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Chapter 1

Introduction

Fatti non foste a viver come bruti ma per seguir virtute e canoscenza

You were not made to live like beasts, but to follow virtue and knowledge.

(Dante Alighieri)

1.1 Learning and Intelligent Optimization: a prairie fire

Almost by definition, optimization, the automated search for improving solutions, is

a source of a tremendous power for continually improving processes, decisions, prod-
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1.1. LEARNING AND INTELLIGENT OPTIMIZATION: A PRAIRIE FIRE

ucts and services. This is related to decision making (picking the best among a set of

given possible solutions) but goes beyond that, by actively searching for and creatively

generating new solutions.

Almost all business problems can be formulated as finding an optimal decision x

in order to maximize a measure goodness(x). For a concrete mental image, think of x
as a collective variable x = (x1, . . . , xn) describing the settings of one or more knobs to

be rotated, choices to be made, parameters to be fixed. In marketing, x can be a vector

of values specifying the budget allocation to different campaigns (TV, web, newspa-

pers), goodness(x) can be a count of the new customers generated by the campaign. In

website optimization, x can be related to using images, links, topics, text of different

size, goodness(x) can be the conversion rate from a casual visitor to a customer. In

engineering, x can be the set of all design choices of a car motor, goodness(x) can be

the miles per gallon travelled.

Formulating a problem as “optimize a goodness function” also helps by encouraging

decision makers to use quantitative goals, to understand intents in a measurable

manner, to focus on policies more than on implementation details. Getting stuck

in implementations at the point of forgetting goals is a plague infecting businesses and

limiting their speed of movement when external conditions change.

Automation is the key: after formulating the problem, deliver the goodness model

to a computer which will search for one or more optimal choices. And when conditions

or priorities change, just revise the goals and restart the optimization process, et voilà.

To be honest, CPU time is an issue and globally optimal solutions are not always guar-

anteed, but for sure the speed and latitude of the search by computers surpass human

capabilities by a huge and growing factor.

But the enormous power of optimization is still largely stifled in most real-world

contexts. The main reason blocking its widespread adoption is that standard mathe-

matical optimization assumes the existence of a function to be maximized, in other

words, an explicitly defined model goodness(x). Now, in most real-world business con-

texts this function does not exist or is extremely difficult and costly to build by hand.

Try asking a CEO “Can you please tell me the mathematical formula that your business

is optimizing?”, probably this is not the best way to start a consultancy job. For sure,

a manager has some ideas about objectives and tradeoffs, but these objectives are not

specified as a mathematical model, they are dynamic, changing in time, fuzzy and sub-

ject to estimation errors and human learning processes. Gut feelings and intuition are

assumed to substitute clearly specified, quantitative and data-driven decision processes.

If optimization is fuel, the match to light the fire is machine learning. Machine

learning comes to the rescue by renouncing to a clearly specified goal goodness(x): the

model can be built by machine learning from abundant data.

Learning and Intelligent Optimization (LION) is the combination of learning

from data and optimization applied to solve complex and dynamic problems. The LION
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1.2. SEARCHING FOR GOLD AND FOR PARTNERS

way is about increasing the automation level and connecting data directly to decisions

and actions. More power is directly in the hands of decision makers in a self-service

manner, without resorting to intermediate layers of data scientists. LION is a complex

array of mechanisms, like the engine in an automobile, but the user (driver) does not

need to know the inner-workings of the engine in order to realize tremendous benefits.

LION’s adoption will create a prairie fire of innovation which will reach most businesses

in the next decades. Businesses, like plants in wildfire-prone ecosystems, will survive

and prosper by adapting and embracing LION techniques, or they risk being transformed

from giant trees to ashes by the spreading competition.

The questions to be asked in the LION paradigm are not about mathemati-

cal goodness models but about abundant data, expert judgment of concrete options

(examples of success cases), interactive definition of success criteria, at a level which

makes a human person at ease with his mental models. For example, in marketing,

relevant data can describe the money allocation and success of previous campaigns, in

engineering they can describe experiments about motor designs (real or simulated) and

corresponding fuel consumption.

1.2 Searching for gold and for partners

Machine learning for optimization needs data. Data can be created by the previous

history of the optimization process or by feedback by decision makers.

Figure 1.1: Danie Gerhardus Krige, the inventor of Kriging.

To understand the two contexts, let’s start with two concrete examples. Danie G.

Krige, a South African Mining Engineer, had a problem to solve: how to identify the
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1.2. SEARCHING FOR GOLD AND FOR PARTNERS

best coordinates x on a geographical map where to dig gold mines [30]. Around 1951

he began his pioneering work on applying insights in statistics to the valuation of new

gold mines, using a limited number of boreholes. The function to be optimized was a

glittering Gold(x), the quantity of gold extracted from a mine at position x. For sure,

evaluating Gold(x) at a new position x was very costly. As you can imagine, digging

a new mine is not a quick and simple job. But after digging some exploratory mines,

engineers accumulate knowledge in the form of examples relating coordinates x1, x2,

x3. . . and the corresponding gold quantities Gold(x1), Gold(x2), Gold(x3). Krige’s

intuition was to use these examples (data about the previous history of the optimiza-

tion process) to build a model of the function Gold(x), let’s call it ModelGold(x), which

could generalize the experimental results (by giving output values for each position x),

and which could be used by an optimizer to identify the next point to dig, by finding the

position xbest maximizing ModelGold(x).

Figure 1.2: Kriging method constructing a model from samples. Some samples are

shown as red dots. Height and color of the surface depend on gold content.

Think of this model as starting from “training” information given by pins at the

boreholes locations, with height proportional to the gold content found, and building a

complete surface over the geographical area, with height at a given position proportional

to the estimated gold content (Fig. 1.2). Optimizing means now identifying the highest

point on this model surface, and the corresponding next position where to dig the next

mine.
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1.3. ALL YOU NEED IS DATA

This technique is now called Kriging and it is based on the idea that the value at an

unknown point should be the average of the known values at its neighbors, weighted by

the neighbors’ distance to the unknown point. Gaussian processes, Bayesian inference,

splines refer to related techniques.

For the second example about getting feedback by decision makers, let’s imagine

a dating service: you pay and you are delivered a contact with the best possible partner

from millions of waiting candidates. In Kriging the function to be optimized exists, it is

only extremely difficult to evaluate. In this case, it is difficult to assume that a function

CandidateEvaluation(x) exists, relating individual characteristics x like beauty, intelli-

gence, etc. to your individual preference. If you are not convinced and you think that

this function does exist, as a homework you are invited to define in precise mathematical

terms the CandidateEvaluation for your ideal partner. Even assuming that you can iden-

tify some building blocks and make them precise, like Beauty(x) and Intelligence(x),
you will have difficulties in combining the two objectives a priori, before starting the

search for the optimal candidate. Questions like: “How many IQ points are you willing

to sacrifice for one less beauty point?” or “Is beauty more important than intelligence

for you? By how much?” will be difficult to answer. Even if you are tortured and deliver

an initial answer, for sure you will not trust the optimization and you will probably like

to give a look at the real candidate before paying the matching service and be satisfied.

You will want to know the x and not only the value of the provisional function the sys-

tem will optimize. Only after considering different candidates and giving feedback to

the matching service you may hope to identify your best match.

In other words, some information about the function to be optimized is missing at

the beginning, and only the decision maker will be able to fine-tune the search process.

Solving many if not most real-world problems requires iterative processes with learn-

ing involved. The user will learn and adjust his preferences after knowing more and

more cases, the system will build models of the user preferences from his feedback.

The steps will continue until the user is satisfied or the time allocated for the decision is

finished.

1.3 All you need is data

Let’s continue with some motivation for business users. If this is not your case you can

safely skip this part and continue with Section 1.6.

Enterprises are awash in big data. With the explosion in social network usage,

rapidly expanding e-commerce, and the rise of the internet of things, the web is cre-

ating a tsunami of structured and unstructured data, driving more than $200 billion in

spending on information technology through 2016. Recent evidence also indicates a de-

cline in the use of standard business intelligence platforms as enterprises are forced to

consider a mass of unstructured data that has uncertain real-world value. For example,
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1.4. BEYOND TRADITIONAL BUSINESS INTELLIGENCE

social networks create vast amounts of data, most of which resists classification and the

rigid hierarchies of traditional data. How do you measure the value of a Facebook Like?

Moreover, unstructured data requires an adaptive approach to analysis. How does the

value of a Like change over time? These questions are driving the adoption of advanced

methodologies for data modeling, adaptive learning, and optimization.

LION tools bring a competitive edge to the enterprise by facilitating interaction

between domain experts, decision makers, and the software itself. Programmed with

“reactive” algorithms, the software is capable of self-improvement and rapid adaptation

to new business objectives. The strength in this approach lies in abilities that are often

associated with the human brain: learning from past experiences, learning on the job,

coping with incomplete information, and quickly adapting to new situations.

This inherent flexibility is critical where decisions depend on factors and priorities

that are not identifiable before starting the solution process. For example, what factors

should be used and to what degree do they matter in scoring the value of a marketing

lead? With the LION approach, the answer is: “It doesn’t matter.” The system will

begin to train itself, and successive data plus feedback by the final user will rapidly

improve performance. Experts —in this case marketing managers— can further refine

the output by contributing their points of view.

1.4 Beyond traditional business intelligence

Every business has two fundamental needs from their data:

1. to understand their current business processes and related performance;

2. to improve profitability by making informed and rational decisions about critical

business factors.

Traditional business intelligence excels at mapping and recording (or visualizing)

historical performance. Building these maps meant hiring a top-level consultancy or

on-boarding of personnel specifically trained in statistics, analysis, and databases. Ex-

perts had to design data extraction and manipulation processes and hand them over to

programmers for the actual execution. This is a slow and cumbersome process when

you consider the dynamic environment of most businesses.

As a result, enterprises relying heavily on BI are using snapshots of performance

to try to understand and react to conditions and trends. Like driving a car by looking

into the rearview mirror, it’s most likely that you’re going to hit something. For the

enterprise, it appears that they already have hit a wall of massive, unexpected, semi-

structured data. The projected IT spending for the next four years in big data reflects
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1.5. IMPLEMENTING LION

how hard the collision has been 1. Enterprises are scrambling to replace antiquated

technologies with those that can make sense of the present and provide guidance for the

future.

Predictive analytics does better in trying to anticipate the effect of decisions, but the

real power comes from the integration of data-driven models with optimization, the

automated search for improving solutions. From the data directly to the best improving

plan, from actionable insight to actions!

1.5 Implementing LION

The steps for fully adopting LION as a business practice will vary depending on the

current business state, and most importantly, the state of the underlying data. It goes

without saying that it is easier and less costly to introduce the paradigm if data capture

has already been established. For some enterprises, legacy systems can prove quite

costly to migrate, as there is extensive cleaning involved. This is where skilled service

providers can play a valuable role.

Beyond cleaning and establishing the structure of the underlying data, the most im-

portant factor is to establish collaboration between the data analytics team and their

business end-user customers. By its nature, LION presents a way to collectively dis-

cover the hidden potential of structured and semi-structured data stores. The key in

having the data analytics team work effectively alongside the business end-user is to

enable changing business objectives to quickly reflect into the models and outputs. The

introduction of LION methods can help analytics teams generate radical changes in the

value-creation chain, revealing hidden opportunities and increasing the speed by which

their business counterparts can respond to customer requests and to changes in the mar-

ket.

The LION way is a radically disruptive intelligent approach to uncover hidden

value, quickly adapt to changes and improve businesses. Through proper planning

and implementation, LION helps enterprises to lead the competition and avoid being

burned by wild prairie fires.

1See for example reports by Gartner, a leading information technology research and advisory com-

pany.
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1.6. A “HANDS ON” APPROACH

1.6 A “hands on” approach

Because this book is about (machine) learning from examples we need to be co-

herent: most of the content follows the learning from examples and learning by doing

principle. The different techniques are introduced by presenting the basic theory, and

concluded by giving the “gist to take home”. Experimentation on real-world cases is

encouraged with the examples and software in the book website. This is the best way to

avoid the impression that LION techniques are only for experts and not for practitioners

in different positions, interested in quick and measurable results.

Some of the theoretical parts can be skipped for a first adoption. But some knowl-

edge of the theory is critical both for developing new and more advanced LION tools

and for a more competent use of the technology. We tried to keep both developers and

final users in mind in our effort.

Accompanying data, instructions and short tutorial movies will be posted on the

book website http://lionsolver.com/LIONbook.

Wikipedia has been mined for some standard statistical and mathematical results,

and for some explanatory images. A sign of gratitude goes to the countless contributors

of this open encyclopedic effort (including the sons of the authors). Venice photo by

LION4@VENICE 2010. Dante’s painting in the Introduction by Domenico di Miche-

lino, Florence, 1465. Brain drawing in the Neural Networks chapter by Leonardo da

Vinci (14521519). Photo of prof. Vapnik in the SVM chapter from Yann LeCun. Venice

painting in the Democracy chapter by Canaletto, 1730. Painting in the Clustering chap-

ter by Michelangelo Buonarroti (Sistine Chapel), 1541. Painting in Appendix B by

Giacomo Balla, Form-Spirit Transformation, 1918, Appendix C Kandinsky, Several

Circles, 1926, Appendix D Umberto Boccioni, The City Rises, 1910. A detailed list

of references for the images will appear here in the final version of this free book.

Last but not least, we are happy to acknowledge the growing contribution of our

readers to the quality of this free book including Drake Pruitt, Dinara Mukhlisullina,

Antonio Massaro, Fred Glover, Patrizia Nardon, Yaser Abu-Mostafa, Marco Dallar-

iva, Enrico Sartori, Danilo Tomasoni, Nick Maravich, Jon Lehto, George Hart, Markus
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1.6. A “HANDS ON” APPROACH

Dreyer. This list is updated periodically, please email the authors if your name is miss-

ing.
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Chapter 2

Lazy learning: nearest neighbors

Natura non facit saltus

Nature does not make jumps

If you still remember how you learnt to read, you have everything it takes to un-

derstand learning from examples, in particular supervised learning. Your parents and

your teachers presented you with examples of written characters (“a”,“b”,“c”. . . ) and

told you: This is an “a”, this is a “b”, . . .

For sure, they did not specify mathematical formulas or precise rules for the geom-

etry of “a” “b” “c”. . . They just presented labeled examples, in many different styles,

forms, sizes, colors. From those examples, after some effort and some mistakes, your

brain managed not only to recognize the examples in a correct manner, which you can

do via memorization, but to extract the underlying patterns and regularities, to filter out
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Figure 2.1: Mushroom hunting requires classifying edible and poisonous species (public
domain image by George Chernilevsky).

irrelevant “noise” (like the color) and to generalize by recognizing new cases, not seen

during the training phase. A natural but remarkable result indeed. It did not require

advanced theory, it did not require a PhD. Wouldn’t it be nice if you could solve busi-

ness problems in the same natural and effortless way? The LION unification of learning

from data and optimization is the way and we will start from this familiar context.

In supervised learning a system is trained by a supervisor (teacher) giving labeled

examples. Each example is an array, a vector of input parameters x called features

with an associated output label y.

The authors live in an area of mountains and forests and a very popular pastime

is mushroom hunting. Popular and fun, but deadly if the wrong kind of mushroom is

eaten. Kids are trained early to distinguish between edible and poisonous mushrooms.

Tourists can buy books showing photos and characteristics of both classes, or they can

bring mushrooms to the local Police and have them checked by experts for free.

Let’s consider a simplified example, and assume that two parameters, like the height

and width of the mushrooms are sufficient to discriminate them, as in Fig. 2.2. In

general, imagine many more input parameters, like color, geometrical characteristics,

smell, etc., and a much more confused distribution of positive (edible) and negative

cases.

Lazy beginners in mushroom picking follow a simple pattern. They do not study

anything before picking; after all, they are in Trentino for vacation, not for work. When
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2.1. NEAREST NEIGHBORS METHODS

Figure 2.2: A toy example: two features (width and height) to classify edible and poi-

sonous mushrooms.

they spot a mushroom they search in the book for images of similar ones and then

double-check for similar characteristics listed in the details. This is a practical usage of

the lazy “nearest neighbor” method of machine learning.

Why does this simple method work? The explanation is in the Natura non facit

saltus (Latin for “nature does not make jumps”) principle. Natural things and properties

change gradually, rather than suddenly. If you consider a prototype edible mushroom in

your book, and the one you are picking has very similar characteristics, you may assume

that it is edible too.

Disclaimer: do not use this toy example to classify real mushrooms, every classifier

has a probability of making mistakes and false negative classifications of mushrooms

(classifying it as non-poisonous when in fact it is) can be very harmful to your health.

2.1 Nearest Neighbors Methods

The nearest-neighbors basic form of learning, also related to instance-based learn-

ing, case-based or memory-based, works as follows. The labeled examples (inputs

and corresponding output label) are stored and no action is taken until a new input pat-

tern demands an output value. These systems are called lazy learners: they do nothing
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2.1. NEAREST NEIGHBORS METHODS

Figure 2.3: Nearest neighbor classification: a clear situation (left), a more confusing

situation (right). In the second case the nearest neighbor to the query point with the

question mark belongs to the wrong class although most other close neighbors belong

to the right class.

but store the examples until the user interrogates them. When a new input pattern ar-

rives, the memory is searched for examples which are near the new pattern, and the

output is determined by retrieving the stored outputs of the close patterns, as shown in

Fig. 2.3. Over a century old, this form of data mining is still being used very intensively

by statisticians and machine learners alike, both for classification and for regression

problems.

A simple version is that the output for the new input is simply that of the closest

example in memory. If the task is to classify mushrooms as edible or poisonous, a

new mushroom is classified in the same class as the most similar mushrooms in the

memorized set.

Although very simple indeed, surprisingly this technique can be very effective in

many cases. After all, it pays to be lazy! Unfortunately, the time to recognize a new

case can grow in a manner proportional to the number of stored examples unless less

lazy methods are used. Think about a student who is just collecting books, and then

reading them when confronted with a problem to solve.

A more robust and flexible technique considers a set of k nearest neighbors instead

of one, not surprisingly it is called k-nearest-neighbors (KNN). The flexibility is given

by different possible classification techniques. For example, the output can be that of

the majority of the k neighbors outputs. If one wants to be on the safer side, one may

decide to classify the new case only if all k outputs agree (unanimity rule), and to report

“unknown” in the other cases (this can be suggested for classifying edible mushrooms:

if “unknown” contact the local mushroom police for guidance).

If one considers regression (the prediction of a real number, like the content of

poison in a mushroom), the output can be obtained as a simple average of the outputs
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2.1. NEAREST NEIGHBORS METHODS

corresponding to the k closest examples.

Of course, the vicinity of the k examples to the new case can be very different and in

some cases it is reasonable that closer neighbors should have a bigger influence on the

output. In the weighted k-nearest-neighbors technique (WKNN), the weights depend

on the distance.

Let k ≤ ℓ be a fixed positive integer (ℓ is the number of labeled examples), and

consider a feature vector x. A simple algorithm to estimate its corresponding outcome

y consists of two steps:

1. Find within the training set the k indices i1, . . . , ik whose feature vectors xi1 , . . . ,xik

are nearest (according to a given feature-space metric) to the given x vector.

2. Calculate the estimated outcome y by the following average, weighted with the

inverse of the distance between feature vectors:

y =

k∑

j=1

yij
d(xij ,x) + d0

k∑

j=1

1

d(xij ,x) + d0

; (2.1)

where d(xi,x) is the distance between the two vectors in the feature space (for

example the Euclidean distance), and d0 is a small constant offset used to avoid

division by zero. The larger d0, the larger the relative contribution of far away

points to the estimated output. If d0 goes to infinity, the predicted output tends to

the mean output over all training examples.

The WKNN algorithm is simple to implement, and it often achieves low estimation

errors. Its main drawbacks are the massive amounts of memory required, and the com-

putational cost of the testing phase. A way to reduce the amount of memory required

considers clustering the examples, grouping them into sets of similar cases, and then

storing only the prototypes (centroids) of the identified clusters. More details in the

chapter about clustering.

As we will see in the following part of this book the idea of considering distances

between the current case and the cases stored in memory can be generalized. Kernel

methods and locally-weighted regression can be seen as flexible and smooth gener-

alizations of the nearest-neighbors idea; instead of applying a brute exclusion of the

distant points, all points contribute to the output but with a significance (“weight”) re-

lated to their distance from the query point.
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2.1. NEAREST NEIGHBORS METHODS

Gist

KNN (K Nearest Neighbors) is a primitive and lazy form of machine learning: just

store all training examples into memory.

When a new input to be evaluated appears, search in memory for the K clos-

est examples stored. Read their output and derive the output for the new input by

majority or averaging. Laziness during training causes long response times when

searching a very large memory storage.

KNN works in many real-world cases because similar inputs are usually related

to similar outputs, a basic hypothesis in machine learning. It is similar to some

“case-based” human reasoning processes. Although simple and brutal, it can be

surprisingly effective in many cases.
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Chapter 3

Learning requires a method

Data Mining, noun 1. Torturing the data until it confesses. . . and if you torture it long enough,

you can get it to confess to anything.

Learning, both human and machine-based, is a powerful but subtle instrument. Real

learning is associated with extracting the deep and basic relationships in a phenomenon,

with summarizing with short models a wide range of events, with unifying different

cases by discovering the underlying explanatory laws. We are mostly interested in

inductive inference, a kind of reasoning that constructs general propositions derived

from specific examples, in a bottom-up manner.

In other words, learning from examples is only a means to reach the real goal: gen-

eralization, the capability of explaining new cases, in the same area of application but

not already encountered during the learning phase. On the contrary, learning by heart or
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Figure 3.1: Supervised learning architecture: feature extraction and classification.

memorizing are considered very poor forms of learning, useful for beginners but not for

real experts. The KNN methods already encountered resemble this basic and lazy form

of learning. If the goal is generalization, estimating the performance has to be done

with extreme care, in order not to be misled by excessive optimism when observing

the behavior of the model on the learning examples. After all, a student who is good at

learning by heart will not always end up being the most successful individual in life!

Let’s now define the machine learning context (ML for short) so that its full power

can be switched on without injuries caused by improper usage of the tools and over-

optimism.

Let’s consider the input data. In many cases, before starting the machine learning

process, it is useful to extract an informative subset of the original data by using the

intuition and intelligence of the user. Feature extraction is the name of this preparatory

phase (Fig. 3.1). Features (a.k.a. attributes) are the individual measurable properties of

the phenomena being observed with useful information to derive the output value.

An input example can be the image of a letter of the alphabet, with the output cor-

responding to the letter symbol. Automated reading of zip codes for routing mail, or

automated conversion of images of old book pages into the corresponding text are rele-

vant applications, called optical character recognition. Intuition tells us that the absolute

image brightness is not an informative feature (digits remain the same under more or less

light). In this case, suitable features can be related to edges in the image, to histograms

of gray values collected along rows and columns of an image, etc. More sophisticated

techniques try to ensure that a translated or enlarged image is recognized as the original

one, for example by extracting features measured with respect to the barycenter of the
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image (considering a gray value in a pixel as a mass value), or scaled with respect to the

maximum extension of the black part of the image, etc. Extracting useful features often

requires concentration, insight and knowledge about the problem, but doing so greatly

simplifies the subsequent automated learning phase.

To fix the notation, a training set of ℓ tuples (ordered lists of elements) is consid-

ered, where each tuple is of the form (xi, yi), i = 1, . . . , ℓ; xi being a vector (array) of

input parameter values in d dimensions (xi ∈ R
d); yi being the measured outcome to be

learned by the algorithm. As mentioned before, we consider two possible problems: re-

gression problems, where yi is a real numeric value; and classification problems, where

yi belongs to a finite set.

In classification (recognition of the class of a specific object described by features

x), the output is a suitable code for the class. The output y belongs to a finite set, e.g.,

yi = ±1 or yi ∈ {1, . . . , N}. For example, think about classifying a mushroom as

edible or poisonous.

In regression, the output is a real number from the beginning, and the objective is

to model the relationship between a dependent variable (the output y) and one or more

independent variables (the input features x). For example, think about predicting the

poison content of a mushroom from its characteristics.

In some applications, the classification is not always crisp and there are confused

boundaries between the different classes. Think about classifying bald versus hairy

people: no clear-cut distinction exists. In these cases there is a natural way to transform

a classification into a regression problem. To take care of indecision, the output can

be a real value ranging between zero and one, and it can be interpreted as the posterior

probability for a given class, given the input values, or as a fuzzy membership value

when probabilities cannot be used. For example, if a person has a few hair left, it makes

little sense to talk about a probability of 0.2 of being hairy, in this case fuzzy membership

value of 0.2 in the class of hairy persons can be more appropriate.

Having a continuous output value, for example from 0 to 1, gives additional flexibil-

ity for the practical usage of classification systems. Depending on a threshold, a human

reader can be consulted in the more confused cases (for example the cases with output

falling in the range from 0.4 to 0.6). The clear cases are handled automatically, the most

difficult cases can be handled by a human person. This is the way in which optical char-

acter recognition is used in many contexts. Consider an image which may correspond

to the digit 0 (zero) or the letter O (like in Old), it may be preferable to output 0.5 for

each case instead of forcing a hard classification.
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3.1. LEARNING FROM LABELED EXAMPLES: MINIMIZATION AND

GENERALIZATION

3.1 Learning from labeled examples: minimization and

generalization

The task of a supervised learning method is to use the examples in order to build an

association y = f̂(x) between input x and output y. The association is selected within

a flexible model f̂(x;w), where the flexibility is given by some tunable parameters

(or weights) w, and the best choice for the value w∗ of the parameters depends on the

examples analyzed. A scheme of the architecture is shown in Fig. 3.1, the two parts

of feature extraction and identification of optimal internal weights of the classifier are

distinguished. In many cases feature extraction requires more insight and intervention

by human experts, while the determination of the best parameters is fully automated,

this is why the method is called machine learning after all.

Think about a “multi-purpose box” waiting for input and producing the correspond-

ing output depending on operations influenced by internal parameters. The information

to be used for “customizing” the box has to be extracted from the given training exam-

ples. The basic idea is to fix the free parameters by demanding that the learned model

works correctly on the examples in the training set.

Now, we are all believers in the power of optimization: we start by defining an error

measure to be minimized1, and we adopt an appropriate (automated) optimization pro-

cess to determine optimal parameters. A suitable error measure is the sum of the errors

between the correct answer (given by the example label) and the outcome predicted by

the model (the output ejected by the multi-purpose box). The errors are considered as

absolute values and often squared. The “sum of squared errors” is possibly the most

widely used error measure in ML. If the error is zero, the model works 100% correctly

on the given examples. The smaller the error, the better the average behavior on the

examples.

Supervised learning therefore becomes minimization of a specific error function,

depending on parameters w. If you only care about the final result you may take the

optimization part as a “big red button” to push on the multi-purpose box, to have it

customized for your specific problem after feeding it with a set of labeled examples.

If you are interested in developing new LION tools, you will get more details about

optimization techniques in the following chapters. The gist is the following: if the func-

tion is smooth (think about pleasant grassy California hills) one can discover points of

low altitude (lakes?) by being blindfolded and parachuted to a random initial point, sam-

pling neighboring points with his feet, and moving always in the direction of steepest

descent. No “human vision” is available to the computer to “see” the lakes (“blind-

folded”), only the possibility to sample one point at a time, and sampling in the neigh-

borhood of the current point is often very effective.

1Minimization becomes maximization after multiplying the function to be optimized by minus one,

this is why one often talks about “optimization”, without specifying the direction min or max.
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3.1. LEARNING FROM LABELED EXAMPLES

Let’s reformulate the above mental image with a more mathematical language. If the

function to be optimized is differentiable, a simple approach consists of using gradient

descent. One iterates by calculating the gradient of the function w.r.t. the weights

and by taking a small step in the direction of the negative gradient. This is in fact the

popular technique in neural networks known as learning by backpropagation of the

error [45, 46, 35].

Assuming a smooth function is not artificial: There is a basic smoothness assump-

tion underlying supervised learning: if two input points x1 and x2 are close, the corre-

sponding outputs y1 and y2 should also be close2. If the assumption is not true, it would

be impossible to generalize from a finite set of examples to a set of possibly infinite new

and unseen test cases. Let’s note that the physical reality of signals and interactions in

our brain tends to naturally satisfy the smoothness assumption. The activity of a neuron

tends to depend smoothly on the neuron inputs, in turn caused by chemical and electrical

interactions in their dendritic trees. It is not surprising that the term neural networks is

used to denote some successful supervised learning techniques.

Now, minimization of an error function is a first critical component, but not the only

one. If the model complexity (the flexibility, the number of tunable parameters) is too

large, learning the examples with zero errors becomes trivial, but predicting outputs for

new data may fail brutally. In the human metaphor, if learning becomes rigid memoriza-

tion of the examples without grasping the underlying model, students have difficulties

in generalizing to new cases. This is related to the bias-variance dilemma, and requires

care in model selection, or minimization of a weighted combination of model error on

the examples plus model complexity.

The bias-variance dilemma can be stated as follows.

• Models with too few parameters are inaccurate because of a large bias: they lack

flexibility.

• Models with too many parameters are inaccurate because of a large variance: they

are too sensitive to the sample details (changes in the details will produce huge

variations).

• Identifying the best model requires identifying the proper “model complexity”,

i.e., the proper architecture and number of parameters.

The preference of simple models to avoid over-complicated models has also been

given a fancy name: Occam’s razor, referring to “shaving away” unnecessary compli-

cations in theories3. Optimization is still used, but the error measures become different,

to take model complexity into account.

2Closeness between points x1 and x2 can be measured by the Euclidean distance.
3 Occam’s razor is attributed to the 14th-century theologian and Franciscan friar Father William of

Ockham who wrote “entities must not be multiplied beyond necessity” (entia non sunt multiplicanda

praeter necessitatem). To quote Isaac Newton, “We are to admit no more causes of natural things than
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3.2. LEARN, VALIDATE, TEST!

It is also useful to distinguish between two families of methods for supervised clas-

sification. In one case one is interested in deriving a “constructive model” of how the

output is generated from the input, in the other case one cares about the bottom line:

obtaining a correct classification. The first case is more concerned with explaining the

underlying mechanisms, the second with crude performance.

Among examples of the first class, generative methods try to model the process

by which the measured data x are generated by the different classes y. Given a cer-

tain class, for example of a poisonous mushroom, what is the probability of obtaining

real mushrooms of different geometrical forms? In mathematical terms, one learns a

class-conditional density p(x|y), the probability of x given y. Then, given a fresh mea-

surements, an assignment can be made by maximizing the posterior probability of a

class given a measurement, obtained by Bayes’ theorem:

p(y|x) = p(x|y)p(y)∑
y p(x|y)p(y)

; (3.1)

where p(x|y) is known as the likelihood of the data, and p(y) is the prior probability,

which reflects the probability of the outcome before any measure is performed. The

term at the denominator is the usual normalization term to make sure that probabilities

sum up to one (a mnemonic way to remember Bayes’ rule is: “posterior = prior times

likelihood”).

Discriminative algorithms do not attempt at modeling the data generation pro-

cess, they just aim at directly estimating p(y|x), a problem which is in some cases

simpler than the two-steps process (first model p(x|y) and then derive p(y|x)) implied

by generative methods. Multilayer perceptron neural networks, as well as Support Vec-

tor Machines (SVM) are examples of discriminative methods described in the following

chapters.

The difference is profound, it tells practitioners that accurate classifiers can be

built without knowing or building a detailed model of the process by which a certain

class generates input examples. You do not need to be an expert mycologist in order to

pick mushroom without risking death, you just need an abundant and representative set

of example mushrooms, with correct classifications.

3.2 Learn, validate, test!

When learning from labeled examples we need to follow careful experimental proce-

dures to measure the effectiveness of the learning process. In particular, it is a terrible

mistake to measure the performance of the learning systems on the same examples used

such as are both true and sufficient to explain their appearances. Therefore, to the same natural effects we

must, so far as possible, assign the same causes.”
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3.2. LEARN, VALIDATE, TEST!

for training. The objective of machine learning is to obtain a system capable of gener-

alizing to new and previously unseen data. Otherwise the system is not learning, it is

merely memorizing a set of known patterns, this must be why questions at university

exams are changing from time to time. . .

Let’s assume we have a supervisor (a software program) who can generate labeled

examples from a given probability distribution. Ideally we should ask the supervisor for

some examples during training, and then test the performance by asking for some fresh

examples. Ideally, the number of examples used for training should be sufficiently large

to permit convergence, and the number used for testing should be very large to ensure a

statistically sound estimation. We strongly suggest you not to conclude that a machine

learning system to identify edible from poisonous mushrooms is working, after testing

it on three mushrooms.

Figure 3.2: Labeled examples need to be split into training, validation and test sets.

This ideal situation may be far from reality. In some cases the set of examples is

rather small, and has to be used in the best possible way both for training and for mea-

suring performance. In this case the set has to be clearly partitioned between a training

set and a validation set, the first used to train, the second to measure performance, as

illustrated in Fig. 3.2. A typical performance measure is the root mean square (abbre-

viated RMS) error between the output of the system and the correct output given by the
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3.2. LEARN, VALIDATE, TEST!

supervisor4.

In general, the learning process optimizes the model parameters to make the model

reproduce the training data as well as possible. If we then take an independent sample of

validation data from the same population as the training data, it will generally turn out

that the error on the validation data will be larger than the error on the training data. This

discrepancy is likely to become severe if training is excessive, leading to over-fitting

(overtraining), particularly likely to happen when the number of training examples is

small, or when the number of parameters in the model is large.

If the examples are limited, we now face a problem: do we want to use more of

them for training and risk a poor and noisy measurement of the performance, or to have

a more robust measure but losing training examples? Think in concrete terms: if you

have 50 mushroom examples, do you use 45 for training and 5 for testing, 30 for training

and 20 for testing? . . . Luckily, there is a way to jump over this embarrassing situation,

just use cross-validation. Cross-validation is a generally applicable way to predict the

performance of a model on a validation set by using repeated experiments instead of

mathematical analysis.

The idea is to repeat many train-and-test experiments, by using different partitions

of the original set of examples into two sets, one for training one for testing, and then

averaging the test results. This general idea can be implemented as K-fold cross-

validation: the original sample is randomly partitioned into K subsamples. A single

subsample is used as the validation data for testing, and the remaining K − 1 subsam-

ples are used as training data. The cross-validation process is then repeated K times (the

folds), with each of the K subsamples used exactly once as the validation data. The re-

sults from the folds then can be collected to produce a single estimation. The advantage

of this method is that all observations are used for both training and validation, and each

observation is used for validation exactly once. If the example set is really small one

can use the extreme case of leave-one-out cross-validation, using a single observation

from the original sample as the validation data, and the remaining observations as the

training data (just put K equal to the number of examples).

Stratified cross-validation is an additional improvement to avoid different class

balances in the training and testing set. We do not want that, by chance, a class is

more present in the training examples and therefore less present in the testing examples

(with respect to its average presence in all examples). When stratification is used, the

extraction of the ℓ/K testing patterns is done separately for examples of each class, to

ensure a fair balance among the different classes (Fig. 3.3).

4 The RMS value of a set of values is the square root of the arithmetic mean (average) of the squares

of the original values. In our case of a set of errors ei , the RMS value is given by this formula:

RMS =

√
e21 + e22 + · · ·+ e2ℓ

ℓ
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3.3. ERRORS OF DIFFERENT KINDS

Figure 3.3: Stratified cross-validation, examples of two classes. In normal cross-

validation 1/K of the examples are kept for testing, the slice is then “rotated” K times.

In stratification, a separate slice is kept for each class to maintain the relative proportion

of cases of the two classes.

If the machine learning method itself has some parameters to be tuned, this cre-

ates an additional problem. Let’s call them meta-parameters in order to distinguish

them from the basic parameters of the model, of the “multi-purpose box” to be cus-

tomized. Think for example about deciding the termination criterion for an iterative

minimization technique (when do we stop training), or the number of hidden neurons in

a multilayer perceptron, or appropriate values for the crucial parameters of the Support

Vector Machine (SVM) method. Finding optimal values for the meta-parameters im-

plies reusing the validation examples many times. Reusing validation examples means

that they also become part of the training process. We are in fact dealing with a kind

of meta-learning, learning the best way to learn. The more you reuse the validation set,

the more the danger that the measured performance will be optimistic, not correspond-

ing to the real performance on new data. One is in practice “torturing the data until it

confesses. . . and if you torture it long enough, you can get it to confess to anything.”

In the previous context of a limited set of examples to be used for all needs, to

proceed in a sound manner one has to split the data into three sets: a training, a

validation and a (final) testing one. The test set is used only once for a final measure

of performance.

Finally let’s note that, to increase the confusion, in the standard case of a single

train-validation cycle, the terms validation and testing are often used as synonyms.
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3.3. ERRORS OF DIFFERENT KINDS

Figure 3.4: Each line in the matrix reports the different classifications for cases of a

class. You can visualize cases entering at the left and being sorted out by the different

columns to exit at the top. Accuracy is defined as the fraction of correct answers over

the total, precision as the fraction of correct answers over the number of retrieved cases

and recall is computed as the fraction of correct answers over the number of relevant

cases. In the plot: divide the cases in the green part by the cases in the yellow area.

3.3 Errors of different kinds

When measuring the performance of a model, mistakes are not born to be equal. If you

classify a poisonous mushroom as edible you are going to die, if you classify an edible

mushroom as poisonous you are wasting a little time. Depending on the problem, the

criterion for deciding the “best” classification changes. Let’s consider a binary classi-

fication (with “yes” or “no” output). Some possible criteria are: accuracy, precision,

and recall. The definitions are simple but require some concentration to avoid easy

confusions (Fig. 3.4).

