently offer only prim-
itive functions to access databases. A single call can therefore result in a
huge amount of data being sent back to the client because of the lack
of precision in the request. Instead of transferring data to the client,
where it will be processed, filtered, and probably cause a new request
(data-shipping), this code can be transferred to the location of the data
(code-shipping) by means of mobile agents. In the latter case, only the
relevant data (i.e., the results after processing and filtering) is sent back
to the client, which reduces network traffic and saves time if the code for
filtering is smaller than the data that must be processed. This advantage
has been scrutinized in the last 5 years by many different research groups
for different application domains, and it has generally been verified.

2.5 Possible Application Domains of Mobile Agents

Recently many research groups and companies have participated in the
advancement of mobile agent systems. However, because the technology

28 � Chapter 2 From Client-Server to Mobile Agents

is new and radical in its concepts, some type of proof is needed that would
show that mobile agents, as a technology, are indispensable. (That this was
never done for other technologies that are now widely used seems to be of no
interest to those asking for the ultimate killer application.)

It is accepted today that mobile agents will not make any applications
possible that would not have been possible, using other, more traditional
techniques. However, that can be said of other technologies, for example,
high-level programming languages: We could still develop all our systems
by sticking to plain object code, even though nobody doubts that it was
a good idea to develop higher-level languages and introduce design and
requirement phases into the software life cycle.

Thus, when we talk about a new technology today, in most cases we talk
about improved quality and management of complexity, the efficient use of
resources in projects, and the adequacy of concepts and tools. The point is
not that something new is possible, but that there are new methods of achiev-
ing what is already possible, which may, in turn, lead to new possibilities. For
instance, it might be possible to build something similar to the Empire State
Building without using cranes, steel, and concrete, but who would want to
build it?

We argue that mobile agent systems provide a single framework and a very
convenient abstraction—the mobile agent—to build distributed applications
more efficiently. See Johansen [1998] for experiences from several mobile
agent–based applications. The point is not to look at one specific application
but rather to look at the whole set of possible applications and to understand
that this new technology will enable a new level of networked software by
delivering a sound basis to understand, handle, and implement them, despite
their complexity and risks.

Nevertheless, it is possible to identify some application domains where
mobile agents have already proved to be highly valuable and that seem to
“ask for” that type of technology.

Electronic commerce, be it business-to-business or business-to-customer,
suffers from the fact that it simply translates real-world business into elec-
tronic processes and data. Neither the advantages of the Web nor the
capabilities of software-driven systems are fully utilized. To achieve that, a
much higher degree of support for automation and a much better coverage
of information sources must be offered. The customer simply wants to state
what he or she wants and does not want to direct a system manually to actu-
ally implement how this is done. Interfaces need to be unified, but a general
standardization has proved to be nearly impossible. Huge amounts of data

2.5 Possible Application Domains of Mobile Agents � 29

are shipped, often very slowly, and then thrown away after the most primitive
evaluation. In all of these cases, mobile agents can help; they offer delegation
and asynchronous task execution, are able to simulate unified interfaces to
widely differing sources, and, last but not least, actually were born out of the
need to send the evaluation process to the data.

Especially important in this context is that electronic commerce today
means, in many cases, that more than a single shopping platform is
involved and that we look at a distributed workflow with transaction quali-
ties that involves physically separated data stores. Although we need better
certification authorities and repudiation techniques, no doubt, the techno-
logical challenge will be to interact with a number of distributed sites and
to integrate a set of possibly incomplete results into a coherent solution.
Only mobile agents, with their inherent capability for traveling the network
and their fully distributed paradigm, provide a conceptually sound basis for
this application domain. They do shopping as we like to do it, by visiting
the stores, comparing the different offers, and, finally, finishing the acqui-
sition. This also includes the capability to spot a new store and to include
it into the acquisition process. Mobility is the key issue. Any centralized
approach has to face additional technical challenges, (e.g., increased net-
work load and latency, as well as many unnecessary downloads) and cannot
deal with the characteristics of the domain that are distributed and dynamic
in nature.

Information retrieval is another popular application domain for mobile
agents. Instead of moving large amounts of data to a single point where it is
searched, information retrieval moves the data-searching code to the data.
Thati et al. [2001] describe a new type of search engine, in which Web pages
are analyzed locally by a mobile agent that was sent to the Web server. The
agent only sends back a summary of the Web pages, and therefore might
reduce network traffic considerably. Other nice examples are search engines
for graphic files [Roth, 1999] and music files [Kravtsova and Meyer, 2002],
which are data warehouses that will charge for the downloaded data, not
the information extracted. These systems also suffer from the problem of
the overly simplified and nonstandardized interface for multiple clients, as
previously discussed. Again, mobile agents will be able to unify that interface
from the client’s perspective and offer a higher and well-adapted level of
functionality.

Another typical application for mobile agents in the domain of infor-
mation retrieval is multiple distributed sources. If the relevant information
sources cannot be centralized, either because of technical reasons (e.g., in

30 � Chapter 2 From Client-Server to Mobile Agents

a network of fast updating sensors) or because of business-driven necessi-
ties (e.g., if the information at each node is proprietary and the owner does
not agree to a centralized solution), mobile agents offer the only chance to
develop a flexible solution that accepts the distributed nature of the given
environment and offers a solution that is as distributed and scalable as the
problem itself.

The real-time aspect of this concept is of major importance, because a
mobile agent that resides locally at the sensor’s platform does not have to
deal with any network latency. It can react on behalf of its owner within
given time limits, thus offering the chance to remove itself from any network
problems. In addition, each agent has the capability to filter sensor data
and to prepare it for use at different customer sites with different needs.
This is of major importance if very large amounts of data are to be managed
and a transmission of the full dataset to all recepients is economically or
technologically impossible. See Umezawa et al. [2002] for a description of a
framework for self-configurable sensor networks.

Finally, we briefly mention some specific application areas where the
concept of mobile agents has already been used. Sudmann and Johansen
[2002] describe how mobile agents can be used for software deployment and
updates in a distributed environment. Several research groups have focused
on the applicability of mobile agents for network management tasks. As an
introduction to this topic, see Rubinstein et al. [2002, 2003] who describe a
network management system based on mobile agents. The authors compare
the mobile agent paradigm with client-server–based approaches for typical
management tasks, with regard to performance and network load.

Summary

In this chapter, we have introduced the term mobile agent from the appli-
cation point of view, without going too much into technical details. We have
stressed that mobile agents should be seen from the viewpoint of software
engineering and distributed computing rather than from the viewpoint of
artificial intelligence.

You might raise objections to the notion agent, for, as we have seen,
mobile agents do not have much in common with intelligent agents. In fact,
some people from the mobile agent research community mentioned this
problem recently [Gray, 2004]. We would like to add that even the adjec-
tive mobile might be misleading here, because it is now used to describe

Summary � 31

objects that can be carried away or have been made for nomadic users.
Compare, for example, mobile phones and mobile Web services. The latter
describes a special type of Web services that can be accessed by users over
their mobile devices. It may be that other names, for example, migrating

software component or migrating software entity, might be better.
Nevertheless, you should now have some understanding of the term

mobile agent and also some high-level understanding of the migration
process. The next chapter is solely dedicated to a technical description of
agent migration. Other concepts that are very important for the rest of this
book are:

agency — a software that is responsible to execute mobile agents

agent toolkit — a specific project or product, for example, Aglets, Grasshopper,
or Tracy

agent system — all agents and agencies that work together in a specific
application

One of the most important advantages of mobile agents is their ability
to save network bandwidth as compared with the client-server paradigm.
The general idea is to move code close to a large database instead of
transferring lots of data to a client. This advantage is often called code-

shipping versus data-shipping. In the next chapter, we will come back to
this advantage and examine it from a more theoretical point of view.

THIS PAGE INTENTIONALLY LEFT BLANK

PartII
Mobile Agents—
Concepts, Functions,
and Possible
Problems

THIS PAGE INTENTIONALLY LEFT BLANK

Chapter3
Mobile Agent Migration

After looking at mobile agents from the application point of view, we now
focus on the migration process. Earlier we explained agent migration sim-
ply as the process of transferring a mobile agent from one computer system
to another. In this chapter we go into technical detail on this issue.

First, we develop a generic framework to describe the migration process
as it is implemented in almost all mobile agent toolkits today. Along the
way, we introduce the main concepts of the Java programming language
that are important in implementing the migration process and come back
to the main advantage of mobile agents: saving network bandwidth by mov-
ing the code close to the data. We develop a mathematical model to compare
network load for mobile agents and client-server based systems in a very
general case. We will see that the concept of mobile agents has some very
useful advantages but also some inherent drawbacks, at least in the way the
migration process is implemented in current agent toolkits. Finally, we dis-
cuss possibilities for optimization of the migration process for mobile agents
and propose a new mobility model named Kalong.

Contents

3.1 The Mobile Agent Migration Process . 36
3.2 Effective Migration as a Core Feature of Mobile Agent Toolkits 51
3.3 Design Issues of Agent Migration . 74
3.4 Reasoning about Improved Mobility Models . 98

36 � Chapter 3 Mobile Agent Migration

3.1 The Mobile Agent Migration Process

3.1.1 Generic Framework for Agent Migration

The process of agent migration, although implemented differently in
each mobile agent toolkit, can be described using a general framework.
Introducing this framework also helps us define some terms, which we use
throughout this book.

Basic Terminology

A mobile agent is a software program that is, in most systems, executed
as part of a so-called mobile agent server software. This server software
controls the execution of agents and provides some basic functionality for
agent communication, agent control, security, and migration.1 In this book
we will call this mobile agent server an agency. On each computer system
that wants to host mobile agents, an agency of the same type must be
installed.2 All agencies that are able to exchange mobile agents form a logi-
cal network that we call a mobile agent system. To refer to a specific project
or product, for example Aglets [Lange and Oshima, 1998] or Grasshopper
[Bäumer et al., 1999], we use the notion agent toolkit. Each computer sys-
tem can host several agencies in parallel, and each agency is reachable by
at least one URL to which migration is directed. The URL also serves as a
name of the agency. For the moment we are not concerned with how the
agency is structured. (Some mobile agent toolkits subdivide a single agency
into several places. If the places are closed, agents in different places cannot
know, see, or communicate with each other.)

When an agent is created on an agency, that agency becomes the agent’s
home agency. The user who starts the agent is called the agent’s owner, and
the owner also defines the agent’s name. The owner information is important

1. Of course, it is possible to build a system of (mobile) agents by just letting an agent be a process.
Processes can communicate with each other by primitives offered by the operating system, and
even migration can be achieved with special distributed operating systems or can be provided as
the only service of the underlying mobile agent server software. Tacoma [Johansen et al., 1995] is
an example for such a system.

2. Recently, some research groups started to develop methods to make mobile agents interoperable
so that two different agencies will be able to exchange agents. See, for example, Pinsdorf and Roth
[2002] and Grimstrup et al. [2000] for more information.

3.1 The Mobile Agent Migration Process � 37

in telling foreign agencies how trustworthy the agent is. The agent’s name is
necessary to identify an agent unequivocally on all agencies of the mobile
agent system. All this information about an agent’s home agency, owner, and
name becomes attributes of the agent. Usually, an agent returns to its home
agency after it has fulfilled its task. The other important agency is the one
that holds the agent’s code; we call this one a code server. Usually, the home
agency is the code server, but this is not always the case.

Agencies are typically multi-agent systems; that is, a single agency can
host many agents in parallel. To provide quasiparallel execution, some kind
of scheduling is offered. In most systems this process of scheduling is not
programmed within the server software, but is delegated to the programming
language and the operating system. For example, it is common for each
agent to own a thread. During execution, the agent might be allowed to start
new child threads.

The Structure of Mobile Agents

Mobile agents consist of three components: code, data, and execution state.
The code contains the logic of the agent, and all agents of the same type use
the same code.3 The code must be separated from the code of the agency
so that it can be transferred alone to another agency, and the code must be
identifiable and readable for an agency (e.g., in the form of a file from the
local file system or a byte stream from the network). Usually, as in other
programs, an agent’s code consists of more than one file (e.g., in the Java
programming language they could be many class files).

The second component of an agent is data. This term corresponds to
the values of the agent’s instance variables if we assume an agent to be an
instance of a class in object-oriented languages. The data is sometimes also
called the object state. It is important to note that not all data items an agent
can access are part of its object state. Some variables reference objects that
are shared with other agents or the agency software itself, for example, file
handlers, threads, the graphical user interface, or other resources and devices
that cannot be moved to other servers. Thus, we have to restrict the agent’s
immediate data to those data items the agent owns and that are movable.

3. Here, we have a rather pragmatic and narrow notion of type for agents: Two agents are of the
same type if they use the same code. More programming language–like definitions would refer
to the interface or the communication protocol the agent offers; see Zapf and Geihs [2000] for
a detailed discussion on other approaches for defining the notion of a type for agents.

38 � Chapter 3 Mobile Agent Migration

Problems arising from nonmovable resources are discussed in Section 3.3,
Design Issues of Agent Migration.

The third component is the execution state. The difference between object
and execution state information is that the elements of the object state
are directly controlled by the agent itself, whereas execution state informa-
tion is usually controlled by the processor and the operating system. What
this means depends very much on the decision of the mobile agent toolkit
designer and the underlying execution environment (processor, operating
system, virtual machine), as we will see in Section 3.3, Design Issues of
Agent Migration. In some toolkits, an agent’s execution state is comprised
of the current value of the instruction pointer and the stack of the underly-
ing processor. In others it is not possible to determine the execution state
of an agent at all. In most Java-based toolkits, for example, the agent itself
is responsible for copying information about its current execution state on
the level of the programming language into the object state and restoring it
after successful migration.

The Migration Framework

The typical behavior of a mobile agent is to migrate from one agency to
another. During the process of migration, the current agency (i.e., the one the
agent currently resides on) is called the sender agency and the other agency
(to which the agent wants to migrate) is called the receiver agency. During the
migration process the sender and the receiver must communicate over the
network and exchange data about the agent that wants to migrate. Thus, we
can say that some kind of communication protocol is driven, and we call this
the migration protocol. Some systems simplify this task to an asynchronous
communication, comparable to sending an email, whereas other systems
develop rather complicated network protocols in addition to TCP/IP.

The whole migration process contains six steps, which are executed in
sequence, except for S3 and R1, which are executed in parallel (Fig. 3.1).

The first three steps (S1–S3) are executed on the sender agency:

S1 Initialize the migration process and suspend the thread. The process of
migration typically starts with a special command, the migration com-

mand, by which the agent announces its intention to migrate to another
agency, whose name is given as parameter of the migration command.
The first task for the agency is now to suspend the execution thread

3.1 The Mobile Agent Migration Process � 39

Receive the agent

Deserialize the agent

Start agent execution

Transfer the agent

Capture data and state

Initialize migration process

Network

Sender Receiver

Figure 3.1 The mobile agent migration process.

of the agent and to guarantee that no other child thread is still alive.
This requirement is important for the next step, for which it is imperative
that data and state be frozen and unable to be modified later on.

S2 Capture the agent’s data and execution state. The current state of all vari-
ables (the data) of the agent is serialized; that is, their current values are
written to an external persistent representation, for example, a memory
block or a file. The agent’s state is also stored there so that the point of
suspension is known. The result of the serialization process is the seri-

alized agent, which is a flat byte stream that consists of the agent’s data
and state information.

S3 Transfer the agent. The serialized agent is transferred to the receiver
agency using a migration protocol. Whether any code is sent to the
receiver agency depends on different parameters and will be discussed
later.

The last three steps (R1–R3) are executed on the receiver agency.

R1 Receive the agent. The serialized agent is received using the migration
protocol. The receiver agency checks whether the agent can be accepted
based on information about the agent’s owner and the sender agency.

40 � Chapter 3 Mobile Agent Migration

The receiver agency may filter out agents that come from agencies that
are unknown or not trusted.

R2 Deserialize the agent. The serialized agent is deserialized; that is, the
variables and execution state are restored from the serialized agent. The
result of this step should be an exact copy of the agent that existed on
the sender agency just before reaching the migration command.

R3 Start agent execution in a new thread. The receiver agency resumes agent
execution by starting a new thread of control. When resuming execu-
tion, the agent’s code is needed. In this general framework we make no
assumptions about how the code is transferred to the receiver agency. One
possible technique is for the receiver agency to load the code from the
agent’s home agency or its code server. We will discuss those techniques
in Section 3.3.

In the next section we look at an implementation of a migration process.
As an example we chose our Tracy mobile agent toolkit, which is imple-
mented in the Java programming language.

3.1.2 Migration in the Tracy Mobile Agent Toolkit

In this section we describe the migration process of an existing mobile agent
toolkit, which was developed using the Java programming language. We
will follow the generic framework introduced in the last section and explain
the advantages of Java for programming mobile agent toolkits and mobile
agents. We chose the Tracy toolkit as an example here not only because Tracy
is the result of our own research but also because the complexity of the Tracy
migration process lies between a simple one (e.g., that used in Semoa [Roth
and Jalali, 2001]) and a difficult one (e.g., that used in Aglets [Lange and
Oshima, 1998]). A detailed introduction into the Tracy mobile agent toolkit
can be found in Chapter 9.

Programming Languages for Mobile Agents

The Java programming language [Arnold and Gosling, 2000] has become the
de facto standard programming language for mobile agents because of its
many features that lessen the effort in building mobile agent toolkits. As
already described in Chapter 2, any programming language can be used for

3.1 The Mobile Agent Migration Process � 41

implementing mobile agents. In most systems there is a restriction that the
same programming language must be used for mobile agents as was used for
the underlying agency. Only few toolkits, (e.g., Tacoma and D’Agents) allow
agents on the same agency to be implemented using different programming
languages. The first mobile agent toolkits had mobile agents implemented
in interpreted languages (e.g., Telescript [White, 1996]) or script language
(e.g., TCL [Gray et al., 1997] or Perl [Wall et al., 2000]). For some time, the
question of which languages are suitable for mobile agents was the topic
of intensive research in the community. For a detailed discussion about
the language requirements for mobile agents, see the dissertation thesis of
Knabe [1995] and the papers by Cugola et al. [1997a,b], Knabe [1997a], and
Thorn [1997].

Almost all toolkits developed in the last 5 years use the Java program-
ming language for the mobile agent toolkit as well as for mobile agents. Even
both projects mentioned previously that do not solely support Java cannot be
called opponents of this language, because one of the main research issues
in these projects is multi-language support, and both actually do support
Java.

The advantage of Java comes from several built-in features that lessen the
effort involved in building mobile agent toolkits. In this section we espe-
cially focus on features that support the migration process, for example,
object serialization, dynamic class loading, and reflection, which we will
introduce briefly when describing the migration process. We will also
briefly mention foundations of the security architecture of Java. Despite
these advantages, some aspects of Java are also imperfect with regard to
the requirements of mobile agent systems; we also briefly discuss these
drawbacks.

Foundations of Java

Java is an object-oriented language developed by Sun, Inc. Although the
original project goal was simply to develop a new programming language
(Oak) for a new kind of remote control device with LC display and touch-
screen (named “*7”), since 1995 Java has become the Internet language.
For some time, the most famous application domains for Java were applets
that were shipped from a Web server to a Web browser. Today, as a
result of major performance improvements, Java has become a widely
used programming language for server-based applications, too.

42 � Chapter 3 Mobile Agent Migration

The most important feature that made Java an Internet programming
language was its portability. Java programs are compiled into a architecture-
independent byte-code format [Lindholm andYellin, 1999], which is executed
using a Java virtual machine. Because virtual machines exist for almost
all current hardware platforms and operating systems, Java programs have
the enormous advantage of being executable on almost all existing com-
puter systems. Portability is a very important requirement for mobile agent
systems, because mobile agents must be able to migrate in a network of
heterogeneous computer systems.

The byte code is executed by the virtual machine, which completely
protects the underlying operating system from direct access by Java pro-
grams. This simplifies security control, because an intermediate code format
allows easier code inspections for security violations than compiled native
code does. As is true for all interpreted languages, Java has a lower execution
performance than compiled code. However, very sophisticated techniques
were developed for Java to translate intermediate code into optimized native
code during execution (just-in-time compilation and hot-spot optimization).

The language itself supports development of safe applications, because,
in contrast to C, for example, Java has a pointer model that does not support
pointer arithmetic and illegal type casting. The byte code verifier, a compo-
nent of the virtual machine, filters out code that violates basic semantics of
Java before execution. Even during runtime, a security manager controls all
potentially unsafe operations, such as file access, network connections, or
access to the graphical user interface. It is dynamically determined whether
the given program is permitted to perform these operations.

Java comes with many libraries (e.g., for data structures, network pro-
gramming, graphical user interfaces). Network programming is supported
using sockets as well as using remote method invocation (RMI), which is the
object-oriented version of the remote procedure call concept. Java RMI is so
powerful that implementing a very simple mobile agent toolkit can be done
in less than 100 lines of code (see Avvenuti and Vecchio [2000]).

Unfortunately, Java also has some drawbacks with regard to mobile agent
toolkits. The main disadvantage is, perhaps, the fact that it is impossible
to obtain the current execution state of a thread in the form of the cur-
rent instruction pointer and calling stack, making it practically impossible
to preserve and later resume execution of a mobile agent in detail. Therefore,
Java-based mobile agents can offer only a weak form of mobility, in which
the agent is restarted at the receiver agency by invoking a method instead
of jumping into it and resuming execution at the first statement after the
go was invoked. Another drawback is the lack of resource control (e.g., for

3.1 The Mobile Agent Migration Process � 43

memory or processor cycles). Therefore, it is not possible to avoid denial-
of-service attacks, which is a specific type of security attack in which the
attacker tries to consume so many resources that the system is no longer
able to handle incoming requests.

Representing Agents in Tracy

In Tracy an agent is an object of a specific class, named Agent, which is the
main class within the TracyAPI.4 It is an abstract class that serves as a base
for all agents and may not be instantiated by the programmer. Class Agent
defines methods to control an agent’s life cycle, get and set internal data
structures, and receive messages. Some of these methods are useful for the
programmer (e.g., methods to inform him or her about the current agency),
whereas some methods are useful only for an agency to control the agent.
Class Agent also defines some methods that are supposed to be overridden
by subclasses.

To define an agent in Tracy, package de.fsuj.tracy.agent must be
imported, which includes all basic definitions.

1 import de.fsuj.tracy.agent.*;
2
3 public class MyFirstTracyAgent extends Agent
4 {
5 SomeOtherClass other = new SomeOtherClass();
6
7 public MyFirstTracyAgent()
8 {
9 // do some initialization
10 }
11
12 public void startAgent()
13 {
14 // do something
15 }
16 }

4. We introduce here the high-level programming interface of Tracy, which provides a basic class
Agent, that already defines some convenient methods, for example, to initiate a migration pro-
cess or to communicate with other agents. On a lower level, an agent is just an object that
implements interfaces Runnable and Serializable and starts a migration process by using
a specific service provided by the hosting agency. See Section 10.1.2, How to Use Services, for
more information.

44 � Chapter 3 Mobile Agent Migration

Method startAgent is defined abstract in class Agent. This method is
the entry point that is called at the agent’s home agency to start the agent;
therefore, every user-defined agent must implement this method.

Usually, an agent consists of more than one class. In the preceding
example, we see that this agent has a variable named other of type
SomeOtherClass.

Starting the Migration Process and Resuming Execution

In the following we explain the migration process as implemented in Tracy
according to the framework introduced in the last section. We do not fol-
low the sequence introduced in the framework, but combine tasks that
belong together, for example, S1 and R3, and so on. We do not introduce
the network transmission task here. Tracy uses its own migration protocol,
called SATP, which is an asynchronous network protocol that is based on the
TCP/IP protocol. We introduce this protocol in Chapter 6.

Now we will show how a mobile agent can start a migration to a receiver
agency and how execution is resumed at the receiver agency. Actually, a
mobile agent can be moved in two ways. The first way is to use the go

command to initiate migration with a default migration behavior to a sin-
gle remote agency; the other way is to use so-called migration properties
to configure the migration process in detail, for example, to define a com-
plete itinerary. Then the next go command automatically chooses the next
destination in the given itinerary. In this section we concentrate only on the
standard migration technique. See Chapter 10 for an explanation of how to
use migration properties.

An agent migration is initiated by calling a method named go, with the
name of the receiver agency as the first parameter and the name of the
method to invoke after migration as the second parameter. Method go is
defined in class Agent and cannot be overridden (defined final there).

final protected void go(String destination, String methodName)

Migrates an agent to the receiver agency destination and restarts it by invoking method

methodName.

The name of the receiver agency is just a String, where the protocol should
be tcp and the host name is the name of the receiver agency. Usually a
port number is also required so that, for example, a complete destination
address is tcp://tatjana.cs.uni-jena.de:4040. Calling method go

3.1 The Mobile Agent Migration Process � 45

stops agent execution immediately and statements following the go, invoca-
tion will never be executed, neither in the case of a successful migration
nor in the case of a migration error. A go command might be included
in a try ... catch clause. In this case, neither the Tracy-defined run-
time exception AgentExecutionException nor any super classes of this
exception must be caught. If they are caught, the go method will have no
effect.

1 try

2 {
3 // some code that might throw an IOException
4
5 System.out.println("Running on server \"tatjana.cs.uni-jena.de\"");
6 go("tcp://domino.cs.uni-jena.de:4040", "runAtRemote");
7
8 // statements below will never be executed
9 System.out.println("This message will never be seen.");

10 }
11 catch(IOException e)
12 {
13 System.err.println(e.getMessage());
14 e.printStackTrace();
15 }

There are two other methods that are shortcuts for the previously mentioned
go method:

final protected void go_home(String methodName)

Migrates an agent to its home agency and restarts it by invoking the method with name

methodName.

final protected void go_back(String methodName)

Migrates an agent to the agency it came from and restarts it by invoking the method

with name methodName.

If migration is not successful (e.g., because the receiver agency does not
accept agents from the current agency, or both agencies use different ver-
sions of the migration protocol), the agent must be reactivated at the current
agency. In that case, method migrationFailed is called, which is defined
empty in class Agent.

protected void migrationFailed()

Is called in case of any migration error.

46 � Chapter 3 Mobile Agent Migration

The default behavior of this method is to do nothing, which lets the agent
wait for new messages to become active again. Usually, this method will be
overridden and could try to migrate again.

Agent execution at the receiver agency is resumed using the Java reflec-

tion technique. After the agent was deserialized and the agent’s main class is
at the receiver agency (so that the agent object can be successfully instanti-
ated), agent execution is resumed. In Tracy, the agent is resumed by starting a
method whose name was given as the second parameter in the go statement.
The name of this method was transmitted as part of the state of the agent.

Java reflection is a powerful technique to determine information about
classes, their variables, and methods during runtime. In addition, it is pos-
sible to invoke a method of an arbitrary object only by having its name in a
String variable. In the following example, we show an extract from the Tracy
source code in which a method with namemethodName is invoked for a given
mobile agent object.

1 import java.lang.reflect.Method;
2
3 protected void startAgent(Agent mobileAgent,
4 String methodName) throws Exception
5 {
6 Class agentClass = mobileAgent.getClass();
7 Method method = agentClass.getMethod(methodName, new Class[0]);
8 method.invoke(mobileAgent, new Object[0]);
9 }

In line 6 we first determine the class name of the given mobile agent object,
then ask this class for a method of name methodName. The second param-
eter of method getMethod contains an array of types that the wanted
method must accept as parameters. An empty array, as in the example, indi-
cates that the method should accept no parameters. If the agent’s class has
such a method, it is stored in variable method. If not, an exception is thrown.
In line 8 this method is invoked with the mobile agent as a parameter and
an empty array of objects, which means that this method has no parameters
at all. Method startAgent is called within a new thread, which is assigned
to the agent.

Object Serialization and Deserialization

After a mobile agent has been instructed to migrate to another agency, seri-
alization of the agent takes place. Serialization means that all variables of

3.1 The Mobile Agent Migration Process � 47

the agent, together with all recursively referenced objects and their vari-
ables, are traversed and put into a flat byte array. The set of all objects to be
serialized is called the object closure.

In the current version of Tracy we use the standard object serialization
technique that is already implemented in Java [Sun, 1999]. To use this tech-
nique, each class whose objects should be serialized during their lifetimes
must implement interface java.io.Serializable. Class Agent already
implements this interface so that all agents in Tracy can be serialized. In
addition, all variables that a mobile agent class defines must be either marked
serializable too or marked as transient, which means that they are not ele-
ments of the object closure. If a nonserializable object is found during the
serialization process, an exception will be thrown. Note that class vari-
ables (i.e., those marked as static), are not part of the serialized object.
Thus, the object will probably retrieve different values of class variables
at the destination agency.

Java object serialization determines only the object state of an agent, not
its execution state. In Tracy only the name of the method that should be
invoked at the receiver agency is part of the agent’s state.

The following extract from the Tracy source code shows how simple the
task of object serialization is in Java. Method serializeAgent gets a ref-
erence to the mobile agent as a parameter and returns the serialized agent
as a byte array. In the case of an error, the method returns null.

1 private byte[] serializeAgent(Agent mobileAgent)
2 {
3 ByteArrayOutputStream baos = new ByteArrayOutputStream();
4 try

5 {
6 ObjectOutput oos = new ObjectOutputStream(baos);
7 oos.writeObject(mobileAgent);
8 oos.flush();
9 }

10 catch(IOException e)
11 {
12 return null;
13 }
14
15 return baos.toByteArray();
16 }

The most important statement is line 7, where the agent is serialized to an
output stream. In line 15 this output stream is converted into a flat byte
array.

48 � Chapter 3 Mobile Agent Migration

The result of the serialization process is the so-called serialized agent,
which is now transferred to the receiver agency. To instantiate a new mobile
agent from a byte array is only slightly more complicated. The standard Java
object serialization technique allows you to instantiate a new object simply
from a byte array containing the serialized object. This procedure is cor-
rect because the serialized object contains all the information about used
classes that is necessary to define and initialize the object correctly.

1 private Agent deserializeAgent(byte[] bytestream)
2 {
3 try

4 {
5 ByteArrayInputStream bais = new ByteArrayInputStream(bytestream);
6 ObjectInputStream ois = new TracyObjectInputStream(
7 new TracyClassLoader(this),
8 bais);
9
10 mobileAgent = (Agent)ois.readObject();
11 return mobileAgent;
12 }
13 catch(Exception e)
14 {
15 return null;

16 }
17 }

This method uses two Tracy-specific new classes to instantiate mobile
agents. Class TracyObjectInputStream is a subclass of the standard
Java class ObjectInputStream, which is responsible for conducting the
complete deserialization process. If a class must be loaded during deseriali-
zation, then method resolveClass is called. In class TracyInputStream
this method is overridden so that our new class TracyClassLoader is
used for this task. If the process of deserialization fails, value null is
returned.

Finding Classes and Dynamic Class Loading

Tracy’s default migration technique transfers the serialized agent together
with the state information, which is only the method name to invoke at
the destination, and all classes the agent might ever use to the receiver
agency.

3.1 The Mobile Agent Migration Process � 49

Therefore, the first problem before an agent can migrate is to determine
which classes must be transferred to the next agency. Comparable to the
definition of object closure, we can define code closure as follows: The code
closure consists of the agent’s main class (e.g., MyFirstTracyAgent in the
previous example) and all classes that are used for variables, method param-
eters, method return values, and local variables of any class of the code
closure. Unfortunately, Java does not provide an easy way to determine
this set of class names automatically. Class Class of the Java API provides
method getDeclaredClasses which returns only an array of classes that
are used for member variables. Using method getDeclaredMethods, we
can obtain information about all methods, and, using this information, we
can determine classes that are used for parameters and return values. But Java
does not provide a method to determine information about local variables
defined within methods. Therefore, we implemented our own technique that
looks at the byte code of the class. There we find the constant pool [Lindholm
andYellin, 1999], which is a table that contains all names that are ever used in
this class. To read this table we use a tool named ByCal (byte code analyzer),
which was developed within our project. This tool offers several services to
analyze Java byte code, transform it, and even perform sophisticated control
and data-flow analyses on it.

Obviously, the code closure should not contain classes that are not to be
transferred because they can be assumed to be already in the receiver agency
(e.g., classes of the Java API or classes that are part of Tracy). Before the byte
code is collected for each class of the code closure, those redundant classes
are deleted from the code closure. Java does not provide a way to read the
byte code for each class that is an element of the code closure. Therefore, we
search for the class in the agent’s code base, which is defined when launch-
ing an agent (this can be a directory, a JAR file, or any URL; see Chapter 10
for more information).

After the agent is received at the destination agency, its code must be linked
to the code of the already running agency. This is another advantage of the
Java programming language that allows dynamic class loading and linking.
This mechanism allows the virtual machine to load and define classes at
runtime.

In Java an instance of class ClassLoader is responsible for loading and
defining classes. Each class loader defines its own name space so that
different classes with the same name can be loaded into a single virtual
machine without conflicts. The default class loader, which is used unless
the user specifies one, loads classes from the local file system (i.e., from

50 � Chapter 3 Mobile Agent Migration

directories or from Java archives that are listed in the CLASSPATH). Each
object knows the class loader it was created by and a single class loader
has usually created many objects. (If an object creates new objects, the
same class loader is used.)

When a class loader has to load a class, it looks for the corresponding
class code according to the following rules:

1. The class loader checks whether the class has been loaded before
and, if it has, gets the byte code from the cache.

2. The system class loader is asked to load the class from the system
JAR file.

3. The class loader looks at the CLASSPATH variable and searches all
directories and Java archives.

4. It delegates the task to a user-defined class loader by invoking method
findClass.

When the class code is found, it is defined by calling a special method
defineClass of the class loader. User-defined class loaders must override
method findClass and can load the byte code for the given class name
by using an HTTP or FTP server or any other technique. As a result of the
default Tracy migration technique, all class files are already at the destina-
tion agency, so the TracyClassLoader has to look for the byte code only
in a local repository, where all incoming classes are stored.

Summary

In this section we introduced a generic framework for the description of
the migration process in many, if not all, Java-based mobile agent toolkits.
You have learned about the basic steps that are executed at the sender

agency and destination agency, respectively, and you have learned how basic
Java techniques such as object serialization and dynamic class loading are
employed in those toolkits. We presented some simple examples to illustrate
how to program mobile agents and how to initiate the migration process.
Every mobile agent toolkit has implemented the migration process differ-
ently, and we will discuss different design issues in Section 3.3, Design Issues
of Agent Migration.

3.2 Effective Migration as a Core Feature of Mobile Agent Toolkits � 51

3.2 Effective Migration as a Core Feature
of Mobile Agent Toolkits

We now discuss one of the main advantages of mobile agents, that is, the
ability to save network load as compared to client-server based applications.
According to this argument, mobile agents are able to save network traffic
by shipping the code close to data, instead of shipping data to the code as is
done in the client-server paradigm. Although this argument can be proved
by experiments, there are also cases in which mobile agents produce higher
network load than client-server techniques. This leads to the very important
question for software designers: “Which paradigm produces lower network
load?”

In the first section, we describe two approaches from the literature to
answer this question. The first approach proposes a design decision between
mobile agents and client-server applications on the basis of mathematical
models. The second approach argues that only a mixture between mobile
agent migrations and remote procedure calls can achieve the smallest net-
work load. Neither approach provides a detailed analysis of the reasons for
the mobile agents’ bad performance.

Our theory is that mobile agents suffer from several drawbacks that are all
related to the technical bases used to provide the ability to migrate. Therefore,
we will carry out a detailed network-load analysis using mathematical mod-
els in Section 3.2.2, Performance Analysis of Simple Mobile Agents versus
Client-Server. We compare both paradigms in typical scenarios to identify
reasons for the higher network load produced by mobile agents. The result
is an enumeration of inherent drawbacks of mobile agents as compared
to client-server techniques, which all involve the details of the migration
process. In the last section, we discuss our results and mention a few other
papers that also focus on network-load analysis of mobile agents.

3.2.1 Mobile Agents versus Client-Server

Static Decision between Mobile Agents and Client-Server

This approach proposes a static decision between the two paradigms
according to a mathematical analysis of the network load for a con-
crete application. The approach was published several times for different
applications. Carzaniga et al. [1997] and Vigna [1998] discuss this approach

52 � Chapter 3 Mobile Agent Migration

for an application from the information-retrieval domain, whereas Baldi et al.
[1997], Picco [1998], and Baldi and Picco [1998] use it for an application from
the network-management domain. This approach compares network load
for client-server, remote-evaluation, code-on-demand, and mobile agents.

Picco and Vigna’s main thesis is that no paradigm is better than the others
in every application scenario, but “The choice of the paradigm to exploit
must be performed on a case-by-case basis, according to the specific type
of application and to the particular functionality being designed within the
application” [Vigna, 1998, p. 42].

We describe Picco andVigna’s approach using the example of a distributed
information system. To give an expression on the mathematical model, we
also mention some of the most important parameters here. In the distributed
information system, N servers each hold D documents. The client’s task is
to download the relevant documents, which are identified using keywords.
The server offers a header for each document that also contains the keywords
for the document. For the sake of simplicity, the authors allow the following
constraints: (1) The relation between relevant documents and all documents
equals i for all servers; (2) The header information has length h bits for each
document, and each document has length b bits; (3) requests sent from
the client to the server have length r bits. Then the authors model each
approach using these parameters and finally gain an expression for network
load for each paradigm, for example, the network load using the client-server
paradigm equals ((D+iD)r +Dh+iDb)N and the network load for the mobile
agent approach equals (r + CMA + s + N

2 iDb)(N + 1), where CMA is the agent’s
code size and s is the size of the state. Based on an evaluation of these models,
with estimated values for all parameters, the authors select a single design
paradigm to recommend for the implementation of this application.

Concerning an analysis of the drawbacks of mobile agents, Picco andVigna
found that mobile agents always produce the highest network traffic because
an agent carries all documents already found, whereas in all other paradigms,
documents are sent back to the client immediately. Thus, a mobile agent’s
data grows continuously with each hop, so it grows quadratically with the
number of servers.

They assume a network in which transmission costs depend only on the
number of bytes to transmit and not on bandwidth and latency values.
According to the authors themselves, this is unrealistic, but it is necessary to
keep their model simple. Using such an uniform network, it is rather impos-
sible for the mobile agent approach to produce less network traffic than
the remote-evaluation approach, because code in the remote-evaluation

3.2 Effective Migration as a Core Feature of Mobile Agent Toolkits � 53

approach is smaller and mobile agents have to migrate N + 1 times, whereas
in the remote-evaluation approach, only N migrations are necessary. In
our opinion it must be considered that networks for real-world applications
are heterogeneous, meaning that, for example, a migration between two
remote servers is faster than sending two requests from the client. In addi-
tion, the authors can only estimate values for the parameters of their model,
for example, the size of the mobile agent’s code, before having implemented
this agent and do not explain how to obtain reliable values. They do not con-
sider the possibility that parameters might change in the future, which might
reverse their recommendation.

Mixture between Agent Migrations and Remote Procedure Calls

The second approach is proposed by Straßer and Schwehm [1997]. Their
thesis is that only a mixture between agent migrations and remote procedure
calls leads to minimal network traffic.

Straßer and Schwehm develop a simple mathematical model for net-
work load and execution time of client-server– and mobile agent–based
approaches for a given application scenario. Several parameters are known
in advance, for example, the amount of communication necessary between
client and server(s), as well as bandwidth and latency for all network con-
nections. They model the ability of mobile agents to filter or compress
server results before sending it back to the client with a so-called com-
pression factor, σ . Agent migration is modeled as implemented in their
Mole mobile agent toolkit [Baumann et al., 1998], where agent code is not
always transmitted along with the agent’s state but is usually dynamically
loaded from the agent’s home server if it is necessary. Class downloading
can be avoided if the necessary class is already available at the destina-
tion agent server. Therefore, a parameter, P, models the probability of
downloading any class from the agent’s home server. Nevertheless, the
authors do not evaluate their model with regard to class downloading
probability P.

First, they evaluate a single client-server–like interaction with regard to
different values for the server result size and the compression factor. The
result is as expected and shows that, for example, with low compression
factors, mobile agents produce a greater network load, because sending code
to the server causes a fixed overhead, whereas with high compression fac-
tors, mobile agents produce a smaller network load. After that they consider

54 � Chapter 3 Mobile Agent Migration

a scenario in which a sequence of interactions between a single client and
several servers is processed.

The authors’ main idea is that only a mixed sequence of agent migrations
and remote procedure calls produces the minimum network load. The agent
migrates to only a subset of all servers to be visited, whereas the other servers
are accessed using remote procedure calls. The optimal sequence depends
on the sizes of requests and results and on the network quality between each
pair of nodes. All these parameters are assumed to be known in advance.

To assess this technique, Straßer and Schwehm compute the network
load for all possible combinations of migrations and remote procedure calls
using a mathematical model. With the assumption that network bandwidth
and latency are known in advance, they are able to show that minimal net-
work load is actually produced by a mixture. Finally the authors prove their
theoretical findings through experimental validation. Here, an agent is able
to compute its optimal communication pattern by itself, using the developed
mathematical model. Values for bandwidth and latency are measured by the
underlying mobile agent toolkit, Mole. The authors compare three mobility

strategies in which the agent migrates always, never, or varies according to
the results of the mathematical model. The measured execution times show
that the optimized mobility strategy always has the shortest execution time.
The results were not compared with a pure client-server solution. Iqbal et al.
[1998] continue this work and present several algorithms to compute the
optimal migration sequence of a single agent. The approach is based on an
algorithm to determine the shortest path in a directed and weighed graph.

Both papers show that only a mixed sequence of remote procedure calls
and agent migrations lead to an optimal network load. Thus, to determine
the optimal communication sequence, knowledge of several parameters,
about network bandwidth, latency, request, and result size, for example,
are assumed. However, it is not clear how these values can be obtained in
general and how well the approach works with variations of these values.

3.2.2 Performance Analysis of Simple Mobile Agents
versus Client-Server

In this section we develop a simple mathematical model in order to com-
pare network load for both client-server–based and mobile agent–based
paradigms. Our aim is to show under which circumstances the use of mobile
agents causes lower network load and which characteristics of mobile agents

3.2 Effective Migration as a Core Feature of Mobile Agent Toolkits � 55

are responsible for sometimes higher network load. Therefore, we do not
consider the remote-evaluation and the code-on-demand paradigms here,
although the remote-evaluation paradigm might produce less network load
than the mobile agent paradigm (see Picco [1998]).We want to keep the model
as simple as possible. Therefore, we focus our analysis on network traffic in
terms of transmitted bytes and do not consider transmission time, except
in one scenario in which we consider a heterogeneous network.

The application scenario we will use consists of a set of computers, where
one system takes the client role and all other systems are servers. The client
sends client requests to servers to obtain data items that are sent back as
server results. The size of a single client request is Breq, and the size of a server
result is Bres. If no data matches the request, the server has to send some
kind of error notification about this case, which has size Brep. A mobile agent
that is sent from a client to a server has code of size Bc and state information
of size Bs. In addition, an agent carries data items (e.g., the client request or
the results found at previously visited servers).

There are two individual advantages of mobile agents, both able to reduce
network load:

1. The ability to avoid network protocol overhead (e.g., avoiding many
communication steps in a network protocol)

2. The ability to filter and compress data at the server site

In our model we describe data filtering and compression by a single
parameter, σ , 0 ≤ σ ≤ 1, which stands for a compression factor. The com-
pression factor is applied to the server result, Bres, so that only (1 − σ)Bres

must be sent back to the client and carried by a mobile agent. Table 3.1 gives
an overview of all used symbols.

For the sake of simplicity, we make the following additional assump-
tion: When a mobile agent migrates to another computer, it carries all its
code, all state information, and all data with it. Only if an agent migrates
to its home agency is code transmission omitted, because the code can
be assumed to be already there. This corresponds to a migration technique
that is implemented in most mobile agent toolkits. For the moment, we do
not consider the impact of other techniques for agent migration, for exam-
ple, the one implemented in Mole (see Section 3.2.1, Mobile Agents versus
Client-Server) and we do not take into account additional costs that might
arise from sophisticated security solutions. We also do not consider any kind

56 � Chapter 3 Mobile Agent Migration

Table 3.1 Overview of the symbols used for the mathematical model in Section 3.2.1

Parameter Unit Description

BCS Byte Network load in the client-server approach
BMA Byte Network load in the mobile agent approach
TCS Sec Response time in the client-server approach
TMA Sec Response time in the mobile agent approach
Breq Byte Size of a client request
Brep Byte Size of a server error reply
Bres Byte Size of a server result
Bc Byte Size of a mobile agent’s code
Bs Byte Size of a mobile agent’s state
σ 0 ≤ σ ≤ 1 Compression factor
m Number Number of servers to be visited
m∗ Number Number of servers at which client-server and mobile agents

produce the same network load
n Number Number of communication steps
pi 0 ≤ pi ≤ 1 Probability that data is found at server i
δ(Li, Lj) Sec Delay (latency) between network nodes Li and Lj
τ (Li, Lj) Byte/sec Throughput between network nodes Li and Lj

of manual optimization that might be possible on the application level to
optimize the migration behavior, for example, to distribute code manually to
several code servers in advance.

Our model of network load is placed on top of the TCP/IP stack, so we
neither model TCP or IP headers nor network load that is caused by data
retransmission and other factors.

We will now discuss the behavior of mobile agents in the following three
scenarios:

1. Network of one client and one server, in which the client accesses
the server one or many times

2. Network of one client and m servers, in which the client is searching
for a single data item that might be stored on any server

3. Network of one client and m servers, in which the client is searching
for data items on all servers

Scenario 1: Network of One Client and One Server

We first consider the case of reducing network load through data filtering
and compression. In the client-server approach the client sends a request of

3.2 Effective Migration as a Core Feature of Mobile Agent Toolkits � 57

size Breq to the server, which answers with a result of size Bres. Here, no data
filtering or compression can be applied. Thus, the number of bytes that are
sent over the network is:

BCS = Breq + Bres (3.1)

In the mobile agent approach, the client sends an agent to the server.
The agent consists of code of size Bc and state information of size Bs. The
agent carries the request object of size Breq as a data item. On the server,
the agent communicates locally with the server, which does not produce any
network load. The agent has the code to filter or compress the server result, so
only (1−σ)Bres must be carried to the agent’s home server. Note that the agent
does not carry code or the request object during the home migration, because
the code is already available at the home server and the request object is no
longer needed. However, state information must be sent back to the agent’s
home. Thus, the amount of bytes for the mobile agent approach is:

BMA = Bc + 2Bs + Breq + (1 − σ)Bres (3.2)

From Equations 3.1 and 3.2 we can derive a verification of the thesis that
mobile agents produce less network load than client-server approaches.

BMA ≤ BCS

Bc + 2Bs + Breq + (1 − σ)Bres ≤ Breq + Bres

Bc + 2Bs ≤ σBres (3.3)

We see that a mobile agent produces lower network load if, and only
if, its code (including double the state) is lower than the number of bytes
of the server result that the agent could save through compression and/or
filtering.

We evaluate this scenario with the parameters found in Table 3.2
(Scenarios 1.1 and 1.2). The result is shown in Figure 3.2. Figure 3.2(a) com-
pares the network load of the client-server approach with the mobile agent
approach for a fixed compression factor of σ = .7 while varying the server
result size between 0 and 5000 bytes. The diagram shows that the use of
mobile agents produces less network load only if the server result size is large.
The reason for this is the fixed network load overhead for transmitting mobile
agent’s code and state to the server, which is, in this scenario, 2100 bytes.
Figure 3.2(b) compares the network load of the client-server approach with

58 � Chapter 3 Mobile Agent Migration

Table 3.2 Typical values of model parameters, which we use for all scenarios in Section 3.2.1

Scenario Breq Brep Bres Bc Bs σ pi Network Figure

1.1 50 20 var. 2000 100 . 7 n/a hom. 3.2(a)
1.2 50 20 3000 2000 100 var. n/a hom. 3.2(b)
1.3 50 20 100 2000 100 n/a n/a hom. 3.3

2.1 100 50 10,000 3000 200 . 8 1
m hom. 3.4(a)

2.2 100 50 10,000 3000 200 . 8 1
m hom. 3.4(b)

3.1 100 n/a 10,000 3000 200 . 8 n/a hom. 3.5
3.2 100 n/a var. 3000 200 var. n/a hom. 3.6
3.3 100 n/a 10,000 3000 200 . 8 n/a hom. 3.7
3.4 100 n/a 10,000 3000 200 . 8 n/a het. 3.8

“n/a” indicates that this parameter is not needed in this scenario and “var.” indicates that this
parameter is varied in this scenario.

the mobile agent approach for a fixed server result size of 3000 bytes while
varying the compression factor σ between 0 and 1. This diagram shows that
the use of mobile agents produces less network load only if the compression
factor is high.

We now look at the advantage of avoiding several network protocol steps.
A typical scenario is for a client to need to check a server periodically to keep
informed about changes, for example, when a stock rate goes below a given
limit. Therefore, the client sends requests of size Breq to the server, which
answers with a server reply of size Brep if there are no changes and with a
server result of size Bres if there has been a change. Let us assume that the
change happened after n requests were sent. For the client-server approach,
the network load amounts to:

BCS = nBreq + (n − 1)Brep + Bres (3.4)

The agent has to migrate to the remote server, which costs Bc + Bs, and
it carries the request of size Breq. After processing, the agent migrates back,
which costs Bs + Bres. Note that we consider neither filtering nor data com-
pression in this scenario. For the mobile agent approach, the network load
amounts to:

BMA = Bc + 2Bs + Breq + Bres (3.5)

We evaluate this scenario with the parameters found in Table 3.2
(Scenario 1.3). The result is shown in Figure 3.3, which compares the network

3.2 Effective Migration as a Core Feature of Mobile Agent Toolkits � 59

0

1000

2000

3000

4000

5000

6000

0 0.2 0.4 0.6 0.8 1

N
e
tw

o
rk

 l
o
a
d
 (

b
y
te

)

Sigma

0

1000

2000

3000

4000

5000

6000

(a)

(b)

0 500 1500 2500 3500 4500 50001000 2000 3000 4000

N
e

tw
o

rk
 l
o

a
d

 (
b

y
te

)

Result size (byte)

Mobile agents

Client-server

Mobile agents

Client-server

Figure 3.2 Evaluation of Scenario 1.1 and 1.2: Mobile agents produce less network load
only if the server result is large or the compression factor is high. (a) Server result size
versus network load for fixed compression factor. (b) Compression factor σ versus
network load for a fixed server result size.

60 � Chapter 3 Mobile Agent Migration

6000

5000

4000

3000

2000

1000

0

100 20 30 40 50

Number of requests

N
e

tw
o

rk
 l
o

a
d

 (
b
y
te

)

60 70 80 10090

Mobile agents

Client-server

Figure 3.3 Evaluation of Scenario 1.3: Number of request versus network load. Mobile
agents produce less network load only if the number of requests is high.

load of the client-server approach with the mobile agent approach for fixed
request, reply, and result size while varying the number of times request n

is necessary until the event occurs. It can be seen that in the client-server
approach, network load increases in proportion to the number of requests,
whereas mobile agents produce constant network load. Thus, mobile agents
produce a smaller network load only if the number of requests exceeds the
threshold. This is again because of the fixed network load overhead for
transmitting code to the server.

Scenario 2: Network of m Servers, Searching for a Single
Data Item

In this scenario the client searches for a single data item that is currently
available on only one out of a set of m servers. Thus, in the client-server
approach the client must access each server sequentially until the infor-
mation is found. We denote the set of all servers with L = {L1, . . . , Lm}.
The probability that the information is found at server Li equals pi, where
0 ≤ pi ≤ 1. Therefore the order in which the servers are accessed is impor-
tant, and for our comparison, we will use the same order for the client-server

3.2 Effective Migration as a Core Feature of Mobile Agent Toolkits � 61

approach and the mobile agent approach. After the information is found
at server Li, servers Li+1, . . . , Lm will not be visited.

Let us first consider the client-server approach. If the information item
is found at the first server, then only a single client request of size Breq and
a single server result of size Bres are sent. If the information is found at the
second server, two requests of size Breq, a single error reply of size Brep (from
the first server), and one server result of size Bres is sent.We weight each single
case with its probability and obtain the following network load:

BCS = p1(Breq + Bres) + p2(2Breq + Brep + Bres) + · · ·

pm(mBreq + (m − 1)Brep + Bres)

=

m
∑

i=1

pi(iBreq + (i − 1)Brep + Bres) (3.6)

We now look at the mobile agent approach. If the information is found
at the first server, the agent migrates only to the first server and comes back
with the compressed result. Remember that the agent does not carry its code
when migrating home. If the information is found at the second server, the
agent has to migrate three times; it does not need to carry any reply message
from the first server, so it carries only the compressed server result from the
second server. Again, each case is weighted with its probability to obtain the
network load.

BMA = p1(Bc + 2Bs + Breq + (1 − σ)Bres)+

p2(2Bc + 3Bs + 2Breq + (1 − σ)Bres + · · ·

pm(mBc + (m + 1)Bs + mBreq + (1 − σ)Bres

=

m
∑

i=1

pi(iBc + (i + 1)Bs + iBreq + (1 − σ)Bres) (3.7)

We evaluate this scenario with the parameters found in Table 3.2
(Scenario 2.1). The result can be found in Figure 3.4(a). The diagram com-
pares network load for the client-server approach and the mobile agent
approach for fixed request, reply, and result size while varying the num-
ber of servers m. For a small number of servers, mobile agents produce less
network traffic, because in that case data filtering and compression have
a positive effect on the overall network load. Beyond a specific number of

62 � Chapter 3 Mobile Agent Migration

20,000

15,000

10,000

5,000

0

1 2

(a)

3 4 5

Number of servers

N
e

tw
o

rk
 l
o

a
d

 (
b
y
te

)

6 7 8 109

Mobile agents

Client-server

20,000

15,000

10,000

5,000

0

1 2

(b)

3 4 5

Number of servers

N
e
tw

o
rk

 l
o
a
d
 (

b
y
te

)

6 7 8 109

Mobile agents

Client-server

Figure 3.4 Evaluation of Scenario 2.1 and 2.2: Network load versus number of servers.
(a) When network load between all nodes is considered, mobile agents only produce
smaller network load if the number of servers to be visited is small. (b) When network
load at the uplink is considered, mobile agents always produce smaller network load.

3.2 Effective Migration as a Core Feature of Mobile Agent Toolkits � 63

servers, mobile agents produce a greater network load because of the over-
head of sending code and state information to each server. Thus, network
load increases in proportion to the number of servers in the mobile agent
approach, whereas network load increases only slightly in the client-server
approach.

We will now evaluate the same scenario in a network in which only the
costs at the client network interface are considered. For example, if the client
is a mobile phone that has a GPRS connection to the Internet, costs depend
on the number of bytes sent from the mobile phone to the Internet ser-
vice provider. We denote this network connection as an uplink. Of course,
the network load of the client-server approach is identical to the one repre-
sented by Equation 3.6. For the mobile agent approach in this scenario we
can ignore all costs related to migrations between servers in the network.
Thus, the network load amounts to:

BMA = p1(Bc + 2Bs + Breq + (1 − σ)Bres) + · · ·

pm(Bc + 2Bs + Breq + (1 − σ)Bres)

=

m
∑

i=1

pi(Bc + 2Bs + Breq + (1 − σ)Bres) (3.8)

= Bc + 2Bs + Breq + (1 − σ)Bres (3.9)

Figure 3.4(b) shows that network load is now much smaller in the mobile
agent approach, because data filtering and compression have a positive
effect. Network load is constant in the mobile agent approach, because only
uplink costs are considered; therefore, it is irrelevant on which server the
information is found, whereas network load increases slightly in client-server
approach. Note that a scenario in which only uplink costs are considered
is the only case in which mobile agents produce a lower network load for
a large number of servers than client-server techniques—in all other sce-
narios, the reverse is true; the higher the number of servers, the higher the
network load for mobile agents. Thus, it is very profitable to use mobile agents
if only uplink costs must be considered.

Scenario 3: Network of m Servers, Select Information
at All Servers

In this scenario the client has to collect data items from all servers in
the network, so in any case all m servers are visited. In the client-server

64 � Chapter 3 Mobile Agent Migration

approach, the client sequentially accesses each server, sending a request and
receiving a server result. The total network load amounts to:

BCS = m(Breq + Bres) (3.10)

In the mobile agent approach, the agent migrates from its home server to
server L1, which produces costs for code, state, and request transmission. On
server L1 the agent selects and filters data, so the cost for the next migration
to server L2 increases by (1 − σ)Bres. At each succeeding server, new data
items of cost (1 − σ)Bres must be added, so for the migration from server Li

to server Li+1 data items of size i(1 − σ)Bres must be taken along. Therefore,
network load for the mobile agent approach equals:

BMA = Bc + Bs + Breq +

+ Bc + Bs + Breq + (1 − σ)Bres +

+ Bc + Bs + Breq + 2(1 − σ)Bres + · · ·

+ Bs + m(1 − σ)Bres

= mBc + (m + 1)Bs + mBreq +
m(m + 1)

2
(1 − σ)Bres (3.11)

We evaluate this scenario using the parameters given in Table 3.2
(Scenario 3.1). The result is shown in Fig. 3.5. The diagram compares the
network loads of the client-server approach and the mobile agent approach
for a fixed size of client requests and server results while varying the number
of servers to be visited. Network load increases in proportion to the number
of servers in the client-server approach, whereas it grows quadratically in the
mobile agent approach. The reason for this is that a mobile agent collects data
items from each server and must carry all the results. Mobile agents produce
lower network load only when the number of servers to be visited is small.

As shown in Figure 3.5, for a certain number of servers, both paradigms
produce the same network load. We denote this number of server with m∗.
We are now interested in how m∗ changes when the server result size Bres and
the compression factor σ vary. We evaluate this scenario using the param-
eters found in Table 3.2 (Scenario 3.2). Figure 3.6 shows the relation between
m∗ and the server result size for four different compression factors. It can
be seen that the number of servers up to m∗ has an upper bound for each
value of σ , which depends on the size of the server result. This upper bound
is higher when the compression factor is higher.

3.2 Effective Migration as a Core Feature of Mobile Agent Toolkits � 65

140,000

120,000

100,000

80,000

60,000

40,000

20,000

0

1 2 3 4 5

Number of servers

N
e

tw
o

rk
 l
o

a
d

 (
b
y
te

)

6 7 8 109

Mobile agents

Client-server

Figure 3.5 Evaluation of Scenario 3.1: Network load versus number of servers. Network
load for mobile agents increases quadratically with the number of servers.

40

35

30

25

20

15

10

5

0

m
*

Sigma = 0.95

Sigma = 0.85

Sigma = 0.75

Sigma = 0.55

1,000 10,000

Result size (byte)

100,000 1e+06

Figure 3.6 Evaluation of Scenario 3.2: Result size versus m∗ for various compression
factors. There is an upper bound for m∗ for each value of σ .

66 � Chapter 3 Mobile Agent Migration

Now we evaluate Scenario 3.1, but consider only costs at the client-
network interface. Network load for the client-server paradigm is the same
as in Equation 3.10. The network load for the mobile agent approach equals:

BMA = Bc + Bs + Breq + Bs + m(1 − σ)Bres

= Bc + Breq + 2Bs + m(1 − σ)Bres (3.12)

We evaluate this scenario using the parameters found in Table 3.2
(Scenario 3.3). The result can be seen in Figure 3.7. As in Scenario 2.2
we can see that mobile agents produce a much smaller network load than
client-server techniques as a result of data filtering and compression.

Finally, we discuss the influence of network parameters on the response
time in both approaches. We want to show that in a heterogeneous net-
work it is not valuable to assess a paradigm solely on basis of network traffic,
especially when the network connection between the client and any server
has lower bandwidth than interserver connections. Therefore, we introduce
δ : L × L → R, where δ(Li, Lj) describes the delay (latency) of a network
connection between node Li and node Lj, and τ : L × L → R, where τ (Li, Lj)
describes the throughput between node Li and node Lj. For the moment

120,000

100,000

80,000

60,000

40,000

20,000

0

N
e
tw

o
rk

 l
o
a
d
 (

b
y
te

)

1 2 3 4 5

Number of servers

6 7 8 109

Mobile agents

Client-server

Figure 3.7 Evaluation of Scenario 3.3: Number of computers versus network load, only
considering network load between client and any server.

3.2 Effective Migration as a Core Feature of Mobile Agent Toolkits � 67

we omit processing time. From Equation 3.10 we obtain the following
equation for the response time:

TCS =

m
∑

i=1

2δ(L0, Li) +
Breq + Bres

τ (L0, Li)
(3.13)

We assume the client is node L0. The execution time for a simple client-
server call is the sum of the time for transferring the request and result plus
the delay for this network connection.

In the mobile agent approach we can derive the following equation from
Equation 3.11:

TMA =

(

m
∑

i=1

δ(Li−1, Li) +
Bc + Bs + Breq + (i − 1)(1 − σ)Bres

τ (Li−1, Li)

)

+ δ(L0, Lm) +
Bs + m(1 − σ)Bres

τ (L0, Lm)
(3.14)

We will now evaluate this scenario using the parameters given in Table 3.2
(Scenario 3.4). The result is shown in Figure 3.8. We assume delay time to be
90 ms between the client and each server and 30 ms between a pair of servers.

60

50

40

30

20

10

0

R
e
s
p
o
n
s
e
 t

im
e
 (

s
e
c
)

Mobile agents

Client-server

0 10 20 30 40

Number of servers

50 60 8070 10090

Figure 3.8 Evaluation of Scenario 3.4: Response time versus number of servers. The
number of servers for which response time of client-server and mobile agents are equal
is higher than in Scenario 3.3.

68 � Chapter 3 Mobile Agent Migration

Throughput is assumed to be 40,000 byte/sec for the client-server link and
200,000 byte/sec for interserver connections.

The only difference between this evaluation and the evaluation of
Scenario 3.1 is the heterogeneous network, as evidenced by the fact that the
break-even point between client-server and mobile agents increased from
about 5 to nearly 70 servers. Because the slow link between the client and all
servers is used very often in the client-server approach, response times are
very high. However, beyond a certain number of servers, mobile agents are
slower because they carry so much data.

3.2.3 Discussion of Our Results and a Further Literature Review

In the last section we developed a mathematical model for network traffic
and response time of client-server– and mobile agent–based approaches for
three general application scenarios. Our evaluation of this model confirms
the thesis that mobile agents produce less network load than client-server
techniques only if their code, together with the state, is smaller than the
network load that can be saved by their use.

The general result of our mathematical model is that within the same
application scenario we can find situations in which smallest network traf-
fic is achieved by either client-server or mobile agent approaches. We must
conclude that which paradigm produces the best result depends on the val-
ues of several factors, for example, code size, server result size, number of
servers to be visited, and so on. In this difficult situation, software design-
ers would surely benefit from any rule of thumb to decide which paradigm
should be used in a given situation. However, in our opinion, this does not
make sense, because we have omitted several factors from our model for
the sake of simplicity, and these parameters would undoubtedly influence
the decision and would invalidate such a rule or at least make it inaccurate
outside our model.

Limitations of Our Model and Other Approaches

Some factors that also influence network traffic and response time in real
applications are those considering network quality. One important aspect
is the error probability of a given network connection, especially in the
case of wireless connections. A mathematical model including this param-
eter is presented by Jain et al. [2000]. Another factor we did not model is

3.2 Effective Migration as a Core Feature of Mobile Agent Toolkits � 69

server processing time. Because we ignored this factor, our model assumes
response time to be equal to agent migration and data transmission time,
which is of course inaccurate for all processing-intensive tasks. To extend our
model with processing time would make it indispensable to model server
scalability too — but this would have been clearly beyond the scope of our
intention for the moment. Nevertheless, we are aware of this factor; Gray et al.
[2001] pointed out that scalability of a mobile agent server software is a major
drawback for the overall performance of mobile agent–based applications.

In contrast to our general mathematical model in which we tried to figure
out the main parameters influencing the performance in both paradigms,
some authors focus on parameters that are very specific to the examined
application. For example, Puliafito et al. [1999, 2001] consider an example
from the information retrieval domain in which a fixed number of servers
must be accessed. After the first request is processed and the server result is
sent back to the client, the client decides whether another request must be
sent to the server. The authors analyze the influence of the probability, pr , of
reusing the same server for a subsequent request. Such a subsequent request
produces network load and therefore transmission time in the client-server
approach, whereas in the mobile agent approach, only processing time must
be added. The evaluation shows that with a low value for pr , the client-server
approach performs better because of the overhead of mobile agent migration.
However, with increasing probability, pr , the client-server approach results
in higher processing time than the mobile agent approach.

Several other papers also discuss trade-offs between client-server and
mobile agent approaches, which we will not mention in detail here, because
they would not contribute any new results: Spyrou et al. [2000], Outtagarts
et al. [1999], Papastavrou et al. [1999], Knudsen [1995], Spalink et al. [2000],
Theilmann and Rothermel [1999], and Samaras et al. [1999].

Advantages of Mobile Agents

We evaluated our model using several scenarios, and we identified the
following limited advantages of mobile agents with a simple migration
capability only. Mobile agents produce lower network traffic:

1. if the number of requests during a communication is high, so many
data transmissions of the client-server paradigm can be avoided by
using mobile agents, or

70 � Chapter 3 Mobile Agent Migration

2. if the size of the server result is high combined with a high compression
or filter factor, so a much smaller number of bytes must be sent back
to the client.

As already stated, the concrete value of the threshold beyond which
mobile agents produce lower network load depends on several factors. There-
fore, we are unfortunately not able to be more precise at this point than to
say that the number of requests or the compression factor must be high.

It is obviously easier to give concrete numbers if, instead of a mathemati-
cal model, real-world experiments are conducted. For example, Ismail and
Hagimont [1999] present results of experiments with the Aglets mobile agent
toolkit and a client-server implementation based on Java RMI. The authors
consider an example from the information retrieval domain consisting of a
single client and two servers. The first server offers information about hotels,
and the second server is a telephone directory. The task is to get a list of hotels
in a given town and their telephone numbers. The client first requests a list
of hotels from the hotel database, then selects the hotels in the given town,
because it is assumed that the interface of the first server does not offer any
filter function. For each selected hotel, the second server is asked for the
hotel’s telephone number. Measurements were taken in a network of three
computers located in different European cities. The results show that the
overall execution time depends on the number of hotel records returned by
the first server. If there are fewer than 30 records, the RMI-based client-server
approach has a lower execution time, but if there are more than 30, the mobile
agent approach performs better. The experiment shows that mobile agents
are a good choice only if a lot of data must be processed. Otherwise, mobile
agents may produce more network load than client-server techniques.

The other two scenarios deal with cases in which multiple servers must
be accessed. In these cases, mobile agents work completely differently than
client-server–based techniques. Whereas in the latter approach the client
accesses each server, resulting in a star-shaped communication flow, mobile
agents hop from server to server, not visiting the client in the meantime.
In Chapter 2 we identified this behavior as a major difference between
mobile agents and mobile objects. The main advantage of this behavior
comes from the fact that the network connection between the client and any
server is not used frequently by mobile agents, so mobile agents produce:

1. smaller network load if only network traffic at the client-interface is
considered, and

3.2 Effective Migration as a Core Feature of Mobile Agent Toolkits � 71

2. shorter response time if the uplink has a smaller bandwidth (or higher
latency) than all inter-server connections.

We investigated a scenario in which only data transmission at the client
interface, the so-called uplink, is considered. The result was that mobile
agents have advantages if the user is interested in minimizing uplink costs,
which might be the case if the user has a GPRS mobile phone. In this case we
do not consider all the network traffic that is produced between servers, so
all these transmission costs for code and data transmission are not taken into
account. Of course, this advantage can exist only in combination with one of
the advantages mentioned previously. For example, if an agent were not able
to reduce the server result, its network load would be smaller only for a very
high number of servers.

The second advantage deals with the case of heterogeneous networks,
that is, networks in which network connections do not have the same quality.
We concentrated on those networks in which the uplink (i.e., the connec-
tions between the client and any server) has lower bandwidth or higher
latency than connections between servers. A typical example for such a net-
work is of a mobile client that must use a wireless LAN connection with
a bandwidth of 2 to 11 Mbit/sec rather than Ethernet with 100 Mbit/sec.
In such a heterogeneous network, we showed that mobile agents have a
shorter response time than client-server techniques. The reason for this is
that mobile agents need this small bandwidth connection only twice, for the
migration from the client and back to the client when they have completed
the task, whereas in the client-server paradigm, each server is accessed using
this bottleneck connection. In our evaluation we did not analyze the impact
of network bandwidth and network latency on the performance of mobile
agents in detail, because this has already been done.

Rubinstein and Duarte [1999] evaluate trade-offs of mobile agents in net-
work management tasks. Performance of mobile agents is compared with
an approach using SNMP. The network topology used in these simulations
is a LAN of Managed Network Elements (MNE) connected to a manage-
ment station by a bottleneck link. Simulations are done using a network
simulation software. The application scenario the authors look at is sim-
ple network management tasks, such as retrieving SNMP variables from all
MNEs. The authors consider the network load at the bottleneck link and
response time of a single task as performance parameters. The authors have
conducted several experiments, varying network latency and bandwidth, the
initial mobile agent’s size, and the number of bytes to select at each MNE.

72 � Chapter 3 Mobile Agent Migration

The result is that the performance of mobile agents does not change with the
latency, because mobile agents use the bottleneck link only twice, whereas
all SNMP messages must traverse the bottleneck link. Varying bandwidth of
the bottleneck link has the result that, for a small bandwidth, both mobile
agents and SNMP messages present larger response times. Here the authors
found that for a lower number of MNEs, SNMP messages perform better,
but when the number of MNEs is increased, mobile agents have shorter
response times. Increasing mobile agents’ size has the expected effect of
higher response times, whereas response times for SNMP messages remain
constant.

Drawbacks of Mobile Agents Using a Simple Migration Technique

We will now discuss the reasons that mobile agents sometimes produce
higher network traffic. The first obvious reason is the size of the code that
has to be transmitted to each server the agent visits. Agent code is usually
larger than a simple client-server request, because agents not only carry the
code for data filtering and/or compression but also need additional logic
implemented to decide which servers should be visited. In a few appli-
cations, this order might be a fixed itinerary, implemented as a primitive
array of URLs. In most applications the decision for the next server to visit
is made dynamically during runtime. On the other hand, large code size is
not a drawback in all cases. There is often a simple relation between the
quality of filtering and/or compressing data at the server site and agents’
code size. Simply speaking, the more sophisticated the data filtering task
(which results in a higher compression factor), the larger the code that
is necessary to achieve this compression factor. Higher network traffic of
mobile agents as compared with that of client-server techniques can be
caused by situations with low achieved compression factor, although a lot
of code was sent to the remote server—and those situations are not always
avoidable.

A second drawback of the mobile agents paradigm is that sending code
to each server causes a fixed overhead in network traffic for each agent
migration. Therefore, there can be several client-server interactions that pro-
duce less traffic than a single mobile agent migration, as long as they are
in sum smaller than this fixed overhead. If the advantage of mobile agents
comes from data compression or filtering, then this data reduction must save
network traffic at least in the size of agent’s code.

3.2 Effective Migration as a Core Feature of Mobile Agent Toolkits � 73

A third drawback deals with the migration technique. One simplifi-
cation of our model is that we do not consider different techniques for
agent migration. We assume the widely used technique that sends code as
one unit to each server. In some cases this might include pieces of code
with low execution probability on specific servers; that is, it is improbable
that these pieces of code will be executed on a specific server. As an exam-
ple, just think of a task divided into several subtasks. On a specific server
only one of these subtasks is executed; therefore, code for all other subtasks
is transferred superfluously. Kotz and Gray [1999] describe this as follow-
ing: “Thus, … mobile agents (especially those that need to perform only a
few operations against each resource) often take longer to accomplish a task
than more traditional implementations, since the time savings from avoid-
ing intermediate network traffic is currently less than the time penalties from
slower execution and the migration overhead.” We will come back to this
drawback of mobile agents in Section 3.3, in which we extend our model to
include several migration techniques.

The last three drawbacks for mobile agents were deduced from the first
scenario (p. 56) of our model evaluation, where only a simple interaction
between a single client and a single server was examined.

If a mobile agent has to migrate to many servers instead of only one,
we can find further drawbacks. First, it is clear that a higher number of
servers to be visited does not have any positive impact on code migration.
The agent’s code must be transferred to each server that the agent visits;
we could therefore repeat all the drawbacks of mobile agents presented ear-
lier, even in the multi-server case. But another drawback of mobile agents
becomes obvious. If more than one server must be visited, the result col-
lected at server Li−1 is transferred as part of the mobile agent’s data to server
Li. If the result of server Li−1 is not needed at any server Li, . . . , Lm, then it
was superfluous to transfer it. The same is true if data originally created at
the client must be transferred to all servers L1, . . . , Li−1, even if server Li is the
first one that needs them (e.g., to create an appropriate request).

Our evaluation showed that mobile agents are useful only if there is a
small number of servers to be visited, a fact that contradicts the general idea of
mobile agents as multi-hop entities. Besides, we have shown mathematically
that there is an upper bound for the number of servers and that beyond
this bound mobile agents are unable to ever produce lower network traffic.
For example, in a typical scenario of a very high compression factor (σ = .95),
mobile agents are better than client-server only if fewer than 40 servers are
to be visited.

74 � Chapter 3 Mobile Agent Migration

Summary

In this section we presented a mathematical evaluation and examined
a performance analysis of simple mobile agents as compared with the
client-server approach. The evaluation showed that mobile agents have the
possibility of reducing the network load and processing time compared with
client-server–based applications, because code is shipped to the data instead
of data being shipped to the code. However, we also showed some severe
drawbacks of mobile agents, features that are responsible for higher network
load and longer processing time in certain situations.

All these drawbacks are caused by the simple migration technique used
in our mathematical model, which, however, reflects the current state of
the art in agent migration. We learned that code migration is a very expensive
task that must be optimized and has to become more flexible.We also learned
that data migration has an important effect on the performance of mobile
agents. It is our thesis that the migration process of mobile agents must be

optimized to let them migrate in a more flexible and fine-grained way. What
we mean is that a mobile agent should not always migrate as one unit that
consist of all code, state, and data information but that it is sometimes useful
to let the agent decide which code and data items should be transferred to
the next server. In the next section we will therefore focus on the migration
process of mobile agents and consider possible optimizations.

3.3 Design Issues of Agent Migration

Now that we have introduced the technical details of the migration process
and shown how the migration process is implemented in the Tracy mobile
agent toolkit, we can discuss other approaches to implement mobile agent
migration. The main goals of this section are to examine the design issues
and to discuss design alternatives of agent migration. We introduce the term
mobility model to describe the migration technique of a specific mobile agent
toolkit, and we propose a language to describe mobility models. As an exam-
ple we describe the mobility models of two existing mobile agent toolkits,
Aglets and Grasshopper, using our new language. The chapter concludes
with a brief review of other approaches to classify mobile agent migration
techniques.

In this chapter we will consider only those design issues that are related
to agent mobility. Of course, there are many other issues a designer must

3.3 Design Issues of Agent Migration � 75

take into consideration when implementing a mobile agent toolkit, as, for
example, agent naming, agent communication, security, monitoring, fault-
tolerance, and so on. We know that there are several interdependencies
between all these issues, and we agree that it would be very useful to
propose a complete list of design issues for mobile agent toolkits. Some
attempts have been made in this direction, for example, by Picco [1998],
Hammer and Aerts [1998], and Karnik and Tripathi [1998]. However, in this
book we will focus only on mobility issues. The very important relationship
between agent migration and agent security is discussed in a later chapter.

3.3.1 Mobility Models

The migration technique of Tracy that we introduced in the last chapter
was only one option for implementing migration in mobile agent toolkits.
Actually, all mobile agent toolkits have implemented their own migration
techniques, and differences can be found in all phases of our generic frame-
work for agent migration. We already mentioned some of them in Section 3.1,
as, for example, other migration initiation commands than go, different
understandings of the elements of an agent’s state, other techniques to
relocate classes, and different migration protocols.

The goal of this section is to gather information about other migration
techniques in order to:

1. discuss the design issues and design alternatives for agent migration,
show pros and cons, and discover dependences between different
design issues, and

2. develop a language to describe the migration technique of an existing
mobile agent toolkit.

The first point is important for a designer of a new mobile agent toolkit,
because he or she must decide which migration technique the new system
should provide. The second aspect is to describe the migration technique
of an existing mobile agent toolkit in a unified way, which makes it easy to
compare different approaches.

To structure our discussion, we introduce the term mobility model. The
mobility model of a mobile agent toolkit describes almost all the important
features concerning agent migration. A mobility model defines three views on

76 � Chapter 3 Mobile Agent Migration

migration issues, and each view corresponds to two phases of our six-phase
generic framework presented in the last chapter (Fig. 3.9).

1. User’s view: How is agent migration initiated?

2. Agent’s view: How are data and code relocated in the network?

3. Network’s view: How are data and code transferred over the network?

The first view focuses on all issues that are related to the user interface
of agent migration (phases S1 and R3). Design issues are the migration
command, the technique to resume agent execution, and how the receiver
agency is addressed. The second view focuses on the technique for data and
code relocation (phases S2 and R2). Here, we introduce the term migra-

tion strategy, which describes which pieces of code migrates to which other
agency and how data is handled in each case. The last view focuses on
the technique for transmitting data over the network (phases S3 and R1).
We already introduced the term migration protocol, which is an important
part of this view.

To describe a mobility model, we propose a language named Mobility

Language (MoL) for which we will give a definition using Extended Backus-

Naur Form (EBNF). A description of a mobility model consists of several
lines, and each line comprises a key-value pair. The key is the name of a
design issue, and the value is either a single design alternative or a collection
of design alternatives, separated by a semicolon, that were chosen for the
mobile agent toolkit to be described.

Sender

Initialize migration process

Capture data and state

Transfer the agent

User’s view

Agent’s view

Network’s view

Receiver

Start agent execution

Deserialize the agent

Receive the agent

Network

Figure 3.9 The migration process and the three levels of our mobility model.

3.3 Design Issues of Agent Migration � 77

For example, the following excerpt of a description in MoL defines that
an AgencyName consists of a SymbolicName together with a HostName.
The second line defines that this agency can be addressed using either a
Protocol and the SymbolicName, or a Protocol, the SymoblicName,
and a PortNumber.

1 AgencyName = SymbolicName + HostName .
2 AgencyAddress = Protocol + SymbolicName ;
3 Protocol + SymbolicName + PortNumber .

To describe the grammar of MoL, we use EBNF. We will write
<MobilityModel> to denote a design issue (nonterminal symbol) and
“weak-migration” for a design alternative (terminal symbol). We use the fol-
lowing meta symbols: A sequence of symbols is separated by +, alternatives
are printed using brackets [... | ...], repetitions with at least one element
are printed using braces {...}, and finally an optional symbol is marked
with parenthesis (...). So, to start our definition of MoL, we define that
a mobility model consists of three views and that each view must be defined.

1. <MobilityModel> ::= <User> + <Agent> + <Network>

In the following three sections, we discuss each view of a mobility model
in detail.

User’s View

The first view is considered with all aspects of migration that are related to
the agent programmer.

2. <User> ::= <Naming> + <Creating> + <Code> + <Data> + <Migration>

Naming and Addressing

The first design issue, <Naming>, considers the aspects of the agency name
and the types of addresses that can be used for agent migration.

3. <Naming> ::= <AgencyName> + <AgencyAddress>

The aspect of agent naming is not considered in our description, because
it is part of the design issues for the whole mobile agent toolkit. Each agent

78 � Chapter 3 Mobile Agent Migration

has a name to be identified during its lifetime. The name is used by other
agents to set up a communication channel and is used by the agency itself
to control the agent. In some mobile agent toolkits, the name is also used
for agent tracking and for remote communication between agents currently
residing at different agencies. Therefore, the agent name must be unique
and immutable for the agent’s entire lifetime. The structure or scheme for
an agent name can be very different. Beside a symbolic name (e.g., Blofeld)
it usually also contains the name of the home agency and the name of the
underlying host system to make the name globally unique. The symbolic
name can be explicitly given by the agent’s owner in the form of an easy-to-
read name or implicitly computed by the agency (e.g., as a digest of the agent’s
code, together with some random element to make the name unique). In the
latter case, a human-readable alias might be provided by the agent’s owner.
Concerning migration, it is not important how an agent’s name is structured
or obtained as long as it is guaranteed that each name is globally unique.
The agent name is very important for successful migration, because the con-
straint that no two agents can have the same name can be best validated
during the migration process. Therefore, the agent’s name is an element of
the migration protocol, and the receiver agency checks whether there is an
agent with the given name already registered with the agency.

More important with regard to agent migration is the structure of the
agency’s name. Each agency must have a name so that it can be identi-
fied whenever the agency itself or any of its resources must be addressed.
If the mobile agent toolkit allows only a single agency on each host,
then it is sufficient to have the “Hostname” as the agency name (e.g.,
tatjana.cs.uni-jena.de). For some application areas it might be more
convenient to have more than a single agency on each host, so each agency
must have a “SymbolicName” (e.g., fortknox). If an agency is further
structured into several smaller units, sometimes called places, then each
place must also have a name, which becomes part of the symbolic name
(e.g., whyte/penthouse). The symbolic name without the host name is
sufficient for agency addressing if there is a technique for name resolving
comparable to the domain name resolving of Internet names. If such a tech-
nique is not available, then the agency name must consist of the symbolic
name and the host name.

4. <AgencyName> ::= “AgencyName” + “=” + <AddressNameScheme> + “.”

5. <AddressNameScheme> ::= [“SymbolicName” | “HostName”

| “SymbolicName” + “+” + “HostName”]

3.3 Design Issues of Agent Migration � 79

For migration it is necessary to address a single agency. Addressing
requires more information than naming, because a network connection
usually requires the name of a network protocol and a port number to
which communication is directed. To require a protocol makes sense if
the mobile agent toolkit provides more than a single transmission proto-
col. If a port number is required too, then the mobile agent toolkit should
require that this port number never be changed and that all agencies use
the same port number, because a change forces changes at all agent’s source
codes (assuming that addresses are hard-coded in the agent’s sources and
not given by the user). Because this usually cannot be guaranteed, per-
haps because another software system already uses this port number, it
is wise to allow a dynamic resolution of port numbers according to the
required protocol. For example, in Tracy there is a port resolution service

from which information about used port numbers and network protocols
can be obtained, so the user never has to deal with port numbers. Thus,
in addition to the source code presented on p. 45, we could also write
go(“tcp://tatjana.cs.uni-jena.de”, “runRemote”).

In Grasshopper the region registry is responsible for resolving port
numbers. In a system where such service is not available, protocol and port
number are mandatory if the agency offers several transmission protocols
in parallel. A mobile agent toolkit might allow more than one addressing
scheme.

6. <AgencyAddress> ::= “AgencyAddress” + “=” + <AddressSchemes> + “.”

7. <AddressSchemes> ::= <AddressScheme> + ({“;” + <AddressScheme>})

8. <AddressScheme> ::= (“Protocol” + “+”) + <AddressNameScheme> +

(“+” + “PortNumber”)

Creating Agents

When an agent is created, it must be decided where the agent is started
first. Usually, the agent is started at the current agency, that is, the one
on which the agent’s owner placed the creation command. In this case the
current agency becomes the agent’s home agency. Sometimes it might be
useful to start the agent immediately at a remote agency (e.g., if the cur-
rent host has only enough resources to execute some kind of loader instead
of a fully equipped agency software). To allow this feature, other agencies
must support remote starting by offering a communication interface for
that purpose.

80 � Chapter 3 Mobile Agent Migration

9. <Creating> ::= “CreateAt” +

“=” + “CurrentAgency” + (“;” + “RemoteAgency”) + “.”

Agent Code

The next important issue that must be decided is the place from which code
can be loaded. We call such a place a code source. The code source is used to
load classes when the agent is created at its home agency as well as when-
ever classes are not available at any remote agency and must be loaded
dynamically on demand.

The most natural way is to add the directory where agent class files can be
found to the CLASSPATH variable so that the Java virtual machine can find it.
This solution is not the best, because it makes it necessary for CLASSPATH to
contain all directories for all agents that might ever be started at this agency
before starting the whole agency software. This comes from a limitation of
the Java virtual machine, which does not allow modifications of CLASSPATH
during runtime. The consequence is that the entire agency must be shut
down to make changes of the CLASSPATH variable visible. It is more flex-
ible to allow agent class files to be stored anywhere in the file system and
to give their location as parameter during agent creation. It is not easy in
either case for remote agencies to load classes, because direct access to the
file system of a remote agency is usually prohibited if class loading is not part
of the migration protocol. The most flexible way is to store class files some-
where in the file system where they are reachable using standard network
transmission protocols such as HTTP or FTP.

Next, the file format for the agent’s code must be chosen. The easiest way
is, of course, to store each class file separately, because this is the output
of the Java compiler. Java also allows many class files to be bundled into a
single JAR file, which might be compressed and digitally signed.

10. <Code> ::= “Code” + “=” + <CodeSources> + “.”

11. <CodeSources> ::= <CodeSource> + ({ “;” + <CodeSource>})

12. <CodeSource> ::= [“ClassPath” | “FileSystem” | “HTTP” | “FTP”

| “MigrationProtcol”] + “+” + [“Class” | “Jar”]

Agent Data

Next it must be decided what types of data the mobile agent can access
and use. Each type of data has its own behavior during agent migration.

3.3 Design Issues of Agent Migration � 81

We distinguish four types of data that are useful for mobile agents:

Proxy Proxy is nonmobile, and remote access is possible. Data items
of this type exist only at the agent’s home agency and cannot be
moved to other agencies. However, mobile agents can access these
data items transparently from any other remote agency, and any mod-
ifications are transmitted to the agent’s home agency. We name this
data type proxy because there is a proxy object5 on each agency that
is part of the serialized agent and that is responsible for transpar-
ently forwarding modifications to the home agency. Access to files or
the graphical user interface might be more efficient using this type
of data.

Static Static data is nonmobile, and remote access not possible. Data items
of this type exist only at one agency and cannot be taken along during
migration, because they are physically bound to their agency. This data
type is common for files or the graphical user interface, whenever they are
not of type proxy. In Java these data items can be marked as transient
so that they are not part of the serialized agent.

Moving Moving data is, mobile and source removed. This data type is used
for all local or member variables of the agent that are not shared with
other agents or the agency. Data items of this type are part of the serialized
agent. After migration, data items of this type no longer exist at the sender
agency.

