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preface
After college I went to work for Intel in California and mainland China. Originally my
plan was to go back to grad school after two years, but time flies when you are having
fun, and two years turned into six. I realized I had to go back at that point, and I
didn’t want to do night school or online learning, I wanted to sit on campus and soak
up everything a university has to offer. The best part of college is not the classes you
take or research you do, but the peripheral things: meeting people, going to seminars,
joining organizations, dropping in on classes, and learning what you don’t know.

 Sometime in 2008 I was helping set up for a career fair. I began to talk to someone
from a large financial institution and they wanted me to interview for a position mod-
eling credit risk (figuring out if someone is going to pay off their loans or not). They
asked me how much stochastic calculus I knew. At the time, I wasn’t sure I knew what
the word stochastic meant. They were hiring for a geographic location my body
couldn’t tolerate, so I decided not to pursue it any further. But this stochastic stuff
interested me, so I went to the course catalog and looked for any class being offered
with the word “stochastic” in its title. The class I found was “Discrete-time Stochastic
Systems.” I started attending the class without registering, doing the homework and
taking tests. Eventually I was noticed by the professor and she was kind enough to let
me continue, for which I am very grateful. This class was the first time I saw probability
applied to an algorithm. I had seen algorithms take an averaged value as input before,
but this was different: the variance and mean were internal values in these algorithms.
The course was about “time series” data where every piece of data is a regularly spaced
sample. I found another course with Machine Learning in the title. In this class the
xvii



PREFACExviii
data was not assumed to be uniformly spaced in time, and they covered more algo-
rithms but with less rigor. I later realized that similar methods were also being taught
in the economics, electrical engineering, and computer science departments.  

 In early 2009, I graduated and moved to Silicon Valley to start work as a software
consultant. Over the next two years, I worked with eight companies on a very wide
range of technologies and saw two trends emerge which make up the major thesis for
this book: first, in order to develop a compelling application you need to do more
than just connect data sources; and second, employers want people who understand
theory and can also program.  

 A large portion of a programmer’s job can be compared to the concept of connect-
ing pipes—except that instead of pipes, programmers connect the flow of data—and
monstrous fortunes have been made doing exactly that. Let me give you an example.
You could make an application that sells things online—the big picture for this would
be allowing people a way to post things and to view what others have posted. To do this
you could create a web form that allows users to enter data about what they are selling
and then this data would be shipped off to a data store. In order for other users to see
what a user is selling, you would have to ship the data out of the data store and display
it appropriately. I’m sure people will continue to make money this way; however to
make the application really good you need to add a level of intelligence. This intelli-
gence could do things like automatically remove inappropriate postings, detect fraud-
ulent transactions, direct users to things they might like, and forecast site traffic. To
accomplish these objectives, you would need to apply machine learning. The end user
would not know that there is magic going on behind the scenes; to them your applica-
tion “just works,” which is the hallmark of a well-built product.

 An organization may choose to hire a group of theoretical people, or “thinkers,”
and a set of practical people, “doers.” The thinkers may have spent a lot of time in aca-
demia, and their day-to-day job may be pulling ideas from papers and modeling them
with very high-level tools or mathematics. The doers interface with the real world by
writing the code and dealing with the imperfections of a non-ideal world, such as
machines that break down or noisy data. Separating thinkers from doers is a bad idea
and successful organizations realize this. (One of the tenets of lean manufacturing is
for the thinkers to get their hands dirty with actual doing.) When there is a limited
amount of money to be spent on hiring, who will get hired more readily—the thinker
or the doer? Probably the doer, but in reality employers want both. Things need to get
built, but when applications call for more demanding algorithms it is useful to have
someone who can read papers, pull out the idea, implement it in real code, and iterate.