The accuracy is the proportion of true results given by the classifier (both true pos-

itives and true negatives). The other measures focus on the cases which are labeled as

belonging to the class (the “positives”). The precision for a class is the number of true

positives (i.e. the number of items correctly labeled as belonging to the positive class)

divided by the total number of elements labeled as belonging to the positive class (i.e.

the sum of true positives and false positives, which are incorrectly labeled as belonging

to the class). The recall is the number of true positives divided by the total number of

elements that actually belong to the positive class (i.e. the sum of true positives and

false negatives, which are not labeled as belonging to the positive class but should have

been). Precision answers the question: “How many of the cases labeled as positive are

correct?” Recall answers the question: “How many of the truly positive cases are re-
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3.3. ERRORS OF DIFFERENT KINDS

trieved as positive?” Now, if you are picking mushrooms, are you more interested in

high precision or high recall?

A confusion matrix explains how cases of the different classes are correctly classi-

fied or confused as members of wrong classes (Fig. 3.5).

Each row tells the story for a single class: the total number of cases considered

and how the various cases are recognized as belonging to the correct class (cell on the

diagonal) or confused as members of the other classes (cells corresponding to different

columns).

Gist

The goal of machine learning is to use a set of training examples to realize a system

which will correctly generalize to new cases, in the same context but not seen during

learning.

ML learns, i.e., determines appropriate values for the free parameters of a flexible

model, by automatically minimizing a measure of the error on the example set, pos-

sibly corrected to discourage complex models, and therefore improving the chances

of correct generalization.

The output value of the system can be a class (classification), or a number (regres-

sion). In some cases having as output the probability for a class increases flexibility

of usage.

Accurate classifiers can be built without any knowledge elicitation phase, just

starting from an abundant and representative set of example data. This is a dramatic

paradigm change which enormously facilitates the adoption of ML in business con-

texts.

ML is very powerful but requires a strict method (a kind of “pedagogy” of ML).

For sure, never estimate performance on the training set — this is a mortal sin: be

aware that re-using validation data will create optimistic estimates. If examples are

scarce, use cross-validation to show off that you are an expert ML user.

To be on the safe side and enter the ML paradise, set away some test examples

and use them only once at the end to estimate performance.

There is no single way to measure the performance of a model, different kinds of

mistakes can have very different costs. Accuracy, precision and recall are some pos-

sibilities for binary classification, a confusion matrix is giving the complete picture

for more classes.
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3.3. ERRORS OF DIFFERENT KINDS

Figure 3.5: Confusion matrix for optical character recognition (handwritten ZIP code

digits). The various confusions make sense. For example the digit “3” is recognized

correctly in 632 cases, confused with “2” in 8 cases, with “5” in 10 cases, with “8” in 7

cases. “3” is never confused as “1” or “4”, digits with a very different shape.
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Part I

Supervised learning
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Chapter 4

Linear models

Most right-handed people are linear thinking, think inside the box.

(our readers are free to disbelieve our openings)

Just below the mighty power of optimization lies the awesome power of linear alge-

bra. Do you remember your teacher at school: “Study linear algebra, you will need it in

life”? Well, with more years on your shoulders you know he was right. Linear algebra

is a “math survival kit,” when confronted with a difficult problem, try with linear equa-
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4.1. LINEAR REGRESSION

tions first. In many cases you will either solve it or at least come up with a workable

approximation. Not surprisingly, this is true also for models to explain data.

Figure 4.1: Data about price and power of different car models. A linear model (in red)

is shown.

Fig. 4.1 plots the price of different car models as a function of their horse power. As

you can expect, the bigger the power the bigger the price, car dealers are honest, and

there is an approximate linear relationship between the two quantities. If we summarize

the data with the linear model in red we lose some details but most of the trend is

preserved. We are fitting the data with a line.

Of course, defining what we mean by “best fit” will immediately lead us to optimiz-

ing the corresponding goodness function.

4.1 Linear regression

A linear dependence of the output from the input features is a widely used model. The

model is simple, it can be easily trained, and the computed weights in the linear summa-

tion provide a direct explanation of the importance of the various attributes: the bigger

the absolute value of the weight, the bigger the effect of the corresponding attribute.

Therefore, do not complicate your life and consider nonlinear models unless you are

strongly motivated by your application.
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4.1. LINEAR REGRESSION

Math people do not want to waste trees and paper1, arrays of numbers (vectors)

are denoted with a single variable, like w. The vector w contains its components

(w1, w2, ..., wd), d being the number of input attributes or dimension. Vectors “stand

up” like columns, to make them lie down you can transpose them, getting wT . The

scalar product between vector w and vector x is therefore wT ·x, with the usual matrix-

multiplication definition, equal to w1x1 + w2x2 + · · ·+ wdxd.

The hypothesis of a linear dependence of the outcomes on the input parameters can

be expressed as

yi = wT · xi + ǫi,

where w = (w1, . . . , wd) is the vector of weights to be determined and ǫi is the error2.

Even if a linear model correctly explains the phenomenon, errors arise during mea-

surements: every physical quantity can be measured only with a finite precision.

Approximations are not because of negligence but because measurements are imper-

fect.

One is now looking for the weight vector w so that the linear function

f̂(x) = wT · x (4.1)

approximates as closely as possible our experimental data. This goal can be achieved

by finding the vector w∗ that minimizes the sum of the squared errors (least squares

approximation):

ModelError(w) =
ℓ∑

i=1

(wT · xi − yi)
2. (4.2)

In the unrealistic case of zero measurement errors and a perfect linear model, one is

left with a set of linear equations wT · xi = yi, one for each measurement, which can

be solved by standard linear algebra if the system of linear equations is properly defined

(d non-redundant equations in d unknowns). In all real-world cases measurement errors

are present, and the number of measurements (xi, yi) can be much larger than the input

dimension. Therefore one needs to search for an approximated solution, for weights

w obtaining the lowest possible value of the above equation (4.2), typically larger than

zero.

You do not need to know how the equation is minimized to use a linear model,

true believers of optimization can safely trust its magic problem-solving hand for linear

models. But if you are curious, masochistic, or dealing with very large and problematic

cases you may consider reading Sections 4.6 and 4.7.

1We cannot go very deep into linear algebra in our book: we will give the basic definitions and moti-

vations, it will be very easy for you to find more extended presentations in dedicated books or websites.
2 In many cases the error ǫi is assumed to have a Gaussian distribution.
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4.2 A trick for nonlinear dependencies

Your appetite as a true believer in the awesome power of linear algebra is now huge but

unfortunately not every case can be solved with a linear model. In most cases, a function

in the form f(x) = wTx is too restrictive to be useful. In particular, it assumes that

f(0) = 0. It is possible to change from a linear to an affine model by inserting a constant

term w0, obtaining: f(x) = w0 +wT · x. The constant term can be incorporated into

the dot product, by defining x = (1, x1, . . . , xd), so that equation (4.1) remains valid.

Figure 4.2: A case where a linear separation is impossible (XOR function, left). A linear

separability with a hyperplane can be obtained by mapping the point in a nonlinear way

to a higher-dimensional space.

The insertion of a constant term is a special case of a more general technique to

model nonlinear dependencies while remaining in the easier context of linear least

squares approximations. This apparent contradiction is solved by a trick: the model

remains linear and it is applied to nonlinear features calculated from the raw input data

instead of the original input x, as shown in Fig. 4.2. It is possible to define a set of

functions:

φ1, . . . , φn : Rd → R
n

that map the input space into some more complex space, in order to apply the linear

regression to the vector φ(x) = (φ1(x), . . . , φn(x)) rather than to x directly.

For example if d = 2 and x = (x1, x2) is an input vector, a quadratic dependence of

the outcome can be obtained by defining the following basis functions:

φ1(x) = 1, φ2(x) = x1, φ3(x) = x2,

φ4(x) = x1x2, φ5(x) = x2
1, φ6(x) = x2

2.
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Note that φ1(x) is defined in order to allow for a constant term in the dependence.

The linear regression technique described above is then applied to the 6-dimensional

vectors obtained by applying the basis functions, and not to the original 2-dimensional

parameter vector.

More precisely, we look for a dependence given by a scalar product between a vector

of weights w and a vector of features φ(x), as follows:

f̂(x) = wT · φ(x).
The output is a weighted sum of the features.

4.3 Linear models for classification

Section 4.1 considers a linear function that nearly matches the observed data, for exam-

ple by minimizing the sum of squared errors. Some tasks, however, allow for a small

set of possible outcomes. One is faced with a classification problem.

Let the outcome variable be two-valued (e.g., ±1). In this case, linear functions

can be used as discriminants, the idea is to have an hyperplane defined by a vector w

separating the two classes. A plane generalizes a line, and a hyperplane generalizes a

plane when the number of dimensions is more than three.

The goal of the training procedure is to find the best hyperplane so that the examples

of one class are on a side of the hyperplane, examples of the other class are on the

other side. Mathematically one finds the best coefficient vector w so that the decision

procedure:

y =

{
+1 if wT · x ≥ 0

−1 otherwise
(4.3)

performs the best classification. The method for determining the best separating linear

function (geometrically identifiable with a hyperplane) depend on the chosen classifi-

cation criteria and error measures.

For what we know from this chapter about regression, we can ask that points of the

first class are mapped to +1, and points of the second classed are mapped to−1. This is

a stronger requirement than separability but permits us to use a technique for regression,

like gradient descent or pseudo-inverse.

If the examples are not separable with a hyperplane, one can either live with some

error rate, or try the trick suggested before and calculate some nonlinear features from

the raw input data to see if the transformed inputs are now separable. An example is

shown in Fig. 4.2, the two inputs have 0-1 coordinates, the output is the exclusive OR

function (XOR function) of the two inputs (one or the other, but not both equal to 1).

The two classes (with output 1 or 0) cannot be separated by a line (a hyperplane of

dimension one) in the original two-dimensional input space. But they can be separated

by a plane in a three-dimensional transformed input space.
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4.4. HOW DOES THE BRAIN WORK?

4.4 How does the brain work?

Our brains are a mess, at least those of the authors. For sure the system at work

when summing two large numbers is very different from the system active while play-

ing “shoot’em up” action games. The system at work when calculating or reasoning in

logical terms is different from the system at work when recognizing the face of your

mother. The first system is iterative, it works by a sequence of steps, it requires con-

scious effort and attention. The second system works in parallel, is very fast, often

effortless, sub-symbolic (not using symbols and logic).

Different mechanisms in machine learning resemble the two systems. Linear dis-

crimination, with iterative gradient-descent learning techniques for gradual improve-

ments, resembles more our sub-symbolic system, while classification trees based on

a sequence of “if-then-else” rules (we will encounter them in the following chapters)

resemble more our logical part.

Figure 4.3: Neurons and synapses in the human brain (derived from Wikipedia com-

mons).

Linear functions for classification have been known under many names, the historic

one being perceptron, a name that stresses the analogy with biological neurons. Neurons

(see Fig. 4.3) communicate via chemical synapses. Synapses 3 are essential to neuronal

3The term synapse has been coined from the Greek “syn-” (“together”) and “haptein” (“to clasp”).
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4.5. WHY ARE LINEAR MODELS POPULAR AND SUCCESSFUL?

function: neurons are cells that are specialized to pass signals to individual target cells,

and synapses are the means by which they do so.
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Figure 4.4: The Perceptron: the output is obtained by a weighted sum of the inputs

passed through a final threshold function.

The fundamental process that triggers synaptic transmission is a propagating elec-

trical signal that is generated by exploiting the electrically excitable membrane of the

neuron. This signal is generated (the neuron output fires) if and only if the result of

incoming signals combined with excitatory and inhibitory synapses and integrated sur-

passes a given threshold. Fig. 4.4 therefore can be seen as the abstract and functional

representation of a single nerve cell. Variations of gradient-descent for improving clas-

sification performance can be related to biological learning systems.

4.5 Why are linear models popular and successful?

The deep reason why linear models are so popular is the smoothness underlying

many if not most of the physical phenomena (”Nature does not make jumps”). An

example is in Fig. 4.5, the average stature of kids grows gradually, without jumps, to

slowly reach a saturating stature after adolescence.

Now, if you remember calculus, every smooth (differentiable) function can be ap-

proximated around an operating point xc with its Taylor series approximation. The

second term of the series is linear, given by a scalar product between the gradient

∇f(xc) and the displacement vector, the additional terms go to zero in a quadratic man-

ner:

f(x) = f(xc) +∇f(xc) · (x− xc) +O(‖x− xc‖2). (4.4)
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4.6. MINIMIZING THE SUM OF SQUARED ERRORS

Figure 4.5: Functions describing physical phenomena tend to be smooth. The stature-

for-age curve can be approximated well by a tangent line (red) from 2 to about 15 years.

Therefore, if the operating point of the smooth systems is close to a specific point xc, a

linear approximation is a reasonable place to start.

In general, the local model will work reasonably well only in the neighbourhood of

a given operating point. A linear model for stature growth of children obtained by a

tangent at the 7 years stature point will stop working at about 15 years, luckily for the

size of our houses.

4.6 Minimizing the sum of squared errors

Linear models are identified by minimizing the sum of squared errors of equation

(4.2). If you are not satisfied with a ”proof in the pudding” approach but want to go

deeper into the matter, read on.

As mentioned, in the unrealistic case of zero measurement errors and of a perfect

linear model, one is left with a set of linear equations wT · xi = yi, one for each

measurement. If the system of linear equations is properly defined (d non-redundant

equations in d unknowns) one can solve them by inverting the matrix containing the

coefficients.

In practice, in real-world cases, reaching zero for the ModelError is impossible,

errors are present and the number of data points can be be much larger than the number

of parameters d. Furthermore, let’s remember that the goal of learning is generalization,
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4.6. MINIMIZING THE SUM OF SQUARED ERRORS

we are interested in reducing the future prediction errors. We do not need to stress

ourselves too much with reducing the error on reproducing the training examples with

zero error, which can actually be counterproductive.

We need to generalize the solution of a system of linear equations by allowing for

errors, and to generalize matrix inversion. We are lucky that equation (4.2) is quadratic,

minimizing it leads again to a system of linear equations4.

If you are familiar with analysis, finding the minimum is straightforward: calculate

the gradient and demand that it is equal to zero. If you are not familiar, think that the

bottom of the valleys (the points of minimum) are characterized by the fact that small

movements keep you at the same altitude.

The following equations determine the optimal value for w:

w∗ = (XTX)−1XTy; (4.5)

where y = (y1, . . . , yℓ) and X is the matrix whose rows are the xi vectors.

The matrix (XTX)−1XT is the pseudo-inverse and it is a natural generalization

of a matrix inverse to the case in which the matrix is non-square. If the matrix is in-

vertible and the problem can be solved with zero error, the pseudo-inverse is equal to

the inverse, but in general, e.g., if the number of examples is larger than the number

of weights, aiming at a least-square solution avoids the embarrassment of not having

an exact solution and provides a statistically sound “compromise” solution. In the real

world, exact models are not compatible with the noisy characteristics of nature and

of physical measurements and it is not surprising that least-square and pseudo-inverse

beasts are among the most popular tools.

The solution in equation (4.5) is “one shot:” calculate the pseudo-inverse from the

experimental data and multiply to get the optimal weights. In some cases, if the number

of examples is huge, an iterative technique based on gradient descent can be prefer-

able: start from initial weights and keep moving them by executing small steps along

the direction of the negative gradient, until the gradient becomes zero and the iterations

reach a stable point. By the way, as you may anticipate, real neural systems like our

brain do not work in a “one shot” manner with linear algebra but more in an iterative

manner by gradually modifying weights, as we will see later. Maybe this is why linear

algebra is not so popular at school?

Let us note that the minimization of squared errors has a physical analogy to the

spring model presented in Fig. 4.6. Imagine that every sample point is connected by a

vertical spring to a rigid bar, the physical realization of the best fit line. All springs have

equal elastic constants and zero extension at rest. In this case, the potential energy of

each spring is proportional to the square of its length, so that equation (4.2) describes

the overall potential energy of the system up to a multiplicative constant. If one starts

4Actually, you may suspect that the success of the quadratic model is related precisely to the fact that,

after calculating derivatives, one is left with a linear expression.
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4.7. NUMERICAL INSTABILITIES

Figure 4.6: Physics gives an intuitive spring analogy for least squares fits. The best fit

is the line that minimizes the overall potential energy of the system (proportional to the

sum of the squares of the spring length).

and lets the physical system oscillate until equilibrium is reached, with some friction

to damp the oscillations, the final position of the rigid bar can be read out to obtain the

least square fit parameters; an analog computer for line fitting!

For sure you will forget the pseudo-inverse but you will never forget this physical

system of damped oscillating springs attaching the best-fit line to the experimental data.

If features are transformed by some φ function (as a trick to consider nonlinear

relationships), the solution is very similar. Let x′
i = φ(xi), i = 1, . . . , ℓ, be the trans-

formations of the training input tuples xi. If X ′ is the matrix whose rows are the x′
i

vectors, then the optimal weights with respect to the least squares approximation are

computed as:

w∗ = (X ′TX ′)−1X ′Ty. (4.6)

4.7 Real numbers in computers are fake: numerical in-

stabilities

Real numbers (like π and “most” numbers) cannot be represented in a digital com-

puter. Each number is assigned a fixed and limited number of bits, no way to represent

an infinite number of digits like in 3.14159265... Therefore real numbers represented

in a computer are “fake”, they can and most often will have mistakes. Mistakes will

propagate during mathematical operations, in certain cases the results of a sequence of

operations can be very different from the mathematical results. Get a matrix, find its
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4.7. NUMERICAL INSTABILITIES

inverse and multiply the two. You are assumed to get the identity but you end up with

something different (maybe you should check which precision your bank is using).

When the number of examples is large, equation (4.6) is the solution of a linear

system in the over-determined case (more linear equations than variables). In partic-

ular, matrix XTX must be non-singular, and this can only happen if the training set

points x1, . . . , xℓ do not lie in a proper subspace of Rd, i.e., they are not “aligned.” In

many cases, even though XTX is invertible, the distribution of the training points is

not generic enough to make it stable. Stability here means that small perturbations of

the sample points lead to small changes in the results. An example is given in Fig. 4.7,

where a bad choice of sample points (in the right plot, x1 and x2 are not independent)

makes the system much more dependent on noise, or even to rounding errors.
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Figure 4.7: A well-spread training set (left) provides a stable numerical model, whereas

a bad choice of sample points (right) may result in wildly changing planes, including

very steep ones (adapted from [5]).

If there is no way to modify the choice of the training points, the standard mathe-

matical tool to ensure numerical stability when sample points cannot be distributed at

will is known as ridge regression. It consists of the addition of a regularization term

to the (least squares) error function to be minimized:

error(w;λ) =
ℓ∑

i=1

(wT · xi − yi)
2 + λwT ·w. (4.7)

The minimization with respect to w leads to the following:

w∗ = (λI +XTX)−1XTy.

The insertion of a small diagonal term makes the inversion more robust. Moreover,

one is actually demanding that the solution takes the size of the weight vector into

account, to avoid steep interpolating planes such as the one in the right plot of Fig. 4.7.
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4.7. NUMERICAL INSTABILITIES

If you are interested, the theory justifying the approach is based on Tichonov regu-

larization, which is the most commonly used method for curing ill-posed problems. A

problem is ill-posed if no unique solution exists because there is not enough information

specified in the problem, for example because the number of examples is limited. It is

necessary to supply extra information or smoothness assumptions. By jointly minimiz-

ing the empirical error and penalty, one seeks a model that not only fits well and is also

simple to avoid large variation which occurs in estimating complex models.

You do not need to know the theory to use machine learning but you need to be aware

of the problem, this will raise your debugging capability if complex operations do not

lead to the expected result. Avoiding very large or very small numbers is a pragmatic

way to cure most problems, for example by scaling your input data before starting with

machine learning.

Gist

Traditional linear models for regression (linear approximation of a set of input-

output pairs) identify the best possible linear fit of experimental data by minimizing

a sum the squared errors between the values predicted by the linear model and the

training examples. Minimization can be “one shot” by generalizing matrix inversion

in linear algebra, or iteratively, by gradually modifying the model parameters to

lower the error. The pseudo-inverse method is possibly the most used technique for

fitting experimental data.

In classification, linear models aim at separating examples with lines, planes and

hyper-planes. To identify a separating plane one can require a mapping of the inputs

to two distinct output values (like +1 and −1) and use regression. More advanced

techniques to find robust separating hyper-planes when considering generalization

will be the Support Vector Machines described in the future chapters.

Real numbers in a computer do not exist and their approximation by limited-size

binary numbers is a possible cause of mistakes and instability (small perturbations

of the sample points leading to large changes in the results).

Some machine learning methods are loosely related to the way in which biolog-

ical brains learn from experience and function. Learning to drive a bicycle is not a

matter of symbolic logic and equations but a matter of gradual tuning and ... rapidly

recovering from initial accidents.

Latest chapter revision: December 16, 2013

c© 2013 R. Battiti and M. Brunato, all rights reserved. Can be reproduced for non-profit usage with this attribution. lionsolver.com/LIONbook

40



Chapter 5

Mastering generalized linear

least-squares

Entia non sunt multiplicanda praeter necessitatem.

Entities must not be multiplied beyond necessity.

(William of Ockham c. 1285 – 1349)

Some issues were left open in the previous chapter about linear models. The output

of a serious modeling effort is not only a single “take it or leave it” model. Usually one

is dealing with multiple modeling architectures, with judging the quality of a model

(the goodness-of-fit in our case) and selecting the best possible architecture, with

determining confidence regions (e.g., error bars) for the estimated model parameters,
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etc. After reading this chapter you are supposed to raise from the status of casual user

to that of professional least-squares guru.

In the previous chapter we mentioned a trick to take care of some nonlinearities:

mapping the original input by some nonlinear function φ and then considering a linear

model in the transformed input space (see Section 4.2). While the topics discussed in

this Chapter are valid in the general case, your intuition will be helped if you keep in

mind the special case of polynomial fits in one input variable, in which the nonlinear

functions consist of powers of the original inputs, like

φ0(x) = x0 = 1, φ1(x) = x1 = x, φ2(x) = x2, . . .

The case is of particular interest and widely used in practice to deserve being studied.

The task is to estimate the functional dependence of output (Y ) values on input (X)

values. Given raw data in the form of pairs of values:

(xi, yi), i ∈ 1, 2, . . . , N,

the aim is to derive a function f(x) which appropriately models the dependence of Y
on X , so that it is then possible to evaluate the function on new and unknown x values.

Identifying significant patterns and relationships implies eliminating insignificant

details. For example, in many cases values are obtained by physical measurements,

and every measurement is accompanied by errors (measurement noise). Think about

modeling how the height of a person changes with age1.

Coming back to the model, we are not going to demand that the function plot passes

exactly through the sample values (i.e., we don’t require that yi = f(xi) for all points).

We are not dealing with interpolation but with fitting (being compatible, similar or

consistent). Losing fidelity is not a weakness but a strength, providing an opportunity

to create more powerful models by simplifying the analysis and permitting reasoning

that isn’t bogged down by trivia. A comparison between a function interpolating all the

points in the dataset, and a much simpler one, like in Fig. 5.1, can show immediately

how these functions can behave differently in modeling the data distribution. Occam’s

razor illustrates this basic principle that simpler models should be preferred over unnec-

essarily complicated ones.

The freedom to choose different models, e.g., by picking polynomials of different

degrees, is accompanied by the responsibility of judging the goodness of the different

models. A standard way for polynomial fits is by statistics from the resulting sum-of-

squared-errors, henceforth the name of least-squares methods.

1If you repeat measuring your height with a high precision instrument, you are going to get different

values for each measurement. A reflection of these noisy measurements is the simple fact that you are

giving a limited number of digits to describe your height (no mentally sane person would answer 1823477

micrometers when asked about his height).
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5.1. FITTING AS MAXIMIZATION OF THE GOODNESS-OF-FIT

Figure 5.1: Comparison between interpolation and fitting. The number of free parame-

ters of the polynomial (equal to its degree minus one) changes from the number of data

points (left), to three (right).

5.1 Fitting as maximization of the goodness-of-fit

Let’s get more concrete and consider the simple math behind fitting. Let’s start with

a polynomial of degree M − 1, where M is defined as the degree bound, equal to the

degree plus one. M is also the number of free parameters (the constant term in the

polynomial also counts). One searches for the polynomial of a suitable degree that best

describes the data distribution:

f(x, c) = c0 + c1x+ c2x
2 + · · ·+ cM−1x

M−1 =
M−1∑

k=0

ckx
k. (5.1)

When the dependence on parameters c is taken for granted, we will just use f(x) for

brevity. Because a polynomial is determined by its M parameters (collected in vector

c), we search for optimal values of these parameters. This is an example of what we

call the power of optimization. The general recipe is: formulate the problem as one of

minimizing a function and then resort to optimization.

For reasons having roots in statistics and maximum-likelihood estimation, described

in the following Section 5.2, a widely used merit function to estimate the goodness-of-

fit is given by the chi-squared, a term derived from the Greek letter used to identify a

connected statistical distribution, χ2:

χ2 =
N∑

i=1

(
yi − f(xi)

σi

)2

. (5.2)
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5.1. FITTING AS MAXIMIZATION OF THE GOODNESS-OF-FIT

The explanation is simple if the parameters σi are all equal to one: in this case, χ2

measures the sum of squared errors between the actual value yi and the value obtained

by the model f(xi), and it is precisely the ModelError(w) function described in the

previous Chapter.

In some cases, however, the measurement processes may be different for different

points and one has an estimate of the measurement error σi, assumed to be the standard

deviation. Think about measurements done with instruments characterized by different

degrees of precision, like a meter stick and a high-precision caliper.

The chi-square definition is a precise, mathematical method of expressing the ob-

vious fact that an error of one millimeter is acceptable with a meterstick, much less so

with a caliper: when computing χ2, the errors have to be compared to the standard devi-

ation (i.e., normalized), therefore the error is divided by σi. The result is a number that

is independent from the actual error size, and whose meaning is standardized:

• A value χ2 ≈ 1 is what we would expect if the σi are good estimates of the

measurement noise and the model is good.

• Values of χ2 that are too large mean that either you underestimated your source

of errors, or that the model does not fit very well. If you trust your σi’s, maybe

increasing the polynomial degree will improve the result.

• Finally, if χ2 is too small, then the agreement between the model f(x) and the

data (xi, yi) is suspiciously good; we are possibly in the situation shown in the

left-hand side of Fig. 5.1 and we should reduce the polynomial degree2.

Now that you have a precise way of measuring the quality of a polynomial model

by the chi-squared, your problem becomes that of finding polynomial coefficients min-

imizing this error. An inspiring physical interpretation is illustrated in Fig. 5.2. Luckily,

this problem is solvable with standard linear algebra techniques, as already explained in

the previous chapter.

Here we complete the details of the analysis exercise as follows: take partial deriva-

tives ∂χ2/∂ck and require that they are equal to zero. Because the chi-square is quadratic

in the coefficients ck, we get a set of M linear equations to be solved:

0 =
∂χ2

∂ck
= 2

N∑

i=1

1

σi
2

(
yi −

M−1∑

j=0

cjxi
j

)
xi

k, for k = 0, 1, . . . ,M − 1 (5.3)

2Pearson’s chi − squared test provides objective thresholds for assessing the goodness-of-fit based

on the value of χ2, on the number of parameters and of data points, and on a desired confidence level, as

explained in Section 5.2.
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5.1. FITTING AS MAXIMIZATION OF THE GOODNESS-OF-FIT

Figure 5.2: A fit by a line with a physical analogy: each data point is connected by

a spring to the fitting line. The strength of the spring is proportional to 1/σi
2. The

minimum energy configuration corresponds to the minimum chi-square.

To shorten the math it is convenient to introduce the N ×M matrix A = (aij) such

that aij = xi
j/σi, containing powers of the xi coordinates normalized by σi, the vector

c of the unknown coefficients, and the vector b such that bi = yi/σi.

It is easy to check that the linear system in equation (5.3) can be rewritten in a more

compact form as:

(AT · A) · c = AT · b, (5.4)

which is called the normal equation of the least-squares problem.

The coefficients can be obtained by deriving the inverse matrix C = (AT · A)−1,

and using it to obtain c = C · AT · b. Interestingly, C is the covariance matrix of

the coefficients’ vector c seen as a random variable: the diagonal elements of C are

the variances (squared uncertainties) of the fitted parameters cii = σ2(ci), and the off-

diagonal elements are the covariances between pairs of parameters.

The matrix (AT ·A)−1AT is the pseudo-inverse already encountered in the previous

chapter, generalizing the solutions of a system of linear equations in the least-squared-

errors sense:

min
c∈RM

χ2 = ‖A · c− b‖2. (5.5)

If an exact solution of equation (5.5) is possible the resulting chi-squared value is
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5.1. FITTING AS MAXIMIZATION OF THE GOODNESS-OF-FIT

zero, and the line of fit passes exactly through all data points. This occurs if we have M
parameters and M distinct pairs of points (xi, yi), leading to an invertible system of M
linear equations in M unknowns. In this case we are not dealing with an approximated

fit but with interpolation. If no exact solution is possible, as in the standard case of more

pairs of points than parameters, the pseudo-inverse gives us the vector c such that A · c
is as close as possible to b in the Euclidean norm, a very intuitive way to interpret the

approximated solution. Remember that good models of noisy data need to summarize

the observed data, not to reproduce them exactly, so that the number of parameters has

to be (much) less than the number of data points.

The above derivations are not limited to fitting a polynomial, we can now easily fit

many other functions. In particular, if the function is given by a linear combination of

basis functions φk(x), as

f(x) =
M−1∑

k=0

ckφk(x)

most of the work is already done. In fact, it is sufficient to substitute the basis function

values in the matrix A, which now become aij = φj(xi)/σi. We have therefore a

powerful mechanism to fit more complex functions like, for example,

f(x) = c0 + c1 cos x+ c2 log x+ c3 tanh x
3.

Let’s only note that the unknown parameters must appear linearly, they cannot appear in

the arguments of functions. For example, by this method we cannot fit directly f(x) =
exp (−cx), or f(x) = tanh(x3/c). At most, we can try to transform the problem to

recover the case of a linear combination of basis functions. In the first case, we can for

example fit the values ŷi = log yi with a linear function f(ŷ) = −cx, but this trick will

not be possible in the general case.

A polynomial fit is shown as a curve in the scatterplot of Fig. 5.3, which shows a fit

with a polynomial of degree 2 (a parabola). A visual comparison of the red line and the

data points can already give a visual feedback about the goodness-of-fit (the chi-squared

value). This ‘chi-by-eye” approach consists of looking at the plot and judging it to look

nice or bad w.r.t. the scatterplot of the original measurements.

When the experimental data do not follow a polynomial law, fitting a polynomial

is not very useful and can be misleading. As explained above, a low value of the chi-

squared can still be reached by increasing the degree of the polynomial: this will give

it a larger freedom of movement to pass closer and closer to the experimental data.

The polynomial will actually interpolate the points with zero error if the number of

parameters of the polynomial equals the number of points. But this reduction in the

error will be paid by wild oscillations of the curve between the original points, as shown

in Fig. 5.1 (left). The model is not summarizing the data and it has serious difficulties in

generalizing. It fails to predict y values for x values which are different from the ones

used for building the polynomial.
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Figure 5.3: A polynomial fit: price of cars as a function of engine power.

The above problem is a very general one and related to the issue of overfitting.

In statistics, overfitting occurs when a model tends to describe random error or noise

instead of the underlying relationship. Overfitting occurs when a model is too complex,

such as having too many degrees of freedom, in relation to the amount of data available

(too many coefficients in the polynomial in our case).

An overfitted model will generally have a poor predictive performance. An analogy

in human behavior can be found in teaching: if a student concentrates and memorizes

only the details of the teacher’s presentation (for example the details of a specific ex-

ercise in mathematics) without extracting and understanding the underlying rules and

meaning he will only be able to vacuously repeat the teacher’s words by heart, but not

to generalize his knowledge to new cases.

5.2 Which fit is the fittest of them all?

Now that the basic technology for generalized least-squares fitting is known, let’s

pause to consider some additional motivation from statistics. In addition, given the

freedom of selecting different models, for example different degrees for a fitting poly-

nomial, instructions to identify the best model architecture are precious to go beyond

the superficial “chi-by-eye” method. Good fits are precious because they identify po-

tentially interesting relationships between the chosen Y and X coordinates.

The least-squares fitting process is as follows:
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1. Assume that Mother Nature and the experimental procedure (including measure-

ments) are generating independent experimental samples (xi, yi). Assume that the

yi values are affected by errors distributed according to a normal (i.e., Gaussian)

distribution.

2. If the model parameters c are known, one can estimate the probability of our

measured data, given the parameters. In statistical terms this is called likelihood

of the data.

3. Least-squares fitting is equivalent to searching for the parameters which are max-

imizing the likelihood of our data. Least-squares is a maximum likelihood es-

timator. Intuitively, this maximizes the “agreement” of the selected model with

the observed data.

The demonstration is straightforward. You may want to refresh Gaussian distribu-

tions in Section 5.3 before proceeding. The probability for a single data point to be in

an interval of width dy around its measure value yi is proportional to

exp

(
−1

2

(
yi − f(xi, c)

σi

)2
)

dy. (5.6)

Because points are generated independently, the same probability for the entire ex-

perimental sequence (its likelihood) is obtained by multiplying individual probabilities:

dP ∝
N∏

i=1

exp

(
−1

2

(
yi − f(xi, c)

σi

)2
)

dy. (5.7)

One is maximizing over c and therefore constant factors like ( dy)N can be omitted.

In addition, maximizing the likelihood is equivalent to maximizing its logarithm (the

logarithm is in fact an increasing function of its argument). Well, because of basic prop-

erties of logarithms (namely they transform products into sums, powers into products,

etc.), the logarithm of equation (5.7), when constant terms are omitted, is precisely the

definition of chi-squared in equation (5.2). The connection between least-squares fitting

and maximum likelihood estimation should be now clear.

5.2.1 Hypothesis testing

You can now proceed with statistics to judge the quality of your model. The fundamen-

tal question to ask is: considering the N experimental points and given the estimated

M parameters, what is the probability that, by chance, values equal to or larger than our

measured chi-squared are obtained? The above question translates the obvious question

about our data (“what is the likelihood of measuring the data that one actually did
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measure?”) into a more precise statistical form, i.e.: “what’s the probability that an-

other set of sample data fits the model even worse than our current set does?” If

this probability is high, the obtained discrepancies between yi and f(xi, c) make sense

from a statistical point of view. If this probability is very low, either you have been very

unlucky, or something does not work in your model: errors are too large with respect to

what can be expected by Mother Nature plus the measurement generation process.

Let χ̂2 be the chi-squared computed on your chosen model for a given set of inputs

and outputs. This value follows a probability distribution called, again, chi-squared

with ν degrees of freedom (χ2
ν), where the number of degrees of freedom ν determines

how much the dataset is “larger” than the model. If we assume that errors are normally

distributed with null mean and unit variance (remember, we already normalized them),

then ν = N −M 3. Our desired goodness-of-fit measure is therefore expressed by the

parameter Q as follows:

Q = Qχ̂2,ν = Pr(χ2
ν ≥ χ̂2).

The value of Q for a given empirical value of χ̂2 and the given number of degrees of

freedom can be calculated or read from tables4.

The importance of the number of degrees of freedom ν, which decreases as long as

the number of parameters in the model increases, becomes apparent when models with

different numbers of parameters are compared. As we mentioned, it is easy to get a

low chi-square value by increasing the number of parameters. Using Q to measure the

goodness-of-fit takes this effect into account. A model with a larger chi-square value

(larger errors) can produce a higher Q value (i.e., be better) w.r.t. one with smaller errors

but a larger number of parameters.

By using the goodness-of-fit Q measure you can rank different models and pick the

most appropriate one. The process sounds now clear and quantitative. If you are fitting

a polynomial, you can now repeat the process with different degrees, measure Q and

select the best model architecture (the best polynomial degree).

But the devil is in the details: the machinery works provided that the assumptions

are correct, provided that errors follow the correct distribution, that the σi are known

and appropriate, that the measurements are independent. By the way, asking for σi

values can be a puzzling question for non-sophisticated users. You need to proceed

with caution: statistics is a minefield if assumptions are wrong and a single wrong

assumption makes the entire chain of arguments explode.

3In the general case, the correct number of degrees of freedom also depends on the number of param-

eters needed to express the error distribution (e.g., skewness).
4The exact formula is

Qχ̂2,ν = Pr(χ2
ν ≥ χ̂2) =

(
2

ν

2 Γ
(ν
2

))
−1
∫ +∞

χ̂2

t
ν

2
−1e−

t

2 dt,

which can be easily calculated in this era of cheap CPU power.
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5.2.2 Non-parametric tests

What if you cannot provide our σi’s? What if you cannot guess the error distribution?

If you have no prior assumptions about the errors, the chi-squared test described above

cannot be applied. This doesn’t imply that least-squares models are useless, of course:

you can either play the card of statistical non-parametric tests, or exit the comfortable

realm of “historical” statistical results and estimate errors via a more brute-force ap-

proach based on Machine Learning.

Let us briefly consider the first option, non-parametric tests: consider the residues

ǫi = yi − f(xi, c), i = 1, . . . , n,

i.e., the differences between the outcomes predicted by our model and the corresponding

observed values. In many cases, we can define a model “good” if the residues, the

errors it doesn’t account for, follow a normal distribution. The underlying assumption

is that if the residue distribution is not normal, while it is reasonable to assume that the

measurement errors are, then the model is not considering some important factor, or it

is not powerful enough (degree too low?), or it’s too powerful.