Copying Copying is mobile, and the source is not removed. This data type
is used for all variables for which the agent has a reference and that are
shared with other agents or the agency itself. A copy of the data item is
part of the serialized agent, so at the remote agency the agent has still
access to it but modifications are not visible at the original data item at
the last agency.

13. <Data> ::= “DataTypes” + “=” + <DataTypes> + “.”

14. <DataTypes> ::= <DataType> + ({ “;” + <DataType>})

15. <DataType> ::= [“Proxy” | “Static” | “Moving” | “Copying”]

5. Compare the proxy design pattern described in Gamma et al. [1995].

82 � Chapter 3 Mobile Agent Migration

Migration

We subdivide design issues concerning migration into the following items:

16. <Migration> ::= <Initiator> + <Mobility> + <DestinationAddress> +

<Effect> + <Error>

The first design issue that must be discussed is the initiator of an agent
migration. Migration can be initiated by the agent itself or by some other
instance (e.g., another agent or the agency). Usually, it contradicts the auto-
nomy of software agents for an external instance to decide to migrate an
agent. Nevertheless, in some situations it does make sense to allow this, for
example, for load balancing or in the case of severe errors, which make it
necessary to shut down a complete agency. In this case the agent should be
forced to migrate to another system to prevent severe damage to the agent.
The other scenario, in which migration is initiated from outside the agent, is
when an agent is forced to migrate back to its home agency. If migration is
initiated from outside the agent, it might be useful to allow the agent to vote
against the migration.

17. <Initiator> ::= “MigrationInitiator” + “=” + “Agent” +

<OtherInitiator> + “.”

18. <OtherInitiator> ::= (“;” + “OtherAgent” + (“withVeto”)) + (“;”

+ “Agency” + (“withVeto”)) + (“;” + “Owner” + (“withVeto”))

The next issue is the type of mobility. Existing mobile agent toolkits can
be distinguished by the type of mobility they offer to the programmer, and,
actually, this is the most discussed design issue concerning agent migration.
Each type of mobility can be characterized by the interpretation of the term
state. The type of mobility can be weak or strong, and in both cases further
issues must be decided.

19. <Mobility> ::= “Mobility” + “=” + [“Weak” + “.” + <Weak> | “Strong”

+“.”+]

The weakest form of mobility transmits only the instance variables (object
state) and the code of the mobile agent to the destination platform. The
mobile agent is initialized and started by invoking a designated method. This
kind of mobility is used in Aglets, Grasshopper, Mole [Straßer et al., 1997],

3.3 Design Issues of Agent Migration � 83

and Discovery [Lazar and Sidhu, 1998]. We call this type of mobility weak

mobility with fixed method method invocation.
In a stronger form of mobility the mobile agent toolkit allows the pro-

grammer to define the name of a starting method within the go command.
On the destination site the agent is initialized and started by invoking the
given method. This kind of mobility is used in Voyager [ObjectSpace, 1997].
The drawback of these two forms of mobility is that the programmer has to
exert additional effort to implement state marshaling and unmarshaling of
local variables. Consider the following example:

1 public class AMobileAgent extends Agent
2 {
3 private int copyOfLocal = 0;
4
5 protected void anyMethod()
6 {
7 int local = 10;
8
9 // some code

10
11 // before we can migrate, we have to save variable local
12 copyOfLocal = local;
13
14 go(“tcp://tatjana.cs.uni-jena.de”, “runAtRemote”);
15 }
16 }

This example shows how to save the value of local variables in object vari-
ables so that the value is part of the serialized agent. Method runAtRemote

can use variable copyOfLocal again.
In both mobility levels the migration command has to be the last instruc-

tion within a method, because changing the platform induces invoking a
new method. The difference between these two types of mobility is not really
evident, because it is very easy to map the latter type of mobility to weak
mobility in the Java programming language. We show an example of an agent
that simulates the latter form of mobility, although the mobile agent toolkit
only provides weak mobility.

1 public abstract class GoWithMethodName extends Agent
2 {
3 private String nextMethod = null;
4

84 � Chapter 3 Mobile Agent Migration

5 protected void go(String destination, String methodName) throws Exception
6 {
7 nextMethod = methodName;
8 go(destination);
9 }

10
11 public void run()
12 {
13 Method method = this.getClass().getMethod(nextMethod, new Class[0]);
14 method.invoke(this, new Object[0]);
15 }
16 }

The go command stores the name of the method to be invoked at the
remote agency in a variable that is part of the serialized agent. At the remote
agency, the designated method run is started as usual for weak mobility. This
method uses the Java reflection mechanism to call the given method. We call
this type of mobility weak mobility with arbitrary method invocation.

20. <Weak> ::= “WeakMobility” + “=” [“FixedMethod” | “ArbitraryMethod”] +

“+” + [“Command” | “Ticket”] + “.”

When only a weak form of mobility is offered, the command to initi-
ate the migration can be a specific command or predefined method of the
agent, or a ticket. The first way is to use a migration command, for exam-
ple, go or move, in which parameters define to which agency the agent
should migrate. The other way is to store necessary information about the
destination as a data structure that is called a ticket. When agent execu-
tion terminates, the agency reads the ticket and migrates the agent. Using a
migration command terminates agent execution at exactly the point where
the migration command occurs. All statements following the migration com-
mand are never executed, unless a migration error occurs, which we will
discuss later. Using a ticket does not give direct control of migration to the
programmer. A ticket can be redefined several times, which makes it not
obvious to the programmer what the agent really will do when execution
terminates.

Mobile agent toolkits that offer the highest level of agent mobility can
marshal not only all instance variables but also all local variables of the cur-
rent method, together with the program counter and the call stack. On the
destination agency the agent is initialized and started at the first instruction
after thego command.We call this type of mobility strong. Early mobile agent

3.3 Design Issues of Agent Migration � 85

toolkits, such asTelescript [White, 1996] or AgentTCL [Gray, 1996], offered this
kind of mobility, because it is the most natural one for the programmer. It is
comparatively easy to add all the features that support strong mobility to a
mobile agent toolkit if full access to the underlying programming language,
the compiler, and the runtime system is available. A new command go can
be supplemented that initiates the complete marshaling process, or open
access to call stack and program counter can be granted to the programmer
of the mobile agent system.

To implement strong mobility in mobile agent toolkits that are written in
the Java programming language, the source code of the Java virtual machine
(JVM) must be modified or the agent’s source code has to be transformed to
simulate modification. Modifying the JVM is difficult, although it is said to be
done in Ara [Peine and Stolpmann, 1997], Sumatra [Acharya et al., 1997], and
D’Agents. (See also the Merpati project at University of Zurich, Switzerland
[Suri et al., 2000].) A modification of the JVM must be considered strategically
imprudent. A customer can use the resulting mobile agent toolkit only if
he uses the modified JVM, not to mention problems of licensing the JVM
source code.

The other way to offer strong mobility to the programmer is agent source
code transformation. Fünfrocken [1999] transforms the agent’s source code
by a preprocessor that inserts code to save and recover the execution state.
Another comparable attempt has been made by Sekiguchi et al. [1999]. The
drawback of both methods is a longer source code and an unnegligible
performance decrease. Other techniques to achieve strong mobility were
developed by Illmann et al. [2001], Bettini and Nicola [2001], Wang et al.
[2001], Fukuda et al. [2003], and Chakravarti et al. [2003].

Strong mobility, in the way we have described it, only means that the
agent can interrupt itself to start the migration. The reverse case, that the
agency can interrupt an agent (e.g., to perform load balancing or to start an
emergency migration to a neighbor platform because of a system failure)
is not possible with any of these migration concepts. Because it is cur-
rently impossible to achieve this transparent type of mobility, we do not
add a design alternative for this case. (See Walsh et al. [2000], who describe
how to achieve this type of mobility in principle in Java.)

21. ::= “StrongMobility” + “=” + [“SourceCodeTransformation” |

“VMModification”] + “.”

Whether weak or strong mobility should be implemented in mobile agent
toolkits has been a major issue. Baumann [1995] states that strong mobility

86 � Chapter 3 Mobile Agent Migration

is useless in most cases, because “a migration step is a major break in the
life of an agent.” Usually, a mobile agent works in phases, and each phase is
completely executed at a single agency. Migration at the transition between
phases, takes place not within a single phase. Cabri et al. [2000] argue
along the same line while stressing that weak mobility leads to a “clean pro-
gramming style, … resulting in a more clear and understandable program.”
Advocates of strong mobility argue that it has a more natural programming
style and more possible advantages in agent engineering; see, for exam-
ple, Belle and D’Hondt [2000]. Walsh et al. [2000] argue that the advantage
of strong mobility is “that long-running or long-lived threads can suddenly
move or be moved from one host to another,” which immediately leads to
the question of agent autonomy.

Next, the target of a migration must be discussed. Each migration is
directed to some target, whose address must be defined using a migration
command or a ticket. Usually, migration is directed to a remote agency
whose name is known. Migration can also be directed to another agent or
a resource that the agent wants to use. Then we must take into account
whether only the next destination is specified or a complete itinerary or route
can be defined. In some application scenarios it might be very useful to have
a mechanism to define a route, because the agent has to repeat a single task
on several agencies to collect data. The route can be defined by the program-
mer of the agent and can be fixed (i.e., not modifiable by the agent during
runtime) or fully flexible, allowing the agent to define the route by itself.

22. <DestinationAddress> ::= “DestinationAddress” + “=” +

<DestinationType> + ({ “;” + <DestinationType>}) + “.”

23. <DestinationType> ::= <Resource> + “+” + <Cardinality>

24. <Resource> ::= [“Agency” | “Agent”]

25. <Cardinality> ::= [“Single” | “Fixed Route” | “Definable Route”]

The next issue is the effect of an agent migration. Usually, in a migration,
the agent is moved completely to the remote agency and there is still only a
single instance of this agent. One alternative is to make a fresh copy of the
agent, which is sent to another agency and started as if it has not existed
before. Another option is to clone the agent. In this case a copy is sent to a
remote agency, but this copy already has the same data as the original agent.
The latter technique is used in AgentTCL and is called forking there.

3.3 Design Issues of Agent Migration � 87

26. <MigrationEffect> ::= “MigrationEffect” + “=” + <Effects> + “.”

27. <Effects> ::= <Effect> + ({ “;” + <Effect>})

28. <Effect> ::= [“Move” | “Copy” | “Cloning”]

The final design issue is related to an agency’s behavior if there is
a migration error. The technique to use here depends on the type of mobility
chosen. For the first technique the agent restarts, and a local variable indi-
cates that an error has occurred. If a weak form of mobility was chosen, then
this kind of error notification is used. If the system allows an arbitrary method
to be invoked after successful migration, then invoking an error method is
a good alternative. The reason of the migration failure can be given as a
parameter. If a system provides strong mobility, then throwing an exception
is the best technique. Grasshopper offers this technique too, although it offers
only a weak form of mobility.

29. <Error> ::= “MigrationError” + “=” + [“Restart” | “ErrorMethod” |

“Exception”] + “.”

Agent’s View

In this section we look at the way code can be relocated within the network.
Data transmission is not an issue here, because the types of data supported
by the mobile agent toolkit were already defined previously and the only
technique currently available is that in which the serialized agent is sent as
a single unit from the current agency to the next remote agency.

Migration Strategies

The type of code relocation that is used for agent migration is named migra-

tion strategy. In the following we describe four common migration strategies
with regard to transmission type, site location and code granularity (Fig. 3.10).

Some toolkits offer a migration strategy that we call push-all-to-next

strategy. The code of the agent (together with the code of all referenced
objects) and the serialized agent are transmitted simultaneously. Some tool-
kits do not transmit the whole code but rather filter out those pieces of code
already available on each platform (e.g., ubiquitous classes) like the stan-
dard classes of Java and code of the mobile agent toolkit. This migration
strategy is used in Voyager 2.0 [ObjectSpace, 1998], Ara [Peine, 1997], and

88 � Chapter 3 Mobile Agent Migration

Pull-per-unit Pull-all-units

Class file Class archive

Code Granularity

P
u

s
h

 c
o

d
e

T
ra

n
s
m

is
s
io

n
 T

y
p

e

P
u

ll
c
o

d
e

Pull-all-to-all

Push-all-to-next

N
ext site

All sites

Figure 3.10 Overview of migration strategies.

Extended Facile [Knabe, 1997a]. It corresponds to one of the main charac-
teristics of mobile agents—autonomy. The agent needs no connection to the
home agency, from which it was started. At a first look this strategy seems fast,
because only one transmission is necessary for the complete agent. However,
a major drawback is that code that is probably never used is transmitted to
the destination site.

The second approach does not transmit any code with the data trans-
mission. We call this the pull strategy. After receiving and unmarshaling
the agent’s data, the mobile agent server on the destination site tries to
invoke the given method and then starts loading the corresponding class files
dynamically. The pull strategy can be further divided into pull-per-unit and
pull-all-units. The first strategy dynamically loads code on a per-class policy,
whereas the second strategy loads all class files as one package immediately
if even one class file must be loaded. The pull strategy is used in Mole [Straßer
et al., 1997] and in Grasshopper. This strategy can be slower than push-all-
to-next, because several network connections may be necessary to load all
the required class files. When delegating this task to the Java virtual machine,
one network connection per class is needed (pull-per-unit), unless several
classes have been combined into one Java archive (pull-all-units). The major
drawback of both pull-oriented migration strategies is that there must be an
open network connection, or at least a fast way to reconnect, either to the

3.3 Design Issues of Agent Migration � 89

home agency or to the last agency the agent came from. If it is impossible
to connect to any of these platforms, the agent cannot be executed.

The fourth migration strategy is the push-all-to-all strategy. As in the
push-all-to-next strategy, the complete code of an agent is transmitted, but
it is sent to all destination platforms the agent is going to visit, not only
to the next destination. Of course, this requires that the agent know all its
destinations in advance (e.g., by a given itinerary). When an agent arrives
on a destination platform, the execution can start immediately, without any
further code downloading.

Besides these four different strategies, combinations of push and pull
techniques are used in some toolkits, as we describe in detail later, for exam-
ple, Aglets offers a technique in which classes with a high probability of use
at the next agency are pushed and missing classes are pulled from a code
server later on demand. The MASIF standardization approach suggests that
only the agent’s main class be pushed and that all other classes be loaded on
demand. However, the decision of which classes are pushed and which are
pulled is made by the system. In contrast, in Sumatra [Acharya et al., 1997],
the programmer can combine push and pull strategies manually.

Almost all mobile agent toolkits offer only one of these strategies, and
an interesting question is whether it makes sense to adapt the migration
strategy to fit an application scenario. We already mentioned some qualita-
tive arguments in favor of each migration strategy, but we have not provided
exact quantitative arguments. For the moment, we only mention that our
own research [Braun et al., 2001b] has come to the conclusion that there
are unnegligible performance differences between all strategies—we come
back to this question in the next section.

Code Transfer

We now discuss the following issues concerning code relocation:

30. <Agent> ::= <CodeTransfer> + (<CodeCache>) + (<UbiquitousClasses>)

As described in the last section, code relocation strategies can be divided
into push strategies and pull strategies. Some toolkits offer both approaches,
which means that some classes are pushed to the next destination and
other classes are pulled on demand.

31. <CodeTransfer> ::= “CodeRelocation” + “=” + <CodeStrategies> + “.”

90 � Chapter 3 Mobile Agent Migration

32. <CodeStrategies> ::= <CodeStrategy> + ({ “;” + <CodeStrategy>})

33. <CodeStrategy> ::= [<Push> | <Pull>]

When the system offers a push strategy, it must be decided which classes
must be sent to the agency. We call this issue <ClassClosure>. The first
technique is to determine all classes the agent might ever use during its
lifetime based on the agent’s main class file. How to determine an agent

class closure in Java was already described in Section 3.1. The next tech-
nique collects only those classes for which an object exists in the serialized
agent (“SerializedAgentClosure”). Because these classes are neces-
sary to deserialize the agent successfully at the remote agency, it is a good
compromise between sending all classes at once and sending none. However,
the fact that some classes are in use does not say anything about the prob-
ability of other classes being in use at the next agency. Some systems allow
the user to bundle classes in a JAR file, and whenever a class from a JAR file
must be transmitted, the whole JAR file will be transmitted (“JarClosure”).
The last technique allows the user to make the decision of which classes
will be transmitted transmit dynamically during runtime.

The next design issue that must be decided is whether code can be
pushed only to the next agency or to all agencies that were defined in a route
or that are available within the logical network.

34. <Push> ::= “Push” + <ClassClosure> + “To” + <PushTarget>

35. <ClassClosure> ::= [“AgentClassClosure” | “SerializedAgentClosure”

| “JarClosure” | “UserDefinedClosure”]

36. <PushTarget> ::= [“NextServer” | “ManyServers”]

When a system offers a pull technique, it first must be decided what
transmission unit will be used. Usually, only single class files will be trans-
mitted. Although not implemented in any mobile agent toolkit, it is possible
to download a complete JAR file. The next issue is the place where the remote
agency looks for the class to be loaded. Here, a mobile agent toolkit must
define a strategy for which instances are to be asked for the code and in
which order. A possible component is, for example, the class loader, which
is responsible for loading all the agent’s classes. A class loader should have a
local cache of all classes already loaded. Next, the local CLASSPATH variable
could be checked for a class with the given name. Then, an agency-wide class

3.3 Design Issues of Agent Migration � 91

cache, which is shared by all class loaders, can be asked, and finally, sev-
eral other agencies, for example, the last agency visited or the agent’s home
agency, can be asked.

37. <Pull> ::= “Pull” + [“Jar” | “Class”] + “From” + <PullTargets>

38. <PullTargets> ::= <PullTarget> + ({ “+” + <PullTarget>})

39. <PullTarget> ::= [<AgencyType> | “ClassLoader” | “ClassPath” |

“Cache” | “CodeSource”]

40. <AgencyType> ::= [“Home” | “Remote” | “LastServer”]

An important design issue is to decide which classes are never trans-
mitted, even if they are members of a class closure, because they are assumed
to exist at every agency already. Those classes were named ubiquitous in
Section 3.1. A mobile agent toolkit might define that by itself, for example,
it could determine that all class from Java packages (which have specific
prefixes) and all classes of the mobile agent toolkit are never transmitted.
Sometimes it might be useful to allow the user to add package prefixes or
class names to this list (“UserDefined”), because mobile agents are part of
some application that can also be assumed to exist on every remote agency.
The most flexible way is to allow the agent to define its own filter list.

41. <UbiquitousClasses> ::= “UbiquitousClasses” + “=” + [“SystemDefined”

|“UserDefined” | “AgentDefined”] + “.”

Finally, it is important to decide whether class code is cached by the
agency after it was loaded for the first time. Although caching is a good
technique to save time when loading the same classes very often, it has
the negative effect that class code changes might not become visible to the
agency, because the cache is not informed about changes. Caching can be
found most often when an agent’s code is reachable using the CLASSPATH

variable, because all classes of the CLASSPATH are loaded by the system
class loader of the Java virtual machine. For other classes it must be decided
whether the agent class loader or a component of the agency manages the
class cache. In the first case, agents of the same type are not able to share
code, which means that the same class might be loaded more than once.
In the latter case, agents might share classes, which might lead to problems
with different class versions. In this case it must also be decided whether
any kind of version management will be implemented. Another design issue

92 � Chapter 3 Mobile Agent Migration

concerning code caches is whether the class cache is checked only before
loading classes or also before class transmission. The first approach can pre-
vent only class downloading, whereas the second approach can also prevent
classes from being pushed to the agency. This technique must be supported
by the migration protocol, because class names must be sent before pushing
any agent code. The remote agency could determine for which classes the
code is already available.

42. <CodeCache> ::= “CodeCache” + “=” <Instance> + “+” + [“BeforeTransfer”

| “BeforeLoad”] + “.”

43. <Instance> ::=[“ClassLoader” | “Agency”]+“+” +(“VersionManagement”)

Network’s View

The last view considers all aspects related to data transmission. The trans-

mission strategy defines the way an agent is actually transmitted to the
destination platform. Some Java-based mobile agent toolkits (e.g., Mole) use
a proprietary and very simple migration protocol that is based on remote

method invocation (RMI) [Sun, 2002] for this task. The destination agent
server is an RMI server that provides a method to accept a mobile agent. The
drawback of using RMI is its poor performance. Most toolkits use migration
protocols in addition to TCP/IP or HTTP.

It must be decided whether an asynchronous or synchronous migration
protocol is used. The advantage of an asynchronous protocol is performance,
whereas it can also be more unreliable, because the remote agency does
not acknowledge reception. The second issue is whether migration is fail-
ure atomic, that is, whether the migration protocol guarantees that the
mobile agent is transmitted completely or not at all. The next issue is the
network protocol. Several protocols are listed; the most common are per-
haps TCP/IP and RMI. Grasshopper defines some kind of meta-protocol,
which can be used to determine which protocols the receiver agency supports
before sending the agent.

44. <Network> ::= <MigrationProtocol> + <TransmissionProtocols>

45. <MigrationProtocol> ::= “MigrationProtocol” + “=” + [“Synchronous” |

“Asynchronous”] + (“FailureAtomic”) + “.”

3.3 Design Issues of Agent Migration � 93

46. <TransmissionProtocols> ::= “TransmissionProtocol” + “=”

<NetworkProtocols> + “.”

47. <NetworkProtocols> ::= <NetworkProtocol> + ({ “;” +

<NetworkProtocol>})

48. <NetworkProtocol> ::=[“TCP/IP” | “CORBA” | “SSL” | “RMI” | “RMISSL”

| “SOAP” | “META” | “HTTP” | “Other”]

3.3.2 Examples for Mobility Models

In the following section we describe the mobility model of the mobile agent
toolkits Aglets and Grasshopper. We chose these two toolkits, because they
are the most famous and are used for real-world application development.
We will not describe the Tracy mobility model here; a detailed introduction
into the migration technique of Tracy will be part of the next chapter.

Aglets

Aglets is a mobile agent toolkit that was developed by IBM in 1995. The first
announcement was made at the JavaOne conference in 1996, and the first
version of Aglets was published in 1998. Since 2000, Aglets has been an open-
source project at Sourceforge and is no longer supported by IBM. The Aglets
toolkit supports the MASIF standard.

Aglets provides a weak form of mobility, in which a method named run is
called whenever an agent is started or restarted at an agency. The migration
initiation command is named dispatch and gets as a single parameter the
URL of the destination agency. To address agencies, a protocol and a host
name are mandatory and a symbolic agency name can be added if more
than one agency exists at the destination. The port number is predefined and
cannot be changed. Route management is not supported by the dispatch
method but can be implemented by the user with use of a specific design
pattern.

When an agent is created, only a single code source can be defined,
but the type of code source is very flexible. It usually contains a URL to a
resource that can be accessed using the HTTP protocol or the Aglets migra-
tion protocol ATP. Classes must be stored in a directory that is listed in the
AGLET_EXPORT_PATH environment variable to be fetched from any agency
using the ATP protocol. If the code source contains a file system path,
classes cannot be downloaded from remote agencies. If no code source was

94 � Chapter 3 Mobile Agent Migration

defined at all, then the agent’s code is loaded using the environment vari-
able AGLET_PATH, which contains a list of directories of the local file system.
These classes cannot be transferred to other agencies.

The migration strategy of Aglets is not just a simple push or pull strategy
but a sophisticated combination of both. When an agent migrates, all classes
for which an object exists in the serialized agent (Aglets calls these classes in

use) are pushed to the next agency. If the code source is a JAR file, then the
entire JAR file is pushed to the next agency without regard for whether a class
is in use. At the destination agency, missing classes are loaded on demand
(pulled). To load a class, the following strategy is used. First, it is determined
whether the current class loader has already loaded this class, then the class is
searched in the local CLASSPATH. Because of this, local class might be loaded
even though the agent has pushed its own class file. Third, the local cache
manager is checked, which is, in the current version of Aglets, able to cache
only JAR files. Finally, the agent’s code source is checked for the code. Code
downloading is always based on single class files and never on complete JAR
files. Classes that are not supposed to migrate must be defined using one of
the two environment variables, CLASSPATH or AGLET_PATH.

The user can influence the migration strategy used for the next migration
only by modifying the object state of the agent. If a class is not to be transferred
to the next agency, none of its objects may exist in the serialized agent. The
most flexible way to achieve this is to set all variables of this class to null.
Then the Java serialization process will not consider this class. The other way
is to define a variable as transient, which has the same effect. The reverse
case, to transmit a class although no object of this type currently exists, can
be achieved just as easily. It is necessary only to add a variable of type Class,
which must be initialized with the name of the class to transmit, for example,
Class forceTransmission = MyClass.class.

Other important issues of the Aglets mobility model are that an agent’s
owner is able to retract an agent from any agency, if he or she knows its cur-
rent location. Aglets uses the standard Java serialization technique, so data
types static, copy, and move are supported. The class cache is requested
only before class downloading, and the migration protocol is defined in addi-
tion to TCP/IP, and can also be tunneled within an HTTP protocol to get
through firewalls.

Here is the complete description of the Aglets’s mobility model:

1 // Programmer’s view

2 //
3 AgencyName = SymbolicName + HostName .

3.3 Design Issues of Agent Migration � 95

4 AgencyAddress = Protocol + HostName ; Protocol + HostName + SymbolicName .
5 CreateAt = CurrentAgency .
6 Code = ClassPath + Class ; ClassPath + Jar ; FileSystem + Class ;
7 FileSystem + Jar ; HTTP + Class ; HTTP + Jar ;
8 MigrationProtocol + Class; MigrationProtocol + Jar .
9 DataTypes = Static ; Copy ; Move .
10 MigrationInitiator = Agent ; OtherAgent ; Owner .
11 Mobility = Weak .
12 WeakMobility = FixedMethod + Command .
13 // Agent’s view

14 //
15 DestinationAddress = Agency + Single .
16 MigrationEffect = Move .
17 MigrationError = Restart .
18 CodeRelocation = Push SerializedAgentClosure To NextServer ;
19 Push JarClosure To NextServer with base Jar ;
20 Pull Class From ClassLoader + ClassPath + Cache + CodeSource .
21 UbiquitousClasses = SystemDefined .
22 CodeCache = ClassLoader + BeforeLoad .
23 // Network’s view

24 //
25 MigrationProtocol = Synchronous .
26 TransmissionProtocol = TCP/IP ; HTTP .

Grasshopper

The Grasshopper mobile agent toolkit was developed by IKV++, in Berlin,
Germany. The first version was developed at GMD FOKUS in 1995. Since 1998
the product has been maintained by IKV, which is a GMD spin-off company.
Currently, Grasshopper has been shared to a be part of a new product called
enago. Grasshopper supports both MASIF and FIPA standards.

Grasshopper provides a weak form of mobility, in which a method
named live is invoked to start the agent. The migration initiation com-
mand is move, which gets as a parameter the URL of the next destination.
Grasshopper’s technique for catching migration errors is interesting: An
exception is thrown. Grasshopper does not provide techniques for route
management.

When an agent is created, several code sources can be defined from
which code can be loaded on demand. A user definable code source can
be on the local file system or can be accessed via the HTTP protocol. In
either case it seems impossible to define a JAR file as the code source.

96 � Chapter 3 Mobile Agent Migration

When an agent migrates, no classes are transmitted with object state migra-
tion, which means that Grasshopper does not support any kind of push
strategy. When the agent is deserialized, classes must be pulled accord-
ing to the following strategy. First, the agency’s CLASSPATH is checked by
the system class loader. If code is reachable using this class loader, no two
different classes with the same name can exist. Next, the last agency from
which the agent has come is asked for the class. If it is still not found, all
the agent’s code sources are checked sequentially, and finally the agent’s
home agency is asked for the code. In all of these cases, class files are
cached only by the agent’s class loader, so transmission of the same class
for different agents cannot be avoided. Because Grasshopper provides only
a single pull migration strategy, there is no chance for the user to change
the migration behavior of its agent. It is even impossible to modify the class
downloading strategy, for example, to bypass the last agency to be asked for
the code.

Another important issue of the Grasshopper mobility model is that an
agent can be forced to migrate by other system components, but the agent
is able to vote against a migration. Grasshopper’s transmission strategies are
very interesting. Grasshopper not only supports several network protocols
but also has a meta-protocol by which two agencies can communicate to
ascertain which network protocols are supported by both systems. A service
called region registry is responsible for maintaining a directory of all agencies
active within the local subnetwork. Using this region registry makes it possible
to omit port numbers in the agency address.

1 // Programmer’s view

2 //
3 AgencyName = HostName + SymbolicName .
4 AgencyAddress = HostName + SymbolicName ; Protocol + HostName + SymbolicName ;
5 Protocol + HostName + SymbolicName + PortNumber .
6 CreateAt = CurrentAgency .
7 Code = ClassPath + Class ; HTTP + Class ; .
8 DataTypes = Static ; Copy ; Move .
9 MigrationInitiator = Agent ; System WithVeto .
10 Mobility = Weak .
11 WeakMobility = FixedMethod + Command .
12 // Agent’s view

13 //
14 DestinationAddress = Agency + Single .
15 MigrationEffect = Move .
16 MigrationError = Exception .

3.3 Design Issues of Agent Migration � 97

17 CodeRelocation = Pull Class From ClassLoader + ClassPath + LastServer +
18 CodeSource + Home.
19 UbiquitousClasses = SystemDefined .
20 CodeCache = ClassLoader + BeforeLoad .
21 // Network’s view

22 //
23 MigrationProtocol = Synchronous .
24 TransmissionProtocol = TCP/IP ; CORBA ; SSL ; RMISSL ; META .

3.3.3 Related Work—Other Classification Approaches

In this chapter we proposed a classification scheme for the migration issues
of mobile agents. Although almost every mobile agent toolkit has imple-
mented a different migration technique, as far as we know, no sophisticated
approach has been developed to classify these different techniques. Some
authors describe design issues of mobile agent toolkits in general (e.g., related
to agent communication, agent naming, security). Concerning agent mobil-
ity, these approaches remain superficial and in most cases mention only the
difference between weak and strong mobility.

For example, Hammer and Aerts [1998] discovered several design issues
concerning mobile agent toolkits, but detected only three issues concern-
ing migration. First, according to Hammer and Aerts, it must be decided
whether migration is state preserving. The next issue is whether migration is
failure atomic, and the last issue is whether the agent can define an itinerary.
Karnik and Tripathi [1998] distinguish only between strong and weak mobil-
ity; whether the agent is moved, cloned, or forked; and whether code is
pushed to the next agency or pulled from the home agency. Cabri et al. [1998a]
decide only between strong and weak mobility and whether migration is ini-
tiated explicitly by the agent itself or implicitly by the underlying agency
software.

Fuggetta et al. [1998] have proposed the best approach so far to classify dif-
ferent techniques for mobile code. Unfortunately, their approach is not suited
to classify mobile agent migration techniques; it mainly tries to cover all types
of mobile code approaches, such as code-on-demand, remote-evaluation,
and mobile agents. The authors distinguish strong and weak mobility; they
use the term weak mobility to mean remote-evaluation, in which, except
for some initialization data, no state information is shipped to the remote
server. In our definition, weak mobility contains the object state of the agent.
Fuggetta et al. define strong mobility as supported in two forms: migration

98 � Chapter 3 Mobile Agent Migration

and remote cloning. The first form is comparable to our migration effect of
moving an agent, whereas the latter is comparable to our migration effect
of cloning an agent. Weak mobility is divided into code shipping (remote-
evaluation) and code fetching (code-on-demand)—do not confuse this with
our distinction between push and pull migration strategies. Finally, the
authors distinguish between asynchronous and synchronous techniques, in
which the sending execution unit is either nonblocking or blocking and wait-
ing for the result. The authors also classify data-space management, which
results in an enumeration of alternatives comparable to our approach for
the data design issue.

3.4 Reasoning about Improved Mobility Models

In the previous section we presented information about current imple-
mentation techniques for mobile agent migration. We can now address new
mobility models and migration techniques that surmount the drawbacks of
simple mobile agents, as discussed in Section 3.2.3.

In Section 3.4.1 we discuss these drawbacks against the background of
current implementations and evaluate whether today’s mobility models are
able to solve any of these problems. Then, in Section 3.4.2, we will exam-
ine factors influencing mobile agents’ performance and discuss how this
performance can be improved. One important aspect of Section 3.4.3 is to
investigate whether the migration strategy has an effect on the overall perfor-
mance of mobile agents. In Section 3.4.4, we will describe our new mobility
model, named Kalong. Using the Kalong mobility model gives the mobile
agent programmer and the mobile agent itself the possibility of influenc-
ing the migration strategy in a very fine-grained way and offers other very
important new features to increase migration performance.

3.4.1 Drawbacks of Simple Migration Techniques, and
Current Implementations

In Section 3.2.3 we discussed the results of our mathematical model for net-
work load and transmission time for mobile agents using a single, very simple
migration technique (push-all-to-next). We detected several inherent draw-
backs of mobile agents that are responsible for a higher network load and
higher processing time as compared with client-server approaches.

3.4 Reasoning about Improved Mobility Models � 99

The inherent drawbacks of mobile agents are:

■ An agent’s code is typically larger than a simple client-server request
and causes a fixed overhead for each migration. It is only practical to
send large code to remote agencies if server results can be decreased
dramatically by data filtering or compression.

■ An agent’s code is transmitted to a remote agency, even if it is never used
there. In the case of the push-all-to-next migration strategy, transmission
of never-used classes cannot be avoided. However, even in the case of a
pull migration strategy, code might be loaded superfluously because of
the object state serializing technique used by all Java-based mobile agent
toolkits. We will present an example of this later.

■ An agent’s data is transmitted as a single unit, which means that a mobile
agent carries data items to all servers of the given itinerary, even if they
are never used before reaching the home agency again. In the other case,
the agent carries data items to several agencies, although they are never
used at the first agencies. This was the reason for poor performance in the
case of a high number of agencies.

However, we have also already detected a major advantage of mobile
agents. For small-bandwidth network connections, a mobile agent rarely
needs to use this bottleneck for migration, whereas client-server approaches
have to use it several times.

It is fair to assume that using migration strategies other than the simple
push-all-to-next strategy could be a solution for the problem of superfluously
transmitted class code. For example, in the pull-per-unit strategy, code is
never transmitted with an agent’s state transmission and is always loaded
dynamically on demand. Therefore, classes are transmitted only if they are
imperative at the remote agency. It is important to understand what it means
for a class to be imperative at a specific agency. Usually, we would expect
to load a class, only if the corresponding object is accessed, that is, used or
defined. In Java, at least as long as the Java object serialization technique is
used, code must also be downloaded if an object of this type is part of the
serialized agent. Look at the following example for a mobile agent:

1 import de.fsuj.tracy.agent.*;
2
3 public class SomeTracyAgent extends Agent
4 {

100 � Chapter 3 Mobile Agent Migration

5 protected SomeClass first = new SomeClass();
6 transient SomeOtherClass second;
7
8 public MyFirstTracyAgent()
9 {
10 // do some initialization

11 }
12
13 public void startAgent()
14 {
15 // do something

16 go(“tcp://tatjana.cs.uni-jena.de”, “runAtRemote”);
17 }
18
19 public void runAtRemote()
20 {
21 // do something

22 if(/* ... */)
23 {
24 AnotherClass third = new AnotherClass();
25 // do something

26 }
27 go(“tcp://domino.cs.uni-jena.de”, “runAtNext”);
28 }
29 }

After initialization, the agent immediately migrates totatjana.cs.uni-
jena.de, and execution is resumed by invoking method runAtRemote.
Variable first is part of the serialized agent, whereas variable second is
not, because it is marked as transient. We assume that the agent migrates
using strategy pull-per-unit, so no classes are sent with the object state.
When the agent is deserialized at the remote agency, besides the agent’s
main class SomeTracyAgent, class SomeClass is also loaded, because
it is needed to reconstruct the agent correctly. Thus, this class is loaded,
although method runAtRemote does not use variable first at all. Class
SomeOtherClass is also loaded, because it is necessary to create an object
of type SomeTracyAgent, although variable second was not part of this
serialized object and is not used in method runAtRemote. An example in
which code downloading really depends on use is variable third, which is
a local variable defined within method runAtRemote. If we assume that no
other object variable uses SomeOtherClass, then only if the expression in
line 22 is true, will code for class SomeOtherClass be loaded. What we

3.4 Reasoning about Improved Mobility Models � 101

have learned from this example is that when using the standard Java serial-
ization technique, the agent and the programmer do not have precise control
over which classes are downloaded at the destination agency. Even if strat-
egy pull-per-unit is used, classes might be downloaded that are not really
necessary at the remote agency.

We now want to discuss whether the disadvantages of the two simple
migration techniques just described can be resolved by any mobility model
presented in the last section. The first point—mobile agents’ code being
larger than a simple client-server request—can of course not be solved by
any mobility model automatically. The problem is that an agent’s code usually
contains other methods that are not needed at the next destination, which
lengthen the code. An agent’s code size would surely benefit from a code split
so that each piece of code would contain only methods with high coherence.
Code transmission would then work on the basis of code pieces. As long as
such a code-splitting technique is not available, the programmer can attach
importance to this problem only when designing his or her agents.

The second point—superfluously transmitted classes—cannot be solved
either in the Aglets toolkit or in the Grasshopper toolkit. For example, in
Grasshopper, classes are never pushed to next agencies but rather always
loaded dynamically on demand. Because Grasshopper uses the standard
Java serialization technique, some classes might be loaded even though their
code is not needed at the destination. Classes are also loaded superfluously
if two agents of the same type reside at the same agency. Code is loaded twice
in this case, because Grasshopper does not provide code caching on the level
of agencies. In Aglets, classes in use are pushed, and other classes are loaded
on demand. The user is able to influence only which classes are pushed to
the next agency (e.g., by storing class code in different directories on the local
file system and defining environment variables appropriately). Because the
Aglets toolkit is also based on the Java serialization technique, classes are
downloaded.

The third point—fine-grained data transmission—cannot be solved by
either system’s mobility model, because both use the standard Java serial-
ization technique, in which the object closure always contains all data items
that are in use and not marked transient. The user cannot download data
items from the agent’s home agency during the agent’s tour or send data items
back to the home agency when it is known that they are not used at the next
agencies, unless he or she uses application-level techniques.

Our conclusion after this brief analysis of current mobility models
and toolkits is that none of them is even close to solving the problems

102 � Chapter 3 Mobile Agent Migration

we identified as inherent drawbacks of simple migration techniques.
Although neither of the inspected mobile agent toolkits uses the simple
push-all-to-next migration strategy, they are not able to solve the problems
of superfluously transmitted code and data transmission.

3.4.2 Improving the Performance of Mobile Agents

Before we examine specific techniques to improve the migration process
using new sophisticated mobility models, we need to think about perfor-
mance optimizations for mobile agents in general. In the next section we
concisely discuss several approaches to improve the performance of mobile
agents. Then, we discuss the influence of different migration strategies on
the performance of mobile agents.

Overview of Mobile Agents’ Performance Aspects

The performance of mobile agents is influenced by several factors, and within
the life cycle of a typical mobile agent, we find several areas where perfor-
mance can be improved (e.g., its task given by the user, the route or itinerary,
its code size, the size of collected data, network parameters like bandwidth
and latency).

To structure our discussion, we developed the following classification
schema (Fig. 3.11). We first divide runtime aspects and transmission aspects.

Runtime Aspects

In runtime aspects we place techniques by which an agent’s execution time
can be improved. The first important aspect is the format, used to send an
agent’s code to destination agencies.

Code Format

The code format influences code size, and therefore, code execution time,
and, to a lesser extent, transmission time. We can distinguish here among
source code, intermediate byte code, and machine code. Machine code is
specific to a processor architecture family and cannot be executed on proces-
sors that do not belong to this family. In heterogeneous systems like mobile
agent systems, it is very important to have code in a format that can be

3.4
R

easo
n

in
g

ab
o

u
t

Im
p

roved
M

o
b

ility
M

o
d

els
�

1
0
3

Performance of Mobile Agents

Runtime Aspects

CodeFormat

Transmission Format Bytecode Format

Code Execution

Hardware Agency

Transmission Aspects

Programmer's View

Mobility Level Route

Agent's View

Migration Strategy Code Cache Code Server Data Items

Network's View

Latency Bandwidth

Figure 3.11 Classification of mobile agents’ performance issues.

104 � Chapter 3 Mobile Agent Migration

understood and executed at all or almost all nodes. Therefore, machine code
is not a good format to transmit mobile agents’ code, unless some kind of
simulator or translator is used that is able to translate code among different
architectures. However, because most computer systems are based on Intel
Pentium, Compaq Alpha, or Sun SPARC processors, techniques that send
an agent’s code in multiple representations to destination agencies could be
used. In the distributed operating system community this was implemented
in systems described by Dubach et al. [1989] and Shub [1990]. In the mobile
object system Emerald [Steensgaard and Jul, 1995], not all code representa-
tions are sent; instead, only one is selected to be used at the next destination.
This technique is not suitable for mobile agents, because a later migration
would not be possible unless the code representation for the destination
platform could be downloaded from some code server on demand. Knabe
[1997a] describes several drawbacks of these approaches, for example, that
the addition of a new processor architecture type requires a new compilation
of all agents. In addition, he points out that the number of different processor
architectures is too high to allow code transmission for all processor types.

A better solution is to transmit an agent’s code in a format that is indepen-
dent of the underlying processor architecture. This might be source code or
some intermediate code representation, if such is available for the language
used. In the first mobile agent’s toolkits, for example, AgentTCL code was
transmitted in source code format. Source code must be compiled at each
agency and translated to an executable format, which increases execution
time and becomes very uneconomical if a huge amount of source code must
be compiled to execute only a few lines of code at an agency. An advantage
of this code format is high execution performance because of the imperative
compilation process.

Intermediate code is the result of a compilation process that is performed
at the agent’s home agency. Intermediate code is a low-level representa-
tion, which consists of commands for a virtual machine. Java byte code is
the most popular example of an intermediated code format, especially for
mobile agent toolkits. Intermediate code is usually more compact than source
code and can contain several architecture independent code optimizations
(e.g., dead code elimination or loop unrolling [Aho et al., 1986]), which
increase execution performance. Intermediate code is either interpreted by
some kind of virtual machine or immediately translated into machine code at
the destination agency. Java uses a mixture of both techniques: Code is inter-
preted when executed for the first time and then translated into machine
code during runtime (just-in-time compilation). Later, this code is further

3.4 Reasoning about Improved Mobility Models � 105

analyzed to detect performance bottlenecks, and the problem code areas
are individually optimized (hot-spot-optimization).

An approach that combines transmission of source code, intermediate
code, and machine code has been proposed by Knabe [1997a]. In his mobile
agent toolkit, which uses the programing language Extended Facile, the
agent programmer can influence in which transmission format the agent
will migrate. The decision might be based on the agent’s task, as can be
seen in the following example, which we take from Knabe [1997a]: In the
case of a so-called batch agent, which has to execute a long-running pro-
cess, the destination agency will benefit from a highly optimized machine
code which can be produced only if high-level source code is available for
compilation. Another example is related to code size versus network qual-
ity. If the network connection has low bandwidth, for example, if it is a
dial-up connection, transmission time is more important than execution
time; therefore, the smallest code representation should be sent, regardless
of execution time.

If we now look at Java as a programming language, another issue that
influences the performance of mobile agents is its byte code format. Although
it is very easy to produce and interpret, Java byte code has some major
drawbacks with regard to code optimization and security. For example, the
stack-based architecture of the Java virtual machine makes it difficult to opti-
mize code for RISC processors, and the built-in byte code verifier provides
only some simple code checks for violations of the basic semantics of Java.
Alternatives to Java byte code that allow easy code annotations for code opti-
mization and provide sophisticated security checks have been discussed in
the programming language community. See Amme et al. [2001] for a new,
safe, intermediate code format for Java, based on static single assignment,
that can be translated to highly optimized machine code very quickly.

Code Execution

Another aspect that influences execution performance is the underlying
hardware architecture (e.g., CPU, memory, system load). Hardware param-
eters are especially important in the case of Java, because the virtual machine
itself needs a huge amount of memory. Unfortunately, this cannot be influ-
enced by the agent or agent programmer. A second aspect is the agency
software and its optimizations on the level of Java code. Some drawbacks
of the Java virtual machine can be resolved through skillful programming
within the agency software. Most of these techniques are not restricted to

106 � Chapter 3 Mobile Agent Migration

programming of mobile agent toolkits but rather are applicable in all Java
programs. We want to mention only two techniques here: improved object
serialization techniques and thread pools. Some authors propose new object
serialization techniques for Java, which either speed up the entire seriali-
zation process or produce a smaller serialized object. See Philippsen and
Zenger [1997] for an example of such a technique.

Because mobile agent toolkits are multi-threaded systems, every soft-
ware agent usually controls at least one thread. To achieve parallel execution
of agents, thread scheduling is provided by the Java virtual machine and
by the underlying operating system. Unfortunately, thread creation is very
expensive in Java and should therefore be minimized to save execution time.
The problem is aggravated if mobile agents have only a very short visit-
ing time at each agency because that makes a thread’s lifetime very short.
It is a well-known technique to use so-called thread pools to solve this
problem. A thread pool is more or less a data structure that manages a stock
of sleeping threads. Whenever a new thread is needed, an already existing
thread from the thread pool is resumed and associated with the new task.
When the task is finished, the thread is put back into the pool again. The
technique of thread pools is described by Soares and Silva [1999], and its
influence on the overall execution performance is measured using several
experiments.

Transmission Aspects

In transmission aspects, all techniques that influence network load and
transmission time during agent migration are summarized. According to the
three views of mobility models, we distinguish three optimization issues.

Programmer’s View

From the programmer’s point of view, the most influential factor is what level
of mobility is supported. Whereas weak mobility is very easy to achieve and
works very quickly in Java-based systems, it is very complicated to achieve
strong mobility in Java, as already mentioned in Section 3.3.1. Strong mobil-
ity not only increases code size and lengthens transmission time but also
increases execution time, as can be seen from the experiments made by
Fünfrocken [1999]. Another concern from the programmer’s point of view is
the itinerary an agent has to execute. The optimization goal within this level
is to find suitable agencies and services, and to optimize the route to all of

3.4 Reasoning about Improved Mobility Models � 107

these agencies. The order in which agencies are visited is most important,
and there are several trade-offs to be considered. For example, is it more use-
ful to go to neighboring agencies first, because they are easy to reach, and to
risk that information will not be found there or go to far-away agencies first
where the probability of finding right information is high but migration costs
are also high and transmission may be untrusted? Moizumi and Cybenko
[2001] define the Traveling Agent Problem, which is NP-complete in its gen-
eral formulation. We named this level of migration optimization the macro

level (see Erfurth et al. [2001a,b]).
An example of an optimization on the macro level is given by Barbeau

[1999]. He uses the term migration strategy to describe the way of relocating
an agent’s state and code within the network. Barbeau uses a more coarse-
grained approach, because he still views an agent’s code as one transmission
unit, whereas we consider code to consist of multiple pieces that can migrate
(almost) independently. He compares three strategies: (1) An agent visits all
nodes sequentially; (2) all nodes are visited sequentially but the agent’s state is
uploaded to its home server periodically; (3) the agent is sent in parallel to all
nodes that it has to visit, using a multi-cast protocol. Barbeau evaluates these
migration strategies using mathematical models and is able to show that it
makes sense to upload the state of an agent to its home agency under certain
circumstances. He also shows that the parallel strategy performs better than
any sequential strategy.

Agent’s View

From the agent’s point of view, a mobile agent’s performance is influenced
by code and data relocation techniques; we call this the micro level of opti-
mization. The issue of optimization here is the amount of network load that
is produced by a single agent migration between two agencies. Migration
time may not depend directly on the number of bytes that are transmitted,
because in networks with varying values for bandwidth it might be even faster
to send a larger number of bytes through a high-bandwidth network connec-
tion than to send a small number of bytes through a low-bandwidth network
connection.

Techniques to optimize network load and transmission time can be easily
deduced from the problems of the simple migration technique. The first
problem is related to the actual size of the code, which can be reduced by
using sophisticated compression techniques that have been developed for

108 � Chapter 3 Mobile Agent Migration

Java byte code, see Bradley et al. [1998] and Pugh [1999].6 The second problem
is raised by code that is superfluously transmitted to a destination agency,
either because it is not needed there or because it already exists there as a
result of a prior code transmission by its agent or another agent of the same
type. However, besides the qualitative arguments against this technique,
we can also mention quantitative arguments. An extension of our model of
network load and transmission time to consider different migration strategies
is beyond the scope of this section, so we postpone it to the following one,
in which we compare all migration strategies presented in Section 3.3.1 in
two application scenarios. The result of this evaluation is that no migration
strategy works best in every situation; that is, no one migration strategy is
able to produce lowest network load and transmission time in all application
scenarios.

The result is that it is not sufficient to make a simple exchange of strategies,
but a dynamic choice for which migration strategy should be used for the next
migration must be made. As we have seen, current mobility models are not
able to provide techniques that allow a dynamic decision between different
migration strategies (e.g., in Aglets it is not possible to decide which class
should be pushed or pulled, and in Grasshopper it is not possible to push
classes at all).

Another technique to avoid class transmission is a class cache. The limi-
tations of current class caches used in Aglets and Grasshopper have already
been described. Class cache techniques are able to avoid class download-
ing only from the agent’s home agency, not code transmission as used in
push strategies. An evaluation of class caches was done by Soares and Silva
[1999]. In the case of push strategies, current class caches are completely
useless. A solution would be a class cache technique that becomes active
when an agent migrates. For example, in the first step, the names of classes
that should be transmitted are sent to the destination agency as part of the
migration protocol. The destination agency answers with information about
which classes are already available. In practice we would have to deal with the
problem of equal class names for different classes and different class versions.

If class downloading cannot be avoided, then it should be made as fast
as possible. To do that, it is important to load classes from a nearby server,
because a shorter distance could improve the time needed for downloading.

6. Regarding byte code compression techniques, you might also want to look at Java Specification
Request (JSR) 200, where a new and dense network transfer format for Java archives is proposed.

3.4 Reasoning about Improved Mobility Models � 109

Current mobile agent toolkits allow only a single code server (Aglets) (which
in most cases is the agent’s home agency) or multiple code servers (to which
code must be transmitted using techniques outside the mobile agent system,
e.g., a simple FTP file transfer) to be defined. Hohl et al. [1997] describe tech-
niques to improve migration performance by using multiple code servers in
the Mole toolkit. These code servers need not to be located on the same host
as the agent server. If a destination agency must download classes during
the execution of a mobile agent, it first looks for them at neighboring code
servers before loading them from the home agency. Code servers communi-
cate to exchange information about existing classes. Hohl et al. assume that
classes are registered at a code server by the programmer manually. They do
not provide any performance measurements to prove their concept.

The last drawback of the simple migration techniques used so far is data
handling. We saw that it creates a huge network load to carry data items
to servers, although these data items are never used at this agency. We
already have seen that this drawback cannot be avoided using the stan-
dard Java object serialization technique, which is used in all current mobile
agent toolkits. A technique to transmit data items independently of the object
state of the agent is necessary, so that an agent can dynamically download
data items from its home agency when they are really needed. Later, the
agent can upload these data items again to avoid carrying them to more
agencies.

The last aspect we would like to mention here is the way code is trans-
mitted from the sender agency or a code server to the destination agency.
Usually, code transmission is completed before code execution is started.
An optimized code transfer starts code execution before code transmission
is completed, so the phases overlap. This can be easily achieved with Java
applets if the JAR file is reordered so that classes that are needed first at the
destination are placed at the beginning of the file. Krintz et al. [1999] and
Stoops et al. [2002] describe approaches to implement this technique, but
only for mobile object systems, not for mobile agent systems.

Network’s View

From the network’s point of view, we see three factors that influence mobile
agents’ performance: network bandwidth, network latency, and the overall
architecture of the network in which the agent operates. As we will see in detail
in the next section, the type of network (e.g., whether all network connec-
tions have the same quality) has a great impact on performance. Of course,

110 � Chapter 3 Mobile Agent Migration

the agent or agent programmer has no means to influence these values, but
it is very important to be able to react to them.

3.4.3 Performance and Migration Strategies

In this section we evaluate the relationship between the performance of
mobile agents and the migration strategies used. Section 3.3.1 introduced
the two main classes of migration strategies: push and pull strategies. We also
learned that in most cases they are used alone, but in rare cases they are also
used in some kind of combination.

An interesting question is how the migration strategy influences the
migration performance of mobile agents. One severe simplification of our
mathematical model for network load and transmission time was a scenario
in which only push-all-to-next was supported. To evaluate the influence of
the migration strategy on the performance of mobile agents, we will now
extend our model to allow dynamic class downloading. Prior versions of this
model have been published (see Braun et al., 2001b).

We extend our model so that the agent has to visit m servers {L1, . . . , Lm}

to collect data from each server. In contrast to our first model, we now
assume that an agent consists of several class files, which can be dynami-
cally loaded during execution from the agent’s home agency. The decision
of which class files must be loaded is influenced by the communication
between the agent and the local agent server.

To model network load, we assume that an agent consists of u units
(classes) of code, each of length Bk

c , k = 1, . . . , u, some data of length Bd

(which contains at least the request of length Breq), and state information of
length Bs. A request to load a specific code unit has length Br for all units
Bk

c . The probability of dynamically loading code unit k on server Li is Pk
Li

.
With this we can model two aspects. First, it expresses the probability that a
specific code sequence will be executed. Second, we can also model a case
in which code is already in a local code cache. On server Li the agent’s data
increases by Bres ≥ 0 byte.

The migration process consists of marshaling data and state; transmit-
ting data, state, and code to the destination agency; and unmarshaling of
data and state information. To model round-trip time, we make the follow-
ing simplifications. The time necessary for marshaling and unmarshaling
data correlates with the number of bytes and modeled by µ : N → R.
For each pair of servers we know throughput τ : L × L → R and delay

3.4 Reasoning about Improved Mobility Models � 111

δ : L × L → R in advance. We assume both τ and δ to be symmetric, that
is, for all Li, Lj ∈ L : τ (Li, Lj) = τ (Lj, Li) ∧ δ(Li, Lj) = δ(Lj, Li).

We divide the migration process into three steps. First, the agent
migrates from its home agency, L0, to the first server, L1, of the given
itinerary. Second, the agent migrates from server Li to server Li+1, where
i = 1, . . . , m − 1. Last, the agent migrates back to its home agency. For
the following we assume that L0 �= Li, i = 1, . . . , m. We define Bc =
∑

k=1,...,u Bk
c . S ∈ {pushnext, pushall, pullunit, pullall} stands for a migration

strategy. The network load for a migration from an agent’s home agency is
calculated by:

Bleave(L, S) =























Bd + Bs + Bc if S = pushnext
Bd + Bs + |L|Bc if S = pushall
Bd + Bs +

∑

k=1,...,u
Pk

L1
(Br + Bk

c) if S = pullunit

Bd + Bs + Br + Bc if S = pullall

(3.15)

A migration from La to La+1, with a ∈ {1, . . . , m − 1} has network load of:

Bmig(L, a, S) =























Bd + aBres + Bs + Bc if S = pushnext
Bd + aBres + Bs if S = pushall
Bd + aBres + Bs +

∑

k=1,...,u
Pk

La+1
(Br + Bk

c) if S = pullunit

Bd + aBres + Bs + Br + Bc if S = pullall

(3.16)

When an agent migrates to its home agency, network load amounts to:

Bhome(L, S) = Bd + |L|Bres + Bs (3.17)

Finally, the whole network load equals:

BMA(L, S) = Bleave(L, S) +
∑

l=1,...,m−1

Bmig(L, l, S) + Bhome(L, S) (3.18)

To derive transmission time from network load, it is necessary to con-
sider time for marshaling and unmarshaling of data, state, and network
latency. All network load must be divided by network throughput. To make
the following formulas more lucid, we define the following abbreviations.

112 � Chapter 3 Mobile Agent Migration

The time necessary to load all necessary code units dynamically on server
Ls from the agent’s home agency is:

φs =
∑

k=1,...,u

Pk
Ls

(

δ(Ls, L0) +
Br + Bk

c

τ (Ls, L0)

)

If not only some but all code units must be downloaded at server Ls, we
can write:

�s = δ(Ls, L0) +
Br + Bc

τ (Ls, L0)

The time necessary to push code to all agencies equals:

ϕ =
∑

l=1,...,m

(

δ(L0, Ll) +
Bc

τ (L0, Ll)

)

The corresponding time necessary for migrating an agent from its home
agency is:

Tleave(L,S)=























































2µ(Bd+Bs)+δ(L0,L1)+
Bleave(L,S)
τ (L0,L1)

if S =pushnext

2µ(Bd+Bs)+ϕ+
Bd+Bs

τ (L0,L1)
if S =pushall

2µ(Bd+Bs)+δ(L0,L1)+
Bd+Bs

τ (L0,L1)
+φ1 if S =pullunit

2µ(Bd+Bs)+2δ(L0,L1)+
Bd+Bs+Br +Bc

τ (L0,L1)
if S =pullall

(3.19)

Note that marshaling and unmarshaling of date and state information takes
µ(Bd + Bs) of time. For example, in the case of a pullunit strategy, time
comprises the time to gather and parse the agent’s state, open a network
connection to the home agency, transmit all the agent’s state information to
the first agency, and load missing classes from the home agency (φ1).

We define Ba
d,s = Bd + aBres + Bs, which is the amount of accumulated

data and state information at server La. The time needed to migrate from La

3.4 Reasoning about Improved Mobility Models � 113

to La+1, with a ∈ {1, . . . , m − 1}, is:

Tmig(L,a,S)=



























































2µ(Ba
d,s)+δ(La,La+1)+

Bmig(L,a,S)

τ (La,La+1)
if S =pushnext

2µ(Ba
d,s)+δ(La,La+1)+

Bmig(L,a,S)

τ (La,La+1)
if S =pushall

2µ(Ba
d,s)+δ(La,La+1)+

Ba
d,s

τ (La,La+1)
+φa+1 if S =pullunit

2µ(Ba
d,s)+δ(La,La+1)+

Ba
d,s

τ (La,La+1)
+�a+1 if S =pullall

(3.20)

Note that Bmig(L, a, S) refers to the amount of network load produced by a
normal migration using strategy S; see Equation 3.16.

The time required to migrate to the home agency is:

Thome(L, S) = 2µ(Bhome(L, S)) + δ(Lm, L0) +
Bhome(L, S)
τ (Lm, L0)

. (3.21)

Finally, the whole transmission time amounts to:

TMA(L, S) = Tleave(L, S) +
∑

l=1,...,m−1

Tmig(L, l, S) + Thome(L, S). (3.22)

To evaluate an agent’s round-trip based on this model, we consider two
network scenarios (Fig. 3.12). In the first scenario we assume a homo-
geneous network, where all network connections have the same quality. We
assume network bandwidth as τ = 800 Kb/sec and delay as δ = 5 ms. In
the second scenario we assume a heterogeneous network (ring topology),

L2 L3

L4L1

L0

Homogeneous network

L2 L3

L4L1

L0

Heterogeneous network

Figure 3.12 Examples for the network model used for the evaluation. Agencies are drawn
as circles, network connections as solid lines, and agent migrations as dashed lines.

114 � Chapter 3 Mobile Agent Migration

Table 3.3 Code size and download probabilities in four different scenarios

Class download probability

Class Class size (bytes) Sc. 1 Sc. 2 Sc. 3 Sc. 4

1 10,000 1 1 1 1
2 15,000 0 . 5 1 1
3 15,000 0 . 2 . 8 1
4 15,000 0 0 . 5 1
5 15,000 0 0 . 2 1

where connections between neighboring servers are as fast as in the homo-
geneous case, but all other network connections have only a small bandwidth
of τ = 250 Kb/sec and a delay of δ = 10 ms.

The agent consists of five classes; the first class is the agent’s main class,
and the other four classes are to process specific subtasks and are necessary
only on a few servers. The code size of each class can be seen in Table 3.3.
The initial data size (Bd) of the agent is 1000 bytes and the initial state size
(Bs) is 100 bytes. The agent has to migrate to four servers, and on each server
it has to communicate to the local agent server. As a result, the agent’s data
increases by the value of the server result, which is 3000 bytes on each server.
A class request has length Br = 20 bytes.

Figures 3.13 and 3.14 compare transmission times of four different
migration strategies while varying class download probabilities in four
scenarios. The probabilities for class downloading of these four scenarios
can be seen in Table 3.3. In the first scenario only one class (the agent’s main
class) is downloaded, whereas in the last scenario all classes must be down-
loaded. The second and third scenarios model cases in which only a subset
of classes must be downloaded.

In a homogeneous network, the mobile agent’s transmission time using
strategies push-all-to-next, push-all-to-all, and pull-all-units are almost
identical, because all code is transmitted whether or not it is needed. The
additional time to open a network connection and to transmit a code request
is only a few milliseconds when using strategy pull-all-units to the home
agency. In contrast, strategy pull-per-unit grows linearly with the down-
load probability. It is faster than all other strategies in a homogeneous
network, even if more than one class must be downloaded. This strategy
leads to a higher transmission time only in the case of downloading all
class files because of several code requests that must be sent to the home
agency.

3.4 Reasoning about Improved Mobility Models � 115

11

10

9

8

7

6

5

4

3

2

T
ra

n
s
m

is
s
io

n
 t

im
e

 (
s
e

c
)

Push-all-to-next

Push-all-to-all

Pull-per-unit

Pull-all-units

1 1.5 2 2.5 3

Download probability

3.5 4 4.5 5

Figure 3.13 Transmission time versus class download probability in a homogeneous
network for four different migration strategies. Note that transmission times for
push-all-to-next, push-all-to-all, and pull-all-units are almost identical.

11

10

9

8

7

6

5

4

3

2

T
ra

n
s
m

is
s
io

n
 t

im
e
 (

s
e
c
)

Push-all-to-next

Push-all-to-all

Pull-per-unit

Pull-all-units

1 1.5 2 2.5 3

Download probability

3.5 4 4.5 5

Figure 3.14 Transmission time versus class download probability in a heterogeneous
network for four different migration strategies. Note that transmission times for
push-all-to-all and pull-all-units are almost identical.

116 � Chapter 3 Mobile Agent Migration

In a heterogeneous network, strategies push-all-to-all and pull-all-units
take the same amount of time. However, transmission time is higher than
that when using strategy push-all-to-next, because in these strategies all
class files must be transmitted using slow network connections, whereas
in strategy push-all-to-next, code and data are sent via neighboring network
connections. The diagram shows that in a heterogeneous network strategy
pull-per-unit is slower than push-all-to-next, even if not all classes must
be downloaded. Again, this is because code must be download from the
home agency via slow network connections.

What we have learned from this evaluation is that no migration strategy
produces the shortest transmission time in every situation. In homogeneous
networks, pull-per-unit is a good strategy, because code downloading is
cheap, whereas in a heterogeneous network, code downloading from a far-
away agency is expensive and should be avoided. In such a network, it is
useful to push code in most cases. Of course, the decision for a migration
strategy is influenced by several factors, such as code size, code download
probability, and so on.

3.4.4 The Kalong Mobility Model

In this section we introduce our new mobility model, named Kalong, which
is the synthesis of most ideas for improved mobility models proposed in
the last two sections. The main feature of Kalong is its flexible and fine-
grained migration technique, which allows an agent or its programmer to
define new migration strategies for each individual migration. In this section
we confine our discussion to the foundations of Kalong without going into
technical details. In Chapter 6 we formally describe the migration protocol
and explain how to program migration strategies in detail.

Kalong differs from current mobility models in three main aspects:

1. Kalong defines a new agent representation and new transmission units.
In our model, mobile agents not only consist of their code and an object
state but also have an external state, which comprises data items that
are not part of the object state. A mobile agent’s code is no longer
transmitted in the form of classes or JAR files but in a new transmission
format that we call a code unit. A code unit comprises at least one class
which is supposed to migrate as a unit. A single class can be a member
of several units.

3.4 Reasoning about Improved Mobility Models � 117

2. Kalong defines two new agency types in addition to the already-known
home and remote agencies used in current mobility models. We intro-
duce a code server agency, from which an agent can download code on
demand, and we introduce a mirror agency, which is an exact copy of
an agent’s home agency. It is important to understand that agency types
are valid only for a single agent; that is, a single agency can be a mirror
for one agent and a remote for another agent at the same time. A mobile
agent can define an agency as a code server or mirror and later release
it again dynamically during runtime.

3. Kalong defines a new class cache mechanism that prevents not only
class downloading in the case of pull strategies but also code trans-
mission in the case of push strategies. Our class cache is able to
avoid transmission of identical classes used in different agents and can
distinguish between different versions of the same class.

All these new features are accompanied by new commands for agents to
define their own migration behavior.

Kalong does not define anything related to mobile agent security and
leaves this to an implementation of this model.

Agent Representation

We start our introduction with the new agent representation (Fig. 3.15).
Because of the problems with the Java serialization process, we allow agents
to have other data items besides their object state, and we call these data

Java

Serializable

Serializable

Class

Agent
1

1
0..n 0..n

1

1..n

Data

Code

Kalong

Object state

External data item

Code unit

1

1

1

1..n

Figure 3.15 Mapping of the Java agent representation to elements of the Kalong mobility
model.

118 � Chapter 3 Mobile Agent Migration

items the external state. Elements of the external state are plain Java objects
that must be serializable. Each data item of the external state must have a
name to be stored and accessed by its owner. The external state is private
for a single agent instance, and it is not possible to share the external state
with other agents (with blackboards, for example) even if they are of the
same agent type.

We introduce two new commands by which mobile agents can access
their external state.

protected void setData(String name, Serializable data)

Stores a data item under the given name in the external state.

protected Serializable getData(String name)

Receives a data item of the external state.

For a data item to be deleted, it must be set to null.
When an agent migrates, elements of its external state do not migrate

automatically, in contrast to the elements of its object state. However, an
agent can define one or many items of its external state to be part of the state
that is sent to the destination agency. Such data items become invalid at the
sender agency if migration is successful. Using this technique of external
data items, an agent or its programmer can select data items for migra-
tion that have a high probability of being used at the next agencies. Data
items that most likely will not be used are not transferred, which can reduce
network load.

Data items that were not sent as part of an agent’s state remain at the
sender agency only if it is the agent’s home agency. If the sender agency is a
remote agency, all data items of the external state will be transferred along
with the agent’s state, because they may not be left at an agency other than
the agent’s home agency. A data item that remains at an agent’s home agency
is not accessible by its owner if the owner is residing at another agency. Thus,
there is no possibility for remote access. Instead, Kalong provides a technique
to transmit data items from the agent’s home agency to the current agency.
First, a data item can be downloaded using method loadData.

protected void loadData(String data)

Loads a data item of the external state from the agent’s home agency.

When the data item is transferred from the home agency to the current
agency it becomes invalid at the home agency. No class code is sent with

3.4 Reasoning about Improved Mobility Models � 119

this data transmission. It is possible to transmit multiple data items in one
shot using either a list of names or wildcards.

Data items of the external state can be sent back to the agent’s home
agency using method uploadData.

protected void uploadData(String data)

Uploads a data item from the current agency to the agent’s home agency.

After this, the data item is no longer available at the current agency and
becomes valid at the home agency again. This makes it possible to reduce
network traffic by uploading data items that will not be necessary at the
agencies visited in the near future. It is possible for an agent to later request
the same data item from its home agency. On this low level of the description
of our model we define that a data item is not loaded automatically when
method getData is invoked.

Using the concept of external data items, we solve not only the problem of
superfluously transmitted data items but also the problem of superfluously
transmitted code caused by the Java serialization technique. As we have seen
in Section 3.4.1, for each element of the object state, code is necessary when
deserializing the agent, even if the variable is not used at this agency. Using
data items stored in the external state, code that is necessary to instantiate
this object at the current agency is downloaded most quickly when the data
item is deserialized.

A further advantage of external data items is security. One problem
in the area of security of mobile agents is the fact that an agent’s data
must be protected against illicit reading and any manipulation by malicious
agencies. Using our technique of an external state, it is possible to inte-
grate sophisticated techniques to protect the data items that an agent has
to carry. The agent can, for example, leave data items that might be the
target of unauthorized reading attempts at the home agency until they are
really needed.

Kalong also introduces a new code representation in which the basic code
transmission unit is not a single class file or a JAR file. Because we observed
that often several classes migrate together, we introduce a new transmission
unit, which we call a code unit. A code unit consists of at least one Java
classes, comparable to a JAR file. Classes that are part of the same code
unit should have a common criterion that qualifies them for transmission
as a single unit. A good reason to bundle classes is if they have the same
execution probability, for example, because all classes belong to the same

120 � Chapter 3 Mobile Agent Migration

subtask. Each code unit has at least one code base, from which it can be
loaded.

The decision of which class belongs to which code unit is made by the
agent before its first migration. This distribution cannot be changed after-
ward because it would contradict some other fundamental aspects of our
mobility model.We come back to this issue later. It is important to understand
that such a distribution of classes into units is done by each agent instance
itself and that two agents might have different code units even if they belong
to the same type.

Code transmission always works on the basis of code units. In the case
of push strategies, the agent can define which code units will be sent to the
next agency. If a code unit migrates, all classes of this code unit migrate. Code
downloading, which is necessary when using pull strategies, works as follows:
If a class is needed, for example, during the agent deserialization process, it
first must be determined to which code unit the class belongs. This might not
be clear, because it is possible to let a single class be part of more than one
code unit. Second, it must be decided from which code base the code unit
should be loaded. The technique to make this choice will be explained later.

Migration Process

We now describe how a migration is processed in Kalong. Kalong provides
a very flexible and fine-grained technique to describe the migration strategy
of a mobile agent. It is possible to define the migration strategy not only for
a type of agent or a single agent instance but for each single migration that
the agent has to perform. For the moment we will introduce only the general
concept of defining migration strategies in Kalong. A detailed introduction
into programming migration strategies will be part of Chapter 6.

The parts in which an agent is transmitted during a migration are:

1. State, which consists of the object state and some other agent-defined
data items of the external state, and

2. Code units, which contain the code in the form of Java class files.

As already stated, it is not necessary for the agent to carry all of the data
items of the external state as well as all code units. It is possible and sometimes
advisable to send only code units and no state information at all, which would
make the destination agency a code server—we will explain this in detail later.

3.4 Reasoning about Improved Mobility Models � 121

If only state information is sent, then the agent uses a pull strategy. In this
case a description of all code units that contains at least the names of all
classes and code bases is sent to the destination agency.

After an agent has left its home agency, no information about this agent
is deleted, except the object state and data items that were part of the
state. At the destination agency, code units are received and stored so that
the agent’s class loader can access code using a class name. If the state
was sent during the migration, then the agent is deserialized. Classes not
already available at the destination agency must be downloaded as previously
described.

When an agent migrates from an arbitrary remote agency to another
agency, it can define a new migration strategy in terms of state and code
units. The agent is free to define which data items will be part of the agent’s
state and which code units will migrate, with one exception concerning data
items. Because data items cannot be left at an arbitrary remote agency, the
migration strategy must define for each data item whether it will be part of
the state or be uploaded to the agent’s home agency. We define a rule that all
data items that are still valid at the current (remote) agency when an agent
migrates are a mandatory part of the state. With code units, we do not have
this problem, because they may be safely deleted at the remote agency after a
successful migration. After an agent has left a remote agency, all information
about the agent is deleted. Thus, this agency cannot be used for code unit
downloading in the future.

It should be obvious that, using these two primitives of state and code
unit transmission, together with the ability to define which elements of the
external state should be part of the agent’s state, it is possible to describe
all the migration strategies that we have introduced in this chapter. For
example, to describe the push-all-to-next strategy, we define all classes to
form a single code unit, which is sent along with the agent’s data to the next
agency. To describe the pull-per-unit strategy, we define that each class forms
a single code unit, which is not transmitted along with the agent’s code.

Types of Agencies

In the last section we mentioned that Kalong also defines some new types of
agencies. So far, mobile agents can migrate only from their home agencies to
visit the so-called remote agencies. One very important rule we introduced in
the last section was that all information about an agent is deleted at a remote

122 � Chapter 3 Mobile Agent Migration

agency after the agent has left it. Now, we will introduce two new types of
agencies, which are both able to keep or remember data and/or code for a
single agent.

First, we introduce the code server agency. When an agent leaves a remote
agency, it can define within the migration strategy that some code units will be
stored at the current agency. Code units must be already available to be stored,
so they must already have been downloaded by the migration strategy. If at
least one code unit is copied, this agency becomes a code server agency for
this agent. The effect is twofold: The name of this agency is added to this list of
code bases, and after a successful migration these code units are not deleted
and can in future be downloaded from this agency. As already mentioned,
the agent must decide which base to download code units from, which will
be explained later. The range of possible strategies goes from a simple one
that always uses the last code server agency defined to very complex one
that considers network metrics and compares the cost of downloading code
units from different agencies.

When it uses code server agencies, an agent has the chance to deposit
code at several agencies that are near the ones it will visit in the future. For
example, in Figure 3.16, we assume the cluster of agencies on the right side
to be in the United States and those on the left side to be in Europe. Now,
when the agent migrates in the United States, if it is known that many servers
should be visited there and it is also worthwhile to use code downloading,
then the agent can define a code server there.

This is not possible with any other mobility model currently available. In
Aglets it is not possible to define anything resembling a code server. All classes

Home

Loading code without code server

Loading code with code server
Code server

Figure 3.16 Example to show the advantages of a code server. Agencies are drawn as
circles, network connections as solid lines, migrations as dashed lines, and code requests
as dotted lines.

3.4 Reasoning about Improved Mobility Models � 123

must be downloaded from a single code base, which must be defined during
agent creation. In Grasshopper it is possible to define multiple code servers,
but only when starting the agent, and not during runtime.

One question remains, and that is how to release code servers again. There-
fore, we introduce the technique of sending commands between agencies. To
send a command to another agency is a new primitive. Using this command
it is possible for the agent to release a previously defined code server at any
time. This results in all code units being deleted and this agency being deleted
from the list of code bases of all units.

If there is no user-defined code sever release, Kalong has a rule that code
servers must be released before an agent terminates. Because agents can
get lost during execution (this is actually an issue of the agent manager and
not of the mobility model), each agency should implement techniques to
release code servers automatically, for example, when they were not used for
a predefined time.

As a direct consequence of the concept of a code server for code we intro-
duce the mirror agency, which can keep information about code and data.
The mirror agency is a copy of all data items of the external state and all code
units. If a mirror agency exists, it takes the role of the home agency as long as
it is defined. The necessity of a mirror agency becomes obvious when look-
ing at the previous example and assuming that the agent wants to download
and upload data items. It would be very expensive if the agent were forced
to communicate with its home agency for exchange of data items. Therefore,
an agent can define a mirror agency so that all data items and all units of
the home agency that are not already at the current agency are downloaded
to the new mirror agency. All data items then become invalid at the home
agency.

If there is already a mirror agency, the agent cannot define a new mirror
agency until it has loaded all data items and all units from the old mirror. The
last mirror agency must be released by the agent, which is done by sending a
command to this agency, as described previously for code servers.

Code Cache

The third important aspect of our new mobility model is the code cache.
Code caching is a technique to decrease network load by avoiding class
transmission between two agencies if code is already available at the des-
tination agency. We are already familiar with the Java code cache technique,

124 � Chapter 3 Mobile Agent Migration

which is implemented as part of the class ClassLoader and which can
avoid multiple downloading of code for the same agent instance. In con-
trast to this technique, our class cache will not only work for a single
agent instance but will also be able to share classes between several
agents.

The cache works on the basis of classes instead of units, because agents
of the same type could use different unit definitions so that for one agent
instance a specific class is in one unit and for another instance it is in another
unit. If we used a cache on the basis of units, it would work only for a single
agent instance and therefore would be quite useless.

The goal of our code cache is to check during the migration protocol
whether code that belongs to the migrating agent is already available at the
destination agency, without sending the whole code. We use the technique
of digests or hash values to check whether two classes are equal. A digest is
a sequence of bytes of fixed length, for example, 16 bytes in the MD5 [Rivest,
1992] algorithm, which is produced from a stream of data of variable length.
A digest algorithm must ensure that it is computationally infeasible to find
two data streams that produce the same digest.7

As part of the SATP migration protocol, which we will discuss in detail in
Chapter 6, the sender agency transmits the so-called Agent Definition Block

to the receiver agency. This block contains information about all units, all
classes within these units, a digest for each class, and information about
code bases from which units can be downloaded. At the destination agency,
each class is now checked against the local class cache. If it contains a class
with an equal name and equal digest, it can be assumed that code for this
class is already available. The destination agency informs the sender about
this fact by a specific reply message so that the sender will not send this
class. Otherwise, code for this class is not available yet, and the sender is
informed to send the code.

Which units and classes are really sent to the destination agency depends
on the migration strategy. If, for example, a unit is not pushed from the
sender agency and code is not yet available at the destination, code for
these classes will inevitably be pulled later. If code is already available at
the destination, it will be discovered by the cache algorithm and then we
will not need to send code for these classes at all.

7. This does not mean that it is impossible but that the probability is very low that there exists a
pair x, y for which H (x) = H (y), when H is the digest (hash) function.

3.4 Reasoning about Improved Mobility Models � 125

3.4.5 Kalong’s Advantages

Until now, mobile agent toolkits have provided only very simple migration
strategies. The push strategy always transmits all code classes of the agent
and the agent’s state to the next destination [Fig. 3.17(a)]. In contrast, the
pull strategy never transmits any code class, but only the agent’s state and
imposes the task of downloading code on the receiving agency [Fig. 3.17(b)].

Using the new Kalong mobility model, the agent has the opportunity to
select classes that should be transmitted to the next destination agency, while
other classes can be downloaded from the agent’s home agency later. With
regard to data items, Kalong provides new functions to select which parts of
the agent’s data state should be sent to the destination agency, while others
remain at the home agency (Fig. 3.18). If the agent needs a specific data item
that is not yet available, it can be downloaded from the agent’s home agency.
The advantage of this technique is a reduction of network load, because the
data items and the corresponding class code are transmitted only if the data
item is really used. We call this feature the adaptive transmission of code

and data, which gives the agent’s programmer the chance to react to certain
execution or network scenarios. No other mobility model currently allows
the programmer to influence the migration process to such an extent. The
necessity for adaptive transmission has already been discussed. For exam-
ple, in the case of a low-bandwidth and unreliable network connection, the
agent should migrate with all its classes to avoid dynamic class loading later.
However, if it is already known from the current execution state of the agent

Home Remote Remote …

All code

Migration #1(a) Migration #2

All code

All data

Migration #n

All data

Home Remote Remote

Migration #1(b) Migration #2

All data All data

Load all code dynamically

during runtime

Migration #n

…

Figure 3.17 Traditional migration strategies. (a) Push migration strategy; (b) Pull
migration strategy.

126 � Chapter 3 Mobile Agent Migration

Home

Migration #1

Some code units

Some data items

Remote

Load missing code units
Load and update

data items

Remote

Migration #2

Some code units

Some data items

Migration #n

…

Figure 3.18 Adaptive transmission of code and data in Kalong.

that specific classes or data items will not be used under any circumstances
at the next destinations, their transmission is superfluous and should be
avoided. With Kalong it is possible to implement migration strategies that
take such concerns into account.

The second advantage of Kalong as compared with all other mobility
models is its ability to dynamically define code server and mirror agencies. All
other mobility models distinguish between only the agent’s home server and
the remote servers, which are all the servers that the agent visits. The home
server has the very important role of providing all of the agent’s code so that it
can be downloaded from this server later. In most mobile agent toolkits, the
home server is also the only server that provides the agent’s code, although
in some systems the programmer can manually deploy agent code to other
servers.

In Kalong it is possible for the agent to dynamically define a server to
become a code server (Fig. 3.19). This means that all of the agent’s code is
copied to this server and therefore can be also loaded from this server in the
future. The advantage is that it is faster to load code from a nearby agency than
from the far-away home agency. The agent can decide, based on its itinerary,
which server should become a code server. When the agent terminates, it has
to release all code servers to free resources.

A mirror agency is an extension of a code server agency. Not only the
agent’s code but also selected data items of the external state are moved to this
agency. A mirror agency completely overrides the existence of a home agency,
so all data and code loading requests are directed to the mirror instead of the

3.4 Reasoning about Improved Mobility Models � 127

Home

Migration #1 .. n

All code units

Some data items

(a)

Remote/CS

Load missing code units

Load and update data items

Remote

Migration #n+1

Some code units

Some data items

Migration #n+2

…

Home

Migration #1 .. n

All code units

All data items

(b)

Remote/mirror

Load missing code units

Load and update data items

Remote

Migration #n+1

Some code units

Some data items

Migration #n+2

…

Figure 3.19 Further advantages of the Kalong migration model. (a) Code Server;
(b) Mirror.

home agency. Like a code server, a mirror server should be used to reduce
the time needed for code and data transmission.

The third advantage of Kalong is a comprehensive technique for code
caching. Before any class is transmitted to a destination agency, it is deter-
mined whether this class is already available there. If the destination agency
already has this class, the sender agency does not send it again. When this
technique is used, network load and transmission time can be decreased if
many agents of the same type (using the same classes) roam the network
and visit the same agencies. The equality of classes is checked using a hash
value, which also guarantees that different versions of the same class can be
distinguished.

3.4.6 Migration Optimization Techniques Proposed in the Literature

As far as we know, there is only one paper available in the literature that
discusses the concept of an adaptable migration process.

128 � Chapter 3 Mobile Agent Migration

Picco [1999] proposed a lightweight and flexible mobile code toolkit
named µCode. The main principle of µCode is the flexibility to control code
relocation. The unit of transmission is called group; it can contain single
classes, class closures, and objects. The programmer can choose which
classes and objects will be part of the next migration—a technique that is
comparable to the possibilities a programmer has with Kalong. A migra-
tion is started by invoking method ship of class Group. Classes that are
not already available at the destination server are downloaded from a single
server that is given as a parameter in method ship. µCode does not pro-
vide the ability to load data items dynamically during runtime or to update
data items at the agent’s home server. It does not allow more than one server
from which code can be downloaded to be defined and therefore does not
allow code servers to be defined during runtime. Because of the lack of indi-
vidual data transmission, µCode also does not provide a mirror concept. The
source code of µCode is available as an open source project at Sourceforge.8

The idea of introducing code servers to load code from nearby agencies
instead of the home agency was presented by Hohl et al. [1997]. However,
their concept can be called static, because the code server must be initialized
manually by the agent programmer and cannot by initialized by the agent
during runtime.

Other papers available do not focus on the adaptation of the general
migration process but rather on optimizations for specific aspects of mobile
applications. For example, Tanter et al. [2002] discuss the problem of deter-
mining the data items that a mobile application (which could be an agent)
should take along during a migration or leave at the source environment
to be accessed remotely. They explain techniques a programmer can use to
specify the type of data migration for each instance. The authors work toward
a technique in which the kind of migration can be exchanged dynamically
during runtime.

Another paper discusses techniques to determine the itinerary of a mobile
agent during runtime [Satoh, 2001, 2002] using the new concept of mobile
agents as the providers for the migration service in a mobile agent system.
The MobileSpaces system is a framework for building network protocols for
migrating mobile agents over the Internet. It is characterized by two new
concepts. First, mobile agents are organized in a hierarchy, which means that
agents can contain other agents, resulting in a tree structure. Second, mobile

8. Visit mucode.sourceforge.net for more information.

3.4 Reasoning about Improved Mobility Models � 129

agents can migrate to other mobile agents (interagent migration) as a whole,
together with all their inner agents. A mobile agent migrates into another
agent, which itself implements a network protocol for migration. Satoh only
describes applications of this system on the level of route determination, not
the lower level of an optimized agent transmission.

Summary

In this section, we proposed our new mobility model, named Kalong,
which gives the mobile agent programmer more possibilities to influence
the migration process.

The main differences of Kalong as compared with other mobility models
are:

■ Adaptive transmission of code and data; that is, the programmer or
the agent can define during runtime which classes and which data
items should be transferred to the destination agency.

■ Code server and mirror agencies, that is, places agents can unload
code classes and data items to improve their performance for the next
migration steps.

■ Code caching, which is implemented as part of the mobility model
and will be part of the network transmission protocol and improves
the performance of the migration process by preventing transmission of
identical code units.

We believe that it will be possible to improve the performance of the
migration process of mobile agents greatly when using Kalong. We devote the
third part of our book completely to the specification and a critical evaluation
of Kalong. We also introduce a flexible software component that implements
this mobility model and that we designed to be added to any other mobile
agent toolkit.

THIS PAGE INTENTIONALLY LEFT BLANK

Chapter4
Mobile Agent
Communication

In previous chapters we have focused mainly on examples in which a single
agent roams the Internet in order to fulfill a user’s given task. Although in
many application scenarios a single agent is sufficient as a representative of
a human user, other domains may have many agents, possibly of various
types, that must work together to solve a single problem. In these situations,
agents need some technique to coordinate and to collaborate, for example, to
synchronize their activities or to exchange provisional results. In fact, agent
communication problems might be seen as differing from agent coordination
problems, because the latter can occur without communication [Franklin
and Graesser, 1996]. In the rest of this chapter, we do not further distinguish
these two aspects.

Because we are solely interested in problems regarding the mobility of
agents, we focus our discussion on the problem of providing location-

transparent communication; that is, how can two or more mobile agents
that are frequently migrating communicate to each other in a reliable way?
We identify and discuss five different solutions to this problem, which are
all particularly suitable for different classes of application scenarios and
different types of mobile agents.

Contents

4.1 Introduction .132
4.2 Classification of Communication Models for Mobile Agents .137
4.3 Solutions to Provide Location-Transparent Communication .141

132 � Chapter 4 Mobile Agent Communication

4.1 Introduction

Problems related to agent communication have been extensively discussed
in the area of distributed intelligence and multi-agent systems. However, it
should be obvious that communication is also one of the most important
challenges in mobile applications. Applications beyond a specific level of
complexity should not be built using only a single agent that carries all knowl-
edge and all strategies. Rather, it would be better to model a world of different
agents, where each one is specialized to solve a specific problem [Glaser,
2002].

Let’s look at a simple example in which an agent will arrange a business
trip for a human user. The business trip consists of booking a flight and a
hotel, renting a car, arranging a meeting with the business partner, and later
checking in with the airline if the flight is delayed or canceled. In this case the
agent should react to the situation appropriately by informing the business
partner and the hotel.