 I didn’t see a book that addressed the problem of bridging the gap between think-
ers and doers in the context of machine learning algorithms. The goal of this book is
to fill that void, and, along the way, to introduce uses of machine learning algorithms
so that the reader can build better applications.  
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about this book
This book sets out to introduce people to important machine learning algorithms.
Tools and applications using these algorithms are introduced to give the reader an
idea of how they are used in practice today. A wide selection of machine learning
books is available, which discuss the mathematics, but discuss little of how to program
the algorithms. This book aims to be a bridge from algorithms presented in matrix
form to an actual functioning program. With that in mind, please note that this book
is heavy on code and light on mathematics.

Audience
What is all this machine learning stuff and who needs it? In a nutshell, machine
learning is making sense of data. So if you have data you want to understand, this
book is for you. If you want to get data and make sense of it, then this book is for you
too. It helps if you are familiar with a few basic programming concepts, such as
recursion and a few data structures, such as trees. It will also help if you have had an
introduction to linear algebra and probability, although expertise in these fields is
not necessary to benefit from this book. Lastly, the book uses Python, which has
been called “executable pseudo code” in the past. It is assumed that you have a basic
working knowledge of Python, but do not worry if you are not an expert in Python—
it is not difficult to learn.
xxi
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Top 10 algorithms in data mining
Data and making data-based decisions are so important that even the content of this
book was born out of data—from a paper which was presented at the IEEE Interna-
tional Conference on Data Mining titled, “Top 10 Algorithms in Data Mining” and
appeared in the Journal of Knowledge and Information Systems in December, 2007. This
paper was the result of the award winners from the KDD conference being asked to
come up with the top 10 machine learning algorithms. The general outline of this
book follows the algorithms identified in the paper. The astute reader will notice this
book has 15 chapters, although there were 10 “important” algorithms. I will explain,
but let’s first look at the top 10 algorithms.

 The algorithms listed in that paper are: C4.5 (trees), k-means, support vector
machines, Apriori, Expectation Maximization, PageRank, AdaBoost, k-Nearest Neigh-
bors, Naïve Bayes, and CART. Eight of these ten algorithms appear in this book, the
notable exceptions being PageRank and Expectation Maximization. PageRank, the
algorithm that launched the search engine giant Google, is not included because I felt
that it has been explained and examined in many books. There are entire books dedi-
cated to PageRank. Expectation Maximization (EM) was meant to be in the book but
sadly it is not. The main problem with EM is that it’s very heavy on the math, and when
I reduced it to the simplified version, like the other algorithms in this book, I felt that
there was not enough material to warrant a full chapter.  

How the book is organized
The book has 15 chapters, organized into four parts, and four appendixes.

Part 1 Machine learning basics

The algorithms in this book do not appear in the same order as in the paper men-
tioned above. The book starts out with an introductory chapter. The next six chapters
in part 1 examine the subject of classification, which is the process of labeling items.
Chapter 2 introduces the basic machine learning algorithm: k-Nearest Neighbors.
Chapter 3 is the first chapter where we look at decision trees. Chapter 4 discusses
using probability distributions for classification and the Naïve Bayes algorithm. Chap-
ter 5 introduces Logistic Regression, which is not in the Top 10 list, but introduces the
subject of optimization algorithms, which are important. The end of chapter 5 also
discusses how to deal with missing values in data. You won’t want to miss chapter 6 as it
discusses the powerful Support Vector Machines. Finally we conclude our discussion
of classification with chapter 7 by looking at the AdaBoost ensemble method. Chapter
7 includes a section that looks at the classification imbalance problem that arises when
the training examples are not evenly distributed.

Part 2 Forecasting numeric values with regression

This section consists of two chapters which discuss regression or predicting continuous
values. Chapter 8 covers regression, shrinkage methods, and locally weighted linear
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regression. In addition, chapter 8 has a section that deals with the bias-variance
tradeoff, which needs to be considered when turning a Machine Learning algorithm.
This part of the book concludes with chapter 9, which discusses tree-based regression
and the CART algorithm.  

Part 3 Unsupervised learning

The first two parts focused on supervised learning which assumes you have target val-
ues, or you know what you are looking for. Part 3 begins a new section called “Unsu-
pervised learning” where you do not know what you are looking for; instead we ask
the machine to tell us, “what do these data have in common?” The first algorithm dis-
cussed is k-Means clustering. Next we look into association analysis with the Apriori
algorithm. Chapter 12 concludes our discussion of unsupervised learning by looking
at an improved algorithm for association analysis called FP-Growth.