Some statistical tests are precisely devoted to this kind of questions: are the residues

distributed normally? A particularly useful test in this context (but all previous caveats

about statistics being a minefield still apply here) is the Anderson-Darling test, which

answers the question “Does the given sample set follow a given distribution?”5 For the

normal distribution, the A-D test amounts to the following steps:

1. set a significance value α — roughly speaking, the probability of being wrong if

rejecting the normality hypothesis (we may want to be very conservative in this

and ask for a low error here, usually α = .1, .5, or .01);

2. sort the residues ǫi in increasing order;

3. compute the RMSE σ̂ of the residues:

σ̂ =

√√√√ 1

N

N∑

i=1

ǫi2;

4. normalize the residues:

ǫ′i =
ǫi
σ̂
;

5Many other tests are available, most notably D’Agostino’s K-Squared test[19]. For didactical and

historical reasons, one may also be interested in the Kolmogorov-Smirnov test.
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5. compute the following statistic:

A =

(
−n−

N∑

i=1

(2i− 1)
(
ln Φ(ǫ′i) + ln

(
1− Φ(ǫ′n−i+1)

))
) 1

2

,

where Φ(x) is the Cumulative Distribution Function (CDF) of a normalized Gaus-

sian;

6. compare A with a threshold θ computed on the basis of the distribution of the

A statistic and depending on the chosen significance value α; generally accepted

values are the following:

θ =





.656 if α = .1

.787 if α = .05

1.092 if α = .01;

reject the normality hypothesis if A > θ.

Beware — if some residues are very large or very small, A might be infinite because

of numeric roundings in the computation of Φ. In such case, either we consider the

offending residues as outliers and remove the corresponding samples from the model,

or we “follow the rules” and reject the normality hypothesis.

5.2.3 Cross-validation

Up to now we presented “historical” results, statistics was born well before the advent

of computers, when calculations were very costly. Luckily, the current abundance of

computational power permits robust techniques to estimate error bars and gauge the

confidence in your models and their predictions. These methods do not require advanced

mathematics, they are normally easy to understand, and they tend to be robust w.r.t.

different distributions of errors.

In particular the cross-validation method of Section 3.2 can be used to select the

best model. As usual the basic idea is to keep some measurements in the pocket, use

the other ones to identify the model, take them out of the pocket to estimate errors on

new examples, repeat and average the results. These estimates of generalization can

be used to identify the best model architecture in a robust manner, provided that data

is abundant. The distribution of results by the different folds of cross-validation gives

information about the stability of the estimates, and permits to assert that, with a given

probability (confidence), expected generalization results will be in a given performance

range. The issue of deriving error bars for performance estimates, or, in general, for

quantities estimated from the data, is explored in the next section.
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5.3 Bootstrapping your confidence (error bars)

Let’s imagine that Mother Nature is producing data (input-output pairs) from a true

polynomial characterized by parameters c. Mother Nature picks all xi’s randomly, in-

dependently and from the same distribution and produces yi = f(xi, c) + ǫi, according

to equation (5.1) plus error ǫi.
By using generalized linear least squares you determine the maximum likelihood

value c(0) for the (xi, yi) pairs that you have been provided. If the above generation by

Mother Nature and the above estimation process are repeated, there is no guarantee that

you will get the same value c(0) again. On the contrary, most probably you will get a

different c(1), then c(2), etc.

It is unfair to run the estimation once and just use the first c(0) that you get. If you

could run many processes you could find average values for the coefficients, estimate

error bars, maybe even use many different models and average their results (ensemble

or democratic methods will be considered in later chapters). Error bars allow quan-

tifying your confidence level in the estimation, so that you can say: with probability

90% (or whatever confidence value you decide), the coefficient ci will have a value be-

tween c − B and c + B, B being the estimated error bar6. Or, “We are 99% confident

that the true value of the parameter is in our confidence interval.” When the model is

used, similar error bars can be obtained on the predicted y values. For data generated

by simulators, this kind of repeated and randomized process is called a Monte Carlo

experiment7.

On the other hand, Mother Nature, i.e. the process generating your data, can deliver

just a single set of measurements, and repeated interrogations can be too costly to af-

ford. How can you get the advantages of repeating different and randomized estimates

by using just one series of measurements? At first, it looks like an absurdly impossible

action. Similar absurdities occur in the “Surprising Adventures,” when Baron Mun-

chausen pulls himself and his horse out of a swamp by his hair (Fig. 5.4), and to imitate

him one could try to “pull oneself over a fence by one’s bootstraps,” hence the modern

meaning of the term bootstrapping as a description of a self-sustaining process.

Well, it turns out that there is indeed a way to use a single series of measurements to

imitate a real Monte Carlo method. This can be implemented by constructing a number

of resamples of the observed dataset (and of equal size). Each new sample is obtained

by random sampling with replacement, so that the same case can be taken more than

6As a side observation, if you know that an error bar is 0.1, you will avoid putting too many digits after

the decimal point. If you estimate your height, please do not write “182.326548435054cm”: stopping at

182.3cm (plus or minus 0.1cm) will be fine.
7Monte Carlo methods are a class of computational algorithms that rely on repeated random sampling

to obtain numerical results; i.e., by running simulations many times over just like actually playing and

recording your results in a real casino situation: hence the name from the town of Monte Carlo in the

Principality of Monaco, the European version of Las Vegas.
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Figure 5.4: Baron Munchausen pulls himself out of a swamp by his hair.

once (Fig. 5.5). By simple math and for large numbers N of examples, about 37% of

the examples8 are not present in a sample, because they are replaced by multiple copies

of the original cases9.

For each new i-th resample the fit procedure is repeated, obtaining many estimates

ci of the model parameters. One can then analyze how the various estimates are dis-

tributed, using observed frequencies to estimate a probability distribution, and summa-

rizing the distribution with confidence intervals. For example, after fixing a confidence

level of 90% one can determine the region around the median value of c where an

estimated c will fall with probability 0.9. Depending on the sophistication level, the

confidence region in more than one dimension can be given by rectangular intervals

or by more flexible regions, like ellipses. An example of a confidence interval in one

dimension (a single parameter c to be estimated) is given in Fig. 5.6. Note that confi-

dence intervals can be obtained for arbitrary distributions, not necessarily normal, and

8Actually approximately 1/e of the examples.
9In spite of its “brute force” quick-and-dirty look, bootstrapping enjoys a growing reputation also

among statisticians. The basic idea is that the actual data set, viewed as a probability distribution consist-

ing of a sum of Dirac delta functions on the measured values, is in most cases the best available estimator

of the underlying probability distribution [33].
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Figure 5.5: Bootstrapping: 10 balls are thrown with uniform probability to end up in the

10 boxes. They decide which cases and how many copies are present in the bootstrap

sample (two copies of case 1, one copy of case 2, zero copies of case 3,. . .

confidence intervals do not need to be symmetric around the median.

Figure 5.6: Confidence interval: from the histogram characterizing the distribution of

the estimated c values one derives the region around the average value collecting 90%
of the cases. Other confidence levels can be used, like 68.3%, 95.4%. etc. (the historical

probability values corresponding to σ and 2σ in the case of normal distributions).
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Figure 5.7: Comparison between box plot (above) and a normal distribution. The X axis

shows positions in terms of the standard deviation σ. For example, in the bottom plot,

68.27% of the points fall within plus or minus one σ from the mean value.

Appendix: Plotting confidence regions (percentiles and

box plots)

A quick-and-dirty way to analyze the distribution of estimated parameters is by his-

tograms (counting frequencies for values occurring in a set of intervals). In some cases

the histogram contains more information than what is needed, and the information is

not easily interpreted. A very compact way to represent a distribution of values is by its

average value µ. Given a set X of N values xi, the average is

µ(X ) = (
N∑

i=1

xi)/N, xi,...,N ∈ X . (5.8)

The average value is also called the expected value, or mathematical expectation, or

mean, or first moment, and denoted in different ways, for example as x or E(x).
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A related but different value is the median, defined as the value separating the higher

half of a sample from the lower half. Given a finite list of values, it can be found by

sorting all the observations from the lowest to the highest value and picking the middle

one. If some outliers are present (data which are far from most of the other values),

the median is a more robust measure than the average, which can be heavily influenced

by outliers. On the contrary, if the data are clustered, like when they are produced by

a normal distribution, the average tends to coincide with the median. The median can

be generalized by considering the percentile, the value of a variable below which a

certain percentage of observations fall. So the 10th percentile is the value below which

10 percent of the observations are found. Quartiles are a specific case, they are the

lower quartile (25-th percentile), the median, and the upper quartile (75-th percentile).

The interquartile range (IQR), also called the midspread or middle fifty, is a measure of

statistical dispersion, being equal to the difference between the third and first quartiles.

A box plot, also known as a box-and-whisker plot, shows five-number summaries

of the set of values: the smallest observation (sample minimum), the lower quartile

(Q1), the median (Q2), the upper quartile (Q3), and the largest observation (sample

maximum). A box plot may also indicate which observations, if any, might be consid-

ered outliers, usually shown by circles. In a box plot, the bottom and top of the box are

always the lower and upper quartiles, and the band near the middle of the box is always

the median. The ends of the whiskers can represent several possible alternative values,

for example:

• the minimum and maximum of all the data;

• one standard deviation above and below the mean of the data;

• the 9th percentile and the 91st percentile;

• . . .

Fig. 5.7 presents a box plot with 1.5 IQR whiskers, which is the usual (default)

value, corresponding to about plus or minus 2.7σ and 99.3 coverage, if the data are

normally distributed. In other words, for a Gaussian distribution, on average less than

1 percent of the data fall outside the box-plus-whiskers range, a useful indication to

identify possible outliers. As mentioned, an outlier is one observation that appears to

deviate markedly from other members of the sample in which it occurs. Outliers can

occur by chance in any distribution, but they often indicate either measurement errors or

that the population has a heavy-tailed distribution. In the former case one should discard

them or use statistics that are robust to outliers, while in the latter case one should be

cautious in relying on tools or intuitions that assume a normal distribution.

Latest chapter revision: December 16, 2013

c© 2013 R. Battiti and M. Brunato, all rights reserved. Can be reproduced for non-profit usage with this attribution. lionsolver.com/LIONbook

56



5.3. BOOTSTRAPPING YOUR CONFIDENCE (ERROR BARS)

Gist

Polynomial fits are a specific way to use linear models to deal with nonlinear prob-

lems. The model consists of a linear sum of coefficients (to be determined) mul-

tiplying products of original input variables. The same technology works if prod-

ucts are substituted with arbitrary functions of the input variables, provided that

the functions are fixed (no free parameters in the functions, only as multiplicative

coefficients). Optimal coefficients are determined by minimizing a sum of squared

errors, which leads to solving a set of linear equations. If the number of input-output

examples is not larger than the number of coefficients, over-fitting appears and it is

dangerous to use the model to derive outputs for novel input values.

The goodness of a polynomial model can be judged by evaluating the probabil-

ity of getting the observed discrepancy between predicted and measured data (the

likelihood of the data given the model parameters). If this probability is very low

we should not trust the model too much. But wrong assumptions about how the

errors are generated may easily lead us to overly optimistic or overly pessimistic

conclusions. Statistics builds solid scientific constructions starting from assump-

tions. Even the most solid statistics construction will be shattered if built on a the

sand of invalid assumptions. Luckily, approaches based on easily affordable mas-

sive computation like cross-validation are easy to understand and robust.

“Absurdities” like bootstrapping (re-sampling the same data and repeating the

estimation process in a Monte Carlo fashion) can be used to obtain confidence in-

tervals around estimated parameter values.

You just maximized the likelihood of being recognized as linear least-squares

guru.

Latest chapter revision: December 16, 2013

c© 2013 R. Battiti and M. Brunato, all rights reserved. Can be reproduced for non-profit usage with this attribution. lionsolver.com/LIONbook

57



Chapter 6

Rules, decision trees, and forests

If a tree falls in the forest and there’s no one there to hear it, does it make a sound?

Rules are a way to condense nuggets of knowledge in a way amenable to human

understanding. If “customer is wealthy” then “he will buy my product.” If “body

temperature greater than 37 degrees Celsius” then “patient is sick.” Decision rules are

commonly used in the medical field, in banking and insurance, in specifying processes

to deal with customers, etc.

In a rule one distinguishes the antecedent, or precondition (a series of tests), and

the consequent, or conclusion. The conclusion gives the output class corresponding to

inputs which make the precondition true (or a probability distribution over the classes

if the class is not 100% clear). Usually, the preconditions are AND-ed together: all tests

must succeed if the rule is to “fire,” i.e., to lead to the conclusion. If “distance less than
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2 miles” AND “sunny” then “walk.” A test can be on the value of a categorical variable

(”sunny”), or on the result of a simple calculation on numerical variables (”distance

less than 2 miles”). The calculation has to be simple if a human has to understand.

A practical improvement is to unite in one statement also the classification when the

antecedent is false. If “distance less than 3 kilometers” AND “no car” then “walk” else

“take the bus”.

Input data Set of rules

wealthy European,

if

"wealthy"

"European" AND "distance < 2 miles" then "walk"

then "use a car"

?distance 1 mile

if

Figure 6.1: A set of unstructured rules can lead to contradictory classifications.

Extracting knowledge nuggets as a set of simple rules is enticing. But designing

and maintaining rules by hand is expensive and difficult. When the set of rules gets

large, complexities can appear, like rules leading to different and contradictory clas-

sifications (Fig. 6.1). In these cases, the classification may depend on the order with

which the different rules are tested on the data and fire. Automated ways to extract

non-contradictory rules from data are precious.

Instead of dealing with very long preconditions with many tests, breaking rules into a

chain of simple questions has value. In a greedy manner, the most informative questions

are better placed at the beginning of the sequence, leading to a hierarchy of questions,

from the most informative to the least informative. The above motivations lead in a nat-

ural way to consider decision trees, an organized hierarchical arrangement of decision

rules, without contradictions (Fig. 6.2, top).

Decision trees have been popular since the beginning of machine learning (ML).

Now, it is true that only small and shallow trees can be “understood” by a human, but

the popularity of decision trees is recently growing with the abundance of computing

power and memory. Many, in some cases hundreds of trees, can be jointly used as

decision forests to obtain robust classifiers. When considering forests, the care for hu-

man understanding falls in the background, the pragmatic search for robust top-quality

performance without the risk of overtraining comes to the foreground.

6.1 Building decision trees

A decision tree is a set of questions organized in a hierarchical manner and represented

graphically as a tree. Historically, trees in ML, as in all of Computer Science, tend to be

drawn with their root upwards — imagine trees in Australia if you are in the Northern

hemisphere. For a given input object, a decision tree estimates an unknown property of

the object by asking successive questions about its known properties. Which question

Latest chapter revision: December 16, 2013

c© 2013 R. Battiti and M. Brunato, all rights reserved. Can be reproduced for non-profit usage with this attribution. lionsolver.com/LIONbook

59



6.1. BUILDING DECISION TREES

"distance < 2 miles"?

"take a bus" "walk" "take a bus"

"European"?

"wealthy"? "use a car" "distance < 2 miles"?

YES NO

YES

YES

NO

NO

YES

YES

NO

NO

"walk"

"wealthy"?

"use a car"

wealthy European,

distance 1 mile

"distance < 2 miles"?

"take a bus" "walk" "take a bus"

"European"?

"wealthy"? "use a car" "distance < 2 miles"?

YES NO

YES

YES

NO

NO

YES

YES

NO

NO

"walk"

"wealthy"?

"use a car"

Figure 6.2: A decision tree (top), and the same tree working to reach a classification

(bottom). The data point arriving at the split node is sent to its left or right child node

according to the result of the test function.
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to ask next depends on the answer of the previous question and this relationship is

represented graphically as a path through the tree which the object follows, the orange

thick path in the bottom part of Fig. 6.2. The decision is then made based on the terminal

node on the path. Terminal nodes are called leaves. A decision tree can also be thought

of as a technique for splitting complex problems into a set of simpler ones.

A basic way to build a decision tree from labeled examples proceeds in a greedy

manner: the most informative questions are asked as soon as possible in the hierarchy.

Imagine that one considers the initial set of labeled examples. A question with two

possible outputs (“YES” or “NO”) will divide this set into two subsets, containing the

examples with answer “YES”, and those with answer “NO”, respectively. The initial

situation is usually confused, and examples of different classes are present. When the

leaves are reached after the chain of questions descending from the root, the final re-

maining set in the leaf should be almost “pure”, i.e., consisting of examples of the same

class. This class is returned as classification output for all cases trickling down to reach

that leaf.

question2 ?

YES NO

question1 ?

YES NO

Subset of cases with answer YES Subset of cases with answer NO

Original set of examples

(classes are green and yellow)

Figure 6.3: Purification of sets (examples of two classes): question2 produces purer

subsets of examples at the children nodes.

We need to transition from an initial confused set to a final family of (nearly) pure

sets. A greedy way to aim at this goal is to start with the “most informative” question.

This will split the initial set into two subsets, corresponding to the “YES” or “NO”

answer, the children sets of the initial root node (Fig. 6.3). A greedy algorithm will

take a first step leading as close as possible to the final goal. In a greedy algorithm, the

first question is designed in order to get the two children subsets as pure as possible.

After the first subdivision is done, one proceeds in a recursive manner (Fig. 6.4), by

using the same method for the left and right children sets, designing the appropriate

questions, and so on and so forth until the remaining sets are sufficiently pure to stop

the recursion. The complete decision tree is induced in a top-down process guided by

the relative proportions of cases remaining in the created subsets.

The two main ingredients are a quantitative measure of purity and the kind of ques-

tions to ask at each node. We all agree that maximum purity is for subsets with cases
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question2 ?

YES NO

question3 ?

YES NO

...

Figure 6.4: Recursive step in tree building: after the initial purification by question2,

the same method is applied on the left and right example subsets. In this case question3

is sufficient to completely purify the subsets. No additional recursive call is executed

on the pure subsets.

of one class only, the different measures deal with measuring impure combinations.

Additional spices have to do with termination criteria: let’s remember that we aim at

generalization so that we want to discourage very large trees with only one or two ex-

amples left in the leaves. In some cases one stops with slightly impure subsets, and an

output probability for the different classes when cases reach a given leaf node.

For the following description, let’s assume that all variables involved are categorical

(names, like the “European” in the above example). The two widely used measures

of purity of a subset are the information gain and the Gini impurity. Note that we are

dealing with supervised classification, so that we know the correct output classification

for the training examples.

Information gain Suppose that we sample from a set associated to an internal node or

to a leaf of the tree. We are going to get examples of a class y with a probability Pr(y)
proportional to the fraction of cases of the class present in the set. The statistical uncer-

tainty in the obtained class is measured by Shannon’s entropy of the label probability

distribution:

H(Y ) = −
∑

y∈Y

Pr(y) log Pr(y). (6.1)

In information theory, entropy quantifies the average information needed to specify

which event occurred (Fig. 6.5). If the logarithm’s base is 2, information (hence en-

tropy) is measured in bits. Entropy is maximum, H(Y ) = log n, when all n classes

have the same share of a set, while it is minimum, H(Y ) = 0, when all cases belong to
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1

Class

frequency

0

1/ n

1 2 ... n

1

Class

frequency

0

1/ n

1 2 ... n

Figure 6.5: Two distributions with widely different entropy. High entropy (left): events

have similar probabilities, the uncertainty is close to the maximum one (log n). Low

entropy (right): events have very different probabilities, the uncertainty is small and

close to zero because one event collects most probability.

the same class (no information is needed in this case, we already know which class we

are going to get).

In the information gain method the impurity of a set is measured by the entropy of

the class probability distribution.

Knowledge of the answer to a question will decrease the entropy, or leave it equal only

if the answer does not depend on the class. Let S be the current set of examples, and

let S = SYES ∪ SNO be the splitting obtained after answering a question about an at-

tribute. The ideal question leaves no indecision: all elements in SYES are cases of one

class, while elements of SNO belong to another class, therefore the entropy of the two

resulting subsets is zero.

The average reduction in entropy after knowing the answer, also known as the “infor-

mation gain”, is the mutual information (MI) between the answer and the class variable.

With this notation, the information gain (mutual information) is:

IG = H(S)− |SYES|
|S| H(SYES)−

|SNO|
|S| H(SNO). (6.2)

Probabilities needed to compute entropies can be approximated with the corresponding

frequencies of each class value within the sample subsets.

Information gain is used by the ID3, C4.5 and C5.0 methods pioneered by Quinlan [34].

Let’s note that, because we are interested in generalization, the information gain is use-

ful but not perfect. Suppose that we are building a decision tree for some data describing

the customers of a business and that each node can have more than two children. One

of the input attributes might be the customer’s credit card number. This attribute has a

high mutual information with respect to any classification, because it uniquely identifies

each customer, but we do not want to include it in the decision tree: deciding how to
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6.1. BUILDING DECISION TREES

treat a customer based on their credit card number is unlikely to generalize to customers

we haven’t seen before (we are over-fitting).

Gini impurity Imagine that we extract a random element from a set and label it ran-

domly, with probability proportional to the shares of the different classes in the set.

Primitive as it looks, this quick and dirty method produces zero errors if the set is pure,

and a small error rate if a single class gets the largest share of the set.

In general, the Gini impurity (GI for short) measures how often a randomly chosen el-

ement from the set would be incorrectly labeled if it were randomly labeled according

to the distribution of labels in the subset1. It is computed as the expected value of the

mistake probability; as usual, the expectation is given by adding, for each class, the

probability of mistaking the classification of an item in that class (i.e., the probability

of assigning it to any class but the correct one: 1− pi) times the probability for an item

to be in that class (pi). Suppose that there are m classes, and let fi be the fraction of

items labeled with value i in the set. Then, by estimating probabilities with frequencies

(pi ≈ fi):

GI(f) =
m∑

i=1

fi(1− fi) =
m∑

i=1

(fi − fi
2) =

m∑

i=1

fi −
m∑

i=1

fi
2 = 1−

m∑

i=1

fi
2. (6.3)

GI reaches its minimum (zero) when all cases in the node fall into a single target cate-

gory. GI is used by the CART algorithm (Classification And Regression Tree) proposed

by Breiman [12].

When one considers the kind of questions asked at each node, considering questions

with a binary output is sufficient in practice. For a categorical variable, the test can

be based on the variable having a subset of the possible values (for example, if day is

“Saturday or Sunday” YES, otherwise NO). For real-valued variables, the tests at each

node can be on a single variable (like: distance < 2 miles) or on simple combinations,

like a linear function of a subset of variables compared with a threshold (like: average

of customer’s spending on cars and motorbikes greater than 20K dollars). The above

concepts can be generalized for a numeric variable to be predicted, leading to regression

trees [12]. Each leaf can contain either the average numeric output value for cases

reaching the leaf, or a simple model derived from the contained cases, like a linear fit

(in this last case one talks about model trees).

In real-world data, Missing values are abundant like snowflakes in winter. A miss-

ing value can have two possible meanings. In some cases the fact that a value is missing

1This definition is easy to understand, and this explains why a more general version, known as Gini

Index, Coefficient, or Ratio, is widely used in econometrics to describe inequalities in resource distribu-

tion within a population; newspapers periodically publish rankings of countries based on their Gini index

with respect to socio-economical variables — without any explanation for the layperson, of course.
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30% 70%

wealthy person,

distance 1 mile

"distance < 2 miles"?

"take a bus" "walk" "take a bus"

"European"?

"wealthy"? "use a car" "distance < 2 miles"?

YES NO

YES

YES

NO

NO

YES

YES

NO

NO

"walk"

"wealthy"?

"use a car"

Figure 6.6: Missing nationality information. The data point arriving at the top node

is sent both to its left and right child nodes with different weights depending on the

frequency of “YES” and “NO” answers in the training set.
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6.2. DEMOCRACY AND DECISION FORESTS

provides useful information —e.g., in marketing if a customer does not answer a ques-

tion, we can assume that he is not very interested,— and “missing” can be treated as

another value for a categorical variable. In other cases there is no significant informa-

tion in the fact that a value is missing (e.g., if a sloppy salesman forgets to record some

data about a customer). Decision trees provide a natural way to deal also with the sec-

ond case. If an instance reaches a node and the question cannot be answered because

data is lacking, one can ideally “split the instance into pieces”, and send part of it down

each branch in proportion to the number of training instances going down that branch.

As Fig. 6.6 suggests, if 30% of training instances go left, an instance with a missing

value at a decision node will be virtually split so that a portion of 0.3 will go left, and a

portion of 0.7 will go right. When the different pieces of the instance eventually reach

the leaves, the corresponding leaf output values can be averaged, or a distribution can

be computed. The weights in the weighted average are proportional to the weights of

the pieces reaching the leaves. In the example, the output value will be 0.3 times the

output obtained by going left plus 0.7 times the output obtained by going right2.

6.2 Democracy and decision forests

In the nineties, researchers discovered how using democratic ensembles of learners

(e.g., generic “weak” classifiers with a performance slightly better than random guess-

ing) yields greater accuracy and generalization[36, 6]. The analogy is with human soci-

ety: in many cases setting up a committee of experts is a way to reach a decision with

a better quality by either reaching consensus or by coming up with different proposals

and voting (in other cases it is a way of postponing a decision, all analogies have their

weaknesses). “Wisdom of crowds” [41] is a recent term to underline the positive effect

of democratic decisions. For machine learning, outputs are combined by majority (in

classification) or by averaging (in regression).

This seems particularly true for high dimensional data, with many irrelevant at-

tributes, as often encountered in real-world applications. The topic is not as abstract as

it looks: many relevant applications have been created, ranging from Optical Character

Recognition with neural networks [6] to using ensembles of trees in input devices for

game consoles3 [16].

In order for a committee of experts to produce superior decisions you need them to

be different (no groupthink effect, experts thinking in the same manner are useless) and

of reasonable quality. Ways to obtain different trees are, for example, training them on

different sets of examples, or training them with different randomized choices (in the

2Needless to say, a recursive call of the same routine with the left and right subtrees as argument is a

way to obtain a very compact software implementation.
3Decision forests are used for human body tracking in the Microsoft Kinect sensor for the XBox

gaming console.
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human case, think about students following different courses on the same subject):

• Creating different sets of training examples from an initial set can be done with

bootstrap samples (Section 5.3): given a standard training set D of size ℓ, boot-

strap sampling generates new training sets by sampling from D uniformly and

with replacement (some cases can be repeated). After ℓ samples, a training set is

expected to have 1−1/e ≈ 63.2% of the unique examples of D, the rest being du-

plicates. Think about randomly throwing ℓ balls into ℓ boxes (recall Fig. 5.5): for

large ℓ, only about 63.2% of the boxes will contain one or more balls. For each

ball in the box, pick one version of the corresponding example. In each boot-

strap training set, about one-third of the instances are left out. The application

of bootstrapping to the creation of different sample sets is called bagging (“boot-

strap aggregation”): different trees are built by using different random bootstrap

samples and combined by averaging the output (for regression) or voting (for

classification).

• Different randomized choices during training can be executed by limiting the

choices when picking the optimal question at a node.

As an example of the differentiating methods just described, here’s how they are

implemented in random decision forests [25, 11]:

• each tree is trained on a bootstrap sample (i.e., with replacement) of the original

data set;

• each time a leaf must be split, only a randomly chosen subset of the dimensions

is considered for splitting. In the extreme case, only one random attribute (one

dimension) is considered.

To be more precise, if d is the total number of input variables, each tree is constructed

as follows: a small number d′ of input variables, usually much smaller than d (in the

extreme case just one), are used to determine the decision at a node. A bootstrap sample

(“bag”) is guiding the tree construction, while the cases which are not in the bag can

be used to estimate the error of the tree. For each node of the tree, d′ variables are

randomly chosen on which to base the decision at that node. The best split based on

these d′ variables is calculated (“best” according to the chosen purity criterion, IG or

GI). Each time a categorical variable is selected to split on at a node, one can select a

random subset of the categories of the variable, and define a substitute variable equal to

1 when the categorical value of the variable is in the subset, and 0 outside. Each tree is

fully grown and not pruned (as may be done in constructing a normal tree classifier).

By the above procedure we have actually populated a committee (“forest”) where

every expert (“tree”) has received a different training, because they have seen a different

set of examples (by bagging) and because they look at the problem from different points
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of view (they use different, randomly chosen criteria at each node). No expert is guar-

anteed to be very good at its job: the order at which each expert looks at the variables

is far from being the greedy criterion that favors the most informative questions, thus

an isolated tree is rather weak; however, as long as most experts are better than random

classifiers, the majority (or weighted average) rule will provide reasonable answers.

Estimates of generalization when using bootstrap sampling can be obtained in a

natural way during the training process: the out-of-bag error (error for cases not in the

bootstrap sample) for each data point is recorded and averaged over the forest.

The relevance of the different variables (feature or attribute ranking) in decision

forests can also be estimated in a simple manner. The idea is: if a categorical feature

is important, randomly permuting its values should decrease the performance in a sig-

nificant manner. After fitting a decision forest to the data, to derive the importance of

the i-th feature after training, the values of the i-th feature are randomly permuted and

the out-of-bag error is again computed on this perturbed data set. The difference in

out-of-bag error before and after the permutation is averaged over all trees. The score

is the percent increase in misclassification rate as compared to the out-of-bag rate with

all variables intact. Features which produce large increase are ranked as more important

than features which produce small increases.

The fact that many trees can be used (thousands are not unusual) implies that, for

each instance to be classified or predicted, a very large number of output values of the

individual trees are available. By collecting and analyzing the entire distribution of out-

puts of the many trees one can derive confidence bars for the regression or probabilities

for classification. For example, if 300 trees predict “sun” and 700 trees predict “rain”

we can come up with an estimate of a 70% probability of “rain.”
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Gist

Simple “if-then” rules condense nuggets of information in a way which can be un-

derstood by human people. A simple way to avoid a confusing mess of possibly

contradictory rules is to proceed with a hierarchy of questions (the most informa-

tive first) leading to an organized structure of simple successive questions called a

decision tree.

Trees can be learned in a greedy and recursive manner, starting from the com-

plete set of examples, picking a test to split it into two subsets which are as pure as

possible, and repeating the procedure for the produced subsets. The recursive pro-

cess terminates when the remaining subsets are sufficiently pure to conclude with a

classification or an output value, associated with the leaf of the tree.

The abundance of memory and computing power permits training very large

numbers of different trees. They can be fruitfully used as decision forests by col-

lecting all outputs and averaging (regression) or voting (classification). Decision

forests have various positive features: like all trees they naturally handle problems

with more than two classes and with missing attributes, they provide a probabilistic

output, probabilities and error bars, they generalize well to previously unseen data

without risking over-training, they are fast and efficient thanks to their parallelism

and reduced set of tests per data point.

A single tree casts a small shadow, hundreds of them can cool even the most

torrid machine learning applications.
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Chapter 7

Ranking and selecting features

I don’t mind my eyebrows. They add. . . something to me. I wouldn’t say they were my best

feature, though. People tell me they like my eyes. They distract from the eyebrows.

(Nicholas Hoult)

Before starting to learn a model from the examples, one must be sure that the input

data (input attributes or features) have sufficient information to predict the outputs.

And after a model is built, one would like to get insight by identifying attributes which

are influencing the output in a significant manner. If a bank investigates which cus-

tomers are reliable enough to give them credit, knowing which factors are influencing

the credit-worthiness in a positive or negative manner is of sure interest.

Feature selection, also known as attribute selection or variable subset selection, is

the process of selecting a subset of relevant features to be used in model construction.
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7.1. SELECTING FEATURES: THE CONTEXT

Feature selection is different from feature extraction, which considers the creation of

new features as functions of the original features.

The issue of selecting and ranking features is far from trivial. Let’s assume that a

linear model is built:

y = w1x1 + w2x2 + ...+ wdxd.

If a weight, say wj , is zero you can easily conclude that the corresponding feature xj

does not influence the output. But let’s remember that numbers are not exact in com-

puters and that examples are “noisy” (affected by measurement errors) so that getting

zero is a very low-probability event indeed. Considering the non-zero weights, can you

conclude that the largest weights (in magnitude) are related to the most informative and

significant features?

Unfortunately you cannot. This has to do with how inputs are “scaled”. If weight

wj is very large when feature xj is measured in kilometers, it will jump to a very small

value when measuring the same feature in millimeters (if we want the same result, the

multiplication wj × xj has to remain constant when units are changed). An aesthetic

change of units for our measurements immediately changes the weights. The value of a

feature cannot depend on your choice of units, and therefore we cannot use the weight

magnitude to assess its importance.

Nonetheless, the weights of a linear model can give some robust information if the

inputs are normalized, pre-multiplied by constant factors so that the range of typical val-

ues is the same, for example the approximate range is from 0 to 1 for all input variables.

If selecting features is already complicated for linear models, expect an even bigger

complication for nonlinear ones.

7.1 Selecting features: the context

Let’s now come to some definitions for the case of a classification task (Fig. 3.1 on

page 17) where the output variable c identifies one among Nc classes and the input vari-

able x has a finite set of possible values. For example, think about predicting whether

a mushroom is edible (class 1) or poisonous (class 0). Among the possible features

extracted from the data one would like to obtain a highly informative set, so that the

classification problem starts from sufficient information, and only the actual construc-

tion of the classifier is left.

At this point you may ask why one is not using the entire set of inputs instead of a

subset of features. After all, some information shall be lost if we eliminate some input

data. True, but the curse of dimensionality holds here: if the dimension of the input

is too large, the learning task becomes unmanageable. Think for example about the

difficulty of estimating probability distributions from samples in very high-dimensional

spaces. This is the standard case in “big data” text and web mining applications, in
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which each document can be characterized by tens of thousands dimensions (a dimen-

sion for each possible word in the vocabulary), so that vectors corresponding to the

documents can be very sparse in the vector space.

Heuristically, one aims at a small subset of features, possibly close to the smallest

possible, which contains sufficient information to predict the output, with redun-

dancy eliminated. In this way not only memory usage is reduced but generalization

can be improved because irrelevant features and irrelevant parameters are eliminated.

Last but not least, your human understanding of the model becomes easier for smaller

models.

Think about recognizing digits from written text. If the text is written on colored

paper, maintaining the color of the paper as a feature will make the learning task more

difficult and worsen generalization if paper of different color is used to test the system.

Feature selection is a typical problem with many possible solutions and without

formal guarantees of optimality. No simple recipe is available, although one identifies

some classes of methods.

First, the designer intuition and existing knowledge should be applied. For ex-

ample, if your problem is to recognize handwritten digits, images should be scaled and

normalized (a “five” is still a five even if enlarged, reduced, stretched, rotated. . . ), and

clearly irrelevant features like the color should be eliminated from the beginning.

Second, one needs a way to estimate the relevance or discrimination power of

the individual features and then one can proceed in a bottom-up or top-down manner,

in some cases by directly testing the tentative feature set through repeated runs of the

considered training model. The value of a feature is related to a model-construction

method, and some evaluation techniques depend on the method. One identifies three

classes of methods.

Wrapper methods are built “around” a specific predictive model. Each feature

subset is used to train a model. The generalization performance of the trained model

gives the score for that subset. Wrapper methods are computationally intensive, but

usually provide the best performing feature set for the specific model.

Filter methods use a proxy measure instead of the error rate to score a feature sub-

set. Common measures include the Mutual Information and the correlation coefficient.

Many filters provide a feature ranking rather than an explicit best feature subset.

Embedded methods perform feature selection as part of the model construction

process. An example of this approach is the LASSO method for constructing a linear

model, which penalizes the regression coefficients, shrinking many of them to zero, so

that the corresponding features can be eliminated. Another approach is Recursive Fea-

ture Elimination, commonly used with Support Vector Machines to repeatedly construct

a model and remove features with low weights.

By combining filtering with a wrapper method one can proceed in a bottom-up or

top-down manner. In a bottom-up method of greedy inclusion one gradually inserts
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Figure 7.1: A classifier with two binary inputs and one output. Single features in iso-

lation are not informative, both input features are needed and sufficient for a correct

classification.

the ranked features in the order of their individual discrimination power and checks

the effect on output error reduction though a validation set. The heuristically optimal

number of features is determined when the output error measured on the validation set

stops decreasing. In fact, if many more features are added beyond this point, the error

may remain stable, or even gradually increase because of over-fitting.

In a top-down truncation method one starts with the complete set of features and

progressively eliminates features while searching for the optimal performance point (al-

ways checking the error on a suitable validation set).

A word of caution for filter methods. Let’s note that measuring individual features

in isolation will discard mutual relationships and therefore the result will be approxi-

mated. It can happen that two features in isolation have no relevant information and are

discarded, even if their combination would allow perfect prediction of the output, think

about realizing an exclusive OR function of two inputs.

As a example of the exclusive OR, imagine that the class to recognize is Correct-

Menu(hamburger, dessert), where the two variables hamburger and dessert have value

1 if present in a menu, 0 otherwise (Fig. 7.1). To get a proper amount of calories in

a fast food you need to get either a hamburger or a dessert but not both. The individ-

ual presence or absence of a hamburger (or of a dessert) in a menu will not be related

to classifying a menu as correct or not. But it would not be wise to eliminate one or

both inputs because their individual information is not related to the output classifica-
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tion. You need to keep and read both attributes to correctly classify your meal! The

toy example can be generalized: any diet expert will tell you that what matters are not

individual quantities but an overall balanced combination.

Now that the context is clear, let’s consider some example proxy measures of the

discrimination power of individual features.

7.2 Correlation coefficient

Let Y be the random variable associated with the output classification, let Pr(y) (y ∈ Y )

be the probability of y being its outcome; Xi is the random variable associated with the

input variable xi, and X is the input vector random variable, whose values are x.

Figure 7.2: Examples of data distributions and corresponding correlation values. Re-

member that values are divided by the standard deviation, this is why the linear distri-

butions of the bottom plots all have the same maximum correlation coefficient (positive

1 or negative -1).