A possible architecture for this application might consist of several spe-
cialized agents to find information regarding flights, other agents that are
responsible for finding an adequate hotel, and so forth. These are the slave

agents, which are instructed by a single master agent that communicates to
the user and monitors the entire process. Obviously, all these agents must
exchange information about their tasks and intermediate results. Not only
does the master instruct slave agents, it also sometimes terminates slave
agents or changes some parameters in response to a change in the user
requirements. The main problem in enabling mobile agents to communicate
with each other is to locate agents that can move through the network with-
out knowing their current location in advance. In addition, the slave agents
might want to periodically check if their master agent is still “alive,” thus per-
forming some kind of orphan detection that also might require locating the
master if it is allowed to be mobile too.

In fact, agent communication includes several issues—most of them
beyond the scope of this book. (They are common in all multi-agent systems
and have therefore already been discussed in other, more specialized books.)
For example, the problem of how to design such multi-agent systems affects
parts of software engineering [Plekhanova, 2002], and the problem of design-
ing suitable communication paradigms for agents is part of research that is
done in distributed artificial intelligence [Ferber, 1999]. Also, the definition
of languages that are appropriate to communicate between agents is part
of existing research in the area of multi-agent systems and is not a problem

4.1 Introduction � 133

that is specific to mobile agents. The semantic layer for knowledge sharing
is beyond the scope of this book, and we are interested only in the delivery
of opaque application data between mobile agents. Therefore, rather than
discuss the well-known languages such as KQML [Fritzson et al., 1994; Finin
et al., c1994] or FIPA ACL [O’Brien and Nicol, 1998],1 we refer you to the
available literature for more information.

In this chapter we discuss only techniques that enable mobile agents to
communicate with each other and focus on the problem of locating mobile
agents. We are not interested in techniques used by agents to communicate
with services that are located at specific agencies. As we have already learned,
mobile agents should migrate to these physical hosts, where a specific ser-
vice is offered, so that agent-to-service communication is always local—it is
up to the concrete mobile agent toolkit to provide any suitable technique,
for example, message passing or method invocation. We only marginally
discuss techniques that can be used by agent owners to communicate with
their agents. The latter problem is mainly addressed in the area of mobile

agent control problems [Baumann, 2000], which includes the task of verifying
whether agents are still alive or terminating agents that are no longer neces-
sary. Agent control problems and agent communication share a single basic
challenge—locating mobile agents.

Here, we are interested only in problems that are singular to mobile agents
that need to communicate. With this in mind, we can define the following
requirements with respect to the main problems:

■ Where is my communication partner? Because mobile agents can move
through the underlying network autonomously, it is generally impossible
to predict where a specific agent needed for communication is at a given
time. The most user-friendly solution to this problem is, of course, to have
a location-transparent communication service. This makes it necessary to
know only the name of the agent with which we want communicate—not
its current location.

■ Even if we knew the current location of an agent, delivering a message
to this agent might cause an error, because the agent could relocate as the
message is being delivered. The goal is to ensure that all messages be for-
warded to the migrated agent (i.e., to the new location). This requirement

1. Visit www.fipa.org for more information and the specification of the FIPA standard.

134 � Chapter 4 Mobile Agent Communication

is typically named reliability of communication. One possible way to pro-
vide reliable information systems is to increase the degree of redundancy
and avoid fault situations. This is not so in mobile agent systems. As
Murphy and Picco state, it is important to understand that the typical
techniques to achieve some degree of toler- ance toward communica-
tion faults are not sufficient, because agent mobility cannot be classified
as fault but rather must be seen as a typical behavior of highly mobile
agents. The authors state, “it is the sheer presence of mobility, and not
the possibility of faults, that undermines reliability” [Murphy and Picco,
2002, p. 82]. If reliability cannot be guaranteed, messages might be lost.

■ What are the semantics of the communication model? If the model guar-
antees that a message is delivered to an agent but the agent might receive
the same message several times, we have an at-least-once semantic. In
certain situations this might be sufficient according to the application
domain, but if the internal state of the receiver has already been changed
by the first message, the second instance of the same message might cause
an error or might lead to an undesired state of the receiver. Some RPC pro-
tocols support semantics that are called zero-or-more, which means that
each call of a remote procedure is processed not at all or possibly many
times. It is obvious that this might result in problems with procedures
that change a local state, for example, if you initiate a bank transfer. If the
model provides an at-most-once semantic, which is supported by some
RPC protocols, we have to accept that message can get lost. The ideal form
is an exactly-once semantic, which might be difficult to achieve because
of technical restrictions.

■ How efficient is the communication model? As we will see in detail later,
communication models must provide solutions for two different actions.
The first one is when an agent migrates from agency to agency. This causes
some processes to update a location directory, for example. The second
action is to deliver a message, which involves locating the target agent
and sending a message to the agency on which it currently resides. Each
communication model provides different solutions for these two actions,
which differ significantly in terms of network load. Other measures of the
efficiency of a communication model include how it scales if the number
of agents or agencies is increased and whether it distinguishes between
local migrations between hosts in a single subnetwork and migrations in
wide-area networks. We believe that this issue of communication models
has been neglected in recent years by the community, and it might be

4.1 Introduction � 135

an interesting point for future research in this area to create performance
models and evaluate different communication models in simulations or
real-world experiments.

Almost all mobile agent toolkits that are currently available provide some
kind of local communication in which agents that reside at the same agency
are able to communicate. Only a few toolkits also provide a global com-

munication mechanism in which agents that reside at different agencies
and especially at different physical hosts are able to locate each other for
message exchange or to share a common information space. In the case
of global communication we denote the communication mechanism to be
location-transparent.

An interesting question and starting point for debate on the principles
of mobile agents is whether mobile agents should be able to communi-
cate globally at all. One of the main benefits of using mobile agents is to
reduce network traffic by replacing communication between two compo-
nents residing at different hosts in a network with code mobility. Thus, it
could be argued that mobile agents should migrate only to the host where
the communication partner currently resides and then communicate locally
[cf. Murphy and Picco, 2002]. On the other hand, it can also be argued
that mobile agents benefit from having the capability to communicate with
remote agents transparently because migration is not always cheaper than
remote communication.

If we accept that the overall goal of using mobile agents is to reduce net-
work traffic and thereby increase application performance, then we must
accept the trade-off between remote communication and agent migration in
every single case. As shown in earlier chapters, this decision might be difficult
because of many factors that are known only at runtime. Consider an example
in which an agent, α, on agency A1 has to communicate with another agent,
β, on agency A2. Even without developing a mathematical model for this type
of scenario, it is clear that migrating agent α from agency A1 to agency A2 is
in most cases slower than communicating globally, because in both cases the
same information—the message—must be transmitted; however, in the first
case, code transmission must be added. Some experiments have stressed
that mobile agents should be complemented with remote communication
capabilities [Gray et al., 2001; Straßer and Schwehm, 1997]. An alternative
is to reduce code transmission to such a degree that a performance differ-
ence can no longer be measured. How effective such techniques will be in
future remains to be seen. Thus, we can conclude that, even for mobile

136 � Chapter 4 Mobile Agent Communication

agents, global communication is a matter of relative importance and a fur-
ther means to reduce network costs, although it might be considered contrary
to the principles of mobile agents and it is unclear how expensive it would
be to use techniques that enable global communication for highly mobile
agents.

From the viewpoint of programming, it is evident that a communica-
tion model greatly simplifies the programming of mobile agents, which
uses primitives to guarantee reliable and effective delivery of messages to
a communication partner independent of its current location and move-
ment through the network. In some application scenarios, for example,
when mobile agents are used solely to deploy code to remote agencies,
global communication is the most appropriate form of communication. As
we will demonstrate in the next chapter, where we discuss security prob-
lems of mobile agents, there are also some algorithms that are built on the
requirement of global communication. An example is Roth’s technique of
cooperating agents to mutual record their itineraries [Roth, 1998].

Let’s now return to the issue of controlling mobile agents. The control

problem is twofold: (1) it must be possible to locate a mobile agent roaming
the Internet in order to modify the agent’s task and send a termination signal
when its has became obsolete, and (2) it must be possible to detect agents that
are orphans (i.e., their owners are no longer interested in the result or are not
available because of a host error). The latter can occur when a master agent
assigns a subtask to a slave agent and the master agent’s agency crashes. In
this case it would be helpful to have some automatic orphan detection that
would terminate the slave agent as soon as possible to avoid unnecessarily
consuming resources.

Both problems are intensively discussed in the thesis of Baumann [2000].
The first problem—locating mobile agents—is similar to the first problem
in agent communication. The second problem is not discussed in this book,
and we mention only a straightforward algorithm called energy concept. Every
agent maintains some amount of energy, which it consumes during its life.
When its energy is used up, the agent must contact some component, named
dependency object by Baumann. If the dependency object no longer exists,
the agent is considered an orphan and must terminate. Two things are left
open. First, what is energy? In principle, any kind of counter can be used
for this, for example, a counter that is decreased after every migration. Other
resource counters are also possible, for example, for every service access,
each message sent, and so forth. Second, the dependence object must be
defined. This could, for example, be the master agent in the case of specific

4.2 Classification of Communication Models for Mobile Agents � 137

applications or the home agency, which must be periodically contacted to
refresh living energy. In addition to this straightforward concept, several
optimizations and design issues can be considered. We refer to the given
literature for more information.

4.2 Classification of Communication Models for Mobile Agents

As for software agents in general, communication techniques for mobile
agents can be classified into two kinds of communication models.

4.2.1 Message Passing

The first type of communication model is message passing, which allows
agents to send messages to each other. It is a form of direct communication in
which the sender of a message must know the receiver by name and its current
location. Message passing is a powerful communication concept that forms a
flexible foundation for any kind of complex communication strategy. It does
not define the structure and the semantics of the message content. Therefore,
this technique can be used as a foundation to implement an exchange of text
messages, Java objects, or any other message structure according to some
Agent Communication Language (ACL), such as KQML or FIPA.

As part of the message-passing model, there must be some kind of service
in which agents can find names of other agents with respect to the descrip-
tions of services that other agents provide. If no service is available that
provides this information, then this type of communication is practicable
only for a group of agents who know each other in advance.

The simplest form of message passing is a point-to-point connection in
which a single agent sends messages to exactly one receiver agent. The sender
asks the agency (to be exact, a software component responsible to provide
this kind of communication) to deliver a message to the receiver’s message
box. Only the receiver agent will be able to read the message. Messages can be
removed from the mailbox and delivered to the addressee agent in two ways.
With the push technique the mailbox actively delivers messages to agents.
With the pull technique an agent retrieves messages from its mailbox. If the
receiver agent is not available locally, the message component is responsible
for locating the receiver agent and delivering the message to it. Techniques
for locating agents are discussed in the following section.

138 � Chapter 4 Mobile Agent Communication

Another form of message passing is multi-point communication (some-
times also called multi-cast or broadcast). For example, we may have a group
of agents that are working together to solve a problem. They must commu-
nicate to coordinate their activities. A common communication technique
here is the point-to-multi-point technique, in which a sender agent wants to
deliver a message to many or all agents of the group. We can specify whether
only local agents are included or all agents in the entire agent system are
possible receiver agents. The difference between multi-cast and broadcast
is the same as in network protocols: Multi-cast messages are sent to a set of
receivers that have registered with a virtual group in advance, whereas broad-
cast messages are sent to all agents. Multi-cast messages are implemented
in some mobile agent toolkits already (e.g., Aglets), but it is often restricted
to local agents because of the complexity of the necessary message-delivery
protocol.

Another criterion that needs to be established for message-passing tech-
niques is whether messages are sent synchronously or asynchronously. In
synchronous communication the addresser sends a message to the addressee
and blocks its own execution until the addressee has answered with a reply
message. Synchronous communication guarantees that messages are deliv-
ered and in case of a delivery error; for example, if a time-out occurs, the
sender will be informed and an exception could be thrown. Synchronous
communication naturally implies that both agents remain static during the
communication. The Mole toolkit, for example, does not prevent agent
migration in the case of synchronous communication but terminates the
communication channel if at least one agent migrates.

In asynchronous communication the addresser sends a message to the
addressee and continues its own execution. However, the addressee might
also switch to a state in which it waits for new messages. Note that the distinc-
tion between synchronous and asynchronous communication is not defined
by waiting until the addressee answers but rather by the even harder condi-
tion that it blocks its own execution thread. Asynchronous communication
allows the receiver agent to decide autonomously how to react to incom-
ing messages; for example, it can be temporarily in a state in which it does
not want to receive messages. The drawback is that communication is tem-
porally delayed and the sender agent has no guarantee that the message
was delivered and read by the receiver. Asynchronous message passing is
considered harder to program than synchronous message passing, because
most programmers are simply unfamiliar with this type of communication
because the semantics of the common procedure call or method invocation

4.2 Classification of Communication Models for Mobile Agents � 139

are synchronous. Most of the today’s mobile agent toolkits provide an asyn-
chronous model of message passing, whereas Aglets provides both types in
parallel.

4.2.2 Information Space

The second communication model is named information space. Here we
must distinguish between blackboard-oriented approaches and tuple space–
oriented approaches.

The information space model provides all agents a single space where
they can exchange information, data, and knowledge with one another. It is
an indirect form of communication, because agents do not directly interact;
that is, they do not have to address their posting to any agent—an agent
simply writes a piece of data into the information space and other agents can
read it. In some implementations, even the name of the agent that has posted
into the information space is unknown, resulting in an anonymous form of
communication.

The most important difference in regard to message passing is that an
agent does not have to decide which piece of information must be sent to
whom. With message passing, the responsibility of defining which informa-
tion must be sent is made by the sender agent. In addition, each receiver agent
must decide what information or results it has received from other agents,
what results must be remembered in its own repository, and how to react to
each message. It might be said that the control and data flow of an application
is more or less predefined when using the message-passing paradigm.

In contrast, with the information space approach, an agent posts into
the common information space all or almost all data that might be of any
interest for the group. It is each agent’s responsibility to watch the information
space and react to any kind of modification or new data. If an agent finds a
new and interesting data item, which might be some kind of intermediate
result produced by another agent, it starts its own process to transform it
into another intermediate result. The result is then posted into the common
information space again. Thus, this communication model can be defined to
be nondeterministic, because it is not predefined which agent will process
new information.

All information space approaches temporally decouple communication
between agents; that is, the writer and reader agent do not need to syn-
chronize to communicate. The basic primitives are to write and read pieces

140 � Chapter 4 Mobile Agent Communication

of information. Some systems also provide functions to register for specific
updates. To ensure that agents are notified when new and possibly useful
information is written into the information space, agents can register their
desires with the information space. When such information is published, the
information space will notify the appropriate registered agents of its arrival.

In blackboard-oriented systems, each piece of information is stored under
an identifier that must be specified by the writer and that must be known by
all reader agents so that they can later find this information. Blackboard-
oriented systems have a long history in software engineering [Buschmann
et al., 1996] and artificial intelligence [Ferber, 1999]. Blackboards are a good
model for collaborating software, especially when tackling problems that do
not have a deterministic solution (i.e., no clear control and/or data flow exists
between several modules of a program). However, blackboards still provide
only a spatially coupled type of communication. The group of agents that use
the information space to collaborate must have some common knowledge,
at least about the structure of the blackboard and the identifiers under which
certain data is published.

Tuple space–oriented approaches expand upon blackboard systems by
adding associative mechanisms to the shared information space. Data items
are organized as tuples, which are ordered collections of information, for
example, (“Sean Connery,” “Goldfinger”). The tuple space contains
a set or multi-set of tuples. Tuples are identified by their contents rather
than by their name. They can be retrieved in an associative way via a
pattern-matching mechanism. One can access the aforementioned tuple by
providing parts of the contents, for example, (“Sean Connery,” ?movie),
and obtaining the rest of it. Tuple space models have become popular with
the Linda language [Carriero and Gelernter, 1989], which was developed in
the parallel programming domain and which was also made available for
mobile computing environments [Picco et al., 1999].

To further structure an information space, some approaches allow you to
define regions or subspaces that are devoted to a single application and that
are protected against illicit access. Tuple spaces can also be distributed over
several network nodes, especially when combined with mobile agents. These
models typically provide multiple spaces, each one on a separate agency. As
a consequence, locality of agents is supported, which improves the perfor-
mance of the application. An agent can then access only the tuple space
that is located at the same agency. If the agent wants to access another
tuple space, it must migrate to the remote agency [Cabri et al., 1998b] or
explicitly access the remote tuple space [Omicini and Zambonelli, 1998].

4.3 Solutions to Provide Location-Transparent Communication � 141

To make the distribution of a tuple space transparent to the agent, Rowstron
proposes, for example, to migrate parts of the tuple space to another loca-
tion [Rowstron, 1998]. An overview of tuple space–oriented approaches for
mobile agents can be found in Ciancarini et al. [1999] and Omicini et al.
[2001].

4.3 Solutions to Provide Location-Transparent Communication

In this section we discuss several approaches to solving the problem of global
and reliable communication. The main issue we are tackling here is location-
transparent communication using asynchronous message passing between
mobile agents.

As we mentioned at the beginning of this chapter, early systems published
in the mid to late 1990s provide only local communication between agents
residing on the same agency or some kind of remote communication with-
out location transparency. In the latter case, different concepts for local and
remote communication were often provided. InTelescript [White, 1996], local
communication is offered by meetings. An agent—the petitioner—initiates
communication by calling the specific method meet, which defines the tar-
get agent—the petitionee. If another local agent is available and matches the
petition, the method meeting is called to allow the target agent to decline
the communication. In the other direction the petitioner agent gets a refer-
ence to the other agent so that it can call methods. Global communication is
implemented by connections, which are point-to-point connections between
agents residing at different agencies. If the target agent accepts the connec-
tion, both agents can exchange Telescript objects via this channel. In Agent
Tcl [Gray, 1997a] agents were allowed to communicate remotely by using
remote procedure calls—tracking of mobile agents was not an issue, and the
programmer had to implement his own techniques for this. Ajanta, a Java-
based mobile agent toolkit, also provides remote method invocation [Karnik
and Tripathi, 2001] as the only choice. Other toolkits, for example, Mole, do
provide some kind of remote communication, but they restrict the mobility
of agents. After an agent has accepted a so-called session, it is not allowed
to migrate. If it migrates, the session is terminated immediately [Baumann
et al., 1997].

Some of the mobile agent toolkits developed in recent years provide a
means to let mobile agents communicate with other agents independent of

142 � Chapter 4 Mobile Agent Communication

their current location. Before we discuss some of these approaches, we want
to point out the wide range of possible solutions related to the design space
for global communication. First, we can determine that any approach for
location-transparent communication must provide solutions for both of the
following actions:

■ Agent tracking, which involves recording the current position of an agent
to make it possible to find the agent later

■ Message delivery, which dictates that the message must be sent to the
agent’s current location if the target agent is not residing at the same
agency as the sender agent

We can immediately present two solutions with opposite behavior. The first
one, the full information approach, assumes that every agency has full knowl-
edge about the current location of all agents in the system. Agent tracking
becomes a very expensive task in this approach, because for each migra-
tion, all agencies in the network must update their local location directory.
To make this protocol reliable, an agent must notify all agencies about its
forthcoming migration so that they can buffer messages to this agent during
the migration process. After the agent has reached its new location, a sec-
ond update message must be sent to all agencies. This approach is also very
expensive in terms of used storage, because the location directory contains
entries for all agents currently active in the system independent of their real
behavior in terms of messages sent to it. This location directory also contains
the same data on each agency, so we have a high level of redundancy. In
contrast, delivering a message is extremely easy in this approach, because
it involves accessing only a single directory and sending the message to the
current agent’s destination.

The opposite solution is the no information approach.With this approach,
we assume that no agent tracking is established and therefore no agency
has direct knowledge of the current location of any agents other than those
residing locally. Obviously, agent migration is now very cheap, because no
location directory must be updated. However, to locate an agent to deliver a
message becomes extremely expensive. The only way to do this is to search for
the target agent either sequentially or in parallel using multi-cast or broadcast
mechanisms of the underlying network infrastructure. In wide-area, Internet-
scale networks, this technique is impracticable, which has resulted in this
approach being discarded as well.

4.3 Solutions to Provide Location-Transparent Communication � 143

Even if in reality neither approach is feasible, we want to use them as
examples to discuss a metric that is possibly interesting when assessing the
quality of a global communication model. For any agent we can measure
the number of migrations in relation to the number of messages sent to
it, and we name this the migration-to-receipt relation (MRR). If there is a
highly mobile agent that frequently changes its location but rarely receives
messages (i.e., it must be found by other agents), the MRR is high. In this case
the no information approach would be the better choice, because associated
migration costs are low. If an agent is rather immobile and often receives
messages by other agents, the MRR is low and the full information approach
would produce lower communication overhead.

Clearly, the world is not as simple as we have described it here. Several
other factors affect which approach actually produces the lower communi-
cation overhead. For example, in both approaches the number of agencies
and the distance between them must also be taken into account. However,
the general idea of using the MRR as a possible gauge to assess the quality of
any communication model remains correct. If the MRR is high, an approach
with low tracking costs is preferred, whereas with a low MRR, an approach
with low delivery costs should be chosen.

An interesting question in this context is how a software designer should
choose the correct communication technique. Wojciechowski and Sewell
[2000] argue that the choice of the communication model should be
application-specific. The authors assume that the behavior of all agents
could be predicted to a certain extent, making a single MRR valid for the
entire application. Together with additional requirements (e.g., scalability
and reliability), this enables us to select a single communication model at
design time. We affirm this and want to mention the consequence that a
mobile agent toolkit should be built in such a manner that the communica-
tion model, as before with the migration model, is exchangeable so that it
can be adapted to the specific application. This requirement has never been
realized in any mobile agent toolkit thus far.

Nevertheless, we believe that we need to go a step further. Given that this
situation is similar to that seen with agent migration, we are not convinced
that it will be possible to develop a sufficient and appropriate decision model
for communication techniques. It would be necessary to have a mathemati-
cal model, comparable to our model developed to describe agent migrations,
for communication techniques. This model depends on several factors, some
of which might be not be assessable before developing the application. Here
we have the same line of argumentation as with agent migration. It is likely

144 � Chapter 4 Mobile Agent Communication

that even within the same application scenario, no single technique will be
able to solve all problems. Or, to state this using the migration-to-receipt

relation: We believe that there are many application domains where each
agent will have its own typical MRR that might be diverse from those of
other agents. Thus, it is highly probable that each agent has its own opti-
mal solution, and it is an interesting problem for upcoming research—is it
possible to develop an adaptive communication model that covers many of
the current approaches transparently? According to Wojciechowski [2001],
such an approach is currently used only in the context of mobile users in
telecommunications.

4.3.1 Central Server and Home Agency Solutions

We start our discussion with an approach that uses a single location server
to keep track of mobile agents while they are roaming the network. We can
further distinguish between the approaches based on whether the location
server is responsible only for tracking or also for message delivery.

In both approaches a mobile agent informs the server before it leaves
an agency and after it has reached its new location. If the central server
is responsible for tracking only an agent’s location, a sender requests the
target agent’s current location and sends the message to this agency (see
Fig. 4.1). If the current location cannot be determined, for example, if the
agent is currently in transit or has not updated its directory entry correctly,

Agency A1 Agency A2 Agency A3

1

2

3

a A2
Central location

directory

Location updateNotification

Migration
Agent a

Figure 4.1 Central server approach. The central server contains a mapping of agents to
their current locations. The picture shows the situation after agent α has updated its new
location at the central server.

4.3 Solutions to Provide Location-Transparent Communication � 145

no messages can be delivered. The sender agent and its hosting agency can
then buffer the message and try to locate the target agent later. If the target
agency does not know the target agent, the message is sent back with an
error notification, which results in a new query against the location directory.
This approach is described by Wojciechowski and Sewell [1999], who use
their NomadicPict language. The Semoa mobile agent toolkit, which actually
focuses on security issues, also provides such a central server solution, named
Atlas. This tracking solution also considers security aspects (e.g., that agents
are not allowed to update location information of other agents) [Roth and
Peters, 2001]. Atlas is also used as a foundation for Semoa’s communication
model.

The second approach not only stores the location but also delivers the
message. In this case the sender agent transmits the message to the central
server, which then looks up the current location of the agent and delivers
the message. If the agent is not registered, the central server might store the
message and wait a specified time or send the message back to the sender
along with an error notification.

Agent tracking is expensive with any kind of central server solution. For
each migration, the server must be contacted twice: once to invalidate the
last location and once to publish the new one. In the second approach, the
central server must also be contacted for each message. Neither of these
approaches scales with the number of agents and the number of messages—it
is a bottleneck for the entire agent system and a single point of failure.

An example of an extension of the central server solution that scales bet-
ter is the home server approach. This scheme is comparable to the central
solution scheme but differs in that each agent now has its own central server
that is located at its home agency. Remember, the home agency is the agency
where the agent was started. The general course of actions is the same as
described previously. Even with home servers, we could distinguish between
a simple query solution and the message delivery solution (see Fig. 4.2).

This technique is comparable to mobile IP [Perkins, 1996], which is
designed to route IP packets to mobile hosts. The mobile host registers with
a remote network and obtains a care-of-address. This address is forwarded
to the home server. The home server then forwards all IP packets directly
to this host using the care-of-address. A similar technique is used in oper-
ating systems using process migration, for example, in Sprite [Douglis and
Ousterhout, 1991]. Referring to agents, the entire protocol is comparatively
straightforward to implement and is used, for example, in the Aglets toolkit.

Both the central server solution and the home server approach disregard
locality between sender and receiver agents. In the domain of mobile IP, this

146 � Chapter 4 Mobile Agent Communication

Agency A1
(a’s home agency)

Agency A2 Agency A3

1

2

3

a A2

Location update
Notification

Migration
Agent a

Figure 4.2 Home-server approach. Each agency contains a mapping of agents that were
started on this agency to their current locations. The picture shows the situation after
agent α has updated its new location and has reached agency A2.

is known as a triangle problem. If two agents located at the same or proximate
agencies want to communicate, location inquiries must be sent to a possibly
distant server, which might be located at the other side of the globe. Some
approaches were developed for mobile IP to solve the triangle problem by
using cache-based techniques. They might be also adapted to mobile agent
communication. The home agency then not only forwards messages to the
agent’s current location but also informs the sender agency about its current
location (comparable to binding-update messages in mobile IP). Later, the
sender agent can then send messages to this agent directly. If the agent has
left the agency, messages cannot be delivered correctly and the new address
of the agent must be requested from the home agency.

The home server approach scales better than having only a single track-
ing server and is a good choice in small or medium agent systems. Message
delivery is easy to implement and can be fast because only a single inquiry
against the location directory is necessary. With caching of addresses, mes-
sage delivery can be further improved. However, this solution uses a single
point of failure, and it still poorly scales when a large number of agents start
at the same agency. The home server approach is not practical when home
agencies are intended to be cut off the network once the agent has left it.

4.3.2 Forwarding Pointers

We now come to a solution that reduces the cost of keeping up-to-date
location-related information, making it more suitable when agents are highly
mobile. For each agent, the home agency provides an anchor that can be
used to address messages. Whenever an agent migrates, it leaves a pointer

4.3 Solutions to Provide Location-Transparent Communication � 147

to its new location at the agency it left. The forwarding pointer approach
was probably first proposed in Desbiens et al. [1998].

We assume that each agency maintains a local directory that contains
a “guess” as to current location for each agent that has visited the agency.
In addition, we assume that each agency knows which agents are currently
residing on it. If agent α migrates from agency Ai to Ak , the source agency
first has to withdraw agent α from the list of locally available agents. If this
agency is requested to deliver a message to this agent, the message must be
stored locally, because the current location of agent α is not known. After
the agent has arrived at the destination agency Ak , it registers with the local
messaging service, which promptly sends an acknowledgment message back
to agency Ai. Agentα is now known to be local at Ak , and the former agency, Ai,
has updated its local directory so that it now contains a forwarding pointer

to the new agent’s location. If any messages were buffered at Ai, they are
all forwarded to Ak . Also, new messages arriving at Ai can be immediately
forwarded to the agent’s new location (see Fig. 4.3).

When a message needs to be delivered to an agent, the sender delegates
this process to the target agent’s home agency. The name of this agency
is typically part of the agent’s name. The home agency then forwards the
message along the chain of forwarding pointers until the agent is eventually
reached.

We can immediately identify the following problems:

■ Is the forwarding pointer chain cycle-free? If not, a message might get
caught within a cycle and never reach the target agent.

Migration

Forwarding
pointer for a

Forwarding
pointer for a

Notification
Location update

Agency A1
(a’s home agency)

Agency A2 Agency A3

1

2

3

a A2

Location update
Notification

Migration
Agent a

a A3

Figure 4.3 Forwarding pointer approach. Each agency maintains a forwarding pointer
to the agent’s next location. The pictures shows the situation after agent α has arrived
at agency A3 and has updated its new location at the last agency.

148 � Chapter 4 Mobile Agent Communication

■ How long can a forward pointer chain be? If an agent frequently migrates
to new agencies, forwarding pointer chains will grow in size, thereby
decreasing the performance of message delivery. It is reasonable to think
about techniques to reduce the length of these chains from time to time.
These techniques are also called chain-compaction techniques.

■ What if the home agency is placed on a mobile host and is intentionally
cut off the network after the agent has left it?

■ What if the forwarding pointer chain breaks because of a failure in a listed
agency?

■ When can forwarding pointers be removed and garbage collected?

■ Is this approach reliable? When an agent migrates faster than the message
can be delivered, the message will probably never reach the agent.We have
a race condition, which is not acceptable for a reliable communication
model.

The algorithm we described previously is not reliable if agents migrate
back to an agency they have visited before. According to Moreau et al. [2001],
such an approach is implemented in Voyager [ObjectSpace, 1998]. Assume
a situation in which agent α has left agency Ai at time t to migrate to Ai+1.
This agent later comes back to Ai at time t ′ and migrates further to agency
Ai+k . We assume that Ai+1 �= Ai+k . According to the algorithm, both agen-
cies Ai+1 and Ai+k are expected to send acknowledgment messages back to
Ai and it might happen that for any reason the acknowledgment message
from Ai+k reaches Ai before the acknowledgment message of Ai+1—we have
a potential race condition between two acknowledgment messages. If the
acknowledgment message from Ai+1 arrives after the other one, there will
be a cycle in the forwarding chain, which prevents reliable message deliv-
ery to this agent from now on. Moreau suggests using a mobility counter to
solve this problem. The counter increases each time an agent migrates and is
attached to acknowledgment messages, making it possible for every agency
to distinguish between new and old messages. In the scenario described ear-
lier, Ai will now update its local directory with only the new acknowledgment
messages sent from Ai+k . Other messages with lower mobility counter are
discarded [Moreau, 1999].

Let’s now discuss approaches to collapse the forwarding pointer chain
to improve performance of message delivery. The general idea is to update
location information at each agency to skip intermediate agencies and point

4.3 Solutions to Provide Location-Transparent Communication � 149

to the agent’s current location, if possible, thereby reducing message hops.
The range of possible solutions is manifold. We can distinguish between
approaches that send location update messages as an effect of agent migra-
tion or delivery of a message. However, we can also distinguish between
approaches that send updated notifications either to all agencies in the net-
work, selected agencies (e.g., those that the agent has visited so far), or only
a single agency (which could be for example the agent’s home agency). Let’s
discuss some examples in more detail.

First, every time an agent migrates, the new hosting agency broadcasts
update messages to all agencies in the network. Every agency then has up-to-
date location information for every agent in the form of a forwarding pointer
that directly points to the agent’s current location—which is equivalent to
the full information approach. In Internet-scale networks, this approach is
clearly impractical. Another extreme solution is to have an agent send its new
location only to its home agency after every migration—which makes this
approach identical to the home server approach presented in the last sec-
tion. However, we can combine the home agency approach with forwarding
pointers if we reduce the number of update messages. For example, the agent
carries a counter that decreases with each migration. As long as the counter
is not zero, the agent leaves a forwarding pointer at each visited agency, as
described previously. In the other case, the agent sends an update message
to its home agency. Instead of using a migration counter, other metrics can
be used, such as time, the number of messages received, or the distance
between the home agency and the new location.

In a more “lazy” update strategy, update notification messages are sent
upon receipt of messages. For example, when a message should be sent
from Ai via the target agent’s home agency and along the forwarding pointer
chain finally pointing to agency Ak , then Ak could send an update message
to the sender agency, Ai, so that all following messages can be delivered
directly. Instead of updating the sender’s location directory, it is also possible
to update the agent’s home agency or send update messages back to the
forwarding pointer chain so that all agencies on the agent’s path are updated
[cf. Moreau and Ribbens, 2002].

Concerning the fault tolerance of agencies and the reliability of the com-
munication techniques, Moreau [1999] uses a special type of message, named
inform message. This message is sent between agencies only to update
location directories. The concrete strategy of sending inform messages is
not defined and is intentionally left to the application designer, because
which policy will serve best depends on the application-specific parameters,

150 � Chapter 4 Mobile Agent Communication

such as the network type, the relation between migrations and messages
received, and so on. Moreau uses inform messages in a later publication to
provide a fault-tolerant communication model based on forwarding point-
ers. Moreau [2002] presents an approach in which location information is
replicated so that agency Ai holds a pointer not only to Ai+1 but also to
Ai+2, Ai+3, . . . , Ai+k . This approach is able to tolerate failures of up to k − 1
consecutive agencies. However, migration costs increase with this approach.

The next problem that we are faced with is that of the single home
agency serving as an anchor for the forwarding pointer chain. As Moreau
and Murphy and Picco state correctly, to rely on such an anchor makes
the approach impractical in peer-to-peer networks, where single hosts are
mobile and can be cut off the network temporarily. Moreau’s solution makes
use of inform messages that are sent to arbitrary agencies in the network.
In contrast, Murphy and Picco use a broadcast-based approach, which we
will discuss in the next section.

A forwarding pointer approach has the advantage that agent tracking costs
are relatively low. In contrast, message delivery can be expensive, because a
potentially long forwarding pointer chain must be followed unless reasonable
chain-compaction algorithms are available. Although many strategies and
policies are conceivable, we are not aware of any in-depth comparisons in
terms of network or other attributes. Although the algorithm is relatively
straightforward to implement, adding fault-tolerance and code-compaction
techniques makes this approach conspicuously more difficult. This approach
seems to be good for agents that migrate frequently but only within a small
area and to a small number of agencies.

Another approach that also uses forwarding pointers but does not use
forwarding chains [Cao et al., 2002] splits a mobile agent from its mailbox
in such a way that the agent can migrate independently from the mail-
box. The mailbox is a kind of buffer, where incoming messages are stored.
The mailbox can migrate on request of its agent if the agent thinks that it
is worthwhile to have the mailbox close to it—but only along the agent’s
migration path. Thus, all agencies that a mailbox visits is a subset of all
agencies that its agent visits. The mailbox migrates with lower frequency
than the agent. On each agency that the mailbox visits, there will be a for-
warding pointer to the current location of the mailbox. The agent always
knows the location of its mailbox and communicates with its mailbox either
by occasionally fetching messages or by being informed actively by the mail-
box about new messages. It can even decide which of these two protocols
should be used.

4.3 Solutions to Provide Location-Transparent Communication � 151

If an agent migrates, it can decide to move its mailbox to the destination
agency as well. In this case the agent informs its mailbox about the forthcom-
ing migration, and the mailbox then informs all agencies that it has visited
before (including the agent’s home agency) about a forthcoming mailbox
migration. All these agencies now activate their local buffer for messages that
are directed to this mailbox. After the mailbox has reached its new location,
it sends an update message to all these agencies again, presenting its new
location address. These agencies now update their local address cache, close
the internal buffer, and deliver all accumulated messages.

If a message should be delivered to agent α, the sender agency first looks
up its local directory. If the agent is not residing on this agency, it checks to see
whether a forwarding pointer to α’s mailbox is available. If so, the message is
forwarded directly to the mailbox. Otherwise, the message is forwarded to α’s
home agency, whose name is part of the agent’s name.

We thus have an approach in which forwarding pointers that always have
length 1 are used. The mailbox is split from the agent, and the goal is for
the mailbox to migrate with lower frequency than the agent itself. Therefore,
the number of forwarding pointers can be reduced even for a highly mobile
agent. This approach is interesting because it provides some parameters that
allow the protocol to be adapted to the local circumstances of the agent.
Parameters that might influence the overall performance of this approach
are as follows:

■ The frequency of mailbox migration compared with the number of agent
migrations

■ The technique to transfer messages between the mailbox and the agent
(push versus pull)

Further work in this area is needed to determine whether these parameters
really do significantly influence the overall performance of the protocol and
whether it really has a positive effect.

4.3.3 Broadcast-Based Approaches

In this section we discuss approaches that are based on broadcast protocol
messages (not to be confused with agent messages), that is, sending messages
from a single agency to many agencies in the logical agency network (see
Fig. 4.4). The general advantage of broadcast-based approaches is that they

152 � Chapter 4 Mobile Agent Communication

Agent b has a message for a

Broadcast message

Agency A4

Migration

Agency A1 Agency A2 Agency A3

Migration
Agent a

Figure 4.4 Broadcast-based approach in which a message is broadcasted to all agencies.

do not require a specific agency to serve as a location directory or as a starting
point for a chain of forwarding pointers. Thus, these approaches work well in
scenarios of peer-to-peer networks and mobile hosts, where we cannot make
any assumptions about the availability of any host or infrastructure. Agent
tracking is completely neglected in these approaches, which makes agent
migration very cheap. However, for each agent message to be delivered, the
target agent’s location must be determined using the broadcast protocol—
and this can be considered a brute-force method to locate agents. Some of
the following approaches use broadcast and multi-cast protocols provided
by the underlying network infrastructure [Peterson and Davie, 2003]; others
implement their own broadcast protocols. The latter requires having some
kind of logical agency network, that is, some neighbor relation between every
pair of agencies.

We start again with a presentation of the design space and later point out
problems and shortcomings of the broadcast-based approach. Finally, we
discuss possible improvements of the protocol.

Broadcast-based approaches can be distinguished from one another
according to the type of information that is broadcasted. First, the message
itself can be broadcasted from the agency the sender currently resides on to
all agencies in the network. If an agency receives a broadcast, it checks to
see whether the target agent is currently on this agency; if it is, it delivers the

4.3 Solutions to Provide Location-Transparent Communication � 153

message to the agent. If the target agent is not on that agency, the message
is forwarded to all neighboring agencies until all agencies have received the
broadcast message. Next, not the message itself but only a location query
concerning the target agent is broadcasted. If an agency receives the query
and the target agent resides on this agency, the agency acknowledges receipt
of the query by sending back the target agent’s current address to the sender
agency. The agency also prohibits any migration attempts of the target agent
to guarantee that arriving messages can be delivered correctly. After the mes-
sage has arrived, the agent is allowed to migrate again. Finally, migration
notification messages can also be sent through the network. After an agent
has arrived at a new agency, it sends its new location, together with a time-
stamp (e.g., a migration counter) as broadcast messages to all agencies in the
network. Messages with stale location information are discarded.

In the first two approaches, an agent migration does not produce any costs
to update location directories. In contrast, the effort to deliver a message is
very high, because network broadcasts are extremely expensive and, in a
global network, almost impracticable. Both broadcast approaches should be
used only if the number of migrations is much larger than the number of
messages to be sent within the agent system. The differences between these
two approaches are related to the size of the broadcast message. Location
queries are relatively small compared with agent messages. Therefore, the
first approach works well if messages are small, whereas the second approach
should be used in all other cases. The third approach makes agent migra-
tions extremely costly, because the agent’s new location must be propagated
through the entire agent system. In contrast, message delivery is straightfor-
ward and inexpensive. Exactly opposite to the first two approaches, the third
approach works well whenever the number of migrations is low in relation to
the number of messages to be sent.

As already mentioned, broadcast approaches are useful in small to
medium networks but not in Internet-scale agent systems. Broadcast-based
approaches seem to qualify as a fall-back mechanism (e.g., to supplement
any of the techniques described in the last sections). It can also be combined
with the home-server approach under the assumption that there is some kind
of logical and hierarchical agency network.

The main idea is that the logical network contains regions, and each region
comprises a small number of agencies. Within a single region, all agencies
know each other (the technique necessary to create such a logical network
is not of interest here). When an agent crosses regions, it informs its home
agency it is leaving the old region and entering the new one. When the agent

154 � Chapter 4 Mobile Agent Communication

migrates between agencies of the same region, the agent does not contact its
home agency to update its location.

In contrast to the home agency approach presented previously, migration
now becomes less expensive because the agent’s new location is updated only
with every n-th migration. How does message delivery work now? The sender
agent and its hosting agency contact the agent’s home agency to obtain the
target agent’s latest address, which is not more than the region out of which
the agent has announced its location last time. The message is then for-
warded to the representative of this region. This representative then uses
broadcasts within its own region to find the actual location of the target
agent.

Let’s now discuss some improvements of the basic broadcast approach.
We have already identified the most important drawback—the number of
agencies that must be informed. If we were able to reduce the number of
agencies to which an agent message or location query must be sent, the
overall approach might become worth reconsidering.

The concept works assuming that an agent’s itinerary is known in advance
and that messages must therefore be sent only to all agencies on the agent’s
current route. This approach can be further optimized if we are able to guess
on which of these agencies the agent resides when the message is sent. It
might be possible, for example, to estimate how far the agent has already
processed its itinerary. Agencies at the beginning of the route could then be
neglected.

4.3.4 Hierarchical Approaches

In this section we expand the approaches based on central or distributed
location directories that we introduced so far. Those approaches mentioned
previously can be characterized as two-tier approaches, where location direc-
tories are placed in the topmost tier and all other agencies are located in the
lowermost tier.

Hierarchical approaches are characterized by additional tiers in which
more location directories are placed. Usually, the hierarchy is tree-structured,
with nodes representing agencies, and the tree structure is built according to
the geographical structure of the network (i.e., agencies that have a common
ancestor are also geographically proximate). An agency at a leaf covers only
those agents that are currently located at this agency. At higher layers, an
agency maintains a location directory that contains tracking information for

4.3 Solutions to Provide Location-Transparent Communication � 155

all agents currently residing at any agency in its subtree. All agencies form
the location tree. As usual, we name agencies at lower levels the children and
agencies at higher levels the ancestors of an agency. The single agency at the
highest layer is named the root of the location tree.

According to Pitoura and Samaras [2001], we can distinguish the following
two approaches. In the first one, each location directory contains a pointer
to the current address for all agents in its subtree. In the second approach,
each location directory contains a pointer only to an agency at a lower level,
which also contains location information for the given agent. To discuss both
approaches in detail, we first define the least common ancestor, LCA(i, j), of
two agencies, Ai and Aj , to be the first agency that lies on both paths from Ai

and Aj , respectively, to the root of the location tree.
The first approach, named Pointer to Leaf (PTL), maintains a pointer to an

agent’s current location at each agency. Let’s assume that the current location
of α is Ak . There is a path from the root Ar to Ak . Each agency on this path has a
pointer for agent α that points to Ak . If the agent migrates from Ak to Am, then
all entries concerning agent α at agencies on the path from Ak to LCA(k, m)
must be removed. All agencies on the path from Am to LCA(k, m) must add
an entry concerning the new location of agent α. Finally, all agencies on the
path from LCA(k, m) to Ar must modify their location directory concerning
this agent (see Fig. 4.5).

To deliver a message sent by agent β residing at Al to agent α residing at
agency Ak is straightforward. Along the path from Al to Ar , each agency simply
delegates message delivery to its ancestor until agency LCA(l, k) is reached.
This agency must have a pointer to the current address of target agent α. Thus,
the message is forwarded to this agency and then delivered to the agent.

In the second approach, named Pointer to Child (PTC), each agency main-
tains only a pointer to an agency at a lower level for all agents in its subtree.
If agent α migrates from agency Ak to Am, entries concerning agent α on all
agencies on the path from Ak to LCA(k, m) must be removed. All agencies
on the path from Am to LCA(k, m) must add a new entry for agent α that
contains a pointer to the lower level. The entry at agency LCA(k, m) must be
updated. It is not necessary to update entries at agencies on the path from
LCA(k, m) to Ar .

To deliver a message sent by agent β residing at Al to agent α residing
at agency Ak is only a little more complex than in the PTL approach. The
message is forwarded from agency Al to its ancestor until agency LCA(l, k) is
reached. Then the path from LCA(l, k) to Ak must be followed until the agent
is found.

156 � Chapter 4 Mobile Agent Communication

a A
k

a A
l

a A
l

a A
k

a A
k

a A
l

Agent a
Migration

Agency A
r

3 Modify entry

Agency

LCA (k, l)

Agency

LCA (m, n)

3 Modify entry2

Agency A
k

1 Delete entry

Agency A
l

4 Add entry

Agency A
m

 Agency A
n

Figure 4.5 Hierarchical approach in which each agency on the path up to the root agency
maintains a pointer to an agent’s location. The pictures shows the situation in which
agent α has migrated from Ak to Al , making several updates necessary. Directory entries
above the line are valid before the migration; those beyond the line are valid after the
migration has completed.

Both approaches differ slightly according to their migration and message
delivery costs. With the PTL approach, for each agent migration, all location
entries on the path up to the root of the location tree must be updated. In
contrast, with the PTC approach, only agencies up to the least common
ancestor of the source and destination agency must update their location
directory. Thus, the latter approach considers the distance between source
and destination agencies and is faster (if agents migrate only locally). In gen-
eral, hierarchical approaches scale better according to the number of agents
and number of agent migrations than when using central server approaches.
Message delivery is faster with the PTL approach than with PTC because
the pointer to the agent’s current location can be found at the least common
ancestor already. The second phase of forwarding the message along the path
down to the leaf can be neglected. One shortcoming of PTL is that it requires
reachability of all agencies on the network layer. If an agency is part of a

4.3 Solutions to Provide Location-Transparent Communication � 157

subnetwork and can be accessed only by using a gateway agency, messages
cannot be delivered directly starting from the least common ancestor.

Hierarchical approaches can also be combined with forwarding pointers
to reduce the number of location updates. Let’s take the PTC approach as a
starting point. The general idea is to update only those directories on the path
from the source agency, Ai, and the destination agency, Ak , respectively, up to
some level l, which is lower than that of LCA(i, k). We name the ancestor of Ai

at level l agency Ai′ and the ancestor of Ak at level l agency Ak′ . A forwarding
pointer is installed from Ai′ to Ak′ , and all agencies on the path from Ak to
Ak′ add their location directory with an entry for the migrating agent. As a
consequence, the number of agencies where location information must be
updated is less than that needed in the original PTC approach. The forwarding
pointer makes message delivery only slightly more complicated. For more
technical details, refer to Pitoura and Samaras [2001].

Summary

We identified mobile agent communication as another key problem in mobile
agent research. Although it might be argued that mobile agents do not nec-
essarily have to be able to communicate remotely (i.e., between two agents
located on different agencies), it eases programming of mobile agents if we
use a reliable and location-transparent communication technique.

In this chapter we proposed five techniques from current literature, in
addition to two simplistic approaches:

1. Central server approach, which stores the current location of all agents
in a central database

2. Home server approach, which stores the current location of an agent at
the agent’s home agency

3. Forwarding pointer approach, which forwards messages along the
visited agency

4. Broadcast approach, which broadcasts messages to all agencies in
parallel

5. Hierachical approach, which uses tree-structed location directories
that are based on the geographical structure of the network

158 � Chapter 4 Mobile Agent Communication

As far as we know, these approaches have not been compared with
each other using either mathematical models and simulation or real-world
experiments. Obviously, there are considerable differences between these
approaches, for example, regarding reliability, performance, and security.
We believe that conducting some kind of evaluation would be very impor-
tant to identify dependences between agents’ behavior or application and the
type of communication they should use. We discussed that each approach
may work well in some scenarios but not in others. For example, the home-
server approach is not applicable in scenarios in which a mobile agent is
started on a mobile device, because it usually has a wireless low-bandwidth
network connection to the Internet. The broadcast approach is not suited
in large networks. We believe that mobile agents would benefit from being
able to select a communication technique that matches their application
dynamically during runtime. It is an interesting and still open question
whether this can be done in an intelligent way without influencing the agent’s
programmer.

Chapter5
Mobile Agent Security

This chapter focuses on a very important part of mobile agent research—
security. Many research groups worldwide have focused on security aspects
of mobile agents and published a large number of papers. In fact, most
research in the area of mobile agents was done in security issues. However,
the actual state-of-the-art technology has not yet reached a level that could
provide an applicable set of best practices with industrial strength. We really
talk about basic research and miss out, in most cases, on a complete frame-
work of integrated concepts and tools. We cannot provide such an integrated
framework in this book; our goal is to provide an overview of the cur-
rent state-of-the-art technology as it relates to our perspective on mobile
agents.

First, we introduce security requirements for computer systems in general.
We also discuss some basic cryptographic techniques, such as encryption,
signing, and hash values. We then concentrate on the problems specific to
mobile agents and present the currently available solutions.

Contents

5.1 Security Requirements and Cryptographic Techniques .160
5.2 Taxonomy of Possible Attacks .167
5.3 Introduction to the Proposed Solutions .174
5.4 Organizational Solutions .175
5.5 Protecting Mobile Agents .178
5.6 Protecting Agencies .198

160 � Chapter 5 Mobile Agent Security

5.1 Security Requirements and Cryptographic Techniques

Security is one of the most important factors influencing software quality.
It is as important as correctness, reliability, and efficiency. In general, security
as a requirement translates into the ability of a software to prevent unautho-
rized access, be it by mistake or deliberately, to both code and data. Software
designers must ascribe importance to security in the early phases of soft-
ware development and in tight relation to the customer. The goals of this
introductory section are to further break down the general requirement of
secure computer systems and enlist several key issues from the perspective
of a user.

Security cannot be seen in a simple “black and white” manner—a
computer system is neither completely secure nor, hopefully, completely
insecure. It must be determined against which security problems or sort of
attacks a specific computer system is safe. It is an invariable attribute of
every computer system that only a subset of all possible security problems
are solved. Some problems may not yet have been foreseen. Others, for exam-
ple, those that are outside system boundaries or that have a low probability
of occurring, are not solved. This must not be viewed as a failure but as an
intention of the developer, who must accept certain types of risks that have a
limited probability.

For example, a commonly used means to protect private data is to
demand a authentication from users such as a password, before granting
access. The software will be able to avouch that only the owner of the data
will have access to it. An example of a type of attack that the software designer
has rated with low probability is a brute-force search for the correct password
of a specific user. Searching through all possible sequences of characters will
take more time than the attacker might find worth spending, making the
probability of a successful attack low. The better the quality of the password,
the better the protection against even dictionary attacks, where the attacker
simply iterates through a list of frequently used passwords. If the software
designer had rated the probability of such an attack as being high, he or
she would have chosen another authentication procedure, such as using
smart-cards or biometric identification.

On the other hand, some types of attacks affect the computer system’s
environment instead of the system itself. The important difference here is
that neither the software nor the computer designer is responsible for devel-
oping countermeasures against such an attack. For example, someone may
observe the user entering the password and later try to gain access using

5.1 Security Requirements and Cryptographic Techniques � 161

the password he or she observed. This type of assault cannot be solved by
the software designer; rather it is the user’s responsibility to prevent such
attacks. Thus, a computer system protected by passwords for authentication
purposes is not generally secure but rather offers tailored security against
a hacker who tests out passwords. Or, as Schneier pointed out in his book
Secrets and Lies, a computer system might be secure against a lot of attacks
but never against a hand grenade being thrown on it.

It is important to stress that the level of security that a software system
can and must provide always strongly depends on the application domain
and the application scenario. It is not necessary—and from the economical
point of view, usually not advisable—to build a system that is safe against all
types of attacks. As usual in software development, it is mandatory to analyze
which security problems might occur and to find solutions for these specific
problems.

The use of mobile agents generates a lot of security problems, some-
times new and regrettably still unsolved problems. Some opponents of
mobile agents cite these problems as reasons not to use mobile agents,
which in our opinion is unfair. Although each new technology has poten-
tial, it usually also has new security problems. The key is to develop a
focused set of countermeasures against identified threats, not a generalized
damnation of the entire technology. Following their logic, we would have to
unplug the nodes of the World Wide Web to prevent the further spreading of
worms.

The mobile agent systems must be seen as embedded in an application
scenario, and the best way to evaluate an agent-based approach is to deter-
mine whether the specific security problems for this application scenario are
solved. To give a simple example, consider the case of malicious agencies.
A malicious agency is one that tries to attack mobile agents; for example,
it may try to steal private data of the agent’s owner. This is a problem only
in open mobile agent systems, where anybody is allowed to start a mobile
agent server on his or her home computer. Some people see this as the only
real application scenario for mobile agents, but many application scenarios
focus on a closed mobile agent systems, in which such an attack is unlikely
to occur.

We start our discussion with a brief overview of the general security
requirements of software systems, with some emphasis on distributed
systems. These requirements are always named in relation to computer
security and cryptography. Each of these requirements is mandatory for the
acceptance of computer and software systems or systems in general.

162 � Chapter 5 Mobile Agent Security

5.1.1 Authenticity

Authenticity is a major requirement and the foundation of many security
solutions. It demands that each partner in a communication be able to prove
that he or she is who he or she claims to be. When we say that A authenticates

against B we mean that A identifies himself or herself against B to allow B to
decide whether A can be trusted.

In the real world, authentication is a matter of social rules that everyone
must learn and accept. It is a kind of protocol that has been developed over
time and that depends on the situation in which it happens. When you enter
a jewelery store to buy an expensive present for someone, you signal that you
are someone who has enough money to pay by wearing good clothes, carrying
your briefcase, or presenting your credit card. At the same time, the owner
of the jewelery authenticates himself or herself by his or her expertise or by
the quality of the shop so that you can believe you can trust the quality of the
object you buy. Obviously, you will not buy an expensive ring from a hawker.
In some cases, it is even necessary to authenticate yourself by providing a
signature, such as when signing a contract to buy a car or a house.

Authentication in the Internet is far more complicated. How can you be
sure that the Web page you have requested is really from the company you
wanted to contact? Spoofing is a technique in which a malicious host claims
to own a specific IP address to intercept requests to that IP address and take
the role of the other computer. If there was a technique in place to force
the remote Web server to authenticate, you could be sure that the informa-
tion is genuine. We need something similar to an electronic passport for
our software.

The equivalents to a passport and signature in the electronic world are
certificates and electronic signatures. This authentication process depends
on secrets, for example, a private key that is used to electronically sign a
document and that is by definition not known to anybody else. Some basic
cryptographic techniques are introduced next.

Symmetric cryptosystems use a common key, K , which is shared between
the sender Alice and the receiver Bob to encrypt messages but must be kept
secret against other entities. Alice uses key K to encrypt a message, which is
then sent to Bob, who is able to decrypt it with the same key K . An eaves-
dropper, Eve, may be able to read Alice’s message, but without key K , she
cannot understand it. The advantage of symmetric cryptosystems is speed,
whereas secret key distribution between Alice and Bob is a considerable
technical problem.

5.1 Security Requirements and Cryptographic Techniques � 163

In asymmetric cryptosystems or public-key cryptosystems, each principal
has two keys. A public key is shared with all other principals (e.g., by posting
it on a public-key directory service). A corresponding private key must be
kept secret by the owner. The concept of public-key cryptosystems is that
messages can be encrypted using either key and can be decrypted only by
using the second key of the key pair. For example, Alice encrypts a message
to Bob with Bob’s public key, K +

B , which she obtains by looking at a public
directory. This message can be deciphered only by using the corresponding
private key K −

B , which is known only by Bob. The advantage of asymmet-
ric cryptosystems is a comparatively easy key distribution—the public key
can be published anywhere in the network and only the private key must be
kept secret. The disadvantage is its slow speed. In practice, public-key dis-
tribution is supplemented by techniques to verify the identity of the owner
using so-called certificates so that Alice can trust that the public key she has
obtained from the directory service actually belongs to Bob.

Authentication using a public-key infrastructure is now very easy.
We assume that Alice and Bob want to authenticate each other. Both know
the public key of the other person but know only their own private key.
Thus, Alice sends a message to Bob that consists of a random number
that was encrypted with Bob’s public key. Bob proves he possess the cor-
responding private key by decrypting the message, and then he sends it
back to Alice. Bob can verify the identity of Alice using the same protocol
afterward.

Authentication between mobile agents and agencies is a major concern
as well. A mobile agent must authenticate on each visited agency so that the
agency can decide whether the agent is trusted. After this first line of defense,
the agent is then authorized; that is, a specific set of permissions is granted to
it.Vice versa, the agency must authenticate against the agent so that the agent
can be sure it is on the correct agency. A malicious agency could, for example,
masquerade as another agency to deceive the agent about its real host. As
a consequence, the agent could disclose sensitive information, because it
assumes it is on a known and trusted agency.

However, here we have a major problem when using mobile agents. How
can a mobile agent protect a secret, as, for example, a private key, when
it is roaming the Internet and is executed in a possibly malicious envi-
ronment (i.e., a hacked agency)? The mobile agent must at least present
all data and all code to that agency because it is needed to execute the
agent. Is there any chance that a mobile agent can sign a legally bind-
ing contract as a delegate of its owner? To electronically sign a document

164 � Chapter 5 Mobile Agent Security

requires a secret that will be no longer a secret if the agent enters a
malicious host.

5.1.2 Confidentiality

Confidentiality demands that information be protected against unautho-
rized access. Many techniques have been developed to gain confidentiality
between communication partners. Recall the various techniques that can be
used to conceal the fact that any information was transmitted at all, such as
writing a message with invisible ink. Such techniques are called steganog-
raphy and are used today, for example, to embed sensitive information in
pictures using a technique called digital watermarking.

If it is necessary not only to enwomb the message but also to conceal
the sense of it, the message must be encrypted. Encryption techniques
have been known for a very long time, probably beginning with the Skytale
that was used by the government of Sparta about 2500 years ago. They
used a cylinder lagged with a piece of leather or parchment paper. It is an
example of a so-called transposition algorithm, where the order of charac-
ters is changed to encrypt the message, but not each character itself. An
example of a later technique, called substitution algorithm, is the Caesar
code, which maps each character to another character of the underlying
alphabet.

Although all these techniques were used by governments and militaries,
confidentiality is now also a major concern for companies and private
persons. Banks must encrypt money transfers, companies must encrypt
trade negotiations or business reports, and so forth. The technique that is
most commonly used today is encryption using public-key cryptosystems,
as introduced previously.

With regard to mobile agents, we can again find several examples where
confidentiality is to be guaranteed. Assume a shopping agent that travels
to several online stores. The agent carries some kind of confidential trading
algorithm. Otherwise, the store could reveal the trading strategy of the agent
and react to it. Now assume that the agent has already visited several stores
and carries various offers within its data package. This information must
be confidential to prevent a store from using this information to produce
its own offer, which, of course, would be only marginally lower than the
current lowest price.

5.1 Security Requirements and Cryptographic Techniques � 165

5.1.3 Integrity

Often it is necessary to be sure that a particular piece of information has not
been modified at some point in time. In the real world this may be realized
by numbering all pages of a contract and binding them together so that no
piece of paper can be exchanged, added, or removed. Or, a notary might sign
a contract and then impress it with a seal. Manual modifications are either
not allowed or must be signed by all parties. All these techniques ensure that
no modifications can be made to the contract after it has been signed.

The digital equivalent of these techniques are digital signatures. Using
digital signatures makes it possible to verify that a message was originated by
the sender and to simultaneously check the integrity of the message.

For example, let’s say Alice encrypts a message with her private key, K −
A .

When Bob receives the message, he can decrypt it using Alice’s public key, K +
A .

If the decryption is successful, he can be sure that the message was encrypted
using the corresponding private key, which is known only by Alice. Thus, Bob
can be sure that Alice is the author of the received message. Because of the
low speed of public-key cryptosystems, message signing is often combined
with digests.

A digest or hash value is the result of a one-way hash function computed
over a message. Such a hash function maps any arbitrary-sized byte sequence
to a fixed-sized byte sequence, for example, 16 bytes in the case of the MD5
function. An important feature of a hash function is that there is not a sim-
ple technique to find the original value x when only the hash value h(x) is
known. In addition, it also is computationally infeasible to find another y

so that h(x) = h(y). In other words, if two hash values are the same, it can
be inferred that the two original values are identical. Digests are often used
in combination with digital signatures. Because digests are a good means to
condense data while keeping its uniqueness, it is the message’s digest that
is encrypted using private key K −

A rather than the original message. Digests
alone verify the integrity of a message but provide no information about the
sender. Therefore, this must be combined either with digital signatures as
described earlier or with message authentication codes.

A message authentication code (MAC) is computed over a sequence of
bytes and requires a secret key that is shared between the sender and the
receiver of the message. The MAC is sent along with the message; therefore,
the receiver can be sure about both the integrity of the message and the
sender’s identity. The advantage of MACs, compared with digital signatures,

166 � Chapter 5 Mobile Agent Security

is that they are easier and faster to compute because they are based on a
secret key rather than a public-private key pair.

Integrity is also an important issue for mobile agents. For example, the
owner of an agent starts an agent with some initialization data, let’s say
with the itinerary that the agent should process. It is very important that
the integrity of the itinerary not be attacked; otherwise, the agent could be
sent to arbitrary hosts.

5.1.4 Accountability

Accountability means that each subject is responsible for any action it has
taken and cannot deny responsibility later on.

Assume that Alice and Bob have performed some price negotiations. They
ultimately agree that Alice is going to buy a particular good from Bob for a
specific price. Accountability now enforces that neither Alice nor Bob can
later repudiate that this negotiation has happened. Both partners are bound
to the result of the negotiation and must comply with the contract.

A possible solution might include cryptographic techniques, such as
digital signing of the contract by both partners. Using this technique, we
might have encountered a problem with regard to mobile agents. As we have
already noticed, it might be impossible for mobile agents to carry a secret,
such as a private key, but this is required to sign a contract.

5.1.5 Availability

Availability aims to ensure that access to a service cannot be restrained in
an unauthorized way. Availability guarantees a reliable and prompt access to
data and resources for authorized principals. Availability can be reached, for
example, through redundancy of computer systems, hardware, and software.
In the case of mobile agents a malicious host can, for example, refuse to
execute an agent, which would be a denial of service. Or the malicious agency
could refuse to let the agent migrate to another agency.

5.1.6 Anonymity

Anonymity means that you do not have to identify yourself and therefore
must be seen in contrast to authenticity that was introduced previously.

5.2 Taxonomy of Possible Attacks � 167

The interesting question from the technical point of view is, can we reach
anonymity in the digital world, and if so, at what cost?

In the real world, it is not always necessary to identify ourselves to conduct
business. For example, it is not necessary to identify yourself when you want
to buy something and plan to pay in cash. Anonymity in this situation can
be achieved because we have other mechanisms to authenticate ourselves.
This is not so in the digital world. As we have seen, authenticity is a major
concern, especially in electronic commerce. Sure, there are techniques that
enable you to pay for a service without authentication against the seller,
especially for smaller amounts of money—so-called micropayments. Such a
technique introduces a so-called trusted third party. When you want to buy a
newspaper, for example, you must authenticate only against the third party,
which then will give notice to the newspaper. The newspaper itself has no
information about you except for the IP address of your computer. Thus,
browsing the Web is still not completely anonymous. See, for example, the
JAP project at the University of Dresden,1 in which software was developed
that guarantees anonymity on the level of IP addresses when surfing theWeb.

5.2 Taxonomy of Possible Attacks

In this section we give an overview of possible problems that can occur when
using mobile agents. We use the common classification scheme found in
similar papers, such as Hohl [1998b] and Jansen [2000], which distinguishes
between malicious agents and malicious agencies.

5.2.1 Malicious Agents

Malicious agents are those that try to attack the hosting agency. We further
classify malicious agents according to the target they attack.

Attacking the Hosting Agency

The most obvious example of a malicious agent is one that consumes
resources of the hosting environment in an improper way. Examples of such

1. See anon.inf.tu-dresden.de for more information.

168 � Chapter 5 Mobile Agent Security

resources are all computational resources—memory, CPU cycles, or network
bandwidth. These resources are consumed with the result that the agency
eventually is not able to provide its usual service to other agents. Such attacks
are therefore called denial-of-service attacks. In a less severe case the agent
merely wants to annoy the agency’s administrator by opening windows on
its screen. In this case the agent is authorized but does not comply to the
unwritten rules of a benevolently behaving agent. It should be obvious that it
is difficult to decide whether an agent performs a malicious act or not with-
out a clear model of access authorization to resources. The Java programming
language does not yet provide such a model. Consider the following example
of a correct Java code:

1 public void run()
2 {
3 synchronized(Thread.class)
4 {
5 while(true);
6 }
7 }

This piece of code holds a lock on the object Thread.class (remember
that every class is an object in Java too). Actually, it prevents other threads
from being executed. An agent that carries this piece of code can freeze the
entire agency.

The second type of attack to the hosting agency is when an agent tries
to gain unauthorized access to the agency. Agents can try to pilfer or alter
sensitive information stored on local hard disks. For example, it may try to
access a local key store file, which includes private keys of the agency or
its users. An agent could also try to disclose the agency’s code or even try to
terminate the agency completely. Such attacks are made possible either by an
inadequate access control mechanism or by improper agent authentication
and authorization, which allows any agent to masquerade as an authorized
agent and then (mis)use services or resources of the underlying agency. If, for
example, agent authorization is done only using the agent’s name, then the
attacking agent needs access only to the name of another agent with more
permissions.

At this point, it is worthwhile to compare mobile agent technology with
Java applets—this time from the point of security. In both cases, mobile
code is transmitted to a host that is going to execute it, therefore making
it a possible target of attacks initiated by the mobile code. The decisive

5.2 Taxonomy of Possible Attacks � 169

difference, however, is that an applet loaded from Web server A is exe-
cuted on host B on behalf of a user at host B. In contrast, a mobile agent
started by a person at host A migrates to host B and is then executed on
behalf on its owner. Here, the administrator of host B has a great inter-
est to protect the platform against all kinds of attacks initiated by mobile
agents.

This problem of malicious mobile agents can be solved to a great extent
by using the Java sandbox technique that we will explain later in detail.
Although the Java sandbox is quite comprehensive, it does not solve all prob-
lems with malicious agents; for example, in Java it is not easy to control
memory access or CPU usage.

Attacking Other Agents

A malicious agent that wants to attack other agents currently residing at the
same agency has several possibilities. Some of these possibilities result from
the programming language; others are possible because of the hosting agency
and the communication infrastructure and services provided there.

First, no agent must have access to any other agent on the programming
language level. If we assume object-oriented programming languages, this
means that no agent should ever obtain a direct reference of another agent.
Otherwise, the malicious agent would gain full control of the referenced
agent, could invoke methods outside the agent’s own life-cycle model, and
could modify accessible object variables. In Java it is reasonably easy to pro-
tect each agent (seen now as an object) by defining a separate class loader
for it. Other problems are shown later, when we discuss pitfalls of the Java
programming language in detail.

Second, a malicious agent can mask its identity to cheat other agents
and gain sensitive information from them or to use services on behalf of the
betrayed agents without paying for them. This problem is comparable to
the masquerading attack described previously, but it might be even easier to
achieve. Consider the case that, because of a lack of adequate programming,
an agent is allowed to forge the addresser name of a message. Note that in this
case, both the cheated agent and the one under whose identity the malicious
agents does work now are shammed.

Third, a malicious agent could initiate denial of service attacks on other
agents, for example, by sending thousands of spam messages. On one hand,
the attacked agent is not able to work properly; on the other hand, in

170 � Chapter 5 Mobile Agent Security

environments where agents have to pay for CPU and/or memory use, for
example, the agent owner also suffers from these attacks.

Finally, we have here an example for the accountability requirement intro-
duced earlier. An agent rejects the result of a communication with another
agent. This can be done intentionally or unintentionally. In either case there
will be a quarrel about this, and the agency should prevent that by logging
all agent activities.

5.2.2 Malicious Agencies

A malicious agency is one that tries to attack mobile agents currently residing
on it or other agencies by attacking the communication link.

Attacking Other Agencies

Attacks against other agencies are directed at the communication link
between agencies. Using passive attacks, the adversary does not interfere
with the messages sent over the network. No data is modified by such an
attack, but the data is monitored to extract useful information. Because
neither communication partner notices this attack, it is usually difficult
or impossible to detect. The simplest variant of a passive attack is eaves-

dropping, where in which the adversary monitors the communication link
between two agencies and captures agents to extract useful information from
the agent’s state or code. This might result in a leakage of sensitive informa-
tion. Another form of attack is traffic analysis, which also works when each
message is encrypted because it is not important whether the data is read-
able (understandable) to the attacker. Here, the adversary attempts to find
patterns in the communication between two agencies, which might allow the
adversary to derive certain assumptions based on these patterns.

Active attacks include security threats in which an agency tries to manipu-
late agent code or data while it is transmitted between agencies. The most
common examples of this kind of attack are alterations, in which an agent’s
data is deleted or tampered with by an agency, and impersonation, in
which a malicious agent impersonates another agent instance that has more
comprehensive permissions than the malicious agent itself.

Sometimes malicious agencies attack an agent to cause another agency
to malfunction. Farmer et al. [1996a] describe an interesting example for this
case. Assume that two airlines are providing ticket-booking services. An agent

5.2 Taxonomy of Possible Attacks � 171

that travels to these two airlines (among others) could be manipulated by the
first airline agency in a way that the agent, rather than reserving 2 seats,
reserves 100 seats for a specific flight. The agent will execute the reservation
at the second airline, booking all available seats and thereby preventing other
agents from being able to book a seat at the second airline. These later agents
must then book at the first airline.

Attacking Agents

Attacks against agents involve malicious agencies that try to tamper with an
agent’s code or data. Unfortunately, this type of attack is much more difficult
to prevent than malicious agent attacks.

The general problem is that a mobile agent must disclose its information
about code and data if it wants to be executed. Chess et al. [1997a] note:
“It is impossible to prevent agent tampering unless trusted (and tamper-
resistant) hardware is available in AMPs [Agent Meeting Point—comparable
to an agency]. Without such hardware, a malicious AMP can always modify/
manipulate the agent.” Therefore, no general guarantee can be given that
an agent is not maliciously modified; see also Farmer et al. [1996b]. However,
the situation is not so irremediable as it seems to be.With use of cryptographic
techniques, especially data signatures and data encryption, a situation can
be achieved in which some types of illegal access to an agent’s code and data
can be detected—but not prevented.

Possible attacks include simply spying on the agent’s data or code and
modifying the agent’s data, code, or control flow. More comprehensive
attacks include terminating the agent or capturing an agent’s state before
it migrates off the agency. In the latter case, the agency could restart the
agent later, in effect actually cloning the agent. We further distinguish this
type of attack with regard to the type of information that is targeted.

Agent’s Data

Assume a scenario in which an agent roams the Internet to collect prices for
an airfare. This scenario was introduced by Yee [1999] and is used in many
papers dealing with the security issue of a possible attack by a malicious
agency. The agent visits several agencies according to a fixed itinerary, or
it decides dynamically to which agency it should migrate next. In its data
package, the agent collects information about the agencies visited and the
airfare offerred there.

172 � Chapter 5 Mobile Agent Security

A malicious agency might now intend to influence the agent in such a way
that its airfare will be the lowest. Therefore, the agency’s first step is to spy out
the agent’s data. It is unlikely that the agent will communicate this informa-
tion voluntarily, so the agency will access the agent’s data in an unauthorized
way. The obvious problem with spying out data is that it is completely invis-
ible to the agent. The agent does not realize that some of its data has been
stolen. This type of attack seems to make it completely unrealistic that mobile
agents can carry any type of secure, sensitive information, such as a secret
or private key of its owner. Besides price information, the malicious agency
might also spy out the agent’s itinerary and thereby collect information about
other agencies that offer the same type of service. Later, this information
could be used to attack those agencies by using the techniques previously
described. This is also a general problem. It is not necessary that the result of
such spying attacks become visible in the near future. The agency could steal
a secret key and use it much later.

Another type of attack is called cut and paste. This attack works even if
data has been encrypted so that it can be read only at specific agencies.
Assume the following example. An agent, α, carries a data item protected
with the public key of an agency, Ai, that the agent is going to visit. Because
only this agency has the corresponding private key, the agent can read this
data item only at exactly this agency. However, a malicious agency, Am, which
currently is hosting agent α, could cut the data item, paste it into a new agent,
and let this agent migrate to Ai. The new agent decrypts the data item and
carries it back to agency Am.

Once the agency has this information, it could either increase each price
collected so far or modify its own fare so that this becomes the lowest fare.
If the agent has a fixed route, then the malicious agency could further modify
this route so that it was the last agency to be visited.

From this example we learn that an agent typically carries two types of
data. First, a static part contains data that is unmodifiable during agent
transmission. This data may be public or private static data. Public static data
can be read by anyone, especially by all agencies visited, whereas private static
data is readable only by the agent itself. The major requirement for public
static data is integrity, whereas for private static data the major requirements
are confidentiality and integrity. A typical example of public static data is the
name of the flight the agent is searching for airfare information. Private static
data is typically the agent’s itinerary or some configuration parameter defined
by the agent’s owner, for example, parameters for price negotiations. Second,
an agent carries dynamic data that is modifiable during agent transmission.

5.2 Taxonomy of Possible Attacks � 173

In the airfare example, the list of visited agencies with the associated price
information is an example of this type of data. Again, this type of data may
be public or private dynamic data.

Although not part of our example, we can identify yet another class of
data. In some application scenarios it might be wise to send some parts of
the agent’s data back to the agent’s home agency before the agent migrates to
the next destination. The requirements here are confidentiality and integrity
for private data.

Agent’s Code and Control Flow

We now consider the agent’s code as a target of an attack of malicious agencies.
The general requirements for code are integrity and confidentiality. However,
because the agent must disclose at least parts of its code to be executed, code
cannot be confidential for the hosting agency.

Even if we assume we have a technique to protect the agent’s code com-
pletely from the interpreter, it would still be possible for the agency to perform
so-called black-box attacks on it. In a black-box attack, the agent is executed
several times, every time with different input parameters and different calls
to services. Another attack would be sabotage, in which the malicious agency
alters code at arbitrary points to corrupt the agent.

When code cannot be protected as a whole, we might be able to disclose
only each line of code. There is a difference between knowing each line of code
and understanding the overall semantics of the program. However, even if
we have a technique to ensure that the Java interpreter has access only to
the next line of code, the agency could learn the overall semantics if large
parts of the agent are executed.

The agency can spy out the code to analyze the agent’s intended behavior.
Say you developed an agent with a new algorithm for protein folding. Your
achievement should, of course, be protected against malicious agencies that
want to steal your code and provide a service based on your code. Spying
out an agent’s code becomes even easier if the agent is built from reusable
software components or uses code libraries that are already available at each
agency. One solution might be to have the agent carry along its own libraries
for data encryption instead of using those provided at the agency.

As a result of code analysis, the agency might then manipulate the agent’s
code. For example, it could implant some piece of possibly malicious code
into a formerly benevolent agent. The agency could insert a component that
makes it possible to remotely control the agent later, even if it has migrated

174 � Chapter 5 Mobile Agent Security

to other agencies. If the malicious agency has successfully analyzed the code,
it might even understand the strategy of the agent, for example, in price
negotiations. In our airfare example, the agent could be manipulated so that
no later price offer could be lower than the one of the malicious agency.

Whereas all the aforementioned attacks seek to modify the agent’s code
permanently, the agency can also change code temporarily and can mod-
ify agent execution by attacking the agent’s control flow. Attacks targeted at
the agent’s control flow include direct manipulations of the control flow and
malicious execution of the agent in general. A useful manipulation of the
control flow could be to skip security checks or other conditionals by return-
ing wrong results to system calls. The malicious agency could even return
wrong addresses of other agencies to misguide the agent. Second, the agency
could refuse to execute the agent correctly; for example, it may execute the
agent several times until it eventually accepts the offer.

5.3 Introduction to the Proposed Solutions

After giving a concise overview of possible attacks, we now present possible
solutions for these problems. We start with the reasoning for the range of
countermeasures that might apply.

During this discussion we exclude any arguments about how each coun-
termeasure might influence performance, storage usage, or network traffic.
At this time, it can only be said that a certain, most likely fairly high, price with
regard to these aspects of the system will have to be paid to reach a high level
of security. However, hard evidence from actual applications is still missing
and would thus reduce any arguments to the level of educated speculations.

The cheapest alternative is to install no protection and to gamble that
everything will work well. The advantage of having no security protection is
that no additional effort is necessary for encryption and signing of data or
any further security protocol.

Although the concept might look strange at first sight, there might also
be some good arguments to risk attacks as discussed previously. The type
of application affects the level of security you want to achieve. Consider an
application in which your agent is travelling to several agencies to collect
information about products you are interested in, but it is not allowed to buy
anything. You do not use any sophisticated security solution to protect your
agent against malicious agencies, so the agent’s code and data can by spied

5.4 Organizational Solutions � 175

out and modified. The important trade-off is between the effort to install
such security solutions versus the problems that may arise if a manipulation
occurs.What is the risk?Why should an agency try to modify your agent when
it is just collecting information? Sure, the agency could guess that after the
phase of gathering product information there might come a phase where you,
as owner, will buy a product. Thus, the agency could, for example, provide
some offer that attracts your attention. However, your risk when using an
unprotected mobile agent is that you must spend time visiting the Web page
of the purchaser and detecting that the offer was bogus. Your agent did not
reveal more information about its owner than you would have given to the
online store when surfing through the Internet anyway.

The best security solution would be a technique to prevent all types of
attacks. As we have already indicated, it is doubtful that a solution based
only on software algorithms will be powerful enough to protect mobile agents
against all types of attacks undertaken by malicious agencies. Therefore, most
researchers in the area of mobile agents are content with developing tech-
niques to detect attacks after they have occurred, for example, when the agent
returns to its home agency. Some authors recommend using hardware-based
security solutions, for example, using a tamperproof co-processor. See, for
example, Wilhelm et al. [1998] for such an approach.

Starting with the next section, we will discuss countermeasures to mobile
agent security challenges. Countermeasures consist of all techniques, proce-
dures, and protocols to diminish the vulnerability of mobile agents hosting
agencies. We will see that many techniques can be adopted from the area of
distributed systems. Many techniques are based on the cryptographic tech-
niques we introduced in the last section (i.e., encryption, digital signatures,
and hash values). Therefore, many of the proposed solutions build on the
assumption that there exists a public-key infrastructure (PKI), where, to sim-
plify matters, public keys and certificates of any principals can be loaded.
Other techniques require different presumptions. Some of them can be taken
for granted, for example, that the home agency is trustworthy—maybe it’s
the only trustworthy agency in the entire mobile agent system.

5.4 Organizational Solutions

We start our overview of solutions with the description of some approaches
that can be characterized by the absence of any technical countermeasure

176 � Chapter 5 Mobile Agent Security

to prevent or detect attacks but that provide organizational rules for how
mobile agents systems should be built. Organizational solutions confine the
openness of mobile agent systems to achieve some level of security. None of
these techniques solves security problems—they only circumvent them.

5.4.1 Trusted Agencies

Until now we have used the term trusted agency to refer only to an agent’s
home agency. In general, an agency can be trusted if we have strong evidence
to assume that this agency will not attack our agent or any other agency
in our mobile agent system. If we now assume that we could distinguish
a priori between trusted and untrusted agencies, then we would have a very
straightforward solution to all security problems. We let our agent migrate
only to trusted agencies! To achieve this, our agent must have a predefined
itinerary that includes only trusted agencies, or in the case of dynamic rout-
ing of agents, we can assume that the logical agency network consists of
trusted agencies only and no agency will allow a mobile agent to migrate to
an untrusted one.

From the viewpoint of an agency, we must ensure that the only mobile
agents accepted are those that have solely visited trusted agencies before.
This will prevent our agency from being attacked and possibly becoming
vicious later. Aglets enforces such a trust-based policy, whereby hosting envi-
ronments will not accept or dispatch agents to remote hosts they do not
trust.

As you have guessed, of course, the problem is to differentiate between
trusted and untrusted agencies in advance. However, in a closed network
environment, such as that of a company, we can achieve such a situa-
tion smoothly. An example of this approach is the PersonaLink application
proposed by GeneralMagic some years ago.

Nevertheless, to make this solution applicable in general, rules that are
positioned outside the mobile agent systems must be established to build
a network of trusted agencies. One problem remains, though. How can an
agent and all agencies be informed if it is discovered that an agency has
become malicious?

If it is not possible to bar mobile agents from visiting untrusted agencies,
it might still be possible to design the agent in a way that secure sensi-
tive computations, for example, are moved to trusted agencies. Such an
approach should be always applicable, because we assume we have at least

5.4 Organizational Solutions � 177

one trusted agency in the system, that is, the agent’s home agency. Of course,
the problem of spying out an agent’s data and those pieces of code executed at
an untrusted agency remains. Besides, to artificially split an agent’s activities
on two or more hosts might contradict the mobile agent paradigm and ruin
performance advantages, for example, if a large amount of data must now be
moved to a trusted agency to process it instead of processing it locally.

Although many authors devalue this approach, as we will see, it might be
the only one that is worthwhile to pursue. It is a solution for the problem that
an agent might want to carry secure sensitive information, such as a secret
of its owner. This information can be encrypted with the public key of the
trusted agency, making it possible for only the agency to read it. Therefore,
an agent can carry even a private key of its owner, as long as the agency is
really trusted.

5.4.2 Agency Reputation

Agency reputation can been seen as an approach to allow mobile agents
to decide which agencies are trusted in an open network environment.
Rasmusson et al. [1997] suggest that agents can complain about any agency
with a central registration agency. Malicious agencies lose reputation, caus-
ing other agents to stop visiting these agencies. Rasmusson et al. denote
their approach as social control, which is defined as a type of behavior that
enforces all members of a social group to behave according to rules that
were defined within this group.

The authors compare their approach with the population of a small village,
where people know each other and unethical behavior of one person imme-
diately becomes known by all and is extremely embarrassing for that person.
Such a village could therefore be interpreted as a type of closed social system,
whereas, in contrast, a typical mobile agent system could be seen as a big
town, where people might be more willing to be deceitful, knowing they live
in a anonymous microcosmos.

During their lifetime, agencies can obtain some level of reputation when
acting benevolently to visiting agents. Conversely, they lose reputation when
an agent gives notice about an attack. The agents themselves will propa-
gate the information about whether they were treated in a pleasing way or
were attacked from other agents; thus, malicious agencies will be bypassed
in the future. The problem with this approach is that only agents can com-
plain about agencies; agencies have no means to decline a bad reputation.

178 � Chapter 5 Mobile Agent Security

For example, it might be possible for an agent to deliberately complain
about an alleged malicious agency. Another problem is that behaving benevo-
lently for a long time does not necessarily mean that an agency is not
malicious. The agency might work properly over a long time, accumulating a
high reputation, and then begin attacking agents without warning.

5.4.3 By Law

The last organizational approach we want to mention here is based on
laws legislated by the government or individual contracts between agency
providers and users to guarantee that agencies are not spying out an agent’s
data or code or otherwise tampering with agents. In addition, a provider
could be forced to ensure that his or her agency is not attacked by third
parties. Refer to the approach that was proposed in the Telescript project
[Tardo and Valente, 1996].

This approach does not need any techniques to prevent attacks, but it does
require techniques to detect them and later be able to verify whether attacks
have taken place. The agency must audit all activities of visiting agents so
that the agency administrator can prove the behavior of its agency if an agent
owner makes claims about malicious behavior. These audits could be used as
evidence later in court. This means that this solution does not really improve
the situation in which we have no security protection but provides only a
trusted procedure for the case of an attack.

5.5 Protecting Mobile Agents

We divide our introduction of techniques and protocols to protect mobile
agents from malicious agencies to address the best possible prevention of
attacks and the detection of attacks after they have occurred.

5.5.1 Preventing Attacks on Mobile Agents

Encrypted Functions

Sander and Tschudin [1998a] propose a technique to encrypt an agent while
still allowing it to execute at remote agencies. Their technique is called
encrypted functions. Using this technique makes it possible to create mobile

5.5 Protecting Mobile Agents � 179

agents that are able to compute functions securely even in an untrusted
environment. The general idea is to let an agency execute the mobile
agent carrying an encrypted function without knowing the original function.
Unfortunately, it can be shown that, so far, only basic mathematical func-
tions can be protected with this approach. The technique is not sophisticated
enough to be used in mobile agents in general. However, with the develop-
ment of enhancements to their approach, in the future, this technique might
work with mobile agents in a generalized setting.

The general scheme can be described as follows:

1. Alice has a mathematical function, f , and encrypts this function,
resulting in E(f).

2. Alice sends the program P(E(f)) that executes E(f) to Bob.

3. Bob executes P(E(f)) using input x.

4. Bob sends P(E(f))(x) back to Alice.

5. Alice decrypts P(E(f))(x) and obtains x.

This idea seems simple at a glance; however, it is difficult to find a suit-
able encryption function E , and until now, no such encryption function has
been developed. Sander and Tschudin [1998b] present a protocol that works
for polynomials over rings Z/MZ with smooth integers M , where smooth
integers are those that consist only of small prime factors.

However, even if function f is encrypted and an agency has access only to
P(E(f)), this does not prevent the agency from undertaking so-called black-
box attacks. Here, the agency simply executes P(E(f)) several times to obtain
pairs of input and (encrypted) output of the underlying function f . Thus,
any algorithm that can be easily detected from such a table could be recon-
structed. As the authors point out, the only difficulty might be the size of the
table necessary for reconstructing f .

For a complete understanding of this approach, some basic knowledge in
algebra is necessary, which is outside the scope of this book. The interested
reader is pointed to the available literature.

Time-Limited Black Boxes

The last approach results in an encrypted program that will be completely
protected against spying out code and data for the lifetime of an agent.

180 � Chapter 5 Mobile Agent Security

We now discuss a technique proposed by Hohl [1998a] that assures protection
only for a limited time.

First, we define the term black box according to mobile agents. An agent
is a black box if at any time code and data of the agent cannot be read and
modified. We see that Sander and Tschudin’s encrypted functions fulfill this
requirement and therefore make agents into black boxes according to this
definition. Hohl now relaxes the requirement that an agent must be a black
box for its entire lifetime and introduces a new property that he calls time-

limited black box. The difference of a time-limited black box is that an agent
must be a black box only for a specified time interval. After this time interval,
any attacks to such an agent will have no effect.

