

Coordination of Internet Agents

Springer-Verlag Berlin Heidelberg GmbH

Andrea Omicini • Franco Zambonelli •
Matthias Klusch • Robert Tolksdorf (Eds.)

Coordination of
Internet Agents
Models, Technologies, and Applications

With 89 Figures and 16 Tables

Springer

Editors

Andrea Omicini
Universita di Bologna
Dipartimento di Elettronica,
Informatica e Sistemistica
Viale Risorgimento 2
40136 Bologna, Italy
E-mail: aomicini@deis.unibo.it

Franco Zambonelli
Dipartimento di Scienze dell'Ingegneria
Universita di Modena e Reggio Emilia
Via Vignolese 905
41100 Modena, Italy
E-mail: franco .zambonelli@unimo.it

Matthias Klusch
DFKI GmbH
German Research Center for AI
Multi-Agent Systems Group
Stuhlsatzenhausweg 3
66123 Saarbriicken, Germany
E-mail: klusch@dfki.de

Robert Tolksdorf
Technische Universitat Berlin
Fachbereich Informatik, FLP/KIT
Sekr. FR 6-10
Franklinstr. 28/29
10587 Berlin, Germany
E-mail: tolk@cs.tu-berlin.de

Library of Congress Cataloging-in-Publication data applied for

Die Deutsche Bibliothek - CIP-Einheitsaufnahme

Coordin ation of Intern et agents: models , technologies, and
applications; with 16 tables/Andrea Omicini ... (ed .). - Berlin ;
Heidelberg; New York; Barcelona; Hong Kong; London ; Milan; Paris ;
Singapore; Tokyo: Springer, 2001

ACM Subject Classification (1998) : 1.2.11, C.2, D.I .3, D.2-D.4, H.3-H.4, H.5.3

ISBN 978-3-642-07488-2 ISBN 978-3-662-04401-8 (eBook)
DOI 10.1007/978-3-662-04401-8

This work is subject to copyright. All rights are reserved , whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilm or in any other way, and storage in data
banks . Duplication of th is publication or parts thereof is permitted only under the provisions
of the German Copyright Law of September 9, 1965, in its current version , and perm ission for
use must always be obtained from Springer-Verlag . Violations are liable for prosecution under
the German Copyright Law.

http//www.springer.de

© Springer-VerlagBerlin Heidelberg 2001
Originally published by Springer-Verlag Berlin Heidelberg New York in 2001.
Softcover reprint of the hardcover Ist edition 200I

The use of general descriptive names, trademarks, etc. in this publication does not imply,even in
the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by the autho rs
Cover Design: d&p,design & production, Heidelberg
Printed on acid-free paper SPIN 10796140 - 06/3142SR - 5432 1 0

Foreword:
Coordination and the Internet

The Internet changes everything. Not only does the Internet change the ap
plications that people use and the systems with which they interact, it also
changes the way we model, design, and build those applications and sys
tems. Moreover , the Internet changes the theories with which we understand
computation.

All of these changes in theory and practice are manifested in the coordi
nation, broadly understood, of software components. All of these changes are
necessary because the Internet promotes - indeed, all but requires - the au
tonomy of the software components. Coordination is essential if for no other
reason than to control this autonomy.

It is instructive to consider at least three main forms of autonomy corre
sponding to the three main roles that people play in networked computing
environments. Design autonomy, also termed heterogeneity, reflects the in
dependence of designers and vendors to build their software components as
they please. This is realized in the schemas and representational assumptions
of the designs and implementations of the various components. Configura
tion autonomy reflects the independence of system administrators to set up
individual hosts and networks as they see fit. This is realized in dynamically
linkable libraries and directories, sometimes through arbitrary choices among
incompatible libraries and services . Execution autonomy reflects the indepen
dence of end users - both consumers and enterprises - to act as they prefer .
This is realized in software tools such as browsers and personal assistants.

The forms of coordination that arise correspond directly to the forms of
autonomy that occur in open environments. Design autonomy forces coor
dination about schemas and ontologies. When the components are created
by different designers, without such coordination, they would not be able to
understand each other enough to interoperate coherently. Configuration au
tonomy forces coordination for resource discovery so that components can be
linked up with other components that can supply the services they require.
Without such coordination, system administrators would not be able to set
up large distributed systems. Execution autonomy forces coordination at run
time, e.g., through interaction protocols. Without such coordination, users
would not be able to interact coherently and would fail to carry out even the
simplest business transactions with each other.

VI Foreword

Prior to the expansion of the Internet into our daily personal and business
activities, all forms of coordination were exercised solely by humans. More
over, they were exercised before a given distributed system was instantiated
and applied. The components of a running distributed system had no auton
omy. Designers chose a fixed, usually proprietary, schema and ensured that
the various components worked together. System administrators were forced
to adopt closed solutions, typically provided by some major vendor. Users
were forced to act strictly as required by whatever application program had
been configured to run on their computers. For anything nontrivial, users,
especially enterprises, were forced to follow a preset sequence of actions that
had been deemed acceptable.

Because the traditional approaches required human effort , they simply
would not scale to Internet-sized systems. Further, for the same reason, they
would not be able to accommodate its dynamic nature where components and
users can arbitrarily come and go. The obvious solution has been to delay
the coordination as much as possible. Thus the scope of design coordination
narrows to include only the most basic meta information, so that design deci
sions about schemas and ontologies can be deferred to configuration. Likewise,
the scope of configuration coordination narrows so that a separate phase of
configuration prior to execution becomes vanishingly small. With minimal
human-supplied information, configuration protocols arrange for automatic
resource discovery and binding, leading to efficient, low-cost configurations.
Conversely, the scope of execution coordination grows to include many of the
tasks of the other two forms of coordination. Discovery protocols apply at
run time to autoconfigure a system; moreover, they acquire richer structures
to accommodate discovery based on increasingly subtle semantic properties
that were heretofore the domain of design coordination.

Coordination is a good thing, but contrary to Mae West 's famous dictum,
too much of a good thing is not necessarily wonderful. Coordination can be
expensive to achieve because it requires additional computation and com
munication beyond the basic application itself. By definition, coordination
reduces the autonomy of the participating components. Moreover, whenever
applied, it reduces the set of allowed computations, thereby increasing the
overhead on computational resources. In other words , coordination is like
friction - we need some , but the less we have of it the better.

To achieve coordination in this minimalist fashion presupposes subtle
models of interaction that enable us to specify the required coordination
with great finesse. Such models would need to be integrated with program
ming models and software architectures. The models would need to be oper
ationalized in infrastructure that accommodates any special properties of the
underlying information resources. For the above reasons, coordination would
be most naturally realized through an application of agents.

The changes that the Internet brings about not only affect wide-area pub
lic networks, but virtually all forms of networked computing. This is because

Foreword VII

what was essent ial for the Internet at lar ge is highly desirable even for smaller
networked computing environments such as within ente rprises. Indeed , the
addit ional knowledge availabl e to designers and component s alike in such en
vironment s facilitates the development of richer form s of coordination, which
lead to greate r efficiency and effect iveness of the resulting dist ributed sys
te ms .

For this reason , I believe that the scope of coordinat ion includes all of
mod ern computing. To live up to our own expectations, however , we will
need to develop increasin gly rich models for coordinat ing components and
increasingly sophist icate d platforms for realizing and operationalizing t hose
models.

That great progress is being mad e along the above lines is evidenced by
the excellent volum e you are now reading. I applaud the editors, And rea
Omicini , Fran co Zambonelli, Matthias Klu sch , and Rob ert Tolksdorf, for the
quality of the works that they have assembled and organ ized for our reading
pleasure. Enjoy!

Munindar P. Singh
North Carolina State Universit y

Raleigh , Nort h Carolina

Preface:
Coordination of Internet Agents

The Internet is broadly accepted as the technology of today, agents are ex
pected to be the paradigm of tomorrow. This book relates the two topics by
discussing models for the coordination of Internet agents , their technologies
and applications.

The field of coordination models and languages is a very lively one from
both the research and the application sides. It can look back on a history
of more than fifteen years [267] which was very profitable, indeed. A huge
amount of excellent work been performed; interesting results are ready and
available ; many good papers on the models and language for the coordination
of processes , objects, activities, agents [530, 531, 529, 165, 263, 174] and other
ent it ies have been written and published.

Although so many results have already been obtained, many are still to
be achieved. This book is meant to address some of these remaining gaps .

Firstly, it is not easy for anybody from Computer Science, Software En
gineering, or AI, to get a comprehensive view of the whole coordination field
from the literature. Although a few surveys are available [482, 163, 167],
they focus on some partial view, some limited criteria, or some particular
classification scheme.

Secondly, many researchers in the field had the feeling that coordination
models should be as inter-disciplinary as the very general notion of coor
dination, and that their application should have a significant impact on a
wide range of complex systems [393]. However, few people are actually using
coordination models and languages consciously and explicitly outside the re
search area itself, and that no systematic exploitation of its results had been
attempted yet .

This book aims at providing a snapshot of the area at the time when the
key transition from theoretical results to industrial applications is apparently
taking place. It should help both practitioners to take advantage of all the
research work done till now, and researchers to cross the boundaries and set
new paths to follow. Two major audiences are distinguishable:

- To the researcher, the practitioner, the developer and the engineer work
ing on Internet- or agent-based systems, the content s of this book help to
provide an understanding of how the notion of coordination model relates
to the respective fields of interest and how the conceptual results and the

X Preface

technologies emerging from the coordination area can be usefully exploited.
Usua lly, one is alrea dy modelling or building systems whose components
interact and coordinate in some way - thus , there already exist implicit
coordination models, coordination technologies, and coordination applica
tions . This book arg ues in favor of an explicit consideration of coordination.

- For the experienced researcher or pr acti tioner in the area of coordination
models and languages, the book gives a comprehensive view of a rich and
inter-disciplin ar y area. A wide range of coordination-re lated issues is cov
ered in depth , as well as some hop efully inspiring views of the role of
coordinat ion mod els and technologies in future systems.

This volum e brings toge ther cont ribut ions by well recognised aut hors in the
field of coordinat ion models and languages, as well as in some of the most
closely related resear ch fields. They have written original essays ex novo ac
cording to both th eir perspective and the cont ext of thi s book, without lim
itations in length or content .

Consequently, most of the material contained in thi s book cannot be found
anywhere else in the literature - and the authors have done a great job in
combining known resul ts and ideas with new views and perspectives. As
a result, this book could be read as a whole, from the first page to the
last . Alternatively, th e reader may just as eas ily choose to read each chapte r
independ ently, or use the book as a reference for specific topics of interest.

Two choices guided the select ion of chapters for this book. On the one
hand, agent- based systems on the Internet represent one of the most impor
tant t rends in both research and industry in .recent years. On the ot her hand,
by emp has ising the role of interaction , both agents - as interact ive and so
cial ent it ies - and the Internet - as an infrastructure to support distributed
and open interaction - implicitly put coordination at their core from both a
conceptua l and a pragmatic viewpoint .

Coordination

Wh at is coordination , afte r all? Several different definit ions have been given ,
and severa l you will find throughout this book. The noti on of coordination
th at this book mostly relies on was inspired by the works of Malone [393] , Gel
ernter [269] and Wegner [623, 624], among many oth ers. The most accepted
view understands coordination as managing th e int eraction and dependen
cies between the ent it ies of a system - whether they are agents , processes,
molecules, individuals, or whatever. The notions of interaction used in this
book cover a bro ad range - from subjective inter-d epend encies (like intra
organisation relationships) to physical interactions (like communication acts) .
The term "coordination" affects a wide spectrum of resear ch areas where it is
common ly used: Programming Languages, Parallel and Distributed Systems,

Preface XI

Art ificial Intelligence, Distributed Artifi cial Intelligence and Mult i-Agent Sys
tems, Intern et Technologies, and Software Engineering.

This book t ries to put all the coordina tion-re lated issues in persp ective,
and provides a concept ua l kernel around which a huge amount of seem
ingly heterogeneous mat erial can be structured and organ ised . A coordination
mod el (as defined by [269, 163, 482, 168] among the oth ers) is first of all a
conceptu al framework to mod el th e space of int eraction. According to [163],
coordination mod els allow systems to be represented as multi- component as
semblies, by defining which are the enti ties whose mutu al interaction is ruled
by t he model, by providing t he abstract ions enabling the interact ion between
the ent it ies, and by expressing the system's governing rules.

Coordination of Agents on the Internet

The Internet is to day much more than a mere distributed information reposi
tory, or a world-wide collection of network services. Instead , th e Internet itself
constitutes a global, distributed , open , heterogeneous, decentralised , and un
predict able comput ing environment . On the Int ernet , applicat ions are made
up of a multipli city of different components, which are likely to be het eroge
neous in their design , source, technology, architecture and ownership. Interac
tion is a key issue in Internet-based systems, where components interact with
each other at the application level, as well as with the infrastructure at sev
eral levels - from network devices to operating systems to language executors .
Correspondingly, coordinat ion plays a central role in Internet applications,
where not only coordination mod els, but also coordination technologies [167]
can test th eir effectiveness .

In par ti cular , the Internet makes clear th at coordinating an open system
is not th e same thing as coordinat ing a closed one, that a coordination mod el
that fits a homogeneous system does not necessarily fit a heterogeneous sys
tem as well, and t hat a coordination technology support ing static components
does not t riviall y adapt to mobile ent it ies. Issues like secur ity, mobility, Or
scalability have obviously to be taken int o account when designing Internet
based systems, in par t icular when choosing th e mod els and the technologies
- and this also applies to coordination systems .

As a result , this book t ries to provid e the reader with a comprehensive
view of how coordination models and technologies are affected by t he emer
gence of such relevant Internet-related issues, and how they can be exploited
to deal with such issues.

Thus, t he issues aris ing from coordinat ion models and technologies are
inescapabl e, in particular when the environment of choice for a system is
at such a level of complexity as the Internet . The coordinat ion viewpoint
may th en successfully be adopted +'0 supply a unified view of this wide and
heterogeneous range of topics, from security to software architecture, from
mobility to emergent behavior.

XII Preface

This book does not introduce a new definition of the term "agent" : there
are several already, coming from the Multi-Agent System field [643, 248],
each one emphasising different aspects of what being an agent means. This
book focuses on understanding those aspects of agenthood that relate to
coordination in general, and what role and impact coordination models and
languages could have in multi-agent systems.

A widely accepted notion understands agents as autonomous software or
hardware entities which are situated in some environment where they live and
interact. Such an environment typically features some characteristics of its
own - like heterogeneity, dynamics, or unpredictability. Since agents are sup
posed to be reactive , that is, responsive to the dynamics of their surrounding
world, these features affect the way in which agents are conceived, designed,
and built.

It is also frequent to find that agents are defined as social entities, which
interact with other entities of the same sort in order to achieve their goals .
The ways in which this interaction is conceived, organised and performed,
which models are adopted, which languages are used, and which technologies
are exploited, are again a matter of coordination.

So, how agents manage to live in their environment and how they interact
with other agents are , in essence, coordination problems. The final feature
that almost everybody recognises in agents is their pro-activeness: agents
are not objects which can be invoked, but act on their own initiative. Then,
once we start thinking of agents as individuals, and multi-agent systems as
societies, issues like mobility, identity, social rules in multi-agent systems
clearly reveal themselves as coordination-related topics.

Agent-based approaches [644] are currently showing how the agent ab
straction can be exploited to address issues like distribution, heterogene
ity, decentralisation of control, unpredictability, and the need for intelligence
[643]. Agents' reactivity helps in dealing with dynamic and unpredictable
environments, their pro-activeness in pursuing goals makes it possible to ab
stract from control issues and to easily deal with decentralisation of control,
and so on. The Internet is today the most complex environment in which sys
tems have to be built, and the level of abstraction provided by the metaphors
of agent and agent society is likely to be the most suitable for tackling the
complexity of Internet-based applications. As a result, the need for modelling
and building systems on the Internet is pushing scientists and engineers more
and more towards the adoption of the multi-agent paradigm.

Here is where coordination models for multi-agent systems meet coordination
technologies for Internet-based applications.

Agent societies could be organised around coordination media supplied as
coordination services by an Internet-based infrastructure [471] . The access of
intelligent agents to heterogeneous information in a distributed and decen
tralised environment like the Internet might easily be enabled and ruled by a

Preface XIII

suitable coordination infrastruct ure provid ing aut hent icat ion, aut horisat ion,
knowledge indexing and mediation, and so on [197] .

In th e end, many of t he advanced systems of today are likely to exploit
Internet agents - and dealing with Intern et agents is mostl y dealing with
coordination models and technologies of many different sorts.

Structure of the book

In this book, the aut hors of the chapters writ e about models, technologies,
and applications for the coord inat ion of Internet agents. So, this book starts
with a bird's-eye view on coordination models (Part I) , maps models onto
technologies for Internet-based (Part II) and multi-agent (Part III) systems,
and explores the emerging related issues from both a concept ual and a techno
logical viewpoint (Part IV) . Then, it deals with the applicat ion issues (Part V)
and ends by supplying some visions on the future (Part VI) .

Par t I, edited by Andrea Omicini , is intended to provide th e reader with
the comprehensive view that is required to ente r the field of coordina t ion
models. There, two surveys allow two different viewpoint s to be adopted:
roughly speaking, the Computer Science (Chap ter 1) and th e Software Engi
neering viewpoint s (Chapter 2).

Chapter 1, by Nadia Busi, Paolo Cian carini, Rob erto Gorrieri, and Gian
luigi Zavattaro , takes the reader on a "guided tour" , which first supplies a
basic ontology for coordinat ion models and languages, t hen exploits a clean
formal framework to represent a wide range of different coordina t ion mod els,
which are defined, explored and classified.

Chapter 2, by George Papadopoulos, provides a comprehensive survey
on coordina t ion models and technologies specifically focussing on Internet
agent s. In spite of th e number of models and systems surveyed, the auth or
shows t he reader a clear path from basic coordinat ion infrastructures up to
high-level agent coordination models.

Part II , edited by Andrea Omicini, deals with the basic issues of coordina
t ion systems as technological infrastructures which enable complex systems
to be built by putting components together, makin g them interact , and ruling
t heir int eraction so as to achieve global application goals. There, the relation
ship between the notions of coordination services and middleware are clari
fied in different context s: run-tim e systems (Chapter 3) , t uple-based models
(Chapte r 4), standa rds and technologies for dist ributed systems (Chapter 5),
and script ing languages (Chap ter 6).

Chapter 3, by Antony Rowstron, surveys the systems providing run-time
support for coordina t ion services, by supplying both a historical persp ective
and a bridge between the conceptual issues and the implement ation problems.

Chapter 4, by Davide Rossi , Giacomo Cabri , and Enrico Denti, provides
the reader with a comprehensive survey on tuple-based coordination systems,

XIV Preface

a taxonomy as well as a set of criteria for the classification of the mod els of
this class.

Chapter 5, by Paolo Bellavista and Thomas Magedanz, t akes an appar
ent ly more tradi tional approach to the middleware topic . However , afte r a
report on th e state of the art, it shows how models and infrastructures for
mobile agent support could be effectively int egrated with interoperability
standards , like CORBA, to provide multi-component systems with the basic
enabling technologies for interaction and coordinat ion.

Chapter 6, by Jean-Guy Schneider , Markus Lump e, and Oscar Nierstrasz,
defines th e notion of coordina t ion in th e field of script ing languages, which
singles out th e main features of th ese languages in terms of th e mechanisms
and abstractions they supply, in particular in the cont ext of agent coordina
tion.

The contribut ions of par t III edited by Matthias Klusch are cente red
around the topic of high-level enabling coordina t ion techniques. As the In
ternet is an open system where het erogeneous agents can appear and disap
pear dyn amically, and th e number of such agent s increases steadily there is
a par ticular need to cope with (a) th e connect ion problem means to locate
agent s that provide relevant data and services, (b) the issue of conversations
on top of any inter-agent communicat ion, and (c) transp arent location and
migrat ion of mobile agents.

Chapter 7, by Robert Scott Cost , Yannis Labrou, and Tim Finin, pro
poses a formalism based on colored petri nets for modeling and verifying
conversation policies. It also present s some examples of using thi s formalism
to specify conversations among agents.

Chapter 8, by Mat thias Klusch and Katia Sycara , gives a compact guide to
the basic concepts of capability-based matchmakin g and brokerin g for coordi
nat ion of agent societ ies in th e Internet by respective types of middle-agents.
It provides examples of both coordination techniques as th ey are available in
severa l multiagent systems which have been developed by different research
labs and universities so far.

Chapter 9, by Gul Agha, Nadeem Jarnali and Carlos Varela , present s
techniques for higher-level actors (agent) naming and coordina t ion mod els
and infrastructures which enable agent s in the Internet to t ranspa rent ly mi
grate in a coordinated manner with appropriate runtime support . This is
demonstrated by an example of coordina t ing travel agents.

Part IV, edited by Franco Zambonelli , focuses on a specific set of issues
that are emerging as being of primary import ance in the development and
management of coordinated Internet applicat ions, i.e., mobility (Chap ter 10),
security (Chapter 11), and scalab ility (Chapter 12). All three chapters are
represent ative of the convergence - induced by agent -based Internet comput
ing - of the issues faced by different resear ch communit ies, such as Software
En gineerin g, Distributed Systems, Coordination Models and Languages.

Preface XV

Chapter 10, by Gruia-C at alin Roman , Amy Murphy, and Gian Pietro
Pi cco, addresses the issues of mobility and coordinat ion in a very genera l way.
The aut hors introduce a working definition of coordination and explore the
problems related to coordinat ion and mobility in a way that makes it possible
to trans cend the distinctions between mobili ty of software and devices.

Chapte r 11, by Ciaran Bryce and Marco Cremonini, analyses th e issues
ar ising in the definition of a secure coordination architec t ure for open and
distributed agent systems. The aut hors show th e vari ety of mod els, tech
nologies, and architectural solut ions for securi ty that can be adopted in th e
context of coordinated Internet applicat ions.

Chap ter 12, by Ronaldo Menezes, Robert Tolksdorf, and Alan Wood , dis
cusses the scalabili ty issues that arise in Linda-like coordination systems for
the Internet. By analysing several models and syste ms, the authors show th at
Linda-like coordinat ion on the Intern et can be adopt ed without und ermining
the main advantages of t he Linda mod el.

Part V, edited by Rob ert Tolksdorf, st udies issues of the application of
coordination technologies. It shows that coordination, while being mostly in
visible in application, is pervasive to all aspects of applications, be it their
development (chapter 13), the coordinat ion pat terns embedded in applica
tions (chapter 14), th e coordinat ion of actors in workflows (chapter 15), or
the embedding of coordination technology within some other basic technology
like const ra int solving (chap ter 16).

Chapter 13, by Franco Zambonelli, Nicholas R. Jennings, Andrea Omicini ,
and Michael Wooldridge deals with the development of complex Internet
based applicat ions . The authors propose to apply a coordination mod el within
a methodology for the development of agent-based applications.

Chap ter 14, by Dwight Deugo, Michae l Weiss, and Elizabeth Kendall
presents a set of reusable patterns for agent coordinat ion. The five pat terns for
agent coordinat ion are describ ed with respect to the most imp ortant forces of
mobili ty and communication, standardisat ion, coupling, problem par ti tioning
and failures which driv e the design of agent-oriented applications.

Chapter 15, by Monica Divitini , Chihab Hanachi, and Christophe Sibertin
Blan c is devoted to how actors involved in business processes coordinate. A
framework for the support of int er-organisa tion al workflows is proposed and
used to study two exist ing approaches.

Chapter 16, by Eric Monfroy and Farhad Arb ab , gives an example of
applying coord ination mod els by embedding them in yet anot her technology.
It advocates the use of coordinatio n mod els for cooperation of distributed
const ra int solvers and demonstrates two possible approaches for doing so.

Par t VI , edited by Franco Zambonelli, concludes the book with two chap
ters that present a forward look at the next generation of agent syste ms,
showing how coordination models and technologies can effectively rely on
mod els and concepts inspired by t hose already driving our real-world organ
isations. The two cha pters show th at , even if it may st ill take a long time

XVI Preface

before autonomous organisations of agents populate the Internet, the research
is already suggesting the feasibility of the approach.

Chapter 17, by Jonathan Bredin, David Kotz, Daniela Rus, Rajiv T . Ma
heswaran, Cagri Imer and Tamer Basar, focuses on market-based models and
architectures for mobile-agent systems. The results presented in the chapter
encourage the development of a future generation of agent systems in which
coordination activities can occur according to market-based models .

Chapter 18, by Rune Gustavsson and Martin Fredriksson, puts the em
phasis on a next generation of agent-based Internet applications, e.g., dis
tributed health-care and smart homes. By focussing on the engineering of
such systems, the authors show how concepts inspired from our real-world
societies and organisations will playa primary role in their design.

An extensive bibliography collecting all references from the chapters con
clude the book.

Acknowledgements

This book is a collaborative effort . The editors would like to thank foremost
the contributing authors of the chapters and the foreword for their outstand
ing work . It was a pleasure to cooperate with them. Last but not least, we are
particularly indebted to Alfred Hofmann and Ulrike Stricker from Springer
publisher for their kind and supportive assistance during the whole book
project.

Enjoy reading this book!

Andrea Omicini, Franco Zambonelli, Matthias Klusch, Robert Tolksdorf
Bologna - Modena - Saarbriicken - Berlin

Fall 2000

Table of Contents

Part I. Coordination Models and Languages: State of the Art

Introduction . 3

1. Coordination Models: A Guided Tour
Nadia Busi , Paolo Ciancarini , Roberto Gorrieri , and Gianluigi
Zavattaro . 6

1.1 Introdu ction and Motivation . 6
1.2 The Starting Point : The Dat aspace Model for Coordinating

Agents 9
1.3 Extending the Coordination Primitives 12
1.4 Reshapin g the Coordination Media 17
1.5 Programming the Coordination Rules. 21
1.6 Conclusions. 23

2. Models and Technologies for the Coordination
of Internet Agents: A Survey
George A. Papadopoulos . 25

2.1 Introduction 25
2.2 Basic Coordinat ion Infrastructure 28
2.3 Coordination Frameworks 38
2.4 Logical Coordination. 49
2.5 Conclusions 54

Part II. Basic Enabling Technologies

Introduction. 59

3. Run-Time Systems for Coordination
Antony Rowstron . 61

3.1 Introduction..... 61
3.2 Coordination Syst ems in Gener al . 62
3.3 Taxonomy of Tuple-based Run- tim e Systems. 64

XVIII Table of Contents

3.4 LAN and Par allel Computing Implement ations: The First
and Second Generation .. 67

3.5 Open Implementation Techniques .. 69
3.6 Adding Explicit Information to Linda P rograms. 74
3.7 From LAN to WAN: The Third Generat ion 75
3.8 The Future: The Tuple Mega-Server? 79
3.9 Conclu sions 82

4. Tuple-based Technologies for Coordination
Davide Rossi, Giacomo Cabri , and Enrico Denti 83

4.1 The Origins . 83
4.2 Towards Open Distributed Systems: A Taxonomy for Linda-

derived Systems . 85
4.3 Systems Extending Primitives .. 88
4.4 Systems Adding Programmabili ty 97
4.5 Systems Modifying th e Model 105
4.6 Conclusions 109

5. Middleware Technologies: CORBA and Mobile Agents
Paolo Bellavista and Thomas Magedanz 110

5.1 Middleware Technologies for Open and Global Distributed
Systems 110

5.2 Common Obj ect Request Broker Architecture (CORBA) 114
5.3 Mobile Agents 122
5.4 Middleware Technologies: the Integration of MA and CORBA 129
5.5 CORBA/ MA Integrated Supports: Grassh opp er and SOMA . 139
5.6 Concluding Remarks 151

6. Agent Coordination via Scripting Languages
Jean-Guy Schneider , Markus Lumpe, and Oscar Nierstrasz 153

6.1 Introduction 153
6.2 A Conceptual Framework for Software Comp osition 155
6.3 Scripting Languages at a Glan ce 160
6.4 Scripting in Practice 167
6.5 Summary, Conclu sions 174

Table of Contents XIX

Part III. High-Level Enabling Coordination Technologies

Introduction 179

7. Coordinating Agents using Agent Communication
Languages Conversations
R. Scott Cost , Yannis Labrou, and Tim Finin 183

7.1 Introduction 183
7.2 From Agent Communication Languages to Conversation

Protocols . 185
7.3 Coordination using Conversation Protocols 187
7.4 Modeling Conversation Protocols with Colored Petri Nets 188
7.5 Advantages for Coordin ation when using CPN-described

Conversations 193
7.6 Related Work 194
7.7 Conclu sions 195

8 . Brokering and Matchmaking for Coordination of Agent
Societies: A Survey
Matthias Klusch and Katia Sycara 197

8.1 Introduction 197
8.2 Coordination of Agent Societies via Middle-Agents 198
8.3 Examples of Coordination via Service Mat chmaking and

Brokering 212
8.4 Conclusions 223

9. Agent Naming and Coordination:
Actor Based Models and Infrastructures
Gul Agha, Nadeem Jamali , and Carlos Varela 225

9.1 Introduction 225
9.2 Actors and Agents 227
9.3 Naming in Open Systems 230
9.4 World Wide Computer Prototype 234
9.5 Multiagent Coordination 238
9.6 Discussion 245

XX Table of Contents

Part IV. Emerging Issues of Coordination

Introduction 249

10. Coordination and Mobility
Gruia-Catalin Roman , Amy L. Murphy, and Gian Pietro Picco 253

10.1 Introduction 253
10.2 Mobility Issues 255
10.3 Coordination Constructs 263
10.4 Conclusions 272

11. Coordination and Security on the Internet
Ciaran Bryce and Marco Cremonini 274

11.1 Introduction 274
11.2 A Reference Architecture for Secure Coordination 275
11.3 Security Policies 279
11.4 Cryptographic Protocols in Coordination Models 288
11.5 Security in Existing Coordination Systems 291
11.6 Conclusions 297

12. Scalability in Linda-like Coordination Systems
Ronaldo Menezes, Robert Tolksdorf, and Alan M. Wood 299

12.1 Introduction 299
12.2 Domain Awareness 301
12.3 Location and Distance Awareness 306
12.4 Fluctuat ion Awareness 312
12.5 Failure Awareness 315
12.6 Conclusions 318

Part V. Applications of Coordination Technology

Introduction 323

13. Agent-Oriented Software Engineering for Internet
Applications
Franco Zambonelli, Nicholas R. J ennings, Andrea Omicini, and
Michael J . Wooldridge 326

13.1 Introduction 326
13.2 Engineering Multi-Agent Systems on the Internet 328
13.3 Software Engineering Methodologies for MAS 333
13.4 Exploiting a Coordination Model 339

Tabl e of Conte nts XXI

13.5 Toward a Coordinat ion-oriented Methodology 343
13.6 Conclusions and Future Work 345

14. Reusable Patterns for Agent Coordination
Dwight Deugo, Michael Weiss, and Elizabeth Kendall 347

14.1 Software Pat terns 348
14.2 Global Forces of Coordination 350
14.3 Blackboard Pat tern 354
14.4 Meetin g Pat tern 357
14.5 Market Maker Pat tern 361
14.6 Master-Slave Pattern 363
14.7 Negotiat ing Agents Pattern 365
14.8 Summar y 368

15 . Inter-Organizational Workflows for Enterprise
Coordination
Monica Divitini , Chihab Hanachi, and Christophe Sibertin-Blanc . 369

15.1 Inter-Organizational Coordinat ion 369
15.2 Overview of Main Concepts of Workflow 373
15.3 Inter-Organization al Workflow Requirements: A Framework

for Studying lOW 380
15.4 Two Comprehensive Approaches for lOW 387
15.5 Conclusions 397

16. Constraints Solving as the Coordination of Inference
Engines
Eric Monfroy and Farhad Arbab 399

16.1 A Generic Approach to Coordin ation-based Constraint
Solving 399

16.2 A Solver Cooperation Language 406
16.3 Design of a Const raint Solver 414
16.4 Conclusion 419

Part VI. Visions

Introduction 423

17. A Market-Based Model for Resource Allocation in
Agent Systems
Jonathan Bredin , David Kotz , Daniela Rus , Rajiv T . Maheswaran ,
Cagri Imer , and Tamer Basar 426

17.1 Introduction 426
17.2 Markets 427

XXII Table of Contents

17.3 Secure Transactions 428
17.4 Alloca tion Mechanism 431
17.5 Simulation 435
17.6 Related Work 440
17.7 Conclusions 441

18. Coordination and Control in Computational Ecosystems:
A Vision of the Future
Run e Gust avsson and Martin Fredr iksson 443

18.1 Introduction 443
18.2 Towards Computational Ecosystems 444
18.3 Smart E-Services to Achieve Customer Satisfaction 446
18.4 Coordination and Cont rol in Ecosystems 454
18.5 Methodological Issues and the Engineerin g of Ecosystems 454
18.6 ORA : Merging of th e Real and Virtu al 458
18.7 SOLACE: A Layered ORA Architecture 465
18.8 Conclusions 469

References 471

About the Authors 509

List of Contributors 519

List of Figures

3.1 Intermediate uniform distribution using 16 kernel pro cesses. 71
3.2 Tuple usage analyser out put. .. 81
4.1 T Spaces design overview. 93
5.1 OMG Obj ect Management Archit ecture Defining Different

Interface Categories 116
5.2 Common Obj ect Request Broker Architecture 118
5.3 Structure of a Distributed Agent Environment (DAE) 127
5.4 Architecture of Basic Capabili ties in Mobile Agent Platforms 130
5.5 OMG MASIF Interfaces 133
5.6 FIPA Agent Management Reference Model. 135
5.7 The Structure of a Mobile Obj ect According to the OMG

Migration Service RFP. . 138
5.8 The Grasshopper Architecture and th e Telecommunication Place

"Plug-in" 142
5.9 MA-based IN Architecture 144
5.10 A Provision Scenario of MA-based IN Enhanced Services , 146
5.11 SOMA Distributed Middleware for Management Applications 148
5.12 Different Contexts of Interop erability for SOMA Management

Agents 149
5.13 Tunnelling, Co-rout ing and Multicast in the SOMA-based VoD

Service 151
7.1 Diagrammati c DFA represent ation of the simplified KQML

Register conversat ion 190
7.2 Preliminary CPN model of a simplified KQML register conversat ion.191
7.3 Informal CPN model of a simplified KQML register conversation. . 192
7.4 Pair-wise negotiation process for a MAS const ituted of two

functional agents 192
8.1 Derived service classes of mediator, broker , matchmaker agents 205
8.2 Service-orient ed classification of mediator, broker , matchmaker 206
8.3 Interact ion pat tern of capa bility and service matchmaking

between agents . 209
8.4 Interaction pattern of capability and service brokerin g between

agents ' " " " 210
8.5 Example of query and capabili ty descriptions in InfoSleuth 214

XXIV List of Figures

8.6 Example of data structures used for service matchmaking
in IMPACT 216

8.7 Example of an advertised and requested agent capability
description in LARKS 219

8.8 Example of an advertised capability description and query in CDL 221
8.9 A service-oriented comparison of selected matchmaker, broker and

mediator agents . 224
9.1 Ways to respond to a message 229
9.2 Providing a persistent name to an actor 232
9.3 Support for universal naming 233
9.4 A WWC Theater provides runtime support to Universal Actors 235
9.5 Migration of actor m from Theater 1 to Theater 2 236
9.5 After migration of actor m • 236
9.6 Support for remote messaging 237
9.7 Support for migration. . 239
9.8 A cyborg encapsulates a set of tightly constrained actors 241
9.9 Cyborg System Architecture 242
9.10 Local synchronization constraints disable invalid travel plans 244
9.11 A synchronizer enforces a single atomic travel purchase 244
11.1 The shared space model with a reference monitor 278
11.2 The protocol authentication process 281
11.3 The conference example in a hierarchical federated shared space . . 287
12.1 Tradeoffs on coordination technologies 324
13.1 Intra-agent versus inter-agent viewpoints 329
13.2 The basic concepts of the Gaia methodology 335
13.3 The basic concepts of a coordination-oriented methodology 344
14.1 Role diagram of the Blackboard pattern 355
14.2 Interactions between the participants of the Blackboard pattern . . 356
14.3 Th e Meeting Role Diagram 359
14.4 Meeting Lifecycle Sequence Diagram 360
14.5 Role diagram of the Market Maker pattern 362
14.6 Interactions between the participants of the Market Maker pattern 363
14.7 Role diagram of the Master-Slave pattern 364
14.8 Interactions between the participants of the Master-Slave pattern. 365
14.9 Role diagram of the Negotiating Agents pattern 366
14.10 Interactions between the participants of the Negotiating Agents

pattern 367
14.11 Example of using the pattern 367
15.1 The travel authorization workflow process 376
15.2 The Workflow reference architecture [645] 379
15.3 An agent-based architecture for Workflow Enactment Service 389
15.4 A coordination model between two organizations 393
15.5 The local workflow process of Organization B 394

List of Figures XXV

15.6 Global workflow process jointly performed
by Organization A and B . 395

16.1 Simple solver 409
16.2 Composite solver 410
16.3 Shared solvers and filters 410
16.4 General Network 417
17.1 The flow of money in our computat ional market 428
17.2 The arbite r protocol for secure t ransaction between agents 430
17.3 An example of a mobile agent 's itinerary 431
17.4 The form of an agent 's bid as a function of all bids submit ted to

th e server 433
17.5 Sample plot of the sum of 16 agents' bids a function of the sum

of all bids at th e server . 434
17.6 Algorithm: Choose Next Site for Agent i 435
17.7 Algorithm: Allocate Resources for Host k 436
17.8 Endowment versus ideal time relative to act ual time 437
17.9 Endowment versus ideal time relat ive to act ual t ime when agent

requests exceed capacity 438
17.10 The mean performance of agents 439
17.11 A histogram of t he logari thm of price at a host over time 439
18.1 Cumulative costs for t hree different scenarios on a winter day 451
18.2 Comfort levels for three different scenarios on a sunny winter day . 452
18.3 The COMFY system as a value-chain of e-Services 453
18.4 The Methodological Pyramid 455
18.5 Computation model at the society level. 457
18.6 The Ownership relat ion 462
18.7 The Responsibility relation 463
18.8 The Accessibility relation 464
18.9 A combined view over t he three relations of ownership,

responsibility, and accessibility 466
18.10 At the enti ty level of an ORA architecture the concepts of

ownership and responsibility are taken care of, and at th e proxy
level as well as the access level, the concept of accessibility is
addressed 467

18.11 The inte rnals of an ent ity proxy, support ing th e two concepts of
manifestation and communicat ion 468

List of Tables

1.1 The shared dataspace coordination model. 11
1.2 The mult iple flat dataspace coordination model. 18
1.3 Encodi ng mult iple flat dataspaces in a single dataspace. 19
1.4 The multiple nested dataspace coord ination model. 21
3.1 Taxonomy of tuple-based run-times. 66
4.1 The main methods of the JavaSpace Interface. 96
4.2 The MARS Interface. 99
4.3 Main ReSpecT predicates for reactions 102
5.1 Classification of Programming Parad igms based on Code Mobility

[253] 124
6.1 Funct ional properties of selected scripting languages 165
6.2 Non-funct ional propert ies of selected script ing lang uages 166
15.1 row requirements 384
15.2 Mapping from workflow concepts to agent concepts 389
16.1 Syntax of the solver collaboration language 407
16.2 The CDA Algorithm 416

Part I

Coordination Models and Languages:
State of the Art

Coordination Models and Languages:
State of the Art

Introduction

The notion of coordination model is the conceptual foundation for the two
notions of coordination language and syst em. A coordination language repre
sents a linguisti c reification of a coordinat ion mod el, whereas a coordination
system provides for the model's implement ati on in terms of either a program
ming environment , an architectural framework , or an infrastructure.

We may define a coordina t ion model as a formal framework for expressing
the interaction among comp onent s in a multi-component system [163] . Or ,
we may say as well tha t a coordina tion model is a conceptual framework for
shaping th e space of component interaction. These two different definitions
are apparent ly very similar , and can be easily reconciled - but in fact , they
come from two different perspe ctives on what the essence of coordina tion
models and languages is: two viewpoints th at we may term the Computer
Science and th e Software Engineering ones, respectively.

Accordin g to the former acceptation, a coordinat ion mod el supplies not a
tion and rules for th e formal charac terisat ion of coordinated systems. Several
formal frameworks have been defined for this purpose [166, 658, 470], par
tially borrowed from oth er research fields (like Concurrency [418]) , partially
defined ex novo in the Coordination field. There, an ontology is either implic
itly or explicit ly adopted , emphasising relevant prop erties of a coordinated
system while abst ract ing away from non-relevant ones. Symbols and rules
are defined to enable all the relevant interactions occurring in a coordinated
system to be formally expressed. In these models, focus is definitely on th e
formal properties of the space of component interact ions. Thus, th e main
purpose of thes e approaches is typically to provide computer scientist s with
th e theoretical tools requ ired to model, analyse, and validate properties of
the interaction space.

Instead, the latter notion of coordination mod el emphasises its role as
a source of th e abst ractions and mechanisms required by software designers
and developers to effectively manage the space of inter-component interac
t ions [168] . After recognising that interaction is an independent dimension
in th e engineering of complex multi-component syst ems - like Internet-based
multi-agent systems - th en a coordination model is primarily meant to pro
vide engineers with the conceptual tools for th e engineering of the interaction
space. For instance, coordinat ion media can be exploited as core abst ract ions

4 Coordination Models and Languages: State of the Art

around which the interaction can be organised and ruled - as in the case of
agentsocieties in multi-agent systems [471]. In this context, the emphasis is
more on the expressive power of the abstractions provided by a coordination
model, and on their effectiveness in helping engineers to manage the intri
cacies of interaction in non-trivial multi-component systems, rather than on
the formal properties of the model itself.

Linda [267], which started a long history of scientific consideration of coor
dination models and languages, was for a long time a model without a formal
semantics. So, since its very beginning, the conceptual relationship between
the two definitions (and the corresponding acceptations as well) has not been
easy and straightforward. This has apparently had no consequences on the
success of Linda and its extensions, which are today becoming a sort of main
stream [249, 648] . However, some recent works revealed that the absence of a
formal characterisation has led to inconsistent implementations and systems
- surprisingly, not due to the unclear definition of the eval primitive (a well
known and underestimated problem, such that many Linda-based systems
simply do not implement evan, but to the apparently simple out primitive
[105] .

As a result , making the two acceptations coexist and work together is
nowadays a fundamental issue of the research on coordination. This is far
more true when we take as understood that coordination models and lan
guages will playa key-role in the modelling and engineering of complex sys
tems of tomorrow, especially when agent societies in open and unpredictable
environments like the Internet are concerned.

This part of the book has a twofold goal. First , to provide readers with
an entry point to the issue of coordination models and languages in general,
and of Internet agent coordination in particular. Then, to give readers the
chance to adopt either of the two perspectives on the notion of coordination
model as well as on the related concepts - with each the two chapters of this
part supplying one of them.

The contributions
Chapter 1, by Nadia Busi, Paolo Ciancarini, Roberto Gorrieri, and Gianluigi
Zavattaro, provides the reader with an original entry point to coordination
models as formal frameworks . First , the authors define the basic ontology
for coordination models, then they bring the reader along a "guided tour"
which covers a broad range of different models, starting from the basic Linda
(called here the shared dataspace model) and exploring three different lines
for its extension. In particular, every extension is first explained both in its
goals and in its realisation, then few formal rules are introduced which map
the ideas presented into a very simple formal framework - as if the Linda
model and its extensions were built step by step under the reader's eyes.

Chapter 2, by George Papadopoulos, is an effort to put altogether and
in some meaningful perspective all the vast amount of material which might
be placed in any sense under the wide umbrella of "coordination of Internet

Coordination Models and Languages: State of the Art 5

agents" , by defining a novel three-layer t axonomy. At the lower level, we find
the basic enabling technolog ies for building agent coordinat ion frameworks
and infrastru ctures - e.g., Agent Communication Languages. The middl e level
deals with th e frameworks providing agent coordinat ion as Internet-based ser
vices - e.g., tuple-based coordination systems. At the upp er level, th e logical ,
high-level aspects pertaining the organisation of the collect ive behaviour of
agent societ ies on the Int ernet are taken into account and categorised.

1. Coordination Models: A Guided Tour

Nadi a I3usi, Paolo Cian carini , Rob erto Gorrieri , and Gianluigi Zavattaro

Dipartimento di Scienze dell'1nformazione, Universita di Bologna
Mura Anteo Zamboni 7, 1-40127 Bologna, Italy
mailto :{busi,cianca,gorrieri,zavattar}~cs .unibo .it

Summary.
In this paper we survey and discuss a number of coordination models
for agents. We define a framework general enough to be able to capture
the main ideas underlying the major coordination models for agents. The
framework is based on three key concepts: the coordinables, the coordi
nat ion medium, and the coordination rules. We start modeling a simple
dataspace-based model. Then we structure our discussion along th ree di
rections: more advanced coordination primitives exploitable by the coor
dinables, reshaping the coordination medium, and programming the coor
dination rules.

1.1 Introduction and Motivation

Coordination languages are a class of programming notations which offer a
solution to the problem of specifying and man aging the interactions among
comput ing agents . In fact , they generally offer language mechanisms for com
posing , configur ing, and cont rolling software architectures mad e of indepen
dent, even distributed , active components.

Gelernter and Carriero introduced a programming-specific meaning of the
term Coordination presenting the following equat ion [269]:

Programming = Computation + Coordination

They formulated this equation arguing that there should be a clear separ ation
between the specificat ion of the component s of the computation and the
specification of their interactions or dependencies. On the one hand, this
separ ation facilit ates the reuse of components ; on the other hand, the same
patterns of interaction usually occur in many different problems - so it might
be possible to reuse the coordinat ion specification as well.

A number of interesting models have been proposed and used to design ,
study, and compare coordination languages. Examples include "tuple spaces"
as in Linda [267], various form s of "mul ti set rewriting" or "chemical reac
tions" as in Gamma [50], and models with explicit support for coordinators
as in Manifold [39] . Some of these models have been informally defined , as in
the case of Linda . A major aim of this chapte r is to offer a coherent framework
for describing and comparing coordinat ion models for agents.

The relationship between a coordination language and its underlying co
ordination model is a complex one. Ideally, according to Gelernter, a coor
dination language "is the linguistic embodiment' of a coordinatio n model.

1. Coordination Models: A Guided Tour 7

Currently, it is more and more clear that a coordination model is similar to
an ontology for agent- based software design . The inventor of a coordina t ion
model is usually interested in definin g a concept of computing agent , that can
be mobil e, autonomous, or even "intelligent" , but in any case has to interact
with some environment including some ot her agents.

Coordination languages are somet imes confused with Lind a , especially
because it was the first language that got such a classification. Actually co
ordination languages include not ations which have nothing to do with Lind a ,
thus it is difficult to precisely define what a coordina t ion language is. How
ever, the pr agmatics of coordination languages shows that:

- A coordination lan guage like Linda has been shown t o be sufficient ly gen
eral to be used for building par allel applications [137], for designing dis
tributed computing platforms [648, 619], and for pro gramming agent-based
systems [172, 167].

- In general, coordinat ion languages are not fully-fledged , general purpose
pro gramming languages; rather , t hey are often defined as language ex
tensions or scrip ting languages and th ey are exclusively concerne d with
coordinat ion issues. In fact , a significant number of coordination mod els
and languages ar e "minimalist" , meaning that they are based on a small
set of notion s, however powerful enough to deal with the complexit ies of
coordinat ion. An obvious example is Lind a ,which offers only four coordi
nation primitives. Other less obvious examples include Gamma [50], which
has only a fixpoint-based coordinat ion construct (called the Gamma opera
tor), and the Interaction Abstract Machines [27], an obj ect-based model for
pattern-based, associat ive coordination of eit her int er-agent or intra-agent
ent it ies.

- Coordination languages are especially relevan t in the context of open sys
tems like the Internet and related servi ces, where the coordina te d ent it ies
and their overall softwar e architectures are not predefined ; here they have
much in common with object-based approaches. In order to operate in an
open system, comput ing ent it ies must be encapsulate d (that is, their im
plementation det ails should be hidden from other ent it ies) and they should
persist beyond a single t ransact ion. Moreover , in a heterogeneous system,
in which the computing entities are written in different languages, t he data
must be stored in a common format . In the past such considerations have
led to the development of obj ect-based modelling techniques; the design
of coordinat ion languages is leading to the development of agent-oriented
mod elling techniques.

The designer of a coordina t ion language has to address a number of issues:

1. What is being coordinated?
The coordinate d ent it ies are usually actively computing ent it ies - we
usu ally call them agents or processes. The agents, or processes, may have
been pro grammed in a vari ety of different lan guages. For instance, in the

8 N. Busi, P. Ciancarini, R. Gorrieri, G. Zavattaro

original Linda system it was not difficult to coordinate together both C
and FORTRAN processes. However, Linda coordination primitives were
included in the source code of processes. An interesting issue from the
viewpoint of agent-oriented programming is that the coordination of the
agents should not require any re-programming of the agents themselves;
the inter-agent coordination mechanisms should possibly act as wrappers
around the existing, independent agents.

2. What are the media for coordination?
Conventional languages for distributed programming, like for instance
ADA, usually adopt a naive approach to communication, assuming the
existence of channels or ports and introducing some low-level primitives,
like send and receive, to transmit messages over channels. Instead, in
many coordination languages, as in Linda, coordination is accomplished
via a shared dataspace. In such models, communication is generative:
agents communicate by "generat ing" data in the shared space. Data are
then available to any agent that has access to the space - this contrasts
with the message-passing paradigm where communication is usually a
private act between the participating agents, which have to share some
channel. Messages in the dataspace can be manipulated, either by the
dataspace itself, which in such a case plays a role of active channel, or
by third-party agents. The dataspace itself can have a complex struc
ture, for instance in the form of multiple nested dataspaces. Moreover,
in the most recent coordination models the dataspace is complemented
by event-based mechanisms.

3. What are the protocols and rules used for coordination?
By coordination rules we intend the laws which rule the relationship be
tween the coordinables and the coordination media. These laws may be
expressed in an operational way, for instance introducing some language
primitives and their operational semantics, or in a more abstract, declar
ative way. The Linda proposal identifies a set of coordination primitives
which may be used to access a shared dataspace - the primitives are
normally implemented as library routines which are called from some
host language such as C or FORTRAN. In contrast to Linda, many of
the recent proposals have been for rule-based languages; one consequence
of this shift to a more declarative view of coordination is an increased
reasoning power. In either case the coordination rules supply a level of
abstraction which hides much of the complexity of coordination from the
programmer.

According to the three issues above, we consider key concepts for the defini
tion of a coordination model the adopted coordinables, the considered coor
dination medium, and the corresponding coordination rules.

The main contribution of this chapter relies, on the one hand, on the
proposal of a formal framework for the representation of the three concepts
described above and, on the other hand, on the instantiation of this frame-

1. Coordination Models: A Guided Tour 9

work to a variety of coordination models and languages for agents proposed
in the literature. The starting point is the basic coordination dataspace-based
model of Linda; this model is then extended in three different directions in
order to capture the main asp ects of many other models. The three directions
are briefly described as (i) more advanced coordination primitives exploitable
by the coordinables, (ii) reshaping the coordination medium, and (iii) pro
gramming the coordination rules. The chapter has the following structure:
Section 1.2 introduce the formal framework and adopts it for the description
of the basic Linda coordination model; Sections 1.3, 1.4, and 1.5 respectively
describe the three directions of extension; finally, some conclusive remarks
are reported in Section 1.6.

1.2 The Starting Point: The Dataspace Model for
Coordinating Agents

In this section we start by providing a representation of the coordinables, that
is of the agents. As our focus is essentially on the description of the coordina
tion capabilities, we will abstract away from the many details of real agents
and focus only on the basic features that are relevant from the coordination
point of view, i.e., the basic actions that are used for the interaction with the
environment where the agent is.

Our starting point is the shared dataspace model, which is at the base of
Linda. Agents interact directly with the dataspace (the coordination medium)
to insert or extract tuples/messages. Asynchronous associative inter-agent
communication is realized indirectly: a message (which is a tuple, i.e., an
ordered sequence of data) produced by a sender is collected in the dataspace;
then a receiver can receive the message by reading or removing it from the
dataspace. The access to the messages is associative in the sense that the
receiver specifies via a template the kind of tuples in which it is interested,
and one tuple matching the template, if available, is selected to be read or
consumed from the dataspace.

When a message is emitted by an agent, it has an independent existence
in the dataspace until it is explicitly withdrawn by a receiver; in fact, after
its insertion in the dataspace, a message becomes equally accessible to all
agents and it is bound to none. These are the basic features of the so-called
Linda generative communication.

In our presentation we abstract away from the templates and the matching
rules between tuples and templates; we consider three basic operations (out,
in , rd) managing messages and one (eval) for agent generation. The output
operation out(a) denotes the insertion of a new instance of message a in the
dataspace. The input operation in(a) denotes the consumption of an instance
of message a from the dataspace; if a is not available the operation is blocked.
The read operation rd(a) is similar to in(a), but a is not removed from the

10 N. Busi, P. Ciancarini, R . Gorrieri, G. Zavattaro

dataspace. The spawn operation eval(A) adds the agent denoted by A to the
multiset of currently active agents.

By borrowing typical techniques from the tradition of process calculi for
concurrency (e.g., Milner's CCS [418]), an agent is described as a term of
an algebra where the basic actions are of the four kinds listed above. To be
general , we consider a generic set of messages, called Data, ranged over by a ,
b, The set Agent of agents, ranged over by A, AI , . . ., is the set of closed
terms generated by the following grammar:

A

IL

o I 'l.A I LiE] Ai I K

out(a) I in(a) I rd(a) I eval(A)

where /L denotes an instance of one of the possible coordination primitives,
and K stands for a generic element of a set N arne of agent names; we assume
that all agent name occurrences are equipped with a corresponding (guarded)
defining equation of the form K = A. Agent names are used to support
recursive definitions as, for example, in the term Renab = in(a) .out(b) .Renab,
which represents an agent able to repeatedly rename messages of the kind a
in messages of the kind b.

Agent 0 is an agent that can do nothing. Agent /L .A is an agent that can
do the action /L and then behaves like A. Agent LiE] Ai is an agent that can
behave like any of the Ai'S in the summation (alternative composition).

A system configuration is composed by a multiset of active agents and by
a multiset of available messages. Formally, a system configuration is a pair
(Ag ,DS) E M(Agent) x M(Data) (where M(Set) is used to denote the set
of the multisets of elements taken from Set). A multiset is usually represented
by the classic set notation (using the brackets { } which we omit in the case of
singletons), but where multiplicity of occurrences is relevant. Multiset union
is denoted by EEl (we will use also EB i M, to denote the multiset union of an
indexed sequence of multisets). With abuse of notation we sometimes use EEl
also for set union, and the actual meaning is made clear by the context.

A system configuration evolves according to the execution of coordination
operations. We formally describe this presenting a transition system defined
in a variation of the CHAM style [71] ; we define a set of rewriting rules on
system configurations representing the coordination rules. These rules for the
basic dataspace model are listed in Table 1.1 where we use characters in bold
to emphasize the elements directly involved in the considered transitions.

The rules are very intuitive. The execution of the output operation has
the effect of adding the emitted datum to the dataspace. On the contrary,
the input operation removes the datum, if it is present, otherwise the rule
does not apply (blocking operation) . Similarly for the read operation, where
however the datum is not removed. The execution of eval(AI) enables a new
instance of agent AI to be added to the multiset of agents. The choice among
the many Ai'S is resolved by taking one that can do a move. Finally, an agent
name K can do what its defining agent A can do.

1. Coordination Models: A Guided Tour 11

if j E I
(LiEI A, EB Ag , DS) -+ (A ' EB Ag , DS')

(out(a) .A EB Ag ,DB) -+ (A EB Ag ,DB EB a)

(in(a) .A EB Ag , DB EB a) -+ (A EB Ag, DB)

(rd(a) .A EB Ag , DB EB a) -+ (A EB Ag , DB EB a)

(eval(A').A EB Ag , DB) -+ (A ' EB A EB Ag, DB)

(Aj ,DS) -+ (A' ,DS')

(A ,DS) -+ (A ' , DS')

(K EB Ag , DS) -+ (A' EB Ag , DS')
ifK=A

Table 1.1. Th e share d dataspace coordination model.

1.2.1 Remarks

The first observation is that we have not modeled templates and matching
rules between tuples and templates, as we have abst racted away from the
actual structure of the dat a. However , this is not a real problem and can
be easily accommodated if we exte nd the modeling with features like value
passing in pro cess algebras. For a description of the typical Linda matching
rules, see [166] (where also different semant ics for the basic calculus above
are reported, using Petri net s and value passing CCS) .

The second observation is that the read opera t ion rd(a) is semantically
redundant as it can be equivalent ly modelled by an input in (a) immediately
followed by an output out(a) of the same datum a. This result is not gen
eral; for instance, it does not hold when enlarging t he basic calculus with
addit ional opera tors (e.g., the test operators as in Section 1.3.2) , nor when
considering semantics th at may describe simultaneous executi ons because in
such a case one datum is enough to enable simultaneous read operations but
not simultaneous inpu t operations.

The third observation is about the existence of alt ern ative semantics for
the out put operation. Accord ing to [107], we can imagine at least three dif
ferent semantics: ins tantaneous, ordered and uno rdered. According to th e in
stantaneous semantics, the configura t ion (out(a) .A EB Ag, DB) is actually the
same configurat ion as (A EB Ag , DB EB a) , i.e. the datum a is alr eady in the
dataspace. This very abst ract semantics is adopted in some pro cess calculi,
e.g., th e asynchronous 1f-calculus [310]. The ordered semantics is precisely
th e semant ics outlined in Table 1.1: in one single step , the datum is emitted
by the agent and reaches the shared dataspace. The name ordered reflects the
fact tha t the order of emission of data is coherent with t he ord er th ey reach
the da ta space. On th e contrary, in the unordered approach, t he emission and

12 N. Busi , P. Ciancarini, R. Gorrieri, G. Zavattaro

the insertion of the datum into the dataspace represent two separate steps;
hence, an emitted datum can reach the dataspace with an unpredictable de
lay and the order of emission may be not respected by the order of arrival to
the dataspace. Formally, this semantics can be described by the following a
first rule which substitute the first of Table 1.1:

(out(a) .A EB Ag, DB) -7 (((a)) EB A EB Ag, DB)

where ((a)) denotes the datum that has been sent but not yet received; the
presence of this new term requires the addition of a second rule :

(((a)) EB Ag, DB) -7 (Ag , DB EB a)

Process calculi are usually equipped with observational equivalences; their
aim is to define equivalence relations which equate processes that can be
considered observationally indistinguishable (see, e.g., bisimulation and weak
bisimulation in [418]) . Despite of the fact that the three semantics above
are very different at the implementation level, it can be proved that they
are actually indistinguishable if we consider weak bisimulation. This result
does not hold as soon as the test-for-absence operators, discussed in the next
section, are introduced.

The last remark is concerned about the expressiveness of the basic cal
culus above; it is possible to prove that it is not even Turing complete.
This result is proved in [108], where it is shown how to map agents to fi
nite Place/Transition nets, a formalism in which termination is a decidable
property.

1.3 Extending the Coordination Primitives

In this section we consider three classes of extra coordination primitives that
could be added besides the standard output, input, and read operations.

The first class consists of transaction operations which have the ability to
act atomically on a group of data instead of a single data item (e.g., multiset
input operations); the second class comprises operations which requires a
global vision of the data actually available in the dataspace, in other words ,
requires a snapshot of the state of the dataspace (e.g., test for absence); the
third class consists of operations which comprise both the two abilities above
(e.g., the complete consumption of all the data of a certain kind) .

1.3.1 Transaction Operations

One of the main limitations of the basic shared dataspace model is that the
considered coordination primitives act atomically on one datum only. A typ
ical problem which arises in this scenario is the realization of transaction

1. Coordination Models: A Guided Tour 13

operations involving more than one datum. A standard solution to this prob
lem is the adoption of specific transaction protocols which ensure that the
execution of the transactions preserves some minimal consistency properties.

This approach for the realization of transactions, for example, has been
adopted in JavaSpaces [249] where, any time a new transaction is started, a
customized transaction manager is elected responsible for the preservations
of the so called ACID properties:

1. Atomicity: This is the typical all-or-nothing condition: all the opera
tions grouped under a transaction occur or none of them do.

2. Consistency: The completion of a transaction must leave the system
in a consistent state; this is a semantic condition related to what the
dataspace is actually representing.

3. Isolation: Ongoing transactions should not affect each other; more pre
cisely, participants in a transaction should only see intermediate states
resulting from the operations of their own transaction, not the interme
diary states of other transactions.

4. Durability: The results of a transaction should be as persistent as the
entity on which the transaction commits: they should be maintained until
other explicit variations are performed.

An alternative approach is to extend the set of the available coordination
primitives by, e.g., adding operations which atomically produce and/or con
sume multisets of data. For example, in T Spaces [648] the multiwrite prim
itive permits to atomically introduce inside the dataspace all the data con
tained in an array.

As an example of a transaction primitive we model a rew(ml, m2) oper
ation which atomically consumes the multiset of data ml and then produces
the multiset of data m2. We do not consider any ability to read multisets of
data: indeed , this can be simulated by atomically consuming and producing
the data to be tested for presence .

Formally, the syntax is extended by introducing a new prefix:

/-l ::= . . . I rew(ml' m2)

and the semantics by adding the axiom:

(rewfrnj , m2).A ED Ag, DB ED m-) --+ (A ED Ag, DB ED m2)

The considered rew(ml ' m2) primitive has been inspired us by a class of coor
dination languages advocating the so-called chemical reaction metaphor (see,
e.g., Gamma [50], CHAM [71], and LO [28]). According to these languages,
the items in the dataspace are seen as molecules that freely move in a chem
ical solution. The molecules react when they come in contact provided that
they satisfy certain constraints.

Gamma is one example of coordination language inspired by the chemical
metaphor which has been proposed as a means for the high level description of
parallel programs with minimum explicit control. The conditional rewriting

14 N. Busi, P. Ciancarini, R . Gorrieri, G. Zavattaro

rules are defined by a pair (R,A), where R is a reaction condition (which is
a boolean function on multisets of data) and A is a rewriting action (which
is a function from multisets to multisets of data). When a group of molecules
satisfies the reaction condition, then it can be rewritten in the way stated by
the corresponding rewriting action.

For instance, a Gamma program which computes the maximum element
of a non-empty multiset of integers can be defined as:

(Rmax,Amax) with Rmax({x,y}) = true and Amax({x ,y}) = max(x,y)

where max(x,y) returns the maximum between x and y. The above pro
gram repeatedly compares pairs of numbers, and each time eliminates the
smaller one; the computation terminates when only one number remains in
the dataspace (this number is the maximal one).

The Gamma notation can be mapped into our coordination model ex
tended with the rew(mI ' m2) primitive; given a Gamma program (R, A) it is
enough to define an agent [(R ,A)] which is able to repeatedly perform rewrit
ing operations (defined accordingly to the function A) on those multisets of
data which satisfy the reaction condition R :

[(R, A)] =
m i s .i : R(mi)=true

reuitm«,A(mi».[(R,A)]

An interesting observation is related to the atomicity of the rewriting oper
ation rew(mI' m2) : it is not important that the emission of the multiset of
data m2 is executed atomically with the consumption of mI' This is a con
sequence of the fact that the two programs below can be proved to be weak
bisimilar:

r ew(ml , Tn2).A and rew(ml,0) .out(aI)out(an) .A with m2 = {al , ... ,an }

Intuitively, this result holds because it is not possible to observe the delays in
the production of data. On the other hand, as we will discuss in the follow
ing, test-for-absence operators permit to observes such delays; thus, in the
presence of these operators, the above equivalence does not hold any more.

It is interesting to observe that on the contrary the atomicity on the
execution of the consumption of the data is important. This problem has
been discussed in [658] where the expressiveness of an operation min(m),
which is the same of rew(m ,0), is investigated. Indeed, it is proved that it is
not possible to provide a general encoding of the min(m) operator using the
standard Linda primitives; this allows us to conclude that the min operations
strictly increases the expressiveness of the Linda coordination model.

1.3.2 Global Operations

Here we consider primitives which require, in order to be executed, a global
vision of the actual state of the shared repository. Coordination primitives
of this class are, e.g., tests-for-absence or operation which count the actual
number of instances of a certain kind of datum. Even in this case, T Spaces

1. Coo rdination Mod els: A Guided Tour 15

provides interesting primitives: the count operation returns the actua l num
ber of data inside the repository which satisfy a certain condit ion.

A test-for-ab sence of data verifies that no data of a certain kind are ac
tually avai lable; we can model this operation in our calculus simply by con
sider ing a new operation tfa(a), a blocking primiti ve which can be executed
only if no data a are actually availab le. Formally, we extend the syntax by
int roducing a new prefix:

f.L ::= . . . I tfa(a)

and the semant ics by adding the axio m:

(t fa(a). A EB Ag,DS) --7 (A EB Ag, DS) if a rf. DS

The necessity of a global vision of the actual state of the dataspace is reflected
by the side condition which considers the global multiset DS .

Some versions of the Lind a coordinat ion language comprises also other
two operations which are non-blocking versions of the in and rd operations,
called inp and rdp respectively. They are non-blocking as, in the case no
data of the required kind is actua lly available, they can te rminate by failing.
More precisely, these operations are predicates which may return true or
f alse . In the case the requi red datum is available they behave like in and rd
respect ively and return tru e. On the ot her hand, if the datum is not available,
they te rminate by return ing false.

In [106] the inp and rdp op erators have been formalized by using terms
with two possible cont inuations, the first chosen in the case the operation
succeeds , the second chosen ot herw ise. In our setting we can model the same
operator by exploiti ng the t fa(a) primiti ve:

inp(a)?A_B = in(a) .A + tfa(a).B

rdp(a)?A_B = rd(a).A + t fa(a). B

In [108] t he express iveness of this operation is investigated an d it is pro ved
that the simple non-Turing powerful calculus introduced in Table 1.1 becomes
Turing complete when the inp operation is added. Even more int eresting is
the fact that the Tur ing-compl eteness result holds only under the inst an ta
neous and ordered int erpret ations of the output operation , while it does not
hold under the unordered one . Intuitively, the discriminat ion between the
different int erpretations of the output operation follows from the fact that
a test-for-absence permi ts to observe the delay between the execut ion of an
output operation and t he effective int roduction of the emitted datum inside
the shared repository.

Other results which does not hold any more under the presence of test-for
absence is the fact tha t a read operation is the same as an input followed by
the out put of the same operation, and the observation regarding the fact that
atomicity is not needed in the execution of the output part of the rew (ml ' m 2)
pr imitive.

16 N. Busi, P. Ciancarini, R. Gorrieri, G. Zavattara

A possible extension of the test- for-absence primit ive is to assoc iate to
it the execut ion of out put operations. For example, an int eresti ng operation
representi ng a sort of negative test&set operation is analyzed in [657, 107);
there, it is proved that this kind of operation st rict ly increases the express ive
power of the standa rd Linda coordination model.

Another interest ing remark is that in the presence of prim itives which
require a global vision, monotonicity is lost . By monotonicity, we mean the
fact that the addit ion of other data inside t he shared repository does not
alter the previously available computations. Form ally, monotonicity holds if
the following condition is sat isfied for any multiset of data DSI/:

if (Ag,D S) -7 (Ag', DS') then (Ag,DS EB D SI/) -7 (Ag' ,D S' EB D SI/)

Apar t from a th eoretical relevance, monotonicity is a property which is partic
ularly useful in th e implement ati on of the coordina tion operations, in particu
lar in the case th e shared data are distributed across a net and not cent ralized
in a unique storage device. Ind eed, if monotonicity is satisfied, the execut ion
of a coord ina t ion operation can be safely executed simply by considering the
subset of da ta directly involved in the opera t ion, without having to check the
ent ire dist ributed state of the repository.

1.3.3 Global Transaction Operations

We now consider primit ives which combine the two abilit ies describ ed in this
sectio n, thus obtaining t ransaction operations which are ab le to perform test s
on the global state of the shared repository. Typical operations of this class
are global read or input primi tives which atomically read or consumes all the
data satisfying a certain condition.

In [526) Rowstron and Wood have proposed a collect primitive which
removes all the data satisfying a specified pat tern . Collect (and its non
destructive counterpart copii.collect vis proposed as a solution to the multiple
rd problem. of Linda. By mult iple-rd , we mean th e fact that two dist inct read
operations may return the same object. Multiple-rd becomes a problem when
we need to read all the data satisfying a certain pattern inside a transac t ion;
indeed, in the basic Linda model it is not possible to observe the difference
between, on the one hand, th e reading of two distinct instances of the same
datum and, on the other hand, the double reading of the same instance.

We can extend our form al model with the collect primitive simply by
extending the syntax with a new prefix:

J.l ::= .. . I collect(a)

and th e operational semant ics with the new rule:

(colleet(a) .A EB Ag, DS) -7 (A EB Ag,{b E DS I b =I- a})

1. Coordinat ion Models: A Guided Tour 17

1.4 Reshaping the Coordination Media

In th e previous sect ion we have analyzed and formalized many proposals
of ext ensions of th e coordina t ion primitives for th e Linda shared datasp ace
model. Here, we consider ext ensions devoted to the reshaping of the coordina
tion media , moving from th e idea of a single shared datasp ace to a collection
of either named independent spaces or st ructured nested spaces.

Several advantages are advoca ted in ord er to justify the introduction of
multiple spaces. First of all, it provides modularity in the sense that one
can rest rict th e visibility to only dat a present in a par ticular dataspace.
Moreover , it allows a network-aware style of programming, e.g., simply by
allocating spaces to a par ticular node of the net . Finally, there are proposal
for promoting dataspaces to first class cit izens of the coordina t ion languages,
thus permitting, e.g., to consume, dupli cate, and move ent ire spaces.

In our formal framework we model two different approaches for the in
troduction of multiple spaces. On the one hand, we consider multiple spaces,
each one ident ified by a uniqu e name as happens for example in Klaim [453].
On the other hand, we consider a hierar chy of anonymous nested spaces as
happens for example in Bauhaus Linda [138]. In th e first case names are used
in order to specify the space target of a par ticular coordina t ion primitive; in
the second case the specific st ructure of the dat aspace is used instead . More
precisely, each process is associated to a datasp ace and indicates the t arget
space by specifying its relative location (e.g., the "parent" space, that is the
preceding space in the hierarchy).

1.4.1 Multiple Flat Dataspaces

Let S pace be a denumerable set of space names, ranged over by r, S ,

A system configurat ion is now a subset of Con] = Space x M (Agent) x
M (Data) with typical element denoted by s .(Ag, DS) ; this term represents
a shared space identified by s, which contains the data in DS, and such
th at the processes act ually associated to it are exactly those in Ag. In the
following we use C , D , .. ., to range over syst em configura t ions. In order to
ensure uniqu e names we will consider only configurations C in which all the
space names are dist inct , i.e. , s .(Ag, D S) E C and s.(Ag', DS') E C imply
Ag = Ag' and DS = D S' .

The syntax of the basic formalism is ext ended with the new versions of
the coordination primitives having the associated space name. The idea is
that coordina t ion primitives with a specified space name are executed in th e
indicated space , while those without name are executed on the local datasp ace
of t he agent .

f-l ::= . . . I out (a)@s I in (a)@s I rd(a)@s I ev al (A)@s I new(s)

A further new(s) primitive is considered which permits the dynamic creation
of a new space . The name s is formal , and t he actual name is chosen at
run-t ime in such a way that the uniqueness of space names is preserved.

u is a fresh space name

18 N. Busi, P. Ciancarini, R. Gorricri , G. Zavattaro

The operational semantics for the new configurat ions is defined by the new
transition system, with typical tran sition C --+ C1

, defined in Table 1.2
where we do not report the rules for the operations which act on the local
dataspace (i.e., without explicit ind ication of the target space) as they are
trivial adap tations of th e rules in Table 1.1.

r .(out(a)@s.A EB Ag , DS) EB s .(Ag', DS') EB C ---+
r.(A EB Ag , D S) EB s .(Ag' , DS' EB a) EB C

r .(in (a)@s.A EB Ag , DS) EB s .(Ag' , DS' EB a) EB C ---+
r.(A EB Ag , DS) EB s .(Ag' , DS') EB C

r .(r d (a)@s.A EB Ag, D S) EB s .(Ag' , DS' EB a) EB C ---+
r.(A EB Ag, D S) EB s .(Ag' , DS' EB a) EB C

r.(eval(A') @s.A EB Ag , DS) EB s.(Ag' , DS') EB C ---+
r.(A EB Ag , D S) EB s.(Ag' EB A' , DS') EB C

r .(new(s) .A EB Ag , DS) EB C ---+
r.(A{u/s} EB Ag , DS) EB u .(0 , 0) EB C

r.(J-t. A EB Ag, D S) EB C ---+ r.(Ag' ,DS') EBC

r.(J-t@r .A EB Ag , DS) EB C ---+ r .(A g' , DS') EB C

r .(Aj ,DS) EBC ---+ r .(A' ,DS') EBC'

r. (L:iEI Ai EB Ag, DS) EB C ---+ r.(A' EB Ag , DS') EB C'
if j E I

r.(A, DS) EB C ---+ r.(A' , DS') EB C'

r.(K EB Ag , DS) EB C ---+ r.(A' EB Ag , DS') EB C '

Table 1.2. The mul t iple flat dataspace coordinat ion model.

ifK=A

In this scenario in which pro cesses have a specific location , we could some
form of mobili ty of pro cesses by introducing a primitive moveto(s) which
moves the agent to the remote space s. This kind of primitive can be simply
implemented exploit ing the eval(A)@s primitive which permits to move th e
code in A to the remote space s:

[moveto(s).A] = eval(A)@s.O

As already explained the addit ion of multiple spaces is useful because it
permits some form of modularity, a network-aware style of programming, or
some form of mobility. Nevertheless, formally speaking, we have t ha t the real

1. Coordinat ion Models: A Guided Tour 19

novelty is not in the fact that we have spaces with names that we can use
in the standard coordinat ion pr imitives, bu t in the fact that the structure
of the spaces can be dyn amically modified by the new(s) primiti ve. Indeed ,
in the absence of this operation it is possible to map the new framework
with multiple spaces to the previous calculus with a single dataspace. The
idea is to associate to each single datum the name of the space where it
actually resides. More formally, we consider data t aken from Da ta x Space
and t ranslate , e.g., in(a)@s.A into in ((a, s)).[A]. The complete definition of
the mapping is defined in Table 1.3.

[EBi si.(Agi, DBi)] = (EBi [AgiL
i

, EBi(DBi X {sd))

[out(a) .AL = out ((a, s)).[AL

[in(a) .AL = in C(a, s)).[AL

[rd(a) .AL = rd((a, s)).[AL

[eval(A) .A'L = eval([AL).[A']s

[out(a)@r.AL = out ((a, r)).[AL

[in(a)@r.AL = in ((a, r)).[A]s

[rd(a) @r.AL = rd((a, r)).[AL

[eval(A) @r.A'L = eval([A]r).[A' L

[LiEf Ai]s = L iEf [AiL

[KL = tc, with K = A and tc, = [AL

Table 1.3. Encoding multiple fiat dataspaces in a single dataspace.

This approach for providing the Lind a model with mul t iple spaces has
been adopted in Klaim [453]. Klaim considers both logical and physical names
for the spaces and uses two scoping disciplines in order to bind logical to phys
ical names: one static (used in the out primitiv e) and one dyn amic (used in
the eval primitive) . Due to the presence of this dynamic scoping the encoding
reported in Table 1.3 cannot be exte nded to Klaim .

1.4.2 Multiple Nested Spaces

An alte rnative approach consist s of adopt ing a hierarchy of spaces structured
according to the typical parent/child relationship . This st ruc t ure permits to
avoid the use of space names as identifi ers of the space target of a pa rt icular
coordina t ion primitive.

20 N. Busi, P. Ciancarini, R. Gorrieri, G. Zavattaro

Many Linda-like languages exploit ing a hierarchical structure of nested
dataspaces have been proposed, see, e.g., Bauhaus Linda [138], Melinda [317],
and Polis [164] . Even if it is not proposed as a coordination language (but
a calculus for mobility) another interesting example of language with nested
spaces is Ambient [126] . Mobility is achieved by allowing a dynamic recon
figuration of the st ructure of th e spaces by, e.g., permit tin g to move a space
inside another one.

All the above proposals main ly differ in the kind of primitives which
permit the inter-space communicat ion or t he dynamic modification of the
structure of the spaces. As an example of possible inter-space communicat ion
mechanism we consider a proposal of [164] to extend the Linda generative
communicat ion mechanism to nested dat aspaces. The idea is that two brother
spaces communicates by introducing and retrieving messages in the parent
space . This can be simply achieved by adding the possibility to indicat e
the parent space as target of the standard Linda primitives. Moreover , we
do not consider here mechanisms for the t rea tment of spaces as first-order
objects , that is, they cannot be removed, copied, or moved; they can only be
dynamically created. The syntax of the new calculus is obtained by adding
the following prefixes:

J.t ::= .. . I out(a) t I in(a) t I rd(a) t I eval(A) t I new(A)

The new set of system configurat ion Can! is inductively defined as:

Con! ::= M(Agent) x M(Data) x M(Conf)

We omit the third element of the configurat ions when it is empty, that is
(Ag, DS) is a space with out subspaces . As an example, we consider the term
(Ag, DS, {(Ag' , DS') , (Ag" , DS")}) as th e representation of a configuration
with the root space containing the dat a in DS, the agents in Ag , and two
subspaces represent ed by (Ag', DS') and (Ag" , DS") .

The operational semant ics (denoted also in this case with ~) is defined
in Table 1.4; also here we do not report the rules for th e operations act ing on
the local dataspace as they are trivial adaptat ions of the rules in Table 1.1.

Observe that th e coordinat ion primitives considered here may act only
inside the local or in the parent space. Nevertheless, communicat ion between
spaces which are not in a direct parent/child relation may happen via the
least common ancestor, provided that each intermediary space contains pro
cesses able to move the messages along the considered path, thus moving the
messages up and down in the hierarchy from th e source to th e target space.

As a last remark , we have that an encoding similar to the one of Table 1.3
can be defined also here to map the hierar chically nested dataspace model to
the single dat aspace model. Thus, the observat ions in the previous subsection
can be reported also here.

1. Coor dination Models: A Guided Tour 21

(Ag ,DS, (out(a) t.A tB Ag' , DS' , S') tB S) ---+
(A g, DS tBa , (A tBAg' , DS' , S') tB S)

(A g, DS tB a , (in(a) t .A tB Ag' , DS' , S ') tB S) ---+
(Ag , DS , (A tB Ag' , DS' , S') tB S)

(Ag ,DS tBa , (rd(a) t .A tBAg' , DS' , S') tBS) ---+
(Ag , DS tBa , (A tB Ag' , DS' , S') tBS)

(Ag , DS, (eval(A) t .A ' tBAg' , DS' , S') tB S) ---+
(A tBAg,DS, (A' tB Ag' , DS' ,S') tBS)

(new(A) .B tBAg , DS, S) ---+
(B tB Ag, DS, (A , 0,0) tB S)

c ---+ C'

(Ag , DS, C tBS) ---+ (A g, DS, C' tBS)

Table 1.4. The multiple nested dataspace coordination model.

1.5 Programming the Coordination Rules

Here, we consider recent exte nsions which permit a dynamic modification of
t he coordinat ion rules thus obt aining a programmable coordinat ion medium.

Examples of coordination langu ages of this class are TuCSoN [472], Law
Governed Linda [424], and MARS [114] . In all the cases, the introduction
of the programm ability of the medium is just ified as the at tempt to ena ble
some form of control of the access to the shared repository. For example ,
a reposito ry may be programmed in such a way that the no read or input
operation are enabled to unkn own agents .

We need to revisit our formalism in order to model the dynamical mod
ification of t he coordination rules. First of all, some mechanism is required
to identify t he rules to change. One possible approach is to define a one
to-one mapping between rules and coordinat ion primitives. More precisely,
we define Op as the set of all the possible prefixes J-L (e.g., in (a) and
out (a)) and we use the elements in Op as the identifiers for the rules. Let
n = Op x M(Data) x M(Agent) x M(Data) be the set of possible rules
(ranged over by R) . We will denote elements of n by J-L : DS [> [Ag',DS']
where J-L is the identifier of the rule, DS is the part of dataspace which is
consumed, Ag' is the set of new spawned agents, and DS' is the part of
dat aspace created.

As an example, we have that t he original single shared dataspace model
reported in Table 1.1 can be described by the following rules:

22 N. Busi , P. Cian car ini , R. Gorrieri , G. Zavattaro

out(a): 0 1> [0 ,a]
in (a) : a I> [0 ,0]
rd(a) : a I> [0 ,a]
eval(A) : 0 I> [A, 0]

As the rules may change during the computation, we need to introduce also
th e set of rul es inside th e description of th e configuration. Form ally, a system
configuration is a triple (Ag ,DB, R) in M(Agent) x M(Data) x P(R) where
P(R) denotes the set of all possible sets of rules . We assume that for each
operation J.1 there exist s one and only one rule with this identifier.

This kind of system configurat ion may evolve according to the considered
coordinat ion rules. Formally, we need t he following rule:

(J.1 : DS I> [Ag' , DS']) E R

In this new scenario it is easy to model a primitive newRule responsible for
t he modification of th e set of the act ually act ive rules. First of all we extend
t he syntax adding the new prefix:

J.1 ::= . . . I newRule(J.1 : DB I> [Ag', DB'])

and th en add the new rule:

(newRule(p : DS I> [Ag' , DS']) .A EB Age, DSe , (J.1 : DSo I> [Ag~ , DS~]) EB R)
-+ (A EB Age, DSe, (p : DS I> [Ag' , DS']) EB R)

1.5.1 Event Notification in the Shared Dataspace Model

Recently, we have assisted to th e definition of coordination languages based
on t he shared dataspace model which consider also mechanisms inspired by
the event reac tion metaphor. In particular , JavaSpaces and T Spaces allows
for the creat ion, during th e computation, of listeners which are able to ob
serve the occurrence of some par ticular events inside the data reposito ry. The
reaction to th e event consists of th e activat ion of a process.

In J avaSp aces th e observable events are of a specific kind: "int roduct ion
inside the data repository of a new object satisfying a certain pat t ern" . The
primitive which permits to create a new listener is called notify. This new
primit ive has been formally modeled and analyzed in [111] (see [109] for a
complete mod eling of JavaSpaces).

Even if the concepts of programmable medium and event-not ificat ion
metaphor have been defined in different context s with different aims, it is
int eresting to see that we can model the notify primitive of [111] in our
framework adopting th e same approach described above for th e modeling of
programmable media. We can simply add the following new prefix:

J.1 ::= ' . ' I notify(a, A)

1. Coordination Models: A Guided Tour 23

where a is the kind of obj ect which the created listener is interest ed in , and
A is th e agent th at will be eventually act ivated as reaction .

The presence of a listener observing the introduction of data of kind a
can be realized by modifying the semantics of ol1t(a) in such a way th at its
execut ion will activate also all the associated reactions. Form ally, we have:

(notify(a, A').A EB Age, DSe, (ol1t(a) : DS [> [Ag' , DS']) EB R) --+
(A EB Age, DSe, (ol1t(a) : DS [> [A' EB Ag' , DS']) EB R)

In [111] th e expressiveness of thi s notify primitive is investigated in the set
ting of a Linda-b ased process calculus. Several interesting results are proved
there. First of all it is shown that n otify st rict ly increases the expressiveness
of a simpl e Linda-like coordination language with output, input, and read
operations only ; indeed, th ere exists no gener al encoding of notify in term s
of these three standard primitives. On the other hand, in th e presence of the
inp operation it is possible to simulate th e notify by act ivat ing a special
protocol each time an output operation is executed: first the presence of in
terest ed listeners is tested , th en an act ivat ion message is sent to each listener ,
and finally an acknowledgement from th e listeners is required. Another in
teresting result is that even if notify strictly increases the expressiveness of
t he basic shared dataspace mod el, it is still strictly less expressive than th e
complete Linda mod el comprising also th e inp operation. This because it is
not possible to provide a general encoding of inp in terms of output , input ,
read, and notify operations only.

In [110] it is shown that the notify primitive makes th e unordered se
mantics, recalled in Section 1.2, as expressive as the ordered one . The result
is achieved by providing an encoding of th e calculus interpreted with th e
ordered semantics on top of th e calculus with the unordered one.

1.6 Conclusions

Coordination languages offer a bridge between concurrency theory and soft
ware engineering, as they single out those concurrency principles and primi
tives that have been more widely accepted by the software engineering com
mun ity, for th eir simple und erstanding, easiness of use and for their support
to software reuse and heterogeneity. Ind eed , th ese are the main features ex
plaining the great success of this class of languages.

Even if we expect th e readership for this cha pte r is mainly composed of
software engineers , we have presented a panoram a of mod els for coordinat ing
agents in a style th at reminds classic concur rency theory. Indeed , we have
used not ations and techniques similar to those used for process calculi such
as CCS. In fact, th e theory of coordinat ion can be seen as a new branch
of concurrency th eory : while in classic pro cess algebras (such as CCS , CSP
and related calculi) communicat ion takes place by message passing, by syn
chronous handshake (point-to-point as in CCS or broadcast as in CSP) , in

24 N. Busi, P. Ciancarini, R. Gorrieri, G. Zavattaro

coordination languages on the contrary the emphasis is on the shared com
munication medium (reminiscent of shared memory systems and related ar
chitectures, e.g., blackboard) that implements the Linda-like generative com
munication mechanism (hence, communication is asynchronous, anonymous
and by pattern-matching).

The foundations for this class of languages is still poor, if compared with
classic process algebras. For instance, a basic open problem is the definition of
suitable behavioral semantic equivalences for the many Linda-like languages
discussed here (some initial work is in [106]). Nonetheless, the problem raised
by this class of languages are very challenging as, contrary to many process
calculi, coordination languages are widely used in practice and so a good
foundational theory for them can really be of practical help, e.g., in devising
tools for reasoning about coordination architectures or multiagent systems.

Acknowledgements

This paper has been partially supported by Italian Ministry of University
MURST 40% - Progetti SALADIN and TOSCA, and by a grant by Microsoft
Research Europe.

2. Models and Technologies
for the Coordination of Internet Agents:
A Survey

George A. Papadopoulos

Department of Computer Science , University of Cyprus
75 Kallipoleos Street, P. O. Box 20537, CY-1678, Nicosia, Cyprus
mailto:george@cs.ucy.ac.cy

Summary.

Agent technology has evolved rapidly over the past few years along a num
ber of dimensions giving rise to numerous "flavours" of agents such as in
telligent agents, mobile agents, etc . One of the most attractive and natural
fields for the development of agent technology is the Internet with its vast
quantity of available information and offered services. In fact , the term
"Internet agent" is effectively an umbrella for most of the other types of
agents, since Internet agents should enjoy intelligence, mobility, adaptabil
ity, etc . All these different types of agents must be able to somehow interact
with each other for the purpose of exchanging information, collaborating
or managing heterogeneous environments. This survey presents some of
the most common models and technologies that offer coordination mech
anisms for Internet agents. It argues for the need of using coordination,
then it presents some basic infrastructure technologies before examining in
more detail particular coordination models for Internet agents, themselves
classified into some general categories.

2.1 Introduction

Agent technology has evolved rapidly over the past few years along a number
of dimensions giving rise to numerous "flavours" of agents such as intelligent
agents, mobile agents , etc . One of the most attractive and natural fields for
the development of agent technology is the Internet with its vast quantity of
available information and offered services. In fact , the term "Internet agenf'
is effectively an umbrella for most of the other types of agents , since Internet
agents should enjoy intelligence, mobility, adaptability, etc . All these different
types of agents must be able to somehow interact with each other for the
purpose of exchanging information, collaborating or managing heterogeneous
environments. This survey presents some of the most common models and
technologies that offer coordination mechanisms for Internet agents. It argues
for the need of using coordination, then it presents some basic infrastructure
technologies before examining in more detail particular coordination models
for Internet agents, themselves classified into some general categories.

The rest of this chapter is organised as follows. In the rest of this introduc
tory section we give some preliminary information regarding the relationship

26 G. A. Pap adopoulos

between Intern et agent s on th e one hand and the notion of coordination on
the other. In the pro cess, we identify three main basic areas where the notion
of coordination is involved , namely: basic (coordination and communication)
infrastructure, coordinat ion platforms (i.e. mod els and languages that offer
coordinat ion functionality as a first class cit izen) and "logical" coordinat ion
at the level of agent behaviour. The next three sect ions present in mor e detail
some representative approaches in introducing coordinat ion behaviour into
these three levels. The chapte r ends with some conclusions and references.

2.1.1 Internet Agents

The issue of what is precisely a (software) agent is a rather hot topic of discus
sion and has att rac ted much controversy. Traditionally, the notion of agents
has it s roo ts in areas such as Distributed Artificial Int elligence, Distributed
Computing and Hum an Computer Interaction, as ent it ies that enjoy such
properties as proactivity, reactivity, autonomous beh aviour or adaptability.
Thus, it is often taken as a default that an agent is, in general, intelligent
and a non-intelligent agent is, in a way, a cont radict ion in terms. However ,
many people have questioned this approach (see for inst ance th e discussion
in [491] where it is claimed th at an agent can be autonomous without be
ing also intelligent and, in fact , intelligence is not always necessarily a useful
proper ty) ; another related discussion can be found in [243] . The rapid growth
of th e Intern et has fur th er compli cated this issue , where now in addit ion to
being int elligent an Internet agent is also expected to be mobile.

Thus, in thi s chapter we will refrain from adhering to a particular defini
tion or assume that an Internet agent has some specific properti es. In fact,
for the purposes of t his work we do not have to do th at since all definition s of
what an agent (Internet or ot herwise) is, agree th at an agent should be able
to: (i) com munic ate with other agents, and (ii) cooperate with other agents.
In particular , an agent should be able to engage in, possibly, complex com
munications with other agents in ord er to exchange information or ask their
help in pursuing a goal. The latter leads naturally to the notion of a number
of agents cooperating with each other towards the accomplishment of some
common obj ective. The need to communicate and coopera te leads to the need
for coordinat ing t he act ivit ies pursued by agents in order to both simplify
t he pro cess of building multi-agent systems but also provide the ability to
reuse descriptions of coordinat ion mechanisms and patterns.

2.1.2 Internet, WWW and Coordination

Recently, there has been an increase in the development of applicat ions that
need to cooperate , coordinate and share their information with other appli
cations, either with or without user int ervention. This is par ticularl y t rue
for Web-b ased applicat ions that operate in an open syst em environment and

2. Models and Technologies for the Coordination of Internet Agents 27

where data and resources are distributed. This leads to the need for develop
ing techniques that allow negotiation and cooperation. In particular, it has
been suggested that basic services for collaboration that include the coor
dination of activities and the exchange of information should be provided
by the Web infrastructure and related enabling technologies. More to the
point, some approaches refer to the development of infrastructures for shar
ing artifacts, the use of shared languages for exchanging information, and
the creation of shared working spaces for providing collaboration [629]. This
leads to the notion of having coordination architectures for the purpose of
building collaborative applications.

2.1.3 Coordination and Internet Agents

Coordination has been defined as the process of managing dependencies be
tween activities. In a seminal paper, Crowston and Malone [393] characterise
coordination as an emerging research area with an interdisciplinary focus,
playing a key issue in many diverse disciplines such as economics and oper
ational research, organisation theory and biology. In the field of Computer
Science coordination is often defined as the process of separating computa
tion from communication concerns and a number of coordination models and
languages have been developed [482].

From the discussion so far it has become clear that the need for coordi
nating activities is inherent in both the case of building (multi-) agent sys
tems and in the case of developing Web-based environments, independently
from each other. Therefore in the case of Internet agents which combine the
notion of multi-agent collaboration with that of using a Web-based environ
ment , the development of suitable coordination technologies is of paramount
importance.

In the rest of this chapter we present some representative approaches in
developing such coordination frameworks. However , before we embark on this
era, we would like to put the rest of the work into some perspective and we
argue that one way to classify these approaches is to group them into three
categories as follows:

- Basic coordination infrastructure. The most primitive form of coordina
tion is that of communication. In this first, "lower" , level of coordination
formalisms we present the elementary enabling technologies for building
coordination frameworks . We can identify two such groups of enabling tech
nologies: various families of Agent Communication Languages (ACLs) such
as KQML and its variants, and support computing technologies that act as
compositional platforms for multi-agent systems executing in a distributed
environment.

- Coordination frameworks. In this second, "middleware" , level we exam
ine some representative frameworks that offer mechanisms for modelling
coordination activities and expressing them as first class citizens. At this

28 G. A. Papadopoulos

level we have the traditional approach to developing coordination models
and languages, with emphasis on issues particularly pertaining to Internet
agents.

- Logical coordination. In this third , "upper" , or user-level we present some
approaches which deal with the coordination functionality of the agents
themselves such as contracting, planning or negotiation. Such coordination
agents include cooperation domain agents, interface agents, and collabora
tive agents.

Thus, we approach the issue of coordination in Internet agents from a more
general perspective examining not only the mainstream coordination notions
(the second level) but also the issues of information exchange (the first level)
and managing interdependencies between agents (the third level). In the next
three sections we elaborate further on these three dimensions of coordination.

2.2 Basic Coordination Infrastructure

2.2.1 Agent Communication Languages

Aside from how one perceives the notion of an agent, one has to accept
the fact that an agent should be able to communicate with other agents
and cooperate with them. Typically, agent-based applications comprise many
agents (possibly of different type and functionality). In order to enhance such
a multi-agent framework with communication and cooperation capabilities
we need an Agent Communication Language (ACL) which will be used for
the purpose of exchanging information, intentions or goals. An ACL is also
used to allow agents to ask for support from other agents in order to achieve
collectively some goal , monitor agent execution, report the status of some
computation, organize task allocation, etc . In other words, an ACL offers the
ability to formulate basic coordination patterns.

There are basically two main categories of ACLs [461]: Traditional third
generation multiple-purpose languages that are used, among other things , for
agent communication. Such languages are C and Java, AI languages such as
Lisp, Prolog and Smalltalk, and OOP languages. We will not elaborate fur
ther on this category. The second category involves the development of lan
guage formalisms specifically designed for the purpose of offering inter-agent
communication and cooperation. Below, we review some of these approaches.

KQML. The Knowledge Query and Manipulation Language (KQML) is
probably one of the most widely accepted and used ACLs [239] . It has been
developed as part of the DARPA Knowledge Sharing Effort project and is
considered an evolving standard. KQML is based on the notion of modelling
illocutionary acts , such as requesting or commanding an agent to perform
certain things. These requests are called performatives and can be classi
fied into nine categories, some of which are directly related to the notion

2. Mod els and Technologies for the Coordination of Internet Agents 29

of coordina tion. More to the point , there are performatives that offer basic
communicat ion capabilit ies; for instance, the networking performative offers
th e primitives register, unregister, forward , broadcast , pipe, and break
with self-explanatory functionality. However , there is also th e facilitation per
formatives with the primitives broker-one, broker-all, recommend-one,
recommend-all , recruit-one , and recruit-all which offer more sophis
ticated coordina t ion patterns. The facilitation performatives are used by a
special class of agents, called facilitators or mediators, which are used effec
t ively as coordina tor agent s for the rest , and whose purpose is to manage var
ious communication actions such as maintaining a regist ry of service names,
forwarding messages to named services, rout ing messages based on cont ent ,
providing "matchmaking" between information providers and client s, provid
ing mediation and t ranslat ion services, etc.

KQML can be viewed as comprising three layers of abstract ion:

- The bottom layer , referred to as content layer, specifies the act ual content
of the message. This can be repr esented in any programming language, as
long as it is ASCII-represent able.

- The middle layer , referred to as message layer, consists of the primi tives
that comprise t he nine classes of perform atives, and forms th e core of the
language. This layer specifies th e protocol for delivering the message, whose
contents are specified by the previous layer.

- The upp er layer , referred to as communication layer, is used to encode
communicat ion par ameters such as the identities of senders and receivers .

The actual format of a KQML message is shown below:
(register

: sender
: r ece i ver
:reply-with
: language
:ontology
: content

agentA
agentB
message
common.d.anguage
common_ontology
"sometih ingct.ocdo "

)

The first keyword identifies the parti cular performative th at is being used (in
this case it is t he register one) , followed by the a numb er of par ameters .
These include the par ameter ontology which ident ifies the ontology (i.e.
the specificat ion scheme for describing concepts and their relationships in a
domain of discourse) to interpret th e information in the content field of this
message.

As a particular example, the agent customer could ask for all the different
types of 4x4 car s from an agent seller, as follows:

30 G. A. Papadopoulos

(ask-all
: sender
:receiver
: content
: r epl y- vi t h
: language
: ontology

customer
seller
"cars (4by4(Type,Price)) "
4by4-request
Prolog
CARS

The agent seller receiving t his message would interpret the request using the
onto logy CARS and bear ing in mind that the request was formulated in the lan
guage Prolog. In due time, it will reply using the ident ification 4by4-request
so that the agent customer would know for which of its (potentially many)
requests this message const it utes a reply. Such a reply message could be the
following:

(tell
: sender
:r ece i ver
: content
:in- r epl y- t o
: language
: ontology

seller
customer
"[4by4(honda, 15000), . . . L"
4by4-request
Prolog
CARS

A coordi nator agent , monitoring continuously t he changes in the 4x4 cars
market and informing the agent customer , could be defined as follows:

(monitor
: sender
: receiver
:to
: cont ent
: r epl y- vi t h
: language
:ont ol ogy

customer 's_agent
seller
customer
"cars {4by4 {Type, Pr i ce)) "
4by4-request-for-customer
Prolog
CARS

In t he above example, the intermediary agent customer' s.agerrt has used
the performative monitor (which is an abbre viation for a combination of
some ot her primi t ives) to keep it self informed of all future changes to the 4x4
car s and inform the agent customer.

Although KQML has been criticized for a number of shortcomings , such
as the lack of precise formal semantics, it is interest ing to highlight the three
layer abstraction that separates the communication aspect of the language
from the way the act ual information is being computed and presented. This
separation of concerns is one of the most important features of coord ination
languages and thus KQML can be seen as a t ruly, if elementary, coordina tion
language.

Agent Oriented Programming. AOP is a more elementary, compared
to KQML, framework for agent programming, and can be considere d a spe
cialisation of OOP where agents are viewed as objects with mental states

2. Models and Technologies for the Coordinat ion of Internet Agents 31

(such as beliefs, desires and intentions) and a notion of time. AOP is ef
fectively a famil y of evolving formalisms. A pro gram written using the first
member of this famil y, Agent-O [552], executes at each t ime step the loop
comprising two steps: during the fist step incoming messages are gat hered
and the mental state of the agent is updated appropriately, and during the
second step commitments (i.e. guarantees that the agent will carry out an
action at a certain time) are executed using capabilities (actions the agent is
able to perform) . Basic communication in Agent-O is achieved by means of
the primitives (INFORM t a fact) , (REQUEST t a action) , (UNREQUEST t
a act ion) and (REFRAIN action) where t specifies the time the message
is to take place, a is the agent that receives the message, and action is any
act ion st atement. An INFORM action sends the fact to agent a , a REQUEST

notifies agent a that the request er would like the action to be realized . An
UNREQUEST is the inverse of a REQUEST. A REFRAIN message asks that an
action not be commit ted to by the receiving agent.

PLACA [588] extends Agent-O with intentions (a commitment to achieve
a state of the world) and ability to plan composite act ions . New syntactic
structures added to PLACA include the following: (INTEND x) intending to
make sentence x true by adding it to the list of int entions , (ADOPT x) adopt
ing the intent ion / plan x to the int ention / plan list , (DROP x) dropping the
int ention / plan x, and the set (CAN-DO x} , (CAN-ACHIEVE x) , (PLAN-DO

x) , (PLAN-ACHIEVE x} , (PLAN-NOT-DO x) which are truth statements used
in mental condit ions. For the purposes of this cha pte r, we can view the prim
itives of Agent-O as offering basic coordina t ion at the level of communication
whereas those of PLACA as offering basic logical coordination.

Agent-K [199] is an attempt to standa rdize the message passin g func
tionality of Agent-O by combining the syntax of Agent-O with the form at
of KQML. In the process, the communicat ion primitives of Agent-O have
been replaced by a single generic message action kqml (time ,message) where
message is of the form [performative, keyword(action)] .

A simple communication pattern in Agent-K between two agents agent!
and agent2 would be modelled as follows:

commit([clock(Now),b([Now,alive(agent2)])],
kqml(Now, ['ask-all' ,sender(agentl) ,

receiver(agent2),content(.. .),language(...)])

commit([clock(Now),b([Now,alive(agentl)]) ,
kqml(Now,[reply , sender (agent2),

receiver(agentl),content(. . .),language(. . .)])

where bC . .) represent s a belief and a predicate clock provides the cur rent
time.

Market Internet Format. We include in our survey the MIF [227] form al
ism , as an example of how KQML can influence the design of more specialized
ACLs which are designed and orient ed towards specific applicat ions. In the

32 G. A. Papadopoulos

case of MIF thi s applicat ion is e-commerce which has at t racted a wide interest
and has shown to be a natural application domain for both agent technology
and coordinat ion models. In MIF agents share a common langu age which is a
formalized subset of commerce communicat ion. MIF agents leave within t he
MarketSpace, a medium reflecting a market place where consumer goods and
services can be offered and bought . Int eraction between agents is modelled in
MIF , a Lisp-like frame language, which has both a text ual and graphical rep
resent ation. Typical MIF expressions of interest for e-commerce transactions
are the following one:

(def car "trade-object"
color (instance "red"))

...)

(instance "contract"
date(interval 1/1/2000 1/1/2001)
buyer(instance "per son"

(name "John Brown")
(address . ..) . . .)

goods(instance "car"
color(instance "red") . . .)

MIF expressions are exchanged using messages written in t he Market Inter
action Language (MIL) which have the following format :

(offer
: f r om
:t o
: i n- r epl y- t o
: language
: content

urI
urI
message_id
"MI F 1 .0"
<MIF expression>

The basic communicat ion primitives that can be used to formulat e complex
coordination patterns can be grouped into two categories: non committing
messages (ask (for an expression-of-inte rest), tell (an eoi) and negotiate
(an eoi)) and committing ones that are und erstood to make legally binding
agreements (of f e r (an offer), accept (an offer) , and decline (an offer)).
Th e involvement of specific agents in such communication scripts can be
par amet rised, thus rendering frequently used scenarios (such as auction pro
toco ls) reusable.

April. The Agent PRocess Interaction Language [404] is a pro cess oriented
symbolic language influenced by the acto r par adigm. April is oriented primar
ily towar ds offering a basic language for modelling agent interactions rather
th an a high-level set of agent relat ed features such as planners , knowledge
representation systems, etc . In that respect April is used mainly for manag
ing the processes representing agents and their actions as th e former interact
with each ot her in a distributed system. Th e following example shows how a
broker agent can be modelled in April :

2. Models and Technologies for the Coordination of Internet Agents 33

agent_record ; ;= (handle?agent,symbol[]?relnames) ;
subscription_record :: = (handle?agent,symbol?relname) ;
brokerO{

agent_record[]?has_rels := [];
subscription_record[]?sub_for ;= [];

repeat {
(advertise,symbol[]?rels) -> { . .. }
I (subscribe,symbol?rel) -> { \ldots }
I (remove_subscription , symbol?rel) - > { \ldots }
I

until quit : : = sender == creator()
}

The code starts with the declarat ion and initialisat ion of the dat a st ructures
that will hold the data on those agents that have advertised or subscribed to
the broker. The process then enters a loop to handle the requests for its ser
vices, such as advert ising something, registering or removing a subsc ription,
etc . (the par ticular act ions taken for each request are not shown above for
reasons of brevity) . This pro cess executes until its creator has sent it a quit
message. Recently [560] April has been used as a component-based platform
for implementing KQML in a distri buted environment.

2.2 .2 Compositional Platforms

In this subsect ion we briefly describe some approaches that lend support in
the development of Internet agents- based systems. We refer to both general
purpose technologies tha t are used in dist ributed computing but also to those
t hat have been designed primarily to assist in the development of agent-based
systems.

Java-Based Agent Toolkits. The rapid development s in object-oriented
programming and wide area networking has led to the integration of these
technologies and the form ation of distri buted object-based computi ng plat
form s. These platforms allow the development of systems as a synthesis of
pre-existing components . Furthermore, they provide a natural medium for
construct ing agent layers. This has led to the development of agent toolk
it s that are typically J ava-based. One such toolkit is JavaSpaces [249] and
its associated infrastructure Jini [619] . JavaSpaces allows dynamic sharing,
communication and coordination of Java Obj ects . It is a loosely coupled coop
erative marketplace model, based on t he metaphor of Linda like models (see
next sectio n), whereby produ cers store objects in a shared working space
and consumers lookup and retrieve obj ect s from this shared medium. The
shared medium is effectively a networked repository of Java Objects where
the latter exist in the form of entries (serialized obj ects with both data and
behaviours) and their lookup is done via templates allowing ty pe and value
matching. JavaSpaces is 100% pure J ava-based and provides a simple solution
to lightweight distributed applications. Furth ermore, it decouples requestors

34 G. A. Papadopoulos

from providers , thus relieving responsibilities and complexity and redu cing
the difficulty of building distributed applicat ions and maintaining them . The
model supports five simple but very powerful primitives:

- write, puts a copy of an ent ry int o the space.
- read & readIfExists , (blocking and non-blocking versions) return a

matching ent ry from the space.
- take & takeIfExists, (blocking and non-blocking versions) remove the

matching ent ry from the space.
- notify, sends an event when the matching ent ry is written to the space.
- snapshot , returns anot her ent ry obj ect that contains the snapshot of the

original one.

As a basis technology, .lavaSpaces uses Jini , a protocol allowing "plu g and
play" functionality for new ent it ies connected to the network. Such an ent ity
can be a device or a software service, which when connected to the network
announces its presence. Clients can then use lookup facilities to locate and
invoke the services offered by such ent it ies. Thus, a Jini environment is mad e
up of three main parts: the services offered , the clients that will invoke the
services, and a service locator that implements the lookup capability.

There are a number of other similar toolkit s which for reasons of brevity
we will not describ e in this chapte r. These include Concordia by Mit subishi
[183], IBM's Aglets [12], Odyssey by General Magic [466], and Voyager by
ObjectSpace [615] . The interest ed read er can consult the relevan t references
for fur ther details.

Law Governed Interaction. One of the mos t importan t problems that
must be faced in open distributed systems , such as Internet (mult i-) agent
ones, is that of secur ity. A framework based on specifying and enforcing
"laws" which mus t be obeyed by all ent ities involved in an applicat ion and
which provide, among others , safe communication is described in [425]. The
model has a wide applicability, bu t is par ticularl y attractive to the case of
Internet agent- based syst ems. In Law Governed interaction proto cols, there
exist a set of controllers , one cont roller per ent ity involved in an application,
which int ercept all communicat ion between this enti ty and the rest in the
apparatus. Each cont roller executes a copy of the law which defines in precise
ways how the communication between the ent it ies must be realized . The
cont rollers moni to r all message exchanges and allow the complet ion of only
those which do not violate the law. As an example, the following is part of a
law which establishes a secure bidding poli cy between agents involved in an
e-commerce t ransact ion:

Ri. sent(Ci ,out([requester(C2),service(S)]),ts :
Ci==C2, do(forward) .

R2. sent(Ci,in([requester(C2),service(S)]),ts :
Ci==C2, do(forward) .

R3. sent(Ci,in([offerFor(C,S) ,fee(f),provider(P),
provider (P) , contact (Addr)]) , ts) :-

2. Models and Technologies for t he Coordina tion of Internet Agents 35

Cl==C2, do(forward) .

In th e above example we assume th at th e agents communicate via a common
medium, referred to as ts; furthermore, a message can be sent to ts by means
of an out primitive and retrieved from th ere by mean s of an in primitive.
Assuming further that a cont roller moni toring an agent Cl executes the above
law, then the first rule of the law says that Cl can request a service provided
it is for himself, th e second one allows the withdrawal of th e request , and the
third rule allows Cl to retrieve an offered service if it has been posted to ts
(by some oth er agent) for Cl 's sake.

IMPS. The Internet-based Multi Agent Problem Solving (IMPS, [198]) is a
composit iona l platform for developin g Internet multi-agent systems. It fea
tures the use of Problem Solving Models (PSMs) which may be used in ontol
ogy const ruc t ion and knowledge acquisition. A knowledge library is available
to all agents containing information about PSMs in term s of th eir competen
cies and domain knowledge requirements, and about types and locations of
domain knowledge sour ces and how to ext ract different kinds of information
from them. This libr ar y can be distributed over the Intern et and is designed
to be modular and extensible by means of 'plug-and-play' new classes written
in J ava. More to th e point , knowledge sharing in IMPS is realized by means
of using emerging standards such as KIF, KQML and Java , thus ensur ing
interop erabili ty.

IMPS is built on top of JAT (J ava Agent Template), an agent- level archi
tecture featuring th e use of two specialist server agents; these are the Knowl
edge Extrac t ion Agent (KexA) and the Ontology Const ruc tion Agent (OCA)
which are used for providing on-demand knowledge to Inference Agents (lAs) .
lAs specialize in perfo rming par t icular pro cess or inference ste ps; thus, IMPS
enhances cooperation between agents collaborating towards the achievement
of a common goal, reduces redundancy and increases reusability of agent co
operation patterns. The use of KQML allows the dynamic configurat ion of
agent s and fur th er enhances the coordinat ion capabilit ies of this framework .
IMPS can be viewed as an enabling technology for mod elling logical coordi
nat ion (see Section 2.4 below) .

ADK. The AgentB ean Development Kit (ADK , [291]) is a component-based
framework for developing mobile multi-agent systems with some emphasis on
network and syste m management issues. In ADK an agent is understood to
be composed of components belonging to one of the following three sets :

- Na vigational components . They are responsible for managing th e itinerary
of an agent which may be stat ic of dynamically modifiable at run time.

- Performer' components. They are responsible for carrying out the manage
ment tasks th at should be executed at th e host of the cur rent ly visited
place. Tasks performed by agents comprise one or mor e components.

- Reporter components . They are responsible for delivering agents ' results to
designated destinations. Delivery can be a simple point-to-point exchange

36 G. A. Papadopoulos

of messages of more complicated - for instance, collecting a number of
messages (possibly from different sender agents) and 'forwarding all of them
to some recipient agent .

For th e purposes of this chapter , the above separation of concerns between
the three categories of components enhances the coordination capability of
the system. For instance, the reporter components can be seen as encapsu
lating the coordination act ivit ies of some ensemble of agents, thus separating
them from other concerns, but also rendering useful coordination interac
t ion patterns reusable. The interaction between component s is done in an
event/ action-based fashion: event s generated by one component may trigger
actions to be performed by another.

JGram. JGram [572] is anot her multi-agent development platform using
the component-based approach. Agents' services are specified in the JGram
Description Language and automat ically converted into J ava source tem
plates. These services may then be invoked synchronously or asynchronously
in a manner transparent to the services ' implementation. Compositionalityof
tasks is realized by means of th e notion of pipelining: an agent may dynam
ically delegate tasks to other agents and chain together their results. Thus,
the complexity of handling a task is distributed across a number of agents,
each being aware of only part of it . This notion of pipelining can be seen as
an extension of the Unix pipes where the agents involved in a pipeline can be
distributed across the network. Furthermore, it is possible to form hierarchies
of pipelines with transparent propagation of results.

Communication between the agents involved in pipelines is realized by
means of .JGram slates, consisting of a header specifying addressing informa
tion and delivery instructions and a body containing a set of typed entities.
Slates are passed over from one agent to anot her for th e purpose of accessing
and if necessary modifying the ent ries in it . The system adheres to elemen
t ary coordina t ion principles by taking the responsibility itself for performing
parameter checking, thread management, authent icat ion, agent name service
and error handling. Thus, the user can concent rate only on creating and
using agent services. In particular, the JGram Description Language pro
vides high-level concepts for agent behaviour in the form of (offered) services
and requests (for services). A user expresses an interaction scenario among a
number of involved agent s using these two notions and the underlying syst em
handles the low level communication details.

RETSINA. The REusable Task Structure-based Intelligent Network Agents
(RETSINA, [272]) system plays particular emphasis to the process of formu
lating planning actions between a number of agents involved in the pursuing
of a common goal. The RETSINA system architec ture is composed of four
autonomous units as follows:

- Communicator. It is responsible for exchanging requests between agents in
KQML format.

<!ELEMENT deal
<!ELEMENT card
<!ATTIST card

2. Mod els and Technologies for the Coordination of Intern et Agents 37

- Planner. It tr ansforms goals into plans that solve these goals.
- Scheduler. It schedules for execution the t asks representing the plans.
- Mon itor. It monitors the execution of th e plans.

The above separation effect ively provides elementary coordina t ion capabili
ties to th e system. Furthermore, the system employs a planning and refine
ment algorithm which decomposes a complex plan into a Hierarchical Task
Network (HTN) of more elementary plans . Every partial plan in the HTN is
handled by the planner (and th e rest of the units as listed above) of some
agent, irrespective of how other agents deal with the rest of the plans . Thus,
at any moment in time each agent is aware and interested only in his own
local partial plan with the positive consequence that agents may dyn amically
join and leave th e syst em. This mechanism provides further potential for de
veloping parametric and reusable coordination patterns between cooperating
agents.

Domain Specific Languages. The advantages of using Domain Specific
Languages (DSLs) for modelling collaborat ion scenarios between Internet
agents is discussed in [252] . DSLs provide a common communication language
between all types of agents (human or other) involved in Internet applica
tions . In DSLs a clear separ ation is enforced between syntax and semantics,
so that each agent in a collaborat ion is capable of applying a behavioural se
mantics appropriate to its role (e.g., buyer , seller , etc .). Thus, DSLs support
the development of multi-agent applicat ions from heterogeneous agent s, an
issue of importance to coordinat ion frameworks.

Language semantics in DSLs are separated into two levels: th e abstract
semantics refer to the obj ects in the domain itself whereas the operat ional
semantics refers to how the messages received by objects will be processed
by the machine. What differentiates DSLs from ordinary languages in that
respect , is that the "machine" is a specialized computational ent ity according
to what precisely is th e domain in question. So, this ent ity could be a machine
specialized in playing bridge or a whole corporat ion with workflow infras truc
ture, databases and Internet communica t ion mechanisms, according to the
application framework.

[252] uses SGMLjXML as a metagr ammar for defining DSLs. The follow
ing piece of code defines the grammar of part of th e scenario that models a
game of bridge:

<!ELEMENT bridge (player+,deal,bidding,dummy,play»
<!ELEMENT player #EMPTY>
<!ATTIST player position (northlsouthleastlwest) #REQ

name cdata #REQ>
(card+)>
#EMPTY>
suit (spades Ihearts Idiamonds Iclubs) #REQ

face cdata #REQ>

38 G. A. Papadopoulos

Part of an actual scenario (for dealing only) , based on the above grammar is
shown below:

<bridge>
<player position='north', name='george '>
<deal><card suit='spades', face='king'> , <Ideal>

</bridge>

In a dist ributed realisation of this game, each agent will receive and interpret
a bridge string as th e one shown above. Thi s st ring may be parsed as a data
structure by a computational agent or be present ed to a hum an agent in some
visual and interactive form . The instance of a bridge game, as specified by t he
code enclosed in the <bridge>. .. </bridge> tags, will be played according
to the rules for bidding, passing and using trump cards (not shown ab ove)
as they have been defined in the grammar above.

2.3 Coordination Frameworks

In this section we describe a number of approac hes where coordination be
tween Internet agents is supported as a "first class cit izen". Contrary to th e
previous sect ion where the emphasis was on systems whose principles have
the potent ial of developing coordination frameworks, here we concentrate
on genuine coordinat ion models and languages tha t have specific features
for Internet agents . Many of these mod els have evolved from earlier, more
convent ional versions , th at deal with non (Internet) agent- based distributed
comput ing [482] . Most of the models in this section adopt the not ion of a
Linda-like shared dataspace; however , some follow a more cont rol-driven ap
proach [482] and a few are based on other notions such as using graphical
not ations.

2.3.1 Shared Dataspace Models

TuCSoN. TuCSoN [196, 197] addresses in particular two important problems
that must be faced in open Intern et agents-based systems: th ose of security
and aut hentication. The mod el is an extension of t he Linda framework and it
uses th e same set of pr imitives for dealing with tuples. As in other vari ations
of the vanill a model , TuCSoN introduces multiple tuple spaces, referred to
as tuple centres. Thus, an ordinary Linda tuple operation op Ctup Le) is now
par ametric to the par ticular tuple centre tc which is being accessed and
takes the form tc?op (tuple) . Fur therm ore, the tuple cent res ar e associated
with their own policies for being accessed by agents; an agent at tempt ing to
access some tuple cent re will undergo an authenticat ion screening according
to the par ticular policies of the tuple cent re tha t it t ries to access . Thus, th e
tuple cent res become programmable m edia that define locally the way agents

2. Mod els and Technologies for the Coordination of Internet Agents 39

will interact with th em. TuCSoN views th e Int ernet world as a hierar chical
collection of different tuple cent res . For inst ance, one tuple cent re can be the
main gateway of some Web site (e.g. th e gateway for some organisat ion),
comprising a number of subordinate tuple cent res (e.g. local departments
with in th e organis at ion). This allows the optimisation of enforcing secur ity
policies in the sense that th e programmable "logic" of a tuple cent re for
some tree hierarchy regarding how it is being accessed by external agents ,
may refrain from aut hent icating an agent that tries to access a sub-domain
of t he tree if that agent has already received security clear ance from th e top
dom ain .

The consequences of th e tuple space acting as a programmabl e medium
means that there exist now two different levels of perception: th at of the
agent s accessing it and t hat of the medium itself handling the queries .
Thus, every logical operation at the level of th e agent must be mapped
onto one or more corres ponding syst em act ions at the level of the medium
and vice versa. This introduces th e notion of reactions and th e primitive
reaction(Operation, Body) where every logical Operation is mapped onto
one or more syste m operations (Body). As an example, consider th e problem
of coordina ting th e well-known dining philosoph ers to access th eir forks:

reaction(out(forks(Fl,F2»,
(in_r(forks(Fl,F2», out_r(fork(Fl», out_r(fork(F2»»

reaction(in(forks(Fl,F2»,(pre ,out_r(required(Fl,F2»))
reaction(in(forks(Fl,F2» ,(post,out_r(required(Fl,F2»»
reaction(out_r(required(Fl ,F2),

(in_r(fork(Fl) ,in_r(fork(F2»,out_r(forks(Fl,F2»»

reaction(out_r(fork(F»,(rd_r(required(Fl,F» ,
in_r(fork(Fl»,in_r(fork(F»,out_r(forks(Fl ,F»»

reaction(out_r(fork(F»,(rd_r(required(F,F2»,
in_r(fork(F»,in_r(fork(F2» ,out_r(forks(F ,F2»»

In the above modelling of the problem in TuCSoN, two points of reference are
being involved. The agent philosoph er perceives the fork resources as pairs
and asks for them in th at fashion , namely forks (F'l , F2) . The programmable
medium however must map the agent's perception of pair s-of-forks to single
forks and furthermore, ensure that these are accessed at omically and in a
way th at is fair to all philosophers. This is achieved by means of a number of
react ion rules. The first one changes a release of t he left and the right fork as
a pair to two single releases. The next two rules refer to the case of an agent
requesting a pair of forks in which case a request is posted to the medium
(first rule of this group) and is retracted when the forks have been allocated
to the agent (second rule of this group.) . These requests are handled by the
last three rules; the first rule of this group allocates immediately the two
forks if th ey are both available whereas th e last two rules handle the case

40 G. A. Papadopoulos

when only one of the two forks can be immediately given to t he request ing
agent.

KLAIM. The Kern el Language for Agent Interaction and Mobility (KLAIM,
[453]) is another Linda vari ant for coordinating Internet agents with similar
charac te ristics to TuCSoN. A KLAI M program is a net, comprising a set of
nodes. Each node has a name and is associated with a process component
and a t uple space component . The name of a node is effectively an Inter
net site and allows access to the network. P rocesses access tuple sites via
symbolic locality references; in other words, they need not know explicit net
work references. Thus the net can be seen as a distributed infrastructure for
coordinating processes in accessing and sharing resour ces.

In particular , each node in a net is of the form e {P I T} where e is an
allocat ion environment that maps symbolic locality references to act ual t uple
spaces, P is a set of running processes, and T is a t uple space. Consider th e
following piece of KLAIM code:

def Client = out(Q)~l ; nil
def Q = in('foo ',!X)~5elf ; out('foo',X+1)~5elf nil
def Server = in(!P)~5elf ; eval(P)~5elf ; nil

In the above example, t he first line of code defines a process Client tha t outs
a process Q to th e environment 1. The act ual definition of Q is given in the
second line and involves th e increment of the value of some vari abl e X. The
t hird line of code defines a pro cess Server which retrieves a process P from its
own tuple space and executes it . The idea in this example is that Client sends
an increment pro cess Qto some ot her pro cess Server which will then execute
Q and send the new increment value back to Client . Assuming that Client
and Server run on the nodes 61 and 62 respectively, this will work provided
that 1 is mapped to 62 and t he self references of Client and Server map
themse lves to 61 and 62 respect ively. Furtherm ore, we assume th at before the
execution of these pro cesses commences, an init ial t uple <' foo' ,1> exists in
the tuple spaces involved in the scenario. These are achieved by the following
piece of code:

node 51
node 52

e1 {Client
. . e2 {Client

out('foo' ,1)} II
out('foo' ,1)}

When Client sends Q for execution to Server's tuple space , it will appear
th ere as the pro cess:

Q' = in (' foo ' , ! X) ~5 1 ; out('foo',X+1)~51 ; nil

Thus, Server will execute Q' in its own tuple space 62 but post t he result
to the tuple space 61 , i.e. will effectively send the result back to Client .

KLAIM has a capability- based ty pe system to express and enforce access
cont rol policies and thus provide secur ity. These ty pes provide informat ion
regarding the intention of some process with respect to producing or using

2. Models and Technologies for the Coordination of Intern et Agents 41

tuples, creat ing new nodes or act ivat ing processes. Permis sions have a hi
erarchical st ruc ture in the sense th at if a pro cess is allowed to perform an
operation of a certain generality or "st rengt h", then by defaul t it is also al
lowed to perform all oth er operat ions th at are less general or weaker. For
instance, if it is allowed to read a real value then it is also allowed to read an
integer value, and if it is allowed to remove a tuple (in) then it is also allowed
to simply read it rd). As an example, the following KLAIM code specifies
access cont rol rights for the pro cesses Client and Server:

def Server = out«l:void ,Top»~self ; nil
def Client = read(!u :<[self > e], ac>~l-S;

eval(P)~u ; nil

According to the above definitions, Server adds a tuple containing the lo
cality 1 to its own t uple space; no access rest rictions are specified on 1. The
process Client first accesses th e tuple space 1-S to read an address u be
fore sending process P to execute at u. However, t his will only be possibl e to
achieve if P is of ty pe ac , because the second rule st ates that only pro cesses
of this type are allowed to be sent from the site of Client to the site u.

LIME. Linda in a Mobile Environment (LIME , [493]) is yet another exten
sion of the Linda model for coordinating Internet agents. However , cont ra ry
to the previous two models that develop fully-fledged languages, LIME of
fers only a minimalist set of constructs. The philosoph ical difference between
models like the previous two and those such as LIME is tha t in the former
case the user has direct and explicit cont rol on how to deal with coordina
t ion matters specific to Int ernet agents (such as mobility or secur ity) while
in th e latter case the user only implicitly expresses the intended act ions to
be performed and it is the system tha t is prim arily responsible for dealing
with such issues.

The fund amental abst raction provided by LIME is that of a transiently
shared tuple space. In particular, each agent is associated with it s own per
sonal tuple space, referred to as interface tuple space (ITS) . An agent may
have one or more ITSs identified by a separ at e name. The union of the ITSs
with the same name that belong to all the agents tha t are co-located at some
host form the t ransient ly shared tuple space for th at host with respect to t he
curre nt ly residing th ere agent s. When a new agent moves to some location,
t he LIME system recomputes the transient ly shared tuple space for t hat lo
cation taking into consideration the ITSs of th at agent . Thi s process is called
engageme nt. When an agent leaves the host , LIME again recomputes th e
t ransiently shared tuple space for th at host by removing those tuples t hat
belong only to the ITSs of the departing agent. This reverse process is called
disengagement.

Thus, if two agents A and B reside on the same host and A performs the
operation out (t) to its own ITS (we assume for simplicity here that only one
ITS per agent is involved in our scenario), then because the two agent s are
co-located and the two ITSs form a common transiently shared tuple space , B

42 G. A. Papadopoulos

can perfo rm the operation in(t) and retrieve th e tuple t (which can be seen
by B through his own ITS) . Care must be taken when , afte r performing the
operation out (t) ,A migrates to some other host . In this case, the t ransient ly
shared tuple space between the ITSs of A and B does not exist any more and
th e tuple t would go along with A and would not be any more accessible to
B for retrieval. In order to allow access to t even afte r the departure of A, the
latter must out it to t he ITS of B, rather than to its own ITS by means of
execut ing the primitive out [B] (t) , In this case, t becomes part of B's ITS
and will remain there even after the dep arture of the agent (A) which created
it , although th e two agents are not co-located on the same host any mor e.

Berlinda. Berlinda [596] is a meta- coordination Linda-based platform devel
oped in Java. The syste m offers a highly abst rac t mod el of coordinat ion that
can be used as th e basis for developing more concrete coordinat ion frame
works for Internet agents. As in all Lind a mod els, there exist s a common
communication medium in th e form of multisets, which comprises a collect ion
of eleme nts. Elements carry signatures with met a informat ion and provide a
matching fun ction for their access by agent s according to th e semant ics of the
particular coordinat ion framework that is being employed. All these entities
are implement ed as J ava classes th at form a hierarchical st ruct ure and pro
vide appropriate operations that realize the functionality of the coordinat ion
framework .

The Berlinda platform has been used for developing coordinat ion frame
works for Linda and KQML. As an example, the following piece of code
creates a set of agents in a Lind a coordinat ion fram ework that traverse a file
syst em and remove unn ecessary files, i.e. t hose files th at can be generated
from some other file:

public class SweepAgent extends LindaAgent {
public static void main (String argv[]) {

II create tuple space
TupleSpace ts = new TupleSpace() ;
II create agents
for (int i=l; i<=walker; i++) ts.eval(new Walker(»;
for (int i=l; i<=sweeper; i++)ts.eval(new Sweeper(»;
II allocate work to agents
ts .out(new Tuple(ISweeped" , new Integer(O»)) ;
ts .out(new Tuple(IWalker",start_directory_path));

}

}

The Walker agents t raverse a directory, spawning themselves to traverse in
parallel any subdirecto ries. The results of th eir search are passed on to th e
Sweeper agent s that remove the selected files.

PageSpace. The PageSp ace platform [173] is effect ively a met a-archit ecture
or reference architecture for developing Internet agents- based applicat ions .

2. Models and Technologies for the Coordinat ion of In ternet Agents 43

Appli cations are composed of a set of distributed agents and are conceived as
comprising three layers: a client layer , a server layer and an application layer ,
that coordinate modules belonging to client agents, server agents or intr anet
applications respectively. These applicat ions may be distributed transpar
ent ly across a network and used in serving several users who independently
access a shared Linda-like environment via th eir WWW browsers. Indepen
dently progressing applicat ions may interact with each oth er in ord er to co
operat e towards the achievement of a common goal. Furthermore, th e con
figuration of users, applications and hosts may change dynamically without
disru pt ing th e offered services.

Depending on th eir functionality, PageSpace dist inguishes several kinds
of agents, such as user interface agents, application agents (that manage th e
running of some applicat ion), gateway agents (that provide access to the out
side world) , kernel agents (that perform management and control tasks) , etc .
PageSpace is effectively the product of combining related research at the Uni
versity of Bologna and th e Technical University of Berlin and it thus uses a
number of mor e specialized software architectures and associated coordina
t ion mod els and languages that have been developed by the two groups such
as MUDWeb, ShadelJava , or MJ ada [516]. As an example ofInternet agent
coordinat ion in PageSpace, we show ext racts of a ShadelJ ava program that
coordinates th e pro cess of bidding in an e-commerce scenario involving three
groups of agent s: an auct ioneer agent th at sells items to par ticipant agents
while some observer agents passively watch the pro cess. Shade/dada is a com
bination of Java with the Linda-based coordination language Shade. A Shade
program is a collect ion of classes and each object in a Shade applicat ion is
a class inst ance. Obj ects communicate by means of Linda-like communica
tion primitives. Thus, ShadelJ ava is a syntacti c exte nsion of J ava with th e
coordinat ion features of Shade [516] . Regarding the example in question , th e
code is par t of the auct ioneer agent functionality:

class auctioneer extends ShadeObject {
in ("begin");
out ("bid","bidl"), ("next_item","nextl"),

(" cartoon", "carl"), ("display", "disl"),
(IBasePrice" ,5000), (" next_init ", linit_2"),
(litem#",1);

#
in (IBasePrice", ?i :base_bid);
out (("display",?s :display), ("item#",?i :num);
send [bid, (lbegin_auctionl,lauctioneer",base_bid,O),

("item#",num)],
send [display, ("begin_auction" ,"auctioneer",base_bid, 0)];
out (" auction_active"), ("first_timer"),

("current_bid",base_bid), (ITimeStamp",O) ;
#

44 G. A. Papadopoulos

The above piece of code shows two of a number of methods that th e auc
tioneer agent comprises (the code for each method is separ ated by '# ') . The
auct ioneer st arts th e auction when it receives the tuple begin in which case
th e first method above is act ivated. This method broadcast s a number of
init ialisation tuples that act ivate the agents to be engaged in the scenario.
Fur thermore, when the first item goes on sale, it is displayed by the agent
dis! of class display. The second method commences the coordina tion of
the bidding pro cess. An auct ion starts from a base price which is sent to all
participating agents (th e tag item# on some item denotes that that item is
to be sold). Fur th er methods receive bids , valid ate th em and modify appro
priately offered prices for sellable items.

MARS-X. MARS-X [118] is a programmable coordination architec t ure for
Internet agents based on a combina tion of XML and a Linda-like communica
t ion mechani sm. The XML component enhances interoperability by separat
ing the treatment of dat a from its representat ion. The Linda-like communi
cation mechanism offers the required coordination mechani sms for modelling
cooperat ion between agents . MARS-X is a four layer architec t ure: at the low
est layer lays the actual information being manipulated and in the next level
the XML dataspace; t he t hird layer comprises th e Linda-like interface (based
on Sun 's J avaSpaces) and at the upp er (application) level lie the execut ing
agents. There exists a local per node in th e network XML datasp ace, and
when a mobile agent arr ives at a node it is provided with a reference to this
dataspace. Groups of nodes can create shared federated dataspaces. Access
to a datasp ace is realized by means of the operations read, take and write
which correspond directly to Linda 's rd, in and out . There are also the ag
gregate var iants readAll and takeAll which retrieve all matching tuples.
The following piece of codes illustrates the modelling of agents in MARS-X:

<?XML version="1" ?>
<course>

<lesson>
<lessonname>Introduction</lessonname>
<lessonnumber>1</lessonnumber>
<abstract></abstract>

</course>

class_lesson extends AbstractEntry {
static private URL DTDfile = new URL(http ://);
public String lessonname;
publ ic Integer lessonnumber;
public String abstract;
... }

lesson tmplesson = newlesson()j II template lesson
tmplesson.abstract="networks" II partially def field
for (i=O j i<number_of_federation_sites ; i++)

2. Models and Technologies for the Coordination of Internet Agents 45

{go(site[i]; II current site in the federation
if (lesson=S.read(tmplesson,) II if a lesson vith

go(home); II the right keyvord is found go home
}

In the above example, the first part of the code describes in XML the struc
ture of a lesson, as par t of some course . The second part defines as extended
Java classes the MARS-X tuple corresponding to a lesson. Finally, the last
par t makes use of the Linda like primi tives to define the behaviour of an agent
which roams a federat ed site (i.e. a collect ion of local XML dataspaces) in
order to find and retrieve the lesson with t he keyword "net wor ks".

2.3.2 Other Coordination Models for Internet Agents

We present below some ot her coordinat ion models, par t icularly suited to
Internet agents, which however are not based (at least directly) on the
Linda model. Here we find a variety of flavours: those that use a point-to
point communicat ion mechanism and can be characte rized as being control
oriented [482], or others which are based on extension of exist ing program
ming paradigms such as logic programming or visual programming.

STL++. The Simple Thread Langu age ++ (STL, [540]) , an evolution from
earlier coordination languages, is a cont rol-driven coordination formalism for
Int ernet agents which is based on the Encapsulation Coordin ation Model
(ECM) . Unlike the members of the previous category of coordinat ion models
in this section which are variants of Linda (and therefore they are relying on
a notionally shared dat aspace), ECM and its associated language ECL++
are relying on point -to-point communication. In par t icular , there exist five
building blocks:

- Processes, as a represent ation of act ive ent it ies.
- Blops, as an abst ract ion and modul aris ation mechanism for a group of

processes and ports.
- Ports, as the interface between pro cesses/blops and the outs ide world.
- Events, as a mechanism for synchronising the execut ion of processes and

blops.
- Conn ections, as a means of connect ing ports.

A coordination ensemble in STL++ is a collect ion of agents, themselves
grouped in blops, with well defined port-based input-output interfaces which
communicate via their respective ports by means of por t-to-port connections,
and synchronize their act ivit ies by means of events . The language is obj ect
orient ed and has been realized as an extension of C++. As an example, the
following is an extract from an STL++ program coordinat ing the activit ies
in a restaurant:

46 G. A. Papadopoulos

void Waiter : : start() {
Agent : : start() ;
int income;
table_port = new BB_Port<int>(this,nV(IMealBB"),INF) ;
int i, j;
for (i=O; i !=nbr Of Cl i ent s; i++) {

j=(i+l)'l. nbrOfClients;
createAgent(Client,&i,&j); II Create the clients

}

II Restaurant closes - take the money
income=table_port->get("money");
while (income) {

total_income+=income;
income=table_port->get("money");

}

stopMeO ;
}

The above code refers to a Waiter agent which man ages t he diner area in a
restaurant . It is responsible for organ ising a place for each newly arriving cus
tomer. It initializes the scenario by creating an initial numb er of customers.
Finally, it collects the money for providing dinner and closes the restaurant .
Waiter creates a port nabLe.por-t with t he name MealBB which will be used
to collect money. Then it creates a number of clients, and finally it receives
th e money through t abl.e.por-t and sums up the income. The setting up of
a connection between an appro priate port of the agents of ty pe Client and
t ab.l.e.port so th at the money can be received, is not shown above and is
part of the code for Client.

Mobile Streams. Mobile Streams [505] is a middl eware platform for the
development of dist ribu ted multi- agent systems. Wh at is of part icular im
port ance to the issue of coordination, is that Mobile Streams is especially
suitable for applicat ions tha t require dynamic (re-) configurat ion. Fur ther
more, the system is event-dr iven in th e sense tha t it s components (namely
mobile agents) synchronize t heir cooperation by means of sending and re
ceiving events. The combination of these two features (event-driven dynamic
reconfigur abili ty) is typical of a par ticular class of cont rol-driven coordination
formalisms [482] and Mobile Streams can be seen as being a mobile version
of them.

A Mobile Stream (MStream) is a globally unique name for a communi
cation end-point in a distributed system tha t can be moved from machine
to machine, during t he course of a computation and preserving the order of
messages. A MStream is part of a hierarchical tree st ructured logical orga n
isation whose root is a Session, namely a distributed applicat ion. A Sessi on
comprises a set of Sit es, at each one of which a number of agents execute and
communicate via one or more MSt reams. Each agent compr ises a number of
Event Handlers which handle events . This apparatus separa tes the logical de
sign of a distributed application from the physical placement of components .

2. Models and Technologies for t he Coordination of Int ernet Agents 47

A distributed application is constructed by first specifying the communica
t ion end-points as MStreams and attaching agents to them. The lat ter create
event handlers, one (and only one) for a different event associated with an
agent. When an event occurs, the appropr iate handler in each agent is con
cur rent ly and independent ly invoked with appropr iate arguments . When a
MStream moves from one site to another, it (logically) moves the code of all
the agents attached to it to the new site along with their state. The code
can have init ialisat ion and finalisation parts that execute once the agent first
arrives at a site or when it is about to be killed . As an example, consider the
following piece of code:

stream_create foo
stream_create bar
stream_move foo 1
stream_move bar 2

external input
s t r eam_open bar
stream_append foo "Hello World"

register_agent foo () {
stream_open bar
on_stream_append {

stream_append bar $argv
}

}

register_agent bar () {
on_stream_append {

puts $argv
stream_relocate 1

}

on_stream_relocat ion {
set my_Ioc [stream_location]
puts "I am at $my_Ioc"

}
}

The above script init ially defines two st reams, foo and bar, and locates them
at different sites (1 and 2). We further assume that a st ring is sent to foo
from an external source. The MStream foo receives the string message and
sends it to the MStream bar, which output s t he message via its handler.
Finally, bar moves to the site of foo and prints an appro priate message to
anno unce its new location.

GroupLog. The agent coord ination language GroupLog [52] is based on an
extended Horn Clauses formalism. Elementary agents in Gro upLog are mod
elled as (possibly perp etu al) processes which receive messages and react to
them by invoking appropriate methods. A clause can have AND-conjunct ions
with sequential or parallel operational semant ics. Sets of clauses defining

48 G. A. Papadopoulos

the overall behaviour of agents are grouped into modules. In that respect,
GroupLog is very similar to object-oriented concurrent logic programming
languages such as POOL. What is particularly relevant to the notion of co
ordination however is the notion of group, which effectively structures the
communication space of agents and allows the modelling of various cooper
ation patterns between them. Agents can dynamically join and leave groups
and can be members of multiple groups at the same time. Group communi
cation can be either broadcast or point-to-point. The following code defines
such a group:

group meet_schedule {
context 0 .
interface(begin).
meet_schedule (Id) : begin :-

members(meet_schedule(Id),[H,I]),
rd(meet_schedule(Id),meet(Meetld»,
H «begin(I,Meetld) I I I « begin(H,Meetld)

I meet_schedule(Id).
meet_schedule (Id) : new I meet_schedule(Id).

}

The group meet_schedule defines a broadcast communication mechanism
between a number of agents [H, I] belonging to the same group Meetld. Us
ing the communication operation «, and the predefined primitives members
(returns the agents belonging to the same group Id and rd (returns the sub
set from a set of agents belonging to the same group) , meet-schedule sets
up communication paths between all members of this group so that they
can exchange messages in a broadcast fashion. An agent joining the group
meet_schedule will automatically become part of this communication appa
ratus. Furthermore, the communication strategy of this group may change
dynamically without the agents belonging to it realising any difference.

Little-JIL. We end this section with a brief description of Little-JIL [334],
a visual language for agent coordination. Little-JIL has been designed to ad
dress in particular the problem of knowledge discovery in databases, an issue
of particular interest to Web environments, especially with regard to aspects
of traffic analysis, fraud detection, etc . Activities of processes in Little-JIL
are represented as steps, decomposed into substeps. Substeps belonging to a
step can be invoked either proactively or reactively. Steps may have guards to
be executed upon entering or exiting a step, as well as handlers to deal with
exceptions. They can also include resource specification. One special resource
associated with each step is an agent which is responsible for initiating and
carrying out the work of the step.

Coordination of agents is achieved by means of an agent management
system (AMS). An AMS is based on the metaphor of to-do lists for activities
to be performed by agents, human or automated. Assignment of tasks to
be executed by some agent(s) are placed on the to-do lists of those agents.
Agents monitor to-do lists (they may be associated with more than one list if

2. Models and Technologies for the Coordination of Internet Agents 49

they are involved in performing several disjoint processes), in order to receive
tasks to perform. Any changes in the to-do list cause notification to be sent
to the interested agents which then execute the corresponding tasks. Task
execution causes changes to the system state and these changes are recorded
by the AMS. Thus, the AMS provides language-independent facilities that
allow coordination to take place in a way that separates the concerns about
why and when coordination should occur (handled by AMS) from how it will
be achieved (handled by the agents).

2.4 Logical Coordination

The previous two sections have dealt with a rather "technical" aspect of coor
dination, as it applies to the field ofInternet agents. In particular, we first ex
amined some enabling technologies that provide the necessary infrastructure
for building coordination frameworks. We then presented some approaches
in developing models and languages for Internet agents where coordination
is treated as a first class citizen. However, the concept of coordination exists
also at a higher, more logical, level where we are interested in organising the
cooperation behaviour between the members of a multi-agent ensemble. In
this case, middle agents are used with the sole purpose of acting as coor
dinators managing the activities of other agents. Such coordination can be
done centrally or in a distributed fashion. Depending on precisely what sort
of coordination these agents realize, they can belong to a number of different
categories, some of which are the following [243]:

- Facilitators or Mediators, which satisfy requests on behalf of other agents,
usually by offering certain services to these agents.

- Brokers, which also satisfy requests received by other agents but often by
using services provided by third parties rather than themselves.

- Matchmakers (Yellow Pages) , which offer look-up services.
- Blackboards, which are repository agents that receive and hold requests for

other agents to process.
- Local area coordinators, which are agents responsible for assisting the other

agents in some well defined area to initiate and conduct inter-agent com
munication and interaction.

- Cooperation domain servers, which provide agents in some domain with
facilities to subscribe, exchange messages and access shared information.

Logical coordination techniques have been classified by [462] into four main
categories:

- Organisational Structuring, which provides a framework for activity and
interaction through the definition of roles, communication paths and au
thority relationships; here classic master-slave or blackboard coordination
techniques are being employed.

50 G. A. Papadopoulos

- Contra cting, which involves the use of man ager agents who break a problem
into subproblems and assign each one of them to some contract agent to
deal with them. This apparatus is often referred to as contract-net protocol.

- Mult i-Ag ent Plan ning, where the agent s build a plan that defines all cur rent
and future int eractions among th em in such a way th at avoids inconsistent
or conflicting act ions. There are two ways to execute the plan: in centralized
planning, a coordinating agent is responsible for set t ing up and execut ing
the plan , whereas in dist ributed planning each agent is aware of the plans
of the other agents and acts appropriate ly.

- Negotiation , involves a particular form of coordination where a number
of agents int eract with each other in order to reach a mutually accepted
agreement on some matter. Negotiation techniques can be gam e theory
based , pla n-based , or human inspired.

In the rest of this section we will present some approaches in realising logical
coordination at th e level of mod elling t he behaviour of agent s. The mod els
in this sect ion t ry to address such questions as how agents communicate and
coordinate th emselves in achieving a common goal , how are problems stem
ming from dynamical evolut ions of agents or incomplete knowledge handled
during the coordinated behaviour, or how pat terns of interaction and int er
opera t ion that characterize coordinated behaviour are mod elled . A major
consequence of addressing these issues is th e ability to reuse descrip tions of
generally useful coordinat ion mechani sms.

COOL. The COOrdination Language [54] is part of an effort to develop a
mor e genera l Agent Building Shell that will prov ide reusable languages and
services for agent const ruct ion that will relieve developers from the burden of
developing from scratch essent ial int eroperation, communicat ion and coop
eration services. The COOL architecture comprises three layers, with a basic
KQML-like communicat ion mechan ism at the lower level, an agent and con
versat ion management at t he middle level for defining and execut ing agents
and coordination st ructures, and an upper level th at supports in context ac
quisition and debu gging of coordination knowledge. We will not elabora te on
the lowest level which is covered adequately by the material in Section 2.2.
Regarding the way the agent and conversat ion management mod els the be
haviour of agent s, we note that every agent is associated with a nam e and
an interpreter which th en selects and manages its conversat ions. The inter
pr eter applies cont inua t ion rules to det ermine which conversat ion to work on
next. The int erpret er may also invoke more specialized agents for knowledge
acquisition and/or debugging servi ces. Such a scenario is shown below:

(dei-agent 'customer
:continuation-control 'agent-control-ka
: cont i nuat i on- r ul es '(cont-l cont-2 cont-3 cont-4))

(dei-agent ' l ogi s t i cs
:continuation-control 'agent-control-ka
:continuation-rules '(cont-l cont-2 cont-3 cont-4))

2. Models and Technologies for the Coordination of Internet Agent s 51

(def-agent 'plant
:continuation-control ' agent - cont r ol - ka
:continuation-rules ' (cont-1 cont-2 cont-3 cont-4))

In the code above three agents are defined, par t of a supply chain app lication.
The execution and cont rol of th ese agents is managed by a conversat ion
manager like the one below:

(def-conversation-manager 'm1
:agent-control 'execute-agent
: agent s '(customer logistics plant . . .))

This manager decides which agent to run next , manages message passing,
etc. Agent s interact with each other by means of carry ing out conversations;
such a conversa tion for the agent customer is defined below:

(def-conversation-class ' cus t omer - conver s at i on
:name ' cus t omer - conver s at i on
: cont ent - l an guage 'list
:speech-act-language 'kqml
: i ni t i al - s t at e 'start
: f i na l - s t at es '(rejected failed satisfied)
:control ' i nt er act i ve- choi ce- cont r ol - ka
: r ul es '((start ccl) (proposed cc-13 cc-2)

(Yorking cc-5 cc-4 cc-3)
(counterp cc-9 cc-8 cc-7 cc-6)
(asked cc-l0) (accepted cc-12 cc -11)))

The above code associates with some agent the conversation ru les that govern
its interaction with other agents. What part icular act ivit ies are performed
during the execut ion of such a rule is illustrated by the following code:

(def-conversation-rule ' cr n- 1
: cur r ent - s t at e 'start
:received '(propose : s ender customer

: cont ent (cus t omer - or der : i t em ?l))
:next - s t at e ' or der - r e ce i ved
: t r ansmi t ' (t e l l : sender ?agent

:receiver customer
:content ' (Yor ki ng on it)
:conversation ?convn)

:do '(put-conv-var ?conv ' ?or der
(cadr(member :content ?message)))

: incomplete nil)

This code defines the behaviour of t he agent logistics in our scenario of suppl y
chain management . When logistics is at t he start state, it receives a proposal
for an order and informs the sender (customer) that it is working on it be
fore going to the next state order-received. The language also allows the
formulation of two other coordination dimensions, cooperative information

52 G. A. Papadopoulos

distribution and cooperative conflict management, but for reasons of brevity
we do not discuss them here.