The most widely used measure of linear relationship between numeric variables

is the Pearson product-moment correlation coefficient, which is obtained by dividing

the covariance of the two variables by the product of their standard deviations. In the

above notation, the correlation coefficient ρXi,Y between the i-th input feature Xi and

the classifier’s outcome Y , with expected values µXi
and µY and standard deviations

σXi
and σY , is defined as:

ρXi,Y =
cov[Xi, Y ]

σXi
σY

=
E[(Xi − µXi

)(Y − µY )]

σXi
σY

; (7.1)
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where E is the expected value of the variable and cov is the covariance. After simple

transformations one obtains the equivalent formula:

ρXi,Y =
E[XiY ]− E[Xi]E[Y ]√

E[X2
i ]− E2[Xi]

√
E[Y 2]− E2[Y ]

. (7.2)

The division by the standard deviations makes the correlation coefficient indepen-

dent of units (e.g., measuring in kilometers or millimeters will produce the same result).

The correlation value varies from −1 to 1. Correlation close to 1 means increasing

linear relationship (an increase of the feature value xi relative to the mean is usually

accompanied by an increase of the outcome y), close to −1 means a decreasing linear

relationship. The closer the coefficient is to zero, the weaker the correlation between

the variables, for example the plot of (xi, y) points looks like an isotropic cloud around

the expected values, without an evident direction, as shown in Fig. 7.2.

As mentioned before, statistically independent variables have zero correlation, but

zero correlation does not imply that the variables are independent. The correlation co-

efficient detects only linear dependencies between two variables: it may well be that a

variable has full information and actually determines the value of the second, as in the

case that y = f(xi), while still having zero correlation.

The normal suggestion for this and other feature ranking criteria is not to use them

blindly, but supported by experimental results on classification performance on test (val-

idation) data, as in wrapper techniques.

7.3 Correlation ratio

In many cases, the desired outcome of our learning algorithm is categorical (a “yes/no”

answer or a limited set of choices). The correlation coefficient assumes that the output

is numeric, thus it is not applicable to the categorical case. In order to sort out general

dependencies, the correlation ratio method can be used.

The basic idea behind the correlation ratio is to partition the sample feature vectors

into classes according to the observed outcome. If a feature is significant, then it should

be possible to identify at least one outcome class where the feature’s average value is

significantly different from the average on all classes, otherwise that component would

not be useful to discriminate any outcome. We are therefore measuring a relationship

between a numeric input and a categorical output.

Suppose that one has a set of ℓ sample feature vectors, possibly collected during

previous stages of the algorithm that one is trying to measure. Let ℓy be the number of

times that outcome y ∈ Y appears, so that one can partition the sample feature vectors

by their outcome:

∀y ∈ Y Sy =
(
(x

(1)
jy , . . . , x

(n)
jy ); j = 1, . . . , ℓy

)
.
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In other words, the element x
(i)
jy is the i-th component (feature) of the j-th sample vector

among the ℓy samples having outcome y. Let us concentrate on the i-th feature from all

sample vectors, and compute its average within each outcome class:

∀y ∈ Y x̄(i)
y =

1

ℓy

ℓy∑

j=1

x
(i)
jy ,

and the overall average:

x̄(i) =
1

ℓ

∑

y∈Y

ℓy∑

j=1

x
(i)
jy =

1

ℓ

∑

y∈Y

ℓyx̄
(i)
y .

Finally, the correlation ratio between the i-th component of the feature vector and the

outcome is given by

η2Xi,Y
=

∑
y∈Y ℓy(x̄

(i)
y − x̄(i))2

∑
y∈Y

∑ℓy
j=1(x

(i)
jy − x̄(i))2

.

If the relationship between values of the i-th feature component and values of the

outcome is linear, then both the correlation coefficient and the correlation ratio are equal

to the slope of the dependence:

η2Xi,Y
= ρ2Xi,C

.

In all other cases, the correlation ratio can capture nonlinear dependencies.

7.4 Chi-square test

Let’s again consider a two-way classification problem and a single feature with a binary

value. For example, in text mining, the feature can express the presence/absence of

a specific term (keyword) t in a document and the output can indicate if a document

is about programming languages or not. We are therefore evaluating a relationship

between two categorical features.

One can start by deriving four counters countc,t, counting in how many cases one has

(has not) the term t is a document which belongs (does not belong) to the given class.

For example count0,1 counts for class=0 and presence of term t, count0,0 counts for

class=0 and absence of term t. . . Then it is possible to estimate probabilities by dividing

the counts by the total number of cases n.

In the null hypothesis that the two events “occurrence of term t” and “document of

class c” are independent, the expected value of the above counts for joint events are

obtained by multiplying probabilities of individual events. For example E(count0,1) =
n · Pr(class = 0) · Pr(term t is present).
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If the count deviates from the one expected for two independent events, one can

conclude that the two events are dependent, and that therefore the feature is significant

to predict the output. All one has to do is to check if the deviation is sufficiently large

that it cannot happen by chance. A statistically sound manner to test is by statistical

hypothesis testing.

A statistical hypothesis test is a method of making statistical decisions by using

experimental data. In statistics, a result is called statistically significant if it is unlikely

to have occurred by chance. The phrase “test of significance” was coined around 1925

by Ronald Fisher, a genius who created the foundations for modern statistical science.

Hypothesis testing is sometimes called confirmatory data analysis, in contrast to

exploratory data analysis. Decisions are almost always made by using null-hypothesis

tests; that is, ones that answer the question: Assuming that the null hypothesis is true,

what is the probability of observing a value for the test statistic that is at least as extreme

as the value that was actually observed?

In our case one measures the χ2 value:

χ2 =
∑

c,t

[countc,t − n · Pr(class = c) · Pr(term = t)]2

n · Pr(class = c) · Pr(term = t)
. (7.3)

The larger the χ2 value, the lower the belief that the independence assumption is

supported by the observed data. The probability of a specific value happening by chance

can be calculated by standard statistical formulas if one desires a quantitative value.

For feature ranking no additional calculation is needed and one is satisfied with

the crude value: the best features according to this criterion are the ones with larger

χ2 values. They are deviating more from the independence assumption and therefore

probably dependent.

7.5 Entropy and mutual information

The qualitative criterion of “informative feature” can be made precise in a statistical

way with the notion of mutual information (MI).

An output distribution is characterized by an uncertainty which can be measured

from the probability distribution of the outputs. The theoretically sound way to measure

the uncertainty is with the entropy, see below for the precise definition. Now, knowing

a specific input value x, the uncertainty in the output can decrease. The amount by

which the uncertainty in the output decreases after the input is known is termed mutual

information.

If the mutual information between a feature and the output is zero, knowledge of the

input does not reduce the uncertainty in the output. In other words, the selected feature

cannot be used (in isolation) to predict the output - no matter how sophisticated our
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7.5. ENTROPY AND MUTUAL INFORMATION

model. The MI measure between a vector of input features and the output (the desired

prediction) is therefore very relevant to identify promising (informative) features. Its

use in feature selection is pioneered in [4].

In information theory entropy, measuring the statistical uncertainty in the output

class (a random variable), is defined as:

H(Y ) = −
∑

y∈Y

Pr(y) log Pr(y). (7.4)

Entropy quantifies the average information, measured in bits, used to specify which

event occurred (Fig. 6.5). It is also used to quantify how much a message can be

compressed without losing information1.

Let us now evaluate the impact that the i-th input feature xi has on the classifier’s

outcome y. The entropy of Y after knowing the input feature value (Xi = xi) is:

H(Y |xi) = −
∑

y∈Y

Pr(y|xi) log Pr(y|xi),

where Pr(y|xi) is the conditional probability of being in class y given that the i-th
feature has value xi.

Finally, the conditional entropy of the variable Y is the expected value of H(Y |xi)
over all values xi ∈ Xi that the i-th feature can have:

H(Y |Xi) = Exi∈Xi

[
H(Y |xi)

]
= −

∑

xi∈Xi

Pr(xi)H(Y |xi). (7.5)

The conditional entropy H(Y |Xi) is always less than or equal to the entropy H(Y ).
It is equal if and only if the i-th input feature and the output class are statistically in-

dependent, i.e., the joint probability Pr(y, xi) is equal to Pr(y) Pr(xi) for every y ∈ Y
and xi ∈ Xi (note: this definition does not talk about linear dependencies). The amount

by which the uncertainty decreases is by definition the mutual information I(Xi;Y )
between variables Xi and Y :

I(Xi;Y ) = I(Y ;Xi) = H(Y )−H(Y |Xi). (7.6)

An equivalent expression which makes the symmetry between Xi and Y evident is:

I(Xi;Y ) =
∑

y,xi

Pr(y, xi) log
Pr(y, xi)

Pr(y) Pr(xi)
. (7.7)

1 Shannon’s source coding theorem shows that, in the limit, the average length of the shortest possi-

ble representation to encode the messages in a binary alphabet is their entropy. If events have the same

probability, no compression is possible. If the probabilities are different one can assign shorter codes to

the most probable events, therefore reducing the overall message length. This is why “zip” tools success-

fully compress meaningful texts with different probabilities for words and phrases, but have difficulties

to compress quasi-random sequences of digits like JPEG or other efficiently encoded image files.
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Although very powerful in theory, estimating mutual information for a high-dimen-

sional feature vector starting from labeled samples is not a trivial task. A heuristic

method which uses only mutual information between individual features and the output

is presented in [4].

Let’s stress that the mutual information is different from the correlation. A feature

can be informative even if not linearly correlated with the output, and the mutual infor-

mation measure does not even require the two variables to be quantitative. Remember

that a nominal categorical variable is one that has two or more categories, but there is

no intrinsic ordering to the categories. For example, gender is a nominal variable with

two categories (male and female) and no intrinsic ordering. Provided that you have suf-

ficiently abundant data to estimate it, there is not a better way to measure information

content than by Mutual Information.

Gist

Reducing the number of input attributes used by a model, while keeping roughly

equivalent performance, has many advantages: smaller model size and better human

understandability, faster training and running times, possible higher generalization.

It is difficult to rank individual features without considering the specific modeling

method and their mutual relationships. Think about a detective (in this case the

classification to reach is between “guilty” and “innocent”) intelligently combining

multiple clues and avoiding confusing evidence. Ranking and filtering is only a

first heuristic step and needs to be validated by trying different feature sets with the

chosen method, “wrapping” the method with a feature selection scheme.

A short recipe is: trust the correlation coefficient only if you have reasons to

suspect linear relationships, otherwise other correlation measures are possible, in

particular the correlation ratio can be computed even if the outcome is not quantita-

tive. Use chi-square to identify possible dependencies between inputs and outputs

by estimating probabilities of individual and joint events. Finally, use the pow-

erful mutual information to estimate arbitrary dependencies between qualitative or

quantitative features, but be aware of possible overestimates when few examples are

present.

As an exercise, pick your favorite Sherlock Holmes story and identify which

feature (clue, evidence) selection technique he used to capture and expose a culprit

and to impress his friend Watson.
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Chapter 8

Specific nonlinear models

He who would learn to fly one day must first learn to stand and walk and run

and climb and dance; one cannot fly into flying.

(Friedrich Nietzsche)

In this chapter we continue along our path from linear to nonlinear models. In order

to avoid the vertigo caused by an abrupt introduction of the most general and powerful

models, we start by gradual modifications of the linear model, first to make it suitable

for predicting probabilities (logistic regression), then by making the linear models local

and giving more emphasis to the closest examples, in a kind of smoothed version of K
nearest neighbors (locally-weighted linear regression), finally by selecting a subset of

inputs via appropriate constraints on the weights (LASSO).
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After this preparatory phase, in the next chapters we will be ready to enter the holy

of holies of flexible nonlinear models for arbitrary smooth input-output relationships

like Multi-Layer Perceptrons (MLP) and Support Vector Machines (SVM).

8.1 Logistic regression

In statistics, logistic regression is used for predicting the probability of the outcome

of a categorical variable from a set of recorded past events. For example, one starts

from data about patients which can have a heart disease (disease “yes” or “no” is the cat-

egorical output variable) and wants to predict the probability that a new patient has the

heart disease. The name is somewhat misleading, it really is a technique for classifica-

tion, not regression. But classification is obtained through an estimate of the probability,

henceforth the term “regression.” Frequently the output is binary, that is, the number of

available categories is two.

The problem with using a linear model is that the output value is not bounded: we

need to bound it to be between zero and one. In logistic regression most of the work is

done by a linear model, but a logistic function (Fig. 8.1) is used to transform the output

of a linear predictor to obtain a value between zero and one, which can be interpreted

as a probability. The probability can then be compared with a threshold to reach a

classification (e.g., classification “yes” if output probability greater than 0.5).

Figure 8.1: A logistic function transforms input values into an output value in the range

0-1, in a smooth manner. The output of the function can be interpreted as a probability.
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A logistic function or logistic curve is a common sigmoid function1. A simple

logistic function is defined by the formula

P (t) =
1

1 + e−t
,

where e is Euler’s number and the variable t might be thought of as time or, in our case,

the output of the linear model, remember Equation (4.1) at page 31:

P (x) =
1

1 + e−(wTx)
.

Remember that a constant value w0 can also be included in the linear model w, provided

that an artificial input x0 always equal to 1 is added to the list of input values.

Let’s see which function is to be maximized in this case. The best values for the

weights of the linear transformation are determined by maximum likelihood estima-

tion, i.e., by maximizing the probability of getting the output values which were actu-

ally obtained on the given labeled examples. The probabilities of individual indepen-

dent cases are multiplied. Let yi be the observed output (1 or 0) for the corresponding

input xi. If Pr(y = 1|xi) is the probability obtained by the model, the probability

of obtaining the measured output value yi is Pr(y = 1|xi) if the correct label is 1,

Pr(y = 0|xi) = 1 − Pr(y = 1|xi) if the correct label is 0. All factors need to be

multiplied to get the overall probability of obtaining the complete series of examples. It

is customary to work with logarithms, so that the multiplication of the factors (one per

example) becomes a summation:

LogLikelihood(w) =
ℓ∑

i=1

{
yi ln Pr(y = yi|xi,w)+(1−yi) ln(1−Pr(y = yi|xi,w))

}
.

The dependence of Pr on the coefficients (weights) w has been made explicit.

Given the nonlinearities in the above expression, it is not possible to find a closed-

form expression for the weight values that maximize the likelihood function: an iterative

process must be used instead, for example gradient descent. This process begins with

a tentative solution wstart, revises it slightly by moving in the direction of the negative

gradient to see if it can be improved, and repeats this revision until improvement is

minute, at which point the process is said to have converged.

As usual, in ML one is interested in maximizing the generalization. The above min-

imization process can - and should - be stopped early, when the estimated generalization

results measured by a validation set are maximal.

1The term “logistic” was given when this function was introduced to study population growth. In

a population, the rate of reproduction is proportional to both the existing population and the amount of

available resources. The available resources decrease when the population grows and become zero when

the population reaches the “carrying capacity” of the system. The initial stage of growth is approximately

exponential; then, as saturation begins, the growth slows, and at maturity, growth stops.
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8.2 Locally-Weighted Regression

In Section 4.1 we have seen how to determine the coefficients of a linear dependence.

The K Nearest Neighbors method in Chapter 2 predicts the output for a new input by

comparing the new input with the closest old (and labeled) ones, giving as output either

the one of the closest stored input, or some simple combination of the outputs of a

selected set of closest neighbors.

In this section we consider a similar approach to obtain the output from a linear

combination of the outputs of the closest neighbors. But we are less cruel in eliminating

all but the K closest neighbors. The situation is smoothed out: instead of selecting a set

of K winners we gradually reduce the role of examples on the prediction based on

their distance from the case to predict.

The method works if a relationship based on experimental data can be safely as-

sumed to be locally linear, although the overall global dependence can be quite com-

plex. If the model must be evaluated at different points, then we can still use linear

regression, provided that training points near the evaluation point are considered “more

important” than distant ones. We encounter a very general principle here: in learning

(natural or automated) similar cases are usually deemed more relevant than very distant

ones. For example, case-based reasoning solves new problems based on the solutions

of similar past problems.

Locally Weighted Regression is a lazy memory-based technique, meaning that all

points and evaluations are stored and a specific model is built on-demand only when a

specified query point demands an output.

To predict the outcome of an evaluation at a point q (named a query point), linear

regression is applied to the training points. To enforce locality in the determination

of the regression parameters (near points are more relevant), to each sample point is

assigned a weight that decreases with its distance from the query point. Note that,

in the neural networks community, the term ”weight” refers to the parameters of the

model being computed by the training algorithm, while, in this case, it measures the

importance of each training sample. To avoid confusion we use the term significance

and the symbol si (and S for the diagonal matrix used below) for this different purpose.

In the following we shall assume, as explained in Section 4.1, that a constant 1 is

attached as entry 0 to all input vectors xi to include a constant term in the regression, so

that the dimensionality of all equations is actually d+ 1.

The weighted version of least squares fit aims at minimizing the following weighted

error (compare with equation (4.2), where weights are implicitly uniform):

error(w; s1, . . . , sn) =
ℓ∑

i=1

si(w
T · xi − yi)

2. (8.1)

From the viewpoint of the spring analogy discussed in Section 4.1, the distribution of
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8.2. LOCALLY-WEIGHTED REGRESSION

Figure 8.2: The spring analogy for the weighted least squares fit (compare with Fig. 4.6).

Now springs have different elastic constants, thicker meaning harder, so that their con-

tribution to the overall potential energy is weighted. In the above case, harder springs

are for points closer to the query point q.

different weights to sample points corresponds to using springs with a different elastic

constant (strength), as shown in Fig. 8.2. Minimization of equation (8.1) is obtained by

requiring its gradient with respect to w to be equal to zero, and we obtain the following

solution:

w∗ = (XTS2X)−1XTS2y; (8.2)

where S = diag(s1, . . . , sd), while X and y are defined as in Equation 4.5, page 37.

Note that equation (8.2) reduces to equation (4.5) when all weights are equal.

It makes sense to assign significance values to the stored examples according to their

distance from the query point (”nature does not make jumps”). A common function used

to set the relationship between significance and distance is

si = exp

(
−‖xi − q‖2

WK

)
;

where WK is a parameter measuring the “kernel width,” i.e. the sensitivity to distant

sample points; if the distance is much larger than WK the significance rapidly goes to

zero.

An example is given in Fig. 8.3 (top), where the model must be evaluated at query

point q. Sample points xi are plotted as circles, and their significance si decreases with

the distance from q and is represented by the interior shade, black meaning highest

significance. The linear fit (solid line) is computed by considering the significance of

the various points and is evaluated at q to provide the model’s value at that point. The
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q

Weighted fit

f(q)

f(q)

q

Figure 8.3: Top: evaluation of LWR model at query point q, sample point significance

is represented by the interior shade. Bottom: Evaluation over all points, each point

requires a different linear fit.

significance of each sample point and the subsequent linear fit are recomputed for each

query point, providing the curve shown in Fig. 8.3 (bottom).

8.2.1 Bayesian LWR

Up to this point, no assumption has been made on the prior probability distribution

of coefficients to be determined. In some cases some more information is available

about the task which can conveniently be added through a prior distribution.

Bayesian Locally Weighted Regression, denoted as B-LWR, is used if prior infor-
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mation about what values the coefficients should have can be specified when there is not

enough data to determine them. The usual power of Bayesian techniques derives from

the explicit specification of the modeling assumptions and parameters (for example, a

prior distribution can model our initial knowledge about the function) and the possi-

bility to model not only the expected values but entire probability distributions. For

example confidence intervals can be derived to quantify the uncertainty in the expected

values.

The prior assumption on the distribution of coefficients w, leading to Bayesian LWR,

is that it is distributed according to a multivariate Gaussian with zero mean and covari-

ance matrix Σ, and the prior assumption on σ is that 1/σ2 has a Gamma distribution with

k and θ as the shape and scale parameters. Since one uses a weighted regression, each

data point and the output response are weighted using a Gaussian weighing function.

In matrix form, the weights for the data points are described in ℓ × ℓ diagonal matrix

S = diag(s1, . . . , sℓ), while Σ = diag(σ1, . . . , σℓ) contains the prior variance for the w

distribution.

The local model for the query point q is predicted by using the marginal posterior

distribution of w whose mean is estimated as

w̄ = (Σ−1 +XTS2X)−1(XTS2y). (8.3)

Note that the removal of prior knowledge corresponds to having infinite variance on

the prior assumptions, therefore Σ−1 becomes null and equation (8.3) reduces to equa-

tion (8.2). The matrix Σ−1 +XTS2X is the weighted covariance matrix, supplemented

by the effect of the w priors. Let’s denote its inverse by Vw. The variance of the Gaus-

sian noise based on ℓ data points is estimated as

σ2 =
2θ + (yT −wTXT )S2y

2k +
∑ℓ

i=1 s
2
i

.

The estimated covariance matrix of the w distribution is then calculated as

σ2Vw =
(2θ + (yT −wTXT )S2y)(Σ−1 +XTS2X)

2k +
∑ℓ

i=1 s
2
i

.

The degrees of freedom are given by k+
∑ℓ

i=1 s
2
i . Thus the predicted output response

for the query point q is

ŷ(q) = qT w̄,

while the variance of the mean predicted output is calculated as:

V ar(ŷ(q)) = qTVwqσ
2. (8.4)
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8.3 LASSO to shrink and select inputs

When considering linear models, ridge regression was mentioned as a way to make

the model more stable by penalizing large coefficients in a quadratic manner, as in equa-

tion (4.7).

Ordinary least squares estimates often have low bias but large variance; prediction

accuracy can sometimes be improved by shrinking or setting to 0 some coefficients.

By doing so we sacrifice a little bias to reduce the variance of the predicted values

and hence may improve the overall prediction accuracy. The second reason is inter-

pretation. With a large number of predictors (input variables), we often would like to

determine a smaller subset that exhibits the strongest effects. The two standard tech-

niques for improving the estimates, feature subset selection and ridge regression, have

some drawbacks. Subset selection provides interpretable models but can be extremely

variable because it is a discrete process - input variables (a.k.a. regressors) are either

retained or dropped from the model. Small changes in the data can result in very differ-

ent models being selected and this can reduce prediction accuracy. Ridge regression is a

continuous process that shrinks coefficients and hence is more stable: however, it does

not set any coefficients to 0 and hence does not give an easily interpretable model. The

work in [42] proposes a new technique, called the LASSO, “least absolute shrinkage

and selection operator.” It shrinks some coefficients and sets others to 0, and hence tries

to retain the good features of both subset selection and ridge regression.

LASSO uses the constraint that ‖w‖1, the sum of the absolute values of the weights

(the L1 norm of the parameter vector), is no greater than a given value. LASSO min-

imizes the residual sum of squares subject to the sum of the absolute value of the co-

efficients being less than a constant. By a standard trick to transform a constrained

optimization problem into an unconstrained one through Lagrange multipliers, this is

equivalent to an unconstrained minimization of the least squares penalty with λ‖w‖1
added:

LASSOerror(w;λ) =
ℓ∑

i=1

(wT · xi − yi)
2 + λ

d∑

j=0

|wj|. (8.5)

One of the prime differences between LASSO and ridge regression is that in ridge

regression, as the penalty is increased, all parameters are reduced while still remaining

non-zero, while in LASSO, increasing the penalty will cause more and more of the pa-

rameters to be driven to zero. The inputs corresponding to weights equal to zero can

be eliminated, leading to models with fewer inputs (sparsification of inputs) and there-

fore more interpretable. Fewer nonzero parameter values effectively reduce the number

of variables upon which the given solution is dependent. In other words, LASSO is

an embedded method to perform feature selection as part of the model construction
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Figure 8.4: In LASSO, the best solution is where the contours of the quadratic error

function touch the square, and this will sometimes occur at a corner, corresponding to

some zero coefficients. On the contrary the quadratic constraint of ridge regression does

not have corners for the contours to hit and hence zero values for the weights will rarely

result.

process.

Let’s note that the term that penalizes large weights in Equation (8.5) does not have

a derivative when a weight is equal to zero (the partial derivative jumps from minus one

for negative values to plus one for positive values). The “trick” of obtaining a linear

system by calculating a derivative and setting it to zero cannot be used. The LASSO

optimization problem may be solved by using quadratic programming with linear

inequality constraints or more general convex optimization methods. The best value for

the LASSO parameter λ can be estimated via cross-validation.

8.3.1 Lagrange multipliers to optimize problems with constraints

The above method of transforming an optimization problem with constraints into an

unconstrained one is widely used and it deserves a small math digression for the most

curious readers. In mathematical optimization, the method of Lagrange multipliers is

a strategy for finding the local maxima and minima of a function subject to constraints.

The problem is transformed into an unconstrained one by adding each constrained mul-

tiplied by a parameter (a Lagrange multiplier). Minimizing the transformed function

yields a necessary condition for optimality.
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8.3. LASSO TO SHRINK AND SELECT INPUTS

Figure 8.5: Lagrange multipliers.

Consider a two-dimensional problem:

maximize f(x, y)

subject to g(x, y) = c.

We can visualize contours of f given by

f(x, y) = d

for various values of d and the contour of g given by g(x, y) = c, as shown in Fig. 8.5.

Suppose we walk along the contour line with g = c. In general the contour lines of

f and g may be distinct, so the contour line for g = c will intersect with or cross the

contour lines of f . This is equivalent to saying that while moving along the contour line

for g = c the value of f can vary. Only when the contour line for g = c meets contour

lines of f tangentially, do we neither increase nor decrease the value of f – that is, when

the contour lines touch but do not cross.

The contour lines of f and g touch when the tangent vectors of the contour lines

are parallel. Since the gradient of a function is perpendicular to the contour lines, this

is the same as saying that the gradients of f and g are parallel. Thus we want points

(x, y) where g(x, y) = c and

∇f(x, y) = λ∇g(x, y).
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8.3. LASSO TO SHRINK AND SELECT INPUTS

The Lagrange multiplier λ specifies how one gradient needs to be multiplied to obtain

the other one!

Gist

Linear models are widely used but insufficient in many cases. Three examples of

specific modifications have been considered in this chapter.

First, there can be reasons why the output needs to have a limited range of pos-

sible values. For example, if one needs to predict a probability, the output can

range only between zero and one. Passing a linear combination of inputs through a

“squashing” logistic function is a possibility. When the log-likelihood of the train-

ing events is maximized, one obtains the widely-used logistic regression.

Second, there can be cases when a linear model needs to be localized, by giving

more significance to input points which are closer to a given input sample to be

predicted. This is the case of locally-weighted regression.

Last, the penalties for large weights added to the function to be optimized can be

different from the sum of squared weights (the only case in which a linear equation

is obtained after calculating derivatives). As an example, penalties given by a sum

of absolute values can be useful to both reduce weight magnitude and sparsify the

inputs. LASSO reduces the number of weights different from zero, and therefore

the number of inputs which influence the output. This is the case of the LASSO

technique to shrink and select inputs.

Before reading this chapter a lasso for you was a long rope with a running noose

at one end used especially to catch horses and cattle. Now you can catch more

meaningful models too.
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Chapter 9

Neural networks, shallow and deep

Those who took other inspiration than from nature, master of masters,

were labouring in vain.

(Leonardo Da Vinci)

Our wet neural system, composed of about 100 billion (100,000,000,000) com-

puting units and about 1015 (1,000,000,000,000,000) connections is capable of surpris-

ingly intelligent behaviors. Actually, the capabilities of our brain define intelligence.

The computing units are specialized cells called neurons, the connections are called

synapses, and computation occurs at each neuron by currents generated by electrical

signals at the synapses, integrated in the central part of the neuron, and leading to elec-

trical spikes propagated to other neurons when a threshold of excitation is surpassed.

Neurons and synapses have been presented in Chapter 4 (Fig. 4.3). A way to model a

neuron is though a linear discrimination by a weighted sum of the inputs passed through

a ”squashing” function (Fig. 4.4). The output level of the squashing function is intended

to represent the spiking frequency of a neuron, from zero up to a maximum frequency.
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A single neuron is therefore a simple computing unit, a scalar product followed by

a sigmoidal function. By the way, the computation is rather noisy and irregular, being

based on electrical signals influenced by chemistry, temperature, blood supply, sugar

levels, etc. The intelligence of the system is coded in the interconnection strengths,

and learning occurs by modifying connections. The paradigm is very different from

that of ”standard” sequential computers, which operate in cycles, fetching items from

memory, applying mathematical operations and writing results back to memory. Neural

networks do not separate memory and processing but operate via the flow of signals

through the network connections.

The main mystery to be solved is how a system composed of many simple intercon-

nected units can give rise to such incredible activities as recognizing objects, speaking

and understanding, drinking a cup of coffee, fighting for your career. Emergence is

the way in which complex systems arise out of a multiplicity of relatively simple in-

teractions. Similar emergent properties are observed in nature, think about snowflakes

forming complex symmetrical patterns starting from simple water molecules.

The real brain is therefore an incredible source of inspiration for researchers, and

a proof that intelligent systems can emerge from very simple interconnected com-

puting units. Ever since the early days of computers, the biological metaphor has

been irresistible (”electronic brains”), but only as a simplifying analogy rather than a

blueprint for building intelligent systems. As Frederick Jelinek put it, ”airplanes don’t

flap their wings.” Yet, starting from the sixties, and then again the late eighties, the prin-

ciples of biological brains gained ground as a tool in computing. The shift in thinking

resulted in a paradigm change, from artificial intelligence based on symbolic rules and

reasoning, to artificial neural systems where knowledge is encoded in system parame-

ters (like synaptic interconnection weights) and learning occurs by gradually modifying

these parameters under the influence of external stimuli.

Given that the function of a single neuron is rather simple, it subdivides the input

space into two regions by a hyperplane, the complexity must come from having more

layers of neurons involved in a complex action (like recognizing your grandmother in

all possible situations). The ”squashing” functions introduce critical nonlinearities in

the system, without their presence multiple layers would still create linear functions.

Organized layers are very visible in the human cerebral cortex, the part of our brain

which plays a key role in memory, attention, perceptual awareness, thought, language,

and consciousness (Fig. 9.1).

For more complex ”sequential” calculations like those involved in logical reason-

ing, feedback loops are essential but more difficult to simulate via artificial neural net-

works. As you can expect, the ”high-level”, symbolic, and reasoning view of intelli-

gence is complementary to the ”low-level” sub-symbolic view of artificial neural net-

works. What is simple for a computer, like solving equations or reasoning, is difficult

for our brain, what is simple for our brain, like recognizing our grandmother, is still
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Figure 9.1: Three drawings of cortical lamination by Santiago Ramon y Cajal, each

showing a vertical cross-section, with the surface of the cortex at the top. The different

stains show the cell bodies of neurons and the dendrites and axons of a random subset

of neurons.

difficult to simulate on a computer1.

In any case, the ”airplanes don’t flap their wings” principle still holds. Even if real

brains are a useful source of inspiration and a proof of feasibility, most artificial neural

networks are actually run on standard computers, and the different areas of ”neural

networks”, ”machine learning”, ”artificial intelligence” are actually converging so that

the different terms are now umbrellas that cover a continuum of techniques to address

different and often complementary aspects of intelligent systems.

This chapter is focused on feedforward multi-layer perceptron neural networks

(without feedback loops).

1The two styles of intelligent behavior are now widely recognized, leading also to popular books about

”fast and slow thinking” [28].
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9.1. MULTILAYER PERCEPTRONS (MLP)

9.1 Multilayer Perceptrons (MLP)

The logistic regression model of Section 8.1 in Chapter 8 was a simple way to add the

”minimal amount of nonlinearity” to obtain an output which can be interpreted as a

probability, by applying a sigmoidal transfer function to the unlimited output of a linear

model. Imagine this as transforming a crisp plane separating the input space (output 0

on one side, output 1 on the other side, based on a linear calculation compared with a

threshold) into a smooth and gray transition area, black when far from the plane in one

direction, white when far from the plane in the other direction, gray in between2 (Fig.

9.2).

Figure 9.2: Effect of the logistic function. Linear model with threshold (left), smooth

sigmoidal transition (right).

If one visualizes y as the elevation of a terrain, in many cases a mountain area

presents too many hills, peaks and valleys to be modeled by planes plus maybe a single

smooth transition region.

If linear transformations are composed, by applying one after another, the situation

does not change: two linear transformation in a sequence still remain linear3. But if the

output of the first linear transformation is transformed by a nonlinear sigmoid before

applying the second linear transformation we get what we want: flexible models capa-

ble of approximating all smooth functions. The term non-parametric models is used

to underline their flexibility and differentiate them from rigid models in which only the

value of some parameters can be tuned to the data4. The first linear transformation will

provide a first ”hidden layer” of outputs (hidden because internal and not directly visible

as final ouputs), the second transformation will act to produce the visible outputs from

the hidden layer.

2As an observation, let’s note that logistic regression and an MLP network with no hidden layer and

a single output value are indeed the same architecture, what changes is the function being optimized, the

sum of squared errors for MLP, the LogLikelyhood for logistic regression.
3Let’s consider two linear transformations A and B. Applying B after A to get B(A(x)) still main-

tains linearity. In fact, B(A(ax+ by)) = B(aA(x) + bA(y)) = aB(A(x)) + bB(A(y)).
4An example of a parametric model could be an oscillation sin(ωx), in which the parameter ω has to

be determined from the experimental data.
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9.1. MULTILAYER PERCEPTRONS (MLP)

A multilayer perceptron neural network (MLP) is composed of a large number of

highly interconnected units (neurons) working in parallel to solve a specific problem and

organized in layers with a feedforward information flow (no loops). The architecture is

illustrated in Fig. 9.3.

Figure 9.3: Multilayer perceptron: the nonlinearities introduced by the sigmoidal trans-

fer functions at the intermediate (hidden) layers permit arbitrary continuous mappings

to be created. A single hidden layer is present in this image.

The architecture of the multilayer perceptron is organized as follows: the signals

flow sequentially through the different layers from the input to the output layer. The

intermediate layers are called hidden layers because they are not visible at the input or

at the output. For each layer, each unit first calculates a scalar product between a vector

of weights and the vector given by the outputs of the previous layer. A transfer function

is then applied to the result to produce the input for the next layer. A popular smooth

and saturating transfer function (the output saturates to zero for large negative signals,

to one for large positive signals) is the sigmoidal function, called sigmoidal because of

the “S” shape of its plot. An example is the logistic transformation encountered before

(Fig. 8.1):

f(x) =
1

1 + e−x
.

Other transfer functions can be used for the output layer; for example, the identity func-

tion can be used for unlimited output values, while a sigmoidal output function is more

suitable for “yes/no” classification problems or to model probabilities.

A basic question about MLP is: what is the flexibility of this architecture to rep-

resent input-output mappings? In other words, given a function f(x), is there a specific

MLP network with specific values of the weights so that the MLP output closely ap-

proximates the function f? While perceptrons are limited in their modeling power to

classification cases where the patterns (i.e., inputs) of the two different classes can be
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9.1. MULTILAYER PERCEPTRONS (MLP)

Figure 9.4: Analyzing a neural network output with LIONsolver Sweeper. The output

value, the energy consumed to heat a house in winter, is shown as a function of input

parameters. Color coded output (left), surface plot (right). Nonlinearities are visible.

separated by a hyperplane in input space, MLP’s are universal approximators [26]:

an MLP with one hidden layer can approximate any smooth function to any desired

accuracy, subject to a sufficient number of hidden nodes.

This is an interesting results: neural-like architectures composed of simple units (lin-

ear summation and squashing sigmoidal transfer functions), organized in layers with at

least a hidden layer are what we need to model arbitrary smooth input-output transfor-

mations.

For colleagues in mathematics this is a brilliant ”existence” results. For more prac-

tical colleagues the next question is: given that there exist an MLP approximator, how

can one find it in a fast manner by starting from labeled examples?

After reading the previous chapter you should already know at least a possible train-

ing technique. Think about it and then proceed to the next section.

As an example of an MLP input-output transformation, Fig. 9.4 shows the smooth

and nonlinear evolution of the output value as a function of varying input parameters.

By using sliders one fixes a subset of the input values, and the output is color-coded for

a range of values of two selected input parameters.
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9.2. LEARNING VIA BACKPROPAGATION

9.2 Learning via backpropagation

As usual, take a ”guiding” function to be optimized, like the traditional sum-of-squared

errors on the training examples, make sure it is smooth (differentiable), and use gradient

descent. Iterate by calculating the gradient of the function w.r.t. the weights and by

taking a small step in the direction of the negative gradient5.

The technical issue is now one of calculating partial derivatives by using the ”chain

rule” formula6 in calculus for computing the derivative of the composition of two or

more functions. In MLP the basic functions are: scalar products, then sigmoidal func-

tions, then scalar products, and so on until the output layer is reached and the error

is computed. For MLP network the gradient can be efficiently calculated, its calcula-

tion requires a number of operations proportional to the number of weights, and the

actual calculation is done by simple formulas similar to the one used for the forward

pass (from inputs to outputs) but now going in the contrary directions, from output er-

rors backwards towards the inputs. The popular technique in neural networks known

as learning by backpropagation of the error consists precisely in the above exercise:

gradient calculation and small step in the direction of the negative gradient [45, 46, 35].

It is amazing how a straightforward application of gradient descent took so many

years to reach wide applicability in the late eighties, and brought so much fame to the

researchers who made it popular. A possible excuse is that gradient descent is nor-

mally considered a ”vanilla” technique capable of reaching only locally-optimal points

(with zero gradient) without guarantees of global optimality. Experimentation on dif-

ferent problems, after initializing the networks with small and randomized weights, was

therefore needed to show its practical applicability for training MLPs. In addition, let’s

remember that ML aims at generalization, and for this goal reaching global optima is

not necessary. It may actually be counterproductive and lead to overtraining!

The use of gradual adaptations with simple and local mechanisms permits a close

link with neuroscience, although the detailed realization of gradient descent algorithms

with real neurons is still a research topic.

Let’s note that, after the network is trained, calculating the output from the inputs

requires a number of simple operations proportional to the number of weights, and

therefore the operation can be extremely fast if the number of weights is limited.