The goal of this approach is to make it hard to analyze an agent, that is,
to understand the agent’s code and data to attack the agent in an expedient
way. As we have stated, there is a difference between understanding every
line of code and understanding the semantics of an entire program. This is
the point of Hohl’s approach. The goal cannot be to protect the agent’s code
against understanding each line of code but rather against understanding
the sense of the agent as a unit. Therefore, the author proposes to obfus-
cate, or mess up, code so that an automated program analyzer will need a
large amount of time to understand the code. Without being able to grasp
the code and data, a malicious agency cannot modify the agent in its own
favor. The only type of attack that would still be possible is sabotage of the
agent.

The second important issue of this approach is the need to take precau-
tions for the time after the protection interval. It is clear that there can be
either an automated analyzer or a human being who is able to understand the
code, regardless of what type of obfuscation has been used. Therefore, almost
all data stored within the agent’s state or data package must be attributed with
an expiration date. This expiration date must be encapsulated with each data
item in an unforgeable way so that other agencies will be able to verify it and
reject the agent and the agent’s data item, if necessary. Note that not all data
has to be protected by such expiration intervals, only those that are needed
to interact with other parties.

Hohl proposed three mess-up techniques: The first targets the agent’s
code, the second the agent’s data, and the third the agent’s control flow. All
examples are taken from the paper by Hohl [1998a]. For the first technique, no
specific algorithm is given, but an example is presented to demonstrate the
idea of code obfuscating. Consider the following piece of code and assume
that variables a and b are arrays of integer values.

5.5 Protecting Mobile Agents � 181

1 b[6] = a[3] - a[5];
2 b[7] = a[2] * 256;
3 b[8] = b[7] + b[6];
4 b[5] = b[8] - a[4] * 256;
5 a[0] = b[5] DIV 256;
6 a[1] = b[5] MOD 256;

This code fragment computes the difference of 2-byte values stored in a[2]
and a[3] (high byte and low byte) and a[4] and a[5], respectively. At the
end, the difference is stored in a[0] and a[1]. To recover this is very easy
when you resolve b[5] recursively. This example also shows the basic idea
of variable recomposition, which Hohl proposes to protect data items. The
technique works on a set of variables and cuts each variable into pieces,
let’s say a sequence of bits of variable length, and creates new variables that
are composed of segments from different original variables. Access to these
variables must be rearranged accordingly.

Finally, Hohl suggests converting control flow elements, that is, condition-
als or loops to value-dependent jumps. The result is evocative of finite state
machines, where in each state some atomic expression is calculated. A more
interesting approach is called deposited keys, in which deciding parts of the
agent’s code remain at a trusted server and the agent has to communicate to
this server from time to time to advance in its flow of control.

The drawbacks of this approach are manifold, the most important of which
is the exact determination of the expiration date. The time needed for an auto-
mated analyzer to determine the semantics of a piece of code greatly depends
on the quality of the mess-up algorithm and on the expertise of the attacker
in program analysis using, for example, monotonic data flow systems. Sec-
ond, only the existence of such an expiration date makes it impossible to use
long-living mobile agents and contradicts one of the principles of software
agents in general. The longer the interval is, the higher is the probability that
the agent will be attacked. The shorter the interval is, the shorter the agent’s
itinerary can be.

Environmental Key Generation

Now we consider a scenario in which agents roam the Internet, and we exam-
ine whether it is possible to protect the agent’s private data (i.e., code and
data) from being analyzed by the hosting agency. For example, let’s say your
agent will make a patent search against a database. It is your intention that

182 � Chapter 5 Mobile Agent Security

the type of request will not be visible to the patent server because it might
already contain enough information about your future patent that another
person could steal it from you.

The goal is to have clueless agents [Riordan and Schneier, 1998]—agents
that actually do not completely know what their behavior will be because
portions of their code or data are encrypted with a secret key. The basic
scenario is as follows: The agent has a cipher-text message and a method to
search the environment for the data needed to generate the secret key for
decryption. When the information is found, the agent can generate the key
and decipher the message. Without this key, the agent has no idea about
the content and the semantic of the encrypted message; that is, the agent is
clueless.

So, we see, the general idea is to give the agent only hash values of some
information and let the agent compare this hash value with computed hash
values at the remote agency. If they match, the hash value is used as a key to
decrypt additional information or code that should be processed now.

Thus, the goals of this method are (1) to protect the intention of the agent
by not giving it full knowledge about its task and (2) to protect further against
actions by using encryption. It is obvious that the hosting agency can still
attack the agent after it has decrypted the message, but to do this, it must
be executed. An analysis a priori, for example, by a dictionary attack, is very
costly.

The authors also propose more protocols, for example, considering the
time when keys are generated. These protocols can be used to ensure that a
particular data item can be encrypted only before or after, and in combination
with these two protocols, during a time interval. All rely on the existence
of a minimally trusted third party that is used for key generation but that
does not need to understand of the semantics of the information.

These protocols all have the same structure and distinguish between three
steps:

1. The programmer interacts with the trusted server to obtain an encryp-
tion key based on particular parameters.

2. The programmer initializes the agent, giving it an encrypted message
(code or data), some additional data required to decrypt the message
later, and information about the trusted server to let the agent access
the environmental information necessary to generate the key.

3. The agent afterward contacts the server for the information necessary
to generate the key.

5.5 Protecting Mobile Agents � 183

We first discuss the forward-time approach, which permits key generation
only after a specific point in time. After that, we discuss the backward-time

approach, which permits key generation only before some point in time. Let S

be a secret known only to the server. According to the pattern just presented,
the protocol works with the following steps:

1. The programmer sends the target time, t∗ (i.e., the time after that key
generation is permitted), and a nonce, R, to the server. The server
generates a key using the current time, tcur : h(h(S, t∗), h(R, tcur)), and
sends the key together with tcur back to the programmer.

2. The programmer sets P = h(R, tcur). It uses the key received from the
server to encrypt the message to the agent and also gives the agent a
copy of P. The agent then starts roaming.

3. At each agency, the agent continuously requests the secret from the
server. At point ti the server returns the hash value Si = h(S, ti). The
agent tries to decrypt the message using key h(Si, P). It will succeed
only when Si = h(S, t∗), which is when ti = t∗

The backward-time approach works according to the same pattern:

1. The programmer sends the target time, t∗, and a nonce, R, to the server.
The server returns h(S, R, t∗) if and only if t∗ is in the future.

2. The programmer uses the returned value as the key, encrypts the
message, and gives it to the agent, together with a copy of R and t∗.

3. At time tcur the agent sends the target time, t∗, and the nonce, R, to the
server. Only if the correct time t∗ is sent will the server be able to return
the valid key, and it does this if and only if t∗ is later than tcur with regard
to the server time.

Forward- and backward-time approaches can be combined to use closed
time intervals in which the encrypted information can be deciphered.

The major concern with this approach is that it protects data and code but
does not protect the behavior of your agent. Consider the example of an agent
performing a patent search. Rather than carrying keywords describing the
patent, the agent carries only hash values. It searches through the complete
patent data store, computes hash values of keywords, and compares them
with the hash value that it is carrying. The agency will not be able to analyze

184 � Chapter 5 Mobile Agent Security

which type of patents the agent is interested in, but it can observe the agent
and find out for which result the agent will perform an action, such as sending
information back to its owner. Another problem with this approach is that
decrypting pieces of code at runtime implies that it must be allowed to create
code dynamically, which might be prohibited by the hosting agency and/or
the underlying execution environment.

5.5.2 Detecting Attacks on Mobile Agents

Detecting through Replication of Agencies

We start with the discussion of two approaches presented by Schneider [1997]
and Yee [1999], both of which rely on replication to detect any type of attack.
The general idea is to replicate the agent so that not only a single but many
agents of the same type roam the network with the same task.

Schneider [1997] argues that a malicious agency may corrupt a few copies
of the agent but that there will be enough replicas that the encounter can be
avoided and the task successfully completed. We assume a situation in which
a mobile agent executes in a sequence of so-called stage actions, Si, where
0 ≤ i ≤ n. Usually, the mobile agent processes an itinerary that consists of
several agencies, Ai, 0 ≤ i ≤ n. Let A0 again be the home agency and An

be the destination, which might equal the home agency. There is a strong
relationship between stages and agencies as Si is processed at agency Ai.
Schneider now assumes that for each stage Si there will be not only a single
agency Ai but many of them providing the same set of services and behaving
the same, as intended. More formally we can write that in each stage there
will be a set Si = {Ai

0, Ai
1, . . . } of agencies.

The agent’s home agency replicates the agent and sends copies to all
agencies A1

i ∈ S1. Each replicated agent processes the same action, but
each does so on a different agency. Eventually, the agent wants to migrate
to another agency. The protocol now dictates that the agent is to be sent not
only to a single agency but to all agencies A2

i ∈ S2. In general, at stage i,
each agency Ai

k
sends a copy of the agent to all agencies of stage i + 1

(i.e., Si+1).
Each agency at stage Si receives many copies of the same agent, prob-

ably with different state or data packages (because they might have been
attacked). It compares all agents with each other and assumes that not more

5.5 Protecting Mobile Agents � 185

than half of all agencies in stage Si−1 were malicious. It then chooses the
agent with the most frequent state to execute. The problem now is to deter-
mine which agencies form stage Si−1. Otherwise, malicious agencies could
behave as if they were on the penultimate stage and foist some bogus agents
to the destination or the home agency.

Schneider denotes an agency on state i as a voter that must be able to
select its electorate, that is, the agencies of stage i−1 from which it will accept
agents as input. Each agent must carry a kind of privilege to identify itself
as sent by an authorized agency. Bogus agents will be detected because they
will not carry such a privilege. The privilege consists of the set of so-called
forwards. When an agent is sent from agency Ai

k
of stage Si to some other

agency Ai+1
j at the next stage Si+1, it will carry a forward, which is digitally

signed by agency Ai
k
: K −

Ai
k

(Ai
k

→ Ai+1
j). Here, Ai

k
is the id, or name, of Ai

k
.

It is now easy for an agency on stage Si+1 to determine which agencies do
belong to stage Si. An agent carries a forward K −

Ai−1
m

(Ai−1
m → Ai

k
), which con-

tains this information. However, an agency on stage Si+1 might be foist with
some other (bogus) agents carrying other forwards. To check this, the agency
must verify the list of forwards, beginning with the one signed by Ai

k
and

ending with the home agency, A0. Here, we assume that each agency knows
the home agency, A0. Because bogus agents will not have this information
(they cannot carry an information signed by A0), they can be identified. From
the rest of agents, we are taking the majority value from Si.

Finally, after all bogus agents are discarded, agency Ai+1
j determines

whether a majority of the remaining agents are equivalent. All these agents
are augmented by the new forward K −

Ai+1
j

(Ai+1
j → Ai+2

l
).

The main problem with this approach is that it might be unrealistic in
common application domains to assume that agencies can be replicated.
Although agency replication is not a problem if the replicated agencies are
within the same application domain, this is not sufficient for the proposed
approach. Agencies within the same domain will certainly run the same hard-
ware and software. Why should an agent then be attacked only at a subset
of these replicated agencies? In addition, agents must be replicated as well,
and it depends on the agent task whether this is possible or not. Consider,
for example, a scenario in which an agent is supposed complete a bargain.
This task is better not replicated. Another problem is that the author does
not provide information on how the agent should find different agencies for
each stage.

186 � Chapter 5 Mobile Agent Security

Detecting through Replication of Agents

Yee [1999] proposes another solution that is also based on replication.
However, this approach does not work with agency replication, only with
replication of agents. The scenario is that of an agent configured to search
for the lowest price of an airfare. The user has predefined the itinerary of
the agent and proved some parameters to describe the flight to search for.
Let the agent’s itinerary be the following set of agencies, {A0, A1, . . . , An}.

We start with two mobile agents, α and β, each processing the prede-
fined itinerary in a different order. The first agent will process the itinerary as
given, and the second agent will execute the itinerary in exactly the reverse
order (i.e., the sequence An, An−1, . . . , A0).

Yee now argues that if there is only a single malicious agency on the
agent’s tour, using this approach will make it possible to detect any tam-
pering with the agent by comparing the results of the two agents α and β.
The user will then be able to decide which of the agents was attacked and
can be certain that the other agent has presented the correct result of its
search—the lowest airfare.

First, we consider the case that there is exactly one malicious agency, Ai.
The agency that will provide the overall lowest fare is Aj , and we first assume
that i < j. Agent α processes its itinerary in the given order and will therefore
visit the malicious agency before it reaches the agency providing the lowest
fare. If we assume that agency Ai is malicious according to data integrity and
does not kill the agent completely, then it cannot attack agent α successfully
because agent α does not have any sensitive data yet. Later on its tour, agent
α gets the lowest fare from agency Aj and will report this to its owner. Agent β

visits the agencies in the inverted order. It first reaches agency Aj , getting the
lowest fare. Later it reaches the malicious agency Ai and becomes attacked,
for example, by modifying the information about the lowest fare. If agent β

returns home, it will report an incorrect value to its owner. A comparison of
both results shows that they are not equal, but the owner can see which fare
is lower. Therefore, he can infer that agent β was attacked and agent α has
presented the correct result. It is obvious that case i > j works analogously.

Finally, we must consider the case that i = j, that is, that the malicious
agency would be the one to present the lowest fare, even without any type of
attack. Agency Ai, however, now benefits in that it need not present its real
price but can alter it to be just marginally lower than the second-lowest fare.
Note that in this case, the owner will not get the real lowest fare but only the
second-best price.

5.5 Protecting Mobile Agents � 187

This approach seems to be more applicable than assuming that agencies
can be replicated. However, it requires that the agent’s itinerary be predefined
and immutable until the second agent starts. The approach does not work
if more than a single malicious agency is present. For example, consider the
case that the agency providing the lowest price is in the middle between two
malicious agencies. In this case, neither agent can determine the real price.

Detecting Black-Box Attacks

We have introduced the black-box property of mobile agents and presented
two approaches to convert mobile agents into black boxes. We distinguished
between a time-unlimited approach using encrypted functions and a time-
limited approach working with mess-up algorithms. However, one problem
remains: Even if a malicious agency is no longer able to determine the seman-
tic of an agent, it might still be able to run so-called black-box attacks on
them, for example, by executing the agent several times with different input
parameters and therefore different results of system calls to test the agent.

By re-executing a mobile agent, a malicious agency can gain information
about the agent’s behavior; that is, it can determine how it reacts on the given
input parameters. Consider a scenario in which an agent travels to an agency,
asks for an airfare, and accepts the deal if the proposed price is lower than a
user-defined threshold. The malicious agency might now execute the agent
and start with a comparatively high price. If the agent does not conclude the
bargain, it decreases its own price and restarts the agent until the threshold
is reached.

Hohl and Rothermel [1999] propose a technique to make agents them-
selves capable of detecting such attacks. The main idea is to let the agent
verify that the agency delivers the same result for equal system calls and any
inquiries to the agency. Therefore, for each input, the agent sends a message
to a trusted registry, such as that located at the agent’s home agency. The
message contains a unique statement identification number associated with
the agent’s source or byte code and a hash value of the data response. Thus,
the registry collects information about all results to inquiries of the agent.
When the registry receives a new message, it looks up the statement iden-
tification number and compares the hash value of the data response entry.
If they match, it acknowledges the message; otherwise, it returns an error
code to the agent. If the agent receives a nonacknowledge message, it knows
that the hosting agency has tried to re-execute it and reacts accordingly.

188 � Chapter 5 Mobile Agent Security

For details of the protocol implementation, we refer to Hohl and
Rothermel [1999].

Detection Using Cryptographic Techniques

In the following sections we will discuss techniques to detect tampering
with an agent’s data by malicious agencies.

Protect an Agent’s Read-Only Data

The read-only part of an agent’s data is characterized by the fact that these
are immutable during the lifetime of the agent. Consider, for example, the
itinerary that is predefined by the agent’s owner and contains addresses of all
agencies the agent should visit. This information should be unmodifiable.2

For the following we assume that the name of the agent’s owner and the
name, or id, of the agent’s home agency are carried by the agent as part of
the agent’s name or state. Both are examples of immutable data items and
therefore must be protected against modifications. Thus, the main require-
ment here is integrity of the data. To achieve such read-only data items,
the following technique based on asymmetric cryptosystems can be used.
At the agent’s home agency, A0, the data item is signed with the private
key of the owner. According to the notion just presented, we can write
signature = SigO(data) = K −

O (h(data)), where h(data) is the digest of the
data item, computed using a one-way hash function (e.g., MD5), and O is
the owner of the agent. The signature must be computed at the agent’s home
agency because the owner’s private key is available only there and becomes
part of the agent. The same technique can be used to detect any tampering
with the agent’s code.

When the agent accesses this data item, the host agency verifies whether
the read-only data item has been tampered with. To do this, the agency needs
the public key, K +

O , of the owner, usually in the form of a trusted certificate.
It computes the digest equally to the home agency and compares it with the
signature that the agent carries. Thus, it checks to see whether h(data) equals
K +

O (signature). If both match, the agency can assume that the data item was
not modified.

2. Of course, a malicious agency has other techniques to manipulate an agent’s route, for example,
by simply sending the agent to a destination other than that requested.

5.5 Protecting Mobile Agents � 189

A malicious agency can attack this technique in several ways. The most
trivial way is to modify the data item but not the corresponding signature.
The modification will be detected at the next agency, which tries to verify the
data item using the given signature. Next, the malicious agency could modify
the data item in a way that the digital signature is still valid. Although this
is possible because of the hash function used, it is assumed to be computa-
tionally infeasible to find another data item with the same digest. Third, the
agency could modify the data item and the signature so that the data item
seems to be valid even though it is not. Because it is a fundamental concept of
the whole public-key cryptography that the private key is known only to the
owner, this attack can be ruled out. Finally, the malicious agency can modify
the data item and sign it with its own private key. As in the first case, such an
attack can be detected very easily because the signer of the data item will not
match the given owner name. If the malicious agency also changes informa-
tion about the agent’s owner and the agent’s name (forging the agent’s home
agency), then we have a special type of attack, where the malicious agency
steals the complete agent and executes it on behalf of the kidnapping agency.

Reveal an Agent’s Data at Specific Agencies

The next problem is to protect data items in such a way that they can be read
only at certain agencies. This is necessary when data items are defined at the
home agency but will be read only at other agencies. It is also necessary when
a data item is defined at any agency and readable only at the agent’s home
agency.

This problem can be solved by encrypting the data item with the public
key K +

AT
of the agency for which the data item is targeted. An additional

signature SigO(h(data) + AT) that binds the name (AT) of the target agency
AT to the encrypted data item using the onwer’s private key can be used
to ensure that the target address has not been tampered with. The target
agency, AT , can decipher the data item with its own private key and verify the
signature using the owner’s public key, K +

O , and comparing hash values. This
approach has been proposed by Karnik [1998].

The disadvantage of this solutions is that the data item must be encrypted
n times if it must be readable at n agencies. A better solution is proposed by
Roth and Conan [2001], who use a hybrid encryption technique. The data
item is encrypted using symmetric encryption, where only key k (which is
much shorter than the original data item) is encrypted n times using the
public key of all target agencies.

190 � Chapter 5 Mobile Agent Security

Another problem detected by Roth and Conan [2001] is the vulnerability
of this approach to a simple cut and paste attack. A malicious agency could
copy a data item that is encrypted for agency AT into a fresh agent β and send
this agent to the target agency. There, the agent decrypts the data item and
carries it back to the malicious agency.

A possible solution proposed by Roth and Conan uses a MAC that binds
the agent owner’s public key with a symmetric key, k, and lets this MAC be
transmitted as a static part of the agent (i.e., signed by the agent owner). In
detail, the authors propose to encrypt a data item using a secret key, k, which
is encrypted with the public key of the target agency. The agent therefore
carries the encrypted data item, k(data), together with the encrypted key,
K +

AT
(k). A message authentication code is computed over the agent owner’s

certificate and the symmetric key k: m = MAC(K +
O +k). This MAC is signed by

the agent’s owner and is sent along with the agent. Target agency AT can then
decrypt key k, recompute the MAC using k and the owner’s certificate, and
then compare it with the MAC that was signed by the owner. Both MACs must
match to ensure that the correct agent is going to reveal the encrypted data.
In the case of a cut and paste attack, a fresh agent β is started at a malicious
agency and carries the data item to be revealed at agency AT . Agency AT

will then decipher key k and recompute the MAC over the key and owner’s
certificate. However, agentβ will, of course, be signed by the malicious agency
or some owner. Obviously, this MAC will not match the one that the agent
carries.

Agent’s Dynamic Data

An agent’s dynamic data is typically the result of an inquiry to the hosting
agency. It consists of data that the agent wants to carry to other agencies
on its itinerary or that it wants to send home to its owner. For dynamic
data, of course, the same requirements apply as for static data. Data items
must be protected against being spied out at later agencies, which can be
solved by using encryption. In addition, data items must be protected against
modifications, which can be solved by using digital signatures. However, the
difference with dynamic data is that there will be other principals to encrypt
and sign than in the case of static data. The general idea is to let the agency
digitally sign each data item it has transferred to the agent and encrypt some
data items with the public key of a destination agency.

For example, data items that are readable only by the agent’s owner later
can be encrypted using the public key of the agent owner. Only the owner

5.5 Protecting Mobile Agents � 191

will be able to decipher the data item because only he or she has access to the
corresponding private key. However, a malicious agency could attack data
items by deleting the data item, even if it does not understand the sense of
it, together with the corresponding signature. Another type of attack could
be to modify the value, sign it with its own private key, and encrypt it with
the owner’s public key. If the agent has no additional protocol to detect that
a data item has been deleted or modified, such attacks will remain invisible.
Another problem with this approach is that the size of the agent increases
with each hop. In sum, the agent must carry a huge amount of encryption
data, the cipher text, where only a small portion is real information. One
solution to this problem is called sliding encryption, in which an agent can
gather small amounts of data from several agencies and encrypt them using
a public key without wasting an excessive amount of storage space [Young
and Yung, 1997].

Karnik [1998] proposes so-called append-only logs as part of an agent’s
state to make a data item unmodifiable for the rest of the agent’s itinerary.
We assume a situation in which agent α has travelled to many agencies and
now resides on agency Ai. It has obtained a new value (denoted as data)
that it wants to protect against later modification. The new object is inserted
in an AppendOnlyContainer and signed by the current agency. In addi-
tion, a checksum is carried by the agent. This is initialized at the agent’s
home agency with a nonce, R, that is encrypted with the agent owner’s pub-
lic key, K +

O (R). This nonce must be kept secret at the agent’s home agency.
This checksum is updated after a new data item has been added as follows:
checksum = K +

O (checksum + SigAi (data) + Ai). The data item is still readable
at later agencies, if it is not only integrity that should be protected. If confi-
dentialiy also must be guaranteed, then data can also be encrypted by using
the public key of the owner. When the agent returns home, the owner can
verify the integrity of all data items by unrolling the encrypted checksums.
This also includes comparing hash values of the data item, which then makes
it possible to detect, any tampering with data. After unrolling is complete,
the original nonce should appear. One drawback of this approach is that the
verification process relies on the owner’s private key and can therefore be
performed only on the agent’s home agency. Another drawback is that this
protocol is also vulnerable to a cut and paste attack if a malicious agency,
Am, that knows a checksum as computed by any agency visited earlier. For
details, we refer to Roth [2001].

Another approach, presented by Yee [1999], is called PRAC, which stands
for partial result authentication code. Rather than relying on asymmetric key

192 � Chapter 5 Mobile Agent Security

encryption of partial results, this technique relies on secret keys, which are
faster to compute. The goal is to ensure forward integrity of partial results.
If a mobile agent will visit several agencies A1, A2, . . . , An and the first mali-
cious agency is Ai, 1 ≤ i ≤ n, then none of the partial results generated at
agencies Ax , where x < i, can be forged.

First, we introduce simple MAC-based PRACs. When the agent is started,
the home agency provides the agent with a list of PRAC keys, where, for each
agency the agent is going to visit, a key is designated. Before the agent leaves
an agency, it summarizes its partial result from its stay at this agency in a
message. To provide integrity, a MAC is computed for this message using the
key that was associated with the current agency. The PRAC now consists of
the message itself and the MAC. Then the key used must be deleted. Next,
the message can be sent back to the agent’s owner directly or carried along
to further agencies. With this technique, it is ensured that no partial result
that was originated by a previously visited agency can be modified without
detecting it later. If a malicious agency, Ai, wants to modify the content of
a partial result, Pa, with a < i, it must know the PRAC key of agency Aa to
recompute a valid PRAC.

Yee also proposed two modifications of his technique. First, a key need
not be generated for all agencies in advance. It is possible to start with only
one key for the first agency, A1, and to generate a new key used at the second
agency, A2, dynamically before leaving agency A1 using a m-bit to m-bit one-
way hash function. A second modification works with public and private
keys. A key pair is generated for each agency. At an agency the associated
private key is used for encryption and then dropped. If the agent carries
all certificates, it is even possible for the agent to decrypt and verify partial
results at later agencies. Again, it is possible to defer key creation to a later
time and start with only one key pair.

One of the drawbacks of this approach is that a malicous agency could
retain copies of the agent’s original key. If the agent visits the agency again
(or another agency conspring with the malicious agency), a previous result
might be modified with notification to the agent.

Detecting Code and Control Flow Manipulations
through Execution Tracing

If we cannot guarantee that code and data are unmodified, at a minimum, we
want to be able to detect any modifications later. Vigna [1998] has developed

5.5 Protecting Mobile Agents � 193

a technique called execution tracing. This technique makes it possible to trace
an agent, that is, to save the history of execution at a single specific agency in
an unforgeable way. The owner of the agent can verify that its agent has been
executed correctly, that is, that it has been executed in the correct order of
statements and that the correct data has been used. Execution traces help to
prove that some malicious agency has tampered with the agent.

The general idea is that each visited agency sends messages to the agent’s
home agency or some other trusted agency after it has received the agent
(and before it starts to execute the agent) and after the agent has terminated
(and before it migrates to the next agency). With the first message the current
agency gives notice about what it has received from the sender agency. With
the second message it signs for the agent that now will leave this agency.

We will use the following notation: Agent α visits several agencies on its
route Iα. Each agency is denoted with Ai, where the number i corresponds to
the iteration step; that is, A0 is the home agency, A1 is the agency that is visited
first, and so on. The agent’s code is αc , and the agent’s state after it has been
executed at agency i is α

Ai
s . Each agency is able to compute a trace, that is, the

sequence of all statements executed by the agent. This list is denoted by T
Ai
C .

The protocol uses three types of messages that we will now describe step
by step. We assume a situation in which an agent is currently executed at
agency An−1 and now wants to migrate to agency An. The agent’s state is
denoted by α

An−1
s . Agency An−1 has computed an execution trace for this

agent that is described by T
An−1
C . The trace is stored so that it can later be

retrieved by the agent’s owner for verification of the execution. Before agency
An−1 actually sends the migration message to the next agency, it informs the
agent’s home agency, A0, about the fact.

Notify Home Agency about Forthcoming Migration

Agency An−1 sends a message to agency A0 with following content:

{An−1, K −
An−1

(An, h(αAn−1
s), h(T An−1

C), iα)}

The message consists of the following parts:

■ The name of the sender agency, An−1

■ The name of the next agency, An; a hash value of the current state, α
An−1
s ;

a hash value of the execution trace, T
An−1
C ; and the unique identifier, iα,

that remains equal during the agent’s lifetime—all signed by agency An−1

194 � Chapter 5 Mobile Agent Security

The home agency does not send such a message to itself. Agency A0 stores the
hash values of the current agent’s state and the execution trace. The second
message sent by agency An−1 is directed to the next destination that the agent
will visit, which is agency An.

Migrate

With migration from agency An−1 to agency An, the message has the following
contents:

{An−1, An, A0, K +
An

(αc , αAn−1
s), K −

An−1
(h(αAn−1

s), An), K −
A0

(h(αc), t0, iα)}

The message consists of six parts:

■ The first three parts consist of the name of the sender agency, the name
of the destination agency, and the name of the agent’s home agency.

■ The fourth part contains the code, αc , and current state, α
An−1
s , of the

agent. Both are encrypted with the public key of the destination agency.
Therefore, only the destination is able to read the code and data. Thus,
code and state are both protected against tampering and eavesdropping
during transmission, but it is unclear whether they come from the sender
agency or some other agency (man-in-the-middle attack).

■ The fifth part of the message contains the hash value of the agent’s cur-
rent state, α

An−1
s , and the name of the destination agency, An. Both are

encrypted with the private key of the sender agency, An−1. The sender
signs all information, so the destination agency, An, can be sure that it is
from An−1 because only this agency has access to the private key, K −

An−1
.

■ The last part of the message contains information that was signed by the
home agency, A0. With the first migration, (when the agent leaves agency
A0), this information is actually signed by A0. All other agencies visited
later merely copy this piece of information. The message consists of a
hash value of the agent’s code, a time stamp to guarantee freshness, and a
unique identifier to prevent replay attacks. As in the preceding point, the
destination agency, An, can be sure that all information is from the home
agency, A0, because only this agency has access to the private key, K −

A0
.

Agency An decrypts the fourth part of the message using its own private
key, K −

An
, to obtain the agent’s code and the agent’s last state. Then it uses

5.5 Protecting Mobile Agents � 195

the name of the last agency, An−1, to retrieve public key K +
An−1

and to decrypt
the fifth part of the message that contains the hash value of the agent’s last
state. Agency An computes the hash value of the agent’s last state, α

An−1
s , and

compares it with the hash value that was encrypted by An−1. If both are equal,
agency An can be sure that the state is unmodified. In addition, because the
sender agency An−1 has signed the information to which agency the migra-
tion is directed, An can be sure that it is the correct addressee. Finally, An

retrieves the public key of the agent’s home agency, A0, and decrypts the
last part of the message. It computes the hash value of the given code and
compares it with the hash value given in this part of the message. If both
values match, An can be sure that the code is unmodified.

After authentication has been performed, agency An sends an acknowl-
edge message to the agent’s home agency, A0.

Acknowledge the Receipt of the Agent

By this message, agency An confirms that is has received the agent (i.e., the
agent’s code and current state) in a specific state. Later, this agency could
not deny having received the agent in this specific state. The message has the
following format:

{An, K −
An

(K −
An−1

(h(αAn−1
s), An), K −

A0
(h(αc), t0, iα))}

This message contains the name of the current agency, An, and the fifth
and sixth part of the migration message, both signed by this agency. Using
this message, the home agency can verify that agency An has received the
migration message with the agent’s code, αc , and the last state of the agent,
α

An−1
s , correctly by comparing the hash values for the state and the code with

the ones received in the migration notification sent by An−1 to A0.
Then the agent is executed until it wants to migrate to the next agency.

The protocol starts again by sending the migration notification to the agent’s
home agency and then sending the migration message to the next desti-
nation. Finally, the destination agency acknowledges receipt by sending a
message to the home agency. The protocol repeats itself until the agent wants
to terminate. If the agent is self-maintained to its home agency, there is no
difference to the message described previously. Otherwise, instead of the
migration message, another message must be sent to transmit the current
agent’s state to the home agency but to indicate that the agent does not want
to be executed at the destination agency again.

196 � Chapter 5 Mobile Agent Security

In the original work by Vigna [1998], the author proposes additional mes-
sage types to consider the case that the agent leaves its home agency or
returns back to it. We have tried to summarize these cases in classifying only
the three main types of messages. It is obvious that one possibility to opti-
mize the protocol (i.e., to reduce the network load) is that information could
be summarized and dropped.

Finally, we have to explain how the agent’s owner can now prove correct
execution of his or her agent. This is done by retrieving the execution trace of
the suspicious agency and simulating agent execution at the home agency.
Simulation must start at the point when the agent was started at A0. Because
the home agency is by definition trusted, the agent is simulated without
comparing it to an execution trace. Before the agent wants to migrate to A1

simulation of this agent is in state ˜
α

A0
s .

For all agencies Ai with 1 ≤ i ≤ n, when n is the last agency that the agent
will visit, do the following:

1. Retrieve the acknowledge message from Ai. Compute a hash value of

the agent’s last simulated state h(
˜

α
Ai−1
s) and compare it with h(αAi−1

s)
that was sent as part of the acknowledge message by Ai. If they do not
match, state α

Ai−1
s was manipulated.

2. Compare the hash value of the agent’s code with the one that was
acknowledged by Ai. If they do not match, the code was manipulated.

3. Retrieve the original execution trace T
Ai
C from Ai. Simulate agent exe-

cution as on agency Ai until it wants to migrate or die. Trace agent
execution in T̃

Ai
C . All values that are the result of systems calls are stored

in the trace. These values are therefore used for the simulation. If there
is any conflict, agency Ai has cheated with the control flow. However, if
the agency has returned a wrong value for system calls, this cannot be
detected.

4. Compare the hash values of the state that is the result of the simulation
˜

α
Ai
s with the one that Ai has sent in the notification message. If they

do not match, Ai has cheated with the state.

5. Otherwise, Ai has executed the agent correctly.

Drawbacks of This Approach

Execution tracing is a very interesting approach, but it also has some severe
drawbacks. First, the size of the trace might be large and must be transmitted

5.5 Protecting Mobile Agents � 197

from each agency to the trusted server and its respective home agency, which
slows the overall performance of mobile agents. To reduce the trace, Vigna
[1998] proposes several techniques, for example, not tracing the entire pro-
gram but only selected statements that were marked by the programmer or
only the points where control flow changes. Second, if the agent is allowed to
use threads on its own, execution tracing becomes more complex. Third, the
code must be static. An agent is not allowed to use code generation on the fly
and the underlying execution environment, a virtual machine, in the case of
Java must not use Just-in-Time Compilation unless the tracing technique was
adopted. Finally—and this is a drawback of all approaches that only detect
attacks but do not prevent them—there must be some kind of legal or organi-
zational framework that now comes into terms. For example, if an agent was
manipulated but has already bought a good, there must be a procedure that
the agent owner could use to obtain a refund.

Some of these drawbacks are solved by using an extension of this tech-
nique presented by Tan and Moreau [2002]. Yee presents some theoretical
ideas to reduce the effort to transmit and prove the trace sent by a suspi-
cious agency using holographic proof-checking techniques [Babai et al., 1991]
or computiationally sound proofs [Kilian, 1992; Micali, 1994]. Neither tech-
nique is currently applicable, so we will skip a detailed introdcution here
and refer you to Yee [1999] for more information.

Detecting Itinerary Manipulations

Finally, we want to discuss a technique proposed by Roth [1998] to detect
attacks on agents, in which the agency prevents an agent from migrating to
some other agency.

The general idea is to let two agents migrate independently within the
mobile agent systems and exchange information about their current, their
last, and their next agency. In a special scenario, one of the agents could even
be immobile and remain, for example, at its home agency. In the following an
agency is denoted as usual as Ai, and the name, or id, of this agency is denoted
as Ai. We assume that at each agency Ai, agent α can request the name of the
agency from which it came, previ(α). The name of the next agency to which
agent α wants to migrate to is denoted by nexti(α).

Both agents start at the same agency, A0, which becomes their home
agency. At each agency Ai that agent α visits, it sends the information
about the last agency visited, previ(α), and the information about the next
agency the agent is going to visit, nexti(α), to agent β using an authenticated

198 � Chapter 5 Mobile Agent Security

communication channel. Agent β, therefore, also knows the name of the
agency Ai that α is currently visiting. Now, agent β can verify that previ(α)
equals Ai−1. If they do not match, we have two possible error situations. First,
Ai−1 could have sent agent α to agency Ax instead of Ai—or Ai is returning
wrong information for previ(α). For example, agency Ai may be malicious
and want to incriminate agency Ai−1, which is actually not malicious at all.
It is not possible to determine which of the two agencies cheats.

Then, agent β can verify that Ai matches nexti−1(α); that is, it checks that
the current agency is really the one to which agent α wanted to migrate. In
this case, agency Ai must masquerade its identity or deny communication
between the two agencies to mask the error situation. On the other hand, if
agency Ai does not deny communication and does not masquerade, then β

will discovers that Ai−1 has sent the agent to a wrong agency.
This protocol has some drawbacks. First, communication between the

two agents is expensive. Second, the agent might be killed after the agent
has sent its position message to β but while it is still on agency Ai or after
the agent has been received by Ai+1 and before the agent has sent its new
position message.

To make this protocol work, it must be guaranteed that both agents α and
β are at each point in time on two hosts for which it is clear that they do not
work together. In the other case, the two malicious agencies might cooperate
to attack the protocol. For example, it could be possible that simply both
agents are killed at the same time.

Roth, therefore, proposes to mark all agencies with the colors white, gray,
and red. White agencies are benevolent. Possibly, only the home agency is
marked white. Gray agencies are not completely trusted, and red agencies
are those that might collaborate with some other agency to attack an agent.
Then, Roth defines the following condition to make his protocol work: The
two agents migrate into two disjunct sets of agencies, and no red agency
from one set is willing to cooperate with a red agency from the other set.
The question that remains is how this condition can be guaranteed.

5.6 Protecting Agencies

We now consider the problem of how agencies can be protected against
malicious agents. Actually, this problem is played down and regarded as
almost solved in large parts of the literature, because Java as a programming

5.6 Protecting Agencies � 199

language and execution environment already provides several techniques
that can be used to protect the underlying agency from several types of
attacks carried out by malicious agents. In fact, the problem of malicious
agents seems to be better understood than the reverse problem of malicious
agencies.

One of the main concerns is how the underlying operating system
and hardware can be protected against unauthorized access by agents.
Although Java’s sandbox concept provides an already-sophisticated solu-
tion for this problem, we will show that many problems still remain and
that the sandbox in its current version is by no means a complete solution.

In this section, we start with an introduction to Java security and then
present techniques for agent authentication and authorization. Finally,
we present techniques to protect an agency from malicious agents during
runtime.

5.6.1 Introduction—Java and Security

In Chapter 2 we introduced some of the major benefits of Java as a pro-
gramming language for mobile agent toolkits. In this section we extend this
introduction and provide a deeper overview of Java security aspects. For a full
introduction to Java security, we point the interested reader to Oaks [2001].

Java as a Safe Programming Language

One of the major benefits of Java—and not only for mobile agent toolkits—
is that it can be considered a safe programming language compared with C
or C++, for example. Many typical programming flaws that result in severe
runtime errors in C or C++ simply cannot occur in Java.With regard to security,
one of the main differences between Java and C is that Java is a strictly typed
programming language and has a pointer model that does not allow illegal
type casting or pointer arithmetic. For example, in Java the programmer has
no chance to access arbitrary memory locations and overwrite and destroy
data there. In Java it is impossible to access arrays beyond their boundaries,
as can be done in C, for example.

Code Signing

Code signing is a technique used to verify the integrity of mobile code,
and it can also be used as one step in the agent’s authentication process.

200 � Chapter 5 Mobile Agent Security

Typically, the agent programmer or owner (i.e., the person who starts the
agent on his or her behalf) signs a hash value of the agent’s code with his
or her private key and sends the signature along with the code to a desti-
nation agency. The destination agency can then verify the integrity of the
code by recomputing the hash value on the code and comparing it with
the decrypted signature. If both match, the agency can use this as input for
the agent authorization process and grant privileges to the agent.

However, what is really verified here is only code integrity—not that the
code is nonmalicious. If the code signer is in fact the owner and he or she
is not equal to the programmer, then the owner can sign only that the agent
belongs to him or her and not that the agent behaves properly. This difference
is used in the state appraisal approach that we introduce in the following
section. Thus, code signing is an important step in the agent authentication
and authorization process—at least you know whom to blame if something
goes wrong.

The Bytecode Verifier

When a Java class is loaded into the virtual machine, it is verified on the
level of bytecode. This verification process includes several steps to guaran-
tee that the loaded class or interface is structurally correct with regard to the
semantics of the Java virtual machine. Among other things, bytecode veri-
fication includes ensuring that only valid instruction opcodes are used, no
final method is overridden, local variables are not accessed until they have
been defined with an appropriate value, and control flow instructions target
the beginning of an instruction.

Bytecode verification is very time-consuming because, for example, an
expensive data flow analysis must be performed for some of the checks.
Therefore, some researchers propose other intermediate code representa-
tions competing with Java bytecode, where type safety can be guaranteed
just by the structure of the code representation and without an additional
verification process. See, for example, Amme et al. [2001]. For more informa-
tion about Java bytecode and the verification process, we refer to Lindholm
and Yellin [1999].

Sandboxing to Protect the Runtime Environment

Bytecode verification is done before the Java program is executed. If a pro-
gram has passed the verification process, it is executed and further security

5.6 Protecting Agencies � 201

checks are performed during runtime. This technique is called sandbox, and
it includes the following elements:

■ Each Java class is loaded from a specific code source that is specified by a
URL (which is called codebase). If the code is signed, the code source also
includes information about the signer.

■ A permission is a specific action that a code is allowed to perform. In
Java, permissions have a type (a class name), a name, and an action.
For example, to access all files in directory /foo/bar, the code must have
the java.io.FilePermission with the directory as name and read as action
string.

■ A protection domain is an association of code sources and a set of per-
missions. A protection domain defines, for example, that all code that is
loaded from http://www.mobile-agents.org is allowed to do anything (that
can be described by the permission java.security.AllPermission) and code
that is loaded from http://www.devil.org has permission only to open file
for reading but not for writing.

■ Policy files are used to define protection domains. They can be plain text
files in which you define which permissions a code loaded from some
URL will have.

■ Keystores contain certificates that can be used to verify signed code.

The agent authorization process defines which permissions a mobile agent
should have. We will present techniques to decide on the set of permissions
later in this section. One problem with the Java sandbox concept is that
assigning permissions to protection domains is done statically per default;
that is, it is not possible to withdraw a permission from an agent once
the agent has been started. However, there are techniques to handle this
drawback and make permissions dynamic.

Finally, we must explain how the runtime environment of Java verifies that
some code C has permission to execute a possibly harmful statement, such
as opening a file for reading. When control flow reaches this statement where
a file should be opened, for example, by creating an object of type FileInput-

Stream, a component of the runtime environment, referred to as the security

manager, is called. The security manager itself now verifies that code C has the
permission to open a file as described earlier. However, code C in turn might
have been called by methods in other classes so that the security manager

202 � Chapter 5 Mobile Agent Security

iterates through the complete calling stack. If any of the classes on the stack do
not have the necessary permission, the security manager throws an exception
and the file cannot be opened.

Some Shortcomings of Java

In this section we present some examples of malicious agents that exploit
shortcomings of the Java programming language and the Java virtual
machine.

We start with a problem with agent serialization. As already described,
each Java object that implements the interface Serializable can be marshaled
in a plain byte array to be sent over the network.What we have not introduced
so far is the possibility to implement specialized methods for the serialization
process, as well as for the deserialization process. For example, in an agent
class the following methods could be defined:

1 public class AnAgent implements Runnable, Serializable
2 {
3 // ...
4
5 private void writeObject(java.io.ObjectOutputStream out)
6 throws IOException, ClassNotFoundException
7 {
8 // an own serialization process for this class

9 }
10
11 private void readObject(java.io.ObjectInputStream in)
12 throws IOException, ClassNotFoundException
13 {
14 // an own deserilization process for this class

15 }
16 }

In this case, rather than using the default deserialization technique, the
one that is provided by the class is used. Here we have a severe loophole
because now a part of the agent’s code is executed before the agent has been
started. Remember that deserialization happens immediately after receiving
the agent via a network and before the agent is registered with the hosting
agency. It must be guaranteed that the deserialization process is invoked with
the permission of the agent rather than with that of the agency. Otherwise it

5.6 Protecting Agencies � 203

would be possible for the agent to start first attacks on the agency even before
it was really started and registered with the hosting agency.

A similar problem considers class initialization. A class is initialized imme-
diately before an instance of this class is created, a static method of this class
is invoked, or a nonconstant static field is used or assigned. The static initial-
izers are executed before the agent instance is created and before the agent
is registered with the agency.

Next, we will present two examples of malicious code by which an agent
can run denial of service attacks on the hosting agency. The first one shows
an agent that locks the object Thread.class and never releases it again.

1 public class CaptureThread implements Runnable
2 {
3 public void run()
4 {
5 synchronized(Thread.class)
6 {
7 while(true);
8 }
9 }

10 }

After the agent has reached the synchronized statement, access to class
Thread.class is impossible, which prevents other threads from being
started.

The next example shows an agent that captures the garbage collector
thread. If the garbage collector detects that there no longer exists any strong
reference to some object, then this object becomes garbage collected. How-
ever, any object and its respective correspondig class might define a method
finalize, which is invoked by the garbage collector to give the object a chance
to close resources (e.g., file handlers). The following agent implements such
a method and does not terminate, which eventually leads to a memory
overflow.

1 public class CaptureGCThread implements Runnable

2 {
3 public void run()
4 {
5 //
6 }
7

204 � Chapter 5 Mobile Agent Security

8 protected void finalize()
9 {

10 while(true);
11 }
12 }

As Binder and Roth [2002] point out, it is not enough to simply reject
incoming agents that have implemented a method finalize, because there
exist classes as part of the Java API, where the finalizer calls other methods
that might be overridden in subclasses. For example, class FileInputStream

implements method finalize by actually calling method close. An agent might
bring a class that inherits from class FileInputStream and has overridden
method close so that it does not terminate.

Java has other shortcomings as well; for example it is allowed to lock a
monitor and never release it. We do not want to discuss these in detail here.
The interested reader is pointed to the paper by Binder and Roth [2002]. One
other and very important drawback of the current version of Java is that it
does not provide an adequate means for resource control. The examples of
infinite agents we presented can also occur within the business logic of an
agent, even if previously the programmer had not intended such. To decide
between an attack and still proper behavior of an agent is obviously very diffi-
cult. Nevertheless, some research targets the problem of resource accounting,
and we will present approaches on that in Section 5.6.3.

Because of these limitations of Java, Roth, in a panel at the MDM con-
ference in 2004, stated that Java has simultaneously been a fortune and a

misfortune. Without the many features of Java, it is undoublty more difficult
to develop a mobile agent toolkit—but on the other hand, all these limitations
and shortcomings of Java with regard to security make it next to impossi-

ble to build and maintain a publicly deployed and dependable mobile agent

system [Roth, 2004].

5.6.2 Agent Authentication and Authorization

In this section we discuss techniques that can be used to authenticate and
authorize a mobile agent that has migrated to an agency. Agent authenti-
cation includes the verification of the agent’s identity and the identity of the
agent’s owner or sender. Code signing, as introduced earlier, is used in almost
all mobile agent toolkits for this purpose. Inspection of the agent’s data and
code, for example, by using the state appraisal technique we will introduce

5.6 Protecting Agencies � 205

later or code inspection to detect possibly malicious agents, are also done in
this phase. The result of agent authorization is the assignment of privileges
to the agent according to its identity.

Proof-Carrying Code

Proof-carrying code (PCC) is a technique proposed by Necula and Lee to
enable a host to be absolutely certain that it is safe to execute an untrusted
piece of mobile code. The work was initiated outside the research of mobile
agents. The authors refer to problems in the field of operating systems, where
a code fragment should be installed in the operating system kernel. They
also mention possible applications in the field of distributed and Web-based
computing, where mobile code is sent from a code producer to a code con-

sumer. Necula and Lee [1998] illustrate their technique by using an example
of a mobile agent that visits several online stores. In the following we use
the term mobile code to refer to a piece of code that is transmitted from
the code producer to the code consumer. It is irrelevant how the code is
transmitted.

The general idea is that the code consumer publishes a safety policy that
describes properties that any mobile code has to comply with by using an
extension of first-order logic. In practice, it is reasonable to publish several
safety policies tailored to different scenarios or application domains. The
code producer must formally prove that his or her code behaves in accor-
dance with the safety policy. The PCC itself is a special form of intermediate
code representation that consists of the mobile code and an encoding of a
formal proof that the code complies with the safety policy. Then, the PCC
is sent from the code producer to the code consumer, who is able to verify
the PCC without using any cryptographic techniques or consulting with an
external trusted third party.

The code consumer receives the PCC, validates the proof that is part of the
PCC, and loads the code. This check must be done only once, even if the code
is going to be executed several times. Afterward, the code can be executed
without any additional checking. Any attempt to modify either the code or
the proof is detected and the mobile code can be rejected.

PCC is an alternative to other techniques that protect the hosting environ-
ment against potentially malicious code by using runtime checks. Until now,
PCC has not been adopted to work in Java-based environments and mobile
agents. The most severe drawback of PCC is that even in the latest paper

206 � Chapter 5 Mobile Agent Security

[Necula and Lee, 1998], the problem of proof generation is not completely
solved. In some cases it might be done only semi-automatically. Another
drawback is the size of the proof. Experiments showed that it can become
even larger than the code that it has to prove and, in the worst case, can be
exponentially larger than the size of the program. Finally, we would like to
mention that the concept of PCC has not been adopted to multi-threaded
programs. Further information can be found in Necula and Lee [1998],
Necula [1997], and Necula and Lee [1996].

Path Histories

We now consider the problem of how an agency should decide on the level
of trust it offers to a mobile agent, which is a prerequisite to agent autho-
rization. Trusting an agent depends on the identity, which is verified in the
process of authentication and, as Ordille [1996] argues, where the agent has
been so far (i.e., which agencies it has visited). The general idea of path

histories is therefore to supplement an agent with information about the
agencies it has visited. When an agent arrives at an agency, the list of previ-
ously visited agencies (the path) can be verified. The question of whether an
agency can trust an agent can now be refined into the question of whether
an agency can trust all agencies on the agent’s path. In addition, the agency
will ask for further information about the agent to finally decide on the level
of trust.

Ordille suggests two techniques. In the first one, each agency, Ai, adds itself
to the path history of an agent and signs the complete path. The destination
agency, Ai+1, verifies the signature and then determines whether it can trust
every agency on the path, whether it has forwarded the agent properly, and
whether it has authenticated its immediate predecessor. This must be done—
it is not sufficient to assume that it can trust the authentication procedure of
all its predecessor.

In the second technique, agency Ai signs a forward (see Section 5.5.2)
Ai → Ai+1 with the information to which agency the agent will migrate.
To prevent tampering with the path, Ai must sign not only the new forward
but also the previous entry. The destination agency then authenticates each
agency on the path.

Obviously, neither technique prevents an agency from behaving mali-
ciously. It is rather a matter of deterrent, because the agency’s signed entry in
the agent’s path is nonrepudiatable. A drawback of this approach is that the

5.6 Protecting Agencies � 207

size of the path history increases with the number of hops, and in the same
manner, the time for verification also increases.

We see as a major drawback of this approach that each agency already
must have a sense of trust; in addition, some technique must be available
to determine whether it can trust another agency. However, path histories

as a concept have already influenced some other techniques, for exam-
ple, Roth’s technique to securely record the itinerary of a mobile agent (see
Section 4.1).

State Appraisal

If a mobile agent must visit several agencies during its tour, it might have
been attacked by a single agency or several malicious agencies. The tech-
nique we present in this section can be used to assure agent owners and
agencies, to some extent, that an agent’s state has not been tampered with.
In the overall process of receiving incoming mobile agents, this technique is
placed after agent authentication and before agent authorization, for which
this technique actually produces an input. Ideas for this approach were
first presented in Farmer et al. [1996a] and later revised in Berkovits et al.
[1998].

This technique is based on the idea that illicit modifications of an agent’s
state can be predicted, described, and later verified. Therefore, several state
appraisal functions are defined, which verify specific conditions or invariants
in the agent’s state. After an agency has received a mobile agent, it verifies the
state appraisal functions. This results in a set of privileges that the agent will
have while executing on this agency or even in rejecting the mobile agent to
protect the agency.

The general idea is that an agent should carry two so-called state appraisal
functions by which the agency can determine the agent’s privileges with
regard to the agent’s state. The first function, max(), where 	 is the cur-
rent state of the agent, must be developed by the agent owner and is sent
as part of the agent’s code. It is signed to prevent later modification by an
agency. This function determines the set of permissions that the agent owner
would like to see granted to the agent. In other words, using max, the owner
can limit his or her responsibility and liability. The second function, req(),
is provided by the sender (the person or entity that instantiated the agent
and on whose behalf the agent is executed) and contains the desired set of
permits. Usually it holds that req() ⊂ max() because the sender might not

208 � Chapter 5 Mobile Agent Security

be sure about the effect of the agent in detail and would like to limit his or her
liability further more.

Farmer et al. enlist the following purposes of their technique:

■ It can protect agencies from attacks where the agent’s state has been
altered in a detectable way, for example, by verifying state invariants.

■ It can protect the agent’s owner and sender from malpractice of the
agent in their name.

■ It enables the agency to assign privileges to agents with regard to their
state.

Both functions could, for example, check that some conditionals are true or
invariants have the expected value.

Before proceeding, we would like to present an example from
Farmer [1996a]. Recall the airfare example previously introduced in which
an agent travels to several airlines to gather information about the airfare. To
apply the technique of state appraisal in this scenario, we first consider the
different types of data items. Obviously, we have static and immutable data
items. However, as we have shown, such static data can be protected against
alteration by using signatures by the agent owner. Dynamic data items are
harder to protect—remember the attack in which the second airline increases
the airfare artificially. Here, even with state appraisal, the agent cannot be
protected and modifications cannot be detected, because it is impossible to
decide whether an airfare is in fact high but still valid. This is not a problem
and not in the scope of this approach, because the agencies that the agent will
later visit will not be affected by a wrong price information and will therefore
not suffer any damage.

Now, consider a scenario in which an agent will reserve two seats on a
specific flight. The agent might be programmed in such a way that it is not
necessary to book both seats at the same airline. Now, the number of seats
to book is no longer static, and a malicious agency could manipulate the
number of seats by increasing it from 2 to 100. However, in this case a state
appraisal function would help: The number of seats to book plus the number
of seats already booked must be constantly 2.

After an agency has executed both state appraisal functions req and max,
it can grant privileges to the agent according the following conditional:

if req() ⊂ max() then grant req() else grant ∅

5.6 Protecting Agencies � 209

If either req or max detects tampering of the agent’s state, the function will
return ∅. Likewise, if the sender requests more privileges than the owner has
allowed with max, this function will also return ∅.

In our opinion, this is an interesting approach and it can be combined
with the concept of detection objects, as presented by Meadows [1997]. The
author proposes to set baits, called detection objects, which are any data
that the agent carries but that is not used for processing. If the agent does not
notice any manipulation of this detection object, it can be sure that it was not
tampered with. However, this technique depends on the type of application,
and the detection object must not be so obvious that it cannot deceive the
agency about the real usage.

However, this approach also has some drawbacks. In both papers, the
authors do not provide detailed descriptions about how to develop such
state appraisal functions. The examples presented in this paper show that the
technique is applicable in specific application domains but that it remains
vague whether this technique can be used in general. Even in specific appli-
cation domains, the decisive issue is whether it is possible to find suitable
appraisal functions that can distinguish normal results from deceptive alter-
natives. Another concern is whether a malicious agency can analyze the
appraisal functions and modify the agent in a way that will not be detected
by either function.

History-Based Access Control for Mobile Code

In the last two sections we presented techniques that determine a static set
of privileges dependent on the path history or state verification functions.
Now we present a technique in which the agent’s privileges are determined
on the basis of the agent’s behavior at runtime.

The goals of history-based access control are to maintain a selective his-
tory of access requested by the code and to use this information to decide
between trusted and untrusted code. The approach presented by Edjlali
et al. [1998, 1999] targets mobile code, especially Java applets, and is moti-
vated by the following examples: In some application scenarios it might be
too restrictive to prohibit all access to the local file system or to open a
socket to a remote host. With static privileges it is possible only to define
that the code has either both privileges or neither of them. The authors
argue that it is worthwhile to define mutual exclusive privileges so that the
code is allowed to first open a file for reading but it is not allowed to open

210 � Chapter 5 Mobile Agent Security

a network connection later, where the file might be sent to a remote host.
Another example is access to a database, where the code is allowed to read
only one of two relations but not both of them.

The concept presented by Edjlali et al. [1999] is based on unique identifiers
for programs, which are computed using hash functions over the entire code
of the program. This prevents the applicability of the approach for programs
that use dynamic code loading during runtime. In our opinion, history-based
access control needs some extensions to be applicable with mobile agents.
Consider the previous example in which a program has opened a file for
reading. In contrast to Java applets, which can open network connections
only to remote hosts in case they want to steal data, mobile agents have other
means, such as simply carrying the file as part of their own code. Therefore,
some kind of firewall is needed to examine the mobile agent before it leaves
the current agency.

5.6.3 Agent Execution

After the agent has been authenticated and authorized, it is finally started.
Each agent should be executed in a separate environment, where each access
to host resources is verified against the agent’s permissions and no agent can
access any other agent instance on the level of Java objects. We have already
introduced the concept of Java sandboxes and the possibility to grant an agent
individual permissions.

The sandbox also includes that each agent gets a separate class loader
and thread group. Both are necessary to distinguish agents from each other
and to establish a border between agents. The class loader is necessary to
create an individual name space for each agent and to ensure that agent
classes are removed after the agent has left the agency. Each agent is started
within a separate thread group, and if the agent is allowed to create new
threads at all, they must all be members of this very same thread group.
Conversely, if all agent threads belong to the same thread group, an agent
could enlist all threads of this thread group and lock a thread or invoke
method stop (which is actually deprecated) on it, resulting in a denial of
service attack against other agents.

Finally, the problem of malicious agents that consume resources in an
unauthorized way must be mentioned. Java does not provide any means to
restrict memory allocation or CPU usage. Future versions of Java will pro-
vide built-in solutions for this problem; until then, other techniques that are

5.6 Protecting Agencies � 211

based on modified virtual machines or that rewrite the code of an agent must
be used. Czajkowski and von Eicken [1998] describe a technique that relies
on native code implementation, a different implementation of several Java
packages, and code rewriting to track memory usage and CPU and network
bandwidth consumption. Because this approach is not fully implemented in
Java, it is not applicable to mobile agent toolkits. This would require, at a
minimum, installation of modified packages from the Java API.

Villazon and Binder [2001] propose another solution that relies completely
on Java bytecode rewriting, making it suitable for mobile agent toolkits.
Their approach can also be applied for CPU, memory, and network control.
It creates a so-called meta-agent for each mobile agent currently residing
at the agency. Reification of network bandwidth, for example, consists of
redirecting calls to the component that provides network services to the
meta-agent, which itself then calls the network service. Reification of memory
works in a similar manner but is more difficult because every object creation
and disposal must be taken into account. Finally, reification of CPU usage
is done by analyzing the agent’s code and inserting accounting instructions
at selected points in the control flow. The drawback of this approach is that
execution time increases because of the process of bytecode rewriting and
additional inspections. The authors report an overhead of about 20% only for
CPU reification.

Summary

In the last sections we presented a range of countermeasures for the prob-
lem of malicious agencies and malicious agents in mobile agent systems. As
we have seen, techniques for the latter problem are highly developed, with the
effect that some authors consider this problem to be more or less solved. How-
ever, as we have shown using some examples of malicious Java code, details
are still tricky to solve. Only a few toolkits, for example Semoa [Roth and
Jalali, 2001], face the problem of malicious agents that exploit shortcomings
of the Java language environment though content inspection. However, even
the measures implemented in Semoa can be outwitted by more inscrutable
code. Resource accounting is also a problem that is addressed in only a very
few mobile agent toolkits.

Countermeasures for the problem of malicious agencies range from orga-

nizational solutions, which are highly pragmatic but do not provide the

212 � Chapter 5 Mobile Agent Security

necessary level of security, to encrypted functions, which provide an excel-
lent level of security but are still not applicable to mobile agents in general.
It is still an open research question: Which of all these techniques can be
combined to later form some kind of general security solution?

We sorted the solutions for the problem of malicious agencies in tech-
niques that can prevent an attack and techniques that can only detect that an
attack has happened, usually as soon as the agent has returned to its home
agency. Obviously, prevention is preferable because it provides an overall
solution to the given problem, whereas all techniques that only detect attacks
must be supplemented by laws, contracts, or rules that are defined outside
the technical solution and therefore outside the mobile agent system. They
must define how agent owners and agencies shall behave in the case of a
well-founded suspicion.

Table 5.1 lists all countermeasures that we have introduced in the
preceding sections and classifies each with regard to several categories.

The first category defines the subject of the countermeasure; that is, is
it the agent or the agency that can be protected by it? Next, we distinguish
between prevention and detection. Here, it is worth mentioning that we

Table 5.1 Overview of countermeasures

Countermeasure Subject Type Code or Data

Encrypted functions Agent Prevent Both
Time-limited black boxes Agent Prevent Both
Environmental key generation Agent Prevent Both
Agency replication Agent Detect Both
Agent replication Agent Detect Both
Detecting black-box attacks Agent Prevent Data
Read-only data Agent Detect Data
Target agencies Agent Detect Data
Forward integrity Agent Detect Data
Detecting objects Agent Detect Data
Execution tracing Agent Detect Both
Secure itinerary recording Agent Detect Data
Sandbox Agency Prevent Code
Code signing Agency Detect Code
Proof-carrying code Agency Prevent Both
Path histories Agency Detect Both
State appraisal Agency Detect Data
History-based access control Agency Prevent N/A
Content inspection Agency Detect Code
Resource accounting Agency Prevent Code

5.6 Protecting Agencies � 213

found only a single technique—agent replication—that not only detects an
attack but can also recover the error. The next column distinguishes between
techniques that address an agent’s code or agent’s data. Here, we can find
techniques that address the agent as a whole, including its code and data.

In the last few years, security issues of mobile agents have been a rapidly
evolving area of research. Although many of the problems we introduced
in Section 5.2 can be solved by using state-of-the-art cryptographic proto-
cols already known from research in distributed systems, some problems
are unique to mobile code and even a few problems are singular for mobile
agents. We have to concede that our overview of countermeasures for mobile
agent security is not comprehensive. We chose to review those techniques
that, in our opinion, have been widely accepted and cited frequently in the
literature.

Notwithstanding, we would like to mention a few points missing in
mobile agents security research so far, as we could identify them: We believe
that the general pattern to exchange information permanently between the
mobile agent and some trusted communication partner, be it another agent
or the agent’s home agency, contradicts the general idea of mobile agents. If,
for example, the agent has to publish its current location at each hop with a
central trusted agency, we have a star-shaped communication pattern typical
of client-server applications with the already-known drawbacks of having a
single point of failure and performance bottleneck. Actually, the influence of
security solutions to the performance of mobile agents, especially as com-
pared with client-server applications, is not considered in the literature thus
far. As we have mentioned in earlier chapters of this book, it is difficult to find
real-world application domains where the network load argument in favor of
mobile agents can be verified in general. If we now add the network overhead
invoked by security protocols, this might shift the balance even further.

To summarize, we believe, as was pointed out to us also by others, that
there currently exists no single common security solution. We also men-
tioned that the applicability of each countermeasure will have to be evaluated
in the light of detailed performance tests. Finally, it should be acknowledged
that some of the concepts discussed in this chapter are still waiting to be
fully implemented. Therefore, the truly important aspect of integration and
mixing of security technologies must remain open at present, even though
we put forward that, in our view, it is exactly this integration that will be of
the utmost importance.

THIS PAGE INTENTIONALLY LEFT BLANK

PartIII
The Kalong
Mobility Model—
Specification and
Implementation

THIS PAGE INTENTIONALLY LEFT BLANK

Chapter6
Specifications of the Kalong
Mobility Model

The third part of this book is completely devoted to the specification and
evaluation of the Kalong mobility model. First, we specify Kalong by defining
some application programming interfaces (APIs) and the Simple AgentTrans-
mission Protocol (SATP). You might want to skip this technical chapter and
continue with Chapter 7, in which we will introduce the Kalong software com-
ponent, which is the reference implementation of the Kalong mobiliy model.
Finally, in Chapter 8, we will report on several experiments we conducted to
assess the performance of the Kalong software component.

Contents
6.1 Introduction .217
6.2 Kalong Vocabulary .220
6.3 Agent Model .221
6.4 Application Programming Interfaces .228
6.5 The SATP Migration Protocol .243

6.1 Introduction

This chapter defines the Kalong1 mobility model.
Kalong provides an efficient technique for migration of mobile agents

between computer platforms. It is designed to be ported on demand on

1. Kalong is the name of a fruit-eating flying fox, lat. Pteropus vampyrus, inhabiting Java island. The
Kalong is remarkable for its wingspan and its flying speed. The latter was the reason we chose this
name for our mobility model, besides the relation to Java.

218 � Chapter 6 Specifications of the Kalong Mobility Model

AgencyAgency

TCP/SSL

Agent manager

File

system

Network

SATP

Migration

Kalong

Agent manager

Kalong

Network adapterNetwork adapter

Figure 6.1 Kalong and its environment.

different machines, operating systems, network architectures, and network
transport protocols. In the current version, Kalong is based on the Java
programming language. We plan to translate Kalong to other programming
languages later.

Kalong is supposed to be embedded in an agency software and to
communicate with three other components, see Figure 6.1.

1. The agent manager is responsible for agent execution and other basic
functions of a mobile agent server. It tells Kalong when to start a migra-
tion process and how the migration should work. Kalong notifies the
agent manager about received agents.

2. The network is not directly accessed by Kalong; a network adapter com-
ponent sorts through the details of a network protocol and works as a
dispatcher for a different set of protocols. Kalong communicates with
the network adapter using a very limited interface, which only provides
functions to open and close a network connection and to send and
receive byte sequences. For each network protocol, the network adapter
launches a server that listens to a network port for incoming migrations.
The network adapter informs Kalong about incoming requests.

3. Kalong must have access to a file system in order to load class files, or
they can be loaded from remote network resources, accessible using a
URL address and an HTTP or FTP connection. The latter is not pictured
in Figure 6.1.

6.1 Introduction � 219

Kalong defines a new migration protocol, named Simple Agent Transport

Protocol2 (SATP), which is an application level protocol that transfers agent
information to a single destination agency. SATP works according to a simple
request/reply scheme and must be used in addition to a connection-based
network protocol that provides a reliable flow of data, for example, TCP. It can
be embedded in any other application-level protocol that also uses TCP, such
as SSL, HTTP, and SOAP. This specification defines SATP commands as well
as the message format to be used, in contrast to the specification of SMTP, in
which the definition of the message format is moved to a companion protocol
(RFC 822).

Kalong is responsible for the entire migration process and all tasks related
to agent migration. Kalong must provide functions to serialize and deserialize
agents, it must define a class-loader object for each agent, which directs
requests to load classes back to Kalong. Kalong is not responsible for any kind
of agent thread management. In the case of an agent migration, it is the agent
manager that must control thread suspension and guarantee that no agent
thread is able to still modify the agent’s state. After an agent has been received
successfully, Kalong only notifies the agent manager to start the new agent.

Kalong defines the following models, interfaces, and protocols:

1. An agent model that introduces the concept of external state and a new
level of granularity for class transmission (see Section 6.3).

2. An interface, IKalong, (see Section 6.4.1) for the agent manager to con-
duct a migration; an interface, IAgentManager, (see Section 6.4.2) for
Kalong to access the agent manager.

3. An interface, INetwork, (see Section 6.4.3) for Kalong to use the network
adapter; an interface, IServer, (see Section 6.4.4) for the network adapter
to access Kalong.

4. A migration protocol, named SATP, which defines messages sent over
the network and their formats (see Section 6.5).

Regarding our definition of mobility models, Kalong focuses on issues of the
agent’s and network’s views. Kalong’s new agent model partially refers to the
programmer’s view too. However, Kalong does not define anything related

2. The name was chosen in the tradition of other application-level protocols, like Simple Mail Trans-

fer Protocol and Simple Network Management Protocol, and to distinguish it from Aglets’s Agent

Transfer Protocol (ATP). Unfortunately, SATP became more complex than ATP.

220 � Chapter 6 Specifications of the Kalong Mobility Model

to the mobility level (which is part of the programmer’s view) and it is the
task of the agent manager to map requirements of the mobility level to the
preferences of Kalong as described in the following sections.

6.2 Kalong Vocabulary

Kalong uses the following terms:

Agent An agent is a mobile agent as defined in this book. We will often use
the term agent instance to denote a single agent object in contrast to the
set of all agents of the same type, or the agent’s type.

Agency An agency is software that is necessary to execute and migrate mobile
agents on a computer system. We distinguish between the sender agency,
which starts a transfer, and the receiver agency, to which the transfer is
directed.

Agent Manager An agent manager is a subcomponent within an agency that
conducts a migration process.

Context Kalong maintains for each agent a context data structure that is com-
posed of all information necessary for Kalong (e.g., its name, its home
agency, its data units, its state, etc.).

Message A message is the basic unit of SATP communication. It is a sequence
of bytes matching the syntax described in the following sections.

Migration Migration is a special form of a transfer, in which agent execution
is stopped at the sender agency and resumed at the destination agency.
We define two new verb phrases to describe the direction of a migration.
When an agent leaves an agency, it migrates out and when an agent is
received by an agency, it migrates in.

Migration Strategy A migration strategy defines what agent information
should be sent to which agency; it can consist of one transfer or many
transfers. The agent manager defines the migration strategy by using the
methods of interface IKalong.

Network Connection A network connection is a virtual communication channel
between two computers that is used to transmit SATP messages.

Object State The object state, or agent object state, is equal to the serialized
agent.

6.3 Agent Model � 221

Reply A reply is an SATP message that is sent from the receiver agency to the
sender agency as answer to a request.

Request A request is an SATP message that is sent from a sender agency to a
receiver agency.

Transaction A migration strategy might consist of several transfers. Because
a migration strategy must be an atomic process, which is either exe-
cuted completely or not at all, Kalong provides transaction management
according to a Two Phase Commit (2PC) protocol.

Transfer A transfer is the process of sending agent information from a single
sender agency to a single receiver agency. If the transfer includes an agent’s
state information, then it is a migration.

URL Each agency must have one or many addresses in the form of a URL.
Kalong does not require a specific format of URLs, because addresses are
only forwarded to the network adapter.

6.3 Agent Model

6.3.1 Agents and Agent Contexts

In Kalong, an agent must be a Java object of type Serializable or any
subclass, because an agent’s object state must be marshaled to be sent to a
destination agency. The object state contains all the agent’s attributes, which
must also be serializable.

Agent Names

An agent must have a globally unique name that does not change during its
lifetime. To be globally unique means that there must never be two agent
instances with the same name in the entire agent system. Kalong does not
specify how to obtain such a name and does not define any structure for
a name, except that a name must be codeable into a Java String object.
Kalong can only verify that no two agent instances with the same name
exist when new agents are registered with Kalong and when agents migrate
in. The agent manager is responsible for guaranteeing uniqueness with an
appropriate algorithm for generating agent names.

222 � Chapter 6 Specifications of the Kalong Mobility Model

Data Items

Besides the agent’s object state, agents also have an external state, which
is defined as a set of serializable Java objects that are accessible by the
agent but are not part of the object state. Each element of the external
state must have a unique name to be stored and accessed by its owner.
A name must be codeable as a Java String object. Data items of the exter-
nal state must not be accessible to other agent instances. A single data item
should not be shared with another agent instance, because it is copied when it
migrates.

Each data item has a status that can be defined or undefined. If a data
item is transferred to another agency, it is locally set to undefined and set
to defined at the destination agency. Thus, it is possible to let data items
remain at the home agency even if the agent has migrated to another agency.
The agent can request those data items from its home agency later. Kalong
must ensure that a data item currently set to undefined is never read or
written by the agent manager.

Another potential problem is that a data item could be uploaded to the
wrong agency. For example, data items could be overwritten accidentally at
a home agency, when the agent has already defined a mirror agency. Addi-
tionally, we have to consider a security problem. A malicious agency might
send forged data-upload messages to a home or mirror agency and thereby
manipulate data items. The problem could also occur if a malicious agency
requests a data item from a home agency. If the state of this data item is set
to undefined at the home agency, the agent will not be able to download
the same data item later.

Unfortunately, we cannot solve this problem completely; we cannot pro-
tect the home agency against malicious access. However, we can provide a
two-step technique that will allow the agent to notice a malicious access and
be able to react.

1. Downloading and uploading data items always changes the state of
the data item. If a data item is downloaded, then its state is set to
undefined at the home agency. If the agent later tries to download this
data item again, it receives an error message.

2. If a malicious server loads a data item, modifies it, and then uploads it
again, the state is set to defined at the home agency. The agent would
not notice the manipulation in this case. Therefore, we introduce a

6.3 Agent Model � 223

data-item key that is necessary for data uploading. This key is created at
the home agency when the agent is started, and is carried by the agent
as part of the state. In case of a data-upload message, the key must
be sent to the home agency, where it is compared to the key locally
stored. If they match, the upload is successful, if not, the upload is
rejected. In the case of a successful upload, the reply message contains
a new key that was computed by the home agency. It is possible for
a malicious agency to steal the key that the agent carries. Using this
key, the server would be able to upload a data item. However, if the
agent later wants to upload a data item by itself, the message is rejected
because it knows only an outdated key.

Code Units

An agent’s code is transferred in the form of code units. A code unit contains
one class or many classes, which will always be transferred together. Each
code unit has a locally unique identifier, that is, no two units of the same
agent instance have the same identifier.

Each agent instance divides its own distribution of classes into units.
The same class may be included in more than one unit. It is the task of
the agent manager to make sure that classes are completely separated onto
units. Code distribution cannot be modified after the agent-definition block

(see Section 6.4.1) was sent the first time. Each code unit has a list of code

bases from which it can be loaded. A code base is an agency and is described
by one or many URL addresses. The home agency should not be a member
of any code base, because it would be redundant.

Agent Context

All information about the external state and code units of an agent is stored
within Kalong in a data structure named agent context. There is a single
agent context for each agent instance. Kalong must provide the agent man-
ager with access to data items of the external state, but it does not specify
how an agent manager provides an agent instance with access to its data
items. Kalong does not define the detailed structure of an agent context. All
implementation details are left to the programmer.

It is important to understand the difference between the lifetimes of an
agent instance and an agent context. An agent is created by a user within

224 � Chapter 6 Specifications of the Kalong Mobility Model

the agent manager. It has a global lifetime, which lasts from its creation to
its termination (which is not necessarily at the same agency). The time an
agent spends visiting an agency, starting after the agent has migrated in and
stopping after the agent has migrated out, is called the local lifetime. Thus,
the local lifetime is bound to a single agency.

Agent context objects are created when the agent manager registers an
agent with Kalong or when an agent migrates in. However, the lifetime of
an agent context might not terminate at the same time as the local lifetime
of an agent. For example, a home agency is supposed to keep information
about code units so that the agent can load necessary classes later. We will
see two more examples in Section 6.3.2 of agencies that retain agent informa-
tion beyond an agent’s local lifetime. To summarize, the lifetime of an agent
context is not bound to either the local or the global lifetime of an agent, but
it is at least as long as the local lifetime of the corresponding agent.

This can be best explained using an example; Figure 6.2 shows global and
local lifetimes for an agent visiting agencies A, B, and C. Its global lifetime is
the striped bar, its local lifetime is the nonfilled bar, and its context lifetime
is the solid bar. The agent is created at agency A, which automatically becomes
the agent’s home agency. It migrates to two other agencies, named B and C,
and finally returns to agency A to terminate there. After the agent is created,
an agent context object is created for it. When the agent migrates to agency
B, the local lifetime terminates, but the agent context’s lifetime continues. At
agency B, the local lifetime and the agent context’s lifetime are started when
the agent migrates in. After it has migrated out, the local lifetime terminates,
whereas the agent context’s lifetime continues. This is because the agent has
defined agency B as a code server, that is, some code units of this agent are
still available at agency B for later download. Before the agent leaves agency
C, it releases the code server again, which terminates the context’s lifetime at
agency B. Finally, after the agent has returned home, the context’s lifetime at
agency A terminates too.

We can also describe the lifetime of an agent context using a state diagram,
(Fig. 6.3). After creation, an agent context is first in state AgentRunning,
which indicates that the agent is currently being executed. After the state has
been sent to another agency, the context switches to state AgentRoaming,
which means that the agent is no longer being executed at this agency. If
an object state is received later, it switches back to state AgentRunning.
On a remote agency, the context is first in state AgentRoaming (because a
remote agency may be initialized as a code server by only sending code units),
until an object state is received. Then it switches to state AgentRunning.

6.3 Agent Model � 225

T
im

e

A B C

Global life-time

Local life-time

Context life-time

Figure 6.2 Comparison of the global and local lifetimes of an agent with the lifetime of an
agent’s context. A, B, and C are agencies to which the agent migrates. The row beneath
each agency name shows the local lifetime of the agent and the agent’s context lifetime.

AgentRoaming

rcvHeaderregisterAgent

deleteAgentContext

sendState

rcvState
AgentRunning

Figure 6.3 State diagram for an agent context.

226 � Chapter 6 Specifications of the Kalong Mobility Model

6.3.2 Agencies

An agency is the place where agents are executed. Kalong does not specify
how an agency is further structured (e.g., using the concept of logical places);
this must be done within the agent-manager component.

Each agency must have at least one address in the form of a URL, for
example: tcp://tatjana.cs.uni-jena.de:4155/whyte/penthouse,
where tcp is the protocol name, the number 4155 is the port num-
ber on which the agency can receive agents using this protocol, and
whyte/penthouse is the name of the place to which the migration is
directed. Kalong does not specify any format of this URL, but it requires
that it consists at least of a protocol name, a host name, and a port number.
These are the only parts of a URL Kalong considers.

Addresses are obtained by the underlying network adapter compo-
nent, which manages a set of different network protocols and defines
a server for each protocol listening to a specific port. Therefore, agen-
cies can be accessed using many different URLs. For example, the same
agency can be accessed using tcp://tatjana.cs.uni-jena.de:4155

and ssl://tatjana.cs.uni-jena.de:4156. The first address must be
used to communicate to this agency over a plain TCP connection, whereas
the second URL must be used to have a secure connection using the SSL
protocol. Before an agency may be accessed, Kalong must verify that its
address meets Kalong’s requirements. The addresses of an agency may only
differ in the protocol and the port number; all other URL elements must
be equal.

Kalong distinguishes the following roles for agencies from the view of
a single agent instance. This role information is transparent for the agent
manager and only used within Kalong, thus, it might be a little bit confusing
that we speak of agency roles where we really mean Kalong roles.

1. The agency on which the agent was started automatically becomes the
home agency. An agent must have only one home agency, and an agent’s
home agency must not be redefined. The home agency does not delete
any information about the agent except the agent’s object state, which
it deletes after the agent has migrated out.

2. A remote agency is every agency that an agent visits while executing an
itinerary. Usually, a remote agency drops all information about an agent
after the agent has left it.

6.3 Agent Model � 227

Home Remote Code server

Mirror

Figure 6.4 The four agency types in Kalong and how agency types can change during an
agency’s lifetime.

3. A code server agency is able to store code units even after the agent has
left the agency. Thus, code can be downloaded from this agency later.
There can be multiple code server agencies in parallel.

4. The mirror agency is able to keep information about code unit and data
items even after the agent has left the agency. The mirror is a complete
copy of all information stored about an agent at the home agency. There
is never more than one mirror agency at any time.

The role of an agency with regard to a specific agent instance might change
during its lifetime, as can be seen in Figure 6.4. An agency becomes a home
or remote agency by starting or receiving an agent. A home agency releases
its role when the agent terminates or the agent manager deletes the corre-
sponding agent context object. A remote agency releases its role when the
agent leaves it and migrates to another one or when the agent defines this
agency to become a code server or mirror agency. Code server and mir-
ror agencies release their roles only by an agent’s order. A mirror agency
can be defined to become a code server later. We show how an agent can
define a code server or mirror agency in the next section. Table 6.1 com-
pares the agency types with regard to their ability to keep information about
agents.

228 � Chapter 6 Specifications of the Kalong Mobility Model

Table 6.1 Comparison of the four agency types

Agency type Data items Code units Cardinality

Home � � 1
Remote 1
Code server � 0..n
Mirror � � 0..1

6.4 Application Programming Interfaces

6.4.1 Interface IKalong

Interface IKalong defines the main functions of the Kalong component.
It is used by the agent manager to access an agent’s context and to
define a migration strategy. The protocol definition is given as a set of
methods with arguments and results in Java syntax. A description of the
function of each method should provide enough information to allow its
implementation.

The agent manager at the sender agency communicates with Kalong in
two phases. First, it registers an agent with Kalong so that Kalong can verify
that all used classes are available for transmission and the agent as well as all
its components are serializable. Second, it uses the services of this interface
to conduct the migration process.

We divide the methods of IKalong in four groups:

1. Methods to start and stop transactions.

2. Methods to register agents and define code units.

3. Methods to modify a local agent context.

4. Methods to transfer agent information via the network.

Almost all methods receive an agent name as a parameter to identify
the agent context. All methods of interface IKalong are assumed to work
synchronously.

Throughout this book the term current agency always refers to the agency
on which the commands are executed.

6.4 Application Programming Interfaces � 229

Manage Transactions

A migration strategy might include several transfers. As it must be an
atomic command that is executed either with all its transfers or none at all,
Kalong provides a common technique for transaction management, called
two-phase-commit (2PC) protocol.

The idea of the 2PC protocol is as follows: All commands that modify the
agent context information, either locally at the current agency or remotely at
any of the destination agencies, must be bracketed by the following transac-
tion management commands. To start a transaction, the following method
must be used.

public void startTransaction(String agentName) throws KalongException

Starts a transaction. Throws an exception if a transaction is already running.

After this method has been called, no other thread can start a transaction
using this agent until the transaction terminates.

To explain the 2PC protocol, we assume that several connections have
been opened to different remote agencies. After all messages have been sent,
the agent manager must send a prepare message (first phase) using the
following method.

public boolean prepare(String agentName)

Sends a prepare message to all receiver agencies. The reply informs about success.

Kalong maintains a list of all connections that were opened since the last
call of method startTransaction. Method prepare sends a prepare

message to all receiver agencies. Each receiver answers, whether the last
transfer was successful or not. Method prepare collects these reply mes-
sages and returns true if all receiver agencies have accepted the transfer
and false if at least one agency has not accepted the transfer.

The agent manager must now send either acommitorrollbackmessage
to all receiver agencies (second phase) with regard to the result of the pre-
vious method. Both methods close all network connections and terminate
the transaction.

public void commit(String agentName)

Sends a commit message to all receiver agencies.

230 � Chapter 6 Specifications of the Kalong Mobility Model

A commit message applies all changes made during the last transfer. This
might result in an agent being started at a remote agency.

public void rollback(String agentName)

Sends a rollback message to all receiver agencies.

A rollback message recovers the last stable state before the last transfer
was started at the receiver agency. Of course, the last three methods require
that a transaction has already been started. If no transfer has occurred since
the last start of a transaction, method prepare will return true.

Information about Agencies and Defining Agent Contexts

As already described, agency addresses are defined by the network adapter
component. Because this information is all that must be available at
the agent manger about the network layer, Kalong must pass on this
information.

All addresses of this agency can be requested using the following
method.

public java.net.URL[] getURLs()

Returns an array of URLs of the current agency or returns null if this agency has no

addresses yet.

This method simply uses the corresponding method of INetwork to obtain
this information (see Section 6.4.3).

Before agents can migrate, they must be registered with Kalong. If this
method is successful, a new agent context exists in Kalong that can be
accessed using the given agentName. If the method fails for any reason,
no agent context is created and an exception is thrown.

public void registerAgent(String agentName, StringagentOwner,

Serializable agent)throws KalongException

Registers an agent with name agentName and object state agent with Kalong.

This method first checks whether an agent context with the given name
agentName already exists and throws an exception if it does. It also throws
an exception if no address of the current agency can be determined. The
current agency becomes the home agency for this agent. All classes of the
class closure are determined by analyzing object agent.

6.4 Application Programming Interfaces � 231

After context creation, the code units for this agent must be defined before
any migration can happen.3 The main method of defining code units is as
follows:

public intdefineUnit(String agentName, String[] classNames)

Defines a new unit with classes classNames. Returns the code unit identifier.

All classes with names given in the array className are bundled into a
single code unit. Parameter classNames must not be null or an empty
array. Kalong must assign a unique identifier to this unit that it will return
to the caller. The definition of code units cannot be changed or modified
afterward. The agent manager is responsible for making sure all necessary
classes of the class closure are distributed on code units. Classes that are not
part of any code unit cannot be transferred to remote agencies, neither by
pushing nor by pulling. The agent manager can request the classes of the
class closure with the following method:

public String[] getClassNames(String agentName)

Returns an array of strings containing the names of all the classes that the current

agent uses.

The class closure determined by Kalong contains all the classes that are used
by the agent, even common Java classes, as for examplejava.lang.String.
It is the task of the agent manager to implement a filter function for ubiquitous
classes (see Chapter 3) and not to add these to any code unit. In contrast,
classes may be added to code units that were not part of the class closure.
This might be important in rare cases in which a class is used, but the class
name is not part of the agent’s Java byte code. Consider the following example:

1 public class TestAgent implements Serializable
2 {
3 public void run()
4 {
5 Class aClass = Class.forName(“OtherClass”);
6 SomeInterface object = aClass.newInstance();
7 }
8 }

3. In rare cases when all classes of the agent can be assumed to already exist at any destination
agency, unit definition may be skipped.

232 � Chapter 6 Specifications of the Kalong Mobility Model

In this example, class OtherClass is assumed to implement interface
SomeInterface. The class is defined by using method Class.forName,
which gets a String object as the parameter containing the name of the
class. A new instance of this class is created by using method newInstance

and assigned to a variable of the super type. As a consequence, the byte
code of class TestAgent does not contain the full class name for class
OtherClass except as a String representation, and this cannot be dis-
tinguished from other String objects without a semantic analysis of the
byte code. To make class OtherClass able to migrate, it must be added to
some code unit manually.

There is another method by which the agent manager can obtain a list
of all classes for which at least one object exists in the serialized agent.

public String[] getClassesInUse(String agentName)

Returns an array of class names. Each class is used in the serialized agent.

The agent manager can also request the size of a class’s byte code.

public intgetClassSize(String agentName, String className)

Returns the size of the given class.

Modifying Agent Context

The following methods are mostly used for retrieving information about the
agent context and the agent itself. They must be used within a transaction.

First, to request the address of an agent’s home agency, the following
method must be used:

public String[] getHomeAgency(String agentName)

Returns the addresses of the agent’s home agency.

Data Items

The following methods are used to access the data items of the external state
and to define the object state.

public String[] getDataItems(String agentName)

Returns an array containing the names of all data items.

The returned array contains all data items, without regard to their current
state (defined or undefined). If the agent has no data items in the external

6.4 Application Programming Interfaces � 233

state, the return value is an empty array. If only undefined data items are to
be requested, then the following method can be used.

public String[] getUndefinedDataItems(String agentName)

Returns an array containing the names of all undefined data items.