Agent Groups. The model described in [60] introduces the notion of Agent
Groups, comprising agents working together on a common task. Agent groups
may be arbitrarily structured and highly dynamic. Communication and syn
chronisation between the agents of a group is event-driven; the model as
sumes the existence of a mechanism for sending and receiving events. The
group model used involves the following types of agents:

- A Group Initiator, which creates the agent group, an activity that involves
assigning agents to groups, defining group coordinators, administrators and
receivers of results.

- Group Members, which is the collection of agents forming a group, accord
ing to a common task pursued.

- A Group Coordinator, which models dependencies within an agent group
but also between the group and the outside world. Dependencies are imple
mented as condition-action pairs, where the condition is defined by means
of event types received and the action can be internal to the group or
external, in the latter case involving entities existing outside the group.

- A Group Administrator, which manages the group as a whole and decides
on issues such as the life span of the group or orphan detection.

- A Results Receiver, which is an agent collecting the results of the agents
forming a group.

The above logical organisation of a multi-agent system has been applied by
the authors to their system Mole [59] while allows migration of agents and
supports a distributed event service.

Dynamic Agents. Dynamic Agents [150] is a similar model to the one pre
sented above, based on the dynamic modification of the behaviour of agents.
In an ordinary (mobile) agent its behaviour is fixed at the time of agent cre
ation, and in order for this behaviour to change this agent must effectively
be replaced by another agent with the newly required behaviour. A dynamic
agent, however , is not designed to have a fixed set of predefined functions,
but instead to carry application specific actions, which can be loaded and
modified on the fly. In that respect, dynamic agents can adjust their capa
bilities to accommodate changes in the environment and requirements , and
play different roles across multiple applications.

Dynamic agents are created by an agent factory running on each local
site. Each such agent is identified by a symbolic name and an Internet ad
dress (including a socket number) which are unique within the boundaries of
some agent space, itself defined in terms of the agents residing within. The
agent space is managed by an agent coordinator which maintains the agent
name registry of this space. The coordinator is the first agent to be created
within an agent space. When it is created, it publishes its socket address
to a designated location and in that respect it makes it known to all other

2. Models and Technologies for the Coordination of Internet Agents 53

dynamic agents . A dynamic agent that is being created, first registers its
(unique) name and address with the coordinator. In that respect , any other
agent who wishes to send a message to the agent in question and does not
know its address, consults the coordinator. The coordinator keeps also an
address list for any serv ices offered in its space (e.g. program utili ties) and
any agent wishing to use some service can aga in consult the coordinator.
The address list of agents is kept up to date, so any agent termination, for
instance, results in the name and address of the agent being removed from
the list. The coordinator also broadcasts an appropriate message to all th e
agents in the agent space so that they become aware of the te rmination of
th at agent. Hierarchical groups of agent spaces with associated coordinato rs
can also be formed.

Finally, the proposed system offers other types of coordination services in
terms of more specialized dynamic agents. In par ticular , there exist resource
brokers th at provide global resource management services, request brokers
that provide look up services for service requests, and event brokers that
manage event-based synchronisation between agents.

Role Models. In [350], it is argued that a way to express coordination and
collaboration relationships between agents is by means of roles. A role model
identifies and describ es an archety pal or recurring st ructure of interacting
ent it ies in terms of roles. The latter define a position and a set of respon
sibilit ies within role models. External interfaces are used to make a role's
services and act ivit ies accessible. In addit ion to responsibiliti es and exter
nal interfaces, an agent role comprises a number of other para meters such as
collaborators (roles it interacts with) , and coordina tion and negotia tion infor
mation related to communication protocols, conflict resolut ions, permi ssible
actions, etc . The aut hor presents a UML-based form al notation (which can
be also presented in terms of Pat terns) for describin g agent roles and shows
how executable code can be generated using Aspect Oriented Programming
techniques. She furth er argues that the model can be used at the systems
analysis and design phase of developing a multi-agent system .

TRUCE. The TRUCE [325] coordination language can be seen as a concrete
realisation of some of the above mentioned notions such as roles, groups
and dynamic agents. TRUCE is a scripting language where scripts define a
protocol specificat ion for coordination. Such a script is given to all agents that
are members of some collaboration group and they interpret it in a concurrent
fashion . An agent receiving a script does not execute it in it s enti rety, but
chooses to execute only that par t which is relevant to its act ivit ies, as the
latter are defined from the role that has been assigned to it .

Every instruction in a script has two components : an action to be executed
and a set of collaborators that par ticipate in carrying out this action. Every
such collaborator has a specific role, e.g. initiate the act ion, receive the result
of the act ion, etc . Depending on the state of the system, an agent may execute
different par ts of the script and play different roles, thus exhibit ing behaviour

54 G. A. Papadopoulos

similar to th at of dyn amic agents (see above) . The following fragm ent of code
shows the modelling of some coordina t ion scenario:

protocol selling-protocol {
when { $selling=true {

sellers .if {myturn=true} {
set $"current-seller"=_me ;

}

retract {selling-protocol};
facilitator . set {$selling} false;
auction {facilitator, $"current-seller"

{buyers, sellers} };
recover {selling-protocol} ;
facilitator .proceed {$"current-seller"} ;

}
}

This code is part of a more elaborate scenario on auct ions. Roughly speaking,
the protocol is triggered by a global property $selling which is set by some
seller agent . Only sellers test t he value of th eir local parameter myturn.
They then set current-seller to ..1IIe which caus es the temporal suspen
sion of th e protocol until the selling has taken place (not shown above) in
which case the protocol is re-activated. The roles facilitator , buyers and
sellers are bound to agent names according to oth er parts of the rest of the
script .

E-Commerce Mediators. The survey pap er by [295] discusses a rather
important type of Intern et agents which act as coordina tors, th e Electronic
Comm erce mediators. The authors define a set of charac te rist ics that th ese
mediators should possess, namely need identification that assist s the con
sum er to define precisely his needs , product brokering that helps to determine
what must be bought , merchant brokering th at helps to determine where to
buy from, negotiation that determines the terms of conduct ing a business
trans action, purchas e and delivery of the bough t product , and post analy
sis of quali ty of service. A number of tools and products are then ana lysed
against these parameters, namely Personal Logic, Fir efly, Bargain Finder ,
Jango, Kasbah , Auction Bot and Tete-a-Tete. According to the aut hors' sur
vey, only th e last model addresses all the requirement s th ey have defined.

2.5 Conclusions

In this survey chapter we have presented an overview of the var ious types
of models and technologies that ena ble the use of coordination principles in
the development of Internet (multi-) agent systems. As in anot her survey
of similar nature [482] we have advocated a rather liberal approach in what
constitutes a coordination framework. In par t icular , for th e case of Intern et
agents we have identified three broad categories of associated coordinat ion

2. Models and Technologies for the Coordination of Internet Agents 55

models and languages. The first category comprises those approaches which
can be viewed as providing the basic coordination infrastructure. The mod
els in this category do not deal with coordination mechanisms per se, but
instead they provide the means necessary to build fully-fledged coordination
frameworks . We can identify two subcategories here ; the first one deals with
the most fundamental issue of coordination, namely that of communication.
Therefore this subcategory comprises the Agent Communication Languages,
where prominent members are KQML and its derivatives. The second sub
category comprises those approaches which provide useful infrastructure to
other important aspects of developing Internet (multi-) agent systems such
as security or basic mechanisms for building compositional environments.

The second main category presents some fully-fledged coordination mod
els and languages where coordination principles are treated as first class cit
izens. Historically, many of these models have evolved from more traditional
(non-agent-based) versions that have been developed as proposals to advance
the Software Engineering techniques for building Parallel and Distributed
Information Systems. Here we can also identify two subcategories. The first
deals with those approaches that have been inspired from the Linda model of
coordination and the use of a Shared Dataspace. Many researchers agree that
the concept of having a common forum of communication and cooperation
among a number of processes (or agents) is particularly appealing to the case
of Internet-based Information Systems. The second subcategory comprises
the rest of the proposals, which use some alternative approach.

The final main category is concerned with those approaches which deal
with coordination at a higher, logical or algorithmic, level. In this category we
review some models whose main aim is to program coordination techniques
into the behaviour of the agents that comprise an application. This leads
to the creation of specialized types of Internet agents that deal with one or
another aspect of inter-agent coordination (contracting, negotiation, etc .),
and languages able to express coordination patterns of agent behaviour at a
higher level.

Needless to say, the above three-level organisation of the presented ap
proaches in this chapter is hardly the only one that has been suggested. There
is a number of other survey papers that the interested reader may want to
consult. [462] present a survey on the basic infrastructure technologies for
developing agent-based systems with emphasis on the Agent Communication
Languages. [117] present a similar in scope survey where the taxonomy used
is based on the criterion as to whether a model is independent or not in time
and/or space. [278] presents another survey where the main aspect of coor
dination which is of concern in this work is that of the different cooperation
patterns employed by the various systems examined. The author focuses his
analysis on the issue of application frameworks suited to each model with
particular emphasis to e-commerce ones. A similar survey, with even more
emphasis on e-commerce issues , is reported in [351]. However, all these sur-

56 G. A. Papadopoulos

veys deal with only one asp ect of coordinat ion, as this notion is conceived in
this chapter . Effectively, [462] deals with the first level of our taxonomy, [117]
is focused on the second one, and [278] and [351] examine models belonging
to the third level.

It should be clear from the various t rends that have been presented in this
chapter, that t he notion of coordinat ion is inherent and importan t in building
Internet multi-agent systems. We believe we will see in the future more models
and languages that will advance this framework in all three dimensions as
we have used th em to classify the different approaches. At the lower level,
we will see mor e advanced techniques for dealing with issues of basi c inter
agent communicat ion (i.e, more powerful and expressive KQML or oth erwise
based ACLs), secur ity, etc . The middle level will cont inue to populate with
know-how from mainstream coordination technologies and further associated
coordination languages will be proposed. The upp er level will also evolve,
driven by the needs for coordination patterns from important Internet-based
applications such as e-comm erce or Cooperative Information Systems.

Finally, one should not e that one of the aims of this chapter is to become a
roadmap for the more focused and specialized chapters that follow and which
shed even more light in the usefulness and importance of using coordinat ion
principles in developing Intern et-based multi-agent systems.

Acknowledgements

Thi s work has been partially supported by the INCO -DC KIT (Keep-in
Touch) program 962144 "Developing Softwar e Engineering Environments for
Distributed Information Systems" financed by th e Commission of the Euro
pean Union .

Part II

Basic Enabling Technologies

Basic Enabling Technologies

Introduction

Suitable infrastructures are what is going to make agents an everyday tech
nology for Internet-based systems - like rai lways for trains in the t ransporta
tion system, or satellites for cellular phones in the communication system.
In simple terms, an infrastructure is meant to factorise t he most effective
and efficient solutions to t he most common problems, so as to minimise t he
efforts of engineers when building complex systems. So, singling out the com
mon sources of complexity for agent-based applications in t he Internet en
viron ment, finding which mechanisms and abstractions best solve the most
frequent problems, and encapsulat ing them into easily deployable Internet
based services , is the process that dete rmines what should be featured by an
infrastructure for Internet-based mult i-agent systems.

As far as agent coordination is concerned, the relevant issues obviously
come from agent interaction - both agent -to-agent and agent-to-environment
interactions. A coordination infrast ruct ure should then enable agents to live
on an Internet node and there coexist with other agents, to possibly move
from one node to another, to find resour ces and access them, to communicate
and coordinate with other agents .

At t he most basic level, an infrastructure for the coordination of Inter
net agents should provide agents with both their "life support" - possibly
including support for mobility - and the simplest int eraction capabilit ies
like accessing resources on a host , or exchanging messages with other agents.
Roughly speaking, this represents the "level zero" of coordination, since it
simply deals with enabling agent interaction and communication.

However, in its non-trivial acceptation, the term "coordinat ion" essen
t ially means governing (agent) int eraction, rather than simply enabling it
[623]. So, the "level one" of a coordination infrast ructure for Internet agent s
should provide engineers with the tools for effectively ruling agent interaction
so as to achieve global system goals. Coordination to ols, like tuple spaces or
script ing languages, should then be provided as services, possibly based on
run-t ime systems.

So, this par t of the book is mainly meant to provide the reader with the
fundamental not ions on coordina t ion infrastructures, while making t he re
lationship between t he two notion s of coordina tion services and middl eware
as clear as possible. In par ticular , such a relationship is explored by sur-

60 Basic Enabling Technologies

veying, analysing and classifying models, languages, and systems from many
different contexts , like run -t ime systems , tuple-based models, standa rds and
technologies for distributed systems, and script ing languages.

The contributions

Cha pter 3, by Antony Rowstron, first presents the notion of run-time system
for coordination, and advocates the role of tuple-based models in this con
text. Then, it surveys the systems supplying run-tim e support for tuple-based
coordination services , by providing the reader with an intri guing perspective
on the historical evolut ion of the notion and goals of tuple-base d run-tim es,
from the first Linda systems to th e most advanced implement ations of to day.
During this pro cess, the aut hor also clarifies the implications of implement
ing a coordina t ion model as a run-t ime system, thus bridging t he concept ual
issues with the implementation problems.

Chapter 4, by Davide Rossi, Giacomo Cabri , and Enrico Denti , is an out
look on tuple-based coordina tion, covering many of the models, languages,
and systems of thi s class. The aut hors provid e the reader with a novel view
point on the matter , by devising out an effective taxonomy for the plethora
of successors and extensions of the Linda model. A novel set of crite ria is
int roduced and used throughout this chapter to classify and compare all the
many instan ces of this class of coordination models.

Chapter 5, by Paolo Bellavista and Thomas Magedanz, is the "middle
ware chapter". It supplies a comprehensive report on the state-of-the art
infrastructures for distributed agent systems by discussing in depth both the
CORBA standa rd for agent interoperabil ity and the technologies for mobile
agent support. Then, the aut hors present their perspect ive on the mat ter ,
and show how models and infrastructures for mobile agent support can be
effectively integrated with interoperabili ty standa rds, like CORBA , to pro
vide mult i-agent systems with the basic enabling technologies for interaction
and coordination.

Chapter 6, by Jean-Guy Schneider , Markus Lumpe, and Oscar Nier
st ratz, brings a new perspective in the Coordination field, by st ar ting from
component-based system development , and defining the role of scripting lan
guages in this context. Besides singling out the main features of these lan
guages in terms of the mechani sms and abst ract ions they supply, th e aut hors
discuss their impact in th e contex t of agent coordination, where script ing
languages can be exploite d not only to manage the interaction between dis
tributed agents, but also to script the agents themselves.

3. Run-Time Systems for Coordination

Antony Rowstron

Microsoft Research, 1 Guildhall Street , Cambridge, CB2 3HN, UK
mailto:antr~icr050ft.com

Summary.

This chapter presents an overview of the past , current and possible future
run- time systems for coordination. The main coordinat ion language con
sidered in the chapter is Linda. This is because Linda has clearly been the
most successful coordinat ion language that has made the tr ansition from
academic curiosity to wide-spread commercial use.

The review focuses on the last fifteen years of implementations, from
the early closed compile-t ime analysis versions for parallel computing,
which are now mature, through LAN based systems that provided support
for parallel and distributed applicat ions. Finally, th e review ends with a
summary of th e work on large-scale implementations support ing coordi
nation over the Internet , in particular PageSpace and WCL. Throughout
the review many of the issues that have concerned implementors are raised
and discusssed.

The chapter concludes by drawing on the aut hors experience of devel
oping run-time systems by attempt ing to envisage where run- times might
go next , briefly describing a "tuple mega-server" .

3.1 Introduction

This chapter talks about run-time systems for coordination , and in particu
lar abo ut tuple-based run-time systems . In many ways the title seems odd,
perhap s "Middleware for the coordination of agent systems" might have been
bet ter . However many of the run-times described here were developed lon g
before the terms agent and middleware were widely in use, and it seems onl y
fit ting to use a title th at lacks "buzzwords" .

Any coordination lan guage requires a run-time system of some descrip
tion. The run-time system pr ovides the functionality offered by a coordination
language. The run-time sys te m deals with the problems of heterogeneous en
vironments, so masks the het erogeneity of the computers being used, and
man ages the communication over the networks connecting these computers.
For example, when information is pass ed betw een two computers it takes
ca re of convert ing multi-by te numbers when one computer uses big- endian
and another uses little-endian.

In t he next section , we will bri efly look at coordination lan guages and sys
te ms in general. However , most of the rest of the chapter is t hen dedicated
to tuple-based run-t ime systems . Over the last two decad es there have been
many coordination languages proposed , but few have been as long-lasting and
as successful as Linda [267]. If you look for successful coordination lan guages

62 A. Rowstron

developed in an academic environment th ere are very few, if any, which have
had as much impact . Ind eed, implement ations embodying the basic ideas of
Linda have become ubiquitous , choose any set of devices capable of com
putation connected by a network and you will probably find somewhere a
Linda implementation for them. Linda-like systems have been implemented
to support supercompute rs, networks of workstations on a local area network
(LAN) , to large-scale interaction over the Internet. If anything the popular
ity of Linda-like systems today is greate r than at anyt ime before, with the
adopt ion of t he technology in Sun 's J avaSpaces [249] and IBM 's T Spaces
[648]. Linda coordination languages are describ ed in detail in Chapter 4 and
the access primitives provided by Linda-like coordina t ion languages are not
covered in t his chapte r, only the run- time systems.

The challenge to writ ers of run-time systems is to create efficient run-times
syst ems. In general, the higher-level the coordination language the harder it
is to create efficient run-tim e systems. Tupl e-based run-time systems ar e also
inte resting becaus e th e tuple model is simple and provides tremendous op
portunities for different implement ation strategies. As will be seen in this
chapter, th is has been exploite d in many different and vari ed ways. Over
the last 15 years there have probably been more t han 100 different imple
ment ations of tuple-based run-t ime systems created - few ot her coordination
languages can claim such a rich set of ru n-tim e systems! It is impossible to
cover all of these implementations , and only a few can be seen as innova
t ive. Therefore, in order to help describe the innovations and approac hes to
creat ing ru n-time systems, the run-t imes are classified as eit her implementa
tions designed for Local Area Networks (LANs) and parallel computers, or
those implement ations designed for Wide Area Networks (WANs). In Sec
t ion 3.3 t he difference between th ese classificat ions is discussed, and th en a
review of the implement ation issues and techniques used for both types of
implementations is given.

Following the review of these two types of tuple-based run-t ime systems ,
Sect ion 3.8 presents an overview of where we feel the future of tuple-based
run- t ime systems lie: the tuple mega-server. A tuple mega-server is a run
t ime system running on a cluster (or cluster of clusters) of compute rs, where
the computers are locat ed at a single geographical site, providing ub iquitou s
access to tuple-spaces from anywhere on th e Intern et .

3.2 Coordination Systems in General

If two agents, programs , or applicat ions execut ing on different compute rs or
processors wish to interact with each other then there needs to be some way
of allowing them to communicate. The software t hat facilitates this com
mun ication is called often referred to as middleware (see Chapter 5). The
middl eware resides between the applicat ion and the network, and presents

3. Run-Time Systems for Coordination 63

an abstract way of allowing interaction, hiding details such as the physical
properties of the network.

Most middleware platforms provide an Application Program Interface
(API) to the application. The API is a library of functions that provide the
functionality (or services) offered by the middleware for use in an application.
Different middleware platforms provide different services to allow interaction
between the entities wishing to communicate. Examples of different types
of services are message passing, remote procedure call, distributed shared
memory, distributed shared objects, event based, shared space and so on. All
these represent different ways of allowing information to be exchanged, and all
require a run-time system to perform marshalling and management facilities.
It is often the case that one middleware is built using services provided by
another lower-level middleware.

The two most widely used interaction mechanisms are message pass
ing and remote procedure call (RPC). Message passing middleware provides
mechanisms to send and receive messages. This includes services to help pack
information into messages, and services to manage the queues of incoming
messages. In addition, most message passing middleware provide different
types of message transmission, such as synchronous, asynchronous, reliable,
unreliable, ordering of messages, broadcasting of messages and so on. Ex
amples of such systems are PVM [573] and MPI [245], and these can be
considered as well supported and mature systems. Such middleware is pre
dominantly used for parallel processing applications, and these systems offer
the advantage of providing standard APIs. The advantage of standard APIs
means that the same source code can be compiled on many different plat
forms. Message passing is very low-level. A good programmer can generate
very efficient distributed programs using message passing (in the same way a
good programmer can produce better machine code than a compiler), how
ever it is not particularly easy.

The second approach to facilitating interaction is the remote procedure
call (RPC) [448, 74]. The middleware attempts to make the interaction ap
pear similar to a local procedure call in the host programming language,
except the procedure is actually invoked on another computer across a net
work. The middleware provides all the marshalling services required to pass
the parameters across the network and to pass the result of the invoked pro
cedure back to the initiating computer. RPC has become very popular, and
is used in DCOM [414], CORBA [463] and Java RMI [416] for example. Most
RPC programs are of a client-server form, where a program acts as a server
providing services, and clients contact the server and request to use a service.
The general principles of RPC mean that is a synchronous mechanism, where
a thread of execution invoking a RPC blocks until a reply is received from
the invoked remote procedure. It should be noted that in some systems asyn
chronous RPC mechanisms have been incorporated. Also, one of the aims
of RPC is to make the invocation appear as though it is local, however, it

64 A. Rowstron

is difficult to obtain the same semant ics when making a RPC. For example,
many languages provide call-by-reference semant ics for local meth od invoca
tion, and then provide call-by-value for the RPC invocations. In addit ion,
care has to be taken to ensure that the program mer understands that an
RPC is not as cheap as a local procedure call.

Whilst message passing and RPC have enjoyed being the predominant
approaches to interaction up to now, there are many approaches vying to be
come the next middl eware of choice. The run- time systems supporting these
richer coordination models are usually buil t utili sing either message passing
or the RPC middl eware they provide significant ly more funct ionality. Exam
ples of these alte rnative coordination mod els include event based systems ,
distributed shared memory [238], distributed shared objects, st reaming, and
shared spaces, ego Linda-like. It is unlikely in the future that one particular
approach will become th e ubiquitous one because different approaches suit
different applicat ions; for example, a video streaming application is unlikely
to stream video th rough a tuple-space , but it may pass control inform ation
through a tuple space! The recent resur gence in interest in Linda-like sys
tems means that these may well be the next technology to become widely
accepted as the middl ewar e of preference for agent based systems and general
coordination over the Internet.

What is clear is that with each generation of middl eware t he complexity
of the middl eware increases. The more general and abstract the coordination
supported , the m ore freedom the middl eware programmer has.

3.3 Taxonomy of Tuple-based Run-time Systems

All tuple-based implementations require a run-tim e system that from this
point in this chapter will be referred to as the kerne l. In some implementations
this is a set of library routines which are linked in at compile t ime, in other
implementations it is a library and a single separate process, and in some
other implement ations it is a library and a set of distributed processes. If the
kernel is distributed then t he different processes will be referred to as kern el
processes. Different implement ations and implementors refer to these kernel
processes by different names, for example tuple-space manager, TS-manager
and TSM have all been used. In this chapte r the term kern el process will be
used regardless of what th e aut hors originally christened their pro cesses.

Kern els for tuple-based languages, as in Linda , can be subdivided into im
plementations for parallel computers, for Local Area Networks (LANs) and
for Wide Area Networks (WANs) . A fur th er distinction can be made between
hom ogenous and heterogeneous implementations. Homogenous implementa
tions are norm ally assoc iated with par allel computer implementations and
LAN implement at ions, when all the workst ations might need to be from the
same famil y, or the processors are connected by a bus with par ticular prop
ert ies. As we move towards WAN implementations, environments tha t are

3. Run-Time Systems for Coordination 65

more heterogeneous are supported, different hardware, operating systems,
networks and so on .

The major distinction between implementations is wheth er they are open
or closed. A closed implementation is considered an implementation that re
quires information about all processes that are to communicate via tuple
spaces to be availabl e when the kernel starts. The implication of using a
closed implementation is th at processes cannot leave and join at will. Most
closed implementations require either th e obj ect code or source code for all
processes to be available at link or compile time. Such closed implementations
have the advantage of being able to use compile-time analysis for performance
optimisation, and therefore, normally consist of two sections; a pre-compiler
(or compiler) and a kernel. The compilers perform some form of compile time
analysis to enable better control and management of tuples. Most early im
plementations of Linda were closed implementations and were produced by
research ers at Yale University [129, 76, 379, 659].

An open implementation is defined as an implementation where the agents
communicating through tuple-spaces need no information about the agents
with which they share tuples and vice-versa. In addition, the kernel requires
no prior knowledge about agents when it starts. This means that agents can
leave and join at will, because no information about agents is required when
the kernel starts. The communicat ing agents can be written independently,
and even in different programming languages . Open implementations consist
of a kernel and sometimes a pre-compiler or compiler. The role of the pre
compiler is normally to provide a more natural syntax for the Linda primitives
embedded in th e host language. Because not all th e agents are available to the
pre-compiler less analysis of tuples and tuple usage can be performed. Some
of the first open implementations were [215, 521, 555, 496, 24, 234, 51, 595].

The distinction between open and closed implement ations is quite dra
matic, with the nomenclature changing. In closed implementations, the things
interacting are called pro cesses, and in the open implementations, the things
interact ing are called agents. Closed implementations are used for paral
lel processing; open implementations are used for more general computing,
from Internet agents to computer-supported coopera t ive working applica
tions . In closed implementations a single global tuple space is shared by all
th e processes", in open implementations multiple tuple spaces are required.
Closed implementations have a single application running at any one time.
Open implementations support many independent applications running con
currently, and allow interaction between th ese applicat ions if required. This
distinction also defines different requirements for the run -time systems; in
closed implem ent ations, performance is of paramount important, whereas
in open implementations th e emphasis has traditionally been on supporting
heterogeneity, security, reliability and availability. However , the need for per-

1 It should be noted that some closed implementations have been extended to
support multiple tuple spaces.

66 A. Rowstron

formance may soon become a major driving force in the future development
of open implement ations.

The next major distinction is th e approach taken to managing tuples.
Broadly, all impl ementations can be considered as either centralised or dis
tributed. A centralised implementation has a single pro cess that manages all
the tuples in the systems, and in a distributed impl ementation, there are mul
tiple processes managing the tuples. Distributed implementations normally
provide concurrent access to the tuple-space or spaces.

Table 3.1 shows how the tuple distribution policies (centralised and dis
tributed) have been applied to open and closed run-time syst ems have be
used in different environments. Th e environment is classified as one of par
allel computers, LANs or WANs. To summarise, open implementations are

Centralised Distributed
Op en Closed Open Closed

Parallel Computer No Yes No Yes
LAN Yes Yes Yes Yes
WAN Yes No Yes No

Table 3.1. Taxonomy of tuple-based run-t imes.

used on LANs and WANs, and closed implementations are used on paral
lel computers and LANS. Both open and closed implementations can use
distributed or centralised tuple management, although for high performance
distributed tuple sto rage is better.

Most of the recent work on tuple-based run-time syste ms has been on the
development of open impl ementations. The perfo rmance achievable by open
impl ementations is currently below that of closed implementations which use
compile time analysis because of th e performance increases th at compile time
analysis can provide. Closed implementations have th e ability to alter the ker
nel's fundamental charac terist ics based on knowledge of how a program uses
t uples. This should lead to a reduc tion in the number of messages being sent
between the user processes and th e kernel, and as th e communication cost s
are significant , th ere should be an improvement in performance. The best
closed implementation using compile-time analysis is th e SCA C-Linda, a
commerc ial system based on th e implementations produced at Yale Univer
sity.

However , the drawb ack with closed implementations is that they are re
st rict ive. Closed implementations were designed for parallel programming,
whilst open implementat ions are designed for distributed comput ing . Wi th
parallel programming, it is easier to cont rol the whole system , a group of
programmers create the applicat ion and they are able to design the coord i
nation patterns of the application. There is little use of spatial and temporal
separation, because all th e processes are available at compile t ime. In con-

3. Run-Time Systems for Coordination 67

t rast distributed computing (or agent comput ing) uses mor e of the genera l
features of Lind a , such as t he ability to support pro cesses which are spati ally
and temporally separated [51, 353, 132]. Applications need to be able to join
and leave the kernel at will. Op en implemen tations leverage th e concept of
persistence of tuple-spaces. One agent can place information in a tuple-space
and th en anot her agent can use th at information at any time in the future.
Ind eed , it has even been proposed that tuple-based systems can provid e file
syste ms by using persistent tuple-spaces to store the contents of files [268].

3.4 LAN and Parallel Computing Implementations: The
First and Second Generation

In this sect ion of this chapter , we review the first and second generat ion of
Linda implement ations. These implementations are cha rac te rised as by-and
large impl ementing variant s of Linda , and represent th e work between about
1987 and 1995 .

3.4.1 Closed Implementation Techniques

The development of closed implement ations played a vit al role in the accep
tance of Linda. The ability to take a program using three simple tuple-space
access primitives and, through compile time analysis, to transform this pro
gra m into one th at achieves the same performance as a message passin g pro
gram is phenomenal. It made this simple paradigm acceptable and usabl e.
Indeed, still to this day highly optimised closed implementat ions of Linda are
available for th e parallel processing community.

Carriero [129] impl ement ed th e first Linda system for both shared memory
par allel computers (Encore Multimax and Sequent Balance) and a distributed
memory parallel computer (Sj Net). The Encore Multimax and Sequent Bal
ance were closed implementation s and relied on the use of compile-t ime anal
ysis. The compile-t ime analyse involved the examinat ion of the tuples and
te mplates to enable efficient data st ruct ures to be constructed for storing
the tuples. The analysis specifically examined field types and valu es present
within th e templ ates and tuples. Once th is information is known th e fields
that need to be mat ched at run-t ime can be calculated, and red undant fields
can be removed. The sha red memory implementat ion placed t he data struc
ture in which t he tuples are stored in the sha red memory. The SjNet dis
tributed mem ory implementation did not use any compile t ime analysis and
simply replicated a simpl e dat a st ruc ture for storing tuples within each pro
cessor module of the computer , and used broadcasts to all nod es to ensure
that the data st ruct ures were kept synchronised.

The same compile t ime analysis techniques used in the Encore Multimax
and Sequent Balance implementations are used by Bjornson et al. [76, 75] and

68 A. Rowstron

Zenith [659J. However, both these implement ations examined how the kernel
could be implemented for distributed memory parallel machines where th e
replication of all tuples on all the nodes is unacceptable. In these implemen
tations, the kernel is distributed over several pro cessors within the parallel
machine and the tuples stored on one of the many kernel pro cesses. The tu
ples are distributed across t he kernel pro cesses using a hashing function. For
a given tuple, the hashing functi on identifies a unique kernel pro cess for that
tuple. For a given template, the hashing function ident ifies the kernel pro cess
on which a matching tuple would reside. The kernel architect ure used within
these implement ations provides th e basic architecture tha t has been widely
used in most kernels since t hen.

The next major advancement of compile tim e analysis was aga in intro
duced by Carrie ro [133, 132, 134J. Instead of just analysing the t uples and
templat es to generate efficient data st ructures , and detect which fields need
to be matched at run-time, the compiler actua lly performed "partial evalua
tion" of the Linda primitives. Th e basic approach is to recognise how t uples
are being used and then implement a suitable approach to deal with the
coordinat ion patterns. For example, if there are a number of processes per
forming in("semaphore ") followed by out ("semaphore ") the compile-t ime
analysis recognises thi s as a coordination pattern (a semaphore). Once recog
nised the kernel at run- tim e can create a counter to act as that part icular
tuple. Whenever an in("semaphore") is performed the kernel simply decre
ments the global counter if it is grea te r than zero otherwise the primitive
blocks. Whenever an out ("semaphore") is performed the kernel increments
the counter. The compile tim e analysis recognises a par t icular coordinat ion
pattern (in this case a tuple being used as a semaphore) and instructs the
kernel to use a more efficient mechanism to control that tuple. The kernel
is also able to ensure that the mechanism is placed in a kernel process close
to the user processes using t he semaphore. The compile t ime analysis is also
capable of recognising when tuples are being used as global counters, and
instead of removing the tuple, updatin g it and then replacing it, the opera
tion is implement ed as a counter stored within the kernel. The analysis also
improves the placement of tuples, for example with the ability to detect t hat
tuples can only be consumed by a particular user pro cess implies that the tu
ples can be sent directly to that user pro cess. Also, if a tuple, once produced ,
is only non-d estructively read th en it can be broadcast to all user processes
that could potentially access it .

Work outs ide Yale University on closed implementations has been limited.
This has mainly concent rated on the development of "hierarchical" kernels
[200, 176, 177, 403J. The underlying idea is that by grouping processes which
"sha re" tuples a more efficient implement ation can be made.

Matos et al. [403J have created an implement ation based on the use of
multiple tuple-spaces called Linda-Polylith. The multiple tuple-space model
adopted is a hierar chical one and th e compile tim e analysis analyses the

3. Run-Time Systems for Coordination 69

program and produces a tree, where the nodes represent a tuple-space and
the leaves represent user pro cesses. If a pro cess is to aCCeSSa tuple-space then
the process must be a descendent of the node th at is the tuple-space. The
root node is the global tuple-space; so all pro cesses can aCCeSS it .

Clayt on et al. [177, 200] described their kernel as a hierar chical kernel.
They use compile time analysis to group tuples in a similar manner as Car
riero [129] to allow distribution across a number of kernel pro cesses. They
also use compile t ime analysis to create a st atic placement mechanism for
spawned processes [200, 176]. This relies on a machin e description; compile
time information about when processes are spawned; and heuristic rules to
decide st ati cally (at compile time) where the processes should be placed.

3.5 Open Implementation Techniques

Within a LAN set t ing, the basic role of a kernel in an open implement ation is
to manage tuples stored within tuple-spaces. The run- time is divided into the
kernel and an API library that is linked into the agent tha t wishes to access
th e shared tuple-spaces. The kernel "receives" messages containing instruc
t ions it from the agent, pro cesses these messages, and returns, if appropriate ,
a t uple or reply message.

There is normally a clear separation between the kernel and th e API
library, however , some implementations have less of a separa t ion than others .
For example, th e York Kernel II [519] has th e concept of local and remote
tuple-spaces, where local tuple-spaces are managed within the library and
the remote tuple-spaces are managed by the kernel.

All kernels have a number of basic char acteristics th at are:

Tuple distribution , which is how the tuples are going to be distributed
across a number of kernel processes,
tuple format , which is the format of the tuples,
tuple storage, which is how the tuples are stored within a single kernel
process, and

- eval impleme ntation, which is how th e eval prim itive is implemented.

The characte rist ics are not disjointed and making decisions about using one
approach for one charac teristic can often limit the choices for another char
acteristi c.

Tupl e format and tuple storage are important because this impacts heav
ily on the performance of the kernel. In general, th ere is a t rade off between
data structure complexity for the data structure used to store the tuples
within a pro cess and the cost of comparing tuples and templates. For a given
template, the more tuples that need to be checked th e higher the tuple ac
cess cost, but the more complex the data st ructure the higher the cost of
inserting and removing tuples from within it . The format of the tuples is also
import ant, a simple and precise form at will reduce the cost of checking tuples

70 A. Rowstron

against templates. Another consideration is if the run -time system supports
mult iple host languages or a single host language. If multiple host languages
are supported then a "language independent" way of encod ing the tuples and
templates is required.

The tuple distribu tion mechanisms and the implementation of eval are
considered in more detail in the next two sect ions .

3.5.1 Tuple Distribution

How are sets of t uples distribu ted across the kernel (as opposed to within
kern el processes)? There are four approaches used within the first and second
genera t ion kern els to cont rolling the distribution of tuples across a kernel
[16, 128]. These four approaches are:

Centralised. This is where the kernel is a single process. All tuple-space
operat ions are sent to this single process, and all the tuples are sto red in it .

The advantages of such an approach is th at the kern el is simple and all
the tuples are kept together which means it is easy to take a "snapshot" of
the cur rent state of the tuple-space . This property has made the cent ralised
approach popular in many implementations supporting faul t to lera nt tuple
spaces, such as PLi nda [338, 337] and Paradi se [541].

The disad vantage of having a cent ra lised kernel is that the single kernel
process becomes a bottleneck. As more processes t ry to perform tuple-space
operations concurrently, the kernel simply can not service them fast enoug h.
If eit her a sma ll number of user processes are to be used, or the number
of tuple-space accesses that a set of user processes are to perform is low
then a cent ralised approach provides acceptable per formance. This type of
approach is used in Parlin [555], Ts Lib [556], PLinda [338, 337], Paradi se
[541] and Glenda [546].

Uniform Distribution. This is where the kernel is distributed (t here is
more than one kern el process) and the tuples are distribu ted evenly over the
kern el processes. This is often achieved by every user process having two sets
of kernel pro cess identifiers called an in-set and an out-set. Whenever a tuple
is placed into a tuple-space th e tuple is broad cast to all the kernel processes
in t he out-s et. Wh enever a tuple is required from a tuple-space, the request
is sent to all the kernel pro cesses in th e in-s et. If the tuple is retrieved using
an in primitive th en all the kernel processes in the in-set have to synchronise
to update the tuple-spaces to ensure that two user processes cannot retrieve
the same tuple. If there are t tuple-space servers the cardina lity of the out
set can vary from one to t (and the cardinality of in-se t will vary from t to
one) . All the out-sets present within the user process must include a member
from each of the in-sets in all of the user pro cesses and vice-versa. Carriero 's
Sj Net implementation [129] uses this approach with an in-set being a local
kernel process (one that resides on the same processor as the user process)
and the out-se t being all kernel processes. This is because the Sj Net provid ed

3. Run-Time Systems for Coordination 71

: in-set 1,

out-set lout-set 2 out-set 3 out-set 4

Fig. 3.1. Intermediate uniform distribution using 16 kernel processes.

a cheap broadcast function . If this kind of approach is required then it is more
common to adopt an approach known as intermediate uniform distribution.

Intermediate Uniform Distribution. This is a particular case of uniform
distribution. If there are t node s then the cardinality of both th e in-set and
th e out-set are ,;t. This is shown in Figure 3.1.

This variant of uniform distribution has been proved the most optimal
uniform distribution [16] in terms of th e number of nodes involved in an in
primitive and an out primitive. This particular approach is adopted in th e
Linda machine [16, 361, 362], where the bus th at joins the different Linda
nodes provides th e arbit ration necessary to ensure that the tuple-spaces re
main consistent when severa l in primitives are performed by different pro
cesses concurrently. A number of other implementations have used the same
approach, X-Linda [228] (for transputer meshes) and the Bag-machine imple
mentation [592] (network of workstations) . In these cases th e communicat ion
cost s of synchronising the duplicated tuples is too great [228] to make the
method efficient without specialist hardware support (as in th e Linda ma
chine). Whenever a tuple is retrieved by a user proc ess from a kernel process,
the kernel pro cesses that are members of the in-set used by the user process
have to determine which can provide a suitable tuple. If many kernel pro
cesses can provide a suitable tuple then one has to be chosen. Once the kernel
process has been chosen it then has to inform the kernel processes that are
in the same out-set th at th e tuple is being removed. Without the support of
special buses such an approach requires a large amount of communication to
cont rol all th e arbitr ation that is needed [228]. Tolksdorf [595] has created a
kernel th at can dynamically change over time allowing the number of kernel

72 A. Rowstron

processes to be both increased and decreased , where t he distribution st ra tegy
is based on intermediate uniform distribution.

This leads to the final general type of tuple distribution; distrib ut ed hash
ing.

Distributed Hashing. Distributed hashing is anot her distribution mech
anism for use in distributed kernels, and the kernel pro cess which stores a
par ticular tuple is chosen by using the properties of the tuple or templ ate
being used. In order to do this a hashing funct ion is used which when applied
to a tuple or template provides the kernel pro cess on which eit her the tuple
should reside, in the case of a tuple, or where a matching tuple would reside
in the case of a template. Hashing is discussed in detail by Bjornson [75],
and is used as the basis for most open implementations, including several
previous implementations at th e University of York [215, 521]. The aim is
to develop a hashing function t hat has two properties. Firstly, this should
provide a unique mapping between every tuple and a template t ha t matches
it to a single kernel pro cess and secondly it should provide a good distribu
t ion of the tuples over the kernel processes. This has the advantage th at the
kernel process given by the hashing algorithm will contain a matching tuple,
if there is one in the tuple-space, which removes the problems of searching
multiple kernel processes. However , pragmatically t his has only been achieved
effectively in closed implementat ions. For open implementat ions no general
purpose hashing algorit hms have been created because of the limited amount
of information potentially prov ided within a t emplate and the lack of compile
t ime analysis of all tuples and templates used within a system. Therefore, in
open systems, hashing funct ions are chosen tha t enable every tuple to be
hashed to a unique kernel process and a template hashed to a set of kernel
processes. In the best case , t he cardinality of this set will be one because
the information the hashing algorithm uses for a tuple is present in the tem
plate. The request for the tuple is then either broadcast to all t he kernel
pro cesses produced by the hashing algorithm for a part icular template, or to
a par ticular kernel process. If there is a broadcast to more than one kernel
process t hen some form of arbitrat ion has to be performed by the user pro
cess (transparent to the Linda programmer) as t here may be more t han one
tuple returned. If t he request is sent to a single kern el process and t hat kernel
process cannot find the tuple it will th en broadcast th e message or pass it
to another kernel pro cess. The original kernel pro cess then deals with the
ar bit ration. An interesting point is that the kernel created by Bjornson [75]
provides dynamic analysis of tuple accesses. Therefore, if a par ticular process
is consuming tuples of a particular kind , then the hashing funct ions in the
user processes are dynamically alte red (by messages from the kern el) to send
the tuples to the kern el process that is local to th e user process consuming
the tuples. This technique is called bucket switching.

The choice of the distribution approach used depends largely on the re
quirements of the system. Most current LAN implementations use the dis-

3. Run-Time Systems for Coordination 73

tributed hashing approach, because it is more efficient and it does not re
quire the synchronisat ion of kernel processes in out- sets whenever a tuple is
destructively ret rieved.

3 .5.2 The eval Primitive

The issue of how to create new agents has always been a difficult one for Linda
implement at ions. The original Linda contained a primitive called eval. This
primit ive creates an active tuple, which is a tuple with one (or more) of the
fields is a funct ion to be evaluated concurrent ly with the agent producing
the tuple. Whenever the evaluation of a part icular field is completed, the
value produced is placed within the act ive tuple. Once all th e fields have been
evaluated, th e act ive tuple becomes a passive tuple. The need for act ive tuples
appears unclear in the early implement ations as they cannot be matched or
manipulated by any user process.

Implementation strategies vary from not providing any sort of eval prim
it ive, t hrough mapping the eval primitive onto the basic spawning charac
terist ics of th e system being used (for example, Glenda [546], PLinda [338],
eLinda [628] and York Kernel I (PVM version) [521]) to providing a mecha
nism tha t literally places an "act ive tuple" within the tuple-space tha t can
be manipulated by other processes, for example MTS-Linda [454] (although
not fully implemented).

The creat ion of a tuple in the tuple-space when all the functions have been
evalua ted appears desirab le. It provid es a simple and effect ive mechanism to
allow other processes to detect when a set of pro cesses have terminated.
Allowing act ive tuples to be ret rieved raises man y questions. How are act ive
tuples mat ched, and in particular how is a field that is a process matched.
How does a process know if it is getting a pro cess or a value? Wh at happens
to th e matched process and what does it mean to perform a rd primitive
matching an act ive tuple? Nielsen et al. [454] discusses th ese issues, proposing
that matched pro cesses are bound to vari ables, and the addit ion of a touch
primitive which forces t he functions to be evalua ted before the tuple can be
retri eved.

There has been some resear ch into how the eval primitive can be imple
mented to provide a passive tu ple upon complet ion, without support ing the
manipulation by user processes as act ive tuples [316, 513]. Both approaches
are similar and require compile time analysis which makes them useful for
closed implem ent ations , but not for open implementations. Both approaches
use the concept of "eva l servers" which receive instructions to execute partie
ular functions. When a user agent performs an eval primitive th e description
of the function or functions to be executed are sent to th e eval servers. When
each function has been evaluated, the eval server updates a shared st ruc
ture (which is a special tuple) , inserting the result ing value. When all the
functions are evalua ted and the values inserted th e tuple becomes a passive
tuple. All the communication is achieved using tuple-spaces (including th e

74 A. Rowstron

passing of arguments to t he functions) . In both approaches care has to be
taken to ensure that "spurious" deadl ocks do not occur if there are fewer
eval servers t han spawned processes, because t he eval servers can only se
quent ially evaluate a single function . Spurious deadlocks can be produced
if there is a synchronisation between two agents that are considered to be
executing concurrent ly but are in fact not .

In the ISETL-Linda impl ementation [215, 214] a similar approac h is used.
The ISETL engines use threa ds and can therefore evaluate more than one
function concurrently which ensures that spur ious deadlocks, due to functions
not execut ing concurrent ly, cannot occur.

An alte rn ative adopted by Clayton et al. [176] in a t ransputer impl emen
tation of Lind a involves the developm ent of a static heuri stic approac h to the
placement of pro cesses. The approach is only suitable for a closed implemen
tation and is restrictive, assuming certain types of characteristi cs about the
use of Lind a programs, and is not suitable for use in open implementations.

3.6 Adding Explicit Information to Linda Programs

One of the drawb acks of open LAN implementations is t hat they, in general,
provide poo r performance when compared to closed LAN implementations.
T his has led to people adding explicit inform ation to Linda pr ograms to
improve the performance of the kernel.

The explicit information can take many forms inclu ding spec ial primi tives
and "hints" (or pragm as). The spec ial primitives are t reated in a more effi
cient manner than the equivalent using Lind a primiti ves. Eilean [128] uses
programmer hints which are used to aid in the distribution of tuples. The
hints take the form of libr ary calls indicating how certain tuples are used
within a program , typing the tuples as being one of the following classes:
producer-consum er , resul t , write-many, read-most and genera l read/write.
Once classified the kern el t reats each type of tuple differently, allowing mor e
efficient placement and ret rieval of tuples. A more specific approach has been
suggested by Wilson [635] where configurat ion files are created to allow the
kernel to be configure d and then the programs explicit ly state where in
dividual tuples should be placed. Such an approach may lead to increased
performance but degrades Linda into little mor e than a syste m providing
asynchronous buffered communication channels between processes, similar
to many message passing systems such as PVM [573].

In the description of the impl ement ation of MTS-Linda [454] it is sug
gested that t uple-spaces should be explicit ly tagged to indicate their use.
Therefore, a t uple-space could be tagged as a persistent tuple-space, a tuple
space to be replicated , a tuple-space tha t compile t ime analysis should be
perform ed on, a local t uple-space , etc. The kernel then t reats the tuple-space
appropriately.

3. Run-Time Systems for Coordination 75

A programming tool called th e Linda Program Builder [14] is an interac
tive tool which supports the design and development of Linda programs . The
user is able to design programs by choosing code templ ates that generate th e
code for different coordination pat terns and const ructs . Because the Linda
Program Builder is aware of which code te mplates were used to generate a
sequence of Linda primitives, it knows mor e information about how th e tu
ples are being used . This ext ra information has been used in conjunction with
the Yale C-Linda compiler [132] to enable the compiler to further opt imise
the programs . Therefore, although a standard Linda program is produced by
the Linda Program Builder it is able to add compiler hint s. Unfort unate ly
many of th e opt imisations used within the Linda P rogram Builder are suit
able for closed implementations rather th an for open impl ementations. All
communicat ing processes are developed using th e Linda Program Builder ,
and consistency in th e use of particular tuples can be checked and enforced.
All the compiled pro cesses know how a particular tuple or tuples are stored
or how a coordination construct is implement ed.

3.7 From LAN to WAN: The Third Generation

Since 1995 a new generation of implementations have been created with the
aim of support ing Linda in WAN environments. These implementations tend
not to be int erested in performance, but ra th er in demonstrat ing the ex
pressiveness of th e coordination language being implemented. These imple
mentations are cha racte rised as providing different access primitives Linda
(or adding many new primitives) , and subsequently provide far richer access
mechanisms to tuple-spaces, for example supporting a streaming of tuples
from t uple-spaces to clients.

One of the issues this that is not covered in this chapter is th e introduc
t ion and development of faul t-tolerance within the run-time systems. This
is something that is vit al to the developm ent of run-time systems for WAN
environments, and thi s is being covered in Chapter 12.

J ada [162] was th e first Java run-time implement ation , and integration
of tuple-space access primitives into th e J ava programming language. Whil st
interesting from this perspect ive th e und erlying run-t ime syste m int roduces
lit tle new. TuCSoN [472] is anot her int eresting coordination language th at
exte nds the basic tuple-space model to make the tuple-spaces reactive (pro
gramma ble tuple-spaces) . Tuple-spaces can be made to react to events hap
pening, such as the inser tin g of tuples, and this requires support in the
run-time system. The TuCSoN run-time exte nds LuCe [205]. It makes pro
grammable tuple-spaces (called tuple cent res) available as Internet services.
That is, th ere is a TuCSoN port where each "local coordinat ion space" (made
up of all th e tuple cent res on the host) is made available to local and remote
TuCSoN agents.

76 A. Rowstron

Probably the two most well known new generation tuple-based coordina
t ion languages are JavaSpaces [249] and T Spaces [648], but from an run-time
perspective they are not inspiring. Details of the implementation st rategy
adopted in the reference JavaSpaces implementation have not been given.
T Spaces present s the view that the tuple-spaces would be ubiquitously avail
able from all networked devices, but th e implementation is a cent ra lised Java
based system, aimed at demonstrating the functionality of T Spaces.

However , there have been two serious attemp ts at creating large-scale
implementations: PageSpace [173] and WCL [524]. Both of these could not
be considered as complete proposals but as demonstration systems proving
particular aspects of how a run-time for a WAN Linda may be developed.
Interestin gly both take very different perspectives, and th ese are now consid
ered in detail.

3.7.1 PageSpace

PageSpace [173] is th e first implementation to really explore th e large-scale
use of Linda. What is interesting is that the syst em does not expose th e
tuple-spaces to the agents running over the Intern et . The "PageSpace" is run
on a LAN, and is comp osed of a number of agents:

Bet a Agent : A representation of a user , interacts with other agents in the
PageSpace using tuple-spaces . The agent is persist ent and agents outside
the PageSpace, for example running in a Web browser , connect to this
Beta Agent (using HTTP).

Delta Agent : Provide serv ices to ot her agents , but have no interface to allow
agents outside the PageSpace to communicate with it.

Gamma and Epsilon Agents: P rovide administ rative functions within the
PageSpace.

Zeta Agent : Acts as a gateway between the PageSpace and external envi-
ronments, for example a CORBA gateway or a NNT P news.

The exte rnal agent s (for exa mple th ose running in Web browsers) connect
with th e Beta Agent , so th e state stored within th e PageSpace is never ex
plicitly removed from th e PageSpace. State manipulation within th e system
can only be performed by Beta Agent s, and therefore, the tuple-space access
primitives are not exposed to th e exte rnal agent s, they simply receive in
formation to display and provide commands back. The Beta Agents convert
t hese into tuple manipulations.

Should the exte rnal agent fail the Beta Agents are not affected, and can
complete any st ate manipulations they were performing. This ensures the
tuple-spaces stay in an application consistent st ate . The Beta Agents are
written in such a way th at they can have external agents reconn ect.

This is an interestin g approach, and the use of tuple-spaces to coordina te
within large servers is interesting. However , t he creation of a Beta Agent for
every user means that the ability of the PageSpace to scale may be limited.

3. Run-Time Systems for Coordination 77

3.7.2 WCL (and Bonita)

WCL [524] is a tuple-space based coordination language that attempts to
provide a very broad set of access primitives, including the asynchronous
versions of in and rd as first introduced in Bonita [525]. The aim from the
beginning is to create a system where the tuple-spaces are exposed to agents
geographically distributed over the Internet. In other words, the agents re
move and insert tuples into the shared tuple-spaces.

The run-time system for WCL is equally as radical. The first run-time
system produced for WCL was based on an extension of York Kernel II [519],
and adopted a similar approach to that used in PageSpace, except the tuple
spaces were directly exposed to the agents [522] . However, the centralised
architecture appeared not to be ideal for scalable run-times.

The second attempt at developing a run-time system [523] attempted
to create a run-time system that was geographically distributed. The run
time is composed of multiple servers, where each server stores entire tuple
spaces (each server can store many tuple-spaces). The run-time also contains
a control layer which monitors how the tuple-spaces are being used, and
instructions the tuple-space servers to migrate tuple-spaces as necessary. The
control layer attempts to balance the location of a tuple-space depending on
the geographical location of the agents that are using the tuple-space. So
for example, if two agents using a tuple-space are located in Germany, and
the tuple-space is currently being stored in the UK, the control layer would
decide a location to move the tuple-space to in Germany.

The control layer used a simplistic approach to analysing the information
to decide where to place tuple-spaces, and a better oracle is a subject for fu
ture research. The run-time makes a clear distinction between control and the
accessing of tuple-spaces. This means that the control layer works indepen
dently of the tuple-space servers, and therefore, if the control layer becomes
saturated the performance of the tuple-space servers is not degraded.

More recently the WCL run-time systems has been extended again pro
viding mobile coordination [520], which addresses the issue of providing a
fault tolerance mechanism at the coordination language level, which was not
within the original WCL run-time.

However, WCL remains a research vehicle, and as such leave many ques
tions unanswered.

3.7.3 Mobility

The use of mobility in coordination is being considered in Chapter 10. In this
section, we briefly look at a number of run-time systems that use mobility,
but in different ways.

PLinda 2.0. Plinda 2.0 [337] was a run-time system developed to support
coarse grained long lived parallel computation. Fault tolerance was very im-

78 A. Rowstron

portant in the development of the system and as such, it introduced transac
t ions into Linda, and a mechanism to allow agents to checkpoint their state
to tuple-spaces was provided . This mechanism allowed an agent to be re
sumed if it should fail. The same mechanism allowed the movement of agents
from one machine to another machine. However , the agents themselves could
not request to be moved . The movement of the agents was cont rolled by
the system, which moved them should machines fail , or if the (huma n) user
requested their movement.

In order to support t his a particular programming sty le had to be adopted
(the agents were writ ten in C). The run-time system was cent ra lised, but is
interesting because it is pr obabl y the first impl ementation to support the
(st rong) migration of agents .

KLAIM. KLAIM [453] is another impl ementation th at provides st rong mo
bilit y. However , KLAIM aims to support a distributed implementation. The
kernel is composed of multiple servers , where each server can be considered
as representing a (geographical) location. Each location contains a single
named tuple-space. Tupl e-spaces can be accessed by agents using th e tradi
t ional Lind a primitives and the Linda eval primitive is supported for creat ing
new agents at particular locations.

Unlike most platforms for experiment ing with mobile agents, KLAIM sup
ports strong migration of agents. St rong migr ation means that an agent can
request at a particular point in its execut ion to migrate. However , this is
achieved through using a special Pascal-like language for writ ing the agents .
T his language is translated into J ava , is such a way to give the impression
that st rong migration is being supported.

The agents can choose to access the tuple-space stored at a par ti cular
location by eit her moving to the location or by remotely access ing the tuple
space .

From a run-time perspective, the run-time can be seen as providing a
standard implementat ion , and the agent migration can be seen as a separate
operation, independent of the tuple sto rage mechanisms.

LIME. LIME [493] is interested in t he development of Linda implementations
th at support mobile users rather than mobil e agent s. In LIME, tuple-spaces
are created transiently based on cur rently visible agent s. Ea ch agent has a
number of tuples associ at ed with it , and the shared tuple-space at any point
is composed of the tuples from all th e visible agents.

Obviously a run-time syste m to support such a system is complex, how
ever, lit tle details of how th e run-time syste m works have been published.

3.7.4 From LAN to WAN: Conclusions

In the move from LAN to WAN the development of run -time systems appear s
to have become less import ant . When looking at the LAN implementations,
ma ny papers were published on the run-time systems and how performance

3. Run-Time Systems for Coordination 79

was improved within them. However, in a WAN setting the engineering of the
run-time systems used for many implementations remains a mystery. This is
probably partly attributable to the difficulty of creating large-scale imple
mentations, the increasing interest in proving formal aspects of languages
rather than demonstrating that efficient systems can be built .

Although the access primitives used in each of the implementations differ,
what is clear is that , in general , the underlying properties of the run-time
system vary little, with a few exceptions such as PageSpace and WeL, and
in general make little effort to address the issues of scalability. What can
be said is that in general, the underlying run-time stores and manipulates
tuples. A clear conclusion is that it is quite feasible to produce a single run
time system that provides general tuple-space access functionality, which then
allows the creation of domain specific tuple-based coordination languages.

So, from a run-time perspective, the next important evolution that will
enable the use of tuple-based coordination for large-scale Internet computing
is the development of generic large-scale tuple servers , coupled with domain
specific API's providing domain specific tuple-space access primitives.

3.8 The Future: The Tuple Mega-Server?

When talking about services offered over the Internet it is increasingly com
mon to talk of "mega-servers" . A mega-server is a geographically localised
cluster (or collection) of computers that between them provide a service to be
used over the Internet. Although the computers are referred to as a cluster,
it is often a cluster of clusters depending on the topology of the network con
necting them. The computers are connected by low-latency, high bandwidth
networks. Examples of currently existing mega-servers include the Microsoft
Hotmail service and the Microsoft Passport service .

There are several points to note about mega-servers. One is that they are
often currently created in an ad-hoc fashion, usually utilizing low level sock
ets for communication between the components running on the different ma
chines in the cluster. Another interesting point this is that these mega-servers
usually provide persistent stores for relatively small units of information and
ways of reading, writing and updating this information. The final interesting
point is that these systems do not always present information that a human
would use directly (in other words they do not all serve human viewable doc
uments) . For example, Microsoft operate a web server called "MS Passport"
that provides an authentication service for all the web sites operated by Mi
crosoft. Hence, once the user has been authenticated by the Passport Web
server, all other Microsoft sites can be accessed without having to enter a
user name and password.

Given these characteristics it is dear that a tuple-space mega-server could
be created that could provide these types of services to agents distributed

80 A. Rowstron

across th e Internet. The mega-server would probably accept tuple-space in
st ructions and tuples encoded using XML, and then return tuples encoded
inXML.

The internal architecture of the mega-server would be organised into mul
t iple t iers, with at least a front end managing the incoming and outgoing
tuples, and then a second tier manage t he storage of the tuples. The mega
server will have to achieve a high throughput of I/O operations per second. In
order to achieve an acceptable level of throughput , it is likely that the mega
server will have to be highly opt imised. Static optimi sations and dynamic
opt imisat ion will be required. An example of a static opt imisation is th e one
presented in Rowstron [520]. This opt imisat ion allows tuples to remain par
t ially visible once they have been destructively removed from a tuple-space.
Thi s has th e advantage of reducing th e number of tuple-space accesses that
need to block, which in turn reduces the load within th e run- time system
and therefore increases th e potential throughput obtainable. Dynamic opti
misations have been used in some implementations, for example Bjornson
[75] showed that dynami c optimisation of tuple storage was possible , with
his bucket swit ching techniques.

It is highly likely that in a mega-server th e dynamic analysis of access
pattern s of th e agents will be very important. This is motivated by the ob
servation tha t th ere will be many different ins tances of the same type of
agent accessing the mega-server. This means that coordination patterns will
be similar for all instances of the same type of agent. This can be demon
st rated by considering an instant messenger type applicat ion. It is possible
to consider the instant messages being stored in a tuple-space , and having
a more persistent type of instant messaging system. All the clients will use
the tuple-space is the same way, perh aps reading the last n ent ries in the
tuple-space and th en adding ent ries. If this can be observed then the storage
of the tuple-space can be opt imised for this type of access pat tern.

We are current ly working on the development of such analysers , and
one such optimisation is t he spotting of tuples tha t are being used as
locks/s emaphores on the t uple-space. Simply, a tuple is considered as a
lock/semaphore on a tuple-space if an agent is required to remove the tu
ple before inserting any other tuples into the tuple-space.

Figure 3.2 shows an example output from a current prototype lock anal
yser looking for tuples that are acting as a write lock on th e tuple-space . The
output shown is a post-execution summary from the analyser. The analyser
examines a trace of tuple-space accesses (either st atically or dynamically).
The analyser determines the template (or templates) being used to access a
lock tuple (if th ere are more than one it shows them too) - and provides.
It provides a type classification of the of lock tuple seen indicating either
as a full lock (lock) , which means that for all the tuple-space accesses seen
the tuple has remained as a lock, or as a partial lock, whether it was a lock
for only par t of the accesses seen. It provides the time (relative to when the

3. Run-Time Systems for Coordination 81

Template: ([] ,[lnt])
Type: lock
Create time : 10 ms
Last access time: 21580 ms
Average release time: 237 ms (std : 226 .3 ms)

Agent A: 40 out of 161, Average hold : 25 ms (std: 40.7 ms)
Agent B: 40 out of 161, Average hold : 11 ms (std: 18 .0 ms)
Agent C: 81 out of 161, Average hold: 56 ms (std: 74 .9 ms)

] ,[String, lnt]) and ([,] ,[String, lnt}])Template: ([Counter,
Type: lock
Create time : 10 ms
Last access time : 21400 ms
Average release time: 65 ms (std: 60.7 ms)

Agent D 52 out of 215, Average hold: 211 ms
Agent E 42 out of 215, Average hold: 153 ms
Agent F 81 out of 215, Average hold : 52 ms
Agent G 40 out of 215, Average hold: 176 ms

(std :
(std :
(std :
(std:

192.7 ms)
121. 9 ms)

87 .0 ms)
102 .8 ms)

Fig. 3.2. Tupl e usage analyser output .

system st ar ted) th e tuple act ing as the lock was created, and the time when
the tuple act ing as the lock tuple was last accessed" . It then provides the
average release t ime and its standa rd deviation, and then a break down for
each agent tha t uses the lock tuple. For each agent it indicates how many
operations have been performed using that lock tuple (out of the total num
ber of operations performed on the tuple) , and the average time (with its
standa rd deviation) that the agent has held the lock.

Figur e 3.2 shows th e results for two different locks being used in a syst em.
The second lock is being accessed with two different templates, and it can be
quite clearly seen th at the locks are being used in different ways. The times
that the locks are held and release vary between the two locks. Although t he
work is in its initial stages we intend to use th e information generated by
the analyser to opt imise the storage (and location) of the tuples (obviously
lock tuples have a tendency to act as bot tlenecks) , and information about
how long locks are likely to held for may be used to order th e tuple-space
accesses from the agents. Using this information will make th e mega-server
adapt ive, which should provide far better perform ance that if this analysis
was not being used. Future work will look at extending this work , recognising
different coordinat ion pattern s and how to combine dynamic analysis with
stored histories for other agents of the same type.

2 It should be not ed that the field values of the lock tuple may vary over time.

82 A. Rowstron

3.9 Conclusions

In general, the first ten years of Linda were dominated by th e drive to create
highly efficient Linda implementations. The next five years we have seen
the assessment of tuple-based coordina t ion languages for use in large-scale
environment s. Wh at can be said is that run-times systems developed in th e
last five years have largely ignored performance and th e need to create large
scale implement ations, in favour of allowing the evaluation of more expressi ve
coordinat ion languages to address the needs of complex multi-component
systems.

The original challenge to Linda implementers was to demon st rate th at
Linda was viabl e as an alte rnative to th e t ra dit ional pure message-passing
paradigms th at existed. The challenge now is to create effic ient large-scale
implement ations, that provide general purpose access to tuple-spaces, and to
demonstrate th ese are efficient and effective for the coordination of large-scale
multi-component systems distributed over the Intern et . These implementa
tions will build on the work on implementations outlined in this chapte r and
will also need to use other run-time system developments not outlin ed in this
chapte r (such as tuple-space garbage collect ion [408] and fault-tolerance). It
is only when we address this cha llenge will we have t ruly demonstrated th e
t rue flexibility of the tuple-space model.

This is possible and this chapter started by describing the impact that
Linda has had since it was first describ ed 15 years ago, and it is certain
th at Linda is not simply a passing fad . This chapte r is concluded with the
statement th at the aut hor hopes in another 15 years t ime to be writing about
the impact over the last 30 years of tuple-based coordination languages, and
t he impact that Gelernter has had on comput ing .

4. Tuple-based Technologies for Coordination

Davide Rossi1
, Giacomo Cabri ", and Enrico Denti"

1 Dip ar timento di Scienze dell'Informazione, Universit a di Bologna
Mura Anteo Zamboni 7, 1-40127 Bologna , It aly.
mailto:rossi@cs .unibo .it

2 Dipartimento di Scienze dell'lngegner ia , Universita di Modena e Reggio Emilia
Via Campi 213b,I-41100 Modena , Italy
mailto:giacomo.cabri@unimo.it

3 L1A, Dipartimento di Elettronica , Informatica e Sist emistica
Universita di Bologna , Viale Risorgimento 2, 1-40136 Bologna , It aly
mailto:edenti@deis.unibo.it

Summary.

By tupl e-based technologies we refer to any coordination syste m that
uses associat ive access to sha red dataspaces for communica t ion / synchro
nizat ion purposes.

The idea of using a share d dat aspace to coordinate concurr ent activ
it ies first appeared in the Linda coordination language, which defined a
coordinatio n model based on the so-called tupl e space, as well as a set
of pr imitives, that extend a host computational language, to access it.
The basic Linda model has been exte nded in various ways by different
languages / architect ure s in order to deal with the different requirements
of different application areas, from high speed parallel computations (the
context in which Linda was designed) to Internet-b ased multi-agent archi
tectures.

This chapte r sur veys various tuple-base d coordination systems and
models, introducing a taxonomy (based on th e enhancements with resp ect
to the original Lind a mo del) as well as a set of criteria to classify th e con
sidered project s. Our aim is not just to supply an updated reference to
exist ing tuple-based coordination syst ems, bu t also to provide the reader
with some helpful guidelines to compare coordina tion models and syste ms .

Given the book focus, we will res trict our sur vey to the technologies
that are explicit ly targeted to open distributed systems, trying, at t he
sam e t ime, to offer a perspective that is as wide as possible.

4.1 The Origins

The use of a shared dataspace for agents communicat ion was first investigated
in the Artificial Intelligence field with blackboards [225], which are information
spaces where messages can be put and retrieved from.

However, the first coordination model (and language) actually adoptin-g a
dat aspace with associative access for coordinat ion purposes was Linda [269] .
Linda introduces an abstraction for concur rent agent programming, and con
sists of a small set of coordination operations (the coordinati on primitives)
combined with the tuple space, a shared dataspace containing tuples, that is,
ordered collections of elements. The coordinat ion primitives are orthogonal

84 D. Rossi, G. Cabri, E. Denti

to any par t icular pr ogramming language: in fact , t hey are part of the coor
dination lan guage, which can be added to any other computation language.

Resear ch showed that, using Linda , a lar ge class of par allel and dist ributed
problems can be efficiently expressed , thus alleviating many of the pitfalls of
building networked systems [135]. This demonstrated that tup le-based sys
tems are not only simple and elegant, bu t also express ive.

Linda primiti ves provide means for age nts to manipulate the shared t uple
space, thereby introducing coordination operat ions. A tup le can be emitted
to the t uple space by an agent performing the out primiti ve. As an example,
out ("amount" , 10, a) emits a t uple with three fields: the st ring amount ,
the integer 10 and the contents of the program variabl e a .

T wo primitives are provid ed to asso ciat ively retrieve data from the tuple
space: in and rd. A matching rule governs tuple selection from the tuple space
in an associative way: input operations t ake a template as their argument,
and the returned tuple is one matching the template. In order to match , the
te mplate and the tuple must be of the same length, the field ty pes must be
the same, and the valu es of constant fields hav e to be identical. For inst ance,
the operatio n in("amount", 10, ?b) looks for a tuple containing the string
amount as it s first field , followed by the integer 10, followed by a value of
the same type as the program variable b: the notation ?b indicates that the
retrieved value is to be bound to the variable b after retrieval. The difference
between in and rd is that the former removes the matching tuple, while rd
leaves it in the tuple space. Both operations are blocking, that is, they return
only when a matching tup le is found. If mul tiple tup les match a given tem
plate, Linda does not specify how the tuple selection mechanism is expected
to work. As a consequence, if a tup le is to wake up a suspended operation,
no guarantee is given on which suspended operation is actually selected.

Oth er Linda operations include inp, rdp - the predicative , non-blocking
vers ions of in and rd, which return true if a matching tuple has been found
and false otherwise - and eval. eval creates an active tuple, i.e., a t uple
where one or more fields do not have a defini te value, bu t must be computed
by fun ction calls. When such a tuple is emitted, a new process is created for
each funct ion call to be computed. Eventually, when all these processes have
performed their computation, the active t uple is replaced by a regular (pas
sive) tuple, whose fun ction calls are replaced by the corresponding computed
valu es. This feature provid es for the dynamic creation of processes in a Linda
system. It has been demonstrated [135] that Linda is capable to express all
the maj or styles of coordination in parallel program s.

Altoget.her, Linda operations define a coordination language [269]: the
combination of a coordination language and a sequent ial programming lan
guage generates a new lan guage, suitable for concurrent systems . This com
bination, which is called em bedding, can be implemented in various ways
by changing the sequential programming lan guage syntax and runtime, by

4. Tuple-based Technologies for Coordinat ion 85

preprocessing source code, by supplying proper libraries, or as an extension
to the operating system services (see Chapter 3).

Though defined in the framework of concurrent (and typically closed) sys
tems, Linda-like coordination is attractive for programming open distributed
applications, too, because of its features, which are summarized below:

- Uncoupling. The use of a tuple space as the coordination medium un
couples the coordinating components both in space and time: an agent can
perform an out independently of the existence of the retrieving agent , and
can terminat e its execut ion before such a tuple is act ually retrieved. More
over, since agents do not have to be in the same place to interact , th e tuple
space helps to abstract from locality issues .

- Associative addressing. The template used to retri eve a tuple speci
fies what kind of tuple is requested, rather th an which tuple. This way of
accessing information is more abst ract than retrieving a specific message .

- Asynchrony and concurrency. These notions are intrinsic to the tuple
space abstraction.

- Separation of concerns. Coordination languages focus on th e issue of
coordination only: they are not influenced by charac terist ics of th e host
programming language, which leads to a clear er coordination model.

4.2 Towards Open Distributed Systems: A Taxonomy
for Linda-derived Systems

Linda originated in the par allel programming research field using run- times
environments based on closed systems (see Chapter 3). Modern software ap
plications, however , are open with respect to different points of view - in
par ticular , top ology, platform and evolut ion [209] . In fact , they could run
on a single host or over a network of workstations, on heterogeneous as well
as on homogeneous systems, and are subject to exte nsions and increment al
refinement due to evolving requirement s.

In this context, Linda 's ability to dynamically glue software ent it ies to
get her is an attractive feature: act ually, it was soon recognised that th e orig
inal mod el could be very useful in open distributed systems, too. Despite
it s success, however , the original Linda model suffers from some limitations:
th ere is only one (unnamed) tuple space, there is no support for transac
tions, there is no way to solve the so-called "mult iple read problem" (see
Sect. 4.3.1), nor is th ere a way to identify and to authent icate agents.

For these reasons, many projects have extended t he original Linda model
under different aspects. Several systems, for instance, are able to deal with
multipl e tuple spaces , both user-created or handled t ranspa rent ly to the user.
The multiple read problem suggested the definition of "bulk primit ives" , and
par tial failures have been faced by means of some kind of t ra nsactional model.

86 D. Rossi, G. Cabri, E. Denti

In the remainder of this chapter , we introduce a broad taxonomy of Linda
derived mod els, which assumes the extensions to th e origin al Linda mod el as
the main classification crite ria . Three major categories can be devised:

- Extensions of the set of the coordination primitives. The set of t he
Linda primitives is extended, introducing new primit ives to address spe
cific problems or to enrich the expressiveness of the coordina tion language.
Examples are: WCL , KLAIM , Jada, T Spaces, .JavaSpaces (see Sect. 4.3).

- Programmability of the semantics of the language. The semant ics
of the primit ives can be cust omized or their use can be subject to cont rol
rules. Examples are: Law-Governed Linda, MARS, LuCe, TuCSoN (see
Sect . 4.4).

- Modification of the model. The primitives are changed or the associa
t ive access to the shared dataspace is changed (or both) . Examples are:
Bauhau s Linda, Laura , LIME (see Sect . 4.5) .

In the following of this cha pte r we t ry to survey the wide set of tuple-based
systems with respect to some relevant crite ria (features) , in order to help to
compare th e systems against each other based on the features they support.

The identification of an extensive set of crite ria, wide enough to include
most aspects, but small enough to include only th e relevant ones is not a
t rivial task . On the basis of our experience in designing, developing and using
tuple- based coordination systems, we selected the following set :

- Extensibility
- Data Space Structure
- Platform-related Issues
- Technological Extensions
- Oth er featu res (mobili ty, security, development tool s)

For each system, we try to overview its main features with respect to the ap
plicable criteria . Of course, not all the crite ria are meaningful in all contexts :
in t hese cases, we restrict our analysis to the meaningful ones. The details of
the crite ria are shown in the following sect ions.

4.2 .1 Extensibility

The flexibili ty of a tuple- based system strongly depends on it s exte nsibility.
A syst em can be exte nsible in severa l different ways: extensible (or customiz
able) can be th e set of coordination primitives, th e operat ions performed by
the pr imitives or the matching mechanism. Rather obviously, a very exten
sible and flexible system often implies some inefficiencies, since it is harder
to find optimization path s when everyt hing is subject to changes . Linda ef
ficiency, in fact , is mostly due to it s non-extensibl e, closed-system-t argeted
nature. In most systems, extensibility is achieved in one of th e following
forms:

4. Tuple-based Technologies for Coordinat ion 87

- Extensible set of primitives. New coord ination primi tives can be added
to the system.

- Extensible primitive semantics. The behaviour of the primi tives can
be changed.

- Configurable matching. The matching mechanism and its policies can
be customized. Examples of configurable mat ching are:
- matchings tha t are programmable on a per-it em basis;
- matchings based on the host language facilit ies (for example, Prolog's

unification).

4.2.2 Data Space Structure

The original Linda mod el is based on a shared space of tuples, which are as
ty ped sequences of fields. Thi s basic approach has been widely exte nded in
several ways: by replacing t uples with more complex data structures (some
times to accommodate the peculiarities of the host language) , by enabling th e
use of mult iple spaces (along with mechanisms to reference and create new
spaces), by nesting spaces; often the distribu ted nature of the tuple space has
been changed to a more usual client/server architecture . Some of the most
relevant features concerni ng the data space st ruct ure are:

- Single or multiple spaces. Does th e model support multiple tuple
spaces?

- Space naming and creation issues. How is (ar e) the space (s) created
and referred to?

- Distributed or centralised. Is th e space centralised on a single execution
environment, or is it distribut ed over a network?

- Flat or hierarchical structure. Are multiple spaces just a flat collect ion
of items, or are there hierarchical relationship among them?

- Content (tuples, objects, other complex data types). What kind of
data are exchanged via th e dat a space?

4.2.3 Platform-related Issues

Adapting a coordination language to a given platform often leads to a cer
tain degree of "contaminat ion" . Whil e the coordination model can , in fact ,
be very gener ic, its actual implementation has often to deal with the platform
it is targeted to . Somet imes this is due to limit ations of the platform, some
times it is because an in-depth knowledge of the platform can allow some
opt imizations. Here are some platform-related issues:

- Host language. Is the coordinat ion language available only with a given
host language (C, Java, Prolog, .. .)?

- Portability. Is the system por tabl e among different architectures?
- Architecture. Does th e architecture of th e platform influence the coordi-

nation language?

88 D. Rossi, G. Cabri, E. Denti

- Run-time system. What kind of run- time support does the coordination
system need?

4.2.4 Technological Additions

Basically, technological addit ions consist of th e integration of exist ing tech
nologies into coordina t ion systems. Different technological additions are in
cluded in several systems presented in this cha pter: some are inherited from
database systems, others are inspired by new trends in distributed systems
(like mobility). Features referred to technological addit ions include:

- Transaction support. Does the system supply some kind of transaction
support? If so, at what level, with which granul ari ty?

- Mobility support. How is mobility addressed at th e coordination lan
guage level? Can mobile agents/processes use the coordination system
transparently? Is th ere a notion of locality expressed by th e coordinat ion
model?

- Security support. Is th e system "secure" in some sense? If so, what
kind (s) of security does it provide for? Ind eed, secur ity concerns several as
pects: agent identification/au thentication, message encryption, access poli
cies, protection models, overall system safety, etc . So, can agents / processes
be aut hent icated (with respect to each other or with respect to the run
t ime system)? Are the communication streams encrypted somehow? Are
there access rights, and if so, at what level? Is t here an overa ll security
model, enabling th e use of th e system for critical applications?

- Availability of development and analysis tools. Is the system pro
vided with some kind of development tool s? If so, how are these tools
related to the model's metaphors? Wh at kind of support are these tools
aimed to supply?

4.3 Systems Extending Primitives

This section describes the systems that extend the set of Linda primitives
by adding new primitives or by changing the exist ing ones. Usually, such an
extension is related to th e specific context where th e given system is used .

4.3.1 WCL

WCL [524] is a coordination language designed to support agent coordina
t ion over the Internet . WCL is based on multiple Linda-like tuple spaces
and supplies synchronous, asynchronous, bulk and st reaming access to each
tuple space . Associative access to tuple spaces uses the same matching mech
anism as Linda. The number of primitives, 19, though not extensible by t he
programmer , is larger than in many coordination languages, mostly because
WCL:

4. Tuple-based Technologies for Coordination 89

- extends the Linda model with new coordination constructs useful in open
systems;

- enables the programmer to explicit ly choose between synchronous and
asynchronous tuple space access, a lower-level approach with respect to
Linda which is useful when fine tuning applications for high-latency net
works , like th e Internet.

Some primitive of WCL are inherited from Bonita [525], not ably th e bulk
primitive collect that returns, in a single operation, a copy of every tuple
in the space that matches a given template. collect solves the multiple read
problem [526], that is the impossibility to read each tuple matching a given
template exactly once, without reading the same tuple twice .

WCL makes a clear distinction between the agents and th e run-time sys
tem. All th e primitives invoked by an agent are passed to the run-time system
that is distributed among all th e hosts that are part of th e system. The im
plementation language of th e run tim e system, too , is independent from the
agents' implementation language - in fact , bindings for agents written both
in C++ and Java are supplied.

The act ual distribution of tuples and tuple spaces depends only on the
run-time system, and is t ransparent to the agents. The semantic of th e prim
itives is guar anteed to be kept consist ent independently of th e actu al imple
ment ation of the tuple store as a cent ra lised or (partially) distributed ent ity.
The curre nt run-time system (evolved from the origin al one based on C2 AS)
uses cent ralized tuple repositories which can be moved to different hosts to
automatically optimize th e agents' access to th e tuple space. Some efficiency
results for this approach are discussed in [524].

WCL also allows an agent to move part of it s code to the host where
th e tuple space is actually located, which is useful to overcome high network
latency. Moreover , this feature can be used to lower th e overall computational
effort required in the tuple space host , when th e computational effort required
by th e moved code is small.

WCL does not provide support for transactions or log-based checkpoint
ing, though the latter is on th e works . However , the chance of moving the
coordination code from agent s to th e tuple space host makes it possibl e to
avoid transactions, moving th e chunk of code that should be enclosed in a
transaction to the remote host. In this way, it can be ensured that the code
will not fail because of a network trouble between the agent and the tuple
space. Finally, WCL support for mobile code also enables agents to move a
will to the tuple space host. In this context , a will is a chunk of code whose
task is to maintain consistency in the tuple space if the agent dies during a
coordina t ion operation.

4.3.2 KLAIM

KLAIM (Kernel Language for Agent Interaction and Mobility) [453] is a lan
guage that supports a programming paradigm where processes can be moved

90 D. Rossi, G. Cabri, E. Denti

from one computing environment to another. This language derives from
Linda, which is extended to suit distributed and location- aware environment s.
In KLAIM pro cesses are network-aware in the sense that the network is not
seen as a whole fiat environment , but is composed of location s, considered at
both logical and physical level, where processes can move and execute.

The KLAIM model consist s of a Linda core with multiple tuple spaces
and a set of operators borrowed from CCS [418] . The main concepts used to
model network environments are :

- Processes. Processes represent s th e act ive ent ities of th e system, and are
located at a given location.

- Nodes. In KLAIM, locat ions are called nodes. Each node is a t riple (8, P,p),
where 8 is a site - i.e. , a physical location -, P represents pro cesses, and p
is the alloca tion environment.

- Nets. KLAIM nets are set s of nodes. A net represents a logical network
where pro cesses can move and execute.

Since K LAIM relies on a strong concept of locality, both tuples and opera t ions
are located at specific sit es of a net . So, all Linda operations can be invoked
by specifying a given location where the operation is act ually performed. For
inst ance, the invocat ion of an operation such as out (t) et means th at tuple t
has to be written at th e location l.

Besides mobility, the key issues addressed by KLAIM are privacy and in
tegrity of data , enforced by enabling a strict cheek on th e act ions th at agents
perform on tuple spaces, based on th eir access rights.

K LAVA. KLAVA is an implementation of the KLAIM model in J ava. The J ava
language has been chosen to achieve portab ility over heterogeneous and wide
spr ead networks like the Internet .

KLAVA int roduces two new J ava packages: Linda and Klaim. The Linda
package implements Linda primitives: to this end, it defines the classes Tuples
and TupleSpace. The former supplies methods to create and handle t uples,
while the latter supplies mechanisms to create and access tuple spaces
namely th e methods to implement the in, out and read operations.

The Klaim package contains the implement ation of KLAIM'S concepts, by
means of Net , Node and K-Process classes. Net is the core class , which acts as
a server in charge of managing nodes and sites. The Node class encapsulates
a tuple space and a set of processes, and supplies KLAIM's primit ives, i.e. the
distributed versions of the Linda operations. The instances of the K-Process
class represent K LAIMproeesses: an execute 0 method works similarly to
th e runO method of the Java Thread class. In the current implement ation,
th e localities are represent ed as strings, while sites correspond to Internet
addresses.

4. Tu ple-based Techn ologies for Coordination 91

4.3.3 Jada

Jada [169] is a coordina t ion language for Java that can be used to coor
dinate parallel/distributed components. This model extends Linda's basic
concepts by implementing new primitives, replacing tuple spaces with ob
ject spaces (i.e. specialized obj ect containers) and enabling the creat ion of
multiple spaces.

Jada 's basic coordination ent ity is th e Space. Concurrent threads can
access a space by using a small yet effect ive set of Linda-inspired primitives
that are made available as methods of the Space class. Besides the usual in,
read and out operations , J ada provides users with some "bulk" primitives:
readAll , inAll , getAll and getAny. The first two return all the obj ect s that
match a given template, while getAll returns all the objects that mat ch a set
of templates, and getAny ret urns any object th at matches a set of templates.

All the input primi tives can be associated to a timeout, int erpreted as t he
t ime within which th e primitive has to be performed. Unlike other systems,
input primi tives are never blocking: th ey return an object that is an instance
of the Result class. Thi s obj ect provides users with methods to check whether
the operation has been successfully performed, whether it has been cancelled
(either by the user or because the t imeout is over), and to gather its result .
Gathering th e result is a blocking operation: if t he result is not yet available,
th e calling thread blocks until either th e operation is successfully perform ed,
or it is cancelled. Output primi tives can specify an associated tim e-to-live :
when this time is over, th e object emit ted in the object space can be reclaimed
by the garbage collector.

The matching policy used by J ada is very simple and easily extensible.
Templates (formals) are represent ed by instances of the Class class, th e Java
meta-class. A templat e representing an Integer class, for instance, matches
any Integer obj ect . Actu al to act ual matching is delegated to the standard
J ava equals method in the general case, and to the ad hoc matches method
when objects implement the JadaObject interface. This mechanism is used
in par ticular to customize the matching rule in the Tuple class , which is
an ordered object container used to mimic Linda tuples. This class defines
its matching policy by implementing the matches meth od so that two Tuple
obj ect s a and b match iff a and b have the same number of fields, and each field
in a matches the corre sponding field in b using the st andard Jada mat ching
mechanism. The same mechani sm can be applied to any user-supplied class .

J ada provides users with a client/server-based technology that enables
distributed components to access an object space uniformly. Two versions
of th e server/ client pair s are provided: one based on a simple stub/skeleton
mechani sm that uses socket connect ions, and anot her based on Java RMI.
Currentl y only th e latter is supported: the former was implemented for histor
ical reasons (th e first version of J ada appeared before RMI) . Moreover , since
an object space is a J ava obj ect , an applicat ion can crea te several obj ect
spaces and even several server objects spaces. The same paradigm can then

92 D. Rossi, G. Cabri, E. Denti

be used to achieve data driven coordination in both parallel and distributed
applications - though the access to a remote object space can obviously fail
because of network t roubles.

Securi ty in J ada is addressed at two levels: by enforcing access cont rol
policies on a per-space bas is, and by supporting data encrypt ion when ac
cessing a remote space . Whil e the second mechanism applies to remote spaces
only, the first can also be used when concurrent threads access a local , shared
object space. One of the advantages of this approach is that a space-base d
access control enables uniform secur ity policies to be used for both the concur
rent and the distributed case, which is particularl y useful for mobile agents .
Though agents running on the same place (i.e., on the same Java Virtual Ma
chine) can use a local space for coordina t ion purpose (i.e., a space running
on the same JVM as well) , accessed without remote protocols, the security
policy should be consistent between local and remote access .

Moreover , Jada intrinsically supports mobile code: by using the eval
pr imitive, evaluable objects are moved to the server space JVM and (like
in WCL, see Sect. 4.3.1) , executed as new threads.

In the last few years J ada has been used for several resear ch projects
and to implement quite different systems, from par allel computi ng to Inter
net card games, from dist ributed collaborative applications to mobile agents
systems. In particular , it has been used to provide coordination support for
applications based on PageSpace [173], a reference architecture for distributed
applications running on the World Wide Web.

4.3.4 T Spaces

T Spaces [648] is a product from IBM Resear ch Division proposed as a
coordination-based middl eware for a broad range of software architectures,
from small embedded systems to large-scale distributed systems. T Spaces ex
ploits monolithic Java-based tuple space servers, accessed from remote Java
based clients through a client library that interfaces with the server by means
of a propriet ary protocol designed on top of a T CP /IP stack. Tupl es, that
are stored in fiat spaces , are sequences of (potentially named) fields: a field
can be any serializable Java object . Tupl es themselves are inst ances of classes
tha t exte nd the abst ract SuperTuple class .

Multiple tuple spaces can be created by running multipl e instances of the
server applicat ion. Clients address a tuple space by specifying the host/port
pair of the corresponding server, and can perform th e usual Linda-like opera
tions on the remote space (though opera t ion names have been subject to aes
thetic changes). Bulk primitives, such as multiple in and read , are available,
too . A novel blocking rendez-vous operation, rhonda, is also introduced, which
takes a tuple and a template as its arguments, and succeeds when another
client performs anot her rhonda operation with a matching tuple/template
pair. Moreover, the T Space API makes it possible for the programmer to

4. Tuple-based Technologies for Coordination 93

Application

Tuplespace class

Clientcommunication layer

0.;-Q:;
U
E-<

Servercommunication layer

Tuplespace lookupmachinery

TS

SimpleDBase factory

Basic factory I
Take .Iscan Join .1Project
handler handler handler handler

Database API

Database

F ig. 4 .1. T Spaces design overview.

define new primitives, whose code can th en be downloaded to the server: the
st ructure of a T Space system is shown in FigA.1.

In T Spaces, a tuple and a template match iff the tuple type is a subclass
of the te mplate typ e, the tuple and the template have the same number of
fields, each tuple field is an inst ance of the type of the corresponding template
field , and, for each non-formal field of the template, the field value matches
the value of th e corresponding tuple field . Optionally, tuple fields can be
named , which enables matching to be perform ed on ju st a subset of the tuple
fields .

Associative access to the tuple space can also be performed by queries,
a mechanism that extends the basic notion of matching by exploit ing the
dat abase backend used by T Spaces. Queries enable mat ching operat ions to
be combined by means of and and or operators: in particular , the combinat ion
of queries with bulk primitives makes it possible to perform SQUs Select
like oper at ions.

T Spaces also provides for both intra-operation and inter-operation con
siste ncy. The first is ensured by a checkpoint / recovery mechanism based on
an operation log file, while the lat ter is achieved by means of a t ransact ion
system, like those available in relational databases.

Securi ty support includes aut hent ication (based on simple username/pass
word pair s) and access cont rol lists on a per-tuple space basis: each operation
defined on a tuple space is assoc iated to a list of access attributes that must
be satisfied by any client t rying to execute t hat operation. In addition to
the standard read, write, owner and admin permi ssions, T Spaces also allow

94 D. Rossi, G. Cabri, E. Denti

specific permissions to be associated to a single command, which may be a
need when defining new operators.

Oth er salient features of T Spaces include:

- Database indexing. The data manager indexes all th e t agged data to
improve retrieval efficiency.

- Event notification. Agents can register to be notified when new tuples
are inserted into the space or when tuples are removed from it .

- XQL queries. XML fields can be used in tuples, and are handled in a
special way: once in the tuple space, th ey are decomposed in th e corre
sponding DaM tree. A subset of the XQL query language can th en be
used to perform queries on such XML data.

- Customizable database engine. Different database engines can be used
to handle th e tuples in the tuple space. The system ships with three data
manager units: two are memory-based, while th e third is a wrapper inter
face towards IBM DB2 systems.

- Direct thread access. When th e server and the client are both running on
the same J ava Virtual Machine, it is possible to avoid the communication
through the T CP /IP stack and use the shar ed memory instead . Though
thi s is not as efficient as using direct method calls, yet it can help improving
the performance in a local executi on environment.

In the actual usage, T Spaces design reflects its designers' background in
database systems. While this may be of help for programmers coming from
the database field, it may make th e system unfamiliar to people with a tuple
based coordination background . This "dat abase-oriented" approach also led
T Spaces designers to view tuple spaces mostly as a dat a repositories, put ting
great care in data management and retrieval. Whil e tha t makes it possible
to search for large amount s of data using complex queries, it can cause low
performance when dealing with just few tenth of tuples, which is quite a
frequent sit uation when using a tuple space as a coordinat ion medium . Even
if integrating this model with obj ect-oriented syst ems leads somehow to an
extension of the basic matching policy, th e choice of support ing complex
queries and indexing techniques seems a different approach rath er tha n an
extension .

A known limitation of the T Spaces system is that th e data exchanged
between t he server and th e clients is not encrypted, with obvious (in)security
implications. Moreover , th e client/server communicat ion protocol is propri
etary and, unlike RMI , cannot be used across a firewall. This problem, how
ever, can be overcome by using an RMI-based communication layer in place
of the internal one.

Thanks to its client/server structure, which fits well in the architect ure
of many multi-agent systems, and to its flexibili ty, T Spaces can be a good
choice for many J ava-based systems, especially when performance and st rong
security are not a major requirement; however , int egrating its secur ity system

4. Tu ple-based Technologies for Coordinat ion 95

may sometimes require some effort since it is not integrated with the standard
J ava secur ity model.

4.3.5 JavaSpaces

JavaSpaces is a technology developed by SUN Microsystems in the fram e
work of distributed network services [249], aimed at providing distributed
repositories of information , similar to Linda tuple spaces . The goal is to ease
the design and the implementation of distributed applicat ions, while provid
ing users, at th e server side , wit h a uniform interface to different kinds of
inform ation services.

J avaSpaces are Java tuple spaces , whose tuples are Java objects : more
precisely, tuples are inst ances of classes implementin g the Entry interface.
Therefore, the JavaSpaces world consists of distributed tuple spaces, which
can be accessed by anyone that adheres to t he above interface. The access to
the tuple spaces is defined in terms of J ava methods, which are declared in
t he JavaSpace interface (see Table 4.1). Tuples are sto red in th eir se rialize d
fo rm: in par ticul ar , each field of the tuple obj ect is serialized sepa ra tely.
Consequent ly, the pat tern-matching mechanism relies on the serialized form
of the tuples: two tuples match if their serialized forms match. The Java
keyword null is used wit h a twofold meaning in tuples and in tuple templates:
in the former case , it actua lly stands for "no object" , while in the lat ter it
has a wildcard (any value) mean ing. Since Java classes belong to the same
hierarchy, rooted by Obj ec t , tuples that are instances of different classes can
match, too, if the common fields match. In this case , the matching rule follows
the standa rd J ava assignme nt rule: a tuple te mplate which is an instance of
class A matches a tuple which is either an instance of class A, or an inst ance
of a class B which is a subclass of A.

The JavaSpace interface (Table 4.1) defines the basic Linda operations ,
though some names have been changed (out becomes write, i n becomes
take). The main enhancements introdu ced by JavaSpaces with respect to
th e basic Linda model are:

- Rich typ ing. The adopt ion of (possibly user-defined) classes for both
tuples and tuple fields makes it possible to exploit J ava 's st rict typing
to enhance the matching mechanism, taking into account th e field types
besides the field values.

- Methods associa t ed wi th Entries. Since ent ries - and fields - are ob
jects, it is possible to define meth ods in the corres ponding classes: the
represented information is therefore enr iched so as to include its behaviour.

- Match ing of subtypes. The adoption of an object-oriented language,
enabling classes to be used as tuple types and tuple field types , enhances
th e pat tern matching mechanism by introducing the chance of considering
the subtype relat ionship induced by inh eritance in the matching policy,
too.

96 D. Rossi, G. Cabri, E. Denti

public interface JavaSpace {

Lease write(Entry e, Transaction txn, long lease)
throws RemoteException, TransactionException;

public final long NO_WAIT = 0; II don't wait at all

Entry read(Entry tmpl, Transaction txn , long timeout)
throws Transact ionException, UnusableEntryException,

RemoteException , InterruptedException;

Entry take (Entry tmpl, Transaction txn, long timeout)
throws TransactionException, UnusableEntryException,

RemoteException, InterruptedException ;

EventRegistration notify(Entry tmpl, Transaction txn,
RemoteEventListener listener, long lease,
MarshalledObject handback)

throws RemoteException, TransactionException;

}

Table 4.1. The main methods of the JavaSpace Interface.

- Lease. Each tuple in the space is associated to a lease time, which can be
considered as the t uple lifetime: when it is over, the tuple is removed from
the space.

- Transactions . Transactions are often required in practical systems to en
sure t he correctness of the performed operations. J avaSpaces t ransactions
can rely on external transaction services (provided t hat they implement
t he Transaction Service API) , for example the one supplied by the J ini
technology [619].

Another relevant J avaSpaces feature is the capability of notifying t he writing
of a given tuple to an external object that registered its inte rest on this
event. To do so, an object willing to be not ified when a given kind of tuple
is writ ten in the space must first register as a listener, specifying the proper
tuple template. In the J ava event model, a listener is an object that can be
registered for a given event : when such an event occurs, a specified meth od
of the listener object is called. So, in JavaSpaces, each t uple writ ten in the
space is pat tern-matched against the specified template: if they match, all
the registered listeners are notified. Then, each notified listener knows that a
possibly interestin g t uple has been writ ten in the space, and can consequent ly
act as appropr iate.

4. Tuple-based Technologies for Coordinat ion 97

4.4 Systems Adding Programmability

The last kind of enhancement is towa rds programmabili ty. These systems
give the capability of mod ifying the standa rd behaviour of the tuple space
by programming it, wit hout changing the set of primi tives.

4.4.1 Law-Governed Linda

The Law-Governed Lind a (LGL, [424]) technology exploits t he power of th e
Linda model for th e coordination in open and distributed systems, bu t recog
nizes the limitations of th is model in te rms of insecuri ty and inefficiency. LGL
is an inst ance of th e more genera l concept of law-govern ed archit ecture [423],
which defines int eractions governed by a globa l law specified in the architec
ture. Originally created for systems mod elled around the notion of process ,
LGL has been easily adapted to agent-based systems . The LGL architecture
includes the five basic components of th e general law-govern ed architect ure :

- Communication medium. The communication medium is the means
used by the system actors to communicate and interact . In LGL , it is a
Linda tuple space.

- Sequential processes. Processes (also referr ed to as agents) are the sys
tem actors, which interact via the communication medium.

- Control states. Control states are the new concept introduced by LGL to
main tain information about processes and t heir action history during time.
To this end, each process is assoc iated to one cont rol state. Control states
can be exploited to keep the history of the accesses to the communication
medium.

- Global law. The globa l law is defined by the architecture , and is therefore
unique throughout the system. Composed of several rules, it is aimed at
govern ing the interactions that take place in the communication medium.

- Law enforcement mechanism. The globa l law is enforced by means
of controllers : each process is associated to a cont roller, which acts as a
mediator between the process and the communication medium.

In LGL , the communication medium is accessed by processes exactly as a
Linda tuple space, by means of the read, in, and out opera t ions . Unlike
Linda , however , each LGL process accessing the tuple space genera tes an
event, which is caught by the assoc iated cont roller. The cont roller calculates
the ru ling of the law assoc iated the event, taking into considerat ion the pr o
cess cont rol state, and car ries out the ruling.

The law can be exploited to control the execut ion of the Linda-like opera
t ions, without form ally adding any new operation. T his calls for a language to
express the rules of th e law, and for an execution model defining how events
are to be handled . The LGL language for expressing the rules is based on
some primi ti ve operations, which can be put together to compose the rules of
the law. The execution model establishes that all rules are triggered whenever

98 D. Rossi, G. Cabri, E. Denti

an event occurs. For this purpose, LGL defines two main kinds of events that
may occur in the basic Lind a operations:

- Invocation events. T hese events occur when a process invokes an op
eration (out, in, read) on the tup le space. T hese events exp ress only t he
attempt to perform an operation, not the actual execution of the operation
itse lf, which will take place only if the law allows it .

- Selection events. T hese events occur when a matching tuple is found in
the tuple space. As above, the occur rence of such an event does not mean
that the matching tuple is actually returned to the invokin g process: this
action has to be allowed by the law.

When an event occurs, LGL searches the law for a rul e t hat describes the
occur red event. If it finds one, it executes all the primitive operations in the
rul e, which are supposed to express how to carr y out the invoked process
operation. The primitive operat ions that can be included in the ruling of the
law are:

- complete. The effect of t his operat ion is to actually carryon the operat ion
requested in an invocation event. If the invoked operation was an out , the
supplied t uple is actua lly written in the space, while if it was a rd or
an in, the pattern matching mechani sm is t riggered. A param eter for the
complete can be specified , in which case it takes the place of the parameter
of the invoked operation.

- return. This primiti ve allows the matching tup le to be ret urned to the
invoking process. As in the previous case, a parameter may be added to
return, in which case it is returned to the invoking process instead of the
matching tuple.

- out (T). T his primiti ve operation writes tuple T in the space, wit hout
activating any further ru le.

- remove. T his primitive operation removes a process from the system.

In t he context of agents , LGL explicit ly addresses the problem of making
peer- to-p eer coordination within a group of agents obey to a set of speci fied
rul es.

The LGL model is par ti cularl y useful and effective to cont rol interactions
and enforce security in an open syste m. Although LGL does not supply secu
rit y mechani sm such as access control lists , several kind s of secur ity policies
can be impl emented by exploit ing the pro grammabili ty of the law rules [425].

4.4.2 MARS

MARS (Mobile Agent React ive Spaces) is a coordination architecture devel
oped at the University of Modena and Reggio Emilia [116], impl ementing
programmable reactive tup le spaces for J ava-based mobile agent applications .
Of course , it can be frui tfully exp loited by static agents, too. MARS is a

4. Tuple-based Technologies for Coordination 99

public interface MARS extends JavaSpace {
II inherited from JavaSpace

II Lease write(Entry e, Transaction txn, long lease)
II throws RemoteException, TransactionException;
II Entry read(Entry tmpl, Transaction txn, long timeout)
II throws TransactionException, UnusableEntryException,
II RemoteException, InterruptedException;
II Entry take (Entry tmpl, Transaction txn, long timeout)
II throws TransactionException , UnusableEntryException,
II RemoteException, InterruptedException;
II defined by MARS
Vector readAll(Entry tmpl, Transaction txn, long timeout);
II throws TransactionException, UnusableEntryException,
II RemoteException, InterruptedException;
Vector takeAll(Entry tmpl, Transaction txn, long timeout);
II throws TransactionException, UnusableEntryException,
II RemoteException, InterruptedException;
}

Table 4.2. The MARS Interface.

service for mobile agents that roam the network in a network-aware fashion
(i.e., the network is modelled as a set of sites).

The MARS model assumes the existence of one (unnamed) tuple space
locally to each execut ion environment, which is independent of the oth er
sites' spaces. This tuple space represents the only means tha t agent s can use
to int eract both with th e local execut ion environment and with other agents.
The MARS tu ple space is only loosely coupled to the agent server and can be
associated with different systems and implementations. Incoming (or newly
created) agents are provided with a reference to the local tuple space as soon
as they appear on a node, and can use it to coordinate with other enti ties.

Agents access the MARS tuple space by means of the MARS interface,
which is derived by the JavaSpace interface (see Table 4.2). Also, MARS
tuples are J ava objects , and are managed exactly as in J avaSpaces. With
respect to J avaSpaces, MARS adds two operations (readAll and takeAll)
which make it possible to retri eve all the matching tu ples from the space.
While t he lat ter may be seen as a language shortcut, th e first helps to face
the so-called "mult iple read problem" (see Sect ion 4.3.1), that is, Linda 's
inabili ty of reading each matching t uple exactly once.

The key feature of MARS , however, relies in the notion of programmable
react ive tuple space, which makes it possible to embody computational abili
ties within t he tuple space it self (programmable prop erty) , assuming specific
behaviours in response to access event s (reactive prop erty) . So, a MARS tu
ple space is no longer a mere tuple repository with a buil t-in and stateless
pat tern-m atching mechanism, but an active component with it s own state,

100 D. Rossi, G. Cabri, E. Denti

which can be programmed so as to react to tuple access operations by per
forming specific (re)actions. React ions can access the tup le space , change
its content, and influence the semant ics of the access operations. Rather
than adding new primitives, MARS allows the effec ts of the operations to
be changed by program ming proper reactions. For example, a reaction may
change the pat tern matching mechanism so as to let agents specify a range of
values , rather than a fixed value, in t he template of an input operation [117].

Programmable tuple spaces enab le the specificat ion of inter-agent coordi
nat ion rules in te rms of reactions, thus achieving a clear separation between
algorithmic and coordination issues: agents are in charge of embo dying the
algorithms to solve the problems, while reactions represent the application
specific (or site-specific) coordination rules.

The MARS reaction model complies with the standa rd tuple space model:
reactions are coded as m eta-level tupl es (m eta-tuples for short) stored in a
local m eta-level tupl e space. Each meta-tuple represent s a kind of access event
- in terms of involved operation, tuple(s) and agent identi ty - and specifies the
reaction to be tri ggered when a matching access event occurs . The reaction
itself is a method of a J ava object. Whenever an access occurs, the system
searches th e meta-level tuple space for a matching meta-tuple. If such a meta
tuple is found, the corresponding reaction object is retri eved and its reaction
meth od is executed, providing it with useful pieces of inform ation , like a
reference to the tuple space. In order to avoid endless recurs ion, reactions
are not allowed to t rigger other reactions in a cha in: this is why a reaction
access to the local tuple space is called passive, opposite to the reactive access
performed by agents. Meta-t uples can be stored and retrieved at run time,
leading to dynamic insertion and removal of reactions, both by the local
administrator and by agents.

Since the MARS model is specifically designed for mobile agent systems,
tuple space localit y - that is, the choice of supplying one independent tuple
space for each site - is a fundamental property. This property helps to over
come the resource bindi ng problems due to the change of the execution envi
ronment (see [253]), and leads to the implementation of the context-depen dent
in terac tion concept .

From the secur ity viewpoint , MARS implements basic access cont rol list
mechanisms, which make it possible to define the allowed operations on tuples
on the basis of agent identities. MARS allows also a more sophist icated and
flexible secur ity schema tha t relies on the definition of roles, which can be
dealt with in a more general way, overcoming the limit ations related to the
identification based on the single agent identity. Peculiar security policies can
also be implemented by means of reactions: in par ticular, the administ rator
of a site can define a local policy and implement it as a reaction , relying both
on the visibility of the enti re tuple space and on its own state to store general
information.

4. Tuple-based Technologies for Coordination 101

To achieve portability across different platforms, MARS has been written
in 100% pure Java. In addition, MARS tuple spaces are loosely coupled with
the mobile agent system of the single nodes [115] .

In the forthcoming future MARS is expected to provide support for the
XML format inside tuples [118], so as to improve the integration with the
Internet environment : this should enable MARS to play the role of a coordi
nation interface to the rich world of XML documents.

4.4.3 LuCe

LuCe (from Logic Tuple Centres) is a coordination model, system and tech
nology for the construction of multi-agent systems involving autonomous,
pro-active, possibly heterogeneous agents [205]. The key contribution of the
model consists in the introduction of the concept of tuple centre as an en
hanced tuple space, which can work as a programmable coordination medium
[203] . In LuCe, tuples are used not only to represent the application data,
but also to describe tuple centres ' behaviour: these further tuples are called
specification tuples.

The ability to define the tuple centres ' behaviour makes it possible to
uncouple the actual representation of knowledge in a tuple centre from the
agents' perception of such knowledge, enabling interaction protocols to be
defined at the most natural level, according to simple data-oriented criteria.
Moreover, LuCe promotes a clear separation between individual tasks and
social tasks: individual tasks can be designed around the previously-defined
interaction protocols, while the accomplishment of social tasks is charged
mainly upon the suitably-programmed coordination media.

LuCe is both a theoretical model and an actual coordination technology,
made available by the LuCe system [207]. Developed in Java over a light
weight Prolog engine , the LuCe system integrates Prolog and Java within the
Internet platform, effectively supporting the construction of portable Prolog
and Java agents. In addition, it is fully coordination transparent - that is,
tuple centres can be freely distributed over a LAN or an intranet, yet agents
can access them by name, with no need to know anything about their physical
location [206].

The key difference between a tuple space and a tuple centre is that a tuple
space supports only the coordination policies that can be directly mapped
onto its fixed behaviour, while a tuple centre can be programmed so as to
bridge between the different representations of information shared by agents,
to provide new coordination mechanisms, to support the full monitoring of
agent interaction, and, above all, to embed the laws for agent coordination
[204]. In particular, LuCetuple centres are logic-based: so, they exploit Prolog
both as the inter-agent communication language - that is, to enable inter
agent communication - and as the coordination language - that is, to rule
communication (see [470] for a formal description of the LuCe communication
and coordination languages) .

102 D. Rossi , G. Cabri, E . Dent i

Tuple space access and m odifi cation

inJ(TT)

nOJ(TT)

outJ(T) succeeds an d inser ts t uple T into t he t uple centre
rdJ(TT) succeeds , if a t uple T unifyin g with tem plat e TT is found

in t he t up le cent re , by unifying T with TT; fails ot herwise
succee ds , if a t uple T unifyin g with tem plate TT is found
in t he t uple cent re , by unifying T wit h TT and removing
T from the t uple cent re ; fails ot herwise
succeeds , if no t uple unifying wit h tem plate TT is fou nd
in t he t uple centre ; fails ot herwise

Com m unicati on event info rmati on

failure

current_tc(N)

current-op(Op)

pre
post
success

current-tuple (T) succeeds, if T unifies wit h t he t uple involved by t he cur-
rent communication event

current-agent (A) succ eeds, if A unifi es with the ident ifier of t he agent t hat
t r iggered t he current communication event
succeeds, if Opunifies with t he descriptor of t he operation
t hat produced t he curr ent commun ication event
succeeds, if Nunifi es with t he identifier of t he tuple centre
performing t he computat ion
succeeds in the pre phase of any operat ion
succeeds in the post phase of any operat ion
succeeds in t he pre ph ase of any operation , and in t he
post ph ase of any successful operat ion
succee ds in t he post phase of any failed operation

Table 4.3. Main ReSpecT predica tes for react ions.

Agents perceive a LuCe tuple cent re as a (logic) tuple space , which can be
accessed through the typical Linda-like operat ions (out, in, rd, inp, rdp).
Each tuple centre is uniquely ident ified by a ground Prolog te rm and, con
versely, any ground te rm can be used to denote a tuple cent re. What makes
a (logic) tuple cent re different from a (logic) tuple space is the not ion of
behaviour specification , which defines how a tuple cent re reacts to an incom
ing/ outgoing communicat ion event. T he behaviour of a LuCe tuple centre is
defined through the ReSpecT specification language [204]' a logic-based lan
guage where reactions in response to communication events are defined by
means of first-order logic tuples, called specification tuples. A ReSpecT reac
tion consists of as a sequence of reaction goals, which can access properties of
the triggering event , perform simple tests on terms, and operate on th e space
of tuples thro ugh the out...r , in...r , rd...r , and no...r predicates (see Table 4.3
for details). Unlike the MARS approach, in LuCe these may tr igger fur th er
reactions in a cha in: this property is fund amental for the Turi ng-equivalence
of the ReSpecT reaction model.

React ion goals are executed sequent ially: a react ion as a whole either
succeeds or fails depending on whet her all its reaction goals succeed or not ,
and is executed with a t ransactional semantics. So, a failed reaction has
no effect on t he tuple cent re state. Since all the react ions t riggered by a
communication event are executed before serving any ot her event, agents

4. Tuple-based Technologies for Coordination 103

perceive the result of serving the communication event and execut ing all th e
associated reactions altogether as a single transition of the tuple cent re st at e
(see [204] for more det ails on th e ReSpecT language and it s computational
mod el) .

As a result , th e effect of a communicat ion primitive is no longer limited to
adding, reading, or removing a single logic tuple, as in the case of logic tuple
spaces: instead , it can be made as complex as needed in order to uncouple th e
agent view of the space of tuples from its act ual state, and to relate them so as
to emb ed coordinat ion laws into a new observable behaviour of a tuple centre.
Since ReSpecT is Turing-equivalent [204]' any computable coordinat ion law
can be in principle encapsulated into the coordinat ion medium.

A logic tuple cent re is then conceptua lly st ruct ured in two parts: the tuple
space, containing ordinary communicat ion tuples , and th e specification space,
containing specificat ion tuples . By representing at any time th e curre nt state
of agent interaction, the state of the space of (ordinary) tuples provides for
th e communication viewpoint . Instead , the space of the specificat ion tuples
provides for th e coordination viewpoint, since the behaviour specification of
a tuple cent re governs inter-agent communicat ion, and specificat ion tuples
actua lly define agent coordination rules. So, in principle, (intelligent) agents
can reason on the system behaviour by t aking both the communicat ion and
the coordination theories into account, possibly refining / changing the co
ordination laws if appropriate .

The tuple centre notion impacts over th e whole LuCe developm ent sys
te m [207] : in par ticular , specialised tools prov ide agents with the proper tuple
centre views. Since a tuple cent re is charac terised by three set s - th e set T
of its tuples, the set Wof its pending queries waiting to be served, and th e
set S of its reaction specificat ions [470] - , three ad-hoc agents, th e T, Wand
S Insp ectors , provide agents with the ability to edit and cont rol tuple cent res
from the data , the pending query and the specification viewpoints. By making
tuples observable, the T Inspector enables developers to moni tor communi
cation from a data-o rient ed viewpoint, while the W Inspector, supporting
communication events ' observability, provides for the control-oriented view
poin t. Finally, by making tuple cent re' s specification tuples accessible and
modifiable, the S Inspector provides for th e coordination viewpoint .

The possibility of specifying tuple centres' behaviour has a strong impact
on the way applicat ions are designed: in particular , agents can be provided
with a view of the domain representation that is specific to th eir own task,
independ entl y of representation of knowledge as tuples in th e tuple cent re .
In turn, this one should be chosen according to what is most natural in th e
application domain , independ ently from agent protocols' needs . The bridge
between agent s' own domain representation and tuple cent re's representation
of shared knowledge is th en meant to be provided by suitably-programmed
tuple cent res.

104 D. Rossi, G. Cabri, E. Denti

This approach leads to a neat separa t ion between individu al tasks, involv
ing the single agents, and social tas ks, involving the multi-agent system as a
whole [206]. In particular , agents are to be designed around their individu al
tasks, tailoring their interaction protocol to the agents' desired perception
of the interaction space : interaction proto cols are then naturally modelled
in terms of reading, writ ing, and consuming t uples in tuple centres. Tupl e
cent res behaviour is instead aimed to harness collect ive behaviours towards
the accomplishment of social tasks, governing agent auto nomy: coordination
rules are designed so as to accomplish such social tasks, bridging amongst
the different agents' perceptions and ontologies.

Fin ally, the clean separation between computat ion and coordination [624]
carr ied out by agents and coordination media (respect ively) promotes de
sign incrementality since the earliest design phases: so, for inst an ce, adding
a new agent with a new task to a LuCe-coordinated system typically does
not imply a system re-design , but simply the modificat ion of the exist ing
coordina t ion rules or the definition of new ones, in terms of tuple cent re's
behaviour specification.

LuCe has been successfully exploited to build severa l test applicat ions:
from the classical Dining Philosopher problem [203, 205], in two versions, to
more complex and realistic application scenarios such as a distributed version
of classical games like TicTacToe and Reversi [206, 207], with different agent
types to be coordinated (Java agents providing for the gra phical interface,
Prolog agents taking care of game supervision , etc) .

4.4.4 TuCSoN

Inspired to the LuCe model, from which it borrows both the tuple cent re
concept and the ReSpecT specificat ion language, TuCSoN [472] exploits tuple
cent res to define an interaction space spread over a collection of Internet
nodes. Each tuple cent re is associated to a node, and is denoted by a locally
unique identifier: so, each node provides agents with its own version of the
TuCSoN name space (i.e. , the set of the admissible tuple cent re names), by
virtu ally implementing each tuple cent re as an Internet service.

A TuCSoN tuple cent re can be denoted either by means of its full absolute
name, or by means of its relative local name: th e first one is unique all over
the Intern et , while the latter is unique only within a single node name space.
The tc@node syntax uniquely identifies the specific tuple centre tc hosted
by node, while th e relative name tc refers to th e local tuple cent re of the
node where th e mobile agent cur rent ly is. So, while LuCe is always network
transparent, TuCSoN allows agents to perform tuple cent re operations both
in a network-aware and in a network-transparent fashion: the first form is
typically used by an agent wishing to interact with a node locally, while the
lat ter allows an agent to remotely look for it s next host ing environment.

The above duality enforces the separation between network-related issues,
such as agent migration across nodes, and purely computational issues, such

4. Tuple-based Technologies for Coordination 105

as interaction with the local resour ces. In particular, since each node imple
ments its own version of the TuCSoN name space, the network-transparent
form allows mobile agents to adopt the same intera ction proto col across all
nodes, independently of th e specific hosting environment , charging th e han
dling of heterogeneity onto th e different tuple centres' behaviour specifica
tions.

4.5 Systems Modifying the Model

The systems described in th is sect ion enhance Linda by modifying its model.
In this case, too, the modifications reflect th e requirements of th e context
where the system operates.

4.5.1 Bauhaus Linda

Bauhaus Linda [138], or just Bauhaus, generalizes Linda in order to support
multiple first-cl ass tuple spaces and to handl e both da ta and processes using
th e same primitives. The goal is achieved by a generalization that leads to a
simpler model than the original Linda, which is generalized in the following
ways:

- Linda 's distinction between tuples and tuple spaces is eliminated: the only
coordination structure is, in fact , the mult iset. Output primitives add a
multiset to a destination multiset , input primitives read (and possibly re
move) a multiset from a target multiset .

- Linda 's distinction between tuples and templates in eliminated: Linda 's
type- and position-sensitive associat ive matching rule is replaced by simple
set-inclusion.

- Linda 's distinct ion between dat a and pro cesses is eliminated: while passive
data and act ive processes remain distinct species, the coordination lan
guage itself makes no distinction between active and passive ent it ies. In
Bauhaus , th en , out is used to put both data and processes inside a mul
t iset ; in th e same way, rd and in retrieve both data and processes from a
mult iset (in returns the process itself, rd returns a "freezed" copy of the
process).

Bauhaus is thus simpler that Linda, in that both tuples and tuple spaces are
replaced by multisets , templates are eliminated, distinction between processes
and data is elimina ted, and the primitives are reduced from four to three.
On the other hand, Bauhaus is more powerful th an Linda: the use of multi
sets as th e only coordinati on entity naturally accommodates a hierar chy of
multiple spaces. Moreover , since th e coordinat ion primitives operate on mul
tisets , Bauhaus ' (multiple) spaces are first class obj ects - i.e., coordina t ion
operations can be applied to whole spaces.

106 D. Rossi, G. Cabri , E . Denti

For these reasons , Bauhaus is elegant , simple, and powerful. However ,
distributed implement ations of Bauhaus have to support the capability of
dealing with copies of pro cesses and processes that move around the network.
These feat ures are not usually supported by classic operat ing systems , and
can lead to complex scenarios requiring support for performance, secur ity,
and heterogeneous systems altogether.

4.5.2 Laura

Laura [595] is a coordination model based on Linda , where the tuple space is
enhanced to a service space. A service space is a collection of special tuples
called forms. A form can be a description of a service offer, of a service
request, or of a service result.

Interaction consists of eit her posting a service request to th e service space ,
so as to find a matching offer form , or trying to get the results of a service,
by finding a matching result form . Since the service provider and the service
consumer remain unknown to each other, interaction is completel y uncoupled .

A service is describ ed through an interface, which specifies a set of op
eration signatures . A signature describ es an operation in term s of its name,
arguments and result type: int erfaces are th en used to identify the required
servic e.

To ask for a given service, users just inser t the proper servi ce request
form into the service space. This act ion triggers the sear ch of a service offer
form whose interface matches the interface of the request form . By doing so,
Laura emphasizes what service is requested , not which agent is requested to
perform it . Service ident ificat ion is then a cru cial poin t .

For this purpose, interfaces are describ ed using a service type language.
The semantics of interface definitions is form ally given by means of a suitably
defined type syste m (see [594]), which includes rules for subtyping: these are
th e key for service identification. In fact , given the int erface descriptions, a
service offer form matches a service request form if the type of th e offered
int erface is a subtype of the request ed one. Subtyping is defined so that a
typ e A is a subtype of B if any valu e of type A can be used instead of a
valu e of type B, where "values" are services. This makes it possible to supply
a servi ce of ty pe A whenever a service of type B is requested. Laura type
system deviates from other approaches to th e management of types in open
systems und er three viewpoints. First , it abolishes global names for service
int erfaces and relies on interface matching only. Second , it does not consider
the names of structur ed types . Fin ally, it adopts just syntact ic equivalence
for checking the names of int erface operations.

A service is the result of interaction between a service provider and a
service user, which are coordinated by two operations , serve and result .
An agent willing to offer a service to other agents adds a service offer form to
th e service space by execut ing th e serve operation, whose arguments are the
offered service type and a list of binding rules: th e latter specify th e bindings

4. Tuple-based Techn ologies for Coordination 107

between the program var iab les and the above arguments . Wh en serve is
executed, a service offer form is built from the specified arguments. Then ,
the serv ice space is scanned for a service request form whose service type
matches the service offer form according to the above type rules. Argum ent s
are then copied to the serv ice offer form and bound to the program variabl es.
If no matching request forms can be found, serve blocks.

After performing the requested serv ice, the serv ice provider delivers a
result form to the service space by means of the result operation. Such a
result form consists of the service interface and, depending on the operation,
of a list of result values according to the binding list. It is the agent's respon
sibility to properly store the service resul ts in those vari ables. The result
operation is perform ed immediately, and the form is inser ted into the service
space. So, an agent offering services typically operates in a loop consisting of
the sequence serve / perform the service / result .

On the client side, an agent willing to use a service should execute Laura's
third operat ion, service, whose arguments are the requested service type,
the requested operation along with it s arguments, and a binding list . When
executing service, two forms are involved : a service put form and a service
get form . T he first rep resents the requested serv ice: it is constructed from the
service interface and from the specified arguments, and then inser ted into the
serv ice space. If another agent perform s a serve operation and its serv ice
offer form matches this agent 's put form, arguments are copied as describ ed
above and the service provider starts processing the requested operation.
The service get form is used, instead, to retrieve the serv ice results . Fi rst ,
this form is constructed from the serv ice interface and the binding list. Then ,
a matching result form is soug ht in the serv ice space: when availab le, the
resu lts are copied and bou nd to the program variables.

Laura has been used to provide coor dination support for applications
based on PageSpace [173], a reference architecture to support distributed
applications on the World Wide Web.

4.5.3 LIME

LIME means "LInda in a Mobile Environment " ; as expected, the main issue
focused by this te chnol ogy is mob ility [493], addressed from both the logical
(m obile agents) and the physical (mob ile computing) viewpoints uniformly.
In the following of the sect ion we will focus on the former one.

Lind a 's static, globa l and persistent tuple spaces show several limitations
when inserted in a context of mobile ent it ies: LIME tries to adapt the ad
vantages of the Lind a model - in te rms of uncoupl ed interactions - to the
dy na micity of a mobile world , by focusing on the descrip t ion of the model of
the tuple spaces, disregarding the actual implementation , which can rely on
different programming languages and platform s. Unlike MARS, mobility has
a strong influence in the definition of the LIME tuple space model.

108 D. Rossi, G. Cabri, E. Denti

LIME relies on the concept of transiently shared tuple space. Each mobile
entity - whether it is an agent or a physical device - is associated to an
Interface Tuple Space (ITS), which can be seen as a personal tuple space
where tuples can be stored and retrieved from. When mobile entities meet
in the same physical place, their ITSs are automatically merged , thus en
abling Linda-like coordination among mobile entities via temporarily shared
tuple spaces . The merged tuple spaces become a single tuple space from the
viewpoint of agents , which, therefore, do not have to worry about the actual
location of tuples. When a new agent arrives, its ITS is merged with the
current one, and the content is dynamically recomputed. The sequence of
actions involved in sharing and merging tuple spaces is called engagement,
while the opposite sequence (enact when an agent leaves the site) is called
disengagement.

Agents can be associated to multiple ITSs, each identified by name . This
makes it possible to rule the ITS sharing on the basis of the names that are
common to other agents. Agents can also define private ITS that are not
shared with other agents, to be exploited to store private information. LIME
also defines a system tuple space for each agent at the environment level,
called the LimeSystem ITS .

LIME implements the three fundamental Linda operations: read, in and
out . The main difference between LIME and the basic Linda model is the
capability of defining personal tuple spaces that can be shared and joined
with other tuple spaces transparently to the agents, enabling temporarily
shared tuple spaces. In this way, the semantics of the tuple space operations
is not altered, but the tuple space content changes according to the agent's
current location. The uncoupled form of interaction proposed by Linda is
preserved, but the absence of a global and static tuple space better fits a
highly dynamic scenario.

Another interesting feature of LIME is its event reaction capability: to this
end , LIME introduces the reactive statement T. r ea ct s To (s , p) , where s is a
code fragment to be executed when a tuple matching the template p is found
in the tuple space T. There are several system events that are monitored
and can be coded as tuples in the LimeSystem ITS by the run-time support,
such as the agent arrival/departure, changes in connectivity, changes in
the system, etc. Along with the reactsTo statement, the above monitoring
capability enables tuple spaces to react to system events . In this way, LIME
provides its tuple spaces with a form of programmability: a mobile entity can
program the behaviour of its own ITS, so as to provide more flexible control
on the accesses to it .

The concept that a tuple space may be both personal and shared can be
exploited to support agent communities. Specific tuple spaces can be used
as points where agents with a given goal can meet and interact: so, agents
can access information belonging to the whole community without having to
know all the community members. At the same time, private information can

4. Tuple-based Technologies for Coordination 109

be protected by the definition of private tuple space, which can be accessed
only by the owner agent .

4.6 Conclusions

In this chapter we surveyed several tuple-based coordination models and sys
tems, introducing a framework to classify them on the basis of the extensions
to the original Linda model. In our intention, the criteria used to define the
taxonomy should ease the comparisons between the different approaches, as
well as define a reference framework useful for design purposes.

Of course, other models and systems do exist, which may well be of in
terest in specific environments and application areas: in this chapter we re
stricted to those that are related to the book focus.

Acknowledgements

The authors would like to thank Robert Tolksdorf for his clear explanation
of Linda (on which the one presented here is based) and Andrea Omicini for
his feedback and suggestions.

This work has been partially supported by Italian Ministry of University
MURST 40% - Progetto SALADIN, by a grant by Microsoft Research Europe,
by the Italian National Research Council (CNR) in the framework of the
project "Global Applications in the Internet Area : models and programming
environments", and again by the Italian MURST in the framework of the
Project MOSAICO "Design Methodologies and Tools of High Performance
Systems for Distributed Applications".

5. Middleware Technologies: CORBA and
Mobile Agents

Paolo Bellavista! and Thomas Magedanz/

1 L1A , Dipartimento di Elettronica, Informatica e Sistemistica
Universita di Bologna, Viale Risorgimento 2, 1-40136 Bologna, Italy
mailto:pbellavista~deis.unibo.it

2 IKV++ GmbH, Bernburger Strasse 24-25 , D-10963 Berlin, Germany
mailto:magedanz~ikv.de

Summary.
The design, implementation and provision of services in the Internet sce
nario are forcing both the traditional area of client/server distributed sys
tems and the emerging sector of agent technology towards the definition of
a common distributed middleware, i.e., a set of basic facilities that can be
ubiquitously accessed by any distributed component as an integrated part
of t he enhanced communication infrastructure. This middleware should
not only be the basis where designers start for the realization and deploy
ment of their services, but also be flexible enough to permit the easy and
rapid extension of the common infrastructure to accommodate evolving
system/service requirements and expectations of final users.

Among the technologies for middleware implementation, the chapter
describes the state-of-the-art of two approaches: the Common Object Re
quest Broker Architecture (CORBA) te chnology and the Mobile Agent
(MA) one, which are different from several points of view (interoperability
and location transparency vs. mobility and location awareness) . However,
in contrast to using them separately, the chapter claims that an integration
of both rniddleware te chnologies represents the most promising solution to
achieve the maximum flexibility in the implementation of an open service
infrastructure. In this context CORBA-based MA platforms demarcate
an important evolution step into the direction of mobile and interopera
ble object systems, on which Internet services could be realized through
dynamically distributed and reusable object-based components.

5.1 Middleware Technologies for Open and Global
Distributed Systems

In the last years, the widespread diffusion of Internet technologies has
changed the way of thinking about service provision . The availability of a
global communication infrastructure and its ubiquitous accessibility suggest
to implement services as the result of interworking resources and service com
ponents that are geographically distributed and intrinsically heterogeneous
due to the openness of the Internet scenario. Whereas the standardization
of communication protocols has made possible to consider the Internet as
a global distributed system, its extensive usage for the implementation and
provision of distributed services demands the additional availability of ba
sic common facilities, provided at the infrastructure level, to simplify the

5. Middleware Technologies: CORBA and Mobile Agents 111

interworking and coordination between distributed components [79J. For in
stance, any Internet service implemented in terms of cooperating components
needs a naming infrastructure to simplify the dynamic identification and lo
cation of required entities, even based on a partial knowledge of searched
resources (e.g., by knowing their functionality but not their interface). Nam
ing is probably the most evident example of a general-interest facility for
distributed systems: single applications that implement their proper ad hoc
naming service not only force their designers to a considerable implementa
tion effort but, most important of all , lead to competing and incompatible
solutions that are in contrast with the reuse and interoperability principles
emerging in the Internet environment.

At the same time, the diffusion of agent technologies has further stim
ulated the re-thinking of software implementation in terms of coordinated
groups of autonomous components. While first research act'ivities obviously
aimed at the definition of models, design principles and methodologies for
agents, as the focus has moved to the implementation of agent systems and
agent-based complex applications, one of the main objectives is becoming
the identification and provision of a common infrastructure of basic services.
This infrastructure should provide application designers with a wide set of
"horizontal" general-purpose facilities, possibly designed according to a lay
ered architecture, to simplify the rapid prototyping of agent-based distributed
services and to support their deployment and execution at run-time [62J.

In short , the Internet is forcing both the traditional area of Client/Server
(C/S) distributed systems and the emerging sector of agent technology to
wards the definition of a common set of basic facilities that can be ubiqui
tously accessed by any distributed component as an integrated part of the
communication infrastructure. These facilities should not only be the basis
where designers leave from when realizing and deploying their applications,
but also should be flexible enough to permit to easily extend the infras
tructure in order to accommodate evolving system/service requirements and
expectations of final users. This kind of infrastructure is the current vision
of what is traditionally known as middleware.

While there is a general agreement on the necessity of providing middle
ware solutions for Internet services, researchers hardly agree when they have
to define exactly what middleware is, which facilities and services are part of
it , and which ones have to be considered either at a lower layer (as compo
nents of the network infrastructure) or at a higher one (as application-specific
components) . In fact, the concept of middleware tends to depend on the sub
jective perspective of those trying to define it . It is even dependent on when
the question is asked, since the middleware of yesterday (e.g., Domain Name
Service , Public Key Infrastructure and Event Services) may become the fun
damental network infrastructure of tomorrow. Final users and programmers
usually see everything below the Application Programming Interfaces (API)
as middleware. Networking gurus see anything above IP as middleware. Re-

112 P. Bellavista, T. Magedanz

searchers and practitioners who work between these two extremes consider it
as somewhere between TCP and the API, with some even further classifying
middleware into application-specific upper middleware, generic middleware,
and resource-specific lower middleware [17, 450].

To briefly present a historical evolut ion of the middleware definition, some
of its earliest conceptualizations originated with the distributed operating
research of the lat e 1970s and early 1980s and were further advanced by
the I-WAY project [246] . The I-WAY linked high-performance computers
nation-wide over high-p erformance networks such that the resulting environ
ment functioned as a single high-performance system. As a consequence of
that experiment , the involved researchers re-emphasized the fact that effec
tive high-p erformance distributed computing required distributed common
resources and facilities, including libraries and utilities for resource discov
ery, scheduling and monitoring, process creation, communication and data
transport . In May 1997, the members of th e Next Generation Internet (NGI)
consort ium extended the traditional definition of middleware by stressing
requirements such as reusability and expandability [450] . Th eir definition in
cludes persistent services, such as those found within traditional operating
syst ems, distributed operating environments (e.g., the Java fram ework), net
work infrastructure services (e.g., the Domain Name Service), and transient
capabilities (e.g., run-time support and libraries).

The chapter has neither the presumption nor the objective of presenting a
conclusive and totally accepted definition of middleware . Its aim is, instead,
to give some det ails about widely diffused and recently emerging middleware
technologies and to describe which coordination models are at the basis of the
present ed distributed infrastructures. So, to fully understand the following, it
is sufficient to adopt a popular definition of middleware as " the intersect ion
of the stuff that network engineers do not want to do with the stuff that
applicat ion developers do not want to do" [324] . By accepting this informal
definition, the larges t part of both research and industrial work in distributed
systems in .. the last years can be classified as middleware , from the are a of
distributed operating systems [256] to the one of distributed objects [186,
544], from the area of distributed multi-agent societies [637, 331] to the one
of tuple-based distributed coordination [44].

Among the middleware supports for distributed objects , the Object
Management Group (OMG) Common Object Request Broker Architecture
(CORBA) is certainly the most widespread, complex and mature infrastruc
ture, also because the major competing support , Microsoft Distributed Com
mon Object Model (DCOM) , has started later and with different aims in
terms of openness and generality [186, 544, 159]. Since 1989, the OMG con
sortium, which includes the quasi-totality of companies (except for Microsoft)
has been defining CORBA. CORBA is a middl eware that permits a very rich
variety of coordination modalities between its components. The architecture
is based on the concept of a common software bus allowing for distributed

5. Middleware Technologies: CORBA and Mobile Agents 113

object interoperability and providing a wide set of bus-related services to in
terac t ing objects. The main aim is to release application developers from all
the du ties that stem from the possible heterogeneity and distribution of CIS
components: CORBA client objects have no visibility of the location of th e
COREA server objects they collaborate with , and their interaction is com
pletely independ ent of both their implement ation language and the platform
where they are running. The most notable consideration in this context is
that COREA, apart from the variety of available policies for communication
and coordination between components , has been designed from the beginn ing
as a complex and layered architecture of facilities and services to support th e
implementation of distributed CIS applications.

A significant novelty in the distributed syste ms of the last years is the
int roduction of the Mobile Agent (MA) programming par adigm that is con
tributing with new energies and different perspectives to the definition and
impl ement ation of a distributed middleware of common facilities and services.
The crucial point of th e MA technology is to give to location-aware comput ing
ent ities the possibility of migrating (with their code and the reached execu
tion state) from one network host to another one while in execution [253].
The property of mobili ty makes the MA programming par adigm significant ly
more flexible than th e t radit ional CIS one, by permi t tin g to exploit locality
in agent access to distributed resources and to perform distributed operations
in a complete ly asynchronous way wit h respect to the comma nding users and
the originating hosts [253, 518, 45]. Severa l heterogeneous MA platforms have
recently emerged [12, 18, 284, 563], and coming from a completely different
direction wit h respect to CORBA, they are also trying to identify a mid
dleware of basic services to provide to mobile agents, in order to simplify
and st imulate the impl ementation of industry-scale MA-based applications
for the Internet.

Both CORBA and mobile agents propose middleware approaches to sup
port the implementation of Intern et services, bu t the properties of their so
lutions are very different due to the fact that CORBA mainly focuses on
interoperability and location t ranspa rency while mobile agents concent rate
on mobility and location awareness . As previously cited, they are not even
representative of any possible middl eware approach. For instance, Jini has
recently emerged as a very int eresting technology for th e coordinat ion of
Java-based distributed components, with a solution th at is certainly more
lightweight and perhaps less genera l th an the COREA one [44]. However , in
this cha pter we have decided to present and comp are CORBA and MA tech
nologies because they have achieved the same goal of providin g a distributed
middl eware for Internet services, even if their approaches originate from very
different directions and perspectives, being th e CORBA middleware a basic
element of its initi al design , the MA one a necessity emerge d during the real
ization of first MA platform s and MA-based services. Most important of all ,
we claim that COREA and MA should not be considered alte rnative one to

114 P. Bellavista, T. Magedanz

the other: on the contrary, several properties exhibited by the two technolo
gies are complementary and motivate their integration to provide application
designers with a very flexible middleware infrastructure that is able to cover
different levels of abstraction.

The remainder of the chapter is structured as follows. Sections 5.2 and
5.3 are devoted to a brief description of the middleware frameworks and
th e coordination possibilities offered by, respectively, CORBA and MA. Sec
tion 5.4 tries to demonstrate the suitability of the integration of CORBA
distributed objects with mobile agents due to the partial complementation
of the two approaches. Section 5.5 exemplifies the claim of the previous
section by presenting the architecture of two MA systems integrated with
CORBA (Grasshopper and SOMA) and their application to the domains, re
spectively, of enhanced Intelligent Networks (IN) services and of management
of distributed Video on Demand (VoD) applications. Concluding remarks and
emerging directions in current and future work follow.

5.2 Common Object Request Broker Architecture
(CORBA)

The OMG CORBA technology has gained wide acceptance in the late 1990s
and has become the standard de-facto for the integration and support of
possibly heterogeneous distributed objects in large-scale industrial applica
tions. Born with the main aim to facilitate interoperability between C/S
distributed components (including the integration with legacy systems and
services), CORBA has been designed from scratch as a very articulated and
layered architecture of services , at different levels of abstraction, that should
cover all aspects and duties of designing and implementing distributed appli
cations, from basic communication between objects to the provision of more
complex and dynamic modalities of coordination, from general-purpose low
level services that can help in the implementation of any kind of distributed
application to higher-level common and domain-specific facilities.

The independence of both the implementation language and the execu
tion platform is guaranteed in CORBA by the specification of a standard
language to define object interfaces, the Interface Definition Language (IDL).
CORBA server objects that publish their IDL interfaces can be invoked by
any CORBA client object that has an a-priori knowledge of server interfaces,
by exploiting static mechanisms of interaction based on pre-compiled proxies
both on the client side (stubs) and on the server one (skeletons) . It is also
possible to have more flexible and sophisticated modalities of coordination
between CORBA objects, based on the availability of dynamic invocation
mechanisms that permit to defer the knowledge of the IDL interfaces of the
involved objects. A CORDA client can dynamically build an invocation re
quest from scratch by exploiting the Dynamic Invocation Interface (DII). A

5. Middleware Technologies: CORBA and Mobile Agents 115

CORBA server can analogously be unaware at compile-time of it s skeleton
by exploit ing t he Dynamic Skeleton Interface (DSI) functionality. Any possi
ble combination of static/ dynamic clients invoking static/dynamic servers is
sup ported . In any case, object interactions in CORBA are mediated by run
time services for object activat ion on th e server side (Basic/Port abl e Obj ect
Adap ter - BOA/POA) and for dynamic ret rieval of inform ation on currently
available CORBA inte rfaces (Interface Repository - IntR) and CORBA ob
ject implement ations (Implementation Repository - ImpR) .

All the above mechani sms are components of the CORBA core, i.e., the
software bus t hat realizes the transpa rency of allocation and implementat ion
between CORBA objects and t hat is called Object Request Broker (ORB) .
They are mandatory in any vendor implementation of the CORBA specifica
tions. Upon the ORB core, the OMG specifies the possibility to implement
a layered architecture of addit ional modules to help in the design and de
ployment of dist ribu ted applications. These facilities are organized int o a
st ruc t ured architecture called Obj ect Management Architecture (OMA) and
classified as CORBA services, horizontal/verti cal facilit ies and applicat ion
objects.

In the following, we try to give some insights about t he OMG architecture
model and about the mechanisms available in the ORB for object commu
nication and coordination. The object ive is to illustrat e the variety of inter
actions t hat are possible between CORBA objects, in order to acquire t he
elements required to compare it with the corres ponding modalities available
in common MA platforms and presented in Section 5.3.

5.2.1 Object Management A rchitecture

The OMA has been defined by OMG in 1991 with t he goal of providing
a high level speci ficatio n of the funct ionality needed for an object-oriente d
CIS distributed processing, that is: how dist ributed objects should be defined
and created, what communication mechanisms are required and how meth ods
should be invoked on remote objects.

The architecture includes an Object Model and a Reference Model. The
Obj ect Model shows how objects must be describ ed in the conte xt of a het
erogeneous distributed environment, while the Reference Model describ es the
possible interact ions between dist ribu ted objects.

In the Object Model, an object is an encapsulated ent ity, characterized by
a specific identity. Any object is supposed to provide external objects with
services, which are accessible only thro ugh well-defined interfaces without
requiring th e knowledge of t he object specific implementation.

The Reference Model identifies and cha racterizes the components, inte r
faces and protocols that compose the OMA. It includes the ORB (also referred
to as CORBA object bus) , which represents the core of the OMA architec
ture by providing t he support to object location t ransparency, server object

116 P. Bellavista, T . Magedanz

ommon Fact tttes
Non-standardized

application-specific Interlaces

Frameworks - Vertical
doma in-specific interfaces

Vert ical Market Facili ties

CORBA serv ices

Horizontal Common
facility interfaces

Horizontal Facili ties

General service Interfaces

Fig. 5.1. OMG Object Management Architecture Defining Differentlnterface Cat
egories .

activation and inter-object communication, and four categories of object in
terfaces (as depicted in Figure 5.2.1):

- Object Services,OMGServ are a collection of domain-independent low-level
services that extend the ORB functionality with basic functions that are
likely to be used in any program based on distributed objects (such as
lifecycle management, naming, persistence, transactions, ...). These com
ponents provide the generic environment where single objects can perform
their tasks. Adopted OMG Object Services are collectively called COREA
Services;

- (Horizontal) Common Facilities,OMGFacil are interfaces for horizontal fa
cilities that are oriented to final users and applicable to most application
domains (such as user interfaces, information management, system man
agement , task management, . ..). They may be based on object services;

- (Vertical) Domain Interfaces, OMGFacil are application interfaces tailored
to specific domains and areas (such as electronic commerce, telecommunica
tions, tele-medicine, . . .), which may be based on object services, common
facilities and application interfaces;

- Application Interfaces are non-standardized application-specific interfaces,
which also allow to wrap existing interfaces into the CORBA framework
(such as legacy switch control and management interfaces) . Since the OMG
is interested in the specification of middleware components and not of final
applications, these interfaces are not subject to standardization.

A peculiarity of the OMA architecture is that the same object can alterna
tively play the client and the server roles in different times.

A second part of the Reference Model introduces the notion of domain
specific Object Frameworks. An Object Framework component is a collection
of cooperating objects that provide an integrated solution within an applica-

5. Middleware Technologies: CORBA and Mobile Agents 117

tion or technology domain and which is intended for customization by either
service developers or final users. They are vertical slices down the OMG "in
terface stack" . This means that Object Frameworks are collections of cooper
ating objects categorized into Application, Domain, Facility, and Service Ob
jects. Each object in a framework supports (through interface inheritance) or
makes use of (via client requests) some combination of Application, CORBA
Facilities, and CORBA Services interfaces.

Through a series of Requests for (specification) Proposals (RFPs) , the
OMG is populating the OMA with detailed specifications for each compo
nent and interface category in the Reference Model. Adopted specifications in
clude the Common Object Request Broker Architecture (CORBA), CORBA
Services, and CORBA Facilities. The following section focuses on the specifi
cations and functionality of the CORBA components that represent the core
of any implementation of the OMA.

5.2.2 Common Object Request Broker Architecture

CORBA defines the programming interfaces to the OMA ORB. The ORB is
the basic mechanism by which objects transparently make requests to (and
receive responses from) each other, either on the same host or across a net
work. A CORBA client object need not to be aware of the mechanisms used
to either communicate with or activate a server object, how it is implemented,
and where it is located. So, the ORB forms the foundation for building appli
cations constructed from distributed objects and for interoperability between
applications in both homogeneous and heterogeneous environments.

The CORBA specification [186] provides the description of the interfaces
and services that an OMA-compliant ORB must implement to be aligned with
the OMG standards. In addition, it defines a software infrastructure to fa
cilitate the development of reusable and portable applications in distributed
environments. 5.2.2 shows its architecture consisting of various structural
components, each responsible for a specialized functionality: the ORB , the
IDL Stubs and Skeletons, the Dynamic Invocation Interface (DII), the Dy
namic Skeleton Interface (DSI), the Interface Repository (IntR), the Imple
mentation Repository (ImpR) , and the Object Adapter (OA).

The ORB is responsible for establishing the communication relationships
between client and server objects in the distributed environment. It is in
charge of identifying the server object that must satisfy the client request ,
activating it if necessary, passing the input parameters and the operation
type, and returning the result and the output .parameters. The ORB imple
ments a mechanism similar to remote procedure calls applied to objects. The
CORBA specification requires that the ORB mediates the communications
between distributed objects since the client must be aware neither of the
server location nor of the server programming language. Clients need only to
care about object interfaces.

118 P. Bellavista, T . Magedanz

Interface
repository

Fig. 5.2. Common Object Requcst Broker Architecture.

Implem.
repository

Before invoking an operation on a target object, the client must obtain its
object reference, for example by interacting with the naming service that will
return the needed object reference as output parameter. The ORB creates a
new object reference once the target object has been activated, but the object
itself is responsible for the distribution of its reference via the registration
with the naming service or by other distribution mechanism, if it wants to be
reachable. An object reference can be stored and used later since the ORB
guarantees that the associated target object will be available to satisfy client
requests as long as it is active. The object reference can be exchanged between
interacting objects in a string format , but its usage requires to preventively
re-convert the string into an object. In summary, th e ORB offers to client
objects the following services :

- Object localization. The client does not need to know if the target object is
active either within a process running on a remote machine or in a process
within the same machine or even within the same process of the client .

- Object implementation. The client must not be aware of the programming
language used to implement the target object, of the operating system or
the hardware platform on which the server program is executed.

- Object execution state. The client does not need to know if the target object
is already active within the corresponding server process and ready for
accepting the incoming request . The ORB is responsible for transparently
activating the target object before forwarding the client request .

- Object communication mechanism. The client can ignore the communica
t ion mechanism used by the ORB to send the incoming request to the
target object and to return the response to the client .

Interface Definition Language. The OMG IDL provides a standardized
way to define the interfaces to CORBA objects. The IDL definition is the

5. Middleware Technologies: CORBA and Mobile Agents 119

cont ract between the implementer of an object and the client. IDL is a
strongly-typed declarati ve language that is independent of the programming
language chosen to imp lement either the server object or the client one. IDL
to-anyLanguage mappings enable objects to be implemented and to send
requests in the developer programming language of choice, in a sty le that is
natural to that language.

A client can determine the services offered by an object on the basis of its
IDL inte rface. In fact , an interface describ es the attributes and the operations
t hat a server object makes available to any possible client . The IDL permi ts
to define modules, interfaces, attributes, operations and data ty pes. A module
is a namespace where int erface names must be unique. An int erface defines
a set of object at tributes and operations . Attributes are object values, which
can be dir ectly accessed for reading and writing or only for reading, by using
th e st anda rd get and set operations. Operations are methods whose signature
is describ ed in term s of operation name , parameter modes (in , inout , out),
names and types, result ty pe and exceptions. Fin ally, data types describe the
types of values (either basic or const ructed) used for parameters, attributes,
except ions and return values.

One of th e key characterist ics of IDL is th e abstraction of object impl e
mentation details, being focused only on the int erfaces and on the public
attributes of an object, which are the only relevant for object interaction
scenarios. The concept is that , in a distributed environment, clients should
never be interested in implementation issues but only on offered services.

Static Invocation Interface. Once the IDL definit ion of the object inter
face is available, it is used to generate automatically the proxies needed to
link CORBA clients to the implementation of CORBA server objects. The
IDL specificat ion must be mapped onto a target implementation language
using the IDL pre-compil er. Once applied, this pre-compiler will generate the
necessary st ub and skeleto n files, required for the communication between
client and server.

The skele ton files contain the server-side code that implements the com
mun ication between the ORB and th e server object. Anytime the skeleton
receives a service invocation from the ORB , it forwards the request to the
object implementing th e corres ponding operation. To realize a server obj ect ,
th e programmer must only write the code impl ementing its int erface oper
ations, i.e., the meth ods present in its skeleton. The stub files contain the
client-side code that implements the communication between the client ob
ject and the ORB. When the client invokes an operation on a remote object,
the stub resulting from the pre-compil ation of the server IDL in the client
programming language is responsible for forwarding the serv ice invocations
to the ORB.

St ubs and skeleto ns interact wit h the ORB for the marshalling and un
marshalling of the operation parameters in ord er to map them from the local
program ming language (e.g., J ava , C++) format to a common format , i.e.,

120 P. Bellavista, T . Magedanz

the General Inter-ORB Protocol - GlOP. When either st ubs or skeletons me
diate the int eractions between the objects and th e ORB , this is referred to as
Static Invocation Interface. The term st atic indicates that st ubs and skele
tons are respectively par t of the client application and of the server object
implementation and therefore the server obj ect IDL interface must be known
at compile-t ime to both the client and the server.