Let us briefly define the notation. We consider the ”standard” multi-layer percep-

5If the gradient is different from zero, there exist a sufficiently small step in the direction of the

negative gradient which will decrease the function value.
6 If f is a function and g is a function, then the chain rule expresses the derivative of the composite

function f ◦ g in terms of the derivatives of f and g. For example, the chain rule for (f ◦ g)(x) is:

df

dx
=

df

dg
· dg
dx

.
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9.2. LEARNING VIA BACKPROPAGATION

tron (MLP) architecture, with weights connecting only nearby layers and the sum-of-

squared-differences energy function defined as:

E(w) =
1

2

P∑

p=1

Ep =
1

2

P∑

p=1

(tp − op(w))
2, (9.1)

where tp and op are the target and the current output values for pattern p, respectively.

The sigmoidal transfer function is f(x) = 1/(1 + e−x).
The initialization can be done by having the initial weights randomly distributed in a

range7. In the following sections we present two ’gradient-based’ techniques: standard

batch backpropagation and a version with adaptive learning rate (bold driver BP, see

[2]), and the on-line stochastic backpropagation of [35].

9.2.1 Batch and ”Bold Driver” Backpropagation

The batch backpropagation update is a textbook form of gradient descent. After collect-

ing all partial derivatives in the gradient, denoted as gk = ∇E(wk), the weights at the

next iteration k + 1 are updated as follows:

wk+1 = wk − ǫ gk. (9.2)

The previous update, with a fixed learning rate ǫ, can be considered as a crude

version of steepest descent, where the exact minimum along the gradient direction is

searched at each iteration:

wk+1 = wk − ǫkgk, (9.3)

where ǫk minimizes E(wk − ǫgk). (9.4)

An application problem consists of picking a value of the learning rate which is ap-

propriate for a specific learning task, not too small to avoid very long training times

(caused by very small modifications of the weights at every iteration) and not too large

to avoid oscillations leading to wild increases of the energy function (let’s remember

that a descent is guaranteed only if the step along the gradient becomes very small).

An heuristic proposal for avoiding the choice and for modifying the learning rate

while the learning task runs is the bold driver (BD) method described in [2]. The learn-

ing rate increases exponentially if successive steps reduce the energy, and decreases

rapidly if an ”accident” is encountered (if E increases), until a suitable value is found.

7Choosing an initial range, like (−.5, .5) is not trivial, if the weights are too large, the scalar products

will be in the saturated areas of the sigmoidal function, leading to gradients close to zero and numerical

problems.
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9.2. LEARNING VIA BACKPROPAGATION

After starting with a small learning rate, its modifications are described by the following

equation:

ǫ(t) =

{
ρ ǫ(t− 1), if E(w(t)) < E(w(t− 1));
σl ǫ(t− 1), if E(w(t)) > E(w(t− 1)) using ǫ(t− 1),

(9.5)

where ρ is close to one (ρ = 1.1) in order to avoid frequent ”accidents” because the

energy computation is wasted in these cases, σ is chosen to provide a rapid reduction

(σ = 0.5), and l is the minimum integer such that the reduced rate σlǫ(t − 1) succeeds

in diminishing the energy.

The performance of this ”quick and dirty” form of backpropagation is close and

usually better than the one obtained by appropriately choosing a fixed learning rate.

Nonetheless, being a simple form of steepest descent, the technique suffers from the

common limitation of techniques that use the gradient as a search direction.

9.2.2 On-Line or stochastic backpropagation

Because the energy function E is a sum of many terms, one for each pattern, the gradient

will be a sum of the corresponding partial gradients ∇Ep(wk), the gradient of the error

for the p-th pattern: (tp − op(w))
2.

If one has one million training examples, first the contributions∇Ep(wk) are summed,

and the small step is taken.

An immediate option comes to mind: how about taking a small step along a single

negative ∇Ep(wk) immediately after calculating it? If the steps are very small, the

weights will differ by small amounts w.r.t. the initial ones, and the successive gradients

∇Ep(wk+j) will be very similar to the original ones∇Ep(wk).
If the patterns are taken in a random order, one obtains what is called stochastic

gradient descent, a.k.a. online backpropagation.

By the way, because biological neurons are not very good at complex and long

calculations, online backpropagation has a more biological flavor. For example, if a kid

is learning to recognize digits and a mistake is done, the correction effort will tend to

happen immediately after the recognized mistake, not after waiting to collect thousands

of mistaken digits.

The stochastic on-line backpropagation update is given by:

wk+1 = wk − ǫ ∇Ep(wk), (9.6)

where the pattern p is chosen randomly from the training set at each iteration and ǫ
is the learning rate. This form of backpropagation has been used with success in many

contexts, provided that an appropriate learning rate is selected by the user. The main dif-

ficulties of the method are that the iterative procedure is not guaranteed to converge and
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9.3. DEEP NEURAL NETWORKS

that the use of the gradient as a search direction is very inefficient for some problems8.

The competitive advantage with respect to batch backpropagation, where the complete

gradient of E is used as a search direction, is that the partial gradient∇Ep(wk) requires

only a single forward and backward pass, so that the inaccuracies of the method can

be compensated by the low computation required by a single iteration, especially if the

training set is large and composed of redundant patterns. In these cases, if the learning

rate is appropriate, the actual CPU time for convergence can be small.

The learning rate must be chosen with care: if ǫ is too small the training time in-

creases without producing better generalization results, while if ǫ grows beyond a certain

point the oscillations become gradually wilder, and the uncertainty in the generalization

obtained increases.

9.2.3 Advanced optimization for MLP training

As soon as the importance of optimization for machine learning was recognized,

researchers began to use techniques derived from the optimization literature that use

higher-order derivative information during the search, going beyond gradient descent.

Examples are conjugate gradient and ”secant” methods, i.e., methods that update an

approximation of the second derivatives (of the Hessian) in an iterative way by using

only gradient information. In fact, it is well known that taking the gradient as the cur-

rent search direction produces very slow convergence speed if the Hessian has a large

condition number (in a pictorial way this corresponds to having ”narrow valleys” in the

search space). Techniques based on second order information are of widespread use in

the neural net community, their utility being recognized in particular for problems with

a limited number of weights ( < 100) and requiring high precision in the output values.

A partial bibliography and a description of the relationships between different second-

order techniques has been presented in [3]. Two techniques that use second-derivatives

information (in an indirect and fast way): the conjugate gradient technique and the one-

step-secant method with fast line searches (OSS), are described in [3], [2]. More details

will be described in the chapter of this book dedicated to optimization of continuous

functions.

9.3 Deep neural networks

There is abundant evidence from neurological studies that our brain develops higher-

level concepts in stages by first extracting multiple layers of useful and gradually

8The precise definition is that of ill-conditioned problems.

Latest chapter revision: December 16, 2013

c© 2013 R. Battiti and M. Brunato, all rights reserved. Can be reproduced for non-profit usage with this attribution. lionsolver.com/LIONbook

100



9.3. DEEP NEURAL NETWORKS

more complex representations. In order to recognize your grandmother, first simple

elements are detected in the visual cortex, like image edges (abrupt changes of inten-

sity), then progressively higher-level concepts like eyes, mouth, and complex geomet-

rical features, independently on the specific position in the image, illumination, colors,

etc.

The fact that one hidden layer is sufficient for the existence of a suitable approxi-

mation does not mean that building this approximation will be easy, requiring a small

number of examples and a small amount of CPU time. In addition to the neurological

evidence in our brain, there are theoretical arguments to demonstrate that some classes

of input-output mappings are much easier to build when more hidden layers are consid-

ered [8].

The dream of ML research is to feed examples to an MLP with many hidden layers

and have the MLP automatically develop internal representations (the activation pat-

terns of the hidden-layer units). The training algorithm should determine the weights

interconnecting the lower levels (the ones closer to the sensory input) so that the repre-

sentations in the intermediate levels correspond to ”concepts” which will be useful for

the final complex classification task. Think about the first layers developing ”nuggets”

of useful regularities in the data.

This dream has some practical obstacles. When backpropagation is applied to an

MLP network with many hidden layers, the partial derivatives associated to the weights

of the first layers tend to be very small, and therefore subject to numerical estimation

problems. This is easy to understand9: if one changes a weight in the first layers, the

effect will be propagated upwards through many layers and it will tend to be confused

among so many effects by hundreds of other units. Furthermore, saturated units (with

output in the flat regions of the sigmoid) will squeeze the change so that the final effect

on the output will be very small. The net effect can be that the internal representations

developed by the first layers will not differ too much from what can be obtained by set-

ting the corresponding first-layer weights randomly, and leaving only the topmost levels

to do some ”useful” work. From another point of view, when the number of parameters

is very large w.r.t. the number of examples (and this is the case of deep neural networks)

overtraining becomes more dangerous, it will be too easy for the network to accommo-

date the training examples without being forced to extract the relevant regularities, those

essential for generalizing.

In the nineties, these difficulties shifted the attention of many users towards ”sim-

pler” models, based on linear systems with additional constraints, like the Support Vec-

tor Machines considered in the subsequent chapter.

More recently, a revival of deep neural networks (MLPs with many hidden layers)

9If you are not familiar with partial derivatives, think about changing a weight by a small amount ∆w
and calculating how the output changes ∆f . The partial derivative is the limit of the ratio ∆f/∆w when

the magnitude of the change goes to zero.
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9.3. DEEP NEURAL NETWORKS

and more powerful training techniques brought deep learning to the front stage, leading

to superior classification results in challenging areas like speech recognition, image pro-

cessing, molecular activity for pharmaceutical applications. Deep learning without any

ad hoc feature engineering (handcrafting of new features by using knowledge domain

and preliminary experiments) lead to winning results and significant improvements over

the state of the art [8].

The main scheme of the latest applications is as follows:

1. use unsupervised learning from many unlabeled examples to prepare the deep

network in an initial state;

2. use backpropagation only for the final tuning with the set of labeled examples,

after starting from the initial network trained in an unsupervised manner.

The scheme is very powerful for all those situations in which the number of unla-

beled (unclassified) examples is much larger than the number of labeled examples, and

the classification process is costly. For examples, collecting huge numbers of unlabeled

images by crawling the web is now very simple. Labeling them by having humans to de-

scribe the image content is much more costly. The unsupervised system is in charge of

extracting useful building blocks, like detectors for edges, for blobs, for textures of dif-

ferent kinds, in general, building blocks which appear in real images and not in random

”broken TV screen” patterns.

9.3.1 Auto-encoders

An effective way to build internal representations in an unsupervised manner is through

auto-encoders. One builds a network with a hidden layer and demands that the output

simply reproduces the input. It sounds silly and trivial at first, but interesting work

gets done when one squeezes the hidden layer, and therefore demands that the original

information in the input is compressed into an encoding c(x) with less variables than

the original ones (Fig. 9.5). For sure, this compression will not permit a faithful

reconstruction of all possible inputs. But this is positive for our goals: the internal

representation c(x) will be forced to discover regularities in the specific input patterns

shown to the system, to extract useful and significant information from the original

input.

For example, if images of faces are presented, some internal units will specialize to

detect edges, other maybe will specialize to detect eyes, and so on.

The auto-encoder can be trained by backpropagation or variations thereof. Classifi-

cation labels are not necessary. If the original inputs are labeled for classification, the

labels are simply forgotten by the system in this phase.

After the auto-encoder is built one can now transplant the hidden layer structure

(weights and hidden units) to a second network intended for classification (Fig. 9.6), add
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9.3. DEEP NEURAL NETWORKS

Figure 9.5: Auto-encoder.

Figure 9.6: Using an auto-encoder trained from unlabeled data to initialize an MLP

network.

an additional layer (initialized with small random weights), and consider this ”Franken-

stein monster” network as the starting point for a final training phase intended to realize

a classifier. In this final phase only a set of labeled pattern is used.

In many significant applications the final network has a better generalization per-

formance than a network which could be obtained by initializing randomly all weights.

Let’s note that the same properly-initialized network can be used for different but related

supervised training tasks. The network is initialized in the same manner, but different

labeled examples are used in the final tuning phase. Transfer learning is the term re-

lated to using knowledge gained while solving one problem and applying it to a different
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9.3. DEEP NEURAL NETWORKS

but related problem. For example, knowledge gained while learning to recognize people

faces could apply when recognizing monkeys.

Figure 9.7: Recursive training of auto-encoders to build deeper networks.

The attentive reader may have noticed that up to now only one hidden layer has been

created. But we can easily produce a chain of subsequent layers by iterating, compress-

ing the first code c(x), again by auto-encoding it, to develop a second more compressed

code and internal representation c′(c(x)). Again, the developed auto-encoding weights

can be used to initialize the second layer of the network, and so on (Fig. 9.7).

In addition to being useful for pre-training neural networks, very deep auto-encoders

can be useful for visualization and clustering. For example, if one considers hand-

written digits, and manages to auto-encode them so that the bottleneck compressed layer

contains only two units, the two-dimensional coordinates corresponding to each digit

can be visualized on a two-dimensional plane. If done appropriately, different clus-

ters approximately corresponding to the different digits are clearly visible in the two-

dimensional space, the two (or more) coordinates can therefore be very good starting

points for clustering objects.

The optimal number of layers and the optimal number of units in the ”pyramidal”

structure is still a research topic, but appropriate numbers can be obtained pragmatically

by using some form of cross-validation to select appropriate meta-parameters. More

details in [8].
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9.3. DEEP NEURAL NETWORKS

9.3.2 Random noise, dropout and curriculum

Now that you are getting excited about the idea of combining unsupervised pre-

training with supervised final tuning to get deep and deeper network, so that less and

less hand-made feature engineering will be required for state-of-the art performance,

let’s mention some more advanced possibilities which are now being transferred from

pure research to the first real-world applications.

The first possibility has to do with injecting controlled amount of noise into the

system [44] (denoising auto-encoders). The starting idea is very simple: corrupt each

pattern x with random noisy (e.g., if the pattern is binary, flip the value of each bit

with a given small probability) and ask the auto-encoding network to reconstruct the

original noise-free pattern x, to denoise the corrupted versions of its inputs. The task

becomes more difficult, but asking the system to go the extra mile encourages it to

extract even stronger and more significant regularities from the input patterns. This

version bridges the performance gap with deep belief networks (DBN), another way

to pre-train networks which is more difficult to explain [22, 23], and in several cases

surpasses it. Biologically, there is indeed a lot of noise in the wet brain matter. These

results demonstrate that noise can in fact have a positive impact on learning!

Another way to make the learning problem harder but to increase generalization (by

reducing overfitting) is through random dropout [24]: during stochastic backpropaga-

tion training, after presenting each training case, each hidden unit is randomly omitted

from the network with probability 0.5. In this manner, complex co-adaptation on train-

ing data is avoided. Each unit cannot rely on other hidden units being present and is

encouraged to become a detector identifying useful information, independently on what

the other units are doing10. In a way, randomly dropping some units is related to using

different network architectures at different times during training, and then averaging

their results during testing. Using ensembles of different networks is another way to

reduce overtraining and increasing generalization, as it will be explained in future chap-

ters. With random dropout the different networks are contained in the same complete

MLP network (they are obtained by activating only selected parts of the complete net-

work).

Another possibility to improve the final result when training MLP is though the use

of curriculum learning [9]. As in the human case, training examples are not presented

to the network at the same time but in stages, by starting from the easiest cases first and

10 Interestingly, there is an intriguing similarity between dropout and the role of sex in evolution. One

possible interpretation is that sex breaks up sets of co-adapted genes. Achieving a function by using a

large set of co-adapted genes is not nearly as robust as achieving the same function, in multiple alternative

ways, each of which only uses a small number of co-adapted genes. This allows evolution to avoid dead-

ends in which improvements in fitness require co-ordinated changes to a large number of co-adapted

genes. It also reduces the probability that small changes in the environment will cause large decreases in

fitness a phenomenon similar to the overfitting in the field of ML [24].
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9.3. DEEP NEURAL NETWORKS

then proceeding to the more complex ones. For example, when learning music, first the

single notes are learnt, then more complex symphonies. Pre-training by auto-encoding

can be considered a preliminary form of curriculum learning. The analogy with the

learning of languages is that first the learner is exposed to a mass of spoken material in

a language (for example by placing him in front of a foreign tv channel). After training

the ear to be tuned to characteristic utterances of the given spoken language, the more

formal phase of training by translating phrases is initiated.

Gist

Creating artificial intelligence based on the ”real thing” is the topic of artificial neu-

ral networks research. Multi-layer perceptron neural networks (MLPs) are a

flexible (non-parametric) modeling architecture composed of layers of sigmoidal

units interconnected in a feedforward manner only between adjacent layers. A unit

recognizing the probability of your grandmother appearing in an image can be built

with our neural hardware (no surprise) modeled as an MLP network. Effective

training from labeled examples can occur via variations of gradient descent, made

popular with the term ”error backpropagation.” The weakness of gradient descent

as optimization method does not prevent successful practical results.

Deep neural networks composed of many layers are becoming effective (and

superior to Support Vector Machines) through appropriate learning schemes, con-

sisting of an unsupervised preparatory phase followed by a final tuning phase by

using the scarce labeled examples.

Among the ways to improve generalization, the use of controlled amounts of

noise during training is effective (noisy auto-encoders, random dropout). If you

feel some noise and confusion in your brain, relax, it can be positive after all.

There are indeed striking analogies between human and artificial learning

schemes. In particular, increasing the effort during training pays dividends in terms

of improved generalization. The effort with a serious and demanding teacher (diver-

sifying test questions, writing on the blackboard, asking you to take notes instead

of delivering pre-digested material) can be a pain in the neck during training but

increases the power of your mind at later stages of your lifea.

a The German philosopher Hegel was using the term Anstrengung des Begriffs (”effort to define

the concept”) when defining the role of Philosophy.
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Chapter 10

Statistical Learning Theory and

Support Vector Machines (SVM)

Sembravano traversie ed eran in fatti opportunità.

They seemed hardships and were in fact opportunities.

(Giambattista Vico)

The order of chapters in this book has some connections with the history of machine

learning1. Before 1980, most learning methods concentrated either on symbolic “rule-

based” expert systems, or on simple sub-symbolic linear discrimination techniques,

with clear theoretical properties. In the eighties, decision trees and neural networks

1The photo of prof. Vapnik is from Yann LeCun website (Vladimir Vapnik meets the video games

sub-culture at http://yann.lecun.com/ex/fun/index.html#allyourbayes).
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paved the way to efficient learning of nonlinear models, but with little theoretical basis

and naive optimization techniques (based on gradient descent).

In the nineties, efficient learning algorithms for nonlinear functions based on statis-

tical learning theory developed, mostly through the seminal work by Vapnik and Cher-

vonenkis. Statistical learning theory (SLT) deals with fundamental questions about

learning from data. Under which conditions can a model learn from examples? How

can the measured performance on a set of examples lead to bounds on the generalization

performance?

These theoretical results are everlasting, although the conditions for the theorems to

be valid are almost impossible to check for most practical problems. In another direc-

tion, the same researchers proposed a resurrection of linear separability methods, with

additional ingredients intended to improve generalization, with the name of Support

Vectors Machines (SVM).

Figure 10.1: Explaining the basis of Support Vectors Machines. The margin of line A

is larger than that of line B. A large margin increases the probability that new examples

will fall in the right side of the separator line. Support vectors are the points touching

the widest possible margin.

The term SVM sounds technical but the rationale is simple to grasp. Let’s consider

the two classes (dark and bright dots) in Fig. 10.1 (left) and the two possible lines A

and B. They both linearly-separate the examples and can be two results of a generic

ML scheme to separate the labeled training data. The difference between the two is

clear when thinking about generalization. When the trained system will be used, new

examples from the two classes will be generated with the same underlying probability

distribution. Two clouds with a similar shape will be produced, but, for the case of line

B, the probability that some of the new points will fall on the wrong side of the separa-

tor is bigger than for line A. Line B is passing very close to some training examples, it

makes it just barely to separate them. Line A has the biggest possible distance from the
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examples of the two classes, it has the largest possible “safety area” around the bound-

ary, a.k.a. margin. SVMs are linear separators with the largest possible margin, and

the support vectors are the ones touching the safety margin region on both sides (Fig.

10.1, right).

Asking for the maximum-margin linear separator leads to standard Quadratic Pro-

gramming (QP) problems, which can be solved to optimality for problems of reason-

able size. QP is the problem of optimizing a quadratic function of several variables

subject to linear constraints on these variables. The issue with local minima poten-

tially dangerous for MLP2 disappears and this makes users feel relaxed. As you may

expect, there’s no rose without a thorn, and complications arise if the classes are not

linearly separable. In this case one first applies a nonlinear transformation φ to the

points so that they become (approximately) linearly separable. Think of φ as building

appropriate features so that the transformed points φ(x) of the two classes are linearly

separable. The nonlinear transformation has to be handcrafted for the specific problem,

no general-purpose transformation is available.

To discover the proper φ, are we back to feature extraction and feature engineering?

In a way yes, and after transforming inputs with φ, the features in SVM are all simi-

larities between an example to be recognized and the training examples3. A critical

step of SVM, which has to be executed by hand through some form of cross-validation,

is to identify which similarity measures are best to learn and generalize, an issue related

to selecting the so-called kernel functions.

SVMs can be seen as a way to separate two concerns: that of identifying a proper

way of measuring similarities between input vectors, the kernel functions K(x,y), and

that of learning a linear architecture to combine the outputs on the training examples,

weighted by the measured similarities with the new input example. As expected, more

similar input examples contribute more to the output, as in the more primitive nearest-

neighbors classifiers encountered in Chapter 2. This is the way to grasp formulas like:

ℓ∑

i=1

yiλ
∗
iK(x,xi),

(ℓ is the number of training examples, yi is the output on training example xi, x is

the new example to be classified) that we will encounter in the following theoretical

description. Kernels calculate dot products (scalar products) of data points mapped by a

function φ(x) without actually calculating the mapping, this is called the “kernel trick”

(Fig. 10.2):

K(x,xi) = ϕ(x) ·ϕ(xi).

A symmetric and positive semi-definite Gram Matrix containing the kernel values

2 Because local minima can be very far from global optima.
3Actually only support vectors will give a non-zero contribution.
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10.1. EMPIRICAL RISK MINIMIZATION

Figure 10.2: Initial information for SVM learning are similarity values between couples

of input points K(xi,xj), where K is known as kernel function. These values, under

some conditions, can be interpreted as scalar products obtained after mapping the ini-

tial inputs by a nonlinear function φ(x), but the actual mapping does not need to be

computed, only the kernel values are needed (”kernel trick”).

for couples of points fuses information about data and kernel4. Estimating a proper

kernel matrix from available data, one that will maximize generalization results, is an

ongoing research topic.

Now that the overall landscape is clear, let’s plunge into the mathematical details.

Some of these details are quite complex and difficult to grasp. Luckily, you will not

need to know the demonstration of the theorems to use SVMs, although a knowledge of

the main math results will help in selecting meta-parameters, kernels, etc.

10.1 Empirical risk minimization

We mentioned before that minimizing the error on a set of examples is not the only

objective of a statistically sound learning algorithm, also the modeling architecture has

to be considered. Statistical Learning Theory provides mathematical tools for deriving

unknown functional dependencies on the basis of observations.

A shift of paradigm occurred in statistics starting from the sixties: previously, fol-

lowing Fisher’s research in the 1920–30s, in order to derive a functional dependency

from observations one had to know the detailed form of the desired dependency and

to determine only the values of a finite number of parameters from the experimental

4Every similarity matrix can be used as kernel, if it satisfies Mercer’s theorem criteria.
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10.1. EMPIRICAL RISK MINIMIZATION

data. The new paradigm does not require the detailed knowledge, and proves that some

general properties of the set of functions to which the unknown dependency belongs

are sufficient to estimate the dependency from the data. Nonparametric techniques

is a term used for these flexible models, which can be used even if one does not know

a detailed form of the input-output function. The MLP model described before is an

example.

A brief summary of the main methodological points of Statistical Learning Theory

is useful to motivate the use of Support Vector Machines (SVM) as a learning mech-

anism. Let P (x, y) be the unknown probability distribution from which the examples

are drawn. The learning task is to learn the mapping xi → yi by determining the values

of the parameters of a function f(x,w). The function f(x,w) is called hypothesis, the

set {f(x,w) : w ∈ W} is called the hypothesis space and denoted by H, and W is

the set of abstract parameters. A choice of the parameter w ∈ W , based on the labeled

examples, determines a “trained machine.”

The expected test error or expected risk of a trained machine for the classification

case is:

R(w) =

∫
‖y − f(x,w)‖ dP (x, y), (10.1)

while the empirical risk Remp(w) is the mean error rate measured on the training set:

Remp(w) =
1

ℓ

ℓ∑

i=1

‖yi − f(xi,w)‖. (10.2)

The classical learning method is based on the empirical risk minimization (ERM)

inductive principle: one approximates the function f(x,w∗) which minimizes the risk

in (10.1) with the function f(x, ŵ) which minimizes the empirical risk in (10.2).

The rationale for the ERM principle is that, if Remp converges to R in probability

(as guaranteed by the law of large numbers), the minimum of Remp may converge to the

minimum of R. If this does not hold, the ERM principle is said to be not consistent.

As shown by Vapnik and Chervonenkis, consistency holds if and only if convergence

in probability of Remp to R is uniform, meaning that as the training set increases the

probability that Remp(w) approximates R(w) uniformly tends to 1 on the whole W .

Necessary and sufficient conditions for the consistency of the ERM principle is the

finiteness of the Vapnik-Chervonenkis dimension (VC-dimension) of the hypothesis

spaceH.

The VC-dimension of the hypothesis spaceH is, loosely speaking, the largest num-

ber of examples that can be separated into two classes in all possible ways by the set

of functions f(x,w). The VC-dimension h measures the complexity and descriptive

power of the hypothesis space and is often proportional to the number of free parame-

ters of the model f(x,w).
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Vapnik and Chervonenkis provide bounds on the deviation of the empirical risk

from the expected risk. A bound that holds with probability 1− p is the following:

R(w) ≤ Remp(w) +

√
h
(
ln 2ℓ

h
+ 1
)
− ln p

4

ℓ
∀w ∈ W .

By analyzing the bound, and neglecting logarithmic factors, in order to obtain a

small expected risk, both the empirical risk and the ratio h/ℓ between the VC-dimension

of the hypothesis space and the number of training examples have to be small. In other

words, a valid generalization after training is obtained if the hypothesis space is suffi-

ciently powerful to allow reaching a small empirical risk, i.e., to learn correctly the train-

ing examples, but not too powerful to simply memorize the training examples without

extracting the structure of the problem. For a larger model flexibility, a larger number

of examples is required to achieve a similar level of generalization.

The choice of an appropriate value of the VC-dimension h is crucial to get good

generalization performance, especially when the number of data points is limited.

The method of structural risk minimization (SRM) has been proposed by Vapnik

based on the above bound, as an attempt to overcome the problem of choosing an appro-

priate value of h. For the SRM principle one starts from a nested structure of hypothesis

spaces

H1 ⊂ H2 ⊂ · · · ⊂ Hn ⊂ · · · (10.3)

with the property that the VC-dimension h(n) of the setHn is such that h(n) ≤ h(n+1).
As the subset index n increases, the minima of the empirical risk decrease, but the term

responsible for the confidence interval increases. The SRM principle chooses the subset

Hn for which minimizing the empirical risk yields the best bound on the actual risk.

Disregarding logarithmic factors, the following problem must be solved:

min
Hn

(
Remp(w) +

√
h(n)

ℓ

)
. (10.4)

The SVM algorithm described in the following is based on the SRM principle, by

minimizing a bound on the VC-dimension and the number of training errors at the same

time.

The mathematical derivation of Support vector Machines is summarized first for the

case of a linearly separable problem, also to build some intuition about the technique.

10.1.1 Linearly separable problems

Assume that the labeled examples are linearly separable, meaning that there exist a pair

(w, b) such that:
w · x+ b ≥ 1 ∀x ∈ Class1;
w · x+ b ≤ −1 ∀x ∈ Class2.
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= 0

Separating hyperplane

Separation sphere

Points in first class

Points in second class

wx+ b

Figure 10.3: Hypothesis space constraint. The separating hyperplane must maximize

the margin. Intuitively, no point has to be too close to the boundary so that some noise

in the input data and future data generated by the same probability distribution will not

ruin the classification.

The hypothesis space contains the functions:

fw,b = sign(w · x+ b).

Because scaling the parameters (w, b) by a constant value does not change the deci-

sion surface, the following constraint is used to identify a unique pair:

min
i=1,...,ℓ

|w · xi + b| = 1.

A structure on the hypothesis space can be introduced by limiting the norm of

the vector w. It has been demonstrated by Vapnik that if all examples lie in an n-

dimensional sphere with radius R then the set of functions fw,b = sign(w · x+ b) with

the bound ‖w‖ ≤ A has a VC-dimension h that satisfies

h ≤ min{⌈R2A2⌉, n}+ 1.

The geometrical explanation of why bounding the norm of w constrains the hy-

pothesis space is as follows (see Fig. 10.3): if ‖w‖ ≤ A, then the distance from the

hyperplane (w, b) to the closest data point has to be larger than 1/A, because only the

hyperplanes that do not intersect spheres of radius 1/A placed around each data point

are considered. In the case of linear separability, minimizing ‖w‖ amounts to determin-

ing a separating hyperplane with the maximum margin (distance between the convex

hulls of the two training classes measured along a line perpendicular to the hyperplane).
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The problem can be formulated as:

Minimizew,b
1
2
‖w‖2

subject to yi(w · xi + b) ≥ 1 i = 1, . . . , ℓ.

The problem can be solved by using standard quadratic programming (QP) opti-

mization tools.

The dual quadratic program, after introducing a vector Λ = (λ1, . . . , λℓ) of non-

negative Lagrange multipliers corresponding to the constraints is as follows:

MaximizeΛ Λ · 1− 1
2
Λ ·D ·Λ

subject to

{
Λ · y = 0

Λ ≥ 0

; (10.5)

where y is the vector containing the example classification, and D is a symmetric ℓ× ℓ
matrix with elements Dij = yiyjxi · xj .

The vectors xi for which λi > 0 are called support vectors. In other words, support

vectors are the ones for which the constraints in (10.5) are active. If w∗ is the optimal

value of w, the value of b at the optimal solution can be computed as b∗ = yi −w∗ · xi

for any support vector xi, and the classification function can be written as

f(x) = sign

(
ℓ∑

i=1

yiλ
∗
ix · xi + b∗

)
.

Note that the summation index can as well be restricted to support vectors, because

all other vectors have null λ∗
i coefficients. The classification is determined by a linear

combination of the classifications obtained on the examples yi weighted according to the

scalar product between input pattern and example pattern (a measure of the “similarity”

between the current pattern and example xi) and by parameter λ∗
i .

10.1.2 Non-separable problems

If the hypothesis set is unchanged but the examples are not linearly separable a penalty

proportional to the constraint violation ξi (collected in vector Ξ) can be introduced,

solving the following problem:

Minimizew,b,Ξ
1

2
‖w‖2 + C

(
ℓ∑

i=1

ξi

)k

subject to





yi(w · xi + b) ≥ 1− ξi i = 1, . . . , ℓ

ξi ≥ 0 i = 1, . . . , ℓ

‖w‖2 ≤ cr;

(10.6)
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where the parameters C and k determine the cost caused by constraint violation, while

cr limits the norm of the coefficient vector. In fact, the first term to be minimized is

related to the VC-dimension, while the second is related to the empirical risk. (See the

above described SRM principle.) In our case, k is set to 1.

10.1.3 Nonlinear hypotheses

Extending the above techniques to nonlinear classifiers is based on mapping the input

data x into a higher-dimensional vector of features ϕ(x) and using linear classification

in the transformed space, called the feature space. The SVM classifier becomes:

f(x) = sign

(
ℓ∑

i=1

yiλ
∗
iϕ(x) ·ϕ(xi) + b∗

)
.

After introducing the kernel function K(x,y) ≡ ϕ(x) · ϕ(y), the SVM classifier

becomes

f(x) = sign

(
ℓ∑

i=1

yiλ
∗
iK(x,xi) + b∗

)
,

and the quadratic optimization problem becomes:

MaximizeΛ Λ · 1− 1
2
Λ ·D ·Λ

subject to

{
Λ · y = 0

0 ≤ Λ ≤ C1,

,

where D is a symmetric ℓ× ℓ matrix with elements Dij = yiyjK(xi,xj).
An extension of the SVM method is obtained by weighing in a different way the

errors in one class with respect to the error in the other class, for example when the

number of samples in the two classes is not equal, or when an error for a pattern of a

class is more expensive than an error on the other class. This can be obtained by setting

two different penalties for the two classes: C+ and C−. The function to minimize

becomes:

1

2
‖w‖2 + C+(

ℓ∑

i:yi=+1

ξi)
k + C−(

ℓ∑

i:yi=−1

ξi)
k.

If the feature functions ϕ(x) are chosen with care one can calculate the scalar

products without actually computing all features, therefore greatly reducing the com-

putational complexity.

The method used to avoid the explicit mapping is also called kernel trick. One uses

learning algorithms that only require dot products between the vectors in the original

input space, and chooses the mapping such that these high-dimensional dot products

can be computed within the original space, by means of a kernel function.
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10.1. EMPIRICAL RISK MINIMIZATION

For example, in a one-dimensional space a reasonable choice can be to consider

monomials in the variable x multiplied by appropriate coefficients an:

ϕ(x) = (a01, a1x, a2x
2, . . . , adx

d),

so that ϕ(x) ·ϕ(y) = (1+xy)d. In more dimensions, it can be shown that if the features

are monomials of degree ≤ d then one can always determine coefficients an so that:

K(x,y) = (1 + x · y)d.

The kernel function K(·, ·) is a convolution of the canonical inner product in the

feature space. Common kernels for use in a SVM are the following.

1. Dot product: K(x,y) = x · y; in this case no mapping is performed, and only

the optimal separating hyperplane is calculated.

2. Polynomial functions: K(x,y) = (x · y + 1)d, where the degree d is given.

3. Radial basis functions (RBF), like Gaussians: K(x,y) = e−γ‖x−y‖2 with param-

eter γ.

4. Sigmoid (or neural) kernel: K(x,y) = tanh(ax ·y+ b) with parameters a and b.

5. ANOVA kernel: K(x,y) =
(∑n

i=1 e
−γ(xi−yi)

)d
, with parameters γ and d.

When ℓ becomes large the quadratic optimization problem requires a ℓ × ℓ matrix

for its formulation, so it rapidly becomes an unpractical approach as the training set size

grows. A decomposition method where the optimization problem is split into an active

and an inactive set is introduced in [32]. The work in [27] introduces efficient methods

to select the working set and to reduce the problem by taking advantage of the small

number of support vectors with respect to the total number of training points.

10.1.4 Support Vectors for regression

Support vector methods can be applied also for regression, i.e., to estimate a function

f(x) from a set of training data {(xi, yi)}. As it was the case for classification, one

starts from the case of linear functions and then preprocesses the input data xi into an

appropriate feature space to make the resulting model nonlinear.

In order to fix the terminology, the linear case for a function f(x) = w · x + b can

be summarized. The convex optimization problem to be solved becomes:

Minimizew
1
2
‖w‖2

subject to

{
yi − (w · xi + b) ≤ ε

(w · xi + b)− yi ≤ ε,
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10.1. EMPIRICAL RISK MINIMIZATION

assuming the existence of a function that approximates all pairs with ε precision.

If the problem is not feasible, a soft margin loss function with slack variables ξi, ξ
∗
i ,

collected in vector Ξ, is introduced in order to cope with the infeasible constraints,

obtaining the following formulation:

Minimizew,b,Ξ
1

2
‖w‖2 + C

(
ℓ∑

i=1

ξ∗i +
ℓ∑

i=1

ξi

)

subject to





yi −w · xi − b ≤ ε− ξ∗i i = 1, . . . , ℓ

w · xi + b− yi ≤ ε− ξi i = 1, . . . , ℓ

ξ∗i ≥ 0 i = 1, . . . , ℓ

ξi ≥ 0 i = 1, . . . , ℓ

‖w‖2 ≤ cr.

(10.7)

As in the classification case, C determines the tradeoff between the flatness of the func-

tion and the tolerance for deviations larger than ε. Detailed information about support

vector regression can be found also in [40].
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10.1. EMPIRICAL RISK MINIMIZATION

Gist

Statistical Learning Theory (SLT) states the conditions so that learning from ex-

amples is successful, i.e., such that positive results on training data translate into

effective generalization on new examples produced by the same underlying prob-

ability distribution. The constancy of the distribution is critical: a good human

teacher will never train students on some examples just to give completely differ-

ent examples in the tests. In other words, the examples have to be representative

of the problem. The conditions for learnability mean that the hypothesis space (the

“flexible machine with tunable parameters” that we use for learning) must be suffi-

ciently powerful to allow reaching a good performance on the training examples (a

small empirical risk), but not too powerful to simply memorize the examples with-

out extracting the deep structure of the problem. The flexibility is quantified by the

VC-dimension.

SLT demonstrates the existence of the Paradise of Learning from Data but, for

most practical problems, it does not show the practical steps to enter it, and appro-

priate choices of kernel and parameters though intuition and cross-validation are

critical to the success.

The latest results on deep learning and MLPs open new hopes that the “feature

engineering” and kernel selection step can be fully automated. Research has not

reached an end to the issue, there is still space for new disruptive techniques and for

following the wild spirits of creativity more than the lazy spirits of hype and popular

wisdom.
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Chapter 11

Democracy in machine learning

While in every republic there are two conflicting factions, that of the people and that of the

nobles, it is in this conflict that all laws favorable to freedom have their origin.

(Machiavelli)

This is the final chapter in the supervised learning part. As you discovered, there are

many competing techniques for solving the problem, and each technique is characterized

by choices and meta-parameters: when this flexibility is taken into account, one easily

ends up with a very large number of possible models for a given task.

When confronted with this abundance one may just select the best model (and best

meta-parameters) and throw away everything else, or recognize that there’s never too

much of a good thing and try to use all of them, or at least the best ones. One already

spends effort and CPU time to select the best model and meta-parameters, producing

many models as a byproduct. Are there sensible ways to recycle them so that the effort

is not wasted? Relax, this chapter does not introduce radically new models but deals
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11.1. STACKING AND BLENDING

with using many different models in flexible, creative and effective ways. The ad-

vantage is in some cases so clear that using many models will make a difference between

winning and losing a competition in ML.