If no undefined data items exist, the return value is an empty array. If only
defined data items are to be requested, then the following method can be
used.

public String[] getDefinedDataItems(String agentName)

Returns an array containing the names of all defined data items.

To define and retrieve the value of a data item, the following two methods
can be used.

public void setData(String agentName, String name,

Serializable object) throws KalongException

Sets the data item with name name to the value given as object.

This method throws an exception if the data item is currently undefined
and, therefore, cannot be overwritten. For a data item to be deleted
permanently, it must be set to the null value.

public Serializable getData(String agentName, String name)

throws KalongException

Returns the value of the data item with name name.

The method throws an exception if the data item does not exist or is cur-
rently undefined. To check whether a data item is accessible, its state can be
requested using this method:

public byte getDataItemState(String agentName, String name)

throws KalongException

Returns the current state of the data item with name name.

The return value is 0 if the data item is defined, and 1 if it is undefined.
If the data item does not exist, an exception is thrown. In some cases
it might be necessary to know the size of a serialized data item in order
to decide if it should migrate to the next destination or remain at the
current one.

234 � Chapter 6 Specifications of the Kalong Mobility Model

public int getDataSize(String agentName, String name)

throws KalongException

Returns the size of the serialized data item with name name. Throws an exception if the

requested data item does not exist.

The last method must be used to define the object state of an agent.

public void setObjectState(String agentName, Serializable state)

Defines the agent’s object state.

This method must be used before a migration is started.

Code Units

The following methods are used to retrieve information about code
units.

public int[] getUnits(String agentName) throws KalongException

Returns an array with the identifiers of all units.

If no units were defined yet, the return value is an empty array.

publicString[] getClassesInUnit(String agentName, int id)

throws KalongException

Returns an array with the names of all classes that are connected with the given unit

identifier.

If the given unit identifier is invalid, an exception is thrown. The return value
is never null or an empty array. The next method is used when a specific
class is to be downloaded.

public int[] getUnitForClassName(String agentName, String className)

Returns the identifiers of all units that contain the given class name.

If the given class name is not member of any unit, an empty array is
returned.

Defining Code Server Agencies

To mark a unit to remain at the current agency after a migration, the
addresses of the current agency must be added to the unit’s code base.

6.4 Application Programming Interfaces � 235

public void addCodeBases(String agentName, int id,

String[] url) throws KalongException

Adds the given URLs as new code bases for the given unit. Throws an exception if the

given identifier is invalid.

The new code bases must be appended to the existing list, because the order
of the code base addresses must not be changed. With the following method,
the current code bases can be requested.

public String[] getCodeBases(String agentName, int id)

throws KalongException

Returns all code bases of the given unit. Throws an exception if the given identifier is

invalid.

With the last method, agency addresses can be deleted from a unit’s list of
code bases.

public void deleteCodeBases(String agentName, int id,

String[] url) throws KalongException

Deletes the given URLs from the code bases for the given unit. Throws an exception if

the given identifier is invalid.

Defining Mirror Agencies

The last three methods are to define and delete mirror agencies. It is impor-
tant to understand that these methods have only a local effect and changing
a remote agency to a mirror agency means more than just calling method
setMirrorAgency. All data items and code units from the current mirror
or home agency must already be loaded.

public String[] getMirrorAgency(String agentName)

Returns the addresses of the current mirror agency if they are defined. Otherwise

return null.

public void setMirrorAgency(String agentName,

String[] mirror) throws KalongException

Defines the current mirror agency. Throws an exception if a mirror is defined already.

public void deleteMirrorAgency()

Deletes the currently defined mirror agency.

The last method has only a local effect and does not send a message to the
current mirror agency to release its role.

236 � Chapter 6 Specifications of the Kalong Mobility Model

Sending Messages to Receiver Agencies

The following are methods to transfer messages to a single receiver agency.
Multiple connections may not be opened to the same receiver agency
during the same transaction. All transfer messages must be part of a
transaction.

To start a transfer, the following method must be called:

publicObject startTransfer(String agentName, URL receiver)

throws KalongException

Opens a connection to the receiver agency whose address is given as a parameter. Returns

a handler object for this connection.

Note that the address of the receiver agency must be given as a single URL.
The agent manager is responsible for selecting the correct address from the
list of all known URLs for the destination. The return value of this method
is a handler object, which is used to identify this transfer. This specification
does not define how this handler object is determined, but it must be unique
for all transfers during the same transaction. A transfer cannot be explicitly
stopped, because network connections are closed by using the two methods
commit and rollback.

All other methods process according to the following pattern:

1. The agent’s context is accessed to obtain further information.

2. This information is sent as an SATP request message to the receiver
agency, which must always send a reply message. The type of request
depends on the method (Table 6.2).

3. The reply message is analyzed and the result is stored in the agent’s
context if necessary.

We will now focus on the semantics of each function. The structure of each
message is defined in Section 6.5.

There are few constraints in sending messages, because not all messages
must be sent as part of a single transfer. We describe these rules by using a
finite state machine, the graphical representation of which can be found in
Figure 6.5. In the figure, states are named from the viewpoint of the receiver
agency, so that, for example, a state namedADB Rcv, expresses that the agent

6.4 Application Programming Interfaces � 237

Table 6.2 Mapping of interface methods to message types

Interface method Request message Reply message

ping Ping Ping
sendHeader Header Ok/Nok
sendADB ADB ADBReply
sendUnits Unit Ok/Nok
sendUnitRequest Unit Request Unit
sendState State Ok/Nok
sendDataUpload Data Item Data Item Key
sendDataRequest Data Request Data Item
prepare Prepare Ok/Nok
commit Commit none
rollback Rollback none

ADB Rcv

Prepared

Header Rcv

Units Rcv State RcvRequest Rcv

Header

ADB

Commit

Rollback

Unit

Prepare PreparePreparePrepare

Prepare

Unit

State

State

Unit

Data item request

Data item

Unit request State

Figure 6.5 State diagram for a SATP transfer. The Ping message that can be sent or
received at each state has been omitted, because it does not change the state.

definition block (ADB) was received successfully. For the sender side, states
should be renamed accordingly.

public boolean ping(Object handler, byte[] data)

Sends the given byte sequence data to the receiver agency.

This method can be used to check the availability of the remote agency or
to check connection quality. The receiver is supposed to send back the byte
array data unchanged. The method returns true if the same byte sequence

238 � Chapter 6 Specifications of the Kalong Mobility Model

was received, if not, it returns false. Ping messages may be sent at any point
during a transfer and may be sent multiple times.

The following methods do not have a return value but throw an exception
if there is an error.

public voidsendHeader(Object handler, byte command)throwsKalongException

Sends the header to the receiver agency. Throws an exception if the receiver agency does not accept the header.

The header message contains information about the agent and its home
agency. The receiver agency must answer, whether it accepts further mes-
sages for this agent or not. The sender should terminate the transfer if the
receiver did not accept the header. If the header was not accepted, the receiver
must reject any further messages except a ping message.

The header message must be sent prior to all other messages during a
transfer, except a ping message. It must not be sent more than once during
the same transfer. A header message may be followed by any other message
and can be sent between all agency types.

At the receiver agency the agent’s name given in the header is used to select
the agent context. If no agent with the given name exists, it must be decided
whether the transfer should be accepted, perhaps by using the addresses
of the home or sender agency. Kalong must ask the agent manager as part
of this decision, using method verifyAgent of interface IAgentManager.
The reply code is set accordingly.

The command parameter contains the code of a process that should be
executed after transfer is completed.

No operation (noop) (value 0) This command is sent in most cases, and usually
has the effect that code units and/or agent state information are accepted
at the remote agency. If an agent’s state is sent as part of this transmission,
the agent is started.

Release code server agency (value 1) This command is sent to a code server
agency to instruct it to release its role and delete all code units.

Release mirror agency (value 2) This command is sent to a mirror agency to
instruct it to release its role and delete all data items and code units. If
there are defined data items left at the mirror agency, the header must
be rejected.

Start code server (value 3) Using this command, it is possible to create a code
server remotely (i.e., without migrating to it). All code units sent afterwards
are immediately copied at the receiver agency.

6.4 Application Programming Interfaces � 239

Release mirror agency to code server (value 4) This command is sent to a mirror
agency in order to instruct it to release its role and become a code server
agency. The effect is that all data items are deleted, but code units are still
available at this agency. If there are defined data items left at the mirror
agency, the header must be rejected.

public voidsendADB(Object handler, boolean classCache)throwsKalongException

Sends the agent definition block (ADB) to the receiver agency.

This message is used to transmit information about code units and classes
without the code itself. The parameter classCache defines whether the
receiver should answer with information about class availability.

The header must have been sent before an ADB message. An ADB message
may be sent multiple times to the same agency, because it is possible that code
bases have changed. After an ADB message is sent, no request messages may
be sent to the receiver agency.

public void sendUnits(Object handler, int[] ids) throws KalongException

Sends code units with the given identifiers to the receiver agency.

This message is used to transmit a set of code units to the receiver agency.
The receiver replies whether or not it accepts the transmission.

A header message must have been sent before a unit message can be sent.
An agent definition block must be available at the receiver agency before a
unit can be accepted. If many code units are to be transmitted they should
be sent as one message. After a unit message, unit-request or data-request
messages may not be sent, because it does not make sense to request units
or data items from an agency to which units or data items were just sent.

public voidsendUnitRequest(Object handler, int[] ids)throwsKalongException

Sends a request to download units with the given identifiers to the receiver agency.

This message is used to request units from a home agency, code server agency,
or mirror agency. The receiver replies with the requested units, unless one of
the following is true.

1. The receiver is not a home agency, code server agency, or mirror agency
for this agent.

2. Any of the sent unit identifiers is invalid.

240 � Chapter 6 Specifications of the Kalong Mobility Model

A header message must have been sent before this message is sent. Messages
of type ADB, unit, or state may not have been sent before or after this mes-
sage. If many data code units are to be requested, their identifiers should be
bundled into a single message of this type.

public void sendState(Object handler, String[] names)

throws KalongException

Sends the state to the receiver agency.

This message is used to transmit an agent’s object state and some data items
to the receiver agency. The names of the data items to transmit along with
the state are given as parameter names. This parameter can be null. The
receiver answers whether it accepts this message or not.

The effect of this method is that the names of all data items are sent to
the destination agency, but some of them are sent without their values. The
reason for this is that data items can only be distributed between two types
of agencies: the current one and the home (or a mirror) agency. Even if a data
item is to remain at the home agency, the agent must have knowledge about
this data item if only to prevent the creation of a new data item with the same
name, which would cause conflicts when the agent migrates back to its home
agency.

Therefore, the state contains the names of all data items. All data items
given as parameter names are sent with state defined and their current
value. The state is locally set to undefined. All other data items are sent with
state undefined and without their value.

If the sender agency is not allowed to store data items (i.e., it is a remote
agency or code server agency), all data items are transferred with their
value to the destination agency without regard to the value of parameter
names.

A header message must have been sent before a state message may be sent.
An agent definition block must be available at the receiver agency before
a state message can be received. It is not necessary for the ADB to have
been sent during the same transfer. A state message must not be sent to an
agency where an agent is currently being executed. After a state message, no
unit-request or data-request messages may be sent.

After a transaction in which a state message has been sent, some, or even
all, agent related information has to be dropped at the sender agency. If
the sender was a remote agency and the agent has copied some code units,
the agency becomes a code server. If the agent has not copied code units,

6.4 Application Programming Interfaces � 241

all agent related information is deleted. If the sender was a home or mirror
agency, there is no change.

public voidsendDataUpload(Object handler, String[] names)

throws KalongException

Send data items whose names are given as a parameter to the receiver agency.

This message is used to upload data items from the current agency to a
home or mirror agency. It must not be sent to the home agency if there is
a mirror agency. The receiver answers whether or not the new data values are
accepted. The receiver will reject a data item upload if one of the following
is true:

1. The receiver is not a home agency or a mirror agency.

2. An uploaded data item is already defined at the receiver agency.

A header message must have been sent before this message type is sent.
Messages of type ADB, unit, or state may not have been sent before nor
may they be sent after this message. If many data items are to be trans-
mitted, they should be bundled into a single message.

Only data items that are defined at the current agency can be uploaded.
At the receiver agency, these uploaded data items must beundefined at first,
and set to defined after they are received. After a successful transmission,
sent data items must be set to undefined locally.

public voidsendDataRequest(Object handler, String[] names)

throws KalongException

Sends a request to download data items with the given names to the receiver agency.

This message is used to request data items from an agent’s home or mirror
agency. It does not need to be sent to the home agency if there is a mirror
agency. The receiver must reply with the requested data items. The receiver
may reject the message if either of the following is true:

1. The receiver is not a home agency or a mirror agency for this agent.

2. Any of the data items is undefined or does not exist at the receiver
agency.

A header message must have been sent before this message is sent. Messages
of type ADB, unit, or state may not have been sent before nor may they be

242 � Chapter 6 Specifications of the Kalong Mobility Model

sent after this message. If many data items are to be requested, their names
should be bundled into a single message.

6.4.2 Interface IAgentManager

This interface is used by Kalong to communicate to the agent manager. It is
used during an in-migration of an agent to check whether reception of the
agent is allowed. The agent manager could, for example, reject any migration
that comes from a host suspected of being malicious. Therefore, it should use
the information about the lastAgency given in the following method.

public boolean verifyAgent(String agentName,

URL[] homeAgency, URL[] lastAgency)

Checks whether an agent with the given name and addresses is allowed to migrate to

this agency.

After Kalong has received an agent’s state, the agent manager is asked to start
agent execution. For this task, the following method is used:

public voidstartAgent(String agentName, Serializable object)

Starts the given agent.

The parameter object contains the deserialized agent object. All classes not
already available at the current agency must already have been downloaded.

6.4.3 Interface INetwork

The third interface defines methods to access the network adapter. The first
method is used to get all addresses under which the network adapter is
accessible.

public URL[] getURLs()

Returns the URLs for all network protocols, or null if no addresses are defined.

The next three methods are to handle network connections. The first method
is used to open a communication channel to a remote agency.

public Object openTransfer(URL receiver) throws KalongException

Opens a network connection to the given receiver agency and returns an object to identify this transfer. Throws an

exception if the connection cannot be opened.

6.5 The SATP Migration Protocol � 243

The second method is used to send a message to the destination agency.
The return value contains the reply message, which must be processed
immediately.

public byte[] send(Object handle, byte[] data)throws KalongException

Sends the given byte sequence to the receiver, waits for a reply, and returns it. Throws an exception if the method

cannot be sent.

Finally, at the end of a transfer, the network connection must be closed
again.

public void closeTransfer(Object handle)

Closes a network connection.

6.4.4 Interface IServer

The last interface defines methods that must be used by the network com-
ponent to access Kalong. Kalong must provide an implementation of this
interface.

These methods are the counterparts of the ones described in the previous
section. For example, if method send of interface INetwork is called at the
sender, method receive of this interface is called at the receiver.

public Object openTransfer()throws KalongException

Opens a network connection, returns an object to identify this transfer.

The method returns null if the connection cannot be opened.

public byte[] receive(Object handle, byte[] data)throws KalongException

Receives the given byte sequence, waits for a reply, and returns it.

public void closeTransfer(Object handle)

Closes a network connection.

6.5 The SATP Migration Protocol

This section defines the SATP migration protocol, version 1.0.

244 � Chapter 6 Specifications of the Kalong Mobility Model

6.5.1 Introduction

Each method of interface IKalong to transfer agent information uses one
of the message types defined in this section. Although it might be clear from
the names which method uses which message, Table 6.2 gives an overview.
A reply message named Ok/Nok stands for a reply that only contains the
information of whether the receiver has accepted the request.

To describe the message format, we use the Extended Backus-Naur Form
as introduced in Chapter 3. First of all, we define the following nonterminal
symbols: <Byte> represents a single byte with value range from 0 to 255;
<Short> is used for numbers and is two bytes long; <Integer> is also used
for numbers and is four bytes long. To code <Short> and <Integer> sym-
bols, we use the big-endian format, where the highest byte is stored first,
at the lowest storage address. For example, a 4-byte integer is stored in the
following order:

Byte3 Byte2 Byte1 Byte0
0 1 2 3

The first line shows the sequence of bytes in memory, the second line shows
the byte offset.

In this section, it will sometimes be necessary to express a byte literal.
In this case, we will use hexadecimal numbers (e.g., “0x15” to express the
decimal number 21). In addition to the meta symbols introduced above, we
define n{<A>}m as a repetition of symbol <A> between n and m times, where
0 ≤ n ≤ m. Mostly, we will use this new meta symbol when we have to define
a repetition of exactly n times, so that we write n{<A>}n.

Sometimes it is necessary to refer to a value of a <Byte>, <Short>, or
<Integer> symbol. In this case, we will write <An> to express that symbol
<A> contains the value n.

For example, the following <Message> is comprised of n + 5 bytes, where
the number n is described by symbol <A>.

1. <Message> ::= <An> + + <C>

2. <A> ::= <Byte>

3. ::= n{<Byte>}n

4. <C> ::= <Integer>

6.5 The SATP Migration Protocol � 245

6.5.2 The SATP Request and Reply Messages Scheme

The normal operation of the SATP protocol is for a sender to transmit a request
to the receiver, which answers with a reply message. A request always has the
following format:

1. <Request> ::= <RequestCode> + <Lengthn> + <RequestParameter>

2. <RequestCode> ::= [<RcPing> | <RcHeader> | <RcUnit> | <RcUnitReq>

| <RcData> | <RcDataReq> | <RcADB> | <RcState> | <RcPrepare>

| <RcCommit> | <RcRollback>]

3. <Length> ::= 1{<Byte>}4

4. <RequestParameter> ::= n{Byte}n

A request starts with a command byte, which is followed by a sequence of
1 to 4 bytes, in which a number of bytes is coded as described below. The
format of a <RequestParameter> depends on the message type and is
defined later for each type.

To transmit a sequence of bytes, we use a byte-count–oriented technique,
in which we send the number of the following bytes prior to the raw byte
sequence. The advantage of this technique is that the receiver can read data
from the network very quickly, especially in Java. Every String or byte array
is transmitted as such a byte sequence in SATP. Usually, coding a value of
type int would result in a sequence of 4 bytes, but up to 3 of them might
be wasted, because the number to be coded is less than 28, 216 or 224. To
optimize space in these cases, we propose to code a byte length in a new
way. We name the original number of bytes the length, and the resulting
sequence of bytes which contains this number, the code. The idea is to use
the two highest bits in the first byte of the code to contain the code length.
A value of 0 means that the code is only 1 byte long (0 bytes following), a value
of 3 means that the code is 4 bytes long (3 bytes following). So, for example,
the following code stands for the number 33.

00100001
0

With 1 byte it is only possible to code numbers from 0 to 63. The following
2 bytes are the code for the number 257.

01000001 00000001
0 1

246 � Chapter 6 Specifications of the Kalong Mobility Model

Therefore, in our approach, the highest value for a length is 230 − 1, which
will be sufficient for all cases in SATP.

The format of a reply message depends on whether the request was
successful.

5. <Reply> ::= [<ReplyOk> | <ReplyNok>]

6. <ReplyOk> ::= “0x6F” + <ReplyParameter>

7. <ReplyParameter> ::= <Lengthn> + n{<Byte>}n

8. <ReplyNok> ::= “0x70” + <ErrorCode> + <ErrorText>

9. <ErrorCode> ::= <Short>

10. <ErrorText> ::= <String>

11. <String> ::= <Lengthm> + m{<Byte>}m

If the request message was accepted, then a <ReplyOk> answer is sent. It
is comprised of a single byte, which must have the value 0x6F, and a byte
sequence that contains the reply parameter. For example, if a unit request was
sent, then this byte sequence will contain the units. If the request message was
not accepted or the message format was not accepted, then a <ReplyNok>
answer is sent. The <ErrorCode> and the <ErrorText> contain a detailed
error description.

6.5.3 Specification of All SATP Messages

Ping

The ping message sends a sequence of bytes to the receiver agency, which
is supposed to reply with a <ReplyOk> message with the unchanged byte
sequence as the parameter.

12. <RcPing> ::= “0x76”

13. <PingParameter> ::= n{<Byte>}n

The parameter is a sequence of arbitrary bytes. The receiver must send back
this byte sequence as a <ReplyOk> message without any modification, but
answers with a <ReplyNok>message if it does not accept this ping message.

6.5 The SATP Migration Protocol � 247

It may terminate a transfer if, for example, the sender tries to flood the receiver
with ping messages.

Header

The header message contains information about the agent and its home
agency. The receiver agency must answer whether it accepts (<ReplyOk>
without any parameters) further messages for this agent or not (<ReplyNok>
with an error message).

14. <RcHeader> ::= “0x66”

15. <HeaderParameter> ::= <Vendor> + <Major> + <Minor> + <AgentName>

+ <HomeAgency> + <SenderAgency> + <Command>

16. <Vendor> ::= <String>

17. <Major> ::= <Byte>

18. <Minor> ::= <Byte>

19. <AgentName> ::= <String>

20. <HomeAgency> ::= <PackedURLArray>

21. <SenderAgency> ::= <PackedURLArray>

22. <Command> ::= [<Noop> | <ReleaseCodeServer> | <ReleaseMirror>

| <ReleaseMirrorToCodeServer>]

23. <Noop> ::= “0x00”

24. <ReleaseCodeServer> ::= “0x01”

25. <ReleaseMirror> ::= “0x02”

26. <StartCodeServer> ::= “0x03”

27. <ReleaseMirrorToCodeServer> ::= “0x04”

The first part of the header is the SATP protocol version number. To ensure
that two agencies are able to exchange messages correctly, both need to
have the same version of the SATP protocol. The sender declares its version
number as part of the header. The receiver should only accept a transfer if
its version number is equal to or higher than the sender’s. If the receiver

248 � Chapter 6 Specifications of the Kalong Mobility Model

rejects a transmission, the agent at the sender agency will receive an error
notification.

We use a major–minor scheme to describe the version of the protocol.
The minor number is incremented when changes are made to the proto-
col that do not apply to the general message format (e.g., if the semantics
are changed). The major number is incremented if substantial modifica-
tions are made with regard to the message format. Both values are coded
in a byte each. For example, version 0.1 is earlier than 0.11, which is earlier
than 1.0.

The third part of the header is the agent’s name. The next two parts contain
addresses of the agent’s home agency and of the sender agency. A complete
URL(e.g.,tcp://tatjana.cs.uni-jena.de:4567/fortknox/gold#abc,
consists of the following parts: protocol (tcp), host name (tatjana.cs.
uni-jena.de), port number (4567), path to the resource (fortknox),
file name of the resource (gold), and reference within the resource (abc).
Because Kalong does not define the structure of a URL, all parts of a valid
URL must be transmitted. We can assume that all addresses of the same
agency have the same host name, path name, file name and reference, so we
only store these parts once. The first element of a <PackedURLArray> is the
number of URLs following. We name this number n.

28. <PackedURLArray> ::= <NumberOfURLsn> + <URLHostName> + <URLPath>

+ <URLFile> + <URLRef> + n{ <URLProtocol> + <URLPortNumber> }n

29. <NumberOfURLs> ::= <Short>

30. <URLHostName> ::= <String>

31. <URLPath> ::= <String>

32. <URLFile> ::= <String>

33. <URLRef> ::= <String>

34. <URLProtocol> ::= <String>

35. <URLPortNumber> ::= <Short>

ADB

An ADB message is used to transmit information about code units and
classes without the code itself. The receiver should answer with a<ReplyOk>
message and information about which classes are already available at the

6.5 The SATP Migration Protocol � 249

receiver’s class cache. The receiver should not answer with a <ReplyNok>
message, except if the ADB message has the wrong format.

36. <RcADB> ::= “0x67”

37. <ADBParameter> ::= <NumberOfUnitsn> + <CacheUsage>

+ <UnitDescriptions>

38. <NumberOfUnits> ::= <Short>

39. <CacheUsage> ::= [<UseCache> | <DoNotUseCache>]

40. <UseCache> ::= “0x00”

41. <DoNotUseCache> ::= “0x01”

42. <UnitDescriptions> ::= n{<UnitDescription>}n

The ADB contains the number of units and information about each code
unit. The part <CacheUsage> defines whether the receiver agency should
check all class descriptions against the local code cache and return infor-
mation about class availability. In the last rule, n is the number of units
(<NumberOfUnits>).

Each unit and each class of an agent has a unique identifier, which
is assigned during agent creation at the agent’s home agency and never
changed. Unit identifiers are used for downloading units, and class iden-
tifiers are used in the reply to an ADB message to give information about
class availability. Each unit description has the following format:

43. <UnitDescription> ::= <UnitId> + <ClassesDescription>

+ <CodeBases>

44. <UnitId> ::= <Short>

45. <ClassesDescription> ::=

<NumberOfClassesn> + n{<ClassDescription>}n

46. <NumberOfClasses> ::= <Short>

47. <ClassDescription> ::= <ClassId> + <ClassName> + (<Digest>)

48. <ClassId> ::= <Short>

49. <ClassName> ::= <String>

50. <Digest> ::= <Lengthd> + d{<Byte>}d

51. <CodeBases> ::= <NumberOfCodeBasesc> + c{<CodeBase>}c

250 � Chapter 6 Specifications of the Kalong Mobility Model

52. <NumberOfCodeBases> ::= <Short>

53. <CodeBase> ::= <NumberOfURLsu> + u{<URL>}u

54. <URL> ::= <String>

Each unit description consists of the identifier, the number of classes in
the unit, and a list of code bases for the unit. For each class, the class identifier,
the class name, and a digest (if the cache is activated) are sent. To code the list
of URLs in a code base, we do not use the packed form for URLs as described
above, because a list of code bases will mostly contain different addresses for
which compression is not worthwhile.

If the receiver agency checks classes against its local cache, the class name
and digest are used. If there is already a class with the given name for which
the local digest is the same as the given digest, then it is assumed that the
identical class is already available.

The ADB reply object contains the identifier for all classes that are already
available at the destination agency.

55. <ADBReplyParameter> ::= <NumberOfClassesn> + n{ <ClassId> }n

Unit

The unit message is used to transmit a set of code units to the receiver agency.
The receiver replies whether it accepts the transmission or not. The receiver
should only reject unit transmission if the message cannot be parsed because
of a format error.

56. <RcUnit> ::= “0x68”

57. <UnitsParameter> ::= <NumberOfUnitsn> + n{<Unit>}n

58. <Unit> ::= <UnitId> + <NumberOfClassesc> + c{<Class>}c

59. <Class> ::= <ClassName> + <ClassCode>

60. <ClassCode> ::= <Lengthm> + m{<Byte>}m

A unit message contains at least one unit, and each unit is uniquely identified
by a number. Each unit contains the code of at least one class. The set of
classes that is transmitted for a specific unit depends on the reply of the ADB

6.5 The SATP Migration Protocol � 251

message. If the receiver already has the code for a specific class and transmits
this information to the sender agency, then the sender should not send this
class. As a consequence, the set of classes that is transmitted as a unit may be
a subset of the classes that belong to this unit.

State

A state message is used to transmit an agent’s state to the receiver agency. It
consists of URLs and the serialized agent, and can include some data items.
The receiver answers whether it accepts this message or not.

61. <RcState> ::= “0x6C”

62. <StateParameter> ::= <MirrorAgencies> + <DestinationAgency>

+ SerializedAgent + <DataItems> + <DataItemKey>

63. <MirrorAgencies> ::= <PackedURLArray>

64. <DestinationAgency> ::= <String>

65. <SerializedAgent> ::= <Lengthn> + n{<Byte>}n

66. <DataItems> ::= <NumberOfDataItemsm> + m{<DataItem>}m

67. <DataItem> ::= <DataItemName> + <DataItemState>

+ (<SerializedDataItem>)

68. <NumberOfDataItems> ::= <Short>

69. <DataItemName> ::= <String>

70. <DataItemState> ::= [<Defined> | <Undefined>]

71. <Defined> ::= “0x10”

72. <Undefined> ::= “0x11”

73. <SerializedDataItem> ::= <Lengthl> + l{<Byte>}l

The part <MirrorAgencies> is a list of addresses of the mirror agency,
if there is one. Otherwise, the number of URLs in the <PackedURLArray>
is 0. The second part contains the address of the agency to which the transfer
is directed. This address is important at the receiver agency if, for example,
the agency consists of more than one place, and the name of the destination
place is part of the URL. The third part is the serialized agent, which is a

252 � Chapter 6 Specifications of the Kalong Mobility Model

sequence of bytes. The last part contains data items of the external state.
Each data item has a name, a state, and (optionally) the serialized object as a
byte sequence. Symbol <DataItemKey> is defined in rule 78.

Unit Request

A unit request message is used to request units from a home, code server,
or mirror agency. The receiver answers with a <ReplyOk> message and the
requested units as a parameter. The receiver must answer with <ReplyNok>
if there is an error.

74. <RcUnitReq> ::= “0x69”

75. <UnitRequest> ::= <NumberOfUnitsn> + n{<UnitId>}n

Symbol <UnitId> was already defined in rule 44. The reply message has the
format defined in rule 57.

Data Item

A data item message is used to upload data items from the current agency to
a home or mirror agency. The receiver answers with a <ReplyOk>message if
the new data values are accepted, otherwise it answers with a <ReplyNok>
message.

76. <RcData> ::= “0x6A”

77. <DataParameter> ::= <DataItems> + <DataItemKey>

78. <DataItemKey> ::= <Lengthn> + n{<Byte>}n

Symbol <DataItems> was defined previously. Symbol <DataItemKey> is a
byte sequence that contains a key necessary to upload data items.

Data Request

A data request message is used to request data items from an agent’s home
or mirror agency. The receiver answers with a <ReplyOk> message and

6.5 The SATP Migration Protocol � 253

the requested data items as a parameter. The receiver must answer with a
<ReplyNok> message if there is an error.

79. <RcDataReq> ::= “0x6B”

80. <DataReqParameter> ::= <NumberOfDataItemsn> + n{<DataItemName>}n

Symbol <DataItemName> was defined above in rule 69.

Prepare

The prepare message is sent to a receiver agency to check whether any error
has been occurred during the current transfer. The receiver agency must
answer with a<ReplyOk>message without parameters if it accepts the whole
transfer, and a <ReplyNok> message with an appropriate error message if
there is an error.

81. <RcPrepare> ::= “0x64”

Commit

The commit message is used to tell the receiver agency to commit all changes
made during the current transfer. The last stable state of the agent’s context
can then be dropped.

82. <RcCommit> ::= “0x65”

The commit message is not supposed to send a valid reply message.

Rollback

The rollback message is used to tell the receiver agency to release all changes
made during the current transfer and to restore the last stable state.

83. <RcRollback> ::= “0x6D”

The rollback message is not supposed to send a valid reply message.

THIS PAGE INTENTIONALLY LEFT BLANK

Chapter7
Using Kalong

This chapter describes the implementation of the Kalong mobility model
as the Kalong software component, which is the reference implementa-
tion of the Kalong specification. We also present some examples of program
migration strategies using the Kalong software component. Finally, we show
how Kalong can be extended by its own implementations, for example, by
implementing mobile agent security techniques.

Contents

7.1 Introduction .255
7.2 Using the Kalong Component .258
7.3 Extending Kalong .274

7.1 Introduction

We start with a brief introduction to two very important aspects of Kalong as
a software component. First, Kalong in itself is not a complete mobile agent
toolkit but is designed to be an independent software component for agent
migration to be used with (almost) any existing mobile-agent–server archi-
tecture. Second, Kalong is designed to work as a virtual machine for the task
of agent migration. Therefore, it defines a minimal set of commands or func-
tions, which, combined, can control the entire process of agent migration as
defined in the Kalong mobility model.

256 � Chapter 7 Using Kalong

7.1.1 Kalong as a Software Component

As we already noted, Kalong was developed to be independent of any mobile
agent toolkit. It was our target to base Kalong on very few assumptions about
the environment (i.e., the mobile agent toolkit) in which Kalong can be used.
Therefore, it should be usable in almost all mobile agent software archi-
tectures and has already been successfully adapted to work with the Tracy2
architecture. We plan to integrate Kalong into other toolkits, such as Jade and
Semoa, in the near future.

Kalong defines four interfaces (see Fig. 7.1). On the left side of Kalong,
there are two interfaces used to communicate with the agent manager.
Interfaces on the right side are designed to communicate with the network
adapter. Interface IKalong defines the functions of Kalong, whereas inter-
face IAgentManager defines functions of the agent manager object used by
Kalong. On the other side, interface INetwork defines functions of the net-
work adapter used by Kalong, and interface INetworkServer defines the
functions of Kalong that can be used by the network server component to be
called when messages are received from the network.

Kalong can be easily adapted to any mobile agent toolkit because it is the
result of reducing all requirements on a migration component to a common
denominator. For example, Kalong’s only requirement for mobile agents is
that they be Java objects of type Serializable, which is at least necessary
in any mobile agent toolkit to marshal an object’s state.

In addition to the pure functional advantages of Kalong, its flexible migra-
tion technique, and its ability to define fine-grained migration strategies, we
see a major advantage in its migration component, which provides the abil-
ity to make two different mobile agent toolkits interoperable. This usually has
two distinct challenges. First, mobile agent toolkits must be able to commu-
nicate; that is, they must understand the same migration protocol. Second,
mobile agents of one system must be executable at another system. The first
challenge is taken on by Kalong. The second challenge must be resolved by
the designer of the mobile agent toolkit. The first promising results have been
reported by the Semoa research group at Fraunhofer Society in Darmstadt,

Kalong component

IKalong

IAgentManager

INetwork

INetworkServer

Figure 7.1 The Kalong software component and its interfaces.

7.1 Introduction � 257

Germany, who were able to adapt their toolkit to run Tracy agents [Pinsdorf
and Roth, 2002].

7.1.2 Kalong as a Virtual Machine

The second aspect we want to mention here is the basic idea of Kalong
as a virtual machine or engine1 for agent migration.

Kalong provides a basic set of functions to describe the migration of a
mobile agent. For example, it includes commands to define which units
should be transferred, and which data items will be part of the state; it
also contains commands to load code units or data items. In addition, it
offers additional services, such as transaction management, security, and
persistence.

With this concept of a virtual machine, it now becomes obvious how to
define a migration strategy in detail. In the previous chapters we have always
used this term to describe the effect of an agent migration, without going into
a detailed definition. For example, a push strategy was defined as the action
of transmitting all code units of an agent to the destination agency, together
with the agent’s state and all data items currently defined at the source
agency. Using the commands defined in interface IKalong in Chapter 6,
we can now provide a first impression of how a migration strategy may look.

1 void sendAgent(String agentName, URL destination)
2 {
3 Object handle = null;
4 String[] allDataItems = kalong.getDataItems(agentName);
5 int[] allUnits = kalong.getUnits(agentName);
6
7 kalong.startTransaction(agentName);
8 handle = kalong.openTransfer(agentName, destination);
9 kalong.sendHeader(handle, IKalong.NOOP);
10 kalong.sendADB(handle, true);
11 kalong.sendUnits(handle, allUnits);
12 kalong.sendState(handle, allDataItems);
13 kalong.prepare(agentName);
14 kalong.commit(agentName);
15 }

1. We prefer the term virtual machine, although we run the risk of the Kalong virtual machine being
confused with the Java virtual machine. In the following chapters, we will always refer to the
Kalong virtual machine unless otherwise specified.

258 � Chapter 7 Using Kalong

The migration commands of Kalong are very low level, of course. To make
programming of migration strategies easier, the mobile agent toolkit can
define new levels of abstraction on top of Kalong, for example, to bundle
often used sequences of commands into new commands so that program-
ming of migration strategies becomes more comfortable for the programmer.
We will show the Tracy2 approach for this in Chapter 10.

7.2 Using the Kalong Component

In this chapter we give an introduction to the use of Kalong as a software
component and to program migration strategies. This chapter does not con-
tain the full documentation of all classes of the Kalong component. Some
deeper introduction into the main classes and the overall design of Kalong
can be found in the following section. The full documentation of all classes
can be found online at www.mobile-agents.org.

7.2.1 Starting and Configuring Kalong

The main class of the Kalong software component is class Kalong in package
de.fsuj.kalong. It has the following two constructors:

public Kalong()

Creates a new Kalong component.

public Kalong(INetwork network)

Creates a new Kalong component that uses the given network component.

To embed Kalong in an existing mobile agent toolkit, it must be connected
to the agent manager and the network (as long as it was not done with the
constructor already).

public void registerNetwork(INetwork network)

Registers a network component with this instance of Kalong.

public void registerListener(IAgentManager listener)

Registers an agent manager with this instance of Kalong.

Finally the network component must be able to inform Kalong
about incoming messages. For this task, Kalong offers the interface

7.2 Using the Kalong Component � 259

INetworkServer, for which Kalong already provides an implementation.
This implementation can be requested using the following method:

public INetworkServer getNetworkServerInterface()
Returns an implementation of interface INetworkServer.

The following method is to check whether an agent context already exists.

public boolean existsAgentContext(String agentName)
Returns true if an agent context with the given name already exists.

The last method is used to delete an agent context.

public void deleteAgentContext(String agentName)
Deletes an agent context locally.

When an agent context is deleted, all information about data items, object
state, and code units are removed from the current agency. Calling this
method does not kill an agent currently roaming the agent system. How-
ever, this agent can no longer use this agency for downloading data items or
code units, which might cause unexpected behavior or might even crash the
agent.

In the following example, we show how to start and configure a Kalong
instance.

1 package test;
2
3 import de.fsuj.kalong.Kalong;
4 import de.fsuj.kalong.IKalong;
5 import de.fsuj.kalong.Network;
6 import de.fsuj.kalong.ProtocolEngine;
7 import de.fsuj.kalong.tcp.TCPEngine;
8
9 public class StartKalong

10 {
11 public static void main(String[] args)
12 {
13 Kalong kalong = null;
14 IKalong iKalong = null;
15 Network network = null;
16 ProtocolEngine tcpProtocol = null;
17
18 kalong = new Kalong();

260 � Chapter 7 Using Kalong

An example for a network component is also part of the Web site. The
main class of this component is Network, which works as a manager for
several network transmission protocols. Each transmission protocol must be
implemented by extending class ProtocolEngine.

19 network = new Network();
20 tcpProtocol = new TCPEngine();
21 network.registerProtocolEngine(tcpProtocol);
22 tcpProtocol.startServer(5555);

Each protocol engine defines a protocol name that can be used to define
URLs. For example, class TCPEngine defines the protocol with name “tcp”.
In line 22 a new thread is started that will accept incoming messages on
port 5555.

Now Kalong must be connected to the network component. Because the
network component is an independent software component, rather than
implementing the interfaces of Kalong, it provides interfaces on its own. To
allow communication between these two interfaces, we implement adapter
classes. For example, for Kalong we create an adapter that implements the
Kalong interface INetwork and accesses the network component transpar-
ently. For the other communication direction, we need another adapter
class that implements an interface of the network components and directs
all method invocations to Kalong. We do not print the source code of both
classes here; the source code can be found on the Web site.

23 NetworkAdapter nAdapter = new NetworkAdapter(network);
24 KalongAdapter kAdapter = new KalongAdapter

(kalong.getNetworkServerInterface());
25 kalong.registerNetwork(nAdapter);
26 network.registerListener(kAdapter);
27 kalong.registerListener(new KalongListener());
28 }
29 }

In line 27 we register a listener object with Kalong, which will be
informed in case of received agents. This listener must implement interface
IAgentManager; we will show an example of this listener in Section 7.2.3.

The last method of class Kalong is used by the agent manager to request
an implementation of interface IKalong, which contains all functions to
access an agent context and program migration strategies.

7.2 Using the Kalong Component � 261

public IKalong getKalongInterface(String agent)throws KalongException
Returns an implementation of interface IKalong.

This interface has some minor differences compared with the one pre-
sented in the specification (Chapter 6), so we will present its definition in
the following section.

7.2.2 Interface IKalong

The difference between this interface and the one defined in Chapter 6 is
that it is personalized to a single agent. Whereas in the Chapter 6, almost
all functions required a parameter agentName of type String, we now
give the agent’s name only once when obtaining the interface.

1 public interface IKalong

2 {

3 public static final byte NOOP = 0x00;

4 public static final byte REL_CODESERVER = 0x01;

5 public static final byte REL_MIRROR = 0x02;

6 public static final byte START_CODESERVER = 0x03;

7 public static final byte REL_MIRROR_TO_CODESERVER = 0x04;

8

9 public static final byte DATA_DEF = 0x00;

10 public static final byte DATA_UNDEF = 0x01;

11

12 // transaction management

13 public void startTransaction() throws KalongException;

14 public boolean prepare();

15 public void commit();

16 public void rollback();

17

18 // registering agents

19 public [] getHomeAgency() throws KalongException;

20 public [] getURLs() throws KalongException;

21 public void registerAgent(Serializable agentObject String agentOwner) throws KalongException;

22 public int defineUnit(String[] classNames) throws KalongException;

23 public String[] getClassNames() throws KalongException;

24 public String[] getClassesInUse() throws KalongException;

25 public int getClassSize(String className) throws KalongException;

262 � Chapter 7 Using Kalong

26 public String[] getLastAgency() throws KalongException;

27

28 // data items

29 public String[] getDataItems() throws KalongException;

30 public String[] getDefinedDataItems() throws KalongException;

31 public String[] getUndefinedDataItems() throws KalongException;

32 public byte getDataItemState(String dataItem) throws KalongException;

33 public void setDataItem(String dataItem, Serializable dataObject) throws KalongException;

34 public Serializable getDataItem(String dataItem) throws KalongException;

35 public int getDataSize(String dataItem) throws KalongException;

36 public void setObjectState(Serializable agentObject) throws KalongException;

37

38 // code units and code servers

39 public int[] getUnits() throws KalongException;

40 public String[] getClassesInUnit(int id) throws KalongException;

41 public int[] getUnitForClassName(String className) throws KalongException;

42 public void copyUnit(int id) throws KalongException;

43 public String[] getCodeBases(int id) throws KalongException;

44 public void addCodeBases(int id, String[] url) throws KalongException;

45 public void deleteCodeBase(int id, String[] url) throws KalongException;

46 public byte[] getByteCode(String className) throws KalongException;

47

48 // mirrors

49 public String[] getMirrorAgency() throws KalongException;

50 public void setMirrorAgency(String[] mirror) throws KalongException;

51 public void deleteMirrorAgency() throws KalongException;

52

53 // transfers

54 public Object startTransfer(URL destination) throws KalongException;

55 public boolean ping(Object handle, byte[] data) throws KalongException;

56 public void sendHeader(Object handle, byte command) throws KalongException;

57 public void sendADB(Object handle, boolean classCache) throws KalongException;

58 public void sendUnits(Object handle, int[] unitIds) throws KalongException;

59 public void sendUnitRequest(Object handle, int[] unitIds) throws KalongException;

60 public void sendState(Object handle, String[] dataItems) throws KalongException;

61 public void sendDataUpload(Object handle, String[] dataItems) throws KalongException;

62 public void sendDataRequest(Object handle, String[] dataItems) throws KalongException;

63 }

In lines 3 through 7, all valid header commands are defined, which can
be used in method sendHeader to release a code server or mirror agency.

7.2 Using the Kalong Component � 263

In lines 9 and 10 all valid states for data items are defined. A description of
each method can be found in the documentation on the Web site.

7.2.3 Interface IAgentManager

During the process of receiving an agent from the network, Kalong commu-
nicates to the agent manager using interface IAgentManager.

1 public interface IAgentManager

2 {

3 public Object startInMigration();

4 public boolean receivedInMigration(Object handle, String agentName,

String agentOwner, String [] homeAgency, String[] lastAgency);

5 public ProtectionDomain getProtectionDomain(Object handle);

6 public void startAgent(Object handle, Serializable agent,

URL destination);

7 // ...

8 }

The first method is called before an SATP header is received to initialize
the connection. The second method, receivedInMigration, is called after
an SATP header is received. The agent manager now has the chance to verify
whether this transfer should be accepted. It can make this decision based on
the given parameters, the agent’s name, the agent’s home agency, and the
addresses of the sender agency. If the agent manager returns a null value,
the sender is informed about header rejection. Otherwise, the return value
is an object, which the agent manager can use to identify this transfer in the
future.

The third method, getProtectionDomain, is called by Kalong before
the received agent is deserialized. The return value must be an object of type
ProtectionDomain, which is a Java class from package java.security.
A protection domain is a grouping of a code source and permissions granted
to all code from this code source. Protection domains are used to specify
the permissions of an agent on the current agency. It is given to the class
loader, which will then assign this protection domain to all classes of the
agent.

The following method creates a protection domain, which grants permis-
sion to read all files in the user’s home directory.

264 � Chapter 7 Using Kalong

1 public ProtectionDomain getProtectionDomain(Object handle)
2 {
3 // ...
4 PermissionCollection coll = new PermissionCollection();
5 coll.add(new FilePermission("${user.home}/-", "read"));
6 CodeSource cs = new CodeSource(handle.homeAgency[0], null);
7 ProtectionDomain pd = new ProtectionDomain(cs, coll);
8 return pd;
9 }

Finally, the fourth method, startAgent, is called by Kalong after the
agent has been initialized. The second parameter, agent, contains a refer-
ence to the deserialized agent object, and the third parameter contains the
URL of the migration destination. The agent manager might need this URL
to dispatch the incoming agent to a specific place, whose name is stored in
the URL.

In Section 7.3.3 we show other methods of this interface that can be used
to sign and encrypt messages.

7.2.4 Examples to Use Interface IKalong

We now show how to use the Kalong component in some typical use cases.

Registering an Agent

Before an agent can migrate or use any other function of Kalong, it must be
registered with the component. This is done using method registerAgent.
The agent object must have already been initialized.

1 package test;
2
3 // ...
4
5 public class TestKalong
6 {
7 public static void main(String[] args)
8 {
9 Kalong kalong = new Kalong();
10 IKalong iKalong = null;
11 Runnable agent = new Agent();

7.2 Using the Kalong Component � 265

12 agent.run();
13
14 // connection Kalong and the other components
15
16 try

17 {
18 iKalong = kalong.getKalongInterface(“Scaramanga”);
19 iKalong.startTransaction();
20 iKalong.registerAgent(agent);
21
22 String[] allClasses = ikalong.getClassNames();
23 String[] filterClasses = new String[] { “java.*”, “javax.*”, “org.xml.*” }
24 String[] agentClasses = ArrayUtils.filter(allClasses, filterClasses);
25 iKalong.defineUnit(agentClasses);
26
27 } catch(KalongException e) {
28 e.printStackTrace();
29 }
30 }
31 }
32

1 package test;
2
3 public class Agent implements Serializable, Runnable
4 {
5 private Integer value = new Integer(100);
6
7 public void run()
8 {
9 // ...

10 }
11 }

As can be seen, an agent can be any object of a class that implements,
at a minimum, interface Serializable. In this example, class Agent

also implements interface Runnable; therefore, it must provide a method
with name run. In line 18 the Kalong interface for an agent with name
Scaramanga is requested, and in line 20 the initialized agent object is reg-
istered with Kalong. After it is registered, the given agent object is accessible
under the nameScaramanga. Note that for sake of readability, we chose short
and human-readable agent names in all examples. A real implementation
must guarantee that agent names are unique in the entire agent system.

266 � Chapter 7 Using Kalong

Registration allows Kalong to read the agent’s class file and determine
the class closure of the agent’s main class. This list of class names can
be requested using method getClassNames of the Kalong interface. In
the previous example, this class list would consist of classes test.Agent,
java.lang.Object, java.lang.Integer, java.io.Serializable,
and java.lang.Runnable.

Now we must define the agent’s code units. As already stated, the user
of Kalong is responsible for filtering classes that are ubiquitous and that
therefore do not need to migrate to other agencies. The utilities package
de.fsuj.tracy2.util contains a class ArrayUtils, which provides a
method for filtering class names.

String[]ArrayUtils.filter(String[]source, String[]pattern)
Returns the source parameter without Strings that match any of the given pattern.

To describe pattern, regular expression can be used. In lines 22 through 24
we use this method to filter out all base Java classes from the list of all agents’
classes. In line 25 a single unit that contains all agent’s classes is defined.

Accessing Data Items

Kalong provides functions to store data items in the agent’s context. To store
a data item, method setDataItem must be used. After a new data item
is stored, it has the state DATA_DEF, which is a constant defined in inter-
face IKalong. To retrieve a data item, method getDataItem must be used.
A data item can be any object that is serializable.

1 try

2 {
3 iKalong.setDataItem(“firstDataItem”, new Integer(100));
4 assert(iKalong.getDataItemState(“firstDataItem”) == IKalong.DATA_DEF);
5
6 Integer anInteger = (Integer)iKalong.getDataItem(“firstDataItem”);
7
8 iKalong.getDataItem(“secondDataItem”);
9
10 }
11 catch(KalongException e)
12 {
13 e.printStackTrace();
14 }

7.2 Using the Kalong Component � 267

In line 8 a data item that does not exist is requested. An exception is
therefore thrown. The Kalong interface provides other methods to retrieve
an array of all data item names or to determine the size of a single serialized
data item. The latter can be important when deciding which data items will
migrate.

Simple Migration

We now present the implementation of a simple migration. It is in fact the
one that we have referred to as push-all-to-next, which transmits all of an
agent’s code and all its data to the next destination.

For the following, we assume that the agent was registered and that code
units were already defined. The agent might also have stored some data items
in its context. Variable iKalong contains a reference to the agent’s Kalong
interface.

1 try

2 {
3 URL destination = new URL(“tcp://tatjana.cs.uni-jena.de:5555”);
4 int[] unitIds = iKalong.getUnits();
5 String[] dataItems = iKalong.getDataItems();

Variable destination contains the address of the destination agency.
The array of integer values with name unitIds contains all identifiers of the
agent’s code units, and the array of Strings with name dataItems contains
the names of all data items the agent owns.

6 iKalong.setObjectState(agent);
7 iKalong.startTransaction();

In line 6 the agent object state is stored in the agent’s context; the
next statement starts the transaction.

8 Object handle = iKalong.startTransfer(destination);
9 iKalong.sendHeader(handle, IKalong.NOOP);
10 iKalong.sendADB(handle, true); // true means to use cache
11 iKalong.sendUnits(handle, unitIds);
12 iKalong.sendState(handle, dataItems);
13 }
14 catch(Exception e)
15 {

268 � Chapter 7 Using Kalong

16 e.printStackTrace();
17 }
18 finally

19 {
20 if(iKalong.prepare())
21 {
22 iKalong.commit();
23 } else

24 {
25 iKalong.rollback();
26 }
27 }

This migration strategy consists of a single transfer. The connection to
the destination agency is opened using method startTransfer. The return
value is an object that is used to identify this transfer when sending additional
messages. The first message that is sent now must be an SATP header, which
transmits the agent’s name and some other important information about
the agent to the destination agency. The second parameter of this method
is the header command, which specifies which process will be executed at
the end of this transfer at the destination agency. In this case, NOOP stands
for no operation.

In the following the agent definition block is sent. The second parameter
of method sendADB defines whether the remote agency should check for
classes that are already available and reply this information. Then all units
and the state, as well as all data items, are sent. Finally, the entire transaction
is prepared and then committed or rolled back.

7.2.5 Push Agent Class and Load Other Classes

The migration strategy of pushing main agent classes and loading other
classes assumes that a single code unit was defined for each class and that
only the main agent class is transmitted to the next destination, whereas all
other classes are loaded dynamically during runtime from the agent’s home
server.

1 try

2 {
3 URL destination = new URL(“tcp://tatjana.cs.uni-jena.de:5555”);
4 String[] dataItems = iKalong.getDefinedDataItems();

7.2 Using the Kalong Component � 269

5
6 iKalong.setObjectState(agent);
7 iKalong.startTransaction();
8
9 String agentClassName = agent.getClass().getName();
10 int[] unitIds = iKalong.getUnitForClassName(agentClassName);
11
12 Object handle = iKalong.startTransfer(destination);
13 iKalong.sendHeader(handle, IKalong.NOOP);
14 iKalong.sendADB(handle, true); // true means to use cache

15 iKalong.sendUnits(handle, new int [] { unitIds[0] });
16 iKalong.sendState(handle, dataItems);
17 }
18 catch(Exception e)
19 {
20 e.printStackTrace();
21 }
22 finally

23 {
24 if(iKalong.prepare())
25 {
26 iKalong.commit();
27 } else

28 {
29 iKalong.rollback();
30 }
31 }

In line 9 the class name of the agent’s main class is determined, and in
the following line the corresponding code unit that contains this class is
requested. This implementation must be extended if the agent itself extends
other classes or interfaces. In line 12 the migration process is started and the
first unit that contains the agent’s base class is selected for transmission.

Loading Data Items from the Home Agency

The following example shows how to download a single data item from the
agent’s home agency.

1 try

2 {
3 URL homeAgency = new URL(iKalong.getHomeAgency()[0]);

270 � Chapter 7 Using Kalong

4 String[] dataItemsToLoad = new String[] { “secondDataItem” };
5
6 iKalong.startTransaction();
7
8 Object handle = iKalong.startTransfer(homeAgency);
9 iKalong.sendHeader(handle, IKalong.NOOP);

10 iKalong.sendDataRequest(handle, dataItemsToLoad);
11
12 Integer second = (Integer)iKalong.getDataItem(“secondDataItem”);
13 }
14 catch(Exception e)
15 {
16 e.printStackTrace();
17 }
18 finally

19 {
20 if(iKalong.prepare())
21 {
22 iKalong.commit();
23 } else

24 {
25 iKalong.rollback();
26 }
27 }

The addresses of the agent’s home agency can be obtained by calling
method getHomeAgency. If the home agency is accessible through differ-
ent network protocols, the returned array contains more than one URL.
As a simplification, we chose the first address by default. The name of the
data item to load is defined in line 4, and the request to load a data item is
sent in line 10. Immediately after this method terminates, the data item is
available using method getDataItem.

When a data item is loaded, its state is set to DATA_UNDEF at the agent’s
home agency and to DATA_DEF at the current agency. If the same data item
were to be loaded again from the home agency, the transfer would not be
successful and an exception would be thrown locally.

Uploading a Data Item and Migrating to the Next Destination

The next example shows how to handle more than one transfer during a single
transaction. The task is to migrate to agency tatjana.cs.uni-jena.de

7.2 Using the Kalong Component � 271

but not carry the data item with the name firstDataItem. Instead, it is
uploaded to the agent’s home agency beforehand.

1 try

2 {
3 URL destination = new URL(“tcp://tatjana.cs.uni-jena.de:5555”);
4 URL homeAgency = new URL(iKalong.getHomeAgency()[0]);
5 String[] dataItemsToUpload = new String[] { “firstDataItem” };
6
7 iKalong.startTransaction();
8
9 Object handleHome = iKalong.startTransfer(homeAgency);

10 iKalong.sendHeader(handleHome, IKalong.NOOP);
11 iKalong.sendDataUpload(handleHome, dataItemsToUpload);
12
13 Object handleDest = iKalong.startTransfer(destination);
14 iKalong.sendHeader(handleDest, IKalong.NOOP);
15 iKalong.sendADB(handleDest, true); // true means to use cache
16 iKalong.sendState(handleDest, null);
17 }
18 catch(Exception e)
19 {
20 e.printStackTrace();
21 }
22 finally

23 {
24 if(iKalong.prepare())
25 {
26 iKalong.commit();
27 } else

28 {
29 iKalong.rollback();
30 }
31 }

The type of migration used to transmit the agent to the destination agency
is comparable to a pull strategy, because no code units are sent.

Defining Code Servers and a Mirror Agency

The next example shows how to make the current agency become a code
server agency. The goal is that after the next migration, all code units will
remain at the current agency and be downloadable from this agency later.

272 � Chapter 7 Using Kalong

1 try

2 {
3 int[] unitIds = iKalong.getUnits();
4
5 for(int i=0; i<unitIds.length; i++)
6 {
7 iKalong.copyUnit(unitIds[i]);
8 }
9 }
10 catch(Exception e)
11 {
12 e.printStackTrace();
13 }

The important statement is in line 7, where the unit with the given iden-
tifier is marked not to be deleted after the next migration. With this method,
the addresses of the current agency are added to the list of code bases of
the unit.

To define a mirror agency is only slightly more complicated. A mirror
agency, by definition, must hold all data items and all code units. There-
fore, before a mirror agency can be activated, the agent manager must load
all missing data items and code units. Kalong does not provide a method
for this.

We assume a situation in which no mirror agency is currently defined.
If this is not the case, it would be necessary to release the current mirror
agency first.

1 try

2 {
3 URL homeAgency = new URL(iKalong.getHomeAgency()[0]);
4 String[] dataItemsToLoad = iKalong.getUndefinedDataItems();
5 int[] unitsToLoad = iKalong.getUndefinedUnits();
6
7 iKalong.startTransaction();
8 Object handleHome = iKalong.startTransfer(homeAgency);
9 iKalong.sendHeader(handleHome, IKalong.NOOP);

10 iKalong.sendDataRequest(handleHome, dataItemsToLoad);
11 iKalong.sendUnitRequest(handleHome, unitsToLoad);
12 }
13 catch(Exception e)
14 {
15 e.printStackTrace();
16 }

7.2 Using the Kalong Component � 273

17 finally

18 {
19 if(iKalong.prepare())
20 {
21 iKalong.commit();
22 } else

23 {
24 iKalong.rollback();
25 }
26 }
27
28 iKalong.setMirrorAgency();

In line 28 the current agency is defined to be a mirror agency from this
point on.

Release a Code Server or Mirror Agency

Now we can show an example of how to release a remote code server or
mirror agency by sending a header command. Releasing code servers is an
important task for freeing resources at the other agencies that currently hold
a copy of the agent’s code. Releasing mirror agencies is necessary for defining
a new mirror, as mentioned previously.

Following is an example of how to release a code server.

1 try

2 {
3 URL codeServerToRelease = new URL(“tcp://tatjana.cs.uni-jena.de:5555”);
4
5 iKalong.startTransaction();
6
7 Object handle = iKalong.startTransfer(codeServerToRelease);
8 iKalong.sendHeader(handle, IKalong.REL_CODESERVER);
9
10 int[] allUnits = iKalong.getUnits();
11 String[] deleteCodeBase = new String[].toString()} codeServerToRelease {;

12 for(int i=0; i<allUnits.length; i++)
13 {
14 iKalong.deleteCodeBase(allUnits[i], deleteCodeBase);
15 }
16 }
17 catch(Exception e)

274 � Chapter 7 Using Kalong

18 {
19 e.printStackTrace();
20 }
21 finally

22 {
23 if(iKalong.prepare())
24 {
25 iKalong.commit();
26 } else

27 {
28 iKalong.rollback();
29 }
30 }

To simplify the code, we assume that we know the address of the code
server that should be released. This address must be obtained from the
agent’s context using, for example, method getCodeBases, which returns
all known code bases for a given unit. To release a code server is defined as
a header command in line 8. No additional messages need to be sent to the
destination in this case. After the transfer, the code server must be deleted
from the list of code bases of all units. This is done in lines 10 through 15.

If a mirror agency is to be released, the header command must be changed
to REL_MIRROR and finally method deleteMirrorAgency must be called.

7.3 Extending Kalong

In the previous sections we presented the basic Kalong migration proto-
col and its reference implementation as a Kalong software component. The
main advantage of Kalong is that it provides a new optimized migration tech-
nique, which allows the programmer of mobile agents to describe a migration
strategy in a very fine-grained way. We gave examples to illustrate how migra-
tion strategies can be implemented. In Chapter 8, we will present results of
several real-world performance measurements.

As we have mentioned several times, Kalong was designed to work with
many, if not all, mobile agent toolkits. We introduced the Kalong migration
component as a virtual machine for agent migration. It provides a minimal set
of functions or commands to describe a migration strategy. Because the focus
of Kalong is on migration optimization, it does not, for example, provide any
means for the problem of mobile agent security.

7.3 Extending Kalong � 275

Therefore, we present a technique to extend the basic Kalong protocol.
We show that the Kalong specification defines only the common portions of
a protocol family and that the Kalong software component offers a way to
define new migration protocols on the basis of Kalong. With this technique,
it is possible to add security to Kalong in a very modular way.

In this section we present a technique to extend the basic Kalong migra-
tion protocol as defined in Chapter 6. The extension mechanism is a
powerful technique to complement Kalong with other services related to
agent migration. For example, the extension mechanism allows for compres-
sion of each SATP message before Kalong sends it to the destination agency
or inspection of each incoming class code to detect malicious agents2. The
extension mechanism defines some selected points where a user of a Kalong
component can modify the structure of each SATP message. It is not possible
to define new SATP message types, but each SATP message can be modi-
fied before it is sent to the destination and immediately after it is received
at the destination platform. We now describe the interface of the extension
mechanism. We then present some examples of how this technique can be
used to supplement Kalong and provide solutions for some selected security
problems of mobile agents.

7.3.1 The Kalong Extension Interface

The extension mechanism of Kalong consists of a single interface,
IAgentManager, defined in package de.fsuj.kalong. It defines
methods that are called by Kalong during the process of an in- or out-
migration. For the following we denote the central component of an agency
that controls agent execution as the agent manager. An instance of inter-
face IAgentManager is part of the agent manager and must be registered
after starting the Kalong component using method registerListener,
as described in Section 7.2.1. Without this listener, Kalong does not accept
in-migrations and cannot start any out-migration.

By registering a listener object, the agent manager is able to modify the
structure of each SATP message. To distinguish such a new migration protocol
from the basic Kalong migration protocol, each listener must define a vendor

2. A malicious agent is one that tries to pilfer information from its host environment or tries
to damage its host through so-called denial-of-service attacks. We give further of examples
of malicious agents in Chapter 5.

276 � Chapter 7 Using Kalong

name and a version in the form of a major and minor number. As already
defined, a migration can be successful only if both the sender and receiver
agency support the same protocol.

The following methods must be implemented by the agent manager to
define the new migration protocol version information.

public String getProtocolName()
Returns the name of the protocol.

public String getVendorName()
Returns the protocol vendor name.

public byte getMajorVersion()
Returns the protocol major version number.

public byte getMinorVersion()
Returns the protocol minor version number.

The general communication protocol between Kalong and its listener is
that Kalong first informs the listener about the beginning of a migration
process (either in- or out-migration). The listener must return a so-called
handle object to identify this migration process later. This handle object
must be given as the first parameter in all other methods.

public Object startOutMigration(String agentName,

URL destination)
An out-migration has been started. The method must return an object by which this

transfer can be identified later.

At a destination agency, Kalong calls the following method immediately
after it has accepted a network connection from a sender agency.

public Object startInMigration()
An in-migration has been started. The method must return an object by which this transfer

can be identified later.

Methods codeMessage and decodeMessage are used to code and
decode messages or parts of messages. Note that a listener must always
implement both variants. If it provides a method to code a message, for
example, there must also be an analogous method to later decode it.

The following method is called whenever Kalong is going to send an
SATP message to the destination agency. This is not only the case during

7.3 Extending Kalong � 277

out-migrations, because all reply messages are coded using this method as
well. Thus, for example, if a sender agency has requested a unit for download-
ing, the destination agency calls this method to code the real unit transfer.
The listener can modify this message, for example, by compressing it or
signing it digitally. During this process the listener might need more infor-
mation about the agent, so a parameter context is given, which provides
the listener with access to some important methods of the agent’s context
object.

public byte[] codeMessage(Object handle, byte messageType,
byte[] message, IContext context) throws KalongException
Codes an SATP message that is given in parameter message and returns it.

The corresponding method that is called after receiving an SATP message
is:

public byte[]decodeMessage(Object handle, bytemessageType,
byte[] coded, IContext context) throws KalongException
Decodes a received message that is given as parameter coded.

The type of message is given as parameter messageType. Interface
IContext defines constant values for all SATP message types.

The next pair of methods is called to code and decode class codes. Param-
eter classCode contains the original byte code of the class with name
className.

public byte[]codeClassCode(Object handle, String className,
byte[] classCode) throws KalongException
Codes the given class that is given as Java byte code.

The corresponding method to decode a class is as follows:

public byte[]decodeClassCode(Object handle, String className,
byte[] codedClass) throws KalongException

Decodes the given class code and returns a valid Java byte code.

This method must return the original byte code of the class with name
className so that it can be loaded and defined by a Java class loader
object.

The next two methods are used to code and decode the serialized object
state of an agent.

278 � Chapter 7 Using Kalong

public byte[] codeObjectState(Object handle, byte[] state)
throws KalongException

Codes the agent’s object state.

public byte[] decodeObjectState(Object handle, byte[]
codedstate) throws KalongException

Decodes the agent’s object state.

The last method must return a byte sequence that can be deserialized using
the standard Java deserialization mechanism.

The next three methods are called only during an in-migration. The first
one is called by Kalong after a Header message is received. The purpose of this
method is to decide whether the migration request should be accepted. The
listener can use all information that was received along the Header message.

public boolean receivedInMigration(Object handle, String

agentName, String[] homeAgency, String[] lastAgency)
Decides whether an in-migration for this agent is allowed.

The method must returntrue if the migration request is accepted; otherwise,
it returns false. In many cases the given information about the agent’s
home agency and the agency from which the agent came is not sufficient to
make a qualified decision. However, this is the only information that is sent
as part of an SATP header. If more information is needed (e.g., certificates of
the agent’s owner), these must be added to the SATP header message using
methods codeMessage and decodeMessage.

The purpose of the last two methods was already explained in Section 7.2.3.

public ProtectionDomain getProtectionDomain(Object handle)

This method is called when Kalong deserializes a received agent. The returned protection

domain defines the permissions of this agent.

public voidstartAgent(Object handle, Serializable agent,

URL destination)

The given agent was successfully deserialized and must now be started by the agent

manager.

7.3.2 A First Example: Compression of All SATP Messages

To give an impression of the range of application of Kalong’s extension mech-
anism, we present an example in which each SATP message is compressed
before it is sent to the remote agency.

7.3 Extending Kalong � 279

The following example shows parts of the source code of class
ZIPAgentManager that implements message compression using stan-
dard Java techniques provided by classes GZIPInputStream and
GZIPOutputStream, defined in package java.util.zip. Implementing
message compression is very easy, because the listener must implement
only two methods to code and decode SATP messages: codeMessage and
decodeMessage. All other methods to code and decode object states or
Java classes immediately return the given information unchanged.

1 public class ZIPAgentManager implements IAgentManager
2 {
3 public String getVendorName()
4 {
5 return "TRACYZIP";
6 }
7
8 public byte getMajorVersion()
9 {

10 return 0x01;
11 }
12
13 public byte getMinorVersion()
14 {
15 return 0x00;
16 }
17
18 public byte[] codeMessage(Object handle, byte messageType, byte[] raw,

IContext context) throws KalongException
19 {
20 try

21 {
22 ByteBuffer bb = new ByteBufferList();
23 bb.putInt(raw.length);
24
25 ByteArrayOutputStream baos = new ByteArrayOutputStream();
26 GZIPOutputStream zos = new GZIPOutputStream(baos);
27 zos.write(raw, 0, raw.length);
28 zos.close();
29
30 bb.putBytesWithLength(baos.toByteArray());
31 return bb.toByteArray();
32
33 } catch(Exception e)
34 {

280 � Chapter 7 Using Kalong

35 throw new KalongException(e);
36 }
37 }
38
39 public byte[] decodeMessage(Object handle, byte messageType, byte[] coded,

IContext context) throws KalongException
40 {
41 try

42 {
43 ByteBuffer bb = new ByteBufferList(coded);
44 int length = bb.getInt();
45
46 byte[] zipped = bb.getBytesWithLength();
47 byte[] unzipped = new byte[length];
48
49 ByteArrayInputStream bais = new ByteArrayInputStream(zipped);
50 GZIPInputStream zis = new GZIPInputStream(bais);
51
52 int pos = 0;
53 do

54 {
55 pos += zis.read(unzipped, pos, length–pos);
56 } while(pos < length);
57 zis.close();
58
59 return unzipped;
60 } catch(Exception e)
61 {
62 throw new KalongException(e);
63 }
64 }
65
66 public byte[] codeObjectState(Object handle, byte[] state) throws

KalongException
67 {
68 return state;
69 }
70
71 public byte[] decodeObjectState(Object handle, byte[] codedstate)

throws KalongException
72 {
73 return codedstate;
74 }
75

7.3 Extending Kalong � 281

76 public byte[] codeClassCode(Object handle, String name,
byte[] classCode) throws KalongException

77 {
78 return classCode;
79 }
80
81 public byte[] decodeClassCode(Object handle, String name,

byte[] codedClass) throws KalongException
82 {
83 return codedClass;
84 }
85
86 // some methods are missing
87 }

Both methods work regardless of the message type all SATP mes-
sages will be compressed. The original message is written to an instance
of class GZIPOutputStream, which itself uses an instance of class
ByteArrayOutputStream to store the compressed data. The format of the
compressed message consists of a four-byte integer that contains the length
of the original message, followed by a byte array that contains the compressed
message. To create this message format, we use class ByteBuffer, which is
part of the Tracy project and defined in package de.fsuj.tracy.util. It
provides several methods to code Java’s primitive data types into flat byte
arrays. Decoding a compressed message is very straightforward. The mes-
sage is given to an instance of class GZIPInputStream, from which the
inflated data is read until all bytes are received. Finally, the original message
is returned to Kalong.

Because this example gives only a first impression of how to use this inter-
face, we do not show the implementation used to verify an incoming agent
or to start one.

7.3.3 How to Implement Security Solutions with Kalong

In this section we show how Kalong’s extension mechanism can be used to
implement some simple security solutions.

Class Code Filtering

Code filtering is used to inspect incoming classes and to check whether they
implement code fragments considered malicious. An example for this was

282 � Chapter 7 Using Kalong

presented earlier. When an agent implements method finalize, it might
attack the garbage collector thread.

Class code filtering can be implemented using the Kalong extension
mechanism. Whenever Kalong receives a code unit, it calls method
decodeClass of the Kalong listener object for each class. This method
gets the class name and the class byte code, as it was received from the net-
work, as parameters. It must return a valid Java byte code for this class. For
the following we assume that no other class coding is implemented, meaning
that parameter codedClass already contains valid Java byte code, which is
inspected only within this method.

1 public class FilterAgentManager implements IAgentManager
2
3 // ...
4
5 public byte[] decodeClass(String name, byte[] codedClass) throws

KalongException
6 {
7 filterClass(name, codedClass);
8 return codedClass;
9 }

10
11 void filterClass(String name, byte[] bytecode) throws KalongException
12 {
13 try

14 {
15 ClassFileStructure cfs = new ClassFileParser(new

BycalDataInputStream(new ByteArrayInputStream(bytecode)))
.parseClassFile();

16 ClassStructure cs = new ClassStructure(cfs);
17 Method fin = cs.getMethod("finalize()");
18
19 if(fin != null)
20 {
21 throw new KalongException("class has a finalize method");
22 }
23 } catch(IOException e)
24 {
25 throw new KalongException("class code cannot be analyzed and is,

therefore, not accepted");
26 } catch(AccessFlags_Exception f)
27 {

7.3 Extending Kalong � 283

28 throw new KalongException("class code cannot be analyzed and is,
therefore, not accepted");

29 }
30 }
31 }

Method decodeClass calls method filterCode and returns the byte
code as it was received if the byte code filter did not find any malicious
code. Otherwise, this method throws an exception with an appropriate error
message, which is sent back to the sender agency.

Method filterClass uses the ByCAl tool, which was developed as part
of the Tracy project to analyze Java classes on the level of byte code. The
class file is read using class ClassFileStructure and analyzed using class
ClassStructure. The latter class provides a method to check whether a
method with a given name exists (getMethod). If a method with name
finalize is found, it throws an exception; otherwise, it returns silently.

Agent Authentication

Agent authentication can be done by verifying a digital signature of the
agent’s owner or the last agency the agent came from. Digitally signing with
the agent’s owner private key can be done only at the agent’s home agency.
Therefore, only the immutable or static part of an agent can be digitally
signed. All mutable data, such as the agent’s object state or data items of the
external state, cannot be signed with the owner’s key.

We show an example in which the static parts of an SATP header message,
which consist of the agent’s name and its home agency, are digitally signed
at the agent’s home agency. At each host the agent visits, this signature is
verified against the owner’s public key.

Signing a header message can be implemented using method
codeMessageof interfaceIAgentManager. This method is called by Kalong
whenever an SATP message is to be sent to a destination agency. The mes-
sage type is given as parameter messageType. The header as it was created
by Kalong is given as a parameter message.

1 public class SigningAgentManager implements IAgentManager
2 {
3 // ...
4

284 � Chapter 7 Using Kalong

5 public byte[] codeMessage(byte messageType, byte[] message,
IContext context) throws KalongException

6 {
7 if(messageType == IContext.HEADER)
8 {
9 if(agentCertificate != null)

10 {
11 try

12 {
13 byte[] codedAgentCertificate = agentCertificate.getEncoded();
14
15 ByteBuffer bb = new ByteBufferList();
16 bb.putBytesWithLength(codedAgentCertificate);
17 bb.putBytesWithLength(message);
18
19 if(agentNameSignature == null)
20 {
21 ByteBuffer buffer4sig = new ByteBufferList();
22 buffer4sig.putString(context.getAgentName()).putURLArray(context.

getHomeAgency());
23 agentNameSignature = signBytes(signEngine, agentPrivateKey,

buffer4sig.toByteArray());
24 }
25
26 bb.putBytesWithLength(agentNameSignature);
27 return bb.toByteArray();
28
29 } catch(Exception f)
30 {
31 f.printStackTrace();
32 return null;
33 }
34 } else

35 {
36 return null;
37 }
38 } else

39 {
40 return message;
41 }
42 }
43 }

This code excerpt does not show how to obtain certificates or private keys
from a local keystore file, because this is done using fundamental Java secu-
rity mechanisms. We assume that variable agentCertificate contains the

7.3 Extending Kalong � 285

agent owner’s certificate and that agentPrivateKey already contains the
private key of the agent’s owner. For the sake of simplicity, we send the agent
owner’s certificate as part of the header message too. In real applications,
only the distinguished name of this certificate would be part of the header,
and the destination agency would have to load the certificate from a public
key server.

This method creates a new header message that consists of three
parts: (1) the owner’s certificate (line 16), (2) the original header message
(line 17), and (3) the digital signature (line 26). The conditional in line 19
decides whether the agent’s signature must be created (because the current
agency is the home agency) or can be reused. In the latter case, variable
agentNameSignature already contains the agent’s signature. Otherwise,
the agent’s name and its home agency URLs are signed in line 23. To verify a
signature, the destination agency must implement method decodeMessage
of interface IAgentManager, as shown in the following excerpt.

1 public byte[] decodeMessage(byte messageType, byte[] message,
IContext context) throws KalongException

2 {
3 if(messageType == IContext.HEADER)
4 {
5 ByteBuffer bb = new ByteBufferList(message);
6 byte[] codedAgentCertificate = bb.getBytesWithLength();
7 byte[] msg = bb.getBytesWithLength();
8 agentNameSignature = bb.getBytesWithLength();
9

10 try

11 {
12 CertificateFactory cf = CertificateFactory.getInstance("X509");
13 ByteArrayInputStream bais1 = new ByteArrayInputStream

(codedAgentCertificate);
14 agentCertificate = (X509Certificate) cf.generateCertificate(bais1);
15 agentPublicKey = agentCertificate.getPublicKey();
16
17 } catch(Exception e)
18 {
19 agentCertificate = null;
20 agentPublicKey = null;
21 remoteAgencyCertificate = null;
22 remoteAgencyPublicKey = null;
23 }
24

286 � Chapter 7 Using Kalong

25 return msg;
26 } else

27 {
28 return message;
29 }
30 }

First, the header message is split into the three components: certifi-
cate, original header message, and digital signature (lines 6 through 8). The
owner’s certificate is then initialized, and the owner’s public key is requested
(lines 12 through 15).

The process of verifying the digital signature is done in another method,
when the header message is checked to decide whether an agent will be
accepted.

1 public boolean validateHeader(String agentName, URL[] homeAgency, URL[]
lastAgency)

2 {
3 try

4 {
5 if(keystore.getCertificateAlias(agentCertificate) == null)
6 {
7 return false;
8 } else

9 {
10 ByteBuffer buffer4sig = new ByteBufferList();
11 buffer4sig.putString(agentName).putURLArray(homeAgency);
12 return verifySignature(signEngine, agentPublicKey,

buffer4sig.toByteArray(), agentNameSignature);
13 }
14 } catch(Exception e)
15 {
16 e.printStackTrace();
17 return false;
18 }
19 }

First, it is checked for whether the owner’s certificate is trusted (line 5);
next (line 12), the signature is verified. Using the same technique, it is
possible to sign all classes using the owner’s public key and to verify their
integrity.

7.3 Extending Kalong � 287

Read-Only Data Items

The next two examples focus on protecting data items against illegal mod-
ifications or illegal access. This service can also be implemented using
the extension mechanism of Kalong, but we provide a version that imple-
ments an adapter to access the main Kalong interface. This adapter is
called MDL, and it allows agents to access data items of their external state
and some of the other information provided by Kalong. The general con-
cept is that agents can use not only the two methods setDataItem and
getDataItem as defined in interface IKalong, but also two new methods,
setReadOnlyDataItem and setEncryptedDataItem.

Following is the code to sign a data item. We assume that the agent has
already defined the keystore alias of its owner in variable alias and the
keystore password in variable password.

1 public void setReadOnlyDataItem(String name, Serializable value) throws MDLException

2 {

3 String alias = null;

4 char[] password = null;

5 SignedObject signedObject = null;

6

7 // request of owner’s alias and password is not shown here

8

9 try

10 {

11 priKey = (PrivateKey) keystore.getKey(alias, password);

12 signedObject = new SignedObject(value, priKey, signEngine);

13 } catch(Exception e)

14 {

15 throw new MDLException(e);

16 }

17

18 setDataItem(name, signedObject);

19 }

The owner’s private key is read from the keystore file in line 11, and the
data item is encapsulated together with its signature by an object of class
SignedObject, which automatically signs the data item in line 18.

When the data item is accessed using method getDataItem, it must be
checked for what type the data item is. If the data item is an object that is an
instance of SignedObject, then the signature is verified and the data value

288 � Chapter 7 Using Kalong

returned to the caller. The following source code shows how to access Kalong
to read a data item with name name (line 13). In line 23 it is determined
whether the data item is of type SignedObject. We assume that variable
pubKey is defined outside this method and already contains the public key
of the agent’s owner. Finally, in line 29 the object is verified and the original
data item returned to the caller in line 42.

1 public Serializable getDataItem(String name) throws MDLException
2 {
3 Serializable dataValue = null;
4 SignedObject signedObject = null;
5 boolean dataVerified = false;
6
7 /*

8 * Read the data item from the external state.

9 */

10 try

11 {
12 kalongInterface.startTransaction();
13 dataValue = kalongInterface.getDataItem(name);
14 } catch(Exception e)
15 {
16 throw new MDLException(e.getMessage());
17 } finally

18 {
19 kalongInterface.prepare();
20 kalongInterface.commit();
21 }
22
23 if(dataValue instanceof SignedObject)
24 {
25 signedObject = (SignedObject)dataValue;
26
27 try

28 {
29 dataVerified = signedObject.verify(pubKey, signEngine);
30 } catch(Exception e)
31 {
32 throw new MDLException("signed data item cannot be verified due to:

" + e.getMessage());
33 }
34
35 if(! dataVerified)

7.3 Extending Kalong � 289

36 {
37 throw new MDLException("signed data item was tampered with");
38 }
39
40 try

41 {
42 return (Serializable)signedObject.getObject();
43 } catch(Exception e)
44 {
45 throw new MDLException(e);
46 }
47 }
48
49 // ...
50 }

Protect Data Items for a Target Agency

Finally, we present the code to encrypt a data item so that it can be read only
at a single target agency. The agent calls this method to store a data item
under the given name, which is encrypted with the public key of the agency
whose local keystore alias is given in parameter targetAlias.

Data encryption is done in Java using objects of class Cipher, and we
assume that an object with name rsaCipher has been initialized to use
asymmetric RSA encryption. In line 9 the cipher is initialized for encryption

using the public key of the target agency, which is obtained from the local
keystore file. Data encryption works using the same technique as described
for a signed object. We use an object of type SealedObject, which serializes
the data item and encrypts it using the given cipher object (line 10). Finally,
this object is stored in the agent’s external data state (line 17).

1 public void setEncryptedDataItem(String name, Serializable value,
String targetAlias) throws MDLException

2 {
3 SealedObject sealedObject = null;
4 PublicKey targetPublicKey = null;
5
6 try

7 {
8 targetPublicKey = keystore.getCertificate(targetAlias).getPublicKey();
9 rsaCipher.init(Cipher.ENCRYPT_MODE, targetPublicKey);

10 sealedObject = new SealedObject(value, rsaCipher);
11 } catch(Exception e)

290 � Chapter 7 Using Kalong

12 {
13 e.printStackTrace();
14 throw new MDLException(e);
15 }
16
17 setDataItem(name, sealedObject);
18 }

Data decryption is implemented in method getDataItem. In addition
to the source code presented earlier, we show here what must be done
when the data item is of type SealedObject.

1 public Serializable getDataItem(String name) throws

MDLException
2 {
3
4 // ...
5
6 } else if(dataValue instanceof SealedObject)
7 {
8 try

9 {
10 rsaCipher.init(Cipher.DECRYPT_MODE, agencyPrivateKey);
11 return (Serializable)((SealedObject)dataValue).getObject(rsaCipher);
12 } catch(Exception e)
13 {
14 throw new MDLException("data item cannot be decrypted

due to: " + e.getMessage());
15 }
16 } else

17
18 // ...
19
20 }

In line 10 the cipher object is initialized for decryption using the private
key of the current agency. Finally, in line 11 the object is decrypted and
returned to the caller.

Summary

In this chapter we introduced the Kalong software component, which is
the reference implementation of the Kalong mobility model. The main

7.3 Extending Kalong � 291

advantages of the Kalong software component are:

■ Kalong can be seen as a virtual machine for agent migration. It provides
generalized low-level functions that can be used to control the migration
process of a mobile agent in a very fine-grained way.

■ The Kalong software component is independent of any mobile agent
toolkit. It does not rely on specific design issues made by the mobile
agent toolkit and should therefore be usable in almost any mobile agent
toolkit.

■ The Kalong software component is extendable in as much as it defines
several points in the migration process where the agent manager is
called to modify or extend the structure of each SATP message. We
have shown how basic security protocols can be implemented using
the extension mechanism of Kalong.

We have presented a few examples to give an impression of how
migration strategies can be implemented. For a complete overview of
all migration strategies, refer to Section 10.5.5.

THIS PAGE INTENTIONALLY LEFT BLANK

Chapter8
Evaluation

In this chapter we examine several series of measurements to demonstrate
the performance of our new migration component, Kalong. Our goal is to give
some impression how fast (or slow) migration can be in Java-based mobile
agent toolkits, and how different parameters (e.g., code size, network qual-
ity, code compression, and security enhancements) influence the migration
performance. Finally, we show the effect of the new features of Kalong, which
provide the ability to send data items back to the agent’s home agency, load
code from a code server instead of from the home agency, and the effect of
mirror agencies.

Contents

8.1 Related Work .294
8.2 Methodology .295
8.3 Results of the Basic Experiments .298

Our performance experiments are a first step toward a comprehensive
performance analysis of the migration process of mobile agents as a whole.
Because of some restrictions in the availability of network nodes and the vari-
ation in network qualities, we had to limit our experiments in the following
aspects:

■ We only recognize the Kalong migration component as part of a very
simple mobile agent toolkit, which is not as complex as Tracy. We do
not compare our results to other mobile agent toolkits, because there is
not yet a benchmark suite for mobile agents (e.g., in the form of several
mobile agents that perform specific migrations). Therefore, we devel-
oped our own mobile agents tailored to show the specific advantages of
Kalong.

294 � Chapter 8 Evaluation

■ We only measure the performance of mobile agents and do not compare
it to the client-server approach. Kalong only provides a framework to
attack the performance bottleneck problem of mobile agents, so it does
not make sense to compare client-server approaches with Kalong at this
early stage. We are currently working on approaches for sophisticated
migration strategies to solve this problem.

■ We only measure migration times and do not assess the performance of
an entire agent system. The agents that we used in the experiments do
not produce load on each visited agency.

■ We only measure the time for a single mobile agent. We have no data to
predict how Kalong’s performance will change with a higher number of
agents that migrate in parallel.

■ We only have a few network nodes available, especially in the wide-area
network, so we could not study how migration times increase in real-
world applications.

8.1 Related Work

8.1.1 Performance Evaluation of Existing Mobile
Agent Toolkits

As far as we know, only two toolkits have ever been explored concerning
migration performance. First, Gray [1997b] proposes some performance eval-
uations in his thesis on the AgentTCL toolkit (which was later renamed in
D’Agents). The AgentTCL toolkit provides some basic functions for a flexible
and secure mobile agent toolkit. Gray’s results for migration times show long
delays because of the slow TCL script interpreter and the migration protocol
overhead.

Second, the Tacoma toolkit was evaluated by Johansen et al. [1997].
Tacoma is also a non-Java–based mobile agent toolkit. The authors give values
for the migration time of one agent from its current server to a remote server,
including time for serializing and deserializing, creating and initiating, as
well as sending an acknowledgement message.

We are not aware of any broad analysis of performance aspects of a Java-
based mobile agent toolkit. For a discussion of the scalability of the Jade
toolkit, see Korba and Song [2002].

8.2 Methodology � 295

8.1.2 Performance Comparison of Mobile Agent Toolkits

Some work has been done to compare existing mobile agent toolkits.
Dikaiakos and Samaras [2000] define some micro-benchmarks to assess a
mobile agent toolkit (e.g., one to capture the overhead of local agent cre-
ation or one to capture the overhead of point-to-point messaging). Silva et al.
[2000] compare eight mobile agent toolkits using twelve experiments. Their
results show the influence of several factors (e.g., the number of agent servers
to visit on one tour, the influence of the agent’s size, and the influence of
class caching) on the performance of mobile agents. In our opinion, different
mobile agent toolkits cannot be compared without taking some fundamental
design issues of each system into account. Unfortunately, Silva et al. did not
consider the different security strategies, different migration and transmis-
sion strategies, and other differences in each toolkit’s implementation.

8.2 Methodology

8.2.1 Experiments and Measurements

We conducted eight different experiments; for each experiment the migration
time for a specific mobile agent in a specific environment was measured. Each
experiment consisted of several measurements for which the same agent was
started several times. Agents used in different measurements varied (e.g., in
code size or in the number of servers to be visited).