Dynamic Invocation and Dynamic Skeleton Interfaces. In addition
to the Static Invocation Interfa ce based on stubs and skeleto ns, CORBA
provides other two mechani sms: the Dynamic Invocati on Interface (DII) and
th e Dynamic Skeleton Interface (DSI), allowing modalities of CIS coordina
tion that are more flexible and changeable at run-time. In particular, the
DII mechanism makes a client object independent of the knowledge of the
target obj ect stub at compile-time. This means that it is not necessary to
have an a-priori knowledge of th e server object the client will int eract with.
Analogou sly, the DSI mechanism allows the server obj ect to be unaware of its
obj ect skeletons at compile-t ime, i.e., it does not force a server obj ect to know
its own IDL int erface and, therefore, the specific obj ect it is implementing.
In short, DII and DSI make possible to provide new services by defining at
execut ion-t ime the operations tha t have to be invoked and th e parameters to
be returned.

The DII and DSI mechani sms exploit a set of ORB interfaces that are
independent of the IDL interfaces of the implemented objects. To support
these features CORBA has intr oduced st andard APIs that enable run-time
binding mechanisms.

Repositories and Object Adapters. The knowledge of the IDL inter
faces implement ed by target objects can not only be fixed in st ubs and skele
tons, but can also be stored in a middl eware da tabase component that is
called Interface Repository (IntR). Whenever a distributed applicat ion uses
th e DSI mechanism , the knowledge of object IDL interfaces is embedded in
the applicat ion code. Therefore, if the IDL int erfaces referenced by th e ap
plication change during the applicat ion lifetime, the appli cation needs to be
recompiled . The IntR is th e response of the CORBA middl eware to avoid
this rigidity. The IntR is a CORBA object that manages an online database
containing the description of th e interfaces defined via th e IDL. The stored
information is used by th e ORB to check the method signature correctness, to
provide meta-data information to CORBA clients and to dynamically get the
description of the int erfaces implemented by any registered CORBA object.

The Object Adapter (OA) is th e glue between the implementations of
CORBA objects and the software bus. The OA provides object implementa
tions with a set of services, such as obj ect instantiation, server class registra
tion in the Implementation Repository (ImpR) , obj ect reference generat ion,
forwarding of incoming service invocations to int erface st ubs/skeleto ns, and
dispatching of incoming requests to target obj ects. Similarl y to the IntR, the
ImpR is a runtime database containing obj ect references, ty pes and classes of

5. Middleware Technologies: CORBA and Mobile Agents 121

the instantiated obj ects of all registered server pro cesses. The ORB exploit s
this information to locate active objects and to request the act ivat ion of new
objects within a server.

Since an OA defines how an obj ect must be activated , different OAs could
be implemented to support different obj ect act ivat ion policies, possibly re
quired by different applicat ions. For instance, the server-per-m ethod activa
tion policy specifies that a new server process is act ivated for each method
invocation (the ORB does not need to know if th e obj ect is already act ive).
The persistent-server policy, instead , imposes th at the server pro cess is not
activated automatically by th e OA at the first client invocation, but it has
to be st arted manually by invoking an explicit operation of connect ion to th e
ORB .

5.2.3 Integration with Internet Technologies

The emergency of widely diffused Internet services and th e increasing rele
vance of a full integration with the Web are probably the major driving force
behind the evolut ion of CORBA specifications. With th e publication of the
first CORBA 1.0, a number of commercial ORB implement ations appeared,
thus emphasizing th e problem of ORB interop erability when obj ects reside on
different ORBs and need to communicate, as it is in an open and global dis
tributed system such as the Intern et. This problem has been overcome by the
CORBA 2.0 specification that faced th e interop erability issues by defining an
interop erable format for obj ect references (Int eroperable Object Reference)
and the mandatory Internet Inter-ORB Protocol (nOP) that specifies how
GlOP messages have to be transported over a TCP lIP network. Even if
GlOP messages can also be mapped into other connection-orient ed transport
pro to cols, an ORB must always support nop to be CORBA 2.0 compat ible.
In addit ion, Environment Specific Inter-ORB Protocols (ESIOPs) have been
defined for handling interoperability also with distributed platforms that are
not compliant with CORBA (e.g., the Open Software Foundation Distributed
Computing Environment - OSF DCE [475].

The primary goal of the current CORBA 3.0 specification is to simplify
the use of th e CORBA technology for the development of Internet-oriented
distributed object applications, by providing a CORBA version with full inte
grat ion with th e Internet . To increase the acceptance of CORBA also by other
technology providers, a rich support for legacy environments was included:

- CORBA Java to IDL Mapping. The mapping allows Java application devel-
opers to build distributed applicat ion purely in Java and then to generate
the CORBA IDL from compiled J ava class files. This permits an easy in
tegration with CORBA without writing IDL interfaces and allows oth er
CORBA-compliant services to access Java applicat ions over nop;

- CORBA Firewall. Many Intern et applicat ions and legacy systems are be
hind a firewall for security reasons . The specification defines a set of in-

122 P. Bellavist a , T . Magedan z

te rfaces for passing nop requests and replies through a firewall. It en
compasses configuration mechanism for allowing the firewall to perform
filterin g and proxying on both the client side and the server one. This en
ables a controlled and secure use of CORBA-based applications from the
Internet ;

- COR EA Int eroperable Naming Service. Unt il recently, pure CORBA clients
could access CORBA object interfaces only via CORBA object references.
There was no other mechanism to reach a server object, even if the client
knows th e server locat ion . This naming serv ice defines an Intern et-like
format for obj ect references based on URLs, th at can be used to reach
defined services at a remote location.

Fin ally, it is important to notice that th e most diffused Web browsers (e.g.,
Netscape Communicator 4.x and Microsoft Internet Explorer 5.x) currently
support full integration with CORBA by permitting to encapsulate Java
based CORBA client s in standa rd Web document s.

5.3 Mobile Agents

Th e appeara nce of the Mobile Agent (MA) concept can be derived mainly
by a new technology called TeleScrip t developed by General Magic in 1994
[630]. It was the period when script ing languages, such as the Tool Command
Language (TCL) and its derivative SafeTCL [83] gained much attent ion, since
they enabled rapid pro totyping and the generation of portable code . The
concept of smart messaging [359], based on the encapsulat ion of SafeT CL
scripts within emails[83]. made new mail-enabledapplications poss ible. In
the same years, the concept of mobile comput ing, intended as the possibility
of moving users and te rminals in the Internet with no need to suspend service
provision , has gained increasing impor tance and has furth er st imulated th e
research on mobile code technologies [153]. Last bu t not least , it was the
beginning of the Java age, and J ava is the basis for the largest part of current
MA systems.

Nowadays th ere has been a lot of development and general excitement in
the area of the MA technology, much of which has evolved from the plat
form independence of the Java language with it s object serializat ion and
network communicat ions support. We can summari ze that, based on this
coincidence of th e appeara nce of various agent concepts, agents become a
fashion technology for the research and development communities. However ,
this also created confusion, since there was a lack of common definitions and
standa rds, resulting in various concepts, languages, architectures, technolo
gies and te rminology. This situation is now going to cha nge thanks to the
work accomplished for the definition of the first standa rd proposals in the
MA area (see Subsection 5.4.1 for details about the current status of MA
standard specificat ions) .

5. Middleware Technologies: CORBA and Mobile Agents 123

Mobile agents, also referred to as t ransportable agents or it ineran t agents,
are based on the principle of code mobility. In the CIS par adi gm the serve r
is defined as a computational entity that provides some services: the client
requests the execution of these services by interacting with the server; after
the service is executed , the result is delivered back to the client . Therefore,
the server prov ides the knowledge of how to handle the request as well as the
necessary resources. Mobile code enha nces the tradit iona l CIS par ad igm by
performing cha nges along two orthogona l axes:

- Where is the know-how of the serv ice located?
- Wh o provides t he computationa l resources?

Three main programming par adigms based on the possibility of dynam ic
code migration have been identified [253]: R emote Evaluat ion (REV), Code on
Dem and (CoD), and Mobile Agents. These paradigms differ in how the know
how, the processor and the resources are distributed among the components
SA and SB of a distribu ted system (see Table 5.3). The know-how represents
the code necessary to accomplish the computation . T he resources (i.e., the file
system where application-specific data are stored) are located at the machine
that will execute the specific computation.

In the REV par adi gm [565], a component A sends instructions specifying
how to perform a serv ice to a component B. For instan ce, the inst ructions can
be expressed in the J ava bytecode. B then executes the request on its local
resources. J ava Servlets are an example of RE V [282]. In the CoD par adigm ,
the same interactions take place as in REV. The difference is that component
A has resources located in its execution environment but lacks the knowledge
of how to access and process these resources. It gets this information from
component B. As soon as A has the necessar y know-how, it can start execut
ing. J ava applets fall under this paradigm.

T he MA par adi gm is an ext ension of the REV one [253]. Whereas the
la tter primaril y focuses on the transfer of code, the MA par ad igm involves the
mobility of an ent ire computationa l ent ity, along wit h its code an d the reached
execution state. In ot her words, if component A is a mob ile agent, it has the
know-how capa bilities and a processor , bu t it lacks the resources where to
perform its operations. The computation associated with the interaction takes
place on component B that has a processor and the required resources. For
instan ce, a client owns the code to perform a service, bu t does not own the
resources necessary to provide the service. Therefore, the client delegates the
know-how to the server where the know-how will ga in access to the required
resources and the serv ice will be provided . An entity encompass ing the know
how is a mobile agent. It has the ability to migrate autonomously to a different
computing node where the requ ired resources are availab le. Fur thermore,
it is capable of resuming its execut ion sea mlessly, because it preserves its
execution state.

This mean s that a mob ile agent is not bound to the network host where
it beg ins execution. T he ability to t rave l permits a mobile agent to move to

124 P. Bellavista, T. Magedanz

Table 5.1. Classification of Programming Paradigms based on Code Mobility [253] .

Paradigm Before After
:) A :)B :) A :)B

A Know-how A Know-how
ClientI Server Resource Resource

B B
Know-how Resource A Know-how

R emote Evaluat ion A B Resource
B

Resource Know-how Resource B
Code on Demand A B Know-how

A
Know-how Resource - Know-how

Mobile Agent A Resource
A

. .

a destination agent system that contains the resources with which the agent
want s to interact. Moreover , the agent may be int erest ed in exploit ing the
services offered by th e destination agent system. When an agent travels , its
state and code are transported with it . The agent state can be either its
execution st ate or agent at t ribute values that determine what to do when
execut ion is resumed at the destin ation agent system. The agent at t ribute
values can include the agent system state associated with the agent (e.g.,
time to live).

The MA paradigm is imp ortant for network-centric syste ms because it
represents an altern ate, or at least complement ary, solut ion to t ra dit ional
CIS models of interact ion [153]. MA solut ions may cont ribute to a reduction
of the overall communication traffic in network. For example, mobile code
has the ability to engage with a server locally for searching large databases;
the proximity to t he server ensures high communication bandwidth.

The adoption of the MA technology is encouraged by many researchers
in the distributed syst em area , by cit ing the following deriving benefits [154]:

- Asynchronous/autonomous task execution - After th e injection of an agent
into the network environment, both the commanding user and the origi
nating network host have no control duties on the launched agent and can
perform ot her tasks.

- Reduction of network traffi c and client processing power - Massive data
exchanges are handled locally at the nodes hosting the data, and client
computers could concentrate on performing only limited local tasks.

- In creased robustn ess - The redu ction of dependence between int erworking
components allows MA-based applications to overcome temporary unavail
ability of both the network and the needed CIS resources. Once th e agent
arr ived at a target system, the originating host may cras h or the network
may become unavailab le with out any drawbacks on the task pr ocessing.

5. Middleware Technologies: CORBA and Mobile Agents 125

- Automation of distributed task processing - Agents can exhibit an au
tonomous behaviour and can have built-in itineraries which determine
which tasks th ey have to perform and where, with out the need of any
user interaction.

- Decentrali zed control and management - Dynamic agent migration and
their possible cloning significant ly simplify the automa ted distribution of
form erly cent ralized programs for the control and management of network
resources and distributed applications.

- Flexibility - Software can be distributed at run-time and only when needed
(on-d emand software distribution) . Service software can be encapsulated
within mobile agents , instantly downloaded to both client and server nodes,
and installed by transporting mobile agents even when possibly complex
installation operations have to be performed on target hosts.

This means that mobil e agents provide flexibility in dynamically (re-)distribu
ting intelligence inside a distributed network environment, in particular to
reduce network load and to optimize service performance. The MA benefits
list ed above permit to overcome various problems and inefficiencies of tra
di tion al CIS architectures. The possible drawback of th e MA technology is
represented by th e securi ty risks introduced, since from some points of view a
compute r virus is some kind of mobile agent , too. Furthermore, an agent may
be attacked, modified or delet ed by a hostile agent pla tform on a malicious
network host. Anoth er typically stated and obvious concern related to mobile
agents is the question if agent migration is always of advantage if compared
with message passing. For example, it is probably better to interact by mes
sage passing in case the agent code is bigger than the expec ted data volume
to be exchanged.

In summary, it has to be stated that agent technologies have a lot of
appealing advantages compared to traditional technologies for solving specific
requirement s that are emerging in the provi sion of dist ributed services in
th e Internet environment. But the agent support imply th e int roduction of
middleware components in th e target environment in order to enable mobility,
local agent execution and advanced facilities for int er-agent communication
and coordinat ion. In addition , to be effectively usable in th e short term ,
mobile agents require mechanisms and tools to interact with exist ing services
and legacy systems designed according to the traditional CIS programming
paradigm.

5.3.1 Mobile Agent Platforms

The boom of research activities related to MA pla tforms started in the mid
nineti es, motivated by th e several advantages promised by this new tech
nology and presented in the previous section. Many research labs and man
ufacturers were involved in th e development of various platforms, built on

126 P. Bellavista , T . Magedanz

top of different operating systems, and based on different programming lan
guages and technologies. Even new languages have been realized , exclusively
designed for the support of mobile agent s (e.g., TeleScrip t) .

However , what is more relevant for the middleware perspective we are
trying to present in this chapter , is that common trends in MA platforms
have started to emerge evidently within the last few years . Interpreter-based
programming languages, particularl y Java, are forming th e basis for most of
today's agent platforms, mainly due to th eir easy por tability over hetero
geneous platforms. In addit ion, J ava is frequently chosen for the available
support, directly at th e language level, of fine-grained securi ty policies and
t ra nsport faciliti es via object serializat ion [282]. Moreover , even if corning
from different experiences and domain-specific design constrain ts , the im
plement ers of MA platforms are achieving a general agreement on the ar
chitect ure of middl eware services tha t are necessary for support ing mobile
agents in open and global environments and for leveraging the diffusion of
MA-based services in the Internet. Finally, several approaches have recently
explored th e possibili ty of integrating mobile agents and RPC-based middl e
ware like CORBA, possibly stimulated by the research work accomplished
for th e definition of agent interoperab ility st andards [660] .

MA platforms typically realize a distributed pro cessing environment, con
sisting of severa l middl eware components , and usually referred to as Dis
tributed Agent En vironm ent (DAE) . In th e following of th e section, we will
look closer to th e st ruc ture of state-of-the-ar t MA platforms and to th eir
middlewar e capa bilit ies [98] , while Section 5.4 will be complete ly devoted to
a detailed present ation of why and how to integrat e th e CORBA and MA
middleware technologies.

Good examples for existing state-of-the-art MA systems are Aglet s Work
bench from IBM J apan [12], Concordia from Mitsubishi [183], Odyssey from
General Magic [466], Voyager from Obj ectSpace [615], Ajanta from th e Uni
versity of Minnesot a [18], TACOMA from Universities of Cornell and Tromso
[582], Grasshopper from IKV ++ GmbH [284], and SOMA from University
of Bologna [563]. An extensive description and comparison of MA platforms
is out of th e scope of this chapter and can be found in [487] .

Structure of Mobile Agent Platforms. DAEs usually support a hier
archy of locality abstract ions (regions, places and agent systems) to mod el
network physical resources, and two different types of agents (mobile and
st ationary) . The same terms are standa rdized by the OMG MASIF st andard
that will be presented in Subsection 5.4.1. Figur e 5.3.1 depicts an abst rac t
view of these ent it ies.

The act ual run t ime environment for agents is called agent system: on each
network host , at least one agent system has to run to support the execut ion of
agents . Agent systems are structured by means of places, i.e., isolated execu
t ion cont exts tha t are able to offer specific additional services. For example,
there may exist a communicat ion place offering sophist icated communication

5. Middleware Technologies: COREA and Mobile Agents 127

Place 1

Age nt System B

8 Mobile agent

.1. stationary agent

.-..
Agen t ~stem C

P1a~ 1

Mil;Taton

Corrmunicalion.. ~

Agent ~stem A

Region A

Region
Registry

Fig. 5.3. Structure of a Distributed Agent Environment (DAE) .

features , or there may be a trading place where agents offerIbuy information
and service access . Agent systems can be grouped into domains , called re
gions, that usually model a physical local area network: each region has an
associated (region) registry that maintains information about all registered
agent systems, places and agents.

The region concept facilitates the management of the distributed com
ponents (agent systems, places and agents) in the DAE. Agent systems, as
well as their places, can be associated with a specific region by registering
them within the accompanying region registry. All agents that are currently
hosted by those agent systems will also be automatically registered by the
region registry. If an agent moves to another location, the corresponding
registry information is automatically updated. A region can be used also to
comprehend in a unique logical entity all agent systems belonging to a specific
company or organization.

The region registry maintains information about all components that are
associated to a specific region. When a new component is created, it is au
tomatically registered within the corresponding region registry. While agent
systems and their places are associated to a single region for their entire
life time, mobile agents are able to move between different agent systems of
possibly different regions. The current location of mobile agents is updated
in the corresponding region registry after each migration. By contacting the
region registry, other entities (e.g., agents or human users) are able to lo
cate agents, places, and agent systems residing in a region . Besides , a region
registry facilitates the connection establishment between agent systems or
agents.

Two types of agents are distinguished: mobile agents are able to move from
one physical network location (agent system A in Figure 5.3.1) to another one

128 P. Bellavista, T. Magedanz

(agent system B); stationary agents, instead, are bound to the agent system
where they have been installed and where they remain for their whole life
time to provide a place persistent service according to the C/S model of
interaction.

Common Capabilities emerging in MA Platforms. In course of time,
several fundamental requirements have been identified due to the experiences
made during research and development activities in the MA area. These re
quirements are fulfilled by any state-of-the-art MA platform, and their identi
fication is the first fundamental step towards the definition of a common and
interoperable distributed middleware to support mobile agents in the Internet
scenario. The implementation of a modern MA system requires middleware
components to support:

- Agent Execution - An MA platform must provide the basic capability to
put incoming mobile agents into execution, taking into account possible
agent-specific requirements regarding the runtime environment (e.g., bind
ing to specified local resources) . The platform has to retrieve the agent
code that may be either delivered with the migration request or down
loaded separately from an external code base;

- Transport - A special mobility support must be provided by the platform,
not only to facilitate the network transport of agent code and execution
state, but also to permit MA system administrators to command remote
execution and migration. Note that both agent execution and transport
cannot be sufficiently handled without a strict interworking with the secu
rity support mentioned in the following;

- Unique Identification - Mobile agents as well as agent systems have to be
uniquely identifiable in the scope of the entire Internet environment. Thus,
special support is required for the generation of unique agent and agent
system identifiers;

- Communication - Agents should be able to communicate with each other
as well as with platform services. Several mechanisms are possible, such as
messages, method invocation, object sharing and tuple-spaces, with differ
ent levels of expressive power and of temporal/spatial coupling between co
ordinating entities. Communication through messages may be done point
to-point, by multicasting, or by broadcasting. In addition, several MA com
munication modules include support for semantic analysis;

- Security - Basic issues are authentication (i.e., the determination of the
identity of an agent or an agent system), and access control of resources/ ser
vices depending on the authenticated identity of the requesting entity. To
guarantee privacy and integrity, crucial information such as code and state
of a migrating agent should exploit public-key cryptographic encryption
before transfer over an untrusted network;

- Management - It is necessary for agent administrators to be able to moni
tor and control their agents, also remotely. Control functions include tem
porary interruption of the execution of an agent task, agent premature

5. Middleware Technologies: CORBA and Mobile Agents 129

te rmina tion, and modification of its task list . The monitoring of an agent
is associated with its localization in t he scope of the whole dist ribu ted
environment. Regarding an agent system, all hosted agent s as well as th e
occupied system resources have to be monitored and controlled, possibly
to not ice and avoid denial-of-service attacks.

Figur e 5.3.1 shows the st ruc ture of a core agent system tha t includes several
services in order to fulfil t he basic functional requirements identified above.
Note that some of the services provide remote interfaces in order to be ac
cessible by external actors , such as ot her agent systems, agent s, or hum an
users.

Apar t from the basic capabilit ies shown in the Figur e, addit ional ones
have been taken into considera t ion in some of the most recent and evolved
MA platforms [284, 563]. The most relevant one in the context of this chapter
is certainly the interop erability module, offered to permit the integration of
heterogeneous agents and agent systems with already existi ng serv ices and
legacy component s. This interop erabili ty is obtained via compliance with
emerging standards in the MA area, all based upon the CORBA middleware,
and is the object of the whole Section 5.4. Oth er capabilities have started to
be accepted as fund amental and tend to be integrated in MA platforms. For
instance, a persistency service can permit to tempor arily suspend execut ing
agents and to sto re them on a persist ent medium. Persistency allows agents
not to waste system resources while they are waiting for external event s such
as the reconnection of one user or terminal where they have to yield back the
results of their operations. In addit ion, a module for the support of mobile
computing is provided in some MA systems to accommodate the nomadicity
of users, terminals and service components, which can move with no need
to suspend offered/accessed services; it is the MA dist ributed middleware
tha t maintains t raceability of the mobile ent it ies and re-organizes accordingly
the service provision [63] . These addit ional features usually benefit from the
modular organizat ion of MA platforms and should be handled as add-ons
th at can be "plugged" into a core MA system to dynamically extend its
basic functionality.

5.4 Middleware Technologies: the Integration of MA
and CORBA

The two previous sections should have put into evidence th e several differ
ences between MA and CORBA as enabling technologies to implement dis
t ributed middleware for Internet service provision. The most evident one is
th at CORBA tends to suggest a model where obj ect s are alloca ted once and
for all at a fixed location before their registration at the CORBA ORB , while
mobile agents can dyn amically and autonomously migrate during executi on
depending on t ime-dependent system condit ions. It is possible in CORBA to

130 P. Bellavista, T . Magedanz

10
Generalcr

Heterogeneous NelWJrk Components

SeaJrity
Service

Agent
Execution

Agent System

Fig. 5.4. Architecture of Basic Capabilities in Mobile Agent Platforms.

mimic a certain kind of object mobility by replicating different instances of
the same object at different locations and by tailoring the object adapter to
forward different client requests for the same object to the different locations
hosting one of its replicas. This replication (with the consequent issues of
maintaining consistency in case of writable replicas) can be motivated by ob
jectives of fault-tolerance, scalability and load balancing. However, the single
instance of the CORBA object is thought to be at a fixed location for its
whole lifetime, possibly activated/deactivated automatically by the CORBA
object adapter.

Another relevant point of difference is the fact that mobile agents are
entities aware of their current locations and of the locations of needed re
sources (e.g., other agents, execution places, service components), since this
awareness is basic to permit dynamic decisions about agent migration. On
the contrary, COREA tends to hide th e physical location of a server object
when answering to a client invocation. Obviously, the ORB has visibility of
the allocation of registered objects, but this information is typically not vis
ible to client objects and application designers . This is coherent with the
principles that inspired the CORBA specification and design, that is to sim
plify as much as possible the programmer duties while implementing services
in distributed systems, by giving the impression of the availability of a local
concentrated computing environment. In addition, due to its origins in the
traditional area of distributed computing, CORBA suggests a CIS model
of interaction between its objects while mobile agents , also because of the
influence of the multi-agent research community, typically adopt a peer-to
peer model of interaction. However , the distinction is not so rigid either in
CORBA, since CORBA objects can play the role of both clients and servers
during their lifetime.

5. Middlewar e Technologies: CORBA and Mobile Agents 131

All above differences between CORBA and MA technologi es stem from
th eir different vision of the role and obj ectives th at a distributed middle
ware must have in the support of application design , implementation and
deployment.. CORBA has been thought mainly to simplify the duties of dis
t ributed service implementers , by prov iding a transparent middl eware th at is
in charge of solving the largest par t of the issues related to th e int egrat ion of
dis tributed and heterogeneous comp onen ts . From a certain poin t of view, th e
CORBA middleware tends to take some decisions in place of programmers , by
leaving them th e specification of even art iculated and complex policies (e.g.,
for obj ect activation, securi ty, replication and persistency) . On the contrary,
the MA-based distributed supports have generally grown from the bot tom,
by first providing the mobility capacity to obj ects , and th en trying to orga
nize common capabilit ies into a layered architect ure . This architec ture aims
at simplifying the work of application designers by supporting most com
mon functionalit y, in ord er to avoid useless duplications of design work and
impl ement ation code . In MA-based infrastructures, application programmers
usu ally have complet e visibility of th e operational environment where agent s
execute, and have the opportunity whether to exploit or not the provided
mechanisms and services.

Fin ally, th e last relevant distinction between CORBA- and MA-based
middleware infrastructures is that , at the moment , CORBA has reached a
widely accepted st andardization and has a very large installed base of com
pliant resources, systems and serv ice components. On the cont ra ry, mainly
due to the novelty of the MA technology, the resear ch on mobil e agents has
produced a great var iety of different and non-int eroperable MA platforms,
where the common facilities prov ided at the middleware layer are st rictly
dependent of th e specific pla tform used .

All these consid erat ions suggest that th e two presented middl eware so
lutions have not to be considered alternative the one to the oth er, but they
can int egrate and complement very well. In fact , a flexible middleware for the
realization of Int ernet services can significant ly benefit from the expressive
power of agent mobility at run-time toge th er with the possibility of trans
parent remote agent coordination , from the availability of different degrees of
visibility of resources in the global syste m together with the capacity of simpl y
integrating legacy service components via st andard interfaces. System- and
application-specific considera t ions typically guide th e selection of the most
suitable charac terist ics to exploit; for this reason , we claim th at a general
purpose middleware solution for th e Internet scenario should give service
designers th e possibility to dynamically choose th e proper solution among a
wide variety of available ones.

To show the opportunity of th e integration of CORBA and MA, th e fol
lowing of th e section reports two notable examples. On the one hand, in the
area of the extension of MA platforms to achieve interoperability, we present
th e two most relevant research activities th at have led to the specification

132 P. Bellavista, T. Magedanz

of the MASIF [401] and FIPA [240] standards. It is not a case that both
the proposals, even if coming from different research communities and differ
ent scientific backgrounds, adopt CORBA as the standard bridge to overcome
heterogeneity. On the other hand, in the area of the extension of the CORBA
distributed middleware, we shortly describe the work undergoing in the OMG
towards the definition of a CORBA migration service [187] . We will show,
in particular, how the migration service calls for a set of basic middleware
facilities that are very similar to the ones identified and implemented in the
most diffused MA platforms.

5.4.1 MA Integration with CORBA-based Standards

The international standardization of agents started relatively late in 1997.
Two main forums have to be considered in the context of agent standard
ization today, namely the OMG , which has initially investigated MA system
interoperability aspects and is currently looking at the integration of dis
tributed object and agent technologies, including both intelligent and mo
bile agents, and the Foundation for Intelligent Physical Agents (FIPA) [240],
which mainly focuses on intelligent (co-operative) agents. In the following, we
look in more detail at the OMG and FIPA agent standards and to describe
how they exploit the underlying CORBA distributed middle ware to permit
the interworking of heterogeneous Internet agents.

OMG Mobile Agent Systems Interoperability Facility. Interoperabil
ity among different MA systems is, in our opinion, a key issue for widening
the diffusion of MA-based commercial Internet services. At the same time
the goal of interoperability requires the identification of the aspects in the
MA technology subject to standardization.

Recognizing the emergence of different MA systems, which are based on
different approaches regarding implementation languages, protocols, platform
architectures and functionality, the OMG aimed for a standard to ensure the
interoperability between heterogeneous MA platforms and the (re-)usability
of (legacy) CORBA services by means of agent-based components. Therefore
OMG ORB and Object Services (ORBOS) Group issued a Request for Pro
posal for an MA facility in November 1995 that resulted in a corresponding
Mobile Agent System Interoperability Facility (MASIF) specification adopted
in 1997 [401]. MASIF is built within the CORBA framework and shows the in
terest in integration between CORBA distributed objects and mobile agents.

The idea behind the MASIF standard is to achieve a certain degree of
interoperability between MA platforms of different manufacturers without
enforcing radical platform modifications. MASIF is not intended to build
the basis for any new MA system. Instead, the provided specifications shall
be used as an "add-on" module to plug-in to already existing systems. The
standard includes CORBA IDL specifications supporting agent transport and
management, including localization capabilities. It has to be stated that the

5. Middleware Technologies: CORBA and Mobile Agents 133

gent
System

t
System-specific MASIF-compliant

Fig. 5.5. O~IG MASIF Interfaces.

enn na e agen

target of agent transport between different agent systems is not fully enabled
through the given specifications. This transport capability would only become
possible through mutual agreements on a common agent exchange format of
MA system vendors.

As shown in Figure 5.4.1, MASIF has adopted the concepts of places and
regions that are used by various existing agent platforms (see Grasshopper
and SOMA in Section 5.5). A place groups the functionality within an agent
system, encapsulating certain capabilities and restrictions for visiting agents.
A region facilitates the platform management by specifying sets of agent
systems that belong to a single authority and possibly are mapped to a
physical network locality (e.g., a Local Area Network).

MASIF does not suggest standardization of local agent operations such
as agent interpretation, serialization, execution and deserialization, because
these actions are application specific, and there is no reason to limit MA
system implementations. Instead, MASIF only proposes standardization for
agent and agent system names , for agent system types and for location syntax.
It specifies two interfaces: the MAFAgentSysteminterface provides operations
for the management and transfer of agents, whereas the MAFFinder interface
supports the localization of agents and MA systems in the scope of an ad
ministered locality. A MAFAgentSystemobject should interact internally with
MA system-specific services , and provides the associated COREA interface
to external users .

Any external system can control agents of a MASIF-compliant MA sys
tem via the MAFAgentSysteminterface: MASIF defines methods for suspend
ing/resuming/terminating agents and for moving agents from one MA plat
form to another one. The interoperation is significant only when the two in
terworking systems present a compatibility base, that is the same implemen
tation language, or compatible externalization mechanisms. Agent tracking
functions permit the tracing of agents registered with MAFFinder, introduced
to provide an MA name service, because the CORBA Naming Service is not
suitable for entities that are intrinsically and frequently mobile. Agent com-

134 P. Bellavist a , T . Magedanz

munic ation is outside the scope of MASIF (while it is th e focus of other MA
standardization proposals, such as FIPA, describ ed in the following): SOMA
agents communicate via proprietary mechanisms, but they may also decide
to use th e CORBA middl eware for object communicat ion.

As par t of any MASIF-compliant agent system, th e MAFAgentSystemob
ject int eract s internally with platform-specific services while it provides th e
associated CORBA interface to external users. In this way, it is possible to
communicate with an agent system either in a MASIF- compli ant way (us
ing th e MAFAgentSysteminterface and the CORBA ORB) or in a platform
specific way (using platform-specific interfaces that may provide addit ional
functionality, not handled by MASIF) .

Apart from the agent -specific CORBA interfaces MAFAgentSystem and
MAFFinder, the MASIF standa rd explains in detail how exist ing CORBA
services, e.g., the Naming, Life Cycle, Externalizat ion, and Security Service,
can be used by agent-based component s to enhance the provided function
ality. For instance, int eroperability also means opening MA systems to new
secur ity threats coming from the interaction with external components . The
MASIF standard recognizes th e need for security and for its management: all
MASIF implement ations are requi red to introduce security mechanisms, poli
cies and tools, buil t upon th e CORBA Security Services in order to overcome
the possible heterogeneity in the secur ity solutions adopted by the interwork
ing components.

Note that th e current MASIF specification only represents th e first ap
proach for an MA standard. It is believed that the work of the OMG Agent
Platform Special Interest Group will result in furth er specifications. For more
det ails on MASIF , see [401].

Foundation for Intelligent Physical Agents. FIPA is a non-profit asso
ciation whose purpose is to promote agent technology through the develop
ment of specificat ions that maximize interop erability across agent-based ap
plications, services and equipment [240]. FIPA specifies the interfaces of the
different components in th e environment with which an agent can interact ,
i.e., humans, other agents, non-agent software and the physical world . Be
ing mainly composed by resear chers with background in th e intelligent agent
area, FIPA puts main emphas is on the standardization of agent communi
cat ion, and a dedicated Agent Communication Language (ACL) is proposed
for all communication between FIPA agents .

FIPA specificat ions are developed in a yearly manner. In October 1997,
FIPA released its first set of specifications (FIPA'97, Version 1.0) [240]. The
three main specifications (parts 1-3) focus on agent management (in par
ticular , defining a FIPA agent platform) , define an agent communication
language, and deal with agent / software interaction.

The Agent Management System specification provides th e normative
framework within which FIPA Agents exist and operate. It establishes the
logical reference model for th e creation, registration, location, communica-

5. Middleware Technolo gies: CORBA and Mobile Agent s 135

Domain

Agents Agent Platform A

ACL

Interlaces

Fig. 5.6. FIPA Agent Management Reference Model.

tion , migration and retir ement of agents and thus is very much related to
capabilit ies of a FIPA agent platform. Figure 5.4.1 depicts the agent man
agement reference model. FIPA proposes the concept of an Agent Platform
(AP) offering three basic services. These services are namely the Agent Man
agement System (AMS), the Directory Facilitator (DF) and the Agent Com
muni cation Channel (ACC) . Agents may offer their services to other agents
and make their services searchable in a yellow pages manner by the DF. Reg
istration on a DF is optionally while registering on the AMS is mandatory
on any agent platform. Finally, the ACC is enabling agent communicat ion
between agents on a platform and between possibly heterogeneous platforms,
by offerin g a message forwarding service. Reachability between platforms is
gained by making the forward service available over the CORBA ORB whose
integration is considered mandatory for any FIPA-compliant MA platform.
Agent messages are transferred via CORBA lIOP.

The AMS is th e core of any agent platfo rm . It is responsible for registe ring
agents on their home agent platform. Registerin g on an AMS is done by
calling th e AMS message method with a request to register encoded in the
FIPA ACL. Oth er functionality offered by the AMS is deregistering of agents,
modification of the agent descrip tion and modifying the agents life cycle state .
The DF offers services similar to those of the AMS, but with an additional
search functionalit y. Thus, th e DF acts as a yellow pages directory where
agents may register to offer their services in a dynamic manner to other
agents . The regist ra t ion is done in the same way as with th e AMS. Agents
can deregister with th e DF by calling the deregister service.

If the AMS and DF services provide functionalit y th at are similar to
th e MASIF MAFAgentSystem and MAFFinder , a peculiar charac teristic of the
FIPA standardization proposal is the concept of agent communication by
means of a special ACL. Agents have predictable behaviour by common se
mantics defined in common interp retation of a common language. This is

136 P. Bellavista, T. Magedanz

achieved by the concept of communication acts . The registering of an agent
with an AMS is realized as a communication act of the act ion regist ration.
In this communication act the roles of the agent and the AMS are clearl y
defined and th e reactions of each par ty are determined by the state of th e
agent platform . For inst ance, if the agent is already registered, it is clearly
defined th at it can not be registered again, and an answer message denoting
exactly this must be sent to the agent.

FIPA prop oses the implementation of a communication channel (ACC)
per agent system that is responsible for forwarding the ACL messages be
tween agents. As platform local communication is free to the imp lementor of
an MA system, it is clear that the simplest solut ion for local communication
between agents is realized by the platform native communication protocol.
Inter-platform communication, that means communication between agents on
different and possibly heterogeneous platforms, is mandatory to be realized
by offering the forward service over CORBA nop.
Integration ofOMG MASIF and FIPA Concepts. As can be observed
from the above presentations, the OMG MASIF architecture puts more em
phasis on the physical migration/operation support for mobile agents and on
t heir physical object view, while FIPA has more emphasis on t he logical and
service view. This difference reflects the different focal points and constitu
tions of the two organizations. It is interesting to note that , notwith standing
their different perspect ives and resear ch background, both have decided to
specify their middl eware proposals on top of th e CORBA standa rd.

Both MASIF mobile agent and FIPA intelligent agent approaches aim
at ad aptive and flexible interoperability and coordinat ion among dynamic
auto nomous systems. Some correspondences between concepts in the MASIF
and FIPA frameworks are particularly significant because they come from
different research communit ies, and can play an important role in the future
evolutions and in the convergence of t he agent standardization efforts. In t his
context , it is worth to observe that:

- a mobile agent in the MASIF framework specifies a kind of message which
migrates between software systems and has the similar functionality as an
intelligent agent communication message in FIPA framework. The cur rent
MASIF middleware does not support MA communicat ions, but a flexi
ble and rich communication capability should be integrated in any MA
platform for the provision of Internet services. With such communica t ion
capa bility, a mobile agent will also have the features of an intelligent agent
in FIPA;

- a place in the MASIF framework provides the operation enviro nment for
t he mobile agents , with its capabilit ies (loca l services) and restri ctions.
Examples of such capabilit ies and restrict ions can be database services,
network resource management functions, secur ity monitoring and man
agement . All these capa bilit ies are supported by special intelligent agents
within the FIPA agent platform;

5. Middleware Technologi es: CORBA and Mobile Agents 137

- The MASIF agent system is the group of places that provides the plat
form for mobile agent migrations and operations. Th erefore a MASIF
compliant agent system corresponds to a FIPA agent platform. More specif
ically, the DF and AMS in FIPA framework corresponds, respectively, to
the MAFFinder and MAFAgentSystem functions in MASIF, while th e other
MASIF agent system component /services (offered to mobile agents via
places) become specific intelligent agent services with in a FIPA agent plat
form (e.g., wrapper, resource broker , and oth er intelligent agents for specific
applications).

It is obvious that both intelligent agent and mobile agent religions have their
strength and weakn ess in the versatil e applicat ion fields for the agent tech
nology. Th erefore it is very likely that both paradigms will converge in the
near future. A more detailed discussion of these aspects can be found in [660].
Nevertheless we have briefly tri ed to show in this section that both intelligent
and mobile agents have a lot of commonalt ies in regard to the capabilities re
quir ed to the distributed middleware for their support in an open and global
scenario. These similarities suggest the realizat ion of a common and flexi
ble CORBA-based middleware for the provision of Int ernet services designed
according to the agent programming paradigm.

5.4.2 Mobile CORBA Objects - Towards a CORBA Migration
Service

As a further sign of the importance of code mobility in the provision of mod
ern dist ributed middl eware for Internet services, the OMG ORBOS Task
Force has recentl y started to work on the possibility to integrate object mo
bility into a CORBA environment, by extending the OMA with a dedicat ed
CORBA service for migration [187] . The objective is to design a flexible and
unified CORBA environment, support ing both remote interactions and ob
ject migration, by considering already exist ing CORBA services as a basis,
determining missing functionality, and specifying a minimal set of new func
tionalit y in order to fill the gap.

The proposed service model is composed by the Life Cycle and External
ization services and uses the Naming Service for identification and resolving
matters [188] . Th e Life Cycle specification provides convent ions for crea t ing,
deleting, copying, and moving objects , while the Externalization service is
used for the serializat ion/ deserialization (rnarshalllng/unmarshalling) proce
dure of objects needed for the transfer operation.

A mobile CORBA object - in short , mobile obj ect - is a set of tradi
tional CORBA objects, forming a unit of computat ional community. Such a
mobile obj ect provides multiple CORBA interface implement ations. An in
stance of it has the ability to migrat e from one physical network location to
anot her one, without loosing its internal state. By definition , a mobile obj ect
is transformed into a package, which includ es the object code and possibly a

138 P. Bellavista, T. Magedanz
r' _. _ ._ . _ . _. _ . _ . _ ._. _ . _ . _ . _. _ . _ . _ . _ . _ . _. _ . _ . _ . _ . _ .- .
. I

CORBA View I Native Interface i
I

: ~ I

~HQ)< • COREObj,,, :

/ ~ l ~b)~I_m-"I""~,,,ionj
CORBA Interface +

Native Programming View

Fig. 5.7. The Structure of a Mobile Object According to the OMG Migration
Service RFP.

serialized version of its state. The state consists of the contents of the instance
variables, so-called data state, and the execution state. Nevertheless, since the
execution state is rather physical, this state should be manually coded into
the data state which will make the implementation of the migration easier.
The mobile object package can then be delivered to another location or be
preserved within a database for persistency purposes. By transforming back
this package , a new mobile object is created and reinstated with the preserved
state. The creation and reinstatement of a mobile obj ect can be either done
from templates (classes) or by cloning an existing instance. In the connection
with mobility, it should be not ed that migrating an object means to freeze
its execution at one location and to continue it at a different location. It is
not a copy, since only one instance is running at a time.

The basic structure of a mobile object is relatively simple . There are
two kinds of object types, a core (containing the state) object type, also
referred to as object implementation, and a bridge (stateless) object type,
which represents a CORBA object, i.e., it is visible through an IDL interface.
Figure 5.4.2 shows the proposed structure for a mobile object. A core object
type contains the state of a mobile object and a set of local interfaces, and
its implementation must be completely local. This object has no identity and
is not registered with the ORB. The realization of the provided service is
contained within this object that supports local interfaces (API) and can be
composed by native implementation objects.

The OMG ORBOS claims that mobile objects need a run-time environ
ment that supports their enti re life cycle, including their creation, termina
tion, and migration. Besides , users must be able to monitor and control their
objects. The basic procedures of the distributed middleware for mobile ob
jects that have started to be identified by the ORBOS are exact ly the same
ones we have presented in Subsection 5.3.1 as basic capabilities emerging in
MA platforms. In particular, the migration of mobile objects can be split into
the following procedures:

- Externalizing (marshalling) the object execution and data state;

5. Middlewar e Technologies: CORBA and Mobile Agents 139

- Packing th e externalized state and the code into a st ream and transfer it
to the receiving side;

- Creating and reinstating the serialized state by inte rnalizing (unmar-
sha lling) the st ream into a new object instance at the receiving side;

- Fin ally, removing the instance at the sending side.

The new instance at the receiving side is not identical with the one at th e
sending side . After the removal of the instance at the sending side, in fact ,
th e CORBA obj ects associated with th e new mobile object instance at th e
receiving side have to register themselves to the ORB and thus, will receive
new Inter-Orb References (IORs) associated to th em. In the specificat ion
of the GlOP, an approach for handling this lOR modification is given: an
ORB must provide so-called agents which are responsible for handling client
incoming requests . Such an agent has the following possibiliti es to handle
client requests if th e lOR specified by the client is not associated with an
act ive obj ect (e.g., obj ect has moved to another destination) , with different
degrees of migration t ranspa rency for the final CORBA client:

- It knows th e new lOR of th e object and forwards th e request to t he new
address. The resu lt of the request is sent from the obj ect back to the agent
which forwards it back to the client. This is achieved transparently to the
client which means that the client is not aware of th e forwarding pro cedure
and of the new server side location ;

- It knows the new location of the object, bu t is not able to forward the
request to th e object. Instead , the agent delivers the new lOR to the client
which is then able to establish a new connect ion to the object at the new
location;

- It is not aware of th e new lOR and returns an except ion to the client ,
indicating that the object is not any mor e reachable. In thi s case, th e
client may retrieve th e cur rent lOR of the obj ect by contacting either th e
Naming Service or a trader. For this purpose, it is necessar y that the object
must have its entries modified in either the Naming Service or th e trader ,
respectively.

5.5 CORBA/MA Integrated Supports: Grasshopper
and SOMA

Our claim about the suitabi lity of th e integration of CORBA and MA tech
nologies is exemplified by two emerging MA platforms th at have been devel
oped in th e last years with different features and object ives.

Grasshopp er is a commercial MA platform realized jointly by TUB OKS ,
GMD FOKUS and IKV++ GmbH [284]. Gr asshopper is a development plat
form and run-time support, buil t on top of a DAE that integrates mobi le

140 P. Bellavist a, T . Mageda nz

agents with the tradit ional CIS paradigm by exploit ing CORBA as a stan
dard bridge for interoperability. Grasshopp er is based on the J ava 2 program
ming environment and its newest version is compliant with the MASIF and
FIPA specificat ions.

Secure and Open Mobile Agents (SOMA) is an MA platform, resultin g
from a research project at the University of Bologna [563). SOMA has not
been realized for commercia l purposes, but mainly to explore and propose
innovative solut ions to st ill open issues in the MA technology (e.g., the pro
tection of the state of mobile agents against malicious execut ing environments
[189), and the integration of differentiated naming services for mobile com
put ing in the Internet scenario [63)). SOMA is implemented in the Java 2
programming framework , is designed according to the architecture princi
ples of the Telecommunications Inform ation Networkin g Archit ecture, and
specifically focuses on the provision of a wide set of facilities for security and
inte ropera bility.

Thanks to th e deep integrati on of both Grasshopp er and SOMA with
CORBA, the two platforms are extensively used in application domains that
are characterized by a high degree of resource heterogeneity and the frequent
presence of legacy systems and services. In the following, we will briefly de
scribe the distribu ted middl eware architec ture implemented by the Grasshop
per and SOMA platform s and we will present how t he integrat ion of MA and
CORBA is st rategic for the implementation of Grasshopp er-based enhanced
Intelligent Networks (IN) services and of SOMA-based Quality of Service
(QoS) management of mult imedia flows.

5.5.1 Grasshopper and the Telecommunication Domain

Grasshopper realizes a DAE composed by regions, places, agent systems
(called agencies) and different types of agents, as described in Section 5.3.
A Grasshopper agency consists of two par ts: the core agency and one or
more places. Core agencies represent the minimal functionality required by
an agency in order to support the execut ion of agents . The following basic
capabilit ies are provided by a Grasshopp er core agency (see Figur e 5.5.1):

- Communication and Transport Service. This service is responsible for all
remote inte ractions that take place between the distributed components
of Grasshopper , such as location-transparent inter-agent communication,
agent t ransport, and the localization of agents by means of the region reg
istry. All interact ions can be performed via nop, J ava Remote Method
Invocation (RMI) [282), or plain socket connect ions. Optionally, RMI and
plain socket connect ions can be protected by means of the Secure Socket
Layer (SSL) [589) that is nowadays a widely diffused Internet secur ity pro
toco l. The communication service supports synchronous and asynchronous
communication, multicast communication , as well as dynamic method in
vocation. As an alte rnative to the communication service, Grasshopp er can

5. Middleware Technologies: CORBA and Mobile Agents 141

use its OMG MA8IF-compliant CORBA interfaces for remote interactions.
For this purpose, each agency provides the interface MAFAgentSystem, and
the region registries provide the interface MAFFinder;

- Registration Service. Each agency is able to know about all agents and
places currently hosted, both for external mariagement purposes and for
delivering information about registered entities to hosted agents. Further
more, the registration service of each agency is connected to the region
registry which maintains information of agents, agencies and places in the
scope of a whole region ;

- Security Service. It supports mechanisms for external and internal secu
rity. External security protects remote interactions between the distributed
components of the Grasshopper middleware, i.e., between agencies and re
gion registries . For this purpose, 88L and X.509 certificates are used [232] .
By using 88L , confidentiality, data integrity, and mutual authentication of
both communication partners can be achieved . Internal security protects
agency resources from unauthorized access by agents . Besides, it is used
to protect agents from each other. This is achieved by authenticating and
authorizing the user on whose behalf an agent is executed. Due to the
authentication/authorization results, access control policies are activated.
The internal security capabilities are mainly based on Java 2 security mech
anisms;

- Persistency Service. It enables the storage of agents and places (the internal
information maintained inside these components) on a persistent medium.
This way, it is possible to recover agents or places when needed, e.g., when
an agency is restarted after a system crash;

- Management Service. It allows the monitoring and control of agents and
places of an agency by Grasshopper system administrators. It is possible ,
among others, to create, remove, suspend and resume agents, services, and
places; in addition, the management middleware component permits to get
information about specific agents and services, to list all agents residing in
a specific place , and to list all places of an agency.

Apart from these core services, any Grasshopper agency implements two mod
ules for compliance with MA8IF (the MAFagentSystem component is present
in any agency, while there is only one MAFFinder for any region) and FIPA,
both based on an underlying CORBA ORB . A peculiarity of the Grasshop
per MA platform with respect to other CORBA-integrated MA systems, such
as SOMA (presented in Subsection 5.5.2), is that Grasshopper realizes some
forms of location transparency for its mobile agents. It is as if the Grasshop
per focus on interoperability and its tight integration with CORBA have
superimposed the location transparency of the CORBA standard on the lo
cation awareness typical of the MA programming paradigm. The result is
that not only that Grasshopper agents do not care about the location of
a desired communication peer, but also that there is no difference between
remote method invocations and local method invocations within the agent

142 P. Bellavista, T. Magedanz

Telerommun cation Netv.ork
Nodes

Agent Testing
EnvirOlment

MASIF
Rea UitU m

Agent Oeation
Environment

.' . . ~ , ..
eom Serv ices

~ :IPersisEncy IIMan>gerrenl

: ~ ~ IRegistration II Security:fMAFl . ,
:~

.~ • ••• • • •• • L.....----

Fig. 5.8. The Grasshopper Architecture and the Telecommunication Place "Plug
in".

code . The last feature is achieved by means of proxy objects that are directly
accessed by a client agent. The proxy object forwards the call via the ORB
to the remote target object. In this way, these proxy objects are equivalent
to the client stubs used by CORBA implementations.

This kind of location transparency certainly simplifies the programming
work in the implementation of MA-based services, but it may significantly
limit the visibility of designers when realizing applications that must have
a high degree of knowledge about the hosting environment, such as in the
domains of performance monitoring and distributed management [62] . For
this reason, other MA platforms pursue integration with CORBA without
exploiting its ORB for agent operations in "homogeneous" environments,
i.e. , within their proprietary agent systems, even if, however, they usually
provide location transparency for peer communications [563].

Grasshopper is a very complete MA programming environment also for
the rich variety of support tools offered to MA application designers (see
Figure 5.5.1) . An agent creation environment enables the "plug and play"
composition of mobile agents out of reusable functional building blocks. An
agent testing environment allows for the simulation of the whole distributed
environment by means of a single agency, so that the entire execution of an
agent can be simulated locally, without endangering the real resources. Fi
nally, a graphical agent management tool enables the monitoring and control
of agents and agencies in the scope of one or more regions.

Special emphasis lies on the opportunity to easily enhance the platform
capabilities in order to fulfil individual needs, depending on concrete appli-

5. Middl ewarc Technologies: CORBA and Mobile Agents 143

cation scena rios. To achieve t his goal, a Grasshop per core agency compr ises
only those capabilit ies that are inevitably necessar y for the support of mobile
agents . Addi tion al , application-dependent functionality is realized by modu
lar and reusab le building blocks. Examples of such building blocks are ada pter
services for the access to telecommunication hardware for IN serv ice provi
sion, based on eit her pro prietary protocols/technologies or compliance wit h
CORBA.

In fact , one emergi ng application area of the MA technology is the
te lecommunications sector. The following sect ion t ries to outline how the
current IN architecture can be enhance d significantly and flexibly by means
of mobile agents, in particular if they are integrated with interoperabili ty
standards. For information about the basics of INs, please refer to [391] .

MA-based IN Service Provision. The current IN architecture is C/ S
based. The Service Switching Point s (SSPs) act as clients, requesting the
execution of service logic from the Service Control Points (SCPs), acting as
servers. T his architecture prov ides several important advantages, e.g., th e
opp ortunity to crea te or modify network capabilities without any changes
at the switches . However, due to the rising number of service users and the
increasing number of provided IN services, the centralized SCP s are likely to
become the bottleneck of the whole system. Even now t he SCP capac ity is
te mporarily overdrawn. Besides, the deployment and subscription of services
by the Service Management System (SMS) is not efficient and open enough
to handle t he demands of the emerg ing open service market . Fin ally, due to
the centralized architecture, an SCP server failure would cause immense costs
for service provid ers.

Because of these limitat ions, the adoption of standard distribu ted object
technology, such as CORBA, has been considered in the IN world in the last
1990s. Also taking this into account, some resear ch projects have proposed
the introduct ion of the MA technology, when integrated with th e CORDA
middleware, into the IN environment in order to achieve ultimate flexibility
[392]. This means that enhanced IN services can be implemented by eit her
CORBA objects and/or by mobile agents on top of CORBA.

Focusing specifically on t he last issue, the realizat ion of IN services in
terms of mobile agents can extend the traditional IN model in several ways.
Services can be provided time-dependent ly, i.e. , installed for a limit ed t ime
duration. Distributed provision of serv ices and service compo nents can en
ab le load balancing in t he network. Fin ally, the serv ice management can
be facilit ated by dynamically installing, maintaining and extending ad-hoc
management agents only on t hose network nodes where th ey are cur rent ly
needed .

Figure 5.5.1 depicts the proposed approach. The main idea is to intro
duce serv ices on demand and ult imately distribute service logic and data
from the centralized SCP to switches and final user devices by means of mo
bile agents . To support agent technology, the different network nodes should

144 P. Bellavista, T. Magedanz

r: I SCE/AC E I,B88\;.,. 9Ag,." I

r=-==w'------------,.-----------'-£-:: I SMS ~~g§~

s:-=--#--.-r---' BBB

Fig. 5.9. MA-based IN Architecture.

contain Grasshopper agencies . In this way, agents representing IN service
logic and data can be sent dynamically to those network locations where
the functionality is currently required. An agent-enhanced Service Creation
Environment (SCE) allows to develop appropriate IN service logic and data,
including the envisaged itinerary of the agent. The outlined integrated ap
proach, combining both agent and C/S technology, allows to enhance the
current IN architecture instead of completely removing it [392]. Note that
the agent transport shown in Figure 5.5.1 is not performed via the IN stan
dard signalling system no.7 (SS7), but instead via a CORBA-based data
network that interconnects the agencies.

The Grasshopper agents implemented for IN service provision consist of
two parts. The first part (core component) is devoted to the agent nature of
being an autonomous mobile entity: it includes all functionality required for
agent lifecycle management and mobility support, and these functions are
realized by strongly interworking with Grasshopper agency services.

The second part (application component) is related to the provision of the
specific IN service , e.g. , the control and management of telecommunications
switches. Therefore, the agent application part contains appropriate IN logic
and data, and makes use of either external interfaces (e.g., INAP interface
at the switch and SCP) or adapted interfaces already offered within the
agency (e.g., a CORBA object mapping INAP operations into CORBA object
invocations, as depicted in Figure 5.5.1). In the first case traditional IN logic
may be used, whereas in the second case advanced logic based on object
oriented programming may be used . Note that the availability of the second

5. Middleware Technologies: CORBA and Mobile Agents 145

choice also permits the fast prototyping and deployment of functionality for
serv ice subscription, customization, and service logic maintenance (including
appropriate GDIs) .

Three kinds of actors are involved in the Grasshopper solution: a Web
accessible agent provider , a customer represent ing a comp any or organiza
tion, and various final users . Each actor requires access to an agency. Addi
tional agencies are connected to the different network element s, i.e, SCP and
switches. Figure 5.5.1 presents th e scenario , which is initiated by the cus
tomer accessing the provider via the Internet and requesting an IN service
agent (0). The provider sends th e requested agent to the customer (1) who is
now able to pre-configure it (2) . The pre-configuration comprises the selection
of desired final users and th e specification of th eir various access restrictions.
Afterwards, th e service agent is sent to the final users (3) where it is supplied
with individual service logic configurations (4). Before th e agent executes its
designed task, it automatically migrates back to the provider (5) to allow
security checks, e.g., the determination of code modifications (6). Only if the
secur ity checks have been successful, the agent moves to a specific network
node. Three possibilities are taken into account : agents representing global
services (e.g., free phon e) migrate to the agency connected to the cent ralized
SCP (7a) ; agents realizing called party services (e.g., call forwarding) move to
the agency at the called party switch (7b) ; agents representing calling party
services (e.g., abbreviated dialing) move to th e agency at th e calling party
switch (7c). After reaching their destination agency, the agent s connect th em
selves to specific IN service adapters th at can either be realized by enhanced
agency services or in turn by special (stationary) agents. Finally, the service
execut ion st arts (8a-8c) .

5.5.2 SOMA and the Management Domain

SOMA is an MA-based programming framework designed to support th e
easy definition, deployment and tailoring of general-purpose network-centric
services. In th e following, however , apart from briefly presenting th e archi
tecture of th e SOMA DAE , we will concentrate specifically on its applicat ion
to the management of distributed and heterogeneous network resources, sys
tems and services. In this domain, SOMA has already achieved int eresting
results [61, 62]' also due to its full int egration with the standard CORBA
technology.

The main idea in applying SOMA agents to the management domain is
that mobile agents can fulfil administrat ion needs by moving and execut ing
on different nodes. Automation of cont rol is obtained through the possibility
of delegat ing management actions to agents, that act autonomously and in
a completely asynchronous fashion with respect to the administ ra tor, thus
relieving her duty; for instance, one agent can automatically take care of soft
ware upgrading on dynamically selected nodes of a managed network. Mobile
agents permit to adapt to syst em modifications by tuning the behaviour of

146 P. Beilavista, T. Magedanz

Customer
Agency

End User
Agency

Customer Domain Provider Domain

Fig. 5.10. A Provision Scenario of MA-based IN Enhanced Services.

network resources and services at run-time; for instance, any administrator
can modify and propagate security policies at any time, with no need to shut
down the whole system, by dynamically instantiating new mobile agents to
propagate the new policies in the administered domains.

Also SOMA realizes a DAE consisting of regions (called domains), places
and different types of agents, as described in Section 5.3. The SOMA DAE
offers a distributed middleware with a rich set of interacting and coordinated
facilities for the design and development of complex network-centric appli
cations. In addition, the openness property of the SOMA infrastructure [64]
permits to extend the programming framework by dynamically adding new
services, even built on th e already provided functionality.

SOMA DAE facilities are split in two levels, the lower one that groups
the basic and primary mechanisms, the upper one that comprehends more
evolved tools and services, as depicted in Figure 5.5.2. The SOMA Upper
Layer Facilities (ULF) represent advanced operations and support directly
the development of applications and services (see [64] for details) :

- Agent Interoperability Facility (AIF) - The AIF offers interfaces to sim
plify the calls from SOMA components (included either in the DPE layer
or in the service one) to external CORBA components or services. In ad
dition, it supports the registration of SOMA-based services as CORBA
servers and, finally, it provides interoperability with different MA systems
by implementing the MASIF standard interface;

- Agent Security Facility (ASF) - The ASF provides all the mechanisms for
authentication, authorization, integrity and privacy. SOMA integrates a

5. Middleware Technologies: CORBA and Mobil e Agents 147

security framework based on standard security providers and certificate
infrastructures [318, 226]. The current ASF implementation is based on
agents but can also interoperate with CORBA Securi ty Services [188] ;

- Agent QoS Facility (A QoSF) - The AQoSF provides both QoS monitoring
and adaptation functionality. It is in charge of observing resource proper
ties, from disk free space to effectively availabl e network bandwidth, from
CPU usage to allocated space in heap memory for any thread, thanks to
the integration with the Java Virtual Machine Profil er Interface (JVMPI)
[343] and with platform-dependent monitoring modules via the Java Native
Interface (JNI) [280]. Any authorized mobile service can access the moni
tored properties, and, depending on this inform ation, can decide a strategy
suitable for adapt ing to the current environment conditions, without sus
pending service provis ion (see also Subsection 5.5.2 about the dynamic
adapt at ion of multimedia streams) .

The AIF, ASF and AQoSF can make use of the lower facilities in their imple
mentation; for instance, th e QoS facility exploits the underlying coordinat ion
facility to command collaborat ive operations to try to restore the requested
quality after th e degradation of a network link . The SOMA Lower Layer
Facilities (LLF) include:

- Agent Coordination Facility (A CF) - The ACF provides mechanisms and
tools to simplify coordinat ion and communication between ent it ies. Agents
in the same place interact by means of shar ed obj ects , such as blackboards
and reactive tuple spaces [114]. Any place hosts a Local Resource Manager
module that regulates agent access to th e node resources. This module
controls the au thorization of agents and enforces the place security policy.
Whenever one agent needs to share one resource with ano th er agent that
resides in a remote place, it is forced to migrat e to that place . Outside th e
scope of th e place, agents can perform coordinated tasks by exchanging
messages delivered to agents even in case of migration;

- Agent Migration Facility (AMF) - The AMF gives service designers th e
possibility to simply reallocate network resources and service component s
at run-tim e. Entities capable of reallocation are represented by agents, that
can move in the network either via MA native migration methods or via
standard interfaces such as MASIF over CORBA nop;

- Agent Naming Facility (ANF) - A basic identifi cation mechanism permits
to dynamically assign tags to any entity in th e syst em. Globally unique
identifi ers are the basis for the realization of the multiple naming sys
tems provided by th e ANF that puts together a set of different naming
syst ems , possibly characterized by different policies. For example, it real
izes a Domain Name Service and a Directory Service functionality. The
ANF dynamically maintains and permits to access the information about
the current state of any (possibly mobile) ent ity in the SOMA distributed
middleware.

148 P. Bellavista, T . Magedanz

serVice{
Layer

DPE{
Layer

ltelerogeneou!'O{
Network Components

Fig. 5.11. SOMA Distributed Middleware for Management Applications.

The above facilities are available in different flavours, depending on sys
tem and service needs . For instance, the ANF , currently permits the co
existence of the SOMA proprietary naming service deriving from DNS with
the CORBA Naming Service . Other LDAP-compliant naming and directory
services are under integration to let users and designers choose among mul
tiple name spaces [313] . System- and application-specific considerations typ
ically guide the selection of the available facilities to use; for this reason, a
flexible management environment has to give service designers the possibility
to choose the proper solution among a wide variety of available ones.

SOMA-based Resource and Service Management. SOMA provides a
wide range of management tools, from the monitoring of the state of the
distributed system to the possibility to control and coordinate replicated
resources, from the dynamic installation and configuration of new network
resources to the optimization of access to replicated information by consid
ering both current traffic level and query locality. The full integration with
CORBA and the implementation of the MASIF interface gives to SOMA
management agents the capacity of interworking in different contexts (see
Figure 5.5.2):

- any SOMA service can perform management operations on legacy systems
via third-party CORBA gateways to either the IETF Simple Network Man
agement Protocol (SNMP) [299] or the ISO Common Management Infor
mation Protocol (CMIP) [622] ;

- any SOMA service may call external CORBA objects, included either in
CORBA Services/Facilities or in other systems management frameworks
that offer a CORBA interface (SOMA agents as CORBA clients);

- any SOMA service may register its interface to an ORB and offer the
implemented services to any recognized external CORBA client (SOMA
agents as CORBA servers);

5. Middleware Technologies: CORBA and Mobile Agents 149

~....... SOMA Place

~ ~M
~ A

~-- -~---_ .~ !
- ~-- M

A

_.~ - !

CORBAORB

Fig. 5.12. Different Contexts of Interoperability for SOMA Management Agents.

- any external entity, whether MA-based or not, may ask SOMA agents for
agent management and tracing services defined by the MASIF standard;

- mobile agents can be moved between different type-compatible MA-based
management environments compliant with MASIF.

SOMA has demonstrated its suitability in the implementation of several mon
itoring and controlling tools [61]. In addition, a main goal of SOMA is also to
manage complex Internet services, even obtained by tailoring and compos
ing existing ones, and to dynamically introduce new services in the existing
infrastructure with no need to suspend operations.

In the area of the management of multimedia streaming over best-effort
standard networks such as the Internet, we have implemented a Video on
Demand (VoD) SOMA-based service [62]. It is based on a set of lower-level
services, implemented in terms of mobile agents dynamically distributed over
the paths between the source and the targets of the video stream. SOMA
VoD permits users to require a QoS level for any multimedia stream, and
allows to manage and adjust the requested quality during service provision, to
respond to dynamic modifications of network resource availability. The VoD
service is realized by coordinating two different types of SOMA management
agents: the QoS Negotiators (QoSNs) that define and grant a specific level
of quality for the service, and the Admission Controllers (ACs) that manage
the resources to be engaged by local intermediate nodes (see Figure 5.5.2) .

150 P. Bellavista, T. Magedanz

ACs are present on every node of the network; this assu mption is not se
vere becau se t hey are implemented by mobile agents th at can move and be in
stalled whenever they are needed. Each AC manages local resources and keeps
t rack of their current commitment to already accep ted streams . The flow
specifications of streams are recorded in a local table of <receiving-host,
bandwidth, delay, loss> tuples. Any t uple represents the statistics of VoD
traffic between the local and th e receiving host : the first t ime, it contains val
ues calculated upon a short sample of communicat ion; then, it is updated by
moni toring real trafficof curre nt VoD sessions. ACs are in charge of answering
to reservation requests from QoSNs.

The VoD service requires th e coordinat ion of a set of QoSN agents locat ed
at th e source, at the target and at some intermediate nodes. QoSNs main tain
session state : th ey record user preferences and flow specificat ions for a video
st ream. QoSNs evaluate the feasibilit y of meeting these requirements against
the local AC database and exploit th e SOMA coordination facility to perform
the negotiation phase for the definition of th e achievable QoS. After the
negotiation phase, during multimedia st reaming, any QoSN is in charge of
receiving packet s from th e previous QoSN and of forwarding them to the next
QoSN.

Let us first consider the case of a video st ream addressed to one target
only. The path between the source and th e target is aut omatically determ ined
at run-time, by tracing th e route via one dummy packet sent from source to
target . QoSNs move to the chosen hosts on the path and interrogate the AC
datab ase: if availab le resources are not enough for th e desired QoS, QoSNs
can coordinate and reduce th eir requests by scaling the st ream (at the mo
ment , by dropping frames in Motion JPEG st reams or by reducing resolut ion
in MPEG-2 ones [273]). Only if these diminished reservatio n requests cannot
be sat isfied, the VoD service is denied. After a successful negoti ation phase,
the (possibly scaled) multimedia stream starts to flow. Dur ing the video dis
tribut ion, a link can fail or its quality can deteriorate, thus makin g impossible
to a par ticular QoSN to maintain the negotiat ed quality. In that case, the in
terested QoSN can enhance the throughput of its link via st ream striping on
non-corou ted paths [603] . In this case, it sends back a message to temporaril y
stop the st ream , and forwards a message to suspend updates in AC tables
on th e path. Then , it sends its clones to handle new non-corou ted paths and
starts the negot iat ion phase with the clones. When negot iation completes,
the QoSN sends back a message that restar ts the stream : apart from a delay
in receiving t he st ream, the VoD target goes on transparently.

In the case of multicast distribut ion of th e same video st ream (for N
target s) , the generated network t raffic can be limited by exploit ing location
awareness of agents. While in tradit iona l VoD systems the source generates
N packet streams, one for each target , SOMA QoSNs can ascertain whether
there are several target s within t he same domain locality, and can split pack
ets only when it is necessary, in genera l only at the last hop.

5. Middleware Technologies: CORBA and Mobile Agents 151

o tunncling 0 cn-routing 0 l11u lticast

Fig. 5.13. Tunnelling, Co-routing and Multicast in the SOMA-based VoD Service.

5.6 Concluding Remarks

Based on the findings of sections two and three, namely that each of the
presented middleware technologies has some drawbacks or limitations for its
exclusive use to realize a very flexible platform for the realization of Internet
services, this chapter has presented an emerging approach for the integration
of MA and CORBA technologies in order to take advantage of both when
needed. This means that service components could be dynamically deployed
in a distributed service provisioning environment and moved during runtime
to more appropriate network hosts if required (e.g., for system recovery, up
grading, extending and load balancing). Nevertheless, remote inter-object
coordination and communication between distributed service components is
maintained as a fundamental paradigm of the proposed service middleware
for open and global systems.

We have described how it is possible to extend MA systems via the
CORBA CIS middleware technology that is today the most accepted and
diffused standard for interoperability between heterogeneous distributed ob
jects. This approach currently enables a pragmatic short-term way to en
hance CORBA-based distributed processing environments with object mobil
ity through the provision of an add-on middleware layer, i.e., the distributed
agent environment. In addition, we have illustrated how two state-of-the-art
MA platforms (Grasshopper and SOMA) exploit this integrated and flexible
middleware respectively for the provision of enhanced IN services and for the
management of Internet multimedia streams with QoS requirements.

The resulting integrated technology suggest to imagine and provide new
and flexible service creation environments, which require an evolution of the

152 P. Bellavista, T. Magedanz

current ones in order to reflect the capability of object mobility. Mobility
could be made visible at a high level of applications design for developing
specific applications that can benefit from the explicit notion of locality, or
(more in line with the overall CORBA principles) can be exploited at a lower
level of application engineering, where object mobility is employed by the
middleware support in response to specific run-time requirements, such as
potential interconnectivity of ORBs, performance, replication, and so on.

Much research work is still to be done, as some mobility aspects have not
reached yet a widely accepted and standardized solution. All of them have
to be analysed and considered in the future in order to provide a consistent
model which is inline with the latest developments within the CORBA com
munity. For instance, still an open point is the dynamic detection of object
relationships, which is required when the middleware is requested to freeze
(i.e., to serialize on a transportable format) the state of a mobile object. The
CORBA Relationship Service may be a starting point, but does not provide
a complete solution at the state-of-the-art of its specification [188] . Finally,
also as a proof of the heat of the subject and of the interest raised in the
OMG itself, interested readers are referred to the recent activities of the OMG
Agent Special Interest Group, which has issued a Request for Information on
"Agent Technology in OMA" addressing the need for object mobility [187] .
It is likely that a corresponding Request for Proposal for the standardization
of a CORBA Migration Service will be issued at the time of publication of
this book.

6. Agent Coordination via Scripting Languages

Jean-Guy Schneider , Markus Lump e, and Oscar Nierstras z

Insti tute of Computer Science and Applied Math ematics (lAM) ,
University of Bern e, Neubriickst rasse 10, CH-3012 Bern , Swit zerland

Summary.
In recent years, so-called scriptin g languages have become increasingl y pop
ular as they provide means to build qu ickly flexibl e applications from a
set of prefabricated components. These languages typ ically support a sin
gle, speci fic architec t ural style of composing components (e.g. the pipes
and filt ers architectural styl e) , and they are designed to address a spe
cific applica tion dom ain. Although script ing languages and coordination
language s have evolved from different roots and have been developed to
solve different problems, we ar gue tha t both address similar separations of
concerns. Scripting languages achieve a separation of components from the
scri pts t ha t configure and compose them, whilst coordination languages
separa te computational entities from the coordination code that manages
dependencies between them. In th is cha pter we will define coordinat ion in
th e context of a concept ual fram ework for component-based softwar e de
velopment . Furthermore , we will discuss main properti es and abst rac tions
of scripting languages and will compare selecte d scrip t ing languages with
respe ct to th e identified core concepts. Finally, using a small set of sam
ple applications, we will illustrate the power and the limitations of th ese
concepts in ord er to define agent coordination.

6. 1 Intro duct ion

It is widely accepted today that closed and proprietary software syst ems can
not keep up with the pace of changing user requirements . In order to overcome
th e problems of th ese systems, modern applications are being built as collec
tions of distributed software agents. Since th ese agents run in a distributed
environment and concurrently access resources, th ey not only need to ex
change information, but they must coordinate their actions to achieve th e
required functionality. Unfortunately, the corresponding coordination code is
often intermixed with computational code, which redu ces th e flexibility and
adaptability, hence the reusability of distributed agent s.

Talking about agents, it is often not clear what kind of ent ities we should
consider as being agents. In this chapter, we will not worry to much about
giving a precise notion of software agents, but simply adapt a definition given
in [419] . From our point of view, an agent should be considered as a software
program th at can act autonomously on behalf of a hum an or another soft
ware or hardware system. Agents repr esent well-defined services, but are not
required to be either mobile or int elligent [456] .

There are several approaches to separate the eoordination par t of agents
from th e computat ional part . Common to all these approaches is the goal

154 .I.-G. Schn eider, M. Lumpe, O. Nierstrasz

to make a clear separation between computational enti ties and their relation
ships.

Software architect ures, for example, focus on describ ing software systems
at a level beyond simple algorithms and data structures, including global or
ganization and control structure. They express the st ructure of applications
in terms of processing elements, data elements, and explicit connect ing ele
ments (also known as connectors). Furthermore, architect ural styles abstract
over a set of rela ted software architectures and define a set of rules how the
element s can be combined [490, 547].

A similar approa ch is taken in the field of component-based programming,
where applications are expressed as composit ions of plug-compatible software
component s [455]. Of par ticular interest is the fact th at coordination aspects
can be encapsulated into reusable coordinat ion components [590] . This ap
proach not only enhances th e explicit separ ation of coordination and com
pu tational code , but also allows applicat ion developers to reuse coordination
aspects in different settings.

A third approach in this direction is th e concept of aspect-oriented pro
gra mming (AOP) . AOP aims at separatin g properties of softwa re systems
which can be cleanly encapsulated in a generalized procedure (i.e., compo
nents) from properties for which the implement ation cannot be cleanly en
capsulated (i.e., aspects) [352]. Aspects and components generally cross-cut
each other in a system's implementation.

Naturally, it is not enough to separate differen t concerns of systems into
deployable entities, but one needs a way to build applications as assemblies
of such ent it ies (i.e., to express applications as composit ions of composable
elements).

In recent years , scripting languages have become increasingly popular for
quickly building small , flexible applicat ions from a set of exist ing compo
nents. These languages typically support a single, specific ar chit ectural sty le
of composing components (e.g., the pipe and filt er architectural style sup
ported by the Bourne Shell [86]) , and they are designed with a specific appli
cation domain in mind (system administ rat ion, graphical user interfaces etc.).
Fur thermore, scripting languages are extensible as new abstractions can be
integrated into scrip ting environments . Finally, it is often possible to embed
scripts into exist ing components, offering a flexible way for adaptation and
extension . Hence, scripting languages seem to be ideal tools for build ing open,
distributed syst ems in general and for both implementing and coordinating
software agent s in particular.

In this chapter, it is not our goal to focus on basic coordina t ion models and
abst rac t ions of scripting languages alone. We would like to view coordinat ion
from a different perspective, set th e relation to other approaches which aim
at separ ating independent concerns into deployable ent it ies, in particular to
component-based software development , and discuss th e influence of scrip t
ing on building applicat ions as assemblies of th ese enti ties . Furthermore, we

6. Agent Coordination via Scripting Lan guages 155

would like to stress th e fact th at scripting languages do not only allow us to
coordinate distributed agents, but also to implement the agent s themselves
as scripts.

The remaining par ts of this chapter are organized as follows: in sect ion 6.2,
we clarify impo rtan t terms used throughout this chapter and define coordina
tion in the context of a conceptua l framework for component -based software
development . In section 6.3, we discuss the main properties and abst ractions
of script ing languages, compare selected scripti ng languages, and illustrate
some important concepts of each of these languages. In section 6.4, we show
how the concepts discussed previously are applied in practi ce by illustrating
a small set of sample applications and discu ss limit ations of exist ing script ing
languages. Finally, we conclude this chapter in sect ion 6.5 with a summary
of the main observations and a discussion about related and future work.

6.2 A Conceptual Framework for Software Composition

It is genera lly accepted t hat mod ern software systems are increasingl y re
quir ed to be open , flexible conglomerations of distributed software agents
rather than monolithic heaps of code. This places a st rai n on old-fashioned
software technology and methods t hat arc based on th e maxim

Applications = Algori thms + Data.

This maxim has some relevance for well-defined and delimi ted problems only
and is often applied in imperative programming languages th at focus on top
down decomposition.

Coordinat ion approaches, on the other hand, view syste ms as (i) compu
tatio nal ent it ies that encapsulate well-defined functionality and int eract with
each other in order to achieve a common goal and (ii) coordination ent it ies
that manage th e corre sponding int eractions [269] . These ap proaches can be
best describ ed by t he maxim

Applications = Computation + Coordination.

Coordination can be seen as the management of dependencies between com
putational ent it ies, or as the "glue" between distributed software agents [482] .

Recent work in the area of coordinat ion has focused on th e development
of particular coordination languages that realize a par ticular mod el of coor
din ation (th e interested reader may find corresponding overviews in chapters
2 and 4 as well as in [482]). Coordination problems, however , cannot always
be solved by solely using a particular mod el. Furthermore, data-driven co
ordination approaches such as Lind a [136] do not enforce a clear separation
of concerns as a mixture of coordinat ion and computation code within an
agent is st ill possible. Finally, coordination languages generally do not allow
th e definit ion of reus able coordination abstractions at a higher level than
the basic mechanisms and par adigms supported by the und erlying model. In

156 J.-G. Schneider, M. Lumpe, O. Nierstrasz

order to tackle th e problems related to the development of open distributed
systems, we need an approach which not only enforces a clear separation
between computational and compositiona l ent ities, but also overcomes other
problems with existing coord ination models and languages (e.g., the inter
leaving of coordination and computation code in Linda-based systems).

In the last decade, component-based software technology has emerge d as
an approach to cope with the advances in computer hard war e technology
and rapidly changing systems requirements [581]. Component-based systems
aim at achieving flexibili ty by clearly sepa ra t ing the stable par ts of the sys
tem (i.e., the components) from the specification of their composit ion (i.e. ,
scripts). Hence, a component -based engineering sty le can be best described
by the maxim

Applications = Components + Scrip ts.

Component s are black-box ent it ies th at encap sulate services behind well
defined interfaces whereas scripts define how the components are composed.
More precisely, scripts specify connect ions between the services of compo
nents. In cont rast to dat a-driven coordination models, which only make th e
distinct ion between computation and coordinat ion fu nctionality , component
based software technology aims at encapsulating coordination functionality
into independent units of deployment (i.e., components) [590].

It is important to note that scripts may not only be used for composit ion,
but also for implementin g components (i.e., a composition of components is
again a component). Hence, if we use the term scriptability , we either mean
components offering an interface for scripting (scriptable components) or the
possibility to implement components or agents as scripts.

The importance of compo nent-base d engineering in the context of open
systems development is probably best underlined by the following quote:

What I think is quite important , but often und errated , is the di
chotomy that script ing forces on applicat ion design . It encourages
the development of reusable components (i.e., "bricks") in system
programming languages and the assembly of these components with
scripts (i.e., "mortar"). Brent Welch

Our experience in developing component-based systems has shown that com
ponent s and scripts are only half of the truth if we want to build flexible and
extensible distributed systems. It is necessary that we also think in terms of
fram eworks, architectures, and glue [537] . In this sect ion, we will define and
clarify th e relevant terms and propose a conceptual framework where th ese
five techniques are combined.

A software component is a static abst raction with plugs and can be seen
as a kind of black-box ent ity that hides its implementation details [455]. It is
a static ent ity in the sense that it must be inst antiated in order to be used.
A software component has plugs which are not only used to provide services,

60 Agent Coordination via Scripting Languages 157

but also to require them. It is important to note that components are never
used in isolation, but according to a software architecture that determines
how components are plugged together. Therefore, a software component has
to be considered as a composable element of a component framework [387] .

A component framework is a collection of software components and archi
tectural styles that determine the interfaces that components may have, the
connectors that may be used to plug components together, and the rules gov
erning component composition. In contrast to an object-oriented framework
where an application is generally built by sub classing framework classes that
respond to specific application requirements (also known as hot spots [501]) , a
component framework primarily focuses on object and class (i.e., component)
composition (also known as black-box reuse).

The main idea behind component-based software development is that an
application developer only has to write a small amount of wiring code in order
to establish connections between components. This wiring, or scripting, can
take take various forms, depending on the nature and granularity of the com
ponents, the nature and problem domain of the underlying framework, and
the composition model. Composition may occur at compile-time, link-time,
or run-time, and may be very rigid and static (like the syntactic expansion
that occurs when C++ templates are composed [446]), or very flexible and
dynamic (like that supported by Tcl or other scripting languages [480]) .

In an ideal world , there are components available for any task an applica
tion has to perform and these components can be simply plugged together.
However, it is sometimes necessary to reuse a component in an environment
different than the one it has been designed for and that this environment
does not match the assumptions the component makes about the structure
of the system to be part of. In such a situation, glue code is needed to over
come the mismatched assumptions and to adapt components in order to be
composable.

The question arises how and where coordination concerns fit into this
conceptual framework. The purpose of a coordination model is to separate
computational entities from their interactions and, therefore, needs to pro
vide abstractions for controlling synchronization, communication, creation,
and termination of concurrent and distributed computational activities. The
main idea behind coordination in component-based software development
is to encapsulate the first two concerns of a coordination model (Le., syn
chronization and communication) into separate components (also known as
coordination components [590]) and to handle the other two concerns (i.e.,
creation and termination of activities) in scripts. This approach enhances the
flexibility to exchange individual synchronization and communication con
cerns (e.g., different network protocols) as "ordinary" components are simply
plugged together using appropriately selected coordination components (refer
also to the Bourne Shell example given below). Therefore, coordination can
be considered as scripting of concurrent and distributed components [537] .

158 J.-G. Schneider , M. Lumpe, O. Nierstrasz

At present , however , there does not exist a programming language or sys
tem that supports general-purpose software composition based on the con
ceptual framework presented in this sect ion. Although scripting languages
and 4GLs (such as Visual Basic [415]) go a long way in th e direction of open
systems development , they mainly focus on special applicat ion domains and
offer only rudimentar y support for th e integration of components not built
within the system. The reason for thi s sit uat ion is not only th e lack of well
defined (or standardized) component interfaces, but also th e ad-hoc way the
semant ics of the underlying language mod els are defined.

In order to illustrate how the conceptual framework illust rated above is
applied in practice, consider th e Bourne Shell scrip t given below which prints
th e names of all users who were recently working on a UNIX machine. The
Bourne Shell defines a simple component fram ework where UNIX commands
(usua lly called filt ers) , files, and charac te r st reams are the component s and
th e pip e operator 'I' as well as th e other st ream redirectors (such as '<',
'>' etc .) are the corres ponding connectors . The standa rd input stream and
th e command line arguments of a filter can be considered as required ser
vices whereas the standa rd output and error st reams as provided services,
respectively.

last I avk '{ print $1 }' I sort -u I rsh ser-verexpand I avk '{ print $1 I'
Analysing this Bourne Shell script, it is easy to identify components and con
nectors, th e underlying architecture , as well as other interesting properties:

• th e script consists of five components (th e filter s last , awk, sort , expand,
and avk} , each fulfilling a well-defined task,

• a data source (i.e., a system file read by th e filter last) and a data sink
(the standa rd output st ream of the second awk filter) ,

• successive components are connected by a pipe (indicated by the 'I' symbol)
and interact using characters streams,

• the filter rsh is used to communicate with the filter expand, which runs
on a remote server, 1

• th e components have to be instantiated, and the functionality of each com
pon ent can be specialized at instantiation by passing different (comm and
line) arguments (e.g., th e filter sort is used with the argument -u).

The components and the character st reams of the script form a pip eline,
where each component only depends on t he output of its predecessor. Since
many Bourne Shell scripts fulfill similar restrictions, they are often associ
ated with a pipe and filt er architec tural style [547]. However , scripts are not
restricted to this styl e, and it is possible to define more complex unidirec
tional dat a-flow architectures [58J by connect ing the standard error st ream
of a filter to the st andard input stream of another filter using the connect or

1 The information about th e full names of users is only availabl e on a dedicated
server (indicat ed by ser-ver in the script above) .

6. Agent Coordination via Scripting Languages 159

'1&'. The composition of filters using th e pipe connecto r again leads to a filter
(i.e., a UNIX process which reads from the standard input st ream and writes
to the standard output and error streams).

In th e script given above, th e filter rsh, which is used to communicate with
the filter expand running on a remote host , deserves a special attention. From
the perspective of the conceptua l framework , rsh acts both as a generic glue
compon ent and a coordination abstraction, as we will explain in the following.

Since the informat ion about the full names of users is only available on
a dedicated server , the filter expand cannot be run locally , bu t must run on
the corresponding remote server. However , th e pipe connector of the Bourne
Shell only allows connect ions between filters running on the same host . In
ord er to overcome the result ing architectural mismat ch [262] , we need a way
to (i) start the process expand on th e remote server and (ii) connect with it s
input and output st rea ms. This is exact ly what the filter rsh does: it st arts
a process on th e remote server and forces this pro cess to use rsh's input
and output streams as st andard I/O medium. This has the effect that the
remote process expand created by rsh rea ds the output of the filter sort
and produces the input for awk, hence ensur ing the correct communication
between the two host s and th e three pro cesses involved. Note that rsh is a
generic glue abst ra ction as it can be used to instantiate and communicate
with any UNIX process running on a different host .

On the other hand, rsh can also be consider ed as a coordination abstrac
tion . Due to the inherently concur rent nature of UNIX pro cesses, the char
acter st reams act as coordinators (synchronizers, buffers) between th e filters,
as UNIX commands genera lly do not specify any particular synchronizat ion
mod el; they simply read from/write onto th eir I/O st rea ms. In addit ion to lo
cal synchronizat ion, rsh has to open an network connection, synchronize th e
communication between th e remote proc ess, itself, and th e local I/O streams,
and close th e network connect ion upon terminat ion of the processes. Hence,
rsh takes care of all coordination-related concern s we have previously given
in this sect ion. Due to th e fact that rsh encapsulates all this functionality as a
single uni t of deployment , it must be considered as a coordination abstraction
or as a coordination component.

The reader should note that the filters of the example given above could
also be plugged togeth er using a syste m programming language like C. How
ever , C only offers low-level (library) abstractions for connecting the st andard
output st rea m of a command to the standard input stream of another com
mand or for invoking a pro cess on a remote server. Hence, it is not easily
possible to make the architecture of th e application explicit, especially as C
does not offer such a convenient syntax for expressing connect ions of UNIX
commands as the Bourne Shell.

160 J .-G . Schneider, M. Lumpe, O. Nierst rasz

6.3 Scripting Languages at a Glance

6.3.1 What is Scripting?

Unfortunately, this quest ion does not have a generally accepted answer. Con
sider the following two definitions:

"A script ion language is a language tha t is pr imarily inte rprete d, and
on a UNIX system, it can be invoked direct ly from a text file using
#! ." A nony mous Usenet User

and

"A scripti ng language introduces and binds a set of software compo
nents that collaborate to solve a par ticular problem [457]."

These two definitions mark the lower and upp er bound of possible applica
tions of script ing languages. However , they fall short of giving us an intuit ion
when and how we should use a script ing language to solve a given problem.
Furthermore, these definitions are rather vague and lack a precise character
ization in terms of provided features or supported application domains.

Many researchers have been working on a characterization of scripting
languages. We will summarize the most prominent cont ributions in this field
and elaborate our own definit ion.

John Ousterho ut argues that script ing languages are designed for "glu
ing" applications [480]. Th ey provide a higher level of programming than
assembly or system programming languages, much weaker typing th an sys
tem programming languages, and an interpreted development environment .
Scripting assumes the existence of powerful components and provides the
means to connect them together. However , script ing languages sacrifice ex
ecut ion efficiency to improve speed of development . Please note that in thi s
contex t, Ousterhout uses th e term glue in a much broader sense than we have
defined it in the previous section .

Guido van Rossum , the inventor of Pyth on [610], defines the main char
acteristics of script ing languages as follows: script ing languages should (i)
provide text processing primitives, (ii) offer some form of automatic memory
management , (iii) not require a mand atory separate compilat ion phase, (iv)
favour high-level express iveness over execution speed, and (v) interface well
with the rest of the system.

Brent Welch put s emphas is on two aspects: em beddability and extensibi
lity. In his view, script ing languages should (i) be int erpreted, not compiled,
(ii) be dynamically typed, (iii) offer abstract ions for int rospection, (iv) be
embedda ble and extensible, and (v) have a simple syntax.

Emb eddabili ty and ext ensibility are two imp ortant properties of script ing
languages, which tells them apart from ot her programming languages. Ex
tensibility is needed in order to incorp orate new abst ractions (components
or connect ors) into the language, encouraging the integrat ion of legacy code.

6. Agent Coordination via Scripting Languages 161

Embedding a script into an exist ing component or applicat ion (e.g., Visual
Basic [415] as scripting facility for Microsoft Word or Excel) offers a flexible
way for adapt ing and extending this component , enable to configure applica
tions to user defined needs, or simplify repeated complex edit ing as in case
of Microsoft Word.

Finally, Clemens Szyperski claims that script ing is quite similar to appli
cation building, but unlike mainstream (component) programming, scripts
usually do not introduce new components [581]. Scripts are used to simply
plug exist ing components together: scripts can be seen as introducing be
haviour but no new state. Therefore, scripting aims at late and high-level
gluing.

Summarizing the definitions given above, we argue that scripting lan
guages can be characterized as follows:

• The purpose of a scripting language is the development of applicat ions
by plugging exist ing components together (i.e., the primary focus is on
composition).

• Scripting languages generally favour high-level programming over execut ion
speed.

• Scripting languages are extensible and scalable: they are designed for ex
tending th e lang uage model with new abstractions (e.g., new components
or connectors) and for interop erating with components writ ten in oth er
languages.

• Scripting languages are em beddable: it is possible to embed them into ex
isting components or applicat ions (e.g., Microsoft Word) , offering a flexible
way for adaptation , configuration, and extension.

• Scripting languages are in general interpreted and offer automatic memory
managem ent.

• Scripting languages are dynamically and weakly typed and offer support for
runt ime introspection.

Using these prop erties, we define scripting and scripting languages as follows:

"Script ing is a high-level binding technology for component-based
applicat ion development . Scripting itself is done using a high-level
programming language (i.e., a script ing langu age) th at allows us to
create , customize, and assemble component s into a predefined soft
ware architect ure [536] ."

6 .3.2 Characterization of Scripting Languages

We have now identified the most distinguished properties of scripting lan
guages. However , not all script ing languages aim to address the same ap
plication domain (e.g., Perl [621] is primarily used for text manipulation ,
whereas AppleScript [29] is used to configure and cont rol "Part Editors" in

162 J. -G . Schneider, M. Lumpe, O. Nierstrasz

the Open Script ing Architecture (OSA) of OpenDoc). In order to appropri
ately characterize script ing languages, we also have to classify them by the
features they provide.

Like system programming languages (such as C or Java) , script ing lan
guages are generally not catego rized according to th eir synt ax or their seman
tic domain, but according to the language constructs (or features) t hey offer
(or do not offer) . For example, depending on th e provided features, a scrip t
ing language is bet ter suited for text-processing (e.g., Peri) th an for building
graphical user interfaces. For Tel [479],on the other hand, the opposite holds.

We have carried out a detailed analysis of exist ing scripting languages.
In the following, we will identify the most impo rt ant features that modern
script ing languages support . We will, however, distinguish between essential
features and characterizing featu res. Essent ial features are those th at must
be supporte d by any script ing language while charac te rizing features classify
script ing languages in terms of the language design space .

We have identified two concepts which are essent ial for scripting lan
guages: (i) encapsulation and wiring and (ii) external in teroperability.

Encapsulation and wiring. In ord er to build an applicat ion as a compo
sition of components , a scripting language must support some notion of
components and connect ors . More precisely, a script ing language must
offer mechani sms for encapsulat ion and wiring.
Besides the notion of component s, a script ing language must offer a set
of mechanisms which allow one to connect provided and required services
of corres ponding components . Such mechanisms can be as "low-level" as
a funct ion call or as higher-level as the pipe-operator in the Bourne Shell
language.
An important aspect of encapsulat ion and wiring is whether a language is
compositionally complete (i.e., it is possible to encapsulate a composit ion
of components as a composite component). For example, a Bourne Shell
script can be used as a comp onent of anot her shell script.

External interoperability. In order to use components not writ ten in t he
language itself, it is necessary that a script ing language provides features
to interoperate with components writ ten in other languages. We denote
these features as external interoperabili ty.
Interoperabili ty features are important if a component is implemented
as a composit ion of other component s, but does not complete ly fulfill
all actual requirements (e.g., it does not have the required run-time per
formance) . In this kind of situation, it must be possible to reimplement
this component with more favourable run-time behaviour and integrate
this new component into the script ing environment using interop erabili ty
features.

Chara cterizing features are summarized in the following list . The reader
should note that th ese features are not only import ant for script ing lan
guages, but for programming languages in general.

6. Agen t Coordination via Scripting Lan guages 163

Embeddability. Scripting languages may be directly embedded into an ap
plication or component (e.g., JavaScrip t [242] or Visual Basic [415]) while
others offer an interface to embed them into other programming lan
guages (e.g., Python offers an interface for C/C++) .

Extensibility. Scripting langu ages often provide an approach to extend
themselves with additional abst ract ions (new component s and connec
tors). As an example, th e core of Tcl [479] does not offer the concept of
classes and objects , but th e stooops extension (which is fully writ ten in
Tel) introduces abstractions for obj ect-oriented programming [244].

Objects. A comparison of popular script ing languages reveals t hat t hey ei
t her directly support th e notion of objects (e.g., Python or JavaScript)
or t here are extensions which int rodu ce obj ects (e.g., stooops) .

Exceptions. For programming in th e large and for testing applications, it
is useful if a language has features to explicit ly cope with errors and
except ions.

Execution model. A crite rion to distinguish script ing languages is wheth er
they are event driven or data driven. In t he case of an event driven
language, it is important to know what kind of call-back mechanisms
it supports (e.g., the concept of event listeners in Java) and how closures
[545] can be specified.

Concurrency. Some scrip ting languages are inherently concurrent (e.g.,
Bourne Shell or Piccola [4]) , while others provide abstractions for con
currency (e.g., threads , monitors) . In both cases, the kind of built-in
coordination abst ractions are of interest.

Introspection. Scripting languages generall y offer features for run -tim e in
trospection or even reflection, although th ese features often only have a
limit ed functionality. From our point of view, both dyn amic creat ion and
execution of code (often referred to as an eval-feat ure) and the concept
of call-by-name are part of th is dimension. Whereas languages like Tel
only offer low-level introspection mechanisms, Py th on goes a ste p further
and offers a meta-level protocol.

Typing. According to Ousterhout [480], script ing languages tend to be
weakly typed. However, an analysis of popular languages reveals dif
ferences in the type system: some languages are untyped (e.g., Bourne
Shell) or dynamically typed (e.g., Perl) whereas others have a mixture
of st atic and dyn amic typing (e.g., Visual Basic). Thi s analysis also re
vealed different strat egies for resolving type mismatches (e.g., implicit
type conversions vs. except ions).

Scoping rules. The scope of a name (variable , function etc .) is the range of
program instructions for which the name is known . The scoping rules of
a language defines th e st rategy how name-value bindings are established.
Most script ing languages tend to be dynamically scoped (e.g., Python) ,
alt hough there are languages which also offer static scoping (e.g., Visual
Basic).

164 J .-G. Schneider, M. Lumpe, O. Nierstrasz

Built-in data abstractions. Besides low-level data abstractions such as in
tegers and strings, many scripting languages offer built-in higher-level
data abstractions. Examples of such abstractions are key-based data ab
stractions (e.g., dictionaries), ordered data abstractions (e.g., lists), or
data abstractions without a particular order or access strategy (e.g., sets).
In addition, many languages offer specialized operations on high-level
data abstractions (such as iterations), and Perl even has a special syntax
for these operations.

Persistence. Only few scripting languages (e.g., AppleScript) offer general
purpose support for making complex configurations or properties of ap
plications and components persistent.

6.3.3 Selected Systems and Languages

In the following, we will briefly illustrate important concepts and features
found in selected scripting languages.

Bourne Shell is an interpreted scripting language for the UNIX operating
system and offers a simple component model based on commands and
character streams. Commands can be connected by using higher-level
connectors (e.g., the pipe operator 'I'), which makes the architecture
of a Bourne Shell script explicit in the source code. The language is
compositionally complete (i.e., a composition of commands is again a
command) and supports a declarative style of programming.

Tel is a dynamically compiled, string-based scripting language and is avail
able on all popular platforms. The basic abstraction in Tel is a command
(comparable to a procedure in an imperative programming language),
and since every programming construct is achieved with commands (and
not special syntax) , commands are the unifying concept of the language.
The concept of commands allows a user to extend the language using the
same syntactical framework as is used for all built-in commands.

Perl can be considered as a uniform selected merge of sed, awk, csh, and C.
It offers higher-level data abstractions such as lists, arrays, and hashes
and syntactic sugar for processing instances of these higher-level data
abstractions. Perl introduces the notion of contexts for evaluating ex
pressions, offers support for operator overloading based on contexts, and
has both lexical and dynamic scoping rules.

Python is an object-oriented scripting languages that supports both script
ing and programming in the large . Objects are the unifying concept (i.e.,
"everything is an object") and, therefore, all abstractions are first-class
values. Python offers a meta-level protocol which can be used for extend
ing and adapting existing abstractions as well as for operator overloading.
Finally, the language model supports keyword-based parameter passing.

6. Agent Coordi nation via Scripting Lan guages 165

Language Domain andj or Extensible Em beddable Reflection
Paradigm support

Bourne Shell administration, any no no
commands

Tel GUl, C, Java yes yes
commands

Perl text-processing, CjC++ yes yes
object-oriented

Pyt hon object-oriented CjC++ yes yes
AppleScr ipt object-oriented, any yes no

events
JavaScript object-based, Java yes yes

events
Visual Basic object-based, CjC++ yes no

events
Haskell functional COM no no
Manifold coordination, C, (Java) yes no

pro cess-based
Piccola process-based, Java no yes

object-based

Table 6.1. Functional properties of selected scripting lan guages.

AppleScript is a dynamically typed, event- and object-oriented scripting
language which only runs on the MacOS platform. In fact, AppleScript
is not a scripting language on its own, but it shou ld be considered as a
front-end to a framework based on scriptable applications (also known
as component parts). The concepts of AppleScript are heavily based on
similar concepts defined in the Open Scripting Architecture (OSA) for
OpenDoc [233]. The main purpose of AppleScript is to automate, inte
grate, and customize scriptable applications. The language is composi
tionally complete , but in contrast to many other scripting languages, it
does not offer an equivalent to an "eval" feature (i.e., it is not directly
possible to create and execute scripts at runtime).
App leScript comes with an appl ication called Script Editor which can
be used to create and modify scripts. Although this editor has access
to the dict ionary of scriptable applications (i.e., the set of messages a
scriptable applications supports), to our knowledge AppleScript scripts
cannot introspect these dictionaries (refer also to Tab le 6.1).

JavaScript is a (general-purpose) object-based scripting language embed
ded into a web browser [242]. The main predefined components in Java
Script are windows , forms, images, input areas , and menus. In general,
JavaScript is used to control the browser and web documents. JavaScript
scripts are attached to events and executed when the corresponding
event occurs. JavaScript enables the interaction of the user with a web
document by prov iding means to read and write content of docu ment

166 J .-G. Schneider, M. Lumpe, O. Nierstrasz

Language Platform Implementati on Module Application
portability technique concept area

Bourne Shell UNIX Interpreter (yes) adrn. tasks
Tel major Bytecode yes GUI
Perl major Bytccode yes Text
Python major Bytecode yes adm. tasks
AppleScript MacOS Interpreter no configuration

customization
JavaScript Netscape Interpreter (yes) WWW
Visual Basic Windows Bytecode yes GUIjCOM
Haskell major Bytccode yes COM
Manifold UNIX CompiledjPVM yes coordination
Piccola major Virtual machine (yes) composition

coordinat ion

Table 6.2. Non-functional properties of selected scripting languages

elements . However , J avaScript does not provide any graphic facilities,
network operations other than URL loading, or mul tithreading.

Visual Basic is a visual programming environment for obj ect- and compo
nent-based applicat ion development, focusing on wirin g components. In
particular , in Visual Basic one defines t he wirin g-code (e.g., event han
dling) while objec ts and components are usually developed in a lan guage
like C, C++, or J ava . Visual Basic program s can be compiled to native
code. However , components and the runtime system are packaged int o
separate run-time librari es (DLL 's) . Visual Basic provides a static typ ing
scheme for varia bles and a dynami c typing scheme for components . Fur
thermore, Visual Basic supports keyword-based parameters (enabled by
the !Dispatch int erface of COM-components) . At present , Visual Basic
is only available on Wi ndows operat ing systems.

Haskell is a pure functional programming lan guage that provides a COM
binding [492]. Haskell is not really a scripting lan guage, but due to its fea
t ure s like a polymorphic ty pe syste m, higher order functions, lazy evalua
tion, or convenient syntax it is an att ract ive language for scripting compo
nents. The COM int egration int o Haskell is strongly typed . Haskell is an
int erpret ed language and the Haskell system provides garbage-collect ion.
Haskell provides an unconventional and new way for scripting .

Manifold is a coordinat ion language for man aging complex, dynamically
changing interconnections among set s of independent , concur rent, and
cooperat ing processes [38] . It should be considered as a scripting lan guage
for concurrent and dist ributed components . It is particularly suitable for
specifying and implementing reusabl e, higher-level coordination abst rac
ti ons and protocols as well as for dynam ically evolving architecture s.

6. Agent Coordination via Scrip tin g Languages 167

Piccola is a simple untyped language and has been designed to be a gen
era l purpose "composit ion language" [4, 5]. Piccola is primaril y used
to express how components are composed, i.e., it is used to define the
connectors, coordination and glue abstractions needed for an actua l com
position . Piccola uses the unifying concept of forms (immutable, exten
sible records), which represent almost everything in P iccola , including
namespaces, interfaces, parameters, scripts, and objects. This unification
results in an ext remely simple but expressive language. Since Pi ccola is
based on a formal process semant ics [386, 536], it is a prime candidate
for coordinat ion and configurat ion of internet-based agents.

The reader should note th at ot her scripting languages (e.g., DCL [25], Icon
[289], Lua [319], Obliq [124], Rapide [383], or Rexx [193] also support some of
t he features that we have illustrat ed in this sect ion, but a det ailed discussion
is beyond the scope of this work.

6.4 Scripting in Practice

In the previous sect ion, we have discussed the main properties of scripti ng
languages and compared selected scr ipting languages using these propert ies.
In this sect ion, we show how scripting languages are used in distributed ap
plications where coordinat ion concerns are of importance. More precisely, we
illust rat e CyberChair [609], an on-line submission and reviewing system for
scient ific conferences, a case study carr ied out in the context of th e FAMOOS
pro ject .? where CORBA [464] is used as a medium to connect heterogeneous
components [300], and the implementation of a Wiki server in Piccola [4].

Common to first two sample applications is that Python [610] is used as
the underlying scripting language. These examples illustrate the application
of a data-driven (i.e., CyberChair) and a cont rol-drive n coordination mod el
(i.e., script ing of COREA components) in Python , respectively. The Wiki
server shows how user-defined operators are used to make t he architecture of
an applicat ion explicit .

In th is section , we will only focus on selected aspects related to script
ing and coordination; a detailed description of the th ree sample applications
is beyond the scope of this work. We forward the inte rested reader to the
corresp onding references for details.

6.4 .1 CyberChair: A Conference Management System

Most scient ific communit ies have established policies and mechanisms aim
ing at minimizing the organizational effort s of conference management , while

2 FAMOOS was an industrial ESPRIT Proj ect (No 21975) in t he IT Programme
of the Four th ESPRIT Framework Programme on reengineering obj ect-orient ed
legacy systems towards component -base d frameworks.

168 J.-G. Schneider, M. Lumpe, O. Nierstrasz

keeping a high quality of accepted papers and a fair selection process . Gener
ally, authors interested in presenting their work at a conference submit their
papers to the program chair. Under the guidance of the program chair, a pro
gram committee (i) reviews all submitted papers and (ii) selects the papers to
be accepted. Finally, the authors are notified about the evaluation process,
and authors of accepted papers and are invited to submit a camera-ready
copy. The whole process of submission, reviewing, selection, and notification
requires many activities, and the corresponding workload can be substantially
reduced by the aid of an appropriate software system.

An example of such a software system is CyberChair, which was first
developed in 1996 at the University of Twente in order to offer automatic
conference management support for ECOOP, the annual European Confer
ence on Object-Oriented Programming. In the past years, CyberChair has
evolved and matured, covers most administrative tasks of the submission
and review process, and has been successfully adapted for about ten different
conferences.

The activities supported by CyberChair roughly correspond to the activ
ities of a series of related case studies used to evaluate various coordination
models and languages in real world problems (refer to [517, 543] for details).
A detailed description of all activities has therefore been omitted here.

The overall structure of CyberChair conforms to a client-server archi
tecture organized around a central data repository, where all the data of the
submission process is stored. In order to enhance the access to the data repos
itory and to reduce conflicting accesses as much as possible, the information
for each paper submission, the status of each paper (accepted, rejected, with
drawn etc.) , the distribution of papers to reviewers, and each review report
are stored in separate files on the server system.

For each ofthe management task supported by CyberChair, there exist an
agent which implements the corresponding functionality. Most of these agents
are simple CGI-programs (in particular those agents which directly commu
nicate with users) while other agents run as batch processes and periodically
update HTML pages used to access specific services.

To transparently access the data repository and to encapsulate the con
crete structure from client agents, CyberChair offers a set of basic Python
routines which are used to create, modify, and access the data repository (I.e.,
the access functionality is encapsulated into a single Python module).

The agent for submitting abstracts, for example, is a CGI-program and
can be actived using a simple web-browser (the corresponding URL is avail
able form the main web-page of the conference). This agent creates an HTML
form for submitting information about the authors, their affiliations, the title,
and the abstract of a paper. The information submitted using this form is
checked by another agent , which (i) stores the necessary information in the
data repository and (ii) notifies via email both the contact author of the paper
and the program chair about the submission. This email message also con-

6. Agent Coordination via Scripting Languages 169

tains an identification and an URL which are needed to submit the elect ronic
version of the pap er in a later stage. The identification for each submission
is again sto red in the data reposi tory.

In order to fulfill th e security policy impos ed by the conference manage
ment , access to restricted services (e.g., services only available to members of
the program commit tee or the program chair) is given by password-enabled
agents or password-protected web-pages. Note that these web-pages are peri
odically updated by the system in order to reflect changes in the dat a reposi
tory (e.g., all review reports of a paper are made available to those reviewers
who review the same pap er).

From a coordinat ion point of view, there are three main concerns which
must be considered by a conference management system like Cyb erChair : (i)
concurrency concerns (i.e., ensure correct trans action protocols), (ii) security
concerns (i.e., grant ing and revoking access rights to agent s and/ or data ele
ments) , and (iii) dependency concerns (i.e., tasks depend on the termination
of other tasks). In th e following, we will discuss each of these concerns in
further detail.

Concurrency concerns. Generally, web-servers allow several CGI-pro
grams to run concurrently. Hence, it might be possible th at more th an one
act ive agent wants to update data stored in the same file (e.g., all ident ifica
tion keys for th e aut hors are stored in a single file). At t he level of accessing
th e files representing the persistent data repository, a two-phase locking pro
to col (based on POSIX file locks) prevents concurrent modification of files
and ensures correct transaction proto cols. Other access protocols (such as
immutable data ent ries) are ensured by checking th e presence or absence of
the corres ponding files.

Security concerns . As mentioned above, the access to several services is
restricted to a particul ar set of users only. In order to achieve a fine-grained
security policy, password- enabled web-pages are created which contain the
access points (i.e., hypertext links) to dedicated services (agents or oth er web
pages) . The access points given in the password-enabled web-pages use an
identification mechanism to prevent users from "guessing" the access points
to other restricted services. The system periodically updates th e contents of
th e access pages in order to allow for an up-to-date view of the data repository
(e.g., addit ional hypertext links are created when new review reports have
been submit ted). Finally, th e access of particularly critical services is logged
by a secur ity agent .

Dependency concerns . It is obvious that some management t asks depend
on the termination of other tasks . The coordinat ion of these dependencies
can be easily achieved by (i) defining deadlines for the crit ical tasks, (ii) pre
vent ing access to the corresponding services once the deadline has exceeded,
and (iii) only grant ing access to the dependent tasks from this moment on
(e.g., access to all abst rac ts is only granted when the submission phase has

170 J .-G . Schneider, M. Lumpe, O. Nierstrasz

been completed, electronic versions of papers can only be downloaded when
all papers have been submitted) . In CyberChair, this concept is implemented
using simple boolean flags in the corresponding Python scripts.

6.4.2 Scripting CORBA Components

The second sample application we will discuss was conducted in the context of
an industrial ESPRIT project our research group participated in. The goal of
this project (called FAMOOS) was to support the evolution of first generation
object-oriented software, built with current analysis and design methods and
programming languages, to frameworks - standard application architectures
and component libraries which support the construction of numerous system
variants in specific domains. Methods and tools were developed to analyse
and detect design problems with respect to flexibility in object-oriented legacy
systems and to transform these systems efficiently into frameworks based on
flexible architectures.

Each of the FAMOOS project partners was interested in different aspects
of reengineering and developed their own tools to conduct experiments in
their field of interest. These tools were implemented in a heterogeneous en
vironment using various programming languages (C/C++, Smalltalk, Java,
and Python). Hence, there was a need to find a way to easily combine these
tools in order to perform experiments where several tools were involved .

As a first step towards an integration of these tools , a common data
exchange model was defined which represented object-oriented source code
in a language-independent format [202]. Using such a language-independent
exchange format allowed developers to implement their tools with a much
broader functionality (i.e., metric tools could handle source code written in
any object-oriented language). Furthermore, the character-based CDIF for
mat the exchange model was based upon reduced the need for data mar
shalling between different operating system platforms and enhanced the in
teroperability between the tools.

All tools were either written in a language where a CORBA binding was
defined or had an API in such a language. Hence, it was a natural decision
to convert all tools into CORBA components, i.e., to define a wrapper for
each tool with a CORBA compatible interface. These wrappers were defined
using standard wrapping technology and, therefore, details of the wrapping
process have been omitted here (refer to [300] for details) .

However, wrapping the tools as CORBA components was not enough
as languages like C++ or Java do not offer abstractions to wire CORBA
components in a flexible and extensible way. Hence, there was the need for
an environment fulfilling this requirement.

Fnorb is an experimental CORBA ORB [157] which allows users to im
plement and compose CORBA components using Python. Of particular in
terest in the context of the FAMOOS project was the second property as it

6. Agent Coordination via Scripting Languages 171

made Fn orb an ideal tool for experiment ing which CORBA architect ures, for
scripting CORBA components, and for building test harnesses for CORBA
development pro jects.

In ord er to enh ance the transparent script ing of CORBA components, it
was necessary to encapsulate CORBA-relat ed protocols as much as possible.
An approach to achieve th is goal was to represent CORBA components in
th e script ing environment using proxy obj ects [258]. Hence, an applicat ion
programmer was freed from directly referring to t he components themselves,
but could instead refer to local representat ives (i.e. , the prox y obj ects) , being
responsible for (i) instantiating th e (possibly remote) CORBA component s
and (ii) coordinat ing the communicat ion between the components and their
clients. Proxy objects eit her forward request s to th e actua l components or ,
in case of "inte lligent" proxies [300, 441], handle request th emselves.

It is important to note that an implement ation of component proxies in
Python substan tiall y benefits from th e dynamic typing and th e und erlying
metalevel protocol, in particular th e way attribute accesses in obj ects are
performed (refer to [536, 610] for det ails) . As a consequence, it was possible
to impl ement a single generic proxy class (and not a new class for each com
ponent) . This prox y class heavily uses t he dynam ic invocation interface (DII)
of CORBA for a correct handling of requests.

Using a middleware environment such as CORBA for int erconnecting het
erogeneous components has th e advantage th at several "lower-level" coordi
nation aspects (such as intercomponent communication and synchronization,
data marshaling etc .) are directly handled by the involved ORBs. At a higher
level, the usage of gener ic component proxies enables a complete abstraction
from the und erlying middleware and application prog rammers are freed from
CORBA-related protocols. If further coordinat ion concerns have to be taken
care of, it is possible to define specialized component proxies and implement
th ese concerns in th e corresponding proxi es. As a result , all coordinat ion con
cerns can be encapsulated into independ ent unit s of deployment and compu
t ational ent it ies are freed from coordination code.

The efforts to (i) wrap to ols as CORBA components and (ii) int egrate
them into a scr ipti ng environment resulted in the desired fram ework for con
ducting various reengineering experiments . The approach taken also reflects
the element s of the conceptual framework given in sect ion 6.2, in particular
th e usage of generic glue abstractions for interoperation with component s not
being par t of a scripting environment .

6.4.3 Observations

Alth ough the two sample applications do not cover all aspects of open systems
development , they, nevertheless, indicate some benefits and limitations of
scripting languages for coordinat ing distributed software agents .

172 J .-G. Schneider, M. Lumpe, O. Nierstrasz

The two sample applications we have given in this section show that
Python is a suitable scripting language for both a control- and data-driven
coordination models . It has enough expressiveness to plug existing compo
nents together, to implement the missing functionality where needed, and
to encapsulate (low-level) coordination concerns into independent units of
deployment.

Due to dynamic scoping rules and the lack of static typing, many script
ing languages (including Python) ease the implementation of generic glue
abstractions. In particular the lack of static typing makes it easier to interop
erate with components written in other languages and, therefore, encourages
the use of legacy components.

Application development using scripting languages naturally leads to the
maxim of viewing applications as combinations of components and scripts
and, therefore, a scripting approach encourages the development of reusable
components highly focused on the solution of particular problems, and the
assembly of these components by means of scripts.

However, scripting languages also have their limitations. Consider the fact
that the overall architecture of both sample applications given above is not
made explicit in the underlying source code. It is important to note this that
observation can be made in many applications where scripting languages are
used to wire components together.

Furthermore, scripting languages typically support a single, specific archi
tectural style, which makes them ideal tools for solving problems where this
style is appropriate. However, as soon as a different style is required, most
scripting languages fall short of giving the required flexibility to adapt to the
new style (refer also to the discussion about the Perl Wiki given in the next
section) .

Only a limited number of scripting languages offers built-in support for
concurrency; most languages only provide concurrency by libraries. There
fore, it is not possible to express concurrency issues directly in the source
code. Finally, scripting languages are suitable to build small applications,
but only offer limited support (if at all) for programming in the large. Inter
ested readers may find further details concerning scalability issues in chapter
12 of this book .

6.4.4)l Piccola VViki

In the previous section we have illustrated why scripting languages alone do
not allow for flexible composition, adaptation, and configuration of existing
components and to explicitly represent higher-level design elements (such as
software architectures or coordination concerns) in applications. What we
would need is something we call a composition language that (i) supports ap
plication configuration through a structured, but nevertheless flexible wiring
technology and (ii) enforces a clear separation between computational ele-

6. Agent Coordination via Scripting Languages 173

ments and their relationships. In the following, we will briefly illustrate why
Piccola can be considered as a step into this direction.

A Wiki Wiki Web Server (Wiki for short) is a simple hypertext system
that lets users both navigate and modify pages through the World-Wide
Web, and was originally implemented by Ward Cunningham as a set of Perl
scripts (available at c2.com) . Wiki pages are plain ASCII text augmented with
a few simple formatting conventions for defining internal links, bulleted lists,
emphasized text etc. and are dynamically translated to HTML by the Wiki
server. Generally, a Wiki is used as a medium to collaborate on documents
and information webs.

Although the original Perl implementation is perfectly robust and widely
used for many Wiki installations around the world, the style of programming
that Perl encourages poses some problems for extensibility. In the available
Perl implementation, it is not easy to understand the flow of control as the
procedural paradigm of Perl is mixed with the stream-based processing of the
web pages. Execution is sensitive to the sequence in which the declarations
are evaluated. In particular, the architecture of the scripts are not evident,
which makes it hard to adapt them to new functionality.

The Piccola Wiki implementation illustrates how the architecture of a
scripted application can be made explicit by means of a data-flow architec
tural style (refer to [4] for details). More precisely, it shows that (i) a clear

.separation between components and their connections is enforced and (ii)
glue abstractions adapt components that are not part of the underlying com
ponent framework. In particular, the Piccola Wiki implementation

• illustrates the implementation of an object-oriented (white-box) frame
work incorporating streams, transformers, and files that corresponds to a
pull-flow stream-based architectural style [58]. Note that Java streams are
integrated into this framework by means of gateway agents.

• substantially benefits from the fact that (i) the language offers user-defined
operators which allow us to use a syntax that highlights the architectural
style of the component framework and (ii) users can create new transformer
and stream components without sub classing framework classes (i.e., the
component framework supports black-box extension).

• integrates components of a push-flow architectural style (i.e., components
which push data downstream instead of pulling it from upstream). Glue
components are used to adapt push-flow components so they can work
within a pull-flow architecture.

• defines a top-level script that implements the Wiki by composing compo-
nents that conform to the architectural style mentioned above .

Maintaining a system such as the Piccola Wiki is much easier than the original
Perl implementation and substantially benefits from an explicit architecture.
Changing requirements, for example, may be addressed by reconfiguring in
dividual components (i.e., replacing their required services) , reconfiguring in
terconnections between components (i.e., adapting the scripts), incorporating

174 J.-G. Schneider, M. Lumpe, O. Nierstrasz

additional ext ernal components (i.e., using glue abstractions) , and deriving
new components from old ones (i.e., support for black-box extension) .

6.5 Summary, Conclusions

Although scripting languages and coordination languages have evolved from
different roots and have been developed to solve different problems, we argue
that there is a strong affinity between them. In particular, scripting and coor
dination address similar separation of concerns. Scripting languages (ideally)
achieve a separation of components from the scripts that configure and com
pose them, and coordination languages separate computational entities from
the coordination code that manages dependencies between them.

This affinity, we believe, will become only more important in the coming
years as pervasive computing is becoming a reality, and agents representing
hardware devices , internet services, and human clients will have to sponta
neously interact and coordinate with other agents as a matter of routine.
Building such flexible and dynamically evolving agent systems, on the other
hand, will not be a trivial task, and we believe that scripting languages offer
the only paradigm that has any hope of meeting the challenge.

If we examine the state of the art of today's scripting languages, however,
we see that, although they offer many useful concepts and mechanisms for
high-level programming, they are still a long way from fulfilling the coordi
nation needs of tomorrow's agent systems. In particular, we see the need for
improvement in the following areas:

• Abstraction: most scripting languages offer relatively weak abstraction
mechanisms. To implement high-level abstractions, one is often forced to
resort to techniques like generating code on-the-fly. As a consequence,
higher-level coordination abstractions are cumbersome to implement in
most scripting languages, if they are not already built into the language.

• Software architecture: the compositional (or "architectural") style sup
ported by any given scripting language is usually fixed in advance. A truly
general purpose scripting language would support the definition of new
kinds of composition mechanisms for different application domains.

• Concurrency: concurrency, if supported at all, is provided by libraries, and
is not explicitly supported by the language (both the Bourne Shell and
Manifold are notable exceptions) .

• Coordination styles : the fact that many different coordination models and
languages have recently been proposed suggests that there does not exist
a single approach suitable for all coordination problems. Similar to archi
tectural styles, a catalogue of coordination styles that exhibit properties
more suitable for some problems than others could be expressed in terms
of components, connectors, and composition rules.

6. Agent Coordination via Scripting Lan guages 175

• Reasoning: scripting languages, as a rule, have no formal semantics , mak
ing it hard to reason about scripts. Since the behaviour th at is coordinated
by scripts is provided by comp onents typically writ ten in a separa te pro
gramming language, a formal semant ics for the script ing language is not
enough to reason about overall behaviour , but it is certainly a prerequisite
for makin g any progress.

In the Software Composit ion Group, we are attempting to address several of
these problems with Piccola , a small language with a formal process calculus
semantics, t hat is inte nded to be used as a general-purpose "composit ion
language" for different applicat ion domains. In parti cular , we are currently
working on formalizing and implementing various coordination sty les based
on the idea of a component algebra [3] .

Acknowledgements

We th ank all members of the Softwar e Composition Group for their support
of this work, and Richard van de Stadt for helpful comments on CyberChair .
This research was supported by the Swiss National Science Foundation un
der Project No. 20-53711.98, "A framework approach to composing hetero
geneous applicat ions."

Part III

High-Level Enabling Coordination
Technologies

High-Level Enabling Coordination
Technologies

Introduction

Coordination is the process of man aging dependencies between act ivit ies of
one or multipl e actors performed to achieve a goal and to avoid conflict s. It
involves, amongst others, task decomposition, resource allocation, synchro
nization, group decision making , communicat ion, and often the prepar ation
and adoption of common obj ectives. A vari ety of approaches for coordina
tion models and strategies including multiagent planning and decentralized
negotiation protocols for different multiagent environments exist.

Coordination models have been extensively studied not only in th e con
text of distributed syst ems but mobile agents and open multiagent systems
deployed in the Int ernet . The coordination medium of a model supports inter
act ion among coordinable, the agent s in a multiagent syst em. The coordina
tion model of the Linda language, for example, consists of a shared st ruc ture
providing multisets of elements which can be constructed and manipulated
by operations of an appropriate coordinat ion language. In a more broader
persp ective sharing of elements is not necessary for coordination media like
the interface repositories in the CORBA OMG arch itecture. An interaction
space of a coordination model is const itute d by the rules which govern the
interaction among the agents on and the behavior of the coordination media.
Such spaces can be accessed, for example, transparently in the Internet , for
example, via object references, or explicit ly via respective URLs. The inter
act ion rules are typically defined in terms of both a given low-level communi
cation and high-level coordinat ion language. A coordination language defines
the syntax and semantics of a set of admissible coordination primitives; the
semantics of the prim itives are typi cally expressed in terms of effects on the
considered interaction space of th e agent s. Prominent examples of coordina
t ion models are Linda-like, client-server, meeting oriented, and blackboard
based . In terms of coordination models agents in the Intern et may interact
with each other at given interaction spaces and use a coordination language to
manipulat e their coordination media such as channels, monitors, connectors,
meeting places and blackbo ards.

However , in cont rast to the rather syntax-b ased data communication , for
example, in Linda-like coordina t ion models there is an obvious need for some
higher-level coordination in terms of a semantically meaningful communica
tion between agents to let them accomplish th eir tasks and goals. In com-

180 High-Level Enabling Coordination Technologies

municating information among different agents it is essential to preserve the
desired semantics of utterances transmitted via messages. Both the intention
of the message as well as its data content has to be understood correctly by
the agents. Regarding the first issue agents may use a common agent commu
nication language (ACL) for message exchange based on speech acts such as
KQML and FIPA ACL. However, each ACL focuses on the interaction among
agents only, leaving open the semantics of the content of the messages. In this
respect, any ACL can be considered as a coordination language. On top of
that, any conversation among agents is a pattern of message exchange that
two or more agents agree to follow in communicating with one another. Thus,
a conversation can be seen as a simple coordination protocol for agents itself
using an ACL as its coordination language.

How can separate computational activities of heterogeneous agents be
coordinated in collaborative or competitive settings in the Internet? We may
roughly distinguish between the following two approaches:

1. Direct communication, in which agents handle their own coordination in
asynchronous ensembles, or

2. Assisted coordination , in which agents rely on so-called middle-agents to
achieve coordination in the context of service and data mediation within
agent societies .

An individual agent in a multiagent system may perform its actions devoted
to , for example, utilitarian coalition forming, team building, and distribution
of tasks and responsibilities in the system exclusively via bi- and multi-lateral
communication with relevant agents. There is an obvious trade-off between
the amount of communication and quality of coordination in terms of com
pleteness and efficiency. It depends on both the given application domain
and environment as well as the type of interaction the agents in a society
jointly agreed upon to accomplish their goals if and to what extent assisted
coordination by middle-agents like yellow-page server, recommender, broker,
and arbitrator agents is necessary.

In both cases, direct communication or assisted coordination, the agents
may follow fixed or emerging policies, social obligations, and styles of con
versations to coordinate their activities, for example, in negotiation settings
at interaction spaces such as free market places in the e-commerce domain.
However, interaction rules in assisted coordination typically turn out to be
more rigid than in non-assisted coordination. This is particularly due to the
introduction of trusted intermediaries as central control units to assist in the
coordination among agents in a society.

In summary, high-level enabling techniques for coordinating agent soci
eties include (1) agent naming and registration for localizing and identifying
available agents in the system, (2) agreed use of agent communication lan
guages for meaningful message exchange enabling task-oriented conversations
among agents, and (3) mediation techniques and protocols to cope with the
connection problem in open agent societies in the Internet.

High-Level Enabling Coordination Technologies 181

Regarding assistance of coordination the only decisive issue is that of
how to perform mediation amongst agents . In particular, mediation proto
cols such as for service matchmaking or recommendation determine which
agents are involved in what kind of conversations at arty instant in time.
Thus, any mediation protocol is a high-level coordination protocol on top
of the rather simple ones related to the respective conversations. Latter, in
turn, rely on the high-level coordination mechanism of agent naming and a
commonly agreed ACL as the coordination language. In non-assisted coor
dination settings mediation such as capability-based agent matchmaking has
to be appropriately distributed among the agents. This still appears to be an
unscarted territory, though first steps have been made in this direction. The
following chapters provide overviews of the high-level enabling mechanisms
for coordination of agent societies mentioned above, and report on ongoing
significant research and development in the respective areas.

The contributions

In chapter 7, Robert Scott Cost , Yannis Labrou, and Tim Finin argue the
usefulness of conversations and protocols for agent coordination on top of
agent communication languages such as KQML and FIPA ACL. The authors
are suggesting the utilization of colored petri nets for the purpose of a formal
specification of conversations among interacting agents. One main motiva
tion behind this proposal is that it enables to clearly specify and verify the
semantics of such conversations. In particular the implied ability to validate
properties of the conversations that are important in the context of coordi
nating agent societies such as liveliness , fairness, and reachability is essential
for the design of vivid multiagent systems in many application domains.

Middle-agents perform assisted coordination by means of helping agents
locate others that provide requested data and services in the Internet and
Web. In chapter 8, Matthias Klusch and Katia Sycara introduce several dif
ferent classes of basic services any middle-agent needs to appropriately in
stantiate to be able to perform a meaningful , effective, and reliable mediation
between agents. Accoridng to these mediation service classes the authors pro
pose a skill-based classification of middle-agents and have a closer look at the
functionality of some special kinds of middle-agents, namely mediator, broker
and matchmaker agents. A comprehensive description of prominent examples
for multiagent systems and platforms which are coordinated by middle-agents
and related work round this survey off.

Flexible and efficient naming, migration and coordination schemes are
critical components of concurrent and distributed systems. In chapter 9,
Gul Agha , Nadeem Jamali and Carlos Varela describe high-level actor nam
ing in terms of a naming scheme with location and migration transparency
called Universal Actor Names. On top of that , the authors present so-called
ActorSpaces as an abstraction for decoupled publish-and-subscribe pattern
based communication. Latter enables the unanticipated connection of users ,

182 High-Level Enabling Coordination Technologies

agents and services in the open, dynamic nature of today's networks. In
addition, an actor-based architecture, the so-called World Wide Computer,
is introduced as a basis for implementing the above concepts of high-level
naming and multiagent coordination by means of synchronized migration of
co-located sets of tightly constrained actors encapsulated in a so-called cyber
organism (cyborg) . Cyborgs is presented as a model for resource-bounded
agent systems, an abstraction which provides a unit for group migration and
resource consumption. The authors use a travel agent example to motivate
the requirements and proposed solutions for naming, migration and coordi
nation.

7. Coordinating Agents using Agent
Communication Languages Conversations

R. Scot t Cost , Yanni s Labrou , and Tim Finin

Department of Computer Science and Electrical Engineering
University of Maryland Baltimore County
Baltimore, Maryland 21250
{cost jklabrou,finin}@csee.umbc.edu

7.1 Introduction

Internet agents are expected to accomplish their tasks despite heterogeneity;
agents of different designs and of varying skills and domain knowledge need
to int eract successfully through knowledge and information exchange and
effective coordinat ion. We identify two distinct and separa te problems that
Internet agents are faced in an open and dynamic environment : knowledge
sha ring and coordination.

The knowledge sharing problem between heterogeneous agents has a long
thread of work behind it . For a large category of agent systems, the main
mechani sm for knowledge sharing is the Agent Communication Language
(ACL). An ACL relies on a three-layer conceptua l breakdown of the knowl
edge sharing problem. The concepts originated in the work of the Knowledge
Sharing Effort (KSE) [447] and have found their way into Knowledge Query
Manipulation Languages (KQML) [323] [368], the first ACL, and in FIPA
ACL, the ACL pr oposed by the Foundation for Intelligent Physical Agents
(FIPA) , a st anda rdization orga nization in th e area of agents . A simple for
mulation of the knowledge sharing problem between heterogeneous intelligent
agents is: "expressions in a given agent's na tive language should be und er
stood by some other agent that uses a different implement ation language and
domain assumptions" .

The three-layered approach distinguishes between prop osition s and propo
sitional attitudes. The first and th e second layers are concerned with sharing
th e meaning of propositions and th e third layer is concerned with sharing the
meaning of propositional attitudes. So, the first layer is that of (syntactic)
t ranslation between languages in the same family (or between families) of
languages 1. The second layer is concerned with gua ra ntee ing that the se
mantic conte nt of tokens is preserved across applications; in ot her words , th e
same concept, obj ect , or entity has a uniform meaning across agent s even if
different "names" are used to refer to it . Every agent incorp orates some view
of the domain (and the domain knowledge) to which it applies. The technical

1 The Object Management Group (OMG) standardizat ion effort is an example of
work in this direction, within the family of object-oriented languages.

184 R . S. Cost , Y. Labrou , T. Finin

term for this body of "background" knowledge is ontology. More formally, an
onto logy is a particular conceptualization of a set of objects, concepts and
other ent it ies about which knowledge is expressed and of t he relationships
that hold among them. An ontology consists of terms, their definit ions, and
axioms relating t hem [290]; terms are normally organized in a taxonomy. Th e
final layer addresses the communicat ion between agents . Th is is not merely
about t ransporting bits and bytes between agents; agents should be able to
communicate complex "at t itudes" about their informati on and knowledge
content . Agent s need to ask other agents , to inform them, to request their
services for a task, to find other agents who can assist them, to monitor
values and objects, and so on. Such functionali ty, in an open environment,
can not be provided by a simple Remote Procedure Call (RP C) mechanism.
Agents issue requests by specifying not a procedure but a desired state in a
declarative language, i. e., in some ACL.

Assuming effective translations between their respective representation
languages, with shared ontologies, an ACL allows them to share their knowl
edge content . But knowledge sharing alone does not guarantee effective prob
lem solving any more than superb language skills guara ntee effect ive perfor
mance for a human agent . Accomplishing tasks requires coordination.

Coordination is the process by which agents reason about their local ac
t ions and t he (ant icipated) act ions of others in order to ensure that all agents
in a community act in a coherent manner towards a goal or a set of goals. Th e
actions of multipl e agents need to be coordinated because of dependencies
between agents' act ions, there is a need to meet global const raints, and no
one agent has sufficient competence, resources or information to achieve such
system goals. Examples of coord ination include supplying timely information
to other agents or ensur ing that the actions of agents are synchronized. In an
environment of heterogeneous agents coordinat ion is a difficult task because
agent must reconcile conflict ing or incomplete views of the environment they
ar e acting upon or interacting with.

An ACL offers agents building blocks for coordination. To the exte nd t hat
coordination is communicat ive, as is often the case in heterogeneous agent
communit ies, agents can use the propositional at ti tudes supplied by ACLs in
order to sustain the complex interactions with other agents th at are necessary
for coordinat ion. The ACL alone, though, does not help agent s to decide when
to "talk" and what exactly to "say" when they do so. Ideally; agents would
possess such a rich und erst anding of themselves, their environment and other
agent s, that, like human agents, they could decide what to "say" and for what
purpose. There is a sizable amount of work in this direction , the problem is
extremely difficult in an open and dynamic environment. The direction we
explore in this chapter in differs in th at it is not concerned with the internal
st ruct ure of agents. ACL resear ch has been exploring conversation protocols
as mechanisms for st ruct ur ing agent interactions. Such protocols serve as pre
arranged protocols for coordinating specific task-related agent interactions.

7. Coordinating Agents using ACL Conversations 185

We are concerned with a suitable formalism for expressing such coordination
protocols. Our goal is a formalism that guarantees certain useful properties
for such protocols.

We next outline the organization of this chapter. In Section 7.2 we very
briefly outline the basic concepts of ACLs and conversation protocols for
ACL-speaking agents. In Section 7.3 we discuss conversation protocols, their
use for coordination between agents and related work by other researchers.
We continue by presenting our formalism for specifying conversation proto
cols, which is based on Colored Petri Nets CPNs), in Section 7.4, complete
with examples of conversation protocols specified in our formalism. In Section
7.5 we discuss the merits of CPN-based descriptions of conversation protocols
for agent coordination and in Section 7.6 we present relevant work on CPNs.

7.2 From Agent Communication Languages to
Conversation Protocols

An Agent Communication Language provides agents with a means to ex
change information and knowledge. ACLs, such as KQML or FIPA ACL,
are languages of propositional attitudes. Propositional attitudes are three
part relationships between: (1) an agent, (2) a content-bearing proposition
(e.g., "it is raining"), and (3) a finite set of propositional attitudes an agent
might have with respect to the proposition (e.g., believing , asserting, fear
ing, wondering, hoping, etc.). For example, < a, fear, raining(tnow) > is a
propositional attitude.

ACLs are intended to be above the layer of mechanisms such as RPC
or RMI because: (1) they handle propositions, rules and actions instead of
simple objects (with no semantics associated with them), and (2) the ACL
message describes a desired state in a declarative language, rather than a
procedure or method. But ACLs by no mean cover the entire spectrum of
what agents may want to exchange . More complex objects can and should be
exchanged between agents, such as shared plans and goals, or even shared
experiences and long-term strategies.

At the technical level, when using an ACL, agents transport messages over
the network using some lower-level protocol (SMTP, TCP lIP, nop, HTTP,
etc.) . The ACL itself defines the types of messages (and their meaning) that
agents may exchange . Agents though, do not just engage in single message
exchanges but they have conversations, i.e. task-oriented, shared sequences
of messages that they observe, in order to accomplish specific tasks, such as a
negotiation or an auction. At the same time, some higher-level conceptualiza
tion of the agent's strategies and behaviors drives the agent 's communicative
(and non-communicative) behavior.

Traditionally, we understand the message types of ACLs as speech acts ,
which in turn are usually accounted for in terms of beliefs, desires, intentions

186 R. S. Cost, Y. Labrou, T. Finin

and similar modalities. This kind of intentional-level description can either be
just a useful way to view a system or it can have a concrete computational
aspect. The latter case describes a large range of BDI2 agents which have
some (implicit or explicit) representation of the corresponding modalities.
This representation is built on top of a substrate that describes the conceptual
model of knowledge, goals and commitments of an agent , commonly known
as a BDI theory. Despite the criticism that BDI theories and BDI agents
have faced, such as the number and choice of modalities and the fact that
multi-modal BDI logics have neither complete axiomatizations nor they are
efficiently computable, they offer an appealing framework to account for agent
communications, because agents, when communicating, they communicate
their BDI states and/or attempt to alter their interlocutors BDI states.

While an ACL is good for message-passing among agents, on its own it
does not offer much in terms of agent coordination. But when an agent sends
a message, it has expectations about how the recipient will respond to the
message. Those expectations are not encoded in the message itself; a higher
level structure must be used to encode them. The need for such conversation
policies is increasingly recognized by both the KQML [369] and the FIPA
communities [241, 212].

A conversation is a pattern of message exchange that two (or more) agents
agree to follow in communicating with one another. In effect, a conversation
is a pre-arranged coordination protocol, A conversation lends context to the
sending and receipt of messages , facilitating interpretation that is more mean
ingful.

Although, conversations have become part of many infrastructures for
ACL-speaking agents , relatively little work has been devoted to th e problem
of conversation specification and implementation. For conversations to be
used for agent coordination, the following three issues require attention:

1. Conversation specification: How can conversations best be described so
that they are accessible both to people and to machines?

2. Conversation sharing: How can an agent use a specification standard to
describe the conversations in which it is willing to engage, and to learn
what conversations are supported by other agents?

3. Conversation aggregation: How can sets of conversations be used as agent
'APIs' to describe classes of capabilities that define a particular service?

Although we have worked on items (2) and (3) (see [192]), our primary
focus, in arguing the usefulness of conversations for agent coordination, is on
their specification with emphasis on the ability to validate properties that are
important in the context of coordination, such as liveliness and reachability.

2 BDI stands for Belief, Desire (or Goal) and Intention.

7. Coordinating Agents using ACL Conversations 187

7.3 Coordination using Conversation Protocols

Well-defined , sharable conversation protocols, with testable, desirable prop
erties, can be used to coordinate agents that attempt to accomplish specific
tasks. Typically, a conversation protocol is associated with a specific task,
such as registration, or a particular type of a negotiation. Agents adhering
to the same conversation protocol, can coordinate their communicative ac
tions as they attempt to accomplish the task suggested by the conversation
protocol. Such a coordination is akin to a scripted interaction, with specific
properties, rather than coordinated action resulting from a deep understand
ing of the domain and the task at hand. Nevertheless, it can be effective for
tasks that can be adequately described in the form of possible sequences of
communicative interactions.

A specification of a conversation that could be shared among agents must
contain several kinds of information about the conversation and about the
agents that will use it . First, the sequence of messages must be specified.
Traditionally, deterministic finite-state automata (DFAs) have been used for
this purpose; DFAs can express a variety of behaviors while remaining con
ceptually simple. For more sophisticated interactions, however , it is desirable
to use a formalism with more support for concurrency and verification. Next,
the set of roles that agents engaging in a conversation may play must be enu
merated, and the constraints and dependencies between individual messages
need to be captured. Many conversations will be dialogues, and will specify
just two roles; however conversations with more than two roles are equally
important , representing the coordination of communication among several
agents in pursuit of a single common goal. For some conversations, the set of
participants may change during the course of the interaction.

These capabilities will allow the easy specification of individual conversa
tions. To develop systems of conversations though, developers must have the
ability to extend existing conversations through specialization and composi
tion. Specialization is the ability to create new versions of a conversation that
are more detailed than the original version; it is akin to the idea of subclass
ing in an object-oriented language. Composition is the ability to combine two
conversations into a new, compound conversation. Development of these two
capabilities will entail the creation of syntax for expressing a new conversa
tion in terms of existing conversations, and for linking the appropriate pieces
of the component conversations.

The set of conversations in which an agent will participate defines an in
terface to that agent. Thus, standardized sets of conversations can serve as
abstract agent interfaces (AAls), in much the same way that standardized
sets of function calls or method invocations serve as APls in the traditional
approach to system-building. That is, an interface to a particular class of ser
vice can be specified by identifying a collection of one or more conversations
in which the provider of such a service agrees to participate. Any agent that

188 R. S. Cost, Y. Labrou, T. Finin

wishes to provide this class of service need only implement the appropriate
set of conversations.

Implementing and expressing conversations for software agents is not a
new idea. As early as 1986, Winograd and Flores [636] used state transi
tion diagrams to describe conversations. The COOL system [55] has perhaps
the most detailed current FSM-based model to describe agent conversations.
Each arc in a COOL state transition diagram represents a message transmis
sion, a message receipt, or both. One consequence of this policy is that two
different agents must use different automata to engage in the same conver
sation. COOL also uses an :intent slot to allow the recipient to decide which
conversation structure to use in understanding the message. This is a simple
way to express the semantics of the conversation, though it is not sufficient
for sophisticated reasoning about, and sharing of conversations.

Other conversation models have been developed, using various approaches.
Extended FSM models, which , like COOL, focus more on expressivity than
adherence to a model, include Kuwabara et al. [365], who add inheritance to
conversations, Wagner et al. [617], and Elio and Haddadi [218], who defines
a multi-level state machine, or Abstract Task Model (ATM) . A few others
have chosen to stay within the bounds of a DFA, such as Chauhan [148], who
uses COOL as the basis for her multi-agent development system 3, Nodine
and Unruh [459], and Pitt and Mamdani [498], who uses DFAs to specify
protocols for BDI agents. Also using automata, Martin et al. [398] employs
Push-Down Transducers (PDT) . Lin et al. [381] and Cost et al. [191] demon
strate the use of CPNs, and Moore [437] applies state charts. Parunak [485]
introduces Dooley Graphs. Bradshaw [91] introduces the notion of a conver
sation suite as a collection of commonly-used conversations known by many
agents. Labrou [367] uses definite clause grammars to specify conversations.

While each of these works makes contributions to our general understand
ing of conversations, more work needs to be done to facilitate the sharing and
use of conversation policies by agents.

In the next section of this chapter we describe a formalism based on
Colored Petri Nets, which can be used to specify conversation protocols.

7.4 Modeling Conversation Protocols with Colored
Petri Nets

7.4.1 Colored Petri Nets

Petri Nets (PN), or Place Transition Nets , are a well known formalism for
modeling concurrency. A PN is a directed, connected, bipartite graph in which
each node is either a place or a transition. Tokens occupy places . When there

3 More recent work with this project, JAFMAS, explores conversion of policies to
standard Petri Nets for analysis [255] .

7. Coor dinating Agents using ACL Conversat ions 189

is at least one token in every place connected to a t ra nsit ion, we say t ha t the
t ra nsit ion is enabled. Any ena bled t ransit ion may fire, removing one token
from every input place, and depositing one to ken in each output place. Petri
nets have been used extensively in the analysis of networks and concurre nt
systems. For a more complete int roduction , see [7] .

CPNs differ from PNs in one significant respect ; tokens are not simply
blank markers, but have data associated with them. A token's color is a
schema , or type specificat ion. Places are then sets of tuples, called multi-s ets.
Arcs specify th e schema they carry, and can also specify basic boolean condi
t ions. Specifically, arcs exit ing and entering a place may have an associated
function which determines what multi-set elements are to be removed or de
posited. Simple boolean expressions, called guards , are associated with the
t ransit ions, and enforce some const ra ints on tuple elements . Thi s notation is
demonstrated in examples below. CPNs are formally equivalent to traditional
PNs; however , the richer notation makes it possible to model int eractions in
CPNs where it would be impractical to do so with PN s.

CPNs have great value for conversational modeling, in that they are a
relatively simple form al model with a graphical represent ation and support
for concurrency, which is necessary for many non- tri vial interactions. Addi
tionally, CPNs are well resear ched and und erstood , and have been applied to
many real-world applications. As such, many too ls and techniques exist for
the design and analysis of CPN-based systems.

7.4.2 Conversation Protocols using Colored Petri Nets

As mentioned earlier, conversations are often specified by simple or modified
DFAs. For t he purposes of example, we will consider conversation defini
tion in JDFA , a loose Extended Finite Stat e Machine (EFSM) for modeling
conversations, int roduced in [192], [486]. The base model is a DFA, but the
tokens of the system are messages and message templat es, rath er than simply
characters from an alphabet. Messages match template messages (with arbi
t rary match complexity , including recursive mat ching on message content) to
determine arc select ion. A local read/ write store is available to th e machine.

CPNs make it possible to formalize much of th e extra-model extensions of
DFAs. To make this concrete, we take th e example of a standa rd JDFA rep
resent ati on of a KQML Register conversation" and reformulat e it as a CPN.
The gra phic depiction of this JDFA specificat ion can be seen in Figure 7.1.

There are a number of ways to formulate any conversation , depending on
the requirement s of use. Thi s conversation has only one final , or accept ing,
state, but in some situations, it may be desirable to have multipl e accepting
states, and have the final state of the conversation denote the result of the
interaction .

4 A regist er conversation is one the most basic KQML conversations, used for an
agent to regist er it s name an d availability with an agent service. FIPA ACL uses
a similar concept.

190 R. S. Cost , Y. Labrou, T . Finin

Fig. 7.1. Diagrammatic DFA representation of the simplified KQML Register con
versation

In demonstrating the application of CPNs here, we will first develop an
informal model based on the simplified Register conversation (in KQML)
presented, and then describe a complete and working CPN-ML model of the
full Register conversation.

Some aspects of the model which are implicit under the DFA model must
be made explicit under CPNs. The DFA allows a system to be in one state
at a time, and shows the progression from one state to the next. Hence, the
point to which an input is applied is clear, and that aspect is omitted from
the diagrammatic representation. Since a CPN can always accept input at
any location, we must make that explicit in the model.

We will use an abbreviated message which contains the following compo
nents, listed with their associated variable names : performative(p) , sender(s) ,
receiver(r) , reply-with(id) , in-reply-toire) , and contenttc)".

We denote the two receiving states as places of the names Register and
Done (Figure 7.2). These place serve as a receipt locations for messages,
after processing by the transitions TI and T2, respectively. As no message
is ever received into the initial state, we do not include a corresponding
place . Instead, we use a a source place , called In. This is implicit in the DFA
representation. It must serve as input to every transition, and could represent
the input pool for the entire collection of conversations, or just this one. Note
that the source has links to every place, but there is no path corresponding
to the flow of state transitions, as in the DFA-based model.

The match conditions on the various arcs of the DFA are implemented
by transitions preceding each existing place. Note that this one-to-one cor
respondence is not necessary. Transitions may conditionally place tokens in
different places, and several transitions may concurrently deposit tokens in
the same place .

Various constants constrain the actions of the net, such as performa
tive (Figure 7.3). These can be represented as color sets in CPN, rather
than hard-coded constraints. Other constraints are implemented as guards;

5 These variable names correspond to attributes of a typical ACL message . Syn
tactically, a ACL message is a balanced parenthesis list that begins with the
performative (or message type, or propositional attitude) followed by attribute
value pairs for the sender of the message , the intended receiver and so on

7. Coordinat ing Agents using ACL Conversations 191

(p.s.r.id.re.c]

Fig. 7.2. Preliminary CPN model of a simplified KQML register conversation.

bool ean condit ions associated with the t ransitions. Intermediate places 5 , R
and I assure that sender , receiver and ID fields in th e response are in the
correct correspondence to th e initial messages. I not only ensures th at the
message sequence is observed , as prescribed by the message IDs, but th at only
one response is accepted, since the ID marker is removed following the re
ceipt of one correct reply. Not all conversat ions follow a simple, linear thread,
however. We might , for example, want to send a message and allow an ar
bitrar y number of asynchronous replies to the same ID before responding
(as is the case in a typical Subscribe conversation), or allow a response to
any one of a set of message IDs . In th ese cases, we allow IDs to collect in a
place, and remove them only when replies to th em will no longer be accepted .
Places interposed between transitions to implement global constraints , such
as alte rnat ing sender and receiver, may ret ain th eir markings; that is implied
by th e doubl e arrow, a shorthand not ation for two ident ical ar cs in opposite
directions.