The leitmotif of this book is that many ML principles resemble some form of human

learning. Asking a committee of experts is a human way to make important decisions,

and committees work well if the participants have different competencies and compa-

rable levels of professionalism. Diversity of background, culture, sex is assumed to be

a critical component in successful innovative businesses. Democracy itself can be con-

sidered as a pragmatic way to pool knowledge from citizens in order to reach workable

decisions (well, maybe not always optimal but for sure better than decisions by a single

dictator).

We already encountered a creative usage of many classification trees as classifica-

tion forests in Chapter 6 (Sec. 6.2). In this chapter we review the main techniques to

make effective use of more and different ML models with a focus on the architectural

principles and a hint at the underlying math.

11.1 Stacking and blending

If you are participating in a ML competition (or if you want to win a contract or a

solution to a critical need in a business), chances are you will experiment with different

methods and come up with a large set of models. Like for good coffee, blending them

can bring higher quality.

The two straightforward ways to combine the outputs of the various models are by

voting and by averaging. Imagine that the task is to classify patterns into two classes.

In voting, each trained model votes for a class, votes are collected and the final output

class is the one getting more votes, exactly as in a basic democratic process based on

majority. If each model has a probability of correct classification greater than 1/2, and

if the errors of the different models are uncorrelated, then the probability that the

majority of M models will be wrong goes to zero as the number of models grows1.

Unfortunately errors tend to be correlated in practical cases (if a pattern is difficult to

recognize, it will be difficult for many models, the probability that many of them will be

wrong will be higher than the product of individual mistake probabilities — think about

stained digits in a zip code on a letter) and the advantage will be less dramatic.

If the task is to predict a probability (a posterior probability for a class given the input

pattern), averaging individual probabilities is another option. By the way, averaging the

results of experimental measures is the standard way to reduce variance2.

1The demonstration is simple by measuring the area under the binomial distribution where more than

M/2 models are wrong.
2The “law of large numbers” in statistics is about explaining why, under certain conditions, the average

of the results obtained from a large number of trials should be close to the expected value, and why it
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11.1. STACKING AND BLENDING

Figure 11.1: Blending different models by adding an additional model on top of them

(stacking).

Although straightforward, averaging and voting share a weakness: they treat all

models equally and the performance of the very best models can vanish amidst a mass

of mediocre models. The more complex a decision, the more the different experts have

to be weighted, and often weighted in a manner which depends on the specific

input.

You already have a hammer for nailing also this issue of weighting experts: machine

learning itself! Just add another linear model on top, connect the different outputs by the

level-0 models (the experts) and let ML identify the optimal weights (Fig. 11.1). This

is the basic idea of stacked generalization [47]. To avoid overtraining one must take

care that the training examples used for training the stacked model (for determining the

weights of the additional layer on top) were never used before for training the individual

models. Training examples are like fish: they stink if you use them for too long!

Results in stacked generalization are as follows [43]:

• When you can, use class probabilities as outputs of the original level-0 models

(instead of class predictions). Estimates of probabilities tell something about the

confidence, and not just the prediction. Keeping them will give more information

to the higher level.

• Ensure non-negative weights for the combination by adding constraints in the

optimization task. They are necessary for stacked regression to improve accuracy.

They are not necessary for classification task, but in both cases they increase the

interpretability of the level-1 model (a zero weight means that the corresponding

0-level model is not used, the higher the weight, the more important the model).

tends to become closer as more trials are performed.
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11.1. STACKING AND BLENDING

If your appetite is not satisfied, you can experiment with more than one level, or

with more structured combination. For example you can stack a level on top of MLPs

and decision forests, or combine a stacked model already done by a group with your

model by adding yet another level (Fig. 11.2). The more models you manage, the more

careful you have to be with the “stinking example” rule above. The higher-level models

do not need to be linear: some interpretability will be lost, but the final results can be

better with nonlinear combining models.

Figure 11.2: Stacking can be applied to different models, including previously stacked

ones.

An interesting option is the feature-weighted linear stacking [38]. We mention it

as an example of how a specific real-world application can lead to an elegant solution.

In some cases, one has some additional information, called “meta-features” in addition

to the raw input features. For example, if the application is to predict preferences for

customers for various products (in a collaborative filtering and recommendation con-

text), the reliability of a model can vary depending on the additional information. For

example, a model A may be more reliable for users who rated many products (in this

case, the number of products rated by the user is the “meta-feature”). To maintain linear

regression while allowing for weights to depend on meta-features (so that model A can

have a larger weight when used for a customer who rated more products), one can ask

for weights to be linear in the meta-features. If gi(x) is the output for level-0 model i
and fj(x) is the j-th meta-feature, weights will be

wi(x) =
∑

j

vijfj(x),

where vij are the parameters to be learned by the stacked model. The level-1 output will

be

b(x) =
∑

i,j

vijfj(x)gi(x),
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11.2. DIVERSITY BY MANIPULATING EXAMPLES

leading to the following feature-weighted linear stacking problem:

min
(vij)

∑

x

∑

i,j

(
vijfj(x)gi(x)− y(x)

)2
.

Because the model is still linear in v, we can use standard linear regression to identify

the optimal v. As usual, never underestimate the power of linear regression if used in

proper creative ways.

11.2 Diversity by manipulating examples (bagging and

boosting)

For a successful democratic systems in ML one needs a set of accurate and diverse

classifiers, or regressors, also called ensemble, like a group of musicians who perform

together. Ensemble methods is the traditional term for these techniques in the literature,

multiple-classifiers systems is a synonym.

Different techniques can be organized according to the main way in which they

create diversity [17].

Training models on different subsets of training examples is a possibility. In

bagging (”bootstrap aggregation”), different subsets are created by random sampling

with replacement (the same example can be extracted more than once). Each boot-

strap replica contains about two thirds (actually ≈ 63.2%) of the original examples.

The results of the different models are then aggregated, by averaging, or by majority

rules. Bagging works well to improve unstable learning algorithms, whose results un-

dergo major changes in response to small changes in the learning data. As described in

Chapter 6 (Section 6.2), bagging is used to produce classification forests from a set of

classification trees.

Cross-validated committees prepare different training sets by leaving out disjoint

subsets of training data. In this case the various models are the side-effect of using cross-

validation as ingredient in estimating a model performance (and no additional CPU is

required).

A more dynamic way of manipulating the training set is via boosting. The term

has to do with the fact that weak classifiers (although with a performance which must

be slightly better than random) can be “boosted” to obtain an accurate committee [20].

Like bagging, boosting creates multiple models, but the model generated at each itera-

tion is built in an adaptive manner, to directly improve the combination of previously

created models. The algorithm AdaBoost maintains a set of weights over the training

examples. After each iterations weights are updated so that more weight is given to

the examples which are misclassified by the current model (Fig. 11.3). Think about

a professional teacher, who is organizing the future lessons to insist more on the cases

which were not already understood by the students.
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11.3. DIVERSITY BY MANIPULATING FEATURES

Figure 11.3: In boosting, misclassified examples at the current iteration are given more

weight when training an additional model to be added to the committee.

The final classifier hf (x) is given by a weighted vote of the individual classifiers,

and the weight of each classifier reflects its accuracy on the weighted training set it was

trained on:

hf (x) =
∑

l

wlhl(x).

Because we are true believers in the power of optimization, the best way to under-

stand boosting is by the function it optimizes. Different variations can then be obtained

(and understood) by changing the function to be optimized or by changing the detailed

optimization scheme. To define the error function, let’s assume that the outputs yi of

each training example are +1 or −1. The quantity mi = yih(xi), called the margin of

classifier h on the training data, is positive if the classification is correct, negative oth-

erwise. As explained later in Section 11.6, AdaBoost can be viewed as a stage-wise

algorithm for minimizing the following error function:

∑

i

exp

(
−yi

∑

l

wlhl(xi)

)
, (11.1)

the negative exponential of the margin of the weighted voted classifier. This is equiva-

lent to maximizing the margin on the training data.

11.3 Diversity by manipulating features

Different subsets of features can be used to train different models (Fig. 11.4). In some

cases, it can be useful to group features according to different characteristics. In [15] this
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11.4. DIVERSITY BY MANIPULATING OUTPUTS

Figure 11.4: Using different subsets of features to create different models. The method

is not limited to linear models.

method was used to identify volcanoes on Venus with human expert-level performance.

Because the different models need to be accurate, using subsets of features works only

when input features are highly redundant.

11.4 Diversity by manipulating outputs (error-correcting

codes)

Error-correcting codes (ECC) are designed so that they are robust w.r.t. a certain

number of mistakes during transmission by noisy lines (Fig. 11.5). For example, if

the codeword for “one” is “111” and that for “zero” is “000”, a mistake in a bit like in

“101” can be accepted (the codeword will still be mapped to the correct “111”). Error-

correcting output coding is proposed in [18] for designing committees of classifiers.

The idea of applying ECC to design committees is that each output class j is en-

coded as an L-bit codeword Cj . The l-th trained classifier in the committee has the task

to predict the l-th bit of the codeword. After generating all bits by the L classifiers in

the committee, the output class is the one with the closest codeword (in Hamming dis-

tance, i.e., measuring the number of different bits). Because codewords are redundant,

a certain number of mistakes made by some individual classifiers can be corrected by

the committee.

As you can expect, the different ensemble methods can be combined. For example,

error-correcting output coding can be combined with boosting, or with feature selection,

in some cases with superior results.
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11.5. DIVERSITY BY INJECTING RANDOMNESS DURING TRAINING

Figure 11.5: In error-correcting codes a redundant encoding is designed to resist a cer-

tain number of mistaken bits.

11.5 Diversity by injecting randomness during training

Many training techniques have randomized steps in their bellies. This randomness is a

very natural way to obtain diverse models (by changing the seed of the random number

generator). For example, MLP starts from randomize initial weights. Tree algorithms

can decide in a randomized manner the next feature to test in an internal node, as it was

already described for obtaining decision forests.

Last but not least, most optimization methods used for training have space for ran-

domized ingredients. For example, stochastic gradient descent presents patterns in a

randomized order.

11.6 Additive logistic regression

We just encountered boosting as a way of sequentially applying a classification algo-

rithm to re-weighted versions of the training examples and then taking a weighted ma-

jority vote of the sequence of models thus produced.

As an example of the power of optimization, boosting can be interpreted as a way to

apply additive logistic regression, a method for fitting an additive model
∑

m hm(x)
in a forward stage-wise manner [21].

Let’s start from simple functions

hm(x) = βmb(x;γm),
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11.6. ADDITIVE LOGISTIC REGRESSION

Figure 11.6: Additive model step: the error of the current models on the training exam-

ples is measured. A second model is added aiming at canceling the error.

each characterized by a set of parameters γm and a multiplier βm acting as a weight.

One can build an additive model composed of M such functions as:

HM(x) =
M∑

m=1

hm(x) =
M∑

m=1

βmb(x;γm).

With a greedy forward stepwise approach one can identify at each iteration the best

parameters (βm,γm) so that the newly added simple function tends to correct the

error of the previous model Fm−1(x) (Fig. 11.6). If least-squares is used as a fitting

criterion:

(βm,γm) = arg min
(β,γ)

E
[(
y − Fm−1(x)− βb(x;γ)

)2]
, (11.2)

where E[·] is the expected value, estimated by summing over the examples. This greedy

procedure can be generalized as backfitting, where one iterates by fitting one of the

parameters couple (βm,γm) at each step, not necessarily the last couple. Let’s note that

this method only requires an algorithm for fitting a single weak learner βb(x;γ) to data,

which is applied repeatedly to modified versions of the original data (Fig. 11.7):

ym ← y −
∑

k 6=m

hk(x).

For classification problems, using the squared-error loss (with respect to ideal 0 or

1 output values) leads to trouble. If one would like to estimate the posterior probability

Pr(y = j|x), there is no guarantee that the output will be limited in the [0, 1] range.
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11.6. ADDITIVE LOGISTIC REGRESSION

Figure 11.7: The greedy forward step-wise approach in additive models, one iterates by

adding new components to cancel the remaining error.

Furthermore, the squared error penalizes not only real errors (like predicting 0 when 1 is

requested), but also it penalizes classifications which are “too correct” (like predicting

2 when 1 is required).

Logistic regression comes to the rescue (Section 8.1): one uses the additive model

H(x) to predicting an “intermediate” value, which is then squashed onto the correct

[0, 1] range by the logistic function to obtain the final output in form of a probability.

An additive logistic model has the form

ln
Pr(y = 1|x)
Pr(y = −1|x) = H(x),

where the logit transformation on the left monotonically maps probability Pr(y =
1|x) ∈ [0, 1] onto the whole real axis. Therefore, the logit transform, together with

its inverse

Pr(y = 1|x) = eH(x)

1 + eH(x)
, (11.3)

guarantees probability estimates in the correct [0, 1] range. In fact, H(x) is modeling

the input of the logistic function in Eq. (11.3).

Now, if one considers the expected value E
[
e−yH(x)

]
, one can demonstrate that this

quantity is minimized when

H(x) =
1

2
ln

Pr(y = 1|x)
Pr(y = −1|x) ,
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11.7. DEMOCRACY FOR BETTER ACCURACY-REJECTION COMPROMISES

i.e., the symmetric logistic transform of Pr(y = 1|x) (note the factor 1/2 in front). The

interesting result is that AdaBoost builds an additive logistic regression model via

Newton-like updates3 for minimizing E
[
e−yH(x)

]
. The technical details and additional

explorations are in the original paper [21].

11.7 Democracy for better accuracy-rejection compro-

mises

Figure 11.8: The accuracy-rejection compromise curve. Better accuracy can be obtain

by rejecting some difficult cases.

In many practical applications of pattern recognition systems there is another “knob”

to be turned: the fraction of cases to be rejected. Rejecting some difficult cases and

having a human person dealing with them (or a more complex and costly second-

level system) can be better than accepting and classifying everything. As an example,

in optical character recognition (e.g., zip code recognition), difficult cases can arise

because of bad writing or because of segmentation and preprocessing mistakes. In these

3Optimization with Newton-like steps, as it will become clear in the future chapters, means that a

quadratic approximation in the parameters is derived, and the best parameters are obtained as the mini-

mum of the quadratic model.
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11.7. DEMOCRACY FOR BETTER ACCURACY-REJECTION COMPROMISES

cases, a human expert may come up with a better classification, or may want to look at

the original postcard in the case of a preprocessing mistake. Let’s assume that the ML

system has this additional knob to be turned and some cases can be rejected. One comes

up with an accuracy-rejection curve like the one in Fig. 11.8, describing the attainable

accuracy performance as a function of the rejection rate. If the system is working in an

intelligent manner, the most difficult and undecided cases will be rejected first, so

that the accuracy will rapidly increase even for modest rejection rates 4.

For simplicity, let’s consider a two-class problem, and a trained model with an output

approximating the posterior probability for class 1. If the output is close to one, the

decision is clear-cut, and the correct class is 1 with high probability. A problem arises

if the output is close to 0.5. In this case the system is “undecided”. If the estimated

probability is close to 0.5, the two classes have a similar probability and mistakes will

be frequent (if probabilities are correct, the probability of mistake is equal to 0.5 in this

case). If the correct probabilities are known, the theoretically best Bayesian classifier

decides for class 1 if P (class = 1|x) is greater than 1/2, for class 0 otherwise. The

mistakes will be equal to the remaining probability. For example, if P (class = 1|x) is

0.8, mistakes will be done with probability 0.2 (the probability that cases of class two

having a certain x value are classified as class 1).

Figure 11.9: Transition regions in a Bayesian classifier. If the input patterns falling in

the transition areas close to the boundaries are rejected, the average accuracy for the

accepted cases increases.

4A related “tradeoff” curve in signal detection is the receiver operating characteristic (ROC), a graph-

ical plot which illustrates the performance of a binary classifier system as its discrimination threshold is

varied. It is created by plotting the fraction of true positives out of the total actual positives (TPR = true

positive rate) vs. the fraction of false positives out of the total actual negatives (FPR = false positive rate),

at various threshold settings.
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11.7. DEMOCRACY FOR BETTER ACCURACY-REJECTION COMPROMISES

Setting a positive threshold T on the posterior probability, demanding it to be greater

than (1/2 + T ) is the best possible “knob” to increase the accuracy by rejecting the

cases which do not satisfy this criterion. One is rejecting the patterns which are close

to the boundary between the two classes, where cases of both classes are mixed with

probability close to 1/2 (Fig. 11.9).

Now, if probabilities are not known but are estimated through machine learning,

having a committee of classifiers gives many opportunities to obtain more flexibility

and realize superior accuracy-rejection curves [7]. For example, one can get proba-

bilistic combinations of teams, or portfolios with more classifiers, by activating each

classifier with a different probability. One can consider the agreement between all of

them, or a qualified majority, as a signal of cases which can be assigned with high

confidence, and therefore to be accepted by the system. Finally, even more flexibility

can be obtained by considering the output probabilities (not only the classifications),

averaging and thresholding. If there are more than two classes, on can require that the

average probability is above a first threshold, while the distance with the second best

class is above a second threshold.

Experiments show that superior results and higher levels of flexibility in the accuracy-

rejection compromise can be easily obtained, by reusing in an intelligent manner the

many classifiers which are produced in any case while solving a task.
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11.7. DEMOCRACY FOR BETTER ACCURACY-REJECTION COMPROMISES

Gist

Having a number of different but similarly accurate machine learning models al-

lows for many ways of increasing performance beyond that of the individual systems

(ensemble methods, committees, democracy in ML).

In stacking or blending the systems are combined by adding another layer work-

ing on top of the outputs of the individual models.

Different ways are available to create diversity in a strategic manner. In bagging

(bootstrap aggregation), the same set of examples is sampled with replacement.

In boosting, related to additive models, a series of models is trained so that the

most difficult examples for the current system get a larger weight for the latest

added component. Using different subsets of features or different random number

generators in randomized schemes are additional possibilities to create diversity.

Error-correcting output codes use a redundant set of models coding for the various

output bits to increase robustness with respect to individual mistakes.

Additive logistic regression is an elegant way to explain boosting via addi-

tive models and Newton-like optimization schemes. Optimization is boosting our

knowledge of boosting.

Ensemble methods in machine learning resemble jazz music: the whole is greater

than the sum of its parts. Musicians and models working together, feeding off one

another, create more than they would by themselves.
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Part II

Unsupervised learning and clustering
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Chapter 12

Top-down clustering: K-means

First God made heaven and earth. The earth was without form and void, and darkness was upon

the face of the deep; and the Spirit of God was moving over the face of the waters. And God

said, “Let there be light”; and there was light. And God saw that the light was good; and God

separated the light from the darkness. God called the light Day, and the darkness he

called Night. [. . . ]

So out of the ground the Lord God formed every beast of the field and every bird of the air, and

brought them to the man to see what he would call them; and whatever the man called every

living creature, that was its name. The man gave names to all cattle, and to the birds of the air,

and to every beast of the field.

(Book of Genesis)

This chapter starts a new part of the book and enters a new territory. Up to now we

considered supervised learning methods, while the issue of this part is: What can be

learnt without teachers and labels?
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Like the energy emanating in the above painting by Michelangelo suggests, we are

entering a more creative region, which contains concepts related to exploration, discov-

ery, different and unexpected outcomes. The task is not to slavishly follow a teacher but

to gain freedom in generating models. In most cases the freedom is not desired but it is

the only way to proceed.

Let’s imagine you place a child in front of a television screen. Even without a teacher

he will immediately differentiate between a broken screen, showing a ”snowy” random

noise pattern, and different television programs like cartoons and world news. Most

probably, he will show more excitement for cartoons than for world news and for ran-

dom noise. The appearance of a working TV screen (and the appearance of the world) is

not random, but highly structured, arranged according to explicit or implicit plans. For

another example of unsupervised learning, let’s assume that entities represent speakers

of different languages, and coordinates are related to audio measurements of their spo-

ken language (such as frequencies, amplitudes, etc.). While walking in an international

airport, most people can readily identify clusters of different language speakers based

on the audible characteristics of the language. We may for example easily distinguish

English speakers from Italian speakers, even if we cannot name the language being

spoken.

Modeling and understanding structure (forms, patterns, clumps of interesting

events) is at the basis of our cognitive abilities. The use of names and language is

deeply rooted in the organizing capabilities of our brain. In essence, a name is a way to

group different experiences so that we can start speaking and reasoning. Socrates is a

man, all men are mortal, therefore Socrates is mortal.

For example, animal species (and the corresponding names) are introduced to reason

about common characteristics instead of individual ones (“The man gave names to all

cattle”). In geography, continents, countries, regions, cities, neighborhoods represent

clusters of geographical entities at different scales. Clustering is related to the very hu-

man activity of grouping similar things together, abstracting them and giving names

to the classes of objects (Fig. 12.1). Think about categorizing men and women, a task

we perform with a high degree of confidence in spite of significant individual variation.

Clustering has to do with compression of information. When the amount of data

is too much for a human to digest, cognitive overload results and the finite amount of

”working memory” in our brain is insufficient to handle the task. Actually, the number

of data points chosen for analysis can be reduced by using filters to restrict the range of

data values. But this is not always the best choice, as in this case we are filtering data

based on individual coordinates, while a more global picture may be preferable.

Clustering methods work by collecting similar points together in an intelligent and

data-driven manner, so that one’s attention can be concentrated on a small but relevant

set of prototypes. The prototype summarizes the information contained in the subset

of cases which it represents. When similar cases are grouped together, one can reason
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12.1. APPROACHES FOR UNSUPERVISED LEARNING

about groups instead of individual entities, therefore reducing the number of different

possibilities.

Figure 12.1: Clustering is deeply rooted into the human activity of grouping and naming

entities.

As you imagine, the practical applications of clustering are endless. To mention

some examples, in market segmentation one divides a broad target market into subsets

of consumers who have common needs, and then implements strategies to target their

needs and desires. In finance, clustering is used to group stocks with a similar behavior,

for diversifying the portfolio and reducing risk. In health care, diseases are clusters of

abnormal conditions that affects our body. In text mining, different words are grouped

together based on the structure and meaning of the analysed texts. A semantic network

can represents semantic relations between concepts. It is a directed or undirected graph

consisting of vertices, which represent concepts, and edges. The different relationships

(e.g., ”is an”, ”has”, ”lives in”, ...) underline that there is no single way to group entities.

12.1 Approaches for unsupervised learning

Given the creativity inherent in clustering, you expect wildly different ways to proceed.

It is traditional to subdivide methods into top-down and bottom-up techniques.

In top-down or divisive clustering one decides about a number of classes and then

proceeds to separate the different cases into the classes, aiming at putting similar cases

together. Let’s note that classes do not have labels, only the subdivision matters. Think

about organizing your laundry in a cabinet with a fixed number of drawers. If you are
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12.1. APPROACHES FOR UNSUPERVISED LEARNING

an adult person (if you are a happy teenager, please ask your mother or father) you will

probably end up putting socks with similar socks, shirts with shirts, etc.

In bottom-up or agglomerative clustering one leaves the data speak for them-

selves and starts by merging (associating) the most similar items. As soon as larger

groupings of items are created, one proceeds by merging the most similar groups, and

so on. The process is stopped when the grouping makes sense, which of course depends

on the specific metric, application area and user judgment. The final result will be a

hierarchical organization of larger and larger sets (known as dendrogram), reflecting the

progressively larger mergers. Dendrograms should be familiar from natural sciences,

think about the organization of zoological or botanical species.

More advanced and flexible unsupervised strategies are known under the umbrellas

of dimensionality reduction: in order to reduce the number of coordinates to describe

a set of experimental data one needs to understand the structure and the ”directions of

variation” of the different cases. If one is clustering people faces, the directions of vari-

ation can be related to eyes color, distance between nose and mouth, distance between

nose and eyes, etc. All faces can be obtained by changing some tens of parameters, for

sure much less than the total number of pixels in an image.

Another way to model a set of cases is to assume that they are produced by un under-

lying probabilistic process, so that modeling the process becomes a way to understand

the structure (and the different clusters, if any). Generative models aim at identifying

and modeling the probability distributions of the process producing the observed exam-

ples. Think about grouping books by deriving a model for the topics and words used

by different authors (without knowing the author names beforehand). An author will

pick topics with a certain probability. After the topic is fixed, words related to the topic

will be generated with specific probabilities. For sure, the process will not generate

masterpieces but similar final word probabilities, in many cases sufficient to recognize

an unknown author.

Our visual system is extremely powerful at clustering salient parts of an image and

visualizations like linear or nonlinear projections onto low-dimensional spaces (usu-

ally with two dimensions) can be very effective to identify structure and clusters ”by

hand”, well, actually ”by eyes”.

Last but not least, very interesting and challenging applications require a mixture of

supervised and unsupervised strategies (semi-supervised learning). Think about ”big

data” applications related to clustering zillions of web pages. Labels can be very costly

(because they can require a human person to classify the page) and therefore rare. By

adding a potentially huge set of unlabeled pages to the scarce labeled set one can greatly

improve the final result.

After clarifying the overall landscape, this chapter will focus on the popular and

effective top-down technique known as k-means clustering.
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12.2. CLUSTERING: REPRESENTATION AND METRIC

Figure 12.2: External representation by relationships (left) and internal representation

with coordinates (right). In the first case mutual similarities between pairs are given, in

the second case individual vectors.

12.2 Clustering: Representation and metric

There are two different contexts in clustering, depending on how the entities to be

clustered are organized (Fig. 12.2). In some cases one starts from an internal represen-

tation of each entity (typically an M -dimensional vector xd assigned to entity d) and

derives mutual dissimilarities or mutual similarities from the internal representation. In

this case one can derive prototypes (or centroids) for each cluster, for example by av-

eraging the characteristics of the contained entities (the vectors). In other cases only

an external representation of dissimilarities is available and the resulting model is an

undirected and weighted graph of entities connected by edges.

For example, imagine that market research for a supermarket indicates that stocking

similar foods on nearby shelves results in more revenue. An internal representation of a

specific food can be a vector of numbers describing: type of food (1=meat, 2=fish. . . ),

calorie content, color, box dimension, suggested age of consumption, etc. Similarities

can then be derived by comparing the vectors, by Euclidean metric or scalar products.

An external representation can instead be formed by polling the customers, asking

them to rate the similarity of pairs of product X and Y (on a fixed scale, for example

from 0 to 10), and then deriving external similarities by averaging the customer votes.

The effectiveness of a clustering method depends on the similarity metric (how

to measure similarities) which needs to be strongly problem-dependent. The traditional

Euclidean metric is in some cases appropriate when the different coordinates have a sim-

ilar range and a comparable level of significance, it is not if different units of measure

are used. For example, if a policeman compares faces by measuring eyes distance in

millimeters and mouth-nose distance in kilometers, he will make the Euclidean metric
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12.2. CLUSTERING: REPRESENTATION AND METRIC

almost meaningless. Similarly, if some data in the housing market represent the house

color, it will not be significant when clustering houses for business purposes. Instead,

the color can be extremely significant when clustering paintings of houses by different

artists. The metric is indeed problem-specific, and this is why we denote the dissimilar-

ity between entities x and y by δ(x,y), leaving to the implementation to specify how it

is calculated.

If an internal representation is present, a metric can be derived by the usual Eu-

clidean distance:

δE(x,y) = ‖y − x‖ =

√√√√
M∑

i=1

(xi − yi)2. (12.1)

In three dimensions this is the traditional distance, measured by squaring the edges

and taking the square root. The notation ‖x‖2 for a vector x means the Euclidean norm,

and the subscript 2 is usually omitted.

Another notable norm is the Manhattan or taxicab norm, so called because it mea-

sures the distance a taxi has to drive in a rectangular street grid to get from the origin to

the point x:

dManhattan
ij = ‖xi − xj‖1 =

n∑

k=1

|xik − xjk|. (12.2)

As usual, there is no absolutely right or wrong norm: for each problem a norm

must reflect appropriate ways to measure distances. Taxicabs in New York prefer the

Manhattan norm, while airplane pilots prefer the Euclidean norm (at least for short

distances, then the curvature of earth requires still different distance measures used in

geodetics). In some cases, the appropriate way to measure distances is recognized only

after judging the clustering results, which makes the effort creative and open-ended.

Another possibility is that of starting from similarities given by scalar products of

the two normalized vectors and then taking the inverse to obtain a dissimilarity. In detail,

the normalized scalar product between vectors x and y, by analogy with geometry in

two and three dimensions, can be interpreted as the cosine of the angle between them,

and is therefore known as cosine similarity:

similarity = cos(θ) =
x · y
‖x‖‖y‖ =

∑M
i=1 xi × yi√∑M

i=1 (xi)2 ×
√∑M

i=1 (yi)
2

, (12.3)

and after taking the inverse one obtains the dissimilarity: δ(x,y) = ‖x‖‖y‖/(ǫ+x ·y),
ǫ being a small quantity to avoid dividing by zero.

Let’s note that the cosine similarity depends only on the direction of the two vec-

tors, and it does not change if components are multiplied by a fixed number, while the

Euclidean distance changes if one vector is multiplied by a scalar value. A weakness

of the standard Euclidean distance is that values for different coordinates can have very
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12.3. K-MEANS FOR HARD AND SOFT CLUSTERING

different ranges, so that the distance may be dominated by a subset of coordinates. This

can happen if units of measures are picked in different ways, for example if some coor-

dinates are measured in millimeters, other in kilograms, other in kilometers: it is always

very unpleasant if the analysis crucially depends on picking a suitable set of physical

units. To avoid this trouble we need to make values dimensionless, without physical

units. Furthermore we may as well normalize them so that all values range between

zero and one before measuring distances.

The above can be accomplished by defining:

δnorm(x,y) =

√√√√
M∑

i=1

(
xi − yi

maxvali −minvali

)2

, (12.4)

where M is the number of coordinates, minvali and maxvali are the minimum and max-

imum values achieved by coordinate i for all entities.

In the general case, a positive-definite matrix M can be determined to transform the

original metric:

dij =
√

(xi − xj)TM(xi − xj).

An example is the Mahalanobis distance which takes into account the correlations of the

data set and is scale-invariant (it does not change if we measure quantities with different

units, like millimeters or kilometers). More details about the Mahalanobis distance will

be discussed in future chapters.

12.3 K-means for hard and soft clustering

The hard clustering problem consists of partitioning the entities D into k disjoint

subsets C = {C1, . . . , Ck} to reach the following objectives.

• Minimization of the average intra-cluster dissimilarities:

min
∑

d1,d2∈Ci

δ(xd1 ,xd2). (12.5)

If an internal representation is available, the cluster centroids pi can be derived

as the average of the internal representation vectors over the members of the i-th
cluster pi = (1/|Ci|)

∑
d∈Ci

xd.

In these cases the intra-cluster distances can be measured with respect to the clus-

ter centroid pi, obtaining the related but different minimization problems:

min
∑

d∈Ci

δ(xd,pi). (12.6)
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12.3. K-MEANS FOR HARD AND SOFT CLUSTERING

• Maximization of inter-cluster distance. One wants the different clusters to be

clearly separated.

As anticipated, the various objectives are not always compatible, clustering is indeed

a multi-objective optimization task. It is left to the final user to weigh the importance

of achieving clusters of very similar entities versus achieving clusters which are well

separated, also depending on the chosen number of clusters.

Divisive algorithms are among the simplest clustering algorithms. They begin with

the whole set and proceed to divide it into successively smaller clusters. One simple

method is to decide the number of clusters k at the start and subdivide the data set

into k subsets. If the results are not satisfactory, the algorithm can be reapplied using a

different k value.

If one wants to have groups of entities represented by a single vector, obtaining

a more compact way to express them, a suitable approach is to select the prototypes

which minimize the average quantization error, the error incurred when the entities

are substituted with their prototypes:

Quantization Error =
∑

d

‖xd − pc(d)‖2, (12.7)

where c(d) is the cluster associated with data d.

In statistics and machine learning, k-means clustering partitions the observations

into k clusters represented by centroids (prototypes for cluster c, denoted as pc), so that

each observation belongs to the cluster with the nearest centroid. The iterative method

to determine the prototypes in k-means, illustrated in Fig. 12.3, consists of the following

steps.

1. Choose the number of clusters k.

2. Randomly generate k clusters and determine the cluster centroids pc, or directly

generate k random points as cluster centroids (in other words, the initial centroid

positions are chosen randomly from the original data points).

3. Repeat the following steps until some convergence criterion is met, usually when

the last assignment hasn’t changed, or a maximum number of iterations has been

executed.

(a) Assign each point x to the nearest cluster centroid, the one minimizing

δ(x,pc).

(b) Recompute the new cluster centroid by averaging the points assigned in the

previous step:

pc ←
∑

entities in cluster c x

number of entities in cluster c
.
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12.3. K-MEANS FOR HARD AND SOFT CLUSTERING

Figure 12.3: K-means algorithm in action (from top to bottom, left to right). Initial

centroids are placed. Space is subdivided into portions close to the centroids (Voronoi

diagram: each portion contains the points which have the given centroid as closest pro-

totype). New centroids are calculated. A new space subdivision is obtained.
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12.3. K-MEANS FOR HARD AND SOFT CLUSTERING

The main advantages of this algorithm are its simplicity and speed which allow us

to use it on large datasets. K-means clustering can be seen as a skeletal version of

the Expectation Maximization algorithm1: if the assignment of the examples to the

cluster is known, then it is possible to compute the centroids and, on the other hand,

once the centroids are known it is easy to calculate the clusters assignments. Because at

the beginning both the cluster centroids (the parameters of the various clusters) and the

memberships are unknown, one cycles through steps of assignment and recalculation of

the centroid parameters, aiming at a consistent situation.

Given a set of prototypes, an interesting concept is the Voronoi diagram. Each

prototype pc is assigned to a Voronoi cell, consisting of all points closer to pc than to

any other prototype. The segments of the Voronoi diagram are all the points in the space

that are equidistant to the two nearest sites. The Voronoi nodes are the points equidistant

to three (or more) sites. An example is shown in Fig. 12.3.

Up to now we considered hard-clustering, where the assignment of entities to clus-

ters is crisp. In some cases this is not appropriate and it is necessary to employ a softer

approach where assignments are not crisp, but probabilistic or fuzzy. The assign-

ment of each entity is defined in terms of a probability (or fuzzy value) associated with

its membership in different clusters, so that values sum up to one. Consider for example

a clustering of bald versus non-bald people. A middle-aged man with some hair left on

his head may feel he is mistreated if associated with the cluster of bald people. By the

way, in this case it is also inappropriate to talk about a probability of being bald, and

a fuzzy membership is more suitable: one may decide that the person belongs to the

cluster of bald people with a fuzzy value of 0.4 and to the cluster of hairy people with a

fuzzy value of 0.6.

In soft-clustering, the cluster membership can be defined as a decreasing function

of the dissimilarities, for example as:

membership(x, c) =
e−δ(x,pc)

∑
c e

−δ(x,pc)
. (12.8)

For updating the cluster centroids one can proceed either with a batch or with an

online update. In the online update one repeatedly considers an entity x, for example by

randomly extracting it from the entire set, derives its current fuzzy cluster memberships

and updates all prototypes so that the closer prototypes tend to become even closer to

the given entity x:

1 In statistics, an expectation-maximization (EM) algorithm is a method for finding maximum like-

lihood or maximum a posteriori (MAP) estimates of parameters in statistical models, where the model

depends on unobserved latent variables. EM is an iterative method which alternates between performing

an expectation (E) step, which computes the expectation of the log-likelihood evaluated using the current

estimate for the latent variables, and a maximization (M) step, which computes parameters maximizing

the expected log-likelihood found on the E step.
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12.3. K-MEANS FOR HARD AND SOFT CLUSTERING

∆pc = η ·membership(x, c) · (x− pc); (12.9)

pc ← pc +∆pc. (12.10)

With a physical analogy, in the above equations the prototype is pulled by each entity

to move along the vector (x − pc), and therefore to become closer to x, with a force

proportional to the membership.

In the batch update, one first sums update contributions over all entities to obtain

∆totalpc, and then proceed to update, as follows:

pc ← pc +∆totalpc. (12.11)

When the parameter η is small, the two updates tend to produce very similar results,

when η increases increasingly different results can be obtained. The online update

avoids summing all contributions before moving the prototype, and it is therefore sug-

gested when the number of data items becomes very large.

Figure 12.4: K-means clustering. Individual points and cluster prototypes are shown.

The k-means results can be visualized by a scatterplot display, as in Fig. 12.4. The k
cluster prototypes are marked with large gray circles. The data points associated with a

cluster are those for which the given prototype is the closest one among the k prototypes.
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12.3. K-MEANS FOR HARD AND SOFT CLUSTERING

Gist

Unsupervised learning deals with building models using only input data, without

resorting to classification labels. In particular, clustering aims at grouping similar

cases in the same group, dissimilar cases in different groups. The information to

start the clustering process can be given as relationships between couples of points

(external representation) or as vectors describing individual points (internal rep-

resentation). In the second case, an average vector can be taken as a prototype for

the members of a cluster.

The objectives of clustering are: compressing the information by abstraction

(considering the groups instead of the individual members), identifying the global

structure of the experimental points (which are typically not distributed randomly in

the input space but ”clustered” in selected regions), reducing the cognitive overload

by using prototypes.

There is not a single ”best” clustering criterion. Interesting results depend on the

way to measure similarities and on the relevance of the grouping for the subsequent

steps. In particular, one trades off two objectives: a high similarity among members

of the same cluster and a high dissimilarity among members of different clusters.

In top-down clustering one proceeds by selecting the desired number of classes

and subdividing the cases. K-means starts by positioning K prototypes, assigning

cases to their closets prototypes, recomputing the prototypes as averages of the cases

assigned to them, ....