Part 4 Additional tools

The book concludes with a look at some additional tools used in machine learning.
The first two tools in chapters 13 and 14 are mathematical operations used to remove
noise from data. These are principal components analysis and the singular value
decomposition. Finally, we discuss a tool used to scale machine learning to massive
datasets that cannot be adequately addressed on a single machine. 

Examples

Many examples included in this book demonstrate how you can use the algorithms in
the real world. We use the following steps to make sure we have not made any
mistakes:  

1 Get concept/algo working with very simple data
2 Get real-world data in a format usable by our algorithm
3 Put steps 1 and 2 together to see the results on a real-world dataset

The reason we can’t just jump into step 3 is basic engineering of complex systems—
you want to build things incrementally so you understand when things break, where
they break, and why. If you just throw things together, you won’t know if the imple-
mentation of the algorithm is incorrect or if the formatting of the data is incorrect.
Along the way I include some historical notes which you may find of interest.  

Code conventions and downloads
All source code in listings or in text is in a fixed-width font like this to separate
it from ordinary text. Code annotations accompany many of the listings, highlight-
ing important concepts. In some cases, numbered bullets link to explanations that
follow the listing.

 Source code for all working examples in this book is available for download from
the publisher’s website at www.manning.com/MachineLearninginAction.
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 Author Online
Purchase of Machine Learning in Action includes free access to a private web forum
run by Manning Publications where you can make comments about the book, ask
technical questions, and receive help from the author and from other users. To
access the forum and subscribe to it, point your web browser to www.manning.com/
MachineLearninginAction. This page provides information on how to get on the
forum once you’re registered, what kind of help is available, and the rules of con-
duct on the forum.

 Manning’s commitment to our readers is to provide a venue where a meaningful
dialog between individual readers and between readers and the author can take place.
It’s not a commitment to any specific amount of participation on the part of the
author, whose contribution to the AO remains voluntary (and unpaid). We suggest
you try asking the author some challenging questions lest his interest stray!

 The Author Online forum and the archives of previous discussions will be accessi-
ble from the publisher’s website as long as the book is in print.
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about the cover illustration
The figure on the cover of Machine Learning in Action is captioned a “Man from Istria,”
which is a large peninsula in the Adriatic Sea, off Croatia. This illustration is taken
from a recent reprint of Balthasar Hacquet’s Images and Descriptions of Southwestern and
Eastern Wenda, Illyrians, and Slavs published by the Ethnographic Museum in Split,
Croatia, in 2008. Hacquet (1739–1815) was an Austrian physician and scientist who
spent many years studying the botany, geology, and ethnography of many parts of the
Austrian Empire, as well as the Veneto, the Julian Alps, and the western Balkans,
inhabited in the past by peoples of the Illyrian tribes. Hand drawn illustrations accom-
pany the many scientific papers and books that Hacquet published.

 The rich diversity of the drawings in Hacquet’s publications speaks vividly of the
uniqueness and individuality of the eastern Alpine and northwestern Balkan regions
just 200 years ago. This was a time when the dress codes of two villages separated by a
few miles identified people uniquely as belonging to one or the other, and when
members of a social class or trade could be easily distinguished by what they were
wearing. Dress codes have changed since then and the diversity by region, so rich at
the time, has faded away. It is now often hard to tell the inhabitant of one continent
from another and today the inhabitants of the picturesque towns and villages in the
Slovenian Alps or Balkan coastal towns are not readily distinguishable from the resi-
dents of other parts of Europe or America.

 We at Manning celebrate the inventiveness, the initiative, and the fun of the com-
puter business with book covers based on costumes from two centuries ago brought
back to life by illustrations such as this one.
xxvi



Part 1

Classification

The first two parts of this book are on supervised learning. Supervised learn-
ing asks the machine to learn from our data when we specify a target variable.
This reduces the machine’s task to only divining some pattern from the input
data to get the target variable.