To conduct these experiments, we developed a simple mobile agent
toolkit. The main function of this agency is to start agents, to measure the
migration time for each agent, to compute statistical information (mean
value and confidence interval) for a measurement, and to generate a file
that contains all the results of the experiment.

In each experiment we distinguish two roles for the computers involved.
The computer on which all agents are started is the master, all computers
that are only visited by the agents are called clients.

For each experiment the Java virtual machine must be restarted. When the
agency is started it is parameterized with the name of the experiment to start.
It then starts all the measurements sequentially. As already stated, the only
information we are interested in is the time an agent needs for a migration.

To measure the time for a single migration of a mobile agent, we have
to consider the period of time from the initiation of the migration process

296 � Chapter 8 Evaluation

(go-statement) to the point when the agent is restarted at the destination
server. Because of the lack of a global time in a distributed system, we cannot
simply compare time stamps originating from different computer systems.
Therefore, we always consider at least two migrations: the first one to the
destination server and the second one back to the origin—we call this a
ping-pong migration. Therefore, printed times are never those for a single
migration but always for a complete round trip, which usually consists of only
two computers, but in some cases includes as many as seven computers. As
a consequence, the measured migration times not only consist of the pure
network transmission time but also the time for serializing the agent at the
sender agency and deserializing it at the receiver agency for each migration.
We also consider the time necessary to link the agent’s code, which involves
verifying and preparing class code. The process of serializing an agent takes,
according to our measurements less than 2 milliseconds (ms). The process of
deserializing the agent’s state and the linking agent’s code takes on average
between 1 and 5 ms, and is linear with respect to state size and class size.

Each agent migration is repeated between 200 and 1000 times; we only
report mean values and the 95% significance interval. The longest 5% of the
values were dropped, because we want to disregard times lengthened by
the Java garbage-collector task.1 To illustrate our results we always used line
graphs, although in someexperiments boxcharts wouldhave been thecorrect
diagramming technique, because intermediate values cannot be interpo-
lated. However, in our opinion, line graphs make our results more obvious to
the reader.

8.2.2 Programming Agents for the Measurements

The common behavior of the agents used in the experiments is defined in
class BaseAgent in package examples.agent, which states that an agent
executes the itinerary given in a configuration file and then migrates back to
its home agency.

In general there is a single agent class for each measurement. This class
extends class BaseAgent and defines special functions as necessary in the
concrete measurement, (e.g., sending data items back to the agent’s home
agency).

1. The Java garbage collector is started whenever there is not enough memory to create new objects.
Freeing memory takes between 300 and 900 ms in our experiments.

8.2 Methodology � 297

In some cases it is necessary to artificially increase the size of the agent’s
code, for example, to show how migration time depends on code size. We use
static String objects for this purpose, which become part of the agent’s code
and are not part of the agent’s object state.

When we refer to migration strategies in the remainder of this chapter,
we use the name of the Java class that implements this strategy in Kalong,
rather than the name we introduced in Chapter 3. Thus, the strategy that
pushes all code to the next destination is now named PushToNext (rather
than push-all-to-next), the strategy that loads code per class on demand is
named PullPerClass (rather than pull-per-unit), and the strategy that loads
all classes at once is named PullAllClasses (rather than pull-all-units).

8.2.3 Test Environment

To obtain our measurements, we used seven computers placed at the
University of Jena (Germany), one placed at the University of Weimar (Ger-
many),2 one placed at the Fraunhofer Society Darmstadt (Germany),3 and
one at the University of Irvine (California, USA). More information about
the computers used can be found in Table 8.1. All the computers used the
latest version of the Java virtual machine (build 1.4.1_01-b01).4 The Java
virtual machine was initialized to use an initial heap size of 80 MB and a

Table 8.1 Some parameters of the computer systems used in our experiments

Name Location Processor MHz RAM OS

tiffany Jena Athlon 900 512 Linux 2.4.18
honey Jena Athlon 1400 512 Linux 2.4.18
tanya Jena Athlon 900 256 Linux 2.4.18
patricia Jena Athlon 900 256 Linux 2.4.18
solitaire Jena Athlon 900 256 Linux 2.4.18
melina Jena Athlon 800 256 Linux 2.4.18
inga Jena Athlon 1400 256 Linux 2.4.18
natalja Weimar Pentium 3 800 1024 Linux 2.4.0
semoaext Darmstadt Pentium 2 450 512 SunOS 5.8
anna Irvine (USA) Pentium 4 1700 896 Linux 2.4.18

2. The city of Weimar is located about 20 km from Jena.

3. The city of Darmstadt is located about 300 km from Jena.

4. Measurements were done in January 2003.

298 � Chapter 8 Evaluation

maximum heap size of 200 MB. The stack size was set to 512 KB. All of the
computers were fully dedicated during the experiments, as were all of the
computer systems.

For most measurements we used the local-area network (LAN) in our
department at the University of Jena, which is a Fast-Ethernet network with
a bandwidth of 100 Mbit/sec where computers are connected via a single
router. Some measurements were done using a fully dedicated Ethernet net-
work with a bandwidth of 100 Mbit/sec and 10 Mbit/sec connected via a
switch.

Measurements of migration times to the computers inWeimar, Darmstadt,
and Irvine were done using our standard Internet connection, which is a
155 Mbit/sec uplink to the German GigaBit Research Network (G-Win), which
has a theoretical bandwidth of 2.5 Gbit/sec. The University of Weimar is also
connected to G-Win using a 155 Mbit/sec uplink. The quality of the network
connections at Darmstadt and Irvine could not be determined.

8.3 Results of the Basic Experiments

8.3.1 Transmission Time with Regard to Code Size and Network Quality

In the first experiment we examined the time for a ping-pong migration of
a single agent with different sizes, through different networks. The agent
was created on tiffany and had to migrate to and from one other agency.
We compared the migration time for the following code sizes: 1685, 4185,
6685, 11,685, 22,685, and 51,685 bytes. The agent’s state is negligible in this
experiment, because it was smaller than 100 bytes. The agent was trans-
mitted using the PushToNext strategy without enabling the code cache. All
migrations were repeated 1000 times.

Figure 8.1 shows the migration times for all high-bandwidth connections.
The destination agency was started on melina. The graph also shows a mea-
surement when the sender agency as well as the receiver agency were located
on the same computer (tiffany) and the agent migrated using the local loop
without using the network.

The best migration performance was achieved using the 100 Mbit/sec net-
work via a switch, where the smallest agent (1685 byte) only needed 23 ms for
a single migration. The migration time only increased slightly, to 34 ms, for
the largest agent (51,685 bytes). Migration using the 100 Mbit/sec network via
a router was only a few milliseconds slower: 25 ms for the smallest agent and

8.3 Results of the Basic Experiments � 299

200

150

100

50

0

T
im

e
 f
o

r
a

 p
in

g
-p

o
n

g
 m

ig
ra

ti
o

n
 [

m
s
]

10 MBit/sec (switch)

Localhost

100 MBit/sec (router)

100 MBit/sec (switch)

0 10000 20000 30000 40000 50000

Code size [byte]

Figure 8.1 Time for a ping-pong migration between computers tiffany and melina, using
different high-bandwidth networks. The localhost measurement was done on computer
tiffany.

35.5 ms for the largest agent. The measurement using the internal network
loop of the operating system was, surprisingly, slower than both measure-
ments using a 100 Mbit/sec network. Here, one migration takes 28 ms for
the smallest agent and 38 ms for the largest agent. The only explanation
we have found for this so far is that the higher computational load of exe-
cuting two parallel agencies on a single computer. Migrating agents using a
10 Mbit/sec network is noticeably slower than the other network types. The
smallest agent needs about 37 ms for a single migration, and the largest agent
needs about 98 ms.

As can be seen from Figure 8.1, migration time is positively correlated
with the code size of the agent, and the 95% confidence intervals show that,
measured migration times are not significantly different when transmitting
small agents (fewer than 11,685 bytes) using fast networks. This gives hints
for the construction of an optimization strategy: It is not always worthwhile
to reduce a 10 KB agent to 5 KB, because the difference generally cannot be

300 � Chapter 8 Evaluation

measured in fast networks. Using the 10 Mbit/sec network, all results are
significantly different.

Comparing our results to the theoretical possible migration times, we
found that real migration time is about eight times slower than theoretical
migration time using a 100 Mbit/sec network. In a 10 Mbit/sec network,
measured migration times are only twice as high as possible. In other
words, we have achieved a network throughput of about 13 Mbit/sec in
the 100 Mbit/sec network and a throughput of almost 5 Mbit/sec in the
10 Mbit/sec network. The reason for these quite slow values is the fixed over-
head of the Java programming language and the Java virtual machine, which
is known to have slower performance for network operations than native
code implementations.

Figure 8.2 shows the migration times in a network with a bandwidth of
64 Kbit/sec, which is the quality of a dial-up ISDN connection. This type of
network is simulated using the traffic shaper technique of the Linux operating
system, which artificially decreases throughput of a network device. The
destination agency was started on computer melina. Although migration
times are very slow, we achieved a throughput that was only slightly below
the theoretical optimum. For example, a single migration of the 51,685-byte
agent takes 7220 ms, which results in a throughput of about 56 Kbit/sec.
It is questionable whether this high throughput can be achieved in a real

16,000

14,000

12,000

10,000

8,000

6,000

4,000

2,000

0

T
im

e
 f
o
r

a
 p

in
g
-p

o
n
g
 m

ig
ra

ti
o
n
 [

m
s
]

64 kBit/sec

0 10,000 20,000 30,000 40,000 50,000

Code size [bytes]

Figure 8.2 Time for a ping-pong migration between computers tiffany and melina using a
ISDN network connection (64 Kbit/sec).

8.3 Results of the Basic Experiments � 301

network environment, but we were unfortunately unable to test it in that
environment.

Finally, Figure 8.3 shows the results of a ping-pong migration using a wide-
area network. A migration of the smallest agent to the University of Weimar

700

600

500

400

300

200

100

0

T
im

e
 f
o
r

a
 p

in
g
-p

o
n
g
 m

ig
ra

ti
o
n
 [
m

s
]

0 10,000

(a)

20,000 30,000 40,000 50,000

Code size [bytes]

Darmstadt (Germany)

Weimar (Germany)

T
im

e
 f
o
r

a
 p

in
g
-p

o
n
g
 m

ig
ra

ti
o
n
 [
m

s
]

7500

7000

6500

6000

5500

5000

4500

4000

3500

3000

0 10,000 20,000 30,000 40,000 50,000

Code size [bytes]

Irvine (USA)

(b)

Figure 8.3 Time for a ping-pong migration in different wide-area networks.
(a) Migrations between computer tiffany and computer natalja (Weimar), and
between computer tiffany and computer semoaext (Darmstadt). (b) Migration
between computer tiffany and computer anna (Irvine).

302 � Chapter 8 Evaluation

(natalja) takes about 135 ms and the largest agent takes about 300 ms. A
migration to the Fraunhofer Society Darmstadt (semoaext) is only about 13%
slower than the migration to Weimar. The reason for this is probably that
the agent is transmitted to natalja over a 155 Mbit/sec network connection,
whereas it is transferred to semoaext using a GigaBit network. The migration
to anna at the University of Irvine takes the longest, as expected. The time for
a single migration ranges from 1800 ms for the smallest agent and 3562 ms
for the largest agent.

8.3.2 Transmission Time with Regard to Data Compression

In the second experiment we examined the effect of data compression on
network load and transmission time. We used the same agents as in the pre-
vious experiment, and measured the time for a single ping-pong migration
between agencies at tiffany and melina. If the agent is sent in a compressed
form, all SATP messages are compressed using the technique described
in Section 7.3.2. The agent is transmitted using the PushToNext migration
strategy without activating the code cache. All measurements were repeated
1000 times.

We compare the effect of data compression in two network environments:
a 100 Mbit/sec network connected via a router (Fig. 8.4(a)) and a 10 Mbit/sec
network connected via a switch (Fig. 8.4(b)). As can be seen from the graphs,
data compression has a negative effect on the migration performance for
all code sizes in a high-bandwidth network. A migration is on average 40%
slower than without data compression. This is a result of two drawbacks of
compressed data.

1. Compressing small amounts of data sometimes increases the size of a
message. For example, a SATP ADB message consists in our experiment
on an average of 79 bytes in the uncompressed and 93 bytes in the
compressed form.

2. Although a class of length 11,685 bytes is reduced to 2176 bytes, migra-
tion time is longer, because it takes 12 ms to achieve this compression.

The consequence is that, although less data has to be transmitted, the overall
migration time is longer, because the time necessary for compression exceeds
the time saved by the smaller network load. Therefore, in the high-bandwidth
network, migration times with enabling data compression will almost always

8.3 Results of the Basic Experiments � 303

100

95

90

85

80

75

70

65

60

55

50

45

T
im

e
 f
o

r
a

 p
in

g
-p

o
n

g
 m

ig
ra

ti
o

n
 [

m
s
]

0 10,000 20,000 30,000 40,000 50,000

Code size [byte]

With compression

Without compression

(a)
T

im
e
 f
o
r

a
 p

in
g
-p

o
n
g
 m

ig
ra

ti
o
n
 [

m
s
]

200

180

160

140

120

100

80

60
0 10,000 20,000 30,000 40,000 50,000

Code size [byte]

With compression

Without compression

(b)

Figure 8.4 Time for a ping-pong migration with regard to compression. (a) Using a
100 Mbit/sec network via a router. (b) Using a 10 Mbit/sec network via a hub.

304 � Chapter 8 Evaluation

be longer than those without compression. Only for very large agents might
this technique lead to a reduction of migration time. Such agents were out of
the scope of our measurements.

In contrast, using the same computers in the low-bandwidth network,
data compression has a positive effect for agents larger than approximately
10,000 bytes. For smaller agents, we see the same effect as in the high-
bandwidth network: more time is lost computing the compressed SATP
message than is gained by transmitting smaller messages. For larger agents,
we can now observe the expected effect. Sending the agent with compressed
SATP messages leads to shorter migration times. Now the time saved by
sending the smaller messages over the network exceeds the time needed
to compress the messages.

As a consequence, we can conclude that the break-even point, where
both curves intersect, depends on the network type. The lower the band-
width of the underlying network, the smaller the agent may be to make the
effort for data compression pay off. We can assume that in wide-area net-
works, data compression is worthwhile even for the smallest agent used in
our experiments.

To further improve the effect of data compression, we address two pos-
sibilities. First, the process of compressing data can be done before the
agent migrates. In the current implementation, data compression is done
during the migration process. However, for the static parts of the agent, espe-
cially the agent’s code, compression could be done earlier, for example, while
the agent is being executed. On remote agencies, compressed code units
should be saved and reused rather than dropped and recomputed during
the next migration. Because the agent’s code is usually the largest part of
the agent, this should improve the migration time dramatically. Second, we
could use sophisticated compression algorithms for Java byte code, such as
those described by Pugh [1999] and Bradley et al. [1998], which will reduce
the size for Java classes more than the gzip algorithm that we have used in our
implementation. Both optimizations will be subject to further investigation.

8.3.3 Transmission Time with Regard to Security

In the next experiment we examined the cost of techniques that improve the
security of a migrating agent. The goal was to show how migration times
change when agents migrate using the SSL network transmission protocol
instead of TCP and the security extension we described in Section 7.3.3.

8.3 Results of the Basic Experiments � 305

The secure SSL network transmission protocol was configured to use server
authentication and not to reuse sessions. The security extension we use
includes digital signatures for SATP headers, state, and code messages. We
used the same agents with the same code sizes as in the previous experiments.
The agents are transmitted using the PushToNext strategy without enabling
the code cache. All migrations were repeated 1000 times.

We conducted the experiment in two network environments. The first
graph (Fig. 8.5(a)) shows the migration times between tiffany and melina
connected by a 100 Mbit/sec network (router), whereas the second graph
(Fig. 8.5(b)) shows migration times between tiffany and natalja.

The first graph shows that SSL transmission is between 2.5 times and
3 times more costly than usingTCP; it takes 73.5 ms for the smallest agent and
88 ms for the largest agent to migrate. The difference between the two trans-
mission types is approximately 52 ms in the fast network. The reason for the
longer time is the time-consuming handshaking protocol between sender
and receiver to authenticate the server and to exchange encryption keys,
which increases the network load. This cost does not depend on the agent’s
size, which means that migration time slows more drastically for small agents.
In addition, all data sent over the network must be encrypted and decrypted,
which increases the network load only slightly but slows down migration
times because of the high computational effort.

If we activate, in addition to SSL transmission, all the security extensions
described in Section 7.3.3 (i.e., signing of the SATP header, state, and all class
files and inspecting classes at the destination to filter out malicious code), we
can see in Figure 8.5(a) that migration times increase again. The migration
time is now 231 ms for the smallest agent and 253 ms for the largest agent,
which is approximately 7 to 10 times longer than migrating the agent without
the security extension and with TCP. The total difference between the two
types of migration is approximately 215 ms. The reason for this could seem
to be a higher network load, because for each SATP message a digest must be
sent over the network. However, because we use the MD5 algorithms, each
digest is only 16 bytes long, and during an agent migration in our experiments,
only about 3 to 5 digests are transmitted, which should not have any effect on
the migration time. Therefore, the longer migration times must be the result
of the time to compute message digests. For example, we found out that it
takes 150 ms to determine the digest for a class of length 11,685 bytes.

The most interesting result of these two measurements is that all secu-
rity extensions increase network load only slightly, but increase migration
times considerably because the high computational effort for signing and

1400

1200

1000

800

600

400

200

0

T
im

e
 f
o

r
a

 p
in

g
-p

o
n

g
 m

ig
ra

ti
o

n
 [

m
s
]

0 10,000 20,000 30,000 40,000 50,000

Code size [byte]

Security extension with SSL

SSL (no security extension)

TCP (no security extension)

(a)

Security extension with SSL

SSL (no security extension)

TCP (no security extension)

1400

1200

1000

800

600

400

200

0

T
im

e
 f
o
r

a
 p

in
g
-p

o
n
g
 m

ig
ra

ti
o
n
 [

m
s
]

0 10,000 20,000 30,000 40,000 50,000

Code size [byte]

(b)

Figure 8.5 Time for a ping-pong migration with regard to different transmission
protocols and security extensions. (a) Using a 100 Mbit/sec network via a router.
(b) Using a wide-area network to natalja.

8.3 Results of the Basic Experiments � 307

encryption. As can be seen from the graphs, the difference between the SSL
curve and the Security extension curve is constantly about 300 ms for two
migrations and does not depend on the network type. Notwithstanding, if
we compare the SSL curve with the TCP curve, we can see that the difference
between both is higher in the wide-area network than in the local-area net-
work, because SSL increases the network load of the whole connection and
is, therefore, dependent on the network type.

We can state that the migration overhead caused by security techniques
can be expected to decrease (measured as a percentage) if the bandwidth
of the underlying network is decreasing. As in a low-bandwidth network, if
migration times are higher, the constant overhead for security will not be of
great weight. For example, we can expect migration times to increase by less
than 10% when migrating between Jena and Irvine.

This result has a great practical advantage. Improving the security of
mobile agents can only be achieved with much effort, which results in a
slowdown of migration times. Because the quality of the security techniques
implemented for these experiments must be classified as basic, we can imag-
ine that more sophisticated techniques will increase migration times even
more. In specific application domains or in networks where these security
techniques are not necessary, Kalong’s possibility to switch off this extension
can be of great benefit. On the other hand, in wide-area networks where
security of agent migration might be required, security has only a small effect
on the already long migration time.

8.3.4 Effect of Migration Strategies

In this section we evaluate the influence of different migration strategies on
migration performance.We conducted this experiment in a 100 Mbit/sec net-
work with all computers located in Jena. The agents were transmitted using
the TCP transmission protocol. Measurements were repeated 1000 times.

The goal of this experiment was to show that the difference between
known migration strategies can be measured in a real-world network. This
effect was forecasted in our mathematical model in Section 3.4.3. It was not
our goal to determine whether any migration strategy was faster than the
others, because, as we have already discussed, which migration strategies
should be chosen is dependent on the concrete application scenario—and
this decision is affected by several parameters, for example, the agent’s code
size, the network type, and the probability for code execution to name a few.

308 � Chapter 8 Evaluation

To perform our experiment, we simulated a typical application from the
information retrieval domain. The agent visits several network nodes where
each platform has a database with documents of different types, for exam-
ple, simple text files, structured text files in XML or HTML, or images. Each
document was characterized by a set of keywords. The agent had to visit each
platform. First, it filtered all documents according to a given set of keywords.
The result was a set of interesting documents. Second, all these documents
were examined in detail, which resulted in the set of all significant docu-
ments, which the agent makes a copy of before migrating to the next platform.
For an interesting document to be examined, a specific class file for the given
document type is necessary. Therefore, an agent consists of one class file for
the agent itself, which contains the code necessary to perform the first step
and all auxiliary tasks such as communication and route managing. There are
also five other class files, one for each document type, which contain special
code for the second step. If the agent finds a document of a specific type, the
corresponding class file must be downloaded dynamically if it is not already
available on the current platform.

The experimental setup consists of a cluster of seven agencies on computer
systems tiffany, honey, melina, inga, tanya, patricia, and solitaire. On each
platform we can change the number of document types that the agent will
find interesting. By doing this, we can directly influence the number of classes
that will be downloaded.

The agent class is 2012 bytes, whereas all auxiliary classes are each
10,000 bytes. In Figure 8.6 the graph shows various numbers of document
types found interesting, the number of classes needed at runtime, and var-
ious migration strategies. Note that in our experiments the agent does not
take any data with it when it migrates to the next server. Therefore, our
results show only the time of migrating code and initial data (which is again
fewer than 100 bytes).

It can be seen that strategies PushToNext, PullAllClasses, and the strategy
in which no code is transmitted (because it is assumed that code is already
available at all destinations, perhaps as a result of activating the code cache)
are not dependent on the number of classes to load. This is clear, because the
first two migration strategies always transmit all code without regard to its
necessity. Obviously transmitting no code is faster than all other migration
strategies, because the network loader is smallest. If the agent must load
all classes (PullAllClasses) it is on average 1.4 times slower than pushing the
code to the next destination, because pulling all classes needs an additional
network transmission on each agency.

8.3 Results of the Basic Experiments � 309

600

500

400

300

200

100

0

T
im

e
 f
o

r
a

 r
o

u
n

d
-t

ri
p

 m
ig

ra
ti
o

n

to
 7

 a
g

e
n

c
ie

s
 [

m
s
]

0 1 2 3 4 5

Number of classes used

PullPerClass

PushToNext

PushAllClasses

No code

Figure 8.6 Times for a migration to seven agencies using different migration strategies.

Strategy PullPerClass is dependent on the number of classes to be down-
loaded dynamically, because only classes that are needed for agent execution
are loaded. It is faster than all other methods (except transmitting no code at
all) if there are no interesting documents, because then only the agent class
itself must be transmitted. If only one additional class file must be loaded
(of size 10,000 bytes) strategy PullPerClass is as fast as the PushToNext strat-
egy which transmits 50,000 bytes of code. When increasing the number of
document types, the PullPerClass strategy is more than 70% slower than the
PushToNext strategy and about 20% slower than the PullAllClasses strategy.
This performance difference only results from the fact that code must be
downloaded dynamically in the PullPerClass strategy.

This experiment confirms the results of our mathematical model. The
different amounts of data sent over the network in each migration strategy
can be measured in the form of different migration times. The number of
classes at which PushToNext and PullPerClass intersect depends on the class
size and the network type. For larger classes, this point can be expected to
be higher, because the difference between sending all classes and sending
only some classes becomes greater. In networks with lower bandwidth, it is
more expensive not only to transmit data but also to open a network connec-
tion, therefore the differences among all of the migration strategies can be
expected to be greater. For example, it can be expected that the PullPerClass

310 � Chapter 8 Evaluation

1000

800

600

400

200

0

T
im

e
 f
o

r
a

 r
o

u
n

d
-t

ri
p

 m
ig

ra
ti
o

n

to
 5

 a
g

e
n

c
ie

s
 [

m
s
]

0 10,000 20,000 30,000 40,000 50,000 60,000

Code size [byte]

Without code cache

With code cahe

Figure 8.7 Time for a migration to five agencies in a wide-area network with regard to the
code cache.

migration strategy will be slower than the PushToNext strategy even for a
small number of classes. However, as already explained, it was not the goal
of this experiment to quantitatively compare migration strategies to find the
fastest, because it is not possible for one to be universally the fastest. Our
results show that it is worthwhile to consider different migration strategies
and to choose a suitable one with regard to the application, the network
environment, the agent’s size, and many other parameters. Kalong’s ability to
program such migration strategies dynamically and to react in a very flexible
and fine-grained way to these parameters is a necessary feature.

8.3.5 Effect of Caching

In this experiment we want to analyze the effect of the Kalong’s code cache.
As already described in Chapter 3, the Kalong protocol can check whether
an agent’s code is already available at the destination agency before it sends
the code. In this experiment we compare migration times of a single agent
migrating to five agencies. The agent is started at natalja (Weimar), then
migrates to four agencies in Jena (tiffany, honey, melina, inga), and returns
back to natalja. The agent uses the PushToNext migration strategy, once with
and once without enabling the code cache. All measurements were repeated
200 times.

8.3 Results of the Basic Experiments � 311

The solid line in Figure 8.7 shows the migration time for different code
sizes if the agent does not enable the code cache. It shows that migration time
depends on the code size, as expected. The dashed line shows the migration
time if the agent activates the code cache and if all of the agent’s code is already
available at the destination agency. Migration times are no longer dependent
on the code size, because no code is transmitted at all in this case. The migra-
tion time is the time necessary to transfer the agent’s state and data items.

The effect of the code cache depends directly on code size, of course. For
small pieces of code (1685 bytes) the difference is only 15 ms for the round
trip. For the largest piece of code (51,685 bytes) the complete migration time
without using the cache is 2.5 times higher than with the code cache enabled.

Of course, the code cache can only have a positive effect if at least one
class of the agent is already available at the destination agency. Figure 8.7
can also be interpreted so that the solid line shows the time for the first
migration, whereas the dashed line shows the migration time for all following
migrations for the same agent (data is the same for both this interpretation
and that described in the figure legend). An interesting question that we have
not examined so far is how the code cache increases migration performance
if many agents of the same type (i.e., using the same classes) migrate to the
same agencies.

Another interesting question concerns the overhead of the cache protocol.
Unfortunately we were not able to measure this overhead, but we can specu-
late about the increase on network load that it causes. If we assume that an
agent consists of five classes and each class name is 20 characters long, then
the ADB message is composed of 5 × (20 + 16) bytes, because the digest for
each class is 16 bytes long. The answer message of type ADBReply consists
of only one byte for each class. This means 185 bytes must be exchanged
between the sender agency and the receiver agency in order to prevent the
transmission of an agent’s code.

8.3.6 Effect of Data Uploading

In the next experiment we examined the performance benefit of sending
data items back to the agent’s home server instead of taking them to all other
agencies as part of the agent’s state. We compared the migration time for a
complete round trip to seven and five agencies for different data items in
a local 100 Mbit/sec network and a wide-area network. The agent migrated
using the PushToNext migration strategy and without using the code cache.

312 � Chapter 8 Evaluation

The size of the agent was 2443 bytes. The measurements were repeated
1000 times.

The first graph (Fig. 8.8(a)) shows the result for the local network. The agent
starts at tiffany and first migrates to honey. There, the agent gets a new data
item of a given size (5,000, 10,000, 20,000, or 60,000 bytes). Then, the agent
migrates to five other agencies (melina, inga, tanya, patricia, and solitaire)
before returning to its home agency. The dashed line shows the result if the
agent takes the new data item to all other agencies as part of its state. The
migration time depends on the size of the data item, as expected. The solid
line shows the result if the agent sends the new data item back to its home
agency before it leaves honey. Here, the migration time does not depend
on the data item size, because the agent does not carry the data item. The
migration time only depends on the code size and the constant size of the
state. Figure 8.8(a) shows that for small data items it is slower to send them
back. In these cases, the time to open an additional network connection to
the home agency and to send a small data item is greater than the time that
is needed to carry this data to all other agencies. For data items larger than
about 11,000 bytes, sending the data item back is faster. For example, in the
case of a 60,000 byte data item, sending the data item home is 1.6 times faster
than taking it along.

The second graph (Fig. 8.8(b)) shows the result for the wide-area network,
where the agent is started at tiffany (Jena) and then migrates to four other
agencies in Weimar and Jena (natalja, inga, natalja, inga) before migrating
back home. It is now faster for all data items to send the data item back than
to carry it along. The solid line shows the time for carrying the data item to
all agencies, which increases with the size of the data item. In contrast to the
first graph, sending the data item back is now also dependent on the data
size, which can be explained by the time required to send the data item back
to the home server from Weimar to Jena using a low-bandwidth network
connection. However, in the wide-area network the difference is greater;
sending the data item home is twice as fast as carrying it as part of the state.
It is obvious that the performance benefit depends on the number of agencies
to which the data item will not need to be carried and the bandwidth of the
underlying network. If the number of servers is higher or the network slower,
the performance increase is greater.

8.3.7 Effect of Code Servers

In this experiment we were interested in the performance gain that could
be achieved by using code servers instead of home servers for dynamic

8.3 Results of the Basic Experiments � 313

340

320

300

280

260

240

220

200

180

160

T
im

e
 f
o

r
a

 r
o

u
n

d
-t

ri
p

 m
ig

ra
ti
o

n

to
 7

 a
g

e
n

c
ie

s
 [

m
s
]

0 10,000 20,000 30,000 40,000 60,00050,000

Data item size [bytes]

Take data as part of agent’s state

Update data at home agency

(a)

Take data as part of agent’s state

Update data at home agency

1800

1600

1400

1200

1000

800

600

T
im

e
 f
o
r

a
 r

o
u
n
d
-t

ri
p
 m

ig
ra

ti
o
n

to
 5

 a
g
e
n
c
ie

s
 [

m
s
]

0 10,000 20,000 30,000 40,000 60,00050,000

Data item size [bytes]

(b)

Figure 8.8 Time for migration of one agent to seven and five agencies in different net-
works. The agent creates a data item with a given size and takes it as part of its state or
sends it back to its home agency.

314 � Chapter 8 Evaluation

code loading. An agent can initialize a code server dynamically during run-
time at any agency that it is currently visiting. The effect is that some or all
code units remain at the code server even if the agent migrates to another
agency. In future migrations, the agent can download classes from this code
server, for example, if it is nearer to the current agency than the home agency.

We compared the time for a complete round trip to four agencies to the
size of the classes that had to be loaded. The agent base class was 2176 bytes
and needed one other class of 2,500, 5,000, 10,000, 20,000, or 50,000 bytes.
Both classes were loaded dynamically during runtime. All measurements
were repeated 200 times.

Our scenario consisted of four agencies: natalja, honey, tiffany, and inga.
The agent started on natalja (Weimar) and migrated using the PullAllClasses
migration strategy. In the first case, the code was loaded from the agent’s
home server; in the other case, all code was loaded from a code server that
the agent initialized on agency honey. In the second case migration times
included the time to release the code server at the end.

Figure 8.9 shows the results of our measurement. The dashed line shows
the migration times for an agent that always loads classes from its home
agency. The time depends on the code size and increases steadily with the
size of the code that must be downloaded over the wide-area network. If only
a small class must be loaded, the agent needs about 676 ms for the complete

1800

1600

1400

1200

1000

800

600

400

T
im

e
 f
o
r

a
 r

o
u
n
d
-t

ri
p
 m

ig
ra

ti
o
n

to
 5

 a
g
e
n
c
ie

s
 [

m
s
]

0 10,000 20,000 30,000 40,000 50,000 60,000

Code size [byte]

Load from home agency

Load from code server

Figure 8.9 Time for a migration to four agencies using the Pull strategy with regard to
different locations of the code server.

8.3 Results of the Basic Experiments � 315

tour; when loading the largest code, it needs about 1453 ms. The solid line
shows the results if the agent loads classes from a code server that is located
in the local network (on agency honey). Migration time depends on the code
size, of course, but the increase is not so steep. Even for the smallest agent,
this type of migration only needs 494 ms, which is an improvement of 17%
compared to the first migration type. For the largest agent, the improvement
is even greater. The agent needs 717 ms, which is an improvement of more
than 50%.

The experiment shows that it is worthwhile to use code servers to improve
the performance of loading code. If a code server could be placed at a node
that is accessible by a faster network than the home server, a code server
makes sense. Using code servers has no drawback, because there is no time
lost in activating a code server and it takes very little time to release a code
server after the agent has terminated. In our measurements, sending the
SATP message to release the code server took less than 10 ms.

8.3.8 Effect of Mirrors

The last experiment considered the effect of a mirror server to reduce costs for
loading and updating data items. The scenario in this experiment consisted
of five agencies on computers natalja, honey, tiffany, melina, and inga. The
agent was 3095 bytes of code and migrated using the PushToNext migration
strategy without enabling the code cache. All measurements were repeated
200 times.

The agent started at natalja and then migrated to honey, where it created a
data item with 1,000, 5,000, 10,000, or 20,000 bytes. In the first case, the data
item was sent to the agent’s home server, while in the other case, the agent
initialized a mirror server at honey. The agent then migrated to the other
agencies, where it loaded the data item from the home server or the mirror
server, modified it, and uploaded it again. Finally, if a mirror agency exists,
the data item is loaded from the mirror agency to the home agency. Therefore,
a data item is transmitted seven times among the agency, the mirror server,
and the home agency.

The solid line in Figure 8.10 shows the migration time for the first case,
when data items were updated at the home agency. The migration time has a
positive correlation with the data size and grows from 946 ms for the smallest
data item to 1582 ms for the largest data item. The dashed line shows the time
for the second case, when data items were uploaded at the mirror agency.

316 � Chapter 8 Evaluation

1,800

1,600

1,400

1,200

1,000

800

600

400

T
im

e
 f
o

r
ro

u
n

d
 t

ri
p

 m
ig

ra
ti
o

n

to
 5

 a
g

e
n

c
ie

s
 [

m
s
]

0 5,000 10,000 15,000 20,000

Data item size [bytes]

Update data at home agency

Update data at mirror agency

Figure 8.10 Time for a migration to five agencies, where the agent uploads data items
either on its home server or on a near mirror server.

The complete round trip only took 584 ms for the smallest data item, which
is about 38% faster than the first scenario, and took only 887 ms for the
largest data item, which is an increase of about 44%. The reason for the faster
time is obviously the fact that the mirror server was accessible over a high-
bandwidth connection and six of the seven data transmissions used this type
of network. Without the mirror server, all data transmission was done using
the low-bandwidth connection between Jena and Weimar. We can conclude
that it makes sense to activate a mirror agency for data uploading and down-
loading if this mirror agency can be accessed using a faster network type than
the home agency uses. The higher the network load for data transmissions
between an agency and the mirror the greater the benefit of the mirror.

Summary

To conclude Part III, we present some ideas we are currently working on for
more sophisticated migration strategies. Although it might be best for most
application domains to delegate the decision about the migration strategy to

8.3 Results of the Basic Experiments � 317

the agent programmer, it is undoubtedly more convenient in our case to let
Kalong determine the migration strategy itself. We call a migration strategy
that decides on the next migration strategy in an autonomous fashion an
automated migration strategy. In some situations, for example, if the agent
roams the Internet without a fixed itinerary but decides at each agency to
which host the next migration should be directed to, there is no alternative to
an automated migration strategy if migration should be optimized, because
the user has no knowledge about the route that the agent will take.

We have shown that the performance of agent migration depends on sev-
eral factors, including network quality, execution probability of each code
unit, the size of each code unit, and so forth. We now have to face two prob-
lems. First, all these parameters must be determined. We will present some
techniques that we have developed to gather information about the net-
work quality later. Currently we are working toward a technique to analyze
an agent’s code to determine the execution probability of each code class
by static or dynamic code analysis. Second, we have to find algorithms to
decide, on the basis of these parameters, how the next migrations should be
processed.

Let’s start with the second step, because it turns out to be simpler. Our
goal is to decide which classes should be pushed from the sender to the
destination agency right away and which classes should be loaded from the
agent’s home server later. We first disregard all other Kalong features that
complicate this decision (e.g., code servers and mirror servers). Because each
class transmission is independent of any other class, we must simply compare
the migration times for each class.

If the mobile agent consists of u code units, where each code unit com-
prises of exactly a single class, the size of code unit k equals Bk

c , k = 1, . . . , u.
The network is modeled using delay δ and throughput τ , each assumed to be
available for all pairs of network nodes. The time to transmit code unit k from
the sender agency Li to the destination agency Li+1 equals

T k
push =

Bk
c

τ (Li, Li+1)

We do not factor in the agent’s data and state size Bd + Bs and the network
delay δ(Li, Li+1), because these costs arise in both cases. The alternative
to pushing the code unit is to impose on the destination agency to load
missing code units on demand from the agent’s home server L0 instead of
transmitting it from the sender agency. We have to consider the execution

318 � Chapter 8 Evaluation

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

public Set findClasses(int[] code, float [] exProb, float throughput1,

 float throughput2, float delay2, int request)

{

 float pushCase, pullCase;

 Set result = new HashSet();

 for(int i=0; i<code.length; i++)

 {

 pushCase = ((float)code[i] / throughput1);

 pullCase = exProb[i] * (delay2 + ((float)code[i] + (float)request) / throughput2

);

 if(pushCase < pullCase)

 {

 result.add(new Integer(i));

 }

 }

 return result;

}

Figure 8.11 Method to determine which classes to push to the next destination.

probability Pk
Li+1

that code unit k is really needed at destination Li+1, so the
cost amounts to

T k
pull = Pk

Li+1

(

δ(Li+1, L0) +
(Bk

c + Br)
τ (Li+1, L0)

)

The cost to request a code unit equals Br. Here we have to include the delay
to open a network connection, because each code unit is loaded using a
new connection. We are aware of the fact that both equations are based
on the simple mathematical model of network load and transmission time
developed in Chapter 3 which has to be improved and refined to serve as a
real forecast instrument.

For each code unit k we compare speed and choose the technique that has
the shorter time. Figure 8.11 shows the source code of a method that imple-
ments this decision process. Parameter code contains the size of all code units
and exProb contains the execution probability for all code units on agency
Li+1. The network parameters are given by throughput1 for the connec-
tion between Li and Li+1 and throughput2 for the connection between Li+1

and L0. Network delay is given for only the home connection, and parameter
request contains the cost for a code request.

8.3 Results of the Basic Experiments � 319

For example, an agent consists of two code units, where B1
c = 20 KB and

B2
c = 10 KB. The execution probabilities are P1

Li+1
= 0. 8 and P2

Li+1
= 0. 2. The

network connection to the destination agency has throughput τ (Li, Li+1) =

800 Kbit/sec and the one between destination agency and home server has
throughput τ (Li+1, L0) = 240 Kbit/sec. Delay is 15 ms and the cost of a code
unit request is 100 bytes. It turns out that it does cost 200 ms to push the
first code unit, whereas it takes 548 ms to load it later. Therefore, the first
code unit is pushed to the destination agency. For the second code unit, the
cost for pushing is 100 ms, whereas loading it later on demand only takes
70 ms—so this code unit is not pushed. If we decrease throughput between
the destination agency and the home agency, the result changes so that now
all code units should be pushed, because it is more costly to load missing
units later.

The decision process is more difficult if not only the next migration but
several migrations need to be planned. Not only must the network parameters
be known for all agencies to be visited, but the execution probability for all
code units at all destinations must also be known. At this point we might
regard this as a limitation of this kind of automated migration strategies,
because it can be extremely expensive to bring together network information
about all future agencies at the current agency.

In principle, even the decision to initialize a code server or mirror agency
can be made using the same technique as described above. The question
whether a code server should be initialized at the current agency can be
answered by comparing transmission time for the next migrations if all code
must be loaded from the home server with transmission time if some code
may be loaded from the code server. If migration time can be reduced, a
code server should be initialized.

We are not currently able to determine all necessary information about
network quality and execution probability. Therefore, we were not able to
verify our technique in a real-world environment. However, we are currently
working on extensions of Kalong, for which we now present the current state
of implementation.

Network Analysis

We have developed a tool to monitor network performance and have inte-
grated it in the Tracy mobile agent system. On each agency, this component
gathers information about network quality by testing network connections

320 � Chapter 8 Evaluation

to neighbor agencies. Two agencies are neighbors if they are members of
the same domain, which is never more than a subnetwork, as defined by
the Tracy domain manager concept (see Chapter 10 for more information).
Time measurements are done using ping messages sent periodically between
two agencies, from which network throughput and latency are deduced. The
monitor component provides an application programming interface so that
other components or agents can use the results. In the second step, monitor
components located at different agencies communicate to exchange network
information using mobile agents. Using this technique, it is also possible to
use information about throughput and latency of a remote agency, which is
necessary to implement such automated migration strategies as previously
described. Steffen Schreiber implemented this network monitoring tool as
part of his diploma thesis [Schreiber, 2002].

Agent Profiling

To determine the execution probability of classes in a Java-based mobile
agent, we plan to use profiling techniques used in compiler construction,
which are usually used to predict the probability of executing specific code
portions.

A first approach to determine a profile is to instrument the agent’s source
code and to count how often a basic block is executed. This type of profiling is
called dynamic, because the agent must be executed to obtain profile infor-
mation. The advantage of dynamic profiling is that it provides very accurate
information. However, because the profile depends on the agent instance
and not only on the type of agent, different input data, for example, a dif-
ferent user task, might lead to a completely different profile. Therefore, such
a profile is undoubtedly valuable if a single agent is reused many times for
comparable tasks, but it is questionable whether dynamic profile informa-
tion can be transferred to other instances, even if they are of the same agent
type. Another drawback of dynamic profiling is that it increases not only the
code by adding new statements for counting, but also the data, because the
information must be part of the agent’s state and so must be carried through
the network.

Another approach works statically and uses source code analysis to esti-
mate profiles. It uses techniques such as branch prediction or analysis of
method invocation frequencies to forecast how often specific pieces of code
will be used. The advantage is that it is done before executing the agent and,

8.3 Results of the Basic Experiments � 321

therefore, will neither increase the code nor the agent’s data. Static profiling
will never be as accurate as dynamic profiling, but it works for all agents of
the same type and can, therefore, be used several times.

Class Splitting

As an extension of the last technique, we consider the idea of class splitting

to reduce network traffic for mobile agents. So far, all migration strategies
load agents’ code as complete Java class files. If there is at least one method
of a class file necessary for agent execution, then the entire class file is trans-
mitted. We have named the level of code transmission the code granularity.
It can be assumed that invocation frequency is not the same for all methods
of the same class. Therefore, it makes sense to increase the granularity of
code and to split a class into two or more new classes and distribute methods
according to their execution probability. Groups of methods that are used
with the same probability, because they call each other, should be members
of the same class, whereas other methods with lower execution probability
should form another class. If a method is called that is not implemented
in the main class, then class that contains the code is loaded. The effect of
class splitting is that the resulting classes, and especially the main class, are
smaller than the single original class, which will, in turn, reduce network
transmission time.

Chris Fensch implemented a software component for class splitting as
part of his diploma thesis [Fensch, 2001]. It provides a simple interface where
the user can define to split a class into n other classes and specify which class
should contain which methods. Classes are split on the level of Java byte code.
The result of splitting code is completely transparent to the programmer. This
set of new classes can be used as if it were still only a single class, because all
of the fragments are linked together.

Figure 8.12 shows an example of the class splitting technique. Part(a)
shows the original agent. Using profiling technique, we found that method
startAgent, which is only called once in Tracy (when the agent is started),
is never used on visited agencies, and, therefore, should not be part of the
main agent. Part(b) shows the result of two classes, AnAgent, which only
contains a stub for method startAgent, and class Split, which contains
the code for this method. Method startAgent of class AnAgent creates
an instance of class Split, if one does not already exist, and forwards the
method invocation to this object. The figure also shows how the split class

322 � Chapter 8 Evaluation

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

package My Agent;

class AnAgent extends MobileAgent

{

 private Vector route;

 //…

 public void start Agent()

 {

 //…

 route = new Vector();

 //…

 }

}

(a)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

package My Agents;

class AnAgent extens MobileAgent

{

 private Vector route;

 private transient Split I1;

 public void startAgent()

 {

 if(Il == null)

 {

 I1 = new Split(this);

 }

 I1.startAgent();

 }

 void access$123(Vector x)

 {

 route = x;

 }

}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18(b)

package My Agents;

class Split

{

 private AnAgent this$0;

 Split (AnAgent x)

 {

 this$0 = x ;

 }

 public void startAgent()

 {

 //…

 this $0.access$123(new Vector ());

 //…

 }

}

Figure 8.12 Example for the class splitting technique. We picture Java source code,
although class splitting works on the level of Java byte code. (a) Original agent. (b) The
splitted agent consists of two classes.

8.3 Results of the Basic Experiments � 323

can access private variables of the original agent using an auxiliary method
that was introduced by the splitting algorithm.

The idea of class splitting was proposed in the area of Java applets already
[Krintz et al., 1999]. We are currently working on experiments to verify the
effect of class splitting for real-world agents [Braun et al., 2004].

THIS PAGE INTENTIONALLY LEFT BLANK

PartIV
The Tracy Mobile
Agent Toolkit

THIS PAGE INTENTIONALLY LEFT BLANK

Chapter9
Running a Tracy Agency

In the last part of this book we introduce you to an existing mobile agent
toolkit named Tracy and the applied programming of stationary and mobile
software agents.

We begin in this chapter with a brief introduction to the architecture of
Tracy; first the basic conceptual model, which actually consists of software

agents, services that agents can use in order to fulfill their task, and the basic
Tracy agency software that provides these services as well as hosts software
agents; then details of configuring and starting an agency and the main user
interface with which agents can be started and maintained.

Contents

9.1 Welcome to Tracy .327
9.2 Installation of Tracy .332
9.3 Starting and Stopping a Tracy Agency .339
9.4 Installation and Usage of Basic Plugins .340

9.1 Welcome to Tracy

We have already stated that dozens of mobile agent toolkits have been devel-
oped over the last few years. Although this number reflects an enormous
research output by different groups all over the world, it also reveals the
premature status of research and the lack of coordination between projects.
Today’s mobile agent toolkits are almost all stand-alone software systems
unable to communicate with each other, and sometimes not more than
prototypes tailored to a specific research issue.

328 � Chapter 9 Running a Tracy Agency

Current Status of Mobile Agent Toolkits

This is a result of the lack of any reference architecture for agencies for mobile
agents as well as the absence of an open and extendable implementation.
Therefore, each research group has to develop its own prototype. Because
of the complexity of developing a prototype and limited resources of the
research groups, this prototype is more a proof-of-concept implementation
focusing on a single research issue and leaving out the elementary functional
components necessary for a full mobile agent toolkit. The research commu-
nity has to admit that such a reference architecture has been developed in
the area of distributed artificial intelligence in the form of the FIPA standard
[O’Brien and Nicol, 1998], for which a widely used implementation exists as
the Jade toolkit [Bellifimine et al., 2003].

We also face disparate perceptions of basic concepts of mobile agents, for
example:

■ What should a mobile agent be from the programmer’s point of view: an
object of a specific type, which defines several basic functions for mobile
agents like communication and migration, or just any serializable object?

■ What level of communication is necessary: a simple one between agents
residing at the same agency or a complex one which also allows for
remote communication?

■ What level of security is necessary: one that protects hosts against only
malicious agents, or is it necessary to protect agents against malicious
agencies too?

■ What kind of mobility is necessary?

The disadvantageous consequence of these isolated islands of research is that
findings cannot be transferred between projects in the form of definite imple-
mentations (e.g., software components that could be installed in other mobile
agent toolkits). Sometimes even the general research idea cannot be adapted
to another mobile agent toolkit because of the differences in basic concepts,
as previously described. Another deficit is the number of different migra-
tion protocols that currently exist. Except for two toolkits (i.e., Aglets and
Grasshopper) that support the MASIF migration protocol proposed as OMG
standard in 1998, it is virtually impossible to make two toolkits interoperable.

Although the MASIF standard provides a common migration protocol,
because of its complexity (which makes it difficult to implement the complete

9.1 Welcome to Tracy � 329

standard) and the lack of an independent software component for MASIF,
only a few research groups use it.1

In contrast to the large number of prototype implementations, few sys-
tems have been developed as full-featured mobile agent toolkits that can
be used in industrial-strength applications. These offer techniques for all
important issues of agent programming, such as migration, communication,
security, management, and so forth. However, even these systems are not
willingly used, because of their complexity and size. They are built as mono-
lithic systems with many features, and are not easy to configure and handle.
It is almost always impossible to extend these systems by adding the features
necessary or to tailor them to fit certain application scenarios by removing
unwanted elements.

Some people see this as the biggest problem hampering the spread and
acceptance of mobile agents.2 If a system is not adaptable to real-world
requirements, potential users are not willing to use this mobile agent toolkit
or any form of mobile agents.

The Tracy Architecture—Kernel, Agency, and Plugins

To amend this situation, one of the most important challenges of our Tracy
project was to develop a new model and a reference architecture for mobile
agent toolkits. It was naturally not our goal to develop the nth mobile agent
toolkit specialized to a specific research issue; we aspired to build a toolkit
that could be used for the development of industrial-strength real-world
applications. Tracy is a modular, component-oriented, extendable software
system that executes stationary and mobile software agents written in the
Java programming language. Tracy uses the standard Java execution environ-
ment without any modifications in the virtual machine or within any of the
core Java APIs. We made a considerable effort to provide services for agent
communication, security of mobile agents, an easy-to-use graphical user
interface, and several other features that we firmly believe that distinguish
Tracy from all other existing mobile agent toolkits.

We added to previous work done by the Tracy team in designing the first
Tracy architecture and benefitted from experiences learned when porting it

1. There has been one attempt to provide a light version of MASIF in Java named Simple MASIF imple-

mentation (SMI) [Dillenseger, 2000]. However, even SMI has not become widely used, which might
have to do with its close relation to CORBA. For more information, go to mobilitools.objectweb.org/

2. Compare, for example, dsonline.computer.org/0208/f/kot.htm.

330 � Chapter 9 Running a Tracy Agency

to mobile platforms and investigating the feasibility of using Tracy within an
existing electronic commerce application [Kowalczyk et al., 2002].

One of our main design goals for Tracy was to build an extendable
mobile agent toolkit that could be adapted to various application domains
and runtime environments. Therefore, Tracy is designed as a microkernel
[Buschmann et al., 1996] that provides basic services to execute agents and
control their life-cycles. Agents can be any Java class that implements the
interface java.lang.Runnable, which is actually a major difference from
other existing mobile agent toolkits, for example Aglets or Grasshopper, for
which an agent class must extend the predefined class MobileAgent.

In addition to the microkernel, there is an agency component that uses an
agent directory to manage all agents currently residing on this host, whether
they are currently running or waiting. The agency provides basic functions
for agents to understand their environment, for example to find other agents
on this host. The agency offers functions to start and stop agents and uses the
microkernel for these tasks. Each agent is registered with the agency when it
is started. It makes no difference whether the agent is started locally or has
migrated to this agency. The agent directory entry exists for the entire lifetime
on the local host and is deleted when the agent leaves the server by migration
or when the agent is killed.

Additionally, an agency has the task to manage plugins, which is our
method of providing high-level services within Tracy. A plugin is a software
component that provides a service that is not mandatory to run an agency,
but extends its functionality. Plugins can be added dynamically to a running
agency, they can be stopped (e.g., in case of a fault) and restarted later. In fact,
the basic version of Tracy only consists of the microkernel and the agency.
All other services, such as inter-agent communication, blackboard, migra-
tion, persistency, partial solutions of mobile agent security challenges, user
management, and permission management, are all implemented as plugins.
Tracy already provides many plugins, some of which we will introduce in
Chapter 10.

Such an open architecture has many advantages. Because the mobile
agent toolkit has a very small imperative core as a basis for many plugins
to be added on, it is very modular. The main advantage of this type of archi-
tecture is that the user can extend and improve Tracy simply by developing
your own plugins. We believe that it will be possible to enable the exchange
of research results on the basis of such software components in the future.

Second, Tracy can be readily adapted to various application domains and
runtime environments. You can configure your Tracy system according to

9.1 Welcome to Tracy � 331

your requirements and hardware prerequisites. If you do not need a specific
plugin as part of your application domain, you can just remove it and, thereby
reduce the memory footprint of an agency.

The Tracy architecture makes it very easy to port a mobile agent toolkit
to other devices, because services no longer needed can simply be removed.
If a plugin is too heavy for a resource-limited mobile device for exam-
ple, it can be replaced by a smaller component with fewer services. Code
reuse is also supported, because the architecture guarantees that software
components are usable at any mobile agent toolkit built on this architecture.

Currently, Tracy comes with the following plugins:

AgencyShell to communicate to an agency via a textual user interface.

AgentLauncher to start agents automatically during the start-up process of
Tracy.

DomainManager to create a logical agency network, where agents can ask for
surrounding agencies.

Message for inter-agent communication.

Migration for agent mobility (using the Kalong component).

Place for agents to understand their environment.

Survival for waking up agents at a particular time.

The following plugins are also already available, but will not be introduced
in this book and are not part of the Tracy version available for public down-
load from our Web site.

AgentPolicy to assign permissions to agents dynamically, using rules compa-
rable to today’s firewall configuration.

Blackboard a persistent data store for agents to leave any kind of infor-
mation for other agents. A blackboard just provides another means of
communication between agents.

Email to send message via SMTP, to the agent owner, for example.

Key to load certificates and keys from local keystore files and public LDAP
directories. This plugin is also needed if you want to use code signing and
other mobile agent security-related techniques.

Persistence to save agents on a persistence data store to achieve fail-over in
error situations.

332 � Chapter 9 Running a Tracy Agency

Taas (Tracy Authentication and Authorization Service) to provide user man-
agement, which includes granting permissions to users dynamically.

WebService to provide the capability for other plugins to deploy Web services
using SOAP interfaces.

Tracy can be used as a stand-alone application and controlled via a textual
user interface (provided by the AgencyShell plugin) or can be used by other
applications using a SOAP interface (provided by the Web-Service plugin).

Let us summarize the most important terms introduced in this section:

Agency is a software component that is an addition to a Tracy microkernel
and provides basic services to running agents, for example, it maintains
an agent directory and mediates between plugins and agents.

Agent must be implemented as a Java class that implements interface
java.lang.Runnable.

Host is the computer system on which a Tracy agency is running.

Micro kernel is a software component that is an addition to a Java virtual
machine and is responsible for running software agents.

Plugin is a software component that implements or provides a service.
Plugins can be dynamically started and stopped at runtime.

Service is an API that can be used by agents; a service is identified by a name.

System is a set of Tracy agencies that belong to the same application domain.

9.2 Installation of Tracy

In this section we explain how to install and configure a Tracy agency.

9.2.1 Before You Start the Installation

Before you start the installation process, you should make sure that your
system fulfills the hardware and software requirements to run Tracy.

Because Tracy is written entirely in Java, it should be able to run on every
platform for which a Java runtime environment (JRE) in version 1.4 is avail-
able. We recommend using version 1.4.2. We have successfully tested Tracy
on Microsoft Windows, SUN Solaris, HP Tru64, and several Linux operating
systems. If you want to program your own agents, you will need the Java

9.2 Installation of Tracy � 333

software development kit (SDK) or any other Java compiler (e.g., Jikes). Your
system should have at least 128 MB of main memory, although we prefer at
least 256 MB main memory. Tracy needs about 10 MB disk space for the core
classes, all plugins, and the complete documentation.

9.2.2 Installation

Install the Tracy Agency

We now start with the installation process of Tracy in a minimal version,
which only consists of the agency and some of the most important plugins.
We assume that you have already installed the Java runtime environment
and the Java software development kit on your system.

The installation process is very easy, because Tracy is distributed as a
single archive file that contains all the files necessary to start a Tracy agency
as well as the complete online documentation of the Tracy API. Create a
directory where Tracy should be installed, for example /usr/local/tracy
on a Unix system or C: Tracy on a Windows system. This directory will be
named TRACY_HOME in the following.

The Tracy archive can be downloaded from our Web site www.mobile-

agents.org. You can choose between two archive files; the first is named
tracy2.tar.gz and the second is named tracy2.zip. They differ only in the
file format, not in the set of files. Copy one of these files into the directory
TRACY_HOME and unpack it by typing:

■ $> tar xzf tracy2.tar.gz on Linux or Unix

■ $> unzip tracy2.zip on Windows

If unpacking of the archive was successful, then you should have the
following directory structure in TRACY_HOME:

■ bin contains Unix scripts and Windows batch files to start an agency.

■ doc contains the Tracy API documentation.

■ conf contains exemplary configuration files for Tracy and all plugins.

■ lib contains Java class files of the micro kernel and the agency, bundled in
several Java archives (JARs).

■ plugins contains several Tracy plugins as JAR files.

334 � Chapter 9 Running a Tracy Agency

In fact, you can store configuration files in any directory you want; conf is
simply the default directory where the Tracy start script looks for configura-
tion files.

Installing Tracy Plugins

If you want to install other plugins later, just copy the JAR file of the plugin
into the plugins directory and the appropriate configuration file in the conf

directory or any other directory where configuration files are stored.
When Tracy is launched, all JAR files in the plugins directory are expected

to contain a Tracy plugin. Each Tracy plugin must include a manifest file that
contains mandatory information about the plugin. Because it is not in the
scope of this book to explain how to program your own plugins, we do not go
into details here. More information can be found in the Tracy programming
guide, which is part of Tracy’s online documentation.

9.2.3 Configuration

In this section we describe how to configure a minimal version of Tracy. To
configure Tracy you must have at least the following five files:

■ kernel.conf to configure the Tracy kernel

■ agency.conf to configure a Tracy agency

■ tracy.policy to configure the static permissions of Tracy

■ jaas.login to configure the JAAS login module

■ jaas.policy to configure user permissions

All these files are necessary to configure the Java virtual machine and the
Tracy kernel. There should also be a configuration directory for each agency
that is started in addition to a kernel. This directory contains a configuration
file for each plugin that should be started. All configuration files should be
stored in a single directory so that they can be found by Tracy. It is good
practice to create a separate directory for each configuration.

Configuration files are plain text files that consist of several key-value
pairs—one pair per line. Key and value are separated by an equals sign.

9.2 Installation of Tracy � 335

Configure the Tracy Kernel

The configuration of the Tracy kernel is confined to defining the kind of log-
ging that should be used for the microkernel component. For example, the
following configuration file:

1 logger.class = "de.fsuj.tracy2.logging.SimpleLogger"
2 logger.level = 4

defines which Java class should be used for logging messages and defines
the number of logging messages that should be produced. In detail, the keys
have the following meaning:

logger.class Tracy uses its own logging mechanism. This variable defines the
class that should be used for logging. You can choose between a simple
logger (class de.fsuj.tracy2.logging.SimpleLogger) that prints
all messages to the console and the built-in Java logging technique (class
de.fsuj.tracy2.logging.JavaLogger). If you want to use the built-
in Java logging you should also create a file named javalog.properties that
contains some configuration information for the Java logging mechanism.
For more information about the latter configuration file, see Java’s online
documentation.

logger.level Defines the number of logging messages to be produced. Allowed
values are between 0 and 6. With value 0 very fine-grained logging mes-
sages are produced, whereas with value 6 only severe errors are logged.
To start, this value should be set to 4.

Configure a Tracy Agency

To configure the agency that should be started on top of the Tracy kernel, file
agency.conf is used. Here is an example of this file.

1 name = "MainAgency"
2 class = "de.fsuj.tracy2.agency.Agency"
3 url = "file:${user.dir}/lib/agency.jar"
4 classloader = "de.fsuj.tracy2.kernel.AgencyClassLoader"
5 logger.level = 4

336 � Chapter 9 Running a Tracy Agency

The keys have the following meaning:

name defines the logical name of the agency, which must be a sequence
of characters beginning with a letter, and which may not contain any
white spaces. The full agency name is the concatenation of the logi-
cal name and the full qualified domain name of the host, for example,
MainAgency.tatjana.cs.uni-jena.de.

class defines the name of the main class of this agency; the value defined in
line 2 is the default value that is used when this key is missing.

url defines the URL where the code for this agency can be found; the value
defined in line 3 is the default value that is used when this key is missing.

classloader defines the class loader used to load each agency (whereas the
Tracy kernel is loaded using the system class loader); usually remains
unchanged; the value defined in line 4 is the default value that is used
when this key is missing.

logger.class and logger.level define the logging mechanism for the Tracy agency
in the same way as the kernel does.

Configure Plugins

For each plugin that exists in the plugins directory, there must exist a con-
figuration file with the same name as the plugin. For example, if there is a
plugin named AgencyShell.jar then there also must exist a configuration file
named AgencyShell.conf in the configuration directory. Configuration files
must always end with the suffix .conf. Please note that some operating sys-
tems might not distinguish between upper- and lowercase letters. Examples
of plugin configuration files will be presented in Section 9.4.

Configure the Tracy Policy file

The Tracy policy file defines the static permissions of all code components
of a Tracy agency. The file must have the name tracy.policy, should contain a
single entry for each JAR file, should by default grant all permissions to the
component. It is not essential to grant all permissions to the microkernel and
the agency, but it simplifies the configuration process.

1 grant codeBase "file:${user.dir}/lib/kernel.jar" {
2 permission java.security.AllPermission;

9.2 Installation of Tracy � 337

3 };
4
5 grant codeBase "file:${user.dir}/lib/agency.jar" {
6 permission java.security.AllPermission;
7 };
8
9 grant codeBase "file:${user.dir}/plugins/-" {
10 permission java.security.AllPermission;
11 };

For sake of simplicity, we also inserted a grant entry for all plugins here and
grant each of them all permissions. You can adapt this configuration to your
own preferences (see the plugin documentation to learn which permission
each plugin needs).

This file can also be used to grant permissions to agents in a static way, that
is, you cannot revoke these permissions after they have been granted, which
is sufficient in many application scenarios. The way to grant permissions to
agents is comparable to the examples above. You have to define the code
base from where all agent’s code is loaded, for example, a JAR file, and grant
permissions to it. Whenever an agent is started from this code base it will
receive these permissions. Another way to grant permissions to agents is via
the agent owner, which is explained in the following section.

9.2.4 Configure JAAS

Finally, you have to configure JAAS, that is used within Tracy to authenticate
users and grant permissions to them. For a detailed introduction into the
concepts of JAAS, we refer to the book by Oaks [2001].

A detailed introduction to the security concepts provided by Tracy will
follow in Chapter 10. Here, we describe only the meaning of the two files
necessary to configure JAAS. The first one is named jaas.login and defines
how a user must authenticate to use the AgencyShell plugin. Therefore, you
only need to modify this file if you want to use this plugin later. The second
file is named jaas.policy and defines which permissions each user should
have. At first glance, you might say that this is also important only when
using the AgencyShell plugin, because it defines what a user is allowed to do
with a Tracy agency. However, in Tracy an agent inherits all permissions of its
owner when running on its home agency, therefore, this file is just another
means to grant permissions to agents and supplements the configuration file
tracy.policy.

338 � Chapter 9 Running a Tracy Agency

The first file must contain the name of a login module that is used by JAAS
to identify a user. On a Windows operating system, the NTLoginModule

must be chosen.

1 Tracy {
2 com.sun.security.auth.module.NTLoginModule required;
3 };

The name of the login module must be Tracy, because the AgencyShell
plugin looks for exactly this login module. On a Unix operating system,
the UnixLoginModule must be chosen.

1 Tracy {
2 com.sun.security.auth.module.UnixLoginModule required;
3 };

The effect of both login modules is that a user is identified with his or her login
name as defined by the underlying operating system and does not have to
type in a password. If you want a Tracy user to authenticate with a password
too, then you have to develop your own login module and register it using this
file. For more details on how login module should be developed, see Java’s
online documentation.

Finally, we have to define which permissions a user should have, which
is done using a file similar to that used to define static permissions of code
components.

1 grant
2 Principal com.sun.security.auth.UnixPrincipal "braun" {
3 permission java.util.PropertyPermission "*", "read";
4 permission de.fsuj.tracy2.kernel.AgencyPermission "MainAgency",

"shutdown";
5 permission de.fsuj.tracy2.agency.AgentPermission "MainAgency",

"listAgents,startAgent,stopAgent";
6 permission de.fsuj.tracy2.agency.PluginPermission "MainAgency",

"listPlugins,startPlugin,stopPlugin";
7 };

The file consists of severalgrantentries (the example shows only one), where
each entry defines the permissions of a single user. The user is identified by his
or her login name. The example defines that user braun has the permission
to read all Java properties and also has the right to start and stop agents and

9.3 Starting and Stopping a Tracy Agency � 339

plugins and to shut down the agency. We will give a detailed introduction
into the Tracy specific permissions in the online documentation.

9.3 Starting and Stopping a Tracy Agency

After you have completed the installation and configuration process of Tracy,
you can launch a Tracy agency. For the following, we assume that you are in
directory TRACY_HOME. To start a Tracy agency, you should use one of the
following script or batch files, which can be found in directory bin.

■ for Unix: tracy.sh

■ for Windows: tracy.bat

If all Tracy configuration files are stored in directory conf, then you can
simply type in the following command (on a Unix/Linux system):

$> ./bin/tracy.sh run

Tracy is now started in the same window where you typed in the command.
If you want to start Tracy as a background process, you have to use the fol-
lowing command:

$> ./bin/tracy.sh start

Dependent on the logging mechanism and the logging level, you might see
the following messages:

1 Tracy2 Loader V1.0

2 (Mon Oct 13 18:35:04 CET 2003) [INFO] de.fsuj.tracy2.kernel: Starting Tracy2 Version 1.0

3 (Mon Oct 13 18:35:04 CET 2003) [INFO] de.fsuj.tracy2.kernel: Java Version 1.4.2

4 (Mon Oct 13 18:35:04 CET 2003) [INFO] de.fsuj.tracy2.kernel: Tracy home directory /usr/local/tracy

5 (Mon Oct 13 18:35:04 CET 2003) [INFO] de.fsuj.tracy2.kernel: User home directory /home/braun

6 (Mon Oct 13 18:35:04 CET 2003) [INFO] de.fsuj.tracy2.kernel: starting micro kernel

7 (Mon Oct 13 18:35:04 CET 2003) [INFO] de.fsuj.tracy2.kernel: thread pool started (20/50/100)

8 (Mon Oct 13 18:35:04 CET 2003) [INFO] de.fsuj.tracy2.kernel: micro kernel started successfully

9 (Mon Oct 13 18:35:04 CET 2003) [INFO] de.fsuj.tracy2.agency: agency "MainAgency" starting

10 (Mon Oct 13 18:35:06 CET 2003) [INFO] de.fsuj.tracy2.agency: no plugins found

11 (Mon Oct 13 18:35:06 CET 2003) [INFO] de.fsuj.tracy2.agency: agency "MainAgency" started

340 � Chapter 9 Running a Tracy Agency

Because there are no plugins, you unfortunately cannot do anything sensible
with this agency except stopping it. If you have started Tracy as a background
process, you should use the following command to halt the agency:

$> ./bin/tracy.sh stop

Otherwise, you can just abort Tracy by hitting Ctrl-C. This shuts down Tracy
agency properly and results in the following logging messages:

1 (Mon Oct 13 18:36:58 CET 2003) [INFO] de.fsuj.tracy2.kernel: micro kernel shutting down

2 (Mon Oct 13 18:36:58 CET 2003) [INFO] de.fsuj.tracy2.agency: agency "MainAgency" shutting down

3 (Mon Oct 13 18:36:58 CET 2003) [INFO] de.fsuj.tracy2.agency: agency "MainAgency" shut down

4 (Mon Oct 13 18:36:58 CET 2003) [INFO] de.fsuj.tracy2.kernel: all agent threads terminated

5 (Mon Oct 13 18:36:58 CET 2003) [INFO] de.fsuj.tracy2.kernel: thread pool shutting down

6 (Mon Oct 13 18:36:58 CET 2003) [INFO] de.fsuj.tracy2.kernel: thread pool shut down

7 (Mon Oct 13 18:36:58 CET 2003) [INFO] de.fsuj.tracy2.kernel: micro kernel shut down

Both start scripts accept the following options:

run Start a Tracy agency within this process.

start Start a Tracy agency as background process.

stop Stop a Tracy agency.

--help Prints help information.

--ini Defines the directory where all configuration files can be found. If you
omit this option, the Tracy loader will use directory conf.

All options that start only with a single dash are passed to the Java virtual
machine.

Thus, under the assumption that you have placed all configuration files in
directory conf/minimal, you can use the following command to start a Tracy
agency on a Unix system:

$> ./bin/tracy.sh start --ini conf/minimal -Xms128m -Xmx256m

This example also shows how to define options that are passed to the Java
virtual machine.

9.4 Installation and Usage of Basic Plugins

In this section we will describe how to install and configure two very
important plugins: AgencyShell and AgentLauncher. The AgencyShell

9.4 Installation and Usage of Basic Plugins � 341

plugin provides a textual user interface (console) to administrate a run-
ning agency. The AgentLauncher plugin starts agents while launching the
agency.

9.4.1 AgencyShell

Introduction

If you store the AgencyShell plugin in the plugins directory, you can commu-
nicate with a running agency using a textual user interface (sometimes also
called a shell or console).

Using the textual user interface of Tracy, you can administrate the whole
agency, including starting and stopping agents, listing all agents currently
residing on this agency, and so forth. You can also start and stop plugins and
administrate them if they provide their own commands for the shell.

When the AgencyShell plugin is started, it uses the Java authentica-
tion and authorization system to log in users (i.e., file jaas.login is read to
select the login module which defines how users have to authenticate). The
login module that was mentioned previously identifies the user as the one
who is actually starting Tracy. Other login modules, especially the one that
comes with the Taas plugin requires the user to authenticate with a user
name and a password, which are verified against a Tracy user management
database.

After the user has logged in, AgencyShell provides a simple textual user
interface comparable to a Unix shell or a DOS command prompt. In gen-
eral, the console provides two focus points. The first is that of the agency,
which is actually the one that you enter after logging in. In this focus you
can only administrate the agency. The second focus is that of a plugin. To
change focus from the agency to one of the plugins, you must enter com-
mand cf (change focus), which will be explained below. The following set of
commands can be used in the agency focus as well as in a plugin focus.

author [--help] Prints the author of a component according to the
current focus.

docs [--help] Prints a URL where documentation can be found for this
component according to the current focus.

exit [--help] Exits the shell without closing the agency. Note that this
command can only be used at the agency focus.

342 � Chapter 9 Running a Tracy Agency

echo []

echo [--help | STRING | ${NAME}] Outputs the given arguments
followed by a new line. If NAME is a valid variable name, its value is dis-
played. The STRING argument could be every character sequence except
those used for variable definition.

gc [--help] Starts the Java VM garbage collector.

help [--help] Outputs a summary of commands that are provided by
this component according to the current focus.

info [--help] Prints basic information about this component accord-
ing to the current focus.

memory [--help] Prints information about system memory usage.

set []

set [--help | NAME = VALUE] Without options, name and value of
each environment variable is displayed. The output is sorted in ascending
order. When a key-value pair is specified, a new environment variable is
defined or an existing one is redefined.

shutdown [--help | --delay MILLISEC] Shuts down the agency.
If the option --delay is used, the shut down process is delayed for the
given time (in milliseconds).

statistics [--help] Outputs statistical information about this com-
ponent according to the current focus.

unset []

unset [--help | VARIABLE_NAME] Undefines the environment vari-
able with the given name.

version [--help] Prints version information about this component
according to the current focus.

who [--help] Shows all users currently logged in.

whoami [--help] Shows the current username.

To conclude this subsection, we present an example to show how environ-
ment variables can be defined and read.

[1]> set
kernel.logging.level = 4

9.4 Installation and Usage of Basic Plugins � 343

kernel.logging.class = de.fsuj.tracy2.logging.SimpleLogger
agency.name = MainAgency
agency.class = de.fsuj.tracy2.agency.Agency
agency.url = file:/usr/local/tracy/lib/agency.jar
agency.classloader = de.fsuj.tracy2.kernel.AgencyClassLoader
agency.logging.level = 4
agency.logging.class = de.fsuj.tracy2.logging.SimpleLogger

[2]> set my.agent.url = "file:/${user.dir}/examples/"

[3]> echo ${my.agent.url}
file:/usr/local/tracy/examples

[4]> unset my.agent.url

[5]> echo ${my.agent.url}

The last command does not produce any output, because the environment
variable with name my.agent.url no longer exists.

Agency Commands to Start and Stop Agents

The following commands are only available in the agency focus and are used
to start and stop agents.

agents [PREFIX] [-a] [-u NAME] [-l] [-n] [-d] [-o] [-r] Listsall
agents running on this agency by name. If a PREFIX is given, then only
agents whose names start with this prefix are displayed. Option-adisplays
not only the user’s agents but all agents currently residing at this agency.
With the -u you can select whose agents should be displayed. With -n
only the agents’ nicknames are displayed and with -l information about
the start time is printed. The following options are to modify sorting of
the output: with -d, agent names are displayed in ascending order of their
start time, with -o, agent names are displayed in ascending order by their
owner’s names, and with -r, the order can be reversed.

runagent AGENTNAME Reruns an already existing agent that bears name
AGENTNAME.

startagent -n NICKNAME -c CLASSNAME -u CODEBASE Starts a new
agent. The given nickname is used as an easy-to-read name for the agent.
The agency then generates a unique full agent name that consist of the
given nickname and an implicit name (represented as hex value). The

344 � Chapter 9 Running a Tracy Agency

nickname is not necessarily unique, but it is guaranteed that no two agents
bear the same full name. The CLASSNAME parameter must contain the
complete name of the agent’s main class. The CODEBASE parameter must
contain a valid URL where the agent’s code can be found.

stopagent AGENTNAME Stops agent with name AGENTNAME and removes
it from this agency. Note that you need to enter the full agent name as the
agent’s name.

Finally, we present an example of how to start an agent.
First, we start an agent with nickname Bond:

[1]> startagent -n Bond -c examples.agents.TimerAgent
-u file:${user.dir}/agents/
agent with name "Bond" was started

Then, we prove that the agent has really been started:

[2]> agents
Bond.2BB5BC41A09766AF@MainAgency.tatjana.cs.uni-jena.de

Now, we start the agents command with two options:

[3]> agents -ln
Bond tracyadmin Mon Oct 13 19:23:00 CET 2003 Mon Oct 13 19:23:15 CET 2003

Because we used option -n, only the agent’s nickname is displayed and
because we used option -l (as you can see, you can shorten these two
options), the first date represents the time at which the agent was started
and the second date is when the agent was last executed.

Finally, we stop the agent:

[4]> stopagent Bond.2BB5BC41A09766AF@MainAgency.tatjana.cs.uni-jena.de
agent with name "Bond.2BB5BC41A09766AF@MainAgency.tatjana.cs.uni-jena.de"
was stopped.

Agency Commands to Work With Plugins

When you administrate an agency, you can start and stop plugins and
change the focus of existing plugins. Here is a list of all commands:

back Change focus back to the agency.

9.4 Installation and Usage of Basic Plugins � 345

cf PLUGINNAME Change focus to plugin with name PLUGINNAME.

plugins [SERVICENAME] Lists all running plugins. If parameter
SERVICENAME is set, then all plugins that provide this service are
displayed.

startplugin CODEBASE Starts a new plugin. Only the URL to the plugin’s
JAR file must be provided. The name of the plugin is defined by the name
of the JAR file, the plugin’s service name is obtained from the manifest file
included in the archive.

services [PLUGINNAME] Without options, all available services are dis-
played. If parameter PLUGINNAME is set, only the service that is provided
by the plugin with the given name is printed.

stopplugin PLUGINNAME Stops the plugin with name PLUGINNAME.

Now we present two examples of how to work with plugins. For this pur-
pose we use the message plugin. The first examples demonstrate how to
start a new plugin. We assume a situation in which there are already several
plugins running:

[1]> plugins
AgencyShell, Survival, Agency

We now start a new plugin:

[2]> startplugin file:${user.dir}/plugins/Message.jar
plugin with name "Message" was started

[2]> plugins
AgencyShell, Survival, Agency, Message

[3]> stopplugin Message
plugin with name "Message" was stopped

[4]> plugins
AgencyShell, Survival, Agency

In the second example we look for plugins which provide the “survival” ser-
vice. If such a plugin exists, we change the focus to this plugin and ask for
some help. Finally we move back to the agency focus.

346 � Chapter 9 Running a Tracy Agency

[1]> plugins survival
Survival

[2]> cf Survival

[3]> help
author Prints the author of this component

back Change focus to the agency.

docs Prints a URL where documentation for this component
can be found.

echo Prints the given parameter.

gc Starts the Java VM garbage collector.

help Prints this help screen.

info Prints some basic information about this component.

locale Usage: locale [-a|--all] [-l|--language LANGUAGE
-c|--country COUNTRY]. Shows current locale, list
all available locales and sets the current locale.

memory Prints information about memory usage.

set Usage: set KEY = VALUE. Defines an environment
variable. KEY must be a word, VALUE can be
a word, a variable (which is resolved) or a
number.

statistics Prints some statistical information about this
component.

unset Undefines an environment variable.

version Prints information about the version of this
component.

[4]> back

After the last command, you are back in the agency focus.

Telnet

In addition to the console that starts when launching an agency, Tracy offers
another way to administrate an agency, a Telnet session. The basic console
has some severe drawbacks that are a result of the Java programming lan-
guage, which cannot read arbitrary characters from the keyboard. Therefore,
Tracy provides a Telnet server to which you can connect using any Telnet
client software.

9.4 Installation and Usage of Basic Plugins � 347

TheTracyTelnet server is also part of the AgencyShell plugin if you enabled
the Telnet server by defining variable remoteshell as to be true as shown
in the following excerpt of the AgencyShell configuration file.

1 remoteshell.enable = true
2 remoteshell.port = 4444

remoteshell.enable defines whether the remote shell via Telnet should be
activated. Allowed values are true and false.

remoteshell.port defines the port where the remote shell waits for connections.

The advantage of a Telnet session as compared to the basic console is mainly
that of an improved level of convenience:

■ A history of commands.

■ Editing of command lines using arrow keys.

■ Automatic completion of commands, agent names, plugin names, file
names, and variable names.

The following table gives an overview of all allowed short-cuts and their
purposes.

Shortcut Purpose

Backspace Delete character before cursor
Left Move cursor left one character
Right Move cursor right one character
Pos1 Move cursor to beginning of line
End Move cursor to end of line
Next Display next history line
Prev Display previous history line
Del Delete character under cursor
Ins Toggles insert–overwrite mode
Alt-Left Alt-b Move cursor left one word
Alt-Right Alt-f Move cursor right one word
Tab Complete commands and file or path names (path names

if word under cursor starts with file:)

(cont’d)

348 � Chapter 9 Running a Tracy Agency

Shortcut Purpose

Ctrl-a Complete agent names
Ctrl-f Complete plugin names
Ctrl-s Complete service names
Ctrl-k Kill text until end of line
Ctrl-y Yank (insert) last killed text
Ctrl-l Clear telnet screen
Ctrl-d Logout

9.4.2 AgentLauncher

The task of the AgentLauncher plugin is to start agents automatically during
the launch of an agency. This plugin cannot be administrated at runtime and
does not provide any new shell commands, because its only purpose is to start
agents at the end of the start-up process of aTracy agency. The AgentLauncher
plugin is always started after all other plugins have been started. This is
because agents might immediately use services provided by other plugins.

The associated configuration file for this plugin contains entries describing
the agent’s nickname, its owner, its class name, and a URL where the class for
the agent can be found for each agent to be started. Here is an example:

1 agent.0.owner = "tracyadmin"
2 agent.0.nickname = "Bond"
3 agent.0.class = "de.fsuj.tracy2.agents.test.Agent"
4 agent.0.url = "file:${user.dir}/agents/"

Each agent must have a unique ID, and the agents are started in ascending
order according to this ID. The keys have the following meaning:

agent.<id>.owner defines the agent’s owner. Tracy grants permissions to
agents according to the user that started them. It can be said that an
agent inherits all permissions of its owner. Therefore, it is important to
define who should be the owner of an agent. If the given user does not
exist, then the agent will have no permissions, unless other plugins grant
permission to this agent.

agent.<id>.nickname defines the agent’s nickname. Each agent has a nickname
that is used as a human-readable name to complement the implicit name
given by the agency. The nickname is not necessarily unique, so it is

9.4 Installation and Usage of Basic Plugins � 349

possible for several agents to bear the same nickname but different full
names.

agent.<id>.class defines the class name for the agent to start. The given value
must contain the fully qualified class name (i.e., including the package
name).

agent.<id>.url defines the URL where the agent’s classes can be found.

Summary

In this chapter we described the development of another mobile agent
toolkit and howTracy is different from all other mobile agent toolkits currently
available. The main idea behind Tracy is to have an extendable agent toolkit,
which consists chiefly of a kernel that provides only basic services to execute
agents. All services such as agent migration, agent communication, agent
persistency, parts of agent security, and so forth, are provided by so-called
plugins.

You have learned how to:

■ install and configure a Tracy agency,

■ start and stop a Tracy agency using script files,

■ install and use basic plugins, for example, to start agents after launching
an agency, and

■ administrate a Tracy agency using the shell plugin and a Telnet console.

In the next chapter we will show how to program mobile and stationary
agents in Tracy.

THIS PAGE INTENTIONALLY LEFT BLANK

Chapter10
Programming Agents
with Tracy

In this chapter we describe how to program mobile and stationary agents
with Tracy. We explain the agent’s life-cycle and how agents communicate to
their owners. After that we discuss how agents communicate to services in
general, the following plugins, and the services that they provide:

■ Survival—to let an agent be restarted from time to time

■ Place—to let agents be informed about themselves and other agents

■ Messaging—to communicate to other agents on the same agency

■ Migration—to let agents migrate to other agencies

■ DomainManager—to let agents see their network environment

Contents
10.1 The First Agent . 351
10.2 Survival .359
10.3 Place .361
10.4 Messaging .363
10.5 Migration .368
10.6 Managing Logical-Agency Networks .391

10.1 The First Agent

In this section we present first examples of very simple Tracy agents. The
goal is to show which interfaces a Tracy agent must implement and which

352 � Chapter 10 Programming Agents with Tracy

methods an agent must provide in order to be executed by a Tracy agency.
We also show how agents can use services that are provided by plugins, and
teach along the way about the life-cycle of agents and some details on how
agents are executed within a Tracy agency. The examples presented in this
section use the following two plugins:

■ Survival—used by an agent to schedule its own execution.

■ AgencyShell—used by an agent to write messages to its owner.

For the following chapter, we assume that both plugins have been installed
correctly (i.e., their JAR files have been stored in the plugins directory and the
AgencyShell plugin has been configured as shown in Chapter 9). The Survival
plugin does not need to be configured.

10.1.1 Creating a Tracy Agent

Tracy agents need to implement interface java.lang.Runnable, which
is a core JDK interface that defines only a single method, run, without any
parameters and without a return value. This is the only interface that any kind
of stationary software agent must implement—inTracy we do not distinguish
between different types or classes of agents, as is done in other mobile agent
toolkits. Tracy does not define a common superclass for software agents that
provides methods to access services or to obtain any information about the
agent itself. If you want to program mobile agents, the agent class must
also implement interface java.io.Serializable, which ensures that the
agent’s object can be transferred into a flat byte stream.

1 package examples.agents;
2
3 public class MyFirstAgent implements java.lang.Runnable
4 {
5 public void run()
6 {
7 System.out.println("Hello World!");
8 }
9 }

As always, when introducing a new programming language or program-
ming environment, the first example should be the simplest—it only prints

10.1 The First Agent � 353

a Hello World! message to the console. Place this file in a directory named
examples/agents—in this example we assume all paths to be relative to your
home directory (which might be /home/user). Compile this class as usual
with the Java compiler. We assume that the resulting class is stored in the
same directory as the Java source file, thus, there should be a Java class file
named examples/agents/MyFirstAgent.class.

Starting the Agent

Now, start a Tracy agency, which should be configured as shown in Chapter 9.
At the command prompt, you should type in the following command:

[1]> startagent -n MyAgent -c examples.agents.MyFirstAgent -u file:/home/user/

If there is any error, for example, if the given class cannot be found at
the given URL, an appropriate error message will be shown. Otherwise the
agent’s class is instantiated and the agency calls agent’s run method. You
should immediately see the message Hello World! on your screen.

Let’s now go into some details of starting an agent. After the agent class
has been instantiated, agent execution is started by method run. As software
agents are active and autonomously acting objects, each agent is assigned
control of its own thread from a thread pool. Note the slight difference: An
agent is neither on the same level as to a thread nor owns the same thread
for its whole lifetime, but an agent is executed by a thread while it is active
(i.e., in state Running). After the agent’s run method has terminated, the
agent might die or switch to state Tracy calls Waiting.

The Agent’s Life Cycle

The two states and how they may change are some of the most important
things to know about the agent’s lifecycle. After the agent’s run method has
terminated, the agency must decide whether the agent should be switched to
state Waiting or killed and removed from the agency. The rule for this is very
simple: If the agent has registered with a service, then the agent is switched
to state Waiting, otherwise it is terminated immediately.

When the agent is in stateWaiting, it is only a passive object that is waiting
to become active again. Because it does not need an active thread of control
in this state, the thread is returned to the thread pool and can be re-used

354 � Chapter 10 Programming Agents with Tracy

to execute other agents. The reason to employ thread pools is performance,
because creating a new thread is still one of the most expensive operations
within a Java runtime environment.

As you can see from the previous example, methodrun is the only manda-
tory method that an agent class must implement. It defines the behavior of
the agent, that is the complete control flow that is performed inside the
agent’s thread. As a consequence, this method is the only possible starting
point for an agent. In Tracy, agents are usually started several times dur-
ing their lifetimes. This is very different from other mobile agent toolkits,
where the agent’s main method (named live or startAgent) is called only
once. In Tracy, an agent frequently switches between states Running and
Waiting. For example, assume a scenario in which agents send messages to
each other. After agent α has sent a message to agent β, it should switch to
state Waiting until agent β has answered. It is poor programming practice
to wait actively for the answer, which would waste computing power. There-
fore, when agent β has released its answer, agent α will be restarted by the
agency. It is up to the agent to distinguish why it has been started and what
has to be done now, for example, it might need to react to the answer and
send further messages. As you will learn from the examples in the remain-
der of this chapter, it is common to program agents as finite state machines,
which is a good means to control their complexity.