We add a place aft er the final message t ransaction to denote some arbi
trary action not implemented by the conversation protocol (that is, not by an
arc- association act ion). This may be some event intern al to the interpreter ,
or a signal to the execut ing agent its elf. A proc edural at tac hment at thi s
location would not violate the conversat ional semant ics as long as it did not
in turn influence the course of the conversat ion.

This CPN is generally equivalent to the JDFA depicted in Figure 7.1. In
addition to mod eling what is present in the JDFA, it also mod els mecha
nisms implicit in th e machinery, such as message orderin g. Also, th e JDFA
incorporates much which is beyond the und erlying formal DFA model, and
thus cannot be subjected to verification. The CPN captures all of th e same
mechanisms within the formal model.

7.4.3 A Conversation protocol for a simple Negotiation between
Agents

In thi s sect ion we present a simple negotiation pro to col proposed in [151] .
The CPN diagram in Figure 7.4 describ es th e pair-wis e negotiation pro cess in
a simple MAS, which consists of two functional agents bargaining for good s.
The messages used are based on the FIPA ACL negotiation performative set .

192 R. S. Cost , Y. Labrou , T . Finin

Fig. 7.3. Informal CPN model of a simplified KQML regist er conversat ion .

Fig. 7.4. Pair-wise negoti at ion process for a MAS constituted of two functional
agents.

The diagram depicts three places places: Inactive, Waiting, and Think
ing, which reflect the states of the agents during a negotiation process";
we will use the te rms state and place int erchangeably. Both agents in this
simple MAS have similar architecture, differing primarily in the numb er of
places/states. This difference arises from the roles they play in the negotia-

6 It is not always the case wit h such a model that speci fic nodes correspond to
states of the system or par t icular agents. More ofte n the state of the system is
descri bed by the combined state of all places.

7. Coordinating Agents using ACL Conversations 193

tion pro cess. The agent that begins th e negoti ation, called the buyer agent ,
which is shown on the left side of the diagram, has the responsibility of han
dling message failures. For this, it has an ext ra 'wait' st at e (Waiting), and
timing machinery not present in the other agent, seller. For simplicity, some
const ra ints have been omitted from this diagram ; for example, const raints on
message types, as depicted in th e previous examples.

In this system, both agents are initially waiting in the Inactive places.
The buyer initiates the negotiation pro cess by sending a call for proposals
('CFP ') to some seller , and its state changes from Inactive to Waiting. The
buyer is waiting for a response ('proposal ' , 'accept -proposal', 'reject-proposal'
or 'terminate'). On receipt , its state changes from Inactive to Thinking, at
which point it must determine how it should reply. Once it replies, complet ing
th e cycle, it returns to the Inactive state . We have inserted a rudiment ary
timeout mechanism which uses a delay function to name messages which have
likely failed in th e Timeout place. This enables the except ion act ion (Throw
Exception) to stop the buyer from waiting, and forward information about
this except ion to the agent in t he Thinking state. Timing can be handled
in a number of ways in implement ation , including delays (as above), the
int roduction of t imer-based interrupt messages, or the use of timestamps.
CPN-ML supports t he modeling of time-dependent interactions through th e
later approach.

Note th at this protocol models concurrent pairwise interactions between
a buyer and any number of sellers .

7.5 Advantages for Coordination when using
CPN-described Conversations

There are a number of benefits to be derived from modeling agent coordi
nation with a formal system, and with CPNs in par ticular. Formal models
have a more clearly defined semantics, and are more amenable to standard
izati on, exchange and reuse. They also facilitate analysis, both empirical and
analyt ic.

The ability to verify the properties of a specificat ion is one of the impor
tant benefits of applying formal methods. These benefits can be derived in
two ways:

- Verificati on of the conversa t ion policies or protocols directly, and
- Verification of agents or Multi Agent Systems (MAS) that are based on

such protocols.

We will first consider the range of properties amenable to analysis, and
then discuss their value in th e two contexts described. The focus will be on
the methods provided by DesignjCPN and associated tools.

194 R. S. Cost, Y. Labrou, T . Finin

In addition to 'proof by execut ion', CPNs can be checked for a variety of
properties. This is don e by way of an Occurrence Graph (OG) [208]. Each
nod e in an OG consists of a possible marking for the net . If another marking
(B) can be reached by the firing of a transit ion, the graph contains a dir ected
arc from the nod e represent ing the initial marking to B. All nodes in an OG
are t here fore derived from some initi al marking of the net .

The properties subject to verificat ion are:

1. Reachability Properties: This relates to whether or not the marking de
noted by nod e B is reachabl e by some sequence of transition firing s from
node A.

2. Boundedn ess Properties: The upper or lower bound on the conte nts of
place X in the net , over all possible markings. This can be the cardinality
of the multiset at node X, or the greatest or least mul tiset it self.

3. Home Propert ies: The marking or set of markings which are reachable
from all other markings in the OG define a hom espace. One can verify
that a marking or set of markings const itute s a homespace, or determine
whether or not a home marking exits , and what the minimal such mark ing
is.

4. Liveness Properties: A marking from which no fur ther markings can be
derived is 'dead ' . Liveness, then, relates to the possible pro gressions from
a given node in the OG. One can verify that a marking is dead , or list
dead markings in the OG.

5. Fairness Properties: Relates to the degree to which certain tran siti on
inst an ces (TI) will be allowed with respect to other TIs.

Many of these properties have different values depending on whether we
are regarding a conversat ion protocol or a Mult i Agent System , and also
on the complexity of the net. Conversation proto cols describe/operate on a
message st ream, which in mos t cases is finit e; they are themselves st at ic.
One can imagine analyzing a conversation pro tocol in the context of (1) a
single message st ream, or (2) in the presence of a generator for all or many
representative st reams . In that sense, we may be interest ed in boundedn ess
or home properties, and possibly reachability or fairn ess, bu t not liveness.
On the other hand, liveness and fairness will oft en be mor e importan t in the
analysis of a syste m as a whole.

It is possible to verify properties even for very large and complex net s.
The version of Design/CPN used in this research supports the computat ion
and an alysis of OGs of 20,000 - 200,000 nod es and 50,000 to 2,000,000 arcs.

7.6 Related Work

CP Ns are not new, and t hey have been used extensively for a broad range of
applicat ions (see [336] for a sur vey of cur rent uses) . Since their target domain

7. Coordinating Agents using ACL Conversat ions 195

is distributed systems, and t he line between that domain and MASs is vague
at best , there is much work On which to build . We will review here a few of
th e more directly related research endeavors.

Holvoet and Verb aeten have published extensively On the subject of agents
and PN s. In their 1995 paper, "Agents and Petri Nets" [306], they introduced
the idea of enhancing AOP by using high-level net s to model agents, and
extended this thought in [307] to a vari ant called 'Generic Nets' . In 1997,
Holvoet and Kielmann introduced PNSOL (Petri Net Semantics for Objec
t ive Linda) [308, 309], used to model agents which live in and communica te
through th e Obj ective Linda [353] tuple space .

Yoo, Merlat and Briot [652] describ e a cont ract-net based system for
elect ronic commerce that uses a modular design. Among the components are
BRICS (Block-like Represent ation for Interacting Component s) [237]) , which
are derived from CPN s.

Fallah-Seghrouchni and Mazouzi have demonstrated the use of CP Ns in
specifying conversation policies in some detail , using FIPA ACL as a frame
work [230, 229, 231]. This work suggests an approach for hierarchical con
st ruct ion of conversat ions.

Moldt and Wienberg have developed an approach called AOCPN (Agent
Oriented Colored Pet ri Nets) [634, 428]. This system employed an object
orient ed language, synt act ically similar to C++, which maps ont o CPN, ex
tended by ' test arcs' [158, 370]. They show how this approach can be used to
model societ ies of agent s as described by Shoham [552]. Their model extends
down to th e level of individu al agent theorem provers, facilitatin g the logical
specificat ion of agent behavior.

Other work of note includ es Billington et al. [73], Purvis and Crane
field [503], Lin et al. [381] (above), and Merz and Lamersdorf [412] .

7.7 Conclusions

An Agent Communicat ion Language is a powerful framework for interact ing
agents in an open and dynamic environment . Alth ough an ACL provides a
framework for knowledge sharing between agents, it is, by itself, inadequate
for coordinat ion between agents. Conversations, i.e., well-specified sequences
of message exchanges geared towards particular tasks, use ACL messages as
building blocks for scrip ted , t ask-orient ed interact ions between agents. Such
well-specified conversat ions, with test able properties, can be used to coordi
nate the behavior among communicating agents that attempt to accomplish
the t asks specified by conversat ions.

While FSMs have proven their value for describing conversation policies,
we feel th at inherent limit at ions necessit at e th e use of a model support ing
concur rency for the more complex inte ract ions. CP Ns provide many of the
benefits of FSMs, while allowing greater expression and concurrency. We
presented a CPN-based formalism for modeling conversat ion policies and we

196 R. S. Cost, Y. Labrou, T. Finin

presented examples of using this formalism to specify conversations. This
formalism provides for the testing of properties that are valuable for agent
coordination.

8. Brokering and Matchmaking for
Coordination of Agent Societies: A Survey

Matthias Klusch1 and Katia Sycar a''

1 Germ an Research Cent er for Artifical Intelligence, Multiagent Syst ems Group,
D-66123 Saarbriicken , Germany.

2 Carnegie Mellon University, Robotics Institute, Pittsburgh , USA.
E-Mail: kluschsjdfki.de, katia@cs.cmu .edu

8.1 Introduction

A vast majo rity of ent erprises continue to operate in the physical world, doing
business as usual , but increasingly adopt the Int ernet in every aspect of their
business operat ions. Int ernet-based coordinat ion and collaborat ion between
supply chain par tners is expected to crea te new value and increase the pro
ductivity and efficiency of both digit al and physical product companies. To
date, the Int ernet has already created a complete elect ronic economy which is
rapidly growing and comprising, in particular, an open and globally accessible
networked environment; interconnected electronic markets, online consumers,
producers , and electronic intermedi aries; and legal and policy frameworks.

Intermedia ries in the Internet economy provide market-maker services,
domain exper t ise, trust , visibility, assurance, and certificat ion that enable
buyers to choose sellers and products . They also provide the sear ch, retri eval ,
and aggregat ion services that lower online t ransaction costs for busin esses.
Like intermediaries in th e physical economy, intelligent middle-agents can
be considered as electronic intermediaries in the digit al economy[57]. Thes e
agents provide means of meaningfull y coordinating act ivit ies amon g agent
providers and requesters of services (information, goods, or expertise) in the
Internet [201] . Their main task is to locate and connect the ultimat e ser
vice providers with th e ultimate requesters in open environments , that is to
appropriately cope with the connection probl em.

Various distributed and centralized settings exist to solve this problem.
In general, we roughly distinguish three agent categories, service providers
(P-agents) , service requester (R-agents) , and middle-agents. Th e basic pro
cess of capability-based mediation by middle-agent s has the following form :
(1) P-agents advert ise their capabilit ies to middle-agent s, (2) middle-agents
sto re these advertisements, (3) a R-agent asks some middle-agent to locate
and connect to P-agents with desired capabilities which may includ e com
plete transaction intermediation and other value-added services, and (4) the
respective middle-agent processes thi s request against its knowledge on capa
bilities of registered P-agents and returns th e result. The result may be either

198 M. Klusch and K. Sycara

a subset of the stored advert isements wit h names of respecti ve providers to
contact, or the result of the complete transaction for the most suitable service.

While this process at first glance seems very simple, it is complicated by
the fact that t he Internet considered as an open social , information, and busi
ness environment is in a cont inua l change. The driving force which precipitate
or demand change may arise anywhere at any time. Dynami c changes concern,
for example, location and heterogeneity of available resources and content as
well as different user communit ies and socie ties of agents each of which is
pursuing its goals that may conflict with the goals of oth ers. In additio n the
number of different agents and mul tiagent syste ms that are being developed
by different groups and organi zations significant ly excarba tes the connection
problem . Thus, the essent ial capabilities of any kind of middle-agents are
to facilitate t he intero perability of appropriate services, agents and syste ms,
building trust, confidence and secur ity in a flexible manner , and to comply to
regulatory and legal frameworks when available. This depends on the specific
requi rements implied by given spec ific applicat ion, inform ation, and system
environment . Given the fact that different types of middl e agent s provide
different perform an ce trade-offs what types of middle-agents are appropriate
depends on the application. T he overall challenge of a middle-agent based
solut ion is to fit in with the considered sit uation most effectively, efficiently
and reliably.

The structure of the remainder of this chapter is as follows. Section 8.2
provides a general skill-b ased characterizatio n of middle-agents. In par ticu
lar, we will give a compact guide to the basic concepts of matchmaking and
brokering for coord ination of agent societ ies in the Internet by respective
types of middle-agents. Sect ion 8.3 gives examples of bot h coordinat ion tech
niques as they are available in several mul t iagent systems which have been
developed by different research lab s and universities so far. Finally, sect ion
8.4 concludes this chapter by briefly summarizing th e main results.

8.2 Coordination of Agent Societies via Middle-Agents

8.2.1 Middle-Agents

The notions of middle-agents, matchmakers, brokers, facilita tors , and me
diators are used freely in the literature on the subject without necessarily
being clearl y defined . In the following we address this te rminologica l issue.
In general, middle-agents are agents that help others to locate and connect
to agent providers of services [201]. Fur thermore, any middle-agent can be
characte rized by it s core skills of

1. providing basic mediation services to the considered agent society,
2. coord inat ing these services according to given proto cols , convent ions, and

poli cies, and

8. Brokering and Matchmaking 199

3. ensuring reliable service mediation in terms of leveled quality of serv ices
as well as tru st management within and across multiagent systems bor
ders .

Provision of mediation services. In open information and t rading en
vironments in th e Intern et a middle-agent has to provide basi c mediation
serv ices for th e

1. pro cessing of agent capability and service descrip tions
2. semantic interoperation between agents and systems,
3. management of data and knowledge, and
4. distributed query processing and transactions .

We will briefly discuss each of th ese service types in the following and
propose a respecti ve service-oriente d classification of middle-agents in sec
t ion 8.2.2.

1. Processing of agent capability and service descriptions. Basic requirement
to und erstand and aut omatically process requests for and descriptions of
services and capabilities of agents is th e agreed use of a (set of) common
agent capability descrip tion language such as LARKS [579, 577], CDL
[144]' or XML-b ased service description frameworks, like RDF(S)[507] or
eCo syste m's server and common business librar y (CBL) of generic XML
document mod els for e-commerce [277] . In general , the middle-agent has
to in real t ime parse, validat e, understand and respectively process ca
pabili ty and service descriptions it receives. This is in order to efficiently
determine which of the advertised services and capabilit ies of curre ntly
registered P-agents are most appropriate for a given request of an R
agent . The choice of a suitable mat ching mechani sm certainly depends
on the structure and semant ics of the descriptions to be matched as well
as on the desired kind and quality of th e outcome of th e matching pro
cess; it may rely, for example, on simpl e keyword and value matching, use
of data structure and type inferences, and/ or the use of rather complex
reasoning mechan isms such as concept subsumption and finite const ra int
mat ching. Semantically mean ingful matching requires the matching ser
vice to be strongly interr elated part icularly with the class of services
enabling semant ic interop eration between agents. We describ e selected
approaches for specifying and mat ching capab ility and service descrip
tions with given requests in mor e det ail in sect ion 8.2.3.

2. Semantic interopem tion. One main obst acle of a meaningful inte roper
ation and mediation of services is the syntactic and sema nt ic hetero
geneity of data and knowledge the middle-agent does access and receive
from multiple heterogeneous agents, information systems and sour ces.
The functional capability of amiddle-agent to resolve such struct ural and

200 M. Klusch and K. Sycara

semantic heterogeneities refers to the knowledge-based process of seman
tic brokering [550].
a) Knowledge-based reconciliation of heterogeneities. Most methods to

resolve semantic heterogeneities rely on using partial or global on
tological knowledge which may be shared among the agents. This
requires a middle-agent to provide some kind of ontology services for
statically or dynamically creating, loading, managing, and appro
priately using given domain-specific or common-sense ontologies as
well as inter-ontology relations when it processes requests and data
from different agents. For example, the agreed use of some common
metadata catalogue and XML-based frameworks like Dublin Core
and RDF(S)[507], respectively, a standardized ontology exchange lan
guage (OEL) such as XOL[649] or OIL[468] could be used by different
agents in a multiagent system to represent and exchange individual
ontological knowledge of given domains.
The transformation into a unified knowledge representation supports
the middle-agent to (a) understand the semantics of requests and ad
vertised capability or service descriptions it receives from heteroge
neous agents and (b) to reconcile discovered semantic heterogeneities.
The type of application and mediation of the middle-agent requested
determines which kind of ontology and reconciliation service is most
appropriate. A comprehensive survey of methods and techniques for
knowledge-based resolution of different types of heterogeneities can
be found , for example, in [357].

b) Integration of information. A middle-agent may create and maintain
an integrated partially global view on available information for in
ternal processing and restricted inspection by other agents and users
on demand. Such an information model can, for example, take the
static form of a federated schema in a multidatabase system [548] or
a dynamically updated and categorized collection of capability and
service descriptions annotated with relevant ontological information.
The latter can be stored, maintained and queried like in XML-based
data warehouses.

3. Management of data and knowledge. Basic internal services of the middle
agent include the efficient storage and management of data and knowl
edge about itself and other agents. Such data are, for example, sets of ca
pability advertisements of registered P-agents, past and current requests
of known R-agents, ontological knowledge shared among agents and
other auxiliary data for internal processing. The corresponding databases,
repositories and knowledge base of a middle-agent may be inspected by
other agents and users for different purposes such as, for example, the
specification of appropriate requests in the domain or monitoring activi
ties according to given valid access restrictions and security policies.

8. Brokering and Matchmaking 201

4. Distributed query processing and transactions. In some cases the middle
agent has to put forward queries to multiple relevant external databases
or other sources to gather information on behalf of its requesters. This re
quires the middle-agent to perform distributed query planning and execu
tion of transactions in collaboration with respective systems and agents.

Coordination of mediation services. The coordination of mediation by
a middle-agent requires in particular its ability to meaningfully communicate
with agents, systems, and users which are involved in the overall media
tion process according to given protocols, conventions, and policies. As a
basic additional means agent naming and registration is needed to enable the
middle-agent to locate and identify its providers and requesters within and
across multiple agent societies .

Agent registration and naming. Location of relevant agents by the middle
agent presumes that its clients are registered and can be named at any in
stant; this implies utilization of basic services of agent registration and nam
ing for example agent name servers within the network domain covered by
the middle-agent. Regarding scalability the middle-agent may also have to
be able to dynamically cross register agent capabilities from one agent soci
ety to another so as to maintain maximum accessibility of involved societies
to each other 's capabilities. R-agents within one agent society may benefit
from services and data provided by P-agents in another one without being
aware of the fact that each of them belong to a different multiagent system.
This can be achieved by the middle-agent which is initially contacted by the
R-agents by exploiting its semantic interoperation services and appropriate
collaboration with relevant middle-agents of and interoperators between het
erogeneous agent societies [272].

Inter-agent interactions. Any coordinated interaction between the middle
agent, registered R-/P-agents and other middle-agents basically relies on
the agreed use of one or more standardized agent communication languages
(ACL) like FIPA ACL or KQML, given conversation protocols, and policies
[366]. In communicating information among different agents it is essential to
preserve the desired semantics of utterances transmitted via messages of an
ACL. Both the intention of the message as well as its data content has to
be understood correctly by the middle-agent and its clients to perform and
support required service mediation, respectively. \

Accessing sources of data and information. In case the middle-agent has to
access database systems, knowledge bases or other sources of information by
itself it can do so either via standardized APIs or transparent remote access
methods such as JDBC/ODBC, OKBC[469], JavaRMI, and CORBA, respec
tively. In a different approach the middle-agent may retrieve the required data

202 M. Klusch and K. Sycar a

in collabora t ion with so-called wrapper agents which are encapsulating t he
relevant systems and sources. The middl e-agent forwards appropriate sub
queries to the wrappers each of which transforming th e received request to
a query in th e propriet ary query language of the par t icular system and re
turns th e result of its execution in the desired format to th e middl e-agent .
The midd le-agent then has to merge all of th ese partial results for furth er
processing. Such a scenario is in compliance with t he paradigm of a mediator
for intelligent inform ation systems introduced by Wiederhold in 1992 [633] .

In terfacing with users. In addition to the requirement of a middle-agent to
appropriate ly communicate with its client s and relevant systems, it may also
provide interface services to human users to let th em, for example, browse
available information th ey are interested in such as parts of a local domain
or shared global ontology, sets of actual service descriptions, or registered
service providers. These interface services have to be restri cted according to
given security policies and requirements.

Mediation prot ocols and policies. Any act ivit ies related to service media
tion within an agent society can be organi zed and coordinat ed according to
given protocols, convent ions, and policies of interaction between agents . The
middl e-agent by definition plays a central role of initializing and coordina t ing
the interaction among agents in collaborative or competit ive set t ings. Most
common forms of mediation pro to cols include matchmaking, brokering, and
ar bitration in negotiations between P- and R-agents , for example, at virtual
marketplaces or auct ions. The general protocols for brokering and match
makin g are described in sect ion 8.2.3 below.

Reliability of mediation. Each client requires the contacted middle-agent
to be reliable in terms of trust and quality of service. That means that the
middl e-agent should perform its designated mediat ion services at any given
inst ant in a trustworthy manner and in compliance with given secur ity and
quality policies of individual agents or the considered agent society as a whole.
This particularly requires the middl e-agent to cope with different kind of poli
cies in a coherent and consiste nt manner.

Quality of service. A middl e-agent has to assure that th e dat a it sto res,
pro cesses and provides to th e agents in the society comply with desired data
quality requirement s, standa rds, and policies. In this context data policy is
the overa ll intention and direction of an agent with respect to issues concern
ing th e quality of data products and services it will receive either from th e
middle-agent or the respective P-agent s. The specificat ion, management and
evaluation of quality of mediated data and services may follow corresponding
methods, standards and metrics used for data warehouse quali ty management
[326] and software implementation quality such as the ISO 9126 standard.

8. Broker ing and Matchmaking 203

Regarding the usage of mediated services and data , common quali ty re
quirements are that they are accessible and useful to the agents in term s of,
for example, secure availability, int erpret ability and t imeliness in order to de
tect changes and reasons for them. Other quality facto rs include correc t ness,
completeness, consiste ncy, and redundancy of data as well as functionality,
efficiency, maintainability and portability of the implement ation of mediated
services. Lat ter factors par ticularl y also concern the quality of the media
t ion services of th e middle-agent its elf. For example, the provided mediation
should be accurate, faul t-toleran t to potenti al service failures, adaptive, time
and resource efficient, and stable. It also requires the middle-agent to guar
antee against loss of data or revenue as a result of it s mediatio n which in
turn , may increase t he level of trust in its mediation services.

Trust management. Besides the client- sided demand to th e middle-agent
of providing qualit y of services th ere is also th e essent ial requirement of a
middle-agent to behave in a trustworthy manner to its clients in te rms of
guaranteeing desired dat a privacy, anonymity, and verification of claimed
agent capabilit ies [640, 402]. In this sense , a middle-agent acts as a trusted
intermediary among the agent s of the considered agent society according to
given trust policies of individual agent s and the whole society.

Both intern al data and knowledge of, and the computat ional pro cesses of
mediation executed by th e middl e-agent should be robust against extern al
manipulation or attacks of malicious agents , systems , or users. On the oth er
hand, clients of a middle-agent should have no incenti ve to misuse any in
form ation which has been revealed by the middl e-agent during mediation. In
this respect most common trust actions are aut horizat ion and verification of
credent ials of all par ties which are involved in the mediation.

These actions have to t ake different trust relationships into account which
may exist among the R-agents, middl e-agents, and the P-agents within one or
mor e connected agent societies . Can a contacted middl e-agent , for example,
be trusted by R- or P- agents to not resell (par ts of) private profile infor
mation, copyr ighte d data , and so forth, to other middle-agents or P-agents
it collaborat es with potentially across mul tiagent systems borders? R-agents
also might want to verify certain facts about relevant P- agents before con
tracting them either by itself or the middl e-agent as a trusted int erm ediary.

In summary, there is an obviou s need for all agents involved in the media
tion pro cess to use an appropriate trust mod el to ana lyse and assess the risks
of and methods to prevent and counte rac t at tacks against th eir data and
knowledge. Models, methods and techniques supporting the establishment
and management of mutu al trust between a middle-agent and its clients in
an open environment include

- t he usc of expressive t rust establishment certificates useful for , e.g., binding
agent identi ty to public key infrastructures such as IETF's SPKI [301,
564], and other standard securi ty mechanisms and protocols, the use of

204 M. Klusch and K. Sycara

mechanisms to bind agent name s to their human deployers, so that the
human would bear responsibility in case his/her agent misbehaves.

- t he formal specificat ion of agent trust policies, and
- the respective upd ate, propagation, and transitive merge of trust matrices

to calculate an overall trust relationship th at accounts for the trust values
in each and every individual trust relationship which is relevant to the con
sidered mediat ion pro cess [395]. An option is th e applicat ion of distributed
history-based reputation mechanisms to agent societ ies [653].

8 .2.2 Types of Middle-Agents: Mediators, Brokers, and
Matchmakers

Decker et al. [201] investigated different roles of middl e-agent s in th e solut ion
space of the connect ion problem from the standpoint of pr ivacy considera
t ions. The aut hors particularly examined knowledge about R-agent prefer
ences, and P-agent capabilit ies; in this view specific requests and replies or
actions in service of a request are interpreted as instances of preferences of
R-agent s and capabilit ies of P-agent s, respectively. Both preference and ca
pability information can init ially be kept private at the R-agent , be revealed
to some middle-agent , or be known by the P- agent . Thi s leads to a catego
rization of some middle-agent roles as shown in th e following table.

Preferences Capabilit ies init ially known by
initi ally known by P-agent only P-agent P-agent

+ middle-agent + middl e-agent
+ R-agent

R-agent only (Broadcaster) "Front-agent" Yellow-Pages,
Mat chmaker

R-agent Anonymizer Broker Recommender
+ middle-agent
R-agent
+ middl e-agent Blackboard Introducer Arbi trator
+ P-agent . . .

Table 1: Middle-agent roles categorized by initial privacy concerns [201] .

For example, a broker agent und erstands but protects the init ial privacy
of capability and preference information of both the R-agent and P-agent ;
neither the R-agent nor the P-agent ever knows directly about the other in
a t ransaction which is intermediated by the broker agent . In contrast , any
R-agent can query capability information of registered P-agents at a match
maker or yellow-page server such th at thi s information is revealed initi ally to
both requesters and providers. However, this categorization of middle-agent
roles does not reflect the possibility of learning of preferences and capabilit ies
over t ime.

In addit ion to this perspective on middl e-agents restricted to initial pri
vacy concerns we propose a more general skill-based, means service-oriented,

8. Brokering and Matchmaking 205

classification of middle-agents. This classification is implied by the extent a
middle-agent is providing mediation services as they are described in section
8.2.1. Figure 8.1 summarizes these service classes for middle-agents in general
and for some common types of middle-agents in particular, namely mediators,
brokers, and matchmakers. Latter is illustrated by means of object-oriented
inheritance and instantiation of service classes for each of the agents. The cor
responding classification matrix based on the differences in services is given
in figure 8.2.

Middle-Agent

info: dynamicrccllcction.global
1'-'. dist_qp : -, trans: intermediate
! datu_s: D\V, repository

L_. int_pol: negotiation.subscribe
int-P.!l:Uem: brokera e

Interact ion
Class Tmst_mgmt
• data_security
• trust_policies
• trustjnetrics

Reliability

Mediation

Class Data_mgmt
• data_storage
• dat aj ngrruj nspection

C lass QuerY.../Jrocessillg
• dist rib_lIuery_lllanning
• transactionservices

Class ACDL.../Jrocess
• parse validate, ACDL
• match_ACDL
Class Semfnterop
• ontologyservtces
• sem antic_rec onciliation
• infnrmation jnodel

Class Agt-,ulII,illgJeg Class User_illterface
Class Agrinteraction • securebrowsequery
• ACL_processing Class Mediationjicl
• interact_negotiation_pol ic ies • interaction_patterns
Class Accessjsources

Class Quality_o!-st>n'ice
• QoS_data_usage
• QoS_ll1cdiation

Fig. 8.1. Derived service classes of mediator, broker, matchmaker agents

In the following we briefly discuss mediator, broker and matchmaker
agents in general, then focus on particular enabling techniques of brokering
and matchmaking, and finally survey some of the prominent examples.

Mediator. A mediator agent in its original definition by Wiederhold (1992)
[633] is dynamically and actively interfacing users (R-agents) to relevant data
and knowledge resources. In this context, the term 'mediation ' includes the
processing needed to make the interface work, the knowledge structures that
drive the transformation needed to transform the data to information, and
any intermediate storage that is needed. In general, a mediator focuses on
the provision of services devoted to semantic information brokering. That
encompasses services to (1) dynamically determine information services and
products; (2) arbitrate between consumer and provider agents by means of
resolving different world-views (information impedance), and (3) dynamically

206 M. KJllsch and K. Sycara

Mediation Services Matchmaker Broker Mediator

Class ACDL...[Jrocess
X X X• parse_validate_ ACOL

• match ACOL X X X

Class Se m_interop
X X X• ontology_ser vices

• sem anuc j-econciliation X X X
• information_model dynamic static/integrated

collection globa l

Class Data_ mgm t dat a warehouse federated
• data_storage/mgmt/inspect X

repositor y db/repo sitory

Class Que ry...[J rocess ing

• dist rib_query_planning X

• transaction_services intermedi ate intermediate

Class AgCinte raction register/matching only negotiation, wrapper,
• interact_negotiation_policies no negotiation subscribe, coop. (mediator) coop.

Class Mediationjpcl
matchm ak ing brokerage brokerage• interaction_patterns

Class Access source s X X

Fig. 8 .2. Servi ce-oriented classification of mediator, broker , matchmaker

create or compose inform ation products by correlating or assembling compo
nents and services from various providers.

As mentioned above, the most common scenario of a mediator in an intel
ligent informati on system is t hat it acts as a cent ra l unit collaborating with a
set of wrapper agents (P- agents) each of which is providing access to and data
of some available information source in a common data model. A mediator
is creat ing and managing a partial global information model on the envi
ronment and ot her agents through knowledge based integration of received
information from different sources, and offering domain and applicat ion spe
cific value-added services. It takes requests from user agents (R-agent s) and
answers them either using its global inform ation model or forwarding appro
priate request s to the relevant wrapper agents based on respective distributed
query planning and pro cessing. In t his sense information is gat hered following
a pull mechanism initiated by the mediator on demand.

In contras t to broker agents mediators do not simply collect information
from different providers similar to data warehou ses but integrate t hem into
a global inform ation mod el by resolving inconsist encies and conflicts . This
model is typically hidd en in the definition of the mediator, and is eith er
statically or dynamically genera ted. In addit ion, a broker agent usually is
considered not to be able to do any distributed query planning and process
ing. Examples of mediator-based information systems are Infomast cr [271]'
TSIMMIS [259], Observer [549], MIX [56,426], and SIMS/Ariadne [40] .

8. Brokerin g and Matchm aking 207

Broker. A broker agent may act ively interface R-agent s to P-agent s by inter
mediating requested service transactions. All communication between paired
R- and P-agents has to go through the broker . It typically contacts (a set of)
the most relevant P-agent, negotiat es for , executes and cont rols appropriate
t ransactions, and returns the result of the services to th e R-agent.

This is in cont rast to the funct ionality of a matchmaker agent but is sub
sumed by that of a mediator. But unlike mediators, broker agents typically do
not provide a global, semant ically integrated , consistent information model to
their clients but store collected inform ati on maybe toget her with associated
ontological annotations in some standardized data (structure) format in one
(or multipl e) appropriate reposi tories like in a data warehouse. In addit ion,
a broker typically does not have a compara bly extensive set of value-adding
mediation services like a mediator ; in this respect a broker may rely on differ
ent types of task-or iented agents it is able to collaborate and negotiate with.
Broker may subscribe to certain P-agents if needed. Unlike a mediator agent ,
the interaction of brokers with other agents is neith er restricted to wrappers
or mediat ors nor commit ted to a fixed numb er of agents. This ability is par
ticularl y useful since brokers are usually act ing in dynamic environments in
which resources and agents may cont inually ente r and leave the agent society.
In such environments it turns out to be inappropriate to maintain a st at ic
pre-integrated global model which is valid for a ra ther closed society of agents
and systems.

However , it is noteworthy that t he semantics of the terms matchmaker
and broker as well as mediator and broker are often used interchangeabl y
in the literature; brokers are also often called facilitators. Examples of bro
ker agents and broker-based systems include XML-based GMD Broker [315],
OntoBroker [474], SHADE, and COINS [364].

Matchmaker. A matchmaker agent just pairs R-agent s with P-agents by
means of matching given request s of R-agent s with appro priate advertised
services of registe red P-agent s. In cont rast to the functionality of both the
broker and mediator it simply ret urns a ranked list of relevant P-agents to
the request ing agent . As a consequence th e R-agent has to contact and nego
t iate with the relevant P-agents itself for get ting the services it desires. This
direct interac t ion between R-agent and selected P-agent s is performed inde
pendently from the matchmaker. It avoids , for example, data t ransmission
bottlenecks or single point of failure at t he matchmaker but increases direct
communication overhead between matched R-/P-agents.

One could consider matchmaking as subsumed by brokering but it also
extends it in the sense of giving t he R-agent th e full choice of select ing a (set
of) P-agent s a-posteriori out of th e result of service matching. In set t ings
with brokers instead , any R-agent choice a-priori by specifying respective
const ra ints in it s request for service to the broker . Examples of matchmaker
based multiagent systems and platforms include IMPACT [42] , InfoSleuth

208 M. Klusch and K. Sycara

[458] , and RETSINA/LARKS [579, 577] each of which is described in section
8.3.

8.2.3 Coordination Techniques for Middle-Agents: Brokering and
Matchmaking

The coordination of mediation activities within and across agent societies can
be performed by a middle-agent, for example, via brokering or matchmaking.
Both types of mediation imply different requirements and protocols for in
teraction among agents which are involved in it . According to the skill-based
classification of middle-agents as described in section 8.2.1 any method and
technique for capability and service matching can be utilized for implement
ing both the brokering and matchmaking. In addition, ontology services are
typically used to perform meaningful automated reasoning on capability and
service descriptions specified in a given ACDL.

In "t he following we briefly summarize the high-level interaction patterns
for both the matchmaking and the brokering protocol. Additionally we adopt
the approach by Wong and Sycara [639] to give a formal specification of the
respective protocols by means of state-transition relation based input/output
(10) automata [388] . An 10 automaton performs an action in a given state
such that it may transition to a new state according to a given transition
relation. This relation is described in a precondition-action-effect style to
specify the changes that occur as a result of an action in the form of a simple
pseudo-code that is applied to a pre-state to yield another state. Each agent
is modelled as a process which, in turn, is specified as an 10 automaton.

Matchmaking. When a service-providing agent registers itself with the
middle-agent together with a description of its capabilities specified in an
agreed ACDL, it is stored as an advertisement and added to the middle
agent's database. Thus, when an agent inputs a request for services , the
middle-agent searches its database of advertisements for a service-providing
agent that can fill such a request . Requests are filled when the provider's ad
vertisement is sufficiently similar to the description of the requested service
(service matching) . As mentioned above the requesting agent has to directly
interact with the relevant provider to obtain the service and data it desires
(service gathering). Figure 8.3 gives an overview of the interaction pattern of
this two-parted matchmaking process.

According to this interaction pattern an 10 automaton for a matchmaker
agent can be specified as follows.

Definition 1: (Matchmaker automaton)

Variables provID, reqID, req .pre], capDescr, servParam, transI D ,match are
drawn respectively from the set of P- and R-agent ids, requests, preferences, ca
pability descriptions, service parameters, transaction ids, and an ordered list of
service-request matches. The set of states and the signature of automaton A is

8. Brokering and Matchmaking 209

..
I : Re!~eS I- for-Serv ice

IRequester I .. Matchmaker

2: Reply-~~ov ider-Agenls -Nal1les

3: Request-for-Service
0: Advertise,

Unadve rtisc.. Services

Provider

: Re I -Rcsuh-of-Scrvice1
4

P Y ::
·s~;:;;i~~· ·· · · ·· ··· ·· · · · · ··· ·· · · · · · · · · · · · · · ··· ·· ·· SeiVice·

Gathering Matching

Fig. 8.3. Interaction pattern of capability and serv ice matchmaking between agents

denoted by states(A) and signature(A) , respectively. The set of actions acts(A)
includes receive(msg) , send(msg) , and ma tch(db, (req ,pref,reqID), k) denot
ing functions for receiving and sending messages of type 'adverti se-capability ',
'request-for-service', 'result ' , and returning a decreasingly ordered list of k tuples
«provID , capDescr) , req, r eqlD) denoting the k best matching P-agents provID
(with respective capability description capDescr), resp ectively.
The set of transitions trans(A) ~ states(A) x acts(signature(A)) x states(A) . A
middle-agent performs actions triggered by its input which transition A into a valid
state and produce some output. Input and output are defined in terms of message
types the middle-agent can receive and send, resp ectivel y.

Signature:
input: (advertise-capability (provI D , capDe scr, servP ar am))

(request-for-service (reqID , req.pre] , k))
output(msg) , m sg E {success , fa il}

(result (match)) , match = [«prov Id, capDescr) , req,reqID)]

States:

- capDB: database of capabi lity descriptions.
- ackQ: queue of acknowledgements containing tuples (provI D, success/fail) each

of which is indicat ing the resu lt of an advertisement .
delQ : queue of delegations containing tuples (reqI D, (r eq,pref, input)) each of
which is representing a request which has not yet been pro cessed by the middle
agent .
matchQ: queue of matching pairs of R-/P-agents containing tuples «provID ,
reqID) , (r eq, pre/)) with provId indicating the P-agent that best matches the
request req of R-agent reqI D .

210 M. Klusc h and K. Sycara

Transitions:
receive] (advertise-capability (prov I D, capDe scr , servPararn)))

Precondit ion : -
Effect : capD B := add(capDB , (prov ID ,capDescr,servPararn)) ;
if add(capDB, (prov I D, capDescr, servPararn)) succeeds
then ackQ:= append(ackQ, (prov I D ,success» else
ackQ:=append(ackQ,(provI D,fail))

send(rnsg, provI D)
Precondition: head(ackQ) = (prov I D , rnsg) ,
Effect : ackQ:=tail(ackQ) .

receive(request-for-service (req I D , req ,pre f))
Precondition: -
Effect : delQ := ap pend(delQ, (r eqID , req,pref)) .

match(capDB, (req ,pref,reqI D), k)
Precondition: head(delQ) = (reqI D , req , pref) .
Effect : delQ := tail(delQ) ;
rnatchQ:= append(rnatchQ ,

(req ID , m atch(capD B , (req,pref,reqI D) , k))) .
send((result (rnat ch)) , reqID)

Precondition: head(rnatchQ) = (reqI D , rnatch)
Effect : rnatc hQ := tail(rnatchQ) ;

o

Brokering. Based on the functional capability of broker agents informally
described in section 8.2.2 the interaction pattern of brokering is shown in
figure 8.4 below .

I: Request-for-Service

Bro ker .-
Requester

5: Reply-Result-of-Services

0: Advertise.
Unudvertise Services

Provider

I 3: Request-for-Service/Transaction

4: Tra nsmit Result-of-Service

F ig. 8.4. Interaction pattern of capability and service broker ing between agents

8. Brokering and Matchmaking 211

According to t his bas ic interaction pattern an 10 automaton for a bro
ker agent can be defin ed as follows . Due to space const raints we omitted to
include t he option of the broker to ind ividually negotia t e services execut ion
with t he relevant P-agen t s on beh alf of it s clien t s.

Definition 2: (Broker automaton)

See definition 1 for definition of st at es, variables, actions, message types . In
addition, variables input , R esultOf S ervice, z are drawn from the set of inputs
needed for service executions, resul ts they generate, and int eger , resp ectively. The
message ty pe 'brokerage-RFS' and 'perform-SE' indi cat e that the middle-agent has
to broker the request for service, and tha t each of the contacted P-agents has to
perform request ed service execution (tr ansaction) given the id , and preferences of
the request ing R-agent , respectively. It is assumed th at the addit iona l input needed
for inte rmediat ion of transactions (such as payment inform ation) is known to the
broker agent . T he st ates are meant to be in addit ion to the states alrea dy describ ed
in definition 1.

Signature:
input: (advertise-capability (provID , capDescr, servP ar am))

(brokerage-RFS (reqID , req,pref, input , k))
(result (R esultO f S ervi ce, t ransID))

output : (m sg), m sg E {success , fa il}
(perform-SE ((req,pref, input), reqI D, tra nsID))
(result (Re su ltO f S ervice, req))

St ates:

A sy ncR esWait : set of tuples (reqID , t ransID) ind icating that the middl e-agent
is st ill wait ing for the result of t he t ransaction transID to be sent to the respective
requester reqID.
resQ: queue of service execution (tr ansaction) resul ts containing tuples (reqID ,
R esultO f Service , t ransID) each of which includes the result of the transaction
tran sI D rea dy to be transmit te d to the respective R-agent reqI D. set of tuples
(req, tra n sI D) each of which denotes the mapping of a request to it s t ransac tion
id.

'Transitions:
receive((advertise-capabili ty (provID , capDescr, serv P ar am)))

Precondition: -
Effect : capD B := add(capDB , (provID , capDescr, serv P aram));
if add(capDB , (prov I D ,capDescr, ser vParam)) succeeds
then ackQ := append (ack Q, (pro vID,success))
else ackQ := append(ackQ, (prov I D, fail))

send(msg ,provID)
Precondition: head(ackQ) = (provID , m sg)
Effect: ackQ := tail(ackQ).

receive(brokerage-RFS (reqID , req, pre f, k))
Precondition: -
Effect: delQ := append(delQ, (reqID,req,pref)) , z := k ;

match(capDB, (req,pref,reqID) , k)
Precondition: head(delQ) = (reqID, req,pref) .
Effect : delQ := tail(del Q);

212 M. Klusch and K. Sycara

matchQ := append(m atchQ,
ir eqlD , m atch(capDB, ireqcpre], reqID) , k))) .

send (perform-SE ((r eq,pre], input), reqlD , transI D) , prooI D)
Precondition: head(matchQ) =
ireqlD , [((provID , capDescr) , req,reqID)]); zi,O
Effect : matchQ:= tail(m atchQ); Z-j

AsyncResWait := A syn cResWait U { ireqlD , tra n sI D, req)} j

receive((result (ResultOI S ervice, tra nslD)) , proulD)
P recondition: -
Effect : resQ := append (resQ ,

ireqlD , Re sult.OfSe ruicc , transI D)) ;
Asyn cResWait := A syncResWait \ {(reqID , t ra nslD , req)} ;
TR:= TRU {(t ransID, req)}

send((result (ResultOIService,req) , reqID)
Precondit ion : head(resQ) = ir eqlD , R esultO[Seruice, translD);
(transID,req) E TR
Effect : A syncResWait := A syncResWait \ {(reqID, transID)} j
TR:= TR\ {(transID,req)} ;
resQ:= tail(resQ) .

o

8.3 Examples of Coordination via Service Matchmaking
and Brokering

In the following we describe prominent examples of implement ed multiagent
systems and platforms which are coordina ted by middl e-agents via t he medi
at ion protocols for service matchmaking and brokering. These examples are
IMPACT, RETSINA/LARKS, and InfoSleuth, respectively. Other related
work is surveyed in sect ion 8.3.4.

It is not eworth y th at mediation across multiagent syste ms boundaries has
still not received much at tention though it is a crucial issue in open environ
ments like the Internet. First steps in this direction include th e RE TSINA
interop erator [272J between heterogeneous agent societies and multi-agent
systems.

8.3.1 InfoSleuth

InfoSleuth [458J has been developed by MCC Inc. in Austin, Texas, USA.
It is an agent-based system th at can be configured to perform different in
formation management act ivit ies in distributed applications such as in an
evironmental data exchange network and compet it ive intelligence system.
InfoSleuth offers a set of various agents with different roles as follows.

User agents act on beh alf of users and interface th em to th e rest of the
agent syst em, resour ce agents wrap and activate databases and oth er inform a
tion sources ; "broker agent s" perform syntact ic and semantic matchmakin g;

8. Brokering and Matchmaking 213

ontology agents collectively maintain a knowledge base of the different on
tologies used for specifying requests and return ontological information on
demand; multi-resource agents process complex queries that span multiple
heterogeneous resources, specified in terms of some domain ontology. Further
agent roles concern task planning and execution, monitoring of data streams
and system operations, and other specialized functions .

Any P-agent in a given InfoSleuth system announces itself to one or mul
tiple matchmaker agents (called "broker agents") by advertising to it , us
ing the terms and attributes described in a common shared ontology (called
"infosleuth ontology") attributes and constraints on the values of those at
tributes. This special ontology is shared by all agents to use for specifying
advertisements and requests. It contains concepts useful to define (a) what
kind of content is accessible by an agent, (b) what services an agent can do
for whom , (c) what are the interfaces to those services , (d) how well can an
agent perform those services at the moment, and (e) other properties of an
agent such as location, used communication protocols, etc .

Agent capabilities are represented in InfoSleuth at following four levels:

1. the agent conversations that are used to communicate about the service,
2. the interface to the service ,
3. the information a service operates over, and
4. the semantics of what the service does.

Figure 8.5 shows an example of the specification of a pair of matching
query and capability description in InfoSleuth adopted from [141] .

In this example a resource agent named 'tx-env-resource' is able to pro
vide environmental contamination information related to contaminated sites
in Texas. In this respect it advertises generic capabilities such as the ability
to be monitored, to be queried and subscribed to . Latter capability consists
of a set of related ontology fragments according to the levels of capability rep
resentations mentioned above : the conversation ontology fragment specifies
that the agent accepts conversations of the form used by subscriptions, using
th e language KQML . The sql ontology fragment specifies that queries have to
be specified in the relational database query language SQL. The environment
ontology fragment specifies classes and slots which contain data in the agent.
Finally, the service ontology fragment specifies that the advertised service is
accessed locally within the agent as well as other properties.

R-agents formulate request for services like the one shown in the example
above in terms of the infosleuth ontology. The matchmaker then matches
the request to P-agents whose advertisements correspond to the constraints
specified in the request , and returns a recommendation containing those P
agents to the R-agent . Resource agents whose databases do not maintain data
in terms of the common ontology access special mapping agents to perform
appropriate ontology mapping actions.

Given a query over a single domain-specific ontology, a query agent coor
dinates the processing of the request by (a) collaborating with one or multiple

214 M. Klusch and K. Sycara

Advertisement
capability env-subscription
ontology conversation
class conversation
slot conversation-type in {subscribe}
slot language in (kqml}

ontolog y sql
ontology services
class data-response
slot language in {tuple-format}
slot delivery in (http,inline}
class subscription
slot computation in {direct}

ontology environment
class site
slot contaminant
slot remedial-response
slot city
slot state in {Texas}

Query
capability subscribe-to-capability
ontology conversation
class conversation
slot conversation-type in {subscribe}
slot language in {kqml}

ontology sql
ontology services
class data-response
slot language in {tuple-format}
slot delivery in (inline}
class subscription
slot computation in {direct}

ontology environment
class site
slot contaminant
slot city in {Austin}
slot state in (Texas}

Fig. 8.5. Example of query and capability descriptions in InfoSleuth

mat chmakers to identify relevant resource agent s, (b) decomposing the query
int o a collect ion of subqueries each addressed to these agents, and (c) fusing
th e subquery results into an integrated answer to the original global query.
Issues of subquery t ranslation and execut ion being encapsulated with the re
spec t ive resource agent . The resource agents may cont inua lly enter and leave
the system, such that the query agent does not create and maint ain a global
int egrated informat ion model of the agent society. In summary, in InfoSleuth
th e query agent and th e "broker" agent acts as a broker and a matchmaker,
respecti vely.

Unfort unately, the exact and complete process of query decomposit ion
for genera l queries (not just data base queries) or the pro cess of mat ching in
the InfoSleuth system has not yet been revealed in th e literature. However,
what is known from th e literature is that service matching occurs at different
levels: Syntact ic, semantic , and pragmatic matching. In InfoSleuth, syntactic
matching refers to the pro cess of matching requests on the basis of th e syntax
of incoming messages which wrap the query ; semantic matching refers to the
pro cess of matching the internal data st ruct ures of and constraints used in
request and capability descrip tions; pr agmatic matching includes considera
t ions such as the performance of th e ma chine th e agent is running on and
securi ty requirements.

8. Brokering and Matchmaking 215

8.3.2 IMPACT

The IMPACT (Int eractive Maryl and Platform for Agents Collaborating To
gether) platform [42, 322] has been developed at th e University of Maryland,
College Park, USA. It supports multiagent interactions and agent interop
erability in an application independent manner. For this purpose IMPACT
provides following set of connected servers :

1. Yellow-pages server performs basic matchmaking among R- and P-agents
based on two weight ed hierarchies it maintains - a verb and a noun hi
era rchy of synonyms - and retrieval algorithms to compute similarities
between given service specificat ions,

2. registration server for agent registration and maintaining an agent service
index used by th e yellow-pages server ,

3. typ e server maintains a hierarchical ontology of standard data types and
concept s, as well as

4. a thesaurus and a human interface allowing a human to access all the
above servers in an IMPACT syst em.

The IMPACT software provides th e infrastructure upon which different
IMPACT agents may int eract ; multiple copies of it may be replicated across
the network and get synchronized when needed.

Any servi ce provided by an IMPACT agent is specified in a special markup
service descrip tion language. A service specification consists of (a) a service
name in terms of a verb-noun(noun) expression such as rent: car(Japanese) ,
(b) typ ed input and output variables, and (c) att ributes of services such
as usage cost, average response time to requ ests for tha t particular service,
etc. Services may be either mandatory or discretionary. Agents may request
services in one of th e following forms .

- k-nearest neighbor request: Find the k-nearest service names (pair s of verb
and noun term) such that th ere exist s an agent who provides that service
and identify this agent

- d-range search: Find all service names within a specified dist ance d.

Searching of appropriate services in IMPACT essentially relies on the ex
ploit ation of given weighted verb hierarchy and noun hierarchy each of which
are special cases of the general concept of a term hierarchy. Similarity between
verbs and noun s in the verb and noun hierarchy, respectively, is computed
via a given distance function on paths of weight ed edges in the hierarchies. A
composite distance function then combines both dist ance functions to calcu
late the combined similarity value for two word pairs (verb ,noun) of service
names. The authors suggest to take addition as composite distance function.
If a word cannot be found in the respective hierarchy a synonym will be
searched in the thesaurus instead .

Figure 8.6 gives an example of th e data structures used in IMPACT to
pro cess requests . Regarding th ese example da ta st ructures a request " Find

216 M. Klusch and K. Sycara

(k =) 2 nearest agents that provide a service (rent , carO) of renting cars"
will be processed as follows.

Verb Hierarchy

{seek , search I
~

prov ide {explore,investigate I ...

~
rent sell hire

Noun Hierarchy
vehiclet)

~
[c art), automobiler) J varu) ...

/>;
Car(Amencan) car(Japanese)

.--------7 ~
chevyi) Dodger) ... Hondar) Mazdar) Nissanf) ...

(Service) Agent Table
Verb NounTerm Agent
rent car(J apane se) agl
rent car(American) ag3
rent vehiclei) ag6
hire Hond af) ag4
rent car(Japanese) ag2
sell MazdaO ag2
rent vehicleO ag3

Thesaurus
Word
vehiclet)
car(American)
car(Japanese)
Seek
provide
rent

Synonyms
car ,carrier,van, ...
chevy,n eon,d odge ,...
Honda,Mazda ,Nissan , .
search,lookup
supply.hand-over
hire ,lease

Fig. 8.6. Example of dat a structures used for service matchmaking in IMPACT

Firstly, an agent table is searched to find at most 2 agents that provide the
exact service (rent , carO). Since this search returns the empty set t he service
related word pair (rent , car()) is now relaxed to (rent , vehicle()) by taking
an immediate neighbor of the verb 'rent' and the noun 'car' in the verb and
noun hierar chy, respectively. The type carO is now instantiated using valu es
specified in the data type hierarchy of the IMPACT type server which leads
in this example to noun terms car (.Japanese) and car(American). As an inter
mediate result we get t he following list of information on relevant services in
the form ((verb,noun) ,composite distance) : ((r ent , car (Japanese), 1), ((rent,
car (American)), 1), ((provide, car()) , 3). Searching the agent table for exac t
matching service nam es rent:vehicleO and rent:car (Japanese) is successful in
this example and returns agent6 and agentl as relevant P- agents.

8.3.3 RETSINA/LARKS

The RETSINA (Reusabl e Task Structure-based Intelligent Network Agents)
[580, 512] multiagent infrastructure has been develop ed at the Carnegie Mel
lon University in Pi t tsburgh, USA. It consists of a system of three different
reusable agent typ es that can be adapted to address a variety of different
dom ain -sp ecific problems .

8. Brokering and Matchmaking 217

Interface agents interact with the user , receive user input and display
results. Task agents help users perform tasks by formulating problem solv
ing plans and car rying out these plans through querying and exchanging
information with other software agents . Inform ation/resour ce agents provide
intelligent access to a heterogeneous collect ion of information sources.

A collection of RETSINA agents forms an open society of reusable
agents that self-organize and cooperate in response to task requirements .
The RETSINA fram ework has been implemented in Java and is being used
to develop distributed collect ions of intelligent software agents that cooperate
asynchronously to perform goal-directed inform ati on retrieval information in
teg ration and planning tasks in support of a variety of decision making tasks.

Similar to th e InfoSleuth system mediation in th e RETSINA multiagent
systems basically relies on service matchmaking. However , the specification
of capability and servi ce descriptions differ. The ACDL developed for match
making in RETSINA is called LARKS (Language for Advertisement and Re
quest for Knowledge Sharing)[579]. Application domain knowledge in agent
advertisements and requests can be current ly specified as local ontologies
writ ten in a specific concept language ITL or by using WordN et . In the
LARKS approach advert isements and requests are expresse d using the same
language. It is assumed that every LARKS specification is wrapped up in
an appro priate KQML-like message by the sending agent indicating if the
message content is to be t reated as a request or an advert isement.

A service specificat ion in LARKS is a frame comprised of the following
slots:

1. Cont ext: Keyword s denoting the domain of the descrip tion,
2. Types: User-defined data types found in the signature definitions,
3. Inp ut and Output: Input and out put parameter declar ations defining th e

signature of the operation,
4. In Constraint s and Out Constraints: Logical const ra ints on input/output

variables (pre-j'post conditions),
5. ConcDescriptions: Descrip tions of used potentially disambiguating words

in terms of th e concept language ITL, or keyword phrase, and
6. TextDescript ion: A free text description of the agent 's capabilit ies.

Tab le 2 shows an example of both a request and matching capability de
script ion. In this example a P-agent advert ises its capability to provide a list
of deployed AWAC air combat missions which have been laun ched in a given
tim e interval. This advertisement matches with the shown request for agents
th at are capable of providing inform ation on any kind of air combat missions
launched in a given tim e interval. The request is also formulated in LARKS
by simply specifying a desired agent capability. Constraints on the input and
out put of a capability descrip tion or request are specified as conjunct ion of
finite Horn clauses . Both the request and advertisement contain onto logical
annotations of disambi guatin g word 'Mission' by the concepts'AirMission '

218 M. Klusch and K. Sycara

and AWAC-AirMission ' , respectively, each of which is defined in th e Con
cDescript ions slot in terms of a common KL-ONE [89] like concept language
based on a shared minim al vocabulary.

LARKS is fairly expressive and capable of supporting automated infer
ences. The implemented matchmaking pro cess for LARKS specificat ions em
ploys different techniques from information retrieval, AI, and software engi
neerin g to compute th e syntact ical and semantic similar ity among advert ised
and requested agent capability descrip t ions . The matching engine contains
five different filters for (1) keyword-based context matching, (2) TF-IDF
based profile comparison, (3) concept- based similarity matching, (4) type
inference rule-based signature matching , and (5) theta-subsumption based
const raint matching of finite Horn clauses. Any user may individually con
figur e these filters to achieve the desired tradeoff between performance and
mat ching quali ty. In the following we briefly summarize each of the filte rs of
the proposed LARKS matchmakin g pro cess; it is described in more detail in
[577] .

The contex t matching consists of two consecut ive ste ps:

1. For every pair of words 11, v given in the Context slots compute th e
real-valued word dist ances dw (11,v) E[O,l]. Determine th e most similar
matches for any word 11 by selecting words v with the minimum distance
value dw (11 ,v). These distances must not exceed a given threshold .

2. For every pair of most similar matching word s, check t hat the semantic
dist ance among the at tached concepts does not exceed a given threshold .

The comparison of the profiles of LARKS specifications treated as doc
ument s relies on a standard technique from the inform ation retrieval area,
called te rm-frequency-inverse document frequency weighting (TF-IDF) . The
similarit y dps(Req, Ad) of a request Req and an advert isement Ad und er
consideration is then calculated by :

Reg e Ad
dps(Req, Ad) = IReql . IAdl

where R eqs Ad denotes th e inner product of the weighted keyword vectors.
If the value dps(Req, Ad) does exceed a given t hreshold /3 E R both docu
ment s pass th e profile filter. For example, the profiles of both specifications
in the example are similar with degree 0.65.

The matchmaker then checks if th e declarations and constrain ts of both
specifications for a request and advert isement are sufficiently similar. This is
done by a pairwise comparison of declarations and constraints in two ste ps:
Similarity and signature matching.

Sim ilarity matching relies on a combination of dist ance values as calcu
lated for pairs of input and output declarations , and input and output con
st raints . Each of these distance values is computed in terms of th e dist ance

8. Brokering and Matchmaking 219

I ReqAirMis sions
Context Attack, Mission*Air Mission
Types Date - (mm: Int , dd : Int , yy: Int),

Dep loyedMission =
ListOf(mType: String, ml.D.Stringj llnt)

I nput sd: Date, ed: Date
Output missions: Mission
I nConstr aints sd <= ed.
OutConst raints dep loyed(mID), launchedAfter (mID.sd),

launchedBefore(mID .ed).
ConcDescriptions Air Mission =

(and Mission (atleast 1 has-airplane)
(all has-airplane Airplane) (all has-MissionType
aset(AWAC,CAP,DCA ,HVAA)))

Text Descript ion capable of providing information on
deployed air combat missions launched in a
given time interval

AWAC-AirMissions

Cont ext Combat , Mission* AWAC-AirMission
Types Date = (mm: Int , dd : Int , yy : Int)

DeployedMission =
ListOf(mt: String, mid.Stringlllnt,
mStart: Date, mEnd: Date)

I nput start: Date, end: Date
Output missions: Dep loyedM ission;
I nConstraint s st art <= end.
Out Constraints deployed(mID) , mt = AWAC,

launchedAfter(mid ,mStart) ,
launchedBefore(mID ,mEnd).

ConcDesc riptions AWAC-AirMission =
(and AirMission (atleast 1 has-airplane)
(atmost 1 has-airp lan e) (all has-a irplane
aset(E-2)))

TextDes cr ipt i on capable of providing lists of
deployed AWAC air combat missions launched
in some given time interval

F ig . 8. 7. Example of an advertised and requested agent capability description in
LARKS

220 M. Klllsch and K. Sycara

between concepts and words that occur in their respective specification sec
tion. These values are computed at the time of advertisement submittal and
stored in the matchmaker database. The overall similarity value among two
specifications in LARKS is computed as the average of the sum of similarity
computations among all pairs of declarations and constraints.

The signature filter first considers the declaration parts of the request and
the advertisement, and determines pairwise if their signatures of the (input or
output) variable types match according to a given set of type inference rules .
Both filters, the similarity and signature matching are used to determine if
considered LARKS specifications syntactically match.

Finally, the matchmaker checks if both specifications semantically match
in terms borrowed from the software engineering area. A software component
description D 2 'semantically plug-in matches' another component description
D 1 if (1) their signatures match, (2) the set of input constraints of D 1 logically
implies that of D2 , and (3) set of output constraints of D 2 logically implies
that of D 1 • In our case the logical implication among constraints is computed
using polynomial and sound B-subsumption checking for Horn clauses [442] .

8.3.4 Other approaches to service description and matching

Other approaches on (annotated) specification and matching of descriptions
of capabilities and services via standardized markup languages, ontologies,
and agent capability description languages include SHOE [385], OntoBroker
[474], Osirix [504], GMD XML Broker [315J, MIX [56J, eCo system [277], and
JATjCDL [144], respectively.

JATjCDL. The capability description language (CDL) [144] has been de
veloped at the university of Edinburgh. Capabilities of and requests for ser
vices are described in CDL either in terms of achievable objectives or as
performable actions. Figure 8.7 below shows an example of a request spec
ified as a task description and a capability description in CDL. The latter
describes the capability of a hospital to move patients to its location via am
bulance and treat them as injured persons. The agent who is representing
this hospital also advertises that its problem-solving behavior is complete
with respect to this capability, i.e. that, if there is a solution to a problem
it will find it. In the context of the particular capability in the example this
implies that the hospital will get only injured people.

A request of service is specified in CDL as a task description; for example,
the requested capability defined in the task description shown in figure 8.7
is subsumed by the capability of the hospital agent described above. For the
purpose of automated logic-based reasoning on capability descriptions the
statements are formally specified in a first-order predicate logic based format
like KIF [354J.

Logic-based reasoning over descriptions in CDL is based on the notion of
capability subsumption or through instantiation. Capability subsumption in

Advertisement:

(capability

8. Brokering and Matchmaking 221

Query:

(task
:isa move :isa move

:properties (complete)

:state-Ianguage fopl

:input

((To HospitaI2)(AmbuIance ?a))

:input-constraints

((elt ?thing Person)

(Is ?thing Injured))

:properties (complete)

:state-Ianguage fopl

:input

((Thing lohnSmith)

(From PowerPlant)

(To Hospital2)

:input-constraints

((elt lohnSmith Person)

(Is lohnSmith Injured))

Fig. 8.8. Example of an advertised capability description and query in CDL

CDL refers to the question whether a capability description can be used to
solve a problem described by a given task description in CDL: A capability
C subsumes a task T if

1. in the result of performing C all output constraints of T are satisfied,
means if the capability C achieves the desired state as specified in T, and

2. if in the situation that precedes the result of performing C, all input
constraints of C are satisfied, means that capability C is applicable.

It is assumed that there is a model-theoretic semantics defined for every
state language used to express constraints in CDL descriptions. This implies
that reasoning relies on model-based constraint satisfaction. A const raint is
satisfied in a situation if the model corresponding to the situation is a model of
the expression representing the constraint. Regarding capability subsumption
this means that the input constraints of a task description T define a set
of models, one of which is corresponding to the actual situation before the
capability is to be applied. Similarly, the output constraints of T define a set of
models, all of which correspond to situations in which the objective has been
achieved. Therefore a capability C subsumes a task T (a) if every model of
T 's input constraints is also a model of the C's input constraints (input match
condition) , and (b) if every model of C's output constraints is also a model of
T 's output constraints. This definition of capability subsumption resembles
that of semantic plug-in matching of LARKS descriptions as described in
section 8.3.3 above .

222 M. Klusch and K. Sycara

Both th e CDL and the proposed matching of CDL descriptions have been
implement ed in .Java and tested in selected application scenarios for broker
ing in multiagent syst ems developed in .TAT (.Java Agent Template)[327]. In
summary, CDL is to some extent similar to LARKS but the matching meth
ods proposed for each of the languages differ significantly in terms of th e
process and quality of reasoning.

eCo CBL. The eCo system's [277] common business library (CBL) consists
of business descrip tion s and forms represented in an extensible, public set
of XML building blocks that service providers in th e domain of elect ron ic
commerce can customize and assemble. Semantics of the CBL are derived
through analysis of industry standa rds, such as EDI X12850 for specificat ion
of purchase orders. Thi s led to a base set of common terms , term mappings
in th e domain of e-comrnerce, and corres ponding XML data elements, at
t ribu tes, and gener ic XML document type definitions (DTD) . Any request
for a service is t ransformed to an appropriate st andard DTD which t hen can
eit her be used to find similar DTDs of available service descrip t ions or to
produce a stream of information event s routed to and pro cessed by business
applications.

SHADE and COINS. The SHADE and COINS [364] are matchmakers
based on KQML . The content language of COINS allows for free text speci
fication of services and its matching algorithm utili zes the tf-idf inform ation
ret rieval method . The content language of th e SHADE matchmaker consists
of two parts, one is a subset of th e knowledge interchange format (KIF) , an
other is a structured logic representation called MAX. MAX uses logic frames
to declar atively store the knowledge. SHADE uses a frame like representation
and the matcher uses a prolog like unifier.

Other t echniques and formalisms related to capability descriptions.
The problem of capa bility and service descrip tions can be tackled at least
from the following different approaches.

1. Softw are specification techniques.
Agents are computer programs th at have some specific characterist ics.
There are numerou s works for software specifications in formal methods,
like model-oriented VDM and Z, or algebraic-oriente d Larch . Although
these languages are good at describing compute r programs in a precise
way, th e specificat ion usually contains too much detail to be of interests
to other agents. Besides, those exist ing languages are so complex th at the
semant ic comparison between the specificatio ns appears to be impossible.
The reading and writing of t hese specificat ions also require substant ial
t ra ining.

2. Action representation formalisms.
Agent capability can be seen as the actions th at th e agents perform.
There are a number of action represent at ion formalisms in AI planning
like th e classical one STRIPS. The act ion represent ation form alisms are

8. Brokerin g and Matchmaking 223

inadequate in our t ask in that they are propositional and not involving
data ty pes .

3. Conc ept languag es for knowledge representation.
There are various te rminological knowledge represent ation languages.
However , ontology itself does not describ e capabilit ies. On th e other
hand, ontological descrip tions provide auxiliary concepts to assist the
specificat ion of the capabilit ies of agent s.

4. Databa se query capability description .
The database query capability descrip t ion technique is developed as an
attempt to describ e the information sources on the Internet , such th at
an automa ted integration of information is possible. In this approach
the information sour ce is modeled as a database with restricted querying
capabilit ies.

8.4 Conclusions

The Internet is an open system where heterogeneous agents can appear and
disappear dynamically. As the number of agent s on the Internet increases,
there is a need to define middle-agents to help agents locate ot hers th at
provide requ ested data and serv ices. In this chapter we introduced several
different classes of basic services any middle-agent needs to appropriately
inst antiate to perform a meaningful, effective, and reliable mediation between
agents within and across multiple agent societies.

We have proposed a classification of middle-agents with respect to these
service classes, presented a compact description of service matchmaking and
brokering, and, finally, sur veyed some prominent examples of multiagent sys
te ms and platforms which are coordinated by special kinds of middl e-agents,
namely broker and matchmaker agents. A comparative overview of selected
matchmaker, broker , and mediator agent s according to the service-oriented
classificatio n of middle-agents is given in figure 8.8.

Issues for future research in th e domain of mediation via middle-agents
include, for example, approaches to cope with th e problems of trust estab
lishment and management by middle-agents ; scalability in terms of int erop
erat ion across het erogeneous agent societies; a thorough analysis and devel
opment of efficient methods support ing dist ributed real-time collaboration
between different types of middle-agents [340] ; investigations in syste m load
balancing using middle-agents; standardized compositional design of middle
agents according to th e proposed serv ice-oriented classificat ion enabling, e.g.,
component -based re-use and prototy ping of such agent s for different applica
tion scenarios.

Main application domains of assisted coordinat ion of multiagent systems
by middle-agents are intelligent cooperative information systems and agent
mediated elect ronic business in the Internet and Web. Farther in th e future
one could imagine middle- agents coordinating different agent societ ies which

224 M. Klusch and K. Sycar a

Mediation Services IMPACT InfoSleuth RETSINA GMD MIX
Broker Matchmaker Broker Mediator

ACDL processing
HTML-Iike frame LARKS frame XML XML• ACDL description s

• matching k-nearest structural TF-IDF. plug-in,
DTD DTD

neighbor matching type inference,
matchingconstraint match, matching

Semantic interopera tion
concept subsumption

• ontology se rvices verb/noun infosleuth WordNet,
XML namespaceshierarchy, ontology ITL concepts

thesaurus
• semantic reconcil iati on synonym, synonym, synonym,

word distance,
word distance value matching subsumption

• informatio n mod el global, global, part. integrated global, global,

collection collection collection collection integrated

Data management
X X concept base, XML data XML schema

databases warehouse, views,
Query processing XQL BBQ

• di stributed qu ery planning X

• transactio n_s erv ices intermediate intermediate
Agent interaction register, register, register, searchbots wrapper

matching matching matching cooperation cooperation
Mediationjprotocol matchmaking matchmaking matchmaking brokerage brokerage

Access sources (search bots) (wrapper)

Fig. 8.9. A service-oriented comparison of selected matchmaker , broker and medi
ator agents

are involved in , for example, inter-pl anetary information networks, UMTS
cell phone videoconferences, traffic management , and negoti ation of content
provided by different information providers for embedded dat abases in mobile
information appliances.

9. Agent Naming and Coordination:
Actor Based Models and Infrastructures

Gul Agha, Nadeem Jamali , and Carlos Varela

Op en Syst ems Lab , Depar tment of Compute r Science
University of Illinois at Urbana Champaign ,
1304 W. Springfield Ave., IL 61801, USA
ht tp://osl.cs.uiuc.edu/ {agha ,jam ali ,cvar ela}@cs.uiuc.edu

Abstract

Flexible and efficient naming, migration and coordinat ion schemes are critical
components of concurrent and distributed systems. This chapter describ es
actor naming and coordina t ion models and infrastructures, which enable th e
development of mobile agent syst ems. A travel agent example is used to
motivate th e requirements and proposed solut ions for naming, migration and
coordination.

Universal Actor Names provide location and migration t ransparency,
while ActorSpaces enable t he unanticipated connection of users , agent s and
servi ces in t he open, dynamic nature of today's networks. An actor-based ar
chitecture, th e World Wide Computer , is presented as a basis for implement
ing higher-level naming and coordin ation models for Internet-based agent
syst ems. Finally, multiagent coordination is accomplished with cyborgs, an
abs traction which provides a unit for group migration and resour ce consump
t ion through th e use of e-cash.

9.1 Introduction

The World Wide Web is an open distributed system where inform ation and
services are het erogeneous, distributed and dyn amically evolving. The Web
operates over th e Internet which is charac te rized by th e availability of enor
mous computational power and information resour ces but relatively small
communicat ion bandwidth . An efficient mechanism for resource discovery
and service utili zation on th e Web is through use of (software) agents. We
characte rize agent s as autonomous, persistent , mobile, and resource bound
computational ent it ies. The obvious advantage of agents is that th ey can act
on behalf of users at remote locations, thus reducing the need for communi
cat ion.

A large number of specialized agents navigating and computing over th e
Web allows considerabl e parallelism . Effectively using this parallelism re
quires dynamically dividing problems into sub-problems and integrating par
tial solutions as th ey are concurrently computed and communicated. Thus,

226 G. Agha, N. Jamali, C. Varela

scaling up the problem solving potential of agents requires effective solutions
for coordinating their concurrent activities. We envision a World Wide Com
puter using the present Internet and Web infrastructures to provide seamless
coordinated agent-based services to geographically distributed and mobile
users.

9.1.1 A Motivating Scenario

Consider an agent that makes travel reservations on behalf of its owner. In
the simplest case, reservations requests specify a starting point, a destination,
and departure and arrival dates. A certain amount of "money" is allocated for
searching for good rates as well as making the actual purchases. To perform
its search, the travel agent creates additional agents to search for best airline
ticket prices, hotel accommodations and car rental possibilities. These spe
cialized agents themselves create other agents to perform additional searches
in parallel , all bound by the shared goals and available resources.

Travel plans can be specified in the form of constraints. These constraints
layout specific requirements , but allow significant flexibility beyond those re
quirements. For example, a client interested in traveling from Paris to Cham
paign, specifies desired departure and arrival dates for all or parts of the
journey, preferences for means of travel, financial constraints, etc . These con
straints are absolute, relative, or a combination of the two. Airline ticketing
agents look for airline fares, car rental agents look for rental deals, hotel
reservation agents search for hotel rates, and so on.

Although different agents search independently, the constraints that guide
them need not be static: this requires the agents to coordinate dynamically.
For example, if hotel, car rental, and airline reservations need to be synchro
nized , they would need to be committed together. Not only does this require
enabling synchronization protocols between agents and service providers, the
agents must also coordinate their actions. For example, if the flight is to ar
rive in Chicago from Paris later than when the last flight leaves Chicago for
Champaign, alternate plans would need to be considered: a train, bus, or a
rental car is used, or alternatively, a hotel room is reserved for the night and
further travel is postponed to the following day. Alternative flights from Paris
to Chicago are also considered as an option that results in earlier arrival in
Chicago. This entire activity may also be in interaction with the client.

From the perspective of the user , it is important to ensure that certain
properties hold . For example, it is imperative to guarantee that the user's
credit card will not be charged more than once to buy the same itinerary with
different airline companies. More complex properties would enable the user
to establish the probabilities of modifying the original travel plan, so as to
minimize the total traveling cost, considering penalties incurred in changing
departure or arrival dates .

9. Agent Naming and Coordination 227

9.1.2 What is Coordination?

Coordination is what fills the gap between autonomously acting agents and
the problems they are collect ively solving. In a multi-agent system, agent -to
agent messages offer the simplest form of coordination, using which complex
coordination requirements can be satisfied. However, if implementation of
coordination requirements is to be practi cal, where the language must support
appropriate mechanisms for coordination, it must also provide abst ractions
that satisfy software engineering concerns such as modularity and reuse. For
example, incentives engineering builds incentives into th e system to drive
int eraction patterns of autonomous agents, but implemented without due
at tent ion to software engineering concerns , the code for functional behavior
and th at for coordination between agent s will be mixed togeth er .

Because coordinat ion abst ra ct ions build on communication faciliti es pro
vided by th e underlying comput ation mod el, th ey are defined with respect
to the mod el. Blackboard models (e.g., Linda) offer support for coordinat ion
through placement of conte nt in a sha red space. In the case of agents (actors) ,
because communication is typically by asynchronous message pas sing, coor
dination can exploi t the message ordering flexibility of th e mod el, without
disturbing the mod el's semantics. Specifically, separate ly specified synchro
nization const ra ints are enforced by ordering message deliveries, as shown
in Frelund [250]. Because this is achieved without interfering with th e func
t ional behaviors of individual agents, modularity and reusability properties
are achieved. Ren [511] extends this idea fur th er to enable (soft) real-time
const raint satisfaction.

9.1.3 Outline

This chapte r introduces the Actor formalism as a natural mod el for agents,
describes Universal Actor Names as an Internet-based naming scheme with
location and migration transparency, and ActorSpaces as abstractions for de
coupled publish-and-subscrib e pattern-based communicat ion. Following , we
present the World Wide Computer infrastructure as a testb ed for experi
menting with high level agent naming and coordinat ion mechanisms. One
such mechanism, Cyborgs , is presented as a mod el for resource-bound multi
agent systems , with an example illustrating its use of local synchronization
constrain ts and synchronizers . We conclude with some remarks and potential
future research directions.

9.2 Actors and Agents

Agents are naturally mod elled by the Actor formalism . In fact , implementa
tions of agent s are typically ju st implementations of actor syste ms. An actor

228 G. Agha, N. Jamali, C. Varela

is autonomous and persistent . Th e Actor model of computation has a built
in notion of local component and interface which provides a basis for rea
soning about and building agent-based applications in open dist ributed sys
t ems. Actors are inherently concurrent and autonomous enabling efficiency
in parallel execut ion [356] and facilitating mobility [10] . The actor model
and languages provide a useful fram ework for underst anding and develop
ing open distributed systems. For example, actor systems have been used
for ente rprise integration [601], fault-tolerance [9], and distributed art ificial
intelligence [235].

Actors [8, 302] extend sequential objects by encapsulat ing a thread of con
t rol along with pro cedures and dat a in the same entity ; thus actors provide a
unit of abstraction and distribution in concur rency. Actors communicat e by
asynchronous message passing (see Figure 9.1). Moreover , message delivery
is weakly fair - message delivery tim e is not bounded but messages are guar
anteed to be eventually delivered. Unless specific synchroni zation const raints
are enforced, messages are received in some arbi t rary order which may differ
from the sending order. An implementation normally provides for messages
to be buffered in a local mailbox and there is no guarantee th at the messages
will be processed in the same order as th e order in which they are received .
Actor names (also called mail addresses in the actor literature) are bound
to identifiers. Similar to cons cells in Scheme [567] or J ava object references,
and unlike pointers in C, the represent ation or binding of names is not visible.
Thus, it is not possible to "guess" actor names (or corresponding locations) ;
a name must be communicated before it can be used.

To define agents, the Actor model is extended with mobility and bounded
resource use [10] . Mobility requires explicitly mapp ing actor names to loca
tions. By bounded resource use, we model the fact that an agent is not able
to consume an ar bitrary amount of physical resources (e.g. pro cessor tim e,
memory, or network bandwidth) or logical resources (e.g. threads). We have
used a uniform cybercur rency to express limitations on t he use of resources.
The term "energy" for a similar notion has been coined by Queinnec [438] .

9.2.1 Programming Languages for Concurrent and Distributed
Systems

Early programming languages for concurrent and distributed systems include
Occam [303] and Ada [606]. A more recent and popular language for im
plementing concurre nt systems is J ava, which among oth er things, provides
platform compatibility through the use of a virtual machine, support for
multithreading, a clean object model and automatic garbage collection [281] .

However, Java suffers from a number of deficiencies as a language for
concurrent and distributed programming. We describ e these below:

J ava uses a passive object model in which threads and objects are separate
entities. As a result , Java objects serve as surrogates for thread coordination
and do not abstrac t over a unit of concurrency. We view this relationship

9. Agent Naming and Coordination 229

~
- ±

:~ - - ~ z: r //
I • ,," "

.' .1"
, , - '

r

~Iailhox

Fig. 9.1. In response to a message, an actor can: (1) modify its local state, or (2)
create new actors, or (3) send messages to acquaintances.

between Java objects and threads to be a serious limiting factor in the utility
of Java for building concurrent systems [611]. Specifically, while multiple
threads may be active in a Java object, Java only provides the low-level
synchronized keyword for protecting against multiple threads manipulating
an object's state simultaneously, and lacks higher-level linguistic mechanisms
for more carefully characterizing the conditions under which object methods
may be invoked . Java programmers often overuse synchronized and resulting
deadlocks are a common bug in multi-threaded Java programs.

Java's passive object model also limits mechanisms for thread inter
action. In particular, threads exchange data through objects using either
polling or wait/notify pairs to coordinate the exchange. In decoupled envi
ronments , where asynchronous or event-based communication yields better
performance, Java programmers must build their own libraries which im
plement asynchronous message passing in terms of these primitive thread
interaction mechanisms. Although actors can greatly simplify such coordina
tion and are a natural atomic unit for system building, they're not directly
supported in Java.

230 G. Agha, N. Jamali, C. Varela

9.2.2 Supporting Actor Programming

It is possible to create a library in Java which enables actor programming.
The Actor Foundry [476] is a framework developed in Java to provide con
current object oriented programmers with a discipline for actor programming
and a set of core services to facilitate this task. This is similar to earlier work
on Actalk which supported actors in Small talk [99], and Act++ and Broad
way which supported actors in C++ [344, 571]. However, there are several
advantages to using a language over defining a library:

- Certain semantic properties can be guaranteed at the language level. For
example, an important property is to provide complete encapsulation of
data and processing within an actor. Ensuring there is no shared mem
ory or multiple active threads, within an otherwise passive object, is very
important to guarantee safety and efficient actor migration.

- By generating code from an actor language, we can ensure that proper
interfaces are always used to create and communicate with actors. In other
words, programmers can not incorrectly use the host language that has
been used to build an actor framework.

- An actor language improves the readability of programs. Often writing
actor programs using a framework involves using language level features
(e.g. method invocation) to simulate common actor operations (e.g. ac
tor creation, message sending, etc.) . The need for a permanent semantic
translation, unnatural for programmers, is a common source of errors.

A number of actor languages have been developed (e.g. [602, 311, 355]).
More recently, we have developed SALSA (Simple Actor Language, System
and Applications) [477] for enabling the development of Internet-based agent
systems. The syntax of SALSA is a variant of Java. SALSA supports primitive
actor operations, token-passing and join continuations, universal naming, re
mote asynchronous communication and migration. In the following sections,
we will use SALSA pseudo-code to illustrate our travel agent sample appli
cation.

9.3 Naming in Open Systems

Software agents acting over the World Wide Computer require a scalable and
global naming mechanism. Such naming mechanism must also enable trans
parent agent location and migration, i.e. the agent name should completely
encapsulate the current location for such agent and migration should not
break inverse acquaintance references .

Because of the heterogeneous nature of devices connected to the Internet,
an agent naming mechanism should also be platform independent. Further
more, because agents are different in nature and use different protocols for

9. Agent Naming and Coordination 231

communication, the name should provide openness by including a protocol
(or a set of protocols) to communicate with such agent .

Two additional critical characteristics of naming in Internet-based agent
systems include safety and human readability. Safety includes the inability
to "steal" messages by creating an agent with an existing name. Human
readability of actor names implies that it is possible to "make" and "guess"
actor names, very much like we make up and guess Web document URLs
today. However, because names encapsulate addresses , unlike Actors , it is
not possible to enforce at the language level that an agent name is valid (i.e.
that it corresponds to a valid actor address or location.)

We describe two complementary proposed solutions for agent naming in
open systems: Universal Actor Names (UAN) , which abstract over particu
lar Internet locations and ActorSpaces which address openness by detaching
services from particular agents providing such a service.

9.3.1 Universal Actor Names

Universal Actor Names (UAN) are identifiers used in the World Wide Com
puter prototype infrastructure for naming universally accessible actors.

The Universal Actor naming strategy, based on Uniform Resource Iden
tifiers (URI) [70], allows transparent migration and interconnection of dis
tributed objects. Such transparency is accomplished by separating names
from locations. Universal Actor Names (UAN) persist over the life-time of an
actor, while Universal Actor Locators (UAL) uniformly represent the current
location for a given actor.

A major motivation behind our work is the potential of the World Wide
Web [69] . Much of the Web's fast growth is due to its strategy for uniformly
identifying multiple resources. Berners-Lee envisioned location-independent
Uniform Resource Names (URN), Uniform Resource Locators (URL) and
Uniform Resource Citations (URC) for metadata. However, only URLs are
currently widely deployed , hind ering the transparent mobility of Web re
sources.

An important characteristic of the Web's addressing scheme from a prac
tical perspective is the ability to "write the URL of a Web page in a business
card." This characteristic not only enables, but also encourages the unan
ticipated connection of network resources worldwide . Therefore, we follow a
scheme for actor naming and location in an open worldwide context, based
on Uniform Resource Identifiers.

We define Universal Actor Names (UAN) as globally unique identifiers,
which persist over the life-time of an actor and provide an authoritative
answer regarding the actor's current locator. Universal Actor Locators (UAL)
uniformly represent the current Internet location of an actor, as well as the
communication protocol to use with such actor.

When an actor migrates from one host to another, its UAN remains the
same, but its UAL is updated in its corresponding Naming Server to reflect

232 G. Agha, N. Jam ali , C. Varela

UAN

UAL

Actor Reference

UAN
Server

wwc
Theater

Internet Host A

Internet Host B

Fig. 9.2. By providing a persistent nam e to an actor (UAN) , the actor can migrat e
from a host to anot her without breaking exist ing references.

the new locator. Notice tha t migration is transparent to client acto rs, which
st ill hold a valid V AN reference.

A sample VAN for an actor handling air travel reservations is:

uan ://wwc .travel .com/reservations/air/agent

A sample VAL for such actor is:

rmsp://wwc.aa.com/international/reservations/agent

The protocol specified in the UAL determines the communicat ion proto
col supported by such acto r. In this case, t he travel agent uses t he Remote
Message Sending Protocol (RMSP) , which enables the delivery of messages
among universal actors in th e WWC .

SALSA provides support for binding actors to VANs and UALs. The
pseudo code for a sample t ravel agent program in Salsa is presented in fig
ure 9.3.

This program creates an agent and binds it to a particular V AN and
VAL. After the program te rmina tes, the Universal Actor Naming Server has
been updated with th e new (VAN, VAL) pair and the actor can be remotely
accessible either by its name or by its locator.

9.3.2 ActorSpaces

ActorSp aces [120] is a communicat ion model that compromises the efficiency
of point-to-point communication in favor of an abst ract pattern-based de
scrip t ion of groups of message recipient s. Acto rSpaces are computationally
passive containers of actors. Messages may be sent to one or all members of a
group defined by a dest ination pattern . The model decouples actors in space
and time, and introduces three new concepts:

9. Agent Naming and Coordination 233

behavior TravelAgent {

void printltinerary(){ . . . }

public void act(String[] args){
TravelAgent a = new TravelAgent() ;
try {

a<-bind("uan ://wwc .travel.com/reservations/air/agent",
"rmsp://wwc.aa.com/international/reservations/agent");

} catch (Exception e){
standardOutput<-println(e) ;

}
}

}

Fig. 9.3. A TravelAgent implement ation in SALSA : Support for universal naming.

- patterns - which allow the specificat ion of groups of message receivers
according to their at t ributes

- actorspaces - which provide a scoping mechanism for pattern matching
- capabilities - which give cont rol over certain operations of an actor or

acto rspace

ActorSpaces provide the opportunity for actors to communicate with
ot her actors by using their attributes. The model subsumes the function
ality of a Yellow Pages service, where actors may publish (in ActorSpace
terminology, "make visible") their att ributes to become accessible. Berners
Lee, in his original concept ion of Uniform Resource Citations , int ended to use
this met ad ata to facilitate semiautomate d access to resources. Actorspaces
bridge this gap between acto rs searching for a particular service and actors
providing it .

Following our t ravel agent application, one could think of three ac
torspaces, one for air t ravel, one for car rental, and one for hotel reservations.
Requests could be sent to t hese three actorspaces and different agents that
match the proper request patterns could bid with the deals they find . An
addit ional actorspace could be used for placing the bids and coordina ting
different schedules and combined travel const raints .

ActorSpaces ena ble unanticipated communication of actors . That is to
say, an actor cannot only send messages to it s acquaintances, but also to
actors for which it does not have direct references . In actor semantics, an
actor can only send messages to its acquai ntances, an imp ortant propert y
which allows local reasoning about the safety prop erty of actor systems [11] .
Furthermore, communication in actors is secure; in other word s, it is not
possible to "ste al" messages by creati ng an actor with t he same name as an
exist ing actor. Both Universal Actor Names and ActorSpaces preserve this
latter property.

234 G. Agha, N. J amali , C. Varela

Actorspaces' management of messages, which involves redir ection rather
than prepro cessing, ena bles different strategies for load balancing (or repli
cat ion) to be incorporated at the actorspace level, without affecting the se
mantics of particular applications. Such message management t ranspa rency
ant icipa ted the current use of name resolution algorithms for Web portals
scalability.

9.4 World Wide Computer Prototype

The World Wide Computer (WWC) architecture provides a basis for devel
oping Internet-based agent systems.

The WWC consists of a set of virtual machines for universal actors, which
we name Theaters. Actors can freely move between theaters , in a transparent
way, i.e. their names are preserved und er migration. Naming servers provide
the mapping from Universal Actor Names to Universal Actor Locators. The
Remote Message Sending Protocol (RMSP) ena bles delivering messages to
actors on remote theaters. A universal actor can be moved to a new the
ater by simply sending a migrate(UAL) message to such actor. The SALSA
programming language enables high-level programming for acto r creat ion,
message sending, remote communicat ion and migration. ActorSpaces can be
implemented on top of the WWC architecture to enable resource discovery
(through patterns) in large-scale syst ems.

Following, we will describ e unive rsal theaters , remote communication, and
migration using the WWC architec ture.

9.4.1 Universal Theaters

A WWC Theater is a virtual machine that provides runtime support to Uni
versal Acto rs . A Theater (see figure 9.4) contains:

- an RMSP server with a hashtabl e mapping relative UALs to actual
SALSA/J ava actor references

- a runtime syste m for universal and environment actors.

Since references to Universal Actors can be created from their names
(UAN) or even directly from their locators (UAL) , universal actors cannot
be garbage collected.

A Theater provides access to its host environment (for example, st andard
output , input , and error streams) through static, non-mobile system actors.
In the pro totyp e WWC implementat ion , all incoming actors get references to
environment actors upon arr ival. Future security policies may enable resource
ownership rights to be used to control access to the Theater environment.

Theaters may run on applets and in such case , the RMSP server in charge
of communicat ion with actors in such applet theater must reside in th e same

9. Agent Naming and Coordination 235

RMSP Server

relative UAL SA I_~A Reference

Listener Hashtablc 1- - - - - - -1- - - _

Universal Actor Run- Time Syste m

Environment

Wo rld Wide Co mputing Theater
I I, , ,

System

Resources

Fig. 9.4. A WWC Theater provides runtime support to Universal Actors. A The
ater contains: (1) a RMSP server with a hashtable mapping relative UALs to actual
Salsa actor references, and (2) a runt ime system for universal and environment ac
tors.

server as th e HTTP server which hosts the appl et . This is due to security
restrictions prohibiting arbit ra ry Internet communicat ions by untrusted Java
applets. Applet th eaters executing in a Web browser can safely host univer
sal actors providing WWC applicat ions with access to local computational
resources.

9 .4 .2 Remote Communication

The Remote Message Sending Protocol (RMSP) is an object-based protocol
on top of TCP lIP for remote act or communication and migration.

When the t arget of a message is found to be remote, t he SALSA run-time
syst em connec ts to th e appropriate RMSP server listener and sends the mes
sage using a specialized version of Java object serialization. A message is a
J ava object cont aining th e source and target act or references, th e method to
invoke at th e t arget act or, the argument values, and an optional token-passing
continuation [613] (which is represent ed as anot her message obj ect) . All ac
tors in a serialized message are passed by reference. These actor references
are updated in the serialization process to speed up local computation.

When an incoming message is received at a theate r, all its act or references
are updat ed in the following manner (see figures 9.5a, b) . If t he VAL for t he

236 G. Agha, N. Jamali, C. Varela

n. n
>'1-- - - - - - - -1 >-

~
\E====o~

Act or m ,\("[(1(01

> (j) (. >,-

~11-

6
I\ t:lur b ,\ CbJt C

Theater I Theater 2

® Loc al actoe rcJCf C Dl."C.

e Remorc actor reference.

Theater 3

Fig. 9.5a. Before migration of actor m from Theater 1 to Theater 2, its references
to actors band c are remote, while its reference to actor a is local.

Anora

Theater I

0,
>'1-._ - - - - - - --1

Theater 2

@ Local ector reference.

• Rl'n 'KIII(' <K.1 l lf f"('(C'rt' IlC'C.

(t >

./1-- - - - - - - -1

Theater 3

Fig. 9.5h. After migration of actor m, its reference to actor a becomes remote and
its reference to actor b becomes local. Its reference to actor c remains unchanged.
A temporary forwarder for actor m is left in Theater 1.

actor reference points to the current theater, we update it with the actual
Java reference for that actor found in the internal RMSP server hashtable
and we set its local bit to true. If the VAL for the actor reference points to
another theater, we leave such reference unchanged (it remains remote).

After updating all actor references, the target actor reference in the mes
sage object has a valid internal Java reference pointing to the target actor
in the current Theater. We can then proceed to put the message object in
such local actor's mailbox. If the target actor has moved in the mean time ,
it leaves behind a forwarder actor (the same reference with the local bit set
to false.) In such case, the RMSP server at the new location (the forwarder's
VAL) is contacted and the message sending process gets started again.

However, these forwarder' actors are not guaranteed to remain in a theater
forever. Thus, if the RMSP server hashtable doesn't contain an entry for
the target actor's relative VAL, the VAN service for the target actor needs

9. Agent Naming and Coordination 237

to be contacted again to get the actor's new location. Once a location has
been received, the message sending process gets started again and a "hops"
counter gets incremented in the message object. If such counter reaches a
predetermined maximum (by default set at 20 hops) the message is returned
to the sender actor as undeliverable.

RMSP in SALSA. SALSA provides support for sending remote messages to ac
tors using the RMSP. For example, the code for sending a printItineraryO
message to the travel agent created above , is given if figure 9.6.

II
II Getting a remote actor reference by name
II and sending a message:
II
TravelAgent a = new TravelAgent() ;
a<-getReferenceByName

(" uan:llwwc.travel.com/reservations/air/agent") (0
a<-printltinerary();

II
II Getting the reference by location:
II
TravelAgent a = new TravelAgent();
a<-getReferenceByLocation

(" rmsp :llwwc.aa .com/international/reservations/agent") (0
a<-printltinerary();

Fig. 9.6. A TravelAgent implementation in SALSA: Support for remote messaging.

The SALSA syntax a<-ml0 @ b<-m20; is a simple case of a token
passing continuation, used to guarantee that message m20 is sent to actor
b, only after actor a has finished processing message m! 0 .

In the current prototype implementation, the behavior for a remote actor
(e.g. the TravelAgent code) needs to be locally accessible in order to get
a remote reference successfully. We intend to extend our prototype to allow
remote code downloading, once a theater security policy is in place.

9.4.3 Migration

Migrating a passive object (such as a Java object with potentially several
threads accessing it concurrently) requires a guarantee that the execution
context and synchronization locks of all these threads will remain consistent
after the passive object's migration. On the other hand, migration of an actor
can be accomplished in a relatively easy and safe manner. This is because an
actor encapsulates a thread of execution and is processing at most a single
message . Migrating an actor involves waiting until the current message has

238 G. Agha, N. Jamali , C. Varela

been pro cessed , serializing th e act or' s state (along with its mailb ox), and
restarting the thread of control in the new act or's location.

Universal actors migrate in response to an asynchronous message request
ing migration to a specific UAL. This ensures that the actor is not busy pro
cessing any other messages: when migration takes place, the acto r must be
processing the migrate message. We describe in greater detail the algorit hm
we use for actor migration , from the persp ective of the departure and arrival
theaters.

Arrival Theater The RMSP server describ ed in section 9.4.2 is also used
for incoming act or migration. The server provides a generic input gate for
SALSA-generated Java obj ect s and the act ions associated with receiving an
incoming obj ect depend upon the received objec t's run-time type .

Wh en th e incoming object is an instance of the salsa . language . Message
class, the algorit hm for message sendin g describ ed in the previous sect ion is
used. If the obj ect is an inst ance of the salsa . language . UniversalActor
class, the intern al RMSP daimon hasht abl e get s updated with an ent ry map
ping the new actor 's relative UAL to its recently created intern al Java refer
ence. Then, all actor references in the incoming act or get validated in t he same
way as in messages. At t his point , the act or is restar ted locally. Lastly, if the
obj ect is an instance of the salsa . language . Messenger class, the Theater 's
run- time system auto matically sends a deliver 0 message to such actor.
Th e default implementation of a messenger contains a single message as an
instance vari abl e and upon receiving the deliverO message, the message
instance is delivered with the same algorithm as a passive message.

D eparture Theater When an actor is migrating away from a Theater ,
the actor state is serialized and moved to the new Theater. The current
actor's intern al reference is updated to reflect th e new UAL and its local
bit is set to false. Thus, th is intern al reference becomes a forwar-der actor.
The forwarder actor ensures that messages en-route will be delivered using
the Remote Message Send ing Protocol. Lastl y, the UAN server containing
the migrating actor's universal name get s updated to reflect the new actor
location.

Actor Migration in SALSA. SALSA provides support for migrating an actor
to a given WWC Theater . For example, th e code for migrating the travel
agent is given in figur e 9.7.

9.5 Multiagent Coordination

The World Wide Compute r infrastructure does not direct ly support coor
dination beyond asynchronous message passing , and simple delegation and
value synchronizat ion mechanisms such as token-p assing cont inuations and

9. Agent Naming and Coordination 239

II
II Migrating a travel agent to a remote WWC Theater :
II
TravelAgent a = new TravelAgent();
a<-getReferenceByName

(" uan:llwwc.travel.com/reservations/airline/agent") @
a<-migrate("rmsp:llwwc.nwa.com/usa/reservations/agent");

Fig. 9.7. A TravelAgent implementation in SALSA: Support for migration.

join continuations.! In this section, we discuss a model for supporting more
complex types of coordination.

The travel agent we introduced earlier can be seen as a problem to be
solved while incurring bounded costs , requiring coordination between activi
ties . At the application level, two types of cost may apply. First, there is the
financial cost of the airline ticket, the car rental, etc. The second type of cost
is that of the inconvenience of a chosen solution. For example, there may be
an inconvenience cost of late night travel. The application also has constraints
that must be satisfied. For example, there are consistency constraints such
as the requirement that a flight in the later part of journey depart after the
earlier flight arrives, that a hotel is reserved for the day the flight arrives,
etc. We will present a model of coordination that is useful in satisfying these
constraints.

9.5.1 Multiagent Systems

Multiagent systems are systems of autonomous mobile agents pursuing shared
goals . Goals of multiagent systems typically have spatial, temporal and func
tional requirements. Agents navigate their way through distributed systems,
searching for environments suited for their execution.

Protection against a set of agents and/or hosts collectively causing un
desirable behavior is a particularly challenging problem. Emergent behaviors
may be controlled by using preventive mechanisms. These mechanisms may
rely on linguistic support for precluding undesirable patterns of behavior, or
they may be reactive, i.e., attempt to detect an imminent threat and take
steps to prevent it. Either approach has its problems: while protection for all
conceivable types of threats cannot be incorporated into a language, det ect
ing threat or imminent threat in a dynamic complex system is also difficult .
How group functionality emerges from behaviors of constituent entities is not
well understood [265] . Even passive messages can flood a network [394]. How
ever, certain group behaviors may be amenable to analysis at higher levels of
abstraction, if one focuses on observable properties which can be measured
for entities as well as systems of er.tities ,

1 Token-passing continuations and join continuations are described in [613]

240 G. Agha, N. J amali , C. Vare la

Modeling. We treat a large mul ti-owned network of computers such as the
Internet as a set of resources with rights of ownership assigned to them. Once
we have introduced ownership rights and means for t ransferr ing th ese right s,
it turns out that a distributed computation using mobile agents begins to re
semble the activity of organisms in t he "real world." The ent ities execut ing in
this space can solve problems similar to those solved by mobile living organ
isms, and they face similar challenges . Specifically, while they may navigate
in space in search of solut ions, they are also constrained by the resources they
have available to them.

A biological organism is typically a collect ion of co-located organs encap
sulated inside a wrapper , collect ively bound by the set of resources available
to them. Each organ has the biological analog of a thread of cont rol, and
these organs int eract under tighter constraints, as opposed to the type of
looser const raints which determine how one organism interacts with another.
For example, even though th e legs of an ant can move simult aneously and
independently of each other, the goal of self-preservation or preservation of
th e colony is hard-wired in the ant through evolut ion. The resources needed
for this pursuit are also secured at the level of an ant . The way in which
individual legs act is determined by how the resources available to th e ant
are distributed among its organs, including the legs, and the ways in which
t he legs are const rained to behave with respect to t he rest of the organism. A
significant impli cation of co-location is that the organs share , and are known
to share, a common extern al environment in which they operate. This allows
enforcement of interaction constraints that can be fine-tuned to very precise
details.

In the following sect ion, we int rod uce Cyborgs (cyber organisms) as an
actor-based model for complex dist ributed computation inspired by organ
isms in the real world.

9.5.2 Cyborgs

Actors do not directl y model mult i-agent systems. Specifically, actors are sin
gle threaded, and the model does not represent locations and resources. We
define cyborgs (cyber organi sms) as a model for complex resource-bounded
mobile agents. A cyborg encapsulates a set of tightly const rained actors
bounded by shared resources, responsibility.e and goals (see figure 9.8)

Couplings between actors within a cyborg may be spat ial, temporal or
functional. For example, actors may require to be co-located, they may need
to be synchronized to follow a protocol, and they may be attempting to solve
par ts of the same problem.

A cyborg defines the smallest granularity for assignment of goals, allo
cation of resources, and for migrat ion from one ROD (res ource ownership

2 in term s of penalties for improper behav ior

Application
Actor

9. Agent Naming and Coordination 241

Requirements Task Manager

speCificati~~,>(--------'p" ~ : /

I \
I \

I \

(\~ ~\
'~ , - :

Facilitato~ - - - - - - - - - - -'

Fig. 9.8. A cyborg encapsulates a set of tightly constrained actors

domain) to another (see figure 9.9). An ROD defines the boundaries of re
source ownership. Each ROD has an ROD Manager with which a potential
client cyborg or an existing client may negotiate terms of arrival and sub
sequent execution. A contract reached between a cyborg and an ROD may
be static or it may be amendable. In either case, there can be penalties for
violation of the terms of a contract.

A cyborg is sustained by the allowance it receives. Allowance is in the form
of units of one of a set of accepted currencies, and is held in a bank account
for the cyborg. A cyborg may receive its allowance from its creator or from
another cyborg, typically as part of a message. Using its allowance, a cyborg
may purchase computational resources in its current ROD , and redistribute
them among its actors, as needed .

In the degenerate case, a cyborg may be viewed as an actor with mobility
and bounded resources as discussed in [10] . We now describe a typical cyborg
architecture.

Example Cyborg Let us consider a cyborg containing two special purpose
actors: facilitator and task-manager. A facilitator actor constantly monitors''
the execution environmcnt(s) of the host ROD and explores the possibil
ity of migrating to another ROD. Migration may be prompted by availabil
ity of a better execution environment (better suited hardware and software
or special services) , more affordable resources, or application requirements.
Because RODs do not necessarily represent physical boundaries, migration
across them may be logical rather than physical. Cyborg migration may be
implemented by a synchronized migration of all the contained actors using
mechanisms provided for actor migration. The task-manager actor serves as

3 Diagnostic information must be made available to facilitators by the system

242 G. Agha, N. Jamali, C. Varela

ROOI Rom Rom

Facililator
Acto r

~ I\Pf.lkOlliufl'Z:!!J Ac or

--- ~todi r)'

- - .\l onilor

_ Acc ess to
RN MJR."c."

Rcquin:mcnh
Spccifi,,-atil1n

Node
.\I Olll<lg l,."1

Fig. 9.9. Cyborg System Architecture: Cyborg carries dynamic specificat ion of its
requirements from one resource ownership domain to another.

a default receptionist for messages intended for the cyborg. When there are
no ot her application actors, the task-manager acts as the defaul t application
actor and serv ices received messages itself. More typically, the task-manager
will organize application actors to solve problems. Fur th erm ore, the task
manager redistributes available computational resources amo ng the cyborg 's
actors according to a resource utilizat ion st rategy. It also updates environ
mental requirements specificatio n of the cyborg as and when they change .
D

The behavior of a cyborg is constituted by behaviors of the actors con
tained in it , and th e way they are constrained with respect to each other .
Hence, a cyborg' s behavi or may be modified by t he individual actors chang
ing th eir personal behaviors or by the task-manager modifying th e const raints
defined on them.

Communicat ion in a system of cyborgs is mul ti-layered . Cyborg commu
nication is resour ce oriented ; cyborgs communicate with ot her cyborgs by
exchanging asynchronous messages (similarly to actors), bu t messages may
now contain some representation of remuneration for the requested service.

Actors inside cyborgs are encapsulated from directly receiving cyborg
level messages/requests, bu t they may st ill receive messages from ot her actors
who know their addr esses. The message synt ax is identical to that of actor
messages. An example of the usefulness of allowing such messages is motivated

9. Agent Naming and Coordination 243

by considering th e organism analogy describ ed earlier. Many organs within
an organism depend on external st imuli for survival. Even though these may
be thought of as incoming messages, it will be incorrect to treat them as
service requests ; these st imuli ar e for th e organi sm 's own benefit , making
them qualitatively different from explicit messages. Similarly, a cyborg may
subscribe some of it s actors to such sti mulus messages from outside.

Example: Coordinating Travel Agents

In our example, we assume t hat a TravelAgent is created for a par ti cular
travel plan. As a result of searching for feasible travel possibilities, multi
ple air, hotel and car subagents are created. These agents search their own
space of possibilities, sending messages back to the travel agent, who keeps
track of all entries and consolidates (AirReservation, CarReservation,
HotelReservation) ent ries to be sent back to the Traveler. When the trav
eler makes a decision regarding a travel plan , the original sub agents get con
t acted to actua lly buy their particular reservations. The TravelAgent cor
responds to a cyborg's task-manager , and all subagents are th e cyborg's ap
plication actors. Even though functionally autonomous, all actors inside the
cyborg share common bounded resources and goals, requiring coordinat ion.

We consider examples of funct ional and tempora l coordination in this
travel agent application. Function al coordination includes data consistency
in the selected travel plans, and temporal coordinat ion involves atomic travel
commit ment by different agents involved in different subparts of a travel plan.
Spat ial coordinat ion const ra ints could enable more efficient travel plan gen
eration, by for example co-locating th e air, hotel and car reservation agents
afte r a fixed period of time, to locally coordinate valid travel plans, as an
alte rnat ive to message passing . We leave th e description of such spatial con
straints in this example as an exercise to the reader.

We will use local synchronization const ra ints and synchronizers [250, 251]
to specify functional and temporal coordinat ion constraints respect ively.

Local synchronization constraint s allow to specify when certain messages
can be received by a par ticular actor. Synchronizers are linguistic constructs
t hat allow declarative cont rol of coordination act ivity between multiple ac
tors . Synchronizers allow two kinds of specifications: messages received by
an actor may be disabled and, messages sent to different actors in a group
may be atomically dispatched . These restrict ions are specified using message
patterns and may depend on th e synchronizer 's current state.

Local synchronization const ra ints in our Traveler example describe valid
(AirReservation , CarReservation, HotelReservation) triplets . That is
to say, t riplet s which do not go over th e given budget and have consis
tent dat es. The example is illustrat ed in figure 9.10 (the not ation is taken
from [250]):

Messages containing all possible combinat ions of travel are sent by the
TravelAgent to the Traveler but only those satisfying the synchronization

244 G. Agha, N. Jamali, C. Varela

class Traveller {

disable
plan(airReservation, carReservation, hotelReservat ion)

if
«airReservation .price + carReservation .price +

hoteIReservation .pri ce) > budget II
airReservat ion .arrivalDate ! = hotelReservat ion .arrivalDate I I

}

Fig. 9.10. Local synchronization constraints disable invalid t rave l plans.

constraints are accepted by such agent and presented to t he user. Once the
user selects his/her preferred travel plan , the subagents in charge of special
ized reservations get notified to purchase them.

A synchronizer ensures at omic commitment to a travel plan by an airline
agent , a car agent and a hotel agent . The synchronizer is instantiated after
the user decides t he best t ravel itin erary. Such synchronizer makes sure that
t he combined state of the mult iagent applicat ion is consistent . The example
is illust rated in figure 9.11 (the notation is taken from [250]):

synchronizer TraveICommit(airAgent, carAgent , hotelAgent,
airReservation, carReservat ion,
hotelReservat ion) {

bough t : = false ;

atomic
airAgent.buy(airReservation),
carAgent.buy(carReservation),
hoteIAgent .buy(hoteIReservation));

disable
airAgent .buy, carAgent .buy, hotelAgent .buy if bought;

trigger
airAgent .buy(airReservation)

-> { bought : = true ; };
}

Fig. 9.11. A synchronizer enforces a single atomic t rave l purchase.

Atomicity constraints in synchronizers enforce the atomic dispatching of
messages satisfying the given const ra ints . In other words, the "buy" message
for one of the agents above will be dispatched atomically with t he "buy"

9. Agent Naming and Coordination 245

message for the other two agents. That is to say, no partial travel plans will
be purchased. Furthermore, once a plan has been purchased , no addit ional
purchases are allowed.

Synchronizer implementation

Two issues deserve further research regarding synchronizers as declarative
construct s for specifying multiagent coordination. First , exception handling
and failure considerat ions, and second, more act ive synchronizer implemen
tation strat egies.

While synchronizers provide a semantically clean and modular way to
describ e desired coordina t ion properties in distributed systems, there is a
need for enabling applicat ions to take action in case failures happ en. An
except ion-handling mechanism at tached to synchronizers would for example,
enable source actors to be notified when a message has been delayed for longer
than an acceptable tim e limit.

Secondly, certain coordinat ion requirements may be inconvenient to spec
ify using synchronizers, given th eir passive nature: synchronizers can not
receive or send messages, nor be "coordinated" by other synchronizers. A
starting point for a more "active" implementation of synchronizers, is to use
a hierar chy of directors to coordina te groups of actors [612].

9.6 Discussion

Building large complex systems is difficult without appropriate abstractions
that impose some type of discipline on the software development process .
The abstract ions in wide use today, such as those offered by object ori
ented programm ing, result in significant benefits in te rms of reusability of
code, modul arity and extensibility. Actors (agents) take object orientat ion
one step forward into the realm of distributed systems, resulting in signifi
cant ly simplifying a developer 's t ask. Actors and the abstractions developed
in the authors' research group have resulted in at least an order of magni
tude reduction in the size and complexity of code over implementations using
t radit ional obj ect-oriented platforms.

The programming language abst ractions we have developed provide uni
versal naming, remot e communi cation, migrat ion and coordinat ion. These
abst ractions not only st reamline the dist ribu ted software development pro
cess, but also provide an opportunity for systematic code optimization (e.g.
through compilation techniqu es [356].) Furthermore, the worldwide comput
ing infras t ructure we developed enables the execut ion of programs using these
abst rac t ions. In particular , this infrastructure offers support for building mul
tiagent systems over the Int ernet . Cyborgs are an example of such a multia
gent syst em.

246 G. Agha, N. Jamali, C. Varela

Although these abstractions represent important steps in filling the gap
between what is offered by the traditional agent paradigm and what is re
quired of a platform to implement complex systems, there are still many open
research questions.

Higher-level coordination abstractions and their efficient run-time sup
port are needed. To eliminate redundant searches by agents working cooper
atively, dynamic constraint propagation algorithms must be available. Eco
nomic models are required for studying resource consumption behaviors of
cyborgs and groups of cyborgs. Reasoning mechanisms and logics must also
be developed for constraint validation and resource redistribution, for exam
ple, algorithms for automatically deciding when and where to migrate agents
or groups of agents. Different granularities for migration should therefore be
supported by the underlying system.

Acknowledgments

We'd like to thank past and present members of the Open Systems Lab ,
specially Po-Hao Chang, for many discussions and readings of initial versions
of this chapter. We're also grateful to Gregory Haik for part of the design
and implementation of universal naming and remote messaging in the World
Wide Computer prototype. Jean-Pierre Briot at LIP6, provided insightful
discussions and feedback. This research was made possible by support from
the National Science Foundation (NSF CCR 96-19522) and the Air Force
Office of Scientific Research (AFOSR contract number F49620-97-1-03821).
The second author was also partially supported by a graduate fellowship
from Eastman Kodak Corporation. Any opinions, findings , and conclusions
are those of the authors and do not necessarily reflect the views of these
agencies.

Part IV

Emerging Issues of Coordination

Emerging Issues of Coordination

Introduction

The increasing diffusion of the Internet, together with the fermenting re
search activities in the areas of both autonomous agents, coordination, and
distributed systems, are rapidly paving the way for agent-based Internet ap
plications. We can already envision a world where a multitude of interacting
agents will populate the Internet, to perform task on our behalf and , by in
teracting with each other, to mimic and support our societal activities. How
ever, as the researches on distributed systems, coordination, and autonomous
agents advances and tend to converge as far as the Internet is involved, new
fundamental research issues related to Internet-agent coordination emerge
and have to be addressed before agent-based Internet applications can be
effectively deployed and widely accepted.

This part of the book focuses on a specific set of issues that are emerging as
being of primary importance in the development of Internet applications. In
particular, the three chapters will focus on the issues of mobility, security, and
scalability, respectively. Why these issues are of primary importance in the
context of Internet agent coordination, and why they have to be considered
as emerging issues is worth a brief introductory discussion .

Mobility of code is already widely exploited in the Internet, in the forms
of both simple code fragments, such as JavaScript ones, and whole applica
tions, as in the case of Applets. In the near future, we expect agent mobility to
be widely exploited too, to enable autonomous entities to roam the Internet
looking for data and resources - and interacting with remote environments
- in an autonomous way [348, 614]. This can provide for a more dynamic
and efficient execution model than the one of traditional distributed systems,
and can also provide for a higher degree of autonomy in agent systems [467] .
However, mobility in the Internet has not to be considered simply as a fea
ture to be exploited in our software. Instead, since the Internet is becoming
a necessary tool for our everyday life, the capability of effectively handling
Internet connections and interactions for nomadic users , mobile devices [489] ,
as well as of whole mobile networks [123] will be a compulsory necessity. In
this context, once provided for low-level network protocols and mechanisms
to enable interactions in the presence of mobility, coordination models and
infrastructure must be provided to act as the middleware enabling and facili-

250 Emerging Issues of Coordination

tating the developments of Internet applications based on mobile components
[113], wheth er these are code fragm ents , agents, users , or devices.

Secur ity has always been and will always be a critical issue in th e Inter
net and in the Web [527] . In fact , while th e Intern et promotes th e openness
of applicat ion environments, it is also exploited in domains where safe, re
liable , and secure execut ion mod els are required, as it may be the case of
virtual enterprises and e-commerce. The secure execut ion of a networked
software system requires, at the lower-level, the exploitation of appropriate
mechanisms for authentication, verification, au thorization, and data commu
nication. Among th e others, these mechanisms include cryptography, digital
signatures, as well as access control mod els. At a higher-level, an appropriate
secur ity policy must be defined by exploit ing the lower-level mechanisms. At
this level, however , secur ity issues and coordinat ion issues are strictly related.
In fact , while coordination technology for the Internet is typically concerned
with ruling interactions so as to make them fruitful , secur ity model s and
technologies are typically meant to build security policies aimed at bound
ing inte ract ions so as to make th em harmless [196] . In some sense, security
and coordina t ion policies represent different perspectives on the same prob
lem and, as that , the definition and implementation of securi ty policies in
systems of interacting agents cannot abstract from the presence of specific
coordination models and infrastructures.

Scalability issues naturally arise in the coordinat ion of Internet agents,
due to the world-wide scale of the Internet itself, as well as to the need of en
abling and promoting interactions in systems in which agents are likely to be
distributed (and possible able to move) across the whole Internet. However ,
in addit ion to it s dimensions, there are other characteristics of the Internet
and of its potential applications tha t introduce peculiar problems related to
scalability. On the one hand, unlike a small network, th e Internet is dynamic
and unreliabl e, thus making it impossible to manage interactions and coordi
nation act ivit ies relying on traditional mod els and infrastructures [123,411].
On the other hand, the dynamic forming and dismissing of virtu al ente rprises
- likely to exploit an agent-based Internet environment for collabora t ion
require the capability of dynamic structuring and scaling of applicat ions or ,
more precisely, require the capa bility of the coordination infrastructure to en
able and support a change-of-scale persp ective in applications. In this context ,
the capa bility of th e adopted coordina t ion model and of the corre sponding in
frastructure of supporting applicat ion scaling in th e presence of a wide-scale,
unreliable, and dyn amic execut ion scenario is a compulsory requirement for
any proposal to gain acceptance.

Although the issues of mobility, security, and scalability are very impor
tant in Intern et- agent coordina t ion, only in the recent years th ey have become
mainstream resear ch issues for both th e resear ch communities of coordina
tion models [123, 196,411] and of multi-agent and autonomous-agent systems
[616,656] .

Emerging Issues of Coordination 251

A few earlier works exist focusing on mobility [520], sca labi lity [353, 525],
and secur ity [424] in the cont ext of coordination models and systems. How
ever , most of past research has concentrated on applications and systems for
which the above were simply non-issues. On the one hand, applications were
typically running on systems closed to external access - therefore intrins ically
secure - and locally dist ributed - thus having limited occasions to face the
pecul iar scalability issues raised by the Intern et . On the ot her hand , eit her
mob ility was not present at all as a feature or it was merely exploited to
re-distribute the execut ion load, transparently from applications and users
[654,655].

A similar restricted perspecti ve also affected, since recently, most of the
resear ches in the area of autonomous agents and multi- agent systems. On th e
one hand, most of the earlier researches in th e area of multi-agent systems
were focused on dist ribute collaborative problem solvers, i.e., closed agent
systems with a limited number of agents explicitly designed to collaborate
with each ot her, which do not introduce any problem related to scalability or
security [626, 333, 112]. On the ot her hand, mobili ty issues were addressed
mostly wit h regard to the capability of autonomous agents /robots of moving
in an environment and plan their actions accordingly [389] .

The convergence of the problems faced by different research communit ies,
as induced by agent -based Intern et comput ing, and the consequent emergence
of new research issues, is well represente d by the three chapters in this par t
of the book.

The contributions

Chapter 10, by Gruia-Catalin Roman, Amy Murphy, and Gian Pietro
Picco , addresses the issues of mobility and coordination in a very general way.
Starting from the fact that coordination problems int rinsically arise when
two or more active components come in contact and are in need to interact
with each ot her, the aut hors int roduce a working definition of coordina tion
and explore this concept in a way that makes it possible to transcend the
distinctions between mobil ity of software and devices.

In the first par t of the chapter, the aut hors analyze the various design di
mensions that have to be taken into account in govern ing the interactions in a
system of mobile comp onents. These dimensions include: the modeling of the
mobile components , of t he space in which they move, and of the environment
in which they execute and interact.

In the second part of the chapter, the aut hors presents three different
coordination models, i.e. , Mobile Unity, CodeWeave, and Lime, explicit ly
designed for systems of mobi le components . The presentation of these three
models is very useful to bet ter illust rate the range of options that can be
considere d in the definit ion of a coordination model and, consequently, in the
implementat ion of coordination architecture founded on that model.

252 Emerging Issues of Coordination

Chapter 11, by Ciaran Bryce and Marco Cremonini, focuses on Linda
like coordination models, by analyzing the issues arising in the definition of
a secure Linda-like coordination architecture for open and distributed agent
systems, and by surveying the relevant work in the area.

The authors start by introducing a general secure coordination architec
ture, based on the concept of shared dataspace. The introduced architecture
is exploited as a reference model towards an in-deep analysis of the problems
related to the definition of mechanisms and policies for a secure coordination
system.

Then, the authors survey the proposals of several coordination models
and systems integrating some sort of security-oriented features . Again, the
reference architecture introduced in the first part is exploited as a basis for
discussions and comparison. The survey shows that very different models ,
technologies, and architectural solutions for security can be adopted in the
context of Internet applications exploiting shared dataspaces as the main
coordination media.

Chapter 12, by Ronaldo Menezes, Robert Tolksdorf, and Alan Wood,
discusses the scalability issues that arise in the shift from LANs to WANs
(e.g. , the Internet) and, on this base, analyzes the architectural solution that
can be adopted in a Linda-like coordination systems.

The shift from LANs - typically of small dimension and under the control
of a centralized administration - to WANs - of geographical size and with
decentralized management - makes it impossible to enforce location trans
parency, induce high-fluctuations in the available bandwidth, and it is also
likely to notably increase the probability of network partitioning and faults.
This considered, the authors analyze how Linda-like models and technolo
gies can be extended so as to take into account these issues and still provide
effective coordination.

By analyzing the possible extensions to Linda and the proposal of several
models and systems, the authors argue that the challenge of implementing
Linda-like coordination on the Internet can be faced without undermining the
main advantages of the Linda model , that is, asynchronous and associative
coordination.

10. Coordination and Mobility

Gruia-Cat alin Roman", Amy 1. Murphy", and Gian Pietro Picco?

1 Department of Computer Science, Washington University
Campus Box 1045, One Brookings Dr ive, Saint Louis , MO 63130-4899, USA
{roman, alm}~cs .wustl .edu

2 Dip artimento di Elettronica e Informazione, Politecnico di Milano
P.za Leonardo da Vinci 32, 20133 Milano , It aly
picco~elet.polimi.it

Summary.
Mobility entails the study of syst ems in which components change lo

cat ion , in a voluntary or involuntary manner, and move across a space
that may be defined to be either logical or phys ical. Coordination is con
cerned with what happens when two or mor e components come in cont act
with each other. In this paper we put forth a working definition of co
ordination, we construct arguments that demonstrat e that coordination
is cent ra l to understanding mobility, we explore the int ellectual richness
of the notion of coordinat ion, and we consider the practi cal impli cations
of coordina t ion-cente red syst em design strategies. We develop these ideas
in two st eps. First , we analyze the different dimensions that govern the
definition of a coordinat ion st ra tegy for mobility: the choice of an appro
priate unit of mobility, the treatment of space and its impli cations on the
way we think ab out mobi lity , and th e manner in which context ual changes
induced by component movement are per ceived and managed. Then, we
explore mechanisms that enable us to model and reason about coordina
tion of mobile components, and to make it available to software develop ers
in the form of middleware. Three very different mod els of mobility (Mobile
UNITY, CODEWEAVE, and LIM E) are used as principal sourc es for illustra
tion purposes.

10.1 Introduction

Th e term mobility has grown to the point that it encomp asses a very broad
range of meanings and technological sub cultures spanning from formal theo
reti cal models to wireless transmission protocols and st andards. In this paper
we seek to explore the richness of this concept in a manner that t ranscends
the distinctions between physical and logical mobility but to the exclusion
of concerns having to do with the communicat ion technology and low level
pro tocols. As such, the kinds of issues we are about to consider are likely to
be of interest prim arily to research ers concerned with models, languages, and
middleware.

While logical mobility involves the movement of code (in all its forms)
among hosts , physical mobility entails the movement of hosts (of all sorts
and sizes) in the real world. Future generations of mobile syst ems are likely
to include both forms of mobility even though so far they have been treated

254 G.-C. Roman, A.L. Murphy, G.P. Picco

as distinct and have been studied by different research communities. For
now, logical mobility is viewed as offering designers a new set of conceptual
and programming tools that seek to exploit the opportunities made available
by the distributed computing infrastructure deployed over the last decade.
Physical mobility, on the other hand, is assumed to be closely tied into the
next evolutionary step in the development of the worldwide communication
infrastructure, the extension of wireline networks to fluid clouds of wireless
devices. This new environment presents designers with enormous challenges
not the least among them being the seamless integration of programming
models with both the wired and wireless platforms. It is for this reason that
a unified treatment of physical and logical mobility is important at this time.
Clearly, at the most basic level they share a view of the world in which
components move through space (be it logical or physical) and interact with
each other in accordance with the rules governing some particular model of
mobility. Yet there is a wide range of variations among models and systems
involving mobility. It is our contention that variability is essentially the result
of differing decisions with respect to a narrow set of issues: unit of mobility,
properties of space , context definition, and the coordination constructs that
facilitate component interactions.

Our coordination perspective on the subject is fostered by the recognition
that building open systems requires designers to adopt a new viewpoint.
In defining a component, the designer must minimize any dependencies on
the mechanics of data communication. Coordination [393] accomplishes this
by separating the functionality of individual components from the manner
in which interactions take place. Components may be logical or physical.
Laptops and PDAs equipped with wireless connectivity may travel around a
building or across the country alongside their owners. Code fragments may
move from host to host across both wireline and wireless networks and even
among various points in the structure of a single program. Mobile agents
move of their own volition while class definitions are downloaded on demand.
Components may be simple or complex structures. The types of components
involved relate closely with the kind of spatial domain one must consider.

Logical level interactions among components are made possible by spe
cialized constructs which specify the coordination services to be provided
and define the interface to such services, when necessary. In the most ex
treme case, components are totally oblivious to the coordination process. As
movement occurs and coordination takes place , components find themselves
having access to a changing array of resources, making new acquaintances,
losing contact with each other, etc . In other words, the dynamics of mobil
ity place each component in a continuously changing contextual setting. The
very definition of the context and the manner in which components handle
change vary with th e coordination constructs available to them.

Coordination is the thread that ties together the dominant themes in mo
bility today and the principal subject of this paper. Three specific models will

10. Coordination and Mobility 255

be used as primary sources for illustrative examples. Mobile UNITY is a for
mal model of mobility that provides a notation and proof logic for describing
a broad range of mobile systems, paradigms, and coordination constructs.
CODEWEAVE is a model that assumes a very fine grained perspective on
code mobility, at the level of single variables and statements. Finally, LIME
is a middleware designed to provide transient and transitive sharing of tu
piespaces among agents and hosts.

The remainder of the paper is organized as follows. Section 10.2 discusses
issues that are central to understanding the relation between coordination
concepts and mobility: Section 10.2.1 considers choices regarding the unit
of mobility; Section 10.2.2 explores variations in the definition of space and
discusses issues having to do with movement; Section 10.2.3 analyzes the
definition of context and the manner in which it is perceived by the mobile
components. Section 10.3 is concerned with the kinds of coordination con
structs one may encounter. The emphasis is not so much on offering a survey
of coordination languages and models as is on examining the range of options
that may be considered and the mechanics of how context is constructed in
three different models: Mobile UNITY, CODEWEAVE, and LIME. Conclusions
appear in Section 10.4.

10.2 Mobility Issues

Basic to the notion of mobility is the requirement that there be some entities
that perform the moves, some space within which movement takes place,
and rules that govern motion. Equally important is the way in which mobile
entities perceive the environment that surrounds them, the changes in such
environment, or the way it is actively being explored by them. This section
considers each of these issues in turn. We start by discussing possible choices
regarding the unit of mobility. We follow with a discussion of physical and
logical space and its relation to the units of mobility. Finally, we conclude
the section by examining the notion of context, i.e., the worldview of the
individual units .

10.2.1 Unit of Mobility

The entities that move through space can be physical or logical, simple or
composite. Physical components are generally referred to as mobile hosts and
they can vary in size from a laptop to a PDA or other wearable device. The
trend towards miniaturization is likely to lead to the emergence of minuscule
devices and smart sensors that can be attached to people's clothing, movable
structures and everyday objects. Robots of all sizes also serve as hosts. They
can move through space in a purposeful way under their own volition, can
communicate with each other, and are able to orchestrate activities none of

256 G.-C. Roman, A.L. Murphy, G.P. Picco

them could accomplish in isolation. It is generally expected that the number
of mobile hosts connected to the Internet will rapidly reach into the millions.
At the same time the size of ad hoc networks [190) (i.e., wireless networks
having no wireline support) is also expected to reach into the hundreds. Some
networks may be relatively stable, e.g., an assembly line or an office involv
ing tens of devices that use wireless communication to interact with each
other. Other situations are much more dynamic and unpredictable, e.g., cars
on a highway exchanging information among themselves and with stationary
data kiosks. Finally, there are situations in which the underlying application
is a complex enterprise mobile in nature, e.g., an emergency response team
consisting of many vehicles and individuals. What makes this kind of situa
tion different is the heterogeneity of the computing platforms involved and
the level of logistics interwoven into the behavior of the overall system. We
rarely think of physically mobile units as coming together and breaking apart,
yet such applications clearly point to a future in which the physical units of
mobility will vary greatly in size and capabilities and will engage in interac
tions that go beyond just relative movement and wireless communication to
include docking and complex physical reconfiguration.

In the realm of logical mobility, the unit of mobility naturally shifts from
being a host to being a code fragment. It should be noted from the onset that
the term "code fragment" implies some sort of syntactic element recognized
by the programming language. This is because of the necessity to reference
it in the code itself. Programs, agents, procedures, functions, classes, and ob
jects are reasonable choices frequently encountered in mobile code languages
and agent systems. Of course, language syntax recognizes also much finer
grained elements such as statements, expressions, and variables. They can
also be moved and such level of mobility it is referred to in this paper and
others as fine-grained mobility. Later in the paper we will show examples of
units of mobility associated with different syntactic elements and of various
granularity. Another point of differentiation among mobile units is the state
of execution at the time the movement takes place. If the code fragment is re
located by creating a fresh copy at the destination point or prior to the start
of its execution, the movement involves pure code and it is often referred
to as weak mobility. By contrast, strong mobility entails the movement of
code being executed, i.e., the execution state is relocated along with the code
thus allowing it to continue running even after the move. Of course , since the
relocation may result in changes to some of the program bindings the actual
state may have components that are no longer the same as before the move.
Associated with strong mobility is usually the ability to exercise control over
the movement both with respect to timing and destination although one can
easily envision systems in which the fixed infrastructure has total control over
who moves and when . .

Is it possible to envision units of mobility that have no syntactic corre
spondence? While we can argue that the basic unit of mobility must have a

10. Coordination and Mobility 257

syntactic correspondent, we can also see the possibility of creating, through a
composition process, computational environments which no longer have any
relation to program syntax. A simple example might be a swarm of agents
that, once bound to each other, may become a new entity endowed with the
ability to move and to restructure itself. Our own work on fine-grained mo
bility comes very close to this view of mobility, as it will become evident in
a later section.

10.2.2 Space

Current work on mobility has made very little effort to investigate and for
malize the concept of space and its properties. To date, physical components
can vary greatly in size and capabilities but, most of them perceive location
as a pair of coordinates on the earth surface provided by some GPS service.
This is useful in terms of being able to exhibit location-dependent behaviors
in PDAs and laptops. Robots can go one step further and actually control
their position in space . Such capability, however, brings with it the added
complexity of a space that is no longer continuous and homogeneous due
to the presence of walls and other limitations to movement. Space acquires
structure and maybe even semantics. Space can actually change over time
as components move relative to each other. A robot moving out of a door
way may all of a sudden open new possibilities of movement for the others.
Moreover, locations can be relative rather than absolute and knowledge of
the space may be limited to those areas explored to date. This may become
important. when knowledge is shared among component.s since in t.he absence
of a global reference syst.em it. may be difficult t.o reconcile the different. views
acquired by different. components.

Can we t.hink of physical space in a new light? We believe t.hat. we can and
we must rethink our treatment of physical space . Space can have structure
and the struct.ure may be essent.ial t.omaking it. possible to address import.ant
applicat.ion needs . Consider, for inst.ance, the problem of delivering messages
among a group of mobile components that move through space and commu
nicate only when in immediat.e proximit.y to each ot.her. Can we guarantee
message delivery? In general, this is impossible because one cannot be sure
that two specific components ever meet.. Yet, if we assume that the compo
nents move back and fort.h along a single line (a train track), the problem is
easily solved. Many situations are amenable to similar treatment. Of course
these kinds of issues can be handled in the application by superposing a suit
able interpret.ation on top of what amounts to a primitive space. But, a more
formal and higher level treatment may give us the t.ools to reason about such
situations and t.o provide programmers with high level int.erfaces t.hat. reduce
the complexity of the development effort .

Since much of the communication among mobile components entails the
use of wireless transmission, space and dist.ance metrics are playing growing

258 G.-C. Roman, A.L. Murphy, G.P. Picco

roles in the way one thinks abou t the relation among components. Cellu
lar networks provide a prime example of st ruct ure being imposed onto the
physical space. The space is divided into regular patches with a base station
supporting all the communication needs of th e components in t hat specific
area. Tran sitions among cells entail special handoff protocols, i.e., commu
nication behavior is t ied to space st ructure . In the case of ad hoc network s,
the space lacks structure but the dist ance metric is important because com
munication can take place only when component s are within range. If ad hoc
routing is available, i.e., mobile components serve as mobile routers as well,
the space acquires st ructure dyn ami cally in response to th e very presence of
the mobile components . This structure is being used in new kinds of pro
tocols th at factor relative location inform ation into their decision process,
e.g., discovery proto cols interested in determ ining wha t neighbors are within
a certain distance of a given component . More sophist icated approaches are
likely to take advantage of both distance and velocity by predict ing future
component locati ons. The density of components in a given region of space
may also be exploited in the design of certain systems. In natural situat ions,
distance may be affected by terrain topology. Even in the air, winds may
be viewed as alte ring th e properties of space , thus affect ing th e predictive
equa tions. In artificial environments apparent distan ces may be alte red by
the presence of communicat ion resources such as wireless bridges th at offer
extended connect ivity through wireline networks.

To th e best of our knowledge no syste ms to date provide what we would
call a non-trivial view of physical space. The situation is quite different when
it comes to considering logical space in programming languages and model s.
One can encounter a great deal of variability with respect to the choice of unit
of mobili ty, th e perception of logical space, and even the kind of movement
t ha t is permi tted.

In Mobile UNIT Y [405], for inst ance, a program consists of a set of state
ments and the set of local vari ables being read and modified. A prog ram
becomes mobile through the addit ion of a distinguished location variable.
Changes to the location var iable represent movement and programs change lo
cation always as a whole. Since movement is reduced to value assignment, rea
soning about mobility can be handled by employing th e standard UN ITY [147]
logic. By cont ra st, CODEWEAVE [400] shares a common formal foundation
with Mobile U NITY but adopts a fine-grained par adigm. Single var iables and
individual statements can he moved from one location to anot her and can be
injected in , aggregated into and ext racted from programs created on the fly.
Large-grained aggregates can be manipulated in exactly the same manner.
Th e mobili ty and restructuring of programs is not unique to CODEWEAVE.
Algebraic mod els accomplish the same thing by allowing for th e movement
of processes, he they elementary or composite . In Mobile Ambient s [123], for
inst ance, rules are provided for moving pro cesses from one context to another

10. Coordination and Mobility 259

regardless of the complexity of the process involved in the move (the reader
should think of context as being a location).

While our mental image of mobility is usually associated with some form
of autonomy this cannot be assumed in all cases. In mobile agent systems the
decision to move may indeed rest with the agent itself. Classes, however, are
loaded on demand. One can also envision systems in which agents are pushed
along (forced to move) when their services are no longer needed or when a
need arises at some other site. When modeling physical systems, devices are
carried around from one location to another without having any say. The
motion is actually induced by outside forces, which may need to be modeled
when reasoning about the resulting system.

In our discussion so far , we casually mentioned location without actually
considering what it might be. In the context of logical mobility, location is
often equated with a host in the network. Things are a little more compli
cated than this because the ability to execute code presupposes the existence
of an appropriate computing environment. Nevertheless, treating space as a
graph with vertices representing locations and edges constraining movement
is a reasonable model. However, this is only one among many models one
encounters in the literature and there are many more that are likely to be
studied in the future . Consider, for instance, a program residing on a host
and its structure which, for discussion purposes, we assume to be hierarchical
in nature. Each node in its tree structure can be viewed as a location. The
very structure of the programs provides a notion of space . Code fragments
may move to locations in the program and may even extend the program.
Thus, the notion of space induced by the program may be used to support
mobility and as the basis for redefining the space itself. This is precisely the
view adopted by CODEWEAVE, which recognizes both hosts and structured
programs residing on hosts. In Mobile Ambients, the model is structured in
terms of nested processes that define administrative domains. Mobility is con
strained by the structure of the model while motion alters that very structure,
i.e., the definition of space. MobiS [399] too is a model that offers a hierarchi
cal structure with mobility restricted among parent child locations consisting
of tuple spaces. Finally, in Mobile U NITY the space is left completely outside
the model. Spatial properties may be used, however, in reasoning about the
behavior of the system.

This latter strategy allows one to explore a broad range of spaces hav
ing different formal properties, purely abstract constructions or models of
physical reality. In general, the ability to unify logical and physical views of
mobility is useful in the analysis of mobile systems and also as the basis for
developing new models. Moreover, if such efforts result in a practical integra
tion of logical and physical mobility, a wide range of novel applications can be
contemplated. LIME [493] is one such attempt to integration. Mobile agents
reside on mobile hosts that can form ad hoc networks when in proximity of
each other. When this happens, the agents appear to be sharing a common

260 G.-C. Roman, A.L. Murphy, G.P. Picco

data environment (tuple space) and have the opportunity to jump from one
host to another.

With the advent of mobility, space is fast becoming the new research
frontier. Our treatment of space impacts our ability to analyze systems and
shapes the models and languages we develop. The assumptions we make
about the structure of space and the mobility profile of the components that
inhabit it have profound effects on the kinds of protocols and algorithms we
develop. Problems specific to mobility are often impossible to solve unless
proper restrictions are imposed. A more precise and formal evaluation of
space holds the promise for significant intellectual and practical advances in
our treatment of mobility.

10.2.3 Context Management

As components move through space , their relation to other components and
to fixed resources changes over time. Of course, even if a component is sta
tionary, other components may move relative to it . The notion of context
relates to the way in which a component perceives the presence of other
components and available stationary resources at each point in time. While
location plays an important role in determining the current context, it is not
the sole controlling factor . Similar components at the same location are likely
to see very distinct contexts. Two components, for instance, may not have the
same access rights at that particular location because one is local while the
other is a visitor. Their respective needs may also be distinct thus forcing the
components to look for different things among the locally available resources.
Even more interesting is the fact that components may obey different binding
rules, i.e., ways to associate names to resources. Depending on the nature of
the mobile system, when a component leaves a site existing bindings may be
severed permanently, may be disabled temporarily and restored upon return,
or may continue to be preserved in spite of the location change. The first op
tion is most common in settings involving physical mobility while the third is
readily implemented when logical mobility takes place across connected sites ,
as in the case of the Internet.

A purely local context (i.e., involving a single location) is often favored
because it appears to be easier to maintain and implement. This is only par
tially true because even a local context may involve transparent coordination
among multiple hosts . In the ad hoc mobility setting, for instance, the mainte
nance of a local context is very complex. Components need to discover each
other and to negotiate the extent to which they are willing to collaborate
among themselves. Keeping track of who else is in immediate proximity and
which resources they are willing to provide or seek to use is not an easy task.
The level of complexity is affected by the assumptions one can make about
disconnection patterns, the relative speeds of components, and the reliability
of both components and wireless links. The degree of consistency demanded

10. Coordina t ion and Mobility 261

by t he applicat ion is another major factor. The t rend is towards weak ver
sions of consistency but they may not be acceptable in all situations. Even
in the case of logical mobility, a component arr iving at a site is required to
establish new bindings. From th e point of view of the component, this entails
a resource discovery pro cess and possible negotiat ions.

A distributed context (e.g., one tha t refers to dist ant hosts) entails all the
complexit ies associate d with a local one plus a lot more . At a minimum, the
comp onent navigating across the network must remember th e identity of the
resources it needs from different locations (e.g., IP addresses) and the net
work must provide th e ability to support communication with the resources.
However , this is adequate only if the resources are essent ially passive, i.e.,
respond to requests but they do not initiate any. If the relation is such that
resources can act ually initiate communicat ion, the complexity rises dramati
cally. The network must support delivery to components that move in space,
be they agents or nomadic devices that rely on base stat ion support . Mobile
IP [488] is one protocol that provides t his kind of service. Of course, the ulti
mate challenge is to allow mobile component s to send messages to each other
while offerin g delivery guarantees. Recently, we proposed several algorithms
tha t support this kind of communication in a nomadic set ting [444, 445].
Systems that provide notification services are anot her example in which re
sources need to contact mobile components. It should be not ed, however ,
that providing messaging support is only the first step towards support ing
th e contex t management needs of a mobile computing system.

Whil e cont ext management can be left in the hands of the individual com
ponents, this is not a strategy likely to lead to rapid software development. It
is mor e reasonable to provide middleware that enforces a cert ain clean con
cept ual view while offering the right tools for managing contextual changes .
We draw a dist inction here between maintaining the cont ext and responding
to contextual changes, a topic we will return to at the end of this sect ion. Re
garding context maintenance, two issues seem to be particularl y important in
differentiating among various software support st rategies, whether th ey are
implemented as part of middleware, agent syst ems, or mobile code language:
t he level of support provided by the und erlying runtime system and the con
ceptual mod el enforced. Regardin g the former , the two ext remes seem to be
making context maintenance explicitly the responsibility of the component or
achieving full transparency. When an agent changes locat ion on its own and
arr ives at a new site, it may be required to decide: how visible it is necessary
to be to others by engaging in some registration pro cess; which old acquain
tances should be preserved; what services to register with the local site for
availability to ot her agents ; what resources it needs to discover and access
at the new location; etc . All th ese act ivit ies, even if supported by some sort
of mobility middl eware, provide flexibility bu t also place significant demands
on the component designer.

262 G.-C . Rom an , A.L. Murphy, G.P. Picco

Much of our own work has centered on making context maintenance fully
t ra nsparent . In such cases, th e concept ual mod el that underlies th e basis for
the context maintenance is of paramount importance. The designer relies on
its understan ding to generate correct code. One of th e models supported by
Mobile U NITY is the not ion of t ra nspa rent transient sharing of program vari
ables. Comp onent code is simply written under th e assumption that variabl es
may und ergo spontaneous value changes in response to th e arr ival and de
par ture of other components in th e vicinity or due to modifications made by
them. Wh at vari ables are shared and und er what conditions is specified using
a declar ati ve notation-its operational semantics are ult imately reduced to
coordination actions associated with statements in the basic Mobile UNITY

notation . The condit ion for sharing variables can be arbit ra ry bu t it is usually
relat ed to relative positions among components, e.g., at the same location or
within radio contact.

A more complex example of t ransparent context management involves the
use of global virtu al data st ructures. In a virtu al memory syst em the appli
cation program perceives th e memory space to be larger tha n the physical
rea lity and th e support syst em takes upon it self th e responsibili ty of main
ta ining this illusion in a seamless manner. Similarl y, a global virtual data
structure creates the appearance that the individual mobile unit has access
to shared data despite the presence of mobili ty. Consider , for instance, a
gra ph and two very distinct settings, one involving agents and th e other ad
hoc networks. In one case, the gra ph is stored in a distributed fashion across
the nodes of a fixed network. Agent s move from node to node like crawling
ants carrying data from vertex to vertex. Each agent is aware of the graph
and of the presence of other agents co-located at th e same vertex. In the
second case , the graph is distributed among t he mobile host s but only that
portion of the gra ph tha t is connected and stored among hosts with in com
mun icat ion range is accessible to the applicat ion. Hosts can trade sect ions of
the graph as long as such changes cannot have any effect on hosts tha t are
out of contact . In both cases, behavior analysis is carr ied out by reasoning
about th e global st ructure but all act ions are local. Fur th ermore, the actions
involving the st ructure are specific to it . LIM E is one system tha t follows
this strategy by employing a tuple space partitioned among both hosts and
agents.

Context changes can be induced not only by movement (through asso
ciated changes in data and resource availability) but also due to quality of
service considera t ions, e.g., variat ions in bandwidth and delay. Regardless of
their source , context changes are always important to the application and
mechanisms for responding to such changes are needed. The most commonly
used st rategy is to prov ide an event not ification mechanism. A predefined
set of events is made available to the applicat ion, which can register in turn
appropriate responses for specific events . A more general approach is to fur
nish the application with a general event notification mechanism and allow

10. Coordination an d Mobili ty 263

it to define both the set of events of interest and the choice of responses. A
very different alternative involves the notion of reactive st at ements. As used
in Mobile UNITY and LIME, the execut ion of reactions is not triggered by
events , rath er by specific state properti es. Once activated, they cont inue to
execute at high priority for as long as t he condit ion persist s. We will return
to this topic in t he next sect ion that covers coordinat ion constructs and the
manner in which they cont ribute to context definition and maintenance.

10.3 Coordination Constructs

Coordinat ion is a programming paradigm that seeks to separate the defini
t ion of compo nents from the mechanics of interaction. In t radit ional mod els of
concurrency, processes communicate with each oth er via messages or shared
variables. The code of each component is explicit about th e use of commu
nication primitives and the components are very much aware of each oth er 's
presence. Actu ally, communicat ion fails when one of the parti es is missing .
By contrast, coordination approaches promote a certain level of decoupling
among processes and the code is usually less explicit about mechanics of the
interactions. Ideally, the interactions are defined totally outside the compo
nent 's code. Linda [267] is generally credited with bringing coordinat ion to
the attent ion of the programming community. By using a globally shared
tuple space , Linda made temporal and spat ial decoupling a reality in par allel
programming and simpli fied t he programming task by providing just three
basic operations for accessing the tuple space . Interactions among pro cesses
were brought up to a new level of abstraction and the programming t ask
was made simpler. Reasonable implement ations of the tuple space made the
ap pro ach effective.

Our concern, however , is not with coordination in general but with th e
role it can play in simplifying the task of developing mobile applications.
Mobili ty can benefit from a coordination persp ective because decoupling en
hances one's ability to cope with open systems. At t he same t ime, mobility
adds a new and challenging element to coordination, the dynamic changes
taking place as components move thr ough space . Some prop er ties that may
be desirable in general become even mor e important in t he mobile setting.
Promoting a coordination sty le that is totally t ransparent to the participating
component s, for instance, may enhance decoupling and increase the ability
to int eract with components previousl y unknown. Other interesting proper
tie s are specific to mobility. The notion of t ransient interactions is a direct
result of the fact that components move relative to each other going in and
out of communicat ion rang e. The concept of transitive int eractions surfaces
when one needs to consider establishing group-level int eractions out of pair
wise communicat ions . At the other ext reme, logical mobility in the presence
of full server access across global networks leads to almost unreal mod es of
distant interaction where components move from location to location while

264 G.-C. Roman, A.L. Murphy, G.P. Picco

preservin g the ability to access resources as if th ey were local. In general,
space becomes a major factor in formul ating coordina t ion issues. In physical
mobility, th e dist ance between components can become a barrier to wireless
communicat ion thus making interactions condit ional on relative positions of
components. Even in logical mobili ty, component s may be limited to inter
act ing only when present at a common location. Finally, spat ial properties
are commonly combined with quality of service and security considera tions
to define t he nature of th e coordination pro cess.

In the remainder of this section we discuss three models corre sponding to
three distinct modes of coordination. Whil e th ey involve both physical and
logical mobility, separately and in a fully integrated fashion , the distinctions
among the three models are most st riking when we examine the way coordi
nation is used to address similar problems in very different contexts. Mobile
UNITY is illustrative of what one might call an active coordination st rategy.
Coordination is specified operationally and bridges (in a mostly transparent
manner) the states of components when they are found in specific relations to
each other. LIME is represent at ive for a passive coordination style very similar
to Linda but adjusted to the realities of ad hoc mobili ty. Transiently and tran
sit ively shared tuple spaces prov ide the coordina t ion medium but programs
need to make explicit use of tuple space operations to gain access th e tuples
located on host s within proximity. Finally, CODEWEAVE illustrates one of
the more exot ic applicat ions of coordination. Component s (codes fragments
and aggregates) are provided with primit ives that facilitate code mobili ty.
An operational specificat ion defines the meaning of th ese operations in terms
of simpler coordina t ion primitives. One might call this style of coordina t ion
constructiv ist. The th ree examples exhibit a great degree of similitude at the
conceptual level but also variability in the range of coordinat ion constructs
being employed. We view this to be indicative of two complementary facts.
On one hand, one can build a common found ation and use it to examine the
way coordina tion is used in mobility. Mobile UNITY seems to have many of
the features required to accomplish this. On th e oth er hand, mobility covers
such a vast expanse of possibilities that many distinct models are likely to
emerge . They will provide the concept ual found at ion for software systems
(mostly middl ewar e) designed to support th e development of mobile applica
tions.