Clustering gives you a new perspective to look at your dog Toby. Dog is a cluster

of living organisms with four paws, barking and wagging their tails when happy,

Toby is a cluster of all experiences and emotions related to your favourite little pet.
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Chapter 13

Bottom-up (agglomerative) clustering

Birds of a feather flock together.

(Proverb: Those of similar taste congregate in groups)

In general, clustering methods require setting many parameters, such as choosing

the appropriate number of clusters in k-means, as explained in Chapter 12. A way to

avoid choosing the number of clusters at the beginning consists of building progressively

larger clusters, in a hierarchical manner, and leaving the choice of the most appropriate

number and size of clusters to a subsequent analysis phase. This is called bottom-up,

agglomerative clustering. Hierarchical algorithms find successive clusters by using

previously established clusters, beginning with each element as a separate cluster and

merging them into successively larger clusters. At each step the most similar clusters

are merged.
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13.1. MERGING CRITERIA AND DENDROGRAMS

13.1 Merging criteria and dendrograms

Let C represent the current clustering as a collection of subsets of our set of entities, the

individual clusters C. Thus C defines a partition: each entity belongs to one and only

one cluster. Initially C is a collection of singleton groups, each with one entity.

Just as in top-down clustering, bottom-up merging also needs a measure of distance

to guide the clustering process. In this case, the relevant measure is the distance between

two clusters C,D ∈ C, let’s call it δ(C,D), which is derived from the original distance

between entities δ(x, y). There are at least three different ways to define it, leading to

very different results. In fact, it is possible to consider the average distance between

pairs, the maximum, or the minimum distance, as follows:

δave(C,D) =

∑
x∈C, y∈D δ(x, y)

|C| · |D| ;

δmin(C,D) = min
x∈C, y∈D

δ(x, y);

δmax(C,D) = max
x∈C, y∈D

δ(x, y).

The algorithm now proceeds with the following steps:

1. find C and D in the current C with minimum distance δ
∗
= minC 6=D δ(C,D);

2. substitute C and D with their union C ∪ D, and register δ
∗

as the distance for

which the specific merging occurred;

until a single cluster containing all entities is obtained.

The history of the hierarchical merging process and the distance values at which the

various merging operations occurred can be used to plot a dendrogram (from Greek

dendron “tree”, -gramma “drawing”) illustrating the process in a visual manner, as

shown in Fig. 13.1-13.2.

The dendrogram is a tree where the original entities are at the bottom and each

merging is represented with a horizontal line connecting the two fused clusters. The

position of the horizontal line on the Y axis shows the value of the distance δ
∗

at which

the fusion occurred. To reconstruct the clustering process, imagine that you move a

horizontal ruler over the dendrogram, from the bottom to the top of the plot.

By selecting a value of the desired distance level and cutting horizontally across

the dendrogram, the number of clusters at that level and their members are immedi-

ately obtained, by following the subtrees down to the leaves. This provides a simple vi-

sual mechanism for analyzing the hierarchical structure and determining the appropriate

number of clusters, depending on the application and also on the detailed dendrogram

structure. For example, if a large gap in distance levels is present along the Y axis of
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13.1. MERGING CRITERIA AND DENDROGRAMS
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Figure 13.1: A dendrogram obtained by bottom-up clustering of points in two dimen-

sions (with the standard Euclidean distance). Each point is an entity described by two

numeric values.

Figure 13.2: A dendrogram obtained by bottom-up clustering of vehicles.
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13.2. A DISTANCE ADAPTED TO THE DISTRIBUTION OF POINTS:

MAHALANOBIS

the dendrogram, that can be a possible candidate level to cut horizontally and identify

“natural” clusters.

Dendrograms are close cousins of the trees used in the natural sciences to visu-

ally represent related species, in which the root represents the oldest common ancestor

species, and the branches indicate successively more recent divisions leading to differ-

ent species. In addition to standard trees one has a quantitative measure of the distance

at which a fusion between two subsets occurs, so that it is useful to plot the tree elon-

gated along the Y axis. The individual items are at the bottom, the entire set (the root

tree) at the top, and each merging is indicated by a horizontal segment placed at a Y

position given by the distance at which fusion occurs, as illustrated in Fig. 13.2

13.2 A distance adapted to the distribution of points:

Mahalanobis

The Mahalanobis distance was prompted by the problem of identifying the similarities

of skulls based on measurements (in 1927) and is now widely used to take the data

distribution into account when measuring dissimilarities. The data distribution is

modeled by the correlation matrix.

After a set of points are grouped together in a cluster one would like to describe the

whole cluster in quantitative (holistic) terms, instead of considering just the cloud of

points grouped together. In the following we assume that the clouds of points forming

the clusters have simple ball-shaped or “elliptic” forms, excluding for the moment more

complex arrangements like for example spirals, zigzagging or similar convoluted forms.

In addition, given a new test point in N-dimensional Euclidean space, one would

like to estimate the probability that the new point belongs to the cluster. A first step can

be to find the average or center of mass of the sample points. Intuitively, the closer the

point in question is to this center of mass, the more likely it is to belong to the set.

However, we also need to know if the set is spread out over a large range or a small

range, so that we can decide whether a given distance from the center can be considered

large or not. The simplistic approach is to estimate the standard deviation σ of the

distances of the sample points from the center of mass. If the distance between the test

point and the center of mass is less than one standard deviation, then we might conclude

that the new test point belongs to the set with a high probability. This intuitive approach

can be made quantitative by defining the normalized distance between the test point

and the set to be (x−µ)/σ. By plugging this into the normal distribution we can derive

the probability of the test point belonging to the set.

The drawback of the above approach is that it assumes that the sample points are

distributed in a spherical manner. If the distribution is highly non-spherical, for instance

ellipsoidal, then one would expect the probability of the test point belonging to the set
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13.2. A DISTANCE ADAPTED TO THE DISTRIBUTION OF POINTS:

MAHALANOBIS

Figure 13.3: In the case on the left we can use the Euclidean distance as a dissimilarity

measure, while in the other case we need to refer to the Mahalanobis distance, because

the data are distributed in an ellipsoidal shape.

to depend not only on the distance from the center of mass, but also on the direction. In

those directions where the ellipsoid has a short axis the test point must be closer, while

in those where the axis is long the test point can be further away from the center.

The ellipsoid that best represents the set’s probability distribution can be estimated

by building the covariance matrix of the samples.

Let C = {x1, . . . ,xn} be a cluster in D dimensions. The center p̄ of the cluster is

the mean value:

p̄ =
1

n

n∑

i=1

xi. (13.1)

Let the covariance matrix components are defined as:

Sij =
1

n

n∑

k=1

(pki − p̄i)(pkj − p̄j), i, j = 1, .., D. (13.2)

The Mahalanobis distance is simply the distance of the test point from the center of

mass divided by the width of the ellipsoid in the direction of the test point. Fig. 13.3

illustrates the concept.

In detail, the Mahalanobis distance of a vector x from a set of values with mean µ
and covariance matrix S is defined as:

DM(x) =
√
(x− µ)TS−1(x− µ). (13.3)

The Mahalanobis distance can also be defined as a dissimilarity measure between

two random vectors ~x and ~y of the same distribution with the covariance matrix S:

d(~x, ~y) =
√

(~x− ~y)TS−1(~x− ~y). (13.4)
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13.3. VISUALIZATION OF CLUSTERING

If the covariance matrix is the identity matrix, the Mahalanobis distance reduces to

the Euclidean distance. If the covariance matrix is diagonal, then the resulting distance

measure is called the normalized Euclidean distance:

d(~x, ~y) =

√√√√
N∑

i=1

(xi − yi)2

σ2
i

, (13.5)

where σi is the standard deviation of the xi over the sample set.

After clarifying the concepts of Mahalanobis distance and of the possible description

of a cloud of points in a cluster though ellipsoids characterized by a fixed Mahalanobis

distance from the barycenter, we are ready to understand the way in which clusters can

be visualized.

13.3 Visualization of clustering

This section explains how clusters can be visualized in 3D (feel free to skip it without

any effect on understanding the subsequent chapters). In order to graphically represent

a cluster, one can visualize its inertial ellipsoid, whose surface is the locus of points

having unit distance from the cluster’s average position according to the Mahalanobis

metric given by the cluster’s dispersion. One starts by projecting the data points to three

dimensions and calculating the corresponding 3x3 covariance matrix.

In graphical packages for three-dimensional rendering, points can be represented as

row vectors of homogeneous coordinates in R
4 with the infinite plane represented as

(x, y, z, 0), the projective coordinate transformation mapping the unit sphere into the

desired ellipsoid is represented by the following matrix:

TC =




S11 S12 S13 0
S21 S22 S23 0
S31 S32 S33 0
p̄1 p̄2 p̄3 1


 . (13.6)

When moving between hierarchical clustering levels, cluster C will split into several

clusters C1, . . . , Cl. To preserve the proper mental image, a parametric transition from

ellipsoid TC to its l offspring TC1
, . . . , TCl

will be animated and the ellipsoids

T λ
Ci

= (1− λ)TC + λTCi
, i = 1, . . . , l

will be drawn with parameter λ uniformly varying from 0 to 1 in a given time interval

(currently 1 second). This will effectively show the original ellipsoid morphing into its

offspring.
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13.3. VISUALIZATION OF CLUSTERING

Figure 13.4: Clustering cars from mechanical characteristics.

One can navigate up and down the clustering hierarchy until identifying a suitable

number of clusters for conducting the analysis. Then prototypes can be examined to

provide a summarized version of the data. A particularly useful tool to use for navigat-

ing in this manner is the parallel coordinates display (see the Appendix). By moving

the active selectors, the number of points displayed in navigation can be reduced to

concentrate on the most interesting ones.

Fig. 13.4 shows some clusters resulting from the analysis of a set of cars, character-

ized by a vector containing mechanical characteristics and price. The edge intensity is

related to the object distances: the closer the objects the darker the color.
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13.3. VISUALIZATION OF CLUSTERING

Gist

Agglomerative clustering builds a tree (a hierarchical organization) containing

data points. If trees are unfamiliar to you, think about the folders that you may use

to organize your documents, either physically or in a computer (docs related to a

project together, then folders related to the different projects merged into a “work in

progress” folder, etc.).

Imagine that you have no secretary and no time to do it by hand: a bottom-up

clustering method can do the work for you, provided that you set up an appropri-

ate way to measure similarities between individual data points and between sets of

already merged points.

This method is called “bottom-up” because it starts from individual data points,

merges the most similar ones and then proceeds by merging the most similar sets,

until a single set is obtained. The number of clusters is not specified at the begin-

ning: a proper number can by obtained by cutting the tree (a.k.a. dendrogram) at

an appropriate level of similarity, after experimenting with different cuts.

Through agglomerative clustering, Santa can now organize all Christmas presents

as a single huge red box. After one opens it one finds a set of boxes, after opening

them, still other boxes, until the “leaf” boxes contain the actual presents.
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Chapter 14

Self-organizing maps

The grandmother cell is a hypothetical neuron

that represents any complex and specific concept or object.

It activates when a person’s brain “sees, hears, or otherwise sensibly discriminates”

such a specific entity as his or her grandmother.

(Jerry Lettvin, 1969)

From the previous chapters, you are now familiar with the basic clustering tech-

niques. Clustering identifies group of similar data, in some cases with a hierarchical

structure (groups, then groups containing groups, ...). If an internal representation is

available, a group can be represented with a prototype. This chapter deals with pro-

totypes arranged according to a regular grid-like structure and influencing each

other if they are neighbors in this grid.
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14.1. AN ARTIFICIAL CORTEX TO MAP ENTITIES TO PROTOTYPES

The idea is to cluster data (entities) while at the same time visualizing this clus-

tered structure on a two-dimensional map. One wants a visualization that is at least

approximately coherent with the clustering This should be puzzling enough to continue

reading.

Let each cluster i be associated with a representative vector, a prototype pi. In

the field of marketing, it is usual to identify different customer types, and describe them

through prototypes (wealthy single individual, middle-class worker with family, etc.). A

prototype will have the same number of coordinates as our entities and each component

of the vector will describe a representative value for the given cluster, for example the

average value of the entities contained in the cluster.

A coherent visualization demands that similar prototypes are placed in nearby po-

sitions in the 2D visualization space. Of course, for high-dimensional problems (prob-

lems with more than two coordinates), no exact solution is available and one aims at

approximations which are sufficient for us to reason about the data. A self-organizing

map (SOM) is a type of artificial neural network that is trained by using unsupervised

learning to produce a two-dimensional representation of the training samples, called a

map. This model was introduced as an artificial neural network by Teuvo Kohonen, and

is also called a Kohonen map.

14.1 An artificial cortex to map entities to prototypes

A self-organizing map consists of components nodes or neurons. The arrangement of

nodes is a regular placement in a two-dimensional grid1 Associated with each node i is

a prototype vector pi of the same dimension as the input data vectors, and a position in

the map space.

The analogy is again with our neural system: the neurons are organized accord-

ing to a physical network of connections in the brain, in practice two or three-

dimensional. Some neurons are tuned by evolution and training to fire electrical signals

for particular events, as shown in Fig. 14.1. For example, a neuron may fire when your

mother enters your visual field. The prototype is in this case given by visual features

corresponding to your mother, the position is the physical position of the neuron in the

brain.

Another principle of our neural systems is that, in many cases, neurons that are

neighbors tend to fire for similar input data (a neighbor of the neuron firing for your

mother presence may be close to one firing for an old photo of your mother). After

training, the self-organizing map describes a mapping from a higher-dimensional input

space to a two-dimensional map space. Each cell in two dimensions corresponds to a

neuron and contains a prototype vector. A generic entity is then mapped (or assigned) to

1In some cases the grid is hexagonal, so that each node has six closest neighbors instead of four

neighbors like in a traditional squared grid (Fig. 14.3).
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14.1. AN ARTIFICIAL CORTEX TO MAP ENTITIES TO PROTOTYPES

Figure 14.1: The presence of certain external stimuli activates a region in the brain

(“grandmother cell”). In some areas, neurons are approximately organized according to

a two-dimensional structure, like in the cortex, the surface layer of the brain where most

high-level functionalities are located.

Figure 14.2: A SOM maps entities in a multi-dimensional space into cells in two-

dimensional space. Each cell contains a prototype and the entities for which the proto-

types is the most similar one.

the neuron with the prototype vector which is nearest to the vector describing the entity,

as shown in Fig. 14.2. The training can start from a random initial configuration of the

prototype vectors (for example picked to be equal to a random subset of entities) and

then iterate by presenting and mapping randomly selected cases. The winning neuron

c(x), or c for brevity, is identified as the one with the prototype closest to the vector

describing the current case x:

c(x) = argmin
i
‖x− pi‖. (14.1)
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14.1. AN ARTIFICIAL CORTEX TO MAP ENTITIES TO PROTOTYPES

Then the winning prototype pc(x) is changed to make it more similar to the one of the

current case presented to the network. In addition, the prototypes of nearby vectors

are also changed in a similar manner, although by smaller and smaller amounts as the

distance in the grid increases.

Think about a democratic system in which voters (entities) are asked to educate a

set of regularly-arranged representatives (like in a chamber of the parliament) so that

at least one of them represents a cluster of related ideas, and in which representatives

sitting in nearby positions influence each other, and tend to become similar. Two ”force

fields” are active, attractive forces between entities and prototypes, and attractive forces

between neighboring prototypes on the grid. Entities (voters) compete for prototypes:

each entity is pulling its winning prototype and, to a less extent, the neighbors of the

winning prototype, to move a bit towards itself, to make it progressively more similar.

Of course, different entities are pulling in different directions and the resulting dynami-

cal system is very complex.

After explaining the basic mechanism and motivations, let’s now fix the details. In

an online learning scheme, at each iteration t a random entity x is extracted, its winning

neuron c is determined, and all prototype vectors pi(t) at iteration (time) t are then

modified as follows:

pi(t+ 1)← pi(t) + η(t) · Act
(
c(x), i, σ(t)

)
· (x− pi(t)), (14.2)

where η(t) is a time-dependent small learning rate, Act
(
c, i, σ(t)

)
is an activation func-

tion which depends on the distance between the two neurons in the 2D grid, and on a

time-dependent radius σ(t). The two neurons involved in the formula are: the winning

neuron c for pattern x, and the neuron i whose pattern pi(t) is being updated. The modi-

fication mechanism resembles the update described in equation (12.9) for soft clustering

in k-means, but with the important difference given by the regular two-dimensional or-

ganization of the neurons, which now determines the activation level.

To help convergence, usually the learning rate decreases in time, and the same hap-

pens for the radius parameter. The idea is that at the beginning the neuron prototypes

are moving faster (neural plasticity is higher for young children!), and they tend to ac-

tivate a larger set of neighbors, while movements are smaller and limited to a smaller

set of neighbors in the last phase, when hopefully the arrangement already identified

the main characteristics of the data distribution and only a fine-tuning is needed. The

learning rate in some cases decreases like η(t) = A/(B + t). A reasonable default can

be η(t) = 1/(20 + t).
In batch training, all N entities xj are presented to the SOM and their winning

neurons c(xj) are identified before proceeding to an update as follows:

pi(t+ 1)←
∑N

j=1 Act
(
c(xj), i, σ(t)

)
· xj

∑N
j=1 Act

(
c(xj), i, σ(t)

) . (14.3)
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14.1. AN ARTIFICIAL CORTEX TO MAP ENTITIES TO PROTOTYPES

Each prototype is updated with a weighted average over all entities, the weight being

proportional to the vicinity in neuron grid space (usually two-dimensional) between the

winning neuron prototype and the current prototype.

Because of the system complexity, the user is encouraged to try different parame-

ters and different time schedules until acceptable results are obtained. For example, a

suitable neighborhood activation function can be:

Act
(
c, i, σ(t)

)
= exp

(
− dci

2

2 σ2(t)

)
, (14.4)

where dci is the distance between the two neurons in the two-dimensional grid, and σ(t)
is a neighborhood radius, at the beginning including more neighbors than the closest

ones, at the end including only a set of close neighbors. Be careful not to confuse the

distance between neurons in the grid, as shown in Fig. 14.3, with the distance between

prototype vectors in the original multi-dimensional space of the data!

Figure 14.3: An example of neighborhood in a self organizing map: neighboring cell at

distance 1 and 2 from the central are shown.

Let TOTSOM be the total number of SOM neurons, and TOTiter the number of itera-

tions executed. The default value starts from
√

TOTSOM, a value close to the radius of

the grid if the grid is a square one, and ends with the value 2, as follows:

σ(t) =
(TOTiter − t)

√
TOTSOM + 2t

TOTiter

. (14.5)

The user should not be discouraged by the complexity intrinsic in this and in similar

mapping tasks: in many cases acceptable results are obtained by considering simple
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14.2. USING AN ADULT SOM FOR CLASSIFICATION

default values for the basic parameters. On the other hand, it is not surprising that a

basic mapping mechanism of our brain is indeed characterized by a high complexity

level, we intelligent and in part unpredictable human beings, aren’t we?

14.2 Using an adult SOM for classification

Even if you do not want to indulge in the debauchery of indices of the above mathe-

matical details, you can still use SOM effectively as a guide in reasoning about your

problem. After training, the SOM can be used to classify new objects by finding the

closest (winning) prototype and assigning the new object to the corresponding cell, as

illustrated in Fig. 14.4. In many cases, after looking at the prototypes, it will be easy to

give names to the different cells, to help reasoning and remembering. But let’s note that

cells may discover unusual combinations, leading to interesting insight and detection of

novel groups, and not only to re-discovering trivial classifications.

Let’s imagine that you trained your SOM on marketing data: each cell may rep-

resent a characteristic group of customers. Possible names could be: “wealthy-single-

individual,” “poor-family-with-kids,” “senior-retired-person,” “spoiled-adolescent,” etc.

When a new customer arrives, you may easily identify the appropriate prototype, for ex-

ample to pick the best strategy to sell him your products. If you are a movie fan, and you

train your SOM to classify different kinds of movies, you may use a SOM to classify a

new movie, for example to predict if you will like it or not (with a high probability).

In a SOM, the quality of training can be measured by the quantization error (the

average error incurred by substituting an entity x with its winning prototype vector

pc(x), i.e., the average distance from each data vector to its nearest prototype) or by the

topological error, which is more complex and related to the failure to assign, in some

cases, close vectors in the original high-dimensional space to neurons which are close

in neuron grid space (usually two-dimensional). The topological error can be evaluated

as the fraction of all data vectors for which the first and the second nearest prototypes

(in the original multi-dimensional space) are not represented by adjacent neurons in the

mapping.

Color coding can be used to represent the value of the data point along a dimen-

sion, while the size of each hexagon can represent the value along another dimension

(Fig. 14.5). The colored maps are called components or component planes and can be

compared to identify local relationships. It is possible to devise interesting new analysis

techniques by combining the SOM map with a scatterplot display, or with a parallel

coordinates display, see the Appendix. For example, when the mouse pointer is moved

over the SOM cells, the position of the prototype vector associated with each cell can

be shown in a scatterplot or in a parallel coordinates display. In this manner, relevant

entities can be further analyzed.
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14.2. USING AN ADULT SOM FOR CLASSIFICATION

Figure 14.4: An analogy for the SOM: each cell is like a drawer in a well-organized

piece of furniture. Neighboring drawers are used to contain similar objects.

Figure 14.5: A SOM, color and size depends on two coordinates of the prototype vec-

tors. Prototypes values can be examined by passing with the mouse over the cell.

Gist

Self-organizing maps reach two objectives: placing a set of prototypes close to clus-

ters of data points, and having the prototypes organized in a two-dimensional grid

so that neighboring prototypes in the grid tend to be mapped to similar data points.

The motivations are in part biological (our neural cortex is approximately orga-

nized according to two- and three-dimensional arrangement of neurons) and in part

related to visualization. A two-dimensional grid can be visualized on the screen, and

the characteristics of the prototypes are not randomly scattered but slowly varying,

because of the neighboring relationships, leading to more intelligible visualizations.

If data points are imagined as schooling fishes in the sea, a SOM is an elastic fish-

erman’s network aiming at capturing the largest number of them without breaking
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Chapter 15

Dimensionality reduction by linear

transformations (projections)

You, who are blessed with shade as well as light, you, who are gifted with two eyes, endowed

with a knowledge of perspective, and charmed with the enjoyment of various colors, you, who

can actually see an angle, and contemplate the complete circumference of a Circle in the happy

region of the Three Dimensions – how shall I make it clear to you the extreme difficulty which

we in Flatland experience in recognizing one another’s configuration?

(Flatland - 1884 -Edwin Abbott Abbott)

In exploratory data analysis one is actually using the unsupervised learning ca-

pabilities of our brain to identify interesting patterns and relationships in the data. It is

often useful to map entities to two dimensions, so that they can be analyzed by our eyes.
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The mapping has to preserve as much as possible the relevant information present in

the original data, describing similarities and diversities between entities. For example,

think about a marketing manager analyzing similarities and differences between his cus-

tomers, so that different campaigns can be tuned to the different groups, or think about

the head of a human resources department who aims at classifying the competencies

possessed by different employees. We would like to organize entities in two dimensions

so that similar objects are near each other and dissimilar objects are far from each

other 1.

Following the discussion in Chapter 12 (see Fig. 12.2), it’s useful to recall the two

ways in which initial information can be given to the system. A first possibility is to

employ entities characterized by an internal structure (a vector of coordinates). In

this case the raw coordinates must be used to derive a similarity measure between enti-

ties, as by considering the Euclidean distance between the two corresponding vectors. A

second possibility is to employ entities that are endowed with an external structure of

pairwise relationships. Such relationships can be expressed by similarities or dissimi-

larities. We deal only with dissimilarities to avoid confusion and we leave to the reader

the simple exercise of transforming the formulas to handle the other case. To establish

a suitable notation, let the n entities be characterized by some mutual dissimilarities δij .
Some of the dissimilarities may be unknown.

Figure 15.1: A graph with external dissimilarities (edges) between entities (nodes).

An appropriate model is an undirected graph, like the one illustrated in Fig. 15.1, in

1Let’s note that there is a clear difference between this and SOM maps. In SOM, prototype vectors

associated with a two-dimensional grid are moved (their coordinates are changed) to cover the original

data space, whereas here the original points are mapped in different ways onto a two-dimensional surface.
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15.1. LINEAR PROJECTIONS

which each entity is represented by a node, and a connection with weight δij is present

between two nodes, if and only if a distance δij is defined for the corresponding entities.

The set of edges in the graph is denoted by E.

The two situations (coordinates or relationships) can be combined. In some cases

the information given to the system consists of both coordinates and relationships.

As a very concrete example, imagine that some automated clustering method has been

applied to the data vectors. We can then declare two entities to be dissimilar (δij = 1)

if and only if they do not belong to the same cluster. This additional information can

be used to encourage a visualization where items coming from the same cluster tend to

be close in the two-dimensional space. In other cases, indications about dissimilarities

among items given by people can help for tuning the visualization and adapting it to the

user’s wishes.

A way to distinguish the different contexts has to do with the level of supervision

in the visualization, i.e., the type of hints given to the process. The type of supervi-

sion ranges from a purely unsupervised approach (only coordinates are given) to a

supervised approach (relationships or dissimilarities are fully specified), to mixed ap-

proaches combining unsupervised exploration in the vector space of coordinated and

labeling methods.

After clarifying your context, depending on which data you have available, it is

time to consider ways to use the data to produce useful visualizations. Methods derived

from linear algebra are described in the following sections, while more general non-

linear methods are described in future chapters. As usual, linear methods are simpler

to understand, while nonlinear methods are in principle more powerful, although more

complex.

15.1 Linear projections

This chapter starts from linear algebra, Let n be the number of vectors (entities), and let

m be the dimension of each vector (the number of coordinates). For convenience, the n
vectors can be stored as rows of an n ×m matrix X . To help the reader, Latin indices

i, j ranges over the data items, while Greek indices α, β range over the coordinates.

Thus Xiα is the α-th coordinates of item i. For the rest of this chapter we assume that

the data is centered, i.e., that the mean of each coordinate over the entire dataset is

zero:
∑n

i=1 Xiα = 0. If the original data are not centered, they can be preprocessed

by a trivial translation. In other words, we are not interested in the absolute positions

of the data points, but in their relative positions with respect to the other data. We

denote by S the m×m biased covariance matrix: S = 1
n
XTX , with the components:

Sα,β = 1
n

∑n
i=1 XiαXiβ .

It is called covariance because each term measures how two coordinates tend to vary

together for the different data points. The sum in the covariance will have a large pos-
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15.1. LINEAR PROJECTIONS

Figure 15.2: A projection: each dotted line connecting a vector to its projection is

perpendicular to the plane defined by ν1 and ν2 (in this case the direction vectors are

the X and Y axes, in general a projection can be on any plane identified by two linearly

independent vectors).

itive value if positive values of the first coordinate tend to be accompanied by positive

values of the second coordinate, and the same tends to be true for negative values. Actu-

ally, the covariance is changed if the values of a coordinate are multiplied by a constant

(this happens every time one changes physical units, for example from millimeters to

kilometers). A measure which does not depend on changes of physical units is the cor-

relation coefficient, derived by dividing the covariance by the product of the standard

deviations of the involved coordinates. (See Section 7.2.)

We consider a linear transformation L of the items to a space of dimension p, the

usual value for p is two, but we keep this presentation more general. L is represented

by a p×m matrix, acting on vector x by the usual matrix multiplication y = Lx. Each

coordinate α of y is obtained by a scalar product of a row να of L and the original co-

ordinate vector x. The p rows ν1, . . . , νp ∈ R
m of L are called direction vectors and

in the following we assume that they have unit norm ‖να‖ = 1. Therefore each coor-

dinate α in the transformed p-dimensional space is obtained by projecting the original

vector x onto να. If we project all items and we repeat for all coordinates we obtain the

coordinate vectors x1 = Xν1, . . . , xp = Xνp.

Among the possible linear transformations, interesting visualizations are obtained

by orthogonal projections: the direction vectors ν1, . . . , νp are mutually orthogo-

nal and with unit norm: να · νβ = δα,β, α, β = 1, . . . , p, as illustrated in Fig. 15.2.

Please note that here δα,β is the usual Kronecker delta, equal to 1 if and only if the
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15.2. PRINCIPAL COMPONENTS ANALYSIS (PCA)

two indices are equal, not to be confused with dissimilarities! An example of or-

thogonal projection is a selection of a subset of the original coordinates (in this case

να = (0, 0, . . . , 1, . . . , 0, 0), a vector with 1 for the selected coordinate and 0 in all

other places). Other examples are obtained by first rotating the original vectors and then

selecting a subset of coordinates.

The visualization is simple because it shows genuine properties of the data, cor-

responding to the intuitive notion of navigating in the original space, far from the data

points, and looking at the data from different points of view2. Think about placing a

two-dimensional screen at an arbitrary orientation, switching a lamp on (very far from

the data), and observing the projected shadows. On the contrary, nonlinear transforma-

tions may deform the original data distribution in arbitrary and potentially very complex

and counter-intuitive ways, as by viewing the world through a deforming lens.

As an additional feature of linear projections, it is easy to explain the p-dimensional

coordinates because each one is a linear combination of the original coordinates (for

example, the magnitude of the combination coefficients “explains” a lot about the rele-

vance of the initial coordinates in the projection).

Last but not least, the storage requirements are limited to storing the direction vec-

tors, and the computational complexity for projecting each point is the usual one for

matrix-vector multiplication.

Now that the motivation is present, let’s consider some of the most successful linear

visualization methods.

15.2 Principal Components Analysis (PCA)

To understand the meaning of this historic3 transformation it is useful to concentrate on

what PCA is trying to accomplish. As usual, optimization is the source of power and

helps us to understand the deep meaning of operations. Now, PCA finds the orthogonal

projection that maximizes the sum of all squared pairwise distances between the

projected data elements.

If dist
p
ij is the distance between the projections of two data points i and j:

dist
p
ij =

√√√√
p∑

α=1

((Xνα)i − (Xνα)j)2,

PCA maximizes:

2Actually the mapping executed by our eye or by cameras is a perspective viewing projection so that

the analogy is not to be taken literally.
3PCA was invented in 1901 by Karl Pearson.
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15.2. PRINCIPAL COMPONENTS ANALYSIS (PCA)

∑

i<j

(dist
p
ij)

2. (15.1)

The objective is to spread the points as much as possible, but the fact of considering

only projections implies that the mutual distances cannot increase beyond the original

ones: dist
p
ij ≤ distij (just consider Pythagoras theorem applied to the triangle defined

by the original vector, the projection and the vector connecting the projection to the

original vector). The best that we can obtain is to approximate as much as possible the

original sum of squared distances:

max
ν1,...,νp

∑

i<j

(dist
p
ij)

2 ≤
∑

i<j

(distij)
2. (15.2)

After introducing the n × n unit Laplacian matrix Lu, as Lu
ij = (n · δij − 1), the

optimization problem can be posed as the solution of:

max
ν1,...,νp

p∑

α=1

(να)TXTLuXνα (15.3)

subject to να · νβ = δα,β, α, β = 1, . . . , p.

The Laplacian matrix is in general a key tool for describing pairwise relationships

between entities. In fact, it is used a lot in the study of graphs, where the pairwise

relationship is given by weighted edges connecting two nodes. In general, it is an n× n
symmetric positive-semidefinite matrix, with zero row and column sums. Its usefulness

is related to the possibility to express in a compact manner the weighted sum of all

pairwise squared distances:

xTLx =
∑

i<j

−Lij(xi − xj)
2. (15.4)

Considering the p coordinate vectors introduced above, it is easy to check that:

p∑

α=1

(xα)TLxα =
∑

i<j

−Lij (dist
p
ij)

2. (15.5)

The optimal solution of equation (15.3) is given by the p eigenvectors with largest

eigenvalues of the m × m matrix XTLuX . For centered coordinates, this matrix is

identical to the covariance matrix apart from a multiplicative factor (which does not

influence the eigenvectors) XTLuX = n2S. The solutions for PCA is obtained by

finding the eigenvectors of the covariance matrix. We prefer the above form with the

Laplacian matrix which can be easily generalized to cases where we have additional
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information about relationships between data points. (See Section 15.3.) While we are

not giving the details in this section, the fact that solutions are eigenvectors is again

related to formulating the problem as a maximization task: the original quantity to be

minimized is quadratic, and requiring zero gradient and satisfaction of constraints leads

to linear (eigenvalue) equations.

As a side-effect of the above solution, PCA transforms a number of possibly cor-

related variables into a smaller number of uncorrelated variables called principal com-

ponents. The first principal component accounts for as much of the variability in the

data as possible, and each succeeding component accounts for as much of the remain-

ing variability as possible. Another interesting explanations of PCA is that it minimizes

the mean squared error incurred when approximating the data with their projection.

Figure 15.3: Principal component analysis, data are described by an ellipsoid. The first

eigenvector is in the direction of the longest principal axis, the second eigenvector lies

in a plane perpendicular to the first one, along the longest axis of the two-dimensional

ellipse.

A geometric interpretation in three dimensions shown in Fig. 15.3 (which can be

generalized to more dimensions) is that, if we imagine the data points as forming an

m-dimensional ellipsoidal cloud, the eigenvectors of the covariance matrix are the prin-

cipal axes of the ellipsoid. Principal component analysis reduces the dimensionality by

restricting attention to the directions along which the scatter of the cloud is the greatest.

PCA is a simple and very popular transformation but with obvious limits. It simply
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performs a coordinate rotation that aligns the transformed axes with the directions of

maximum variance. Having a larger variance is not always related to having a larger

information content, for example it can be related to having a larger measurement noise.

In addition, the variance along a coordinate can be easily enlarged by multiplying the

coordinate by a constant, but the information content of course does not change. In

other words, the PCA results depend on choosing appropriate physical units, a spherical

cloud of points can become elongated for the superficial reason that millimeters instead

of meters are used to measure a physical distance. Furthermore, because a sum of

squared distances is involved in the optimization of equation (15.1), PCA is sensitive

to outliers. Points which are very far from most of the other points contribute with

large (squared) distances and encourage a choice of direction vectors which may be

very different from those chosen if the outliers are eliminated. When PCA is used to

identify promising features for classification in supervised learning, its main limitation

is that it makes no use of the class label of the feature vector. There is no guarantee that

the directions of maximum variance will contain good features for discrimination, see

also Chapter 7 about selecting and ranking features.

The computational cost is related to solving the eigenvalues-eigenvectors problem

for a matrix of dimension m × m. Let’s note that the number of points n is not rele-

vant, therefore the method is particularly fast when the number of initial coordinates is

limited, even if the number of data points is very large. More details about our way of

presenting PCA can be found in [29].

15.3 Weighted PCA: combining coordinates and rela-

tionships

As we mentioned before, in some cases additional information is available about the

data in the form of relationships between (some) entities. For example, we may have a

class label, so that some pairs are in the same class and we would like them to be close

in the projected distance. Or we may have additional information about dissimilarities

beyond what is obtained from the raw data coordinates.

Fortunately, we can extend the PCA approach to incorporate additional information.

For example, we can minimize a weighted sum of the squared projected distances:

∑

i<j

dij · (dist
p
ij)

2. (15.6)

If a weight dij is large, a large contribution to the function to be maximized is obtained

if the corresponding dist
p
ij is also large. We can then interpret dij as weights measuring

the importance that points i and j are placed far apart in the low dimensional projection

space, let’s call them dissimilarities. As in the un-weighted case, we can now assign to
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15.4. LINEAR DISCRIMINATION BY RATIO OPTIMIZATION

the problem an n× n Laplacian matrix Ld:

Ld
ij =

{∑n
j=1 dij if i = j

−dij otherwise
, (15.7)

and obtain the optimal projection with the direction vectors given by the p highest eigen-

vectors of the matrix XTLdX .

We can now use the dissimilarity values to create different variations of PCA. In

normalized PCA dij = 1/disti,j to discount large original distances in the optimization.

This can be useful to increase the original PCA robustness with respect to outliers.

In supervised PCA, with data labeled as belonging to different classes, we can set

the dissimilarities dij to a small value ǫ if i and j belong to the same class, to a value 1

if they belong to different classes. This weighing instructs the projection that it is more

important to put at large distances points of different clusters. If ǫ is zero, the internal

structure of each cluster is set only indirectly according to the inter-cluster relationships

of its members.

15.4 Linear discrimination by ratio optimization

Other possibilities to project points while considering also class labels arise by optimiz-

ing ratios of quantities. Obviously, maximizing a ratio reflects a compromise between

maximizing the numerator and minimizing the denominator.

Let’s consider a c-way classification problem, the standard case being with two out-

put classes. Fisher analysis deals with finding a vector νF such that, when the original

vectors are projected onto it, values of the different classes are separated in the best

possible way.

A nice separation is obtained when the sample means of the projected points are as

different as possible, when normalized with respect to the average scatter of the pro-

jected points. The division by the scatter corresponds to the intuition that what matters

is not the separation of means per se, but the fact that values are sufficiently clustered

around their means so that the classes can be clearly separated. This is not possible if

they are scattered so that most values are mixed in the same area, even if the means are

separated.

Let ni be the number of points in the i-th cluster, let µi and Si be the mean vector

and the biased covariance matrix for the i-th cluster. The matrix Swithin = 1
n

∑c
i=1 niSi

is the average within-cluster covariance matrix and Sbetween = 1
n

∑c
i=1 niµiµ

T
i the

average between cluster covariance matrix.

In detail, the Fisher linear discriminant is defined as the linear function y = νTx for
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15.4. LINEAR DISCRIMINATION BY RATIO OPTIMIZATION

Figure 15.4: Fisher linear discrimination (triangles belong to one class, circles to an-

other one): the one-dimensional projection on the left mixes projected points from the

two classes, while the projection on the right best separates the projected sample means

w.r.t. the projected scatter.

which the following ratio is maximized:

νTSbetween ν

νTSwithin ν
. (15.8)

Think about maximizing the ratio of between-class to within-class scatter: we want

to maximally separate the clusters (the role of the numerator where the projections of the

means count) and keep the clusters as compact as possible (the role of the denominator).