The immediate reason for this type of programming is, of course, the
asynchronous message passing that is used in this example. If we had used a
synchronous communication protocol, agent α would have waited (actively)
for the answer of agent β. Thus, what we learn from this example is that
an agent’s main method run might be started several times instead of only
once as in this example. However, whether it is in fact started several times
depends on the overall task of the agent.

Agents Can Die

Let’s come back to our first example. If you type in the command to see
the list of all agents currently running on this agency, you will not see agent
MyAgent. The reason for this should be obvious by now. Because the agent
has not used or registered with any service, there is nothing to prevent the
agent from being terminated and removed.

Before we show how to use services and how to make agents switch to
state Waiting, we mention some basic features of Tracy concerning the

10.1 The First Agent � 355

security of software agents. In Tracy, each agent has its own class loader,
which means that agents are unable to refer to each other in terms of object
references. Even two agents of the same type (i.e., the same Java class), are
not allowed to hold references to each other, because their classes are not
visible. Additionally, each thread that executes an agent belongs to an own
thread group. This prevents threads from accessing each other, which would
make it possible to stop or otherwise attack them. To protect the agency
and the underlying host against malicious agents, we use the Java sandbox
technique. Permissions are granted to agents as described in Chapter 9. If an
agent violates its rights, it will usually be terminated.

10.1.2 How to Use Services

As already mentioned, Tracy agents are not derived from any existing super-
class for software agents (unlike the Aglets or Grasshopper toolkits). In these
systems there is a class, MobileAgent, that already defines several methods
that access services, for example, to send a message or to start the migration
process. Therefore, Tracy agents must use another technique to access ser-
vices; we use the concept of context objects for this. An agent must request
a context object from a service using a static method getContext which is
defined in classde.fsuj.tracy2.kernel.Context. Such a context object
defines several methods that agents can use to communicate to a service and
we call this the service API.

We now show a first example of an agent that uses the shell service
to send a message on its owner’s console. This service is provided by the
AgencyShell plugin. The drawback of the first example above is that the“Hello
World!” message is printed using the System.out stream that is shown on
the console from which the Tracy agency was started. If the user is logged in
using a Telnet session, he or she is not able to see this message. Therefore, we
modify the first example:

1 package examples.agents;
2
3 import de.fsuj.tracy2.kernel.Context;
4 import de.fsuj.tracy2.plugins.shell.interfaces.IAgentShellContext;
5
6 public class MyFirstAgent implements java.lang.Runnable
7 {
8 public void run()

356 � Chapter 10 Programming Agents with Tracy

9 {
10 IAgentShellContext cxt;
11
12 if((cxt = (IAgentShellContext)Context.getContext("shell")) != null)
13 {
14 cxt.writeToUser("Hello World!");
15 }
16 }
17 }

This example requires some explanation. In line 4 we import the agent context
interface of the shell service. In line 12 we request a context object using
method getContextwith the name of the service as a parameter. If a service
with the given name cannot be found, then method getContext returns
null. Finally, in line 14 we print the message to the user.

Method getContext determines the agent calling it by determining its
current thread and asking which agent is currently executed by this thread.
Then the task is delegated to the agency, which has a directory of all services,
and checks whether the requested service is available. In the last step, the
agency requests an agent context interface from the plugin that provides
the needed service. The plugin must guarantee that there is only a single
context object for each agent, for example, by maintaining a map of all agents
currently holding a context interface.

Actually, we face two problems with this first example. First, if the
current agency does not provide a service under the given name, class
IAgentShellContext does not exist. Second, the service registered under
the given name shell might return a context object which is incompatible
with the expected type IAgentShellContext.

The first problem can be solved with Java’s dynamic class-loading concept.
The class of type IAgentShellContext is not loaded until it is accessed, which,
in the previous example, is not until the typecast. If the agent first verifies that
a service with the given name exists, this problem can be solved. The second
problem can be solved by comparing class names. The following example
shows the resulting code sequence:

1 package examples.agents;
2
3 import de.fsuj.tracy2.kernel.Context;
4 import de.fsuj.tracy2.plugins.shell.interfaces.IAgentShellContext;
5
6 public class MyFirstAgent implements java.lang.Runnable

10.1 The First Agent � 357

7 {
8 public void run()
9 {
10 IAgentShellContext cxt;
11
12 if(Context.existsContext("shell",
13 "de.fsuj.tracy2.plugins.shell.interfaces.IAgentShellContext"))
14 {
15 cxt = (IAgentShellContext)Context.getContext("shell");
16 ...
17 }
18 }
19 }

If you start this agent, the agent’s message will now be printed in the user’s
console, even if the user has logged in via Telnet. If the user is logged in
more than once, the message will be printed on each console. If the user is
currently not logged in, the message will not get lost, but will be printed to
the user’s console the next time he or she logs in. However, we do not know a
technique to start an agent without being logged in, so you cannot experience
this yet.

However, this agent will terminate as quickly as the agent in the previ-
ous example. This is because the agent uses a service with which it has not
registered.

10.1.3 How to Register with a Service

Whether an agent can register with a service depends on the service. In the
last example, the agent has requested a context object of the shell service,
but has not registered with it (actually, agents cannot register with the shell
service).

We now present the first example of a service, with which agents can
register. It is the survival service. We begin with a simple example.

1 package examples.agents;
2
3 import de.fsuj.tracy2.kernel.Context;
4 import de.fsuj.tracy2.plugins.shell.interfaces.IAgentShellContext;
5 import de.fsuj.tracy2.plugins.survival.interfaces.IAgentSurvivalContext;
6
7 public class MyFirstAgent implements java.lang.Runnable

358 � Chapter 10 Programming Agents with Tracy

8 {
9 public void run()
10 {
11 IAgentShellContext cxt;
12
13 Context.getContext("survival");
14
15 if((cxt = (IAgentShellContext)Context.getContext("shell")) != null)
16 {
17 cxt.writeToUser("Hello World!");
18 }
19 }
20 }

This agent first requests a context object of the survival service and
implicitly registers with it in line 13. The difference between simply using
a service and registering with it depends on the type of service and cannot
be deduced from the agent’s source code. The effect is that this agent will sur-
vive thread termination, that is, after method run has terminated, the agent
will continue to live. You can prove this by typing in the command to print
the list of all agents. We say that the agent is now in state Waiting, where it
exists as a passive object without a control thread.

If you type in the ls command to display the names of all agents cur-
rently residing at this agency, you will see something like the following:

[2]> ls
MyAgent.A567CB123A766AF7@MainAgency.tatjana.cs.uni-jena.de

What you see here is the full agent name of your agent. It consists of the
nickname that you have defined, a sequence of characters that represent
a number in hexadecimal format, followed by a “@” and the name of the
agency on which the agent was started. The hexadecimal number is named
uuid which stands for universal unique identifier. It is a number that is
computed by the agency to make each agent name unique. Combined with
the full agency name, this makes the full agent name globally (i.e., within a
Tracy system) unique. Neither the name nor the agent’s home agency change
after the agent has been initialized.

Thus, what you have learned from this example is that an agent must
register with a service in order to survive termination of its main method.
If the agent has not registered with a service, it will be disposed by the

10.2 Survival � 359

agency as soon as its run method has terminated. Otherwise, the agent
remains alive, but in state Waiting until the user, the agency, or any
other plugin restarts it. In this example it can only be activated by an
external event. Later, when we use asynchronous messaging, the agent
may be awakened by a message from another agent or from its owner. To
restart an agent, type in the runagent command, followed by the agent’s
full name. However, the agent still does not do anything sensible except
print Hello World messages to its owner. Every time you start the agent, a
new message will be printed. To eventually delete the agent manually, you
have to use the stopagent command, followed by the agent’s name. An
agent can also release the connection to the Survival service if it wants
to die.

In the following sections, we will introduce all the basic services that are
shipped with the Tracy agency, beginning with the Survival plugin.

10.2 Survival

The most important job of the Survival plugin is to prevent an agent from
being disposed after its run method has terminated. It can also be used to
schedule future agent execution. For example, an agent can define that it
wants to be started once at a specific time or time interval. An agent can
also define that it wants to be started periodically.

The complete API of the Survival service consists of the following
methods:

public void schedule(Date date)

Starts the agent once at the given date.

public void schedule(Date firstDate, long period)
Starts the agent at the given firstDate and then every period milliseconds.

public void schedule(long delay)

Starts the agent once after the given delay in milliseconds.

public void schedule(long delay, long period)
Starts the agent after the given delay in milliseconds and then every period milliseconds.

public void cancel()

Deregisters from this service. Stops every previously defined timer.

360 � Chapter 10 Programming Agents with Tracy

The following example shows an agent that registers with the survival
service to be started every five seconds.

1 package examples.agents;

2

3 import de.fsuj.tracy2.kernel.Context;

4 import de.fsuj.tracy2.plugins.survival.interfaces.IAgentSurvivalContext;

5 import de.fsuj.tracy2.plugins.shell.interfaces.IAgentShellContext;

6

7 public class MyFirstAgent implements java.lang.Runnable

8 {

9 private int state = 0;

10

11 public void run()

12 {

13 IAgentSurvivalContext survivalCxt;

14 IAgentShellContext shellCxt;

15

16 switch(state)

17 {

18 case 0:

19 if((survivalCxt = Context.getContext("survival")) != null);

20 {

21 survivalCxt.schedule(1000, 5000);

22 }

23 state = 1;

24 break;

25 case 1:

26 if((shellCxt = (IAgentShellContext)Context.getContext("shell")) != null);

27 {

28 shellCxt.writeToUser("Hello World!");

29 }

30 break;

31 }

32 }

33 }

This example shows an agent that uses a finite state machine. When the
agent is first started, it is in state 0, where it registers with the survival

service. In line 21, the agent defines that it wants to be restarted every
5 seconds after a first initial delay of 1 second. After that it switches to
state 1 and terminates. As previously mentioned the agent is not disposed
of because it is registered with at least one service. The plugin that provides

10.3 Place � 361

the survival services restarts the agent after the defined period of time.
Now, the agent is in state 1 which causes a “Hello World!” message to be
printed at the user’s console. Because the agent remains in this state, the
agent is restarted every 5 seconds and always prints the same message.

10.3 Place

The Place plugin provides the place service, which agents can use to
retrieve information about their environment. As we have mentioned before,
an agent is not able to communicate to the hosting agency directly; the only
way to do so is to use a plugin that provides a service for this task. The most
important service of this plugin is to provide agents a means to obtain their
own names and the names of other agents currently residing at the same
agency. The Place plugin does not need to be configured.

The complete API of the place service consists of the following methods.
The first four methods can be used by an agent to obtain information about
itself.

public String getNickname()

Returns the agent’s nickname.

public String getFullAgentName()

Returns agent’s full name.

public String getHomeAgencyName()

Returns the name of the agent’s home agency, that is, the agency on which the agent

was started.

public String getOwnerName()

Returns the name of the agent’s owner.

The following method can be used to retrieve the name of this agency.

public String getAgencyName()

Returns the name of the current agency.

The following methods can be used to get the names of other agents cur-
rently residing at this agency.

public String[] getAgentNames()

Returns the name of all agents currently residing at this agency.

362 � Chapter 10 Programming Agents with Tracy

public String[] getAgentNamesByNickname(String nickName)

Returns the name of all agents with the given nickName.

The following methods can be used to get information about installed
plugins and services.

public String[] getPluginNames()

Returns the names of all plugins currently running at this agency.

public String[] getServiceNames()

Returns the names of all services that are provided by plugins currently running at this

agency.

publicString[]getPluginNamesForService(String serviceName)

Returns the names of all plugins that provide the service with the given serviceName.

public String getServiceOfPlugin(String pluginName)

Returns the name of the service that is provided by the plugin with the given pluginName.

Finally, the following method can be used to start new agents.

public String startAgent(String className, URL codeBase, String nickName)

Starts an agent with the given nickName. The agent’s main class is given by className and the agent’s classes can

be found under the URL given by codeBase. The method returns the agent’s full name.

As an example, we show an agent that requests the name of its owner and
writes a greeting message to the owner.

1 package examples.agents;

2

3 import de.fsuj.tracy2.kernel.Context;

4 import de.fsuj.tracy2.plugins.place.interfaces.IAgentPlaceContext;

5 import de.fsuj.tracy2.plugins.shell.interfaces.IAgentShellContext;

6

7 public class MyAgencyAgent implements Runnable

8 {

9 public void run()

10 {

11 IAgentPlaceContext agencyCxt;

12 IAgentShellContext shellCxt;

13

14 if((agencyCxt = (IAgentPlaceContext)Context.getContext("place")) != null)

10.4 Messaging � 363

15 {

16 if((shellCxt = (IAgentShellContext)Context.getContext("shell")) != null)

17 {

18 shellCxt.writeToUser("Hello " + agencyCxt.getOwnerName() + "!");

19 shellCxt.writeToUser("This agency: " + agencyCxt.getAgencyName());

20 }

21 }

22 }

23 }

In line 14 the agent requests a context object of the place service. In line 18
the name of the agent’s owner is requested and a message is sent to the
owner including the owner’s name and, in the following line, the name of
the agency.

10.4 Messaging

10.4.1 Introduction

An important function of any mobile agent toolkit is to provide some kind of
communication model so that agents can talk to each other and exchange
information. As you might already have guessed, communication is also
provided as a plugin. In the following section we will introduce a straight-
forward communication model and show how Tracy agents can exchange
messages.

The principal way for Tracy agents to communicate to each other using
this plugin is by asynchronous message passing. We have deliberately not
included any kind of direct communication that allows agents to invoke
methods of other agents either by a direct reference or any kind of proxy
object. This restriction is necessary for security reasons. Any kind of direct
reference would affect agents in a direct way, which is a contradiction to
the concept of agent autonomy.

If agents want to send messages to other agents, they have to know the
name of the recipient, which is usually the full name of the agent. Every agent
has a message queue in which new messages are stored. The agent can decide
on its own how to handle these messages. It can decide whether to accept
messages by closing its message queue (temporarily), which preserves the
autonomy of the agent.

364 � Chapter 10 Programming Agents with Tracy

You might have the impression that we also provide a kind of remote
communication, that is, the ability to send messages to agents that are cur-
rently located at other agencies. However, this plugin does not support any
kind of remote communication. Even if both agencies were located on the
same host, sending messages between them would not be possible. This
restriction is a result from our interpretation of mobile agents: An agent
must move to the destination platform if it wants to communicate to other
agents there.

10.4.2 The Message Plugin API

When an agent wants to send or receive messages, the first thing it has to do
is, of course, register with the Message plugin, that is, to request a context
object from it. This context object provides the Message plugin API, which
we explain in detail in this section.

Sending Messages

After an agent has requested this context object, it can immediately start
sending messages to other agents using one of the following methods:

public void sendMessage(String recipient, String subject)

Sends a message to the given recipient with the given subject and empty message body.

public void sendMessage(String recipient, String subject,
String body)

Sends a message to the given recipient with the given subject and body.

As you can deduce from these methods, a message is comparable to an
email and consists of the following parts:

■ recipient—the full name of an agent

■ subject—a String object that contains a description of the kind of message

■ body—a String object that contains the actual message content

■ time stamp—the time at which the message was created

10.4 Messaging � 365

We start here with an example in which an agent sends a welcome message
to all agents whose nicknames are Bond. For the sake of simplicity, we do not
verify whether the requested plugins are available.

1 package examples.agents;
2
3 import de.fsuj.tracy2.kernel.Context;
4 import de.fsuj.tracy2.plugins.message.interfaces.IAgentMessageContext;
5 import de.fsuj.tracy2.plugins.place.interfaces.IAgentPlaceContext;
6
7 public class MyMessageAgent implements Runnable
8 {
9 protected IAgentMessageContext amc;

10 protected IAgentPlaceContext aac;
11
12 public void run()
13 {
14 aac = (IAgentPlaceContext)Context.getContext("place");
15 amc = (IAgentMessageContext)Context.getContext("message");
16 Context.getContext("survival");
17
18 String myName = aac.getMyName();
19 String[] agentNames = aac.getAgentNamesByNickName("Bond");
20
21 for(int i=0; i<agentNames.length; i++)
22 {
23 amc.sendMessage(agentNames[i], "Hello", "My name is: " + myName);
24 }
25 }
26 }

We have to face two possible error situations when sending messages.
The first one occurs when the given name of the recipient is wrong. In
this case, method sendMessage throws an IllegalArgumentException.
In the previous example we do not catch this exception, which might termi-
nate the agent if any of the agents with nickname Bond have died or migrated
between requesting all agent names and sending a message to this agent. The
same exception is thrown by method sendMessage if the given recipient
exists but has not registered with the Message plugin yet. Another possi-
ble error situation occurs when the recipient has, for example, temporarily
closed its message queue. Before we explain this in detail, we show how to
receive messages in general.

366 � Chapter 10 Programming Agents with Tracy

Receiving Messages

To receive messages, an agent must have registered with the Message plugin
already, that is, it must have a context object, and it must have enabled
reception of messages using the following method:

public void enableMessaging()

Activates reception of messages.

Calling this method is comparable to opening a queue in which incom-
ing messages are stored. As we have already mentioned, an agent cannot
receive messages without having registered with this plugin. If an agent has
already registered but has not activated its message queue, then the sender
will receive a IllegalStateException. This exception indicates that the
receiver (temporarily) refuses to receive the message.

To close the message queue, an agent can use the following method:

public IMessage [] disableMessaging()

Prevents reception of messages and returns all messages still pending in the message

queue.

This method returns all messages that are pending in the message queue,
so that the message queue is always empty before it is closed. If there
are no messages in the message queue, this method returns an empty array.

Finally, the current status of the message queue can be requested by the
following method:

public boolean isMessagingEnabled()

Returns the current status of the message queue.

To fetch a message from the message queue is a process that must be initiated
by the agent itself. Because of the general model of Tracy agents, we cannot
use a technique where the message plugin delivers messages by invoking a
specific method of an agent. However, there must be some kind of signal sent
to an agent to notify it about new messages. The only type of signal that can
be sent to agents by plugins is to restart, which invokes method run. As a
consequence, agents should be programmed to always actively check first if
there are any new and undelivered messages, using the following method:

public boolean hasMoreMessages()

Returns true immediately, if the message queue is not empty. Otherwise returns false.

10.4 Messaging � 367

If there are new messages in the queue, then the agent should go on to the
second step—fetching the next message of the queue using the following
method:

public IMessage getNextMessage()

Fetches the next message out of the message queue.

If this method is called when no message is available, an Illegal-

StateException is thrown. It is guaranteed that the order in which
messages will be fetched out of the message queue is the same in which they
were added to it. The return value of method getNextMessage is an object
of class IMessage. This class provides the following methods to retrieve the
elements of a message:

public String getSender()

Returns the originator of the message, which is usually the full name of an agent.

public String getSubject()

Returns the subject of this message.

public String getBody()

Returns the message text body.

The last two methods might return null values or empty String objects.
Finally, with the last method, the time of creation can be requested:

public Date getTimeStamp()

Returns the time when this message was created.

This time is approximately the time when the message was sent.
Finally, we present an example of an agent that is able to receive messages

and immediately sends back every message to the originator.

1 package examples.agents;
2
3 import de.fsuj.tracy2.kernel.Context;
4 import de.fsuj.tracy2.plugins.message.interfaces.IAgentMessageContext;
5 import de.fsuj.tracy2.plugins.message.interfaces.IMessage;
6
7 public class MyMessageAgent implements Runnable
8 {
9 protected IAgentMessageContext amc;

368 � Chapter 10 Programming Agents with Tracy

10
11 public void run()
12 {
13 IMessage msg;
14
15 amc = (IAgentMessageContext)Context.getContext("message");
16 amc.enableMessaging();
17
18 while(amc.hasMoreMessages())
19 {
20 msg = amc.getNextMessage();
21 amc.sendMessage(msg.getSender(), "Rcvd: " + msg.getSubject(),

msg.getBody());
22 }
23 }
24 }

10.5 Migration

10.5.1 Introduction

Migration of software agents between different agencies is, of course, one
of the most important tasks in a mobile agent toolkit. Many existing tool-
kits, therefore, see the migration service as a core component of the agency
that is implemented in lower layers of their software architectures. In Tracy
migration is a service on the same level as inter-agent communication or user
management. If a migration service is not necessary for a specific application
domain, you can simply omit it. Otherwise, Tracy allows you to use multiple
migration plugins, all of which provide a migration service. For example, the
first plugin could provide the Kalong mobility model and the second could
provide the Aglets mobility model, which implements the MASIF migration
protocol. Then an agent can decide which migration service it wants to use
for the next migration.

The migration plugin that we introduce in this section is named MDL
and uses, of course, the Kalong software component as described in
Chapters 6 and 7 and the network component that was mentioned in Sec-
tion 6.4.3. However, MDL enhances the usage and functionality of Kalong to
a certain extent and provides an easy-to-use interface to conduct migration
strategies.

10.5 Migration � 369

The main drawback of Kalong is that the main interface used to configure
a migration strategy (interface IKalong) is fairly low-level and offers a large
set of decision capabilities. Thus, it is difficult to master it in full detail, and
even experienced programmers will experience a learning curve when using
this interface to program agent mobility. Another problem is that placing
commands to conduct a migration process within the business logic of an
agent leads to a more complex source code. It is, therefore, advisable to split
these two aspects of mobile agent programming into separate classes.

Based on this insight, we introduce a new layer of abstraction. The descrip-
tion of migration strategies is moved to separate Java classes and an agent
defines which strategy should be used for the next migration by selecting an
appropriate one by name. This technique can be compared to the Strategy

pattern, described by Gamma et al. [1995]. Introducing migration strate-
gies as separate Java classes simplifies programming of mobile agents and
makes the agent’s source code clear and well structured. It also makes agents
more adaptable to specific application domains, as it is now easy to adopt a
different migration strategy if the application makes it necessary.

The MDL plugin already comes with several migration strategies, includ-
ing those mentioned in earlier chapters. An overview of these migration
strategies is given at the end of this section, where we introduce the
programming of proprietory migration strategies.

Another benefit of MDL as compared to other mobility models is the
way destination agencies are addressed. In almost all other mobile agent
toolkits, the programmer and the agent have to know the host name and
a port number where the destination agency will accept SATP connections
using a specific network transmission protocol, for example SSL. Because
port numbers of agencies might change during the lifetime of an agent, it is
advisable to use only the logical agency name, which does not change. As
a consequence, each agency must be able to resolve a logical agency name
and to retrieve information about network protocol and corresponding port
numbers of destination agencies. This feature is provided as a plugin named
Tracy Naming Service (TNS). A short example that describes the functionality
of TNS is given in Section 10.5.3.

Finally, MDL uses and even extends the mechanism of Kalong to adapt
the SATP protocol. We already introduced this basic concept of Kalong in
Chapter 7, where we presented examples of Kalong extensions that inspect
class codes or compress SATP messages.

The technique used in MDL is called SATP pipelining, and it is an enhance-
ment of Kalong’s extension mechanism. With Kalong it was only possible to

370 � Chapter 10 Programming Agents with Tracy

register a single listener object that is called at certain points during the migra-
tion process. With SATP pipelining not only one but many pipeline steps can
be linked together. This makes it possible for a first pipeline step to inspect
an agent’s class code, the second pipeline step signs all static information of
an agent (static part of the header, code, etc.), and the third step compresses
each SATP message before sending it to the destination.

Information about used pipeline steps is sent as part of the SATP header.
When the destination agency receives the header, it can verify that it knows all
pipeline steps that were processed at the sender agency and has the correct
version of them. If the destination agency will not be able to process all
requested pipeline steps, it will reject the agent. Otherwise, the pipeline steps
are processed in reversed order for all SATP messages. With regard to pipeline
steps, a major benefit of MDL is that the set of pipeline steps to be processed
can be modified at runtime by the agent. Besides some mandatory pipeline
steps that must be processed for each migration (without regard to whether it
is an incoming or outgoing migration or defined by the Tracy administrator),
an agent can also select other pipeline steps.

10.5.2 Installation

MDL is very flexible and can be configured like other Tracy plugins. Usually,
the following aspects of MDL should be configured:

■ Network transmission protocols

■ Kalong scripts (which is a superset of all migration strategies)

■ Pipeline steps that should be processed during a migration

Network Transmission Protocols

First it should be defined which network transmission protocols can be used
to transfer agents to destination agencies. To register a network protocol, the
following four entries should be defined in file MDL.conf :

protocol.<number>.name defines the protocol name, under which this network
component is to be registered. This protocol name can then be used in
URLs that address destination agencies.

10.5 Migration � 371

protocol.<number>.class defines the name of the class in which this network
component is implemented.

protocol.<number>.url defines the URL from where the code of this network
component can be loaded. This entry can be omitted if the corresponding
class is part of the plugin JAR file.

protocol.<number>.port defines the port on which the network component is
accepting incoming migration requests.

For example, in the following we register the network protocol that is
implemented in class TCPEngine under the protocol name tcp.

1 protocol.0.name = "tcp"
2 protocol.0.class = "de.fsuj.tracy2.network.tcp.TCPEngine"
3 protocol.0.port = 31000

For a detailed introduction on how to develop additional network transmis-
sion protocols, see the Tracy online documentation.

Kalong Scripts and Migration Strategies

The more general form of migration strategies are Kalong scripts. Such a script
is implemented as a Java class and provides methods to access all features
of Kalong. The difference between Kalong scripts and migration strategies is
that only the latter one can be used to transfer agent objects, that is, to send
the state of an agent.

Kalong scripts are an essential part of the MDL plugin, because several
basic functions, for example, loading a data item from the agent’s home
agency, are actually implemented as such scripts. Therefore, it is necessary
for a small set of Kalong scripts to always be registered with MDL. Otherwise,
specific features of MDL cannot be used.

Migration strategies are also registered as Kalong scripts. Every script
must have a unique name. To register a script, the following entries must
be defined:

script.<number>.name defines the name of the Kalong script as it should be
used by agents.

script.<number>.class defines the name of the class of this Kalong script.

script.<number>.url defines the URL where the class can be found. If this entry
is missing, the class must be available in the plugin JAR file.

372 � Chapter 10 Programming Agents with Tracy

For example, in the following we register a Kalong script, under name
pushAgent, whose class is part of the migration plugin JAR. Actually, this
class implements a migration strategy, in which an agent is transmitted
with all data and code to the next destination agency. We use this migration
strategy in the examples presented in the rest of this section.

1 script.0.name = "pushAgent"
2 script.0.class = "de.fsuj.tracy2.plugins.migration.scripts.PushAgent"

The following Kalong scripts must be registered and their entries should not
be deleted from the configuration file delivered with the MDL plugin, because
they are used by MDL to perform some basic operations.

LoadDataItem is used when a data item has to be loaded from an agent’s home
or mirror agency.

ReleaseCodeServer can be used to release all code server agencies that an agent
has initialized during its itinerary. This script is used by MDL when an
agent is going to die, so that code server agencies will not become orphans.
However, it can also be used by agents.

ReleaseMirror can be used to release a mirror agency. The script loads all data
items that might be defined on the mirror agency before releasing it. This
script is used by MDL when an agent is going to die, but can also be used
by agents.

UploadDataItem is used to send a data item back to an agent’s home or mirror
agency.

Pipeline Steps

Finally, all pipeline steps that should be used to modify SATP messages must
be registered using the following entries:

pipelinestep.<number>.name defines the name of the pipeline step as it can be
used by MDL or by agents.

pipelinestep.<number>.class defines the name of the class in which this pipeline
step is implemented.

pipelinestep.<number>.url defines the URL from where the code of this pipeline
step can be loaded. If this entry is missing, the corresponding class must
be available in the plugin JAR file.

10.5 Migration � 373

For example, in the following we register a pipeline step that compresses all
SATP messages before they are sent to the destination agency.

1 pipelinestep.0.name = "zip"

2 pipelinestep.0.class = "de.fsuj.tracy2.plugins.migration.pipesteps.ZipPipelineStep"

The current version of MDL already comes with the following five pipeline
steps that are all part of the MDL archive file. File MDL.conf already contains
entries to register all these pipeline steps.

Cipher encrypts all SATP messages with the public key of the destination
agency.

FilterFinalize inspects incoming Java classes and rejects those classes that
implement method finalize.

PathHistory adds the agency name to the list of visited agencies and signs
this list. Incoming agents are checked according to the path history. If the
agent has visited an agency listed on a user-defined blacklist, the agent is
rejected.

Signer signs the SATP header and all other static parts of an agent, for exam-
ple, its code with the private key of the agent owner. At a destination
agency, the signature is verified.

Zip compresses all SATP messages.

Further, we can define that specific pipeline steps must be executed for all
agents, without regard to whether the agent has selected them or not. We
name such pipeline steps mandatory. For example, the administrator of a
Tracy agency might define that each agent that migrates to an agency should
be scanned to decide whether its code might be malicious. We already men-
tioned a case in which an agent implements method finalize and the
consequences this might have for the agency. Mandatory pipeline steps can
be included at the beginning or at the end of the SATP pipeline. To configure
mandatory pipeline steps, you have to use the following keys:

pipeline.mandatory.head.<number>.name inserts a pipeline step at the begin-
ning of the pipeline for all SATP connections.

pipeline.mandatory.tail.<number>.name appends a pipeline step at the end of
the pipeline for all SATP connections.

The head and the tail of a pipeline must be seen from the perspective of
an outgoing SATP connection. For example, if we configure the pipeline to

374 � Chapter 10 Programming Agents with Tracy

have the Signer step at the beginning (head) and the Zip at the end, then
every message sent as part of an outgoing SATP connection will be processed
first by the Signer and last by the Zip pipeline step. If we want to add the
FilterFinalizepipeline step to be processed at the end of every incoming
SATP connection, we have to configure MDL as follows:

1 pipeline.mandatory.head.0.name = "filterFinalize"

For an incoming SATP connection, the order in which pipeline steps are
processed must be inversed. Therefore, a step inserted at the head is then
processed last.You cannot register a mandatory pipeline step to be processed
exclusively for an incoming or an outgoing SATP connection.

10.5.3 Programming Mobile Agents

The mobility model that is provided by MDL is based on the Kalong model
that we introduced in Chapter 3. From the programmer’s viewpoint we cur-
rently offer a weak form of mobility, in which an agent can start a migration
simply by defining the name or a URL of the destination agency. After the
agent has migrated it is restarted by invoking method run of the agent. The
basic mobility model of Tracy does not support the transmission of a method
identifier that should be invoked at the destination. However, this can be
easily implemented by an agent itself, should this become necessary.

The agent cannot only define to which agency it should be transferred to
but also how this should happen by defining the migration strategy. As already
mentioned, MDL supports the concept of migration strategies that are imple-
mented in separate classes and must be registered with the migration plugin.
The agent can then select one of the registered migration strategies for the
next migration. If the agent does not select any migration strategy, then the
migration strategy that was registered first is selected as the default.

In this section we introduce how agents can communicate with the migra-
tion service using interface IAgentMigrationContext which is part of
package de.fsuj.tracy2.plugins.migration.

Simple Migration

We start with an example of a mobile agent.

1 package examples.agents;

2

10.5 Migration � 375

3 import java.io.Serializable;

4 import de.fsuj.tracy2.plugins.migration.interfaces.IAgentMigrationContext;

5

6 public class MobileAgent implements Runnable, Serializable

7 {

8 public void run()

9 {

10 IAgentMigrationContext migrationContext =

11 (IAgentMigrationContext)Context.getContext("migration");

12

13 try

14 {

15 migrationContext.setDestination(new URL("tcp://tatjana.cs.uni-jena.de:4040"));

16 migrationContext.setMigrationStrategy("pushAgent");

17 } catch(Exception e)

18 {

19 e.printStackTrace();

20 }

21 }

22 }

The first and most important difference to all other agents that we have pre-
sented so far is that a mobile agent not only has to implement interface
java.lang.Runnable but also interface java.io.Serializable. This is
necessary, as mobile agents must be serializable in order to be transferred
over the network as plain byte array.

After the agent has requested a context of the migration service, it defines
the address of the destination agency using method setDestination.

public void setDestination(URL address)

Defines the address of the destination agency as URL object.

The second method is to define the migration strategy:

public void setMigrationStrategy(String name)

Defines the migration strategy that should be used for the next migration.

Only if a destination and a valid migration strategy were defined, will the
agent migrate. If no migration strategy was defined, the first strategy regis-
tered is selected by default. If you select a migration strategy unknown to
MDL, a migration error will occur.

The migration context does not provide a method to initialize the mig-
ration process directly. This is because the agent alone does not decide

376 � Chapter 10 Programming Agents with Tracy

directly, as part of its code, whether the migration process can be started.
Other plugins might disapprove this action. For example, a communica-
tion plugin might not want an agent to migrate if there are still pending
messages in the message queue. Therefore, every time method run of
an agent terminates, the microkernel of Tracy carries out a voting proto-
col. Each plugin is asked whether this agent should be killed, switched to
state Waiting (e.g., to wait for new messages), or may migrate. Only if
all plugins agree, is the migration plugin asked to initialize the migration
process.

The agent presented previously does not do anything sensible. It simply
migrates to the destination agency and is restarted there. However, it imme-
diately tries to migrate to the agency where it is currently located. Because
this is impossible, the migration feature will produce an error message.

After introducing the two main methods of interfaceIAgentMigration-
Context, we now consider the first complete example of a mobile agent
that migrates to a remote agency and back to its home agency.

1 package examples.agents;

2

3 import java.io.Serializable;

4 import de.fsuj.tracy2.plugins.migration.interfaces.IAgentMigrationContext;

5

6 public class PingPong implements Runnable, Serializable

7 {

8 private static final int ATHOME = 0;

9 private static final int ATREMOTE = 1;

10 private static final int BACKHOME = 2;

11

12 private int state = ATHOME;

13

14 public void run()

15 {

16 IAgentMigrationContext migrationContext =

17 (IAgentMigrationContext)Context.getContext("migration");

18

19 if(state == ATHOME)

20 {

21 migrationContext.setDestination(new URL("tcp://tatjana.cs.uni-jena.de:4040"));

22 migrationContext.setMigrationStrategy("pushAgent");

23

24 state = ATREMOTE;

25

10.5 Migration � 377

26 return; // now the migration process starts

27

28 } else if(state == ATREMOTE)

29 {

30 URL home = migrationContext.getHomeAgency("tcp");

31

32 migrationContext.setDestination(home);

33 migrationContext.setMigrationStrategy("pushAgent");

34

35 state = BACKHOME;

36

37 return; // now the migration process starts

38

39 } else

40 {

41 IAgentShellContext shellContext =

42 (IAgentShellContext)Context.getContext("shell");

43

44 shellContext.writeToUser("I’m back!");

45

46 return;

47 }

48 }

49 }

This examples shows a typical pattern of programming mobile agents
using finite state machines. When the agent is started, it is in state
ATHOME. The agent decides to migrate to an agency that is running on
tatjana.cs.uni-jena.de and listening on port 4040 for a TCP connection.
For sake of simplicity we assume that the migration was successful. After
the agent has been received at tatjana.cs.uni-jena.de, it is started and is
now in state ATREMOTE. Because the agent intends to migrate back to its
home agency immediately, it requests the address of its home agency in
line 30. The agent uses a method of interface IAgentMigrationContext

to select an agency URL with a specific protocol. We will discuss this
issue later. Finally, the agent returns to its home agency and is restarted
there with state BACKHOME. It finally prints a message to its owner and
terminates.

As mentioned before, one drawback we notice in the previous example is
the rather complicated way agencies are addressed. Instead of an agency’s
name, you use the name of the underlying host and a port number. Although
this is a common technique used in most other mobile agent toolkits, we

378 � Chapter 10 Programming Agents with Tracy

find this extremely inconvenient and, therefore, implemented a technique
to obtain host names and port numbers dynamically. This feature is named
Tracy Naming Service (TNS) and is a plugin that is used by the migration
plugin.

The only information a programmer has to know to initialize a
migration process is the name of an agency, for example fortknox.-
tatjana.cs.uni-jena.de. The advantage is obvious: Within an agent
system, only agency names should be propagated, not port numbers and
available network protocol information, which might change during the
lifetime of an agent.

To initialize agent migration using the TNS you have to define the
destination agency name using the following method:

public void setDestination(String agencyName)

Defines the agency name of the next destination.

The only difference here is that the parameter must now be an object of
type String and no longer of type URL. You can also define which net-
work protocol should be used for the next migration using the following
method:

public void setProtocol(String protocol)

Defines the protocol that should be used for the next migration.

The default protocol is the first one that was registered in the configura-
tion file.

As already stated, TNS is implemented as a plugin and must be configured
accordingly in the agency configuration file. (For an example, see the exem-
plary configuration file in the distribution archive). If the TNS plugin is not
started on both agencies, logical agency names cannot be resolved and an
appropriate error message will be returned to the agent.

Migration Errors

Until now, we did not consider errors that might happen during the migration
process. Actually, there could be several errors, but the most frequent is for
the destination agency to be unavailable. If there is a migration error, the
migration process is stopped and the agent is restarted at the current agency,
that is, where the migration was started. To indicate an error situation, an

10.5 Migration � 379

error code is set in the migration context. To request the error code, the
following method can be used:

public int getErrorCode()

Returns the error code of the last migration attempt. If no error occurred, value 0 is

returned.

A detailed error message that might be given to the agent programmer can
be requested by the following method:

public String getErrorDescription()

Returns an error description, for example, an exception message.

To handle error situations, an agent should request the error code of its
migration context and react to it according to the requirements. For example,
in a simple scenario, the agent could terminate whenever it determines that
the last migration attempt was not successful.

1 package examples.agents;
2
3 import java.io.Serializable;
4 import de.fsuj.tracy2.plugins.migration.interfaces.IAgentMigrationContext;
5
6 public class PingPong implements Runnable, Serializable
7 {
8 private static final int ATHOME = 0;
9 private static final int ATREMOTE = 1;

10 private static final int BACKHOME = 2;
11
12 private int state = ATHOME;
13
14 public void run()
15 {
16 IAgentMigrationContext migrationContext =
17 (IAgentMigrationContext)Context.getContext("migration");
18
19 if(migrationContext.getErrorCode() != 0)
20 {
21 migrationContext.reset();
22 return;

23 }
24
25 if(state == ATHOME)

380 � Chapter 10 Programming Agents with Tracy

26 {
27 migrationContext.setDestination(tatjana.cs.uni-jena.de);
28 migrationContext.setMigrationStrategy("pushAgent");
29
30 return;

31 ...

If the first migration fails, then this agent is restarted at its home agency.
The migration context is the same as before. Now the agent checks the error
code and notices the error situation. In this case, the agent must use method
reset to delete the destination information, and finally terminates with the
return statement. If the agent does not delete the destination address, it
would continually try to migrate to the given agency. All possible error codes
are defined in interface IAgentMigrationContext. For sake of simplicity
we only present the most frequent error codes here.

Error code 0xB0 The selected network transmission protocol is not supported
at this agency.

Error code 0xB1 The selected network transmission protocol is not supported
at the destination agency.

Error code 0xB3 The selected migration strategy does not exist.

Error code 0xB7 The connection is rejected by the destination agency, that is,
the agency is not listening on the given port number.

Data Items

As you know, Kalong provides the ability to define data items that are part
of the agent’s external state. These data items are usually transferred as part
of the agent’s state, but the agent can define that certain data items should
remain at the home agency. Furthermore, the agent can load data items from
the home agency and send data items back to it later.

The general concept was already introduced in Chapter 7 and we will,
therefore, only present a small example here. First, we show how an agent
can store data items in the external state. The method to store data items is:

public voidsetDataItem(String name, Serializable value)

Stores the given value under the given name in the external state.

Note, that the object to store must implement interface java.io.

Serializable.

10.5 Migration � 381

Whether the external state will be migrated along with the agent depends
on the migration strategy. For example, using the pushAgent strategy, all
data items are transferred to the destination agency, so that the agent can
there access the data item again:

public Serializable getDataItem(String name)

Returns the data item of the external state with the given name.

If the data item is not available at the current agency, an exception is thrown.
If you are not sure whether a data item is already available locally or must be
loaded from the agent’s home agency, you should use the following method:

publicSerializable getDataItem(String name, boolean load)

Returns the data item with the given name. If the data item is not available and load

equals true, then it is loaded from the agent’s home agency or mirror agency.

You can also explicitly load a data item from the agent’s home agency or the
mirror agency if it is defined but not yet loaded:

public boolean loadDataItem(String[] names)

Loads the given data items from the agent’s home or mirror agency. Returns true if all

given data items could be loaded.

If you want to send data items back to the agent’s home or current mirror
agency, then you can use the following method:

public boolean uploadDataItem(String[] names)

Sends all given data items back to the agent’s home or mirror agency. Returns true if

uploading was successful.

Until now, we always stressed that code classes that are not available at
the current agency can be downloaded from the agent’s home agency, code
server agency, or mirror agency automatically on demand. The MDL plugin
provides a new technique, so that the programmer can start the process of
code downloading manually, as soon as it is obvious that a specific class will
be used in the future. This technique, called code prefetching, provides the
advantage that code can be downloaded in parallel with agent execution, a
feature that might improve the performance of mobile agents considerably.

Consider the following source code:

1 package examples.agents;

2

382 � Chapter 10 Programming Agents with Tracy

3 import java.io.Serializable;

4 import de.fsuj.tracy2.plugins.migration.interfaces.IAgentMigrationContext;

5 import de.fsuj.tracy2.plugins.migration.interfaces.IMonitor;

6

7 public class SampleAgent implements Runnable, Serializable

8 {

9 public void run()

10 {

11 try

12 {

13 IAgentMigrationContext migContext = (IAgentMigrationContext)

Context.getContext("migration");

14

15 // ...

16

17 if(/* ... */)

18 {

19 // assume that it is known now that class A is used in future

20 IMonitor monitor = migContext.loadClassNonBlocking("examples.agents.A");

21

22 // ...

23

24 monitor.waitForTermination(); // synchronize

25

26 A a = new A();

27

28 // ...

29

30 }

31 } catch(Exception e)

32 {

33 e.printStackTrace();

34 }

35 }

36 }

We assume that in line 20 it is already known that class A will be used in the
future. In this line, the process of asynchronous class loading is started. The
method invocation returns immediately and a new thread has been started
that processes class loading in parallel. Later, when agent execution reaches
line 24, the agent’s thread and the class loading thread synchronize and in
line 26 class A is instantiated. Data items can be loaded asynchronously
too, using loadDataItemNonBlocking instead of method loadDataItem
that was introduced in Chapter 7.

10.5 Migration � 383

10.5.4 Programming Kalong Scripts

The interface IAgentMigrationContext that was introduced earlier only
provides some very high-level methods for agents to access the Kalong mobil-
ity model. For this, MDL provides a new abstraction in the form of class
KalongScript. Once a Kalong script is registered, agents can start it using
the name under which the script was registered.

public boolean executeScript(String name)

Starts execution of the Kalong script that was registered under the given name.

Because an agent cannot start a migration process, a Kalong script does not
provide access to any method that can be used to define and send an agent’s
serialized object. MethodexecuteScriptdoes not accept parameters other
than the name of the script. However, sometimes it might be necessary to
pass parameters to a script, which can be done using properties for Kalong
scripts:

public void setProperty(String key, Object value)

Defines a property of the migration context with the given name and value.

With this method, you can define a key-value pair in the migration context of
an agent. A Kalong script can access these key-value pairs as we show in the
following example of the LoadDataItem script:

1 package de.fsuj.tracy2.plugins.migration.scripts;
2
3 import de.fsuj.tracy2.plugins.migration.KalongScript;
4 import de.fsuj.tracy2.kalong.IKalong;
5 import de.fsuj.tracy2.kalong.KalongException;
6
7 import java.net.URL;
8
9 public class LoadDataItem extends KalongScript

10 {
11 public void run() throws KalongException
12 {
13 URL destination = null;
14 final String[] dataItemNames;
15
16 if(containsProperty("data.items.name"))

384 � Chapter 10 Programming Agents with Tracy

17 {
18 dataItemNames = (String[])getProperty("data.items.name");
19 } else

20 {
21 return;

21 }
23
24 try

25 {
26 startTransaction();
27
28 final String protocol = getLastProtocolUsed();
29
30 if (isMirrorAgencyDefined())
31 {
32 destination = getMirrorAgencyAsURL(protocol);
33 } else

34 {
35 destination = getHomeAgencyAsURL(protocol);
36 }
37
38 final Object handle = startTransfer(destination);
39 sendHeader(handle, IKalong.NOOP);
40 sendDataRequest(handle, dataItemNames);
41
42 } finally

43 {
44 if (prepare())
45 {
46 commit();
47 } else

48 {
49 rollback();
50 }
51 }
52 }
53 }

The main method of a Kalong script is run, which is invoked when the script
is started. The script just presented expects the agent’s migration context to
contain a property named data.items.name, which must contain an array
of String objects where each object contains the name of a data item that
should be loaded. If such a property does not exist, the script immediately

10.5 Migration � 385

terminates. Most methods used in this example should already be well-known
from Chapter 7. In line 26, a transaction is started. In line 28 the name of the
protocol that was used for the last migration of this agent is selected. In
line 32 and line 35 the address of the destination agency is determined, and
in line 38 the connection is opened. Finally, in line 40 the data-item request
is sent to the destination agency.

For a complete overview of all methods provided by class KalongScript,
see the Tracy online documentation.

10.5.5 Programming Migration Strategies

Finally, in this section we introduce the programming of migration strate-
gies. Migration strategies are a special form of Kalong scripts and provide
methods for the definition and sending of an agent’s serialized object. The
base class of all migration strategies is MigrationStrategy in package
de.fsuj.tracy2.plugins.migration. Migration strategies cannot be
started by agents using method executeScript but can only be selected
by name for the next migration process.

To pass parameters to migration strategies, the same technique is used as
for Kalong scripts. Following is a list of property keys that are recognized by
all migration strategies:

■ mdl.destination The corresponding value must be a URL that con-
tains the destination address or a String that contains a logical agency
name.

■ mdl.ubiclasses The corresponding value must contain an array
of String objects that are regular expressions to be matched by fully
qualified Java class names, which should not migrate. This key-value
pair is optional. A default value is defined as constant SYSTEMCLASSES
in class MigrationStrategy.

■ mdl.usecache If the migration properties contain an entry with this
key, the Kalong code cache is activated for the next migration regardless
of the default value of the migration strategy.

■ mdl.notusecache If the migration properties contain an entry with
this key, the Kalong code cache is disabled for the next migration
regardless of the default value of the migration strategy.

386 � Chapter 10 Programming Agents with Tracy

We now have two ways to define the address of the destination agency:
using method setDestination of interface IAgentMigrationContext

(remember that this method is overloaded) and using method setProperty
of the same interface with key mdl.destination.

Class MigrationStrategy also defines some convenient methods
to access property values, define code units, or start the migration
process:

protected URL destination()

Returns the URL of the destination agency.

If the address of the next migration destination was defined as a URL object,
then this method returns that value. If an agent has been defined as a logical
agency name, then this method actually translates the agency name into
a URL by communicating to the TNS plugin. You should always use this
method, if you want to access the destination address instead of reading
migration property mdl.destination yourself.

protected boolean useCache()

Returns true if the class cache should be activated for the next migration.

Again, this method is preferred to reading property values mdl.usecache
and mdl.notusecache manually. The following methods provide two
frequently used ways to define code units:

protected void defineUnitForEachClass()

Defines a single code unit for each class of the agent.

protected void defineUnitforAllClasses()

Defines a single unit for all classes of the agent.

The following source code defines method migrate, that can be used
by derived migration strategies to start the migration process in a very
flexible way.

protected void migrate(URL destination, int[] codeUnits,

String[] dataItems, boolean useCache)

Starts a migration process to the given destination, transferring the given code units

and the given data items. The last parameter indicates whether the class cache should

be used.

10.5 Migration � 387

This method opens a new network transfer and sends the Agent Definition

Block (ADB) as well as all units and data items, as specified in the parameters.
Here is the source code of this method:

1 protected final void migrate(final URL destination, final int[] units,

2 final String[] dataItems, final boolean useCache) throws MDLException

3 {

4 final Object handle;

5

6 if (destination == null)

7 {

8 throw new MDLException(ERROR_NO_DESTINATION);

9 }

10

11 try

12 {

13 handle = kalong.startTransfer(destination);

14 kalong.sendHeader(handle, IKalong.NOOP);

15 kalong.sendADB(handle, useCache);

16

17 if (units != null && units.length != 0)

18 {

19 kalong.sendUnits(handle, units);

20 }

21

22 kalong.sendState(handle, dataItems);

23

24 } catch (KalongException e)

25 {

26 throw new MDLException(e);

27 }

28 }

The most convenient way to implement a migration strategy is to extend
class MigrationStrategy and implement the following two methods that
are defined as abstract in this class.

protected abstract void defineUnits()

Defines the way code units are defined for agent classes.

protected abstract void migrateAgent()

Defines how the agent should be transferred to the next destination.

388 � Chapter 10 Programming Agents with Tracy

Both methods are called by MigrationStrategy’s method run. This
method starts a transaction, defines the agent object state, and then calls
method defineUnits if code units have not already been defined. Finally, it
invokes method migrateAgent to start the migration process and commits
(or rolls back) the transaction.

In the rest of this section we present three examples of migration strategies
that are already part of the MDL plugin.

Push all classes This migration strategy implements one of the most used
migration techniques in mobile agent toolkits. It combines all agent
classes into a single code unit and transfers this unit together with all
data items and the agent’s state to the next destination.

Pull each class This strategy defines a separate code unit for each agent class. It
then transfers the agent with all data items and the agent’s state. However,
no code units are transferred.

Push agent class This strategy defines a separate code unit for each class. It
then transfers the agent with all data items and the agent’s state, together
with the agent’s main class. The agent’s main class is the only code unit
transferred. All other classes must be loaded on demand.

The first migration strategy is implemented as class PushAgent in package
de.fsuj.tracy2.plugins.migration.scripts.

1 package de.fsuj.tracy2.plugins.migration.scripts;
2
3 import de.fsuj.tracy2.kalong.KalongException;
4 import de.fsuj.tracy2.plugins.migration.MigrationStrategy;
5
6 public class PushAgent extends MigrationStrategy
7 {
8 protected void defineUnits() throws KalongException
9 {
10 defineUnitForAllClasses();
11 }
12
13 protected void migrateAgent() throws KalongException
14 {
15 final int[] unitIds;
16 final String[] definedDataItems;
17
18 unitIds = getUnits();
19 definedDataItems = getDefinedDataItems();

10.5 Migration � 389

20
21 migrate(destination(), unitIds, definedDataItems, useCache());
21 }
23 }

In line 18 all code units, and in line 19 all data items, that are currently
defined are requested. In line 21 the migration process is started.

The second migration strategy is implemented in class PullPerClass.
It does not transmit any code units, it only transmits the migrating agent’s
current object state. It defines a single code unit for each class. In line 15 the
migration process is started and the two null values indicate that no code
units or data items will be transmitted per the default setting.

1 package de.fsuj.tracy2.plugins.migration.scripts;
2
3 import de.fsuj.tracy2.kalong.KalongException;
4 import de.fsuj.tracy2.plugins.migration.MigrationStrategy;
5
6 public class PullPerClass extends MigrationStrategy
7 {
8 protected void defineUnits() throws KalongException
9 {

10 defineUnitForEachClass();
11 }
12
13 protected void migrateAgent() throws KalongException
14 {
15 migrate(destination(), null, null, useCache());
16 }
17 }

The last migration strategy is implemented in class PushAgentLoadOther.
It defines a single code unit for each class and only transmits the main agent
class to the next destination, while all other classes are loaded dynamically
during runtime from the agent’s home server.

1 package de.fsuj.tracy2.plugins.migration.scripts;

2

3 import de.fsuj.tracy2.kalong.KalongException;

4 import de.fsuj.tracy2.plugins.migration.MigrationStrategy;

5

6 public final class PushAgentLoadOther extends MigrationStrategy

7 {

390 � Chapter 10 Programming Agents with Tracy

8 protected void defineUnits() throws KalongException

9 {

10 defineUnitForEachClass();

11 }

12

13 protected void migrateAgent() throws KalongException

14 {

15 final String agentClassName = getAgent().getClass().getName();

16 final int[] units = getUnitForClassName(agentClassName);

17 final String[] definedDataItems = getDefinedDataItems();

18

19 migrate(destination(), new int[] {units[0]}, definedDataItems, useCache());

20 }

21 }

In line 15 the class name of the agent’s main class is determined and in
the following line the corresponding code unit that contains this class is
requested. This implementation must be extended if the agent itself extends
other classes or interfaces. In line 19 the migration process is started and the
first unit that contains the agent’s base class is selected for transmission.

Finally, here is a list of all other migration strategies already pro-
vided by the MDL plugin. All migration strategies are located in package
de.fsuj.tracy2.plugins.migration.scripts.

PushAgentWithoutCache works as the PushAgent strategy but disables the
code cache by default.

PushClassesInUse defines a separate code unit for each class and transmits all
data items, the agent’s state and all code, but only for classes where an
object exists in the serialized agent’s state and in the external state.

PushToAll defines a separate code unit for all classes. This migration strategy
accepts a property named all.destinations, which must contain an
array of URLs. It transfers all code units to all these addresses and then
starts the migration to the first destination.

PullPerClassWithoutCache works like PushToAll, but disables the code cache by
default.

PullAllClasses defines one code unit for all classes and does not transfer any
code units along with the agent’s data items and state.

PullAllClassesWithoutCache works like PushAllClasses, but disables the code
cache by default.

10.6 Managing Logical-Agency Networks � 391

MirrorAndPush does not define a mapping of classes to code units, and, there-
fore, cannot be used for the initial migration of an agent. It first loads
code units and data items from the agent’s home agency or last mirror
agency that are still missing and not defined at the current agency. If
there is already a mirror agency, it is released and the current agency
becomes the new mirror agency.

MirrorAndPushWithoutCache works like MirrorAndPush, but disables the code
cache by default.

Worm works like a worm that roams the network and initializes each agency
that it visits to become a code server. It does not transmit any code along
with its state transmission, but always loads necessary classes from the
last agency it has visited before. It defines a single common code unit for
all classes.

WormWithoutCache works like Worm, but disables the code cache by default.

10.6 Managing Logical-Agency Networks

10.6.1 Introduction

The Tracy Domain Manager Service is an approach to construct and evolve a
network of agencies. It is indispensable if mobile agents are to move through
the network automatically.

The basic concept we employ is that of a logical-agency network. We
define a logical network as an undirected graph in which vertices represent
agencies and an edge exists between a pair of vertices if there is the possibil-
ity of transmitting mobile agents between the corresponding agencies. Not
all agencies are able to exchange mobile agents because of different trans-
mission protocols, firewalls, or private subnetworks that are only reachable
via a gateway server. A logical-network view is a necessary prerequisite for
a mobile agent to be able to move through the network in an autonomous
fashion. On each agency an agent can ask for this service for the neighboring
agencies and decide which agency to migrate to next.

Without such a network service, the agent’s programmer has to code the
agent’s itinerary into its business logic. Although this is sufficient in many
applications and in small networks, it is not reasonable to define an agent’s
route in a wide-area network or in a dynamic environment (e.g., where

392 � Chapter 10 Programming Agents with Tracy

agencies move in and out of the visible network). In such a scenario, a mobile
agent must be able to find a suitable itinerary on its own, that is, it extends
its autonomy to the task of initial-route planning. In addition, it must be
in a position to react to the ever-changing environment of connections and
agencies. Therefore, the agent can modify and refine the initial itinerary while
it is traveling the network.

Our approach has a two-level structure, where agencies within a subnet-
work are combined into a domain. All agencies within a single domain enlist
at a central server, which is called a domain manager (Fig. 10.1). Each domain
manager registers itself with a unique central server named master. Domains
can be connected to each other so that mobile agents can also reach agencies
in other domains. Connecting and disconnecting of agencies to the network
is fully automatic and dynamic. Our approach is multi-agent based, that is,
several stationary and mobile agents communicate with each other to build
and evolve the logical network view.

The main characteristics of this approach are its robustness in failure sit-
uations and its high performance [Braun et al., 2001a]. This approach can
guarantee that at all times there is a domain manager for each domain. If a
domain manager crashes (because its hosting agency crashes) all remaining
agencies vote for the new domain manager. If the original domain manager
is relaunched, it can reclaim this role.

A logical-agency network is the foundation for more sophisticated ser-
vices of this kind, which all need information about neighboring agencies,
or even all agencies currently reachable. One research topic is to develop

…… ……… ……

H
ig

h
e
r

s
p
e
c
ia

liz
a
ti
o
n

H
ig

h
e

r
p
ri

o
ri

ty

Master (unique)

is a

is a

Domain manager

Domain node

Domain node – Domain manager

Domain manager – Domain manager

Domain manager – Master

Figure 10.1 Topology of our logical-agency network. An edge between a pair of vertices
indicates that the corresponding agencies know each other.

10.6 Managing Logical-Agency Networks � 393

algorithms to plan (semi-) optimal routes for mobile agents with regard
to application capabilities (data, user-level services) offered on agencies
and network quality information. We are currently developing a network-
performance–measuring component for the Tracy toolkit. This component
measures transmission time to other agencies periodically and provides this
information to mobile agents to support the planning of an optimal route
through the network. It uses the logical-agency–network view to define a set
of servers where network quality should be tested. On an even higher level of
abstraction the logical-agency network can be used to propagate information
about applications offered on one agency to others in the network. A mobile
agent can use this service-oriented information to plan its route, optimiz-
ing it with regard to its application context and according to the original
specifications of its owner.

For a introduction of the implementation and the protocols of the
Tracy domain management, see Braun et al. [2001a] and the Tracy online
documentation. In the following section we confine our discussion to the
interface that this plugin provides for agents.

10.6.2 Installing the DomainManager plugin

As described in the last section, each agency plays a specific role in the logical-
agency network: domain node, domain-manager node, and master node. In
the following we describe how an agency takes on one of these roles during
the startup process of this plugin and we will show how this process can be
influenced by configuring the plugin. When we use the term agency in this
section, we mean the DomainManager plugin unless otherwise noted.

The determination of the agency’s role is done semi-automatically when
launching the agency. First, the agency takes the role of a domain node,
assuming that there is another agency that already holds the role of the
domain-manager node. To find this domain-manager node and, later, regis-
ter on it, the new agency sends out a UDP multicast message to all computer
systems in the same subnetwork. Therefore, the most important entry in the
configuration file is the following:

1 udp.port = 42024

This entry defines the port number on which this agency is listening to
incoming UDP multicast messages. Obviously, this port number must

394 � Chapter 10 Programming Agents with Tracy

be the same on all agencies that want to join the same logical-agency
network.

If there is a domain-manager node in this subnetwork, it receives the
multicast message and answers with a single UDP package containing its
URL. Migrations can be addressed to this URL. In the second step, the new
agency now checks with the same transmission protocol whether it can send
mobile agents to the domain manager. In the third step, the new agency sends
a mobile agent to the domain-manager node to register the new domain node
there. The mobile agent returns to indicate that the registration process was
successful. This process is fully automatic and because it uses UDP messages
and very small mobile agents, the whole registration process concludes in
less than 40 ms, on average, in a 100 Mbit/s network.

If no domain manager agency has answered the UDP multicast message
or if the domain manager and the new agency do not share at least one
transmission protocol, the new agency takes on the role of a domain manager
node. It is possible for two domains to exist in one subnetwork at the same
time for the following three reasons: (1) if the new agency sends out the UDP
multicast message to a UDP port other than the one the domain-manager
plugin receives messages on, the registration process will not start; (2) if the
two agencies do not share at least one transmission protocol; (3) because
UDP is an unreliable communication channel (the multicast message as well
as the answer package may get lost which will cause the registration process
to fail). Actually, in our implementation, the UDP multicast is resent three
times to compensate for UDP’s unreliability.

If you want to skip the first step of this process, you can define the address
of an agency that is expected to already be in the role of a domain manager.
If such an address is defined, no UDP multicast messages are sent, and the
new agency immediately tries to send a mobile agent to the agency whose
address is given in the following entry of the configuration file:

1 manager = "tcp://192.168.1.41:42024"

If the whole registration process fails for any reason, a new domain is created
within a subnetwork. Agencies within this subnetwork can now be regis-
tered at two separate domain manager nodes. In the current implementation
the choice of domain-manager nodes is driven by the first-come-first-served
principle, that is, the domain manager node that answers the UDP multicast
first is chosen. When the new agency is in the role of the domain-manager
node, it should connect to other domain-manager nodes nearby. The only

10.6 Managing Logical-Agency Networks � 395

drawback of having two domains in one subnetwork results from slightly
increased migration times to agencies in the other domain inside the same
subnetwork. The agent must search for the agencies it wants to visit by first
migrating via two domain-manager nodes instead of reading the information
locally at its current agency.

The highest level role an agency may assume is that of the master node.
Whereas the preceding process is fully automatic, the decision on the mas-
ter node is made manually by the administrator of the agency that should
become master node, using the following entry in the configuration file:

1 master = "tcp://192.168.1.42:42024"

If the new agency becomes a domain-manager node, it will use this URL to
address the master node and register with it.

To define an agency as a master node, the line just stated should con-
tain the address of this agency. A master node has the same function as
a domain-manager node but it keeps its role over its whole lifetime. The
address of the master node should be passed to all domain-manager nodes in
the agency network so that they can register with the master node and retrieve
information about other domain-manager nodes to which they can connect.

With the simple concepts introduced so far, some problems arise in real-
istic application situations. As can be deduced from the definition of roles
within the logical network, the lifetime and the quality of each type is differ-
ent.We assume that a domain manager node has a longer lifetime and is more
reliable than a domain node, which could be a mobile device using a wire-
less connection. The master’s lifetime and reliability are assumed to be even
higher than those of a domain-manager node. However, this assumption has
not been made in the approaches presented so far.

One shortcoming results from the selection process that starts when a
domain manager node is shutting down. Instead of choosing an arbitrary
node, this selection process can only prevent a short-living or unreliable
(e.g., on a mobile host) node from becoming domain manager for a short
time. The other drawback is strongly related to this; if the domain-manager
node is restarted, it should be able to take back the role of domain-manager
node from the present one. Two agencies accidentally starting at the same
time would thus cause a collision problem.

We now introduce a concept of priorities to influence the role of an agency
within the logical network. The priority of a domain-information plugin is
modeled as a value between −128 and +127. This priority is defined by

396 � Chapter 10 Programming Agents with Tracy

the administrator before the domain-manager plugin is started. The priority
value should result from the reliability and long life of this agency. The higher
this value, the more important the role that this agency may assume within
the network (see Fig. 10.1). The default value of an agency equals 0. To define
the priority, the following entry in the configuration file can be used:

1 priority = 10

With the concept of priorities, the launching process of the plugin changes
slightly.When a new node receives the UDP packages containing the URL and
priority information of found domain manager nodes (remember that several
domain managers might exist in a single subnetwork), it now compares the
priorities of theses nodes with its own. If its own priority is higher, the new
node becomes the domain manager. Otherwise, it tries to register at one of
these nodes, starting with the one with highest priority.

If a new node becomes domain manager, a process of changing roles is
started: A mobile agent is started to visit all domain manager nodes, and
notifies each node to release its role and fall back to the role of a domain
node. Each node is informed about the new domain-manager node, so no
new registration process is necessary.

When a domain-manager node is shutting down, it selects the next domain
manager from the list of all known domain nodes, according to their priority.
To inform the new domain manager and all connected domain nodes about
the new situation, the process just described starts.

To prevent two agencies starting at the same time from becoming domain-
manager nodes, the priorities and the agency’s names can be used. When
receiving the UDP package containing the URL and priority of another
domain-manager node, the new node can determine which node is going to
take the role of domain manager by comparing the priorities of both nodes.
If both priorities are equal, the node is chosen alphabetically by its URL.

10.6.3 The DomainManager API

In this section we give an overview of the DomainManager API, by which an
agent can obtain information about other agencies in its environment.

The first method is used to retrieve the current role of this agency.

public int getRole()

Returns the current role of this domain node.

10.6 Managing Logical-Agency Networks � 397

The returned value is one of the following constants defined in interface
IAgentDomainContext which is located in package de.fsuj.tracy2.-
plugins.domainservice.interfaces:

■ ROLE_NODE—the agency is a simple domain node

■ ROLE_MANAGER—the agency is a domain manager

■ ROLE_MASTER—the agency is a master-domain manager

If the current role of the agency cannot be determined because of a running
voting process where it is not yet clear which role the agency will take in the
future, value ROLE_BUSY will be returned.

The next method can be used by agents to retrieve the addresses of domain
nodes.

public IAgencyURL[] getDomainNodes()

Returns the addresses of all agencies that are currently registered as domain nodes.

This method returns an array of objects of typeIAgencyURL, which is defined
in package de.fsuj.tracy2.plugins.domainservice.interfaces.-
IAgencyURL. This class defines a collection of several URLs that can be used
to address an agency. The differences between these URLs are, therefore, only
the protocol names and the port numbers. For an overview of all methods
provided by this class, see the Tracy online documentation.

The information about domain nodes is only available at a domain-
manager node or a master node. Therefore, an agent has to migrate to such
a manager node before requesting the list of all known domain nodes. If this
method is called at a domain node, null will be returned.

The next method can be used to retrieve information about domain
manager nodes.

public IAgencyURL[] getDomainManagers()

Returns the addresses of all domain managers that are known at this agency.

If this method is called at a domain node, the address of the unique domain
manager is returned. If this method is called at a domain manager, the
addresses of all other known domain managers are returned, not including
the current agency. If this method is called on a master node, the addresses
of all known domain managers are returned.

398 � Chapter 10 Programming Agents with Tracy

Finally, at all domain-manager nodes in the logical agency network, the
following method can be used to obtain the address of the unique-master
node.

public IAgencyURL getMasterDomainManager()

Returns the address of the master-domain manager.

At domain nodes, this information might not be available. Therefore, agents
have to migrate to domain-manager nodes to obtain this information. If no
master-domain manager is available, this method returns null.

In the following example, an agent retrieves the addresses of all known
domain nodes while it is residing at a domain-manager node. If such
addresses are found, it prints them on its owner’s console.

1 package examples.agents;

2

3 import de.fsuj.tracy2.kernel.Context;

4 import de.fsuj.tracy2.plugins.domainservice.interfaces.IAgentDomainContext;

5 import de.fsuj.tracy2.plugins.domainservice.interfaces.IAgentShellContext;

6

7 import java.net.URL;

8

9 public class MyDomainServiceAgent implements Runnable

10 {

11 public void run()

12 {

13 IAgentDomainContext domainCxt;

14 IAgentShellContext shellCxt;

15 IAgencyURL[] domainNodes;

16

17 if((domainCxt = (IAgentDomainContext)Context.getContext("domainservice")) != null

18 && (shellCxt = (IAgentShellContext)Context.getContext("shell")) != null)

19 {

20 if(domainCxt.getRole() == IAgentDomainContext.ROLE_MANAGER)

21 {

22 domainNodes = domainCxt.getDomainNodes();

23 shellCxt.writeToUser("Current system runs in domain manager role!");

24

25 if(domainNodes != null)

26 {

27 shellCxt.writeToUser("Known domain nodes are:");

28 for(i=0; i < domainNodes.length; i++)

29 {

10.6 Managing Logical-Agency Networks � 399

30 shellCxt.writeToUser(domainNode[i].toString());

31 }

32 }

33 }

34 }

35 }

36 }

Summary

In this chapter we have shown how to program mobile and stationary soft-
ware agents using the Tracy toolkit. We pointed out that software agents in
Tracy are only Java objects of type Runnable, which is a very important dif-
ference from other mobile agent toolkits. We defined the agent life-cycle and
stressed that agents inTracy should be programmed as finite-state-machines,
especially when they implement some kind of communication protocol. We
admit that programming of agents is somewhat different from most program-
ming experience (and may be more complex than writing normal software
components), which mainly is the result of the asynchronous message trans-
fer scheme that is used in most agent toolkits—not only in Tracy. This is an
open issue in current research and we are working on techniques to make
programming of mobile and communicative agents more easy in the future.

We introduced some very important plugins, for example, to let agents
communicate with each other and get information about their environments.
As mentioned before, you will be able to find more interesting plugins on our
Web site www.mobile-agents.org, along with some documentation to develop
your own plugins for Tracy and more examples of mobile agents.

We see the extendability of Tracy as its major advantage over other mobile
agent toolkits available today. We would like to encourage all research groups
working on topics related to mobile agents to implement their research results
in Tracy. There are many open issues in mobile agent research, some which
have been discussed in this book. A lot of work as already been done on
paper, but has not yet been implemented. We hope that many people will
find Tracy useful and helpful for their work and will help to create a large user
community.

THIS PAGE INTENTIONALLY LEFT BLANK

Bibliography

Anurag Acharya, Mudumbai Ranganathan, and Joel Saltz. Sumatra: A language
for resource-aware mobile programs. In Jan Vitek and Christian F. Tschudin,
editors, Mobile Object Systems: Towards the Programmable Internet (MOS ’96),
Linz (Austria), July 1996 (Selected Presentations and Invited Papers), volume 1222
of Lecture Notes in Computer Science, pages 111–130. Springer-Verlag, 1997.

Adobe Systems, Inc. PostScript® Language Reference. Addison-Wesley, 3rd edition,
1999.

AlfredV. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Principles, Techniques, and
Tools. Addison-Wesley, 1986.

Joan Ametller, Sergi Robles, and Joan Borrell. Agent Migration over FIPA ACL
Messages. In Eric Horlait, Thomas Magedanz, and Roch H. Glitho, editors, Pro-
ceedings of 5th International Workshop on Mobile Agents for Telecommunication
Applications (MATA 2003), Marakech (Morocco), October 2003, volume 2881 of
Lecture Notes in Computer Science, pages 210–219. Springer-Verlag, 2003.

Wolfram Amme, Niall Dalton, Michael Franz, and Jeffery von Ronne. SafeTSA: A Type
Safe and Referentially Secure Mobile-Code Representation Based on Static Single
Assignment Form. ACM SIGPLAN Notices, 36(5):137–147, 2001.

David Anderson. Seti@home. In Oram [2001], pages 67–76.

Ken Arnold, James Gosling, and David Holmes. The JavaTM Programming Language.
The Java Series. Addison-Wesley, 3rd edition, 2000.

Marco Avvenuti and AlessioVecchio. MobileRMI: a toolkit for enhancing Java Remote
Method Invocation with mobility. In 6th ECOOP Workshop on Mobile Object
Systems: Operating System Support, Security and Programming Languages,
Sophia Antipolis (France), June 2000, 2000. Paper is only available online at
cui.unige.ch/∼ecoopws/ws00.

László Babai, Lance Fortnow, Leonid A. Levin, and Mario Szegedy. Checking compu-
tations in polylogarithmic time. In Proceedings of the Twenty Third Annual ACM
Symposium on Theory of Computing (STOC 1991), New Orleans (USA), May 1991,
pages 21–32. ACM Press, 1991.

401

402 � Bibliography

Mario Baldi, Silvano Gai, and Gian Pietro Picco. Exploiting code mobility in
decentralized and flexible network management. In Kurt Rothermel and Radu
Popescu-Zeletin, editors, Proceedings of the First International Workshop on
Mobile Agents (MA ’97), Berlin (Germany), April 1997, volume 1219 of Lecture
Notes in Computer Science, pages 13–26. Springer-Verlag, 1997.

Mario Baldi and Gian Pietro Picco. Evaluating the tradeoffs of mobile code design
paradigms in network management applications. In Koji Torii, Kokichi Futatsugi,
and Richard A. Kemmerer, editors, Proceedings of the 20th International Con-
ference on Software Engineering (ICSE ’98), Kyoto (Japan), April 1998, pages
146–155. IEEE Computer Society Press, 1998.

Michel Barbeau. Modeling and comparison of bandwidth usage of three migration
strategies of mobile agents. In Ahmed Karmouch and Roger Impey, editors,
Mobile Agents for Telecommunication Applications, Proceedings of the First Inter-
nationalWorkshop (MATA 1999), Ottawa (Canada), October 1999, pages 197–210.
World Scientific Pub., 1999.

Joachim Baumann. Mobile agents: A Triptychon of Problems. In 1st ECOOP Work-
shop on Mobile Object Systems: Objects and Agents: Love at First Sight or Shotgun
Wedding?, Aarhus (Denmark), August 1995, 1995.

Joachim Baumann. Mobile Agents: Control Algorithms, volume 1658 of Lecture Notes
in Computer Science. Springer-Verlag, 2000.

Joachim Baumann, Fritz Hohl, Nikolaos Radouniklis, Kurt Rothermel, and Markus
Straßer. Communication concepts for mobile agent systems. In Kurt Rothermel
and Radu Popescu-Zeletin, editors, Proceedings of the First International Work-
shop on Mobile Agents (MA ’97), Berlin (Germany), April 1997, volume 1219 of
Lecture Notes in Computer Science, pages 123–135. Springer-Verlag, 1997.

Joachim Baumann, Fritz Hohl, Kurt Rothermel, Markus Schwehm, and Markus
Straßer. Mole 3.0: A Middleware for Java-Based Mobile Software Agents. In
Nigel Davie, Kerry Raymond, and Jochen Seitz, editors, Middleware ’98: IFIP
International Conference on Distributed Systems Platforms and Open Distributed
Processing, pages 355–372. Springer-Verlag, 1998.

Christoph Bäumer, Markus Breugst, Sang Choy, and Thomas Magedanz.
Grasshopper—A universal agent platform based on OMG MASIF and FIPA
standards. In Ahmed Karmouch and Roger Impey, editors, Mobile Agents for
Telecommunication Applications, Proceedings of the First InternationalWorkshop
(MATA 1999), Ottawa (Canada), October 1999, pages 1–18. World Scientific Pub.,
1999.

Werner Van Belle and Theo D’Hondt. Agent Mobility and Reification of Computa-
tional State: An Experiment in Migration. In Thomas Wagner and Omer F. Rana,
editors, Agents Workshop on Infrastructure for Multi-Agent Systems, volume 1887
of Lecture Notes in Computer Science, pages 166–173. Springer-Verlag, 2001.

Fabio Bellifimine, Giovanni Caire, Agostino Poggi, and Giovanni Rimassa. Jade—A
White Paper. EXP in search of innovation, 3(3):6–19, 2003.

Shimshon Berkovits, Joshua D. Guttman, and Vipin Swarup. Authentication
for mobile agents. In Giovanni Vigna, editor, Mobile Agents and Securtiy,

Bibliography � 403

volume 1419 of Lecture Notes in Computer Science, pages 114–136. Springer-
Verlag, 1998.

Lorenzo Bettini and Rocco De Nicola. Translating strong mobility into weak mobility.
In Gian Pietro Picco, editor, Mobile Agents, Proceedings of the 5th International
Conference (MA 2001), Atlanta (USA), December 2001, volume 2240 of Lecture
Notes in Computer Science, pages 182–197. Springer-Verlag, 2001.

Walter Binder and Volker Roth. Secure mobile agent systems using Java: where are
we heading? In Gary B. Lamont, Hisham Haddad, George Papadopoulos, and
Brajendra Panda, editors, Proceedings of the 2002 ACM Symposium on Applied
Computing (SAC), Madrid (Spain), March 2002, pages 115–119. ACM Press, 2002.

Andrew Birrell and Bruce Nelson. Implementing remote procedure calls. ACM Trans-
actions on Computer Systems, 2(1):39–59, 1984.

J. K. Boggs. IBM Remote Job Entry Facility: Generalize Subsystem Remote Job Entry
Facility. Technical Report 752, IBM Technical Disclosure Bulletin, August 1973.

Quetzalcoatl Bradley, R. Nigel Horspool, and JanVitek. JAZZ: An Efficient Compressed
Format for Java Archive Files. In Proceedings of the 1998 Conference of the IBM
Center for Advanced Studies on Collaborative Research (CASCON ’98), Toronto
(Canada), December 1998, page 7. IBM Press, 1998.

Jeffrey Bradshaw, editor. Software Agents. The MIT Press, Menlo Park, CA, 1996.

Peter Braun, Jan Eismann, and Wilhelm Rossak. Managing Tracy Agent Server Net-
works. Technical Report 12/01, Friedrich-Schiller-Universität Jena, Institut für
Informatik, 2001a.

Peter Braun, Christian Erfurth, and Wilhelm Rossak. Performance Evaluation of
Various Migration Strategies for Mobile Agents. In Ulrich Killat and Winfried
Lamersdorf, editors, Fachtagung Kommunikation in verteilten Systemen (KiVS
2001), Hamburg (Germany), February 2001, Informatik aktuell, pages 315–324.
Springer-Verlag, 2001b.

Peter Braun, Steffen Kern, Christian Fensch, and Wilhelm Rossak. Class splitting as a
method to reduce the migration overhead of mobile agents. In Proceedings of the
International Symposium on Distributed Objects and Applications (DOA 2004),
Larnaca (Cyprus), October 2004, Lecture Notes in Computer Science. Springer-
Verlag, 2004.

Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad, and Michael
Stal. Pattern-oriented Software Architecture: A System of Pattern. John Wiley and
Sons, 1996.

Giacomo Cabri, Letizia Leonardi, and Franco Zambonelli. Mobile agent technology:
Current trends and perspectives. In Congresso annuale AICA ’98, Napoli (Italy),
November 1998, 1998a.

Giacomo Cabri, Letizia Leonardi, and Franco Zambonelli. Reactive tuple spaces for
mobile agent coordination. In Kurt Rothermel and Fritz Hohl, editors, Proceed-
ings of the Second International Workshop on Mobile Agents (MA ’98), Stuttgart
(Germany), September 1998, volume 1477 of Lecture Notes in Computer Science,
pages 237–248. Springer-Verlag, 1998b.

404 � Bibliography

Giacomo Cabri, Letizia Leonardi, and Franco Zambonelli. Weak and strong mobility
in mobile agent applications. In Proceedings of the 2nd International Con-
ference and Exhibition on The Practical Application of Java (PA JAVA 2000),
Manchester (UK), April 2000, 2000. The paper is only available online at
polaris.ing.unimo.it/MOON/papers/.

Jiannong Cao, Xinyu Feng, Jian Lu, and Sajal K. Das. Mailbox-based scheme
for designing mobile agent communication protocols. Computer, 35(9):54–60,
2002.

Nicholas Carriero and David Gelernter. How to write parallel programs: A guide for
the perplexed. ACM Computing Surveys, 21(3):323–357, 1989.

Antonio Carzaniga, Gian Pietro Picco, and Giovanni Vigna. Designing distributed
applications with mobile code paradigms. In Proceedings of the 19th International
Conference on Software Engineering (ICSE ’97), Boston (USA), April 1997, pages
22–32. ACM Press, 1997.

Arjav J. Chakravarti, Xiaojin Wang, Jason Hallstrom, and Gerald Baumgartner. Imple-
mentation of strong mobility for multi-threaded agents in java. In Proceedings of
the 32nd International Conference on Parallel Processing (ICPP 2003), Kaohsiung
(Taiwan), October 2003, pages 321–332. IEEE Computer Society Press, 2003.

David M. Chess, Benjamin Grosof, Colin G. Harrison, David Levine, Colin Paris, and
Gene Tsudik. Itinerant agents for mobile computing. In Huhns and Singh [1997],
pages 267–282.

David M. Chess, Colin G. Harrison, and Aaron Kershenbaum. Mobile agents: Are they
a good idea? In JanVitek and Christian F.Tschudin, editors, Mobile Object Systems:
Towards the Programmable Internet (MOS ’96), Linz (Austria), July 1996 (Selected
Presentations and Invited Papers), volume 1222 of Lecture Notes in Computer
Science, pages 25–45. Springer-Verlag, 1997b.

Dimitris N. Chorafas. Agent Technology Handbook. McGraw-Hill, 1997.

Paolo Ciancarini, Andrea Omicini, and Franco Zambonelli. Coordination technolo-
gies for internet agents. Nordic Journal of Computing, 6(3):215–240, 1999.

William R. Cockayne and Michael Zyda, editors. Mobile Agents: Explanations and
Examples. Manning Publications, 1997.

Gianpaolo Cugola, Carlo Ghezzi, Gian Pietro Picco, and Giovanni Vigna. Analyzing
mobile code languages. In Jan Vitek and Christian F. Tschudin, editors, Mobile
Object Systems: Towards the Programmable Internet (MOS ’96), Linz (Austria), July
1996 (Selected Presentations and Invited Papers), volume 1222 of Lecture Notes in
Computer Science, pages 93–110. Springer-Verlag, 1997a.

Gianpaolo Cugola, Carlo Ghezzi, Gian Pietro Picco, and Giovanni Vigna. A char-
acterization of mobility and state distribution in mobile code languages. In
Max Mühlhäuser, editor, Special Issues in Object-Oriented Programming: Work-
shop Reader of the 10th European Conference on Object-Oriented Programming
(ECOOP ’96), Linz (Austria), July 1996, pages 309–318. dpunkt Verlag, 1997b.

Grzegorz Czajkowski and Thorsten von Eicken. JRes: A resource accounting interface
for Java. ACM SIGPLAN Notices, 33(10):21–35, 1998.

Bibliography � 405

Jocelyn Desbiens, Francis Renaud, and Martin Lavoie. Communication and tracking
infrastructure of a mobile agent system. In Proceedings of the 31st Annual Hawaii
International Conference on System Science (HICSS), Hawaii (USA), January 1998,
volume 7, pages 54–63. IEEE Computer Society Press, 1998.

Marios D. Dikaiakos and George Samaras. Qualtitative performance analysis of
mobile agent systems: A hierachical approach. Technical Report TR-2000-2,
University of Cyprus, Department of Computer Science, June 2000.

Bruno Dillenseger. MobiliTools: An OMG Standards-basedToolbox for Agent Mobility
and Interoperability. In Harmen R. van As, editor, Telecommunication Network
Intelligence, 6th IFIP Conference on Intelligence in Networks (SMARTNET 2000),
Vienna (Austria), September 2000, volume 178, pages 353–366. Kluwer Academic
Publishers, 2000.

Fred Douglis and John K. Ousterhout. Transparent Process Migration: Design Alter-
natives and the Sprite Implementation. Software—Practice and Experience, 21
(8):757–785, 1991.

F. Brent Dubach, Robert M. Rutherford, and Charles M. Shub. Process-originated
migration in a heterogeneous environment. In Seventeenth Annual ACM Com-
puter Science Conference, Louisville (USA), February 1989, pages 98–102. ACM
Press, 1989.

Guy Edjlali, Anurag Acharya, and Vipin Chaudhary. History-based access control
for mobile code. In Proceedings of the Fifth ACM Conference on Computer and
Communications Security (CCS ’98), San Francisco (USA), November 1998, pages
38–48. ACM Press, 1998.

Guy Edjlali, Anurag Acharya, and Vipin Chaudhary. History-based access control
for mobile code. In Jan Vitek and Christian D. Jensen, editors, Internet
Programming—Security Issues for Mobile and Distributed Objects, volume 1603
of Lecture Notes in Computer Science, pages 413–432. Springer-Verlag, 1999.

Christian Erfurth, Peter Braun, andWilhelm Rossak. Migration Intelligence for Mobile
Agents. In Artificial Intelligence and the Simulation of Behaviour (AISB) Sympo-
sium on Software mobility and adaptive behaviour. University of York (United
Kingdom), March 2001, pages 81–88, 2001a.

Christian Erfurth, Peter Braun, and Wilhelm Rossak. Some thoughts on migration
intelligence for mobile agents. Technical Report 09/01, Friedrich-Schiller-
Universität Jena, Institut für Informatik, April 2001b.

Joseph R. Falcone. A programmable interface language for heterogeneous distributed
sytems. ACM Transactions on Computer Systems, 5(4):330–351, July 1987.

William M. Farmer, Joshua D. Guttman, andVipin Swarup. Security for mobile agents:
Authentication and state appraisal. In Elisa Bertino, Helmut Kurth, Giancarlo
Martella, and Emilio Montolivo, editors, Proceedings of the Fourth European
Symposium on Research in Computer Security (ESORICS 1996), Rome (Italy),
September 1996, volume 1146 of Lecture Notes in Computer Science, pages
118–130. Springer-Verlag, 1996a.

406 � Bibliography

William M. Farmer, Joshua D. Guttman, andVipin Swarup. Security for mobile agents:
Issues and requirements. In Proceedings of the 19th National Information Sys-
tems Security Conference (NISSC), Baltimore (USA), October 1996, pages 591–597,
1996b.

Christian Fensch. Class Splitting as a Method to Reduce Network Traffic in a Mobile
Agent System. Diplomarbeit, Friedrich-Schiller-Universität Jena, Institut für
Informatik, 2001.

Jacques Ferber. Multi-Agent Systems: An Introduction to Distributed Artificial
Intelligence. Addison-Wesley, 1999.

Timothy W. Finin, Richard Fritzson, Don McKay, and Robin McEntire. KQML as
an Agent Communication Language. In Nabil R. Adam, Bharat K. Bhargava,
and Yelena Yesha, editors, Proceedings of the 3rd International Conference
on Information and Knowledge Management (CIKM ’94), Gaithersburg (USA),
November/December 1994, pages 456–463. ACM Press, 1994.

Leonard N. Foner. Entertaining Agents—A Sociological Case Study. In W. Lewis John-
son, editor, Proceedings of the First International Conference on Autonomous
Agents, Marina del Rey (USA), Februar 1997, pages 122–129. ACM Press, 1997.

Stan Franklin and Art Graesser. Is it an agent, or just a program?: A taxonomy for
autonomous agents. In Jörg P. Müller, Michael Wooldridge, and Nicholoas R.
Jennings, editors, Proceedings of the 3rd ECAIWorkshop on Agent Theories, Archi-
tectures, and Languages (ATAL 1996), Intelligent Agents III, Budapest (Hungary),
August 1996, volume 1193 of Lecture Notes in Computer Science, pages 21–35,
1997.

Richard Fritzson, Timothy W. Finin, Don McKay, and Robin McEntire. KQML—A
language and protocol for knowledge and information exchange. In Proceedings
of the Thirteenth International Workshop on Distributed Artificial Intelligence,
pages 126–136, 1994.

Alfonso Fuggetta, Gian Pietro Picco, and Giovanni Vigna. Understanding code
mobility. IEEE Transactions on Software Engineering, 24(5):342–361, 1998.