10.3.1 Mobile UNITY

Mobile UNITY [405] proposes a new not ation and underlying formal mod el
support ing specification of and reasoning about mobile syst ems. The ap
proach is based on th e UNITY [147] model of concurre nt computat ion. It s
not ation is extended with const ruct s for expressing t ransient interactions
among components in t he presence of movement and reconfiguration.

UNITY was conceived as a vehicle for th e study of distributing comput
ing, and defined a minimalist mod el for specifying and reasoning about such

10. Coordination and Mobility 265

systems. The key elements of the UNITY model are the concepts of variable
and conditional multiple assignment statement. Programs are simply sets of
assignment statements that execute atomically and are selected for execution
in a weakly fair manner. Multiple programs can be composed through the
union operator. The result is a new system that consists of the union of all
the program variables and the union of all the assignment statements. Vari
ables with the same name are assumed to be identical, i.e., they reference
the same memory location. Our interest in mobility forced us to reexamine
the UNITY model with the following goals in mind: to provide for a strong
degree of program decoupling, to model movement and disconnection, and to
offer high-level programming abstractions for expressing the transient nature
of interactions in a mobile setting.

One key design decision in the development of Mobile UNITY was the
choice of the program as the unit of mobility. This is a natural choice for
UNITY because it allows for simple functional decomposition and composi
tion (e.g., through program union and the use of similarly named variables) .
Therefore, the first major aspect of a Mobile UNITY system description is
the specification of the individual mobile components, a standard UNITY

program for each. However, unlike standard UNITY, Mobile UNITY seeks to
foster a highly decoupled style of programming by requiring the namespaces
of the programs to be disjoint. This allows each program to operate without
interference from the other programs it is composed with. As shown later,
coordination among components is allowed, but it is separated from normal
processing. Additionally, each program is augmented with a distinguished lo
cation variable. This variable may correspond to latitude and longitude for a
physically mobile component, or it may be a network or memory address for
a mobile agent . The specific definition is left intentionally out of the model.
However, by making location a part of the program specification, it can be
manipulated from within the program to allow a program to control its own
location. Furthermore, the location of the individual components can be used
in reasoning about the system behavior. Actually, by reducing movement to
value assignment, the standard UNITY proof logic may be used to verify pro
gram properties despite the presence of mobility.

The second major aspect of a Mobile UNITY specification is the Inter
actions section which defines all interactions among components. Because
the namespaces of the programs are disjoint, no statement within a program
can reference a variable in another program. The Interactions section is
the only place where variables from multiple programs can be addressed. In
this manner, the definition of coordination is separated from the definition
of standard processing.

In our work we have shown that only a very small set of primitive con
structs is needed to build a wide range of high-level coordination constructs
and models. These primitives include asynchronous value transfer, statement
inhibition, and reactive statements. Statement inhibition restricts the execu-

266 G.-C. Roman, A.L. Murphy, G.P. Picco

tion of a statement in one program based on the st ate of another program .
Reactive statements are enabled by programmer specified global conditions
and conti nue to execute at high priority until they no longer cause any state
changes. The standard U NITY proof logic has been extended to incorpora te
the new Mobile UN IT Y primitives, but the underlying proof logic remains
unchanged. Using these three pr imitives and a minor technical change to th e
basic U NITY notation, Mobile UNITY allowed us to define a number of in
teresting coordination const ruct s including: vari abl es which are shared in a
t ransient and t ransit ive manner based on the relative positions of th e mo
bile programs ; st atements that are synchronized in a transient and transit ive
manner according to a variety of synchronization rules; clock synchronization
with and without drift ; etc .

Reactive statements provide a mechanism for ext ending the effect of in
dividual assignment statements with an arbit rary te rminating computation.
This construct allows us to simulate the effects of the interrupt pro cessing
mechanisms that are designed to react immediately to certain state changes.
The construct is par ticularl y useful when its guard involves the relative lo
cations of components . The result is the execut ion of an additional st ate
t ransition in response to a new connect ion or disconnection.

The standa rd UNITY model for shared variabl es is static. In Mobile U NITY

transient vari able sharing is implemented using the react ive statements . High
level construct s are provided for symmetri c and asymmetric update of vari
ables throughout th e period during which they ar e shared , for establishing a
single common value when a new sharing relation is established (engagement),
and for defining the values resulting from the disengagement of variables as
components move away. Transient statement synchronization is defined using
variable sharing as a building block.

The constructs provided by Mobile UN IT Y have been put to test in th e
specification and verification of Mobile IP [406] and of a vari ety of mobile
code paradigms including code-on-demand, remote evaluat ion, and mobile
agents [495]. In the next two subsections we will present two other uses of
Mobile U NITY . One involves its application to fine-grained code mobili ty and
the oth er relates to defining the formal found ation for mobili ty middl eware
involving transient sharing of tuple spaces.

10.3 .2 CODEWEAV E

The core concepts of Mobile U NITY are geared towards t he mobility of com
ponents. Programs may represent mobile hosts moving across space, or mo
bile agents roaming network hosts. Nevertheless, th is coar se-grained view of
mobility is indeed limit ed, as evidenced by st ate of the art technology. In
the realm of logical mobility, mobile agent technology still awaits for mas
sive exploitation in the design of distributed applicat ions , while finer-grained
forms of mobility, often collect ively referred to as mobile code, alr eady found
th eir way into recent proposals for distributed middl eware. For instance, Java

10. Coordination and Mobili ty 267

Remote Method Invocation (RMI) exploits the dynamic class loading capa
bilit ies of the Java language to allow, on both client and server, on-the-fly
ret rieval of st ub and application classes that are needed to support a remote
met hod invocation. The capability of relocating portion of the code and of
the state of a mobile uni t , rath er than always moving all the constituents to
get her , brings addit ional flexibi lity in the design of distribu ted applications .

CODEWEAVE [400] is a specialization of Mobile UNITY conceived for
modeling fine-grained mobility. CODEWEAVE retain s the operationa l model
underlying Mobile UNITY, but allows the designer to specify migration
of th e const it uents of a Mobile UNITY program . The uni t of mobilit y in
CODE vVEAVE can be as small as a single UNITY statement or variable. The
form er is referr ed to as a code uni t, while the latter is called a data un it.
Units take par t into the general system behavior only when th ey are part
of a process. Processes can be organized in hierarchies, and the containment
relation const ra ins the ambit of visibility of a uni t. Thus, processes are the
uni t of scoping and execut ion. Processes and units exist at a given location,
which may be a process or a site . Units that reside on a site do not belong
to any pr ocess, they represent availab le resour ces that may be shared among
the co-located pro cesses.

CODE WEAVE provides pr imiti ves for moving (or cloning) uni ts. Migration
of uni ts across host s may represent the relocation of a class or an object in
a distributed middleware. Migration of a uni t from a host into a process
may represent dynamic linking or deserialization mechanisms. Relocation of
state and behavior is not the only dimension relevant to logical mobility.
As discussed in [253], logical mob ility is often exploited to gain access to a
site's sha red resour ces, hence the management of bindings to shared resources
upon migration is a key issue. CODEWEAVE provides a not ion of reference
that enables processes to access a uni t without explicit ly (and exclusively)
containing it .

The same primitives discussed thus far actua lly apply to processes. For
instance, a move operat ion applied to a process causes its migration to
get her with all its consti tu ents. Hence, the fine-grained model put forth by
CODEWEAVE subsumes, rath er than replace, the coarse-grained perspective
where th e units of execut ion and of mobility coincide . For instance, mobile
agent s are st ill mod eled natu rally by using th e process abstraction. Further
more, the ability to represent nest ed pro cesses enables the modeling of com
plex st ructures built by sites , places, and agents like t hose introdu ced in
Telescript [631], similarly to what Mobile Ambients or MobiS provide.

CODE WEAVE represents fine-grained mobili ty by relying completely on
the sema nt ics of Mobile UNITY. The uni ts of mobili ty of CODEWEAVE, i.e.,
st atements and variables, are reinterpreted as Mobile UNITY programs, whose
movement and sharing is ruled by statements in the Interactions sect ion,
according to the semant ics specified in CODE WEAVE. For instance, the move
ment of a pro cess along with all its constit uents is actua lly reduced to the

268 G.-C. Roman, A.L. Murphy, G.P. Picco

movement of a Mobile U NITY program representing th e CODEWEAV E pro
cess, followed by a set of reactions t ha t migrate the Mobile UNITY programs
representing its const ituents in the same atomic step.

Several reflections can be made about the model fostered by CODEWEAV E.

T he fact that th e model's semant ics is reduced completely in terms of Mobile
UNITY is indicative of th e fact that the const ructs of Mobile U NITY effect ively
cap ture the essence of mobile int eractions. However , the ability to mod el and
reason about mobile systems at a level of abst rac tion tha t is closer to the
domain opens up new possibilities.

On one hand, the availability of fine-grained const ructs fosters a design
style where mobile agents are represent ed at increasing levels of refinement .
Existing systems typically do not allow a mobile agent to move along with
all its code, due to performance reason s. Different systems employ different
st rategies, ranging from a complete ly st atic code relocation strategy tha t sep
ara tes at configuration time the code that must be carried by the agent from
the one th at remains on the source host (like in Aglets [373]), to completely
dyn amic forms under the control of th e programmer (like in pCOD E [494]) .
Our approach allows modeling of a mobile agent applicat ion at different lev
els of detail. One can start with a high level descrip tion in terms of processes
representing the mobile agent s and cont inue to refine this view using the fine
grained const ruct s tha t specify precisely which const ituents of an agent are
allowed to move with it and which are not .

On the other hand, the perspective put forth by CODEWEAV E sheds a
new light on coordina t ion. Coordination no longer involves just communi
cat ion about par ties, which at most may be mobile and migrate to achieve
local coord inat ion. When fine-grained logical mobili ty is part of the picture,
components are malleabl e and open to changes that may occur as part of the
coordination protocol. The coopera t ive behavior of component s is no longer
determined only by the information exchanged during coordinat ion, but also
by new behaviors th at can be exchanged as program fragments, and dynam
ically become part of a component . Examples include th e ability to exploit
new coordination primit ives and coordinati on protocols downloaded on the
fly while the computat ion is being executed.

This view may even lead to new models of computat ion. Insofar we always
assumed that moving a statement or a variable in a CODEWEAV E system does
not necessarily imply achieving this also in the implement ation language. We
thought of it allowing us to model th e movement of a unit of mobility (e.g.,
a J ava object or class) that is finer gra ined than th e unit of execution (e.g., a
J ava thread) . Nevertheless, the ability to move a single statement or variable
in a real programming language is an intri guing possibility, one that may
be realized by exploit ing the new generation of scripting languages. Some
resear chers [224] proposed schemes where XML tags are migrated and dy
namically "plugged in" an XML script already executing at the destination.
This scheme may amplify the improvement in flexibili ty and customizabil-

10. Coordination and Mobility 269

ity brought in by mobile code. An even wilder scenario is the one where it
is possible not only to add or substitute programming language statements
that conform to the semantics of the language, but also to extend such se
mantics dynamically by migrating statements along with a representation
of the semantics of the constructs they use. As proposed at a recent con
ference [275], this could open up an economic model where the concept of
software component includes not only application code or libraries, but even
the very constituents of a programming language.

Another interesting opportunity is grounded in the binding mechanism
that rules execution of units within a process . In our model, a statement can
actually execute only if it is within a process, and if all of its variables are
bound to corresponding data units. This represents the intuitive notion that
a program executes within a process only if the code is there and memory has
been allocated for its variables. In languages that provide remote dynamic
linking , it is always a code fragment that gets dynamically downloaded into
a running program. However, the symmetry between data and code units
in our model suggests a complementary approach where not only the code
gets dynamically downloaded, but also the data. Thus, for instance, much
like a class loader is invoked to resolve the name of a class during execution
of a program, similarly an "object loader" could be exploited to bring an
object to be co-located with the program and thus enable resumption of the
computation. Another, even wilder, follow-up on this idea is an alternative
computation model where code and data are not necessarily brought together
to enable a program to proceed execution, rather it is the program itself (or
a whole swarm of them, to enhance probability of success) that migrates and
proceeds to execute based on the set of components currently bound to it.
This way, a program is like an empty "pallet" wandering on the net and
occasionally performing some computation based on the pieces that fill its
holes at a given point.

Verification may be considered under a new light as well. CODEWEAVE

inherits the temporal logic of Mobile UNITY and thus , besides enabling rea
soning about the location of mobile programs, it also allows reasoning about
the location of their constituents. Hence, verification can be exploited not
only to prove the overall correctness of the system, but also to optimize the
placement of the constituents of its mobile components, placing them only
on the nodes where they will be needed . For instance, a mobile agent could
be written in such a way that it does not need to carry with it a given
class, because a formal proof has been developed to guarantee that, for the
given system in a given state, the class will be already present at destination.
Clearly, this approach potentially enables bandwidth and storage savings,
and is particularly amenable for use in environments where resources are
scarce , e.g., wireless computing with PDAs.

270 G.-C. Roman, A.L. Murphy, G.P. Picco

10.3.3 LIME

LIME [493] t akes a pragmatic step toward the development of applicat ions for
mobili ty by describing a model for coordina t ion among mobile components
which frees t he applicat ion programmer from direct concern with many com
plexities of th e environment while st ill providing a powerful programming
paradigm. The model it self is formed by adapting the well-known Linda co
ordination mod el to accommoda te the essent ial features of mobili ty, and the
par adigm is presented to th e applicat ion programmer in th e form of middl e
ware.

The fund ament al properties of the Linda model are a globally accessible,
stat ic tuple space and a set of pro cesses which interact by writing to and
reading from the shared tuple space. None of the pro cesses need to co-exist in
either t ime or space to coordinat e, and because access to the data is based on
pattern matching , a pro cess need not know the identi ty of the ot her processes
in ord er to successfully interact . This decoupled sty le of interact ion is of
great utility in a mobile setting where the par t ies involved in communication
change dyn amically due to migration or shift s in connect ivity pat terns. On
the ot her hand, the decoupled nature of Linda is made possible by the global
accessibility and persistence of the tuple space.

When mobility is considered, espec ially the ad hoc model of physical mo
bility, no predefined, stat ic, global context can exist for the computat ion. The
cur rent cont ext is defined by transient communit ies of mobile components .
The idea underlying LIME is to maintain a global vir·tual tuple space, phys
ically distributing t he contents of this st ructure among the mobile units. As
connectivity among components changes, different projections of the global
virtual tuple space are accessible to each component . From a more local per
spective, each mobile unit is responsible for a portion of the global state (i.e.,
one partition of th e global virtual tuple space). When two or more compo
nents are within communicat ion range, th e contents of th eir tuple spaces are
shared transiently and transparently.

To the application programmer , all int eractions with th e shared data
space occur via local accesses to a component known as the interface tuple
space, or ITS. The ITS effectively provides a window into the global virtual
tuple space which expands as mobile components come within range and
contrac ts as connect ivity among components is lost . Transient sharing of the
contents of the tuple spaces within the ITS consti tutes a very powerful co
ordination abstraction, as it provi des a mobile unit with t he illusion of a
local tuple space that contains all th e tuples belonging to the members of the
curre ntly connected community, without the need to explicitly know their
ident it ies. Additionally, because access to the ITS is ent irely local , the ap
plication programmer can issue local operat ions , while reasoning about their
effect in the global context.

The opera t ions provided on th e ITS are identical to th e basic Linda oper
at ions, and by default opera te over the current ly accessible data . This per-

10. Coordination and Mobility 271

mits a context dependent style of interaction by fulfilling queries based on
the current connectivity state. Additionally, LIME extends the basic Linda
operations to allow data to be placed with a specific mobile component as
connectivity allows, and also to query a specific projection of the tuple space
based on the mobile component responsible for storing that data. Such in
teractions enable a programming style in which the application programmer
can access data based on a specific, known location. Thus, LIME provides
both location-transparent and location-aware styles of data access, in order
to support applications requiring different styles of programming.

Thus far, the description of the mobile components has been left inten
tionally abstract, however the LIME model provides a unique integration of
physical and logical mobility. Basically, the logically mobile components, or
mobile agents, form the active computational units of the LIME system, and
it is their responsibility to hold individual partitions of the tuple space. As
an agent migrates, it carries its portion of the tuple space with it as part
of its state. The integration with physical mobility comes because these log
ically mobile components must reside on physical hosts that move through
space and connect with one another based on the distance between them.
We assume that when two agents reside on the same host, they are able to
communicate, thus forming a host level tuple space containing the tuples of
the agents located on that host . Similarly, when hosts are within communi
cation range, the host level tuple spaces are shared to form a federated tuple
space. To emphasize the power of the abstraction provided by the model, we
note again that the basic Linda operations function over the federated tuple
space. This makes coordination visible only as a changing set of tuples over
which operations are evaluated, protecting the programmer from the changes
inherent in the mobile environment.

As previously noted, the mobile environment is highly dynamic, and it
is often desirable for applications to react to changes in the environment.
In Mobile UNITY, this led to the development and integration of the reac
tive programming model. Linda already supports one model to react to the
state of the system, namely a "pull" model in which a process blocks until a
tuple matching a query appears in the tuple space. Because LIME provides
the same primitive operations as Linda, this functionality is present in the
mobile environment, however LIME also makes available Mobile UNITY'S re
active model of programming, enabling a "push" style of coordination. In
other words, instead of a process waiting to pull information from th e tuple
space when it is written, the tuple space itself is charged with pushing infor
mation about the state to a process or executing a piece of code which has
been registered. Because the reactions are controlled from within the LIME
system, a higher degree of atomicity between the discovery of a matching
tuple and the execution of the user 's registered reaction can be guaranteed.
Pragmatic considerations about hew to enforce atomicity guarantees in the
distributed setting forced us to incorporate in LIME two kinds of reactions,

272 G.-C. Roman, A.L. Murphy, G.P. Picco

weak and strong. They provide differing degrees of atomicity and are sub
ject to different applicability constraints motivated by the need to provide
an effective implementation. In our experience, the combination of this form
of reactive programming with the transiently shared tuple space provides a
programming abstraction that is extremely powerful and useful. Thus, for
instance, programmers are able to specify once and for all that a reaction
must be executed whenever a given condition takes place in any point of the
federated tuple space, and possibly even within the context of a component
that was unknown at registration time.

The reactive mechanism of LIME has proven useful not only for reacting
to changes in the data state of applications, but also for reacting to changes
in the system context, specifically the arrival and departure of agents and
hosts. This hints at another feature of LIME, namely the exposure of the sys
tem context to the application programmer. Specifically the system context
consists of the mobile hosts that are within communication range and the
mobile agents contained on each of those hosts. It is also possible to augment
this basic information with other system characteristics such as the available
bandwidth between a pair of hosts or the resources available within a host.
We approach the system context as the dual to the data context, making
it available as a read only tuple space maintained wholly from within the
LIME system and accessible with the same primitives as all other transiently
shared LIME tuple spaces . In other words, the application programmer can
query and react to this LIME system tuple space in the same manner it op
erates over the data tuple space, with the exception that the system tuple
space cannot be written to.

LIME has been successful primarily on two fronts . First , a formal specifi
cation of the LIME model has been written in Mobile UNITY, providing both
clear semantics for the operations, and serving as an example of the practical
use of Mobile UNITY as the specification language for a mobile middleware
system. With this semantic definition in hand, it is possible to prove prop
erties about the overall LIME system. Examples include the completion of
the engagement protocol when a new host joins the LIME system and prop
erties of applications which have been specified in Mobile UNITY using the
LIME constructs. Second , an implementation of LIME exists as a Java pack
age available for distribution. It has been used to develop a variety of mobile
applications ranging from collaborative work scenarios to spatial games. The
simplicity of the Linda coordination model and its natural adaptation to
transiently shared tuple spaces leads to a shallow learning curve for the LIME
programmer and to ease of implementation.

lOA Conclusions

Mobility is an area rich in research opportunities, both intellectually and
pragmatically. It demands a new way of thinking and requires design strate-

10. Coordination and Mobility 273

gies that are distinct from the traditional distributed computing. Our own
research into mobility spans a broad range of issues, from formal models to
middleware development. Regardless of the direction we explored, three is
sues emerged as central to our investigation in each case: the choice of the
unit of mobility, the definition of space, and the manner in which context is
maintained and perceived. In this paper we tried to develop these themes by
exploring the range of options one can envision and by contrasting what is
possible with what we actually employed in three specific models . Another
important message of this paper is the notion that coordination played a key
role both in our ability to provide a clean formal treatment of mobility and
in our attempt to simplify the development of mobile applications. On one
hand, a coordination perspective facilitated an abstract and modular treat
ment of mobility. On the other hand, a coordination-centered design of the
middleware made it possible to offer the programmer a simpler conceptual
model of interaction among mobile units and to delegate to the runtime sup
port system much of the effort associated with maintaining and updating
the context visible to the individual units. Because coordination promotes
global thinking and local action, it is ideally suited for addressing the needs
of mobility in all its forms.

Acknowledgements

This research was supported in part by the National Science Foundation
under Grant No. CCR-9970939. Any opinions, findings, and conclusions or
recommendations expressed in this paper are those of the authors and do not
necessarily reflect the views of the National Science Foundation.

11. Coordination and Security on the Internet

Ciaran Bryce! and Marco Cremonini'

1 Centre Universita ire d'Informatiqu e
Universite de Geneve , 24, rue Ceneral-Dufour, CH-1211 Geneva 4 , Switzerland
Ciaran.Bryce~cui.unige.ch

2 L1A, Dipart imento di Elet tronica, Informatica e Sistemistica
Universita di Bologna, Viale Risorgimento 2, 1-40136 Bologna, Italy
mcremonini~deis .unibo.it

Summary.
This chapter examines the impact of security on the design of coordina

tion models for agent-based systems deployed over the Internet. A reference
architect ure for secure coordinat ion in shared space models is presented.
In this context , we argue that the interact ion of agents and system compo
nents throughout a shared space should be governed by policies th at sat
isfy both coordination and security requirements . A distribut ed scenario,
composed of multiple independent shared spaces, is then considered. The
integrat ion of cryptographic primitives into tupl e-based communication is
necessary, but this has subt leties that system designers must be aware of.
Some examples of these subt leties are discussed. Finally, existing coordina
tion models and systems are analyzed with respect to the general security
framework presented.

11.1 Introduction

Coordin ation models deal with the interaction of independently developed
active components . In t he context of agent syste ms [626, 614], they address
t he issue of how agents interact, and permit developers to design systems
without necessarily having to understand the internals of agents . Though
a component -oriented ap proach to program ming exists under man y guises,
coordinat ion models are specifically concerned with formally expressing the
interaction occurr ing among several concur rent ent it ies in a uniform fram e
work. In this chapter , we restrict our discussion to data-dri ueti coordination
models [482], like Linda [267], in which age nts communicate by reading and
wri t ing messages or tuples to and from a shared space.

Tuple-based coordination is receiving renewed interest because it is in
creasing seen as a suitable model for man aging the interaction among com
ponents of open, distributed and heterogeneous systems . In part icular , t he
perceived scalability and un iform ity of coord ination models has also pushed
many to consider them for agent -based systems in t he Internet [597, 249, 472] .
In this context, the shared space model is convenient since agent s do not need
to be synchronized to communicate; an age nt can read any message from the
space. T he space model is also simp le enough to use withou t the hindrance
of site specific naming convent ions ; in an open system with several ad min
istrat ive domain s, this is a significant advantage. However , aside the new

11. Coordinat ion and Security 275

opport unit ies tha t agent systems have brought to coordinat ion models (and
vice versa) , new concerns, driven by the openness of the environment , affect
the applicability of basic shared spaces.

Security is a major concern for open networks like the Internet , and t his
has important implications for the coordina t ion models used. It basically
means t hat interacting agent s are mutually mistrusting. One reason for this
is that th e agents execute on or originate from mistrusting network sites.
Another reason is that th e agents are coded independently or act from un
known sources . Furth er , agents might simply contain bugs. In this reason ,
agents must be isolated from each anot her, and the inform ation flows be
tween agents and th eir access to applicat ion inform ation must be controlled.

Securi ty and coordina t ion exhibit complementary facet s in th e Internet
context. Security is the conceptual count.erpart of coordina tion: While co
ordination deals with how syst em components interact , security deals with
what they are allowed to do [196].

The aim of this chapter is to present a general securi ty framework for
agent syste ms based on th e shared space coordination model. The und erlying
message is that security requirements cannot be effectively satisfied simply by
adding on security functionalit y to existi ng agent systems. Rather , a system
should be build with secur ity as a key goal from the outset . To this end, we
present a reference architecture for secure coordina t ion. We overview aspects
of agent authent ication and aut horization in th is architecture.

To enforce secur ity in an open environment, the architect ure relies on
cryptogra phic techniques and proto cols. However , it is worth noting that the
development of crypt ographic communica t ion protocols can present subt let ies
in the coordination environment, so they must be carefully analyzed before
deployment. Some examples of this are presented and discussed.

Plan of the chapter: Section 2 present s the referen ce architect ure . Sec
t ion 3 looks at meaningful secur ity policies in the coordination context, and at
mechanisms for aut hent ication and aut horiza t ion. The case of a distributed
scenario composed of multiple shared spaces is also described . Section 4 dis
cusses principles of crypt ogra phic communication protocol design . Section 5
then present s some of the exist ing coordina tion models and systems , and
Section 6 concludes the chapter.

11.2 A Reference Architecture for Secure Coordination

This section present s a reference architecture for secure interaction in coordi
nation syst.ems. The role of this architecture is to define th e components that
should be included in a traditional shared space to define and implement se
curity policies. We will refer to this architec ture throughout the chapte r, and
use it when explaining security in exist ing coordina t ion models and systems
in Section 11.5.

276 C. Bryce, M. Crcmonini

11.2.1 The Shared Space Model

In shared space models, i.e., the ones based on Linda [267], all inform ation and
data to be exchanged between pro cesses are stored in a shared data space.
Entries in the space are tuples made up of sequences of typed values. In agent
systems, a user can start several agents that use thi s space to communicate.
An agent places a tuple in th e space with t he out operation, and reads and
removes a tuple with the in operat ion . The read operation is like an in
except th at the tuple is not removed from the space .

A t uple is read by specifying a template tuple as a parameter to t he in or
read operat ion. For tuple t2 and tuple variable t I , t l := in(t2), searches the
shared space for a tuple that matches with t2. A template tuple matches a
tuple if both have the same number of at t ributes, and if each at t ribute of the
template tuple has the same type or value of the corresponding at t ributes
of the matched tuple. The in operation blocks until a match is found ; thi s
may mean waiting for another agent to do an out . An important feature
of mat ching is that a template tuple at t ribute may be a wild card, usually
denoted by 7 or by _. A wild card mat ches with any entry. Thus, the templates
(l ,a) , (7,a) , (1,7) and (7, 7) all match with the tuple (l ,a) .

This communicat ion model is associat ive and weakly connected. Associa
tive access means that information is accessed by its attributes, rather than
by names or addresses. Communicat ion is weakly connected since communi
cat ing agents do not need to know each other; a message sent by one agent
can be read by any ot her agent .

The original aim of the shared space model was to facilitate the program
ming of scient ific applicat ions. These applicat ions usually possess a large data
set, and exploit parallelism in a closed system to improve performan ce. Th e
shared space was seen as a convenient way of coordinat ing these processes. In
this context though, security is not a real issue. However , interest has been
renewed in the shared space model as a means of coordinating agents in open
distributed systems [597, 472]. In this context, the fact that communicating
agents need only be weakly connected is useful when running over unr eli
able networks. Associative data access is useful in a network where there are
no agreed upon naming convent ions and where dat a is created dynamically.
On the other hand , open environments are by nature insecure, so the shared
space model must be redesigned to handl e secur ity at tacks.

Throughout this cha pter we will adopt as a case study a conference re
view system [170] tha t automates the review pro cess of a conference. Authors
submit papers to the conference (by depositing them into a sha red space).
Reviewers read papers, write reviews (into the space) , and exchange infor
mation with oth er committee members and the program chair. Th e program
chair assigns pap ers to reviewers and collects the reviews. This scenario is of
ten cited as a good coordinat ion case st udy since interactions - the exchange
of papers and reviews - can be efficiently carr ied out in an asynchronous
manner and by means of weakly connected agents.

11. Coordination and Security 277

The conference system, when deployed on the Internet, highlights many
security deficiencies of the basic shared space model. For instance, any agent
can read any data entry in the space , i.e., by a read((? , ... , ?». This means
that all papers and all reviews are accessible to anyone's agent and this is
not acceptable in many cases. The problem arises from the fact that in the
shared space model there is no notion of agent identity when accessing data
and therefore no inherent notion of authentication. There is thus no way
to distinguish a reviewer agent that attempts to legally read a review from
an author 's agent. In addition, an agent can saturate the shared space by
continuously outing tuples to it. This constitutes a denial of service attack,
since memory saturation can cripple any system. Integrity is also easily vio
lated because there is no way to prevent a malicious agent from fabricating
a review , or from modifying an existing one. Unless all of these concerns are
addressed, the basic shared space model can be used neither to implement
the conference review system, nor many other Internet applications.

11.2.2 Towards a Security Architecture

In order for any system to be made secure, it must possess a trusted com
puting base (TCB) [145] . A TCB is the set of code and data needed for secure
system operations. The TCB is used for instance to store access rights and
encryption keys. It also houses the authentication procedures that are ex
ecuted when a user logs onto the system and the authorization procedures
that verify whether an agent attempting access to information possesses the
needed access rights. Clearly, the TCB must be protected from tampering or
intrusion for the system to operate securely. If the TCB fails (through error
or malicious attack) then the overall system's security is compromised.

A system is only secure if no user agent is able to modify or gain ac
cess to information that is normally forbidden to him . This necessitates that
each access to data made by an agent is checked, to ensure that the access
is permitted by the system's security policy. For this reason, the primary
component of a system's TCB is the reference monitor [145]. The role of a
reference monitor in coordination models is to intercept each access by an
agent to the tuple set and to verify that this access is allowed by the security
policy.

An illustration of a reference monitor is given in Figure 11.1 for the shared
space . A reference monitor is interposed between the agents and the shared
space ; the reference monitor intercepts calls to operations out, in and read
on the space. The security policy, programmed into the reference monitor is
consulted for each operation invoked by a user's agent. The TCB of this ar
chitecture includes the reference monitor, and all code and data of a system
needed to implement the security policy. In existing systems, the implemen
tation of the reference monitor ranges from the definition of a specific system
component acting as a proxy for the shared space [422], to its implementation

278 C. Bryce, M. Cremonini

within th e shared space itse lf [100, 472J. We give examples of such systems
in Section 11.5.

® ®
IN

Refe rence Monitor
Security Po/icy

I I

[[IJ

[[IJ m
[[IJ

m
[II] m

I I

Shared Space

Fig. 11.1. The shared space model with a reference monitor

A reference monitor must possess two fund ament al properties for it to
work correctly: total m ediation and encapsulation [145J. By total mediation
is mean t tha t the reference monitor int ercepts every access to the dat a. By
encapsulation is meant tha t the reference monitor is protected from tamper
ing by malicious user agents . In this way an agent is unable to prevent the
reference monitor from mediating each data access . Once th ese properties
have been sat isfied (a represent ation of) the secur ity policy can be linked to
th e reference moni tor.

One reason why secur ity in a real system is difficult to achieve is that the
prop erties of encapsulat ion and total mediation are hard to implement . To
ensure tot al mediation, th ere must be no backdoor pointers to dat a placed
in the sha red space by user agents . This means tha t an agent may not read a
dat a item in the space without using in or read. This has several implications
for implementing a space . In an object-oriented environment for instance [43],
aliasing is endemic [305J . Aliasing arises when an object is referenced (or
named) by mor e than one other obj ect . Aliasing provokes much undetected
sharing and is th e cause of many errors and secur ity failures in object-oriented
systems [304J. For this reason , an object placed into the shared space using
in must have references to that object removed by the reference monitor (so
that future accesses to that obj ect pass through the system's in and out
operations) [lOOJ .

11. Coordination and Security 279

A well-known attack on encapsulation happens when a user is able to
insert malicious code into the reference monitor. This may also happen in
obj ect-orient ed environments where inheritance is used to define the matching
pro cedure of obj ects placed within the shared space . Recall t hat the template
object of th e in and read operat ions is mat ched with each obj ect in the space.
The meaning of the mat ch comparison is specific to each dat a type . In object
oriented systems, the match pro cedure can be defined for each obj ect type
(or class) using inheritance. However , this also poses a securi ty risk, since a
class can be introduced with a malicious matching function. This function, for
example, could contain an infinite loop and thus block the searching proces s,
leading to a denial of service at tack. The function could also at tempt to
steal or modify information in th e obj ect tha t it is being matched with,
leading to a confident iality or integrity attack. This issue is becoming more
important since many of today's coordina t ion systems are developed using
object-oriented technology [169, 648, 249].

11.3 Security Policies

A securi ty policy is a set of rules specifying how sensit ive inform ation has to
be accessed in a computer system [145]. Meaningful secur ity policies depend
on the purpose of th e system used and on the nature of the applications.
Aside from their definition , policies must also be enforced, i.e., agent s must be
compelled to act according to th e defined policies. In addit ion to a reference
monitor , a T CB must also provide basic mechanisms for identifying agent s
(authentication) and for verifying th e privileges of agent s in the shared space
(authorization).

There are several issues to consider for securi ty in th e Intern et coordina
tion context . On the Internet , the number of agents can be large, so verify
identities may be hard if not impossible. Further, network s are made up of
mistrusting sites, so a site might be unsure of the authent icity of a request
from a remote site . With respect to coordination, the assoc iat ive access mode
is the main benefit brought by th e model to agent systems; a security in
frastructure must st rive not to undo this benefit. This is possible if security
policies can be defined in a flexible way. Flexibility requires that a wide range
of security policies be supported , from a policy permitting unlimi ted associa
t ive access to the whole tuple set, as in original Linda, to a totally cont rolled
scenario , in which an agent has access only to those tuples explicit ly reserved
for it , e.g., an author 's agent in the conference example must only be allowed
access to t hat aut hor 's papers.

The following subsect ions look at the implications of all of these aspects
for coordinat ion securi ty policies. We consider authent icat ion and authoriza
tion aspects first , and then look at the treatment of distributed infrastructures
for shared spaces.

280 C. Bryce, M. Cremonini

11.3.1 Authentication

Models. Agent authentication is a pre-condition for authorizing a request . It
is needed to determine the access rights that can be granted to an agent [145].
Authentication in open systems is more general than identifying the individ
ual that owns an agent. This is because an agent could depend on more
individuals or no individual at all. Furthermore, in the Internet , often user
identities are not meaningful for authorizing requests [77]. In fact, sometimes
the identity of the user must not be revealed; this is the case for some elec
tronic commerce applications where clients should not have to reveal their
identity to the server. In this case, an agent must only prove to the server
that it is running on behalf of a registered user for the server to authorize
access. Other application-dependent attributes can be defined , such as, roles,
affiliations, memberships or an available amount of electronic cash [439] .

The set of data that an agent presents to be authenticated and then used
for authorization is generally called credentials, while the entities (individuals
or hosts) responsible for the agent credentials are called principals.

In the conference case study, for example, a reviewer's agent must be
allowed to insert a review. Consequently, a reviewer is the agent principal
and the credential to be verified for this authentication process is the fact
that the agent acts on the behalf of a reviewer. This information derived from
the authentication is then used to grant access permissions to this agent upon
the shared space.

Agents use the shared space within the context of an application or pro
tocol, and each protocol implements its own authentication policy. For this
reason, each application performs its own authentication phase within a typ
ical protocol that runs over the reference monitor. For this , each protocol can
designate an agent, or a system process, to specifically handle authentication
for that protocol. We term it the protocol authentication process, or PAP, as
shown in Figure 11.2.

An agent that seeks to participate in an application protocol must first
authenticate itself to the PAP by furnishing its set of credentials. If this au
thentication is successful, the PAP may return a data item called an authenti
cation token to the agent . The agent then presents the authentication token
to the reference monitor when writing to the space or when reading tuples
written by other agents participating in the application (see Figure 11.2).

We term this the reference authentication protocol because of its gener
ality. Many existing systems have effectively developed protocols exchanging
tokens, which agents present for authentication, such as Kerberos [568] or
cryptographic protocols that use secret or random values [1] . On presenta
tion of these tokens, the space takes a supplementary authorization decision
to determine the exact privileges that agents can be assigned. Sometimes
the token corresponds to access keys or to access rights. For instance, many
protocols providing for a cryptographic key exchange return a shared key to
agents; this key is used to decrypt subsequent messages [1]. Other interesting

11. Coordination and Security 281

IN

® ®
(auth token, read)

Reference Monitor

[II]

[II]

®, ® ®
~ -,
\\ credentials

auth. token "'-_

[I]

[II]

User Agents

Shared Space

Fig. 11.2. The protocol authentication process

examples of authentication protocols include cryptographic keys used in the
context of shared spaces [lOOJ, virtual money [585J and signed statements
proofing that the possessor agent belongs to some registered principal of the
system [568J .

Another important aspect for authentication is that it should be mutual.
Not only must an agent authenticate itself to a PAP; the PAP must authen
ticate itself to the client agent . This is necessary since the PAP is a service
agent , and so one must ensure that a malicious agent does not launch a so
called masquerade attack against an application by impersonating the PAP

agent. A final aspect of mutual authentication is that the data tuples must
authenticate themselves to an agent that reads or ins them. In other words ,
a tuple placed in the space and read by an agent must be believable: An
agent that later reads the tuple must be sure that it was not a fake one, but
was written by an agent participating in that applic ation. In the conference
system for instance, one must be able to prove that a paper came from the
specific author, and that a review is written by a certain reviewer.

Basic Concepts and Notation. Cryptography is the obvious security
mechanism that can be used to implement authentication protocols over the
reference architecture. Cryptography can be either symmetric or asymmet
ric [538J .

In symmetric algorithms, a key R used to encrypt a data item X is also
used to decrypt the cipher-text; {X} K denotes an item X encrypted with

282 C. Bryce, M. Cremonini

key R, while {{X}Rh<ret urns X . Symmetric algorithms are mostly used to
grant confident iality of data excha nged between two par t ies, say A and B . In
this case , th e key is usually denoted with a subscript , e.g., Rab , and must be
shared by the parties. Another important usage of symmetric mechanisms is
to record data in a ciphered format on a persistent storage .

Asymmetric algorithms deal with key pair s (K, K- 1) , where K is called
the public key and K - 1 th e private key. The two keys are unequivo cally
related to each other , and it is infeasibl e to derive one key from the oth er.
The public key is publicly available, e.g., from Web sites , while th e private
key must be kept secret by its legal owner. We writ e {X} K for the encrypted
representation of X under K. {{X }K}K - l yields X .

The value {X} K can be computed by any agent that possesses X (as K
is assumed to be public), but can be decrypted only by th e one holding K - 1

.

This operation is performed to preserve th e confident iality of X.
On the other hand, th e value {X }K r) can be computed only by t he legal

possessor of K - 1 and represent s the digital signature of X . Ever yone knowing
the value X can verifies tha t {{X} K - d K effectively yields X . This is used
for auth entication: When a user signs a message X , he appends the digital
signature {X} «-» to the message and sends it . The recipient verifies th e
signa t ure by decrypting th e signa t ure with th e sender's public key K . If this
decryp tion yields X , th en the receiver knows th at only an agent that holds
K - 1 could have signed it.

From the possession of a certain private key K - 1
, one or more personal

at t ributes of the owner could be inferred , such as its name, role or ot hers.
This associat ion is stated by certificates. For our purposes, a certificate is a
data structure that securely binds a public key K to one or more personal
attributes of the owner of the key pair (K , K- 1

) . We denote a cert ificate
by CA, where A is the principal whose personal attri butes are stated in the
cert ificate .

Hence, the approach to aut hentication with publi c-key cryptosystems is:
principal A signs X with K"A 1 and sends {X , {X}K-1} ; anot her principal

A

B verifies {X} K- 1 using KA . If the operation succeeds than it can be in-
A

ferred tha t: While CA binds A with KA , K A and K "A 1 are unequivocally
relat ed to each other, and K "A 1 is known only by it s legal owner , then A has
effectively signed X . For details about specific models and cert ificate man age
ment , we forward interested readers to the literature about current security
frameworks , like PKIX [6, 312], SPKI [222, 223] or PGP [260] .

Mechanisms. Authent ication requires that each agent have th e possibility
of obtaining or generating asymmetric key pair s. An agent's key pair can be
that of its owning user , or it could be generated by the agent itself. These keys
ar e needed for establishing a secure communication cha nnel between a client
agent and th e PAP, as well as for excha nging authenticat ion tokens. A client
agent th at requests aut hent icat ion with a PAP could present its credent ials
Cr ed by outing the tuple

11. Coor dinat ion and Security 283

where th e client has first signed its credent ials using its private key K dlen t
and th en has encrypted both credent ials and signature with PAP'S public key
K p A P . CPAP and Cclien t are cert ificates for the PAP and client respectively.

The important aspect of this tuple is t hat even if the tuple is read by
an agent other than the PAP, the credent ials are not disclosed . The PAP ins
aut hent ication requests with

(C P A P, i , ?)

and after verification of t he credent ials, the PAP may reply with

(Cclient, C P A P , {AuthToken, {AuthToken}K;~)Kcl i e n t)

With respect to the conference example, suppose that the int eracting
agent is the program cha ir , PC, willing to in a review from the shared space
and th at A uth Token is a symmetric key. The review should be kept in en
crypted form in the space for confidenti ali ty. As a result of the aut hentication
proto col PC and PAP share a symmetric key, say K p C - P A P .

PC ins a review by

which mat ches tuples like

(CPC, { review}K~
PC -PA P

that contains an encrypted review that only the program cha ir is able to
decrypt .

Auth entication associates an identi ty or a privilege level to agents . In
the case where access const ra ints on information is statically defined , the
aut hent ication tokens can be sufficient for aut horization also. However , access
constraints to information are often dynamic in nature. First , const raints on
information vary over t ime: In the conference system for inst ance, reviews
are privat e during the review phase but are then made accessible to the
author at a later date. Furth er , agents could be dynamically created and a
means must exist to assign them privileges. These issues are t rea ted und er
the aut horization heading.

11.3.2 Authorization

Basic Concepts. Authorizat ion is concerned with defining , enforcing and
protecting access rights for agents . The fundamental problem in the shared
space mod el is that a tuple and a space can in principle be accessed by
any agent, which is clearly unacceptable for security reasons. One issue to
consider is then the granula rity of access control: Whether right s are gra nte d

284 C. Bryce, M. Cremonini

to agents for tuple attributes, for tuples, or for spaces. In the conference case
study, for example, an author agent should not read tuples containing reviews
or, as in the previous example, if reads them it must be unable to interpret
their content. In this case the access control is at tuple-level or attribute
level, though space-level control is also possible if all reviews are stored in
the program chair's space .

Other issues that may be considered for authorization are: Whether rights
are statically or dynamically allocated; and who grants and revokes rights.
In the conference system, rights can be dynamically allocated. First, author
agents transfer the rights to their papers to the program chair agent , which
then transfers read rights to reviewer agents. Review agents grant rights for
their reviews to the program chair agent, who then selectively grants access
to each author agent for that author's review.

Finally, several other practical questions must be answered for authoriza
tion to work. For instance, care must be taken regarding access right storage
so that agents do not steal, fabricate or tamper with rights. For this reason,
a secure system must clearly specify how it protects access rights and the
mechanisms used to prevent an uncontrolled transfer of rights.

Typing. A common way to protect access rights and authentication tokens
is simply through typing [451, 100J. Several systems are now programmed in
Java, e.g., SecaS, T Spaces or JavaSpaces. Java is a programming language
with safe typing. This means that a data declared as type AccessRight
cannot be interpreted as another data type, and that no data type may be
used as an AccessRight. Typing thus safeguards against rights fabrication;
it also makes rights propagation easier to detect and control [451J.

However, protection through typing is only possible when processes are
run and data is manipulated in type-safe environments. This is no longer the
case when data is transferred over the network or stored on disk , or when
tuples are stored in spaces of untrusted environments. Further, in an open
network, a site might not trust another site's ability to guarantee type safety.
In this case, encryption must be used to protect rights transferred outside
of the environment [585, 100J; a site needs to sign access rights that it sends
out, and then verify these signatures whenever an agent presents them.

Capabilities, ACLs and Roles. Several important models and mecha
nisms for access control have been developed in the security area. Capabilities
and Access Control Lists (ACLs) are the most well-known mechanisms [372J
that coordination models should implement [377, 100, 194J.

A capability is a data structure binding a resource name to an access
right. In the case study, the authentication token resulting from a PAP could
act as a capability in the following way. For example, the program chair's
authentication token AuthTokenpc can be defined as {(Papers, in), (Re
views, in)} . The reviewer authentication token AuthTokenReviewer can be
defined as {(Papers, read) , (Reviews, out)} while AuthTokenAuthor can be
{(Papers, out)}. The reference monitor must tag each tuple as being Papers

11. Coordination and Security 285

or Reviews in order to control access to tuples. The capabilities can then be
presented to the reference monitor as part of the in, out or read operations.
In order to control access to Papers or Reviews sets of tuples, the program
chair ins:

(CPC, {AuthTokenpc , {AuthTokenpc}K - ' }Kpc , 7)
PAP

The reference monitor verifies the believability of the Auih'I'okenpr: ca
pability and decides , accordingly to the rights granted, if the requested op
eration could be carried out .

In the access control list approach, access to data items is controlled by
a list stored in the reference monitor. An entry in this list is a credentials
and access rights pair. The meaning of this pair is that an agent that fur
nishes credentials C in its authentication token is granted the access rights
associated with C in the access list. In the conference example, access control
lists may look like: PapersAcL := {[ProgramChaircred, in], [Reviewercred,
read], [Authorcred ' out]} ; and ReviewsAcL := {[ProgramChaircred, in],
[Reviewercred, out]}, where square brackets denote lists, and where Program
Chaircred denote the credentials needed for an agent to be authenticated as
a program chair agent . As an example, a PC agent would in

(Cpc , {ProgramChaircred, {ProgramChaircred}K- 1 }KpC, 7)
PAP

The reference monitor first matches the PC credentials with those on the
ACL to obtain its rights (e.g., ProgramChaircred has in for both papers and
reviews). Then, accordingly to these rights, it decides whether to allow the
requested operation.

This latter example leads also to introduce another convenient choice of
authorization policy model for coordination applications called the role-based
access control model (RBAC) [533] . In this framework, organizational roles
are defined for a system and rights are assigned to roles , not to individuals.
Then, each individual is assigned one or more roles . The underlying motiva
tion for applying role-based access control systems is that they reduce the
number of access control decisions , since they map principals to roles (one/few
mappings for each principal), and then roles to access rights; the number of
roles is typically much smaller than the number of different principal identi
ties . Another advantage of this model is that it separates the assignment of
access rights from the authentication phase; access rights are assigned based
on what and not who.

In our case study, the application of roles might be outlined as follows:

- Program Chair, Reviewer and A uthor can be defined as roles and used in
an ACL;

- agents first interact with the reference monitor carrying their principal
credentials (e.g., the identity) . A PAP is executed and the resulting au
thentication token carries the role assigned;

286 C. Bryce, M. Cremonini

- for subsequent operations, the role is always added to the request to let
the reference monitor match it against the access policy.

It is worth noting that the theory developed for the RBAC model is much
more complex than the example here described, which simply highlights the
basic idea of RBAC. In particular, roles can be defined in hierarchies so as to
model the administrative relations within an organization, rights are usually
inherited through a hierarchy of roles , and roles could be used for managing
roles as well. Further information about RBAC can be found in [533].

11.3.3 Federation of Shared Spaces

In an open system, it is more likely that each site or enterprise will have its
own space, as in [268, 195, 100], rather than there being a single global space ,
as in [597]. The former approach is more usual for several reasons. First, a
global distributed space is hard to implement because it requires a central
ized server which constitutes a performance bottleneck and single point of
failure, or else replication mechanisms with data consistency being hard to
implement in a system the size of the Internet . Second, multiple spaces cor
respond better to the organization and security requirements of information.
Each organization has its own access policies on the information it stores,
with restricted access for remote users . In the conference example, each re
viewer could use his local TCB to store papers and reviews . This subsection
looks at some of the issues involved in federated systems.

Topology. Topology is concerned with how shared spaces are distributed
throughout a system (network modelling) and how agents learn about and get
access rights for spaces (network knowledge) . The problem of network mod
elling is particularly evident when dealing with intrinsically structured do
mains, as Internet-based organizations frequently are. In fact, Internet nodes
are often grouped into clusters, subject to highly coordinated management
policies and possibly protected by firewalls. Moreover, large clusters can be
further characterized by the presence of sub-clusters, forming a web of pro
tected organizational domains. Different enclosed clusters provide protected
domains of shared spaces and are largely independent from the rest of the
organization in the definition of policies for the usage of their resources.

As far as network knowledge is concerned, it is unrealistic to assume that
agents have a complete knowledge of the whole network topology, as well as of
resources availability. In fact, Internet-based domains are typically dynamic
and unpredictable, due to their complex structure, the multitude of decen
tralized authorities and the absence of a central repository of information.
As a consequence, knowledge about the environment should be dynamically
and incrementally acquired by agents. This actually affects the coordination
protocol, since part of the agent interaction concerns the acquisition of infor
mation about topology, and makes network knowledge a coordination-related
issue in a highly distributed context.

11. Coordinat ion and Security 287

A federated shared space system could then be mod elled by means of a
topology of connected secure shared spaces, each one providing for its own
reference moni tor , secur ity policy and mechanisms. Two general mod els of
topology can be considered: web-like or hierar chical. Figure 11.3 provides for
an example of hierarchical topology of spaces.

Authentication and Authorization. One of th e main problems in open
and widely dist ribut ed systems ar ises from partial kn owledge of th e environ
ment. A reference monitor may not contai n all information needed to aut hen
ti cate an agent, or judge wheth er it can be allowed access or not. Request s
for tuple space operations can originate at remote sites, which are not fully
trusted; this implies establishing a set of rules for remote users, and anot her
set for local users. In this scenario , each reference monitor is responsible for
storing the data and code needed for protecting tuples in its local space.

For instance , in Figur e 11.3, aut hor agents could out their pap ers in the
program chair 's shared space , which in turn could allocate them to reviewers'
spaces. Then, reviewers could keep some papers for th emselves and further
allocate ot hers to fellow reviewers. Reviews could be ined by reviewers from
fellow reviewers, by the program chair from reviewers, and event ua lly by
aut hors from the program chair. Policies held by local reference monitors
should be designed and enforced for such management . Thus, aut hor 's agents
should not be allowed to access reviewer 's spaces but only th e program chair 's
one. Reviewers cannot in reviews or out pap ers to ot her reviewer 's spaces ,
and so forth.

Program Chair

F'ellow R eviewer 3

I ~ftrenct Mcrotcr

Fellol\' Reviewer 2 ..Fellow Reviewer 1

Reviewer J • ·····. " iC._ 2 •

IP£ference Morolor ~ IRe/e:.€nce Momtor ~1

,::.:'~~~~:~:~:":~~::'.~':.-.~~!.: : ·': :·.:·~~. - ~·L~ .~.-:~:~\:~~:.·.~~._??

Fig. 11.3. Th e conference example in a hierarchical federated shared space

288 C. Bryce, M. Cremonini

With regard to auth ent ication, only the program chair 's T CB should have
th e knowledge for authenticating author agents ; reviewers simply have to
verify the program chair identity (or reviewers identity in case of fellow re
viewers) . This observation leads to mention delegation as an addit iona l issue
that in coordinat ion contexts composed of multiple spaces could be useful
for distributed authent icat ion, as discussed in [371, 380] among others . Del
egation here is meant to be an action performed by a space, whose effect is
to invest another space with th e onus of doing something on its behalf. For
inst ance, let us assume that each reviewer has to be allowed to read the pa
pers allocated to the other reviewers. But , as we have said, a reviewer 's space
could be aware of only the program chair identity and ignore every others ,
thus it may be unable to authenticat e th e access of another reviewer. A pos
sible solution could be to delegat e reviewer 's authentication to the program
chair , since it is aware of all the identities. In thi s case, a reviewer agent could
first interact with the program chair's space acquiring a signed auth enti ca
t ion token. Th en, it could access a reviewer's space by presenting that token,
which can be auth enti cat ed because signed by the program chair.

Th e example done is extremely simple, but the benefits of delegating secu
rity operations are well-known and general. In many contexts and frameworks
thi s approach has been adopted: Public key infrastructures (PKIs) ar e based
on similar hierarchical relat ionship s for aut henticat ion [6, 312]. Differentl y,
SDSIjSPKI, an innovative security framework , explicit ly defines delegation
between entities for aut horizat ion reasons [222, 223]. Among coordinat ion
models, TuCSoN, discussed in Section 11.5, is an example of system adopt ing
such an approach [194] .

11.4 Cryptographic Protocols in Coordination Models

In thi s section we add some more details about the development of crypto
graphic protocols for tuple-based communicat ion. In particular , the problem
to tackle is the subtleties that the development of cryptographic protocols
can have and that could make implement ations prone to breaches. Today,
few experiences exist about thi s topic in the area of coordination systems,
and clear guidelines for the development lack. For these reasons , it is impor
t ant th at designers of tuple-based syst ems over the Internet be aware of the
possible problems of cryptographi c protocols.

Conversely, in the area of securi ty, some principles and practices for cryp
tographic pro to cols have been defined to help system designers avoid some
well-known errors derived from subtleties of such protocols. Dozen of dis
tributed systems have been developed by relying on cryptographic protocols
that a subsequent and more careful analysis has proven to be flawed . Sys
tems based on tuple spaces may suffer from the same errors, even though the
communication model differs from traditional message passing exploited by
systems usually analyzed in the security ar ea [1].

11. Coordination and Security 289

As we have already seen, the integration of cryptographic techniques with
tuple-based communication provides considerable benefits, even though it
may be harder than it looks. We present some examples applied to tuple
based communication.

Encryption, Signatures and Timeliness. One of the main concerns for
the design of cryptographic protocols which is likely to affect also the de
velopment of secure tuple-based communication, is the possible ambiguity
about who is responsible for a communication event (i.e. , an operation upon
a shared space) and who is the final destination. As a rule of thumb, it can
be stated that: If some principal's credentials are essential to the meaning of
a communication event, it is prudent to mention those credentials explicitly
in the event itself [1] . In the conference management example, suppose that
the PC agent, willing to assign a paper to the reviewer agent R, outs a tuple
like

(Cec , Cn, {paper, {paper}K- 1 }Kn)
PC

where Ct-o and Cn are certificates. This way, R should know that PC has
outed the paper (by verifying the signature with Kpb). R should also know
that he is the legal recipient because of the encryption with K n .

This solution is nevertheless flawed: any possible reviewer R willing to
act maliciously could re-direct the paper to another reviewer R ' and neither
PC nor R' are able to detect it. When R ins that tuple, it simply retrieves
the publicly available certificate CR', decrypt the signed paper, re-encrypt it
using the public key K R , of R' and out the tuple:

As a result , R' believes that the tuple is from PC. The problem here is
that the intended destination is inferred by the use of the encryption key K R

or K te, which is ambiguous in this case. A possible well-formed tuple from
PC, instead, might be:

This way, some credentials of both the source and the recipient are bound
to the content of the communication event (i.e., the paper) . The example pre
sented can be easily generalised to many other application cases, this kind of
protocol being widely used in open distributed systems. In particular, in its
original formulation, it was proposed to let two parties exchanging a cryp
tographic key. The key exchanged was then used for subsequent encrypted
communications [1]. As we have discussed in the previous section, in secure
coordination models , cryptographic keys may be exchanged as authentica
tion tokens. In this case the flaw may be particularly serious because R, the
malicious reviewer, knows the key, and may thus read sensitive information
exchanged between PC and R '.

290 C. Bryce, M. Cremonini

Anoth er simple example, concerning the use of signat ures, can be made
by assuming that the reviewer agent R needs to exchange a review with the
program cha ir agent PC. The outed tuple might be:

This way, the review is encrypted with K p c for confident iality, and to
get her with th e names of the parties is signed with Ki/ for authenticity.
Again , the pro tocol is flawed. Anoth er malicious reviewer agent R ' can inter
cept the tuple, remove the signature, copy the encrypted review, add its own
signature using K R? and out

Hence, R ' appears to be t he aut hor of the review in place of R. While this
situation could be harmless in the conference case, in other systems, such as
those dealing with elect ronic commerce or allocat ion of resources, it could
have dramatic consequences. An elementary solut ion might be tha t R first
signs the review, then encry pt s together the three attributes .

Usually in th ese cases, additional techniques are adopted , like one-way
hash junctions tha t permi t recipients to verify the integ rity of the dat a (i.e.,
namely tha t no one has illegally modified them). Data are first hashed and
then the hash is signed [538]. This way, where H(X) denotes t he hash of X ,
reviewer agent R may out the tuple

(Rered' PCered , { review} K e o i {H(Rered, PCered, review)}K - 1
R

which is no longer prone to the previous flaw, because one-way hash func
tions cannot be inverted, nor re-computed with R~red' because t he content
of the review is encrypted .

As the last issue to highlight in this sectio n, let us consider temporal in
[ormation such as timestamps and sequence numbers . Temp oral information
states th e freshness of a communication event or of a dat a , and the correc t
sequencing of events . The main concern about timeliness is the possibility
for an attacker, to replay a message already sent and make the recipient be
lieve that message is new. Hence, what is required to a protocol is t hat the
proof of freshn ess and the message be encry pted together, to recognize th e
aut hent icity of their association. In case of tuple-based communicat ion , this
may imply th at tuple's attributes, whose freshness must be ensured, or tuples
th at have to be consumed in a given order or have to be cryptographically
bound, encrypted or signed, with timestamps or sequence numb ers.

In pract ice, many cryptographic protocols can be developed in coordi
nation mod els for which similar classes of flaws have been recognized. We
forward interested readers to [1] for more details of the examples present ed ,
which have been inspired by well-known crypt ographic proto cols for dis
t ributed systems and applied in this section to a tuple-based scena rio.

11. Coordinat ion and Secur ity 291

11.5 Secu rit y in Existing Coordination Systems

This sectio n reviews secur ity in some relevant exist ing coordinat ion mod
els and systems. It uses the reference secur ity architecture of Sect ions 11.2
and 11.3 to pinp oint st rengt hs and weaknesses of these systems .

11.5 .1 KLAIM

KL AIM (Kernel Language for Agent Interaction and Mobility) is a shared
space coordination model, developed at the University of Florence (I) , de
signed for use by mist ru sting agents [451, 453]. The KLAIM model supports
multiple tuple spaces distributed over severa l locations. The access control
model of KLAIM enables tuple creators to grant rights for their tuples to
other agents , and also allows a network coordinator agent to grant access
rights for tuples.

An implementation of the KLAIM mod el does not contain a reference
monitor because the access rights of agents are sta tically checked. This means
that one verifies that an agent does not attemp t to use a space with out
the appropriate access right before the agent run s. In KLAIM, the network
administ rato r declares a secur ity policy by specifying the spaces that each
agent has access to , and the corres ponding access rights. Secur ity is verified
by first determining the " intent ions" of each agent , that is, the spaces that
the agent is going to access and the kind of operations that it will effect
in each. Analyzing the program text of an agent is sufficient to deduce this
information . The second stage of secur ity verification entails verifying that an
agent's intentions do not exceed the secur ity policy specified by the network
administ ra to r.

Access rights in KLAIM are first class values, mean ing that they can be
named and passed around by agents (using the space as a communicat ion
medium). As access rights are typed , security is equated with type correct
ness. This is a significant step since secur ity is now seen as a primar y property
of an applicat ion . The fact that secur ity in KLAIM is statically verified has
the advantage that no supplement ary secur ity mechanisms need to be imple
mented in the model run -time, since a program that passes the verification
phase is known to be secure before it run s. The absence of secur ity mech
anisms not only simplifies the architect ure, bu t it also avoids performance
overheads typically associated with secur ity.

However , in the context of the Intern et , static secur ity checks are hardly
enough. For inst ance, the system must ensure that an agent that has been
verified is not tampered with between the time of verification and the t ime
that it . runs, This is not an easy assumption to make unless th e applica
t ion possesses a t rusted storage subsystem for programs. Furth er , all sit es of
the application must trust each other ; this is also an assumption that can
not be generalized in the Internet context . In the genera l case, information
exchanged between sites needs to be encrypted for secur ity. Whil e there is

292 C. Bryce, M. Cremonini

nothing to prevent an implementation of KLAIM from doing this , the secu
rity of the system can then no longer be explained from the KLAIM security
model. Thus, a dynamic security mechanism would have to be implemented
- in other words, a security architecture in the style of that presented in 11.2.

KLAIM is designed to support a single application, so there is no authenti
cation phase. The access control mechanism is present to cater for mistrusting
application agents. The main feature of KLAIM is its static security verifica
tion. Though systems also require dynamic mechanisms, the systems should
attempt to exploit the benefits of static security verification where possible .

11.5.2 JavaSpaces

JavaSpaces is a development by JavaSoft of the shared space model and is
implemented in Java [43] . JavaSpaces forms part ofthe JINI framework [619],
whose goal is to permit the interconnection of all sorts of hardware devices
that run Java virtual machines. A JavaSpaces system consists of a set of
interconnected machines, each running its Own space .

Currently, JavaSpaces does not incorporate security access control mech
anisms. Any agent that contains a reference to a space may read or write a
tuple to or from that space. The only way to control access is to control the
propagation of space references in the system, or to program an access control
policy into the RMI (remote method invocation) mechanism that is used by
an agent On one site to get access to information On another site. For this
reason, JavaSpaces is not yet ready to support security critical applications.

One feature of the JavaSpaces model that is relevant to security is leases.
This is a resource control measure. In the shared space model, a tuple placed
in the space might never be read by another agent. In order to prevent the
space from becoming saturated, the system must be able to remove garbage
tuples. However in the shared space model there is no "garbage" since a
tuple can be read then it is not garbage at any moment. In JavaSpaces, an
application that places a tuple in a space can associate a lease with that
tuple. A lease is a period of time; when this time has passed, the tuple is
removed from the space. The only alternative to resource control is for each
application to define its OWn garbage collector agent that removes tuples from
the space using application specific rules.

At the same time, JavaSpaces can later have a security policy model
integrated since it contains a carefully designed reference monitor. This is
the JavaSpaces component that intercepts each access to the tuples, and
implements the in and out operations. Recall that a reference monitor must
be tamperproof and ensure total mediation. JavaSpaces is written in the
Java object-oriented programming language and has to take extra measures
to ensure these properties.

For total mediation: This means that no tuple in the space may be ac
cessed without using the provided in and out operations. JavaSpaces handles
this problem by making a copy of each object placed in a tuple of the space.

11. Coordination and Security 293

For encapsulat ion: This means that a possibly malicious user agent must
not be able to tamp er with the implement ation of the in and out opera
t ions. This particularly means that the pattern mat ching mechani sm must
be furnish ed by the system. In J avaSpaces, the copy of an object placed in
the space is transformed to a byte array (s eriali zed). The mat ching operation
used is that of the serialized object class.

Securi ty is one of the reasons that .JavaSpaces prohibits redefinition of its
mat ch operat ion; in contrast Jada [169] and T Spaces [377, 648] - also based
on Java - permit the redefinition of the mat ch function , and are therefore
open to this form of attack.

Finally, the security of J avaSpaces is also dependent on the security and
safety features of the J ava language. For inst ance, langu age safety ensures
th at an integer can never be treated as an object pointer , and that a reference
cannot be fabricated. For thi s reason, access to a space is impossible unless
an agent creates that space or is transferred a reference for that space. Th e
reference monitor could not function without these properties.

11.5.3 SecDS

In cont rast to KLAIM , the SecOS model, developed at the University of
Geneve (CH) , uses a dynamic security model [100] . This means th at the
reference monitor exists at run-time and is integrated into th e system. SecOS
(for Secure Obj ect Spaces) is designed to allow for coordinat ion between
agents in mistrusting environments .

Th e basic idea of SecOS is that keys are associat ed with objects in tuples.
An agent needs to furni sh a mat ching key before it can access th e correspond
ing tuple's obj ect . Keys can be symmetric or asymmetric. For symmetric keys,
the same key that locks an object is used to unlock th at obj ect. In the asym
metric case, key pairs are used; when one key of the pair is used to lock an
obj ect , the ot her key of the pair is used to unlock the object . Consider the
tuple (K :1JI , K :V2) where K is a symmetric lock and K is an asymmet ric
lock with K - I being its pair; the object VI can only be read by an agent that
possesses R, and VI can only be read by an agent that knows K- I .

SecOS is implemented in Java [101] . Like J avaSpaces, its reference monitor
relies on users not being able to redefine the mat ching pro cess, and on object
copies being stored in the space. With regards to locking, this is implemented
through J ava typing in a Java environment. However, whenever a key and
object pair K:v are exported out side of a Java environment, then an encryp
tion key is associated with th e key object K and this then encrypts the object
v . In this way, an object need never be exposed in untrusted environments.
The T CB includes the Java virtual machine since if this is compromised, then
the typing that enforces locking is undone. The storage area allocated for
encryption keys is also part of the T CB.

With respect to the outlin e architecture of Section 2, the reference moni tor
is implemented within the SecOS kernel. Th e reference monitor properties of

294 C. Bryce , M. Cremonini

encapsulation and total mediati on are implemented using th e same techniques
employed by J avaSpaces (deep copy of objects and a system provided match
function) . Any agent can act as a PAP for an applicat ions securi ty policy;
mutual authent ication with th e PAP can be done using asymmetric keys.
Secure communicat ion is done using either symmetric or asymmet ric locking.
Access control is implemented at the granularity of tuple entries, where keys
are used as access right s. Keys are distributed in tuples, themselves protected
with other keys.

11.5.4 Law-Governed Interaction

Law-Governed Interaction (LGI) , developed at Ru tgers University (USA) , is
a coordina t ion mechanism that allows an open group of distributed act ive
enti t ies (agents, processes) to interact with each oth er, with confidence that
an explicit ly specified policy - called th e law of the group - is st rict ly ob
served by each of it s memb er [422, 421]. Policies could be both coordinat ion
and secur ity ones. Groups are open because th e membership may change dy
namically and each agent may join any number of groups, opera t ing und er
different laws. Laws in LGI are composed of reactive rules havin g the typical
form : on <event> do < action>. The und erlying assumption stated by LGI
is that a law is global with respect to a group of agents, but it is locally
defined at each member. This implies that a law regulates only local events
at individual agents and depends only on the combinat ion of the local event
itself and a set of at t ributes - called control state - th at charac terize each
agent .

With respect to th e outlined architec t ure, th e reference monitor facility
is realised in LGI by defining, for each memb er of a group, a controller'.
A controller is a specific system component tha t holds the law govern ing
an agent (i.e., the secur ity and coordina t ion policy) and th e agent's con
trol state , and totally mediates each event involving the associated agent.
Thus, a cont roller has complete knowledge and authority over th e associated
agent. Hence, any interaction between two ent ities, say Agentx f-+ Aqeniv ,
is carr ied out in LGI by means of three communication events : Agentx f-+

Cotitrollerg , Controilerg f-+ Cotitr ollerv and Controllerv f-+ Aqent»: The
above design applied to agent s also holds for sha red spaces, which are medi
ated by a controller .

LGI inherits th e suitability as a coordination mod el from its ancesto r
called Law-Governed Linda [424] . Differently from LGI , Law-Governed Linda
was strictly focussed on imp roving th e t ra dit ional Linda coordination model,
making it applicable to a scenario composed by multiple open tuple spaces.
In particular , the pr imary motivation for the introduct ion of Law-Governed
Linda has been to improve Linda's safety in an open environment .

Hence, the real novelty of LGI is its applicat ion to th e security area by ex
ploiting, in particular , the possibilit y to model and to support various access

11. Coordinat ion and Security 295

cont rol policies. It is interestin g to note how a security policy is defined , ma n
aged and enforced exactly as a coordination one, in LGI , and this is t ru ly
compliant wit h what we stated for a reference secure coor dination model.
The set of rules composing a policy can be configure d so as to model the
mai n access control schemes, like traditional discret ionary models based on
capabilit ies or access cont rol lists and mandatory lat t ice-based models. Some
ot her application-spec ific access cont rol models have been ana lysed, as well.
Role-based mod els are not addressed, although their application to LGI seems
feasible.

In summary, Law-G overn ed Interaction is an example of integrated man
agement of coordination and secur ity policies. As a final note, with respect
to the issues discussed in this chapter, LGI does not consider the applicat ion
of cry ptographic techniques that, however , seem necessar y for an effect ive
deployment of LGI ; and does not fully consider the issues of a trust ed com
pu ting base (TeB), such as tamperproof and encapsulat ion.

11.5.5 T Spaces

T Spa ces is a development by IBM Almaden Resear ch Center that con
sists of the combination of database, tuple space, mobile computing and
J ava [377, 648]. The aim of T Spaces is to foster the interop erabili ty between
heterogeneous systems. Salient feat ures of the T Spaces system concern ing
our discuss ion are:

- tuple spaces operators - t he standard Lind a-b ased set of operators has been
imp lemented. In addit ion, some novel primiti ves have bee n introduced ,
namely Scan, ConsumingScan and Rhonda. The first two primitives have
the same semant ic of t radit iona l in and read bu t apply to the set of all
matching tuples in the space . T he lat ter is used for atomic synchronization
between two processes excha nging tuples.

- dynami cally modifiab le behaviour - in addit ion to the buil t-in set of prim
it ives, T Spaces allows ap plications to dynami cally define new operators
that are immediately supported by a T Spaces server.

- access control - access control in T Spaces is based on Access Control
List s applied to tuple spaces. Principals that occurs in ACLs are defined
as users or groups. Users are identified by mean s of th e pair UserName
and Password. Permissions occur ring in ACLs are defined as Read, Write
or Take.

Most of the secur ity of T Spaces depend s on the features of t he J ava lan
guage. Aside from Java native secur ity features, T Spaces does not exhibit
the characteristics of a secure coordination model. T Spaces does not imple
ment the concept of reference monitor, thus it is prone to probl ems due to the
lack of total mediat ion and encapsulation, if applied in open environments .
Conversely, T Spaces provide for flexible and customizable interfaces, letting
primitive operations to be dynamically re-defined. Clearly, while this facility

296 C. Bryce, M. Cremonini

could be fruitful in heterogeneous and dynamical distributed environments,
it has strong security implications that seems still not fully addressed.

As far as security mechanisms are concerned, T Spaces does not fully ap
plies cryptographic techniques, and both the authentication and the access
control model supported by T Spaces supports only some very basic features.
However, an interesting aspect of T Spaces concerns the hierarchical archi
tecture for the access control. T Spaces has been designed with a hierarchical
topology of shared spaces as the reference architecture. This way, a shared
space holds the access control policy both for the creation and deletion of sub
shared spaces, and the access to their tuples. The purpose is to enable users
to create and administer structured domains of shared spaces . The benefit is
the improved scalability of the overall system.

11.5.6 TuCSoN

TuCSoN is an agent-oriented system developed at the University of Bologna
(I) based on multiple shared spaces, whose goal is to face to the unpredictabil
ity and the dynamics of open distributed environments, dealing with their
intrinsic heterogeneity and remoteness of resources , as well as with decen
tralized coordination and security policies [472, 196, 194]. Key elements of
TuCSoN are:

- A coordination model based on multiple enhanced tuple spaces - called
tuple centres;

- A hierarchical infrastructure, modelling the system organization, upon
which tuple centres are deployed;

- The integration of advanced mechanisms for the access control within the
tuple-based environment and their application to the hierarchical infras
tructure.

TuCSoN tuple centres are shared spaces enhanced with the notion of be
haviour specification: The behaviour in response to communication events of
every tuple centre can be defined according to the system requirements. The
definition of a new behaviour for a tuple centre basically amounts to speci
fying a new state transition in response to a standard communication event.
This is achieved by allowing any admissible TuCSoN communication event to
be associated to specific computations, called reactions. In particular, a spec
ification tuple associates the event generated by an incoming communication
operation Op to the reaction R and is denoted with reaction(Op, R). As a
consequence, the result of the invocation of a communication primitive from
the agent's viewpoint is the sum of the effects of the primitive itself and of
all the reactions it triggered, perceived altogether as a single-step transition
of the tuple centre state. This makes it possible to uncouple the agent 's view
of the tuple centre (which is perceived as a standard shared space) from the
tuple centre actual state, and to connect them so as to embed the laws of
coordination. Since each TuCSoN tuple centre stores both its data (ordinary

11. Coordination and Secur ity 297

tuples) and its behaviour specificat ions (specification tuples) locally, coher
ent ly with the distributed nature of component-based systems, coordination
intelligence can be spread where needed all over the agent space The inte rac
tion space provided by a TuCSoN node relies on a mult iplicity of tuple cent res :
So, TuCSoN shares the advantages of models based on multiple t uple spaces
and goes beyond , since different coordination media can enca psulate different
coordination laws, providing system designers with a finer granularity for the
implementation of global coordination policies.

As far as security is concerned, TuCSoN shows several characteristics of
a secure coordination model: The reference monitor concept is fully achieved
by the reaction layer , which totally mediates and enca psulate each commu
nication event.

Access cont rol policies, in TuCSoN, are enforced both locally by each
node holding resources by means of the programmabili ty of tuple cent res '
behaviour, and by some decent ralised components called gat eway s acting as
proxies for protection domains composed by groups of nodes. Furth ermore,
gateways are supposed to be connected in a tree-like infrastructure, which
permi ts to define nested protected domains each one controlled by a specific
access cont rol policy.

A peculiar design choice of TuCSoN concerns delegation. While node's
administ rators have to locally define policies govern ing the interaction with
tuple cent res , gateways can be delegated with the aut hor ity to enforce those
policies. This way, policies could be convenient ly shared along the hierarchy
of gateways, so as to limit local interactions. To this extent, the role-based
access control model has been int rod uced as a well-suited model for such a
scenario.

Finally, cryptographic techniques have not yet fully integrated in the sys
tem, alt hough cryptogra phic-based interactions have been modelled and anal
ysed.

11.6 Conclusions

This chapter has looked at secur ity issues for coordination. We have present ed
an outline architecture for implementing coordination secur ity policies and
examined th e meaning of authent icat ion and authorization in th e coordina
t ion context . Some detail about cryptogra phic protocols have been examined.
Finally we have looked at existing coordination systems and models, and dis
cussed how they treat security.

It is clear that security is st ill an under-treated issue in the coordina
t ion domain. This should change as coordination models are adapted to open
environments, such as the Internet , and as models cont inue to be used in
embedded and safety critical systems [249, 80]. Nevertheless, security is par
ticular in the coordination context, given for instance the assoc iat ive access
sty le of Linda-like models.

298 C. Bryce, M. Cremonini

We expect that while the deployment of open agent syste ms based on
shared spaces proceeds , coordinat ion models will evolve to cope better with
security requirements. In particular , the adoption of both cryptography tech
nology and access cont rol models are likely to strongly impact on tuple-based
coordinat ion, especially in case of distributed sha red space syste ms.

Thus, in the long run, integrating security into coordinat ion models can
be as useful to the secur ity dom ain as it is to the coordina t ion domain.

12. Scalability in Linda-like Coordination
Systems

Ronaldo Me nezes ", Robert To lksdorf" , and Alan M. Wood3

1 University of Ulster at Magee College, Faculty of Informatics
Northland Road, BT48 7JL , Derry, UK,
r .menezes~ulst .ac.uk , http ://www . infm .ulst .ac.uk/-ronaldo/

2 Technische Universitas Berlin , Fachbereich Informatik, FLP / KIT,
Sekr . FR 6- 10, Fra nklinstr. 28/29, D-I0587 Berlin, Germany,
t olk~c s . tu-berl in. de , http ://www .cs.tu-berlin .de/-tolk/

3 University of York, Department of Computer Science
Heslingto n, York , YOlO 5DD , UK
wood~cs .york.ac.uk , http ://www .cs.york .ac .uk/-wood

Summary.
Coordination systems research has concentrated on developing and

studying models with the principal aim of ensur ing that they are mean
ingful, and useful. This is clearly the correct approach, and the focus has
therefore been on getting the right abstractions. However , it is in the na
ture of coordinat ion models that they are to be implemented an d used
practically over a large ra nge of system sizes. Consequent ly it is imp ort ant
to assess quest ions of scalab ility (of imp lementations) of coordinat ion lan
guages and systems. In this chapt er we address the ways in which Linda
- the most common practical coordination language - scales, or fails to
scale. T his cha pter uses some general characte ristics which distinguish be
tween LANs and WANs to st ruct ure the discussion of scalab ility. In most
cases theses features suggest that cur rent Lind a-like models need some
modifications in order to move from small systems to a WAN scale. These
modifications are discussed in the cha pt er. However , it is encouraging to
find that none appear to be fundam ental in the sense that the underlying
Lind a model ~- asynchronous, non-det ermi nisti c, associative coordinat ion
- remains intact .

12.1 Introduction

Systems utilizing the Internet a llow fewer assumptions on their structure
and behaviour to be m ade t han closed and homogeneous systems of former
days . It has been argued [125] that the Web violates common assumptions in
distri buted computing by making vir t ual and physical loca t ions, bandwidth
fluctua t ions and fa ilures visible, and that programming for t he We b reduces
to programm ing with t hese addit ional observables . Mobile computing is ad
vocated as a notion that can deal with these addit ional phenomena being
visible wh en changing from a LAN to a WAN env ironme nt .

Scal ing programming from a LAN to a WAN context is the topic of t his
chapter. We use t hese observables to structure t he chapter, but focu s on the
question of how current coordina t ion technology can scale to cope with such
a changed environment .

300 R. Menezes, R. Tolksdorf, A.M. Wood

The coordination language Linda [269] introduced the view that the co
ordination of a concurrent system is an activity orthogonal to the calculation
performed therein. Linda and the subsequent work on the family of Linda-like
languages demonstrated that it is worthwhile to design languages and systems
that focus exclusively on the aspects of coordination of components, agents ,
processes, objects etc . and to abstract from the calculations they perform.

Since Linda is the most prevalent coordination language, and it can be
used to model most other coordination structures, it will be the prime focus
of this chapter. However, the discussions and conclusions are applicable to
all other coordination languages.

Linda was developed in the context of parallel computing, and both the
coordination model and its implementations assumed, for example, reliability
of processors, an upper bound on communication times, a static set of pro
cesses etc. Thus, while the separation of coordination from calculation seems
to be beneficial, Linda as such seems not well suited for modern distributed
computing environments.

The challenge that the Linda concept faces is the question of scalability.
While the notion of scalability is often tied to a quantitative measure, e.g.
how well a system can take advantage of additional processing resources, we
consider it also a qualitative notion. That is, we look at how good a solution
to some problem will work when the characteristics of the problem change.
Size and available resources are certainly within that set of characteristics,
but others are at least equally important.

Influenced by the discussion in [125] , we consider the following set of
characteristics as the challenges of computing in wide area networks:

- Static systems can assume a fixed set of components. In an open system,
fluctuation is the norm. Coordination has to be aware of that and must be
able to handle it .

- A conventional program has a defined point in time where it starts execut
ing and some termination time. Modern agent-based or reactive systems
tend to be long-living, perhaps even without the possibility of termination.
Coordination has to be aware of this change in duration and persistence.

- While closed systems know only one fixed border, an open system intro
duces multiple and changing borders. The domains - security domains,
naming domains, knowledge domains etc. - formed by those borders are
visible to components and their coordination has to deal with them.

- Mobility can be used to minimize distance between collaborating compo
nents . Coordination systems must provide means for identifying distance
of components and use this information on the coordination strategies.

- Whereas for stationary processes the location of execution is invariant, in
mobile computing location becomes visible and components can be aware
of it . Most certainly, coordination strategies have to take the location of
those to be coordinated into account.

12. Coordination and Scalability 301

- Centralized systems can assume an upper bound for communication time.
In a networked system, there is no such upper bound and delays are visible
to components. Coordination has to deal with such delays .

- An open system is also open in terms of unpredicted behaviour. Failures
are a common phenomenon and cannot be simply dealt with by restarting
a computation. Coordination has to be failure aware and to provide means
to cope with it .

Beyond the dimensions of execution speed, memory requirements, number of
clients per server, we consider the above dimensions, and the increase of the
problem sizes along their scales the real problems for modern systems and
the methods used to engineer them. Linda was designed with assumptions
made along those dimensions that can no longer be upheld. Existing Linda
implementations face severe problems when exposed to such environments.
Thus, the question we try to answer in the following is how Linda-like lan
guages can scale to such environments and still provide coordination. To do
so, we will explore and review existing approaches from the literature on
Linda-like systems. These approaches add to the existing Linda concept in
terms of language design and/or engineering principles. We will assess how
they provide support for scalability along the named dimensions, what an in
tegration of suitable concepts could look like, and sketch examples of scalable
coordination technology.

The rest of the chapter covers the four main consequences of the ob
servables mentioned earlier viz. awareness of domains (§ 12.2), location and
distance (§ 12.3) , bandwidth fluctuation (§ 12.4), and failures (§ 12.5). The
final section summarises the conclusions to be derived from these discussions
and suggests a way forward for Linda at the WAN level.

12.2 Domain Awareness

The distinctions between WANs and LANs described by Cardelli! [125] are
to some extent subjective - although at the extremes it is possible to agree
on whether a network is 'wide ' or 'local' in extent based on the Cardelli
observables, these metrics have no absolute values for differentiating, say, a
local-area delay from a wide-area delay. However, distinguishing between the
two kinds of network is useful in practice, especially when considering the
ways in which a process can 'see' the system's resources. These resources can
be viewed as forming collections whose visibility to a process can vary - in
general dynamically over time. These collections will be termed 'domains' ,
and hence processes will be more or less aware of their existence according
to their visibility.

I These are that a process becomes 'aware' of locations (virtual and physical) ,
bandwidth fluctuations , and failures .

302 R. Menezes, R. Tolksdorf, A.M. Wood

Given this view of domains, the distinction between LAN and WAN will
be taken to be that of closed- versus open-systems. In a closed system, there
are known bounds on the number and lifetimes of domains and processes ...
an open system is in principle unbounded.

In terms of Linda-like systems, a closed system would consist of a number
of interacting processes, coordinating through a number of tuple-spaces, to
achieve a particular computation. Both (bounds on the) numbers would be
known before the computation started, and once this computation was com
plete, the closed system would cease to exist . An open system implies that
there is at least one universally visible tuple-space with unbounded lifetime,
and that the numbers of processes and tuple-spaces that might become part
of the system are also unbounded.

12.2.1 Linda and Domains

The original Linda [267] had no notion of domain in the sense defined above
- a single tuple-space was visible to all processes. Although this early ver
sion of Linda was most suited to closed systems - it was seen as principally
applicable in scientific, and other, parallel computation - there was nothing
which prevented the model being used for open systems, at least in princi
ple. However, in practice the single tuple-space is far too restrictive as the
basis of open systems both in terms of performance (it creates an intolerable
bottleneck), and software engineering (the impossibility of isolating distinct
process groups) . Consequently, the original Linda model was limited to closed
systems, primarily as a result of its lack of a domain concept.

The first major modification of the Linda model was the incorporation of
multiple tuple-spaces. This idea was almost universally accepted and forms
the best known variation of the original idea, to the extent that it is now
reasonable to refer to it as the Linda model.

The introduction of multiple tuple-spaces was the necessary condition
for the inclusion of domains into Linda-like systems: a (proto) domain is
identified with a tuple-space. However, the ability to create and use multiple
distinct tuple-spaces is not sufficient to provide a complete domain concept
for this it is necessary to be able to control the visibility of domains (and hence
their accessibility) to collections of processes. At first sight, there seems little
problem in achieving visibility management since the possession of references
to tuple-spaces can be restricted . . . if you don't know a tuple-space's name,
you can't see it . This is trivially true of closed systems as the implementor can
determine which references are available to which processes, and can code this
explicitly. It is partially true of open systems - once an ensemble of processes
is running, provided that no member of the group communicates a tuple
space reference to another process that should not know it, the constraints
on visibility are maintained. The problem which arises in open systems is how
this situation can be attained . . . how can an ensemble with these properties
be constructed dynamically?

12. Coordination and Scalability 303

To answer t his question requ ires consideration of the mean s by which a
process can be 'aware' of a tuple-space's existe nce . T here are three prin cipal
mechan isms:

1. T he tuple-space is universally visible - it has a constant , unique, pre
defined and universally known reference . The existe nce of such an object
is a defining feature of an op en syste m.

2. A process spawns a child pro cess and passes the tuple-space reference as
a par ameter of the spawning mechani sm .

3. A tuple-space reference is passed between pro cesses in a tuple, via a
tuple-space .

In the first case , since the tuple-space is universally visible, there can be
no domain access control (at least at the tuple-space level) as the t uple-space
must rem ain un iversally accessible.

For case 2, dom ain management is simple, since making a tuple-space
visible to a child pro cess is complete ly under the cont rol of the par ent
this is essent ially the same situation as exists in a closed system. However ,
it should be noted t hat the parent gives complete cont rol of visibility to
the child, which could make the domain accessi ble to any of its children, or
even to unrelated processes via mechanism 3 - the parent cannot place any
rest rictions on the t ran sitivi ty of visibility.

T he final mechani sm is the most genera l, and is the most consonant with
the spirit of an open tuple-space coordination syste m - it must be possible
for new 'unknown' processes to join an exist ing process ensemble which means
that t hey mus t ga in knowledge of the ensemble's common domains, and t his
knowledge cannot be t ransferre d by any spawning mechanism (otherwise we'd
have a closed system). Unfort unately, in the classical Linda model there is a
fun damental problem - since tuples are retrieved associatively, there is no
way of preventin g the 'wrong' process from getting a tuple containing a tuple
space reference. Worse st ill, this can happen accidentally, in a benign syste m,
as well as mah ciously." Therefore, the question of dom ain man agement in
open systems will be focussed on the effects of mechani sm 3.

This section has argued for the necessity of a domain concept , an d mecha
nisms for domain man agement, in open coordination systems and has shown
that Linda-like syste ms do not have an adequate dom ain concept. The next
sect ion discusses ways in which this problem has been addressed. Since open
syste ms are, in prin ciple, unbounded , it is clear t hat the only acceptable so
lutions to the domain awareness problem must be scalable. In t he context of
open coordination systems thi s will be taken to mean that they must be able
to be feasibly distributed.

2 Attempting to make the tuple's contents too 'complex' for a process to acciden
ta lly match is no solution . . . this is equivalent to attempting to achieve security
by means of obscurity.

304 R. Menezes , R. Tolksdorf, A.M. Wood

12.2.2 Solutions

The simplest form of domain is the tuple-space. As discussed above this is
not sufficient, however, to give a full domain concept since there are no mech
anisms for the management of these domains ' visibilities. In addition, the flat
structure of simple multiple tuple-space systems makes it difficult to organise
domain structures, even if there were visibility management facilities .

One of the earliest , and still intriguing, developments of the Linda idea
was Bauhaus [138], which introduced structure into the coordination spaces.
The idea there was to merge the concepts of tuple and tuple-space by having
multiple nested bags as the coordination media, with processes existing within
the (sub-)bags. In this way a primitive form of domain management was
available since a process could only directly access data in the bag in which
it existed. If it needed to coordinate with processes outside that bag, it (or
the other processes) had to 'move' to a common domain (bag). However,
although the additional structure gives more flexibility in the definition of
domains, the issues of visibility control are not addressed in the Bauhaus
publications.

A recent proposal [411] has generalised the idea of nested tuple-spaces to
allow, amongst other things, overlapping tuple-spaces. In this work, tuple
spaces are replaced by 'scopes ' which are first-class values and which can be
combined to produce other scopes using scope expressions. By generalising
the tuple-space notion, the simple domain concept ('domain = tuple-space')
is automatically extended.

These three extensions of the original Linda tuple-space idea - multiple
tuple-spaces, nested hierarchy of bags, and scopes - all supply the basis
of a domain concept with varying degrees of flexibility. They all require that
tuple-spaces (or their analogues) be first-class in some sense." Hence visibility
of tuple-spaces can at most be obscured, not prevented (as argued above) .
Therefore, although all three have significant advantages over the original
Linda, none can supply a full domain concept.

The proto-domains, whether multi-sets or scopes, all have reasonable scal
ability. Distributing tuple-spaces over multiple processors is not difficult , with
the major performance degradation (relative to a non-distributed system)
being due to network overheads, and these are no worse than in any other
distributed system. In addition, the advantages of Linda over other distribu
tion models lie in its asynchrony, which means that any Linda 'computation'
must be made explicitly delay-insensitive, and so will automatically work
in an arbitrarily distributed environment. Consequently, it can be expected
that any domain structure based on a Linda-like system will scale adequately.
This does not mean, however, that every domain management mechanism will
scale in the same benign way.

From these consideration it can be seen that the basis for scalable domain
structure exists in the extensions of the Linda model , but something extra

3 At least that tuple-space references be storable in, and retrievable from tuples.

12. Coordination and Scalability 305

is needed for domain management. It is necessary to add mechanisms for
visibility control to the model , but this must be done without destroying the
fundamental prop erties of Linda-like open systems.

The simplest way of supplying visibili ty cont rol mechanisms to the coor
dination spaces is to incorporate access control attributes, for instance read
and writ e access, to tuple-spaces. In fact , as discussed in [641], th e addit ion
of such att ributes can in general be applied to both tuple-spaces and tuples
if a standard access control list (ACL) implement ation is adopted. This gives
a very fine degree of control over domains and enables a richer concept of
domain to be developed since the visibility of an eleme nt (tuple) of a domain
can be restricted independently of th e domain (tuple-space) in which it is
located. In addition, the associative, non-deterministic ret rieval method fits
well with a tuple being inaccessible due to its visibility attribute as opposed
to its non-existence - th e two cases are indistinguishable and consequently
the model's semant ics remain unchanged.

The major disadvantage for access cont rol lists is that they scale very
badly, since the sets of 'users" need to be maintained by the distribut ed
kernel which would be unacceptable in an unbounded, open system. A further
disadvantage is that the number of sets of users is static, and defined before
the system st ar ts , makin g their utili ty in dynamic open systems questionable.

A solut ion to these problems is to use a distributed capability-b ased sys
tem. Capabilities can be though of as 'permits' which confer on the holder a
set of rights over specific objects . In this way a process would only be able
to 'see' a domain (e.g. a tuple-space or scope) if it holds a capability for op
erations on that domain . The standard implement ation of capabilit ies [586]
frees th e kernel from having to maintain knowledge of all th e right s of all
the pro cesses in the system - thi s is distributed since each process holds its
own set of capabilit ies. In addit ion, pro cess cliques can set up coordination
ensembles by passing capabilit ies amongst themselves.

However, capabilities have disadvantages to o, the main one being the
difficulty in altering a process's set of rights once given. In an ACL-based
system, the 'write ' bit , say, for a tuple-space can be clear ed by the kernel for
a complete set of users , but th ere is no way of removing a capability from
all pro cesses that hold copies of it. Another disadvantage is that capabilities
require objects to be named, whereas ACLs can be attached to any obj ect .
Thus, th e former will work well with tuple-spaces and scopes, but not for
individual tuples (since they are identified by cont ents not names) .

It seems then, that using a combina t ion of capabilit ies (wherever possible)
and ACLs (whenever essent ial) gives just the right levels of domain definition
and management for open Linda-like systems. As an example, the prime prob
lem of how to pass information between processes in an open system without
danger of interception , has been shown [641] to be solvable using a mixture

4 These sets are usually called 'domains' in the operating system literature - a
term not used here to avoid confusion.

306 R. Menezes, R. Tolksdorf, A.M. Wood

of ACL visibility cont rol on tuples, together with capability management of
t uple-spaces.

12.2.3 Directions for Domain Awareness

It has been argued that domains , and mechanisms for visibility cont rol, are
an essential requirement for open distributed systems in general, and Linda
like systems in particular. Several solut ions have been proposed, and any of
these can be used to provide a complete domain concept by the addit ion of
visibility management constructs such as capabilit ies. However , there are still
some open issues which require investigation, two of which are:

Domain dynamics. The definition of domains will need to be modified over
time. Although the techniques describ ed above allow a degree of re
definition - for instance th e scopes concept [411] allows th e dynamic
creation of new domains from existing ones - th e question of how well
th ese mechanisms scale temporally is not clear .

Domains and mobility. Wh en explicit mobility of code and data is int roduced
as in Lime [493], th e quest ion of how domain management will be affected
becomes important . It is expected that formal t reatments of mobility
semantics, such as th e Ambient Calculus [123] will provide starting point s
for investigating these effects .

Work will also cont inue on investigating how to apply th e scalability ad
vantages of capa bility-based domains in an associ ative environment .

12.3 Location and Distance Awareness

Location is part of our everyday life, everything around us is based on loca
tion. At a given poin t in time, you may be in a room , in your house, in your
neighborhood, in a city which is in a count ry which is on a planet and so on.
One could easily consider two forms of location that are part of everyone's
world:

- Everyone likes to associate things with places. Remove this concept from
our lives and we would not be able to perform most of our everyday tasks,
like parking a car (where?) , going to th e dentist (where?) , or even going
to th e bathroom (where?). It easy to see th at everything has a place - an
absolute location .

- Another variation of the concept of location is the one of distance. In our
lives sometime we want to go to a place which is close enough to where we
are. For instance, one wants to go to a petrol station which is t he closest
to them. The particular location (address) of the petrol stat ion, although
important to allow one to get there, is second ary to the decision of which
petrol station to visit .

12. Coordination and Scalability 307

In a computerized world, where information is distributed across the
globe, users need to know where the resources they require are and how far
they are from them, as this can be used when deciding where to place their
own resources. Applications where the time taken to execute operations has
to be kept within certain limits demand that the distance between two ob
jects which are communicating be maintained within some acceptable range
(distance awareness) . In other situations the applications need to guarantee
that some data is confined to given places ; this may be necessary, for instance
for security reasons (location awareness).

The original Linda (267] was proposed with a primary goal of hiding lo
cation. Users were not required to understand this concept and the model
would create the notion of a location-free environment for them. It worth
noticing though, that Linda was also primarily concerned with parallel com
putation where location is indeed irrelevant. Since then, Linda has been used
as a model for distributed computing while maintaining most of its charac
teristics as proposed by Gelernter (267] more than a decade ago.

But what is location and distance in the computer world? One cannot
measure distance in terms of miles or kilometers as the "roads" of the in
formation super-highway are not measured in these terms. The best way to
measure distance is use the concept of time : how long does it take to get
the needed information? As for location, the notion of geography is sufficient
for the computer world since computers are normally arranged in a network
topology that somehow mimics the world geography.

It is easy to see that in systems that span the world the concepts of
location and distance cannot be hidden any longer, implying that Linda has
to evolve to cope with these concepts. Two simple scenarios would help to
motivate this argument : how would Linda cope with these?

Scenario 1 (Distance awareness): If one is in Brazil the difference in time to
retrieve information from the USA when compared to Argentina is at
least ten-fold in favour of the USA. Therefore if one has to choose a
location based on this, the USA would be the natural choice even though
it is geographically more distant.

Scenario 2 (Location awareness): If one is in Brazil and they want to store
some confidential information that should not be disclosed to countries
outside the South America, the notion of location need to be present .
In this case, although in terms of distance the USA seems the closest,
Argentina should be the choice.

It might sound as if the concepts described above are the same, but al
though related to location, distance awareness does not depend on the aware
ness of location. One could be aware of the distance of an object and not know
its location. This can be understood as relative distance: given two objects
X and Y on different locations a process can only tell which is closer based
on some measurements. Conversely one could talk about absolute distance

308 R. Menezes , R. Tolksdorf, A.M. Wood

which bas ically says how far is an X from a given source. Clearly pure abso
lute distance does not exists as the concepts of "far" and "close" are relative
by definit ion. However in abso lute distance one can consider that means of
comparison (geographically for instance) are always availab le. For the pur
pose of this sect ion it is important to elaborate on relative distance (distance
for short) as absolute distance is achieved wit h th e introduction of location
awareness.

Mobility is the "buzz-word" in distributed comp ut ing. However mobil
ity only exist given the concept of location. As locality becomes explicit ,
computations (processes) can react in their specific way to various network
prob lems (e.g. failures, bandwidth fluctuations). In practice this seems more
appropriate than delegating the job to a general purpose environment .

Linda is exactly this: a genera l purpose environment which hides loca
t ion from processes. The idea of a shared dataspace [515] implemented in
Lind a-like systems, alt hough suitable for par allel up to large LAN applica
tions (closed systems) is inappropriate for WAN applications (open syste ms).
Linda has had some success and has attracted inte rest from the research com
muni ty as well as the industry because its communication metaphor , in which
interprocess communication is independent of the life history of the processes
involved , achieves decoupling of processes in both space and t ime character
ising Lind a as a model of communication different from ot hers available (e.g.
shared var iables, message-passing).

12 .3 .1 Linda and Distance

The original Linda proposal [267] does provide some level of distance aware
ness. The retrieval primitives of Linda, namely in, rd, in and rdp, can be
used to build an experiment to find about the distance of resour ces (tuple
spaces). In a perfect network if an in takes longer to retrieve a tuple from
tuple-space A t han it does from t uple-space B , A should be closer to the pro
cess than B . Even if geographically this is not t ru e, from the point of view
of a process, tuple-space A is closer (assuming that in and rd are always
satisfied). The assumption of a perfect network alt hough not satisfact ory in
the real world is used here for simplicity. In Section 12.4 the problem of
bandwidth fluctuation in Lind a is discussed.

Kielmann [353] has improved the notion of distance in Linda with his
Obj ecti ve Linda mod el. Basically Obj ective Lind a assumes different seman
t ics for the primiti ves access ing tuple-spaces. These semantics are different
because there is t he concept of t imeout . Blocking primitives (i n and rd) do
not block indefinitely; an upper bound for the blocking t ime is one of the
primitive's paramet ers. Alt hough th is does not directl y tell how far apart
two ent it ies are (in this case a process and a tuple-space) , it can be used to
give a notion of relat ive distance. For instan ce, if an in from a tuple-space
A succeeds with a t imeout t but another in from a tuple-spac e, B , wit h the
same t imeout fails, this shou ld ind icate that B is (relatively) more distant

12. Coor dination and Scalability 309

than A. In addit ion to this simple example one could vary the value of the
timeout within a loop statement until t he primiti ve successfully returns a
tuple. This improves the notion of dist ance since here it is not required for
t he primitive in to be satisfied.

Similar to Obj ective Linda, Bonit a [525] primitives can also improve the
idea of distance. Bonita is a vari ant of Linda which enhances performance
by par allelising the blocking t ime of primitives. This is achieved by sepa
rating the process of finding a tuple from checking whether the tuple has
been delivered (locally). For instance, the prim itive in is implemented by a
dispatch plus an arrived followed by an obtain. The primitive arrived is
the primit ive that checks locally whether the tuple requested has arr ived. Of
course, arrived was not proposed for this purpose bu t one could imagine its
use improving the notion of distance inside the system. Again , if one assumes
that t uples stored in nearer tuple-spaces should arrive sooner, arrived can
be used to test for a relative distance of two tuple-spaces.

Neither Objective Linda nor Bonita were prop osed with the intent of
providing relative distance, however their primitives allow one to build an
experiment and gain some notion of dist ance. The problem with this is that
the notion gained represents the sit uation at that point in t ime which is not
necessarily a realistic view of t he sit uation. In a dynamic system where the
configuration of the system changes one would perhaps like Linda itself to be
able to provide an idea of distance.

12 .3.2 Linda and Location

It is true to say that Linda systems seem to be promising for WANs. Probably
th e main reason for this common belief is the decoupling of space and t ime
achieved by the model. Linda is also similar to other models t ha t already
include the not ion of location such as the Messenger Environment [604] . In
Messengers, as in Linda, computations can start new processes in remote
hosts and they communicate via shared memory. The difference lies in th e
fact that in Messengers the processes have the choice of which remote host
to use when spawning new processes whereas in Linda this decision is hidd en
(provided by the underlying system). All communica tion is local; processes
"hop" between hosts and if they are locat ed in the same host they can com
municate via a shared memory locally.

Messengers are a good example of a coordina t ion par adigm based on
shar ed memory communication which is particularly suited to mobile sys
tems. This happ ens because its functionality is based on the operation hop
which cont rols how messengers should move in the system. Messengers are
aut onomous messages: they carry a process and not just data. The hop op
eration governs the movement of messengers ; each node visited resumes the
execut ion of the messenger until a hop which causes the process to leave the
cur rent node is encountered.

310 R. Menezes, R. Tolksdorf, A.M. Wood

Alth ough Messengers are interest ing for proving that models including
location are successful in open environment s, they do not provide the concept
of time decoupl ing which differentiates Linda from other models, t herefore it
is reasonable to explore the topic in Linda environments.

Some work has been done to bring the concept of location to Linda. As
expected the work on location in Linda is very much attached to mobility of
pro cesses and tuple-spaces within the kernel.

Tolksdorf [593] proposed a Linda-like system called Mobile Obj ect Spaces
(MaS) in which each entity has a locality att ribute. In fact , both logical and
physical locality can be identified uniquely. After an agent is spawned in MaS
it can be moved between agent bags (collections of active agents). Agentbags
have a locality attribute which represents the host where the agent bag is
current ly located. The mod el also allows for an agentb ag to be moved between
physical hosts - by changing its locality att ribute .

The Kernel Language for Agents Interaction and Mobility (K LAIM) [453]
is a language which consists of multipl e tuple-space Linda primitives with
a set of ees process operators. Locati on is a first class at tribute which is
used in the distribution of the t uple-spaces and processes. The Linda-like
operations are adapted to work with explicit locati ons - locations are used
as indexes which ident ify the set of tuple-spaces the given operation should
consider. The quest ion of what level of location should be included appears
here. KLAIM uses the concept of logical location of tuple-spaces which do not
necessarily match th e physical location . Still the level is sufficient to give the
user more control over the coordinati on components . Decisions can be made
based on the information available.

Jada [169] is a coordination system for mobile agent s which combines J ava
and Linda. It implements mobili ty of code; code that sat isfies a request can be
sent over the network to execute remotely (as an agent). Java makes it easier
for sending code across a network while Linda prov ides the basic coordination
infrastructure. J ada is location aware and clients (TupleClient) are created
and told what is the locat ion of the server (IP number and port) .

Ligia [409] is similar to Jada in two ways. Ligia is also a combinat ion
of Linda and Java, which makes mobil ity of code more easily implemented ,
and Ligia also requi res that IP number and a por t of a server. However , in
Ligia , the work of finding a server is hidden from the users. Ligia may not
give cont rol to users to choose th e server explicitly but in its full description
[410] an operation to deal with I/O is proposed (link) which increases t he
notion of location in the system. The operation link allows programmers to
attach a tuple space to a file. Although proposed to solve problems related to
garbage collect ion of tuple spaces it implicitly improves the not ion of location
of tuple spaces since location is an important attribute of the file descriptor.
Addi tionally, link could in principle be used to associate a tuple space with
a VRL, th erefore defining it s locati on.

12. Coordination and Scalability 311

Lime [493] is a proposal for mobility of processes in Linda. The central
idea that governs the operations in Lime is that agents are mobile but have
locations attached to them (as an attribute) . The primitives are then adapted
to work based on this idea of location.

Lime introduced the notion of a transient shared tuple-space (TSTS) which
behaves like a globally accessible tuple-space (GTS) but which is dynamically
reconfigured based on the processes at a given location. It is as if the contents
of GTS were divided amongst the agents - each agent "owns" a piece of
GTS called an interface tuple-space (ITS) . When an agent migrates from one
location to another it takes its ITS along . The TSTS in a given location is
formed by the collection of all ITSs belonging to the processes at this location.

By default , a process dealing with TSTS stores tuples in its own ITS. This
means that if a process stores a tuple t and migrates, it takes t along with
it. This generates a problem because other processes may be waiting for t at
the original location (before migration) . To cope with this situation the agent
can use a modifier in the out operation. For instance A. out [x] (t) takes the
location of process x into consideration; t would be stored in the ITS of x.

Retrieval operations (namely in and rd) take this concept of the modifier
one step further. Consider the operation A. in [x ,y] (t). This would try to
get a tuple matching t from the subset of tuples of Awhich are in x's ITS but
are destined for y's ITS. This situation only happens when y is not connected
to the system, which can occur frequently in mobile systems. If y was present
the tuple would be automatically moved to y's ITS and the operation would
equivalent of A. in [y ,y] (t), In the case of in and rd, mobile hosts could
be used instead of an agent as the first modifier. Therefore the operation
A. in [B, -] (t) would perform an in on the subset of tuples of A which are in
the host B.

Lime is successful in including location in Linda to the extent that the
semantics of the primitives are as much as possible unchanged. Yet, Lime
is based on the assumption that a process knows about others which is not
generally true in open systems and in particular Linda open systems. Lime
is very fine-grained - location is attached to tuples and not to tuple-spaces.
This may cause th e reactive nature of the system (which makes tuple migrate
to the proper locations) to slowdown the system considerably.

In a mobile system where location is explicit, user should be able to say
that a given component is attached (fixed) to a location. In Lime this would
correspond to having primitives to limit the migration of processes. This
would allow the implementation of systems where security (where the data
is physically stored) is a concern.

One has to be able to express mobility in Linda systems, or generally
speaking generative communication systems in which location explicit. Cian
carini and colleagues [160] have proposed an algebra for generative commu
nication which can be adapted to represent mobility in Linda. Their original
proposal consists of only one tuple-space which is known to all processes. If

312 R. Menezes, R . Tolksdorf, A.M. Wood

one uses a variation where multiple tuple-spaces can be considered, mobility
can be represented implicitly: a pro cess moves by creating a copy of itself
at a new tuple-space and ends its execut ion in the current tuple-space. Still
this algebra would only cope with locations abst racted as tuple-spaces, or in
other words , would not cope with "real" locations.

LLI NDA [452] is another language/calculus for Linda systems which is
based on the existence of multiple tuple-spaces extended to cope with the
concept of location being explicit. LLI NDA assumes the existence of a set
of sites (physical locations) which are where pro cesses and tuple-spaces are
located , and symboli c localities (domains) which allow for th e distribution
while not paying at tent ion to the physical location.

12 .3.3 Directions for Distance and Location Awareness

From the description above one can see that the inclusion of the notion of
distance and location in Linda is not only desirable but required if Linda
is to become a model adopted for th e implement ation of large scale (open)
applicat ions. There are several approaches to tackle th e idea , some more
complete than others but no solution can be said to be a "killer" proposal.
One of the reasons for the differences on how they tackle th e problem comes
from the fact that th ere is a tradeoff between expressiveness and simplicity.

The solution for including th e notion of distance in Linda may not lie in
modifications of the standard primit ives but in a component which maintains
global system information. Distance may be a Quality of Service (QoS) issue.
A global component could for inst ance tell a pro cess at any given poin t in
time which one of a set of tuple-spaces is th e closest based on average response
time. Implementation of QoS has been envisioned in Lime [493].

Location is at the cent re of the idea of mobility. Strictly speaking mobility
is only achieved in full when th e system gives th e users some level of cont rol
of the location of th eir resources. Although some level of mobility can be
achieved without requiring the users to understand the concept of location,
it would not be expressive enough to implement WAN based applicat ions
in general. The problem previously mention ed, where security is an issue
exemplifies very well the situation. Users need to have some control over
where resources are allocated. The core of the problem when introducing
location is that th e simplicity of the mod el is affected. An introduction of an
API for Linda could provide some sort of standardization of th e primitives
and at the same time introducing different levels of cont rol.

12.4 Fluctuation Awareness

Wide area networks do not provide constant transfer rates. Instead, th e band
width provided to applicat ions fluctuates in an unpredictable manner. It is

12. Coordination and Scalability 313

affected by various parameters, such as capacities along a certain route, the
choice of a route , current usage of that route etc . For any two transfers from a
node A to a node B , the time necessary can vary. In an asynchronous system,
this fluctuation even makes it impossible to distinguish long network delays
from failures at the destination node .

12.4.1 Linda and Fluctuation Awareness

The original Linda design did not look at network delays and their fluctuation
at all. This was justified by the assumptions of relative stable upper bounds
on communication delays in parallel computers as in [130] . In wide-area com
puting, fluctuation of available network bandwidth affects Linda systems in
two dimensions:

- At the application level, algorithms may depend on upper bounds of com
munication or not. For example, a voting application has to decide whether
to wait for further votes that might still be underway in the network or
not. In order to deal with timing variations at the application level, a co
ordination language has to offer some notion of time and a way to make
timing statements with respect to coordination operations.

- At the implementation level, the management of the tuple-space itself may
rely on upper communication bounds or not . For example, distributed ker
nels in which parts of the tuple-space are replicated usually rely on similar
communication delay amongst the nodes holding replicas. Timing varia
tions affect strongly the chosen distribution schema for a shared coordina
tion space.

There are some proposals from the Linda literature that try to deal with
such fluctuations. The language Sonia [51] considers the notion of time and
delays as vital for coordination in open distributed systems. It is argued that
any application coordinating activities in the real world needs a notion of
time, as the world is inherently real-time. Thus, timing of activities caused
by messages is explicitly seen as an issue for the application which knows
the application semantics with respect to time. Sonia allows an expiry to be
placed on messages posted to a shared space and a timeout on requests for
message extracted from it.

Objective Linda [353] introduces timeouts as additional parameters to in,
rd, out , and eval operations. A timeout of 0 leads to immediate failure in the
case of out land eval and is equivalent to the predicates inp and rdp in the
case of in and rd. Combinations with other parameters stating the minimum
and maximum number of tuples to match for in and rd gives further variants
of the operations up to the extreme case that causes a process to block for a
certain time without retrieving any tuples.

Both approaches leave the problem of defining upper bounds for seman
tically correct execution of Linda's operations to the application. At the im-

314 R. Menezes , R . Tolksdorf, A.M. Wood

plementat ion level, bandwidth fluctuations can be of severe impact on the
overall system, if the dist ribu tion st ructure depend s on it.

For the case of a centralised implementation with only one tuple-space
server, a slow connection affects only one client 's interactions and delays the
work of ot her clients wait ing for tuples generated there . T he same holds for
distribu ted implementations that use parti tioning of a tuple-space by hashing
schemas .

However , in a full replication of the tuple-space delays can affect more
clients than would be expected. It is common to ap ply some locking schema
across all replicas, because one specific replicated tuple cannot serve as a
successful match to two different te mplates and has to be locked in all repli
cas until it is decided wheth er it is removed or not. Thus, any bandwidth
fluctuations between the replica servers and th e requesting clients affect the
complete syste m.

Xu and Liskov [650] use methods from distributed comput ing to deal with
fluctuations up to network partitioning. The approach introduces dynamic
sets of replica servers and involves votes within th ose on whether a tuple is
to be delivered.

Chiba, Kato, Masuda [156] relax the consistency requirements on the
contents of replicated tuple-spaces. The approach defines and compares st rict ,
non-exclusive, and weak protocols to establish some consist ency amongst
replicas. All three are included in a multi-protocol tuple-space in which the
programmer can select the kern el behavior for in operations amongst these
protocols.

12.4.2 Directions for Fluctuation Awareness in Linda

The implementation level mechan isms t ry to make bandwidth fluctu ation
t ranspa rent to the user of a tuple-space . Whil e this approach is suitable for
distributed systems, we do not consider it appro priate for wide-area compu
tation where delays can have a meaning at the application level. Thus, delays
should be visible to applications in order to react in a sema nt ically correct
manner to them.

This means th at delays might have to be expressed at the language level as
timeouts for communication or upp er bounds for pro cessing. The primitives
might be expanded to take this into account and some mechani sm is necessary
to communicate th e violation of such a bound to the applications . On the
ot her hand, t he language extensions aiming at the application level leave the
burden of the int erpret ation of delays complete ly to the programmer. There
is no hint at all on how long the delay might persist , whether the system can
try to handle it etc .

At the system level, a WAN-ready Lind a-kernel has to employ flexible
dist ribution schemas that do not rely on fixed upp er communication bounds.
Also the system should provide support for the application level visibility

12. Coordination and Scalability 315

of delays by mak ing them visible in a suitable manner and offering some
assessment of the importance of a delay for the applications' semant ics.

12.5 Failure Awareness

A WAN is inhere nt ly unreliable, t hus WAN comput ing has to be able to deal
with failures. In t his sectio n, we describ e means t hat have been proposed to
establish some form of fault-tolerance into Linda-like systems. We use severa l
categories to talk about aspects of fault tolerance. These are:

- The locus of fault s. Although tuple-space based systems provide an un
coupled peer-to-peer communication and coordination mode l, the imple
mentati on of the Linda operations dist inguishes at least two locat ions: the
server is a component that keeps the tuple-space and provides operat ions
on it , whereas the client is the agent performing computat ion and using
the server for coordination operations. Thus, faults can occur on the ser-ver
side and on the client side.

- The transparen cy of fault recovery. If faults are made visible to clients,
th en some language const ruct has to be introduced in order to express
how to deal with an erro r . We speak of language-level mec hanisms if new
primi tives etc . are introduced, whereas mechanisms expressed and executed
in the environment of a client provide transparent fault tolerance.

- Openness of a system. As a genera l characteristic, tuple-space based sys
tems and languages can be closed, that is they require the complete set
of agents be known before the system starts . Open systems , instead , allow
client s to join and leave the system at any t ime. Some mechanisms for fault
toleran ce below make assumpt ions on wheth er t hey will be used in closed
or open systems.

In the following, we focus on the design aspects of providing faul t to lerance for
tuple-space based languages and systems. For a comprehensive discussion of
fault-models, a formal view on faul t tolerance, and fund amental mechanisms
to achieve properties of systems in the case of faults see [264].

12.5.1 Linda and Fault Tolerance

One approach to fault to lerance in tuple-space based systems is to provide
n o guarantees at all, i.e. neit her to foresee any faul t tolerance masking at the
server side , nor to change anything about the coordination language.

This is basically how th e original kernels from Yale, such as the SjNet
Kernel [130], deal with the issue. Ignoring faul t to lerance problems can well
be a reasonable choice in the field of parallel pro cessing. Here, applicat ions
have rath er short lifet imes and therefore are relatively simple to restart in the

316 R. Menezes, R. Tolksdorf, A.M. Wood

case of failures. As par allel applications tend to be closed systems, failur es
cannot affect an environment .

The major benefit of ignoring faults is the avoidance of any performan ce
loss and rather simple communication protocols. The obvious disadvantage
is the absence of faul t to lerance. Thus, while ignor ing fau lts is a plausible
solution in a LAN environment, par t icularl y for closed programs, it cannot
be suited for a WAN environment .

Originating in DBMS, transactions are a mechanism for faul t tolerance
th at has been incorporated into various tuple-space based languages. It usu
ally extends the language with primitives to start, commit , or abort a trans
act ion.

Languages like PLinda [26], Par adise [542], J avaSpaces [249], or TSpaces
[648] consider a transaction to be a sequence of local processing and accesses
to the tuple-space . The effects of changes to the tuple-space content become
visible to other agent s only after the transaction is commit ted, thus prevent
ing failing agents from introducing inconsistencies into th e shared space.

Transactions are usually introduced because long term parallel pro cessing
makes restarts expensive, as all intermediate results would be lost . For ex
ample, DNA processing - one application cited often in the Linda literature
- can have a lifetim e of severa l weeks.

The advant age of the transaction mechani sm is that it is an und erstood
approach that is cheap to implement . It s disadvantages are that it alte rs the
semantics and th at it cannot provide faul t to lera nce for presence not ification
when intermediate tuples have to be seen by other agents but the t ransaction
prevent s this . Also, t ransactions are a rath er heavy weight mechanisms.

Transactions seem a good approach to provide fault to lerance for both
WAN and LAN environments, if rather t radit ional "closed" programs and
open non-interactive programs are considered.

Checkpointing is anot her mechani sm to tolerate failures. In genera l, it
means to store a copy of some state of interest and the ability to reestab
lish it in the case of a failure. There are some variat ions on t his concept
in t he Linda literature. FT-Lind a [49, 48] uses checkpoint ing at the server
level by retaining a copy of tuples handed out to clients via an in primitive.
MOM [122] takes th e same approach and introduces an addit ional "busy"
tuple-space to store those copies. PLinda 2.0 [339, 338] also uses checkpoint
ing of the tuple-space at the server side, but also provides a language level
extension for client s to request checkpoint ing of their local state.

Similar to tra nsactions , checkpointing is intended for long te rm parallel
processing. Advan tages include the opt ion for a t ranspa rent implementation
of checkpoint ing at the server side, and t hat rest ar ts are even cheaper as th e
last checkpoint ing might be done later than some transaction commit .

A disadvantage is the need for a reliable backing store for t he checkpointe d
data . If checkpoint ing is implemented transparent ly at the language level,
this calls eit her for complex analysis to determine when to checkpoint or

12. Coordinat ion and Scalability 317

brute force checkpointi ng after every state change, which is inefficient . If the
backing store is available only via a network, serious probl ems may arise from
network congestion.

Thus checkpoint ing seems a good opt ion at the server side, bu t is suited
to a LAN environment only if offered at a language level for the client .

R eplication is a means to increase both fault tolerance, and as availability.
It is usually applied at t he server side by replicat ing the contents of a tuple
space. Various dist ributed Linda-like systems, such as the SjNet kernel or
Laura [597], replicate for perform ance in a distributed set t ing.

Xu and Liskov [650] use replication to address fault tolerance. Tuples
outed are stored on a set of servers. An in then queries thi s set of servers.
Even if a server fails, a majority of answers leads to the delivery of a mat ched
tuple to the client . Kambhatl a [346, 345, 347] studies the effects of replica
size and numb er on performance.

Amongst the advantages of replication are increased availability and the
potenti al to cope with non-transient failures of communicat ion. Th e main
disadvantages are that total replication does not scale, that reconciliat ion is
in general unsolvable, and that replication of all tuples can be inefficient as
the application specific usage of tuples is not accounted for.

Replication seems to be well suited for a LAN environment, especially if
physically mobile devices are involved . In a WAN environment, replication
might be suitable if a limited numb er of replicas is maintained. Applicat ion
aware kernels and dynamic replication might be necessary in t his setting. The
effect of reduced lat ency by higher availability might be even more valuable
in a WAN than in a LAN.

Mobility of code is a yet another mechanism th at can contribute to fault
tolerance, as described in [520]. It aims at providing an alternative to t rans
actions in a WAN setting. Here, a sequence of code using coordinat ion prim
itives is packaged as a coordination operation into an objec t and passed to
the tuple-space server. Upon its complete arr ival, the server executes the op
erat ion, thus providing all-or-nothing faul t tolerance for th e operation. If the
client agent fails, consistency of t he tu ple-space can be established by exe
cut ing a "will" that is passed with the operat ion object and that contai ns
code that can compensate changes to the tuple-space state.

The mechanism incorpo rat es changes to the coordinat ion language and
requires addit ional function ality at the server. The server side processing is
transparent to the programmer and does not alter the semantics of the co
ordination primitives. If allows for presence notification and has been proved
to exhibit a good performance.

As disadvantages, the mobilit y approach potentially increases th e server
load. Also, it increases the complexity of the server's functi onality, and
most of all - requires the provision of an execution environment by the
server as part of an infrastructure for mobile code.

318 R. Menezes , R. Tolksdorf, A.M. Wood

Mobility for fault tolerance seems most attractive in a WAN setting, where
it provides an alternative to transactions.

While the mechanisms reviewed show a variety of ways to deal with fail
ures, the detection of failures is a a crucial issue . Chandy and Misra [146]
show that in asynchronous systems, failures cannot be distinguished from
network delays .

For tuple-space based systems, there are two approaches that attempt
to detect failures . MOM [122] allows a client to place an upper bound on
how long another client can process that tuple. When the upper bound is
exceeded then the client consuming the tuple is assumed to have failed , and
the tuple is recreated. Kambhatla [347] uses "I am alive tuples" that are
issued periodically by all clients. A recovery manager tries to read them and
deduces failure of the client from their absence.

12.5.2 Directions for Fault Tolerance in Linda

This review shows that there is a variety of possible fault-tolerance mech
anisms available for integration into Linda-like systems. However, each of
them shows different benefits and disadvantages. The solutions differ along
the dimension of the transparency they provide to applications and by the
performance overhead introduced.

Thus, there is no single best solution to offer the required fault-tolerance
in a WAN-ready Linda-like language. However, it seems necessary to alter
the original high-level view of Linda that neglected the possibility of faults
at all. While the language definition itself only defines a functional interface
to a tuple-space with some operations, features beyond the primitives are
important.

A first step towards an integration of the various mechanisms described
can be taken by talking about a system of types of tuple-spaces that cap
ture both non-functional issues like replication characteristics and functional
extensions like primitives for transactions.

Whereas the Linda language can be seen as an interface to server- or
runtime-objects in an object-oriented sense , non-functional issues have to
be made explicit by differentiating classes implementing that interface. Ex
tensions of th e language have to be understood as subtypes of the Linda
interface.

12.6 Conclusions

In this chapter, we discussed how and whether Linda-like languages can scale
to WAN environments and still provide coordination. We understood scalabil
ity as a qualitative notion along several dimensions that have been identified
as important differences from LAN characteristics.

12. Coordination and Scalability 319

We reviewed the concepts of the original Linda and possible solutions for
the issues concerning domains, locations, fluctuation, and faults. We have
seen that the Linda literature provides a variety of potential adjustments of
the original Linda. However, these ideas have been developed for particular
problems, and it is unclear how they can be integrated to a WAN-ready Linda
which covers all the mentioned aspects of WAN environments.

From the conclusions drawn for each aspect , it seems that there are two
levels on which a WAN-ready Linda has to differ from the original Linda:
at the language level introducing functional changes and at the system level,
introducing non-functional changes (such as quality of service).

We have seen that at the language level, a notion of location is necessary
both logically and physically. Logically, domain structures such as multi
ple, nested, and overlapping tuple-spaces are necessary to reflect the appli
cation requirements for structuring the computational world to be coordi
nated. Physically, network locations have to reflect the concrete structure of
that computational world . Both kinds of locations call for a new data type in
Linda, a polymorphic extension of the primitives, and an adjusted semantics.

Operations on locations include some definition of distance. This is sim
ple to see for distance in space or networks , but it is also important in time,
as network fluctuations affect the temporal distance between executed oper
ations. One can also understand faults as being states of the system being
'at a distance ' from correct states. Thus, distance might be yet another data
type necessary to formulate WAN-ready coordination. Distance might be even
more important than location, as it is a relative and non-global measure.

At the system level, a WAN-ready Linda has to provide additional ser
vices for management. Domains have to be managed, by providing resolution
of domain identifiers and to deal with dynamic domains. Distance has to be
managed by providing mobility of agents . Fluctuation has to be channelled
into services that estimate the temporal distance of events or that enforce
some quality of service. And finally, the system has to provide enabling ser
vices for the detection and management of failures .

In order to bring a WAN-ready Linda into existence, the definition of a
standard Linda API could be a first step. This API would have to provide a
framework in which the functional issues at the language level are captured
as types of language-objects that are implemented by concrete Linda-like
systems. The non-functional issues would have to be attributed as interfaces
to certain implementations that provide certain system level services .

Part V

A pplications of Coordination Technology

A pplications of Coordination Technology

Introduction

Just as coordination is nearly invisible when conducted successfully, th e sup
porting coordination technology works behind the stages in distributed ap
plications on th e Internet . Good coordination technologies make "things run
smoot hly" so that th e management of dependencies amongst users and pro
cesses in applications is hidden. Thus, it is not an easy task to poin t at a spe
cific application and make the benefits of advanced coordination technologies
clearl y visible. While being almost invisible, coordination is also pervasive in
all aspects of int eractio n, such as in a discu ssion where only one participant
speaks at a time, in th e design of organiz ations by prescribing workflows, or in
comput ing syste ms by mechanisms in parallel and dist ributed computat ions
such as scheduling, locking etc . Thus, one could even claim, t hat every infor
mation technology applicat ion in which interaction occur s or is supported is
an applicat ion of coordination mechanisms.

With th e introduction of the Web as a platform for information distribu
t ion th at is easy to deploy and easy to use both for information providers
and users, th e Internet has increased t he need for coordination support for
dist ributed applicat ions . Whil e being a static hypermedia syst em in its begin
nings , the Web has evolved into a collection of services provided at different
levels. The immediate popularity of the Web made it at t rac t ive to offer lo
cal services at a worldwid e scale. And commercially driven innovation has
brought across new services that take advantage of the Web 's scale and avail
ability ([171]). The more services are available, the mor e difficult becomes
th e task of gluing them together into applications and coordinat ing their
int eractions. The core Web technology offers only very limited support for
such distributed coordinated applicat ions and makes thi s lack very visible. It
is coordinat ion mechanisms as enabling technologies that provide means for
pro cesses, components, or agents to work smoothly together. But still, is it not
easy to select specific flavors of coordination technology for an applicat ion. A
vari ety of applicat ion scenarios demands for different coordination technolo
gies ranging from agent-based to tuplespace-based models ([600, 599, 598]).

Figure 12.1 illustrates t he set of applicat ion given forces that guide th e
choice of a concrete coordination technolog y. These tradeoffs all affect th e de
sign of a coordination manager differently. For example, a cent ra lized server
is easier to maintain and changes to the document s and deadlines implies

324 Applications of Coordination Technology

Bandwidth

Fig. 12.1. Tradeoffs on coordination technologies

fever risks of inconsistencies than in a replicated architecture. Or: A cen
tralized coordination manager also is easier to adapt to changes in different
organizational structures which have their particular demands.

The following four chapters report on applications of coordination tech
nologies. They represent specific situations in which sets of tradeoffs are given
by applications and have been matched by specific choices of what technol
ogy to apply where. Although they look at application domains that are not
related per se, they share the fact that their implementation in a distributed
Internet context requires some sort of coordination technology. They provide
insights on how to design coordinated applications, and show how to pro
vide coordination behind the stages in cooperative and more computational
applications.

The contributions

Chapter 13 by Franco Zambonelli, Nicholas R. Jennings, Andrea Omicini,
and Michael Wooldridge deals with the development of complex Internet
based applications. The authors focus on the field agent-based computing as
an approach to develop applications in terms of autonomous software agents
whose specifics are proactive behavior and and high-level interaction proto
cols. While models and technologies of agents become more and more mature,
the question on how the analysis and design applications in terms of agents
can be supported has not yet been examined in sufficient depth. However,
having such suited methodologies available is crucial to the deployment of
agent technologies at an industrial scale.

An existing methodology - Gaia - is evaluated against the requirements
of the Internet context. It turns out, that it lacks support for openness of
a system, does not deal with non-cooperative agents as usually found on

Applications of Coordination Technology 325

the Internet , and does have a concept to group agents as societies and to
establish social rules in them. The authors propose to apply a coordination
model within the methodology to cover the mentioned shortcomings and to
extend it towards a coordination-oriented methodology.

With a different emphasis, but equally devoted to the development of co
ordinated applications, Dwight Deugo , Michael Weiss, and Elizabeth Kendall
present in chapter 14 a set of reusable patterns for agent coordination. There
is a variety of options to design agents interactions and their coordination.
While patterns like master-slave coordination dominate, the designer of an
application should be aware of other known patterns and be able to make an
educated choice amongst them. Similar to an object-oriented programming,
agent-oriented development is influenced by a set of forces that determine the
actual choice of a specific design. The authors identify mobility and commu
nication, standardization, coupling, problem partitioning and failures as the
ones most important in agent-oriented designs. Based on that, the chapter
presents a catalog of five patterns for agent coordination and describes their
context and problem, forces involved , and known solutions.

Workflow systems are yet another application domain in which coordina
tion models and technologies are of major importance. In chapter 15, Monica
Divitini, Chihab Hanachi, and Christophe Sibertin-Blanc discuss how such
systems help to coordinate actors involved in business processes. They show,
that the use of the Internet open new ways to work together. Organizational
cooperation is enabled by masking spatial distances by communication and
further enhanced by the possible dynamics of forming teams of people from
different organizations. Current Workflow Management Systems, however,
do not support such inter-organizational workflows as required. The authors
define a framework which is enabling to analyse such workflows and to un
derstand the characteristics involved. They go on to study two approaches to
inter-organizational workflows within their framework.

The final chapter 16 of this applications part , written by Eric Monfroy
and Farhad Arbab, shows an example of applying coordination models by
embedding them in yet another technology. They study constraint program
ming , where a solution to a problem is characterized by a set of constraints.
Constraint solvers then try to find a solution that satisfies the conjunction
of constraints. With distribution and communication provided by a network,
the setup of multiple const raint solvers becomes an option and the way of
their cooperation a challenge. The authors look at the relation of coordina
tion languages and existing solver cooperation solutions. They advocate the
use of coordination models for cooperation of solvers and demonstrate two
possible approaches to do so.

13. Agent-Oriented Software Engineering for
Internet Applications

Franco Zambonelli 1, Nicholas R. Jennings", Andrea Omicini" , and
Michael J. Wooldridge4

1 Dipartimento di Scienze dell 'lngegneria
Universita di Modena e Reggio Emilia, Via Campi 213b ,I-41100 Modena, Italy
mailto:franco.zambonelli~unimo.it

2 Dep artment of Electronics and Computer Scienc e
University of Southampton, Highfield, Southampton S017 1BJ, United Kingdom
mailto:nrj~ecs.soton.ac.uk

3 L1A, Dipartimento di Elettronica , Informatica e Sistemistica
Universita di Bologna, Viale Risorgimento 2, 1-40136 Bologna, Italy
mailto :aomicini~deis .unibo.it

4 Department of Computer Science
University of Liverpool, Liverpool L69 7ZF , United Kingdom
mailto:M.J.Wooldridge~csc.liv.ac.uk

Summary.
The metaphors of autonomous agents and agent societies have the po

tential to make a significant impact on the processes of analysis, design, and
development of complex software systems on the Internet. In this chapter ,
we concentrate predominantly on agent societies, and show how work on
coordination models and technologies provides a powerful framework for
the engineering of Internet-based, multi-agent systems. First, we introduce
the concepts of agent, multi-agent system, and agent-oriented software en
gineering, and highlight the specific issues that arise when we take the
Internet as the environment that agents inhabit . We then provide a brief
survey of the stat e of the art in the area of agent-oriented methodologies,
paying particular attention to the Gaia methodology for agent-oriented
analysis and design . Gaia was originally conceived for benevolent agents
inhabiting closed systems. However, to broaden its scop e, we show how
insights from the area of coordina tion models can be incorporated in order
to make it more suitable for developing Internet-based applications.

13.1 Introduction

Agent-based computing [552, 332, 643] is rapidly emerging as a powerful tech
nology for the development of complex software systems, synthesising contri
butions from many different research areas , including artificial intelligence,
software engineering, robotics , and distributed computing. Developing appli
cations in terms of autonomous software agents that exhibit proactive and
intelligent behaviour, and that interact with one another in terms of high
level protocols and languages, leads to a new programming paradigm. This
paradigm, which we term agent-oriented software etiqineerinq, is well suited
to tackling the complexity of today's software syst ems. Firstly, today's soft
ware systems are required to deal with complex and unpredictable execution

13. Agent-Oriented Software Engineering for Internet Applications 327

environments which object-oriente d languages and ap plications seem unable
to model and tackle in a natural and clean way [82]. The Internet is probably
the most complex and unpredict able environment that application designers
have to face to day, and Internet applications are arguably the most impor
tant area in which the agent paradigm can fulfill its potential. Secondly, the
abstraction level defined by t he agent- based approach is higher t han that of
the object-oriented par adigm, as t he behaviour of agents more closely reflects
t hat of the hum an beings whose work they are delegated to perform and/ or
support.

By dint of being a new programming paradigm, the development of agent
based applications implies new programming abstractions and techniques.
This necessity is born out by the significant body of research that has been
undertaken in defining and developing new mod els and syste ms for building
agent -based, and multi-agent , systems . These efforts include problems relat ed
to the definit ion of suitable architectures for agents [358], agent communica
tion languages [240, 239], coordination model for agents [472, 116], as well
as models for the specificatio n and verificat ion of multi-agent systems [93].
However , the developm ent of complex mult i-agent systems requires not only
new models and technologies, bu t also new me thodologies to support devel
opers in an engineere d approach to the anal ysis and design of such systems.
This need is especially pressing if multi- agent systems are to break out of
being a niche technology used by the few, to something th at is part of the
ar moury of a main str eam software engineer .

In the last few years , severa l attemp t s have been made to develop agent
orien ted modelling techniques and m ethodologies [321, 330]. However, none of
these techniques can yet be rega rded as a compre hensive methodology for the
analysis and design of multi-agent systems. The Gaia methodology [642] is
one of the few attempts that is specifically tailored to the ana lysis and design
of mult i-agent syste ms and that deals with both the micro (int ra-agent) level
and the macro (inter-agent) level of ana lysis and design. However , Gaia, as
it presently stands, is not a general methodology for all kinds of multi-agent
system. Rather , it is intend ed to supp ort the development of distribu ted
problems solvers in which th e system 's constituent components are known at
design time (i.e., a closed system) and in which all agents are expected to
cooperate towards the achievement of a global goal. For these reasons , Gaia
is not sui table for the analysis and design of Int ernet applications, where
openness and self-inte rest are key factors.

One of the main reasons why most extant agent -oriented methodologies
(including Gaia) are ill sui ted to open syste ms are that th ey conceive all
interactions as occurring directl y between agent s. This makes it difficult to
enforce any form of control on interactions as required, for example, to handle
the arr ival of new agents into the syste m or to const rain the act ions of possibly
self-inte rested agent s. From a more general perspecti ve, these methodologies
fail to adequately address t he concept of "agent societies" . Agent s need to

328 F. Zambonelli, N. R. Jennings, A. Omicin i, M. J . Wooldridge

be conceived as populating a society, whose global act ivit ies are expected to
proceed according to specific social laws and convent ions. In other words,
the proper functioning of a multi-agent system usually relies on some form
of global laws th at the agent s living in it have to obey when interacting
with other agents . For example, the correct functioning of agent-mediated
auctions require participating agents to comply to th e convent ions that rule
each specific auction type [460] .

In this chapte r, we propose the adopt ion of coordination models [269, 163]
as th e conceptual abst raction that can be exploited in the analysis an d de
sign of multi-agent systems for the Internet . Furthermore, we sketch how a
coordina t ion mod el can be exploited to make a methodology, such as Gaia ,
suitable for Intern et applicat ions. The key idea stems from the fact that a
coordination model abst racts th e concept of coordina t ion media , intended
as the place where interactions occur , and of coordinat ion laws, intended as
th e rules th at the coordination media enforces in int eractions. Therefore, in
general, a coordina tion mod el could be exploited so as to act as the reposi
tory of th e social laws of an applicat ion, which all agents , having to interact
with each other through the mediation of the coordina t ion media, are forced
to respect . More specifically, a coordination model could be exploited as a
mediator (so as to enable interactions between ent it ies th at do not know one
another), as well as a global cont roller for all interac t ions (so as to control and
- if necessary - constrain, the behaviour of possibly self-interested agent s).

The remainder of this chapte r is organi sed as follows. Section 13.2 dis
cusses the basic char acteristics of th e agent par adigm and of multi-agent
systems, and motivates the need for software engineering methodologies for
multi-agent systems. Section 13.3 analyses a number of methodologies for
agent-oriented software engineering (paying particular attention to Gaia) and
shows the limitation of these methodologies when dealing with Internet ap
plica tions. Section 13.4 shows how a coordina tion model can be used as a
powerful framework for the analysis and design of multi-agent syst ems on
the Intern et. On this base, sect ion 13.5 sketches a new methodology for the
analysis and design of mult i-agent systems on the Internet. Section 13.6 con
cludes th e chap ter and outlines open issues and research directions in the
area.

13.2 Engineering Multi-Agent Systems on the Internet

13.2.1 What is a Multi-agent System?

The very notion of agent is one of th e most debated and controversial in
the fields of Computer Science and Artificial Intelligence. According to [643],
an agent is characterised by autonomy, social ability,"reactivity , and pro
activeness. Since we are mainly interested in Internet agents, here, we may
think of an agent as an aut onomous software entity which interacts with its

13. Agent-Oriented Software Engineering for Internet Applications 329

environment (the Internet) and with other agents pro-actively (that is, by
its own initiative) in order to achieve its own goals (typically accomplishing
some information gathering or dissemination task) .

These agents typically represent different users and thus there are many
of them in a given environment. Thus, multi-agent systems can be considered
as ensembles of autonomous agents, acting and working independently from
each other, each representing an independent locus of control of the whole
system. Each agent tries to accomplish its own task(s) and, in so doing, will
typically need to interact with other agents and its surrounding environment
in order to obtain access to information/services that it does not possess or
to coordinate its activities to ensure its goals can be met. In many cases,
however , a multi-agent system, as a whole, achieves more complex or wider
goals than the mere sum of its component agent's goals. As an example, in
a system composed of autonomous agents, each looking for computational
resources to exploit, a global load balancing of the activities can be achieved ,
despite the fact that no single agent explicitly worries about load balancing.
As another example, in systems for agent-mediated auctions, the opposing
forces of buyers and sellers (the former attempting to sell a good at a high
price, the latter attempting to buy it at a low-price) can naturally lead to a
reasonable pricing of goods .

o Beliefs

/ ..---------O Desires The Intra-Agent Viewpoint

(agent ' s own purpo se. internal structure. technology)

The Inter-Agent Viewpoint
(interaction with the environmentand with other agents)

Fig. 13.1. Intra-agent versus inter-agent viewpoints

The above perspective typically leads to the conception of a multi-agent
system as a society of agents, where the mutual interactions between agents
and with their environment leads to a useful global behaviour. Correspond
ingly, each agent of a multi-agent system may be observed according to two

330 F . Zambonelli, N. R . Jennings, A. Om icini , M. J . Wooldridge

different perspect ives (see Figur e 13.1): from th e inside , as an individual (soft
ware) system, with its own purpose/st ructure/technology (the intra-agent
viewpoint), and from the outside, as part of a society, interacting with oth er
individua ls, accessing resources, and exploit ing the social infrastructure (the
inter -agent viewpoint). The latter aspect is what makes a multi -agent system
somet hing of radical departure from more tradit ional (software) syste ms, and
is t herefore the main topic of interest in this chapter.

More precisely, we may describe a multi-agent system by abst racting three
funda mental concept s: (i) t he agents , t aken as individuals, (ii) the inte rac
t ions among agents , like communication acts [239, 240], and (iii) the mutual
dependencies between agent s and social relationships, or organisational rela
tionships [642, 236]. Clearl y, th e aspects related to th e inter-agent viewpoint
are represente d by th e last two concepts and characterise a multi-agent sys
tem as a society of inte racting individuals. In particular , we may think of (ii)
and (iii) as two different levels of social interaction. Speech acts and agent
communication languages [558, 239, 240] constit ute th e basic elements of
inte raction, while organisational relationships provide th e concept ual frame
work upon which each agent finds a well-specified position (or role) in the
society, which motivates and st ructures the interaction s among the agents.

It is th e organisation of agent s th at gives a multi-agent system more
than th e knowledge, competence , and abilit ies provided by all its individual
agents, and represent s the value-added of the multi-agent approach. In fact, it
is possible to change the behaviour of a multi-agent system without changing
t he const ituent agent s merely by altering the organisational relationship s
between them. Generally speaking, this means that the very essence of a
multi-agent system implies that the organisational structures, that is, t he
societ ies of agents, have to be taken into account as first-class entities, and
analysed, designed and implemented as such.

13.2.2 Engineering a Multi-agent System

In seeking to develop an agent-o riente d meth odology, the most obvious point
of departure is to consider object-oriented methodologies [82]. These meth od
ologies have gained widespread acceptance and use. In par ticular, the empha
sis of such techniques on both encapsulat ion and interaction among ent ities
suggest s tha t a multi-agent system could act ually be buil t by exploit ing an
obj ect-orient ed methodology [465, 103, 485].

However , object-oriented approaches fall short in support ing t he full no
tions of agents , and organis ations as first-class ent it ies [247, 330]. This is
hardly surpris ing since these represent the two main dist inguishing features
of mult i-agent systems with respect to object-based systems. Object-oriented
meth odologies have obj ect s as their basic conceptual model and therefore
have no support for capt ur ing reactive and proactive behaviour, nor for main
taining a balance between the two. Add itionally, there is no first class no
t ion of an organisat ional structure in the obj ect-oriented world . Organisat ion

13. Agent-Oriented Software Engineering for Internet Applications 331

structure in obj ect-oriented systems is implicit within public and private
qualifiers, and the "handles" that agents have on one-another . Where ent it ies
in systems represent real-world entities th at do have organisational relation
ships to one-another, this level of representation is inadequa te.

Consequently, we believe what is needed is the definition of suitable engi
neering methodologies that are specific for multi-agent systems. These need
to go beyond traditional obj ect-oriented approaches by providing explicit
support for the notions of agenthood and agent society.

13.2.3 Agent-oriented Analysis and Design

As with t raditional methodologies, agent-oriented analysis starts from the
definition of a system's requirement s and goals. The application dom ain is
studied and mod elled , th e computational resources available and the techno
logical constraints are listed , th e fund ament al application goals and targets
are devised , and so on. Then , the applicat ion' s global goals are typically
decomposed into smaller sub- goals, until th ey become manageable at the ab
st ract ion level provided by the approach adopted - which is when the design
phase comes in.

In particular , when dealing with th e analysis of an agent , we are no
longer limit ed to defining computable functionalities, as in procedure-oriented
methodologies, or set s of related services, to be encapsulated into an obj ect
or a component . Instead , since, by definition, agent s have goals which they
pursue pro- actively and in an autonomous way, agent-oriente d analysis must
identify the responsibilities of an agent . That is, the act ivit ies it has to carry
ou t to perform one or more tasks , which may include specific permissions
to access and influence the surrounding environment , as well as interactions
with th e ot her agent s in the application. Design is concerned with th e repre
sent ation of the abst rac t mod els resulting from the analysis phase in terms of
the design abstra ct ions provided by the meth odology. In agent -oriente d soft
ware engineering, this means responsibilities, tasks, and interaction pro to cols,
should be mapped onto agents , high-level int eractions and organis ations.

When assigned to an agent , a t ask defines both its inner structure, in
terms of it s environment representation and capabilities (from the comp e
tence required by the task), and its int eraction protocol (roughly, from th e
information required and provided and the actions to be performed to ac
compl ish th e task) . More precisely, an agent will be designed so as to be
abl e to represent that portion of the environment with which it is concerned
(its sphere of influence), to infer new information from this knowledge, and
to act somehow on the environment . Moreover , its interaction protocols will
be defined so as to enable the agent to contact other agents , get from them
the information it needs , transmit newly inferr ed inform ation to th em, and
coordinate its activities with th e other agents.

One may think th at "grown-up" obj ects may be charged with responsibil
ities, tasks and complex interaction protocols towards a useful represent ation

332 F. Zambonelli, N. R. Jennings, A. Omicini, M. .J. Wooldridge

of agents. However, this perspective misses what is peculiar to multi-agent
systems engineering, that is, the concept of an agent society, structured ac
cording to organisational relationships. When agents have to live in an organ
ised society, the analysis phase should identify not only the responsibilities
of the agents as individuals, (i.e., their individual tasks), but also their global
responsibilities to the multi-agent system as a whole , (i.e., its social tasks).

Individual tasks are associated with one specific competence in the sys
tem, related to the need to access and effect a specific portion of the environ
ment and carry out some simple task. Each agent in the system is assigned
one or more individual tasks, and the agent assumes full responsibility for
carrying out assigned tasks. From an organisational perspective, this corre
sponds to assigning each agent a specific role in the organisation/society. Of
course, multiple agents in a system can be assigned the same task/role.

In contrast , social tasks represent the global responsibilities of the agent
system. In order to carry out such tasks, several, possibly heterogeneous com
petences, will usually need to be combined. The achievement of social tasks
leads to the identification of global social laws that have to be respected
and/or enforced by the society of agents , to enable the society itself to func
tion properly and accordingly to the global expected behaviour.

To clarify the above concepts, let us consider the problem of engineering a
multi-agent software system to manage the review process for an international
conference. An individual task that easily comes out from the analysis phase
is picking up a given number of papers, and taking the responsibility for
reviewing them. The task can be defined as an individual one in that it can be
easily and naturally charged to a single agent, representing a referee. A social
task, instead, could be to ensure that each submitted paper has at least three
reviews , by three different referees of different institutions. This task requires
that a given number of entities have the competence for reviewing papers, and
that they can assume the responsibility for such a task (an individual one).
However, the task also requires that the reviewing competence and tasks are
coordinated and organised so as to ensure the required number and variety of
reviews. Therefore, the task cannot naturally be committed to a single agent,
but its achievement involves several of the agents in the system.

According to the above considerations, any methodology for agent-orient
ed software engineering must provide suitable abstractions and tools to model
not only the individual tasks of agents, but also the social ones.

13.2.4 Engineering Systems for the Internet

The choice of the Internet as the target environment for the multi-agent
system has a number of implications for the engineering of the system.

The first consequence of such a choice arises from the nature of the In
ternet as a global, distributed, and heterogeneous information system. Many
of the activities of the agents are concerned with accessing, understanding,

13. Agent-Oriented Software Engineering for Internet Applications 333

relating, modifying, and producing information. Apart from the abilities re
quired of the individual agents, this makes it easy and natural to design
multi-agent systems as information-based systems, where all the activities
are interpreted and modelled in terms of the information required or made
available . In particular, this also applies to the interactions of the agents. As
a result, methodologies supporting this view of multi-agent systems naturally
fit their engineering on the Internet.

Another feature which is intrinsic to the Internet is openness. One may
easily envision a (not so far) future where the Internet will host thousands
of multi-agent systems, some of which interact directly or indirectly, with
agents moving from one multi-agent system to another. This makes it diffi
cult to use methodologies that assume the multi-agent system is closed - that
is, that the number and the nature of the agents are known once and and
for all a priori. Rather, the ability to support openness - as a feature, rather
than as a problem - seems to be a mandatory requirement for any method
ology for Internet-based multi-agent systems. This obviously holds for other
typical Internet features, too: unpredictability, dynamicity, and unreliability.
In particular, this is relevant for large-scale multi-agent systems, where the
absence of centralised control makes it impossible to have a complete and re
liable static picture of the agent's environment, on which analysis and design
might be grounded on.