It can be proved that the maximizer of Fisher’s criterion is the same as the maximizer

of:
νTSbetween ν

νT S ν
. (15.9)

For the special but interesting case of two classes, see also Fig. 15.4, after specializ-

ing the above equations, the Fisher linear discriminant is defined as the linear function

y = wTx for which the following criterion function is maximized:

Separation(w) =
‖m̃1 − m̃2‖2

s̃21 + s̃22
, (15.10)

where m̃i is the sample mean for the projected points m̃i = (1/ni)
∑

y∈Classi
y, and s̃2i

is the scatter of the projected samples of each class: s̃2i =
∑

y∈Classi
(y − m̃i)

2. Think

about maximizing the ratio of between-class to total within-class scatter. The solution

is:

wF = (Sw)
−1(m1 −m2), (15.11)
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15.4. LINEAR DISCRIMINATION BY RATIO OPTIMIZATION

where mi is the d-dimensional sample mean for class i and Sw is the sum of the two

scatter matrices Si defined as follows:

Si =
∑

x∈Classi

(xi −mi)(xi −mi)
T . (15.12)

An interesting application of Fisher linear projection is for selecting features in neu-

ral networks and general model-building techniques based on supervised learning. (See

Section 15.4.1.)

15.4.1 Fisher discrimination index for selecting features

Let’s consider a two-way classification problem (with two output classes) with input

vectors of d dimensions. Fisher analysis deals with finding the vector wF so that, when

the original vectors are projected onto it, values of two classes are separated in the best

possible way. The method has already been encountered in Section 15.4.

Let’s remind that a nice separation of the projected points is obtained when the

sample means of the projected points are as different as possible, when normalized

with respect to the average scatter of the projected points. The division by the scatter

corresponds to the intuition that what matters is not the separation of means per se, but

the fact that values are sufficiently clustered around their means so that the two classes

can be clearly separated. This is not possible if they are scattered so that most values

are mixed in the same area, even if the means are separated.

We can now rate the importance of feature i according to the magnitude of the i-th
component of the Fisher vector wF defined in equation (15.11)-(15.12). Identifying

the largest components in Fisher vector will heuristically identify the most relevant di-

rections (coordinates) for separating the classes. In other words, if the direction of a

coordinate vector is similar to the direction of the Fisher vector, projecting onto the

given coordinate axis can be approximately used to separate the two classes, instead of

projecting onto the original Fisher vector. Let’s note that the criterion is empirical and

not theoretically demonstrated because it is based on linear projections: in some cases

a nonlinear combinations of features which rank poorly by the above Fisher criterion

may do an excellent job in separating classes.

If the number of dimension d is very large, inverting the Sw matrix in equation (15.11)

can be numerically difficult, and this first measure can be insufficient to correctly order

the many features.

A simpler and possibly more effective criterion to rank feature k, called Fisher’s

discrimination index, is to measure the Separation value defined in equation (15.10)

when considering a vector ek along the specific direction k (zero everywhere, 1 only in

the k-th coordinate). In other words, we want to measure the discrimination if only the

k-th coordinate of the given points is considered.
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15.5. FISHER’S LINEAR DISCRIMINANT ANALYSIS (LDA)

15.5 Fisher’s linear discriminant analysis (LDA)

The original Fisher method described above aims at finding a single direction vector

(a single projection). For finding p direction vectors, the idea can be generalized to

the popular technique known as Fisher’s linear discriminant analysis (LDA), which is

based on maximizing the following ratio:

max
ν1,...,νp

∑p
α=1(ν

α)T Sbetween ν
α

∑p
α=1(ν

α)T S να
(15.13)

subject to (να)TSνβ = δαβ, α, β = 1, . . . , p.

Although widely used, LDA, like the basic PCA, is sensitive to outliers and it does

not take the shape and size of clusters into consideration. A more flexible generalization

is based on maximizing a ratio of the following form:

max
ν1,...,νp

∑
i<j dij(dist

p
ij)

2

∑
i<j simij(dist

p
ij)

2

subject to (να)TX tLsXνβ = δαβ, α, β = 1, . . . , p,

where dij are dissimilarity weights, simij are similarity weights (they express the prefer-

ence for placing two entities together in the projection), and Ls is the Laplacian matrix

corresponding to the similarities

Ls
ij =

{∑n
j=1 simij if i = j

−simij if i 6= j
. (15.14)

After defining a generalized eigenvector problem of (A,B) as the solution of Ax =
λBx, the optimal solution of equation (15.13) is given by the p highest generalized

eigenvectors of (XTLdX,XTLsX).
Apart from the mathematical details, a competent user of the above techniques has

to remember that finding an optimal projection requires defining in measurable ways

what is meant by optimality. Above we have seen ways of combining unsupervised

(based only on coordinates) and supervised information (based on relationships),

and ways of giving different weights to different preferences for placing items distant

or close.

After the user intelligence is spent on defining the optimization problem, what is left

is to derive m×m matrices by the appropriate multiplications and using an efficient and

numerically stable way to solve an m×m generalized eigenvector problem. Of course,

the technique is very fast when the number of original coordinates m is limited, even if

the number of points to project is very large.
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Interestingly enough, eigenvectors will be encountered again in the chapter about

web mining, for ranking web pages.

Gist

Visualizations (visual representations of abstract data) help the human unsu-

pervised learning capabilities to extract knowledge from the data. Because visu-

alizations are for our visual system, they are limited to the two dimensions of our

retina (three in case of stereo vision).

A simple way to transform data into two-dimensional views is through projec-

tions (actually, projections can be to more than two or three dimensions if a com-

puter is using the projected points). Orthogonal projections can be intuitively

explained as looking at the data from different and distant points of view.

Because there are infinite ways to project data, the power of optimization comes

to the rescue to select some of them through clear objectives. In particular, Principal

Component Analysis (PCA) identifies the orthogonal projection that spreads the

points as much as possible in the projection plane. In spite of its popularity, PCA

can fail to produce relevant insight: having a larger variance is not always related to

having the largest information content, or the best possible discrimination.

If relationships are available in addition to the raw coordinates (e.g., knowledge

that some points are in the same or in different class), they can be used to modify

PCA and obtain more meaningful projections.

When class labels are present, Fisher discrimination projects data so that the

ratio of difference in the projected means of points belonging to different classes

divided by the intra-class scatter is maximized.

Alchemists used projection to mix powdered philosopher’s stone with molten

base metals in order to transmute them into gold. You can use it for a more success-

ful enterprise, to transform raw data points into precious insight.
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Chapter 16

Visualizing graphs and networks by

nonlinear maps

No man is an Iland, intire of it selfe; [. . . ]

any mans death diminishes me, because I am involved in Mankinde;

And therefore never send to know for whom the bell tolls;

It tolls for thee.

(John Donne, 1623)

After considering visualizations based on linear projections in Chapter 15, let’s now

consider more general ways to feed the human unsupervised learning capabilities and

derive insight from data. We assume that the n entities to be displayed are not nec-

essarily characterized by internal coordinates, but only by item-to-item (i.e., external)
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16.1. VISUALIZATION BY STRESS MINIMIZATION

relationships such as dissimilarities between two items i and j denoted by dij . If items

do have coordinates, such external relationships can be obtained by simple ways, as

explained in Sec. 12.2.

In the general case, however, the external dissimilarity measure is not computed as

a distance, and may not be available for every pair of items. An appropriate model for

this situation is an undirected weighted graph G(V,E), given by a set of vertices (or

nodes) V , and edges E ⊂ V ×V . Each entity is represented by a node, and a connection

(i, j) labeled dij is present between two nodes if and only if a dissimilarity is defined

for the corresponding entities, as shown in Fig. 15.1. We assume that similarities are

positive but we do not consider any other assumption (like the validity of triangular

inequalities). For example, in marketing the similarity between two products could be

derived by sampling customers and asking them to evaluate the product similarity along

a given scale.

16.1 Visualization by stress minimization

Given the way in which our eyes work, visualization is only in two or three dimensions.

Our aim is therefore to place items on the 2D plane (or in 3D space) so that their mutual

distances are as close as possible to their dissimilarities. In general, a perfect place-

ment obeying all dissimilarities is impossible; therefore, a precise criterion is needed in

order to define what placements can be considered as acceptable.

Therefore the problem is the following: given a set of (positive) dissimilarities dij
between items, find the two-dimensional or three-dimensional coordinates pi for all

items that provide a convenient placement of such items on the plane, so that dissimilar-

ities are maintained as much as possible. The simplest approach is stress minimization,

stress being the amount by which a visualized dissimilarity is compressed or expanded

with respect to the original dissimilarity. It is intuitive, physical, and useful also as a

starting point to understand more complex approaches.

A straightforward error measure can be defined to quantify by how much the dis-

tances in the plane are different with respect to the original dissimilarities. For simplicity

we consider a two-dimensional visualization.

Let δij =
√

(pi − pj)
T (pi − pj) be the distance between the coordinates of items i

and j on the plane. A natural global mapping error error can be defined as the sum of

the squared individual errors: ∑

(i,j)∈E

(dij − δij)
2.

No contribution to the error is present for missing edges (for couples of points with

no associated dissimilarity values). Additional flexibility can be obtained by adding an

arbitrary weight wij representing the impact that an individual error has on the overall
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stress:

global mapping error = Stress =
∑

(i,j)∈E

wij(dij − δij)
2. (16.1)

For example, if wij = 1/dij
2, one considers the relative errors (δij − dij)/dij instead of

the absolute errors. The value wij = 1 is the default.

An exact solution reproduces all original dissimilarities: δij = dij , and it leads to

zero error. Obtaining low error values means that many distances tend to be rather

close to the original ones. In other words, the problem is now to minimize the global

mapping error measure by changing the point positions pi. We have complete freedom

in the placement of each point in two dimensions, and we have therefore an optimization

problem with a very large number of dimensions, equal to twice the number of entities.

The situation is different in Chapter 15 where we deal with mappings executed by a

linear projection.

There is a physical model related to minimizing the above global mapping error,

and this explains the widely used term Stress to denote the function to be minimized.

A spring is attached to each pair of points with a length at rest equal to dij , the desired

distance, and with an elastic constant (resistance to deformation) equal to the weight

wij . The term wij(δij − dij)
2 can be considered as the potential energy of a spring

which is elongated or compressed with respect to the rest length. The initial position of

the points can be chosen randomly and the movement is constrained to two dimensions.

The system will start oscillating and, provided that some friction is present, oscillations

will gradually be damped, leading to a stable situation, a locally optimal point of the

overall stress function.

The physical system can of course be simulated on a computer, leading to what is

called the force-directed approach for drawing graphs. Methods based on this ap-

proach consist of two main components. The first is the model that quantifies the

quality of a drawing (or of the two-dimensional map if you prefer a more technical

term). The second is an optimization method for computing a drawing that is locally

optimal with respect to this model. The resulting final layout brings the system to equi-

librium, so that the total force on each vertex is zero, or equivalently, the potential energy

is locally minimal with respect to the vertex positions.

If you do not like Physics but prefer Math, you can forget about simulating physical

details like friction and concentrate on minimizing the stress function through gradient

descent: calculate partial derivatives and use an optimization method to reach a global

optimum, again optimization is the source of power!

Examples of visualizations are Fig. 16.1, which shows a social network of friends

interested in different mountaineering activities, and Fig. 16.2, which shows a social

network of politicians automatically visualized depending on similarities related to their

activity in the parliament. Note how the main political groups are automatically clus-

tered as an interesting side-effect of encouraging the placement of similar people in
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16.2. A ONE-DIMENSIONAL CASE: SPECTRAL GRAPH DRAWING

Figure 16.1: 2D Visualization by stress minimization.

similar positions. Through a focus and context visualization, one can either concen-

trate on the local network of connections around a single politician (focus), or see also

the context given by the complete set of connections (Fig. 16.3). It is therefore simple

to navigate from an entity to a neighbor, to a neighbor of a neighbor, etc., to likewise

track complex relationships in a fast and effective manner. Criminal investigations are

another possible application of this method.

16.2 A one-dimensional case: spectral graph drawing

A paradigmatic example consists of mapping the set of n points to one dimension while

keeping points with large similarities as close as possible. As usual, to understand what

we really want and to start a solution process we need to define a quantity that we want

to minimize, related to the goodness of our one-dimensional drawing. Let xi be the

one-dimensional coordinate assigned to point i (and let x denote the vector of all such

coordinates). A useful quantity is Hall’s energy, first proposed in the 70’s:

EHall =
1

2

n∑

i,j=1

wij(xi − xj)
2. (16.2)

The interpretation of this formula is to square the individual distances (so that the

function will be differentiable and the differentiation will lead to linear equations) and
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16.2. A ONE-DIMENSIONAL CASE: SPECTRAL GRAPH DRAWING

Figure 16.2: Social network analysis: visualizing the network of USA representatives.

The two parties (which are not available to the clustering software) emerge as two very

different clusters.

sum them weighted by the similarities between pairs. When wij is large the function

EHall gets a large contribution from the (xi − xj)
2 term and therefore this definition

should encourage placing similar points at close positions, to avoid paying a large

penalty and obtaining a large EHall value. Through Hall’s energy, large similarities en-

courage close positions in the placement!

A careful reader will notice a serious weakness in the above definition. Now we

are completely free in picking a coordinate xi for each point (the situation is different

in Chapter 15 where we consider only linear projections) and by picking very small

coordinates (or coordinates which are very similar) the energy goes to zero but we are

left with a trivial solution: mapping all points to the same position. The definition

can be repaired by considering that we are not interested in the absolute values of the

coordinates but in their relative values. As a more physical motivation, the optimized

drawing should not depend on choosing meters or millimeters as units. We can therefore
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16.2. A ONE-DIMENSIONAL CASE: SPECTRAL GRAPH DRAWING

Figure 16.3: Navigating in a social network of politicians: the network of a single

representative.

fix the length of the x vector to one and the problem becomes:

minimize



∑

(i,j)∈E

wij(xi − xj)
2


 (16.3)

subject to ‖x‖2 = xTx =
n∑

i=1

x2
i = 1. (16.4)

For convenience let N(i) = {j|(i, j) ∈ E} be the neighborhood of node i and

deg(i) =
∑

j∈N(i) wij its weighted degree. As soon as we define the Laplacian matrix

LG associated with the graph:

LG
ij =

{
deg(i) if i = j

−wij if i 6= j
, (16.5)

we can obtain Hall’s energy as EHall = xTLGx.
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16.2. A ONE-DIMENSIONAL CASE: SPECTRAL GRAPH DRAWING

The energy and the constraint are invariant under translation. We can eliminate this

degree of freedom by requiring that the mean of x be zero:
∑n

i=1 xi = xT1n = 0
(where the vector 1n contains all 1’s). Finally, the 1-dimensional optimal layout can be

described as the solution of the following constrained minimization problem:

minimize xTLGx

subject to

{
xTx = 1

xT1n = 0
.

By standard optimization and linear algebra results, provided that the graph is con-

nected, the resulting minimum value of the energy is the so-called algebraic connectiv-

ity of the graph, i.e., the second smallest eigenvalue λ1 of LG (LG is singular, therefore

the smallest eigenvalue is λ0 = 0), while the solution is the corresponding eigenvector

v1, also known as the Fiedler vector. The result is elegant and it deserves an inspiring

name: spectral graph drawing, or spectral layout. The term “spectral” has nothing

to do with ghosts and scary movies but with the usage of eigenvectors and eigenvalues

in Physics to study the distribution of energy emitted by a radiant source (spectrum), of

vibration modes, etc.

Unfortunately elegance must be neglected when going to more than one dimension.

Let’s call the second dimension y. A trivial generalization will make the second vector

coordinate y the same as x, not a big gain: all points will be aligned on the diagonal

line, not really a two-dimensional plot. To get something more usable we must force

the solution value for the y coordinate to be different from the one for the x coordinate.

A reasonable requirement is to ask that the two coordinate vectors are not correlated

(yTx = 0), so that the additional dimension will give us some new information, “new”

in the sense that it is not linearly related to the previous values, not in a deep information-

theoretic meaning. The problem for y now becomes:

minimize yTLGy

subject to





yTy = 1

yT1n = 0

yTx = 0

.

Potential difficulties are inherited from the difficulties in solving very large eigen-

vector problems. Multi-scale techniques and iterative techniques to calculate principal

eigenvectors can help.

In spite of the elegance related to minimizing a simple function with a well known

linear algebra result, there are no guarantees that the aesthetic properties of the layout

correspond to the user preferences. In particular, there are no requirements forbidding
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16.3. COMPLEX GRAPH LAYOUT CRITERIA

the methods to place too many nodes too close together so that they become hardly

visible by our eyes. Furthermore, there is no guarantee that requiring an uncorrelated y
coordinate corresponds to the best aesthetic results.

Real-world layouts typically require energies (functions to be minimized) designed

in close agreement with the specific preferences. By defining a clear energy, one sep-

arates the concern about the goal (the desired layout characteristics) from the concern

about how the goal can be reached, at least approximately, by optimization techniques.

16.3 Complex graph layout criteria

Let us consider the following simple graph connectivity matrix, where two nodes i and

j are connected if and only if the matrix entry (i, j) is 1:



0 1 0
1 0 1
0 1 0


 ,

corresponding to a three-node graph whose only requirement is that node 2 has distance

1 from the other two nodes:

d12 = d23 = 1.

2

1

1
1

12 3

2

2

3

3

3

Figure 16.4: Equivalent stress-minimizing layouts when too few constraints are defined.

The layouts shown in Fig. 16.4 are perfectly equivalent from a stress-minimization

approach: the absence of an edge (e.g., between nodes 1 and 3) implies that the mutual

distance of the corresponding nodes is irrelevant if the energy function to be optimized

contains only terms related to connected pairs.

The problem is even worse in large graphs where many indifferent pairs of nodes ex-

ist. Fig. 16.5 shows a 30×30 rectangular lattice where only first-neighborhood edges are

defined (requiring unit distance between the endpoints). An “optimal” layout obtained

by minimizing equation (16.1) is shown in Fig. 16.6. Many degenerate locally-optimal

layouts exist. They can be obtained by alternately coloring nodes in black and white
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900

1 2 3 4 30

31 32 60

Figure 16.5: A 30× 30 lattice with first-neighbor edges.

Figure 16.6: An “optimal” layout from the stress-minimization point of view, which is

not optimal for understanding the network structure.

in a checkerboard fashion, so that black nodes are only connected to white ones and

vice versa. A one-dimensional solution packing all black nodes at x = 0 and all white

nodes at x = 1 trivially satisfies all distance constraints, so that the global mapping

error defined in equation (16.1) is zero.
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16.3. COMPLEX GRAPH LAYOUT CRITERIA

Figure 16.7: First solution to missing constraints: add a default repulsion.

Figure 16.8: Second solution to missing constraints: complete distances by computing

the minimum path between nodes.
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16.3. COMPLEX GRAPH LAYOUT CRITERIA

The introduction of a default large distance for unconnected nodes can easily solve

the problem. Fig. 16.7 shows the optimal layout obtained by equation (16.1) on the same

30×30 lattice where disconnected nodes i and j have a large required distance dij = 20
with a very small weight wij = 10−5. Observe that, the layout being unknown a priori,

it is often difficult to define a convenient default distance. In the case of Fig. 16.7, for

instance, the value of 20 is too little to ensure a correct layout, and the overall graph

bends into a spherical shape.

A second approach, shown in Fig. 16.8, is the completion of the distance matrix

by the shortest path calculation. All distances between nodes which are not directly

connected are set equal to the shortest path between such nodes. For instance, nodes

1 and 32 of the lattice shown in Fig. 16.5 have a shortest path length equal to 2 (one

horizontal and one vertical edge). Without the requirement that shortest paths distances

are reproduced, nothing prohibits nodes 1 and 32 to be placed at a very small distance in

the visualization. As soon as the requirement is active, this bad behavior is discouraged

by a large penalty and nodes tend to untangle, passing from configurations like that of

Fig. 16.6 to configurations like that of Fig. 16.8.

Notice that the minimum path distance is always larger than the Euclidean distance

in the grid layout. As an example, the shortest-path distance between the two diagonally

extreme nodes 1 and 900 is (30 − 1) · 2 = 58, while the expected Euclidean distance

in the grid layout would be (30 − 1) ·
√
2 ≈ 41.01, hence the pillow-shaped layout of

Fig. 16.8.

More complex functions to be minimized for graph layout consider additional aes-

thetic criteria, like minimizing the number of edge crossings, or guaranteeing a certain

minimum angle between edges connected to a node (small angles make readability dif-

ficult), or allowing curved edges, etc. A complete enumeration is out of the scope of

this introductory chapter. In all cases, after defining in quantitative terms a suitable

compromise between the desirable aesthetic criteria, one has to search for an effective

minimization algorithm (the source of power!), in most cases looking for an approxi-

mate but fast solution.
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16.3. COMPLEX GRAPH LAYOUT CRITERIA

Gist

Graph layout techniques can be used to visualize relationships between entities.

If some dissimilarities are available, drawing entities in two dimensions so that

similar items are close to each other is precious to identify groups (clusters) and

relationships between groups.

Stress minimization resorts to a physical model. Each dissimilarity value gen-

erates a spring between entities in n dimensions. The task is to ”sandwich” the

network by squeezing it to a plane, while minimizing the elongation or shortening

of the various springs. By the way, if springs are substituted with rigid bars, squeez-

ing becomes impossible: in general an exact solution to map points to a plane and

maintain all dissimilarity values unchanged does not exist. If you imagine each

point as a person at a party, everybody will move on the floor to be away from dis-

agreeable people and close to likeable ones. The fact that everybody moves at the

same time can make parties (and visualizations) very stressing (suboptimal).

As for clustering, there is not an absolute best graph (or network) layout.

Through optimization one defines the objectives (the quantitative meaning of ”op-

timal layout”) and then identifies the best possible mapping which maximizes them.

Often one tries many possibilities before identifying a proper visualization.

Social network analysis is used to study networks of interacting persons. In

business, a similarity between employees can be defined by the number of mes-

sages they exchange. If you design a layout of the network of employees with this

metric you will easily identify clusters of colleagues working together, maybe loser

connections between different groups, and maybe some isolated individuals who

either concentrate a lot, or prefer the telephone, or ... are not too committed to the

business.
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Chapter 17

Semi-supervised learning

A mind is a fire to be kindled, not a vessel to be filled.

(Plutarch)

Let us consider the international airport example which motivated unsupervised

learning methods in Chapter 14: you walk through a gate and clearly identify clusters

of people speaking different languages, even if the language names are unknown. Now,

if some people languages are identified, for example if some people are waving flags or

wearing costumes of their countries, for sure we could select only the labeled speakers

and run a supervised learning algorithm to map phonetic characteristics to languages.

The question now is: can one also use some information from the unlabeled people

to improve language classification? Let us note that clusters of people usually speak

the same language (“birds of a feather flock together”) and we may be tempted to label
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17.1. SEMI-SUPERVISED LEARNING WITH SOME UNSUPERVISED DATA

some of the unknown speakers with the same language as the one spoken by at least

one member of the same cluster. If the assumption is true, one greatly increases the

number of examples and can improve the overall generalization capability of the trained

classifier. For example, young children clustered with their older and identified parents

can be added to the database so that even young people voices (usually with higher

frequencies) can be correctly classified.

In a similar manner, one can use some supervised data to aid unsupervised learning

and clustering. This is the underlying idea of semi-supervised learning: use both the la-

beled examples and also (some) unlabeled ones to improve the overall classification

accuracy.

If the assumptions work, one gets a very valuable performance boost in all cases

when labeled examples are scarce and unlabeled ones abundant. Think for exam-

ple at web pages: human labeling is very costly and only a minuscule subset of web

pages are labeled. By contrast, an enormous and growing number of unlabeled pages is

present.

17.1 Semi-supervised learning with some unsupervised

data

Semi-supervised learning (SSL) uses both supervised and unsupervised data to im-

prove performance. The standard form of supervision are labels associated with some

examples. In this case the training set X is divided into a labeled portion XL =
{x1, . . . , xl}, for which labels YL = {y1, . . . , yl} are given, and an unlabeled portion

XU = {xl+1, . . . , xl+u}.
Other forms of supervision can be related to constraints or hints given to the sys-

tem [1]. For example, the hints can take the form “the output function must be growing

as a function of one input coordinate,” while constraints can be formulated as “these

two points must be in the same class” (must-link) or “these two points cannot be in the

same class” (cannot-link).

A first idea, originated in the sixties [37] is the so-called self-learning or self-

labeling method where a wrapper algorithm repeatedly uses a supervised learning method.

Initially, learning is executed on the labeled examples. Then, some additional unlabeled

examples are labeled by using the current trained system, and learning is repeated by

adding the newly labeled examples. Heuristically, one could try adding labels to the

examples which are labeled with the largest confidence. Although appealing, the ef-

fect of the wrapper depends on the supervised method enclosed and it is unclear when

self-labeling is effective.

A context related to SSL was introduced by Vapnik as transductive learning. In-

ductive learning wants to derive a prediction function valid for arbitrary inputs, while
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17.1. LEARNING WITH SOME UNSUPERVISED DATA

transductive learning just aims at predicting only a fixed set of test points, by using all

available information. Usually, transductive learning is based on a labeled graph rep-

resentation of the data, labeled nodes are classified training examples, edges represent

similarity/dissimilarity relationships or constraints. A combinatorial optimization on

the labels to maximize an overall consistency measure is then performed.

In general, SSL looks promising if the unsupervised information about the density

p(x) is useful in deriving p(y|x). By analogy with the supervised learning smooth-

ness assumption, the semi-supervised smoothness assumption states that if two input

points x1 and x2 in a high-density region are close, the corresponding outputs y1 and y2
should also be close. By transitivity, if two points are linked by a path in a high density

region (they belong to the same cluster) their outputs should be close. If points are close

but in a low-density area, the requirement that outputs are similar is less stringent.

If we equate unsupervised learning with clustering, the cluster assumption states

that if two points are in the same cluster, they are likely to belong to the same class. In

this case, the use of unlabeled points is useful to find boundaries between clusters with

better accuracy, and then improve the overall classification by the above assumption.

An equivalent formulation is the low-density separation assumption: decision

boundaries between different classes should lie in low-density regions, and should not

split single clusters, as shown in Fig. 17.1.

The above assumptions correspond very closely to the international airport analogy:

if one wants to separate different languages he had better not split clusters of people but

draw boundaries in empty areas.

A different assumption used as a paradigm by other algorithms is the manifold as-

sumption: the data lie approximately on a low-dimensional manifold1, as shown in

Fig. 17.2. The curse of dimensionality (input data of very large dimensions) is avoided

by first identifying a manifold where most data lie. Then an appropriate metric is given

by geodesic distances on the manifold, and the standard smoothness assumption is con-

sidered on the low-dimensional manifold. The more data is available, the better one

identifies the relevant manifold and the corresponding metric to use in supervised learn-

ing (consider for example a nearest-neighbor classifier, where the vicinity is given by

geodesic distances on the manifold).

17.1.1 Separation in low-density areas

Some SSL techniques are based on encouraging the separation between classes (the

decision boundaries) to pass through low-density areas, away from most data examples.

1 A manifold is a mathematical space that on a small enough scale resembles the Euclidean space

of a specific dimension, called the dimension of the manifold. For example, a line and a circle are one-

dimensional manifolds, a plane and a sphere (the surface of a ball) are two-dimensional manifolds. More

formally, every point of an n-dimensional manifold has a neighborhood homeomorphic to an open subset

of the n-dimensional space Rn.
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17.1. LEARNING WITH SOME UNSUPERVISED DATA

Figure 17.1: Low-density separation assumption. Even if boundary A correctly sepa-

rated the labeled examples, boundary B is better because it crosses a low-density region.

Information about unlabeled data produces a better classification.

An immediate algorithm is obtained by adopting a margin-maximization algorithm

like SVM and maximizing the margin for both labeled and unlabeled examples, this is

called transductive SVM (TSVM). To the function to be minimized one adds a term

like:

λ2

∑

unlabeled data i

(1− |f(xi)|), (17.1)

f(xi) being the classification function which has to be greater than 1 for one class,

less than -1 for the other class. The penalty introduced in the function is of λ2 when

f(xi) = 0, and it linearly becomes equal to zero when f(xi) becomes 1 or, in the other

direction, when f(xi) becomes -1 (the penalty has a triangular form centered around

zero). In other words, a penalty is incurred if an unlabeled data point falls in the “gray”

boundary region where |f(xi)| ≤ 1: therefore unlabeled data tend to guide the linear

boundary away from the dense regions. The corresponding problem is not convex and

therefore robust heuristic optimization schemes have to be adopted, for example deter-

ministic annealing strategies starting from an easy problem and gradually transforming
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Figure 17.2: The geodesic distance can help to separate classes lying on a manifold.

it into the TSVM optimization function [39] or the continuation approach of [13] fol-

lowing a similar paradigm of first optimizing an “ironed” version of the function and

then gradually introducing finer and finer details.

17.1.2 Graph-based algorithms

The graph-based methods are based on representing the problem as a graph, where

nodes correspond to examples and edges are labeled with the pairwise similarity wij

of two nodes i and j. As usual, one can think in terms of similarities, or in terms of

dissimilarities/distances.

An approximation of the geodesic distance of two points along the manifold can

be approximated by deriving the minimum-path distances between couples of points

from the initial pairwise distances.

Let’s introduce the matrix W to represent similarities Wij = wij if the edge is

present, zero otherwise, and the diagonal degree matrix D, so that Dii =
∑

j wij .

The basic method to encourage smoothness along light edges (smoothness when

connected nodes are similar) is related to defining and using the graph Laplacian op-

erator. The normalized L and unnormalized combinatorial graph Laplacian operator L

are defined as:

L = I − D−1/2 W D−1/2, (17.2)

L = D − W. (17.3)
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The graph Laplacian is related to the more traditional Laplace operator used for

continuous functions f(x1, . . . , xn):

∇φ =
n∑

i=1

∂2f

∂xi
2
. (17.4)

In fact, the Laplacian matrix of a lattice, when applied to the values of f at the vertices,

corresponds to the finite differences approximation of the continuous operator on a reg-

ular grid of points. The Laplacian matrix of a graph can be seen as a generalization of

the lattice definition.

A motivation for the Laplacian appearing in physics is that solutions to∇f = 0 in a

region U are functions that make the Dirichlet energy functional stationary:

E(f) =
1

2

∫

U

‖∇f‖2dx. (17.5)

The smoothing action is clear: one aims at identifying locally optimal configura-

tions that minimize the average square of the gradient modulus.

Iterative ways to solve the above ∇f = 0 equation on a grid involves repeatedly

substituting the value at a grid point with a weighted average of the values on its neigh-

bors.

A similar smoothing action is obtained on graphs, the goal is to obtain a distribution

of values on the graph so that the value at a node is equal to the weighted average of

the neighboring values.

A semi-supervised learning using Gaussian fields and harmonic function is proposed

in [49]. Classification algorithms for Gaussian fields can be seen as a form of nearest-

neighbor approach, where the nearest labeled examples are computed by a random walk

on the graph. The method’s equations are related to electrical networks and to spectral

graph theory. The problem is represented as a graph, with some nodes labeled with

y ∈ 0, 1 (for simplicity we consider a binary labeling). Weighted edges represent sim-

ilarities: wij is large for similar cases. For example wij = exp{−‖xi − xj‖2A} for a

suitable metric. The strategy is to first compute a “smooth” real-valued function f for

all nodes and then assign labels based on f . The “smoothness” desire of having sim-

ilar values between similar points is expressed by formulating the problem as one of

minimizing the quadratic energy function

E(f) =
1

2

∑

i,j

wij(f(i)− f(j))2. (17.6)

The minimum energy function is harmonic: it satisfies Lf = 0 on unlabeled points, and

is equal to the label value on the labeled ones. L is the graph Laplacian defined above,

Latest chapter revision: December 16, 2013

c© 2013 R. Battiti and M. Brunato, all rights reserved. Can be reproduced for non-profit usage with this attribution. lionsolver.com/LIONbook

192



17.1. LEARNING WITH SOME UNSUPERVISED DATA

and the harmonic property means that the value of f at an unlabeled point is equal to

the weighted average of f at neighboring points:

f(j) =

∑
i wijf(i)∑

i wij

. (17.7)

In matrix notation: f = Pf , where P = D−1 W. This is consistent with the intu-

itive notion of smoothness with respect to the similarity relationships. The graph-based

smoothing operation is illustrated in Fig. 17.3.

A simple rule is to label a node i with 1 if f(i) > 1/2, 0 otherwise.

The connection with random walk is as follows: imagine a walker starting from an

unlabeled node i and moving to a neighbor j with probability Pij . The walk stops when

the first labeled node is encountered. Then f(i) is the probability that the walker stops

at a node labeled 1.

The electrical network interpretation is as follows: nodes labeled 1 are connected to

a positive voltage source, nodes labeled 0 to ground. Edges are resistors with conduc-

tance wij . Then f is the resulting voltage on the unlabeled nodes, which minimizes the

energy dissipation. Ways to incorporate class prior knowledge (desirable proportions of

the two classes) by modifying the threshold to label the nodes, as well as possible ways

to learn a weight matrix W from labeled and unlabeled data are described in [49].

17.1.3 Learning the metric

Some semi-supervised algorithms proceed in two steps: first a new metric or repre-

sentation is identified by performing an unsupervised step on all data (ignoring the

existence of labels), then a pure supervised learning phase is executed by using the

newly identified metric or representation.

The two steps are in fact implementing the semi-supervised smoothness assumption,

by ensuring that the new metric or representation satisfies that distances are small in the

high density regions.

Let’s note that some graph-based methods are closely related to this way of proceed-

ing: the construction of the graph from the data can be seen as an unsupervised change

of representation.

17.1.4 Integrating constraints and metric learning

In many cases, when dealing with an optimization problem defined over more than one

variable, a sequential method which first minimizes over the first variable, then over the

second (leaving the first variable untouched) etc. gives in general a solution which can

be improved if all variables are considered at the same time. This is clear because the

freedom of movement in the input space is increased: in the first case one moves only

Latest chapter revision: December 16, 2013

c© 2013 R. Battiti and M. Brunato, all rights reserved. Can be reproduced for non-profit usage with this attribution. lionsolver.com/LIONbook

193



17.1. LEARNING WITH SOME UNSUPERVISED DATA

Figure 17.3: The values of the unknown nodes in the graph are computed as the average

of the neighbors.

along coordinate axes, in the second case one moves freely in input space looking for

locally optimal points.

This holds also for SSL. For example the work in [10] shows how to combine con-

straints and metric learning into semi-supervised clustering.

Constraint-based clustering approaches start from pairwise must-link or cannot-

link constraints (requests that two points fall or do not fall in the same cluster) and

insert into the objective function to be minimized a penalty for violating constraints.

By the way, constraints can be derived from the labels but also from other sources of

information. For example, the Euclidean K-means algorithm partitions the points into k

sets so that the function: ∑

i

‖xi − µli‖2

is locally minimized. In it, the vector µli is the winning centroid associated with point

xi, the one minimizing the distance.
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17.1. LEARNING WITH SOME UNSUPERVISED DATA

If two sets of must-link pairs M and cannot-link pairs C are available, one can

encourage a placement of the centroids in order to satisfy the constraints by adding a

penalty wij for a single violation of a constraint inM and a penalty wij for a single vio-

lation of a constraint in C, obtaining the following function to be minimized (“pairwise

constrained k-means”):

Epckmeans =
∑

i

‖xi − µli‖2 +
∑

(xi,xj)∈M and li 6=lj

wij +
∑

(xi,xj)∈C and li=lj

wij. (17.8)

Pairwise constraints can also be used for metric learning. If the metric is parametrized

with a symmetric positive-definite matrix A as follows,

‖xi − xj‖A =
√
(xi − xj)TA(xi − xj),

the problem amounts to determining appropriate values of the matrix coefficients. If the

matrix is diagonal, the problem becomes that of weighing the different features.

The constraints represent the user’s view of similarities: they can be used to change

the metric to reflect this view, by minimizing the distance between must-link instances

and at the same time maximizing the distance between cannot-link instances. After the

metric is modified, one can use a traditional clustering algorithm like K-means.

Asking for a single metric for the entire space can be inappropriate and a differ-

ent metric Ah can be used for each k-means cluster h. The MPCK-MEANS algorithm

in [10] uses the method of Expectation-Maximization, see also Section 12.3, and al-

ternates between cluster assignment in the E-step, and centroid estimation and metric

learning in the M-step.

Constraints are used during cluster initialization and when assigning points to clus-

ters. The distance metric is adapted by re-estimating Ah during each iteration based on

the current cluster assignment and constraint violations. An interesting paper dealing

with metric learning for text documents is [31]. More details about semi-supervised

learning are present in [14] and [48].
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17.1. LEARNING WITH SOME UNSUPERVISED DATA

Gist

In many cases labeled examples are scarce and costly to obtain, while tons of unla-

beled cases are available, usually sleeping in business databases.

Semi-supervised learning schemes use both the available labeled examples and

the unlabeled ones to improve the overall classification accuracy.

The distribution of all examples can be used to encourage ML classification

schemes to create boundaries between classes passing through low-density areas

(transductive SVM).

If the problem is modeled as a graph (entities and relationships labeled with

distances) smoothing operations on graphs can be used to transfer the information

of some labeled nodes to the neighboring nodes (graph Laplacian).

The distribution of examples can be used to learn a metric, a crucial component

to proceed with supervised learning.

A space alien arriving on Earth could combine the zillions of information bits

in web pages plus some labeled information obtained by a human penpal (or by

a Yahoo-like directory) for an intensive course to understand human civilization

before conquering us. Terrestrial businesses use similar techniques to mine data and

conquer more customers.
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