Munehiro Fukuda, Lubomir F. Bic, Michael B. Dillencourt, and Fehmina Merchant.
Intra- and inter-object coordination with MESSENGERS. In Paolo Ciancarini and
Chris Hankin, editors, Proceedings of the First International Conference on Coor-
dination Languages and Models (COORDINATION ’96), Cesena (Italy), April
1996, volume 1061 of Lecture Notes in Computer Science, pages 179–196.
Springer-Verlag, 1996.

Munehiro Fukuda, Yuichiro Tanaka, Naoya Suzuki, Lubomir Bic, and Shinya
Kobayashi. A Mobile-Agent PC Grid. In Proceedings of the 5th Annual Interna-
tional Workshop on Active Middleware Services (AMS 2003), Autonomic Comput-
ing Workshop, Seattle (USA), June 2003, pages 142–150. IEEE Computer Society
Press, 2003.

Stefan Fünfrocken. Transparent migration of Java-based mobile agents. In Kurt
Rothermel and Fritz Hohl, editors, Proceedings of the Second International Work-
shop on Mobile Agents (MA ’98), Stuttgart (Germany), September 1998, volume
1477 of Lecture Notes in Computer Science, pages 26–37. Springer-Verlag, 1999.

Bibliography � 407

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley, 1995.

Norbert Glaser. Conceptual Modelling of Multi-Agent Systems: The Comomas Engi-
neering Environment (Multiagent Systems, Artificial Societies, and Simulated
Orga). Kluwer Academic Publishers, 2002.

Robert S. Gray. Agent Tcl: A flexible and secure mobile agent system. In Proceedings
of the Fourth Annual Tcl/Tk Workshop, Monterey (USA), July 1996, pages 9–23.
USENIX Association, 1996.

Robert S. Gray. Agent Tcl: A flexible and secure mobile-agent system. PhD thesis,
Dartmouth College, Computer Science, 1997.

Robert S. Gray. Mobile agents: Overcoming early hype and a bad name (panel). In
Anupam Joshi and Hui Lei, editors, IEEE International Conference on Mobile
Data Management (MDM ’04), Berkeley (USA), January 2004, pages 302–303. IEEE
Computer Society Press, 2004.

Robert S. Gray, George Cybenko, David Kotz, Ronald A. Peterson, and Daniela Rus.
D’Agents: Applications and performance of a mobile-agent system. Software—
Practice and Experience, 32(6):543–573, 2002.

Robert S. Gray, George Cybenko, David Kotz, and Daniela Rus. Agent Tcl. In Cockayne
and Zyda [1997].

Robert S. Gray, David Kotz, Ronald A. Peterson, Joyce Barton, Daria A. Chacón,
Peter Gerken, Martin O. Hofmann, Jeffrey Bradshaw, Maggie R. Breedy, Renia
Jeffers, and Niranjan Suri. Mobile-agent versus client/server performance: Scal-
ability in an information-retrieval task. In Gian Pietro Picco, editor, Mobile
Agents, Proceedings of the 5th International Conference (MA 2001), Atlanta
(USA), December 2001, volume 2240 of Lecture Notes in Computer Science, pages
229–243. Springer-Verlag, 2001.

Shaw Green, Leon Hurst, Brenda Nangle, Padraig Cunningham, Fergal Somers, and
Richard Evans. Software agents: A review. Technical Report TCD-CS-1997-06,
Intelligent Agent Group, Trinity College (Ireland), 1997.

Arne Grimstrup, Robert S. Gray, David Kotz, Maggie R. Breedy, Marco M. Carvalho,
Thomas B. Cowin, Daria A. Chacon, Joyce Barton, Chris Garrett, and Martin
Hoffmann. Toward Interoperability of Mobile-Agent Systems. In Niranjan Suri,
editor, Proceedings of the 6th International Conference on Mobile Agents (MA
2002), Barcelona (Spain), October 2002, volume 2535 of Lecture Notes in Computer
Science, pages 106–120. Springer-Verlag, 2002.

Object Management Group. The Common Object Request Broker: Architecture and
Specification, Rev. 3, 2002.

Thomas Gschwind. Comparing Object Oriented Mobile Agent Systems. In 6th ECOOP
Workshop on Mobile Object Systems: Operating System Support, Security and Pro-
gramming Languages, Sophia Antipolis (France), June 2000, 2000. Paper is only
available online at cui.unige.ch/∼ecoopws/ws00.

Dieter K. Hammer and Ad T. M. Aerts. Mobile Agent Architectures: What are
the Design Issues? In Proceedings International Conference and Workshop on

408 � Bibliography

Engineering of Computer-Based Systems (ECBS ’98), Maale Hachamisha (Israel),
March/April 1998, pages 272–280. IEEE Computer Society Press, 1998.

Colin G. Harrison, David M. Chess, and Aaron Kershenbaum. Mobile agents: Are they
a good idea? Research Report RC 19887, IBM Research Division, 1995.

Carl E. Hewitt. Viewing control structures as patterns of passing messages. Journal of
Artificial Intelligence, 8(3):323–364, 1977.

Fritz Hohl. A model of attacks of malicious hosts against mobile agents. In Serge
Demeyer and Jan Bosch, editors, Proceedings of the 4th ECOOP Workshop on
Mobile Object Systems: Secure Internet Mobile Computation, Brussels (Belgium),
July 1998, volume 1543 of Lecture Notes in Computer Science, page 299. Springer-
Verlag, 1998a.

Fritz Hohl. Protecting mobile agents from malicious hosts. In Giovanni Vigna, editor,
Mobile Agents and Securtiy, volume 1419 of Lecture Notes in Computer Science,
pages 90—111. Springer-Verlag, 1998b.

Fritz Hohl, Peter Klar, and Joachim Baumann. Efficient code migration for modular
mobile agents. In 3rd ECOOP Workshop on Mobile Object Systems: Operating
System support for Mobile Object Systems, Jyvälskylä (Finland), June 1997, 1997.

Fritz Hohl and Kurt Rothermel. A protocol preventing blackbox tests of mobile
agents. In ITG/VDE Fachtagung Kommunikation inVerteilten Systemen (KiVS ’99),
Darmstadt (Germany), March 1999, pages 170–181. Springer-Verlag, 1999.

Michael N. Huhns and Munindar P. Singh, editors. Readings in Agents.
Morgan Kaufmann Publishers, 1997.

IEEE IC-Online. The Future of Software Agents, Internet Computing Online Virtual
Roundtable with Mani Chandy, Danny Lange, Pattie Maes, John Ouster-
hout, Jeff Rosenschein, Sankar Virdhagriswaran, James E. White. http://
www.computer.org/internet/v1n4/round.htm, July/August 1997.

IKV. Grasshopper Programmer’s Guide, Release 2.2. IKV++ GmbH, Berlin, March 2001a.

IKV. Grasshopper User’s Guide, Release 2.2. IKV++ GmbH, Berlin, March 2001b.

Torsten Illmann, Tilman Krüger, Frank Kargl, and Michael Weber. Transparent Migra-
tion of Mobile Agents Using the Java Platform Debugger Architecture. In Gian
Pietro Picco, editor, Mobile Agents, Proceedings of the 5th International Confer-
ence (MA 2001), Atlanta (USA), December 2001, volume 2240 of Lecture Notes in
Computer Science, pages 198–212. Springer-Verlag, 2001.

Ashraf Iqbal, Joachim Baumann, and Markus Straßer. Efficient algorithms to find opti-
mal agent migration strategies. Technical Report 1998/05, Universität Stuttgart,
Fakultät für Informatik, April 1998.

Leila Ismail and Daniel Hagimont. A performance evaluation of the mobile agent
paradigm. ACM SIGPLAN Notices, 34(10):306–313, 1999.

Ravi Jain, Farooq Anjum, and Amjad Umar. A comparison of mobile agent and client-
server paradigms for information retrieval tasks in virtual enterprises. In
Proceedings of the Academia/IndustryWorking Conference on Research Challenges
(AIWORC ’00), Buffalo, NY (USA), April 2000, pages 209–214. IEEE Computer
Society Press, 2000.

Bibliography � 409

Wayne A. Jansen. Countermeasures for mobile agent security. Computer Communi-
cations: Special Issue on Advances in Research and Application of Network
Security, 23(17):1667–1676, 2000.

Dag Johansen. Mobile agent applicability. In Kurt Rothermel and Fritz Hohl, editors,
Proceedings of the Second International Workshop on Mobile Agents (MA ’98),
Stuttgart (Germany), September 1998, volume 1477 of Lecture Notes in Computer
Science, pages 80–98. Springer-Verlag, 1999.

Dag Johansen, Nils P. Sudmann, and Robbert van Renesse. Performance issues in
TACOMA. In 3rd ECOOP Workshop on Mobile Object Systems: Operating System
support for Mobile Object Systems, Jyvälskylä (Finland), June 1997, 1997.

Dag Johansen, Robbert van Renesse, and Fred B. Schneider. Operating system support
for mobile agents. In Proceedings of the 5th IEEE Workshop on Hot Topics in
Operating Systems (HotOS-V), Orcas Island (USA), May 1995, pages 42–45. IEEE
Computer Society Press, 1995.

Neeran M. Karnik. Security in Mobile Agent Systems. PhD thesis, Univeristy of
Minnesota, Department of Computer Science, 1998.

Neeran M. Karnik and Anand R.Tripathi. Design Issues in Mobile Agent Programming
Systems. IEEE Concurrency, 6(6):52–61, 1998.

Neeran M. Karnik and Anand R. Tripathi. Security in the Ajanta Mobile Agent
Programming System. Software—Practice and Experience, 31(4):301–329, April
2001.

Joe Kilian. A note on efficient zero-knowledge proofs and arguments. In Proceedings
of the Twenty Fourth Annual ACM Symposium on Theory of Computing, Victoria
(Canada), May 1992, pages 723–732. ACM Press, 1992.

Joseph Kiniry and Daniel Zimmerman. A Hands-On Look at Java Mobile Agents. IEEE
Internet Computing, 1(4):21–30, July/August 1997.

Frederick C. Knabe. Language Support for Mobile Agents. PhD thesis, Carnegie Mellon
University, Pittsburgh, Pa. (USA), December 1995.

Frederick C. Knabe. An overview of mobile agent programming. In Mads Dam, editor,
Proceedings of the 5th LOMAPSWorkshop on Analysis andVerification of Multiple-
Agent Languages, Stockholm (Sweden), Juni 1996, volume 1192 of Lecture Notes
in Computer Science, pages 100–115. Springer-Verlag, 1997a. Invited paper.

Frederick C. Knabe. Performance-oriented implementation strategies for a mobile
agent language. In JanVitek and Christian F. Tschudin, editors, Mobile Object Sys-
tems: Towards the Programmable Internet (MOS ’96), Linz (Austria), July 1996
(Selected Presentations and Invited Papers), volume 1222 of Lecture Notes in
Computer Science, pages 229–244. Springer-Verlag, 1997b.

Pål Knudsen. Comparing two distributed computing paradigms—a performance case
study. Master’s thesis, University of Tromsø (Norway), August 1995.

Reuven Koblick. Concordia. Communications of the ACM, 42(3):96–97, 1999.

Larry Korba and Ronggong Song. Modeling and simulating the scalability of a multi-
agent application system. Technical Report NRC/ERB-1097, National Research
Council Canada, Institute for Information Technology, August 2002.

410 � Bibliography

David Kotz and Robert S. Gray. Mobile Agents and the Future of the Internet. ACM
Operating Systems Review, 33(3):7–13, 1999.

Ryszard Kowalczyk, Peter Braun, Jan Eismann, Bogdan Franczyk, Wilhelm Rossak,
and Andreas Speck. InterMarket: Towards Intelligent Mobile Agent-based
e-Marketplaces. In Proceedings of the 9th Annual Conference and Workshop on
the Engineering of Computerbased Systems (ECBS-2002), Lund (Sweden), April
2002, pages 268–275. IEEE Computer Society Press, 2002.

Natasha Kravtsova and Andre Meyer. Searching for music with agents. In Eric Horlait,
editor, Mobile Agents for Telecommunication Applications, Proceedings of the
Second International Workshop (MATA 2000), Paris (France), September 2000,
volume 1931 of Lecture Notes in Computer Science, pages 195–203. Springer-
Verlag, 2000.

Chandra Krintz, Brad Calder, and Urs Hölzle. Reducing transfer delay using java class
file splitting and prefetching. ACM Sigplan Notices, 34(10):276–291, 1999.

Danny B. Lange and Mitsuru Oshima. Programming and Deploying Java Mobile
Agents with Aglets. Addison-Wesley, 1998.

Adam Langley. Freenet. In Oram [2001], pages 123–132.

Sashi Lazar and Deepinder Sidhu. Discovery: A Mobile Agent Framework for
Distributed Applications. Technical report, Maryland Center for Telecommuni-
cations Research, Department of Computer Science and Electrical Engineering,
University of Maryland Baltimore County, 1998.

Tim Lindholm and Frank Yellin. The Java Virtual Machine Specification. Addison-
Wesley, 2nd edition, 1999.

Catherine Meadows. Detecting attacks on mobile agents. In DARPA Workshop on
Foundations for Secure Mobile Code, Monterey (USA), March 1997, 1997. Position
Paper.

Jim Melton. Understanding SQL’s Stored Procedures: A Complete Guide to SQL/PSM.
Morgan Kaufmann Publishers, 1998.

Silvio Micali. CS proofs. In Proceedings of the 35th IEEE Symposium on Founda-
tions of Computer Science, Santa Fe (USA), November 1994, pages 436–453. IEEE
Computer Society Press, 1994.

Dejan S. Milojicic, Markus Breugst, Ingo Busse, John Campbell, Stefan Covaci,
Barry Friedman, Kazuya Kosaka, Danny Lange, Kouichi Ono, Mitsuru Oshima,
Cynthia Tham, SankarVirdhagriswaran, and JimWhite. MASIF: The OMG Mobile
Agent System Interoperability Facility. In Kurt Rothermel and Fritz Hohl, editors,
Proceedings of the Second International Workshop on Mobile Agents (MA ’98),
Stuttgart (Germany), September 1998, volume 1477 of Lecture Notes in Computer
Science, pages 50–67. Springer-Verlag, 1999.

Katsuhiro Moizumi and George Cybenko. The travelling agent problem. Mathematics
of Control, Signals and Systems, 14(3):213–232, 2001.

Luc Moreau. Distributed Directory Service and Message Router for Mobile Agents.
Technical Report ECSTR M99/3, University of Southampton (UK), 1999.

Bibliography � 411

Luc Moreau. A Fault-Tolerant Directory Service for Mobile Agents based on Forward-
ing Pointers. In The 17th ACM Symposium on Applied Computing (SAC ’2002)—
Track on Agents, Interactions, Mobility and Systems, Madrid (Spain), March 2002,
pages 93–100, 2002.

Luc Moreau and Daniel Ribbens. Mobile Objects in Java. Scientific Programming,
10(3):91–100, 2002.

Luc Moreau, Victor Tan, and Nicholas Gibbins. Transparent migration of mobile
agents. In IEE Seminar: Mobile Agents—Where are They Going?, pages 2/1–2/11,
Savoy Place, London, April 2001. IEE.

Amy L. Murphy and Gian Pietro Picco. Reliable communication for highly mobile
agents. Autonomous Agents and Multi-Agent Systems, 5(1):81–100, 2002.

George C. Necula. Proof-carrying code. In Proceedings of the 24th ACM Symposium
on Principles of Programming Languages (POPL ’97), Paris (France), January
1997, pages 106–119. ACM Press, January 1997.

George C. Necula and Peter Lee. Proof-carrying code. Technical Report CMU-CS-96-
165, School of Computer Science, Carnegie Mellon University, Pittsburgh, Pa.,
November 1996.

George C. Necula and Peter Lee. Safe, untrusted agents using proof-carrying code.
In G. Vigna, editor, Mobile Agents and Security, volume 1419 of Lecture Notes in
Computer Science, pages 61–91. Springer-Verlag, 1998.

Bruce J. Nelson. Remote procedure call. PhD thesis, Carnegie-Mellon University,
Pittsburgh, Pa. (USA), 1981.

Eric Newcomer. Understanding Web Services. Addison-Wesley, 2002.

Scott Oaks. Java Security. O’Reilly, 2001.

ObjectSpace.Voyager Core Package Technical Overview: The Agent ORB for Java, 1997.

ObjectSpace. Voyager Core Package Version 2.0: Technical Overview, 1998.

Paul O’Brien and Richard Nicol. FIPA—towards a standard for software agents.
BT Technology Journal, 16(3):51–59, 1998.

Andrea Omicini and Franco Zambonelli. Coordination of mobile information agents
in TuCSoN. Internet Research: Electronic Networking Applications and Policy, 8
(5):400–413, 1998.

Andrea Omicini, Franco Zambonelli, Matthias Klusch, and Robert Tolksdorf,
editors. Coordination of Internet Agents: Models, Technologies, and Applications.
Springer-Verlag, 2001.

Andy Oram, editor. Peer-to-Peer: Harnessing the Power of Disruptive Technologies.
O’Reilly, 2001.

Joann J. Ordille.When agents roam, who can you trust? In Proceedings of the First Con-
ference on Emerging Technologies and Applications in Communications, Portland,
Oregon (USA), May 1996, 1996.

A. Outtagarts, M. Kadoch, and S. Soulhi. Client-Server and Mobile Agent:
Performances Comparative Study in the Management of MIBs. In Ahmed

412 � Bibliography

Karmouch and Roger Impey, editors, Mobile Agents for Telecommunication Appli-
cations, Proceedings of the First International Workshop (MATA 1999), Ottawa
(Canada), October 1999, pages 69–81. World Scientific Pub., 1999.

Stavros Papastavrou, George Samaras, and Evaggelia Pitoura. Mobile agents for
WWW distributed database access. In Proceedings of the 15th International
Conference on Data Engineering, Sydney (Australia), March 1999, pages 228–237.
IEEE Computer Society Press, 1999.

Holger Peine. An introduction to mobile agent programming and the Ara system.
Technical Report ZRI-Report 1/97, Department of Computer Science, University
of Kaiserslautern, Germany, 1997.

Holger Peine and Torsten Stolpmann. The architecture of the Ara platform for mobile
agents. In Kurt Rothermel and Radu Popescu-Zeletin, editors, Proceedings of the
First International Workshop on Mobile Agents (MA ’97), Berlin (Germany), April
1997, volume 1219 of Lecture Notes in Computer Science, pages 50–61, Berlin,
Germany, 1997. Springer-Verlag.

Charles Perkins. RFC 2002, 1996. http://www.rfc-editor.org.

Larry L. Peterson and Bruce S. Davie. Computer Networks—A Systems Approach.
Morgan Kaufmann Publishers, 3rd edition, 2003.

Michael Philippsen and Matthias Zenger. JavaParty—Transparent Remote Objects in
Java. Concurrency: Practice and Experience, 9(11):1225–1242, 1997.

Gian Pietro Picco. Understanding, Evaluating, Formalizing, and Exploiting Code
Mobility. PhD thesis, Politecnico di Torino (Italy), 1998.

Gian Pietro Picco. µCODE: A Lightweight and Flexible Mobile Code Toolkit. In Kurt
Rothermel and Fritz Hohl, editors, Proceedings of the Second International Work-
shop on Mobile Agents (MA ’98), Stuttgart (Germany), September 1998, volume
1477 of Lecture Notes in Computer Science, pages 160–171. Springer-Verlag,
1999.

Gian Pietro Picco, Amy L. Murphy, and Gruia-Catalin Roman. LIME: Linda meets
mobility. In Proceedings of the 1999 International Conference on Software Engi-
neering (ICSE), Los Angeles (USA), May 1999, pages 368–377. ACM Press,
1999.

Ulrich Pinsdorf and Volker Roth. Mobile agent interoperability patterns and practice.
In Proceedings of the 9th Annual Conference and Workshop on the Engineering of
Computer-based Systems (ECBS-2002), Lund (Sweden), April 2002, pages 238–244.
IEEE Computer Society Press, 2002.

Evaggelia Pitoura and George Samaras. Locating objects in mobile computing. IEEE
Transaction on Knowledge Data Engineering, 13(4):571–592, 2001.

Valentina Plekhanova, editor. Intelligent Agent Software Engineering. Idea Group
Publishing, 2002.

William Pugh. Compressing Java class files. ACM SIGPLAN Notices, 34(5):247–258,
1999.

Bibliography � 413

Antonio Puliafito, Salvatore Riccobene, and Marco Scarpa. An Analytical Comparison
of the Client-Server, Remote Evaluation and Mobile Agents Protocols. In Dejan S.
Milojicic, editor, Proceedings of the First International Symposium on Agent Sys-
tems and Applications (ASA ’99)/Third International Symposium on Mobile Agents
(MA ’99), Palm Springs (USA), October 1999, pages 278–292. IEEE Computer
Society Press, 1999.

Antonio Puliafito, Salvatore Riccobene, and Marco Scarpa. Which paradigm
should I use? An analytical comparison of the client-server, remote evalua-
tion and mobile agent paradigms. Concurrency and Computation: Practice and
Experience, 13(1):71–94, 2001.

Lars Rasmusson, Andreas Rasmusson, and Sverker Janson. Using agents to secure
the internet marketplace – reactive security and social control. In Practical Appli-
cations of Agents and Multi-Agent Systems (PAAM ’97), London (UK), April 1997,
1997.

James Riordan and Bruce Schneier. Environmental key generation towards clueless
agents. In Giovanni Vigna, editor, Mobile Agents and Securtiy, volume 1419 of
Lecture Notes in Computer Science, pages 15–24. Springer-Verlag, 1998.

Ronald L. Rivest. The MD5 Message-Digest Algorithm. RFC 1321, 1992.

Volker Roth. Secure recording of itineraries through cooperating agents. In Serge
Demeyer and Jan Bosch, editors, Proceedings of the 4th ECOOP Workshop on
Mobile Object Systems: Secure Internet Mobile Computation, Brussels (Belgium),
July 1998, volume 1543 of Lecture Notes in Computer Science, pages 297–298.
Springer-Verlag, 1998.

Volker Roth. Distributed image indexing and retrieval with mobile agents. In IEE
European Workshop on Distributed Imaging, pages 14/1–14/5, 1999.

Volker Roth. On the robustness of some cryptographic protocols for mobile agent
protection. In Gian Pietro Picco, editor, Mobile Agents, Proceedings of the 5th
International Conference (MA 2001), Atlanta (USA), December 2001, volume 2240
of Lecture Notes in Computer Science, pages 1–14. Springer-Verlag, 2001.

Volker Roth. Obstacles to the adoption of mobile agents (panel). In Anupam Joshi
and Hui Lei, editors, IEEE International Conference on Mobile Data Management
(MDM ’04), Berkeley (USA), January 2004. IEEE Computer Society Press, 2004.

Volker Roth and Vania Conan. Encrypting Java Archives and its application to mobile
agent security. In Frank Dignum and Carles Sierra, editors, Agent Mediated Elec-
tronic Commerce: A European AgentLink Perspective, volume 1991 of Lecture Notes
in Computer Science, pages 229–239. Springer-Verlag, 2001.

Volker Roth and Mehrdad Jalali. Concepts and architecture of a security-centric
mobile agent server. In Proceedings of the Fifth International Symposium on
Autonomous Decentralized Systems (ISADS 2001), Dallas, (USA), March 2001,
pages 435–442. IEEE Computer Society Press, 2001.

Volker Roth and Jan Peters. A scalable and secure global tracking service for mobile
agents. In Gian Pietro Picco, editor, Mobile Agents, Proceedings of the 5th Inter-
national Conference (MA 2001), Atlanta (USA), December 2001, volume 2240 of
Lecture Notes in Computer Science, pages 169–181. Springer-Verlag, 2001.

414 � Bibliography

Antony Rowstron. Wcl: A co-ordination language for geographically distributed
agents. World Wide Web Journal, 1(3):167–179, 1998.

Marcelo Gonçalves Rubinstein and Otto Carlos Muniz Bandeira Duarte. Evaluating
tradeoffs of mobile agents in network management. Networking and Information
Systems Journal, 2(2):237–252, 1999.

Marcelo Gonçalves Rubinstein, Otto Carlos Muniz Bandeira Duarte, and Guy Pujolle.
Evaluating the performance of a network management application based on
mobile agents. In Enrico Gregori, Marco Conti, Andrew T. Campbell, Cambyse
Guy Omidyar, and Moshe Zukerman, editors, Proceedings of the Second Interna-
tional IFIP-TC6 Networking Conference: Networking Technologies, Services, and
Protocols, Performance of Computer and Communication Networks and Mobile
and Wireless Communications (Networking 2002), Pisa (Italy), May 2002, volume
2345 of Lecture Notes in Computer Science, pages 515–526. Springer-Verlag, 2002.

Marcelo Gonçalves Rubinstein, Otto Carlos Muniz Bandeira Duarte, and Guy Pujolle.
Scalability of a network management application based on mobile agents. Jour-
nal of Communication and Networks, IEEE/Korean Institute of Communications
Science (KICS), 5(3):240–248, 2003.

Jeff Rulifson. RFC 5: The Decode-Encode Language, 1969. Avaliable online
at www.faqs.org/rfcs/rfc5.html.

George Samaras, Marios D. Dikaiakos, Constantinos Spyrou, and Andreas Liverdos.
Mobile Agent Platforms for Web-Databases: A Qualitative and Quantitative
Assessment. In Dejan S. Milojicic, editor, Proceedings of the First International
Symposium on Agent Systems and Applications (ASA ’99)/Third International
Symposium on Mobile Agents (MA ’99), Palm Springs (USA), October 1999, pages
50–64. IEEE Computer Society Press, 1999.

Tomas Sander and Christian F. Tschudin. On software protection via function hiding.
In David Aucsmith, editor, Proceedings of the Second International Workshop on
Information Hiding, volume 1525 of Lecture Notes in Computer Science, pages
111–123. Springer-Verlag, April 1998a.

Tomas Sander and Christian F. Tschudin. Protecting mobile agents against malicious
hosts. In Giovanni Vigna, editor, Mobile Agents and Security, volume 1419 of
Lecture Notes in Computer Science, pages 44–59. Springer-Verlag, 1998b.

Ichiro Satoh. Adaptive Protocols for Agent Migration. In Proceedings of 21st IEEE
International Conference on Distributed Computing Systems (ICDCS ’2001), Mesa
(USA), April 2001, pages 711–714. IEEE Computer Society Press, 2001.

Ichiro Satoh. Dynamic Configuration of Agent Migration Protocols for the Internet.
In Proceedings of the 2002 International Symposium on Applications and the
Internet (SAINT ’2002), Nara City (Japan), January/February 2002, pages 119–126.
IEEE Computer Society Press, 2002.

Fred B. Schneider. Towards fault-tolerant and secure agentry. In Marios Mavronicolas
and Philippas Tsigas, editors, Proceedings of the 11th International Workshop on
Distributed Algorithms (WDAG ’97), Saarbrücken (Germany), September 1997,
volume 1320 of Lecture Notes in Computer Science, pages 1–14. Springer-Verlag,
1997. Invited paper.

Bibliography � 415

Bruce Schneier. Secrets and Lies—Digital Security in a Networked World. John Wiley
and Sons, 2000.

Steffen Schreiber. Beschreibung und Analyse von dynamischen Netzen für
Agentensysteme. Diplomarbeit, Friedrich-Schiller-Universität Jena, Institut für
Informatik, July 2002.

Tatsurou Sekiguchi, Hidehiko Masuhara, and Akinori Yonezawa. A Simple Exten-
sion of Java Language for Controllable Transparent Migration and its Portable
Implementation. In P. Ciancarini and A. L. Wolf, editors, Proceedings of the
Third International Conference on Coordination Models and Languages (Coor-
dination ’99), Amsterdam (The Netherlands), April 1999, volume 1594 of Lecture
Notes in Computer Science, pages 211–226. Springer-Verlag, 1999.

Clay Shirky. Listening to Napster. In Oram [2001], pages 21–37.

John Shoch and Jon Hupp. The ‘worm’ programs—early experience with a distributed
computation. Communications of the ACM, 25(3):172–180, 1982.

Charles M. Shub. Native code process-originated migration in a heteroge-
neous environment. In Eighteenth Annual ACM Computer Science Conference,
Washingtion DC (USA), February 1990, pages 266–270. ACM Press, 1990.

Louis Moura Silva, Guilherme Soares, Paulo Martins, Victor Batista, and Luís Santos.
Comparing the performance of mobile agent systems. Journal of Computer
Communications, Special Issue on Mobile Software Agents for Telecommunica-
tions, 23(8):769–778, 2000.

Guilherme Soares and Louis Moura Silva. Optimizing the migration of mobile agents.
In Ahmed Karmouch and Roger Impey, editors, Mobile Agents for Telecommu-
nication Applications, Proceedings of the First International Workshop (MATA
1999), Ottawa (Canada), October 1999, pages 270–271. World Scientific Pub.,
1999.

Tammo Spalink, John H. Hartman, and Garth A. Gibson. A mobile agent’s effects on
file service. IEEE Concurrency, 8(2):62–69, 2000.

Constantinos Spyrou, George Samaras, Paraskevas Evripidou, and Evaggelia Pitoura.
Wireless Computational Models: Mobile Agents to the Rescue. In Proceedings
of the 10th International Workshop on Database & Expert Systems Applications
(DEXA-1999), Florence (Italy), September 1999, pages 127–133. IEEE Computer
Society Press, 2000.

James W. Stamos. Remote Evaluation. PhD thesis, Massachusetts Institute of
Technology, Cambridge, MA (USA), 1986.

Bjarne Steensgaard and Eric Jul. Object and native code thread mobility among het-
erogeneous computers. In Proceedings of the 15th ACM Symposium on Operating
Systems Principles, Copper Mountain (USA), December 1995, pages 68–78. ACM
Press, 1995.

Luk Stoops, Tom Mens, and Theo D’Hondt. Fine-grained interlaced code loading
for mobile systems. In Niranjan Suri, editor, Proceedings of the 6th International
Conference on Mobile Agents (MA 2002), Barcelona (Spain), October 2002, volume
2535 of Lecture Notes in Computer Science, pages 78–92. Springer-Verlag, 2002.

416 � Bibliography

Markus Straßer, Joachim Baumann, and Fritz Hohl. Mole—a Java based mobile agent
system. In Max Mühlhäuser, editor, Special Issues in Object-Oriented Program-
ming: Workshop Reader of the 10th European Conference on Object-Oriented
Programming (ECOOP ’96), Linz (Austria), July 1996, pages 301–308. dpunkt
Verlag, 1997.

Markus Straßer and Markus Schwehm. A performance model for mobile agent sys-
tems. In H. R. Arabnia, editor, Proceedings of the International Conference on
Parallel and Distributed Processing Techniques and Applications (PDPTA ’97),
Las Vegas (USA), volume 2, pages 1132–1140. CSREA Press, 1997.

Nils P. Sudmann and Dag Johansen. Software deployment using mobile agents. In Judy
M. Bishop, editor, Proceedings of IFIP/ACM Working Conference on Component
Deployment (CD 2002), Berlin (Germany), June 2002, volume 2370 of Lecture
Notes in Computer Science, pages 97–107. Springer-Verlag, 2002.

Java Object Serialization Specification. Sun Microsystems Inc., July 1999. http://
java.sun.com/j2se/1.3/docs/guide/serialization/spec/serial-
title.doc.html.

Java Remote Method Invocation: Distributed Computing for Java. Sun Micro-
systems Inc., July 2002. http://java.sun.com/marketing/collateral/
javarmi.html.

Niranjan Suri, Jeffrey M. Bradshaw, Maggie R. Breedy, Paul T. Groth, Gregory
A. Hill, Renia Jeffers, and Timothy S. Mitrovich. An Overview of the
NOMADS Mobile Agent Systems. In 6th ECOOP Workshop on Mobile Object
Systems: Operating System Support, Security and Programming Languages,
Sophia Antipolis (France), June 2000, 2000. Paper is only available online at
cui.unige.ch/∼ecoopws/ws00.

Hock Kim Tan and Luc Moreau. Extending Execution Tracing for Mobile Code Secu-
rity. In Klaus Fischer and Dieter Hutter, editors, Second International Workshop
on Security of Mobile MultiAgent Systems (SEMAS ’2002), Bologna (Italy), June
2002, DFKI Research Report, RR-02-03, pages 51–59. DFKI Saarbrucken, 2002.
URL http://www.ecs.soton.ac.uk/∼lavm/papers/semas02.ps.gz.

Andrew S. Tanenbaum. Modern Operating Systems. Prentice-Hall, 2nd edition, 2001.

Éric Tanter, Michael Vernaillen, and José Piquer. Towards transparent adaption of
migration policies. In 8th ECOOP Workshop on Mobile Object Systems: Agent
Applications and New Frontiers, Malaga (Spain), June 2002, 2002. Paper is only
available online at cui.unige.ch/∼ecoopws/ws02/.

Joseph Tardo and Luis Valente. Mobile agent security and Telescript. In Proceedings
of 41st IEEE International Computer Conference (COMPCON ’96): Technologies
for the Information Highway, Santa Clara CA (USA), February 1996, pages 58–63.
IEEE Computer Society Press, 1996.

Prasannaa Thati, Po-Hao Chang, and Gul Agha. Crawlets: Agents for high per-
formance web search engine. In Gian Pietro Picco, editor, Mobile Agents,
Proceedings of the 5th International Conference (MA 2001), Atlanta (USA),Decem-
ber 2001, volume 2240 of Lecture Notes in Computer Science, pages 119–134.
Springer-Verlag, 2001.

Bibliography � 417

Wolfgang Theilmann and Kurt Rothermel. Disseminating mobile agents for dis-
tributed information filtering. In Dejan S. Milojicic, editor, Proceedings of the
First International Symposium on Agent Systems and Applications (ASA ’99)/Third
International Symposium on Mobile Agents (MA ’99), Palm Springs (USA),October
1999, pages 152–161. IEEE Computer Society Press, 1999.

Tommy Thorn. Programming languages for mobile code. ACM Computing Surveys,
29(3):213–239, 1997.

Takeshi Umezawa, Ichiro Satoh, and Yuichiro Anzai. A mobile agent-based
frameworld for configurable sensor networks. In Ahmed Karmouch, Thomas
Magedanz, and Jaime Delgado, editors, Proceedings of the 4th International
Workshop on Mobile Agents for Telecommunication Applications (MATA 2002),
Barcelona (Spain), October 2002, volume 2521 of Lecture Notes in Computer
Science, pages 128–139. Springer-Verlag, 2002.

Giovanni Vigna. Mobile Code Technologies, Paradigms, and Applications. PhD thesis,
Politecnico di Milano (Italy), February 1998.

Alex Villazon and Walter Binder. Portable Resource Reification in Java-Based Mobile
Agent Systems. In Gian Pietro Picco, editor, Mobile Agents, Proceedings of the
5th International Conference (MA 2001), Atlanta (USA), December 2001, volume
2240 of Lecture Notes in Computer Science, pages 213–228. Springer-Verlag, 2001.

LarryWall, Tom Christiansen, and Jon Orwant. Programming Perl. O’Reilly Associates,
Inc., 3rd edition, 2000.

Tim Walsh, Paddy Nixon, and Simon Dobson. As strong as possible mobility: An
architecture for stateful object migration on the Internet. In 6th ECOOPWorkshop
on Mobile Object Systems: Operating System Support, Security and Programming
Languages, Sophia Antipolis (France), June 2000, 2000. Paper is only available
online at cui.unige.ch/∼ecoopws/ws00.

Xiaojin Wang, Jason Hallstrom, and Gerald Baumgartner. Reliability Through Strong
Mobility. In 7th ECOOP Workshop on Mobile Object Systems: Development of
Robust and High Confidence Agent Applications, Budapest (Hungary), June 2001,
2001. Paper is only available online http://cui.unige.ch/∼ecoopws.

GerhardWeiss, editor. Multiagent Systems: A Modern Approach to Distributed Artifical
Intelligence. MIT Press, 2000.

James E. White. Mobile agents. In Bradshaw [1996], pages 437–472.

James E. White, C. S. Helgeson, and D. A. Steedman. System and method for dis-
tributed computation based upon the movement, execution, and interaction of
processes in a network. US Patent 5.603.031, 1997.

Uwe G. Wilhelm, Levente Buttyán, and Sebastian Staamann. Protecting the itinerary
of mobile agents. In Serge Demeyer and Jan Bosch, editors, Proceedings of the 4th
ECOOPWorkshop on Mobile Object Systems: Secure Internet Mobile Computation,
Brussels (Belgium), July 1998, volume 1543 of Lecture Notes in Computer Science,
page 301. Springer-Verlag, 1998.

PawelWojciechowski. Algorithms for location-independent communication between
mobile agents. Technical report, Département Systèmes de Communication,
Ecole Polytechnique Fédérale de Lausanne, 2001.

418 � Bibliography

Pawel Wojciechowski and Peter Sewell. Nomadic Pict: Language and Infrastruc-
ture Design for Mobile Agents. In Dejan S. Milojicic, editor, Proceedings of the
First International Symposium on Agent Systems and Applications (ASA ’99)/Third
International Symposium on Mobile Agents (MA ’99), Palm Springs (USA),October
1999, pages 2–12. IEEE Computer Society Press, 1999.

Pawel Wojciechowski and Peter Sewell. Nomadic Pict: Language and Infrastructure
Design for Mobile Agents. IEEE Concurrency, 8(2):42–52, 2000.

David Wong, Noemi Paciorek, and Dana Moore. Java-based Mobile Agents.
Communications of the ACM, 42(3):92–105, March 1998.

Michael Wooldridge and Nicholas R. Jennings. Agent theories, architectures, and
languages: A survey. In Michael J. Wooldridge and Nicholas R. Jennings, editors,
Intelligent Agents: ECAI-94 Workshop on Agent Theories, Architectures, and Lan-
guages, Amsterdam (The Netherlands), August 1994, volume 890 of Lecture Notes
in Computer Science, pages 1–39. Springer-Verlag, 1995a.

Michael Wooldridge and Nicholas R. Jennings. Intelligent agents: Theory and
practice. The Knowledge Engineering Review, 10(2):115–152, 1995b.

Bennet S. Yee. A sanctuary for mobile agents. In Jan Vitek and Christian D.
Jensen, editors, InternetProgramming—Security Issues forMobile and Distributed
Objects, volume 1603 of Lecture Notes in Computer Science, pages 261–274.
Springer-Verlag, 1999.

Adam Young and Moti Yung. Sliding encryption: A cryptographic tool for mobile
agents. In Eli Biham, editor, Proceedings of the 4th International Workshop on
Fast Software Encryption (FSE ’97), Haifa (Israel), January 1997, volume 1267 of
Lecture Notes in Computer Science, pages 230–241. Springer-Verlag, 1997.

J. Zander and R. Forchheimer. Softnet—an approach to high level packet
communication. In Proceedings of the Second ARRL Amateur Radio Computer
Networking Conference, San Francisco (USA), March 1983, 1983.

Michael Zapf and Kurt Geihs. What Type Is It? A Type System For Mobile Agents.
In Robert Trappl, editor, Proceedings of Second International Symposium From
Agent Theory to Agent Implementation (AT2AI-2) at the 15th European Meeting
on Cybernetics and Systems Research (EMCSR 2000),Vienna (Austria), April 2000.
Austrian Society for Cybernetic Studies, 2000.

Index

A

accountability, 166
defined, 166
example, 170

ad hoc networks, 5
adaptive transmission, 125, 126
ADB message, 248–250

defined, 248
number of units, 249
replies, 249, 250
unit description, 250
wrong format, 249
See also SATP messages

ADK toolkit, 22
agencies, 17, 226–228

addressing, 78–79
ancestors, 155
audits, 178
behavior, 87
children, 155
code server, 117, 122–123, 227, 234–235,

271–273
current, 228
defined, 17, 31, 36, 220
destination, 50, 109, 157, 271
gray, 198
home, 36, 37, 113, 117, 226
hosting, 167–169
malicious, 161, 170–174
malicious agent attacks on, 167–169
marking, 198
mirror, 117, 227, 271–274, 319

as multi-agent systems, 37
names, 78
neighbor, 320
protecting, 198–213
receiver, 38, 220, 236–242
red, 198
remote, 79, 117, 226
replication of, 184–185
reputation, 177–178
roles, 226, 227
sender, 38, 50, 220
source, 157
target, 289–290
Tracy, 327–349
trusted, 176–177
types, comparison, 228
unauthorized access to, 168
untrusted, 176
white, 198

AgencyShell plugin
agency focus, 341, 343
defined, 331, 340–341
introduction, 341–343
plugins commands, 345–346
start/stop agents commands, 343–344
starting, 341
storage, 341
Telnet, 347–348
textual user interface, 341
See also plugins; Tracy

agent attacks, 169–170, 171–174
agent code/control flow, 173–174
agent data, 171–173

419

420 � Index

agent attacks (continued)
detection, 184–198
malicious agencies, 171–174
malicious agents, 169–170
prevention, 178–184
See also attacks

Agent class, 43
agent class closure, 90
Agent Communication Languages (ACLs), 23, 137

FIPA, 137
KQML, 137

agent context, 223–225
agent instance lifetimes vs., 223–224
defined, 223
deleting, 259
existence, checking, 259
lifetime, 224
modifying, 232–235
state diagram, 225

Agent Definition Block (ADB), 124, 236–237, 387
reception, 236–237
transmission, 124

agent instances
defined, 220
lifetimes, 223–224
objects, 224

agent managers
agent execution control as, 275
defined, 218, 220
name uniqueness guarantee, 221
registering, 258

Agent Meeting Points (AMPs), 20, 171
agent model, 221–228

agencies, 226–228
agent contexts, 223–225
agents, 221–223
See also Kalong mobility model

agent names, 77–78, 221
defined, 36
globally unique, 221
in header message, 248

agent owners, 36
agent profiling, 320–321

defined, 320
dynamic, 320
static, 320–321

Agent Technology Handbook, 10
agent tracking

in broadcast-based approaches, 152
in central server approach, 145

defined, 142
in forwarding pointers approach, 150

AgentLauncher plugin, 348–349
configuration file, 348
defined, 331, 341
keys, 348–349
purpose, 348

AgentLink project, 21
AgentPolicy plugin, 331
agents, 8, 30

defined, 8–9
execution, 210–211
information filtering, 10
intelligent, 7, 30
mail, 7, 8, 9, 9–10
software, 7, 8, 9–10
See also mobile agents

agent’s view, 76, 87–92
code transfer, 89–92
migration strategies, 87–89
See also mobility model

AgentTCL toolkit
forking, 86
multiple language support, 22
performance evaluations, 294
See also mobile agent toolkits

Aglets toolkit, 70, 93–95
class cache, 108
defined, 93
home server approach, 145
migration strategy, 94
mobility model, 94–95
superfluously transmitted

classes, 101
weak mobility, 93
See also mobile agent toolkits

Ajanta toolkit, 22
focus, 22
RMI, 141
See also mobile agent toolkits

alterations, 170
ancestors, 155
anonymity, 166–167

achieving, 167
defined, 166

application programming interfaces (APIs),
217, 228–243

IAgentManager interface, 242, 256
IKalong interface, 219, 228–242, 256

Index � 421

INetwork interface, 219, 242–243, 256
IServer interface, 243, 256

applications, 27–30
electronic commerce, 28–29
industrial-strength, 329
information retrieval, 29–30
killer, 28
network management, 30
safe development, 42, 199
software development, 30

ArrayUtils class, 266
asymmetric cryptosystems, 163
asynchronous message passing, 138–139,

354, 363
at-most-once semantic, 134
attacks

alterations, 170
black-box, 173, 187–188
control flow, 174
countermeasure development, 160
cut and paste, 172, 190
denial of service, 169–170
detecting, 184–198
eavesdropping, 170
malicious agents, 167–170
organizational solutions, 175–178
preventing, 178–184
proposed solutions, 174–175
taxonomy of, 167–174
traffic analysis, 170
See also security

audits, 178
authentication, 162–164, 204–210

agent, 204–210, 283–286
with digital signature verification,

283
in execution tracing, 195
in Internet, 162
between mobile agents/agencies, 163
with public-key infrastructure, 163
requirement, 162
See also security

authorization, 204–210
automated migration strategy, 317
autonomous objects, 19
availability, 166

defined, 166
remote agency, 237

B

backward-time key generation, 183
bandwidth measurement, 54
binding-update messages, 146
black boxes

defined, 180
time-limited, 179–181

Blackboard plugin, 331
blackboard-oriented approach, 139, 140

defined, 140
limitation, 140
See also information space model

black-box attacks, 173
agent detection, 187
detecting, 187–188

broadcast-based approaches, 151–154
advantages, 151–152
agent tracking and, 152
comparison, 153
defined, 151
distinguishing, 152–153
illustrated, 152
improvements, 154
message delivery, 154
migration, 154
optimizing, 154
uses, 153
See also location-transparent communication

ByteArrayOutputStream class, 281
ByteBuffer class, 281
bytecode verification, 200

C

caching experiment, 310–311
defined, 310
effect, 311
migration time, 310
overhead, 311
See also code caches; experiments

care-of-address, 145
central server approach, 144–145

defined, 144
illustrated, 144
triangle problem, 146
See also location-transparent communication

422 � Index

certificates, 285–286
distinguished name, 285
trusted, 286

checkpointing, 20
children, 155
Cipher class, 289
cipher objects, 289, 290
class caches, 108

limitations, 108
local, 124

Class class, 49
class loaders, 49–50, 90
class splitting, 321–323

defined, 321
effect verification, 323
example, 321, 322
software component, 321

classes
agency-wide cache, 90–91
bundling, 90
byte code size, 232
code, 50, 91
coding, 277
decoding, 277
determination, 90
finding, 48–50
identifier, 250
initialization, 203
list of, 232
loading, 49–50
local cache of, 90
main agent, pushing, 268–274
name determination, 269
signing, 286
size reduction, 304
superfluously transmitted, 101
ubiquitous, 91
See also specific classes

ClassFileStructure class, 283
ClassLoader class, 49, 124
ClassStructure class, 283
clients, 295
client-server paradigm, 13–14

client requests, 55
defined, 13–14
illustrated, 13
interaction evaluation, 53
mobile agents vs., 51–54
network load, 52, 58

performance analysis, 54–68
programming concepts, 14
RMI-based, 70
scenario, 56–60
scenario evaluation, 59–60
server results, 55
See also distributed systems

µcode, 128
code

adaptive transmission of, 125, 126
attacks, 173–174
class, 50, 91
closure, 49
consumer, 205
defined, 16, 37
distribution, 223
downloading, 120
execution, 105–106
format, 102–105
granularity, 321
intermediate, 102, 104–105
machine, 102, 104
manipulation detection, 192–197
multiple files, 37
multiple servers, 109
on demand, 25
pieces, 101
prefetching, 381
producer, 205
proof-carrying (PCC), 205–206
push strategy, 90
relocation strategies, 89
in remote-evaluation approach, 52–53
separation, 37
sharing, 91
size, 53, 101, 298–302
source, 80, 102, 104, 201
transfer, 89–92
transmission, 99
user’s view, 80

code bases, 122, 123
appending, 235
list of, 122

code caches, 92, 123–124
defined, 123
effect, 311
experiment, 310–311
functioning of, 124
goal, 124

Index � 423

network load/transmission time
and, 127

overhead, 311
code filtering, 281–283

defined, 281
example, 281–282
implementation, 282

code servers, 122–123
advantages, 122
defined, 37, 117, 227
defining, 234–235, 271–273
dynamic definition of, 126
illustrated, 127
initialization decision, 319
releasing, 123, 273–274
use of, 122
See also agencies

code servers experiment, 312–315
agencies, 314
defined, 312–314
migration time, 314, 315
results, 315
See also experiments

code signing, 199–200, 204
in authentication, 204
defined, 199

code units, 119–120, 223
code base, 120
code transmission and, 120
copied, 240
defined, 116, 119, 223
defining, 386
elements, 119
information, transmitting, 239
loading, 235
remaining in current agency, 271
sending, 120
transmission, 121
unique identifier, 249
See also Kalong mobility model

code-on-demand paradigm, 15
network load, 52
roles, 15

code-shipping, 27, 31
code-splitting technique, 101
commit message, 253
communication, 131–158

asynchronous, 138–139
enabling agents for, 133

global, 135
introduction, 132–137
issues, 132
local, 135
location-transparent, 131, 133, 135,

141–157
multi-point, 138
point-to-multi-point, 138
point-to-point, 137
problems, 131
reliability, 133
requirements, 133–135
synchronous, 138
Tracy toolkit, 363–368

communication models
classification, 137–141
efficiency, 134–135
information space, 139–141
message passing, 137–139
mobile agent toolkits, 363
programming and, 136
semantics, 134
solutions, 134

compressed messages, 279–281
coding, 279–281
decoding, 281
See also SATP messages

compression factor, 55, 59
defined, 55
high, 55, 70

computers
client, 295
in low-bandwidth network, 304
master, 295
parameters, 297

confidentiality, 164
configuration files (Tracy), 334

directory, 340
list of, 334
storage, 339

content inspection, 211
context objects, 355
control flow

attacks, 174
manipulations, detecting, 192–197

control problems, 133, 136
copying data, 81
CORBA, 14
countermeasures, 212

424 � Index

CPU reification, 211
cryptographic techniques, 188–192
cryptosystems, 162–163

asymmetric, 163
symmetric, 162

cut and paste attacks, 172, 190

D

D’Agents toolkit, 22
data, 37–38

adaptive transmission of, 125, 126
attacks, 171–173
capturing, 39
copying, 81
defined, 16, 37
dynamic, 190–192
encryption, 289, 290
filtering tasks, 72
fine-grained transmission, 101
marshaling, 111, 112
moving, 81
proxy, 81
read-only, protecting, 188–189
at specific agencies, 189–190
static, 81
transmission, 99
unmarshaling, 111, 112
use restriction, 37
user’s view, 80–81

data compression
break-even point, 304
effect, comparing, 302
improving effect of, 304
ping pong migration time, 303
remote agencies and, 304
transmission time and, 302–304

data item message, 252
data items, 222–223

access, 232, 266–267, 287
accessibility, 233
defined, 233
deleting, 233
encryption, 289–290
explicitly loading, 381
key, 223
loading, 235
loading, from home agency, 269–270

names, 240
problems, 222
protecting, for target agency, 289–290
reading, 288
read-only, 287–289
retrieving, 266
signing, 287
size, determining, 267
undefined, 233
uploading, 270–271

data request message, 252–253
data uploading experiment, 311–312

local network results, 312, 313
migration time, 311
migration time graphs, 312, 313
wide-area network results, 312, 313

data-shipping, 27, 31
Decode-Encode-Language (DEL), 18
decryption, 290
denial of service attacks, 169–170
dependency object, 136
deposited keys, 181
deserialization, 40

default, 202
object, 48
time, 296

design (migration), 74–98
classification approaches, 97–98
mobility model examples, 93–97
mobility models, 75–93
overview, 74–75

destination agencies, 50, 109, 157
agent transmission to, 271
defining addresses of, 386
SATP messages to, 276
See also agencies

detection, attack, 184–198
black-box attacks, 187–188
with cryptographic techniques, 188–192
with execution tracing, 192–197
itinerary manipulations, 197–198
with replication of agencies, 184–185
with replication of agents, 186–187
See also attacks; security

digests, 124, 165
algorithm, 124
defined, 124
message signing combined with, 165
See also hash values

Index � 425

digital signatures, 165
at home agency, 283
for SATP headers, 305
verification, 283, 285–286

distributed systems
client-server paradigm, 13–14
code-on-demand paradigm, 15
defined, 3
designing, 3–6
interactions, 12
mobile agents viewpoint, 11–17
remote-evaluation paradigm, 14–15
resources, 12
sites, 12
traditional techniques, 12–15
virtual machines, 12

domain managers
defined, 392
master node, 395
method called at, 397
nodes, 394, 395, 396, 398
registration, 392

domain nodes, 397, 398
DomainManager plugin, 393–399

API, 396–399
configuration file, 393, 394, 395, 396
defined, 331
installation, 393–396
priority, 396
role determination, 393
See also plugins; Tracy toolkit

dynamic data, 190–192
defined, 190
malicious agency attacks, 191
requirements, 190
state appraisal and, 208
See also data

dynamic profiling, 320

E

eavesdropping, 170
electronic commerce, 28–29

distributed workflow, 29
needs, 28
See also applications

Email plugin, 331
encrypted functions, 178–179, 212

defined, 178
scheme, 179
using, 178–179
See also security

encryption
cipher initialization for, 289
data, 289, 290
RSA, 289
sliding, 191

energy concept, 136
environmental key generation, 181–184

backward-time approach, 183
forward-time approach, 183
goals, 182
steps, 182
See also security

error probability, 68
evaluation, 293–323

experiments, 295–296
goal, 293
measurements, 295–297
migration strategies and, 297
mobile agent toolkits, 294
related work, 294–295
test environment, 297–298
See also measurements; performance

exactly-once semantic, 134
execution

agent, 210–211
control, 275
resuming, 45–46
simulating, 196

execution state
capturing, 39
defined, 38
determination, 38

execution tracing, 192–197
acknowledgment, 195–196
defined, 193
drawbacks, 196–197
migration, 194–195
notification, 193–194
reduction, 197
retrieval, 196

experiments, 293
caching, 310–311
code servers, 312–315
code size/network quality, 298–302
computer roles, 295

426 � Index

experiments (continued)
conducting, 295
data compression, 302–304
data uploading, 311–312
JVM and, 295
measurements and, 295–296
migration strategies, 307–310
mirrors, 315–316
results, 298–323
security, 304–307
See also evaluation; measurements;

performance
Extended Backus-Naur Form (EBNF), 76, 244
external state, 116, 118–119, 380–381

access, 118
advantages, 119
data items, 119
defined, 222
elements, 118
migration, 381
See also Kalong mobility model

F

FileInputStream class, 204
FIPA, 23–24, 137

defined, 23–24
specifications, 24

forking, 86
FORTH program, 18
forwarding pointers, 146–151

agent tracking and, 150
chain breaking, 148
chain collapse, 148–149
chain length, 148
defined, 146–147
hierarchical approaches combined with, 157
illustrated, 147
inform messages and, 149–150
mailbox approach, 150–151
mobility counter, 148, 149
performance parameters, 151
problems, 147–148
reliability, 148
See also location-transparent communication

forwards, 185
forward-time key generation, 183

G

global communication
defined, 135
importance, 136
location-transparent, 135
See also communication

Grasshopper toolkit, 22, 95–97
class cache, 108
code caching and, 101
meta-protocol, 92
mobility model, 96–97
pull strategy, 88
region registry, 79, 96
superfluously transmitted

classes, 101
weak mobility, 95
See also mobile agent toolkits

G-Win, 298
gzip algorithm, 304
GZIPInputStream class, 279, 281
GZIPOutputStream class, 279, 281

H

handler objects, 236
hash values, 124, 165

comparing, 191
as hash function result, 165
See also digests

header commands
defined, 268
in releasing code servers, 274
in releasing mirror agencies, 274
sending, 273

header message, 247–248
ADB, 248–250
agent name, 248
components, splitting, 286
defined, 247
information, 238
information added to, 278
listener and, 278
protocol version number, 247–248
sending, 238
signing, 283

Index � 427

state message and, 240
static parts, 283
unit message and, 239
See also SATP messages

heterogeneous networks, 15, 71
defined, 71
mobility strategies, 116
transmission time, 116

hierarchical approaches, 154–157
ancestors, 155
children, 155
combined with forwarding pointers, 157
defined, 154
illustrated, 156
location tree, 155
message delivery, 156
migration, 156
PTC, 155, 156, 157
PTL, 155, 156
See also location-transparent communication

history-based access control, 209–210
goals, 209
unique identifiers, 210

home agencies, 36–37
address, 232
as code servers, 37
defined, 36, 226
digital signatures at, 283
in forwarding pointer approach, 147
loading data items from, 269–270
migration time, 113
notifying, of forthcoming migrations, 193–194
replication, 184
requirement, 226
See also agencies

home-server approach, 145–146
defined, 145
example use, 145
illustrated, 146
scaling, 146
triangle problem, 146
See also location-transparent communication

homogeneous networks, 113
mobility strategies, 114
transmission time, 114

hosts
defined, 332
names, 377, 378

hybrid encryption technique, 189

I

IAgentManager interface, 242
IAgentManager interface, 263–264

defined, 263, 275
instance registration, 275
methods, 263–264

IAgentMigrationContext interface, 383
IAgentShellContext class, 356
IContext interface, 277
IKalong interface, 219, 228–242

agency information, 230–232
agent context modification, 232–235
defined, 228
method groups, 228
methods, 244
methods, mapping to message types, 237
sending messages, 236–242
transaction management, 229–230
See also application programming interfaces

(APIs)
IKalong interface, 261–263

agent registration, 264–266
data item access, 266–267
data item states definition, 263
defined, 261
header command definitions, 262
IKalong interface vs., 261
migration, 267–268
use examples, 264–268

impersonation, 170
INetwork interface, 219, 242–243

defined, 242
implementing, 260
methods, 242–243

inform messages, 149–150
information retrieval, 29–30

multiple distributed sources, 29–30
needs, 29
real-time aspect, 30
See also applications

information space model, 139–141
blackboard-oriented, 139, 140
communication decoupling, 139
defined, 139
tuple space-oriented, 139, 140
See also communication models

428 � Index

integrity, 165–166
intelligent agents, 7, 30
intermediate code, 102, 104–105

defined, 104
interpretation, 104–105
source code vs., 104
source code/machine code combination,

105
Internet

agents, 24
services, 3

IServer interface, 243
itinerary manipulations, detecting,

197–198

J

JAAS
configuring, 337–339
introduction, 337
login module, 338
permissions, 338

Jade toolkit, 294
Java

advantages, 41
as de facto standard, 40
drawbacks, 42–43
foundations, 41–43
libraries, 42
in migration process, 35
portability, 42
resource control and, 204
RMI, 14, 42
safe application development, 42, 199
SDK, 332–333
security and, 199–204
servlets, 25–26
shortcomings, 202–204

Java applets, 24–25
defined, 24
mobile agents vs., 6, 25

Java ARchive (JAR) files, 25
bundling classes in, 90
reordering, 109

Java runtime environment (JRE), 332
Java virtual machine (JVM), 85

drawbacks, 105

in performance experiments, 295
thread scheduling, 106

Just-in-Time Compilation, 197

K

Kalong class, 260
constructors, 258
defined, 258

Kalong component, 258–274
advantages, 291
extending, 274–290, 291
IAgentManager interface, 263–264
IKalong interface, 261–263, 264–268
illustrated, 256
independence, 291
interfaces, 256
performance, 293
using, 258–274

Kalong extension, 274–290, 291
agent authentication, 283–286
class code filtering, 281–283
data item protection, 289–290
defined, 275
example, 278–281
IAgentManager interface, 275–278
interface, 275–278
read-only data items, 287–289
SATP message compression example, 278–281
security solution implementation, 281–291

Kalong mobility model, 116–127
adaptation, 256
adaptive transmission, 125, 126
advantages, 125–127
agency types, 117, 121–123
agent manager, 218
agent model, 221–228
agent representation, 116, 117–120
APIs, 228–243
class cache mechanism, 117
code cache, 123–124, 127
code servers, 117, 122–123, 126
communication, 218
configuring, 259–261
defined, 116
embedding, 258
environment, 218
features, 116–117

Index � 429

illustrated, 218
as independent software component, 255
introduction, 217–220
Java agent representation mapping to, 117
migration commands, 258
migration process, 120–121
migration technique, 116, 120
mirror agencies, 117, 123, 126
mobility models vs., 129
network adapter, 218
SATP migration protocol, 124, 217, 219, 243–253
as software component, 256–257
specifications, 217–253
starting, 259–261
using, 255–291
as virtual machine, 257–258, 291
vocabulary, 220–221
See also mobility models

Kalong roles, 226
Kalong scripts, 371–372

defined, 371
main method, 384
migration strategies as, 371, 385
programming, 383–385
properties, 383
registration, 371–372
termination, 384–385
See also MDL plugin

KalongScript class, 383, 385
Key plugin, 331
keystores, 201, 284
killer applications, 28
KQML, 137

L

latency, 54, 111
Linda language, 140
listener objects, 260

header message and, 278
registering, 275
vendor name and version definition,

275–276
local area networks (LANs)

company-wide, 5
distributed systems in, 5
Managed Network Elements (MNEs), 71
for performance measurements, 298

local communication, 135
location-transparent communication, 131, 133,

141–157
agent tracking, 142, 145, 150
broadcast-based approaches, 151–154
central server approach, 144–145
defined, 131
forwarding pointers approach, 146–151
full information approach, 142
hierarchical approaches, 154–157
home server approach, 145–146
message delivery, 142
MRR, 143, 144
no information approach, 142
solutions, 141–157
technique summary, 157–158
See also communication

logging
level, 339
mechanism, 335, 339
messages, 335

logical-agency networks
defined, 391
as foundation, 392
for information propagation, 393
introduction, 391–393
management, 391–399
topology, 392
view, 391

M

m servers network (information at all servers),
63–68

client-server approach, 63–64
defined, 63
evaluation, 64–68
mobile agent approach, 64
network load, 66
See also scenarios

m servers network (searching for single data item),
60–63

client-server approach, 61
defined, 60–61
evaluation, 61–63
mobile agent approach, 61
network load, 63
See also scenarios

430 � Index

machine code, 102
mail agents

defined, 9
software, 7, 8, 9–10

malicious agencies, 170–174
attacking agencies, 170–171
attacking agents, 171–174
consuming resources, 210
defined, 161, 170
dynamic data and, 191
read-only data and, 189
See also agencies

malicious agents, 167–170
access, 169
attacking host agency, 167–169
attacking other agents, 169–170
defined, 167
denial of service attacks, 169–170
masking identity, 169
solutions, 169
See also attacks

Managed Network Elements (MNEs), 71–72
defined, 71
number of, 72

mandatory pipeline steps, 373–374
marshaling, 111, 112
master agents, 132
master computer, 295
mathematical model

error probability parameter, 68
extending with processing time, 69
limitations, 68–69
parameter values, 58
symbols, 56

MD5 algorithm, 124
MDL plugin, 287, 369

archive file, 373
benefits, 369
configuration, 370
defined, 368
installation, 370–374
Kalong scripts, 371–372
migration strategies, 369
network transmission protocols, 370–371
pipeline steps, 372–374
programming Kalong scripts, 383–385
programming migration strategies,

385–391
programming mobile agents, 374–383

SATP pipelining, 369–370
See also Tracy toolkit

measurements
bandwidth, 54
experiments and, 295–296
LAN for, 298
migration times, 294, 298
programming agents for, 296–297
See also evaluation; performance

meetings, 141
message authentication codes (MACs),

165
binding public keys, 190
PRACs, 192

message passing model, 137–139
asynchronous, 138–139, 354, 363
defined, 137
multi-point connection, 138
point-to-multi-point connection, 138
point-to-point connection, 137
pull technique, 137
push technique, 137
receiver, 137
sender, 137
service, 137
synchronous, 138
See also communication models

Message plugin, 363–368
API, 364–368
defined, 331
receiving messages, 366–368
remote communication and, 364
sending messages, 364–365
See also plugins; Tracy toolkit

message queues, 365
closing, 366
current status, 366
new messages in, 367
pending messages in, 376

messages
elements, 364
fetching, 366
receiving, 366–368
sending, 364–365

MESSENGERS project, 19
methods

cancel, 359
close, 204
closeTransfer, 243

Index � 431

codeClassCode, 277
codedClass, 282
codeMessage, 276, 277, 278, 279, 283
codeObjectState, 278
commit, 229–230, 236
decodeClass, 282, 283
decodeClassCode, 277
decodeMessage, 276, 277, 278, 279, 285
decodeObjectState, 278
defineClass, 50
defineUnit, 231
defineUnitForEachClass, 386
defineUnits, 387, 388
deleteAgentContext, 259
deleteCodeBases, 235
deleteMirrorAgency, 235, 274
disableMessaging, 366
dispatch, 93
enableMessaging, 366
executeScript, 383
existsAgentContext, 259
filterClass, 283
filterCode, 283
finalize, 203, 204, 282, 283
findClass, 50
getAgencyName, 361
getAgentNamesByNickname, 362
getBody, 367
getClassesInUse, 232
getClassNames, 231, 266
getCodeBases, 235, 274
getContext, 355, 356
getData, 119, 233
getDataItem, 266, 270, 287, 290, 381
getDataItemState, 233
getDataSize, 234
getDeclaredClasses, 49
getDeclaredMethods, 49
getDefinedDataItems, 233
getDomainManagers, 397
getDomainNodes, 397
getFullAgentName, 361
getHomeAgency, 270
getKalongInterface, 261
getMajorVersion, 276
getMasterDomainManager, 398
getMinorVersion, 276
getMirrorAgency, 235
getNetworkServer, 259

getNextMessage, 367
getNickname, 361
getOwnerName, 361
getPluginNames, 362
getPluginNamesForService, 362
getProtectionDomain, 263
getProtocolName, 276
getRole, 396
getSender, 367
getServiceNames, 362
getServiceOfPlugin, 362
getSubject, 367
getTimeStamp, 367
getUndefinedDataItems, 233
getUnitForClassName, 234
getUnits, 234
getURLs, 242
getVendorName, 276
go, 44–45
hasMoreMessages, 366
isMessagingEnabled, 366
loadData, 118
loadDataItem, 381
meet, 141
meeting, 141
methodName, 46
migrate, 386
migrateAgent, 387, 388
migrationFailed, 45
openTransfer, 243
ping, 237–238
prepare, 229, 230
receivedInMigration, 263, 278
registerAgent, 230, 264–265
registerListener, 275
resolveClass, 48
rollback, 229, 230, 236
run, 84, 93, 265, 353
runAtRemote, 83, 100
schedule, 359
sendADB, 239, 268
sendDataRequest, 241
sendDataUpload, 241
sendHeader, 238
sendMessage, 364, 365
sendState, 240
sendUnitRequest, 239
sendUnits, 239
serializeAgent, 47

432 � Index

methods (continued)
setData, 233
setDataItem, 266, 287, 380
setDestination, 375
setEncryptedDataItem, 287
setMigrationStrategy, 375
setMirrorAgency, 235
setObjectState, 234
setProperty, 383
setReadOnlyDataItem, 287
startAgent, 44, 46, 242, 264, 362
startInMigration, 276
startOutMigration, 276
startTransaction, 229
startTransfer, 236, 268
stop, 210
uploadDataItem, 381
useCache, 386
verifyAgent, 238, 242

micro kernels, 332
micro-benchmarks, 295
migration, 35–129

asynchronous protocol, 92
characteristics, 15–16
command, 38
as core toolkit feature, 51–73
default behavior, 44
defined, 220
design issues, 74–98
drawbacks, 72–73
effect, 86
in execution tracing, 194–195
external state, 381
failure atomic, 97
fine-grained, 74
flexible, 74
forthcoming, notification, 193–194
framework, 38–40
generic framework, 36–40
initiating, 44
optimization, 127–129
performance, 293
ping-pong, 296, 299–301, 303, 306
protocol, 38
redirection, 86
RPC mixture, 53–54
self-initiated, 15
state preserving, 97
synchronous protocol, 92

techniques, drawbacks, 98–102
terminology, 36–37
in Tracy toolkit, 40–50

migration errors, 378–380
codes, 380
handling, 379–380
indication, 378–379
messages, 379
migration process and, 378

Migration plugin, 331, 368–391
migration process, 19–20, 36–50

illustrated, 39
migration errors and, 378
optimized, 74
performance and, 110–111
start decision, 375–376
starting, 44–46, 386
steps, 38–40, 111

migration strategies, 87–89
Aglets toolkit, 94
automated, 317
combinations of, 89
defined, 87, 220
deriving, 386
as Kalong scripts, 371, 385
MDL plugin, 388–391
overview, 88
passing parameters to, 385
performance and, 110–116
programming, 385–391
property keys, 385
pull, 88
pull-all-units, 88
pull-per-unit, 88, 121
push-all-to-all, 89, 114, 115, 116
push-all-to-next, 87, 114, 115, 116
push-all-units, 114, 115, 116
registered, 374
selecting, 385
transfers, 221

migration strategies experiment, 307–310
defined, 307
documents, 308
migration time, 310
performance, 308
PullAllClasses strategy, 308
PullPerClass strategy, 309
PushToNext strategy, 308, 309, 310
results, 309

Index � 433

setup, 308
See also experiments

migration times
bandwidth and, 298, 300
caching experiment, 310
code servers experiment, 314, 315
data compression experiment, 303
data uploading experiment, 311, 312, 313
home agencies, 113
measurements, 294, 298
migration strategies experiment, 310
mirrors experiment, 316
ping-pong migration, 296, 299, 300, 301,

303, 306
security extensions and, 306
transmission protocols and, 306

MigrationStrategy class, 385, 386, 387
migration-to-receipt relation (MRR), 143, 144

defined, 143
high/low, 143
typical, 144

mirror agencies, 123
activation, 272
defined, 117, 123, 227
defining, 235, 271–273
dynamic definition of, 126
illustrated, 127
initialization decision, 319
necessity of, 123
releasing, 273–274
See also agencies

mirrors experiment, 315–316
defined, 315
migration time, 316
round trip, 316
See also experiments

Mobile Agent System Interoperability Facility
(MASIF)

complexity, 328
component software for, 328–329
defined, 23
definitions/interfaces, 23
implementation, 368
toolkit support, 328

mobile agent systems, 17, 31, 36
mobile agent toolkits, 21–23, 86, 294

ADK, 22
AgentTCL, 86, 294
Aglets, 70, 93–95

Ajanta, 22, 141
communication model, 363
current status, 328–329
D’Agents, 22
defined, 17, 31, 36
existing, 22
Grasshopper, 22, 79, 88, 92, 95–97
for industrial-strength applications,

329
Jade, 294
Kalong adaptation to, 256
micro-benchmarks, 295
migration feature, 51–73
migration strategies, 88–89
Mole, 22, 53, 54, 88, 141
as multi-threaded systems, 106
performance, 294
performance comparison, 295
Semoa, 22, 145
Tacoma, 22, 294
Telescript, 85, 141
Tracy, 23, 40–50, 325–399
Voyager, 84
weak mobility, 83

mobile agents
acceptance, 329
access, 169
advantages, 55, 69–72
application domains, 27–30
attack detection, 184–198
attack prevention, 178–184
attacks on, 169–170, 171–174
authentication, 204–210, 283–286
authorization, 204–210
behavior, 56
benefits, 26–27
characteristics, 15–16
client-server vs., 51–54
cloning, 98
code, 37, 80
code size, 53
communication, 131–158
components, 37–38
control flow attacks, 174
control problems, 133, 136
creating (user’s view), 79–80
data, 37–38, 80–81
defined, 6, 10–11
defining, 43

434 � Index

mobile agents (continued)
deserializing, 40
distributed systems viewpoint, 11–17
drawbacks, 52, 72–73, 99
execution, 210–211, 275
execution, starting, 40
execution state, 38
external state, 116
history, 17–24
instances, 86
Java applets vs., 6, 25
locating, 132
malicious, 167–170
master, 132
migration, 6, 15, 35–129
migration design issues, 74–98
migration process, 36–50
moving, 98
multi-hop ability, 15
network load, 52, 70
network traffic, 69–70
as new design paradigm, 16–17
paradigm illustration, 16
performance analysis, 54–68
performance improvement, 102–110
profiling, 320–321
programming, 351–399
programming languages, 40–41
protecting, 178–198
read-only data protection, 188–189
receiving, 39–40
registering, 264–266
replication of, 186–187
research milestones, 20–21
response time, 71
scenarios, 56–68
security, 159–213
as solution in search of a problem, 8
standardization, 23–24
structure, 37–38
technical advantages, 26–27
termination, 171
tracking, 142, 145, 150
Tracy, 351–359
transferring, 39
typical behavior, 38

mobile code
defined, 6
early approaches, 17–18
See also code

mobile objects, 19
mobile processes, 19–20

defined, 19
migration, 19–20

mobile Web services, 31
MobileAgent class, 355
MobileSpaces system, 128–129

agent migration, 129
defined, 128

mobility
counters, 148, 149
improved, 98–129
strong, 82, 83–86
transparent, 85
weak, 82, 83, 86

Mobility Language (MoL), 76–77
defined, 76
grammar, 77

mobility models, 75–97
agent’s view, 76, 87–92
Aglets, 94–95
defined, 74, 75
Grasshopper, 96–97
Kalong, 116–127
levels, 76
lines, 76
network’s view, 76, 92–93
user’s view, 76, 77–87
views, 75–76

mobility strategies, 54
heterogeneous networks, 116
homogeneous networks, 114
performance and, 110–116

Mole toolkit, 22, 53, 54
multiple code servers, 109
pull strategy, 88
remote communication, 141
synchronous communication and,

138
See also mobile agent toolkits

moving data, 81
Multi-agent Systems: A Modern Approach to

Distributed Artificial Intelligence,
10

Multi-agent Systems. Introduction to
Distributed Artificial Intelligence,
10

multi-hop ability, 15
multi-point communication, 138

Index � 435

N

network adapters, 218
network analysis, 319–320
Network class, 260
Network Interchange Language (NIL), 18
network load, 52

argument, 213
client-server approach, 52, 58
deriving transmission time from, 111
m servers network (information at all servers),

66
m servers network (searching for single data

item), 63
mobile agents, 52, 70
model, 56
threshold, 70

network transmission protocols, 370–371
networks

ad hoc, 5
bandwidth, 4
heterogeneous, 15, 71, 113
homogeneous, 113, 114
logical-agency, 391–399
management, 30
network of, 3
quality, 298–302
wide-area, 15

network’s view, 76, 92–93
nomadic computing, 5

O

object closure, 47, 49
object state, 47

coding, 277–278
decoding, 278
defined, 220
defining, 234

ObjectInputStream class, 48
objects

agent instance, 224
cipher, 290
context, 355
dependency, 136
deserialization, 48
handler, 236

listener, 260, 275
mobile, 19
serialization, 46–48

one-way hash functions, 165
optimization

macro level, 107
micro level, 107
techniques, 127–129

organizational solutions, 175–178, 211–212
agency reputation, 177–178
by law, 178
trusted agencies, 176–177
See also attacks; security

OtherClass class, 232

P

partial result authentication codes (PRACs),
191–192

defined, 191–192
MAC-based, 192
technique modifications, 192

path histories, 206–207
defined, 206
drawback, 207
techniques, 206

performance
agent’s view, 107–109
analysis, 54–68, 293
code execution and, 105–106
code format and, 102–105
comparison of mobile agent toolkits, 295
experiments, 293–294
factors, 317
improving, 102–110
issue classification, 103
Kalong component, 293
migration strategies and, 110–116
mobile agent toolkits, 294
network’s view, 109–110
overview, 102
programmer’s view, 106–107
runtime aspects, 102–106
thread pools and, 354
transmission aspects, 106–110

permissions, 201
defining, 338
Tracy, 338–339

436 � Index

Persistence plugin, 331
personal digital assistants (PDAs), 5
PersonaLink, 176
pervasive computing, 4
ping message, 237–238

defined, 246
parameter, 246
See also SATP messages

ping-pong migration time
compression and, 303
defined, 296
in different WANs, 301
high-bandwidth networks and, 299
ISDN connection and, 300
security extensions and, 306
transmission protocols and, 306
See also migration times

pipeline steps
configuration, 373–374
defined, 369
execution, 373
mandatory, 373–374
modification at runtime, 370
processing, 370
registration, 372–373
See also MDL plugin

Place plugin, 361–363
defined, 331
example, 362–363
methods, 361–362
purpose, 361
See also plugins; Tracy toolkit

place service, 361–363
API, 361
context object of, 363

plugins
agency commands for, 345–346
AgencyShell, 331, 340, 341–348
AgentLauncher, 331, 341, 348–349
AgentPolicy, 331
Blackboard, 331
configuring, 336
defined, 330, 332
directory, 334, 336
DomainManager, 331, 393–399
Email, 331
installation, 334, 340–349
Key, 331
Message, 331, 363–368

Migration, 331, 368–391
Persistence, 331
Place, 331, 361–363
resources, 399
Survival, 331, 359–361
Taas, 332, 341
usage, 340–349
WebService, 332
See also Tracy toolkit

Pointer to Child (PTC), 155
combined with forwarding pointers, 157
defined, 156
message delivery, 156
migration in, 156
See also hierarchical approaches

Pointer to Leaf (PTL), 155
defined, 155
message delivery, 156
migration in, 156
See also hierarchical approaches

point-to-multi-point communication, 138
point-to-point communication, 137
policy files, 201
port numbers, 377, 378
port resolution service, 79
prepare message, 253
prevention, attack, 178–184

encrypted functions, 178–179
environmental key generation,

181–184
time-limited black boxes, 179–181
See also attacks; security

private keys, 163, 284, 285, 287
profiling, 320–321

defined, 320
dynamic, 320
static, 320–321

programming
Kalong scripts, 383–385
languages, 40–41
migration strategies, 385–391

programming mobile agents, 374–382
data items, 380–382
migration errors, 378–380
simple migration, 374–378

proof-carrying code (PCC), 205–206
as alternative technique, 205
defined, 205
multi-threaded programs and, 206

Index � 437

protection
agent, 178–198
data item, 289–290
domains, 201
read-only data, 188–189

protection, agency, 198–213
agent authentication/authorization,

204–210
agent execution, 210–211
introduction, 199–204

ProtocolEngine class, 260
proxy data, 81
public keys, 163

binding, 190
requesting, 286
of target agency, 289
trusted agencies, 177

pull strategy, 88
pull-all-units strategy, 88
PullPerClass class, 389
pull-per-unit strategy, 88, 121
PushAgent class, 388
PushAgentLoadOther class, 389
push-all-to-all strategy, 89, 114, 115, 116

heterogeneous network, 116
homogeneous network, 114
transmission times, 115

push-all-to-next strategy, 87, 114, 115, 116,
267–268

heterogeneous network, 116
homogeneous network, 114
migration, 267–268
transmission times, 115

push-all-units strategy, 114, 115, 116
heterogeneous network, 116
homogeneous network, 114
transmission times, 115

put and paste attack, 172

R

Readings in Agents, 10
read-only data

defined, 188
protecting, 188–189
See also data

read-only data items, 287–289

receiver agencies, 38, 220
address, 236
defined, 38
sending messages to, 236–242

region registry, 79, 96
registration

agent, 264–266
agent manager, 258
domain manager, 392
Kalong scripts, 371–372
listener object, 275
mandatory pipeline steps, 374
pipeline steps, 372–373
with services, 357–359
survival service, 360

reliability, communication, 133–134
remote agencies, 117

agent migration from, 121
availability, 237
data compression and, 304
defined, 226
starting, 79
See also agencies

remote method invocation (RMI), 14, 92
client-server approach, 70
defined, 42
power, 42

remote procedure calls (RPCs), 14, 18
agent migrations mixture, 53–54
extending, 18

remote-evaluation paradigm, 14–15
code size, 52–53
network load, 52

remote-evaluation (REV), 18–19
replication

of agencies, 184–185
of agents, 186–187

reply message, 221, 246, 277
request message, 221, 245–246
rollback message, 253
RSA encryption, 289

S

safety policies, 205
sandboxing, 200–202, 210

code source, 201
codebase, 201

438 � Index

sandboxing (continued)
defined, 201
elements, 201
keystores, 201
permission, 201
policy files, 201
protection domain, 201
security manager, 201–202

SATP messages, 246–253
coding, 276, 279
commit, 253
compression of, 278–281
data item, 252
data request, 252–253
decoding, 276, 279
defined, 220
format creation, 281
header, 238–240, 247–248
ping, 237–238, 246–247
prepare, 253
reply, 221, 246, 277
request, 221, 245–246
rollback, 253
sending, 236–242
specifications, 246–253
state, 251–252
unit, 250–251
unit request, 252

SATP pipelining, 369–370
defined, 369
steps, 370, 372–374

SATP protocol, 124, 217, 243–253
defined, 219
introduction, 244
normal operation, 245
See also Kalong mobility model

scenarios, 56–68
evaluation, 59–60
m servers network (information at all servers),

63–68
m servers network (one data item), 60–63
model parameter values, 58
one client/server network, 56–60

scheduling, 37, 106
Secrets and Lies, 161
security, 159–213

accountability, 166
anonymity, 166–167
authentication, 162–164

availability, 166
confidentiality, 164
detection, 184–198
encrypted functions, 178–179
environmental key generation, 181–184
extension curve, 306, 307
importance, 160
improving, 307
integrity, 165–166
Java and, 199–204
level of, 161
organizational solutions, 175–178
overview, 159
prevention, 178–184
requirements, 160–167
solutions with Kalong, 281–291
time-limited black boxes, 179–181
transmission time and, 304–307
See also attacks

security managers, 201–202
Semoa toolkit, 22

Atlas, 145
focus, 22
See also mobile agent toolkits

sender agencies, 38
serialization, 46–48

defined, 46–47
result, 48
time, 296

services, 355–359
defined, 332
place, 361–363
registering with, 357–359
shell, 355–356, 357
survival, 346, 357, 358, 359–361
using, 355–357

shell service, 355–356, 357
SignedObject class, 287, 288
Simple Agent Transmission Protocol.

See SATP messages; SATP protocol
sliding encryption, 191
social control, 177
Softnet, 18
software agents, 7, 9–10

autonomy, 9
defined, 8
proactivity, 9–10
reactivity, 9

Index � 439

social behavior, 9
stationary, 352

software development, 30
SomeClass class, 100
SomeOtherClass class, 100
SomeTracyAgent class, 100
source code, 80, 102

advantage, 104
compiled, 104
intermediate code/machine code combination,

105
See also code

spiders, 24
spoofing, 162
Sprite, 19, 145
SSL transmission, 305
state

defined, 16
execution, 38, 39
external, 116, 118–119, 222, 380–381
message, 240
object, 220, 234, 277–278

state appraisal, 200, 204, 207–209
defined, 207
drawbacks, 209
dynamic data and, 208
max function, 207, 208, 209
purposes, 208
req function, 207, 208, 209

state message, 251–252
data items, 252
defined, 251
mirror agency addresses, 251
serialized agent, 251–252
See also SATP messages

static data, 81
static profiling, 320–321
stored procedures, 19
Strategy pattern, 369
strong mobility, 82, 83–86
Survival plugin, 359–361

defined, 331
example, 360–361
methods, 359
purpose, 359
See also plugins; Tracy toolkit

survival service, 346, 357, 358, 359–361
API, 359
registration with, 360

symmetric cryptosystems, 162
synchronous communication, 138
systems, 332

T

Taas plugin, 332, 341
Tacoma toolkit, 22

multiple language support, 22
performance evaluation, 294
See also mobile agent toolkits

TCPEngine class, 260
Telescript toolkit

meetings, 141
strong mobility, 85
technology, 20
See also mobile agent toolkits

Telnet, 347–348
server, 347
session advantages, 347
shortcuts, 347–348

test environment, 297–298
TestAgent class, 232
thread pools, 106, 354
throughput, 111
time-limited black boxes, 179–181

defined, 180
drawbacks, 181
goal, 180
mess-up techniques, 180
precautions, 180
See also black-box attacks; black boxes

Tracy agencies
commands to start/stop agents, 343–344
commands to work with plugins,

345–346
configuring, 335–336
installation, 333–334
running, 327–349
software, 327
starting, 339–340
stopping, 339–340

Tracy agents, 351–359
awakening, 359
creating, 352–355
deleting, 359
interface implementation, 351–352
life cycle, 353–354

440 � Index

Tracy agents (continued)
message handling, 363
registering, with service, 357–359
starting, 353
states, 355

Tracy Authentication and Authorization Service
(TAAS), 332

Tracy Naming Service (TNS), 369
configuration, 378
defined, 378
implementation, 378
migration initialization with, 378

Tracy policy file
configuring, 336–337
defined, 336
name, 336
uses, 337

Tracy toolkit, 325–399
AgencyShell plugin, 331, 340, 341–348
agent representation, 43–44
AgentLauncher plugin, 331, 341,

348–349
architecture, 329–332
architecture benefits, 330–331
archive, 333
before installation, 332–333
communication, 363–368
configuration, 334–337
configuration files, 334, 339
defined, 23, 329
design goals, 330
domain manager, 320
Domain Manager Service, 391
DomainManager plugin, 331, 393–399
extendability, 399
installation, 333–334
kernel configuring, 335
logging mechanism, 335
Message plugin, 331, 363–368
migration in, 40–50
Migration plugin, 331, 368–391
network-performance-measuring component,

393
online documentation, 334, 393
permissions, 338–339
Place plugin, 331, 361–363
plugins, 330
programming Kalong scripts, 383–385

programming migration strategies,
385–391

programming mobile agents, 374–383
Survival plugin, 331, 359–361
See also mobile agent toolkits

TracyClassLoader class, 48, 50
TracyInputStream class, 48
TracyObjectInputStream class, 48
traffic analysis, 170
transaction management, 221
transfers

defined, 221
multiple, in single transaction, 270–271

transmission strategy, 92
transmission times

code cache and, 127
code size/network quality and, 298–302
data compression and, 302–304
heterogeneous networks, 116
homogeneous networks, 114
from network load, 111
push-all-to-all strategy, 115
push-all-to-next strategy, 115
push-all-units strategy, 115
security and, 304–307

transposition algorithm, 164
Traveling Agent Problem, 107
triangle problem, 146
trusted agencies, 176–177

defined, 176
public key, 177
See also agencies

tuple space-oriented approach, 139, 140
defined, 140
distribution, 140–141
with Linda language, 140
multi-set of tuples, 140
overview, 141
See also information space model

two-phase-commit (2PC) protocol, 221, 229

U

UDP packages, 394, 396
unit message, 250–251
unit request message, 252
universal unique identifiers, 258
unmarshaling, 111, 112

Index � 441

URLs, 221
user’s view, 76, 77–87

agent code, 80
agent creation, 79–80
agent data, 80–81
defined, 77
migration, 82–87
naming and addressing, 77–79
See also mobility models

V

variables
CLASSPATH, 80
recomposition, 181
transient, 47

version management, 91
virtual machines, 12

Kalong as, 257–258
migration strategy definition and, 257

Voyager, 83

W

weak mobility, 82, 83, 86
Aglets, 93
defined, 97
error notification, 87
Grasshopper, 95
object state, 97
See also mobile agent toolkits

Web site, 399
WebService plugin, 332
worms, 24

Z

zero-or-more semantic, 134
ZIPAgentManager class, 279

THIS PAGE INTENTIONALLY LEFT BLANK