Furthermore, the properties of openness and unpredictability mean it is
simply not feasible to make the cooperativeness of agents a basic assump
tion in the analysis and design phases. Some agents may indeed be cooper
ative, accepting goals on behalf of other agents, for instance, or agreeing on
some protocol for cooperative interaction. However, many other agents will
be purely self-interested and will pursue their own goals.

A methodology for agent-based Internet applications should therefore be
able to support the engineering of MAS that incorporates not only well-known
agents with a cooperative attitude, but also previously unknown agents that
dynamically join the system (i.e., the agent society) and that are likely to
exhibit self-interested behaviour.

13.3 Software Engineering Methodologies for MAS

This section provides a brief overview of the state of the art in the area
of software engineering methodologies for MAS. In particular, we detail the
main characteristics of the Gaia methodology and outline its limitations with
respect to dealing with Internet-based applications.

334 F. Zambonelli, N. R. Jennings, A. Omicini, M. J . Wooldridge

13.3.1 State of the Art

A number of different methodologies have been proposed in recent years for
mod elling and engineering agents and multi-agent syst ems (see [321] for a
survey) .

As already observed, t radit iona l methodologies for analysis and design are
poorly suited for multi-agent systems becau se of th e fundament al mismatch
between the resp ective levels of abs traction. Despite this mismatch, however,
several proposals do take obj ect-oriented mod elling techniques or method
ologies as th eir basis. On th e one hand, some proposals directly extend the
applicability of object-o riented methodologies and techniques to th e design
of agent systems . For example, some proposals at tempts to directl y apply
the UML not ation to represent agent systems and th eir pat terns of interac
tion [350, 583]. However , th ese proposals fail to capt ure th e autonomous and
proact ive behaviour of agents , as well as the richness of their int eractions .
On the other hand, some proposals seek to extend and adapt object-oriented
models and techniques to define a methodology for use in multi-agent sys
tems. This can lead , for example, to ext ended models for representing agent
behaviour and their int eractions [103, 358, 485], as well as to agent-tuned
extensions of UML [465, 485]. However , alt hough these proposals can some
times achieve a good modelling of the au tonomous behaviour of agents and
of their interactions, they lack the concept ual mechanisms for adequately
dealing with organisations and agent societies.

A different set of proposals build upon and extend methodologies and
mod elling techniques from knowledge engineering [93, 94, 274]. These tech
niques provide formal and com positiona l modelling languages for the verifi
cat ion of system structure and function. These approaches are well-suited to
modelling knowledge- and information- orient ed agents (as are found in sev
eral Internet applications) . However , since thes e approaches usually assume
a centralised view of knowledge-based syste ms, they fail to provide adequate
models and support for the societ al view of multi-agent systems. The Com
monK ads approach [320] at tempts to overcome these limitations by explicit ly
introducing into th e methodology the abst ract ion of agent society. However,
thi s simply reduces to mod elling a society as a collection of interacting enti
ties , with no identification of concept s such as social tasks or social laws.

Other models and approaches attempt to model and implement multi
agent syst ems from an "organisat ion-oriented" point of view [247] . These help
pave the way towards agent-orient ed methodologies by explicitly conceiving
multi-agent systems as organisations [236] or as societies. However , th ese
proposals define an organisation merely as a collection of interacting roles,
thus failing, again, to deal with th e key point of social tasks.

13. Agent- Oriented Softwar e Engineering for Intern et Applications 335

13.3.2 The Gaia Methodology

Gaia is a methodology for agent-oriente d analysis and design that makes ex
plicit use of an organisational point of view. In Gaia , analysis and design are
well-separated phases (see Figure 13.2). Analysis aims to develop an under
standing of the system and its st ructure , in terms of the roles tha t have to be
played in th e agent organisation and of th eir inte rac t ions, without any refer
ence to implement ation details. The design phase aims to define the act ual
st ructure of the agent system, in terms of the agent classes and inst ances
composing th e system, of the services to be provided by each agent, and of
th e acquaintances' structure.

Requirements

Statements

Roles Model

Agent Model

Interactions Model

Services Model Acquaintance Model

Fig. 13.2. The basic concepts of the Gaia methodology

In more det ail , the analysis phase aims to identify what the act ual organ
isation of th e multiple agents should look like. It does this by decomposing
the system into abst ract "loci of cont rol"; i.e., the roles to be played in the
organisation, and the way in which they interact accordingly to specific pro
tocols (this, respectively, defines the roles mod el and interactions modeli , In
particular, Gaia suggests the following steps:

1. Identify the roles in the system (these typically corres pond to individuals
within an organ isation, departments , or organi sations themselves) and
define a list of the key roles in an informal description language.

2. For each role, identify th e associated protocols, i.e. , t he pat terns of in
teraction that are likely to occur between roles.

3. Elaborate the complete roles model and interactions mod el and, if re
quired , iterate the previous stages.

336 F. Zambonelli, N. R. Jennings, A . Omicini, M. J. Wooldridge

Th e expected outputs of the analysis phase are a fully elaborated roles model
- describing each role in terms of responsibilities, permissions , int eraction pro
tocols, and activities - and an interact ions model - describing each protocol
in terms of data exchanged and partners involved.

Th e design phase starts from the models defined during the analysis phase
and aims to define the actual agent system in such a way that it can easily
be implemented. To this end, the design phase has to decide which classes of
agents (and how many) have to play the roles identified during th e analysis
phase, which services agents must provide to fulfill their role, and what is the
actual topology of the interactions that flows from the interaction and the
agent models. In more detail , the design phase involves the following stages:

1. Identify the agent model , that is, aggregate roles into agent types and re
fine, to form an agent type hierarchy, and evaluate the number of required
instances for each class;

2. Identify th e services that agents have to provid e in order to fulfill their
assigned roles, by analysing the activities and responsibilities, as well as
the protocols defined by each of the roles;

3. Develop the acquaintance model, to identify inefficiencies in th e design
and , if required, iterate the previous stages.

The expected output of the design phase is t he actual arch itecture (i.e., or
ganisat ion) of the agent system, which can then be implemented using more
tradi tional techniques (such as object-orientation and component-ware).

13.3.3 Applying Gaia

To illustrate the prin ciples of the Gaia methodology, we will consider how it
can be applied to the task of developing a software system to support the task
of man aging the review pro cess of an international conference [161] . Once the
submission deadline has passed, th e program committee (PC) has to handle
the review of the papers ; contacting potential referees and asking th em to
review some of th e papers by a given deadline. After a while, reviews come
in and they are then used to decide about the acceptance/rejection of the
submissions. The pro cess is essent ially a workflow: the activities of a numb er
of different individuals have to be synchronised, data has to be exchanged,
and each person involved may be required to perform different activi ties
depending on the global status of the process. The whole pro cess can be
effect ively supported by means of a multi-agent syst em (as in ADEPT [333]) ,
which assists with workflow management .

Depending on th e size of the conference (i.e., the numb er of submissions
it receives) , different ways of handling the review process can be adopted.
Let us consider th e case of a large conference, in which the PC Chair does
not handle the assignment of individual papers to referees and in which the
PC Members need to recruit external referees in order to assist th em with

13. Agent-Oriented Software Engineering for Internet Applications 337

their reviewing task. In this organisation, the P C Chair can simply partit ion
the submitted papers and then send one of the par ti tions to each of the P C
members. The du ty of each PC Member is t hen to find three different referees
for each of the pap ers in their assigned par t ition , collect the corres ponding
reviews, and send them back to the P C Chair . The P C Chai r eventua lly
collects and ranks the reviews.

In Gaia, the first step of the analysis ph ase is to ident ify the roles involved.
In this case , the following roles are easy to identify:

- paper partit ioner: in charge of par ti tioning the pap ers and assigning t he
par ti tions to P C members according to some criterion (for example, based
on load balancing or competences of PC Members);

- revie w allocator: in charge of finding three reviews for each of the papers
in a given partition, and collat ing the reviews that are returned ;

- revie wer: in charge of receiving a paper and reviewing it by the stated
deadline;

- review collector: in charge of collect ing all th e reviews, ranking them and
deciding upon acceptance and rejection.

For each of these roles, the assoc iated permissions, activit ies, and respon
sibilit ies need to be identi fied. The role reviewer , for example, requires the
permi ssion to rea d the paper it is assigned for review and the permission to
write the corresponding review form. Its activit ies involve receiving a paper
to review, reviewing it in due time, and sending the completed review form
back. Its main responsibility is to ensure that the comp leted rev iew form is
sent back on time.

The interact ion model follows very naturally from the definition of the
roles. It basically amounts to specifying which pro tocols involve which role
pairings and what information is exchanged during the execut ion of the pro
toco l. By means of illustr ation , consider the exemplar protocol that involves
the reviewer (as initiator of the protocol) and the review allocator in which
the reviewer checks the correctness of the completed review form and sends
it back to the review allocator.

Having completed th e analysis ph ase, th e first ste p of the design phase is
to assign roles to agents (definition of th e agent model). In thi s applicat ion,
this is a t rivial mapping for most of the roles since the agent model naturally
derives from the real-world organisation: one P C Chair agent will assume
both the roles of paper par t it ioner and review collector. One agent for each
of the P C Memb ers will assume the role of review allocator. Also, P C Member
agents are likely to assume the role of reviewer , for those pap ers they review
by themselves. Each external referee will be associated to an agent that will
play the role of reviewer (for each pap er that he is assigned).

From the agent model, the service model specifies which services the agent
must implement to enable all the roles it has to play to be fulfilled . This
amo unts to transforming the abstract activit ies that the roles have to perform

338 F . Zambonelli, N. R . Jen nings, A. Omicini , M. J . Wooldridge

(as identified in the analysis phase) into mor e coherent blocks of computa
t ional activity. In the case of the reviewer role, for example, the only required
service is the one that start s when the pap er is received from the review al
locator and then executes in order for the paper to be actually reviewed, and
eventually sends back the comp let ed review form.

Finally, the acquaintance model is constructed. This model, which simply
identifies the commun ications pathways that exist between agents, provides
a check of whet her the st ructure of the interactions in the system are poorly
organised. In this case, there are no obvious bot tlenecks since the structure
of the agent organisation closely resembles that of its real-world counte rpart.

13.3.4 Limitations of the Gaia Methodology

Gaia was intended for use in closed systems of distributed problem solvers, in
which:

- the organisat ional st ructure of the system is static; i.e., neith er the number
of agents , nor their inter-agent relationships change at run -time;

- agents exhibit globa lly collaborative behaviour: they have a globa l goal in
mind and do not exhibit competitive or self-interested behav iour .

However , these characterist ics ma ke Gaia , as it cur rent ly stands , unsui table
for Intern et applications for the three main reaso ns that are dealt with in the
remainder of this sub-sect ion. Ea ch limitation is illust rated in the cont ext of
our conference management scenario.

No Open Systems. Gaia requires that all agents in a system, as well as all
interaction protocols between them, are known a priori . However, there are
cases, especially on t he Internet , in which two agents need to interact wit h
one another , alt houg h they do not know each ot her at design time and they
do not have a preset interaction protocol for so doing.

In our application example, an external referee may want to rely on his
own agent - well t rusted and with a behaviour t uned to his own personal
needs - for all its activit ies. Therefore, he may refuse to use an externally
provided agent and, instead , insist that the PC member agent interacts di
rectly with his personal agent (in order to receive th e pap ers to review and
to send them back to the P C Member agent). This type of sit ua t ion is likely
to become increasingly common as personal agent s become more widespread .

In a system designed with Gaia , eit her the personal agent explicitly adver
tises itself and completely complies with the int eraction protocols of the P C
member agent or no interaction could take place. For example, Gaia would
be unable to model a situation in which a P C Member agent has to contact
an external referee agent to dynamica lly discover its area of competence.

13. Agent-Oriented Software Engineering for Internet Applications 339

No Self-interested Agents. Gaia does not explicit ly deal with sit uat ions
in which int eractions are non-cooperative in nature. However , the Internet is
populated predominantly by self-inte rested ent ities that compete to achieve
their own objectives. It should be noted that Gaia does not pr eclude the
developm ent of such systems . Rather , it provides no explicit mechanisms for
cont rolling or monitoring for such situations.

In th e conference management example, if the syst em design does not
account for self-interested behaviour then: (i) an aut hor could make it s own
agent assume t he role of reviewer for his own pap er or (ii) a reviewer could
obtain a significant number of papers to review and thus may exert a strong
influence over the nature of the conference.

No Social Laws. More generally, perhaps th e main drawback of Gai a is
that it does not identify an organ isation of agents as a society in which there
are global laws that have to be respected by the society of agent s.

As already stated , the definition of a multi-agent system has to rely not
only on th e individual task of each agents , bu t on the social task too and on
the enforcement of the related social laws.

In the conference management example, a sit uation in which a reviewer
receives too many (or too few) papers to review should be avoided. However ,
such situa t ions can be difficult to monit or. On the one hand, an agent may
be likely to exhibit self-inte rested behaviour and it may also lie in order
to review either a lot of pap ers (to increase their influence in set t ing the
scient ific program) or a very few (to do less work) . On the other hand, when
P C Members autonomously allocate referees, one has to enforce th e cont rol
of how many papers a single referee has received , possibly from differen t
PC Members. Th e enforcement of this cont rol requires specific interaction
protocols that may impact in the definition of both PC Chair , P C Members,
and Reviewer agents.

Gaia , by lacking the abst rac t ion of a social task, does not explicitly model
social laws and, as a consequence, eit her complete ly misses them or leaves
th em implicit in the definition of each agent .

13.4 Exploiting a Coordination Model

This sectio n introduces the concept of a coordin ation model [269] and shows
how it can be exploited in the conte xt of designing multi-agent systems for
use on th e Internet. In particular , a coordination model makes it possible to
enact social laws in the system and to cont rol the execut ion of foreign and
self-inte rested agent s.

13.4.1 Coordination Models

In genera l terms, coordination is the ar t of managing interactions and de
pend encies among activit ies, and a coordination mod el provid es a formal

340 F . Zambonelli, N. R. Jennings, A. Omicini, M. J. Wooldridge

framework in which the interaction of a set of concurrent activities can be
expressed [269, 393].

In computer science, in its broadest conception, a coordination model
deals with the creation and destruction, the communications, the distribution
and mobility in space , as well as synchronisation over time [163], of a set of
active software entities, whether processes, objects, or agents [482]. However,
in most cases, a more restricted (and more manageable) view of a coordination
model is adopted, as the framework dealing with the communication and
synchronisation of a system of autonomous software agents.

From this latter perspective, a coordination model can be thought as
consisting of three elements:

- the coordinables: the entities whose mutual interaction is ruled by the
model , e.g., the agents in a multiagent system;

- the coordination media: the abstractions enabling agent interactions, as
well as the core around which the components of a coordinated system are
organised. Examples are semaphores, monitors , channels, or more complex
media like tuple spaces, blackboards, etc.

- the coordination laws: define the behaviour of the coordination media in
response to interaction events. The laws can be defined in terms of a com
munication language (a syntax used to express and exchange data struc
tures) and a coordination language (a set of interaction primitives and their
semantics)

According to [482], coordination models can be divided in two classes:
data-driven and control-driven.

In control-driven coordination models, (e.g., Manifold [39]) , coordinables
(agents) interact with one another and with the ext ernal world via well
defined input/output ports, connecting the agents , and actually representing
the coordination media. The observable behaviour of the coordinables, from
the point of view of the coordination media, is in terms of state changes and
events occurring on th ese ports. The coordination laws establish how events
and state changes can occur and how they propagate though the coordination
media. Therefore, the coordination media basically handle the interaction
space by controlling how the flux of events connects the coord inabies and
how it propagates in the system, with no concern for the data exchanged
between coordinables.

In data-driven coordination models, (e.g., Linda [267]) , coordinables in
teract with the external world by exchanging data structures through the
coordination media, which basically acts as a shared data space. The observ
able behaviour of the coordinables, from the point of view of the coordination
media, is one of entities requesting data (either reading or extracting it from
the dataspace) . The coordination laws determine how data structures are
represented and how they are stored, accessed, and consumed. Therefore, the
coordination media basically handles the interaction space in terms of entities
interacting via data exchange and synchronisation over data occurrences.

13. Agent-Oriented Software Engineering for Internet Applications 341

Although not all coordination models provide for a way of programming
the coordination laws, which are then buil t into the coordinat ion media, sev
eral recent proposals define flexible coordination media in which the default
coordination laws can be changed and adapted to the specific coordination
needs of a system [472, 116].

We refer the interested reader to Chapters 2 and 3, respectively, for a
more detailed and formal charac terisation of coordination models and for a
surve y on several cont rol-driven and da ta-driven models. Wh at is of inter
est here is that a coordina t ion model , (whether data- or cont rol- driven) ,
models a system in terms of inter-agent interactions occurring occurring via
coordinat ion media embedding coordination laws, possibly programmable, to
which all the int eractions have consequent ly to conform. Adopting th e above
mod elling in the analysis and design of multi-agent syste m prov ides a means
of dealing with some of the shortcomings of th e Gaia methodology.

Although both control-driven and data-driven models can be adopted to
handle multi-agent syst em interactions, data-oriented models have an addi
tional , important , advantage. In th e Internet , in the majority of cases, agent s
exhibi t an "information-oriented" view of their world (as argued in Subsec
tion 13.2.4). Therefore, adopt ing a data-driven coordina t ion model, which
ensures all interactions occur via shared dataspaces, is a natural choice for
such an information-ori ent ed view of interaction .

The remainder of this section highlights how a coordina t ion model per
spective helps alleviate some of Gaia 's aforement ioned shortcomings.

13.4.2 Open Systems

When a coordina tion model is adopted , the coordination media mediates all
int eractions occurring between agents , and influences the effect of the inter
action events according to its embedded coordination laws. As a consequence
of this mediation, inter-agent interactions are intrinsically less coupled: for
instance, a message sent by an agent crosses the coordina t ion media before
being delivered to ano th er agent . If th e coordination laws in the coordination
media can programmed so as to embed any kind of behaviour or intelligence,
the coordina t ion media themselves can provide for a very loosely-coupled
model of interactions. On the one hand, two agents can interact even if th ey
do not know each other: th e coordinat ion media can take care of virtually
connect ing agent s by appropriate ly delivering messages. On th e other hand,
two agents can interact even if they are heterogeneous in terms of their com
munication language or their interaction protocols: the coordinat ion media
can handle any necessary translat ion of messages and adaptation of pro to cols.

From the analysis and design point of view, the presence of the coor
dination media implies th at it is no longer necessary to determine all th e
interaction links between all the possible agents that th e application will
meet - which a priori rules out the possibil ity of unforeseen agent arrivals
and to define all th e possible interaction protocols. Instead , provided th ere is

342 F . Zambonelli, N. R. J ennings, A. Omicini, M. J . Wooldridge

an appropriate design of th e behaviour of the coordination media: (i) some
of the interaction links between agents can be left unbound, by making th e
coordina t ion media dynamically connect the int eraction links to agent s, ac
cording to it s coordination law; (ii) agents do not need to be a priori aware of
all possible interactions protocols, because th e coordina tion can embed the
functionality necessary to act as a "t ranslator" in the interaction between
heterogeneous agents.

In the conference management example, and with reference to the proto
col involving th e PC Member agent and t he Reviewer agent in assigning a
pape r to review, the design should no longer consider that the PC Memb er
agent will necessarily have an interaction link with a priori known reviewer
agents. Instead , th e design can leave th e interaction link unbound, and t he
coordina t ion media can be programmed so as to dynamically connect the
link to the agent th at will assume the role of reviewer. Then, th e PC Mem
ber agent does not have to worry about wheth er t he reviewer agent s is a
known reviewer agent or an unknown personal agent of the referee.

13.4.3 Self-interested Agents

The coordination media , by mediating all int eractions between agents, is
intrinsically able to monitor and influence all int eractions. Therefore , it can
also be programmed in such a way as to constrain the behaviour of the agents
during their int eractions, for example by forbidding agents to send a specific
kind of message to another agent. This can occur either by simply denying th e
access of th e agents to the coordination media , or by modifying the semant ics
of the agents ' interactions , for example by forwarding a forbidden message
to a controller agent inst ead of deliverin g it to the original recipient.

This charac terist ic of the coordination media makes it comparatively easy
to monitor and identify the presence of self-interested or opportunist ic be
haviours in t he multi-agent system. Therefore, whenever th ese kinds of be
haviour are likely to be damaging to the multi-agent system, the coordination
media can be programmed so as to (i) recognise the appearance of such dam
aging behaviours and, thereafte r, (ii) eit her forbid th e access to the coordina
t ion media by the offending agent or simply constrain / rnodifiy the semantics
of their accesses in order to make it harmless.

In the conference management example, a self-inte rested Reviewer agent
th at tries to collect too many pap ers to review, can be simply detected by
the coordination media and can be excluded from further execut ing the in
teraction protocol needed to obtain papers.

13.4.4 Social Laws

Since societies of any kind are grounded on the interaction among the individ
ual components , it seems natural to identify the space of agent interactions

13. Agent-Oriented Software Engineering for Internet Applications 343

as the place where social laws have to be represented and embodied. The
interaction space has to be recognised as an independent design space for
multi-agent system design, and abstractions and tools are needed to enable
agent interaction to be shaped according to the social laws. If the interaction
space is not recognised as a primary abstraction, (as is the case in Gaia),
social laws have to be left implicit within the definition of roles and agents.
However when the interaction space is recognised as the place where social
tasks have to be modelled and social laws enforced , a coordination model is
the appropriate conceptual abstraction around which to build a society of
agents.

The adoption of a coordination model naturally leads to conceptualising
a multi-agent system as a society, in which the individual tasks of agents
have to be modelled separately from the social tasks. The definition of social
tasks, in particular, instead of being mixed in the definition of roles and
agents, find an appropriate model in the definition of the behaviour of the
coordination media. In particular, by having the capability of monitoring
and controlling all interactions between agents, the coordination media can
take care of enforcing whatever social laws have to be respected by the agent
system, in its entirity, in order for the social tasks to be met .

By considering the conference management example, we can make the
concept of social laws clearer. The review process, to be effective and polite,
has to be subject to several laws. For example: an author cannot act as a
referee for their own paper; a referee should not be assigned to review two
different papers of the same author; and the workload should be evenly dis
tributed between the organising committee. All the above constraints cannot
simply be reflected in the definition of a few roles and protocols. Instead,
they are likely to impact the whole organisation of the conference. Therefore,
once the social tasks are identified, the coordinat.ion media can become the
place where the interactions between agents are appropriately monitored and
controlled, so as to make agent. interaction respect global goals.

13.5 Toward a Coordination-oriented Methodology

The adoption of a coordination model int.roduces a further abst.raction into
the Gaia methodology that necessarily influences the way a multiagent system
is analysed and designed (see Figure 13.3).

In the analysis phase, and with reference to the terminology adopted in
Gaia, the characteristics of the multi-agent system have to be analysed and
understood so as to identify not only the roles to be played in the system and
their required interactions, but also the social laws to be respected by the
multi-agent system. In other words , the analysis should clearly identify t.hose
aspects of the system that are spread across multiple roles and protocols,
and therefore properly belong to the multi-agent systems as a whole, i.e., as
a coherent organisation of agents with an expected global behaviour.

344 F. Zambonelli, N. R . Jennings, A. Omicini, M. J. Wooldridge

Requirements

Statements

Agent Model Services Model

'--cr--,-----") Analysis Ph."

Behavior of the) Design Phase
Coordinaiton Media .

Fig. 13.3. The basic concepts of a coordination-oriented methodology

The expected output of the analysis phase are well-defined role and inter
action models, in addition to a well-defined model of social laws. The latter
specifies the social laws that must be respected and enforced by the system
if it is to work properly.

In the design phase, the role model and the interactions model drive the
design of individual agents and of their internal structure (i.e., with reference
to the Gaia methodology, of the agent and service models). In addition, social
laws, together with the identified interactions model, drive the definition of
the actual expected behaviour of the coordination media in response to the
interaction events of the agents. Note that, because a methodology centered
around a coordination model leads to an agent system intrinsically open and
with dynamically bounded interaction links , the acquaintance model (defined
by Gaia) is almost meaningless.

The expected output of the design phase should produce an agent and a
service model detailed enough for the agents to be implemented (or designed
making use of traditional object-oriented techniques). In addition, the be
haviour of the coordination media should make it possible to implement the
coordination media, whatever media it is actually exploited.

A coordination-oriented methodology obviously leads to a design specifi
cation of the coordination media that can very easily implemented by making
use of a programmable coordination system, such as MARS [116], TuCSoN
[472], and Law Governed Interactions [425], in which the concepts of me
diated interactions via a programmable media have already found a clean
and efficient implementation. Otherwise, should the multi-agent system rely
on a traditional communication infrastructure (e.g., TCP lIP based message
passing), the actual implementation of the system should also include the
implementation of the infrastructure needed to make all interactions compli-

13. Agent-Oriented Software Engineering for Internet Applications 345

ant with the expected behaviour of the coordination media. For instance, this
can be done by associating (even dynamically) specific communication stubs
to the agents in the system, as was done , for example, in the FishMarket
project [460].

13.6 Conclusions and Future Work

This paper has analysed the main issues that arise in engineering multi-agent
systems for the Internet. Specifically it has shown how a coordination model
can act as a powerful abstraction for both the analysis, design, and actual
development of multi-agent systems.

An analysis of the state of the art in the area has shown that only a
few complete and well-grounded methodologies for the analysis and design of
multi-agent systems have been proposed so far . In particular, we focused on
the Gaia methodology. However, as it currently stands, Gaia falls short when
dealing with open agent systems. It does so because it lacks the necessary
abstractions to deal with the dynamic arrival and departure of agents , and
with self-interest agents. More generally, we have identified how Gaia does
not support the concept of a multi-agent system as a society, in which agents
have to act accordingly to specific social laws.

The adoption of a coordination model as the conceptual abstraction to
be exploited in the analysis and design of multi-agent systems for the In
ternet, enables open systems, self-interested agents, and social laws, to find
a suitable accommodation. On this basis, we have shown how the method
ological concepts introduced by Gaia can be effectively complemented by the
concepts of social laws and coordination media, leading to the definition of a
coordination-oriented methodology suitable for multi-agent Internet systems.

In the latter part of this chapter , we identified the basic concepts and
guidelines to be integrated in a methodology for the analysis and design of
multi-agent systems on the Internet. Naturally, the sketched coordination
oriented methodology is far from being well-defined ; it requires a more de
tailed specification, supported by appropriate formalism. In addition, there
are several other issues - not specifically addressed by this chapter - that a
software engineering methodology for multi-agent system on the Internet has
to take into account. In particular:

- Object-oriented technologies have already recognised the need for re-use
in object-oriented software architectures, and exploited them via design
patterns [258] . In the area of agent-oriented programming and multi-agent
systems, we expect the same could apply with regard to the most widely
used patterns of interactions between agents (see Chapter 14) and, even
more generally, to the most widely used patterns after which a society of
agent can be shaped. In other words, we expect agent-patterns to catalogue

346 F . Zambonelli, N. R. J ennings, A. Omicini , M. J. Wooldridge

widely used social laws , to be exploited to re-use well-known behaviours of
the coordination media .

- Interacting in open environments, such as the Internet , requires authenti
cat ion mechani sms th at allow agent s to recognise each other, and cont rol
policies for enabling safe intera ctions (see Chapter 11). Therefore, analy
sis and design methodologies should provide appropriate abstrac tions to
analyse secur ity issues and define secur ity policies. In this context, it is
important to investigate wheth er a coordination mod el could be a suitabl e
abst rac tion to define and handle secur ity issues, by assuming th e coordina
t ion media embed, in addit ion to embed t he social laws, also the "secur ity
laws" .

14. Reusable Patterns for Agent Coordination

Dwight Deugo" , Michael Weiss2
, and Elizabeth Kendall3

1 School of Computer Science
Carleton University, 1125 Colonel By Drive, Ot tawa, Ontario, Canada, K1S 5B6
deugo@scs .carleton.ca

2 School of Computer Science
Carleton University, Ottawa, Canada
weiss@scs.carleton.ca

3 Sun Microsystems Chair of Network Computing, School of Network Computing
Monash University Peninsula Campus McMahons Rd. Frankston , VIC 3199 Aus
tralia
kendall@infotech.monash .edu.au

Summary.

Much of agent system development to dat e has been done ad hoc.
These problems limit th e extent to which "industrial applications" can be
built using agent technology, as the building blocks, reusable techniques,
approaches and architectures have either not been exposed or have not yet
been fully elaborated. In the mid 80's, supporters of object-oriented tech
nology had similar problems. However, with the aid of software patterns,
objects have provided an important shift in the way developers successfully
build applicat ions today. In this paper, after describing an agent pat tern 's
generic format , we ident ify a set of software pat terns for agent coordina
tion .

Much of agent syste m development has been done on an ad hoc basis [92],
resulting in many problems [349, 210]:

1. lack of agreed definition of an agent
2. duplicat ed effort
3. inabili ty to sa tisfy indust rial strength require ment s
4. difficulty identifying and specifying common abstractions above the level

of single agents
5. lack of common vocabulary
6. complexity
7. research presents only problems and solut ions

These problems limit the extent to which " indust rial applicat ions" can
be built using agent technology, as the bu ilding blocks , reusable techniques,
approaches and architect ures have either not been exposed or have not yet
been fully elaborated. In contrast, agent and agent -based system researchers
are starting to understand many of the principles , facts, fundamental con
cepts, and general components [626] . Take for example, the call for pap ers of
the workshop on Mobile Agents in the Context of Competition and Cooper
at ion [420] at Autonomous Agents '99. We found comments such as, "we are
uninter ested in papers that describe yet another mobile agent system ." The

348 D. Deugo, M. Weiss, E. Kendall

question we had afte r reading this was, if we know so much about agents and
agent-based systems, why do we have the above probl ems?

In the mid 80's , supporters of obj ect-orient ed technology had similar prob
lems. However , with the aid of software patterns, objects have provided an
important shift in the way developers successfully build applications today.
Since we believe that agents are the next major software abst raction, we find
it essential to begin the effort of documenting that abst rac t ion so that others
can share in the vision. Pat terns provide a means of docum enting the building
blocks in a format already accepted by the software engineering community.
Pat terns also have the added benefit that no unusual skills, language features,
or other tricks are needed to benefit from them. As with obj ects , software
pat terns can be an enabling technology for agents.

In this chapter, afte r describing a pattern 's generic format , we identify
a set of software patterns for agent coordination. Agent patterns generally
fall into architect ural, communication, travelling and coordinat ion patterns.
Typically, agent coordination mechanisms are based On a master-slave or a
contract-net like architecture, but the reasons for either choice are rarely
made explicit. What 's missing are the forces influencing the choices.

Therefore, before our discussion of particular patterns, we identi fy in sec
t ion 14.2 an initi al set of global forces surrounding the tas k of coordination.
These forces identify the trade-offs that push and pull solutions proposed
by coordinat ion patterns. Th ey help you, the developer , make a more in
formed decision about when and when not to use a particular coordinat ion
mechanism. Th ese forces may not be applicable to all coordination patterns.
However , they are ones th at are important for anyone developing coordina
tion patterns to consider. In sect ions 14.3 through 14.7, we select different
combinat ions of forces; place them in coordinat ion context s that give rise
to specific problems; and solve the problems, generat ing our initi al set of
coordinat ion pat terns .

14.1 Software Patterns

Software patterns have their roots in Chris topher Alexander 's work [22] in the
field of build ing ar chitecture . He proposed that a pattern is a three-part rule
th at expresses a relation between a certain context , problem and solution.
Although there are different formats for patterns today, it is generally agreed
th at the mand at ory parts includ e th e following [413] :

- Name: As the saying goes, a good name is worth a thousand words and
a good pat tern name , although just a shor t phrase, should contain more
information than the numb er of words would initi ally suggest. Would the
word agent be a good pattern name? The answer is no. Although it meane
much more than the single word suggests , it has too many meanings! One
should strive for a short phrase that still says it all.

14. Reusable Patt erns for Agent Coordination 349

- Context: A description of a sit uat ion when th e pat tern would apply. How
ever, in itself the context does not provide the only determining factor as
to the situa t ions in which the pat tern should be applied. Every pattern
will have a number of forces that need to be balanced before applying the
pat tern . The context helps one determine the impact of the forces.

- Problem: A precise statement of t he problem to be solved. Think from
t he perspective of a software engineer asking him/herself, How do I?
A good problem for a pattern is one that software engineers will ask them
selves often.

- Forces: Description of items t hat influence the decision as to when to apply
th e pat tern in a context . Forces can be thought of as items that push or
pull the problem towards different solutions or t hat ind icate trade-offs t hat
might be made [185].

- Solution: A description of the solut ion in the context that balances th e
forces .

Optional parts include resulting context , rationale, related patterns, ex
amples, code examples, indications , aliases , known uses and acknowledge
ments .

A good pattern provides more than just the details of these sect ions; it
should also be generative. Patterns are not solutions; rather pat terns generate
solut ions. You take a "design problem" and look for a pattern to apply in
order to create the solution. The greater the potential for application of a
pattern, the more generative it is. Although very specific patterns are of use,
a great pattern has t he potential for many applicat ions. For this to happen,
pattern writ ers spend considerable time and effort attempt ing to und erst and
all aspects of their patterns and the relationships between those aspects . This
generative quality is difficult to describe, but you will know a pattern that has
it once you read it . It is often a matter of simplicity in the face of complexity.

Although patterns are useful at solving specific design problems, we can
enhance t he genera t ive quality of patterns by assembling related ones, posi
tioning them among one anot her to form a pat tern language. Pat tern lan
guages can help a developer to build entire systems. For example, an individ
ual pat tern can help you design a specific aspect of your agent, such as how
it models its beliefs, but a pattern language can help you to use those beliefs
to bui ld agents th at plan and learn.

The development of agent pattern languages is importan t for agent pat
te rns to be successful. Forcing each pattern to identify its position within the
space of exist ing pattern s is not only good practice, it is also good resear ch.
This act ivity is not only helpful to you as a pat tern aut hor , but to all those
other software engineers who will use your pat terns to develop their systems.

350 D. Deugo , M. Weiss , E. Kendall

14.2 Global Forces of Coordination

Forces identify th e different typ es of criteria engineers use to justify their de
signs and implementations. For example, computer scient ist s usually consider
the force of efficiency, along the dimensions of time and space, when develop
ing algorit hms. Forces will both positively and negatively interact with one
another, even within the same crite rion. Time and space is a good exam
ple. Database access would be very fast if the database was maintained in
memory. However , this solution is usually inappropriate due to the amount
of data. Is it better for the dat abase to provide fast access for limited data
or slower access for a large amount of data? The answer is, it depends. The
conflict between the forces and between the forces and the goals surro unding
the problem reveal the intricacies of th e problem and indicate the trade-offs
that must be considered by the pa ttern's solut ion.

In this section, we discuss a number of forces t hat we believe impact many
coordina t ion pattern s. Coordination "refers to the state of a community of
agent s in which act ions of some agents fit in well with each oth er , as well as
to th e process of achieving this state. .. Two manifestations of coordinat ion
that play par ticularly important roles in Distributed Artificial Intelligence
(DAI) are competit ion and coop eration." [626], pp 598. Our goal here is to
propose an initial list of forces for agent coordination patterns aut hors to
consider when writing their patterns . We expect this list to be cont inua lly
enhanced with new forces as th e issues, factors and conflicts involved in agent
coordination are bet ter understood.

14.2.1 Mobility and Communication

Agents t hat are mobile and must coordinate th eir activiti es will need to
communica te with other mobile agents , statically located agent s, resources
and hosting environments.

For two agents to communicate, at least one of th em needs to know where
the oth er one is locat ed. Although the initial sender must know where to
send the message, it can include its locat ion in th e message so tha t t he
receiving agent can respond. There are potentially three solutions to th is
problem. One solut ion is for an agent to carr y eit her th e itineraries of the
other agents or a directory of where th ey are located. The second solut ion is
for it to use a lookup service to find the locations of the ot her agents. Another
solution is to have an agent broad cast its message to all environments , so th at
eventually th e desired agent will receive t he message. All solut ions have th eir
own problems.

The first one requires th at mobile agents carry ext ra dat a with them on
their trips to oth er environments . The extra size of an agent implies that it
will take longer to t ra nsport and that it will consume more memory withi n
th e environments. This situation may not be a problem for agent systems
that have very few agents (mobile or stat ic). However , this solut ion may not

14. Reusabl e Patterns for Agent Coordination 351

even be possible due to memory limitations in an agent system containing
thousands of agents that need to communicate and coordinate with One an
other.

The second solution involves agents informing a lookup service of where
they are current ly locat ed. It also requires that oth er agent s using the lookup
service are able to find those locations. The problems with this solution are
the latency of the network and the possible failure of the service. In highly
mobile agent systems, agents may move so often that the lookup service is
never in sync with where the agents have gone. Therefore, when an agent
asks where anot her one is locat ed , it gets an old address rather than the new
One. Even worse, if t he lookup service fails, an agent will not be able to find
the location of any agent.

The final solution is not without its performance and security probl ems
eit her. Sending a message everywhere takes t ime and effort by the sending
environment and consumes t ime, effort and space in the receiving environ
ment . Most of this is wasted since th e message is actua lly only for One agent .
Wh en the ratio of agent s to environments becomes very large, this solut ion
is impractical. This becomes even mor e true when the overhead of managing
the secur ity of the messages - making sure a message reaches th e correct
agent - is considered.

Even if agents know where ot hers are located , any coordination solution
must deal with latency and failure of messages over the network. Messages
can get lost or take a long t ime to reach their destin ations.

On One hand, you want to have fast , reliable messaging between coordi
nating mobile agents. However , you also need a solut ion that does not in
creas e the memor y requirements of agents and their execut ion environments .
You also need one that does not involve complex failure and securi ty mecha
nisms to handle lost or slow messages, failures in lookup services and message
bro adcasts .

14.2.2 Standardization

The computer indust ry has seen the benefits of standardizat ion. Java and
XML are two good examples of it in action. Although much of agent frame
work developm ent done today is in Java [427], th ere are still many differences
in the impl ementations of the following: environment s, execut ion and man
agement of agent types, management of ident ifiers, persistence, navigation,
communicat ion, the interaction with external resources and secur ity. [514].
The OMG's Mobile Agent System Interop erability Facility (MASIF) [419]
and th e Foundation for Int elligent Physical Agents (FIPA) [155] are two at
tempts at standardizing agent technology. Agent communication is outside
MASIF's scope, leaving it exte nsively addressed by CORBA. Coordination is
also not standardized . The implication is that agents of different types and
implemented using different languages will potentially need to coordinate
with one another, each using their own cont rol mechanisms .

352 D. Deugo, M. Weiss, E. Kendall

Assuming for the moment that agents can send messages between one
another, there is also th e question of the content of a message.

On one hand, it would be good to have a standardized coordination and
communication protocol. However , th is takes a great deal of time and money
to put into place and dedicated individuals to drive the process . The Mobile
Agent List [427] indicates that there are at least sixty-four different mobile
agent fram eworks, as of September 29, 1999. Therefore, it would be difficult
to get all of the associated designers to agree to an expensive update of their
systems, even if they could agree on a reference model.

14.2.3 Temporal and Spatial Coupling

Assuming that agents have the ability to communicate with one another,
developers must also consider the spatial and temporal coupling between the
agent s in their systems. Spatially coupled models require that agents share a
common name space [114]. Therefore, agents can communicate by explicitly
naming the receiving agents . In order to support this abili ty, a naming or
locating service is often used to prevent the need for explicit references to
receiving agents ' locations by th e sending agents.

Spatially coupled agent systems allow agents to communicate in a peer-to
peer manner. However, the ease of communicat ion comes at a cost of using
agreed communication protocols, locations and times . It also requires the
assumption that network connect ions and intermediate network nodes will be
stable and reliable. In the case of mobile agent syst ems, this approach is not
adequate. Since mobile agents move frequently, locating and direct messaging
are expensive operations, and rely heavily on the stability of the network.
Statically located agents , especiall y those located in the same environment ,
can benefit from spatially coupled models, since th e protocols, locations and
coordination t imes can be agreed upon a priori and network involvement is
minimized.

Spatially uncoupled models allow agents to interact without having to
name one another. With these models, the information an agent has to share
and its typ e are more important-than its name. Therefore , several different
agents can serve the same purpose, making the system more redundant and
less likely to fail. In addition, naming services are not required, resulting in
fewer system components to manage.

Temporally coupled models imply that there is some form of synchroniza
tion between the agents. Temporal coupling is very important for spatially
uncoupled models. Agents still need to agree on what to share, when to share
it , and how to share it. Spatially uncoupled models put less emphasis on di
rect agent-to-agent communicat ion, as the environment is used more often as
the medium for information exchange. This archit ectural decision increases
the complexity of the environment and increases its computat ional require
ments. Moreover , the model requires that the agents share a common knowl-

14. Reusable Patterns for Agent Coordination 353

edge representation and are aware of schedules and positions for information
exchange.

Temporally uncoupled models relax the synchronization requirement.
Therefore, agents are no longer dependent on meeting and exchanging infor
mation with others at specific times, and they do not have to worry as much
about other agents' schedules. However, this model increases the importance
of knowledge representation and on how the environment is used to transfer
knowledge. It is easy for two agents to communicate directly, but effective
multi-agent communication (one agent with many other agents) increases the
complexity of the agent.

You want it to be easy for agents to exchange information. Direct agent
to-agent messaging seems to be the best approach. There are fewer synchro
nization problems, as an agent can just send messages to another when it
needs to . However, in the dynamic case , such as mobile agents, the imple
mentation and execution costs of locating and getting a message to another
are high and message reliability is a problem when network problems occur.
Even the static solution is not without its problems. For example, it would be
impossible for a large number of agents to inhabit one environment and send
messages to one another. The environment would not have the computational
capacity.

So you try the spatially uncoupled approach. Even with this, agents have
to agree where and when to meet , and doing so at the same place causes
the same overhead problem as when static agents try to send messages to
one another from the same place . In addition, the environment must now
handle the information exchange. Therefore, you allow agents to come and
go as they please and let them leave whatever information they want to in
the environment for others agents to read. However, now your environment is
more complex and getting the agents ' knowledge representation correct can
be difficult.

14.2.4 Problem Partitioning

An agent can partition a task between others in order to increase reliability,
performance and accuracy. For example, rather than have one agent look for
the best airfare, why not have three, or four, or One hundred. If part of the
network fails, killing a few agents, you will still get answers from the others. A
benefit is that One answer may be better than the rest. In the situation where
you also need to book a hotel, you could have other agents doing that task
while the rest are finding the best airfare. This solution involves coordinating
and collating the agents' results, which increases the overall computational
effort of the global task, not only in the home environment, but also in those
environments that agents visit .

The trade-off one makes between reliability, performance, accuracy, com
plexity and computation depends on the problem. For simple problems the

354 D. Deugo, M . Weiss, E. Kendall

overhead of part itionin g is usually too large. However , more complicated
problems can benefit from task par ti tionin g.

14.2.5 Failures

You can make two assumptions with respect to failur es when developing
coordination mod els: nothing ever fails, or ent ities like messages, connect ions
and even agents will fail somet imes.

T he first assumpt ion will ofte n make the problem much easier to solve,
result ing in pr otocols and solut ions that are easy to understand. The down
side is that these solut ions will never work in practice.

The second assumption makes problems harder to solve, requiring more
time to get them right and requiring complex solut ions. The benefit is that
you can use the solutions on a live network.

We all want simple solutions to problems. We also want simple solutions
th at work with "real" systems. Time const ra ints put on developers often
make th ese two forces conflict .

14.2.6 Summary

Now that we have summarized the maj or forces act ing on agent coor dination,
the rema inder of this chapter covers part icular pat terns of agent coordinat ion.
The patterns we will cover are: Blackboard , Meetin g, Mar ket Maker , Master
Slave, and Negot iating Agents.

14.3 Blackboard Pattern

Context You already have a set of agents that are specialized to perform
a particular subtask of an overall task. You need to provide a medium that
allows them to monitor each ot her and build on their mutu al progress.

Problem How to ensure the cohesion of a group of specialized agents .

Forces Agents need to collaborate to perform complex tasks t hat extend
beyond their individual capabilit ies. One way to enable collabora t ion is to
hard wire the rela tionship s between agents, for example, through a list of ac
quaintan ces in each agent. However , this is difficult to achieve if the locations
of the collaborat ing agents are not fixed ; some agent s haven't been created
at the time an agent want s to int eract with them; or if agents are mobile.

Agents may have been independent ly designed . In this case, it could be dif
ficult to enforce a common way of representing relationships between agents
that each agent has to impl ement . It would more suitable if the agent s did
not make assumptions abo ut which specific agents will be availabl e to col
laborate wit h, and were built with the not ion that there will be some agents
available, unknown to the agent at design t ime.

14. Reusabl e Pat t ern s for Agent Coordination 355

The coordi nat ion protocol needed for agent collaboration can be expressed
using the data access mechanisms of the coordination medium. That means
that the coordination logic is embedded into the agents . Alt hough a logical
separa t ion between algorithmic and coordination issues would provide more
flexibility, th e cost of a more complex coordination medium is considered too
high. Keeping the inte rface to t he coordinat ion medium small allows agents
to be eas ily ported to use anot her coordination medium.

Solution The solu tion to t he problem involves a blackboard to which agents
can add data and which allows them to subscri be for data changes in th eir
area of interest . Agents can also update da ta and erase it from the blackboard .
The agents cont inua lly monitor the blackboard for changes and signa l when
they want to add, erase or updat e data.

Wh en multiple agents want to respond to a change, a supervisor agent
decides which specialist agent may make a modificatio n to the blackboard.
The supervisor agent also decides when the state of the blackboard has suf
ficiently progressed and a solut ion to the complex task has been found . The
supervisor only acts as a scheduler for t he specialists , deciding when and
whether to let a specialist modify the blackboard. It does not facilitate their
int eract ion with each oth er. Note t hat because the blackboard is a passive
coord inat ion medium, we chose not to represent it by an agent. The st ruct ure
and main interactions of this pat tern are shown in figures 14.1 and 14.2.

Supervisor 1

notifies

Fig. 14.1. Ro le diagram of t he Blackboard pat tern

Rationale The Blackboar d pat tern decouples interacti ng agents from each
ot her. Instead of communicating directly, agents interact through an inter
mediar y. This intermediar y provides both time and locat ion t ransparency to
th e inte rac ting agents. Transparency of t ime is achieved because agents who
want to exchange data don 't have to receive it when it is sent bu t can pick
it up later. The locat ions of the receiving agents are t ra nsparent in that the
sending agent does not need to address any other agent specifically by it s
name; the mediator forwards the data accordingly.

Time transparency can not always be guaranteed when using this pat tern.
Shared state data may persist on th e blackboard for as long as it is needed .
However , events (data of a t ransient type) will typically not persist , unless
th ey are conver ted to persistent data . In particular this implies that agents

356 D. Deugo, M. Weiss, E. Kendall

Superv isor

Specialist C

6: schedule
--p

~3: notify

~
7: acceptChangesFrom('B')

~
5: signal

j 2: notify

1:sign~

Specialist A 11
'------ 4- :---'signal 7

Fig. 14.2. Interactions between the participants of the Blackboard pattern

only get notified about events after they subscribe. We thus cannot uphold
t ime transparency for event -style data when using the Blackboard pattern.

Mobili ty is also supported well by this pat tern once a small extension is
made to the protocol between specialists and the blackboard. Since exchange
of non-event data is asynchronous, agents can leave data for other agents on
a blackboard. Agents that arrive after the originator of the data has left the
place can st ill read the data from the blackboard. A small change is required
to the protocol between specialists and the blackboard . Upon arrival at a
place that hosts a blackboard, an agent subscribes to all areas of interest . In
add it ion, the blackboard should notify the agent about any data that was
posted to the blackboard before the agent subscribed.

The blackboard is an example of a passive coordination medium. While it
allows agents to share data , it does not specify how the agents are expected to
react to the data they receive. In other words , all the real coordination knowl
edge remains hidd en in the agents . The reason for this is that coordination
protocols need to be expressed using the dat a access interface to a black
board. If it is not possible to express a coordina t ion protocol in t his way, the
agents ar e forced to implement the coordinat ion protocol in their own code.
Extensions of the Blackboard parad igm such as [627] and [473] avoid this,
but we would th erefore really consider them instances of the Market Maker
patt ern .

Known Uses This pat tern has been documented in many forms. We can
only reproduce some of the pointe rs to the literature here. The blackboard
concept, as describ ed here, th at includes a control component, goes back to
Hayes-Roth 's BBI system [298]. Various agent-based systems have employed
the blackboard pat tern in their design (for example, [584] and [627]). The
tuple space concept originally int roduced by Gelernter is another type of

14. Reusable Patterns for Agent Coordination 357

blackboard , although it lacks its control feat ures [266] . Recent extensions of
tuple spaces to reactive tuple spaces make them much more powerful. For
the reasons expressed above, we consider this typ e of blackboard a broker as
discussed in the Market Maker pattern (section 14.5).

14.4 Meeting Pattern

Context Agents in a system you are developing need to interact in order
to coordinate their activit ies without the need for explicitly naming those
involved in the overall task. These agents may be statically locat ed Ormobile.
Direct messaging between agents and between environments and agents is
possibl e. However , the precise t ime and locat ion for agents to coordinate
their activ it ies are not known a priori.

Problem How do agents agree to coordinate their task and mediat e their
act ivit ies?

Forces Messaging between agents located within th e same environment is
fast , secure and simple. By not involving the network and its connect ions,
agents can communicate using the built-in facilities of the environment's in
frast ructure. Since these infrastructures are often constructed using languages
that support message passing, such as J ava, communication is reliable.

Building applications that force agents to reside permanently on the same
machine fails to make use of potential gains in efficiency by not allowing
agents to execute par tial tas ks in other environments. Moreover , it is unlikely
that the information sources agents require can be located on the same ma
chine. However , remote agents will require several messages and interactions
with other agents across the network to perform a task . For example, buyer
and seller agents negotiat ing on the terms of a transact ion from different lo
cations incur a significant messaging overhead. If the amount of information
is large, this can impose severe loads on remote environments providing the
information and on the current environment handling the responses.

Direct interaction is a technique that people und erst and well. Although
we may live in dist ant places, the phone and mail have helped us to use
t his form of interaction. Direct interaction between remote agents is possible,
but it requires a dedicated connect ion between both agents' environments.
This approach is not feasible when the numb er of agents involved in the
coordinat ion task is large since an environment can only support a small
numb er of connect ions. The reliability of direct interaction is also dependent
on the reliability of the network. Agent s could send mail to one anot her ,
but this is slow and requires a more complex synchronization st ra tegy to
coordinate a task because of unpredictable delays.

It is easier to build applicat ions that have agents interact (remotely Or
directly) with knowledge of one another 's names. To send a message, all an
agent has to do is use the messaging services provided by t he applicat ion.

358 D. Deugo, M. Weiss, E. Kendall

Name servers help with the mobility issue. However , applicat ion developers
must now consider failures and network delays .

If agents are not required to have names, messaging to the appropriate
one seems difficult. However , it does allow an applicat ion to use many dif
ferent agents for th e same purpose, provided they support the coordina tion
requirements. However , using different agents for the same task raises secu
rity concerns. Is t he agent helping with the task the right one for t he job and
will it act in a rational manner?

On th e one hand, you want only the required agents, named or unnamed,
to coordina te with one another. You want to minimize th e number of messages
passed between agent s. You don 't want to force them to be statically located
and you want your application to be secure . On th e other hand, you don 't
want to suffer problems due to network reliability and unpredictability. You
don 't want coordinat ion to be slow or complex and you don 't wan t to add to
the load on the network.

Solution Create a place in an environment for agents to meet . Let an agent
call for a meeting at that meeting place. Permit interactions to occur in th e
context of the meeting that ena ble agents to communicate and synchronize
with one another in order to coordina te th eir activit ies.

The first part of the solut ion involves the construction of a named meeting
place in the context of an existing environment . Permit agents to move to
this meeting place and allow them to message to a stat ically located , named
agent at th e meeting place, called the Meeting Manager .

Consider a meeting as an event, and make the Meet ing Manager respon
sible for notifying agents int erested in a meeting when one is proposed.
Therefore, the Meeting Man ager and agents interested in the meeting are
an instantiation ofthe Observer pattern [257] . The Meeting Man ager accept s
messages from remote or local agents wanting to register for notification of
specific meetings. In their registration messages, agent s must identify who
they are and where they can be located. The Meeting Manager also accepts
messages from remote or local agents int erested in calling a meeting and in
forms registered agents of when the meeting will occur . Since the Meeting
Manager is located at one physical location, it can make meeting announce
ment s and registered agent information persistent, permitting it to recover
its curre nt st ate should the und erlying node crash . The Meeting Manager has
th e addit ional responsibilities of controlling the meeting, registerin g agents
as they arr ive and deregistering them as they departure. The structure and
main interactions of this pattern are shown in figur es 14.3 and 14.4.

Use the solut ion many times if several different meetings are required.
The st ruct ure of the Meet ingManager handles more th an one meeting and
since a MeetingManager exists on each environment, meetings can occur at
different places.

Rationale The solution does not complete ly remove the use of named
agents, but it does minimize the number of names th at other agents must

14. Reusabl e Patterns for Agent Coordination 359

Environment <<interface>>
Meetinglnterface

receive(agent) announcement(meeting
getMeetingManager() inform(agents)
move(agent, URL) executet)

1 I
MeetingManager Agent

callAMeeting(meeting)
register(agentURL, type)

location:URlfderegister(agentURL, type)

*getMeetingWithld(type)
participate(agent, meeting)
notifyAIIAqentsOfMeetinc{tVpe

<> *

*Meeting

getTypeO
getlnfoO
getAgents()
joint agent)
leave(agent)

Fig. 14.3. T he Meeting Role Diagram

360 D. Deugo, M. Weiss, E . Kend all

anAgent aMeeting aMeetingManager otherAgent anEnvironment
getMeetingManager()

~

register(URL, "Chat") .---------
Meetin g("Chat") 4 aMeetingManager

~.--- - ----
aMeeting

get MeetingManager()

.--------- - -- - ------ - - -------- - -- - - - - - - - -
aMeetingManage r

caliAMeeting(aMeeti)

j oin(anAge nt)
~

announcement(aMeeti)
~---- ----

null receive (oth erAgent)

~

executet)

join(anotherAgent)

- - - - - - - - - - - ----- - - - -
infor m(agents) agents

Fig. 14.4. Meeting Lifecycle Sequence Diagram

14. Reusabl e Pat terns for Agent Coordination 361

remember to one: the name of the Meet ingMa nager - or the environment
where the Meet ingMa nager is located. The act of calling or registerin g for
a meeting requires that all agents know about the Meeti ngManager. And ,
while it is t rue that the Meet ingManage r must know the names of the other
agents in order to notify them of meetings, it is only loosely coupled to their
names since agents inform the Meet ingManager of their names (locations)
when registering for a meet ing. The Meet ingManager does not have to know
the names a priori.

This solut ion does not restrict agents from te lling others about a meet ing,
provided they know the names of the other agents , but it does not require
it . Having agents go to one place for a meeting cuts down on the overhead
of messaging between agents since the network is not involved. Security is
st ill an issue, but it can be localized to the responsibility of the environment
the meeting is held at. In addit ion, coordination between agents is no longer
suscept ible to network failures or delays since all agents meet at one location.
If an environment fails, the environment can use its persistent services to
reinitialize the agent s and the meetin g to the state preceding the crash.

The solut ion does not rest rict how agents collaborate. Once a meeting
begins , it is up to the agents to decide how to proceed, at hough, they must
st ill use messages to communicat e with one anot her.

Known uses IBM's Aglet 's framework makes use of a meetin g st ructure
similar to the one shown here [41J. Concordia [638J uses the pat tern 's Meet
ingManager for its EventManager , which man ages group-oriented events en
abling collaborat ing agents to communicate. Place-oriented communicat ion
[360] is anot her example of where a community of agents can coordinate and
cooperate with one another by moving to a single place to exchange inform a
t ion.

14.5 Market Maker Pattern

Context Your agent syst em evolves const ant ly. Instead of set t ing up re
lationships between agents up-front you let th e agents locat e appropriate
transaction partners on-the-fly.

Problem How to match up buyers and sellers of goods (services or re
sources).

Forces Agent s need to collaborate to perform complex tasks that extend
beyond their individual capabilit ies. As discussed for the Blackboard pat tern,
one could hard wire the relationships betwee n the agents, but this isn 't always
practical.

Again, the agents may have been independently designed. In this case ,
it would more suitable, if the agents did not make assumptions about which
specific other agents will be available for collaboration.

362 D. Deugo, M. Weiss, E. Kendall

Emb edding th e coordinat ion logic into the agents would notably increase
th e agents ' complexity. It would also affect the global application design ,
because now coordination rules are distributed between the coordination
medium and the agent . Alth ough a logical separation between algorit hmic
and coordination issues increases th e cost of th e coordina t ion mechanism,
you need the flexibility to implement and modify coordination protocols,
while keeping any changes hidd en from th e collaborating agents .

Solut ion The solution involves a broker or market maker that accepts re
quest s from buyers for bids for good s (resources or services) and matches
them up with sellers . The broker handles the coord ination logic needed to
advertise requests to sellers, collect their bids , and introdu ce the selected
seller to the buyer. To emphasize that agents may play the roles of buyers
and sellers at the same time, we have introduced th e role of a trader that
contains the buyer and seller roles. The st ructure of this pattern is shown in
figur e 14.5.

I Broker Trader

I

yY
I I

Buyer Selle r I
I

,
I

F ig . 14.5 . Role diagram of t he Market Maker pat t ern

Like a real-estate broker , th e broker does not simply select a matching
seller on behalf of a buyer , but leaves the ultimate choice between mult iple
bids to the buyer. The rationale for this is that the indiv idual definitions of
what buyers consider a "good" fit may be different from one buyer to another ,
depending on what attributes of the requested good th ey care most about
(such as cost or quality of service) .

The broker, acting on behalf of th e buyer , sends requests for bids to all
sellers. The seller agents decide if th ey want to prov ide th e good requested and
submit bids , which may also spell out any attached conditions that constrain
th eir ability or willingness to provide th e good . For example, sellers may ask
for a minimum price to be paid for the good . The broker, now acting on
behalf of the sellers, presents the list of bids to th e buyer requiring it to
select the "appropriate" bid. It then sets up a direct relationship between
the chosen seller and th e buyer , which lasts unti l t he good has been delivered
(for a service that is the whole duration of providing the service). Figure 14.6
shows the main interactions of this pattern.

14. Reusable Patterns for Agent Coordination 363

5: bidAccePtan~

1: requestForBids /! ~
/ / 4: bids

~requestForBids

~ ~ bidAcceptance

3: bids

Fig. 14.6. Interactions between the participants of the Market Maker pattern

Rationale The broker at the core of this pat tern is an example of a coor
dination medium that takes an active role in the coordination process. The
broker essentially enforces the house rules of agent interaction. These other
agents are therefore delegating their coordination dut ies to the broker. Agent
designe rs only need to define t he applicat ion logic, not the coordination pro
tocol.

Once buyers have located appropriate sellers, they may st ill need to ne
gotiate the terms of the transaction (such as the delivery condit ions). This
leads to the Negot iating Agents pattern .

Known Uses There are many accounts of the Market Maker pat tern in the
literature. One of the first examples is t he Cont ract Net protocol pioneered
by Smith [561]. Wellman 's market-oriented programming framework support s
a variety of auction types each imposing a set of market rules on the agent
interactions [647] . Freeman [249] descr ibes a marketplace framework based on
t he .JavaSpaces technology that allows produ cers and consumers to inte ract
to find the best deal. The MAGNET market infrastructure [569] provides
support for a variety of t ransactions, from simple buying and selling to multi
cont ract negotiations. Our formulation of the pat tern has also been influenced
by the role-based agent modelling approach practiced at BT [181] .

14.6 Master-Slave Pattern

Context You decide to parti tion a task into subtasks to increase the relia
bility, performance, or accuracy of its execut ion.

Problem How to delegate subt asks and coordinate their execution.

Forces An agent can parti tion a tas k, and delegate subtasks to other agents
in order to improve the reliability, performance, or accuracy with which the
task is performed. For example, while an agent has other agents working on
subtasks, the agent could cont inue with it s own work in parallel. In particular ,
an agent can move to a remote host to execute a subtask there and offload

364 D. Deugo, M . Weiss, E. Kendall

work from the client host . However, th is solution also increases the overall
computat ion effort of th e global task. Simple problems may not benefit from
par titioning for this reason .

Whether a task is partitioned or not , this should remain transparent to
clients. When the task is partitioned the agent could return a set of part ial
results back to th e client . However , the client may not be capable of pro cessing
the separat e results and synthesizing them into one solut ion. It doesn't want
to be concerned with the inte rnals of the computation. As an aside, thi s is a
prin ciple that PC and operating system makers mostl y seem to violat e.

Solution Th e solut ion to these forces involves a master who divides the task
into subtasks, delegating the subtasks to slaves and computing a final result
from the partial results returned. In the pro cess th e master crea tes a slave for
each subtask and dispat ches it to a remote host. While the slave computes
the partial result to the task it has been assigned, the master can conti nue
its work. When the slaves have all finished their work , the master compiles
the final result and returns it to the client . The structure of th e pattern is
shown in figure 14.7.

Slave~
delegates

Master --= >1--- -,
---~ sends result ,---I - - -----"

Fig. 14.7. Role diagram of the Master-Slave pattern

In the basic patte rn the slaves are crea ted by the master and then move to
a remote host to perform their t asks. Upon completion they send their results
back to the master. The slaves then dispose of themselves. In a variation of
the pattern , the slaves exist permanentl y in remote locat ions and can be
assigned new tasks once th ey have completed their current task. Figure 14.8
shows the main interact ions of this pattern.

A typi cal application of the Mast er-Slave pat tern is parallel computation.
A number of slaves can be assigned to a work pool which is controlled by a
master. Each of the slaves offers t he same services. Clients send their requests
to the master th at handles these requests by dividing each one into subtasks
and dispat ching t hem to idle slaves in t he work pool.

Rationale Th e Master-Slave pat tern is an example where vertical coordi
nation is used to coordinate the act ivity of two or more agents . Vertical
coordinat ion is an inte rac t ion where one agent carries out a subtask for an
other agent, but thi s subtask is st ill logically part of the former agent's task .
The term was introduced by Collins [180] in the context of a new t heory of
act ion.

14. Reusabl e Pat terns for Agent Coordina t ion 365

dispatch to host S, C, ...

Host A

1: createAgent
,-----_ _ ------, --;;> .--'----I._~----,

doTask

2: result ~

Host S, C, ...

Fig. 14.8. Interactions between the part icipants of the Maste r-Slave pat tern

Known Uses Th e Master-Slave pat tern has its roots in par allel computa
tion. Consult [131] for a much more detailed account of various applicat ions
of this pattern. Descriptions in pat terns format first appeared in [104] (us
ing objects) and [41] (using agents). Th e primary dist inct ion between the
object and the agent formulat ions of the pattern is that the agent pat tern
specifically accounts for mobility, where the object pat tern docs not .

14.7 Negotiating Agents Pattern

Context In your applicat ion agents interact as peers. That may cause them
to give conflict ing instructions to the environment.

Problem How to detect and resolve conflicting intentions between agents.

Forces Agents need to align their actions, because thi s can be useful, de
sirable, or even essent ial to the achievement of their individual goals. One
possible solution is for each of th e agents to implement the "ostrich's algo
rithm" , that is, to ignore the possibility of conflicts and respond to them only
after they have occurred. The disadvantage of t his algorithm is that it may
not always be possible to rollback the agents' and th e environment's states
to where they were before the conflict happ ened. For example, an instruction
to the environment may be to forward a call to a blocked numb er. By the
t ime the conflict is detected, the phone might already have been picked up
at t he receiving end.

366 D. Deugo, M . Weiss, E. Kendall

Solution These forces dr ive a solut ion where the agents make t heir int en
t ions explicit . For example, they excha nge constraints on what the other
agents are allowed to do. In response to the intentions disclosed by other
agents, th e agents may replan their act ions to avoid detected interactions
with their own intentio ns. Replanning involves choosing among alte rnative
courses of act ion.

In selecting alte rnative courses of action, agent s are guided by policies
such as giving preference to one kind of act ion over another or maximizing the
ut ility associated with their act ions. The agents subsequent ly exchange their
revised intentions with each other. The exchange of intentions and subsequent
replanning pro ceeds until th e agents manage to align their actions , or if they
reach an impasse which makes further negotiation futile.

The solut ion involves an initiator who starts a negotiation round by
declar ing its intention to its peers , which are all the oth er agents who must
be consulted before the initiator can go ahead with its act ion as intended.
The peers take on the role of critics in the negoti ation. They test if there
is a conflict between the declared intention and t heir own intended course
of act ion. If there is none, a critic accepts the prop osed action, ot herwise it
makes a counter-proposal or reject s the act ion outright. Counter-proposals
contain alternat ive actions that are acceptable to the crit ic. Rejections indi
cate th at th ere is an impasse th at can only be handled outside the negoti ation
framework . Figure 14.9 shows the st ructure of this pattern.

Participant

y y
I I

Initiator Critic

Fig. 14.9. Role diagram of the Negotiating Agents pat tern

An agent can be an initiator and a critic in different negotiations at th e
same time. Therefore we create anot her role, t hat of a participant , which
contains th e initiator and critic roles. Participants often act on behalf of
other agent s for whom they are negoti ating. For instan ce, an initiator may
negotiate on behalf of a buyer agent about the terms of a trans action. Once
the te rms have been determined the buyer pays the negotiated amount to the
seller and receives the good. The main interactions of this pattern are shown
in figure 14.10.

14. Reusable Patterns for Agent Coordination 367

1: propose
- -;;>

Initiator

<E--
2: accept / counter-propose / reject

Fig. 14.10. Interactions between the participants of the Negotiating Agents pattern

For purpose of illustration, consider that agents represent their alterna
tive courses of actions as an AND/OR tree as in figure 14.11. AND nodes
designate a set (possibly a sequence) of actions that needs to be performed
together, or not at all. OR nodes indicate choices between alternative action
trees. This model of actions is fairly generic as the literature suggests (for ex
ample, [53] or the recent work on the theory of actions by Collins [180]). But
it is by no means all-inclusive . This should be kept in mind when applying
this solution.

Agent A Agent B

propose A

counter-propose E

C (conflicts with D)

propose B

accept

(no conflict)

AND/OR tree

Fig. 14.11. Example of using the pattern

In the example, agent A decides to perform action A. Before it goes ahead
with its execution, however, it publishes its intention to do so to its peer , agent
B (propose A). Assume that B detects a conflict between the proposed action
and its own action D that it was about to perform. B therefore searches
for an alternative, and, via backtracking, arrives at action E. B makes a
corresponding counter-proposal to A. Agent A can now rule out action A
and search itself for an alternative course of action, which it finds in B. Upon
receiving the updated proposal, B agrees by accepting the action proposed
by A. A and B now proceed by executing their actions Band E.

Rationale The Negotiating Agents pattern deals with the situation where
the interacting agents appear as peers to each other, but need to align their

368 D. Deugo, M. Weiss, E. Kendall

actions for some reason . Unlike the Master-Slave pattern , the tasks of the in
teracting agents are not instances of one agent 's carrying out another agent's
subtask . We refer to this type of coordination as horizontal.

Once you adopt the key idea in this pattern that agents declare their
intentions to each other, there is a multitude of protocols that th e agents can
follow in their negotiation. The example given serves only as an illustration;
many other protocols are possible . This suggests that there is a whole pattern
language for agent negotiation waiting to be written, with this pattern only
providing the root from which th e other, more specific patterns descend.

Known Uses This pattern is popular in the telecommunications [288] and
the supply-chain domains [53] . In the first domain an example may involve
two agents controlling different parties in a phone call. The agents interact
with the und erlying switch by listening for events and indep endently propos
ing a next action in response to these events. The actions proposed by the
agents may, however, conflict with each oth er. For example, the callee's agent
proposes to forward the call to another destination, but the caller does not
want to be connected to this destination. If inst ead , the callee's agent iden
tifies its intention to forward th e call , the caller 's agent is now able to reject
that action . As a result the call is not forward ed.

The concept of market sessions in MAGNET [569] also exemplifies this
pattern. Sessions encapsulate a transaction on the market . Agents can play
two roles with regard to a session. The agent that initiates a session is known
as the session initi ator, while the oth er participating agents are known as
session clients. The supply chain role model in the ZEUS agent building
toolkit introduces similar roles: negotiation initiator and partner [181] .

14.8 Summary

We have provided only a small sampling of the possibl e coordinat ion patterns.
Since assembling related patterns and positioning th em relative to others
will form a pattern language that ultimately increases th e generative quality
of the patterns, we encourage others to develop coord ination patterns. We
believe that agent pattern languages are essent ial for the future success of
agent systems. They are not only helpful to you, but also to all the software
engineers who will use the patterns to develop their systems in the future.

15. Inter-Organizational Workflows
for Enterprise Coordination

Monica Divitin i", Chihab Hanachi2 , and Christophe Sibert in-Blanc"

1 Norwegian Un iversity of Science and Technology
email: Monica.Divitini@idLntnu.no

2 University Toulouse I
Place Anatole France, 31042 Tou louse , France
email: hanachi@univ-tl se1.fr

3 IRIT/ Un iversity Toulouse I
P lace Anatole France , 31042 Toulouse, France
email: sibertin@univ-tlse1.fr

Summary.

Workflow systems are widely adopted by organizations for supporting
business processes. In particular , workflow systems help organizations to
coordinate the different actors involved in the bu siness process by automat
ing repet iti ve tasks and facilitating t he distribut ion of documents, infor
mation, and control. Today's workflow systems however do not adequately
suppo rt processes that cross t he boundar ies of mul tiple organizations. The
enhancement of workflow systems in this direction, In ter-Organizational
Workflows (lOWs), is essential given the growing need for organizations
to cooperate and coordinate t heir activities in order to meet the new de
mands of highly dynamic markets . This pap er starts by describing some of
the issues related to the collaboration amo ng organizations, pointing out
a number of factors that can im pact on the required support. After hav
ing introduced the basic terminology of traditio na l workflow and workflow
systems, t he cha pter out lines some req uirements for lOW, distinguishing
between loose and t ight lOW . Loose lO Ws refer to occasional cooperation,
free of structural const raints, where neither the involved par tners nor their
relat ionships are defined a priori . Tight l OWs refer to a structural cooper
at ion among organizations, i.e., a cooperation base d on a well-established
infrastructure am ong pre-defined partners. Based on this distinct ion and
the related requ irements, t he chapter presents two approaches to t he design
and t he impl ementati on of lOWs. The-first ap proach adopts the not ion of
software agents for enhancing workflow systems and allowing their use in
loose lOWs. The second approach, which can be supported by an agent
base d implementation, combines Petri Nets .aad Federated Dat abases for
providing the more structured support needed by tight lOWs. Both ap
proaches are compliant with the Workflow Management Coalition reference
architecture . This guarantees the possibili ty to tailor the support provided
by the lOW to the needs of the collaborat ing orga nizations, remaining
within a coherent fram ework of reference.

15.1 Inter-Organizational Coordination

The last decade has witnessed the emerging of new and numerous forms
of cooperation among organizat ions. Various factors, like the emerging of

370 M. Divitini, C. Hanachi, C. Sibertin-Blanc

a global economy and more dynamic markets, require combining different
competencies in a flexible and ad-hoc manner in order to meet the changing
requirements of the market. The realization of these needs is made possible
by the widespread of Internet and of network and infrastructural facilities .
Thanks to technology, communication is eased and geographical distances
are reduced. People, within or without organizations can dynamically join to
work on a project, organizations can restructure themselves into teams, pos
sibly outsourcing a relevant part of their activities. In this way varied types of
cooperation are recognizable, going from electronically linked organizations
with no conventional boundaries, up to distributed "tradit ional" organiza
tions with multiple modes of communication [625]. Cooperation can take
place within a long-term project, e.g. a strategic alliance among organiza
tions covering complementary business niches, as well as within the context
of shorter business processes like those set up in Electronic Commerce for
satisfying a specific customer's request .

It is clear that these forms of organizational cooperation are characterized
by varying degrees of physicality, as well as varying degrees of heterogene
ity or coherence among the participants, being them individuals or smaller
organizations. What is in common to all of them is the need to have work
flowing through several enterprises to achieve a common goal. Therefore, it
dramatically emerges the need to coordinate the distributed effort of such a
polyedric reality.

In this chapter the term coordination indicates the work needed for
". . . putting together tasks , task sequences , task clusters, and even the work
done in aligning larger units such as subprojects, in order to accomplish the
work" [570]. It is all the overhead work that is required in order to make
cooperation possible, the price to pay whenever the work to be done requires
the orchestrated contributions of more than one individual.

In general, the more distributed the activities to perform are (in terms of
time, space, knowledge , organizational backgrounds and the like), the more
complex it becomes to coordinate them [535] . In order to support coordi
nation, organizations have developed in the years different mechanisms for
specifying the "expected" flow of work, mainly in the form of work proce
dures and business processes. These mechanisms are intended to support the
cooperating actors by describing their expected behavior while working with
recurrent coordination activities. For example, a work procedure "Insurance
claim" can describe the steps that each actor involved in an insurance claim
has to take (e.g., for the customer: fill in form, submit form to secretary; for
the secretary: forward form to the appropriate employee, register claim , and
the likes). The procedure is an experimented means to reach a business goal
and its observance reduces the need to renegotiate the patterns of interaction
among co-workers under standard condition.

The capabilities of organizations and individuals of handling the complex
ity of coordination can be augmented thanks to computer-based technology.

15. Inter-O rganizational Workflows for Enterprise Coordination 371

Many systems have been developed lat ely with this purpose, e.g., scheduler
and group calenda rs . Among th ese tools, workflows are of foremost impo r
tance for organ izations. They developed as an evolut ion of the office inform a
t ion systems of th e 1970s [220]. A uiorkfiou: is "an au tomation of a busin ess
pro cess, in a whole or a part , during which documents, inform ation or tasks
are passed from one participant to another for act ion, according to a set of
pro cedural rules" [646] . This definition is provided by the Workflow Manage
ment Coalit ion, a non-p rofit intern ational organization for the development
and promotion of workflow standards.

Given the definition of a workflow, a Workflow Management Syst em
(WfMS) , or workflow system for short , is the software tha t helps organi
zat ions to specify, analyze, execute and moni tor workflows.

Different typ es of workflow systems have been developed both as research
pro totypes and commercial products. Among the resear ch prototypes are,
e.g., Regatta [576], MILANO [13] , APM [127], and WIDE [287] . Among
the products are, e.g., ATI ActionWorkflow TM, Xsoft InConcert TM , and
Team WARE Flow TM . (See [566] for an evaluation of different workflow prod
uct s.). An agreed-upon taxonomy of workflow systems is st ill missing , though
they are often characterized in terms of the type of pro cess that they support:
administ ra t ive, production, ad-hoc, and collaborat ive [396].

Workflow systems have been in use for many years and successes and fail
ures on their adopt ion have been reported in the literature, see for example
[502, 88]. These experiences have allowed improving the exist ing tools, re
sulting in a growing numb er of install ations. However , supporting th e flow of
work across different organizations arises challenges t hat are only partially
supported by th e exist ing tools. Considering th e complexity of coordinat ing
work across organi zations, t he extension of WfMS to support these situations
is of par amount importance. In t he following, we will refer to these workflows
as In ter- Organizatio nal Workflows (lOW) .

The availability of low-level tool s which ease dist ributed obj ects interop er
ability (OMG technology and especially Corba) and ofInte rnet provides a ba
sic "communicat ion" infrastructure. However , many of the problems emerging
in the new working context s cannot be solved at this level. In fact , semant ic
interoperability at the workflow and business level is still a challenge [483]
and current WfMS are too rigid .

Overcoming rigidity is already a key issue in tradi tional workflow sys
tems. Flexibility is required in order to adapt to business pro cess evolut ion,
often in connection to Business Process Reengineering [575], and for han
dling except ions [219] . Moreover , in workflow systems, flexibilit y opens th e
problem of assur ing correct and reliabl e workflow execut ions independently
by changes in the pro cess. Different solutions have been proposed. Some of
thes e solut ions focus on th e model of the business process, e.g., [221]. Oth ers
have proposed to extend the notion of database transactions to workflow, in

372 M. Divitini, C. Hanachi, C. Sibertin-Blanc

order to support the consistent and reliable execution of business processes
in a multi-user environment, e.g., [216].

However, in lOW systems flexibility takes also new meanings because they
have to answer to extremely varied needs and they have to take into account
the different dimensions that characterize the different forms of cooperation.
Among these, we recall :

- Time spanning of the cooperation, i.e. short time vs. long time interactions.
For example, the organizations are joining for a transaction, a single project
or are combined into an alliance.

- Typology of actors involved. In general, when we talk about actors in lOW,
we can have individuals, software agents, departments, and organizations.

- Coupling of the actors, e.g. to what extent the actors involved in the lOW
can be identified or identify themselves as a single supra-organization, with
specified policies, strategies, and the likes.

- Motive for cooperation: sharing skills, sharing resources.
- The properties of the data and information that are exchanged and shared

by the organization: amount, complexity, confidentiality, volatility, etc.

All these dimensions imply that lOW must support not only organization
ally defined procedures, but also coordination as an emerging phenomenon in
the cooperation among organizations [213]. In fact, given the heterogeneity of
the possible contexts of use, in terms of policies, objectives, authorities, local
and global commitments, security, it is not always conceivable the definition
of a global business process, not is possible to provide a unique organizational
view of how work is arranged.

In relation to the different forms of cooperation outlined by the dimensions
mentioned above , it is necessary to distinguish two main cases with respect
to the definition of the flow of work in terms of business process:

- No definition of a process, but only of a common goal with self-organization
of the parties that are involved. Coordination is realized through awareness
and explicit communication. Information sharing is key to this types of
lOWs.

- Detailed definition of a process, with different degree of tailorability of the
tasks by the actors.

In both cases, policies and constraints can be defined locally to the actors
or globally for all of them, and they determine the degree of freedom for
organizations to organize the part of work under their responsibility, as they
prefer.

These two main cases deeply impact on the type of support that the lOW
system can provide. Common to all the lOW is however the need to find a
balance between, on one hand, the need to explicitly define processes for re
ducing the complexity of coordinating the work to be done, and on the other
hand the dynamic nature of work contexts that makes these processes "unsta
ble" . In fact, the speed of changes in modern work environments is increasing

15. Inter-Organizational Workflows for Enterprise Coordination 373

[175] and people working in these dynamic condit ions need to adapt both
to local cont ingencies and to complete ly new demands from their environ
ment . Moreover , the dynamici ty of the environment impacts the cooperative
ensemble it self, e.g., new organi zations can join the lOW for integrating new
competencies, or the responsibilit ies of the single organizations can change
according to the changes in the market. This dynamicity calls for continuous
changes in the way the work is performed and th ereby coordina ted, requiring
changes to the defined process. For example, the "insurance claim" proce
dure can be changed for takin g into account the outsourcing of the claim
verification to a new organiza t ion.

The rest of the chapter is organized as follows. Section 15.2 introduces
some of the main concepts related to Workflow systems. This is essent ial
for providing a shared background and a common terminology for Inter
Organizational Workflow. Section 15.3 describes the requirements for lOWs
and introduces a framework for their study. Two opposite scenarios are identi
fied and th eir requirements developed. Section 15.4 presents two comprehen
sive approaches to design and implement lOW: an agent-enhanced approach
and another one combining Petri Nets and Federat ed Databases. Each ap
proach fits the needs of one scenario .

15 .2 Overview of Main Concepts of Workflow

This sect ion recalls the necessary workflow concepts for clarifying the vocab
ulary and underlining the most relevant criteria which should be investi gat ed
lat er on, in th e context of Inter-Organizational Workflows. We shall present
the main issues th at cover a workflow lifecycle:

- Workflow conceptual models, which provide an answer to the question:
Wh at to define, i.e, what are the ent it ies involved in a workflow?

- Workflow definition languages, i.e.: How must workflows be expressed? Or ,
Wh at is th e expressi ve power required for their definition?

- Execution models, i.e.: How should workflow models be executed?
- Architecture and implementation issues, i.e.: How to design and implement

software supporting the three previous issues?

Furtherm ore, there are two different stages in a workflow life-cycle which
must be well-identified and distinguish ed since they structure the workflow
domain and determine possible architectures for the WfMS:

- Build time during which a designer builds, analyzes and simulates the work
flow model;

- Run time during which occurrences of th e workflow model (called cases) are
initiated and executed und er the control of a WfMS which schedules and
assigns tasks to t he appropriate performers (person, machine, or software) .

374 M. Divitini, C. Hanachi, C. Sibertin-Blanc

15.2.1 Workflow Conceptual Models

A workflow model consists of three models : the organizational model , the
information model, and the process model. They are described below.

The organizational model (OM)has two roles. First, it structures resources
in classes of objects sharing the same characteristics. A class is called a role
when it comprises agents having the same capabilities, and an organizational
unit for agents belonging to a same organization structure. Second, the orga
nizational model attributes to each resource authorization to perform tasks.
Roles and Organizational Units are abstraction that can be used to define
business processes without referring explicitly to the individual participants
in a workflow, but rather to the quality they must have. In real time, the
WfMS assigns the tasks to individual performers. Therefore, change of indi
viduals has no consequence for the workflow definition. Moreover, we distin
guish two assignment modes: the pull and the push modes . In the push mode,
the WfMS dispatches a given work to a performer even if he has not asked
for it . In the pull mode, tasks are recorded in the worklist of each authorized
performer who can decide when to perform it. As soon as a performer pulls a
task, it is removed from all the worklists where it was recorded. It is impor
tant to stress that an OM also defines authorizations to perform meta-level
tasks as defining new processes, enacting cases, and, particularly important,
modifying process definitions or occurrences. For example, a unit manager
can be allowed to change the procedure for travel reimbursement; an execu
tive secretary can be allowed to change the procedure in a specific case (the
reimbursement of travel A for employee X), but not globally.

The information model (1M) describes the structure of the forms, doc
uments, and data that are used and produced by a workflow. Even if the
structure of this information is not necessarily defined in the context of a
workflow, since it often pre-exists to workflow creation, the model of this in
formation must be known in order to be exploited. In particular, the existence
and the values of this information determines whether a task is likely to be
executed or not (pre-condition of a task). Three types of data in connection
with a WfMS are usually distinguished:

- Workflow relevant data created and used during workflow enactment.
- System and environmental data internal to the WfMS and describing the

progress of each workflow instance through time. They provide a view on
the current state of each instance and facilitate recovery.

- Application data manipulated by external tools.

The (business) process model (PM) defines the component tasks, their
coordination, and the information and performers involved in each task. This
model refers to both the organizational model, which defines and organizes
the set of potential performers, and the information model, which allows
access to the objects to be processed. A process model is described with a
language, formal or not , able to express different forms of task coordination

15. Inter-Organizational Workflows for Enterprise Coordination 375

(e.g., parallel and sequential routing, split, join, iteration). Generally, a task
includes the following items: an identity, a pre-condition describing a situation
(resources or data availability, event occurences) that must be satisfied to
start the task, an action which corresponds to the activity to perform, and
a post-condition establishing the configuration to reach in order to consider
the task as completed.

15.2.2 Workflow Description Language

To define a workflow we need languages to express the three models described
in the previous section. There are a great number of languages, nearly as many
as the number of existing systems (e.g., DartFlow [119], Panta Rhei [217],
WebWork [417], WIDE [140]) . The information model is usually described
with a data description language (Entity-Relationship, Relational or object) .
Most of the time, the organizational model is mapped onto a data model in
order to be easily accessed by the WfMS, so that the information and the
organizational models are both described with the same data description lan
guage. Sometimes, actor assignment policies are expressed with rules to add
more flexibility and dynamicity. On the other hand, processes are specified
with formalisms able to express behavior like Petri Nets, State Charts, or
Active Rules . The ideal language would be one with a very large expressive
power to describe the three models in a uniform way, or at least languages
allowing interactions between these models. For example, the WIDE system
[140] has its own Workflow Description Language with a specific graphic in
terface; it relies on Active Databases which provide on the one hand a data
description language to define the information and the organizational models,
and on the other hand active rules to express processes.

Given the focus of this chapter on coordination, we will now concentrate
on the process description since, in this perspective, it constitutes the core
concept of workflows.

As an example, consider the process that allows an employee to obtain
the required authorization to travel. First he (or she) initiates the process by
creating a new TravelRequest form . Then, information about the location,
the expenses and the subject have to be feed in any order. Using the location
and expenses information, the Financial Manager gives his agreement or not,
while using expenses and subject information, the Team Manager gives his
agreement or not . If both agree, the Big Chief gives or not the final agreement
while in the other cases the authorization is denied . Figure 15.1 shows the
Petri Net model of this process:

- The transitions represent the tasks that can be performed during the pro
cess.

- The places stand for the state of the process, and they may contain data
referred to as tokens; the input places of a transition correspond to the

376 M. Divitini, C. Hanachi, C. Sibertin-B1anc

t r a v t rev

tray
GOODNews

cornmi t (t rav)

trav

BADnews
de l e t e (trav)

Fig. 15.1. The travel authorization workflow process

enabling conditions of the transition's task, while the output places corre
spond to the state resulting from the task achievement.

- The variables along the arcs correspond to the data that flow from a place
to a transition (the task needs data in this state and will use them) or from
a transition to a place (the task achievement sets a data in this state) . In
this example, the variable trav is a reference toward the informational
entity of type TravelRequest that has been created by the initiate task
and is stored in the Information Model Database.

At the very beginning of the process , only the initial Begin condition
is fulfilled so that only the initiate task may occur. Then, the tasks are
concurrently or sequentially enabled according to the flow of tokens, until the
GoodNews or the BadNews task allows the reach the End final state. The task

15. Inter-Organizational Workflows for Enterprise Coordination 377

allocation specification (stating which (kind of) actor may perform each task)
is not shown in this definition. This can be done in various ways, namely
in introducing places concerning the state of the actors registered in the
Organizational Model Database.

The general features usually expected from a Process Definition Language
are the following:

- A graphical interface which eases the process definition.
- Different levels of granularity in the definition of tasks to allow reuse and

progressive definition of processes. This is made possible thanks to ab
straction mechanisms. For example, the Panta Rhei Workflow Description
Language [217] supports the nesting of activities (tasks). Thus, an activity
within a WF can be expanded itself as a workflow process. The WIDE
system [140] supports subprocess, supertask and multitask. The first two
constructors are modularization units, while the multi-task makes possible
the simultaneous execution of several copies of the same task.

- An appropriate expressive power to allow the description of:
1. Tasks ' structure, and particularly their pre-conditions, actions, and post

conditions. Pre-conditions correspond to several types of events (e.g.,
temporal, predicate, database queries). Actions may be manual and
therefore linked to the organizational model, or automated and linked
to applications.

2. Control flow especially conventional constructors like parallel and se
quential routing, split, join, or iteration.

3. Data flow that defines the path that must be followed by the data. Often ,
the expression of control flow and data flow are mixed .

4. Transactions to guarantee consistent and reliable executions. Database
transactions structure the actions performed on a database to guaran
tee its transition from a coherent state to another. When a transaction
fails, all its already executed actions are undone and the database pre
vious state is restored. In workflow systems, processes are long-living,
cooperative and complex (comparatively to conventional transactions
consisting of a few read and write actions) and consequently conven
tional transaction mechanisms do not apply. Indeed, it is not reasonable
to systematically undo all the tasks made in the context of a process
but we need more flexible attitudes relaxing the classical ACID prop
erties (Atomicity, Consistency, Isolation, Durability) . Extended transac
tion mechanisms (like saga, contracts, nested transactions), fitting work
flow requirements, must be used and made available at build time [632] .

5. Failure and exception handling ranging from technical failures (system
and software) to unexpected semantics exceptions which manifest them
selves by inconsistencies between a running case and its corresponding
workflow description [139].

- An operational semantics enabling an easy mapping from specification to
implementation;

378 M. Divitini, C. Hanachi, C. Sibertin-Blanc

- Theoretical foundations allowing ana lysis and validation s of behavior al
properties;

- Simulation facilities.

[378J provides an interesting and exte nsive comparison of different work
flow formalisms (Wide, Flow Mark, Action , Stat eChar ts , Triggers) with re
gard to some of these requirements .

15.2.3 Workflow Execution Model

The workflow execution model defines how the workflow interpreter (engine)
behaves once a workflow has been defined. There is no single algorithm for
the execution since there are many alternat ives depending on:

- How transac t ions are treat ed;
- How tasks are selected (conflict resolution) ;
- How tasks are assigned (push or pull mode);
- How exceptions are handled.

Thus, the workflow interpreter must be provided with knowledge to de
cide, according to th e context , what task to perform (in the case of alterna
tives among several enabled tasks); when to perform (in the case of several
possible schedules); where to perform an operat ion th at may be executed on
more th an one site and/or by different engines; and possibly by whom in
push mode. There are several possible execut ion models depending on these
choices. A general algorit hm of a workflow engine th at executes a pro cess
looks like the following one:

Algorithm ProcessExecution
ActiveTask = 0 / /number of tasks in progress
R epeat

While some tasks are Enabled and NotAssigned do
Select a t ask T
Assign T
ActiveTask=ActiveTask +1

EndWhile
If (ActiveTask > 0) and (no task is completed) Then

Wait (task completion)
Endif
For each complete d Task

ActiveTask=ActiveTask -1
End For

Until Process is completed
/ / may coincide with (No task is enabled) and (ActiveTask=O)

End

15. Inter-Organizational Workflows for Enterprise Coordination 379

15.2.4 WfMS Architecture and Implementation

A WfMS supports three main functions:

- The definition of workflows;
- The execution of workflows;
- The administration of workflows and the monitoring of their executions.

The WfMC has proposed an architecture including these three functions
(see Figure 15.2). This abstract architecture, which is followed by most sys
tems, is organized around six components:

Workflow Enactment Service

Invok ed
Applications

Other Werkflow
Enactment Serv ices

4

I Proc~
Defin it ion Tool~ J

;;;;
1

2
Workfl ow API and Interchange

fo,!"!a,~ls'...-~~. I

2Jr
V

lw orkflow Client
Applications

Administ ration
& Monitor ing

Tools

Fig. 15.2. The Workflow reference architecture [645]

- The Workflow Enactment Service supports the execution of workflow pro
cesses. For that purpose, it may use one or several workflow engines and
invoke the other components through interfaces (numbered 1 to 5) based
on set of API calls. The Workflow enactment service drives the execution
of each case by interpreting its definition.

- The Workflow Definition Tools help the workflow designer in specifying
and analyzing workflow models .

- The Workflow-Client Applications invoke the Workflow Enactment Service
and enable the end user to interact with the WfMS. For example, client
applications may ask the worklist handler to retrieve the list of works
corresponding to a given performer.

- Invoked Applications are called by the Workflow Engine to perform a task.
For example, a DBMS may be called to retrieve information needed by the
workflow or to store information produced by it.

- Administration and Monitoring tools enable the workflow administrator
to set parameters, follow workflow executions through t ime and react to
possible problems.

380 M. Divitini, C. Hanachi, C. Sibertin-Blanc

- Other WfMSs may be connected to the current one via interface 4.

The int erfaces supporting the communication between the different com
ponents are being unified and standardized by the WfMC under the term
Workflow Application Programming Interface (WAPI). WAPI is made of a
set of API, interchange formats and protocols. However, as observed by [607],
this proposition remains at a technical level since it only specifies syntax fea
tures while semantic features, and consequently conceptual consensus, are
required.

Besides , the WfMC architecture remains general since the components are
not decomposed and specified precisely. For example, concerning the Work
flow Enactment Service, there are still many choices to make:

- Its decomposition into modules (scheduler , transaction-manager , et c);
- The modular definition of these modules with a high-level formalism (Ob-

ject, Agent , etc);
- The way these modules share data (message passing, repository, client

server model , mediator) ;
- Th eir control (e.g., centralized, distributed, event-driven) .

Once refined, this architecture must be implemented. Regarding design
and implementation, one desir able requirement is an easy mapping between
the conceptual formalisms and the implem entation language.

Workflow syst ems can exploit various existing technologies. In [2], for ex
ample, the authors distinguish between e-mail and database driven workflows.
The first use electronic mail for the routing and the presentation of work to
users. An example of this class of syst ems is given by MILANO [13]. The
second class is based on database technology, generally for storing routing
and status information. Examples of workflows of this typ e are WIDE [139]
and Pantha Rei [217] . Workflows of this type are generally more robust, but
also more complex to use and configure . Lately, a number of workflow sys
tems have started adopting the Web as technical infrastructure, focusing on
distribution and accessibility. Examples of such systems are WebFlow [285],
WebWork [417], and DartFlow [119]. WebWork has the particularity to be
completely implemented with web-technology (Web browsers , Web servers,
HTML , java script and CGI) . DartFlow combines Web technology and Agent
Tcl. A Process is initi ated by filling a form which in its turn dynamically cre
at es an Agent to fulfill the process. Each agent transports with itself the
descrip t ion of th e process it must perform.

15.3 Inter-Organizational Workflow Requirements: A
Framework for Studying lOW

Now that we have defined th e concepts and the vocabulary of workflows, let
us make clear the requirements for Inter-Organizational Workflows. First , we

15. Inter-Organizational Workflows for Enterprise Coordination 381

outline the computing context in which row may be deployed and identify
two main row scenarios to illustrate the presentation. Then, we examine
general and key issues of rows. Finally, we provide a structuring and sys
tematic framework in which requirements can be investigated. Within this
framework, we examine the requirements of the two proposed scenarios.

15.3.1 Context and Possible Scenarios for lOWs

The computing context in which row takes place has several characteristics:

- Heterogeneity, which apart from interconnectivity issues, concerns the dif
ferences in structure, syntax, and semantics of the workflow models in each
organization.

- Distribution, which manifests itself by the geographical dispersion of infor
mation, resources, processes and control, and which consequently implies
defining infrastructure to make them interact.

- Autonomy, which requires that each organization participating in an row
should be able to decide by itself the conditions of the cooperation, i.e.
when , how, and with whom. Besides, the organization should be able to
preserve the control over local tasks of the row, and maintain the privacy
of other tasks.

- The technological environment, made up also of legacy systems, which must
be preserved and exploited rather than ignored. On the other hand, the
emergence of Web-based technology must be integrated since it provides
many facilities to ease communication and interoperability between differ
ent organizations.

Without an application in mind, row requirements cannot be precisely
examined. Consequently, we have identified two main scenarios, representa
tive of a large class of applications, and leading to quite different require
ments:

- Loose lOW refers to occasional cooperation, free of structural constraints,
where the partners involved and their number are not pre-defined. For ex
ample, the cooperation of organizations in the context of Electronic Com
merce generally falls into this scenario.

- Tight lOW refers to a structural cooperation among organizations. A struc
tural cooperation means a cooperation based on a well-established infras
tructure among pre-defined partners. This kind of row is necessary when
the organizations involved are engaged in a long-term cooperation and
when a strong interdependence between their workflows (business pro
cesses) exists . This interdependency manifests itself by frequent interac
tions between workflow cases of the different enterprises, and consequently
by the need to synchronize several cases running simultaneously.

382 M. Divitini, C. Hanachi, C. Sibertin-Blanc

Obviously, there is a cont inuum of scenarios between these two extremes
depending on the level of structural constraints between the partners, the
presence or otherwise of interaction between cases, and the nature of this
interaction.

In the loose scenario, th e computing context has two additional features:

Openness, meaning that the composition of an lOW could evolve through
time and that it is not necessarily fixed a priori but should be decided
dynamically at runtime.

- Scalability, inherent to Internet , that increases the complexity of the syst em
to be modeled.

15.3.2 General and Key Requirements

In the environment described in the previous sub-section, lOW raises a lot
of specific problems which concern at the same time component WfMS in a
group of WfMSs (local issues) , and the group of WfMSs viewed as an entity
(global issues).

The first class of problems is related to th e social abilities of a WfMS,
e.g.:

- Cooperating with other WfMSs, which assumes sharing workflow descrip
tion (information, organization and process models) , workflow relevant
data and workflow activity (execution) .

- Reasoning , which assumes modeling knowledge and capabilities concerning
the other WfMSs.

Th e problems that are specific to the WfMS group concern :

- The organization and architecture of the group, their coordination and the
common protocols and commitments that enable them to coopera te .

- The common inform ation needed for the cooperation, and which must be
set up and maintained.

In addition, lOW must generically guarantee properties such as:

- Adaptability. Int er-Organizational Workflows must be "adaptable" to a
wide variety of condit ions, from the ones that require only a macro defi
nition of th e process to the ones that require a strict definition of all the
steps in order, for example, to guarantee process quality. Moreover , since
situations that involve lOW are highly dynamic it is necessary for the lOW
to provide a smooth transition from one situation to the other.

- Lightweight deployment. Since lOWs have to be used in situations that are
"less-stable" than the ones where traditional WfMSs are used, lOW needs:
minim al technical requirements , especially in terms of common platform
for the client ; reduc ed "set-up" tim e; openness with respect to continuous
changes in the group of people that are involved in it.

15. Inter-Organizational Workflows for Enterprise Coordination 383

Visibility. information and activities sharing in a highly dynamic environ
ment such as lOW requires a flexible mechanism that assures the sharing
of entities, as well as the preservation of privacy.

15.3.3 A Systematic Framework to Study lOW

In the light of the previous considerations, lOW requirements can be consid
ered in the framework depicted in Table 15.1. Inasmuch as our final objective
is to design and implement lOW, we consider the four dimensions that are
specific to workflows (see Section 15.2) , namely:

- Workflow Description models ;
- Workflow Description languages;
- Architecture;
- Execution models.

For each dimension, we consider both local and global issues. In accor
dance with the above discussion, we emphasize on social abilities and espe
cially on information and activity sharing issues, which constitute the central
problematic of lOW. All the requirements are examined in the computing
context previously established: heterogeneity, distribution, autonomy, tech
nological environment, and possibly openness and scalability.

Now let us examine each scenario within this framework.

Loose lOW. In this open and dynamic context, - where potential partners
(workflow service requesters, workflow service providers) are numerous, leav
ing and joining the global system freely, ignoring one another a priori - , it
is highly desirable to have middle resources that help to select and locate
partners, and ease interoperation with them. For this scenario to work , the
following features are required:

- At the global level, the availability of matchmakers and ontology servers.
Matchmakers can structure, record and advertise partners capabilities and
connect requesters to providers. In our context, the use of Matchmakers
requires the definition of a Workfiow Capability Description Language al
lowing providers to publish their capabilities and requesters to express their
needs. Such a language must be able to structure the format and the pro
tocol of the interactions between requesters, providers and matchmakers.
On the other hand, Ontology servers can assist semantic interoperability
[550J by allowing nodes to adopt or propose a domain specific ontology,
and by offering translating services .

- At the local level, each node needs to be provided with specific models
for negotiating and sharing information and activity with middle resources
and partners. Negotiations require protocols, and rules to use protocols
appropriately in real time. To share activities, each node must explicitly
define its offered and requested processes within its workflow models. It

384 M. Divitini, C. Hanachi, C. Sibertin-Blanc

Workflow
Description
models

Workflow
Description
Language

Architecture

Execution
model

Loose lOW

Global level:

Middl e resources
(Mat chmaker , Ontology
Servers)

Local Level:

- Negot iati on Protocols
(selection of partners,
services, . . .)

- Models of the mediat ing
resources
Sub- contract ed tas k
definitions
Request ed and offered task
definitions

- Dynamic shared inf. space
Flexibl e behavior:
exceptions, adaptability, . . .

- Contract based language
- Workflow capacity

description language
Shared Information Space
definition language

Workflow agent ificat ion
compliant with the WfMC
architecture
Global:

- Mediat or , Matchmaker , .. .

Local:

- Social int erface (pu blishing
skills, managing cont racts ,
select ing partners)

Enabling Technology:

- Agent and the Web

Distributed execut ion based
on contracts and dynami c
information shared space

Tight lOW

Global level:

Rul es to join or leave the
Federation , global integri ty
constraints
(possibly a) Global
Workflow Model.

Local Level:

Imported , Exported , and
Integrat ed workflow models
(information, organization
and process models)
Interact ion models: WF
Coord ina t ion patterns
Commit ments (informat ion
and services offering)

Abstract and transparent
WDL
Met a-protocol definition
Global valid at ion
Import , export and
int egration mechani sms.

- WF Coord. const ruc tors

Federated WfMS compliant
with the WfMC architecture
Global:

a Federation man ager
(distributed or cent ralized)
a Global Model (not
necessary)

Local:

- Component(s) for Model
Exportation , Importati on,
and Integrat ion

- Coordinator (if not global)

Enabling Technology:

- Agent , Federat ed-DB

Distribut ed and concurrent
execut ion according to
well-established coordinat ion
patterns

Table 15.1. lOW requirements

15. Inter-Organizational Workflows for Ent erprise Coordination 385

must also be provided with a local database storing information about ex
tern al middl e resources. To shar e information with partners , the workflow
models must integrate specific tasks to create dyn amically shared informa
tion space to excha nge tasks, cases and workflow relevant data needed by
th e cooperat ing nodes.

The previous requirements impact the Workflow Description Language
that must provide addit ional features like:

- Contract-based protocol to support negoti ation. Thi s idea is curre nt ly be
ing investigated in th e CrossFlow European Project which examines inter
organi zati onal workflows around the notion of contracts [384].

- Workflow Capability Description Language as previously mentioned. Works
on Agent Capability Description Languages [578] could be followed and
adapted to the workflow context.

- Mechani sms to create and manage "Shared information space" . The use
of associat ive blackboards, like the Linda tuple-space model [269], could
be investigated in this context. [140] organizes inform ation exchange in
lOW around an event publish/subscribe model. Each WfMS is provided
with a specific software component called the Event Manager responsible
for publishing its capa bilit ies as a producer or consumer of events, and
for man aging lOW inte ractions caused by event occurrences. Workflow
interactions are explicitly describ ed with "send nodes" and "request nodes"
respectively capa ble of notifying and handling events .

- Flexible definitions of pro cess models where par ts of the activit ies can be
specified at execut ion time in different ways . Let us consider a simple ex
ample. The pro cess "business travel" can have an activi ty "reimbursement
request" . Even if the business travel involves actors from different organiza
tions, a single pro cess can be defined. Still for the "reimbursement request "
it could be necessary to adopt a local pro cedure specified within the orga
nization each actor belongs to. In the definit ion of the pro cess "business
travel" it must therefore be specified that a certain step , "reimbursement
request " , can be expanded, in specific ways.

From an architec t ure point of view, all these features require to provide
convent ional WfMS architecture with specific component s devoted to social
interface. Agent technology is a good candidate to deal with these features
and the challenge could be to enhance WfMS with Agent features. The Work
flow Enactment Service must be thought in terms of agents, and specific
components must be added to support high-level communications with mid
dle resources. Web technology is also very valuable since it provides both a
simple and widely available inte rface (web browsers , HTML forms, . ..) and
a communication infrastructure (CGI scripts, Java applets, .. .) , on top of
which agents could be deployed [119].

386 M. Divitini, C. Hanachi, C. Sibert in-Blanc

From an execut ion point of view, the Workflow Enactment Service must
be able to cont rol cont ract-based distributed execut ion and make shared in
formation space available to partners.

Tight lOW. Fir st , let us dr aw a useful analogy between this scenario and
Federated Databases [102] . Ind eed, both aim at enabling cooperat ion be
tween het erogeneous, distributed , autonomous and pre-defined components
belonging to different orga nizations. However , they differ by the nature of the
components involved, which are st ruc tured informat ion sources in the con
text of Federated Databases, while they are workflows in th e context of lOW.
This analogy originated the definition of Tight lOW requirements. However ,
the ana logy should not be pushed too far , since lOWs gives rise to specific
and more difficult issues due to coordina t ion problems raised by pro cesses.

Let us now precise t ight lOW requirements. In thi s context, th e par t ners
know one anot her and they agree on global behavior al rules establishing,
for example, how th ey can leave or join the group, and on some integrity
const ra ints to respect. They could possibly agr ee, when it is feasible, on a
global workflow model. The definit ion of a global model, which corresponds
to a cent ra lized approach, could be interesting to provide a uniform view
to each partner , but requires a lot of efforts to be created and maintained
and could limit the autonomy of each node. A preferable solut ion is that each
node constructs its own view made of local models and imported models from
the oth er part icipating systems. Each local node must specify:

- Local models, as usual (see Section 15.2).
- Exported workflow models, which are views on its local models and made

available to the cooperat ing systems. Providing these views commits the
local node to provide th e related information and/or to perform the tasks
published in those views.

- Imported workflow models, which are views on exte rnal workflow mod els
belonging to other coopera t ing systems.

- Integrated workflow models, which correspond to a view combining local
and imported models. These models should be combined thanks to inter
act ion models.

- Workflow interaction models, which are coordinat ion patterns synchroniz
ing impo rt ed and local mod els. [607] has identified several possible workflow
coordination patterns (called "forms of workflow inte roperability"): capac
ity sharing, based on central cont rol and distributed execution; chain ed
execution, corresponding to a distributed but sequenti al execution; subcon
tracting , corresponding to a distributed and hierarchical control between
a man ager and several contractors; case transfer, where a pro cess descrip
tion is dupli cated in several nodes and the most appropriate node is se
lected at each t ime; loosely coupled workflow pro cesses, corresponding to
a distributed and par allel execut ion of pro cesses synchronized at certain
pre-defined points.

15. Inter-Organizational Workflows for Enterprise Coordination 387

From a Workflow Description Language (WDL) point of view, we need ab
stractions enabling the manipulation of external models with different levels
of granularity, considering for example external models as atomic or expand
ing them to examine details . We also need mechanisms to import , export,
translate, integrate, and coordinate models . To limit translation effort, a
common WDL is required for expressing exported models. The Workflow
Description Language should also provide constructors to express "coordina
tion patterns" and enable their manipulation as first-class objects. Finally,
the WDL must ease the validation of integrated workflow models even if we
do not have all the details about the imported models but only some external
properties.

From an architecture point of view, we need a Federation manager corre
sponding to a Federated WfMS (by analogy with federated Databases) which
may be centralized or distributed. The federated manager is responsible for
first , administrating the component nodes (arrival and departure according to
protocols, global integrity constraints checking, ...) and the possible global
model, and second, coordinating global workflows (versus local workflows).
Each node should be provided with specific software components guarantee
ing interoperability (Model Integration, Model importation, Model exporta
tion) . Coordination patterns, which are specific to lOW, need to be thought
as first-class objects since they are useful at different steps (during design by
providing "coordination patterns", and during execution for synchronizing
processes and for monitoring remote executions). Consequently, a Coordi
nator is needed. In a centralized approach, it could be part of the federated
manager while in a distributed approach each node needs its own coordinator
within or interacting with the corresponding Workflow Enactment Service .

From an execution point of view, each Workflow Enactment Service in
cooperation with the coordinator should support consistent, concurrent and
distributed execution models implementing the different coordination pat
terns.

15.4 Two Comprehensive Approaches for lOW

The previous section has outlined two main lOW scenarios: loose and tight
lOW. For each of them, we present a general approach for their design and
implementation. The first approach adopts the notion of software agent for
enhancing workflow systems and allowing their use in loose lOWs. The sec
ond approach combines Petri Nets and Federated Databases for providing
the more structured support needed by tight lOWs. Both approaches are
compliant with the Workflow Management Coalition reference architecture.
This guarantees the possibility to tailor the support provided by the IOW
to the needs of the collaborating organizations, remaining within a coherent
framework of reference.

388 M. Divitini, C. Hanachi, C. Sibertin-Blanc

15.4.1 Agent-Based Approach to Support Loose lOW

Software agents have lately been adopted for the development of workflow sys
tems due to their compositionality and flexibility [559] . There are two broad
approaches for exploiting the agent technology in the context of workflow:

- Agent-enhanced Workflow aims at adding value to WfMS by providing an
agent layer in charge of social facilities . Nowadays, many resear ch proto
types as well as commercial syst ems integrat e software agents to perform
specific services (e.g. filtering messages or signaling pending commitments).
For example, in the workflow system MILANO [13] agents are used for the
elaborat ion of messages and for keeping the overall status of the on-going
processes, by combining information provided by the system and by the
users .

- Agent-based Workflow takes a more radical approach, fully rethinking the
system in terms of agents. An example of work in this direction can be
found in [84], where the focus is on reflective agents. Along the sam e vein ,
in ABACa [557] the archi tecture of th e workflow is rethought in terms of
agents. Another example is provided by ADEPT, an agent-based system for
pro cess management [509]. However , ADEPT focuses on th e business per
spective, rather th an on the coordinat ion among people actually involved
in th e process.

The use of agents becomes even more relevant in the case of lOW, given
th e heterogeneity and dynamicity of the contexts where they are used. As
point ed out in Section 15.3, lOW requires a high degree of composit ionality
and openness. Being (semi-) autonomous ent it ies, software agents provide a
computational paradigm for the development of systems characte rized by a
high degree of distribution , compositionality, and openness [329, 591, 270].
In addit ion, the distributed nature of agent syst ems enables a decentralized
control [440], making it easier to change the specification as well as the ex
ecution of workflow pro cesses. Fin ally, due to th eir social ability agents can
handl e sophisticated interactions [643]. This feature of agents, combined with
thei r inte lligent behavior , makes it possibl e to provide a high level support
to th e users, with resp ect to both th e heterogeneity and to the dynamicity
of the environment .

Figure 15.3 presents the architecture of an agent-enhanced workflow ap
proach. It complies with the WfMC 's ar chitecture shown in Figure 15.2 since
it keeps the same components and the same int erfaces between these compo
nents . More precisely, it details the workflow Enactment Service and indicates
which software entit ies implement the Workflow pro cess instances.

According to this architect ure, th e Workflow Enactm ent Service includes
as many agents as the numb er of workflow process inst ances being currently in
progress, an Agent Manager (AM) in charge of these agents, and a Conn ection
Server (CS) that helps th e agents to exten d their acquaintances according to
their needs.

15. Inter-Organizational Workflows for Enterprise Coordination 389

5

2

Workflow
Enactment

Services

3 3

4

6

Invoked
Applications

Fig. 15.3. An agent-based architecture for Workflow Enactment Service

Workflow concepts Agent concepts
A definition of a workflow process An agent type
A process instance and its engine An agent
A process execution The run of an agent

Table 15.2. Mapping from workflow concepts to agent concepts

The key idea is to implement each workflow process instance as a software
process, and to encapsulate this process within an active agent (sec Table
15 .2) . This agent continuously executes its main procedure and this run is
actually the execution of the workflow process instance. Thus, the definition
of the work to be done by a workflow process instance and the engine that
carries out this work are gathered into a single unit that is an agent. Such
an agent is an instance of an agent type generated from the definition of the
workflow process, and it is provided with the means necessary to interact
properly with the environment and to carry out the execution of a process
instance. Therefore, each type of workflow process generates an agent type,
each workflow process instance gives rise to the creation of a new instance
of the corresponding agent type, and the execution of a workflow process
instance is performed by the run of its agent. This agent supports Interface
3 with the applications that are used to perform the piece of work associated
to a step (or a task according to the WfMC's terminology) of the process.

The Agent Manager controls and monitors the activation of the agent
instances, which consists in the four following tasks.

390 M. Divitini, C. Hanachi, C. Sibertin-Blanc

1. To genemte agent types: For each workflow process, the AM generates
an agent type, whose instances will implement the process instances.
Notice that this creation may be done only once, when the model of the
Workflow process is defined .

2. To make agents running: Upon a request for the creation of a new in
stance of a workflow process, the AM creates a new instance of the cor
responding agent type and, according to the context, initializes its pa
rameters with the appropriate values . Then, it launches the running of
the agent 's main procedure.

3. To support agent persistency: Some workflow processes support long-term
business processes that extend for a long time. In such processes, task per
formances are interleaved with periods of inactivity. During these periods,
the process does not go on and it is not desirable that the corresponding
agent stays active and unnecessarily consumes computing resources. In
stead, it may be unloaded for storage in a long-term memory (disk) as
long as it has nothing to do, and loaded again to become active as soon
as it has some task to perform. In this way, the agent is persistent and
can be alive for a long time while being active just when it has something
to do. This feature is supported by the AM that makes agents go from
the active to the inactive state and vice-versa.

4. To assume Interfaces 1, 2, 4 and 5: The AM uses Interface 1 to get
the definition of workflow processes. It also supports Interfaces 2, 4 and
5 that, roughly speaking are concerned with receiving the definition of
a workflow process, creating new workflow process instances, receiving
events that enable instances to go one step ahead and supplying infor
mation about the state of instances.

A key principle of the agent paradigm is that the efficiency of agents to
a large extent relies upon their ability to get in touch with one another and
to collaborate. The role of the Connection Server is to help each agent to
find partners (e. g., organization, workflow instance agent, provider agent)
that stay outside the organization and can contribute to the achievement of
its own goal. To do this, the CS interacts with Mediator and MatchMaker
agents which are specialized in finding agents able to fulfil a particular need
(search engines are an example of such agents in the Web). Assuming that
this architecture becomes widespread, the definition of a new interface, In
terface 6, could allow the CS of different Workflow Enactment Services to
interact with one another too . In addition, the CS stores the collected in
formation in an inter-organizational model database which is an extension
of the organizational model of the WfMS in that it stores the same kind of
information but about the environment of the organization. In some way, the
CS strips, or relieves the instance agents of a part of their social abilities, but
it is necessary to warrant the quality of the information maintained in the
inter-organizational model.

15. Inter-Organi zational Workflows for En terprise Coordination 391

The classical st ruc ture of a Workflow En actment Service consists of a
Workflow En gine that , as and when a Workflow process instan ce progresses,
reads its definition in a datab ase and triggers the appro priate action(s).
Within the agent-enhanced approach, t he st ructure of the Workflow En
actment Service mirr ors the real world phenom enon it supports: there is
a one-to-one correspondence between the agents and the Workflow pro cess
instan ces and both are processes. Thus, the computer-based ent it ies (the
agents) and the real world ent it ies (the business processes) have the same
constit uent proper ties, so that the former ones can qui te easily adapt to the
requirements of the lat ter ones. Flexibili ty, inheri tan ce and mobility may be
used to illustrate this fact .

Flexibility is known as being one of the most cha llenging issues in WfNISS
[219]. Indeed, each instan ce of a business process is a specific case featur
ing distinctive characterist ics with regard to its obj ectives, cons traints and
environment . These differences arise both in a diachronic perspective - con
sidering successive instances of a business pro cess that evolves according to
business requirements - , and in a synchronic perspective - considering the
exceptions encounte red by contemporaneous inst an ces of a business process.
Agents are commonly provided with generic faciliti es for support ing flexibil
ity. Each of the agents support ing Workflow process inst ances is provided
with two addit ional capabilit ies to deal wit h flexibili ty. First , each agent in
cludes its own definition of the process - what is to be performe d is specific to
the agent - and second, it inclu des its own engine for interpreting this defini
t ion - how to perform it is also specific". Tailorin g an agent to the dist inctive
features of its Workflow process has an effect both on its st ructure and on t he
value of its attributes and acquaintances. This tailoring mainly takes place
at the t ime the agent is instanti ated bu t it may also occu r dynami cally as
the agent is running.

Inheritan ce among processes mean s that the behavioral properties of a
process are supported by anot her one. Although t his relat ionship ra ises op en
theoret ical issues [382], some practical approaches have been proposed [608,
297). T he faciliti es of the agent technology to sup port inheri tan ce may be
applied to the pro cess definitions embodied into instan ce agents.

Another very valuable capability is to consider agents that are mobil e
and thus can move from the Workflow En actment Servi ce of an Organ iza tion
to th e one of another Organi zation. However , support ing this functionality
would require a significan t enha ncement of the services supporte d by Interface
4 of the WfMC 's architecture .

15.4.2 Federated Databases and Petri Nets to Support Tight lOW

As shown in Section 15.3, t ight lOW needs to set up an infr astructure allowing
the organizations to share a par t of their Informat ion Mode ls and Process

1 This pro perty agrees with efficiency concerns , nam ely t he fact that agents mu st
be sparing of memory size [554]

392 M. Divitini, C. Hanachi, C. Sibertin-Blanc

Models. The aim of this section is to show how the combined use of Federated
Databases and Petri Nets can support this requirement .

Database technology is one of the core technologies commonly used to
support Workflow Management Systems [287, 217], and while moving from
intra- to inter-Organizational Workflow it is quite natural to go from local
Databases to Federated Databases. In WfMS, Databases are usually used to
structure, record and provide information and views about the workflow mod
els (organization, information and process) and the workflow relevant data for
which they constitute a shared information space . Databases are also known
for guaranteeing good properties like data integrity and consistent execution
of transactions. Federated Databases [102] extend databases by providing an
architecture and mechanisms to support interoperability between several het
erogeneous, distributed and autonomous databases. Roughly speaking, they
provide mechanisms allowing to :

- Export views from a local database schema to the other cooperating nodes;
- Import views of database schemas from other cooperating nodes to a local

database;
- Integrate a local schema with imported ones to produce a global view on

the federated databases;
- Control global transactions;
- Administrate the federation (global integrity constraints, membership man-

agement , etc);
- Process global queries, i.e. to decompose them in sub-queries to be executed

on local databases, to synthesize the sub-queries results, and to compose
the final result.

In the context of lOW, the use of Federated Databases, hiding distribution
and heterogeneity, eases information sharing at different levels:

- Each organization can import and export fragments of the information and
organizational models and therefore can build a global and integrated view
on these models .

- Workflow relevant data can be made available to each partner involved in
a given process.

- The global Information Model of the inter-organizational cooperation can
be made explicit so that one may study characteristics such as its consis
tency.

- In addition, this Federated Database can be the support to import and
export the definition of the processes of the participating Organizations.

With regard to Process interaction, we propose to use Petri nets as a
reference framework and to introduce a new model called coordination model
to define how the Organizations Workflow processes interact. In tight lOW,
the role played by each of the participating Organizations is not negotiated
for each cooperation case but it is the matter of a lasting agreement. To put
this role allocation into practice and determine how they will cooperate, the

15. Inter-Organizational Workflows for Enterprise Coordination 393

partners also agree upon a coordination model which is a process specifying
the task(s) to be performed by each Organization and when these tasks can
or must be executed. This coordination model is the gathering of the process
model exported by each Organization and states the mutual commitment
between par ticipating Organizations. As a simple example, Figure 15.4 shows
a coordination model concerning only two Organizations A and B. Starting

: ~ Or~anisation B

I . beginB

:m __[Or~anisation A 1__;

, • beginA ,

1----i---.1

Fig. 15.4. A coordination model between two org anizations

the cooperation is done by A as performing task ta1. Then, B must perform
tbl followed by either tb2 or tb3. Afterwards, A has to perform ta2 in the
former case, and ta3 in the latter. Finally, ta4 and tb4 are the respective
contributions of A and B to the ending task that they achieve together. Each
task that appears in such a coordinat ion model , referred to as a coordination
task, is also a part of a local Workflow process of one of the Organizations.
Thus, tight lOW makes arise a global Workflow process resulting from the
combin ation of a numb er of local Workflow processes through a coordination
model. The coordination model is the glue that gathers into a global workflow
process all the local Workflow pro cesses including one of its coordination
task. Continuing the current example, Figure 15.5 shows a possible local
Workflow pro cess that allows Organization B to collaborate according to
the coordination model of Figure 15.4. As for Organization A, we assume
that its local pro cess is just its part (the left side of Figure 15.4) of th e

394 M. Divitini, C. Hanachi, C. Sibertin-Blanc

coordination model. Then, replacing the A (resp. B) part of the coordination
model by the local process of A (resp . B) results in the global Workflow
process (Figure 15.6) that they execute in cooperation.

Fig. 15.5. The local workflow process of Organization B

As a consequence, the possibility to execute a coordination task is deter
mined by enabling conditions set by both the coordination model and the
local workflow process of the task. This fact raises issues about the consis
tency of these constraints: if they are not compatible, some cooperation tasks
(and probably some internal tasks too) will never be able to occur. Thus, there
is a drastic need to validate and verify a global workflow process in order to
warrant each participating organization that this process behaves properly
and effectively allows to reach the goal of the cooperation. In any case, no
organization may accept to enter into a cooperation that could lead its own
activity to fail. Let us notice that this guarantee is difficult to establish be
cause none of the organizations has a full knowledge of the global process:
each one only knows its local Workflow processes and the collectively agreed
coordination model. Indeed, each organization exports and makes visible to
the others only the part of its processes that is related to the cooperation.
This is a matter of privacy and corresponds to the meaning of the commit
ment expressed by the coordination model. In fact , this is primarily a matter
of viability since some of the participating organizations are likely to modify
their local Workflow processes. It is essential that the cooperation should not

15. Inter-Organiz ational Workflows for Enterprise Coordination 395

Fig. 15.6 . Glob al workflow pro cess jointly performed by Organization A and 13

systemat ically be called into question by such changes. Another difficult y is
that a global Workflow pro cess is a concurrent process, since each organiza
t ion executes its Workflow pro cesses on its own disregarding the act ivity of
other organizations (except for th e constraint s entailed by th e coordinat ion
mod el). It tends to be a complex proc ess since it results from the coordina
tion of several pro cesses, so th at its modeling and analysis requires a powerful
Description Language featuring the properties mentioned in Section 15 .3 .3.

Petri net formalisms , and more specifically High-Level Petri nets (see,
e.g. [335, 510, 553]), satisfy these requirements. Their suitability for mod
eling and analyzing business or workflow pro cesses has been advocat ed by
many authors for a long time. Indeed , th ey enjoy formal semantics (pro
cess definition s are unambiguou s and pre cise) , a graphical nature (process
mod els are intuitive and easy to und erst and) , a wide expressive power (all
the synchronizat ion constructs are supported, the int eraction between the
data st ructure and the cont rol structure is accounted for by high-level tokens
referring to ent it ies stored in a Dat abase) , th e availability of analysis tech
niqu es supported by tool s allowing to check many proper ties, the possibility
to easily make simulat ions and, last but not least , well-established implemen
t ation techniques. Among th ese topics, we will just illustrate validation and
implementation issues.

Validation concerns a huge number of prop erties, and th e ones of interest
depend to a large extent on th e process und er consideration. As an example,

396 M. Divitini , C. Hanachi, C. Sibertin-Blanc

the effective ending property will be considered, because it is relevant for any
process. A process effect ively ends if, st arting from the initial st ate (where
only the begin place contains one token) , whatever state is reached there
exists a sequence of task OCCurrences that leads to the final state (where
the end place cont ains one token). The reader can easily verify that the
processes of Figures 15.1 and 15.5 effect ively end, as does the coordinat ion
model of Figure 15.4 where at the initial (resp . final) state, all the begin
(resp. end) places contain one token . Up to a simple condition, this property
may be checked automat ically [443] . Now, we are faced with the following
question: How to prove a proper ty such as t he effective ending of a global
workflow process while its structure is not defined? Indeed , we cannot refer
to the structure of the local workflow processes since they can be changing,
and we can only use the fact that they fulfil the const raint s imposed by
t he coordinat ion model. Thus we have to express these const raints form ally.
Let us cons ider a coordinat ion model em and a state Sem of em (that is a
dis tribution of tokens in the places of em), 0 an organization involved in em,
wpo the local workflow process of 0 and So a state of wpo, and finally Teoordo
the set of coordinat ion tasks of 0 t hat appear in em (by definition, they are
the very same appearing in wpo). We say that So is similar to Sem if [499] :

1. if there exists a sequ ence of tasks of em that is enabled , contain s exact ly
one task te of Teoordo and whos e performance leads to the state Sem' ,
then there exists a sequence of tasks of wpo that is enabled , contains
exactly the task te of Teoordo and whos e performance lead s to a state
So' ;

2. So' is also similar to Sem' (namely So' and Sem' satisfy cond it ion 1)2.

A local Workflow process wpo fulfils the const raints imposed on 0 by a
coordinat ion model emif the initial state of wpo is similar to the initial state of
em, since, informally speaking, in each situation where the coordination model
request s 0 to perform a coordination task, 0 is actually able to carry out
this t ask. Noti ce that the similarity property may be checked automat ically.
Thanks to this form al definition of the const raints imposed by a coordination
model, many properti es of a global workflow process can be checked without
dealing with the precise definition of the local workflow processes. Nam ely, we
have the following result . Let em be a coordinat ion model and W p O) , .. . WPOn

be the local Workflow processes of the organizations involved in em. If

1. em and each of the WPOi effectively end,
2. each of the WPOi fulfils the const raint s imposed by em,

then the resulting global workflow process effect ively ends .
Regarding implementation issues , the use of high-l evel Petri nets as Pro

cess Description Language supplies several standard techniques for support-

2 Similarity being a very technical property, we only intend to give an intuition of
its meaning.

15. Inter-Organizational Workfiows for Enterprise Coordinat ion 397

ing the enactment of process instances. Within the IO'V context, t he agent
based and Act ive Database-based ones deserve to be mentioned. The agent
enhanced architecture outlined in the previous sub-section accommodates
very well Petri net-defined processes. Each agent includes a compact defini
tion of the Petri net it has to execute, and its main procedure is a generic
Petri net interpreter that maintains the current state of t he process instance
and, according to this state, makes the tasks associated to the enabled tran
sit ions active . The implement ation of the CoOp erative Obj ects formalism,
a fully concurrent Object-Oriented language based upon Petri nets, works
in this way [554]. Anoth er way to implement Petri nets is to map each net
into a set of rules of the event-condition-action form and execute th ese rules
by an inference engine th at implements the Petri net semantics [47]. In th e
tight lOW context, Active Databases [632] are a very appropriate t echnol
ogy to store and execute such rules. Besides, th ese rules can associate reac
t ive behaviors to events occurring to the obj ect s stored in the (Federated)
database or occurring in the environment (temporal event, signa ls from other
software, . . .). All these functions are gua ranteed with out user intervention.
This mechanism is interesting when one bears in mind that with convent ional
DBMSs, the user has to query the dat abase periodi cally to know if an inter
esti ng event has occur red. Consequently, act ive rules enable the coordination
of the different tasks. For example, each t ime the state of a task evolves, a
datab ase-update event is generated and an appropriate action can be per
formed (agent notification, task chaining, task allocation, history recording).
[139] has shown how to implement a WflvIS on top of an act ive Database.
In our context, combining federated and act ive databases features turns the
shared information space into a dist ributed blackboard: each node has a local
blackboard available to it .

15.5 Conclusions

This chapter has presented some of the issues that needs to be addressed in
order to make workflow systems able to support business processes that span
across multiple organizations, i.e. Inter-Organizational Workflows. In partic
ular , th e cha pter has focused on th e support to coordina t ion of cooperat ing
organizat ions and, consequently, on t he modeling and enactment of business
processes. Though the focus is on the process, th e import ance of information
and orga nizat ion models in the context of lOW has been st ressed.

After having introduced the basic terminology of t ra dit ional workflow and
workflow systems, the chapter has out lined some requirements for lOW. In
par ticular , a framework for organizing these requi rements has been presented.
The framework is st ructured along 4 dimensions: t he WF descript ion model,
the WF descrip tion language, the Architecture , and the Execution model. In
addit ion, a distinction is made between local and global issues. The first are

398 M. Divi tini, C. Hanachi, C. Sibertin-Blanc

related to the individual WF syste ms that can possibly be involved in a lOW,
while the latter are connected to the group of these syst ems as a whole.

Given the different ways in which organi zations can cooperate, the re
quirements have been identified in relation to two scenarios that represents
the two extreme of the range of variabili ty: loose and tight lOW. Loose lOWs
refer to occasional cooperat ion, free of st ruct ural const raints , where neither
the involved partn ers nor their relationships are defined a priori . Ti ght lOWs
refer to a structural cooperat ion among _organizations, i.e., a cooperat ion
based on a well-est abli shed infrastructure among pre-defined partners . Based
on this distinction and the related requirement s, the chapter presents two ap
pro aches to the design and the impl ementation of lOWs. The first approach
adopt s the not ion of software agents for enhancing workflow syste ms and al
lowing their use in loose lOWs. The second approach combines Petri Nets
and Federated Databases for providing the more st ruct ured support needed
by tight lOWs.

Both the approaches are compliant with the Workflow Man agement Coali
tion reference architecture . This guarantees the possibility to tailor the sup
port provided by the lOW to th e needs of the collaborating organizations,
remaining within a coherent framework of reference.

This chapter does not aim at providing a final answer to the problem
of lOWs, rather it fully acknowledges the complexity of the problem, and
suggests a fram ework where different cont ribut ions can be compared and
integrated .

Clearly, the distinction between loose and tight workflows is mainly ana
lyt ical , necessary for organ izing requirements and solutions. In the real world
there is a continuum between these two ext remes . Our future research will
aim at developin g a continuum also in the support that a lOW system can
provide. The goal is to build a br idge between the two proposed approaches,
so to assure a smooth transition from the less st ruc tured to th e more st ruc
tured support (and vice versa) , and, on the overall, a support that can be
adapted to the evolution of the organ izations and the way they coopera te .

16. Constraints Solving as the Coordination of
Inference Engines

Eric Montroy! and Farhad Arbab!

CWI, Kru islaan 413, 1098 SJ Amsterdam, t he Netherlands
mailto:Eric .Monfroy@cwi .nl, mailto :Farhad.Arbab@cwi.nl

Summary.

In this chapter we consider the applicatio n of coordination to (coop
erative) constraint solving. This to pic raises several issues an d questions,
such as: Why use coordination models for (cooperative) constraint solv
ing? What are the possibl e app roaches and what categories of coordination
mod els ar e best suited for t his task? Are coordina tion lan guages just a new
way of implement ing solver (cooperation) , or do t hey also improve solving
tec hniques/ met hodologies and open new directi ons? What can const raint
solving expect from coordination lan guages and mod els?

In the following we attempt to address t hese issues and at least hin t at
some possible dir ections. In t he first section, we discuss t he general prob
lems an d highlight two ap proaches: using coord ination for cooperation of
solvers (Section 16.2), and designing solvers wit h a coord ination lan guage
(Section 16.3). F ina lly, we conclude by advocating t he use of coordinat ion
mo dels for realizing both constraint solvers and cooperation of constraint
solvers.

16.1 A Generic Approach to Coordination-based
Constraint Solving

In this sect ion we present a number of very generic problems that must be
considered to use coordination for (cooperat ive) constraint solving. After a
brief review of constraint progra mming and more specifically of const ra int
solving, we present a basis for evaluating the appropriateness of coordination
models for const ra int solving.

16.1.1 Constraint Programming

In the last 15 years, constraint programming has emerged as a new pro
gramming par adigm. In this alte rnative approach the programming process
is merely a specificat ion of a set of requirements, a solut ion for which will be
found using some general or domain specific const ra int solvers.

These requirements are called const ra ints, and they can be seen as state
ments of relationships that must exist among the set of variables in a problem.
Thus, const ra int programs are highly declar ative: you just state what is re
quired , not how to find the solut ions. This approach to modeling of problems
can be introduced in many tradit ional programming environments .

400 E. Monfroy and F . Arbab

Solvers aim at computing/finding solutions for constraint problems, i.e.,
values for variables such that all constraints are satisfied. Solvers for do
main specific constraints are usually provided in the form of specific algo
rithms (such as programs for solving systems of linear equations), packages ,
or libraries (such as linear programming packages/libraries), whereas general
methods are usually presented as techniques for reducing the search space
combined with specific search algorithms. Most of these general methods are
based on constraint propagation which extracts information from constraints
in order to reduce the set of possible values that can be assigned to a variable.

Constraint programming has been successfully used for solving many dif
ficult real-life problems in numerous domains including operations research
problems, physics and chemical applications, computer graphics, database
systems, molecular biology, financial applications, electronic circuit design
and validation, art, etc .

Although constraint programming is a multidisciplinary research area, we
can split it into two main directions: programming languages and constraint
solving. In the following we focus on the second direction and show that con
straint solving is intrinsically linked to coordination models and languages.

16.1.2 Constraint Solving

The Need for Solver Cooperation. Constraint programming utilizes a
collection of largely independent techniques, notably various specialized con
straint solving techniques. These specialized techniques have been success
fully used in practical constraint programming tools for solving real-life prob
lems in specific domains. However, combining these existing techniques and
tools generally requires their reprogramming or re-engineering. Given that
the development of solvers is, generally, an expensive and tedious task, the
interest for re-using existing constraint solvers and for connecting to solvers
dispatched on the Internet is obvious [562] . More importantly, integrating
several solvers, each working in a different domain or based on a different
technique, is an appealing and realistic approach when dealing with prob
lems that cannot be tackled or efficiently solved with a single solver.

Thus, combining various existing methods and techniques within a sin
gle framework is both a powerful tool and a major challenge in constraint
programming. Such a framework must provide tools to easily configure and
integrate existing components, and a language to control and coordinate
their actions in a distributed environment. Particularly, one of the contin
uing challenges in this area is the integration of symbolic and numerical
computing [65, 436]. So far, such frameworks consider either a specific con
straint domain (such as linear constraints [67], non-linear constraints over
real numbers [436]) , a fixed solving strategy, or a fixed scheme of collabo
ration (either sequential or concurrent) . More recently, BALI [429, 433], an
environment for domain-independent solver collaboration, was proposed. Its
high-level language is based on primitives that allow one to combine solvers

16. Coordination of Inference Engines 401

using collaboration primitives (such as sequentiality, concurrency, and par
allelism) and control primitives (such as conditional, guarded, iterative, and
fixed-point collaborat ions).

Solver vs. Solver Cooperation. Recall that we have identified two differ
ent schemes for solving constraints: constraint solvers and solver cooperation.
A constraint solver can be seen as a single technique, or a "low-level" combi
nation of several solving techniques. On the other hand, solver cooperation
techniques consider constraint solvers as black boxes and compose them in
"high-level" combinations to produce new solvers .

The difference between the two schemes is not always structurally obvious .
For example, consider const raint propagation with chaot ic iteration (CI) [30,
31] (this topic is detailed in Section 16.3) . The reduction functions can be
considered as components of the algorithm, or they can be seen as black-box
functions , i.e., solvers . Then, is th e chaotic iteration algorithm a solver or a
cooperation of solver? The distinction is generally mad e by considering where
the components come from . If their code is included in the code of the CI
algorithm, then, we can say that we deal with a solver. If one re-uses external
functions in the form of executable files, libraries, or connects to Internet
agents , then one should think in terms of solver cooperation.

Some approaches (such as BALI) create instances of solver cooperation
among constraint solvers . But then, these cooperation instances can recur
sively be considered as constraint solvers in their own right, that can in turn
be used in other cooperation instances. Sometimes (such as [143]) , a special
language is used to design both constraint solvers and solvers cooperation
schemes , at the same level. Thus, each primitive of the language can be used
to create a solver or a cooperation of other solvers .

Although the distinction between const raint solvers and solver coopera
tion is not clear cut , it is still helpful for us to consider them as motivation for
two separate approaches: (1) designing constraint solvers using coordination
languages, and (2) using a coordination language to realize cooperation of
solvers.

Agents. In solver cooperation schemes the notion of an agent is natural and
straightforward: individual solvers are computing agents that can be threads
on a single machine, processes located on different machines on a network
of computers, or processes dispatched all over the world and communicating
through the Internet. There is a one to one mapping from solvers to agents.
These computational components are then controlled by coordination agents.

Within an individual solver, the concept and the role of agents are less
clear. Generally, the underlying hardware architecture and the development
framework may define what agents are. One may say that in a solver that
is the combination of different solving techniques, each technique constitutes
an agent . But generally, there is no clear rule for deciding what agents are
and what role they play within an individual solver. For instance, an agent
can be a function, a variable, a program module, etc.

402 E. Monfroy and F. Arbab

Inter-operability Issues. A solver is generally programmed from scratch,
and thus all of its agents (however they may be defined) are normally written
in the same language. As such, inter-operability is not an issue for developing
individual solvers.

The situation is very different for solver cooperation schemes because
generally, solvers are heterogeneous: they may be written in different lan
guages, execute on different operating systems, and may be adapted to take
advantage of specific hardware platforms. In this case, the choice of the coor
dination language is crucial. It must be able to support many computational
languages and must be ported to many different platforms so that it does.not
restrict the solvers that may be integrated in such a framework .

It is a safe bet to assume that every solver has its own representation of
data. This makes integration one of the main issues in solver cooperation. We
can illustrate this problem with a simple, but usual example. What does it
mean (semantically) when a real number is exchanged between two solvers?
They both knows what it is (a real number), but they are likely to have two
different representation for floating point numbers (8 bits, 16 bits, infinite
precision,...). This creates many problems at the level of constraint solving
that are not especially related to coordination. This way, converter agents do
not become the bottleneck in the system, and adding a new solver requires at
most the minimum effort of providing converter agents to support its specific
representation format .

If we know how to translate data from one representation to another, then
coordination models provide an easy way for two black-box solvers to commu
nicate with one another. We need to provide new computational agents that
convert data from one representation to the other. However, two other issues
must now be considered. First, what exactly should a data converter agent
know? Should we have a data converter agent for every possible pair of differ
ent representation format, or should a data converter have global knowledge
of all representation formats used in an application? Second , should a con
verter agent convert directly from one representation to another, or should
converter agents translate individual solver representation formats to and
from a unique global representation format? The proper answer to these
questions depends on the number of solvers involved in cooperation schemes,
the potential for the evolution of the framework (which may involve connec
tion and integration of new solvers), and the volume of the data that flows
between various heterogeneous solvers . However, it is safe to say that an open
architecture for a system to allow connection to solvers and inference engines
dispatched on the Internet, it is reasonable to use a global external repre
sentation format and provide converter agents to translate back and forth
between this representation format and that of the individual solvers.

Although, coordination does not solve the problem of integration (of het
erogeneous solver agents), it significantly facilitates its realization. For exam
ple, the Openmath consortium [587] is working on the design of a standard

16. Coordination of Inference Engines 403

language for mathematical objects (i.e., the most commonly used objects in
constraints). Such a standard should thus be integrated as a low level layer in
constraint systems so that mathematical tools can exchange data with each
other. Coordination languages allow us to realize this layer as just a converter
agent. This way, the code of the converter can be separated from the code of
the solvers, and used with tools that do not adhere to this standard.

16.1.3 Coordination Models

Coordination languages [269, 482] offer language support for composing and
controlling software architectures made of parallel or distributed components.
As such , th ey can be thought of as the linguistic counterpart of software
libraries and platforms, like MPI of Dongarra et al. or PVM of Geist et al ,
which offer extra-linguistic support for parallel and distributed programming
([36]). By providing explicit linguistic support for otherwise ad-hoc constructs
offered by such standards and libraries, coordination languages advocate a
programming paradigm that can be described by the slogan Programming =
Computation + Coordination, as proposed by Gelernter and Carriero in their
seminal 92 paper [269].

The conceptual significance of such a programming paradigm is a clear
separation between the components of the computation and their interaction
in the overall application or system. On the one hand, this separation fa
cilitates the reuse of components; on the other hand, the same patterns of
interaction occur in many different problems - so it might be possible to reuse
th e coordination components as well.

Coordination languages have been applied to the parallelization of com
putation intensive sequential programs in the fields of: simulation of Fluid
Dynamics systems, matching of DNA strings, molecular synthesis, parallel
and distributed simulation, monitoring of medical data, computer graphics,
analysis of financial data integrated into decision support systems, and game
playing (chess).

Coordination models and languages can be classified [482] as control
driven vs. data-driven. Orthogonally, they can also be classified [36] as en
dogenous vs. exogenous.

Data-driven Coordination Models. The main characteristic of data
driven coordination models is that they tend to organize the communication
of all components through a substantial shared body of data.

Mixing coordination and computation. Most data-driven coordination mod
elsare endogenous. Endogenous coordination models provide primitives that
must be incorporated within a computational agent for its coordination. In
applications that use such models, primitives that affect the coordination of
each agent are inside the agent itself. Thus, an agent is responsible for both
examining and manipulating data as well as coordinating its own activity
with other agents.

404 E. Monfroy and F. Arbab

To devise solver cooperation schemes, solvers are usually considered as
black-boxes that cannot be modified. In fact, they are often provided in binary
form and their source code is not available. Solvers can also be agents to which
queries can be sent through an interface. In both cases, only their front
ends may be adaptable for special purposes, but their source code cannot be
modified to accommodate the coordination primitives of endogenous models .

In contrast, the realization of a constraint solver is usually programmed
from scratch. Thus, agents can be defined with the appropriate coordination
and computation primitives.

Shared data-space. Almost all data-driven coordination models have evolved
around the notion of a shared data-space [515]. All agents involved in an
application communicate indirectly through this medium: each agent serves
itself (i.e., puts or gets data) in the shared data-space without any global
organization.

Shared data-spaces can be convenient for designing individual solvers .
However, they are generally completely inadequate for solver cooperation
schemes. Indeed, this way of communication would lead to a framework close
to pure concurrent cooperation. This component interaction mechanism is
generally proven to be inefficient for solver cooperation [283] . The techniques
used in individual constraint solvers are by now well-understood, to the extent
that it is possible to define "identity cards" for most solvers. Furthermore,
experimental results have shown that certain cooperation schemes lead to
significant improvements, whereas others are catastrophic. It is, thus, not
reasonable to think that a "random" exchange of data between solvers can
lead to more efficient cooperation than what can be built based on ten years
of knowledge and experiments.

Data-driven coordination models built around shared-data-spaces can also
raise security problems when agents connect through the Internet. However,
there is some recent work that addresses some of these privacy and security
issues.

Flat structures. Data-driven models generally organize agents in a flat struc
ture. Th is is opposed to the notion of solver cooperation that considers incre
mental construction of solving processes [433, 143]. With such coordination
models, a solver cooperation instance cannot be considered as a solver that
may itself be integrated into yet another cooperation.

Control-driven Coordination Models. Control-driven coordination mod
els emphasize processing or the flow of control. They induce a view on an
application as a collection of autonomous agents that consume their input
data and subsequently produce new data for other agents. Furthermore, in
exogenous control-driven models, such as MANIFOLD , there is a complete
separation of computation and coordination concerns. The state of an appli
cation is defined in terms of the agents and the coordination patterns that
they are involved in. The actual values of the data the agents manipulate or
exchange are almost never involved.

16. Coordina tion of Inference En gines 405

Control. Data is of only secondary importance in defining solver cooperation
schemes, and in some systems, of no importance at all. The key is to know
certain generic propert ies of the result s produced by various solvers . A coop
eration scheme can be seen as a design to exploit such invari ant properties
and ot her relevant information about its par ti cipat ing solvers . This may seem
counter-int uitive when one considers a const ruct like the condit iona l primi
t ive of BALI. It appears that this primiti ve must examine some actua l data
value to decide which solver to send a request to. However , this appearance
is misleading because in fact th e examination of the dat a value is not done
at the same level as the primitive itself; it is done inside a specialized agent.
T hus, the coordination pat tern that corresponds to this primitive is generic
and independent of the actua l data values. The specialized agent that exam
ines the actual dat a value, simply signals th e coordinat ion pat tern to react
and create one of th e two alte rnative data-flow pipelines.

Complete separation of computation and coordination. An exogenous control
driven coordinat ion model complete ly separates computational and coordi
nation concerns into sepa rate components . It is, thus, possible to define a full
language purely concerned with coordination. MANIFOLD is such a language
where computationa l components are considered as black-boxes wit h clearl y
defined input/output interfaces.

Such models are good candidates for defining solver cooperation schemes ,
and even more so, for defining solver cooperation languages. The main mo
t ivation is to re-use and integrate already exist ing and already programmed
solvers, and to connect to solvers throug h t he Internet. Hence, solvers are
generally provided as black-boxes the insides of which cannot be modified,
or as Internet agents which are known only thro ugh their interfaces. These
components then naturally make up the purely computational part of the
system, i.e. , its comput ing agents . The necessar y coordination components
can then be written in a pure exogeno us coordination-oriente d language, such
as MANIFOLD .

Adequacy. To summarize, dat a-driven coordination models aim at coordi
natin g the production and consumption of da ta within a sha red dat a-space,
whereas cont rol-driven models dir ectly coordinate active ent ities, or agent s.
Analogously, constraint solvers manipulate const raints that are stored in
a special data-space (i.e., the const raint store) , whereas solver cooperat ion
schemes mainly deal with the control of the application of individual solvers .

Thus, t he two main categories of coordinat ion models can be assoc iated
wit h the two main approaches for const ra int programming: dat a-driven mod
els to solvers, and cont rol-driven models to solver cooperation. However , ju st
as there is no clear cut dichotomy of data-driven and cont rol-driven coordina
tion models, the boundar y between const raint solvers and solver cooperations
schemes is not clear either. Consequent ly, the association of data-driven and
control-driven coordination models wit h the design of solvers and solver co
ope ration schemes cannot be conside red as a st rong and uni versal dichotomy.

406 E. Monfroy and F. Arbab

For example, it is clear that concurrent const ra int programming [534] de
fines a data-driven coordination fram ework for const ra int programming and
const raint solving. On the ot her hand, the solver collabora t ion language of
BALI defines a set of cooperat ion primitives t hat matches coordination pat- .
te rns of a cont rol-driven coordination model. When dealing with chaotic it
era tion, the associat ion becomes more hazardous because several alternati ve
realizations are possible. Using a data-driven coordination model, we can
consider a shared data-space (representing the vari ables and th eir values)
used by agents (the reduction funct ions) to asynchronously post and ret rieve
values until they reach a fixed-point. Alternatively, a cont rol-driven frame
work can be used to implement chao t ic iteration techniques. Here, variables
become coordinato rs that request comput ing agents to perform reductions.
Nevertheless, consistent with our classification, th e first scheme is more ap
propriate when chaotic iteration is used to design solvers, whereas the second
scheme better suits the design of solver cooperation schemes .

16.2 A Solver Cooperation Language

In this section, we consider a language for solver cooperation. Such a language
is built out of pr edefined coopera t ion primitives (or pattern s) th at enabl e one
to design composite solvers made of cooperative solvers . The approac h that
we propose in this section consists of tr anscribing each collabora t ion pat
tern into a coordinat ion pat tern, i.e., a topology of agents , some st reams for
th eir communicat ion, and some cont rol for their coordination. This approach
captures the notion of solver cooperation languag es in the field of const raint
programming. As an example, we study one such system: BALI [429,433,430].

16.2 .1 BALI

BALI is an alte rnat ive way of designing cooperative const ra int solver syst ems
using a gener ic and domain-independ ent cont rol-oriented language. In ord er
to deal with th e integrat ion of const rai nt solvers, re-usability, and cooper
at ion, BALI provides a glass-box mechanism which enables one to link and
cont rol black-box tools, i.e., the solvers . This syste m allows one to design
and implement solver collaborat ion schemes 1 with a high-l evel language to
compose solvers using collaborat ion primitives (such as sequent iality, concur
rency and parallelism) and control primit ives (such as iterat ors , fixed-points
and cond it ionals).

1 Solver collaboration means either solver cooperat ion or solver combination.
Solver combination consists of creating a solver for a union of theories from its
component solvers, while solver cooperation deals with communication among
component solvers each defined for a single domain but based on different tech
niques, or working on different constraints. For a more formal definition of both
of these concepts see [430) .

16. Coordination of Inference Engines 407

Heterogeneous solvers can be involved in the solver collaboration language
of BALI, and we want to be able to use every software we need, i.e., not only
the software we can locally access on our own network of machines, but also
software located on other networks to which we can connect through th e
Int ernet .

In BALI, a solver collaboration is itself considered as a solver. This means ,
that it can be re-used in another (higher level) collabora t ion scheme.

The Coordination Model and Language. Due to t he dyn amic aspect of
t he form al model of BALI , the use of het erogeneous solvers, and the incremen
t al composit ion of cooperation , only a coordina tion language able to deal with
dynami c processes and channels (creation, dupli cation, dis-jre-jconnection) ,
able to handle exte rnal heterogeneous solvers (routines for automatic data
conversions), and able to manage non-flat structures can fulfill the require
ments of th e formal model of BALI. This guided us through the different
coordina t ion models and lead us to the IWIM (Ideal Worker Ideal Man ager)
mod el [33, 34], i.e., a cont rol-driven model, and the MANIFOLD [81, 35] lan
guage, which is an implementation of the IWIM model ported to severa l
platforms, support ing many different programming languages.

The Solver Collaboration Language. A detail ed descrip tion of th e solver
collabora t ion language of BALI can be found in [433, 429]. In this section, we
give a brief overview of some of its collabora t ion primitives, and the complete
syntax of the language is given in Table 16.1.

IdE I (identifiers)
S E S (solvers)
'IjJ E tJf (concurrency functions)
n E N (positive integers)
OA E OA (arithmetic observation functions)
OB E OB (boolean observation functions)
Col ::= Id = E

E ::= 0 IId IS I seq(SE) Idc('IjJ , SE) Isplit(SE) I f -peE) Irep(Ar, E) I i f (B , E , E)
S E ::= E I E ,SE

Ar ::= n I Ar+Ar I Ar-Ar I Ar *Ar I OA

B ::= tru e I f alse I Ar < Ar I Ar :S Ar I Ar = Ar I B 1\ BIB V B I -,B I OB

Table 16.1. Syntax of the solver collaboration language

Sequent iality (denot ed seq) means that the solver E2 will execute on the
const raint store C' , which is th e result of the application of the solver E1 on
th e constraint store C.

When several solvers are working in parallel (denoted split) , the store C
is sent to each and every one of them. The results of all solvers are gath ered

408 E. Monfroy and F. Arbab

together to constitute a new constraint store analogous to C . This primitive
represents a cooperative concurrency.

Concurrency (denoted de) is interesting when several solvers based on dif
ferent methods can be applied to non-disjoint parts of the constraint store.
The result of such a collaboration is the result of a single solver S composed
with the constraints that S did not manipulate. The result of S must also sat
isfy a given property 'l/J which is a concurrency function (set I[J in Table 16.1).
For example, basic is a standard function of I[J that returns the result of the
first solver that finishes executing. Some more complex 'l/J functions can be
considered, such as eolued.form which selects the result of the first solver
whose solution is in solved form on the computation domain. The results of
the other solvers (which may even be stopped as soon as S is chosen) are not
taken into account. The concurrency primitive is similar to a "don't care"
commitment but also provides control for choosing the new store (using 'l/J
functions) . This primitive represents a competive concurrency.

These primitives (that comprise the computation part of the collaboration
language) can be connected with combinators (which make up the control
part of the language, using primitives such as iterators, conditionals, and
fixed-points) in order to design more complex solver collaborations schemes.

The fixed-point combinator (denoted f.p) repeatedly applies a solver col
laboration until no more information can be extracted from the constraint
store.

The primitives and combinators presented above are statically defined.
Using a set of observation functions on the constraint store allows one to get
more dynamic primitives. These functions are evaluated at run-time (when
entering a primitive) using the current store. They may be either arithmetic
(set OA in Table 16.1, such as card.oar which computes the number of
distinct variables in the store),) or Boolean (set 08 in Table 16.1, such as
linear that tests whether all the constraints in the store are linear) .

The repeat combinator (denoted rep) is similar to the fixed-point combi
nator, but applies a solver n times (n being the result of a composition of a
number of observation functions). Since this primitive takes into account the
constraint and its form at run-time, it improves the dynamic aspect of the
collaboration language.

Finally, the conditional combinator (denoted if) applies one solver or an
other depending on the evaluation of a condition (also expressed as a com
position of a number of observation functions on the constraint store).

The following example illustrates the solver collaboration language:

seq(A,de(basie,B.C. D),split(E,F).Lp]G))

Consider applying this collaboration scheme to the constraint store c 2. First
A is applied to c and returns Cr . Then, B, C, and D are applied to Cr . The first
one that finishes gives the new constraint store C2. Then E, and F execute

2 In order to simplify the explanation, we consider here solvers that return only
one solution (one disjunct).

16. Coordination of Inference Engines 409

on C2 . The solution C3 is a composition of c~ (the solution of E) and c~ (the
solution of F). Finally, G is repeatedly applied to C3 until a fix-point, C4 , is
reached, which is the final solution of the collaboration.

Agents. Solvers in BALI are black-boxes and heterogeneous. This is readily
supported by MANIFOLD which integrates or connects the solvers as exter
nal workers. Then, communication and coordination can be defined among
solvers in the same way as with common agents , regardless of whether they
are located on a local network, or dispatched on several networks.

Individual solvers are encapsulated to create component solvers. As shown
in [429], a solver collaboration is itself a solver. Applying this concept to the
architecture, encapsulation becomes a hierarchical operation. Hence, several
component solvers can be encapsulated in order to build a composite solver
agent. However, viewed from the outside of a capsule, component and com
posite solvers become identical.

denoted -~_

,
E~v~

Fig. 16.1. Simple solver

A component solver (see Figure 16.1) consists of several agents:

- a coordinator for managing the messages and agents inside the encap
sulation. This coordinator is also the in/out gate of the capsule (when
communicating with superior agents) .

- a solver, that can be a "local" solver, or a de-located solver,
- four filters (MANIFOLD workers):

- to filter the constraints the solver can handle. In fact, when re-using
(or connecting to) solvers, not all of them are able to treat every type
of constraint in the store. Thus, only those constraints admissible by a
solver must picked.

- to convert the data from the global representation format to the format
of the solver,

- to convert the solutions of the solver into the global format,
- to re-compose equivalent solutions based on the solutions of the solver

and the constraints it cannot handle.

410 E. Monfroy and F . Arbab

A composite solver (see Figure 16.2) is the encapsulation of several com
ponent/composite solvers together with some filters . The filters and the co
ordinator are specialized for the collaboration primitive the agent represents.
See [37] for more details.

4
I,
~

/ \
~~~ ...~
Fig. 16.2. Composite solver

The dynamic facilities of MANIFOLD, provide several advantages here,
such as sharing of agents (filters , and solvers) among composite solvers (see
Figure 16.3). The creation of another instance of an agent (solver or filter)
will depend on the activity of the already running instances.

~

~

,!J'b Coo.@~~ 52 ->

Fig. 16.3. Shared solvers and filters



16. Coordination of Inference Engines 411

BALI requires dynamic facilities in a coordination language for several
reasons.

Dynamic handling of solvers . The set up of the distributed architecture and
its use are not disjoint phases in BALI. This means that when a solving request
is issued, the collaboration will be built incrementally (agent after agent)
and only the necessary agents will be created. For example, in a conditional
or guarded collaboration, only the "t hen" or the "else" sub-collaboration
will be launched. If another request is sent to the same collaboration, the
launched components will be re-used, possibly augmented by some newly
created agents.

Dynamic handling of disjunctions . Disjunctions of constraints (i.e., created
when a solver computes several solutions) are treated dynamically in BALI. We
demonstrate this for the case of sequential collaboration seq(Sl,S2, ' " ,Sn) '
All disjuncts produced by Sl must be sent to S2. MANIFOLD allows us to
use pipelines to solve C2 as soon as it is produced by Sl . If S2 is still working
on C1, and all the other instances of S2 are busy, then a new instance of S2
is created for solving C2 . The treatment of C2 is thus not postponed. This
mechanism applies to all sub-agents of the sequential agent.

Coordination. We now informally describe the coordination (performed by
the coordinator agent) related to some of the primitives of the solver collab
oration language of BALI. More details, including some formal definitions can
be found in [37, 430].

Recall that each solver can produce several solutions (i.e., constraints, or
stores of constraints). When a solver has enumerated all its solutions, it sends
the solution termination message (end). Thus, to manage all these solutions
we consider a backtrack-like mechanism among solvers .

We also consider that several instances of an agent can be created, and
that there is no concern about using one instance or the other. This is just a
matter of efficiency that enables the treatment in parallel (or in a pipelined
way) of several solutions given by a solver. Thus, in the following, we just
consider a solver (not its instances). Instance management is described in [37] .

Sequential primitive. seq(Sl,S2,' " ,Sn) solves a constraint by sequentially
applying several solvers. As soon as the coordinator receives a solution (i.e. ,
a constraint or a store of constraints) from an agent Si , the constraint is
forwarded to SiH' The process is initialized by sending a constraint to Sl'
Solutions from Sn are forwarded to the superior agent of this collaboration.
In a sequential collaboration, several agents are "pipelined" and work in
"parallel", but the solutions are passed "sequentially" from one agent to the
next .

Another interesting feature is that the order of solution is not preserved.
Assume that Si produces several solutions C1, . . . , Cn one after the other. They
are then forwarded to Si+1 in the same order. But it can happen that the
instance of Si+1 that treats Cm+1 (produced after cm) is faster than the one



412 E. Monfroy and F. Arbab

t reating Cm' Then, the solut ion created from Cm+1 will be sent before the one
of Cm ' This is in fact an important feature, since a t reatment will never be
delayed by another one. Thus, we obtain a kind of parallel and quick-first
search .

Th e split prim iti ve. split(51 ,52,' . . ,5n ) applies several solvers in parallel on
the same const ra ints . The solut ion of split is a Cartesian-product -like re
compos itio n of all solut ions returned by 5 1,52" " ,5n . When a split agent
receives a solve request from its superior , it forwards the request to all its
5 i's. Then, it waits and stores all partial solut ions of indiv idual 5i's. The
split agent creates the elements of the Cartesian-p roduct of the solutions as
soon as possible (i.e. , as soon as at least one solut ion from each 5 i is received)
and forwards t hem to its superior agent.

Th e '0_don't care prim itive. de('01 ,51 ,52 ,. .. 'sn) introduces concur rency am
ong solvers. Upon receiving a const ra int c from its superior, the don 't care
agent forwards c to all its sub-agents, 5 i's. Then it waits for a solut ion c'
from any of its sub-age nts. If c' does not satisfy '013 then c' is forgot ten and
the don't care agent waits for a solution from another sub-agent (ot her than
the one that produced c'). As soon as the don't care agent receives a solut ion
c' from some S, that satisfies '01, all ot her sub-agents are stopped and c', as
well as all ot her solut ions pro duced after by 5 i , are forwarded to the superior
agent .

The fix -poin t primitive. Lp( 5) repeatedly applies 5 on a constraint , until no
mor e information can be ext rac ted from the constra int. The solving process
starts when the fix-point agent receives a const raint c from its superior. This
is an iterative pr ocess in which each solut ion is sent agai n to an instance of
5 untill a fixed point is reached, i.e., the const ra int sent to an instance of 5
and the solut ion the fix-point coord inator gets from the same instance of 5
are the same. Then , this solut ion is sent to the superior agent .

An application of 5 can create a disju nction of solutions, i.e., enumerate
severa l solut ions. But we do not force all these solut ions to be t reated by the
same instance of 5. Thus, we do not know how many applications of 5 may
be required , but we favour efficiency 4 .

For a descrip tion of the coordinators for the repeat and the condit ional
primiti ves, as well as a detailed description of the sequent ial coordinator ,
see [37].

The Contribution of Coordination. We see that coordination languages,
and MANIFOLD in par ti cular , are helpful for implement ing cooperative con
st rai nt solving. However , the advantages of using coordination languages are

3 'ljJ1 is an element of the set 'IjJ of boo lean functions. T hey test whet her or not a
constraint satisfies some propert ies.

4 We could consider well defined iteration steps, i.e., wait ing for all answers of S
before entering the next iterat ion. But then, alrea dy enumerated solutions would
always be delayed by the st ill corning soluti ons.



16. Coordination of Inference Engines 413

not only at the implementation level. MANIFOLD allows an implementation
of the formal model of BALI (as opposed to an implementation of a "sim
plification" of BALI when coordination is not used) and this implies some
significant benefits for constraint solving.

We illustrate this point with the treatment of disjunctions which is a key
point in constraint solving. The most commonly required search is depth
first : each time several candidates appear, take one, and continue with it
until a solution is reached, then backtrack to try the other candidates. One
of the reasons for this choice is that, generally, only one solution is required
and producing all solutions would be too slow. The coordination we described
with MANIFOLD leads to what we call a "parallel depth-first and quick-first"
search. The parallel depth-first search is obvious . The quick-first search arises
from the fact that each constraint flows through the agents independently
from the others. Hence (ignoring the boundary condition of reaching certain
resource limits) a constraint is never delayed by another constraint, nor stops
at the input of a solver or in a queue. The outcome is that the solution which
is the fastest to compute (even if it is not originated from the first disjunct of
a solver) has a better chance to become the first solution given by the solver
collaboration. We thus obtain a solution faster, and when all solutions are
required, we also get all results quicker using parallel computation.

16.2.2 Other Realizations

BALI is not the only realization of a system for solver cooperations, but it is
certainly the most demanding one from the point of view of coordination.

Other realizations of solver cooperation systems are of two types: (1) based
on a single fixed cooperation scheme, or (2) based on a solver cooperation
language somewhat like BALI. In systems that are built out one coordination
pattern the topology of agents, the communication streams, and the control
are fixed. In languages that define several parameterized coordination pat
terns the control is fixed, but for each pattern, the topology of its agents is
dynamic depending on the solvers involved, and the communication streams
must be created according to this topology. There are numerous examples of
systems in the first category in the literature, including the system of Marti
Rueher [397] which uses a monitor to coordinate several solvers communicat
ing asynchronously through the monitor. This system basically contains only
one coordination pattern. The same can be said about the system of [65] and
the solver cooperation of [283] where the coordination pattern is a fixed se
quential primitive of BALI. CoSAc [436] is a distributed cooperative system for
solving non-linear polynomial constraints. CoSAc fits somewhere in between
the two categories above , because it uses several fixed coordination patterns.
In CoSAc five heterogeneous solvers cooperate through a client/server archi
tecture, and they can be involved in three different collaborations.

A solver cooperation language is defined in [85] in terms of a set of
strategies over a rule-based programming language. Some of these rules are



414 E. Monfroy and F. Arbab

able to call external processes. This cooperation language defines several
parametrized coordination patterns, similar to the ones in BALI.

In [143J a control language for designing solvers and solver cooperation is
proposed. Such a language can also be translated into several coordination
patterns.

16.3 Design of a Constraint Solver

In this section we discuss the design of a constraint solver using a coordination
model. Contrary to the case of BALI (see' Section 16.2), the transcription leads
to a single coordination pattern:

- the structure of the topology is fixed. This means that the number of agents
can vary, but they will be of previously defined types in the coordination
pattern,

- patterns of communication are fixed, i.e., each agent is linked by a net of
streams depending on its type,

- the control is fixed.

However, the coordination pattern can still be parameterized with some
strategies. Several agents of a type can be proposed, each of them imple
menting a strategy. For example, consider agents of type "scheduler" that
aim to schedule the actions of a set S of agents. Then, each scheduler agent
represents a different strategy, and each of them can be used in the same
coordination pattern.

We consider the highlights of one main example in this section: a coordina
tion-based chaotic iteration (CI) algorithm for constraint propagation. Inter
ested readers can also see [432J for more details and technical considerations
about this example.

16.3.1 A Coordination-based CI Algorithm

Constraint propagation is one of the most important techniques for solving
constraint satisfaction problems 5 (CSP 's) . It aims at reducing a CSP into
an equivalent but simpler one, i.e., the solution space is preserved while the
search space is reduced.

Constraint propagation algorithms usually aim at computing some form
of "local consistency" described as a common fixed point of some domain
reduction functions. These algorithms are instances of a more general mathe
matical framework, the framework of chaotic iterations [30J (CI) . CI is a basic
technique used for computing limits of iterations of finite sets of functions.

5 A constraint satisfaction problem is given by a set of constraints, and for each
variable occuring in these constraints, a domain representing the values the vari
able can assume.



16. Coordination of Inference Engines 415

By "feeding" domain reduction functions into a chaotic iteration algorithm,
we generate an algorithm that enforces local consistency.

We present a generic framework for constraint propagation using coordi
nation languages. More precisely, we consider the realization of a coordination
based version of the Generic Iteration Algorithm for Compound Domains
(CD) of K.R. Apt. Our main motivation is to explain constraint propagation
as coordination of cooperative agents, and to provide a flexible, scalable, and
generic framework for constraint propagation that overcomes the problems
that are inherent in the parallel and distributed algorithms of [434, 435]. An
other benefit of our coordination-based framework is that it does not require
special modeling of CSP's.

Overview. The basic idea is to exploit the intrinsic relation between con
straint propagation and cooperative agents. The main components of the CD
algorithm are mapped to basic components of MANIFOLD: variables associ
ated with their domains are transformed into extended variables, and domain
reduction functions (drf's) are converted into workers . Some channels related
to the domains and co-domains of functions are established among variables
and workers. In order to compute the limit of the application of the drf's,
the execution progresses in the following way: when a variable is modified,
it sends a request to its related drf's; when a drf receives a request, it com
putes a new value and sends it to its output variables. The process terminates
when no drf is able to change the value of a variable. Using the features of
MANIFOLD , we can detect that no worker is busy and no message in pending
in a stream.

Constraint Propagation. Many algorithms for constraint solving can be
described using a simple component-based framework based on two main
interleaving processes: constraint propagation and splitting (i.e., a kind of
enumeration mechanism).

Constraint propagation consists of reducing a constraint satisfaction prob
lem (CSP) by computing a common fixed point of domain reduction func
tions. Each variable of a CSP is associated with a domain, i.e., the set of
values the variable can assume. Reducing the CSP generally means reducing
these domains, which means removing values for which the constraints do
not hold.

Domain reduction functions are related to domains of constraints, and
they have been widely studied for standard domains (e.g., Boolean con
straints [179], integers, interval arithmetic [66, 431]). For less common do
mains, either these functions must be designed by hand, or , if the domain is
finite, techniques such as in [32] can automate generations of its reduction
functions.

We first informally describe our constraint propagation framework. Given
a CSP, a set F of domain reduction functions is deduced according to the
domain of computation. Then, by feeding these functions and a sequence of



416 E. Monfroy and F. Arbab

domains of variables to the CDA algorithm 6 (see Table 16.2) a fixed-point
for the functions in F is computed, i.e., the reduced domains.

Assume that the domains of the variables are finite. Then, every execution
of the CDA algorithm terminates and computes in d the largest common fixed
point of the function h defined by:

hex) = n(x n f+(x))
fEF

where r denotes the extension of f to D.

CDA ALGORITHM

Input: d = di, . . . , dn E D : a sequence of domains
% associated to variables Xl , .. . , Xn respectively

F: a set of domain reduction functions
% each from a subset of Xl , . . . , Xn to a subset of z i , . . . , Xn

Output: d' = d~ , ... , d~ E D: a sequence of domains

% Initialization
d' +- d
G+-F

% Loop until no function can modify anymore the domains

while G =1= 0 do
% S elect a domain reduction function
choose 9 E G; suppose 9 is from Xi" . . . , Xim to Xi" . . . ,Xii
G +- G \ {g}
% Application of 9 to narrow domains<+- dij n g(di" .. . ,dim )ij for each j E [l..l]

% Update of the list of functions still to be applied
G +- G U {f E F - G I f depends on some i E [l..l] such that d =1= d'}

% Update of the current domains with the newly computed values
dij = d;j for each j E [l..l]

od

Table 16.2. The CDA Algorithm

The Network of Agents and its Behavior. We now consider the re
alization of a coordination-based version of the CDA algorithm to explain
constraint propagation as coordination of cooperative agents. To this end ,
we map the main components of constraint propagation to certain IWIM
processes, and we describe the global behavior of the network of processes.

6 The CDA algorithm is a restriction of the Generic Iteration Algorithm for Com
pound Domains of [31] and of the CI algorithm of [434] to constraint propagation
by domain reduction .



16. Coordination of Inference Engines 417

The network. We map the components of the CDA algorithm to two types
of agents and introduce an additional special agent (see Figure 16.4): vari
ables (each variable is represented by one coordination variable) , drf's (each
drf is represented by one worker agent), and an initialization/termination
agent. The initialization agent (IP for short) builds the network of variables
and drf's , collects solutions, and also detects termination using a standard
coordination pattern in MANIFOLD.

In the following, we denote by upper-case letters the representation of
components of the CDA algorithm: a coordination variable X will represent
a domain variable x, and a worker F will represent the implementation of a
domain reduction function f.

•••

{~~)
~I ~

X1®I ••• @
<:j... -. ..' .

Fig. 16.4. General Network

We proceed in three steps: first , initialization of the network of processes,
then computation and reduction of the CSP, and finally, collection of the
solutions.

The first phase is carried out by the initialization agent (IP). Given a
CSP, and a set of "meta" domain reduction functions, the IP deduces the
domain reduction functions required for reducing the given CSP. From these
drf 's, the IP generates the network of processes together with the channels
connecting variables and drf's. Consider a drf f . An input variable of f is
a variable whose value is required by f, and an output variable of f is a
variable that f potentially modifies . Hence, the drf agent F will have one
input channel for each of the input variables of f, and one output channel
for each output variable of f . In the second phase, which corresponds to the
core of the CD algorithm, only variables and drf's are active. The last phase
is just an exchange of messages between IP and the variables for collecting
their values.

Behavior of the network. The computation proceeds as follows: variables send
requests containing their domain values to domain reduction functions; drf's



418 E. Monfroy and F. Ar bab

compute new values and send them to the corresponding variables. The pro
cess te rminates when no drf is ab le to change the value of a variabl e.

A variable X is modified when it receives a new value whose intersection
with its cur rent domain value is smaller than its current dom ain value. Each
time a variabl e X is modified , it requests the drf's F1 , • • • , Fn (all drf 's
that use x in their input ) to work with its new domain value. F1 , .. . , Fn

thus have new tasks to perform. T hen, they send their results to each of
their output variables X1, .. . ,Xm . X1, . .. , X m may eventua lly be modified
by these values, and this will iterate the process.

T he te rmi nation is detected when no variab le and no function is busy any
more , an d no message is pending in a st ream between a coord ination variable
and a domain redu ction function. Using t he results of [435], it is possible to
prove t he correctness of the framework , i.e., that the result computed by
the coordina t ion-based CDA algorit hm is indeed the limit defined by chaotic
iterati on .

Contribution of Coordination. Managing te rmination requires mecha
nisms that generally must be mixed wit h the computation. Using certain
coor dination features, and a standard te rmination pattern, we can neglect
this task when designing our agents and control.

In systems such as [434]' algor it hms are designed considering an imp licit
te rmination. However , this "implicit" te rmination becomes a big issue when
real implementat ions are conside red. Using coordination, the termination is
easily implemented by int roducing some new ind ependent agents , and by
adding standard guarded actions to the agents involved in computation.

Due to the coordinat ion and dynami c facilities of the IWIM model, we
obtain clear , simpler and more elega nt algorit hms than in [434, 435J with en
han ce scalability and distributability. T he granularity of the redu ction agents
can be adapted: simple redu ction functions, complex functions, compositions
of functions, or even complex solvers. T he un derly ing levels of the coordina
t ion lan guage then man age eit her threads , processes, or connection through
the Internet . T he desig ner does not have to care about mapping agents to
threads or processes, and connecting them with either pip es, sockets, or
through the Intern et. Ca lls to external processes also enable quick imple
ment ations of complex drf 's and solvers . Scalabili ty allows both solvers and
solver cooperat ions to be designed in this framework .

Certain st rategies can be integrated in the framework , simply by adding a
scheduling mechan ism or replacing agents . This results in more efficient coop
eration than pure concurre ncy can offer. Aside from these "implementation"
concerns, solver design can also benefit from coordination . For example, we
can transform the CDA algorithm into the Simpl e It eration algorithm of [31J
by simply orde ring the application of functions. T his requir es a scheduler
agent that sequent ially raises specific events, each of which is capture d by
only one DRF.



16. Coordination of Inference Engines 419

16.4 Conclusion

The purpose of this chapter was to clarify the issues and concepts involved
in solving constraints using a coordination model/language. The way we con
sider the problem and the point of view we adopt lead to several conclusions
on various aspects of this symbiosis.

From a constraint programming point of view, we identified two main
areas or directions for processing constraints:

- designing solvers using a single technique or combining tools at a low level,
- solver cooperation that deals with high-level combination and control of

black-box solvers.

These two concepts can be associated with data-driven and control driven
coordination models , respectively. The first focus on constraint manipulation
and emphasizes the data, whereas the second describe control of solvers in
dependently of the data that are exchanged.

Coordination can be used to realize

- families of solver processes that can be transcribed into a single (but pa
rameterized) coordination pattern for specific computation domains; and

- families of constraint solver processes that require several (parameterized)
coordination patterns.

The first category consists of constraint solvers and fixed solver coopera
tion systems, while th e second contains solver cooperation languages.

Solver cooperation languages are usually the most demanding of the co
ordination models and languages. They require intensive use of control con
structs to coordinate agents, some event-like mechanism, constructs for dy
namic re-configuration of the topology of agent interconnections, and support
for heterogeneous programming languages and platforms.

We are convinced that constraint solving can greatly benefit from coordi
nation-based programming. This is because:

- the separation of concerns in coordination (i.e., computation vs. control)
matches well the separation of solving techniques and solver cooperations
strategies;

- scalability, flexibility ; and manageability issues for constraint solving have
natural solutions in a coordination framework. Heterogeneous solvers and
solving techniques can be combined or connected as black-boxes to build
more efficient composite solvers ;

- coordination languages transparently takes care of details such as to inte
grate solvers, one does not have to consider whether the implementation of
solvers that are being integrated are threads, processes on a local machine,
on a local network of machines, or spread across the Internet;

- unlike parallel computing techniques that focus on performance efficiency,
coordination languages provide flexible modeling and design paradigms and
can transparently parallelized and/or distribute an application.



Part VI

Visions



Visions

Introduction

Since its birth, the Internet has passed through a so dramatic and fast evo
lution to make it very hazardous to foresee its evolution in, say, the next
twenty years .

Conceived in the lat e 60's as a tool to support remote access to time
sharing mainframes [407], the Internet has rapidly assumed the role of a
communication tool (the very first E-mail has been sent in 1971), of a tool for
information sharing (e.g., NFS) , of a tool for remote access to information and
resources (e.g., ftp, telnet) , and, more generally, of a distributed repository
for any kind of digital information (e.g., gopher).

The definition of the Web architecture in 1989 [68], integrating effective
interoperability solutions and suitable user-friendly metaphors, followed by
the deployment of easy-to-use and easy-to-install browsers (e.g., Mosaic, in
1993), provided for another, significant, change of role. Within a few years ,
the Internet was no longer a tool for the use of researchers and academics
only but, instead, a very popular tool that could be made easily available to
any kind of people.

Since then, the continuous appearance of new application software and the
co-evolut ion of network and hardware technologies have been changing once
again th e role of the Internet. From a very general perspective, one can say
that the today 's Internet is a general-purpose global distributed computing
system, in which complex forms of computation, communication, and data
manipulation can take place to support , facilitate, and expedite our activities
related to information management, telecommunication, and collaboration.

The next step can be agent-based computing. Despite the great deal of
talking about intelligent agents, they do not still populate the Internet. Some
simple software tools already exist that at tempt (or pretend) to exploit agent
based concepts to assist users in accessing and navigating the Internet (e.g.,
E-mail filters). In the next few years, however, we expect that intelligen t
agent technology will be able to fulfill its premises and to deploy effective
agent-based solutions for personal support to Web access - such as intelligent
agents for information retrieval and for data filtering [390] - management 
such as mobile agents for the maintenance and the coordination of distributed
services [72] - as well as for support to cooperation and coordination activities
- such as meetings schedulers and agenda organizers.



424 Visions

The likely-probable success of agent-based computing, together with the
trend toward pervasive Internet connectivity and embedded computing, let
us envision a world in which a multitude of agents will populate our physical
environment and will be in charge of supporting and making more comfort
able our everyday lives. For example, we can easily imagine that, in each and
every room, a population of embedded agents will be in charge of monitoring
or activities and our personal physiological status, and will be able to mod
ify the environment accordingly, e.g., by properly regulating heating and air
conditioning. As another example, an agent associated to the fridge will be
able to tell us which food items are expired and which ones need refurbishing.
And it will be an Internet agent , too. In fact , it will be able to connect itself
to the Internet and will be able to automatically re-order the needed items.
This agent, by cooperating with the other agents in the kitchen and possibly
by consulting a book of recipes in a remote site, will also be able to suggest
us the available alternatives for our dinner.

For the above scenario to become reality, suitable and practical develop
ment tools will be needed to make the building of such agent systems eas
ier and practical [90] . Also, since communication and coordination between
agents will playa primary role, much more than it is currently available from
todays coordination models and infrastructures will be needed . In particular,
one has to consider that agents will form some sorts of virtual organizations
mimicking (when not actively participating in) our real-world organizations.
Thus, the engineering of the interactions in such systems will have to nec
essarily rely on interaction and coordination models inspired by the ones
that already playa fundamental role in real-world organizations. On the one
hand, since agents will live in an environment with limited resources avail
able, market-based models have to regulate their interactions so as to avoid
a global degradation of the organizational efficiency [292, 95]. On the other
hand, models and methodologies must be available to support the develop
ment of agent-based systems based on appropriate organizational and societal
abstractions [656, 142, 314].

The two chapters that conclude this book focus on the above two topics,
respectively, and show that, although we still have to wait several years before
agent societies will populate the Internet, the research is already headed in
that direction and is already confirming the feasibility of the approach.

The contributions

Chapter 17, by Jonathan Bredin, David Kotz, Daniela Rus, Rajiv T.
Maheswaran, Cagri Imer and Tamer Basar, focuses on market-based models
for mobile-agent systems, with the goal of presenting both an architecture
for agent marketplaces and planning algorithms to allow agents an effective
expenditure of their budgets.

The described marketplace architecture is a very general one. It involves
agents having to purchase the computational resources they consume from



Visions 425

hosts , as well as agents able to sell their services to users and other agents . It
provides support for commercial transactions between agents (and between
agents and hosts) , based on the exchange of elect ronic cur rency, no matter
whether it is redeemable for legal tender currency or not. Finally, the market
place architecture supports secure transactions via cryptographic protocols
and trusted th ird-party arbite r agents.

Given that agents have a limited endowment , and have to purchase th e
resour ces they need to complete their execut ion, the authors describe an al
gorithm to allow a mobile agent to plan its execution in a network so as
to minimize its global execution tim e. For the agent to effect ively plan its
optimal execut ion, the presented algorithm requires the agent to have the
availability of perfect information about the network , the hosts ' resources,
and their prices. Of course, these assumptions cannot easily apply when In
ternet agents are involved. However, the authors show, via simulation, that
even in the presence of non-accurat e information about th e status of the net
work, and despit e th e presence of dynamically varying prices, the algorithm
still enables agents the achievement of good execut ion times. These resul ts
are st rongly promising and encourages the development of agent systems in
which all coordination activities can be effectively planned in respect of the
available budget and accordingly to the marketplace rules.

Chapter 18, by Run e Gustavsson and Martin Fredriksson, puts the focus
on the next generat ion of agent-based Internet applicat ions, e.g., distributed
health-care and smart homes, and analyzes the issues that arise in the coor
dination and in the cont rol of such systems.

The authors identi fy "computational ecosystems" as a promising direction
for advanced Internet appli cations. Currentl y, the Internet is shifting from
rigid vertical e-business syst ems connect ing buyers and sellers towards worlds
- ecosystems - of smart e-services built around a common area of interest .
In such ecosystems, value-chains of smar t e-services can be seen as being
realized and maintained by societies of cooperating agents.

After having introduced the concept of computational ecosystems, to
gether with several applicat ion examples, like th e COMFY comfort manage
ment systems, the authors focuses on t he engineering of such systems, and
show how societal concepts - such as ownership , responsibility, accessibility
- can and have to playa fundamental role in their design.



17. A Market-Based Model for Resource
Allocation in Agent Systems

Jonathan Bredin", David Kotz", Daniela Rusl , Rajiv T . Maheswaran", Cagri
Imer", and Tamer Basar?

1 Depart ment of Computer Science, Dar t mouth College, 6211 Sudi koff Laboratory,
Hanover , NH 03755-3510, USA
{j onathan ,df k, r us} @cs. dar t mout h. edu

2 Coordinated Science Laboratory, University of Illinois
1308 West Main Street Ur ba na, Illinois 61801, USA
maheswar@uiuc .edu ,{imer , tbasar}@control .csl .uiuc .edu

Summary.

In traditional com putational systems, resource owners have no incen
tive to subject t hemse lves to additional risk and congestion associated
wit h providing service to arbitrary agents, but t here are applicat ions that
benefit from open environments. We arg ue for the use of markets to regu
late agent systems . With market mechani sms, agents have the abiliti es to
assess the cost of their act ions , behave responsibly, and coordi nate their
resource usage both te mpora lly and spatially.

We discuss our mar ket structure and mechanisms we have developed
to foster secure exchange between agents and hosts. Additionally, we be
lieve that certain agent app lications encourage repeated inte ractions that
benefit both agents and hosts, giving fur ther reason for hosts to fairly
accommodate agents . We apply our ideas to create a resource-allocat ion
policy for mobile-agent systems, from which we derive an algorit hm for a
mobile agent to plan its expenditure and travel. Wi th perfect information,
t he algorithm guarantees the agent's optimal complet ion t ime.

We relax t he assumptions un derlying our algorit hm design and sirnu
late our planning algorit hm and allocation policy to show that the policy
prioriti zes agents by endowment , handles bursty workloads, adapts to situ
ations where network resources are overextended, and that delaying agents'
actions does not cat ast rophically affect agents ' performance.

17 .1 Introduction

Agents are clean abstractions for const ructing multiple-user applicat ions . In
part icular , the abstrac tion is useful for networked applicat ions where agents
represent competing or cooperating principals. We believe that using the
agent model, it is possible to quickly construct openly networked architec
t ures where computational resources are dist ributed around the network for
remote and visiting agents to use. There is, however, lit tle incentive for service
providers (hosts) to accommodate arbitrary agents . Host s expose t hemselves
to addit ional resource contention and risk inherent in offering any additional
network service. Conversely, agents have no incentive for responsible resource
usage nor mechanisms to assess the costs of their actions.



17. Market-Based Models for Agent Systems 427

We solve these problems by having agents use electronic currency to pur
chase the computational resources that they use. The currency's value gives
hosts incentive to entertain arbitrary agents, finite budgets bound agents' im
pact on the network, prices convey the cost of an agent's actions, and market
competition serves as a primitive coordination mechanism.

We argue in Section 17.2 that markets solve problems at many levels
faced by agent systems. In Section 17.3, we summarize work we have done
to provide a secure marketplace for mobile agents. We provide a resource
allocation policy in Section 17.4 on which we derive an algorithm to min
imize a mobile agent's execution time of a sequence of tasks given a bud
get. Section 17.5 presents simulation results of agents visiting hosts using
our resource-allocation policy. We show that it effectively prioritizes agents
according to endowment and that our planning algorithm's performance de
grades gracefully as network delay increases. We summarize relevant related
work in Section 17.6 and conclude by fleshing out our future research di
rection and describing the applicability of our results to more general agent
systems in Section 17.7.

17.2 Markets

We promote agent architectures where agents' potentials are represented
through a common parameter- their endowments. Agents may spend their
endowments how they see fit to optimize their performance. Rather than
specify absolute rules, hosts specify policies to guide agents. While agents
may deviate from these policies to tune their performance, they do so at the
expense of depleting their endowments, and possibly their lifetimes . The ar
chitecture type we propose is that of a market, though the extent of market
implementation may vary. In this section, we give a high-level description of
market structures applied to agent systems.

Our computational markets involve agents purchasing the computational
resources that they consume from hosts. Agents can sell their services to users
and other agents . Hosts accumulate revenues that they redistribute to their
users , who use the currency to launch their own agents. Figure 17.1 sketches
the exchange of money in our market .

Currency exchange can happen at many levels to provide a cleaner design,
fault tolerance, and incentive mechanisms. At the most basic form, an agent 's
currency represents its potential to act in the network. Currency exchange
can be modeled at the design level to provide a useful architectural tool by
quantifying the limits of agents' actions.

More involved markets have agents and hosts exchange cryptographically
verifiable electronic cash. Electronic cash serves as a security mechanism and
verifies the spender. This type of budget constraint bounds the havoc that a
malicious agent can wreak and provides a limited form of fault tolerance.



428 J . Bredin, D. Kotz, D. Rus, R . T . Maheswaran, Q. Imer and T . Basar

~
:-:

~
users -

deploy age nts

Fig. 11.1. The flow of money in our computational market .

In a still stronger market, participants exchange virtual currency that is
redeemable for legal tender currency (e.g, U.S. dollars). Here, the currency
verification process is more important and requires more scrutiny. The bene
fit, however, is that administrative domains become flexible. Resource owners
may lease their equipment to agents outside their domain, recouping the cost
of capital. Conversely, system administrators may temporarily expand their
domains when the need for extra computation arises by buying outside re
sources.

In each of these examples, we rely on a pricing system. Prices signal
the costs of agents' actions and allow agents to plan accordingly. When
agents crowd resources, resource prices rise and deter further congestion.
Thus, prices serve to balance computational load over time and through the
network [620, 149].

17.3 Secure Transactions

The first step towards establishing any market is to promote methods of se
cure exchange. The most obvious part of secure transactions is a verifiable
currency. Sometimes, exchange requires more than just valuable currency
and we have implemented a protocol for a trusted third party to mediate
transactions between agents who may not trust one another. Agents must
be able to find and negotiate with vendors of computational resources, and
we have implemented an architecture for agents to locate machine resources
through a network of resource management agents. Finally, agents are ulti
mately subject to the wishes of their hosts, but we argue that interaction
between hosts and agents is beneficial to both and that repeated interaction



17. Market-Based Models for Agent Systems 429

is likely. Repeated interaction and exchange foster cooperation between hosts
and agents.

17.3.1 Currency

There are many existing electronic currency systems [276, 363, 449, 500]. As
a proof of concept, we have implemented electronic currency and a hierarchy
of banks in Agent Tcl, a mobile-agent system [95]. Our currency is verified
using PGP and incurs a lot of overhead in comparison to other electronic
currency systems, but clearly any of the existing more efficient mechanism
could also be used. Most mobile-agent systems cryptographically verify the
identity of agents, so verifying currency on agents' arrival does not pose
significant additional overhead. After agents verify their currency at a host,
they can convert a global currency to local "script" similar to what is done in
the Millicent electronic currency system [276]. This local verification reduces
transaction costs enough to allow small efficient transactions.

17.3.2 Repeated Interaction

It is frequently the case that repeated interaction among agents creates in
centive for cooperation. In this subsection we focus on the effects of frequent
interaction between mobile agents and their hosts. In this context, a mobile
agent is a computational process that may autonomously relocate its execu
tion from one host to another.

Currency validation protects sellers, specifically mobile-agent hosts. Pro
tecting agents from agents and hosts from agents appear to be tractable
problems and there has been much progress in the area. Protecting mobile
agents from their hosts is difficult, however. A host provides an agent with
an execution environment and hence, the mobile agent is at the mercy of
its host . There is little to prevent the possibility of the host robbing visiting
mobile agents.

While it may always be possible for hosts to molest mobile agents, we
believe that it is in hosts' best interests to provide safe and reliable execution
environments. In establishing a market for computation, it must be the case
that transactions benefit both hosts as well as agents. If this were not the
case, then either agents or hosts would not participate in the exchange.

Additionally, we believe that mobile-agent applications will likely rely on
frequently sending small agents to remote sites . Thus, a mobile-agent mar
ket for computational resources will see repeated interaction between hosts
and agents. Since molesting an agent risks upsetting a host 's income stream,
there is incentive for the host and agents to cooperate. Axelrod sees many
examples of cooperation development in scenarios where there is repeated
interaction among human agents and that often little communication is nec
essary between agents to foster cooperation [46] .



430 J. Bredin, D. Kotz, D . Rus, R. T . Maheswaran, Q. Im er and T. Basar

17.3.3 Arbiter

While we believe that in many circumstances an agent will deal with known
agents and facilities , it is likely that at some point it will be necessary to
conduct transactions between untrusting parties. There may be little reason
to believe that there will be future transactions, or agents may prefer to
conceal their identities. To support such transactions , we have implemented
an arbiter protocol for use within Agent Tel [95] .

Fig. 17.2. The arbiter protocol for secure transaction between agents. Agents A
and B send collat eral and the transaction to a trusted third party, the arbiter agent.
Once the arbiter agent receives payments from the agents, it delivers the product
and payment to the agents. After an agreed upon time, if neither agent complains,
the arbiter returns the collate ral to agents.

In our arbite r protocol, agents arrange for a trusted third party, an arbiter ,
to conduct the transaction. The arbiter asks each agent for the inform ation
to be exchanged between the agents , and an amount of collat eral equal to
the value of the transaction from each agent . If, by an agreed upon tim e,
neither agent is unh appy with the resulting transaction, the arbit er returns
the collate ral to th e agents . If, however , one agent does not receive the goods
or payment that it expected, t he arbiter retains both agents ' collateral until
the transaction can be policed.

17.3.4 Resource Managers

To facilitate resource location and access negotiation in the D'Agents mobile
agent syst em, every host machine has a set of well-known resource-manage
ment agents [286] . These agents are responsible for allocating th eir respec
tive resources and all resour ce consumption requests are directed to them.



17. Market-Based Models for Agent Systems 431

Resource managers are agents and use the same communication protocols as
every other agent, so transactions between an agent and a resource manager
do not require any additional protocol. Any agent request to use a resource
is automatically forwarded to the relevant resource manager, however, and
resource consumption can be transparent to consumer agents.

Resource managers allow system administrators to tune resource access
to fit individual resource consumption habits. Certain resources may require
specialized policies or coordination with other resources. Several resource
managers may work together to prevent deadlock or to track suspicious re
source usage.

17.4 Allocation Mechanism

We now provide a specific market model that for use in allocating compu
tation to mobile agents. For a more rigorous system formulation, we refer
the reader to [97, 96]. In our model , a mobile agent attempts to minimize
the time taken to execute a series of tasks each requiring consumption of a
particular service.

For example, an agent may wish to retrieve an image at one site, process
the image using a computationally intensive algorithm at another, and then
deliver the image to be displayed at a display located near its user. Figure 17.3
depicts the agent's example itinerary. Each of the three sites that the agent
visits may allow the agent to pay more to complete its task faster.

agent

image
retrieval

Image
processing

image
display

Fig. 17.3. An example of a mobile agent 's itinerary. The agent must visit one host
in each group and choose at what priority to execute at each host visited.



(17.1)

(17.2)

(17.4)

432 J . Bredin, D. Kotz, D. Rus, R. T. Maheswaran, Q. Imer and T. Basar

After an agent finishes all execution, its remaining endowment vanishes.
Each host offers one of K computational services to the set of agents at the
site. To extract agent demand, hosts solicit bid functions from the agents.
The bids represent rates at which the bidder will pay for access to the service.
The i-th agent receives service at a rate equal to the capability, c~ , of the
k-th host times the agent's bid, u~, relative to the sum of all bids the host
receives , Ok = I:i u~ . So the i-th agent computes its task at site k at a rate
of:

Vi = ci ( . u~ . )
k k '+ 0-'Uk k

where O;i = Ok - u~ represents the sum of competing agents' bids . The
amount of time an agent spends to complete its task is the size of the job,
q1 , divided by the computational rate, v1 , which is:

i (i O-i)ti _ qk uk + k
k - ci ui

k k

The amount of currency an agent spends is its bid , u~ , multiplied by the time
taken, t~ , is:

i q1(u~ + O;i)
ek = . . (17.3)

ck
We derive a bidding strategy that minimizes the time to complete an

agent's itinerary given knowledge of the itinerary's task sizes, the amounts
competing agents bid, the capacities of all hosts to be visited, a fixed budget
constraint, and the assumption that the agent has no need for currency other
than to complete its set of tasks at hand.

We begin by assuming that the agent 's bid is small enough that competing
agents will not change their bids significantly in response to the agent 's bid .
From this assumption, we derive f i(Oli), the i-th agent's optimal bid at the
first host as a function of competing agents' bids , «' . The agent 's naive
bidding strategy for the i-th is:

ui = f i(Oli) = max (a' -j3i ~l i ,0) .
j3 ' +~R

The parameters a i , j3i, and ,i describe the i-th agent's itinerary and the state
of the hosts it will visit:

i
i-I - L qke:'a - . k

C'
k,tl k

(17.5)

(17.6)



17. Market-Based Models for Agent Systems 433

"(i = L ~~ R (17.7)
k# k

where I is the agent's remaining endowment.
In reality, however, other agents will change their bids in response to the

agent's bid . We must augment our bidding strategy to accommodate other
agents' responses by finding an equilibrium bidding level at which all agents'
bidding functions are satisfied. We can find the equilibrium by transforming
each agent's bidding function domain to a domain common to each agent.
The original domain operates over the over the space of the sum of all other
agents' bids , «' ,while the transformed domain, 01 , includes the bid of the
i-th agent . The result is:

(17.8)

when 0 E (0, (Xi / f3i) and ui = g(Od = 0 otherwise. The fraction (Xi / f3i rep
resents the rate at which the agent can pay to compute at the first host. If
(Xi / f3i is less than 01 , the agent does not have enough money to be serviced
given the current level of site congestion. If the quotient is negative, then the
agent must wait until congestion at future hops subsides. To ensure that g(O)
is continuous, we require "(i to be strictly positive. Normally, "(i would only
be zero when the agent bids for its last task. We approximate the situation
by assigning "(i an arbitrarily small positive value to keep g(O) continuous.

3r--- - --,- - - --.,...- - - -,-- - - ..,-- - ---,

_ ase g ,

2.5 - _ . larger endowment
- - increased future

consu~ction
g(8, ) - ,

0.5

, ,

C~ngest ion : ~1

, , ,,,,,,,,,,
\,

\,
\
\
\
\

\

\

4 5

Fig. 17.4. The form of an agent's bid as a function of all bids submitted to the
server. As the agent's endowment increases, the function scales outward. Increasing
the size of future tasks results in a smaller gentler curve.



434 J. Bredin, D. Kotz , D. Rus, R . T. Maheswaran, Q. Imer and T. Basar

Figure 17.4 sketches three examples of agents' bidding functions for the
next task. The function, g(O), has a few important properties. First, a positive
bid computed with g(O) guarantees that the agent can complete the task
at the current level of congestion. After completing the task with the bid
computed from g(O), the agent will have enough cash remaining to finish its
itinerary given current network conditions. The function is continuous and
concave in the upper right quadrant. Finally, dujdO equals one at the origin.

450r---~---..,........,..----r-------.-----,

50

1- ~: go(e , ) I

200 ,j.oo . 600
conqesnon: 8,

800 1000

Fig. 17.5. Sample plot of the sum of 16 agents' bids a function of the sum of all
bids at the server. Equilibrium occurs at the intersection of the dotted line and the
plotted curve, where no agent wishes to change its bid.

We complete the description of our resource-allocation policy by allow
ing each agent to submit the parameters oJ, fJi , and ,,/ that describe its
itineraries, wealth, and perceived state of the network. If there are multiple
agents visiting, the host constructs all the bidding functions, sums them, and
finds a value of 0 at which 0 = L::i g(O) and allocates a fraction of the com
putational resources to the i-th agent equal to gi(OdjOl' This determines a
Nash equilibrium for the underlying non-cooperative game. If there is only
one agent, then there is no contention for the resource and the host assigns
the agent the full share of resources. Figure 17.5 demonstrates an example
of 16 agents' bidding function and the resulting equilibrium, which we show
as the intersection of the sum of the individual bidding curves and the 45°
line. In [97], we prove that when there are two or more agents at a server,
there is exactly one bidding level at which agents will be satisfied with their
bids given their bidding functions. This means that the underlying game has
a unique Nash equilibrium.

Note that to utilize Equation 17.8, an agent must already have formulated
a route. If we fix the costs and times required for an agent to complete its



17. Market-Based Models for Agent Systems 435

tasks at every host, the problem of choosing the hosts to visit to minimize
execution time under its budget constraint is NP-complete. The problem is
the constrained shortest path problem to which the knapsack problem can be
reduced [15, 96]. We are currently working on algorithms that use dynamic
programming to approximate optimal routing with performance guarantees.

As a reasonable heuristic, the i-th agent can use Equation 17.8, by set
ting the values of ()~ and c~ parameters for tasks after the present task, to
represent the mean values of hosts that may complete the agent 's k-th job .
We demonstrate the effectiveness of the heuristic in the next section.

17.5 Simulation

We generate a network topology with the GT-ITM stochastic network topol
ogy generator [121] to implement a simulation of a network of mobile-agent
hosts in the Swarm simulation system [374]. In GT-ITM, a network consists
of a hierarchal system of transit domains connecting stub domains. The net
works in our simulation have 100 host nodes in three levels of transit domains.
Because we focus on expenditure planning, we choose network delays that do
not dominate job execution times .

Host capacity is determined by a positively truncated Gaussian random
variable with a positive mean. Hosts offer one of eight services to mobile
agents that are created at a Poisson rate uniformly across the network.

At creation, we give each agent an itinerary of tasks and an endowment
of currency with which to buy computation from hosts. The number of tasks
comprising itineraries is exponentially distributed. We choose tasks uniformly
from the eight services that hosts offer. In our simulations, job sizes are
either exponentially or Pareto distributed. We choose the endowment to be
a positively truncated random variable multiplied by the sum of the agent's
task sizes. This random variable represents the agent 's owner's preference
that the agent completes its itinerary quickly.

1: t-a« := 00; nextHost := 0
2: for all hosts k offering service next in itinerary do
3: tk := [t r ans f er Lat ency to : k from: currentHost]

+qkg((r;i)/(Ck(0l:i + g(Ol:i)))
4: if tmin > tk then
5: tmin := tk; ne xtHost := k
6: end if
7: end for
8: return nextHost

Fig. 17.6. Algorithm: Choose Next Site for Agent i



436 J. Bredin, D. Kotz, D. Rus, R. T . Maheswaran, Q. Imer and T . Basar

The algorithm in Figure 17.6 demonstrates how agents choose which sites
to visit. For all but the next set of hosts to be visited, the agent plans to
visit sites with average capacity, Ck, and congestion, fh, for hosts offering
the k-th service. The agent assumes that there will be no change in bidding
level, «'. and chooses the next site to be the one that minimizes the sum
of execution times and network transfer times for the next hop. Thus, our
routing algorithm is greedy and naive.

When an agent arrives at the site, it commits itself to finishing its next
task at the site . The agent submits parameters (Xi,13i, and "ti, from Equa
tions 17.5-17.7, to describe its current task and ability to pay for service .
The host uses the algorithm in Figure 17.7 to redistribute priority whenever
an agent arrives or departs. The algorithm forms a bid-response function,
'£i 9i (B) , and conducts a bisection search to find a positive value of B at
which no agent wishes to change its bid.

1: while true do
2: t := time since last arrival/departure
3: for all agents i do
4: deduct t9i(0) from agent i 's endowment
5: end for
6: add new agent or remove departing agent
7: for all agents i do
8: query agent i for a, (3, and "t
9: use Equations 17.5-17:7 to build 9i(0)
10: end for
11: search for 0 = '£~1 9i((}) in (0, maxi (a;j(3;))
12: for all agents i do
13: vI., := Ck9i(0)/0
14: end for
15: end while

Fig. 17.7. Algorithm: Allocate Resources for Host k

17.5.1 Effectiveness

We would like to first verify that our resource-allocation method stratifies
agents' performance in a reasonable fashion . After the network has reached a
steady state, we designate seven percent of all new agents to be test agents.
These test agents all share a common start host and task-type sequences,
but their endowments uniformly span two standard deviations, (J, around
the mean endowment, p: We measure the performance of each test agent
against what it could achieve in a network with zero resource contention.
This idealized measure is the shortest path from the start host to visit hosts
that offer services to complete the agent's itineraries. The edge lengths of the
path are the sum of the network transfer latencies from the previous host



17. Market-Based Models for Agent Systems 437

and the time required to process the job given that no other agent requests
service, qk/Ck.

0.7 "--~-~-.,.---~-~-~-~-----,,

exponential --
0.6 Pareto

11+2011
Endowment

O LL..:...- ""'----- ""'----- -'--- -'--- ""----- "'--- - "'---.J
11- 20

0.1

Ql

Ei= 0.5

Fig. 17.8. Endowment versus ideal time relative to actual time. We plot the ob
served mean and standard deviations for each endowment level for two experiments
for agents two standard deviations, 17, around the mean endowment , !-t. One exper
iment has exponentially distributed job sizes and the other uses a Pareto distribu
tion.

We run four experiments to show how agents are prioritized. There are
two variables describing the experiments: workload and utilization. The two
workloads are differentiated by agents' job size distribution. One workload
uses an exponential distribution and the other uses a Pareto distribution.

There are two levels of utilization in the experiment. One level is approx
imately 70 percent of capacity while the other has agents arriving with jobs
of about 140 percent of capacity. In the latter situation, it must be the case
that some agents will not be able to complete their tasks.

Figures 17.8 and 17.9 show the performance of agents with different en
dowments at 70 and 140 percent utilization, respectively. We plot the means
as well as the standard deviations for each endowment level. The Pareto dis
tribution has a much lower median than an exponential distribution with
the same expected value. Hence there are more small jobs that are easier
to schedule and agents with Pareto distributed jobs generally perform their
itineraries more quickly than those with exponentially distributed job sizes.

In the experiments run at 70 percent utilization, there is a weak linear
relationship between agents' expenditure and their performance. Since the
system can accommodate all agents, there is little need to discriminate against
agents with low endowments to improve the performance of agents with larger
endowments.

When agent demand exceeds system capacity, however, hosts must ignore
poorer agents to allow richer agents to complete their tasks. In this scenario,



438 J . Bredin, D. Kotz, D. Rus, R. T. Maheswaran, Q. Imer and T. Basar

f1 +2cr

" .

fI
Endowment

exponential -
Pareto

0 "--- -'--- -'--- '---':..:--'--- """'-'- -'-- -'-- --"
f1-2cr

0.35

0.3
Q)

E 0.25i=
(ij
:> 0.2ti

~ 0.15E
i=
(ij 0.1Q)

:E!
0 .05

F ig. 17.9. Endowment versus ideal time relative to actual t ime when agent requests
exceed capacity. We plot observations two standard deviations, a, around the mean
endowment p:

there is a strong relationship between agents' endowment and performance
and agents with endowments below the mean do not complete their jobs.

17 .5 .2 N et work Delay

One criticism of market systems is the belief that they are sensitive to the
accuracy of knowledge concerning the state of the world . We test this belief
by varying the latency incurred by agents jumping from one host to another.
Agents have accurate information concerning the current state of the network,
but increasing the transfer latency delays agents' actions and simulates agents
using aged information.

Figure 17.10 demonstrates that agents' performance decays gradually as
the quality of their network information decreases. The figure plots network
delay compared to a reference network with the performance that agents
receive in the reference network. We observe that increasing network delays
does not cripple our resource-allocation or planning algorithms.

17.5 .3 P rice Structure

Figure 17.11 shows a histogram of the logarithm of pr ice of computation at
a server in our simulation. We observe that pr ice is log-normally distributed
over time. With a log-normal distribution, agents can expect that price will
be stable for the most part, punctuated with intense, but brief, periods of
high prices .

These periods of contention aggravate agents' ability to complete their
tasks. When the pr ice of computing is high, it is frequently the case that



17. Market- Based Models for Agent Systems 439

1.1

Ql
~

Ul
ctl 0.9.D
II
)(

0.8:::.
Q)
o

0.7c:
ctl
E G "O(; 0.6"t:
Q)

"0a..
0.5

0 0
0.4

0 2 4 6 8 10

Delay Multiplier

F ig. 1 7. 10 . The mean perform an ce of agents over all endowment levels versus
network delays relative to t he mean performance of agents operating in a network
wit h a delay multiplier of one.

0.5r---"--~--~---'---"""'------,

- observed
- - Gauss ian

0.4

~0.3
c:
Q)
:::l
0
Q)

u: 0.2

0.1

4 6
In (0)

8 10 12

Fig . 17.1 1. A histogram of t he logar ithm of price at a host over time . We observe
that pri ce is roughly log-normally distributed , result ing in intense but brief periods
of high prices.

one agent is consuming the majority of the host 's computational resources
to complete a small task. While the price is high , other agents' tas ks are put
on hold , but the flow of agents into the syste m cont inues. So it is imaginable
that the host 's load will not fall back to its init ial level for an extended
period. These periods add to the variability of agents' performance and in
Section 17.7 we will discuss methods for agents to t rade risk to decrease their
per formance volatil ity.



440 J . Bredin, D. Kotz, D. Rus, R. T. Maheswaran, Q. Imer and T . Basar

17.6 Related Work

Economic ideas for controlling computational resources are not new; in the
sixties, Sutherland established auctions to schedule computer time among
users [574]. Spawn is perhaps the most cited work dealing with computational
economic systems [620]. In Spawn , agents participate in auctions to buy pro
cessor time to run computationally intensive jobs. The pricing system pairs
idle processors with jobs and improves utilization in distributed systems.
Clearwater et al. use double auctions to allow agents to trade climate-control
resources within an office building [178]. The result is that climate control
resources are more effectively allocated with energy saving of up to ten per
cent.

Forms of market-based control have been a part of mobile-agent systems
from the field's beginnings. One of the first mobile-agent systems, Tele
script [631], supports a fault-tolerance and security measure where agents
carry "permits" to access specific resources. A permit's power diminishes
over an agent's lifetime, thus limiting the agent 's lifetime. A permit for one
resource is not easily converted to another resource permit. A more general
policy would be for hosts to issue a common permit in the form of a verifiable
electronic currency.

The Geneva Messengers project [605] applies market ideas to allocate
CPU usage and memory to visiting "messengers," lightweight mobile pro
grams implemented in a Postscript-like language. Host sites heuristically set
prices by examining the amount of resources requested by the present mes
sengers .

POPCORN [508] is a system for distributing "computelets" to hosts on
the network. POPCORN assigns computelets to anonymous entrepreneurial
hosts through a double auction. Because agents do not choose their sites and
no mobility after initial placement is allowed, there is no reason for agents to
plan their expenditures. Additionally, the framework does not permit inter
computelet communication. POPCORN is ideal for parallel computation in
tensive programs where interaction among threads is limited. Our system is
more general, but mobile agents must weigh many factors in choosing their
hosts and agents are accountable for planning their routes and expenditures.

Boutilier et al. solve sequential resource-allocation problems [87]. It is dif
ficult to construct mechanisms where it is rational for buyers to truthfully
reveal their preferences, but Boutilier et ol. resolve the problem by ensur
ing that all users vying for resources interact with identical agents. They
prove that it is rational for users to express their preferences to their agents,
who then compete in iterated sequential auctions until a stable resource al
lotment is found. The method can handle many traditionally difficult as
signment problems where goods may be complements or substitutes to one
another. The technique is centralized and more general than what we model
in that it makes no assumptions on resource values and relations, but it is
also computationally more expensive.



17. Market-Based Models for Agent Systems 441

Tatonnement is another centralized resource-allocation method where
buyers iteratively adjust purchase amounts in response to sellers' changing
prices . The WALRAS algorithm [152] is a system for finding equilibrium
where participants have convex utility functions and there is gross substi
tutability among goods (goods are not complementarities for one another),
but often converges to a solution even when gross substitutability is violated.

Market-based resource control appears in non-research applications. In
1997, distributed. net [376] entered a contest held by RSA Labs to break a
56-bit secret-key encrypted message. The project wrote a client that users
downloaded to search portions of the key space on users ' computers. The
winning user, or team of users, received a prize from distributed. net. The prize
is a probabilistic payment for users' computing resources by distributed.net.

Another use of market-based control is Enron Communications' [341] es
tablishment of bandwidth trade among its customers. Enron Communica
tions' customers can resell their unused bandwidth to other customers in an
automated fashion. Currently, trade is restricted to bandwidth of a single
link connecting New York and Los Angeles.

17.7 Conclusions

We provide the framework upon which to build market-based resources in
the D' Agent mobile-agent system. This framework includes a secure currency,
well-known resource manager agents, arbiter agents for larger transactions,
and an environment with repeated interaction to foster cooperation among
agents and their hosts. We provide a resource-allocation method for compu
tational priority and derive an algorithm that allows a mobile agent to plan
execution of a sequence of tasks to minimize execution time given a budget
constraint.

It is possible to supplement our serial bidding algorithms with other al
gorithms to minimize parallel task execution time. An extension would likely
accompany more complex task planning as well. Our model applies to gen
eral agent uses, not just mobile ones, as our policy and algorithms minimize
execution time for sequential tasks. Using our policy, it is possible to allo
cate any divisible resources. For example, we can apply our algorithm as a
decentralized method of flow control for network bandwidth by auctioning
off bandwidth.

We simulate our allocation mechanism and agents using our planning al
gorithms to show that our system handles different workloads and adapts
to handle situations where resources are over-constrained by ignoring lower
priority agents' requests. Additionally, our system degrades gracefully as net
work latency increases and suggests that agents can reason effectively without
complete network state information.

We observe that prices in our computational markets can be volatile,
however. This volatility adds uncertainty to agents' performance and it is de-



442 J . Bredin, D. Kat z , D. Rus, R. T . Maheswaran, Q. Imer and T . Basar

sira ble for users to have the knowledge of how their agents will perform when
agents are launched. For thi s reason , we are cur rently researching reservation
systems where host s issue call option s to agents. A call option gives an agent
t he right , but not the obligation, to buy computation at a specified tim e and
price in the future. There will st ill be volatility in agents ' performance, but
the uncertainty associated with an agent's performance will be eliminated
once t he agent holds options for its computation.

Another limit ation with our work is that we assume that we can pa
rameterize every applicat ion through cont rolling access to a single good. In
reality , th e good that we control is a bundle of resources that we label "com
putational priority." If agent applicat ions have similar resource usage habits,
cont rolling the bundled resources will suffice to regulat e th e system. If the
application space is more diverse, th en it may be more efficient to separately
allocate multiple resources among agents. For exam ple, some agents may wish
to purchase high-qu ality network connections, but not consume very much
pro cessor t ime, while there may be other agents with oppo site needs.

Traditionally, mult iple resource allotment has been a computationally dif
ficult problem. The problem becomes intractable when an agent may subst i
t ute one good for anot her . Recently, however , there has been much effort
spent towards allocating many resources to agents [87, 254, 484, 532]. So
far , th ere are no bounds on the amount of time necessary to compute an
allotment, but these recent proj ects investigat e allocating numbers of goods
ranging from ten to hundreds. We imagine that allocating half a dozen re
sources to agents will provide an efficient allocation and it may be reasonable
to allocate multipl e resour ces to agents.

Acknowledgements

This work is supported in part by Department of Defense cont ract MURI
F49620-97-1-0382, DARPA cont rac t F30602-98-2-0107, and an AROjEPRI
cont rac t. We would like to thank Robert Gray for implement ing the core
D'Agent s system and Jo e Edelman for implementing the bank ing, arbiter ,
and curre ncy systems inside Agent Tcl.



18. Coordination and Control in
Computational Ecosystems: A Vision of
the Future

Run e Gustavsson and Martin Fredriksson

Department of Software Engineering and Compute r Science,
University of Karl skrona/Ronneby,
S-37225 Ronn eby, Sweden.
rgu~ipd .hk-r .se . mfe~ipd.hk-r.se

Summary.

In comput at ional ecosystems the focus is on creat ing and maintaining
value-adding chains of e-services. The e-serv ices are created , maint ained
and used by actors with a common int erest in an ecosyste m. Ecosyst ems
can be seen as hubs support ing, for instance, financi al services, distributed
health- care or smart homes. We argue t hat coordinat ion and cont rol in an
ecosystem have to support trust among participating parties. This means ,
among other things, that the architecture and infrastructure of the ecosys
tem have to incorporat e societal support to meet requirements such as trust
creation and maintenance. More precisely, we advo cate that basic soci
etal concepts to support are Ownership , Responsibility, and Accessibility
(ORA) . The pap er gives an introduction to th e concept of ecosystems. We
also provide an example of a potential e-service in the form of a comfort
management system (COMFY) in a smart horne. The pap er also includes
an layered ORA architecture built on top of SUNs Jini platform.

18.1 Introduction

In earlier chapters of the book the focus has been on exist ing and emerging
models and technologies of agent coordinat ion as such. In this chapter , we
will put t he focus on a next generation of Internet applicat ions with a vision
ary touch. These visions will be art iculated in the next sect ion, 18.2 Towards
Computation al Ecosystems. The bottom line is that the driving force in this
type of Internet applicat ions is the ability to create value-adding chains, com
posed by more or less smart e-services available in a system built around a
common area of interest. A basic revenue model in the computat ional ecosys
tem is built around e-services on a pay-per-use basis (see [314] for a general
outline of computational ecologies and ecosystems) . Finally, acceptance and
hence use of the offered services is based on th e concept of trust .

We will see that coordinat ion and cont rol in ecosystems has more com
plementary purposes and patterns than thos e found in the usual setting of
distributed problem solving. This is the main theme of this chapter and will be
treat ed in more details in sect ions 18.4 Coordination and Control in Ecosys
tems and 18.5 Methodological Issues and the Engineering of Ecosystems.



444 R. Gustavsson, M. F'redriksson

In section 18.3.3 The Comfort Management System, we give an example
of a computational ecosystem, the COMFY physical comfort control. The
purpose of the COMFY example is threefold. Firstly it exemplifies a multi
agent solution for a quite sophisticated comfort control service. The solution
is interesting in itself and we can show that the solution also has a clear
business potential. Secondly, it supports the following argument; in order to
create accepted business opportunities around the COMFY service it should
be part of an ecosystem around smart homes or buildings. The COMFY so
lution can thus be seen as an e-service built as a well-defined value-chain
of reusable e-services. From this example we can also exemplify how we can
create a trust relationship between the COMFY service and its users based
on the fundamental concepts of ownership, responsibility, and accessability
(ORA) connected to e-services. The concepts of Ownership, Responsibility,
and Accessability as well as their grounding in the real world is the focus of
section 18.6 ORA: Merging of the Real and Virtual. Thirdly, the COMFY
generated ecosystem also gives us a concrete motivation for our methodolog
ical approach towards engineering of ecosystems, specifically on coordination
and control in ecosystems. Section 18.4 addresses these topics. Also, our im
plementation of COMFY on a Jini (see chapter 4 for more information) based
platform, called SOLACE, illustrates our methodological approach.

The chapter ends with section 18.7 SOLACE: A Layered ORA Architec
ture and the section 18.8 Conclusions.

18.2 Towards Computational Ecosystems

We have rapidly entered the era of e-business and e-commerce. Whole indus
tries have been turned upside down in the efforts of giving the customer direct
access to parts of the company's business model. New startups have become
billion dollar companies. Well-known examples are Amazon.com, eToys.com,
and eBay.com. Thousands of businesses got wired with e-business, Millions,
soon billions, of customers came or will come online, e-commerce was born.
Not only products are for sale but also competencies. Keen.com connects peo
ple to a rich variety of experts , you can even apply to become a new expert
and your success depends on how many customers you got . At epinions.com
you get paid for expressing your opinion on services and offers on the Inter
net. Collab.net allows you for instance to join software development teams
or to share software.

A recent trend on the Internet is a transition from more rigid vertical
e-business systems connecting buyers and a seller towards ecosystems with
buyers, sellers, service providers, and content providers exploring opportuni
ties in areas of common interests.

At the core of an e-services world is an ecosystem, the total trading com
munity in which a company exists. If you are a utility company, for example,



18. The Future of Computational Ecosyst ems 445

you sell kWh or water. But , the ecosyste m that you live in is the total ex
change of goods and services related to what people do with kWh and water .
Buying home appliances is part of the utility ecosystem, as is the building
and building main tenance where elect ric grids and plumbing are important
infrast ructures for kWh usage and wate r supply. The concept of smart homes
can most naturally be regar ded as a new type of ecosystem overlapping the
earlier mentioned utility ecosystem. We will return to this example in the
next chapter on e-comfort services. That ecosystem is much larger than just
one company's single ecosystem. Th ere is a fundamental difference between
a dot com company of today and e-services. Dot com companies are mainly
about making money by selling produ cts. E-services make money by develop
ing value in an ecosystem. Through the use of hubs ecosystems of e-services
can be allied on the fly. Rather than determining all ent it ies in a t ransact ion
in advance, e-services will permit the spontaneous composit ion of services to
meet a specific need.

Swedish banks are already quite advanced utilizers of the web. More and
more of financial services are already done electronically by letting customers,
via the Int ernet , have access to a broad range of bank services. As an obvi
ous next step, at least one maj or Swedish bank will create an elect ronic hub
connect ing cust omers of the bank and supporting creation of new custo mer
to-customer business pat terns. Of course , t he bank will support this by pro
viding services such as a secure cash flow in the hub and also broker and
matching services. In essence, the former cent ralized banki ng model of treat
ing each custo mer individually has been replaced by an ecosystem consist ing
of the bank, it s customers and their customers forming a syste m built on
trusted and value-adding services, or e-services.

Concrete examples of ecosystems are emerging as companies are building
their net-b ased business models around providing services rather than prod
ucts. We, the authors of this chapte r, are involved in several projects aiming
at identifying new ecosystems out of the possibilities of connecti ng people
and smart equipment in networks. The idea is to break vertical applicat ions
into chains of services that can be reused and to focus on selling functions
and information (i.e. services) rather than products. Some examples are:

- From selling a commodity such as kWh to services such as COMFY comfort
(see sect ion 18.3.3).

- From selling heat- exchange hardware to selling heating services.
- From selling washing machines to selling washing services.
- Th e banking example above, i.e., opening a hub connect ing customers to

t he bank and t hus creating an ecosystem.
- Home based health care as an ecosystem around the patient.

Needless to say, the necessary transformation of business models can be
very dramatic for companies and organisations. Many issues have to be prop
erly addressed and solved before the expectations will become fulfilled. As a



446 R . Gustavsson, M. Fredriksson

matter of fact the European Commission has made an initiative, Universal
Information Ecosystems, as a part of the Fifth Framework 1ST programme.
We are participating in that programme with a project called Alfebiite - A
logical Framework for Ethical Behaviour between Infohabitants of the Univer
sal Information Ecosystem [23] . A key area of investigation in that particular
project is how we can understand, create and support the concept of trust in
future information ecosystems.

Where do agents fit in and play a natural role in ecosystems and the
value-chains of e-services? Again a shift from products toward services allow
us to shift from agents as such to the smart e-services they offer. Value
chains of smart e-services can thus be seen as being realized and maintained
by cooperating agents. However, there is a change of focus concerning the
purpose of the agent coordination. Most multi-agent systems of today are
geared towards collaborative problem solving, e.g., resource management re
alized as a computational market [651] . In the ecosystem world the focus is
value-creation as a result of the cooperation, i.e., (re-) combining services in
a purposeful way. A methodology for agent based ecosystems thus has a spe
cific flavor. We will return to this topic in section 18.5 Methodological Issues
and the Engineering of Ecosystems.

The concepts of e-services and ecosystems are supported by companies
such as Hewlett-Packard, Ariba, Computer Science Corporation, and Nortel
as a basis for their new system solutions [481] .

18.3 Smart E-Services to Achieve Customer Satisfaction

The purpose of agent based services (smart e-services) in software applica
tions is to increase customer satisfaction for the users they represent. How
ever, in today's personal interface agents, for example for information search
and filtering on the web, it is the end user who is made fully responsible for
specifying what customer satisfaction precisely means.

In foundational theories for agents, such as game, decision, and microeco
nomic market theory, utility functions as a numerical measure for customer
satisfaction are simply supposed to preexist as known input. In practical
applications this assumption is usually false. In many services, customer sat
isfaction and customer preferences are qualitative concepts, often rather tacit
to both producers and users of these services , hard to quantify and measure,
and difficult to understand in terms of the causal factors and control pa
rameters that produce customer satisfaction. In summary, such electronic
service agents simultaneously need an integrated range of rather advanced
capabilities. Nevertheless, our COMFY system shows how this is possible in
practice.

The rest of this section is organized as follows. section 18.3.2 describes how
to formalize the concept of comfort. Here, scale methods from social science
research [211] are a good starting point to express customer satisfaction.



18. The Future of Computational Ecosystems 447

This scale is then linked to an underlying causal factor model , originally
developed by Fanger, and available as an international ISO standard [478].
This model provides the baseline of an e-service for comfort delivery. The
service is outlined in the form of an agent-based application for automatic
comfort management system (COMFY). For a full description of the system,
please refer to [78] . In that particular paper a certain procedure is described
that has been used in order to convert the comfort scale into cardinal utility
functions that underlie economically rational behavior of the COMFY agents.
The paper also describes how to optimize comfort at runtime over a selected
period of time (e.g. a day) , such that the agents achieve customer-desired
comfort at the lowest possible cost in a real-time dynamic price setting. The
agents' dynamics and the role of utility, observation and control variables,
and resource market prices in the optimization process are also discussed.
Simulations of several scenarios have been carried out and quantitative results
are presented in section 18.3.3 The Comfort Management System.

18.3.1 Energy Saving

The COMFY system is an extension of our previous research on so-called
HomeBot agents, see for example [651][21][294]. The HomeBot agents act as,
communicating and economically rational, individual representatives of build
ing offices, rooms, and energy-consuming smart equipment or appliances. The
economic context is one of a deregulating energy and telecom industry sector.
This is underway now in many countries, including the US, UK, Scandinavia,
The Netherlands, and other European countries. The liberalization of the en
ergy market induces strong price competition as well as the need for better
customer service [19] . Rather than sticking to the usual fixed tariffs, there is
an economic incentive to exploit dynamic, real-time prices for energy as they
may lower costs and improve the required real-time match between produc
tion , distribution, and consumption. Several countries already have a spot
market for energy.

The present work is set in the context of a business scenario where users
have the possibility to optimize their energy consumption based on real-time
dynamic pricing. Such a scenario is already a reality for distributors, retailers
and big users in deregulated markets, and is a marketable service for the small
end users in the very near future.

18.3.2 Comfort

Another good example of a customer service issue is the concept of "comfort" .
For a full treatment of the involved issues , we refer to the full paper in the
references [78] . Comfort, in the sense of the quality of the climate as perceived
by people living and working in buildings and homes, poses an interesting
challenge for electronic agent-based services for several reasons:



448 R. Gustavsson, M . Fredriksson

- Comfort is clearly a qualitative concept for the end user: people will typ
ically be able to say whether or not they "like" the climate in a building,
but they will find it extremely hard to make this more explicit beyond
qualitative statements.

- Comfort is a personal concept: users will generally differ concerning to
what extent a given building climate is perceived as comfortable, and what
climate they personally prefer .

- Comfort is a sophisticated multi-dimensional concept, as it causally de
pends on many interacting factors such as temperature, humidity, clothing,
sunshine and other environmental conditions.

- Delivering comfort in buildings is a large-scale and real-time problem, as
it depends on the many living and working functions that different parts
of a home or building are intended for, and on the ever-changing external
and internal factors (weather, presence of people, what they are actually
doing , etc.).

- Delivering comfort in buildings is an economic issue: from marketing stud
ies [375] it is known that the financial costs of energy and equipment needed
for heating, cooling, air quality, and climate control are key issues for cus
tomers and building managers.

- Comfort can be implemented as a service, accessible in a smart home
ecosystem containing business partners and end users .

Comfor t is the sensation experienced by a person caused by the combi
nation of atmospheric factors like temperature, humidity and air velocity.
Although aspects as illumination and noise are sometimes considered to be
part of the comfort in a building as well, we focus on thermal comfort only.
Comfort is subjective; some persons like it hot and humid, while others pre
fer a more fresh and dry environment. The atmospheric factors sometimes
strengthen and sometimes weaken each other's effect on a certain sensation.

These aspects of comfort are combined in Fanger's comfort model [478].
This model identifies a quantification of the notion of comfort and is based on
extensive empirical research on how people experience comfort. The model
gives six aspects that together constitute the comfort a person experiences
in a room. These underlying causal factors are:

- air temperature
- radiant temperature (sunshine)
- humidity
- air velocity (wind, draught)
- the person's clothing
- the person's metabolism (a measure of the person's activity)

The equations in Fanger's model map the combined values of these aspects
onto a linear scale giving a comfort level (Predicted Mean Vote) ranging from
-3 (very cold) to +3 (very hot). The mapping is constructed in such a way
that only 5% of the people in Fanger's experiments (Predicted Percentage



18. The Future of Computational Ecosystems 449

Dissatisfied) claim to be dissatisfied with a comfort level 0, while 75% of the
people are expected to be dissatisfied with comfort level -2 or 2. A situation
with average humidity, clothing, metabolism and air velocity corresponds to
a Fanger comfort level equal to zero if the air and radiant temperatures are
equal to 23 degrees Centigrade. The same average causal factor conditions
with a temperature equal to 20 degrees maps onto a comfort level of -1, while
the +1 level is achieved when the temperature reaches 27 degrees Centigrade.

18.3.3 The Comfort Management System

We have above clarified the notion of comfort and explained how comfort can
be measured and controlled. The COMFY system's functionality is illustrated
by two different customer scenarios, describing the system's possible behav
ior in a real-life setting. The section ends with a summary of results from
simulations and some lessons learned concerning the need for an ecosystem
approach to the COMFY service.
Two Customer Scenarios: Erik & Erika. Erik is a poor student, and
manages to pay the rent of his condo in central Amsterdam by economiz
ing on anything but the rent . His comfort agent should keep comfort levels
acceptable, but should economize as much as possible. So when he's gone,
Erik accepts the comfort in his house to fluctuate very much , as long as little
energy is used by the system.

When Erik comes home at 6 p.m. , the comfort in the kitchen is -0.5,
which is slightly under Erik 's preferred comfort level. This is due to the
fact that energy prices were relatively high that afternoon. Erik's comfort
agent knew that Erik was willing to accept a certain deviation in order to
keep the cost down. During cooking, the kitchen becomes a bit damp, so the
system opens some ventilation grids to let the humid air out. The system
knows that a person's metabolism decreases during the evening . It therefore
increases temperature gradually by a few degrees . At 11.30 p.m ., Erik goes to
sleep. The radiators have been turned off half an hour before by the comfort
management system.

Coming from a wealthy family, Erika is not particularly concerned about
the costs of living. Although the activities of Erik and Erika differ, their times
of leaving and entering their houses are much the same. The big difference
is that Erika wants to make no concessions to her comfort level whatsoever,
especially when it concerns having it "nice and warm". Her comfort agent
should therefore keep comfort levels as closely as possible to the ones preferred
by Erika, irrespective of cost. That is why it is perfectly comfortable when
she comes home, despite the high energy prices during that afternoon.

At present Erik and Erika do not know of each other. However, we can
foresee a scenario where they will meet each other and decide to live together
in Eriks little flat . This new situation will bring into focus issues such as
combining and adapting preferences, challenging issues to consider in the
next version of COMFY (i.e. COMFY II) .



450 R. Gustavsson, M. Fredriksson

Results of Shnulation Scenarios. We have implemented a prototype of
the COMFY comfort management system to illustrate and simulate the ideas
discussed above . In the COMFY system, clothing and metabolism are treated
as exogenous, and are described in user configuration files. The same holds
for external temperature, external humidity and electricity prices. For the
measurements of current air temperature, radiant temperature, humidity and
air velocity we take the values that the system calculates from the settings
of the devices. During the simulation of the two scenarios described above,
Erik and Erika are assumed to prefer the same comfort level. Their cost
preferences differ however. Erika wants a comfort level equal to the preferred
one at those times that she is present, at any cost. Erik, however, is more
concerned with saving energy, and accepts a deviation if that reduces costs
significantly.

We compare these situations with one in which no comfort management
system is present. Consider a situation in which a thermostat regulates the
heating. This is a reactive system, with no planning done in advance. If the
air temperature is below the preferred one the heaters are turned on. If the
air temperature is above the preferred one, the heaters are switched off. Cost
preferences and energy prices are not taken into account. We assume that
the user turns the thermostat down when s/he leaves or goes to sleep, and
turns the thermostat up when the user is present in a room . Furthermore,
we assume that each room has its own thermostat.

Each of the three scenario situations is simulated for the kitchen and the
living room in a flat . The environmental setting corresponds to a sunny winter
day with outside air temperatures fluctuating between 15 degrees Centigrade
at night and 21 in the afternoon, and on a winter day with outside temper
atures between -5 and +5 degrees Centigrade. Dynamic energy prices have
been taken from a published UK example. The prices fluctuate considerably
in present day energy market , being very low at night, very high in the morn
ing , relatively low during the day, and quite high again in the evening. There
are even quite frequent situations when we have negative prices for short
tim es, that is, energy buyers are paid for taking care of surplus energy!

Discussion of Results. Figure 18.2 shows some of the simulation results
by the COMFY system for a winter day during 25 periods of 1 hour each,
starting at midnight. Outside temperatures fluctuate between -5 Centigrade
at night and +5 Centigrade in the afternoon. As can be derived from the
graphs, comfort management by the COMFY system in the luxurious setting
saves about 15% compared to the conventional situation without any comfort
management.

Differences between the economy setting (Erik) and luxurious setting
(Erika) are as expected: in the economy setting less energy is used than in
the luxurious setting, the difference being about 40 percent. The cost savings
in the "economical" comfort management scenario compared to the conven
tional non-management scenario are 45%.



18. The Future of Computational Ecosystems 451

III

10

1400

1200

1000

roo ~
~

1;;
roo ":l

~
4)0

200

- Eled lioly Plice

----Cum.Cost Lwuious (Elike)

Cum.Co& Ecoromy(Erik)

- Cum.Cost wl hlul CMS

_ M on ~ Q _ (") on
- - - - - N N N

Fig. 18.1. Cumulative costs for three different scenarios on a winter day: the "lux
urious" way of comfort management saves about 15%, and the "economical" way
of cost management saves about 45%, compared to the scenario without comfort
management . CMS in the figure stands for Comfort Management System.

A key difference between the COMFY system and the conventional ther
mostat is that the thermostat only controls heaters, while the COMFY system
also controls other devices. Figure 18.2 illustrates the consequences of this
difference. It shows the comfort levels on a winter day in the kitchen, the
kitchen's windows facing south. On the one hand, the COMFY system saves
energy and energy costs by controlling devices other than the heaters only.
It can heat a room by opening ventilator grids when outside temperatures
are higher than inside (periods 9-11), or by raising the sunblinds to let heat
from the sun enter a room. On the other hand, the COMFY system is able to
keep comfort closer to the preferred level than a thermostat. By lowering the
sunblinds, it prevents the kitchen from heating up too much (periods 10-18).

Summary of R esults. We have shown how software agents can be designed
to model and deliver customer satisfaction in electronic service applications.
Our agents are rather sophisticated. Agents for comfort management need
a wide range of capabilities, including sensing and acting (related to obser
vation and control of critical variables such as humidity and temperature).
Furthermore we need forecasting (by model-based prediction of the energy
need for the upcom ing day) , communication (monitoring going price vectors,
possib ly market-based negotiation with other agents) and reasoning (by op
tim izing actual resource use over time and thereby balancing service needs
with cost considerations). The presented agent-based COMFY system deliv
ers and manages comfort in buildings, and does so at the lowest possible cost
in a real-time pricing scenario for needed energy resources .

The main reason to include the COMFY system in this chapter is to il
lustrate a general problem that we have encountered in many projects with
industry partners, especially when we have been developing Internet-based
demonstrators. The problem can be summarized in two sentences. "The appli
cation is interesting, but we can not afford the investments" . "The application
is interesting but, it is not in our core business of selling products such as



452 R. Gustavsson , M. Fredriksson

3

I~P referred Com b r!

~ C omlo r! LlbU'ious (Erika)

C omlo r! Econom y( Erae)

~Comlor! w lhll1CMS~23 2S

2

o +-r-T-.-T'-r-r-+~"-'~ ""'''''':-r'..'"T''''T-r-,--n,...,rr--.-,...,
11 13 1S 17 19

-1

I
-2

Fig. 18.2. Comfort levels for three different scenarios on a sunny winter day. With
out comfort management it gets way too hot . The comfort man agement system uses
mostly the natural no-cost ways ( SUIl heat , natural ventilat ion) to achieve the de
sired comfort levels. The "economical" set t ing does thi s more strongly than the
"luxurious" set t ing: the lat ter uses some addit ional heating ear ly in the morning.
CMS in the figur e stands for Comfort Manage ment System.

kWh or thermostats" . Having said that, the same companies also acknowl
edge t hat they have to cha nge their business models in order to survive in
a highly competit ive world . They even acknowledge the need to go from low
profit commod ities such as kWh to more profitable user demanded services.

Lessons Learned. We have demonstrated, for instance by th e COMFY
system, that it is possib le to design and implement powerful new applications
based on connecting smart equipment and people in networks. However , these
new applications might be difficult to realize because the old business model
between supplier and consumer eit her does not easily support t he new service
or ent irely new business oppo rtunit ies might be possible if some investments
can be shared . In order to exploit the full potent ial of t he COMFY system
we need to recast the old supplier and consumer model into an appro priate
ecosystem.

18.3.4 Ecosystems Supporting Smart Buildings

In order to tackle th e cited statements above up-fr ont we regard, as said
above, the COMFY system as a component in an ecosystem around smart
buildings . In that ecosystem the COMFY system as such is represented by
the e-serv ice of comfort management . In the ecosystem setting the COMFY
application is unbundled into a set of e-services correspo nding to the different
measurements or cont rols (Figure 18.3). At this point in t ime it is however
an open question who the act ive service providers will be in that ecosystem.
Service providers might include ut ilities, providers of smart equipment , house
owners , financial institutions , insurance companies, residents an d so on.



18. The Future of Computationa l Ecosystems 453

Temperature Measurements

Serv ices

Prox ies o

Other Measurements

o o o

Persons Clothingand Metabolism

Heating and Cooling System

o o. . .. .._..._..._..._..•_..•_--- ---_..._..._..._..._--.- ..._..._..._..._..._-_.__.._...•.... ...•..._...• .._------_.- ..._...•... _...__.._..•- .._--_._-_...__...•.. -• ...• _--_...-..._..._.•._..._-_._..._..._...~---

Equipment

Fig. 18.3. T he COM FY system as a value-chain of e-Services,

We will come back to the contents of Figure 18.3 in sect ions 18.7 and
18.8 below. At this point we make the following observations: The COMFY
service is realized by th e following e-services:

- The Fanger comfort function .
- The heating and cooling services.
- Temp erature measurements.
- Oth er measurements grouped as one service.
- The information on clothing and metab olism.

As depicted in Figur e 18.3 (smart) equipment and users as well as the
high-level serv ices are connected to the system using proxies. Obviously, the
components of the COMFY service can be reused in ot her value-chai ns.

T he purpose of the ecosystem is, as we stated in sect ion 18.2 Towards
Computationa l Ecosystems, to enable creation of useful and profitable value
cha ins of e-services. A cru cial issue is therefore to create and maint ain value
chains for all par ti cipants as well as mechanisms for making profit by a pay
per-use of e-services.

Among services provided by agents in the ecosystem we can t hus at this
point identify two types . Th e first type of service is the societal support to
either find out new value-chains of exist ing serv ices or to find out if an ex
pressed need could be realized by exist ing e-services. We can call this service
value-chain creat ion. Obviously, in creat ing the value-chain we need informa
t ion about th e different potential services in th e chain. We have identified
three important concepts, mentioned above, associated with each service and
supporting the formation of a potent ial new service. The concepts are own
ership, responsibility, and access ibility. The second type of service th at can
be identified at this point is related to the formation of trust in the service
or t rust creation.

Referring to Figure 18.3 we would like to evaluate the quality of the end
service, responsibilit ies and the costs involved as well as the overa ll t rust in
the end service before we sign a contract. Also, service providers would like
to est imate revenues as well as potential markets for maintaining serv ices in
the ecosystem.



454 R. Gustavsson, M. Fredriksson

The issues of value-chains and trust creation will be in the focus of section
18.6. In order to investigate these issues further, we are at present implement
ing the COMFY system on an extended Jini platform called SOLACE. We
will return to the SOLACE system in section 18.7.

18.4 Coordination and Control in Ecosystems

The purpose and methodologies of coordination and control in a traditional
goal-oriented multi-agent application are discussed in other chapters of this
book . However, as we have motivated above , in an ecosystem an additional
purpose is to identify and create profitable and trusted value-chains. A prin
cipled approach to the coordination and control of that process is a key issue
for the success of the ecosystem as a conceptual and engineering idea.

An ecosystem is per definition implemented as a distributed system and
is hence a set of distributed applications. This means that fundamental as
pects of distributed systems have to be part of a methodology supporting
the engineering of computational ecosystems. Functionality such as advertis
ing services and look-up services supporting value-chains and trust creation
have to be an integral part of the ecosystem's infrastructure. The same holds
for support of an ecosystem economy based on a pay-per-use of services and
for survivability against failure, as well as tampering or malicious outside
attacks on the ecosystem. Business creation in an ecosystem presupposes a
common understanding of concepts and rules , e.g., ontology services. Last,
but not least, the ecosystem has to be trustworthy and must also support a
clear ownership-responsibility model. For example, who is responsible if an
application (service) fails due to , e.g., an upgrading of a component resident
in a subservice? The latter questions are addressed in the earlier mentioned
EC project Alfebiite.

In summary, coordination and control in ecosystems are intrinsically more
complex than in more traditional agent based applications. Part of the coor
dination and control is done by, or is supported by, the underlying infrastruc
ture of the ecosystem. Norms, social laws and ethos as well as survivability
are underpinnings of a rational behavior in an ecosystem. A precision of these
statements is the topic of the next section.

18.5 Methodological Issues and the Engineering of
Ecosystems

A comprehensive methodology for development of multi-agent systems is still
lacking although there is an increasing interest in a multi-agent approach to
development of complex systems [261]. There are several attempts in method
ological approaches, e.g., within a Special Interest Group of the EC AgentLink



Process Support

18. The Future of Computational Ecosyst ems 455

Components of a (use-specific) Methodology

Case Studies,Application Projects

CASE Tools. Implementation Environments

Models, Guidelines,Elicitation Techniques

GraphicalfTextual Notations, Worksheets, Document Structure

Model-Based Engineering of Ecosystems, Reuseof Patterns

Fig. 18.4. T he Met hodological Pyr amid.

feedback
Use

Tools

Methods

Theory

World View

NoE. We also refer to Chapt er 13, on software engineering, in t his book. Most
often agents per se are the focus of t hese efforts . We advocate a more evolu
t ionary approach where agent modeling and technologies are selected parts
of a system development life cycle; requirement engineering, design, imple
mentation , and maintenance. In an ecosystem the main requirements concern
adapt ivity, sustainability and surv ivability of the system. We also believe that
there is no single unifying agent based methodology for agent- based applica
tions in general, but that we can find some basic underlying principles, i.e.,
as expressed in t he Methodological Pyramid, Figure 18.4.

A basic pr inciple is t hat we take t he characteristics of the goal syste m into
account even at requirement analysis and in high level design. Of course, this
insight is not new. A classical example is logic programming. In th eory we can
have a declar ative (high-level) approach to logic programming, but in pract ice
every Prolog programmer has to have basic knowledge of implementation
specifics, e.g., the top- down and dept h first execution model of the Warren
Abstract Machine, in order to write useful and efficient code.

18.5.1 The Methodological Pyramid

Our applicat ion domain is distribute d syste ms (ecosystems), with character
istics such as [618]:

- Latency
- Mernory access
- Partial failure
- Concurrency

These characteristics are naturally also valid in dist ributed mult i-agent
systems. We can not have a high-level design of agent syste ms ignoring these
facts or postpone the issues to the implementat ion stage and st ill hope that
everyt hing will work out fine. On t he contrary, acknowledging these fun
damental characterist ics can support us in early phases of t he requirement
analysis and design of ecosystems.



456 R. Gustavsson, M . Fredriksson

As an example, let us suppose that we have a specific distributed task that
is t ime critical. A first coordination task between the agents involved would
be to re-allocate data and computations in the system in order to minimi ze
the latency. A next step would be to minimize deliberation t ime dur ing the
task execution by compiling efficient interaction protocols. A third step can be
to minimize interaction time by minimiz ing message exchange overhead, i.e. ,
avoiding high-level ACL messages in favor of short messages or reading from
a blackboard. However , in order to do this context depe ndent articulat ion
work, the agents have to be aware of the latency problem as such and have
the capa bilit ies to reason about how to solve it and how to utilize the support
from the underlying system to set up an arrangement as above.

The Meth odological Pyramid (see Figur e 18.4) capt ures the main com
ponents and th eir interdependencies of a comprehensive meth odology. The
given pyramid is an adaptation of ideas from decades of practice in knowl
edge engineering and can be found for example in a new book on knowledge
management and knowledge engineer ing [539] .

The Methodological Pyramid can be seen as a pyramid with a fixed base
but where the content of intermediate layers depends on what kind of applica
tions are in focus at the to p of the pyramid. The Met hodological pyramid t hus
capt ures the fact that the contents of the components of a met hodology vary
and is engineered to suit a class of applications. However we have a common
base, the World View, unifying the meth odologies. In our case the application
area is ecosystems as described above with an underlying dist ributed infras
tructure . As a goal system for implementation we have an extension of Sun
Microsystems ' Jini platform called SOLACE (see 18.7 SOLACE : A Layered
ORA Architecture).

18.5.2 A World View of Computations

We propose in our Methodological Pyramid a high level societal world view
of complex system such as ecosystems [293J. Similar approaches have been
pro posed by for instance Jennings [332J. The components of the world view
are:

- Context
- Coordination
- Agents

The computation is driven by rational behavior of the agents with respect
to their mental attit udes. T he meani ngs of rationality and mental attitudes
have been extensively st udied and discussed , not the least in connect ion with
agents , during the last decades. A well-known set of attit udes , t he Belief
Desire-Intent ion (BDI) model, has been proposed and invest igated mainly
by Georgeff and his colleagues [506J. The ideas behind the BDI models come
from Bratman in an attempt to give a formal model for reasoning about



18. The Future of Computationa l Ecosystems 457

Con text

Computat ion Is guided by rationality and social norms

Coordination

Fig. 18.5. Computation mo del at t he society level.

individu als. Lat er , resear chers have extended th e model into a multi-agent
set ting incorporating team formation and coordination. The BDI exte rnal
view of agent s has also been translated into agent archit ectures such as PRS,
dMARS and COSY [296].

Shoham and Cousins classification of ment al attit udes according to their
relevance to computational applicat ions is as follows [551]:

- Inform ational: Belief, knowledge, awareness .
- Mot ivat ional: Intention , choice, plan , goal, desire, commitment, preference,

wish, want.
- Social: Obligation, permission, norms

We have added norms to take care of a multi-agent situation and following
Castelfranc hi and his colleagues [184] . A social agent , according to Shoham ,
knows and is aware of society norms and acts rationally with respect to
this aware ness and according to its informational and social intentions when
invoking its motivational attit udes in select ing an action to perform.

In an ecosystem, the agents also have to take into account the obligations,
reputations, criminal acts, law enforcement , societal support and so on in
order to act rationally in the given context [23].

An often used example of societal support in our real society is traffic
laws and their enforcement . Traffic regulations are a solut ion to the society
problem of coordination of access to a scarce resour ce, traffic lanes. The so
ciety implements a support infrastructure in the form of traffic light s in road
crossings and the norms of access as green-yellow-red traffic signals. Simulta
neously, the society demands that all drivers have learned about these norms
and, not the least , about the consequences of breakin g the norms (e.g., loss
of driver 's license). Th e agents (drivers) believe that all other drivers know
and accept the coordination mechani sm. Coordinat ion between the drivers
(agents) can thus be done without any explicit communication between the
agents by means of just only interp retin g the signs and acting accordingly. Of
course, accidents st ill happen due to failure in the infrast ructures or failure
on the driver 's par t to follow the norms.



458 R. Gustavsson, M . Fredriksson

The importan t observation here is that we explicitly state that the agent
exists in a society that supports certain coordinations by norms and imple
mented coordination mechani sms. This mean s for inst an ce that we do not
need to model the reasoning of an agent and the communication plan with
ot her agents in order to drive across an int ersect ion . The int eract ion is cap
ture d by the simple protocol: red = sto p, yellow = wait/prep ar e to stop ,
green = dr ive, execute d by drivers. This example illustrates the fact that
coordinat ion in compl ex situations can be simplified by implement ing soci
etal (contextual) suppo rt in infr astructures, and also that t he agents of the
society have to be aware of the norms and their enforcement, see section 1.7.

We make the following two observations of our choice to have Coordi
nation as a component of the World View. The first observation is that this
approach allows us to have a common framework for , e.g., stat ionary and mo
bile agents . On the one side , the coordination between agents can be ent irely
modeled as a dialogue of message exchanges between st ationary agents as in
approaches such as FIPA ACL [497]. On the other ext reme the coordinat ion
is entirely due to mobil e agents going to places as in systems such as Voyager.
In a real sit uation , however , t he natural coordination can be a mixture of the
two models, or as in the traffic signal example , by observat ion of signals . In
an EC ACTS project on load balan cing in telecommunication networks we
have ind eed a hybrid model between stationary and mobile agents for coor
din ation [328]. In effect , the conte xtual knowledge of prop erties of the actual
net work components is used as an input to the decision of which model of
coordinat ion is the most appropriate in a given dynam ic situat ion.

The other observation is that do have a high level core Agent Communi
cation Lan guage (ACL) as a part of the Coordination component . The core
ACL is used in t he articulat ion work of t he agents not as a default language
of ty pe one size fits all. We prefer to derive an ap propriate communicat ion
exchange model from the Context , the Coordination model, and the Agent
capabilit ies [20]. Again , t his methodological choice is a consequence of our
experiences and also reflects well-kn own difficulti es with an general ACL such
as KQML or FIPA ACL [497] .

As a final remark, we have developed a methodology for modeling value
chains, E3- Value [279].

The efforts in the Theory and Methods parts of the Methodological pyra
mid connects the World View components with a focus on the application
domain at hand. In our case it is computational ecosystems t hat are grounded
both in a real and a virtual environme nt .

18.6 ORA: Merging of the Real and Virtual

As previously stated , we consider the driving force of the next generatio n
of Internet applicat ions to be the creat ion of value-adding chains composed
by pay-p er-use based e-services, The reason for us to consider this ty pe of



18. The Future of Computational Ecosystems 459

applications can be found in not only agent-based application development ,
bu t also in the recent developm ent t rend concern ing software components
and physical devices; to enable interconnectivity between diverse software
components and hardwar e devices. This t rend is a consequence of the possi
bility that the result ing environment of interconnected softwa re and hardware
components offers added customer value , at least from the perspecti ve of the
indust ry. Considering the exponent ial growth of the Internet and its success
in terms of added customer value , the emergence of such an environment
has an enormous potential. Fur th er analysis of this to pic implies that it is
important to gras p the profound implication s that the emergence of such a
complex environment might have.

It is not very difficult to see that the resulting environment in questi on
will be constituted by an ext remely large amount of hardware devices (e.g .
workstations, cellphones, appliances, etc. ) and that each device will have to
cont inuously execute a compute r program of a more or less complex nature,
if a specific device is supposed to communicate with ot her devices. Due to
the fact that each device of this type will be able to communicate with the
surro unding environment, a very important feature will emerge: information
an d functionality previously only associated with the physical environment a
certain device resides in is suddenly accessible by all par ties that are allowed
to communicate with the device in question . The statement does not only
apply to the physical devices, bu t consequent ly also to the software running
on them. In ot her words, if we enable hardware devices and the software
runn ing on them to communicate with each ot her we have suddenly made all
information and functionality associated with them accessible by potentially
all other actors in the enviro nment. From an indust rial perspective this sit
uation would probably be considered as a dream come true, ju st think of all
the new business opportunit ies that could emerge . However , there is another
side to the sto ry that is worthwhile to consider. As soon as someone (e.g.
indi vidu al or organization) buys one of these devices (including the software
that is supposed to execute on them), all informat ion or functionality that
potent ially could be accessed by anyone is actua lly owned by someone. Fur
thermore, if a device is owned by someone and also possible to communicate
with , it is implied that a device and its owner has certain obligat ions and
responsibilities towards the accessing party.

As a consequence of this reasoning, it should be qui te obvious that we
cannot t reat th e next genera t ion of Internet applications the same way as we
treat them today. We believe th at th e next generation of Intern et applica
t ions should be considered as a (large) set of services in need of coordinat ion
(see 18.4 Coordination and Cont rol in Ecosystems). In effect, we need an
infrastructure that not only accommodates the notion of services and the
coordination of them, but also fund amental concepts such as owners hip, re
sponsibility , and accessibility (ORA) .



460 R. Gustavsson, M . Fredriksson

Primaril y, the Internet can be conceptualized as a large number of com
pu tational ent ities that are interconn ected with each other using some kind
of communication protocol. However , at this point it is imp ortant to note
the difference between the notion of a conceptualizat ion and the notion of
an embodiment of that particular concept . An embodiment of a concept is a
physical ent ity (something t hat has a separate and distinct existe nce), and
a concept is a descriptive const ruc t ion of our minds that we make use of
when we reason about a specific ent ity or class of ent it ies. But why is this
somewhat philosophical perspective on t he nature of things so important in
the discuss ion of Internet applicat ions?

Due to the fact that an ent ity can exhibit a number of properties con
cern ing it s physical existence, an ent ity can be conceptualized in different
ways depending on what subset of its properties we current ly refer to . In
ot her words, concepts are conte xt dependent. If we now relate this line of
reasoning to the notion of the Internet , we see that tradi tionally we make
use of a one-to-one relationship between the concept of the Internet and the
embodiment of that par ti cular concept, i.e, we do not make room for different
interpretations of the same ent ity. In that context, the Intern et is solely con
sidered to be the communicat ion platform for whatever applicat ion we choose
to conte mplate . However , du e to its physical existe nce this particular ent ity
actually exhibits yet another property that has quite profound consequences
if appropriate ly considered - spatial scope .

T he Internet can possibly be viewed as not only a communication plat
form , bu t also as a physical ent ity with a global spat ial scope . Considerin g
this aspect of the Internet it should be treated as a very real part of our
society as such. However , as soon as we treat the Intern et as a natural par t
of our societ ies, and not merely a communicat ion platform, acti vit ies related
to concept ual notions such as e-commerce and e-services must be t reated the
same way as we would treat their counterparts in human societ ies. The t reat
ment we refer to involves the concepts of ownership and responsibility. Both
of t hese concepts are strongly related to what we refer to as trust , i.e. the
confidence a human at taches to the cer tainty that an act of communication
between him- or herself and anot her ent ity will generate a positive outcome
from the perspective of the individual itself. Furthermore, if computat ional
ecosystems as we envisage them on the Internet are to achieve acceptance
and customer-added value, they have to address the fundamental notion of
t rus t as we refer to it in human societi es (see sect ion 18.6.1).

We believe that a possible way to achieve this goal is to assert that services
in computat ional ecosyste ms in one way or the other is owned by a physical
person or an organi zation, but also to make sure that the services are obliged
to exhibit certain responsibilities towards the persons or organizations that
interact with them. In the following subsect ions we will delve further int o
these topics.



18. The Future of Computational Ecosystems 461

18.6.1 Trust

The concept of trust is a crucial concept in ecosystems, e.g., in electronic
commerce. A recent book on the concept of trust in line with our point of
view is [142] . An origin of trust emanates from institutional power, e.g., from
institutions such as the Swedish national bank. Through proper delegation
of authority we can trust a civil servant to perform a certain task for us, e.g.,
we accept bank-notes from a clerk in a bank office as a payment of a check.
We can trust an agents ability and willingness to perform a task or we can
have trust in the reliability of the information transmitted. We model the
concept of trust as a 4-place relation:

trust :< person,person, task, context> (18.1)

There are several attempts in giving a formal treatment of and providing
semantics for such types of trust relations [342] . In the context of an ecosys
tem a task is typically a service (i.e. entity) which has an owner (see 18.6.2
Ownership) . We thus have the following implicit trust relation:

trust :< person, entity , task, value - chain> (18.2)

This corresponds to our everyday trust of an ATM in the wall of a bank
building when we insert our ATM card and provide our pin code and accept
the paper money eventually delivered from the machine. We trust that the
money are valid and that the transactions are reliable . The trust relation has
to be earned and can not be engineered in a system. However, by clarifying
concepts such as ownership, responsibility, and accessibility of an entity we
can support different models of trust creation. We will show how the latter
concepts, e.g., the ORA concepts, can be architecturally supported on our
platform SOLACE (see section 18.7 SOLACE: A Layered ORA Architecture) .

18.6.2 Ownership

One important aspect of trust concerning the use of services in computational
ecosystems is that it implies a relation between a person and the services (en
tities with responsibilities) that he or she accesses, see the trust relation above
(18.2). However, there are many different ways of enforcing this relation. We
suggest that one way of handling this enforcement of the relation is to focus
on who actually owns an entity. The reason for this is that if an entity fails to
fulfill its responsibilities towards a certain user, it must be possible to propa
gate this failure into a complaint directed towards an entity that is in charge
of the entity. However, since a computational entity will not care whether
or not an accessing user is happy with its ability to fulfill its responsibili
ties , this has to be dealt with by someone that does care . This someone is of
course the person or organization that is the owner of the entity. The con
cept of ownership in a computational ecosystem manifests itself as a certain
relation:



462 R. Gu st avsson , M. Fredriksson

PersonI Organization

Condition

Entity

Fig. 18.6 . The Own ership relation.

ownership :< person, enti ty , conditi on > (18.3)

Perhaps the term person could be subst ituted with the te rm organization,
but the key point is that the term person refers to someone per definition
legally responsible in a real environment (society). The ent ity referr ed to in
the relation is an embodiment of a concept (e.g. a service) that exists in a
virtual environment . Furthermore, between person and ent ity there must also
exist a condition th at proves the validity of the ownership. The concept of
ownership in the ORA model is obviously of great importance, since without
it the notion of t rus t a user puts in a computat ional ecosystem and its con
stituents will be difficult to enforce. Proper implement ation of the concept
of ownership is therefore one of the fund ament al tool s at hand to enable a
merging of the real world and computational ecosystems. However, by in
corporating ownership as a key concept in the ORA model it is also very
important that we incorporat e another concept t hat is t ightly coupled with
ownership, namely responsibility.

18.6.3 Responsibility

A fund ament al prop erty of an entity th at is to be accessed by anot her ent ity
is t hat it must be owned by someone that is situated in a physical environ
ment . Th e reason for thi s is that if an ent ity is not owned by anybody its
responsibilities towards an accessing party in a societal setting cannot be
enforced in a legal fashion. But exactly what does it mean to have certain
responsibilities towards an accessing party? Th e issue can be perceived from
two different perspectives:

- Owner. Th e owner of an ent ity offers a set of information or functionality
to an accessing party for a certain price for using the entity in quest ion.
Th erefore, the owner of the ent ity has the right to require a mutual und er
standing in th e form of a contract (i.e. a legally binding agreement ) before
allowing a specific party to access the ent ity. The contract outlines the re
sponsibilit ies of the entity (and consequent ly also the respon sibiliti es of the
entity owner). If the entity in question does not fulfill its responsibiliti es



18. The Future of Computationa l Ecosystems 463

Entity

Contract

Entity

Fig. 18.7. T he Responsibility relation.

in accordance with the cont ract the negati vely affected party has the right
to take legal actions.

- User. The user of an ent ity is willing to pay a certain price for th e access
to a set of inform ation or functionality offered by a second entity that is
owned by someone. However , due to the fact that there is a possibility that
the actually accessed set of information or functionality does not match the
offered set of inform ation or functionality and that the user is asked to pay
a certain price for the access, a cont ract is required between t he user and
the owner of the accessed ent ity.

As a consequence of these two perspectives the concept of responsibility
can be viewed as a relation between two ent it ies (that are owned by two
different persons) in the form of a legally bindi ng agreement :

responsibili ty :< entity, entity, contract>

18.6.4 Accessibility

(18.4)

The two concepts of ownership and responsibility can be viewed as the corner
sto nes in the ORA model concerning the support for t rust in computat ional
ecosystems. However , yet anot her fund ament al concept needs to be consid
ered in order to enable ownership and responsibility, namely accessibility. If
an ent ity is supposed to access anot her ent ity th ere are two important issues
involved tha t have to be properly handled:

- Manifest ation. In order for one ent ity to access anot her ent ity, there has
to be some way for the first ent ity to address the other ent ity. Wh en it
comes to Internet applications this is often achieved using some kind of
addressing scheme (e.g. a Uniform Resour ce Locator). For example, an en
t ity makes use of a URL in order to access another ent ity that is located
on a webserver. However , such an addressing scheme presupposes t hat the
context that t he addressed ent ity adheres to is already known. In compu
tational ecosystems an entity can offer a set of information or functionality
that could possibly adhere to many different contexts. Therefore, since we



464 R. Gustavsson, M . Fredriksson

I

Manifestation

I

Fig. 18.8. The Accessibility relation.

Entity

Entity

I

Communication

I

do not know what addressing scheme to use in order to access an entity
in a computational ecosystem, all entities make use of the manifestation
concept in order to address other entities. The concept of manifestation is
twofold, it refers to the fact that an entity actually exists, but also to the
fact that an entity in some way must be possible to perceive by other enti
ties inhabiting its environment. In the ORA model , an entity is perceived
by other entities as a description of the various concepts it supports (i.e.
its manifestation). Therefore, if an entity wishes to address another entity
in the environment it can do so by matching a sought-for manifestation
with the manifestations of other entities in the environment.

- Communication. Once an entity has found another entity it must know the
nature of its interface in order to be able to communicate with it. Tradition
ally, if we would have presupposed the addressing scheme to use in order to
find an entity, we would by now probably also know what communication
interface to use. However, since an entity in a computational ecosystem
must make use of manifestation as a way of finding other entities it is not
clear what interface a newly found entity makes use of. The only way to
solve this issue is that all entities agree to make use of the same primitive
communication interface, no matter what manifestation they have chosen
to make use of, cf., Core ACL in section 18.5.2.

Therefore, in order to support the concept of accessibility in a computa
tional ecosystem it is important to realize that manifestation and communi
cation are fundamental parts of the relation between two entities:

accessibility :< entity, entity, manifestation, communication> (18.5)

In summary, we state that an entity choses its own manifestation as soon
as it enters the computational ecosystem, and this (possibly dynamic) man
ifestation can be perceived and therefore used by other entities in order to
locate the entity in question. However, the approach also implies that one
entity would not know how to actually communicate with an entity once it
has found one. Therefore, a common communication interface must be used
by all entities, thus making it possible for an entity to at least know one way
of communicating with the others.



18. The Future of Computational Ecosystems 465

18.6.5 Architecture and Infrastructure

As described in section 18.6.1, we believe that a possible way to achieve ac
ceptance and customer-added values in the setting of computational ecosys
tems is to enforce the notion of trust . In order to focus on the notion of
trust we introduced three fundamental concepts: ownership, responsibility,
and accessibility. Each one of these concepts involves a certain relation be
tween a person (or organization) and an entity or between an entity and some
other entity. The various relations identify the necessity of certain issues to
be appropriately handled. In the case of ownership, a person can only be
the owner of an entity if he or she fulfills a certain condition required by
the computational ecosystem. When it comes to the responsibilities a certain
entity (and consequ ently its owner) has towards another entity this can be
expressed in terms of a contract. And finally, the accessibility relation deals
with the manifestation of an entity (i.e. in what wayan entity is perceived
by other entities in its environment) and its capability to communicate with
other entities. The ownership, responsibility, and accessibility relations deal
with the notion of trust as we previously outlined in the beginning of this
chapter. However, there is one fundamental issue that we have not discussed
yet , namely architectures and infrastructures.

In order to enforce the notion of trust in computational ecosystems, it
is not enough to just model the entities and the coordination of them ac
cording to the three concepts of ownership, responsibility, and accessibility.
It is fundamentally important that we also address the concepts in terms of
a supporting architecture and a supporting infrastructure. The architecture
aspect of the ORA model is important because it must exist in order to offer
a basic structure and methodology for the modeling and implementation of
entities in a computational ecosystem. The infrastructure consists of a num
ber of primitive entities and system functions that need to exist in order
to enforce the purpose and goal of the ORA model and consequently also
the implied architecture. In summary, we need both an architecture and an
infrastructure in order to handle methodological issues.

In the next section we will delve further into an ORA related architecture,
and also outline a number of the primitive ent it ies (i.e. an infrastructure) that
offer the actual support for t rust in that they enforce ownership conditions,
responsibility contracts, and accessibility manifestation and communication.

18.7 SOLACE: A Layered ORA Architecture

The concept of trust in computational ecosystems can be modeled in many
different ways, and one approach is to address it in terms of ownership,
responsibility, and accessibility (ORA). Previously in this chapter we have
discussed the difference between a concept and the embodiment of that par-



466 R. Gustavsson, M. Fredriksson

Condition

Person/ Organization

Entity

I
Trust

.6.........Contract, Manifestation

Communication

I PersonI Organization

Entity

I

Condition

I

Fig. 18.9. A combined view over the three relations of ownership, responsibility,
and accessibility.

ticular concept. Therefore, we will treat the implementation of services and
trust in a similar manner, i.e. separating the concept and the embodiment.

In terms of implementation, an embodiment of a concept must rely on
a defined architecture, since the intent of an architecture is to support the
modeling and deployment of entities that address the concept. However, an
architecture does not by itself enforce the concept in question. This task must
be achieved by the entities themselves. Therefore, we must introduce the no
tion of an infrastructure, i.e. a set of primitive entities that always exist in
the infrastructure of a computational ecosystem. Thus, in our case (consid
ering the ORA model) these primitive entities must support the concepts of
ownership, responsibility, and accessibility. To conclude this line of reasoning,
we must define both an architecture and an infrastructure in order to enforce
the notion of trust in computational ecosystems. In this section we will delve
further into an attempt to define such an architecture and infrastructure.
Our approach is called SOLACE (Service-Oriented Layered Architecture for
Communicating Entities).

18.7.1 Architecture

The SOLACE architecture is divided into three logical layers on a functional
basis (see Figure 18.10): Entity Layer, Proxy Layer, and Access Layer. At
the entity layer we find the actual implementation of the various services
and other important functions that address the ORA concept as a whole.
In other words , the entity layer enables us to consider the concept of trust
on a level separated from the technical perspective on how to implement the
concept of accessibility. At the proxy layer, the concepts of manifestation
(Le. in what way other entities are supposed to perceive the entity) and
communication (i.e. message passing) are handled. Thus, a proxy is used in
order to take care of issues related to accessibility that are of a somewhat
technical nature, rather than assigning this task to the entity itself. Finally,
below the proxy layer we have defined the access layer. At the access layer
a number of different communication channels can be supported, thus giving



Proxy Layer

18. The Future of Computational Ecosystems 467

Entity Layer I Entily r...... .... ..... .. '~ Enhty I

----------------------------------.----.-.-..-..---..-.··---····l··-···-·-··-·----------------------- --- ---- ------------- ---------- ---------l ------ --------- ··-·

8 8
..- - - - -..-.------.- -..---- ----------..------L-----..---------..------..--..------- -----..--..--..---··-·..··- - -.:1; -.-----
Access.Layer

Fig. 18.10. At the entity level of an ORA architecture the concepts of ownership
and responsibility are taken care of, and at the proxy level as well as the access
level, the concept of accessibility is addressed.

an entity the indirect opportunity to communicate with other entities as well
as advertising its manifestation.

Entity Layer. At the entity layer the two concepts of ownership and re
sponsibilities are handled through entity behavior, such as providing certain
services and handling current conditions and contracts. Furthermore, it is
at this level that an entity is actually considered to exist, not on the layers
below the entity layer . However, each of the entities represented at the entity
layer must in some way handle the requirement of accessibility and therefore
each entity has a counterpart in the proxy layer.

Proxy Layer. The next layer of an ORA architecture is the proxy layer.
A proxy is responsible for the successful handling of the manifestation of an
entity and its communication capabilities. These capabilities are not related
to the bahavior of an entity, but rather to the necessary mechanisms that are
needed in order for an entity to exhibit support the concept of accessibility.
The proxy layer contains an equally large amount of proxies as there are
entities at the entity layer . The reason for this is that each entity at the
entity layer will have a counterpart in the proxy layer that is responsible
for handling the technical details of creating a successful mapping between
a real environment and its corresponding virtual environment. All entities
at the entity layer of an ORA architecture are associated with a proxy that
handles the technical details of the accessibility concept (i.e. manifestation
and communication).

Access Layer. This layer of an ORA architecture very much corresponds
to the three lowest layers of the ISO OSI model : link layer, network layer,
and transport layer. In other words, the access layer of an ORA architecture
can be viewed as the communication medium of a computational ecosystem.
Using this layer entities can get access to a wide range of different communi
cation channels, as long as they are supported by the access layer.



468 R . Gustavsson, M. Fredriksson

Registry Handler

Manifestation

Protocol Handler

MessageHandler

AccessHandler

Communication

Fig. 18.11. The internals of an entity proxy, supporting the two concepts of man
ifestation and communication.

In order for a proxy to be successful when it comes to communication, it
is important that it does not consider only the existence of one type of access
channel, but rather to offer the ability for its associated entity to make use of
as many different access channels as possible. The reason for this is that the
architecture would then address the issue of entity interaction and integration
in a more effective manner than if only one channel type was used .

18.7.2 Infrastructure

When we consider the next generation of Internet applications in the context
of computational ecosystems it is very important that we address the notions
of trust and coordination of services in a societal setting, as opposed to solely
considering services and their users from an application perspective. As previ
ously described, we can not handle the notion of trust in an effective manner
if we do not include functions into an ecosystem that are normally only to
be found in human societies (institutionalized power). Therefore, the entity
layer of an ORA architecture must at least be inhabitated by entities that
correspond to the following fundamental societal functions and institutions:

- Entity Registry. As soon as an entity wishes to be part of an computational
ecosystem it must register its existence if it desires to take part in any
kind of mediation in the system. This is handled by the Entity Registry.
Furthermore, at registration of its presence in the ecosystem the entity must
also supply the Entity Registry with a number of descriptive properties that
can be used to distinguish it from other registered entities (i.e. in order to
ensure the uniqueness of an entity) .

- Condition Registry. As previously described, an entity must be owned by
someone. The fact that an entity (registered at the Entity Registry) actu
ally is owned by someone is handled by a Condition Registry. If there is no
explicit ownership of an entity it is impossible to sign a contract between
an entity and the user of an entity.

- Contract Registry. When someone wishes to make use of an entity there
has to exist a contractual agreement between the two parties. However, if
a contract for some reason is broken and one party wishes to take legal
action, the validity of the contract has to be confirmed by a trusted third



18. The Future of Computational Ecosystems 469

party. In SOLACE this is taken care of by the Contract Registry. Every
time a cont ract is signed between two ent it ies, it must be registered at the
Contract Registry for future reference.

A computational ecosystem will of course consist of an ext remely large
amount of ent it ies, but the three regist ry ty pes outlined above is the abso
lut e minimum requirement of init ial ent it ies inhabi tin g the environment. The
reason for this is tha t they const itute the act ual support for the concept of
trust in the form of a number of societal insti tutions that by default must be
possible to perceive as t rusted.

18.8 Conclusions

We argue in this chapter that computational ecosystems represent a very
promising direction for advanced Int ernet applicat ions. Conceptually, a com
putational ecosystem can be seen as a hub where service providers can create
profitabl e value-chains of services meet ing demands of customers. We also ar
gue that in order to accept a service, a user must have t rust in the service its
funct ioning and also how to handl e failures of different kinds. Trust creation
and maintenance are thus challenging issues in a computational ecosystem.
The trust relation as such can basically not be engineered but we claim t hat
it can be grounded on a set of system properties. We argue that the owner
ship, responsibility, and accessibility relations (ORA) enable t rust creat ion
and maintenance and hence are important architectural components of an
computational ecosystem. The ownership relation , for instance, makes a nec
essary link between t he real world and the ecosystem.

The chapter also includ es a framework for computat ional ecosystems. We
illustrate some ideas and concept s with th e Comfort Management System
COMFY and also in our architecture of the .Jini based platform SOLACE.
Finally, computational ecosystems can also be seen as a new challenge for
coordination of Internet agents. The work reported is und er development but
is supported by several indu stri al applications of multi agent systems in the
areas of Smar t homes and energy management .

Acknowledgements

We happily acknowledge the impo rtance of the sharing of ideas and experi
ences within our R&D group Societies of Computation (SoC) as well as with
colleagues in na t ional and intern ational projects . Some explicit names can be
found in our list of references.



References

1. Martin Abadi and Roger Needham. Prudent En gineerin g Practi ce for Cryp
tographic Protocols. IEEE Transactions on Soft ware Engineering, 22(1 ):6-15 ,
J anuary 1996.

2. Kenneth R. Abbot t and Sunil K. Sarin. Experiences with Workflow Man
agement: Issues for th e Next Generation . In Richard Furuta and Christine
Neuwirth, editors, Proceedings of the Conference on Computer- Supported Co
operative Work , CSCW'94, Chapel Hill , North Carolina , U.S.A. , pages 113
120. ACM Press, October 1994.

3. Fran z Achermann , Stefan Kn eubiihl, and Oscar Nierstrasz . Scripting Coordi
nation Styles. Submitted for publication, April 2000.

4. Fran z Achermann, Markus Lumpe, Jean-Guy Schn eider , and Oscar Nierstrasz.
Piccola - a Small Composit ion Language. In Howard Bowman and John Der
rick, editors, Formal Methods for Distributed Processing: An Obj ect-Oriented
Approach, cha pter 18. Cambridge University Press, 2000.

5. Fran z Achermann and Oscar Nierstrasz . Application = Components + Scripts
- A to ur of Piccola. In Mehment Aksit , editor , Software Architectures and
Component Technology. Kluwer Academic Press, 2000.

6. C. Ada ms and S. Farrell. Internet X.509 Public Key Infrastructure Certificate
Management Protocols. In RFC 2510, Th e Int ern et Society. IETF, 1999.

7. Til ak Agerwala. Put ting Petri Nets to Work. Computer, pages 85- 94, Decem
ber 1979.

8. G. Agha. Actors: A Model of Concurrent Computa tion in Distributed Sys tems.
MIT Press, 1986.

9. G. Agha, S. Frelund, R. Panwar , and D. Sturman . A Linguist ic Framework
for Dynamic Composition of Dependability Protocols. In Dependable Com 
puting for Critical Applications III, pages 345-363. Intern at ional Federa t ion of
Information Processing Societ ies (IFIP) , Elsevier Science Publisher , 1993.

10. G. Agha and N. J amali. Concur rent Programming for Distributed Ar tificial
Intelligence. In G. Weiss, editor, Multiagent Systems: A Modern Approa ch to
DAI., cha pter 12. MIT Press, 1999.

11. G. Agha, I. A. Mason , S. F . Smith, and C. L. Talcott . A Foundation for Actor
Computat ion. Journal of Fun ctional Programming, 7:1-72, 1997.

12. Aglets. http://..,..,.., . t rl. ibm. co . j p/aglets/aglets .
13. Alessandra Agostini, Giorgio De Michelis, and Mari a Antonietta Grasso. Re

thinking CSCW systems : the ar chit ecture of Milano. In John A. Hughes, Wolf
gang Prinz, Tom Rodden , and Kjeld Schmidt, edito rs , Proceedings of the Fifth
European Conferenc e on Comp uter Supported Cooperative Work, E CSCW '97,
Lancaster, U.K ., pages 33-48, Dordrecht , August 1997. Kluwer Academic Pub
lishers.



472 References

14. S. Ahmed, N. Carriero, and David Gelernter. A program building tool for
parallel applications. In DIMACS Workshop on Specifications of Parallel Al
gorithms, 1994.

15. Ravinda K. Ahuja, Thomas L. Magnanti, and James B. Orlin. Network Flows:
Theory, Algorithms, and Applications. Prentice Hall , Upper Saddle River, NJ ,
1993.

16. S. Ahuja, N. Carriero, D. Gelernter, and V. Krishnaswamy. Matching lan
guage and hardware for parallel computation in the Linda machine. IEEE
Transactions on Computers, 37(8):921-929, 1988.

17. B. Aiken and et al. A Report of a Workshop on Middleware (RFC2768).
http://vww.ietf.org/rfc/rfc2768.txt.

18. Ajanta Mobile Agents Research Project. http://vvw . cs , umn. edulAjanta.
19. J .M. Akkermans and H. Ottosson (Eds.) . The KEES Project En-

ergy Efficiency in a Deregulated Market. EnerSearch AB, Maim , Sweden,
http://www.enersearch.se. 1999.

20. J.M. Akkermans, R. Gustavsson, and F. Ygge. Structured Engineering Process
for Agent Communication Modelling. In Knowledge Engineering and Agent
Technology. lOS Press, 2000.

21. J.M . Akkermans, F . Ygge, and R. Gustavsson. HOMEBOTS: Intelligent De
centralized Services for Energy Management. In J .F . Schreinemakers, editor,
Knowledge Management: Organization, Competence and Methodology. Ergon
Verlag , Wuerzburg, D, 1996.

22. C. Alexander. The Timeless Way of Building. Oxford University Press, New
York ,1979.

23. Alfebiite. A Logical Framework for Ethical Behaviour Between Infohabitants
in the Information Trading Economy of the Universal Information Ecosystem.
Technical Report EC IST-1999-10298, www.iis.ee.ic.ac.uk/alfebiite, 1999.

24. D. Amsclem. A window on shared virtual environments. Presence-teleoperaiors
and virtual environments, 4(2) :140-145 , 1995.

25. Paul C. Anagnostopoulos. Writing Real Programs in DCL. Digital Press, 1989.
26. Brian G. Anderson and Dennis Shasha. Persistent Linda: Linda + Transactions

+ Query Processing. In J .P. Banatre and D. Le Metayer, editors, Research Di
rections in High-Level Parallel Programming Languages, number 574 in LNCS,
pages 93-109. Springer-Verlag, 1991.

27. Jean-Marc Andreoli, Paolo Ciancarini, and Remo Pareschi. Interaction Ab
stract Machines. In Gul Agha, Peter Wegner, and Akinori Yonezawa, editors,
Trends in Object-Based Concurrent Computing, pages 257-280. MIT Press,
Cambridge (MA), 1993.

28. Jean-Marc Andreoli and Remo Pareschi. Linear Objects: Logical Processes
with Built-in Inheritance. New Generation Computing, 9(3-4) :445-473, 1991.

29. Apple Computer. AppleScript Language Guide. Apple Technical Library.
Addison-Wesley, 1993.

30. K. R. Apt. The Essence of Constraint Propagation. Theoretical Computer
Science, 221(1-2) :179-210, 1999.

31. K. R. Apt. The Rough Guide to Constraint Propagation. In J . Jaffar, ed
itor, Proc, of the 5th International Conference on Principles and Practice of
Constraint Programming (CP'99) , volume 1713 of LNCS, pages 1-23. Springer
Verlag , 1999. Invited lecture.

32. K. R. Apt and E. Monfroy. Automatic Generation of Constraint Propagation
Algorithms for Small Finite Domains. In J. Jaffar, editor, Proc, of the 5th In
ternational Conference on Principles and Practice of Constraint Programming
(CP'99) , volume 1713 of LNCS, pages 58-72. Springer-Verlag, 1999.



References 473

33. F . Arhab. Coordination of Massively Concurrent Activities. Technical Report
CS-R9565, CWI, Amsterdam, The Netherlands, November 1995. Available
on-line http://www.cwLnl/ftp/CWIreports/IS/CS-R9565.ps.Z .

34. F . Arbab. The IWIM Model for Coordination of Concurrent Activities. In
Paolo Ciancarini and Chris Hankin, editors, Coordination Languages and Mod
els, volume 1061 of LNCS, pages 34-56. Springer-Verlag, April 1996.

35. F. Arbab. Manifold2.0 reference manual. CWI, Amsterdam, The Netherlands,
May 1997.

36. F . Arbab. What Do You Mean, Coordination? Bulletin of the Dutch Associ
ation for Th eoretical Computer Science, NVTI, pages 11-22, 1998. Available
on-line http://www.cwLnl/NVTI/Nieuwsbrief/nieuwsbrief.html.

37. F . Arbab and E. Monfroy. Coordination of Heterogeneous Distributed Coop
erative Constraint Solving. Applied Computing Review, 6(2) :4-17, 1998.

38. Farhad Arbab. Manifold Reference Manual. Department of Software Engi
neering, CWI, Amsterdam, NL, June 1998.

39. Farhad Arbab, Ivan Herman, and Per Spilling. An Overview of MANIFOLD
and its Implementation. Concurrency: Practice and Experience, 5(1) :23-70,
February 1993.

40. Y. Arens, C. A. Knoblock, and C. Hsu. Query Processing in the SIMS Infor
mation Mediator. In Austin Tate, editor, Advanced Planning Technology. AAI
Press, 1996.

41. Y. Aridor and D. Lange . Agent Design Patterns: Elements of Agent Applica
tion Design . In The Second International Conference of Autonomous Agents.
IEEE, 1998.

42. K. Arisha, T . Eiter, S. Kraus, F . Ozcan, R. Ross, and V.S.Subrahmanian.
IMPACT: Interactive Maryland Platform for Agents Collaborating Together.
IEEE Intelligent Systems, 14(2), 2000.

43. Ken Arnold and James Gosling. The Java Programming Language. The Java
Series . Addison-Wesley, Reading (MA), second edition, 1998.

44. Ken Arnold, Bryan O'Sullivan, and et al. The Jini Specification. Addison
Wesley, 1999.

45. Proceedings of the First International Symposium on Agent Systems and Appli
cations and Third International Symposium on Mobile Agents (ASA/MA '99) ,
California (USA), October 1999.

46. Robert M. Axelrod. The Evolution of Cooperation. Basic Books, New York,
NY, 1984.

47. P. Azema, F . Vernadat, and P. Gradit. A 'Workflow Specification Environ
ment . In Proceedings of the Workshop on Workflow Management: Net-based
Concepts, Models, Techniques and Tools, June 1998, Lisboa (Portugal), 1998.

48. David E. Bakken and Richard D. Schlichting. Tolerating Failures in the Bag
of-Tasks Programming Paradigm. In Proceedings of the 21st International
Symposium on Fault- Tolerant Computing, pages 248-255, 1991.

49. David E. Bakken and Richard D. Schlichting. Supporting Fault-Tolerant Par
allel Programming in Linda. IEEE Transactions on Parallel and Distributed
Systems, 6(3) :287-302, March 1995.

50. Jean-Pierre Banatre and Daniel Le Metayer. Programming by Multiset Trans
formation . Communications of the ACM, 36(1) :98-111 , January 1993.

51. M. Banville. Sonia: an Adaptation of Linda for Coordination of Activities in
Organizations. In P. Ciancarini and C. Hankin, editors, Proc. 1st Int . Conf.
on Coordination Models and Languages, volume 1061 of LNCS, pages 57-74.
Springer, 1996.



474 References

52. Fern anda Barbosa and J ose C. Cunha. A Coordina t ion Language for Collect ive
Agents Based Systems: GroupLog. In Proceedings of the 2000 ACM Sympo
sium on Applied Computing (SAC 2000), pages 189-195, Como (I) , March 19
- March 21 2000. ACM. Track on Coordinati on Models, Languages and Ap
plications.

53. M. Barbuceanu. Coordination wit h Obligat ions. In Second International Con
ference on Autonomous Agents, pages 62-69. IE EE, 1999.

54. M. Barbuceanu and M.S. Fox. Captur ing and Modeling Coord ination Kn owl
edge for Mult i Agent Systems. Int ernational Journal on Cooperative Informa
tion Sys tems, 5(2-3):275-314, 1996.

55. Miha i Barbuceanu and Mark S. Fox. COOL: A Language for Describing Co
ordination in Multiagent Systems. In Victor Lesser , edito r, Proceedings of
the First Internat ional Conference on Mult i-Agent Systems, pages 17-25, San
Francisco, CA , 1995. MIT Press.

56. C. Baru, A. Gupta , B. Lud ascher , R . Marciano, Y. Papakon stant inou , P. Ve
likhov, and V. Chu. XML-Based Information Mediation with MIX . In A CM
Conf. on Management of Data (SIGMOD '99) , Philadelphia, USA , 1999.

57. A. Barua, A.B. Whinston , and F . Yin . Value and productivity in the Intern et
economy. IEEE Computer, May 2000.

58. Len Bass, Paul Clements, and Rick Kazman. Soft ware Architecture in Practi ce.
Addison-Wesley, 1998.

59. J . Baumann, F . Hohl , K. Rothermel, and M. Strafi er . Mole - Concepts of a
Mobile Agent Syst em. World Wide Web, 1(3) :123-1 37, 1998.

60. J . Baumann and N. Radouniklis. Agent Groups in Mobile Agent Syst ems. In
IFIP WG 6.1 Int ernational Working Conference on Distributed Applications
and Int eroperable Systems, Cottbus , Germany, September , 30 - October , 2
1997. Cha pman & Hall.

61. Paolo Bellavista , Antonio Corradi, and Cesare Stefanelli. An Op en Secur e
Mobile Agent Fram ework for Systems Man agement . Journal of Network and
Systems Managem ent, 7(3):323-339, September 1999. '

62. Paolo Bellavista, Antonio Corradi, and Cesare Stefanelli. An Integrated Man
agement Environment for Network Resources and Services. IEEE Journal on
Selected Areas in Communication , 8(5) , May 2000.

63. Paolo Bellavista, Antonio Corradi, and Cesare Stefanelli. A Mobile Agent
Infrastructure for Terminal, User and Resource Mobility. In Jam es Hong and
Robert Weihmayer , edito rs , NOMS 2000 - Proceedings of the 2000 IEEE/IFIP
Network Operations and Management Sympo sium : Th e Networked Planet:
Management B eyond 2000 (NOMS 2000), pages 877-890, Honolulu (USA) ,
April 11 - April 13 2000. IEEE Press.

64. Paolo Bellavista, Antonio Corradi, and Cesare St efanelli. Prot ecti on and Inter
operability for Mobile Agents: A Secure and Op en Programming Environment.
IEICE Transaction s on Communications, E83B(5) , May 2000.

65. F. Benhamou and L. Gr anvilli ers. Combining Local Consist ency, Symbolic
Rewriting, and Int erval Methods. In Proc. of A ISMC3, St eyr (Au stria) , 1996.

66. F . Benhamou and W . Old er . Applying Interval Arithmeti c to Real, Integer
and Boolean Constraints. Journ al of Logic Programming, 32(1):1-24, Mar ch
1997.

67. Henri Beringer and Bruno DeBacker . Combinatorial Problem Solving in Con
straint Logic Programming with Cooperative Solvers. In Christoph Beierle
and Lutz Plumer , edito rs , Logic Programm ing: Form al Methods and Practical
Applications, Studies in Computer Science and Artificial In telligence. North
Holland, 1995.



References 475

68. T . Berners-Lee. WWW: Past , Present, and Future. IEEE Computer,
29(10) :69-78, October 1996.

69. T . Berners-Lee, R. Cailliau, A. Luotenen, H. F . Nielsen, and A. Secret . The
World-Wide Web . Communications of the ACM., 37(8) , Aug 1994.

70. T . Berners-Lee, R. Fielding, and L. Masinter. Uniform Resource Ident ifiers
(URI) : Generic Syntax. IET F Intern et Draft St andard RFC 2396, August
1998. http://www.ietf.org/rfc/rfc2396.txt.

71. Gerard. Berry and Gerard Boudol. The Chemical Abstract Machine . Theoret
ical Computer Science , 96:217-248, 1992.

72. A. Bieszczad , B. Pagurek , and T. White. Mobile Agents for Network Manage
ment . IEEE Communications Surv eys, 1(1) , 1998.

73. J . Billington, M. Farrington, and B. B. Du . Modelling and Analysis of Multi
agent Communication Protocols using CP-nets. In Proceedings of the third
Bi ennial Engineering Math ematics and Applications Conference (EMAC'98),
pages 119- 122, Adelaide , Australia , July 1998.

74. A. D. Birrell and B. J . Nelson. Implementing Remote Procedure Calls. ACM
Transa ctions on Programming Languages and Systems , 2(1), February 1984.

75. R. Bjornson. Linda on distributed m emory multiprocessors. PhD t hesis , Yale
University, 1992. YALEU/ DCS/ RR-931.

76. R. Bjornson, N. Carriero, and D. Gelernter. T he imp lementation and per
formance of Hypercube Linda. Technical Repo rt YALEU /DCS/RR-690, Yale
University, 1989.

77. Matt Blaze , Joan Feigenbaum, and Jack Lacy. Decentralized Trust Man age
ment. In Symposium on Secure Programming, Oakland (CA), May 1996. IEEE
Computer Society.

78. E. Boertjes , H. Akkermans, R. Gustavsson, and R. Kamphuis . Agents to
Achieve Customer Satisfaction: The COMFY Comfort Management System. In
Th e Fifth Int ernational Conference on The Practical Application of Intelligent
Agents and Multi -Agents (PAMM 2000). The Practical App lication Company,
April 2000.

79. J . Bolliger and T . Gross. A framework-based approach to the development
of network-aware applications. IEEE Transactions on Software Engineering,
24(5):376-390, May 1998.

80. M. Bonsangue, J . Kok, M. Boasson, and E. Dejong. A software architec
ture for distributed control systems and its transition system semantics. In
J . Carroll and et ai, editors, Proc. ACM/SICAPP Symp . on Applied Comput
ing (SAC '98). ACM Press, 1998.

81. M.M. Bonsangue, F . Arb ab , J .W. de Bakker, J. J .M.M. Rutten, A. Scutella ,
and G. Zavattaro. A Transition System Semantics for the Control-driven Co
ordination Language Manifold . Technical Report SEN-R9829, Centrum voor
Wis kunde en Inform atica, Kruislaan 413, 1098 SJ Amsterdam, The Nether
lands, 1998.

82. G. Booch . Object-orient ed Analysis and Design (second edition). Addiso n
Wesley, Reading (MA) , 1994.

83. N.S. Borenstein. E-Mail wit h a Mind of its Own: The Safe-Tel Lang uage for
Enabled Mail. IFIP Transact ions C (Communication Systems), C-25:389-402,
1994.

84. U. Borghoff et al. Reflective Agents for Adaptive Workflows. In Proceedings
of Second International Conference on the Practical Application of Intelligent
Agents and Multi-Agent Technology, London, UK, 1997.

85. P. Borovansky and C. Castro. Cooperation of Constraint Solvers: Using the
New Process Control Facilities of ELAN. Electroni c Notes in Theoretical Com 
put er Science , 15:379-398, September 1998.



476 References

86. S.R Bourne. An Introduction to the UNIX Shell. Bell System Technical
Journal, 57(6) :1971-1990, July 1978.

87. Craig Boutilier, Moises Goldszmidt, and Bikash Sabata. Sequential Auctions
for the Allocation of Resources with Complementarities. In Proceedings of the
International Joint Conference on Artificial Intelligence, Stockholm, Sweden,
1999.

88. John Bowers, Graham Button, and Wes Sharrock. Workflow from Within and
Without: Technology and Cooperative Work on the Print Industry Shopfloor.
In Hans Marmolin, Yngve Sundblad, and Kjeld Schmidt, editors, Proceed
ings of the Fourth European Conference on Computer-Supported Cooperative
Work , ECSCW'gS, Stockholm, Sweden, pages 51-66. Kluwer Academic Pub
lisher, September 1995.

89. RJ. Brachman and J.G. Schmolze. An Overview of the KL-ONE Knowledge
Representation System. Cognitive Science, 9(2), 1985.

90. J . M. Bradshaw, M. Greaves, H. Holmback, T. Karygiannis, W . Jansen, B. G.
Silverman, N. Suri, and A. Wong . Agents for the Masses? IEEE Intelligent
Systems, 6(2):53-63, March-April 1999.

91. Jeffrey M. Bradshaw. KAoS : An open agent architecture supporting reuse,
interoperability, and extensibility. In Tenth Knowledge Acquisition for
Knowledge-Based Systems Workshop , 1996.

92. J .M. Bradshaw, Dutfield. S., P. Benoita, , and J .D. Woolley. KaoS: Towards
and Industrial-Strength Open Distributed Agent Architecture. In J .M. Brad
shaw, editor, Software Agents, pages 375-418. AAAI/MIT Press, 1997.

93. F . Brazier, B. Dunin-Keplicz, N.R. Jennings, and J. Treur. Formal Specifi
cations of Multi-agent Systems: a Real-World Case . In First International
Conference on Multi-agent Systems (ICMAS9S), pages 25-32, June 1995.

94. F.M .T . Brazier, B.M. Dunin-Keplicz, N.R Jennings, and J. Treur. DESIRE:
Modelling Multi-Agent Systems in a Compositional Formal Framework. Jour
nal of Cooperative Information Systems, 6(1):67-94, 1997.

95. Jonathan Bredin, David Kotz, and Daniela Rus. Market-based Resource Con
trol for Mobile Agents. In Proceedings of the Second International Conference
on Autonomous Agents, pages 197-204, Minneapolis, MN, May 1998. ACM
Press.

96. Jonathan Bredin, David Kotz, Daniela Rus, Rajiv T. Maheswaran, Cagri Imer,
and Tamer Basar. Computational Markets to Regulate Mobile-Agent Systems.
December 1999.

97. Jonathan Bredin, Rajiv T. Maheswaran, Cagri Imer, Tamer Basar, David
Kotz, and Daniela Rus. A Game-Theoretic Formulation of Multi-Agent Re
source Allocation. In Proceedings of the Fourth International Conference on
Autonomous Agents, June 2000.

98. M. Breugst and T . Magedanz. On the Usage of Standard Mobile Agent Plat
forms in Telecommunication Environments. In S. Trigila and et ai, editors,
Intelligence in Services and Networks: Technologies for Ubiquitous Telecom
Services Multi-Agent Systems Engineering, volume 1430 of LNCS. Springer
Verlag, 1998.

99. J .-P. Briot . Actalk: a testbed for classifying and designing actor languages in
the Smalltalk-80 environment. In Proceedings of the European Conference on
Object Oriented Programming (ECOOP'S9) , pages 109-129. Cambridge Uni
versity Press, 1989.

100. C. Bryce, M. Oriol, and J. Vitek. A Coordination Model for Agents Based
on Secure Spaces. In P. Ciancarini and A. Wolf, editors, Proc. Srd Int . Conf.
on Coordination Models and Languages, volume 1594 of LNCS, pages 4-200,
Amsterdam (NL), April 1999. Springer-Verlag, Heidelberg (D) .



References 477

101. Ciaran Bryce and Jan Vitek. The JavaSeal Mobile Agent Kern el. In Proceed
ings of the 1st International S ymp osium on Agent Sy stems and Application s,
3rd Int ernational S ympo sium on Mobile Agent s (A SA MA '99), pages 176-189,
Palm Springs (CA) , 1999. ACM Press.

102. O. Bukhres and A. Elmagarmid, editors. Object-Orient ed Multidatabases Sys 
tem s : A Solution for A dvanced Applications. Prent ice Hall, Engl ewood Cliffs,
New Jersey, USA , 1996.

103. B. Burmeister. Models and Methodologies for Agent-oriented Analysis and
Design . In Working Not es of the KI96 Workshop on Agent-or ient ed Program
ming and Dist ribut ed S ystem s. DFKI, 1996.

104. F . Buschmann. The Master-Slave Pat tern. In J . Coplien and D. Schm idt, edi
tors, Patt ern Languages of Program Design 1, pages 133-142. Addison-We sley,
1995.

105. Nadia Busi, Rober to Gorrieri , and Gianluigi Zavattaro. Three Semantics of
the Ou tput Op eration for Generative Communicati on . In David Garlan and
Daniel Le Metayer , editors , Coordin ation Languages and Mod els - Proceedings
of the 2nd Intern ational Conference (COORDINATION '97) , volume 1282 of
LNCS, pages 205-219, Berlin (D) , September 1-3 1997. Springer-Verlag.

106. Nadia Busi , Rob erto Gorrieri , and Gianluigi Zavattaro . A Process Alge
braic View of Linda Coordination Primitives. Th eoretical Comput er Science,
192(2):167-199, 1998.

107. Na dia Busi, Rob erto Gorri eri , and Gian luigi Zavat taro . Comparing Three
Semantics for Lind a-like Languages. Th eoretical Computer Science, 240(1 ):49
90,2000.

108. Nadia Busi, Roberto Gorrieri , and Gianluigi Zavat taro. On the Expressiven ess
of Lind a Coordination Primitiv es. Information and Compu tation, 156:90-121 ,
2000.

109. Nadia Busi , Rob erto Gorrieri , and Gianluigi Zavattaro. Process Calculi for
Coordina t ion: from Linda to JavaSpaces. In Teodor Rus, editor, Algebraic
M ethodology and Software Technology - Proceedings of the 8th International
Conference, AMAST 2000, volum e 1816 of LNCS. Springer-Verlag, 2000.

110. Nadi a Busi and Gianluigi Zavattaro. Event Not ificat ion in Da ta-driven Coor
din ation: Comparing the Ord ered and Unordered Approaches. In Proceeding s
of the 2000 A CM Symposium on Applied Comp uting (SA C 2000) , pages 233
239, Como (I) , March 19-21 2000. ACM. Track on Coordination Models,
Languages and Applications .

111. Nadia Busi and Gianluigi Zavat taro. On the Expressivenes of Event Not ifica
tion in Data-Driven Coordinat ion Languages. In Proceedings of ESOP 2000,
volume 1782 of LNCS , pa ges 41-55. Springer-Verlag, 2000.

112. S. Bussmann. Agent-Orient ed Programming of Manifacturing Control Tasks.
In Proceeding of the 3rd International Conference on Multi-Agent Syst em s (IC
MAS 98), pages 57-63. IEEE CS Press, June 1998.

113. G. Cabri, L. Leonardi, and F . Zambonelli. Mobi le-Agent Coordination Models
for Intern et Applications. IEEE Compu ter, 33(2) :82- 89, 2000.

114. Giacomo Cabri, Letizia Leonardi, and Franco Zambonelli. Reactive Tuple
Spaces for Mobile Agent Coordination. In K. Rothermel and F. Hohl , editors,
Mobile Agents - Proceedings of the 2nd International Workshop (MA '98), vol
ume 1477 of LN CS, pages 237-248, Stuttgart (D) , Septemb er 1998. Springer
Verlag.

115. Giacomo Cabri, Leti zia Leonardi , and Franco Zambonelli. Design and Im
plementation of a Programable Coordination Architecture for Mobi le Agents.
Proceeding s of the T OOLS EUROPE '99 Conference, June 1999.



478 References

116. Giacomo Cab ri, Letizia Leonardi, and Franco Zambonelli. MARS: a Pro
grammable Coordination Architecture for Mobile Agents. IEEE Internet Com
put ing, 2000.

117. Giacomo Cabri, Let izia Leonardi, and Franco Zambonelli. Mobile-age nt Coor
dination Models for Internet Applications. IEEE Computer Magazin e, 33(2),
February 2000.

118. Giacomo Cabri, Let izia Leonar di, and Franco Zam bonelli. XML Datasp aces
for Mobile Agent Coordination. In Proceedings of the 2000 A CM Symposium on
Applied Computing (SAC 2000), pages 181-1 88, Como (I) , March 19 - March 21
2000. ACM . Track on Coordi nation Models, Languages and App lications.

119. T . Ca i, P. Gloor , and S. Nog. Dar tFlow: a workflow management system
on the web using t ra nsportable agents. Techni cal report , Dar tmouth College,
1997.

120. C. Callsen and G. Agha . Open Heterogeneous Computing in ActorSpace.
Journal of Parallel and Distributed Computing, pages 289-300, 1994.

121. Ken Calvert and Ellen Zegur a . GT-ITM: Georgia Tech Intern etwork Top ol
ogy Models, 1996. ht tp://www.cc.gatech .edu/fac/Ellen .Zegura/gt-itm/gt
itm.tar .gz.

122. Scott R. Cannon and David Dunn. Adding Faul t- tolerant Transaction Pro
cessing to LINDA. Software: Practice and Experience, 24(5) :449- 466, May
1994.

123. L. Cardelli and A. Gordon . Mobile Amb ients. Theoretical Computer Science,
240(1), 2000.

124. Luca Cardelli. A Language with Dist rib uted Scope. Computing Sys tems ,
8(1):27-59, 1995.

125. Luca Cardelli. Wi de Area Computation. In Jiri Wiedermann, Peter van
Emde Boas , an d Mogens Nielsen, editors, Proceedings of the 26th Intern ational
Colloquium on Automata, Languagese and Programming, ICALP '99, volume
1644 of LN CS, pages 10-24. Springer-Verlag , 1999.

126. Luca Cardelli an d Andrew D. Gordo n. Mobile Ambients. In Maurice Ni
vat, editor, Proceedings of Foundations of Software Science and Computation
Structures (FoSSaCS) , European Joint Conferences on Th eory and Practice of
Software (ETA PS '9S), volume 1378 of LNCS, pages 140-1 55, Lisbon , Portugal,
1998. Springer-Verlag. .

127. Steinar Carlsen. Action Port Model: A Mixed Par adigm Conceptua l Workflow
Modeling Language. In Michae l Halp er , edito r , Proceedings of the 3rd IFCIS
International Conference on Cooperative Inform ation Syst ems , New York City ,
USA , pages 300- 309, Los Alam itos , California, August 1998. IEEE Computer
Society .

128. J . Carreria, L. Silva , and J. Silva. On the design of Eilean : A Linda-like library
for MP I. Technical report , Universidade de Coimbra , 1994.

129. N. Carr iero. Implem entation of Tuple Space Machines. PhD thesis, Yale
University, 1987. YALEU/DCS/RR-567.

130. N. Carriero and D. Gelernter . The S/Net's Linda Kern el. ACM Transactions
on Computer Systems, 4(2): 110- 129, 1986.

131. N. Carriero and D. Gelernter. How to Wri te Parallel Programs: A First
Course. The MIT Press, 1990.

132. N. Carriero and D. Gelernter . Tuple Analysis and Partial Eva luation Strate
gies in the Linda precompiler . In D. Gelernter , A. Nicolau , and D. Padua , edi
tors, Languages and Compilers for Parallel Computing, Research Monographs
in Par allel and Distribu ted Com puting, pages 114-1 25. MIT Press, 1990.



References 479

133. N. Car riero and D. Gelern ter. A foundation for advanced compile-t ime anal
ysis of Linda programs. In Languages and Comp ilers fo r Parallel Computing,
volume 589 of LNCS, pages 389-404. Springer-Verlang, 1991.

134. N. Carriero and D. Gelernter. New opt imizat ion st rategies for the Lind a pre
compiler. In G. Wilson, edito r, Linda-like systems and their implem entat ion,
Edinburugh Parallel Computing Centre, pages 74-82. Technical Rep ort 91-13,
1991.

135. Nicholas Carriero and David Gelernter. How to Write Parallel Programs : A
Guide to the Perpl exed . ACM Computing Surveys, 21(3) :323-357, September
1989.

136. Nicholas Carriero and David Gelernter . Lind a in Context . Communications
of the A CM, 32(4) :444-458, April 1989.

137. Nicholas Carriero and David Gelernter. Case Studies in Asynchronous Dat a
Parallelism. Int ernational Journal of Parall el Programming, 22(2) :129-149 ,
1994.

138. Nicholas Carriero , David Gclernter, and Lenore Zuck. Bauhaus Linda. In
Paolo Ciancar ini, Oscar Nierstrasz, and Akinori Yonezawa, editors, Object
Bas ed Models and Languages for Concurrent Systems, volume 924 of LNCS,
pages 66-76. Springer-Verlag , 1995.

139. F . Casat i. Models, Semantics and Form al Methods fo r the design of Wor'kjiows
and their Exception s. PhD thesis, Politechnico di Milano , 1998.

140. F. Casat i. Semantic Interoperab ility in interorganizational workflows. In
WACC uiorkshop on cross-organiza tional workflows, San Francisco, CA , Febru
ary 1999.

141. A. Cassandra, D. Cassandra, and M. Nodine. Capability-based ma tchmaking.
In Agent s-2000 Conference on Auto nomous Agent s, Barcelona. ACM Press,
2000.

142. C. Cast elfranchi and Y.-M. Tan (Eds.) . Trust and deception in virtual soci
eties . Kluwer Academic Publishers, Dordrecht-Holland, 2000.

143. C. Castro and E. Monfroy. A Control Language for Designin g Constraint
Solvers. In Proceedings of Andr'ei Ershov Th ird In ternational Conference Per
spective of Syst em Informatics, PSI'gg, volum e 1755 of LNCS, Novosibirsk,
Akademgorodok, Ru ssia , 1999.

144. CDL . Cap ability Description Language. http://www.aiai.ed .ac . uk/
- oplan/cdL.

145. Computer Security Center. Tru sted Computer Syst ems Evaluation Cr ite
ria . Technical Report CSC-ST D-001-83, DoD Computer Security Cente r, Fort
MEade, MD, 1983.

146. K. M. Chandy and J ayadev Misra. How Processes Learn. Distribut ed Com
puti ng, 1:40-52, 1986.

147. K.M . Chandy and J . Misra. Parallel Program Design: A Foundation. Addison
Wesley, 1988.

148. Deepika Chauhan. JAFMAS: A Java-Based Agent Framework for Multiagent
Systems Development and Implementation. Master 's thesis, ECECS Depar t
ment , University of Cincinnati, 1997.

149. Anthony Chavez, Alexandros Moukas, and Pattie Maes. Challenger: A Multi
agent System for Distributed Resource Allocation . In Proceedings of the First
Intern ational Conference on A utonomous Agent s, Marina Del Ray, CA, 1997.
ACM Press.

150. Q. Chen , P. Chundi, U. Dayal , and M. Hsu . Dynamic Agents . International
Journal on Cooperative Information Sy stem s, 8(2-3) :195-223, 1999.

151. Ye Chen, Yun Peng, Tim Finin, Yannis Labrou, and Scot t Cost . A
Negot iat ion-Based Multi-Agent Syst em for Supply Cha in Management . In



480 References

Wo rking Notes of the Agents '99 Workshop on Agents for El ectronic Com
m erce and Managing the Int ern et-Enabled Supply Chain., Seattle, WA, April
1999.

152. John Q. Cheng and Michael P. Wellman. The WALRAS Algorithm: A Conver
gent Distributed Implement ati on of General Equilibrium Ou tcomes. Journal
of Computational Economics, 12:1-23, 1998.

153. D. Chess and et al. Itinerant Agents for Mobile Computing. IEEE P ersonal
Com m unicati ons Maga zine, 2(5):34- 59, May 1995.

154. D. Chess, C.G. Harrison , and A. Kersh enb aum. Mobile Agents: Are T hey a
Good Idea? In Mobile Object System s - Toward s the Programmable Intern et,
volume 1222 of LNCS, pages 25-47. Springer-Verlag, 1997.

155. L. Chiar iglione. Foundation for Intelligent Physical Agents , 1997.
156. S. Chiba, K. Kato, and T . Masuda. Exploiting a Weak Consist ency to Imple

ment Distributed Tuple Space. In 12th International Conference on Dist ribut ed
Comput ing Sy stem s, pages 416-425, Washington, D.C., USA, June 1992. IEEE
Computer Society Press.

157. Martin Chilvers . Fn orb User Guide. CRC for Dist ributed Syst ems Technolo gy,
University of Queensland, AU, April 1999.

158. Soren Christensen and Niels Damgaard Hansen. Coloured Petri Nets Ex
tended with Place Capaciti es, Test Arcs and Inhibitor Arcs. Technical Report
DAI MI PB-398, Compute r Science Department , Aarhus University, Aarhus C,
Denm ark , May 1992.

159. P.E. Chung and et al. DCOM and CORBA Side by Side, Step by Step, and
Layer by Layer. C++-Report , 10(1) , Januar y 1998.

160. P. Ciancar ini , R. Gorrieri , and G. Zavattaro . Towards a Calculus for Gen
erative Communication. In E. Najm and J. Stefani , editors, Proc. First
IFIP W orkshop on Formal M ethods [or Open Object-Based Distributed S ys
tem s (FMOODS) , pages 289- 306, Paris, Fran ce, 1996. Chapman and Hall,
London .

161. P. Ciancarini, O. Nierstrasz, and R. Tolksdorf. A Case Study in Coordination:
Conference Man agement on the Internet . http ://yyy .cs . unibo. it/ -cianca/
yyypages/case.ps.gz.

162. P. Ciancarini and D. Rossi. Coordinating J ava Agents over t he WWW. Wo rld
Wide W eb Journal, 1(2):87- 99, 1998.

163. Paolo Ciancarini. Coordination Models and Languages as Software Integra
tors . A CM Compu ting Surveys, 28(2) :300-302, June 1996.

164. Paolo Ciancarini , F . Franze, and Cecilia Mascolo. Using a Coordination Lan
guage to Specify and Analyze Systems Containing Mobile Components. A CM
Transactions on Software Engineering and Methodology, 2000.

165. Paolo Ciancarini and Chris Hankin, editors . Coordination Languages and Mod
els - Proceedings of the 1st Iniernaiional Conference (COOR DINA T I ON '96) ,
volum e 1061 of LNCS, Cesena (I) , April 15-17 1996. Springer-Verlag.

166. Paolo Ciancarini, Keld K. Jensen, and Daniel Yankcl ewich. On the Op er
at ional Semantics of a Coordination Language. In Paolo Cian carini, Oscar
Nierst rasz, and Akinori Yonezawa, editors, Object-Based Models and Langu ages
for Concurrent Sy st em s, volume 924 of LNCS, pages 77-106. Springer-Verlag,
1995.

167. Paolo Ciancarini, Andrea Omicini , and Franco Zambonelli. Coordinat ion
Technol ogies for Internet Agents. Nord ic Journal of Compu ting, 6(3) :215-240,
Fall 1999.

168. Paolo Ciancarini , Andrea Omicini , and Fran co Zambonelli. Mult iagent Sys
tem Engineering: the Coordination Viewpoint . In Nicholas R. Jennings and



References 481

Yves Lesperance, edito rs , Int elligent Agent s VI - Agent Th eories, Archit ec
tures, and Languages, volume 1767 of LNA I, pages 250-2 59. Springer-Verlag,
February 2000.

169. Paolo Ciancar ini and Davide Rossi. J ada - Coordination and Communication
for Java Agents. In J an Vitek and Christ ian Tschudin, edito rs, Mobile Object
Systems: Towards the Programm able Int ern et, volume 1222 of LN CS, pages
213-228. Springer-Verlag, Heidelb erg (D), April 1997.

170. Paolo Ciancar ini, Davide Rossi, and Fabio Vitali. A Case Study in Designing
a Document-Centric Coordination Application over the Intern et . In D. Clarke,
A. Dix , and F . Dix , edito rs , Proc. Workshop on the Active Web, pages 41-56,
St affordshire (UK ), January 1999.

171. Paolo Ciancarini and Robert Tolksdor f. Coordination Mechani sms for Web
Agents . Autonomous Agent s and Mult i-Agent Sy stem s, 2(3) :215-216, Septem
ber 1999. Guest edito ria l.

172. Paolo Ciancarini, Robert Tolksdorf, and Fab io Vitali. The World W ide Web
as a P lace for Agents. In Manuela Wooldridge, Michael J . AD Veloso, editor,
Artificial Intelligence Today . Recent Trends and Developm ents , volume 1600 of
LNAI, pages 175- 194. Springer-Verlag, 1999.

173. Paolo Ciancarini, Robert Tolksdorf, Fabio Vitali , Davide Rossi, and Andreas
Knoche. Coordinating Mul tiagent Applications on the WWW: A Reference
Architecture. IEEE Tran sactions on Software Eng in eering , 24(5):362-375, May
1998.

174. Paolo Ciancarini and Alexander L. Wolf, editors . Coordina tion Languages
and Models - Proceedings of the 3rd Int ernational Conference (C OOR DI
NA TIO N '99), volume 1594 of LN CS, Amsterdam (NL), April 26-28 1999.
Springer- Verlag.

175. Claudio U. Ciborra. Teams, markets and systems. Bussiness in nova tion and
informa tion techno logy. Ca mbridge Univers ity Press, Cambridge , 1993.

176. P. Clayton, F . de Heer-Menl ah , and E. Wentwor th. Pl acing Processes in a
Tr an sputer-based Linda programming En vironment . Techni cal rep ort , Rhodes
Uiversity , 1992.

177. P. Clayton and E. Wentworth . P lacing pr ocesses in a transputer-based Linda
pr ogramming enviro nme nt. Techni cal rep ort , Rhodes Uivers ity , 1992.

178. Scot t H. Clearwate r , Rick Costanza, Mike Dixon, and Brain Schroeder. Saving
Energy Using Market- Base d Cont rol. In Scot t H. Clearwater , edito r, Market
Based Control, pages 253-273. World Scientific, Singap ore, 1996.

179. P. Codognet and D. Diaz. A simple and efficient Boolean constraint solver for
const raint logic pr ogramming. Journal of Automated R easoning, 17(1):97-128 ,
1996.

180. H. Collins and M. Ku sch . Th e Shap e of Action s. What Humans and Mach in es
Can Do. The MIT Press, 1998.

181. J. Collis and D. Ndumu. The Ro le Modelling Guide. In ZEUS Methodology
Documentation. British Telecom Lab oratories, 1999.

182. Nora Comstock and Clarence Ellis, editors. Proceedings of the Confe rence on
Organizat ional Comput ing Sy stem s, COOCS '9S, Milpitas , Califo rnia, USA .
ACM Press , August 1995.

183. Concordia . http://www.me i t ea. eom/HSL/Pro jeets/Coneordia.
184. R . Conte and C. Castelfranchi . Norms as mental objects: From normative

beliefs to normative goals. In Sp ring Symposium on Reasoning about Mental
States: Formal Th eories and Applications. AAAI Press, 1993.

185. J .G. Coplien . Software Patt erns. SIGS Management Briefings Series. SIGS
Books & Mult imedia, 1996.



482 Refe rences

186. CORBA/nOp Rev 2.2, OMG Document formal /98-07-01. http : //www . omg.
org/libr ary/ c2indx .html, February 1998.

187. Proposal for a Migration Service. ht tp ://www . omg.org/docs /ec/
99-01- 07 .pdf, 1999.

188. CORBA Services - OMG Document formal/98-12-09. ht tp : //www . omg. or g/
library/ , December 1998.

189. Antonio Corradi, Marco Cremonini , Rebecca Montanari, and Cesare St e
fanelli . Mobile Agents Integrity for Electronic Commerce Applications. In
formation Systems, IS24(6), November 1999.

190. M. Corson, J . Macker, and G. Cinciarone. Intern et-Based Mobile Ad Hoc
Networking. IEEE Internet Computing, 3(4), July 1999.

191. R . Scot t Cost , Ye Chen, Tim Finin, Yannis Labrou, and Yun Pengo Mod
eling Agen t Conversations with Colored Petri Nets. In Working Not es of the
Workshop on Specifying and Implem enting Conversation Poli cies, pages 59-66,
Seattle, Washington , May 1999.

192. R . Scott Cost , Tim Finin , Yannis Labrou, Xiaocheng Luan, Yun Peng, Ian
Soboroff, James Mayfie ld , and Akram Boughannam. Jackal : A Java-based
tool for agent development . In Jeremy Baxter and Chairs Brian Logan, edi
tors, Working Notes of the Workshop on Tools for Developing Agents , AAAI
'98, number WS -98-10 in AAA I Technical Reports, pages 73-82, Minneapolis,
Minnesota, July 1998. AAA I, AAA I Press.

193. Michail F . Cowlishaw. The REXX Language: A practi cal Approach to Pro
gramming. Prentice Hall , 2nd edit ion, 1990.

194. Marco Cremonini. Security and Mobility Issu es in Software Agent Systems.
Ph.D Thesis, D.E.I.S., University of Bologna, Bologna (I), 2000.

195. Marco Cremonini, Andrea Omicini , and Franco Zambonelli. Modelling Net
work Topology and Mobile Agent Interacti on: an Integrated Framework. In
Proc. 1999 ACM Symposium on Applied Computing (SAC '99) , S. Antonio
(TX) , 1999. ACM Press.

196. Marco Cremonini, Andrea Omicini , and Franco Zambonelli. Multi-Agent Sys
tems on the Internet: Extending the Scope of Coordination towards Security
and Topology. In Francisco J . Garijo and Magnus Boman, editors, Multi-Agent
Systems Engineering - Proceedings of the 9th European Workshop on Modelling
Autonoumous Agents in a Multi-Agent World (MAMAAW '99) , volume 1647
of LNAI, pages 77-88, Valencia (E), June 30 - July 2 1999. Springer-Verlag,
Heidelberg (D) .

197. Marco Cremonini , Andrea Omicini, and Franco Zambonelli. Ru ling Agent Mo
tion in Structured Environments. In Mar ian R . Bubak, Hamideh Afsarmanesh ,
Roy Williams, and Bob Hert zberger , editors, High Performance Computing
and Networking - Proceedings of the 8th International Conference (HPCN
Europe 2000), volume 1823 of LN CS, pages 187-196, Amsterdam (NL) , May,
8-10 2000. Springer-Verlag.

198. L.R . Crow and N.R . Shadbolt . IMP S - Internet Agents for Knowledge Engi
neering. In 11th Workshop on Knowledge Acquisition, Modeling and Manage
ment (KAW'98), Calgary, April , 18- 23 1998. SRDG P ub lications .

199. W .H.E . Davies and P. Edwards. Agent K: An Integration of APO and KQML.
Technical Report AUCS/TR9406, Depar t ment of Computer Science, Univer
sity of Aberdeen, 1994.

200. F . de Heer-Menlah . Analyzing communication flow and pro cess placement in
Linda programs on transputers. Technical report , Rhodes Uiversity, 1991.

201. K. Decker, K. Sycara, and M. Williamson. Middle-agents for the Internet.
In IJCAI-97 International Joint Conference on Artificial Intelligence, Nagoya,
Japan, 1997.



References 483

202. Serge Demeyer , Sander Tichelaar, and Patrick Steyaert . FAMIX 2.0 - The
FAMOOS Information Exchange Mod el. Techn ical report, Univers ity of Berne,
Inst itute of Computer Science and Applied Mathem atics, August 1999.

203. Enrico Denti, An tonio Nat ali, and Andrea Omi cini. Programmabl e Coordi
nat ion Media. In David Garlan and Dani el Le Metayer , editors, Coordina
tion Languages and Mod els - Proceedings of the 2nd International Confe rence
(CO OR DIN A TION '97), volum e 1282 of LNCS, pages 274-288, Berlin (D),
Sep tember 1-3 1997. Springer-Verlag.

204. Enrico Denti, Antonio Natali, and Andrea Omi cini. On t he Expressive Power
of a Lan guage for Programming Coordination Media . In Proceedings of the
1998 ACM S ym posium on Applied Computing (SA C '98) , pages 169-1 77. ACM,
Febru ary 27 - Marc h 1 1998. Tr ack on Coordination Models, Languages and
Applications .

205. Enr ico Denti and Andrea Om icini. An Architecture for Tuple-b ased Coordina
t ion of Multi -Agent Systems. Software - Pra ctice f3 Experience, 29(12) :1103
1121, October 1999.

206. Enrico Denti and Andrea Omicini. En gineerin g Mul ti-Agent Systems in LuCe.
In Ste phen Rochefor t , Fariba Sadri , and Fran cesca Toni , editors, Proceedings
of th e I CLP '99 Int ern ational Wo rkshop on Mult i-Agent Sy st em s in Logic Pro 
gram ming (M AS '99) , Las Cruces (NM) , November 30 1999.

207. Enrico Denti , Andrea Omi cini , and Vladimiro Toschi. Coordination Tech
nology for t he Development of Mult i-Agent Systems on the W eb. In Evelina
Larnma and Paola Mello, edito rs, Proceedings of the 6th A I* IA Conqress of the
Italian A ssociation f or A rt ific ia l Intelligen ce (A I*IA '99) , pages 29-38, Bologna
(I) , September 14-1 7 1999. Pi t agora Ed itrice.

208. Depar tment of Computer Science, Univers ity of Aarhus, Denm ark. De
sign/CPN Occurrence Graph Ma nual, version 3.0 edit ion , 1996.

209. L. Deri . A Compon ent-based Archit ecture for Open, Independ ently Ext ensible
Di st ributed Sy stem. PhD t hesis, University of Bern, June 1997.

210. D. Deugo and M. Weiss. A Case for Mobile Agent Patterns. In Workshop
on Mobile Ag ent s in th e Context of Competi tion and Cooperation (MA C3) ,
A utonomous Ag en ts 99, pages 19-23, 1999.

211. R .F . DeVellis. Scale Development : Theory and Application. Applied S ocial
R esearch M ethods S eri es, 26, 1991.

212. Ian Dickenson . Agent Standards. Techni cal rep ort , Foundation for In telligent
Physica l Agents, October 1997.

213. Monica Divi t ini. Coordinating Cooperative Wo rk: A fram ework f or the design
of fl exible compu ter- based support. PhD t hesis, Aalb org University, Aalborg ,
Denmark, 1999.

214. A. Douglas, A. Rowstron, and A. Wood . ISETL-LINDA : Parallel Program
ming with Bags. Techni cal Report YCS 257, Univers ity of York , 1995.

215. A. Douglas, A. Wood , and A. Rowstron . Linda implementation revisit ed . In
Transputer and occam developm ents, pages 125-1 38. lOS Press, 1995.

216. J. Eder and W. Liebhart . The workflow activity model wamo. In Proceedings
of 3rd Int . Conf eren ce on Cooperative Information S yst em s, Vienna , Austria ,
1995.

217. Johann Eder , Herber t Groi ss, and Walter Liebhar t . T he Workfl ow Manage
ment System Panta Rhei. In Asuman Dogac, Leon id Kalinichenko, M. Tamer
Ozsu , and Ami t Sheth , edito rs , Wo rkflow Ma nag em ent Systems and Interop
erability, NAT O ASI Series. Springer , Berlin, 1998.

218. Renee Elio and Afsan eh Haddadi . On Abstract Task Models and Conversat ion
Policies. In W orking N otes of th e W orkshop on Specifying and Implem enting
Conv ersati on P olicies, pag es 89-98, Seat t le, Washingt on , May 1999.



484 References

219. C. A. Ellis. Workflow Technology. In Michel Beaudouin-Lafon , editor , Com 
put er Supported Co- operative Wor k, Trends in Software, pages 29- 54. John
W iley & Sons, New York , 1999.

220. C. A. Ellis and G. J . Nutt . Office Informat ion System s and Compute r Science.
Computing Surveys, 12(1):27- 60, 1980.

221. Clar ence A. Ellis and Gr zegor z Rozenberg. Dynamic Change W ithin Workfl ow
Systems . In Comstock and Ellis [182], pages 10-21.

222. C. Ellison . SPKI Requirem ents. In RFC 2692. The In ternet Soc iety , IETF,
1999.

223. C. Ellison , B. Fran tz, B. Lampson , R . Riv est , B. Thom as , and T . Ylonen .
SPKI Certificate Theory. In RFC 2693. The In ternet Society, IETF, 1999.

224. W . Emmerich, C. Mascolo, and A. Finkelst ein . Incremental Co de Mobili ty
with XML. Technical Rep ort 99-95, University College London , October 1999.

225. Rober t S. Englem ore and Antony J . Morg an , editors. Blackboard Systems.
Addison -Wesley, Reading (MA), 1988.

226. Ent rust Home Site. http://www. entrust.com.
227. J . Eriksson , N. Finne, and S. Janson. SICS MarketSpace An Agent based

Market Infrastructure. In First International Workshop on Agent -Mediated
Electronic Trading (AMET-98), volume 1571 of LNAI, Minneapolis , MN , May
10 1998. Sp ringer-Verlag.

228. C. Faasen. In termediate uniformly distributed t uple space on transputer
mesh es. In J .P . Banatre and D. Le Metayer , edito rs , Research Direction s in
High-Level Parall el Programming Languages, volume 574 of LNCS. Springer
Verlag, 1991.

229. A. El Fallah-Seghrouchni, S. Haddad , and H. Mazo uzi. A Formal Study of
In teract ions in Multi -Agent Syst ems. In Proceedins of ISCA Int ernational
Conference in Comp uter and their Applications (CATA '99), April 1999.

230. A. El Fallah-Seghrouchni and S. Haddad H. Mazouzi. Etude des interact ions
basee sur l'observation reepar t ie dan s un syste rne mul ti -agent s. In Hermes,
editor, Proceedings of JFIA DSMA '98, Nancy, Fran ce, November 1998.

231. Am al El Fallah -Segh rou chn i and Hamza Mazo uzi. A Hierarchial Mod el for
In ter actions in Multi-agent Systems. In Working Not es of the Works hop on
Agent Communication Languages, U CAI '99, August 1999.

232. J alal Feghhi, J alil Feghhi, and Peter Williams. Digital Certificates: Applied
Int ernet Security. Addison Wesley, Oct ober 1998.

233. J esse Feiler and Ant hony Meadow. Essential OpenDoc. Addison-Wesley, 1996.
234. M. Feng , Y. Gao, and C. Yuen. Implem enting Linda t uple space on a dis

t r ibuted sys te m . Int ernational Journal of High Speed Computing, 7(1):125-144,
1995.

235. J . Ferber and J. Briot . Design of a Concurrent Lan guage for Distributed
Artificial Intelligence. In Proceedings of the Int ernational Conference on Fifth
Generation Computer Systems, volume 2, pages 755-762. Institute for New
Generation Computer Technology, 1988.

236. J . Ferber and O. Gu tknecht . A Meta-M odel for t he An alysis and Design of
Organizations in Mul ti-Agen t Systems . In Proceeding of the 3rd Int ernational
Conf erence on Multi-Agent System s (ICMA S 98). IEEE CS Press, June 1998.

237. Jaques Ferb er . Les System e Multi-Agents . In ter Editions, 1996.
238. P. Ferreir a, M. Shapiro, X. Blondel, O. Fambon, J . Garcia , S. Kloosterman,

N. Richer , M. Rob er t , F . Sandakl y, G. Colouris, J . Dollimore, P . Gu edes,
D. Hagimont, and S. Krakowiak. PerDiS: Design , Implemen tation , and Use
of a PERsist ent DIstribu t ed Store. In S. Krakowiak and S. Shrivast ava, edi
t ors, Advances in Distributed Systems, volume 1752 of LNCS, pages 427- 452.
Sp ringer-Verlag, 2000.



References 485

239. Ti mothy W . Finin, Richard Fritzson , Donald McKay, and Robin McEnt ire .
KQML as an Agent Communication Language. In Proceedings of the 3rd Inter
national Conference on Inform ation and Kno wledge Managem ent (CIK M '94) ,
pages 456-463, Gaith ersburg (Maryland), November 1994. ACM Press.

240. FIPA Home Site. http: / /vvv.fipa . org/ .
241. FIPA. FIPA 97 Specificat ion Par t 2: Agent Communication Language. Tech

nical report , FIPA - Foundation for Intelligent Physical Agents, October 1997.
242. David Flanagan . JavaScript: The Definit ive Guide. O'Reilly & Associates,

2nd edit ion, January 1997.
243. R .A. Flores-Mendez. Towards the Standardization of Mult i Agent Syst ems

Architect ures: An Overvi ew. ACM Crossroads - Special Issue on Intelligence
Agents, 5(4) , Summer 1999.

244. Jean -Luc Fontain e. Simple T el On ly Ob ject Oriented Programming. Availabl e
at ht tp: / /www.mu itimani a .com/jfont ain/stooop.htm. 1998.

245. MP I Forum. MPI Specificat ion . http ://vllv .mpi-forum .org/.
246. 1. Foster , J. Geisler , B. Nickless, W . Smit h, and Tuecke S. Software infras

truct ure for the I-WAY high-p erformance dist ribu ted comput ing exp eriment.
In Proceedings of the 5th IE EE International Symposium on High Performance
Distribut ed Computing, pages 562- 571. IEEE Comput er Society Press, 1996.

247. M. S. Fox. An Organiz ational View of Dist ributed Systems. IEEE Transa c
tions on Syst ems, Man , and Cybernetics, 11(1):70- 80, J anu ary 1981.

248. S. Franklin and A. Graesser. Is it an Agent or just a Program ? A Taxonomy for
Auot nomous Agents. In J . P. Miiller , Michael J . Wooldridge, and Nicholas R.
J ennings, edito rs , Intelligent Agents III - Agent Th eories, Architectures, and
Languages, volume 1193 of LNAI, pages 21- 35. Springer-Verlag, 1997.

249. Er ic Freeman, Susanne Hupfer , and Ken Arn old. JavaSpaces: Principles, Pat
terns, and Practice. The Jini Technology Series. Addison-Wesley, 1999.

250. S. Frolund. Coordinating Distributed Obj ects: An Actor-Based Approach to
Synchronization. MIT Press, 1996.

251. S. Frelund and G. Agha . A Languag e Framework for Mult i-Object Coord ina
t ion. In Proceedings of ECOOP 1993. Springer Verlag, 1993. LNCS 707.

252. M. Fuchs. Domain Specific Languages for ad hoc Distributed Applications .
In USENIX Conference on Dom ain Specific Languages, Santa Barbara (CA),
October 15-17 1997.

253. Alfonso Fugget ta, Gian Pietro P icco, and Giovanni Vigna. Underst anding
Code Mobility. IEEE Transactions on Software Engineering, 24(5):342-361 ,
May 1998.

254. Yuzo Fujish ima, Kevin Leyto n-Brown, and Yoav Shoham. Taming the Com
putationa l Complexity of Combinatorial Auctions: Optimal and Approximate
Approaches. I n Proceedings of the International Joint Conference on Artificial
In telligence, Stockholm , Sweden , 1999.

255. Alan Galan and Albert Baker. Multi-Agent Communications in JAFMAS. In
Working Notes of the Workshop on Specify ing and Implem enting Conversation
Policies, pages 67-70, Seat t le, Washington, May 1999.

256. Doreen Galli. Distributed Operatin g Sy st ems - Concepts fj Practice. Prent ice
Hall, August 1999.

257. E. Gamma, R. Helm, R. Johnson , and J . Vlissides. Design Patterns: Ele
m ents of Reusable Obj ect-Oriented Software, chapter Observer , pages 293-303.
Addison Wesley, 1995.

258. Erich Gamma, Richard Helm, Ralph Johnson , and John Vlissides. Design
Patt erns. Addison-Wesley, 1995.



486 References

259. H. Garcia-Molina and et al. The TSIMMIS Approach to Media-
t ion: Data Mod els and Languages. In Work shop NGITS-95, 1995.
ftp ://db.stanford.edu/pub/garcia/1995/tsimmis-models-languages.ps .

260. Simson Garfinkel. PGP: Pretty Good Pr ivacy. O'Reilly & Associates, Inc. ,
Seb astopol (CA) , 1995.

261. F .J. Garijo and M. Boman (Eds.) . Multi-Agent System Engineering. Pro
ceedings of the 9th European Workshop on Modelling Autonomous Agents in
a Mult i-Ag ent World (MAAMAW99) , volume 1647 of LNCS. Springer Verlag ,
Berlin, D, 1999.

262. David Garl an, Rob er t Allen , and John Ockerbloom. Architectural Mismatch:
Why Reuse Is So Hard. IEEE Software, 12(6):17-26, Novemb er 1995.

263. Davi d Garlan and Daniel Le Met ayer , ed itors. Coordination Languages
and Models - Proceedings of the 2nd Int ernational Conference (COORDINA
TION'97) , volume 1282 of LNCS, Berlin (D) , September 1-3 1997. Springer
Verlag.

264. Felix C. Gartner. Fundamentals of fault-tolerant distributed comput ing in
asynchronous environme nts . ACM Computing Surv eys, 31(1) :1-26, Mar ch
1999.

265. Les Gasser and Jean-Pierre Brio t . Object-Based Concurrent Programming
and Distributed Artificial Intelligence. In Nicholas M. Avouris and Les Gasser ,
editors, Distributed Artificial Int elligence: Th eory and Praxis, pages 81-107.
Kluwer Academic, 1992.

266. D. Gelernter , N. Carrierio, S. Chandran , and S. Chang. Par allel Processing
in Linda. In Int ernational Conference on Parall el Processing, 1985.

267. David Gelernter. Gen erative Communication in Linda. ACM Transaction s on
Programming Languages and Systems, 7(1) :80-112, 1985.

268. David Gelernter . Multiple Tuple Spaces in Linda. In E. Odijk, M. Rem , and
J. C. Syr e, editors, Proceedings of the Conference on Parall el Architectures and
Languages Europe : Vol. 2, volume 366 of LNCS, pages 20-27. Springer-Verlag,
Heidelb erg (D) , June 1989.

269. David Gelernter and Nicholas Carriero . Coordinat ion Languages and t heir
Significance. Communications of the ACM, 35(2) :97-107, Februar y 1992.

270. M. R. Genesereth and S. P. Ketchpel. Softwar e Agents. Communication of
the ACM, 37(7) :48-54, 1994.

271. M.R . Genesereth , A.M. Keller , and O. Duschka . Infomaster : An Information
Integration Syst em . In ACM SIGMOD Conference, May 1997.

272. J .A. Giampap a , M. Paolucci, and K. Sycara, Agent In teroperation Across
Mul ti-agent System Boundaries. In 4th International Conference on Au
tonomous Agents (Agents 2000), Bar celona (Spain) , June 3-7 2000. ACM
Press.

273. Simon Gibbs and Dionysios Tsichritzis. Multim edia Programming. Addison
Wesley, March 1995.

274. N. Glase. Contributions to K nowledge Modelling in a Mult i-agent Framework
(Th e CoMoMA S Approach). Ph.D Thesis, Universit e Henry Poincare, Nancy
(F) , 1996.

275. G. Glass. Agents and Internet Component Technology. Invited talk at :rd

Int . Conf. on Autonomous Agent s (Agents '99) , May 1999.
276. Steve Glassm an , Mark Manasse, Martin Abadi, Paul Gauthier , and Patrick

Sobalvarro. The Millicent Protocol for Inexpensive Electroni c Commerce.
World Wide Web Journal, 1(1) , Winter 1996.

277. R .J . Glu shko, J .M. Tenenbaum, and B. Meltzer. An XML framework for
agent -based e-commerce . Communication s of the ACM, 42(3) , March 1999.



References 487

278. H. Gomaa. Inter-Agent Communication in Cooperative Information Agent
based Systems. In Third International Workshop on Cooperative Information
Agents (CIA 99), volume 1652 of LNAI, pages 137-148, Uppsala (Sweden) ,
July 31-August 2 1999. Springer-Verlag.

279. J . Gordijn, H. Akkermans, and H. Van Vliet . Value Based Requirements
Creation for Electronic Commerce Applications. In The 33rd Hawaii Inter
national Conference on System Sciences (HICSS-33). IEEE Computer Society
Press, January 2000.

280. Rob Gordon. Essential Java Native Interface. Prentice Hall , 1998.
281. .J. Gosling, B. Joy, and G. Steele. The Java Language Specification. Addison

Wesley, 1996.
282. James Gosling and Ken Arnold. The Java Programming Language. Addison

Wesley, December 1997.
283. Laurent Granvilliers. Cooperative Interval Narrowing. In Proceedings of Inter

national Workshop on Frontiers of Combining Systems, LNAI , Nancy, France,
2000. Springer-Verlag.

284. Grasshopper Home Site. http://yyy . ikv .de/products/grasshopper.
285. Antonietta Grasso, Lean-Luc Meunier, Daniele Pagani , and Remo Pareschi.

Distributed Coordination and Workflow on the World Wide Web . Computer
Supported Cooperative Work : The Journal of Collaborative Computing, 6(2
3) :175-200, 1997.

286. Robert Gray. Agent Tel: A flexible and secure mobile-agent system. PhD
thesis, Dartmouth College , June 1997. Available as Dartmouth Computer
Science Technical Report TR98-327.

287. P. B. Grefen, B. Pernici, and G. Sanchez, editors. Database support for Work
flow Management - The WIDE Project. Kluwer Academic Publishers, Dor
drecht, The Netherlands, 1999.

288. N. Griffeth and H. Velthuijsen. Reasoning about goals to resolve conflicts.
In International Conference on Intelligent Cooperating Information Systems,
pages 197-204. IEEE, 1993.

289. Ralph E. Griswold and Madge T . Griswold. Th e Icon Programming Language.
Peer-to-Peer Communications, December 1996.

290. Thomas R. Gruber. A Translation Approach to Portable Ontology Specifica
tions. Knowledge Acquisition, 2:199-220, 1993.

291. T . Gschwind, M. Feridun, and S. Pleisch. ADK Building Mobile Agents
for Network and Systems Management from Reusable Components. In First
International Symposium on Agent Systems and Applications and Third In
ternational Symposium on Mobile Agents (ASA/MA99) , pages 13-21 , Palm
Springs, October, 3-6 1999. IEEE Press.

292. A. Gupta, B. Jukic, M. Parameswaran, D. O. Stahl, and A. B. Whinston.
Streamlining the Digital Economy: How to Avert a Tragedy of the Commons.
IEEE Internet Computing, 1(6), Nov.-Dec . 1997.

293. R . Gustavsson. Multi Agent Systems as Open Societies - A design framework.
In Intelligent Agents IV, Agent Theories, Architectures, and Languages, volume
1365 of LNAI, pages 329~337. Springer Verlag, Berlin, D, 1998.

294. Rune Gustavsson. Agents with Power. Communications of the A CM,
42(3):41 -47, March 1999.

295. R. Guttman, A. Moukas , and Patty Maes. Agent-Mediated Electronic Com
merce: A Survey. Knowledge Engineering Review, 13(3) :147-160, 1998.

296. A. Haddadi. Communication and Cooperation in Agent Systems. A Pragmatic
Theory, volume 1056 of LNAI. Springer Verlag , Berlin, D, 1995.



488 References

297. N. Hameurl ain and C. Sibertin-Blanc. Behavioural Types in CoOperat ive
Obj ects . In ' Proceedings of the Second Work shop on Semant ics of Objects as
Processes, SOAP99-ECOOP99, 1999.

298. B. Hayes-Roth. A Blackboard Architecture for Control. Artificial Int elligence,
pages 251- 321, 1985.

299. Mathias Hein and David Griffiths. SNMP: Simple Network Manag em ent
Proto col - Th eory and Practice, Versions 1 and 2. Van Nostrand Reinhold,
Septemb er 1995.

300. Michael Held . Scripting fur CORBA. Maste r 's thesis, University of Bern ,
Institute of Computer Science and Applied Mathematics, April 1999.

301. A. Herzberg , Y. Mass , J . Mihaeli, D. Naor, and Y. Ravid . Access cont rol meet s
public key infrastructure, or : Assigning roles to st rangers . In IEEE Symposium
on Securit y and Pr ivacy, May 2000.

302. C. Hewit t. Viewing Control Structures as Pat terns of Pas sing Messages. Jour
nal of Artificial Int elligence, 8-3:323-364, June 1977.

303. M. G. Hinchey and S. A. Jarvis. Concurrent Systems: Formal Developm ent
in CSP. McGr aw-Hill , 1995.

304. John Hogg. Islands: Aliasin g Protection in Obj ect-Oriented Languages . In
Proceedings of the OOPSLA '91 Conference on Object-orient ed Programming
Systems, Languages and Application s, pages 271-285, Novemb er 1991.

305. John Hogg, Doug Lea, Alan Wills, Dennis deCh ampeaux, and Richard Holt .
The Geneva Convention on the Treatment of Ob ject Aliasin g. OOPS Messen
ger, 3(2):11~16, April 1992.

306. T . Holvoet. Agents and Petri Nets. Th e Petri Net Newsletter, (49) :3-8, 1995.
307. T . Holvoet and P. Verb aeten. Synchronization Specifications for Agents with

Net- base d Behavio r Descriptions. In Proceedings of CESA '96 IMA CS Confer
ence, Symposium on Discrete Events and Man ufacturing Systems , pages 613
618, Lille, France, July 1996.

308. Tom Holvoet and Thilo Keilmann. Behavior Specification of Active Obj ects
in Open Generative Communication Environments. In Hesham EI-Rewini and
Yale N. Patt , edito rs, Proceedings of the HICSS-30 Conference, Track on Co
ordination Models, Languages and Systems , pages 349-358. IEEE Compute r
Society Press, J anu ary, 7-10 1997.

309. Torn Holvoet and Pierre Verbaet en . Using Pet ri Net s for Specifying Active
Obj ect s an d Generat ive Communication. In G. Agha and F. DeCindio, editors,
Advances in Petri Nets on Object-Ori entati on, Lecture Notes in Computer
Science. Springer-Verlag, 1998.

310. Kohei Honda and Mario Tokoro . An Obj ect Calculus for Asynchronous Com
munication . In Pierre America , editor, Proceedings of the European Conference
on Obj ect Orient ed Programming (ECOOP '91) , volume 512 of LNCS, pages
141-162. Springer-Verlag, 1991.

311. C. Houck and G. Agha. HAL: A High-level Actor Lan guage and It s Dis
tributed Implementation. In Proceedings of the 21st Int ernational Conference
on Parall el Processing (ICPP '92), volume II , pages 158-165, St . Charles, IL,
August 1992.

312. R. Housley, W . Ford , W. Polk , and D. Solo. Internet X.509 Public Key In
frastructure, Certificate and CRL Profil e. In RFC 2459. The Internet Society,
IETF, 1999.

313. Timothy Howes, Mark Smith, and Gordon Good. Understanding and Deploy
ing LDAP Directory Services. MacMillan Technical Publishing, 1999.

314. B.A. Hub erman and T . Hogg. The Em ergence of Computational Ecologies.
In L. Nadel and D. Stein , editors, SFI Studies in the Sciences of Complexity ,
Vol. V. Add ison-Wesley, 1993.



References 489

315. G. Huck, P. Fankhauser , K. Aherer , and E.J . Neuhold. Jedi : Extract ing and
Synthesizing Information from th e Web . In Conference on Cooperative Infor
ma tion System s CoopIS '98. IEEE Computer Society Press, 1998.

316. S. Hu pfer , D. Kaminsky, N. Carrie ro , and D. Gclern ter. Coordination Appli 
cations of Lind a. In J.P. Banatre and D. Le Metayer , editors , Research Di
rections in High-Level Parallel Programming Languages, volum e 574 of LNCS,
pages 187-194. Spr inger-Verlang, 1995.

317. Susanne Hupfer. Melind a: Linda with Mult iple Tupl e Spaces. Technic al Re
port RR YALE U/DCS/R-766, Dept . of Computer Science, Yale University,
New Haven, CT, 1990.

318. IAIK J CE Hom e Site. http ://jcewww .iaik .at/jce/jce .htm.
319. Roberto leru salimschy, Luiz Henrique de Figueiredo , and Waldemar Ce

les Filho. Lua - an Extensible Extension Language. Software: Practice and
Experience, 26(6) :635- 652, 1996.

320. C. Iglesias, M. Garijo , J .C. Gonzales, and J .R. Velasco. Analysis and Design
of Multi-agent Systems Using MAS-CommonKADS. In Int elligent Agents IV
(A TA L97), LNAI 1365, pages 313-326. Springer-Verlag, 1998.

321. Carlos Iglesias, Mercedes Garij o, and Juan Gonzales. A Survey of Agent
Oriented Meth odologies. In A. S. Rao J .P. Muller, M. P. Singh, editor , Intel
ligent s Agent s IV (ATAL98) , LNAI. Springer-Verlag, 1999.

322. IMPACT. Interact ive Mary land Platform for Agents Collabora t ing Together.
http://www.cs.umd.edu/project s/impact/ .

323. ARPA Knowledge Sharing Initiative. Specification of the KQML agent
com munication language. ARPA Knowledge Sharing Initiative, Exte rnal In
terfaces Workin g Group, July 1993.

324. Internet2 Home Site. http ://www. internet2. edu/middleware.
325. Wilfred C. Jami son and Douglas Lea. TRUCE : Agent Coordination Through

Concurrent Interpretation of Role-bas ed Proto cols. In Paolo Ciancarin i and
Alexander L. Wolf, edito rs, Coordination Languages and Models - Proceedings
of the 3rd International Confer-ence (COORDINA TION '99), volum e 1594 of
LNCS, pages 384- 398, Amsterdam (NL), April 26-28 1999. Springer-Verlag.

326. M. Jarke, M.A. Jeusfeld , C. Quix , T . Sellis, an d P. Vassiliadis. Metadat a
and data warehouse quality. In M. Jarke, M. Lenzerini, Y. Vassiliou , and
P. Vassiliadi s, editors, Fundam entals of data warehouses. Springer , 2000.

327. .lAT. Java Agent Templ ate. ht tp://cdr.stanford .edu/ABE/ JavaAgent .ht ml.
328. B. Jennings, R. Brenn an , R. Gustavsson , R . Feldt , J . Pi tt , K. Prouskas, and

J . Quantz. A FIPA-Compliant Multi-A gent System for Real-t ime Cont rol of
Intelli gent Network Traffic Load . Computer Networks and ISDN Systems, 31,
1999.

329. N. R. J ennings and M. Wooldridge. Applications of Intelligent Agents . In
N. R. Jenni ngs and M. Wooldridge, editors , Agent Technology Foundation s,
Applications and Market, pages 3- 29. Springer, Berlin , Germ any, 1998.

330. N. R. Jennings and M. Wooldridge. Agent-Oriented Software Engineerin g. In
Handbook of Agent Technology. ACM, 2000.

331. Nicholas R. Jennings and Michael J . Wooldridge, edit ors . Agent Technology:
Foundation s, Application s and Markets. Springer-Verlag, 1998.

332. N.R. Jennings. Agent-Based Computing: Promi ses and Perils. In Th e Six
teenth Interna tional Joint Conference on Artificial Intelligence (IJCA I99),
pages 1429-1 436, 1999.

333. N.R. J enn ings, T .J . Norma n, and P. Faratin. ADEPT : An Agent-based Ap
proach to Business Process Man agement. ACM SIGMOD Record, 27(4) :32- 39,
1998.



490 Referenc es

334. D. Jensen, Y. Dong, B.S. Lerner , KK. McCall, L.J. Osterweil , S.M. Sut ton ,
and A. Wise. Coordinating Agent Activities in Knowledge Discovery Processes.
In Int ernational Joint Conference on Work Activiti es Coordination and Col
laboration (WACC99) , pages 137-146, San Francisco (CA) , Febru ary 22-25
1999.

335. K. Jensen. Coloured Petri Nets. In W. Brauer, W . Reisig, and G. Rozenberg,
editors, P etri Nets: Central Models and Th eir Properti es, Advances in Petri
Nets 1986 Part I, volume 254 of LNCS, pages 248-299, Berlin , Germany, 1987.
Springer-Verlag.

336. K. Jensen. Coloured Petri Nets. Basic Concepts, Analysis Methods and Prac
tical Use, volume Volum e 3, Pract ical Use of Monographs in Th eoretical Com
put er Science. Springer-Verlag , 1997.

337. K. Jeong . Fault-tolerant parallel processing combining Linda , checkpointin g
and transactions. PhD thesis, New York University, 1996.

338. K. J eong and D. Shash a. PLinda 2.0 : A Transactional/Checkpo inting Ap
proach to Fault Tolerant Lind a. In Sympos ium on Reliable Distributed Systems
(SRDS '94), pages 96-105, Los Alamitos, Ca., USA, October 1994. IEEE Com
puter Society Press.

339. K. Jeong, D. Shash a, S. Talla , and P. Wyckoff. An App roach to Fault-Tolerant
Par allel Processing on Intermittently Idle, Heterogeneous Workstations. In
Proceedings of Th e Twenty-Seventh Annual Internat ional Sympo sium on Fault
Tolerant Computing (FTCS '97), pages 11-20. IEEE, June 1997.

340. S. Jha, P. Chalasani, O. Shehory, and K. Sycar a. A Form al Treatment of
Distributed Matchmaking. In 2nd Conference on Autonomous Agents (Agents
98),Minneapolis, MN, May 1998.

341. Claudia Johnson. Enron Communications announces first commodity band
width trade, Decemb er 1999.

342. A.J . Jones and B.S. Firozab adi . On t he charac terisat ion of a t rust ing agent
Aspects of a formal approach . In C. Cas te lfranchi and Y-H. Tan , editors , Trust
and deception in virtual societies. Kluwer Acad emic Publishers, Dordrecht
Holland, 2000.

343. Java Virtual Machine Profiler Interface (JVMPI) . http://java.sun.com/
jdk/1.3/docs/guide/jvrnpi/jvrnpi.htrnl.

344. D. Kafur a, M. Mukherji, and G. Lavender. ACT++: A Class Library for
Concurrent Programming in C+ + Using Actors. Journal of Object Oriented
Programming, pages 47- 55, 1993.

345. S. Kambhatla and J . Walpole. T he Interpl ay between Granularity, Perfor
man ce, and Availabili ty in a Replicat ed Linda Tupl e Space. In Viktor K.
Prasanna and Larry H. Cante r, editors, Proceedings of the 6th International
Parallel Processing Sympo sium, pages 508-511, Beverly Hills, CA , March 1992.
IEEE Computer Society Press.

346. Srikanth Kambhatla. Replicat ion Issues for a Distribut ed and Highly Available
Linda Tuple Space. Mast er 's Thesis, Oregon Graduat e Institute, 1991.

347. Srikanth Kambhatla and Jonathan Walpole. Recovery With Limited Replay:
Fault-Tolerant Processes In Lind a. Technical Report CS/ E 90-019, Oregon
Graduate Insti tute, 1990.

348. N.M. Karnik and A.R. Tr ipathi. Design Issu es in Mobile-Agent Programming
Syst ems. IEEE Concurrency, 6(3) :52-61 , 1998.

349. K A. Kend all , P.V. Mur ali , Chirag Krishna, V. Pathak, and C.B. Suresh .
Patterns of Intelligent and Mobile Agents. In Autonomous Agents '98, 1998.

350. KA. Kend all. Role Modeling for Agent System Analysis, Design and Imple
mentation. In First Int ernational Sympo sium on Agent Systems and Appli-



References 491

cations and Third In ternational Sympo sium on Mobile Agents (A SA /MAgg) ,
pages 204-218, Palm Springs (CA) , October 3-6 1999. IEEE Press.

351. L. Kerschb erg and S. Banerjee. An Agency-b ased Framework for Electron ic
Business. In Thi rd Internat ional Work shop on Cooperative Inform ation Agents
(CIA 99), volume 1652 of LNAI, pages 265-290, Uppsala (Sweden) , July 31
August 2 1999. Springer-Verl ag.

352. Gregor Kiczales , John Lamping, Anurag Mcndhckar , Chris Maeda , Crist ina
Lopes, Jean-Marc Loingtier , and John Irwin. Aspect-Oriented Programming.
In Mehmet Aksit and Satoshi Matsuoka, editors , Proceedings ECOOP '97,
number 1241 in LNCS, pages 220-242. Springer , June 1997.

353. Thilo Kielmann. Designin g a Coordination Model for Op en Syst ems. In
P. Cian carini and C. Hankin , editors , Coordination Languages and Models:
Proceedings of COORDINATION '96, number 1061 in Lecture Notes in Com
puter Science, pages 267-284. Springer , Cesena, It aly, 1996.

354. KIF. Knowledge Interchange Format . http://logic.st anford.edu/kif/ .
355. W . Kim. THAL: An Actor System for Effi cient and Scalable Concurrent

Computing. PhD thesis, University of Illinois at Urbana-Champaign, May
1997.

356. W . Kim and G. Agha. Efficient Support of Location Transparency in Concur
rent Object-Oriented Programming Languages. In Proceedings of Supercom
put ing '95, 1995.

357. W . Kim and et al. On resolving schematic heterogeneity in mul tidatab ase
syste ms. Distribut ed and Parallel Databases, 1:251-279, 1993.

358. D. Kinny and M. Georgeff. A Methodology and Mod elling Technique for
Syste ms of BDI Agents. In Workshop on Modelling Autonomous Agents in a
Multi-Agent World, LNAI 1038, pages 56-71 . Springer-Verlag, 1996.

359. V. Kisielius . Applyin g Intelligence Makes E-commerce Pay Off. Electronic
Commerce World, 7(12) , December 1997.

360. Y. Kitamura, Y. Mawarimichi, and T . Tatsumi. Mobile-Agent Mediated Place
Oriented Communication. In Proceedings of the Third International Work
shop on Cooperative Information Agents, volume 1652 of LNAI, pages 232-242.
Springer-Verlag, 1999.

361. V. Kri shnaswamy, S. Ahuja , N. Carriero , and D. Gelernter. The Linda ma
chine . In Proceedings 1987 Princeton Workshop on Algorithm Archit ecture
and Technology Issues for Models of Concurrent Computations , pages 697-717,
1987.

362. V. Kri shn aswamy, S. Ahuj a, N. Carriero , and D. Gelernter. Architecture of
a Linda coprocessor . In Proceedings 15th Atuiu al Int ernational Symposium on
Computer Archiatecture, pages 240-249, 1988.

363. David M. Kristol , Steven H. Low, and Nicholas F . Maxemchuk. Anonymous
Intern et Mercan tile Protocol. Technical rep ort, AT&T Bell Laboratories, Mur
ray Hill , NJ , 1994.

364. D. Kuokka and L. Har rad a. On usin g KQML for matchm aking. In CIKM
95 3rd Conf. on Information and Kno wledge Mana gem ent. AAAI/MIT Press,
1995.

365. Ka zuhiro Kuwabara, Tom Ishida , and Nobuyasu Osato. AgenTalk : Describing
Multiagent Coordination Protocols with Inheritance. In Proceedings of the 7th
IEEE Int ernational Conference on Tools with Artificial Int elligence (ICTAl
'95), pages 460-465, 1995.

366. Y. Labrou, T . Finin, and Y. Peng o Agent communicat ion languages: The
cur rent landscap e, IEEE Int elligent Systems , Mar ch/April 1999.

367. Yannis Labrou. Semantics for an Agent Communication Langnage. PhD
thesis, University of Maryland Bal timore County, 1996.



492 References

368. Yannis Labrou and Tim Finin. A proposal for a new KQML Specification.
Technical Report Technical Report TR-CS-97-03, University of Maryland Bal
timore County, 1997.

369. Yannis Labrou and Timothy Finin. Semantics and Conversations for an Agent
Communication Language. In Proceedings of the Fifteenth International Joint
Conference on Artificial Intelligence (IJCAI-9'l) , Nagoya, Japan, August 1997.

370. C. Lakos and Seren Christensen. A General Systematic Approach to Arc
Extensions for Coloured Petri Nets. Technical Report R93-7 , Department of
Computer Science, University of Tasmania, Hobart, Tasmania, August 1993.

371. B. Lampson, M. Abadi, M. Burrows, , and E. Wobber. Authentication in
distributed systems: Theory and Practice. ACM Transactions on Computer
Systems, 10(4):265-310, 1992.

372. Butler Lampson. Protection. ACM Operating Systems Review, 8(1), January
1974.

373. D. B. Lange and M. Oshima, editors. Programming and Deploying Java Mobile
Agents with Aglets . Addison-Wesley, 1998.

374. Chris Langton, Roger Burkhart, Marcus Daniels, and Alex Lancaster. The
Swarm Simulation System, 1999.

375. R. Larsson, J . Schnknecht , P. Sweet, and M. Driver. The Customer Side of
Energy-Saving Activities Exploring Attitudes and Interests on the Karlshamn
Energy Market . In J .M. Akkermans and H. Ottosson, editors, The KEES
Project Energy Efficiency in a Deregulated Market, pages 39-60. EnerSearch
AB, Maim, Sweden, 1999.

376. Jeff Lawson , Adam L. Beberg, Peter Gildea, David McNett, Chris Chiapusio,
Peter DeNitto, and Tim Charron. distributed.net. http://www.distributed.net.
visited March 2000.

377. T. Lehman, W . McLaughry, and P. Wyckoff. TSpaces: The Next Wave . In
Hawaii International Conference on System Sciences (HICSS-32), January
1999.

378. Yu Lei and Munindar P. Singh. A Comparison of Workflow Metamodels.
In Proceedings of the ER-97 Workshop on Behavioral Modeling and Design
Transformations: Issues and Opportunities in Conceptual Modeling, Los An
geles, CA , 1997.

379. J. Leichter. Shared tuple memories, shared memories, buses and LAN's 
Linda implementations across the spectrum of connectivity. PhD thesis, Yale
University, 1989. YALEU/DCS/TR-714.

380. N. Li, J . Feigenbaum, and B. Grosof. A Logic-based Knowledge Representa
tion for Authorization with Delegation (Extended Abstract) . In Proceedings
of the 12th Computer Security Foundations Workshop, pages 162-174, Los
Alamitos (CA), 1999. IEEE Computer Society Press.

381. Fuhua Lin, Douglas H. Norrie, Weiming Shen, and Rob Kremer. Schema
based Approach to Specifying Conversation Policies . In Working Notes of the
Workshop on Specifying and Implementing Conversation Policies, Third Inter
national Conference on Autonomous Agents, pages 71-78, Seattle, Washington,
May 1999.

382. B.H. Liskov and J .M. Wing. A Behavioral Notion of Subtyping. ACM Trans
actions on Programming Languages and Systems, 16(6) , November 1994.

383. David C. Luckham, John L. Kenney, Larry M. Augustin, James Vera, Doug
Bryan, and Walter Mann. Specification and Analysis of System Architecture
Using Rapide, IEEE Transactions on Software Engineering, 21(4) :336-355 ,
April 1995.



References 493

384. H. Ludwi g and Y. Hoffner . Contract -based Cross-Organi sational Workflows
- The CrossF low Projec t . In Wor'kshop on Cross-O rganisational Workflo w
Managem ent and Co-ordina tion, February 22nd 1999, San Francisco, 1999.

385. Sean Luke, Lee Spector, David Rager , and James Hendler . Ontology-b ased
Web Agents. In 1st International Conference on Autonomous Agents, 1997.

386. Markus Lumpe. A 7r-Calculus Bas ed Approa ch to Software Comp osition. PhD
thesis, University of Bern , Institute of Computer Science and Appli ed Mathe
matics, January 1999.

387. Markus Lumpe, Jean-Guy Schneider , Oscar Nierstrasz, and Franz Achermann.
Toward s a formal composit ion language. In Gary T. Leavens and Murali
Sitaraman , editors, Proceedings of ESEC '97 Workshop on Foundations of
Component -B ased Sy st ems, pages 178-187, Zurich, Septemb er 1997.

388. N. Lynch. Distribut ed algorithms . Morgan Kaufm an , 1996.
389. D.M. Lyons and A.J . Hendriks. Planning for React ive Robot Behavior. In

Proc. of the IEEE Int . Conf. on Robotics and Automation , Nice, France, May
1992.

390. P. Maes. Agents tha t Redu ce Work and Informat ion Overload . Communi ca
tions of the ACM, 37(7):31- 40, July 1994.

391. Thomas Magedanz and Radu Pop escu-Zeletin. Intelligent Networks - Ba sic
Technology, Standards and Ev olution. International Thomson Computer Press,
July 1996.

392. Thomas Magcdan z (ed. ). Special Issue on Mobile Agents in Intelligent Net
works and Mobile Communication Syst ems . Computer' Networks .Journal,
31(10) , Jul y 1999.

393. T .M. Malone and K. Crowst on. The Interdi sciplin ary Study of Coordination.
A CM Comp uting Surv eys, 26(1):87-119, March 1994.

394. U. Manb er. Chain Reactions in Networks. IEEE Comp ut er, October 1990.
395. D.W. Manchala. E-commerce trust metrics and models. IEEE Intern et Com 

puting, 4(2) , MarchiApril 2000.
396. Ronni T . Marsh ak . Workflow: Appl ying Automa tio n to Group Processes. In

David Coleman, editor , Groupware - Collaborative Strategies for Corporate
LANs and Intranets, chapter 6, pages 143-181. Prentice Hall PTR, 1997.

397. P. Mar ti and M. Rueher. A Distributed Coop erating Cons tr aints Solving
Syst em. International .Journal on AI Tools, 4(1&2):93-113, 1995.

398. Francisco Marti n, Enric Plaza, and Juan Rodriguez-Aguilar . Conversation
Protocols: Modeling and Implementing Conversations in Agent-Based Syst ems .
In Working Not es of the Workshop on Specif ying and Implem ent ing Conver
sation Policies, pages 49- 58, Seat tl e, Washington , May 1999.

399. C. Mascolo. MobiS : A Specificati on Lan guage for Mobile Syst ems. In P. Cian
carini and A. Wolf, edito rs, Proceedings of the 3"d Int. Conf. on Coordination
Languages and Models (COORDINATION) , volume 1594 of LNCS, pages 37
52. Springer-Verlag, April 1999.

400. C. Mascolo, G.P. Picco, and G.-C. Rom an . A Fin e-Grained Model for Code
Mobility. In Proc. of the "f h Europ ean Software Engineeri ng Conf. held jointly
with the "fh ACM SIGSOFT Symp. on the Found ations of Software Eng in eer
ing (ESEC/FSE '99), LNCS , Toulouse (France) , Septemb er 1999. Springer
Verlag.

401. Mobile Agent System Interop erabili ty Facility (MASIF) specificat ion. ftp: / /
ftp .omg.org/pub/docs/orbos/97-10-05.pdf.

402. Y. Mass and O. Shehory. Distributed trust in open multi- agent systems. In
Autonom ous Agent s 2000 Workshop on Deception, Fraud and Trust in Agent
Societi es, .June, 2000.



494 References

403. G. Matos and J. Purtilo. Reconfiguration of Hierarchical tuple-spaces: Ex
periments with Linda-Polylith. Technical Report CSD TR 3153, University of
Maryland, 1993.

404. F.G . McCabe and K. Clark. April Agent PRocess Interaction Language. In
Intelligent Agents - Agent Theories, Architectures, and Languages, volume
890 of LNAI, pages 324-340. Springer-Verlag, 1995.

405. P.J. McCann and G.-C . Roman. Compositional Programming Abstractions
for Mobile Computing. IEEE Trans . on Software Engineering, 24(2) , 1998.

406. P.J . McCann and G-.C . Roman. Modeling Mobile IP in Mobile UNITY. ACM
Transactions on Software Engineering and Methodology, 8(2), April 1999.

407. H. Me1eis. Toward the Information Network. IEEE Computer, 29(10) :59-67,
October 1996.

408. R. Menezes and A. Wood. Garbage Collection in Open Distributed Tuple
Space Systems. In Proceedings of 15th Brazilian Computer Networks Sympo
sium - SBRC '97, 1997.

409. Ronaldo Menezes. Ligia: Incorporating Garbage Collection in a Java based
Linda-like Run-Time System. In Raimundo J. Macedo, Alcides Calsavara, and
Robert C. Burnett, editors, Proc. of the 2nd Workshop on Distributed Systems
(WOSID'98), pages 81-88, Curitiba, Parana, Brazil, June 1998.

410. Ronaldo Menezes . Resource Management in Open Linda Systems. PhD Thesis,
Department of Computer Science . University of York, 1999.

411. lain Merrick and Alan Wood. Coordination with Scopes . In Proc , ACM
Symposium on Applied Computing, pages 210-217. ACM Press, 2000.

412. M. Merz and W. Lamersdorf. Agents, Services, and Electronic Markets: How
do they Integrate? In Proceedings of the IFIP/IEEE International Conference
on Distributed Platforms, Dresden, Germany, 1996.

413. G. Meszaros and J. Doble . A Pattern Language for Pattern Writing. In Pattern
Languages of Program Design 3, pages 529-574. Addision Wesley, 1998.

414. Microsoft . DCOM Specification. http://www.microsoft.com/.
415. Microsoft Corporation. Visual Basic Programmierhandbuch, 1997.
416. Sun Microsystems. Java Specification. http ://java .sun .com/.
417. John A. Miller , Devanand Palaniswami, Amit P. Sheth, Krys Kochut, and

Harvinder Singh. WebWork: METEOR2 's Web-Based Workflow Management
System. In Journal of Intelligent Information Systems - Special Issue: Work
flow Management Systems [528], pages 185-215.

418. Robin Milner. Communication and Concurrency. Prentice-Hall International,
1989.

419. D. Milojicic , M. Breugst, 1. Busse, J. Campbell, S. Covaci, B. Friedman,
K. Kosaka, D. Lange, K. Ono, M. Oshima, C. Tham, S. Virdhagriswaran, and
J . White. MASIF, The OMG Mobile Agent System Interoperability Facility.
In Proceedings of Mobile Agents '98, 1998.

420. N. Minar and T . Papaioannou. Workshop on Mobile Agents in the Context
of Competition and Cooperation (MAC3), Autonomous Agents 99, 1999.

421. N. Minsky and V. Ungureanu. A Mechanism for Establishing Policies for Elec
tronic Commerce. In Proc. of the 18th International Conference on Distributed
Computing Systems (ICDCS '98) , pages 322-331 , 1998.

422. N. Minsky and V. Ungureanu. Unified Support for Heterogeneous Security
Policies in Distributed Systems. In 7th USENIX Security Symposium, San
Antonio (TX) , 1998.

423. Naftaly H. Minsky. The Imposition of Protocols over Open Distributed Sys
tems. IEEE Transactions on Software Engineering, 17(2) :183-195, February
1991.



References 495

424. Naftaly H. Minsky and Jerrold Leichter. Law-Governed Linda as a Coordina
t ion Model. In Paolo Ciancarini and Oscar Nierstrasz, editors, Object-Based
Models and Languag es for Concurrent Systems - Proceedings of the ECOOP'94
Workshop on Models and Languag es for Coordination of Parallelism and Dis 
iribution, volume 924 of LNCS, pages 125-146 . Springer-Verlag, 1994.

425. Naftaly H. Minsky, Yaron M. Minsky, and Victoria Ungureanu. Making Tuple
Spaces Safer for Heterogeneous Distributed Systems . In Proceedings of the
2000 ACM Symposium on Applied Computing (SAC 2000) , pages 218-226,
Como (I) , March 19 - March 21 2000. ACM. Track on Coordination Models ,
Languages and Applications.

426. http://www.npaci.edu/DICE/mix-system.html.
427. Mobile Agent List , 1999.
428. Daniel Moldt and Frank Wienberg. Multi-Agent-Systems based on Coloured

Petri Nets. In Proceedings of the 18th International Conference on Application
and Th eory of Petri Nets (ICATPN '97) , number 1248 in Lecture Notes in
Computer Science , pages 82~101, Toulouse, France, June 1997.

429. E . Monfroy. Collaboration de Solueurs pour La Progmmmation Logique d Con
tmintes. PhD Thesis, Universite Henri Poincare - Nanc y 1, France, November
1996. Also available in English as Solver Collaboration for Constraint Logic
Programming.

430. E. Monfroy. An Environment for Designing/Executing Constraint Solver Col
laborations. ENTCS (Electronic Not es in Theoretical Computer Science), EL
sevier Science Publish ers, 16(1) , 1998.

431. E. Monfroy. Using "Weaker" Fun ctions for Constraint Propagation over Real
Numbers. In Proc, of The 14th ACM Symposium on Applied Computing,
SAC'99, Scientific Computing Track, San Antonio, Texas, USA, March 1999.
ACM Press.

432. E. Monfroy. A Coordination-based Chaoti c Iteration Algorithm for Con
straint Propagation. In J . Carroll , E. Damiani, H. Haddad, and D. Oppen
heim , editors, Proceedings of the 2000 A CM Symposium on Applied Computing
(SAC'2000) , pages 262-269, Villa Olmo, Como , Italy, 2000. ACM Press.

433. E. Monfroy. The Cons traint Solver Collaboration Language of BALI. In
D.M. Gabbay and M. de Rijke , editors, Frontiers of Combining Systems 2,
volume 7 of Studies in Logic and Computation, pages 211-230. Research Stud
ies Press/Wiley, 2000.

434. E. Monfroy and J .-H. Rety . Chaotic Iteration for Distributed Constraint Prop
agat ion. In Proceedings of Th e 14th ACM Symposium on Applied Computing,
SAC'99, Artificial Intelligence and Computational Logic Track, San Antonio,
Texas , USA, March 1999. ACM Press.

435. E. Monfroy and J .-H. Rety. Iterations Asynchrones: un Cadre Uniforme pour
la Propagation de Contraintes Parallele et Repartie. In Proceedings of Journees
Francophones de Programmation Logique et Contrainte (JFPLC '99), Lyon,
France, 1999. Hermes. (in French) .

436. E. Monfroy, M. Rusinowitch, and R. Schott. Implementing Non-Linear Con
straints with Cooperative Solvers . In K. M. George, J . H. Carroll, D. Op
penheim, , and J. Hightower, editors, Proceedings of The 11th ACM Anual
Symposium on Applied Computing, SAC '96, pages 63-72, Philadelphia, PA,
USA, February 1996. ACM Press.

437. Scott Moore . On Conversation Policies and the Need for Exceptions. In
Working Not es of the Workshop on Specifying and Impl em enting Conv ersat ion
Poli cies, pages 19-28, Seattle, Washington, May 1999.

438. Luc Moreau and Christian Queinnec. Design and semantics of quantum: a
language to control resource consumption in distributed computing. In Usenix



496 References

Confer ence on Domain Specific Language, DSL '97, pages 183-197, Santa
Barbara (Californ ia , USA ), Octob er 1997.

439. Jean-Henry Morin and Dimitri Konstantas. HyperNews: A MEDIA Appli
cation for t he Commercializa tion of an Electronic Newspaper. In Proceedings
of ACM Symposium on A pplied Computin g (SAC '98), Atlan t a (GE) , 1998.
ACM P ress.

440. B. Moulin and B. Chaib-draa. An Overview of Distributed Artificia l Intelli
gence . In G. M. O 'H ar e and N. R. J ennings, edi tors , Foundations of Distribut ed
Artificia l Intelligence, pages 3-57. John Wiley & Sons, New York, NY , 1996.

441. Thom as J . Mowbray and Raphael C. Malveau. COREA Design Patterns.
Wil ey, 1997 .

442. S. Mu ggleton and 1. De Raed t. Inductive logic programming: Theory and
methods. Logic Programming , 9(20) , 1994.

443. T . Murata. Peti Net s:P roperties, An alysis , and Applicati ons. Proc. of the
IEEE, 77(8) , April 1989.

444. A.L. Murphy and G.P . Pic co . Reliable Communication for Highly Mob ile
Agents. In Proc. of the 1"1 Int. Symp. on Agent Sy stem s and Applications
and 3Td Int. Symp . on Mobile Agents (ASA/MA '99), pages 141- 150, Palm
Springs, CA , USA, October 1999. IEEE Computer Society.

445. A.L . Murphy, G.-C . Roman, and G. Varghese. Tr acking Mobi le Units for
Dep endable Message Delivery . Technical Report W UCS-99-30 , Washington
Univers ity, Dept . of Computer Science, St . Louis, MO, USA, December 1999.

446. David R . Musser and Atul Saini . STL Tutorial and Reference Guide. Addison
Wesley, 1996.

447. R . Neches, R. Fikes , T . Finin , T . Gruber , R. Patil , T . Senator , and
W . Swartout. Enabling Technology for Knowledge Sharing. A I Magazine,
12(3):36 - 56, Fall 1991.

448. Bruce J . Nelson. Rem ote Procedure Call. PhD t hes is, Carnegie-Mellon Uni
versity, May 1981.

449. B. Clifford Neuman and Gennad y Medvinsky. Int ernet Payment Services. In
Lee "V. McKnight and Joseph P. Bailey, edit ors , In tern et Economics, pa ges
401-415. MIT Press , Ca mb ridge , MA , 1997.

450. Next Generation In ternet Hom e Site. http: / /yww . ngi . org.
451. R . De Nicola, G. Ferrari , and R . Pugliese. Coordinating Mobile Agen ts via

Blackboards and Access Righ ts. In Proc, 2nd Int . Con]. on Coordination Mod
els and Languages, volume 1282 of LNCS, Sep tember 1997.

452. Rocco De Nicola , Gian Luigi Ferrari, and Rosario Pugliese. Locality Based
Linda : Programming with Explicit Loc alities . In Michel Bidoit and Max
Dauchet , editors, TAPSOFT '97: Th eory and Pra ctice of Software Develop
m ent , volume 1214 of LNCS, pages 712-726. Springer-Verlag, 1997.

453. Rocco De Nicola, Gian Lu igi Ferrari, and Rosario Pugliese. KLAIM: A Kernel
Lan guag e for Agents Interaction and Mobi lity. IEEE Tran sactions on Software
Engineering, 24(5):31 5- 330, May 1998.

454. B. Nielsen and T . Sorensen . Distributed programming with multiple tuple
space Linda. Technical rep ort , Aalbrog University, Departmen t of Ma thematics
and Computer Science, 1994.

455. Oscar Nierstrasz and Laurent Dami. Component-Oriented Software Tech
nology. In Oscar Nierstrasz and Dennis Tsichrit zis , editors , Obj ect-Oriented
Software Composition, pages 3-28. Prentice Hall, 1995.

456. Oscar Niers t rasz, J ean-Guy Schneid er , and Fran z Achermann. Agents Every
wh ere, All t he Time. Submit t ed for publication, Mar ch 2000.



References 497

457. Oscar Nierstrasz, Dennis Tsichritzis, Vicki de Mey, and Marc Stadelman. Ob
jects + Scripts = Applications. In Proceedings Esprit 1991 Conference, pages
534-552, Dordrecht, NL, 1991. Kluwer Academic Publisher.

458. M. Nodine, J . Fowler, T . Ksiezyk , B. Perry, M. Taylor, and A. Unruh. Active
information gathering in InfoSleuth. Cooperative Information Systems, 9(1/2) ,
2000.

459. M. H. Nodine and A. Unruh. Facilitating Open Communication in Agent
Systems: the InfoSleuth Infrastructure. In Michael Wooldridge, Munindar
Singh, and Anand Rao, editors, Int elligent Agents Volum e IV - Proceedings of
the 1997 Workshop on Agent Theories , Architectures and Languages, volume
1365 of Lecture Not es in Artificial Int elligence, pages 281-295. Springer-Verlag,
Berlin, 1997.

460. P. Noriega. Agent-mediated Auctions: Th e Fishmarket Metaphor. Ph.D Thesis,
Universitat Autonoma de Barcelona, Barcelona (E), 1997.

461. H.S. Nwana, L. Lee, and Nicholas R. Jennings. Coordination in Multi Agent
Systems. In Software Agents and Soft Computing: Towards Enhancing Machine
Intelligence, volume 1198 of LNAI, pages 42-58. Springer-Verlag, 1997.

462. H.S. Nwana and Michael J . Wooldridge. Software Agent Technologies. In Soft
ware Agents and Soft Computing: Towards Enhancing Machine Int elligence,
volume 1198 of LNAI, pages 59-78. Springer-Verlag, 1997.

463. Object Man agement Group. CORBA Specification. http://www . omg.org/ .
464. Object Management Group. The Common Object Request Broker: Archit ec

ture and Specification, July 1996.
465. J . Odell , H. Van Dyke Parunak, and C. Bock. Representing Agent Interaction

Protocols in UML . In OMG Document ad/99-12-01 . Intellicorp Inc., December
1999.

466. Odyssey. http://www.genmagic.com.
467. A. Ohsuga, Y. Nagai, Y. Irie, M. Hattori, and S. Honiden. PLANGENT: an

Approach to Making Mobile Agents Intelligents. IEEE Internet Computing,
1(3) :50-57, 1997.

468. OIL. Ontology Interchange Language. http://www.ontoknowledge.org/oilf.
469. OKBC. Open Knowledge Base Connectivity. http://www.aLsrLcom/ okbcf.
470. Andrea Omicini. On the Semantics of Tuple-based Coordination Models . In

Proceedings of the 1999 ACM Symposium on Applied Computing (SAC'99) ,
pages 175-182. ACM, February 28 - March 2 1999. Track on Coordination
Models , Languages and Applications.

471. Andrea Omicini. SODA: Societies and Infrastructures in the Analysis and De
sign of Agent-based Systems. In Paolo Ciancarini and Michael J . Wooldridge,
editors, Agent-Oriented Software Engineering - Proceedings of the 1st Int er
national Workshop (AOSE 2000) , LNCS . Springer-Verlag, Limerick (Ireland) ,
2000.

472. Andrea Omicini and Franco Zambonelli. Coordination for Internet Applica
tion Development. Journal of Autonomous Agents and Multi-Agent Systems,
2(3) , September 1999. Special Issue on Coordination Mechanisms and Patterns
for Web Agents.

473. Andrea Omicini and Franco Zambonelli. Tuple Centres for the Coordination of
Internet Agents. In Proceedings of the 1999 A CM Symposium on Applied Com
puting (SAC'99) , pages 183-190, San Antonio (TX) , February 28 - March 2
1999. ACM. Track on Coordination Models, Languages and Applications.

474. OntoBroker project . http://ontobroker.aifb.uni-karlsruhe.de/.
475. Open Software Foundation. DCE - The OSF Distributed Computing Environ

ment. Springer-Verlag, October 1993.



498 References

476. Open Systems Lab . The Actor Foundry: A Java-based Actor Programming
Environment, 1998. Work in Progress. http://osl.cs.uiuc.edu/foundry[ ,

477. Open Systems Lab . SALSA: Simple Actor Language, System and Applica
tions, 2000. Work in Progress. http://osl.cs.uiuc .edu/salsaj.

478. International Standard Organization. Moderate Thermal Environments: De
termination of the PMV and PPD Indices and Specification of the Conditions
for Thermal Comfort . European Standard Report EN-ISO-7730-1995, CEN ,
Brussels, 1995.

479. John K. Ousterhout . Tel and the Tk Toolkit . Addison-Wesley, 1994.
480. John K. Ousterhout . Scripting: Higher Level Programming for the 21st Cen

tury. IEEE Computer, 31(3) :23-30, March 1998.
481. Hewlett Packard. Home Page of Information About E-Services, 2000.
482. George A. Papadopoulos and Farhad Arbab. Coordination Models and Lan

guages. In Marvin V. Zelkowitz, editor, The Engineering of Large Systems,
volume 46 of Advances in Computers, pages 329-400. Academic Press, August
1998.

483. M. P. Papazoglou and W. Van Den Heuvel. From Business Processes to
Cooperative Information Systems: An information Agents Perspective. In
M. Klusch, editor, Intelligent Information Agents. Springer, Berlin, Germany,
1999.

484. David Parkes. iBundle: An Efficient Ascending Price Bundle Auction. In
Proceedings of the ACM Conference on Electronic Commerce, Denver, CO,
November 1999.

485. H.V.D . Parunak. Visualizing Agent Conversations: Using Enhanced Dooley
Graphs for Agent Design and Analysis. In Second International Conference on
Multi-agent Systems (ICMAS96), pages 275-282, June 1996.

486. Y. Peng, T . Finin, Y. Labrou, R. S. Cost, B. Chu , J . Long, W. J . Tolone ,
and A. Boughannam. An Agent-Based Approach for Manufacturing Integra
tion - the CIIMPLEX Experience. International Journal of Applied Artificial
Intelligence, 13(1-2) :39-64, 1999.

487. M.K. Perdikeas, F.G . Chatzipapadopoulos, LS. Venieris , and G. Marino. Mo
bile Agent Standards and Available Platforms. Computer Networks Journal,
31(10) , October 1999.

488. C. Perkins. IP Mobility Support. RFC 2002, IETF Network Working Group,
1996.

489. C. E. Perkins. Mobile Networking in the Internet. Mobile Networks and
Applications, 3 :315~334, 1998.

490. Dewayne E. Perry and Alexander L. Wolf. Foundations for the Study of
Software Architecture. ACM SIGSOFT Software Engineering Notes, 17(4) :40~
52, October 1992.

491. Charles J . Petrie. Agent based Engineering, the Web, and Intelligence. IEEE
Expert, 11(6) :24-29, December 1996.

492. Simon Peyton Jones, Erik Meijer, and Daan Leijen . Scripting COM Com
ponents in Haskell. In Proceedings of the Fifth International Conference on
Software Reuse, Victoria, British Columbia, June 1998.

493. Gian Pietro Picco , Amy L. Murphy, and Cruia-Catalin Roman. LIME: Linda
meets Mobility. In David Garlan and Jeff Kramer, editors, Proceedings of
the 21th International Conference on Software Engineering (ICSE'99), pages
368-377. ACM , May 16-22 1999.

494. G.P. Picco. J.tCODE: A Lightweight and Flexible Mobile Code Toolkit. In Proc,
of the 2n d Int . Workshop on Mobile Agents, volume 1477 of LNCS. Springer
Verlag, 1998.



References 499

495. G.P. Picco, G.-C . Roman , and P.J . McCann. Expressing Code Mobili ty in
Mobile UNITY. In M. J azayeri and H. Schauer , edito rs , Proc. of th e 6t h

European Software Engin eering Con]. held j oin tly wit h the fJh A CM SIGSOFT
S ymp. on the Foundations of Software Engineerin g (ESE C/FSE '97), volume
1301 of LNCS, pages 500- 518, Zurich , Switzerland, September 1997. Springer
Verlag.

496. J. Pinakis . A distributed ty peserver and protocol for a Linda tup le space.
Technical report , University of Western Australia , 1991.

497. J . Pi t t and M. Mamda ni. Designin g Agent Com munication Languages
for Mult i-Agent Systems . In 9th European Workshop on Mode lling A u
tonom ous Ag en ts in a Mu lti -Ag ent World (MAAMAW99) , volume 1647 of
L NAI. Springer Verlag, Berl in, D, June 1999.

498. J eremy Pi t t and Ab e Mamda ni. Communication Protocols in Multi-Agent
Systems. In W orking No tes of the W orkshop on Specif yin g an d Implem enting
Conversa tio n Policies, pages 39- 48, Seat tl e, Washington, May 1999.

499. L. Pomello, G. Rozenb erg, and C. Simone. A Survey of Equivalence Not ions
for Net Based Syst em . In G. Rozenb erg, edit or , Advances in P etri Nets 1992,
volume 609 of LNCS, pages 410-472. Springer-Ver lag, 1992.

500. Tomi Poutanene, Heather Hinton , and Michael Stumm. NetCents: A
Lightweight Protocol for Secure Micropaym ents. In USE NIX W orkshop on
El ectronic Comm erce, pages 25- 36. USENIX Association , September 1998.

501. Wolfgang Pree. Design P att ern s for Obj ect -Ori ented Software Developm ent.
Addison-Wesley, 1995.

502. Wolfgang Prinz and S. Kolvenb ack. Support for Workflows in a Ministe rial
Environment . In Mark S. Ackerm an, edito r, Proceedinqs of the ACM 1996
Conf erence on Computer Supported Cooperativ e W ork , CSCW '96, Cambridge,
M ass., U.S.A. , pages 199-208, New York , Novemb er 1996. ACM Press.

503. M. Purvis and S. Cranefield . Agent Modelling with Petri Nets. In Proceeding s
of th e CESA '96 (Computati onal Engin eering in Sy st em s Applications) Sym
posium on Dis crete Events and Manufacturing Syst em s, pages 602-607, Lille,
France, July 1996. IMACS , IEEE-SMC.

504. Rabarij aona and et al. Building and searching an XML-based corporate mem
ory. IEEE Intern et Computing, May/June 2000.

505. M. Ranganathan , V. Schaal , V. Galtier , and D. Montgomery. Mobile Streams:
A Middleware for Reconfigur abl e Distribu ted Scripting. In First Intern at ion al
Symposium on Ag ent Sys tems an d Applications and Th ird Intern ational Sym
posium on M obile Ag ents (A SA/MA 99) , pages 162-175, Palm Springs (CA) ,
October 3- 6 1999. IE EE Press.

506. A.S. Rao and M.P. Georgeff. Modeling Rational Agents within a BDI Archi
tec ture. In Th e International Conf erence on Principl es of K n owledge R epre
sentation and Reasoning (KR -91) , pages 473-484. Morgan Kaufmann , 1991.

507. RDF(S) : XML-based Resource Description Framework Schema Specification .
ht tp://www.w3.org/TR/WD-rdf- schema/.

508. Ori Regev and Noa m Nisan . The POPCORN Mark et- an Online Market for
Computationa l Resour ces. In Proceedings of the First Int ernational Confere nce
on Information and Computation Econom ies, pages 148-157, Charleston, SC,
October 1998. ACM Press.

509. Manfred Reichert and Peter Dad am . A DEP Tflex-Supporti ng Dyn am ic
Cha nges of Workflows Withou t Losing Cont rol. In Journ al of Intelligent Infor
m ation Sy stem s - Special Issue: Workflow Manag em ent S ystem s [528], pages
93-129.

510. W. Reisig. Petri nets with individu al tokens. Th eoretical Compu ter Scien ce,
41(2-3):185-2 13, 1985.



500 References

511. S. Ren , G. A. Agha, and M. Saito. A Modu lar Approach for Programming Dis
tributed Real-Time Systems. Journal of Parallel and Distribut ed Computing,
36:4-12, 1996.

512. RETSINA. ht t p:// www.cs.cmu.edu/ softagents/ret sina.html.
513. P. Robinson and J . Arthur. Distributed process creation within a shared da ta

space framewo rk. Software: Pract ice and Experian ce, 25(2):175-191 , 1995.
514. A. Rodrigues Da Silva 0 , A. Romo, D. Deugo , and M. Mira Da Silva . Towards

a Reference Model for Surveying Mobile Agent Systems. Autonomous Agents
and Multiagents Systems Journal, 2000 .

515. G. C. Roman and H. C. Cunnigham. Mixed Programming Metaphors in a
Shared Dataspace Mode l of Concurrency. IEEE Transaction s on Software
Engin eering , 16(12):1361- 1373, 1990.

516. Davide Rossi. Coordinat ion: an Enabling Technology for the Intern et. PhD
thesis, Depart ment of Computer Science, University of Bologna, Italy, February
2000.

517. Davide Rossi and Fabio Vitali. Internet-Based Coordination Environments
and Document-Based Applications: A Case St udy . In Paolo Ciancarini and
Alexander L. Wolf, editors, Coordination Languages and Models, number 1594
in LNCS, pages 259-274. Springer, April 1999. Proceedings of Coord ination
'99.

518. K. Rothermel and F. Hohl , editors. Mobile Agents - Proceedings of the Sec
ond Intern ational Work shop (MA '98) , volume 1477 of LNCS, Stuttgart (D) ,
September 1998. Springer-Verlag.

519. A. Rowstron. Bulk prim iti ves in Linda run-tim e systems. PhD thesis, Depart
ment of Computer Science, University of York, UK, 1997.

520. A. Rowstron . Mobile Co-ordination : Providing Fault Tolerance in Tuple Space
Based Co-ordination Lan guag es. In P. Ciancarini and A. Wolf, editors , Pro
ceedings of the :J"d Int. Conf. on Coordination Languages and Models (COOR
DINATION), volume 1594 of LNCS, pages 196-210. Springer , 1999.

521. A. Rowstron, A. Douglas, and A. Wood. A distributed Linda-like kerne l for
PVM. In J . Dongarra , M. Gengler , B. Tourancheau , and X. Vigour oux , editors,
EuroPVM'95, pages 107- 112. Hermes, 1995.

522. A. Rowst ron , S. Li, and S. Radina. C2 AS: A System Supporting Distributed
Web Appli cations Composed of Collaborat ing Agents. In WETICE, pages
87-92, 1997.

523. A. Rowstron and S. Wray. A run-time system for WCL . In H. E. Bal ,
B. Belkhouche, and L. Cardelli, editors, IEEE Work shop on Int ern et Pro
gramming Languages, volum e 1686 of LNCS. Springer-Verlag , 1998. Chicago ,
USA.

524. Antony Rowstron. WCL : A Web Co-ordi nation Language. Wor ld Wide Web
Journal, 1(3):167-179, 1998.

525. Antony Rowst ron and Alan Wood. BONITA: A Set of Tuple Space Primitives
for Distribu ted Coordination. In Hesham El-Rewini and Yale N. Pat t , edi
tors, Proc. of the 30th Hawaii International Conf erence on System Sciences,
volume 1, pag es 379-388. IEEE Computer Society Press, January 1997.

526. Antony Rowst ron and Alan Wood. Solving the Linda multiple rd problem
using the copy-collect primitive . Science of Computer Programming, 31(2 
3):335-358, 1998.

527. A. D. Rubin and D. E. Geer Jr. A Survey of Web Security. IEEE Computer,
31(9):39-41, September 1998.

528. Marek Rusinkiewicz and Abdelsalam Sumi Helal (eds.). Special Issue: Work
flow Management Systems. Journal of Intelligent Information Systems, 10(2),
March-April 1998.



References 501

529. Proceedings of the 2000 A CM Symposium on Applied Computing (SA C 2000) ,
Como (I) , March 19-21 2000. ACM . Track on Coordination Models, Languages
and Applications.

530. Proceedings of the 1998 ACM Symposium on Applied Computing (SAC'98) ,
Atlanta (GA) , February 27 - March 1 1998. ACM. Track on Coordination
Models , Languages and Applications.

531. Proceedings of the 1999 ACM Symposium on Applied Computing (SAC'99),
San Antonio (TX), February 28 - March 2 1999. ACM . Track on Coordination
Models, Languages and Applications.

532. Thomas Sandholm. An Algorithm for Optimal Determination in Combinato
rial Auctions. In Proceedings of the International Joint Conference on Artificial
Intelligence, Stockholm, Sweden, 1999.

533. Ravi S. Sandhu, Edward J . Coyne, Hal L. Feinstein , and Charles E. Youman.
Role-Based Access Control Models. IEEE Computer, 29(2) :38-47, February
1996.

534. V. Saraswat. Concurrent Constraint Programming. MIT Press, Cambridge,
London, 1993.

535. Kjeld Schmidt and Liam J. Bannon. Taking CSCW Seriously - Supporting
Articulation Work. Computer Supported Cooperativ e Work - An International
Journal, 1(1-2) :7-40, 1992.

536. Jean -Guy Schn eider. Components, Scripts, and Glue: A conceptual framework
for software composition . PhD thesis, University of Bern, Institute of Computer
Science and Applied Mathematics, October 1999.

537. Jean-Guy Schneider and Oscar Nierstrasz. Components, Scripts and Glue. In
Leonor Barroca, Jon Hall , and Patrick Hall, editors, Software Architectures 
Advances and Applications, chapter 2, pages 13-25. Springer , 1999.

538. Bruce Schn eier. Applied Cryptography. Wiley, New York, second edit ion , 1996.
539. A.Th. Schreiber, J .M. Akkermans, A.A. Anjewierden , R. de Hoog, N.R . Shad

bolt, W . Van de Velde, and B.J Wielinga. Knowledge Engineering and Man
agement: The CommonKADS Methodology. MIT Press , 2000.

540. Michael Schumacher, Fabrice Chantemargue, and Beat Hirsbrunner . The
STL++ Coordination Language: A Base for Implementing Distributed Multi
Agent Systems. In Paolo Ciancarini and Alexander L. Wolf, editors, Coordina
tion Languag es and Models - Proceedings of the 3rd International Conference
(CO ORDINATION'99) , volume 1594 of LNCS, pages 399-414, Amsterdam
(NL) , April 26-28 1999. Springer-Verlag.

541. Scientific Computing Associates. Paradise: User 's guide and reference manual.
Scientific Computing Associates, 1996.

542. Scientific Computing Associates, Inc ., New Haven, CT. Paradise 4. Reference
Manual, 1996.

543. Adriano Scutella, Simulation of Conference Management Using an Event
Driven Coordination Language. In Paolo Ciancarini and Alexander L. Wolf,
editors, Coordination Languages and Models, number 1594 in LNCS, pages
243-258. Springer , April 1999. Proceedings of Coordination '99.

544. Roger Sessions. COM and DCOM: Mi crosoft's Vision for Distributed Objects.
John Wiley & Sons , December 1997.

545. Ravi Sethi. Programming Languages : Concepts and Constructs. Addison
Wesley, 1989.

546. R . Seyfarth , S. Arumugham, and J . Bickham. Glenda Users Guide. Technical
report, University of Southern Mississippi, 1994.

547. Mary Shaw and David Garlan . Software Architecture: Perspectives on an
Emerging Discipline. Prentice Hall , April 1996.



502 References

548. A. Sheth and J .A. Larson. Federated Database Systems. ACM Computing
Surveys, 22(3) , 1990.

549. A. Sheth, E. Mena, A. Illaramendi , and V. Kashyap. OBSERVER: An ap
proach for query processing in global information systems based on interop
eration across pre-existing ontologies. In Cooperative Information Systems
CoopIS-96. IEEE Computer Society Press, 1996.

550. Amith Sheth, Vipul Kashyap, and Tarcisio Lima. Semantic Information Bro
kering How Can a Multi-agent Approach Help? In M. Klusch, O. Shehory, and
G. Weiss, editors, Proceeding of the third International Workshop CIA , Upp
sala, Sweden, July/August 1999, LNAI 1652, pages 303-322 . Springer, 1999.

551. Y. Shoham and S.B. Cousins. Logics of Mental Attitudes in AI. In The Inter
national Conference on Principles of Knowledge Representation and Reasoning
(KR-92). Morgan Kaufmann, 1992.

552. Yoav Shoham. Agent-Oriented Programming. Artificial Intelligence, 60:51
92, 1993.

553. C. Sibertin-Blanc. High Level Petri Nets with Data Structure. In K. Jensen,
editor, Proceedings of the 6th European Workshop On Application and Theory
of Petri Nets, Finland, 1985.

554. C. Sibertin-Blanc. CoOperative Objects: Principles, Use and Implementation.
In G. Agha and F. De Cindio, editors, Petri Nets and Object Orientation,
LNCS . Springer-Verlag, Berlin, 1999.

555. J . Silva , J . Carreria, and F. Moreria. ParLin: from a centralized tuple space
to adaptive hashing. Technical report, Universidade de Coimbra, 1993.

556. L. Silva, B. Veer, and J. Silva. The Helios tuple space library. In Proceedings
2nd Euromicro workshop on Parallel and Distributed Processing, pages 325
333, 1994.

557. C. Simone and M. Divitini. Ariadne: Supporting Coordination through a
Flexible Use of the Knowledge on Work Process. In Information Technology
for Knowledge Management [84], pages 121-148.

558. M. Singh. Agent Communication Languages: Rethinking the Principles. IEEE
Computer, 31(12):55-61, December 1998.

559. Munindar P. Singh and Michael N. Huhns. Multiagent Systems for Workflow.
In IJCAI Workshop on Business Applications of Artificial Intelligence, Nagoya,
Japan, 1998.

560. N. Skarmeas and Keith L. Clark. Component Based Agent Construction.
Autonomous Agents and Multi Agent Systems, submitted, 1999.

561. R. Smith. The Contract Net Protocol: High-Level Communication and Control
in a Distributed Problem Solver. IEEE Transactions on Computers, pages
1104-1113, December 1980.

562. Gert Smolka. Problem Solving with Constraints and Programming. ACM
Computing Surveys, 28(4), December 1996. Electronic Section.

563. Secure and Open Mobile Agents (SOMA) . http ://lia.deis . unibo. it/
Research/SOMA.

564. SPKI Simple PublicKey Infrastructure. ftp; / /ftp. ietf .org/
internet-drafts/draft-ietf-spki-cert-theory-02.txt.

565. .J.W . Stamos and D.K. Grifford. Implementing Remote Evaluation. IEEE
Transactions on Software Engineering, 16(7) :71O~722, July 1990.

566. H. Stark and L. Lachal. Ovum evaluates: Workflow. Ovum report, Ovum
Ltd., London, UK, 1995.

567. G. L. Steele and G. J. Sussman. Scheme, an Interpreter for Extended Lambda
Calculus. Technical Report Technical Report 349, Massachusetts Institute of
Technology, Artificial Intelligence Laboratory, 1975.



References 503

568. Jennifer Steiner, Clifford Neuman, and Jeffrey Schiller. Kerberos: An Au
thentication Service for Open Network Systems. In USENIX Conference Pro
ceedings (Dallas TXj, pages 191-202, Berkeley, (CA), Winter 1988. USENIX
Association.

569. E. Steinmetz, J . Collins, S. Jamison , and et al. Bid Evaluation and Selection in
the MAGNET Automated Contracting System. In P. Noriega and C. Sierra,
editors, Agent-Mediated Electronic Commerce, volume 1571 of LNAI, pages
105-125. Springer-Verlag, 1999.

570. Anselm Strauss. The articulation of project work: An organizational process.
The Sociological Quarterly, 29(2) :163-178, 1988.

571. D . Sturman. Fault-Adaptation for Systems in Unpredictable Environments.
M.S . Thesis, May 1994.

572. R . Sukthankar, A. Brusseau, R. Pelletier, and R. Stockton. JGram: Rapid
Development of Multi Agent Pipelines for Real-World Tasks. In First Interna
tional Symposium on Agent Systems and Applications and Third International
Symposium on Mobile Agents (ASA/MA99j, pages 30-40, Palm Springs (CA) ,
October 3-6 1999. IEEE Press.

573. V. Sunderam, J . Dongarra, A. Geist, and R Manchek. The PVM Concurrent
Computing System: Evolution, Experiences, and Trends. Parallel Computing,
20(4) :531-547, 1994.

574. Ivan E. Sutherland. A Futures Market in Computer Time. Communications
of the ACM, 11(6):449-451, June 1968.

575. Keith D. Swenson and Kent Irwin. Workflow Technology: Trade-Offs for Busi
ness Process Re-Engineering. In Comstock and Ellis [182], pages 22~29.

576. Keith D. Swenson, Robin J . Maxwell , Toshikazu Matsumoto, Bahram Saghari ,
and Kent Irwin. A Business Process Environment Supporting Collaborative
Planning. Collaborative Computing, 1(1):15-34, 1994.

577. K. Sycara, M. Klusch, S. Widoff, and J. Lu. LARKS: Dynamic matchmaking
among heterogeneous software agents in cyberspace. Autonomous Agents and
Multiagent Systems, March 2001.

578. K. Sycara, J . Lu, and M. Klusch. Interoperability Among Heterogeneous
Software Agents on the Internet. Technical report, Technical Report CMU
RI-TR-98-22, 1998.

579. K. Sycara, J. Lu , M. Klusch, and S. Widoff. Dynamic service matchmaking
among agents in open information environments. ACM SIGMOD Record, 1999.

580. K. Sycara and D. Zeng. Coordination of multiple intelligent software agents.
Cooperative Information Systems, 5(2/3), 1996.

581. Clemens Szyperski. Component Software: Beyond Object-Oriented Proqram
mingo Addison-Wesley, 1998.

582. Tromso And COrnell Moving Agents (TACOMA) . http ://www.tacoma.cs.
uit .no.

583. Y. Tahara, A. Ohsuga, and S. Honiden. Agent System Development based on
Agent Patterns. In International Conference on Software Engineering, pages
356-367. ACM , 1999.

584. S. Talukdar, E . Cordozo, and L. Leao. Toast : The Power System Operator's
Assistant . IEEE Expert, pages 53-60, July 1986.

585. Andrew Tanenbaum and et al. Experience with the Amoeba Distributed
Operating System. Communications of the ACM, 33(12):46-63, December
1990.

586. A.S. Tanenbaum. Distributed Operating Systems. Prentice Hall , 1995.
587. The OpenMath Society. (web page) . http://www.nag.co.uk/projects/

openmath/omsoc.



504 References

588. S.R. Thomas. The PLACA Agent Programming Language. In Intelligent
Agent s - Agent Th eories, Archit ectures, and Languages, volume 890 of LNAI,
pages 355-370. Springer-Ver lag, 1995.

589. Stephen Thomas. SSL and TLS Essent ials: Securing the Web. John Wiley &
Sons , Marc h 2000.

590. Sander Tichelaar. A Coordination Component Framework for Op en Dis
tributed Systems. Maste r 's t hesis, University of Bern , Insti tu te of Computer
Science and Applied Math ematics, May 1997.

591. M. Tokoro . The Society of Objects. In M. N. Huhns and M. P. Singh, editors,
Readings in Agents, pages 421-429. Morgan Kaufmann Publishers, San Mateo,
CA , 1998.

592. R. Tolksdorf. A machine for un coup led coordination and its concur rent be
haviour. In Object-Based Models and Languag es for Con current System s, vol
ume 924 of LNCS, pages 176-193. Springer-Velag , 1995.

593. R. Tolksdorf. Coordination Patterns in Mobi le Object Spaces. In Proc, 7th
IEEE Workshops on Enablings Technologie s: Infrastructure for Collaborative
Enterprises (WETICE) , pages 126-1 31, Stanford, CA , J une 1998. IEEE Com
puter Society Press .

594. Robert Tolksdorf. Coordination in Open Distributed Sy stem s. Number Reihe
10, 362 in VDI Fortschri ttsberichte. VDI Verlag , 1995.

595. Robert Tolksdorf. Coordinating Serv ices in ope n distributed systems wit h
LAURA . In Paolo Ciancarini and Chris Han kin, editors , Coordination Lan 
guages and Models - Proceedings of the 1st International Conference (COOR
DINATION'96), volume 1061 of LNCS, pages 386-402, Cesena (I) , April 15-17
1996. Springer-Verlag.

596. Robert Tolksdorf. Berlinda: An Object-Oriented Platform for Implementing
Coordination Languages in Java. In David Garlan and Dani el Le Metayer ,
editors, Coordinat ion Languages and Models - Proceedings of the 2nd Intern a
tional Confe rence (C OOR DINA TION'97), volume 1282 of LNCS, pages 430
433, Berlin (D) , September 1-3 1997. Springer-Verlag .

597. Rob ert Tolksdorf. Laura - A Servic e-Based Coordination Language. Science
of Computer Programming, 31(2-3):359-381 , July 1998.

598. Robert Tolksdorf, Paolo Ciancar ini, Mark Ginsburg, Jakob Hummes, and
Wilfred J amison . Working Group Rep ort on Coordination Architec tures for
Distributed Web Applications. In Proceedings of the 7th Work shops on En
abling Technologies: Infrastru cture for Collaborati ve Enterprises ( WE T ICE
'98), pages 133- 137. IEEE Computer Society Press, 1998.

599. Robert Tolksdorf, Ted Goddard, Muralidharan Srinivasan, St efan Fnfrocken,
and Michael Schro eder. Work ing Group Report on Collaborative Agents in
Dist ributed Web Applications. In Proceedings of the 6th Workshops on En 
abling Technologies: Infrastructure for Collaborativ e Enterprises (WET ICE
'97), pages 133- 137. IEEE Computer Society Press, 1997.

600. Robert Tolksdorf, Gustaf Neumann, Wolfram Conen, Peter Bertok, and
Matthew Fuchs. Work ing Group Report on Web Infrastru ctur e for Collab
orative Applications . In Proceedings of the 5th Work shops on Enabling Tech
nologies: Infrastructure for Collaborative Enterpris es (WET ICE '96), pages
340-345. IEEE Computer Society Press, 1996.

601. C. Tom linson, P. Cannata , G. Meredith, and D. Woelk. T he exte nsible servi ces
switch in Carnot. IEEE Parallel and Distributed Technology, 1(2) :16-20, May
1993.

602. C. Tomlinson , W . Kim, M. Schevel, V. Singh, B. Will , and G. Agha.
Rosette: An Object Ori ented Con current System Architecture. Sigplan No
tices, 24(4) :91-93, 1989.



References 505

603. C.B.S. Traw and J .M. Smith. Striping within the Network Subsystem. IEEE
Network Magazine, 9(4), July 1995.

604. Christian Tschudin. The Messenger Environment MO - A Condensed De
scription. In Mobile Object Systems: Towards the Programmable Internet, vol
ume 1222 of LNCS, pages 149-156. Springer, 1997.

605. Christian F . Tschudin. Open Resource Allocation for Mobile Code. In Pro
ceedings of The First Wor'kshop on Mobile Agents, pages 186-197, Berlin, April
1997.

606. United States Department of Defense. Reference Manual for the Ada Lan
guage, draft , revised mil-std 1815 edition, july 1982.

607. W. M. P. van der Aalst. Interorganizational Workflows: An Approach based
on Message Sequence Charts and Petri Nets. Systems Analysis - Modelling 
Simulation, 34(3) :335-367, 1999.

608. W. M. P van der Aalst and T . Basten. Life-cycle Inheritance: A Petri Net
Based Approach. In P. Azema and G. Balbo, editors, Application and Theory
of Petri Nets 97, volume 1248 of LNCS. Springer-Verlag, 1997.

609. Richard van der Stadt. CyberChair: An Online Submission and Reviewing
System for Conference Papers. http://trese.cs. ut.vent.e .nl/CyberChair/ ,
1997.

610. Guido van Rossum. Python Reference Manual, Technical report, Corporation
for National Research Initiatives (CNRI) , October 1996.

611. C. Varela and G. Agha. What after Java? From Objects to Ac-
tors. Computer Networks and ISDN Systems: The International J. of
Computer Telecommunications and Networking, 30:573-577, April 1998.
http://os\.cs.uiuc .edu/Papers/www7;.

612. C. Varela and G. Agha. A Hierarchical Model for Coordination of Con
current Activities. In P. Ciancarini and A. Wolf, editors, Third Inter
national Conference on Coordination Languag es and Models (COORDINA
TION 'gg), LNCS 1594, pages 166-182, Berlin, April 1999. Springer-Verlag.
http://os\.cs.uiuc .edu/Papers/Coordination99. ps.

613. C. Varela and G. Agha . Linguistic Support for Actors, First-Class Token
Passing Continuations and Join Continuations. Proceedings of the Midwest
Society for Programming Languages and Systems Workshop, October 1999.
http://os\.cs.uiuc .edurcvarela/msplsss[ .

614. Jan Vitek and Christian Tschudin. Mobile Objects Systems. Springer-Verlag,
Heidelberg (D) , 1997.

615. Voyager . http ://vvv .objectspace.com/voyager/prodVoyager.asp.
616. T. Wagner and O. Rana. Proceedings of the 1st Workshop on Instrastructure

for Scalable Multi-agent Systems . Springer-Verlage , Berlin (D) , 2000.
617. Thomas Wagner, Brett Benyo , Victor Lesser, and Ping Xuan. Investigating

Interactions Between Agent Conversations and Agent Control Components. In
Working Notes of the Workshop on Specifying and Implementing Conversation
Policies, pages 79-88, Seattle, Washington, May 1999.

618. J . Waldo, G. Wyant , A. Wollrath, and S. Kendall. A Note on Distributed
Computing. In K. Arnold, J. OSullivan, A. Scheiffer, J . Waldo, and J . Wollrath,
editors, The Jini Specification. Addison-Wesley, 1999.

619. Jim Waldo. The Jini Architecture for Network-centric Computing. Commu
nications of the ACM, 42(7) :76-82 , July 1999.

620. Carl A. Waldspurger, Tad Hogg, Bernardo A. Huberman, Jeffrey O. Kephart,
and W. Scott Stornetta. Spawn: A Distributed Computational Economy. IEEE
Transactions on Software Engineering, 18(2) :103-117, February 1992.

621. Larry Wall, Torn Christiansen, and Randal L. Schwartz. Programming Perl.
O'Reilly & Associates, 2nd edition, September 1996.



506 References

622. U. Warrier, L. Besaw, L. LaBarre, and B. Handspicker. The Common Manage
ment Information Services and Protocols for the Internet (RFC 1189), October
1990.

623. Peter Wegner. Coordination as Constrained Interaction. In Paolo Ciancarini
and Chris Hankin, editors, Coordination Languages and Models - Proceedings
of the 1st International Conference (COORDINATION'96) , volume 1061 of
LNCS, pages 28-33, Cesena (I), April 15-17 1996. Springer-Verlag.

624. Peter Wegner. Why Interaction is more Powerful than Computing. Commu
nications of the ACM, 40(5) :80-91 , May 1997.

625. B. M. Weisenfeld, S. Raghuram, and R. Garud. Communication Patterns
as Determinants of Organizational Identification in a Virtual Organization.
Journal of Computer Mediated Communication, 3(4):1-21 , 1998.

626. Gerhard Weiss, editor. Multiag ent Systems - A Modern Approach to Dis
tributed Artificial Intelligence. The MIT Press, Cambridge (MA) , 1999.

627. M. Weiss and F. Stetter. A Hierarchical Blackboard Architecture for Dis
tributed AI Systems. In Fourth International Conference on Software Engi
neering and Knowledge Engineering, pages 349-355 . IEEE, 1992.

628. G. Wells and A. Chalmers. An Extended Linda System using PVM. In PVM
Users' Group Meeting, Pittsburgh, 1995.

629. Proceedings of the IEEE 8th International Workshops on Enabling Technolo
gies: Infrastructure for Collaborative Enterprises (WET ICE 99), Palo Alto ,
California, 16 - 18 June, 1999 1999. IEEE Press.

630. .I.E. White. General Magic White Paper - Telescript Technology: The Foun
dation for the Electronic Marketplace. http://vyv.genmagic . com, 1994.

631. .I.E. White. Telescript Technology: Mobile Agents. In J . Bradshaw, editor,
Software Agents. AAAI Press/MIT Press, 1996.

632. .1. Widom and S. Ceri. Active Database Systems. Morgan Kaufmann Publish
ers , 1996.

633. G. Wiederhold. Mediators in the architecture of future information systems.
IEEE Computer Systems, 25(3) , March 1992.

634. Frank Wienberg. Multiagentensysteme auf def Basis gefiirbter Petri-Netze.
PhD thesis, Universitiit Hamburg Fachbereich Informatik, 1996.

635. G. Wilson. Improving the performance of generative communication systems
by using application-specific mapping functions . In Linda-like systems and
their implementation, volume Technical report 91-13, pages 129-142. EEPC,
1991.

636. Terry Winograd and Fernando Flores. Understanding Computers and Cogni
tion. Addison-Wesley, 1986.

637. W. Wobcke , editor. Agents and Multi-Agent Systems: Formalisms, Method
ologies and Applications. Springer-Verlag, July 1998.

638. D. Wong , N. Paciorek, T. Walsh , J. DiCelie, M. Young , and B. Peet. Concor
dia: An Infrastructure for Collaborating Mobile Agents. In Proceedings of the
First International Workshop on Mobile Agents, 1997.

639. H.C. Wong and K. Sycara. A taxonomy of middle-agents for the Internet. In
Agents-1999 Conference on Autonomous Agents, 1999.

640. H.C . Wong and K. Sycara. Adding security and trust to multi-agent systems.
In Autonomous Agents 1999 Workshop on Deception, Fraud, and Trust in
Agent Societies, May 1999.

641. A.M. Wood. Coordination with Attributes. In P. Ciancarini and A.L. Wolf,
editors, Coordination Langauges and Models, volume 1594 of LNCS, pages 21
36. Springer-Verlag, 1999.



References 507

642. M. Wooldridge, N. R. J enni ngs, and D. Kinny. The Gaia Methodology for
Agent-Oriented Analysis and Design. Journal of Autonomous Agents and
Multi-Agent Systems, 2000.

643. Michae l J . Wooldridge and Nicholas R. Jennings. Intelligent Agents: Theory
and Practice. Th e Knowledge Engineering Review, 10(2) :115-152, 1995.

644. Michael J . Wooldridge and Nicholas R. Jennings. Agent-based Software En
gineeri ng. lEE Proceedings on Software Engineering, 144(1) :26-37, February
1997.

645. Workflow Management Coalit ion . Reference Model - The Workflow Reference
Model. Technical Report WFMC-TC-I003, Workflow Management Coalition,
Novemb er 1994.

646. Workflow Management Coalition. Workflow Management Coalition Terminol
ogy and Glossary. Technical Report WFMC-TC -I011 , Workflow Management
Coalition, February 1999.

647. P. Wurman, M. Wellman , and W . Walsh. The Michigan Internet AuctionBot:
A Configurable Auction Server for Human and Software Agents. In Second
International Conference on Autonomous Agents , pages 301-308. IEEE, 1998.

648. P. Wyckoff , S. McLaug hry, T . Lehman, and D. Ford . T Spaces. IBM Systems
Journal, 37(3) :454-474 , 1998.

649. XOL . Ontology Exchange Language. http:/ /www.ai.sri.com/pkarp/xolj.
650. A. Xu and B. Liskov. A Design for a Fault-Tolerant , Distributed Implemen

tat ion of Linda. In Int ernational Symposium on Fault- Tolerant Computing
(FTCS '89, pages 199-207, Washington , D.C., USA, June 1989. IEEE Com
puter Society Press.

651. F . Ygge and H. Akkermans . Resource-Ori ented Multi-Commodity Market
Algorithms. Autonomous Agents and Multi-Agent Systems , 3(1) :53-72, 2000.

652. Min-Jung Yoo, Walter Merlat, and Jean-Pi erre Briot. Modeling and Valida
tion of Mobile Agents on the Web . In Proceedings of the Int ernational Con
ference on Web-Bas ed Modeling e3 Simulation (SCS West ern MultiConference
on Computer Simulation), San Diego, California, J anuary 1998.

653. B. Yu and M.P. Singh . A socia l mechanism of reputation management in
electronic communit ies. In M. Klusch and L. Kerschberg, editors, CIA-2000
Work shop on Cooperative Information Agents , volum e 1860 of LNAI. Springer,
2000.

654. F . Zambonelli. How to Achieve Modularity in Distributed Object Allocation.
ACM Sigplan Noti ces, 32(6) :75-82 , June 1997.

655. F . Zambonelli. Exploiting Biased Load Information in Direct-Neighbour Load
Balancing Policies . Parallel Computing, 25(6) :745-766, June 1999.

656. F. Zambonelli, N. R. Jennings, and M. Wooldridge. Organisational Abstrac
tions in the Analysis and Design of Multiagent Systems. Int ernational Journal
of Software Engineering and Knowledge Engineering, 2001.

657. Gianluigi Zavattaro. Towards a Hierarchy of Negative Test Op erators for
Generative Communicatio n. In Proceedings of Express '98, volume 16(2) of
Electronic Not es in Th eoretical Computer Scienc e. Elsevier Science, 1998.

658. Gianluigi Zavattaro. Coordination Models and Languages: Semantics and Ex
pressiven ess. PhD thesis, Department of Computer Science, Univ ersity of
Bologna , Italy, February 2000.

659. S. Zenith. Linda coordination language; subsystem kern el architecture (on
transputers) . Technical Report YALEU/DCS/RR-794, Yale Univ ersity, 1990.

660. T . Zhang, T . Magedanz, and S. Covaci. Mobile Agents vs. Intelligent Agents
Interoperability and Integration Issues . In Proceedings of the 4th International
Symposium on Interworking, Ottawa (Canada) , 1998.



About the Authors

Gul Agha is Director of the Open Systems Laboratory at the University
of Illinois at Urbana-Champ aign and Professor in the Department of Com
puter Science. He is Editor-in-Chief of ACM Computing Surveys, and is past
Editor-in-Chief of IEEE Concurrency. Dr. Agha is an ACM International Lec
turer. His research interests include models , languages and tools for parall el
computing and open distributed systems. His other interests include studying
mysticism, in particular the Sufis of Sindh, and campaigning for animal rights
and environmental protection. He received an MS and PhD in computer and
communicat ion science, and an MA in psychology, all from the University of
Michigan, Ann Arbo r, and a BS from the California Institute of Technology.

Farhad Arbab received his PhD in Computer Science from University of
California, Los Angeles in 1982. In 1983 he was a visiting faculty at UCLA,
and joined the faculty of the Computer Science Department at University
of Sothern California in J anuary 1984. He became a senior researcher at the
Dutch national research center for mathematics and compute r science, CWI
(Centre for Mathematics and Computer Science) in Amst erdam, the Nether
lands, in January 1990. His current fields of interest include Coordination
Models and Langu ages, Parallel and Distributed Computing, Visual Pro
gramming Environments , and Constraints Programming. He leads a group
working on design, implementation, and appli cations of Manifold : a coordina
tion language for managing the interactions among cooperating autonomous
concurre nt pro cesses in heterogeneous distributed computing environments.

Paolo Bellavista received his Laurea in Electronic Engineering from the
University of Bologna, Italy, in 1997. He is currently pursuing a Ph.D. in
Computer Science and Engineering at the the Department of Electronics,
Compu ter Science and Systems (DEIS) of the same university. His research
interests include distributed computing, distributed objects, mobile agents ,
network and systems management, adaptive multimedia systems, and dis
t ance learning. He is a student member of the IEEE, ACM and AICA (It alian
Association for Computing).

Nadia Busi is a resear cher working at the Department of Computer Sci
ence at Bologna University. Her interests include concur rency theory, theory



510 About the Authors

and application of Petri nets, semantics and expressiveness of concurrent
languages.

Giacomo Cabri received his Laurea degree in Electronic Engineering from
the University of Bologna and his Ph.D. in Computer Science at the Uni
versity of Modena and Reggio Emilia. His current research interests include
tools and environments for parallel and distributed programming, wide-scale
network applicat ions, and object-oriented programming. Currently, he has a
research contract at the University of Modena and Reggio Emilia. He is a
member of TABOO, the Italian Association for Object-Oriented Program
ming .

Paolo Ciancarini is Associate Professor of Computer Science at the Univ.
of Bologna. His research interests include: coordination languages for agent
basedsystems, programming systems based on distributed objects , advnaced
Web technologies , and formal methods in software engineering. He has been
one of the main proponents of ESPRIT BRA Project COORDINATION on
Coordination models and languages and a co-proponent of the PageSpace
Open LTR proj ect on extending the WWW infrastructure with provisions
for coordinated agent-oriented programming. He is author of more than 100
scientific papers published in international journals and conference pro ceed
ings.

Enrico Denti received his Laurea degree in Electronic Engineering in 1991
and his Ph.D. in Computer Science and Engineering in 1998, both from the
University of Bologna, Italy. His current research interests include coordina
tion models , languages, technologies and infrastructure for agent-based and
Internet-based appli cations, as well as programming languages and software
engineering. Currently, he is a Research Associate at the Department of Elec
tronics, Computer Science and Systems (DEIS) of the University of Bologna.

Dwight Deugo is an Assistant Professor in the School of Computer Science
at Carleton University. He is also the Editor-In-Chief of Java Report. He holds
a Ph.D. degree from Carleton University. Before joining Carleton, he was the
Director of Java Services at The Object People. He has been involved with
all forms of object technology for more than 16 years as a consultant , project
mentor and educator. His research interests include using large numbers of
mobile agents to solve distributed compu ting problems and developing agent
pat terns.

Monica Divitini holds a M.s. in Information Science from the University
of Milano , Italy and a Ph.D. in Computer Science from the University of
Aalborg, Denmark. She is curre ntly employeed as an Associate Professor at
the department of Computer Science of the Norwegian University of Science
and Technology (NTNU) , in Trondheim, Norway. She has previously been



About the Authors 511

senior resear cher at the University of Milano , Italy and at the Risoe National
Laboratory, Denmark. Her main area of expertise is in CSCW , with a focus on
coordination. Her other domains of int erest include user modeling, knowledge
management , software agent s, education.

Timothy Finin is a Professor of Computer Science and Electrical Engi
neering at the University of Maryland Baltimore County. He has had over
25 years of experience in th e applicat ions of Artificial Int elligence to prob
lems in database and knowledge base syst ems, natural language pro cessing,
int elligent interfaces and robotics and is currently working on the theory
and applicat ions of intelligent software agents. He holds an SB degree in EE
from MIT and a PhD in Computer Science from the University of Illinois.
Prior to joining the UMBC , he held positions at Unisys, the University of
Pennsylvania, and the MIT Artificial Int elligence Laboratory.

Roberto Gorrieri (Ms'86, PhD '91 both from Pisa University) is Professor
of Computer Science at the Faculty of Science of the Universty of Bologna.
His research interests include: theory of concurrency and coordinat ion, for
mal methods, security and electronic commerce. Gorri eri is aut hor of more
than 80 papers published in international journals or pro ceedings of interna
tional conferences, and editor of three volumes. He is member of the executive
board of EATCS , secretary of IFIP Technical Committee 1, chair of IFIP WG
1.7 on foundations of security analysis and design, member of IFIP WG 6.1
on architectures and protocols for computer networks , member of the steer
ing commit tee of the Europea n Educ ational Forum, member of the editorial
board of a few journals (TCS- Elsevier, IJIS-Springer) and member of the
steering commit te for some international conferences (ICALP, IEEE CSFW,
Coordination , PAPM, FMOODS) . Gorrieri has taken par t to many research
proj ect s funded by the European Community or by the It alian MURST and
CNR.

Chihab Hanachi is curre nt ly an Associat ed-Professor at the University of
Toulouse 1 (France). He received his Ph.D. thesis in Computer Science from
the University Paul Sabatier (Toulouse III) in 1991. His research interests
are software agents and their applicat ion to information gathering, workflow
and manufacturing syste ms.

Nadeem Jamali is a doctoral candidate in the Open Systems Laboratory
at the University of Illinois at Urbana-Champ aign . His research interests
includ e distributed art ificial intelligence and the theory and design of mul
tiagent systems. He received his BS from the University of Karachi and MS
from Dalhousie University, both in computer science. He was named a Kodak
Fellow in 1998.

Nick Jennings is a professor in th e Department of Electronics and Com
puter Science at Southamp ton University where he carr ies out basic and



512 About the Authors

applied research in agent-based computing. He has helped pioneer the use
of agent-based techniques for real-world applicat ions. He has also made a
number of contributions to the area of agent-based interaction - including:
social rationality, cooperat ion, coordination, negotiation and argumentat ion.
Professor Jennings has been an invited lecturer at numerous national and
international conferences related to agent systems, he has initiated and co
chaired two major international conferences (The Practical Application of
Agents and Mult i-Agent Systems (PAAM) and Autonomous Agents) , and
has initi at ed and co-chaired the Agent Theories, Architectures and Languages
Workshop series . He was the recipient of the Computers and Thought award
(th e premier award for a young AI scientist) in 1999 for his contribution to
practical agent architectures and applications of multi-agent systems (this
is the first time in the award's 30 year history that it has been awarded to
a European). He has published over 110 art icles on various facets of agent
based computing, written one monograph and co-edited four books . He is the
founding editor-in-chief of the International Journal of Autonomous Agents
and Multi-Agent Systems .

Elizabeth A. Kendall is the Sun Microsystems Chair of Network Comput
ing at Monash University. Prof. Kendall has over 20 years of experience in
industry-based and academic research and development in inform ation tech
nology, with emphasis on obj ect technology and distributed/ networked ap
plications. For 11 years , she was a Senior Research Engineer at major research
laboratories in the USA, including Xerox and Lockheed. Prof. Kendall holds
B.S., M. S., and PhD degrees from the Massachusetts Institute of Technol
ogy and th e Californi a Institute of Technology. She has carried out significant
research in agent systems, patterns, and role models. She spent 1998 as a Se
nior Research Fellow in Intelligent Business Syst ems at BT (British Telecom)
Laboratories in England.

Matthias Klusch is a Senior Research er in the Multi-Agent Systems Group
at the German Research Cent er for Artificial Intelligence and an Assistant
Professor in the Artificial Intelligence Department at Free University of Ams
terdam. He is coordinating the Special Int erest Group on Intelligent Informa
tion Agents as part of the European Network of Excellence for Agent-Based
Computing (AgentLink), and the founder and general chair of the interna
tional workshop series on Cooperative Information Agents (CIA). He holds a
PhD in Computer Science from University of Kiel, Germany, and spent 1998
as a visiting research scientist at Carnegie Mellon University in Pittsburgh,
USA. Dr. Klusch is a co/editor of seven books, co/author of numerous pa
pers and several tutorials, program committee member of major conferences
in the field, and is on the editorial board of the Semantic Web journal. His
past and current research focuses on the applicat ion of Artificial Intelligence
and agent technology to advanced database and information syst ems in th e
Internet and Web.



About the Authors 513

Yannis Labrou is Director of Technology at Powermarket , Inc., a Silicon
Valley Business-to-Business startup and a Visiting Assistant Professor at
the Computer Science and Elect rical Engineering Department , University of
Maryl and, Baltimore County (UMBC). He holds a PhD in Computer Science
from UMBC (1996) and a Diploma in Physics from th e University of Ath ens,
Greece. Dr. Labrou's research focuses on intelligent agents, an area in which
he has been actively involved for the past 8 years. Dr. Labrou is a founding
memb er of th e FIPA Academy and has been an act ive participant in the
development of the FIPA specifications for software agents standa rds. Prior
to joining UMBC, Dr. Labrou worked as an intern at the Intelligent Network
Technology group of t he LB.M. T ..L Watson Resear ch Center.

Markus Lumpe works as a resear ch and teaching assistant in the Software
Comp osition Group at the Institute for Compute r Science and Applied Math
ematics of the University of Bern e, Switzerland. He is interested in the design
and implementation of object-oriente d and component-oriented languages us
ing fully object-oriented compiler const ruc tion techniques. He completed his
lVLSc. in 1990 at th e University of Dresden and his Ph.D. in 1999 at the Uni
versity of Berne. He worked in indust ry in the area of obj ect-oriented system
design and implementation. He joined th e Software Composition Group in
fall 1994.

Thomas Magedanz acts as an assistant professor at the Depar tment for
Open Communication Systems (OKS) of the Technical University Berlin
since 1989, with focus on dist ributed inform ation technologies and advanced
te lecommunication systems. In addit ion , he works since 1998 as technical di
rector of th e IKV++ GmbH , a star t up company origina t ing from GMD
FOKUS, where he is leading the development of advanced telecommuni
cations middl eware products and applications. One famous product is the
Grasshopper Agent Platform. He is working on IN evolut ion and advanced
telecommunicat ions middl eware since more than ten years and thus he is an
intern ationally recognised expert in t his area. He is a member of the IEEE,
editorial board member of several journals, and the aut hor of more than 100
technical pap ers/articles related to IN st andards and IN evolut ion. He also
produced several special issues related to te lecommunications middl eware
within various journals. He is th e author of the first international book on IN
standa rds, published in 1996, and he recently published in th e IEEE commu
nications magazine in June 2000 an IN evolut ion feature topic. Fur th ermore,
he is an regularl y invited tut orial speaker at major intern ational IN event s
and conferences as he is famous for his comprehensive investigations and
"easy to diggest " style of present ations. He also provides on demand onsite
seminars as well as consultancy on IN relat ed topics for different operators
and vendors.



514 About the Authors

Eric Monfroy received his Ph.D. in Computer Science from the University
Henry Poincare-Nancy 1 in 1996. His research interests include constraint
programming, languages and systems for constraint solver collaboration, de
sign of constraint solvers and languages, combination of constraint solvers
and symbolic transformations, and coordination languages.

Oscar Nierstrasz is Professor of Computer Science at the Institute of Com
puter Science and Applied Mathematics of the University of Berne where he
leads the Software Composition Group. He is interested in all aspects of
component-oriented software technology, and particularly in the design and
implementation of high-level specification languages and tools to support
reusability and evolution of open applications. He completed his M.Sc. in
1981 and his Ph.D. in 1984 in the area of Office Information Systems at the
University of Toronto. He worked at the Institute of Computer Science in
Crete (1985), and in the Object Systems Group at the Centre Universitaire
d'Informatique of the University of Geneva, Switzerland (1985-1994).

Andrea Omicini is a Research Associate and a Professor of Computer Sci
ence at the University of Bologna, Italy. He received his Laurea degree in
Electronic Engineering in February 1991 and his PhD in Computer Science
in November 1995, both from the University of Bologna. His research inter
ests include logic, constraint, and object-oriented programming, multiagent
systems, coordination models and languages, as well as intelligent system en
gineering. He has published over fifty articles on those subjects, and has held
several tutorials on coordination models and languages at international con
ferences. He has organised and chaired international conferences and work
shops, and is currently serving as the Program Chair of the Special Track on
Coordination Models, Languages and Applications of the ACM Symposium
on Applied Computing. He is a member of ACM, IEEE CS, GULP - ALP,
and AI*IA - ECCAI.

George A. Papadopoulos (Ph.D .) holds the (tenured) rank of Associate
Professor in the Department of Computer Science. He has participated in
a number of international and national projects (namely ESPRIT, MED
CAMPUS, INCO, LEONARDO DA VINCI, etc .) , both as a researcher or
partner, and as a (co-)coordinator. His research interests include modelling
and design of multimedia systems, development of web-based distance learn
ing and training environments, parallel programming and high performance
computing, electronic commerce, cooperative information systems, software
engineering and mobile computing. He has published over 50 papers as
book chapters or in internationally refereed journals and conferences . He
has been involved in the organisation of about 30 international conferences
and has served in the Editorial Board of 5 international journals. Professor
Papadopoulos is a recipient of an 1995 ERCIM-HCM scholarship award.



About the Authors 515

Davide Rossi received his Laurea degree in Computer Science from the
University of Bologna and his Ph.D. in Computer Science from a consort ium
between the University of Bologna, University of Padua and the University of
Venice. His research interest include coordination models and languages, soft
ware architec t ures for distributed collabora t ive applicat ion , programmable,
document-based, collaborative platforms. Currently, he has a research con
tract at the University of Bologna.

Antony Rowstron is curre ntly a resear cher at Microsoft Research Ltd.,
Cambridge, UK. After complet ing a Ph.D. in Computer Science at th e Uni
versity of York, UK, in 1996 he moved to the Computer Laboratory at Cam
bridge University as a Research Associate in the Open Media Research Group.
Subsequently, he moved to the Engineering Depar tment at Cambridge Uni
versity as a Senior Research Associate, where he was one of th e found ing
members of the Laboratory for Communication Engineering and was prin
cipal investigator for the UK RoboCup 1998 robot football team . In 1999
he moved to Microsoft Research. His research interest s over the last seven
years have focused on coordinat ion langu ages: developing tuple space based
coordinat ion languages (WCL and Bonita) and extensions to Linda, novel
run-times to support t hem, and invest igating mobile code for faul t tolerance
in Linda-like languages. Currently, his research interes ts are focused on using
adaptation in middl eware systems based on the inform ation or data managed
within the middl eware.

Jean-Guy Schneider works as a research and teaching assistant in the Soft
ware Composition Group at the Institute for Computer Science and Applied
Mathematics of th e University of Berne, Switzerland. His main interests are
in obj ect-oriented and parallel programming, scripting languages, and the
definition of formal methods for component-based software engineering. He
completed both his M.Sc. in Computer Science in 1992 and his Ph.D. in 1999
at the University of Berne. He has been working for the Software Composition
Group since 1994.

R. Scott Cost is a Visiting Research Assist an t Professor in the Computer
Science and Electrical Engineering Department of the University of Mar yland
Baltimore County, where he received his Ph.D. in 1999. His resear ch interests
include conversation modeling and agent communication, and the application
of agent- based approaches to inform ation retrieval and elect ronic commerce.
Dr . Cost also holds and M.S.E. from Johns Hopkins University and an A.B.
from Colgate University.

Christophe Sibertin-Blanc is member of t he IRIT (Ins titut de Recherche
en Informatique de Toulouse) research Laboratory and Professor at the
Toulouse 1 University. He received is Ph.D. thesis in Computer Science from
the Engineering School ENSEEIHT, Toulouse, in 1984. His main domain



516 About the Authors

of research is in the integration of concepts from both the Petri net the
ory and the Object-Oriented approach: definition of appropriate formalisms ,
system modelling, system validation and implementation of tools. His other
domains of interest include Software Engineering, modelling methodologies,
Data bases.

Katia P. Sycara is a Professor in the School of Computer Science at
Carnegie Mellon University. She has more than 20 years experinec in research
and application of advnaced information systems technology, in particular
multiagent systems. She holds a B.S, MS and PhD from Brown University,
University of Wisconsin and the Georgia Institute of Technology respectively.
She has authored or co-authored over 150 technical papers, has given many
keynote talks and tutorials, and has been organizer and program committee
member for many conferences . She has served as the General Chair of the
Second International Conference on Autonomous Agents (Agents 98). She
is a founding member and on the Board of Directors of the International
Foundation of Multiagent Systems and Chair of the Steering Committee of
the Autonomous Agents Conference. She is a Founding Editor-in-Chief of the
Journal "Autonomous Agents and Multi Agent Systems"; an Editor-in-Chief
of the Springer Series on Agents ; on the Editorial Board of the Kluwer series
on Multi Agent Systems; the Area Editor for AI and Management Science for
the journal "Group Decision and Negotiation" and on the Editorial Board
of the Semantic Web journal. She has served as member of the AAAI Exec
utive Council, and is the Scholarship Chair of the American Association for
Artificial Intelligence.

Robert Tolksdorfis Assistant Professor at the study group Formal models,
Logic and Programming at the Technical University of Berlin, Department
for Computer Science. He received his Dr.-Ing. in Computer Science from
the TU Berlin in 1995. His research interests include coordination languages,
open distributed systems, and Web-technology. He is author of several pa
pers published in international journals, conferences proceedings, or as book
chapters. He authored several german books on Web-technologies and is edi
tor of an book series on XML technologies. He serves as program committee
member for various conferences and workshops. He is member of the steer
ing committee for the conferences on Coordination Models, Languages and
Systems and general Chair of the IEEE WET ICE 2001 conference . He is
member and co-proposer of various EU funded activities, including the net
works Agentlink II and Coordina.

Carlos Varela is a doctoral candidate in the Open Systems Laboratory at
the University of Illinois at Urbana-Champaign. His research interests include
web-based computing, concurrent and distributed systems, and active object
oriented programming languages. He expects to receive his Ph.D. in computer



About the Authors 517

science in 2000. He received a BS in computer science with honors from the
University of Illinois at Urbana-Champaign in 1992.

Michael Weiss is an assistant professor at Carleton University. He joined
the School of Computer Science after a five year stint in industry following
his PhD. His research interests are electronic commerce , agent patterns, and
Internet applications. Most recently, he lead the Advanced Applications group
within the Strategic Technology group of Mitel Corporation. At Mitel he was
responsible for demonstrating the use of agent technology for managing the
complexity of call control software , and for promoting Java and XML within
the company. He obtained his PhD on agent-mediated collaborative design
from the University of Mannheim, Germany in 1993.

Michael Wooldridge is Professor of Computer Science in the Department
of Computer Science at the University of Liverpool, UK. He has been active in
the research and development of multi-agent systems for ten years, gaining his
PhD for work in the theoretical foundations of multi-agent systems from the
University of Manchester, UK in 1992. Prof Wooldridge has published many
articles in the theory and practice of agent-based systems, and has edited
eight books in the area. He has served on many program committees for
conferences and workshops in the area, and is a director of the International
Foundation for Multi-Agent Systems (IFMAS) . He also serves as an associate
editor of the International Journal of Autonomous Agents and Multi-Agent
Systems (Kluwer), and an editorial board member for the Journal of Applied
AI (Taylor & Francis). He is coordinator of AgentLink, the ESPRIT-funded
European Network of Excellence in the area of agent-based computing (see
http://www.AgentLink.org/) .

Franco Zambonelli is Research Associate and Professor of Computer Sci
ence at the University of Modena and Reggio Emilia, Italy. His current re
search interests include : parallel and distributed programming, coordination
models and architectures for the Internet. He received his Laurea degree in
Electronic Engineering in 1992 and his PhD in Computer Science in 1997,
both from the University of Bologna. He is the secretary of the Italian Asso
ciation for Object-Oriented Programming and a member of ACM, IEEE CS
and EUROMICRO.

Gianluigi Zavattaro got Ms'94 and PhD'2000 in Computer Science from
the Department of Computer Science of Bologna University. His research
interests include concurrency theory, semantics and expressiveness of coordi
nation languages, formal methods, and models for object-oriented distributed
programming. He is author of several papers published in international jour
nals , proceedings of conferences, or as chapters in books .



List of Contributors

Gul Agha
Open Systems Lab
Department of Computer Science
University of Illinois
at Urbana Champaign
1304 W. Springfield Ave.
IL 61801, USA
agha@cs.uiuc.edu

Farhad Arbab
CWI
Kruislaan 413, 1098 SJ Amsterdam
The Netherlands
Farhad.Arbab@cwi.nl

Tamer Basar
Department of Computer Science
Dartmouth College
6211 Sudikoff Laboratory
Hanover, NH 03755-3510 , USA

Paolo Bellavista
Dipartirnento di Elettronica
Informatica e Sistemistica
Universita di Bologna
Viale Risorgimento 2
1-40136 Bologna, Italy
pbellavista@deis.unibo.it

Jonathan Bredin
Department of Computer Science
Dartmouth College
6211 Sudikoff Laboratory
Hanover, NH 03755-3510 , USA
jonathan@cs.dartmouth.edu

Nadia Busi
Dept. di Scienze dell'Informazione
Universita di Bologna
Mura Anteo Zamboni 7
1-40127 Bologna, Italy
busi @cs.unibo.it

Ciaran Bryce
Centre Universitaire d 'Informatique
Universite de Ceneve
24, rue General-Dufour
CH-1211 Geneve 4 , Switzerland
Ciaran.Bryce@cui .unige.ch

Giacomo Cabri
Dept. di Scienze dell 'Ingegneria
Univ. di Modena e Reggio Emilia
Via Campi 213b
1-41100 Modena, Italy
giacomo.cabri@unimo.it

Paolo Ciancarini
Dept. di Scienze dell 'Inforrnazione
Universit'a di Bologna
Mura Anteo Zamboni 7
1-40127 Bologna, Italy
cianca@cs.unibo.it

R. Scott Cost
Dept. of Computer Science and
Electrical Engineering
University of Maryland
Baltimore County
Baltimore, Maryland 21250
cost @csee.umbc.edu



520 List of Contributors

Marco Cremonini
Dipartimento di Elettronica
Informatica e Sistemistica
Universit a di Bologna
Viale Risorgimento 2
1-40136 Bologna, Italy
mcremonini@deis.unibo.it

Enrico Denti
Dipar tim ento di Elet tronica
Informatica e Sistemistica
Universita di Bologna
Viale Risorgimento 2
1-40136 Bologna, It aly
edent i@deis.unibo.it

Dwight Deugo
School of Computer Science
Carl eton University
1125 Colonel By Drive
Ottawa, Ontario , Canada , K1S 5B6
deugo@scs.carl eton.ca

Monica Divitini
Norwegian University of Science and
Technology
Monica.Divitini@idi.ntnu.no

Tim Finin
Department of Computer Science and
Electrical Engineering
Universi ty of Maryland
Balt imore County
Baltimore, Maryl and 21250
finin@csee.umbc.edu

Martin Fredriksson
Dept. of Software Engineerin g
and Computer Science
University of KarlskronajRonneby
S-37225 Ronneby, Sweden
mfe@ipd.hk-r. se

Roberto Gorrieri
Dept. di Scienze dell'Informazione
Universit a di Bologna
Mura Anteo Zamboni 7
1-40127 Bologna, Italy
gorr ieri@cs.unibo.it

Rune Gustavsson
Dept . of Software Engineerin g
and Computer Science
University of KarlskronajRonneby
S-37225 Ronn eby, Sweden
rgu @ipd.hk-r. se

Chihab Hanachi
University Toulouse I
Place Anatole France
31042 Toulouse, France
hanachi@univ-tlse1.fr

Cagri Imer
Depar tment of Computer Science
Dartmouth College
6211 Sudikoff Laboratory
Hanover , NH 03755-3510, USA

N adeem J arnali
Open Syst ems Lab
Depar tment of Computer Science
University of Illinois
at Urbana Champaign
1304 W. Springfield Ave.
IL 61801, USA
jamali@cs.uiu c.edu

Nicholas R. Jennings
Department of Electronics and
Compute r Science
University of Southampton
Highfield, Southampton
S017 lBJ , UK
nrj @ecs.soton.ac.uk



Elizabeth Kendall
Sun Microsystems
Chair of Network Computing
School of Network Computing
Monash University
Peninsula Campus, McMahons Rd .
Frankston, VIC 3199 Australia
kendall@infotech .monash.edu.au

Matthias Klusch
DFKI GmbH
German Research Center for AI
Multi-Agent Systems Group
Stuhlsatzenhausweg 3
D-66123 Saarbriicken, Germany
klusch@dfkLde

David Kotz
Department of Computer Science
Dartmouth College
6211 Sudikoff Laboratory
Hanover, NH 03755-3510, USA
dfk@cs.dartmouth.edu

Yannis Labrou
Department of Computer Science and
Electrical Engineering
University of Maryland
Baltimore County
Baltimore, Maryland 21250
jklabrou@csee.umbc.edu

Markus Lumpe
Institute of Computer Science
and Applied Mathematics (lAM)
University of Berne
Neubriickstrasse 10
CH-3012 Bern, Switzerland

Thomas Magedanz
IKV++ GmbH
Bernburger Strasse 24-25
D-10963 Berlin, Germany
magedanz@ikv.de

List of Contributors 521

Rajiv T. Maheswaran
Department of Computer Science
Dartmouth College
6211 Sudikoff Laboratory
Hanover, NH 03755-3510 , USA

Ronaldo Menezes
Univ. of Ulster at Magee College
Faculty of Informatics
Northland Road
BT48 7JL Derry, UK
r .menezes@ulst.ac .uk

Eric Monfroy
IRIN
Facult des Sciences
2, rue de la Houssinire
B.P.92208
F-44322 Nantes Cedex 3
France
Eric.Monfroy@irin.univ-nantesJr

Amy L. Murphy
Department of Computer Science
Washington University
Campus Box 1045
One Brookings Drive
Saint Louis, MO 63130-4899, USA
alm@cs.wustl.edu

Oscar Nierstrasz
Institute of Computer Science
and Applied Mathematics (lAM)
University of Berne
Neubriickstrasse 10
CH-3012 Bern, Switzerland

Andrea Omicini
Dipartimento di Elettronica
Informatica e Sistemistica
Universita di Bologna
Viale Risorgimento 2
1-40136 Bologna, Italy
aomicini@deis.uni bo.i t



522 List of Contributors

George A. Papadopoulos
Department of Computer Science
University of Cyprus
75 Kallipoleos Street
P.O. Box 20537
CY-1678 Nicosia, Cyprus
george@cs.ucy.ac.cy

Gian Pietro Picco
Dipt . di Elettronica e Informazione
Politecnico di Milano
P.za Leonardo da Vinci 32
20133 Milano , Italy
picco@elet.polimLit

Gruia-Catalin Roman
Department of Computer Science
Washington University
Campus Box 1045
One Brookings Drive
Saint Louis, MO 63130-4899, USA
roman @cs.wustl.edu

Davide Rossi
Dipt. di Scienze dell'Informazione
Universita di Bologna
Mura Anteo Zamboni 7
1-40127 Bologna, Italy
rossi@cs.unibo.it

Antony Rowstron
Microsoft Resear ch
1 Guildhall Street
Cambridge, CB2 3HN, UK
antr@microsoft. com

Daniela Rus
Department of Computer Science
Dartmouth College
6211 Sudikoff Laboratory
Hanover , NH 03755-3510, USA
rus@cs.dartmouth.edu

Jean-Guy Schneider
Institute of Compu ter Science
and Applied Mathematics (lAM)
University of Berne
Neubriickstrasse 10
CH-3012 Bern , Switzerland

Christophe Sibertin-Blanc
IRIT/University Toulouse I
Place Anatole France
31042 Toulouse, France
sibertin@univ-tlsel.fr

Katia P . Sycara
Carnegie Mellon University
The Robotics Institute
5000 Forbes Ave
Pittsburgh PA 15213, USA
katia@cs.cmu.edu

Robert Tolksdorf
Technische Universitat Berlin
Fachbereich Informatik, FLP/KIT
Sekr . FR 6-10, Franklinstr. 28/29
D-10587 Berlin , Germany
tolk@cs.t u-berlin.de

Carlos Varela
Open Systems Lab
Department of Computer Science
University of Illinois
at Urbana Champaign
1304 W. Springfield Ave.
IL 61801, USA
cvarela@cs.uiuc.edu

Michael Weiss
School of Computer Science
Carleton University
Ottawa, Canada
weiss@scs.carleton.ca



Alan M. Wood
University of York
Depar tment of Compu ter Science
Heslington , York, YOlO 5DD, UK
wood@cs.york.ac.uk

Michael J. Wooldridge
Department of Computer Science
University of Liverpool
Liverpool L69 7ZF, UK
M.J .Wooldrid ge@csc.liv.ac.uk

Franco Zambonelli
Dipartimento di Scienze dell'lngegneria
Universita di Modena e Reggio Emilia
Via Campi 213b
1-41100 Modena, It aly
franco .zambonelli@unimo.it

Gianluigi Zavattaro
Dipartimento di Scienze dell'Informazione
Universita di Bologna
Mura Anteo Zamboni 7
1-40127 Bologna, It aly
zavattar @cs.unibo.it

List of Contributors 523