 We address two cases of the target variable. The first case occurs when the target
variable can take only nominal values: true or false; reptile, fish, mammal, amphib-
ian, plant, fungi. The second case of classification occurs when the target variable
can take an infinite number of numeric values, such as 0.100, 42.001, 1000.743, ....
This case is called regression. We’ll study regression in part 2 of this book. The first
part of this book focuses on classification.  

 Our study of classification algorithms covers the first seven chapters of this
book. Chapter 2 introduces one of the simplest classification algorithms called
k-Nearest Neighbors, which uses a distance metric to classify items. Chapter 3
introduces an intuitive yet slightly harder to implement algorithm: decision
trees. In chapter 4 we address how we can use probability theory to build a classi-
fier. Next, chapter 5 looks at logistic regression, where we find the best parame-
ters to properly classify our data. In the process of finding these best parameters,
we encounter some powerful optimization algorithms. Chapter 6 introduces the
powerful support vector machines. Finally, in chapter 7 we see a meta-algorithm,
AdaBoost, which is a classifier made up of a collection of classifiers. Chapter 7
concludes part 1 on classification with a section on classification imbalance,
which is a real-world problem where you have more data from one class than
other classes.





Machine learning basics
I was eating dinner with a couple when they asked what I was working on recently. I
replied, “Machine learning.” The wife turned to the husband and said, “Honey,
what’s machine learning?” The husband replied, “Cyberdyne Systems T-800.” If you
aren’t familiar with the Terminator movies, the T-800 is artificial intelligence gone
very wrong. My friend was a little bit off. We’re not going to attempt to have conver-
sations with computer programs in this book, nor are we going to ask a computer
the meaning of life. With machine learning we can gain insight from a dataset; we’re
going to ask the computer to make some sense from data. This is what we mean by
learning, not cyborg rote memorization, and not the creation of sentient beings.

 Machine learning is actively being used today, perhaps in many more places than
you’d expect. Here’s a hypothetical day and the many times you’ll encounter
machine learning: You realize it’s your friend’s birthday and want to send her a card
via snail mail. You search for funny cards, and the search engine shows you the 10

This chapter covers
■ A brief overview of machine learning
■ Key tasks in machine learning
■ Why you need to learn about machine learning
■ Why Python is so great for machine learning
3



4 CHAPTER 1 Machine learning basics
most relevant links. You click the second link; the search engine learns from this. Next,
you check some email, and without your noticing it, the spam filter catches unsolicited
ads for pharmaceuticals and places them in the Spam folder. Next, you head to the
store to buy the birthday card. When you’re shopping for the card, you pick up some
diapers for your friend’s child. When you get to the checkout and purchase the items,
the human operating the cash register hands you a coupon for $1 off a six-pack of beer.
The cash register’s software generated this coupon for you because people who buy dia-
pers also tend to buy beer. You send the birthday card to your friend, and a machine at
the post office recognizes your handwriting to direct the mail to the proper delivery
truck. Next, you go to the loan agent and ask them if you are eligible for loan; they don’t
answer but plug some financial information about you into the computer and a deci-
sion is made. Finally, you head to the casino for some late-night entertainment, and as
you walk in the door, the person walking in behind you gets approached by security
seemingly out of nowhere. They tell him, “Sorry, Mr. Thorp, we’re going to have to ask
you to leave the casino. Card counters aren’t welcome here.” Figure 1.1 illustrates
where some of these applications are being used. 

Figure 1.1 Examples 
of machine learning in 
action today, clockwise 
from top left: face recog-
nition, handwriting digit 
recognition, spam filter-
ing in email, and product 
recommendations from 
Amazon.com
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In all of the previously mentioned scenarios, machine learning was present. Compa-
nies are using it to improve business decisions, increase productivity, detect disease,
forecast weather, and do many more things. With the exponential growth of technol-
ogy, we not only need better tools to understand the data we currently have, but we
also need to prepare ourselves for the data we will have. 

 Are you ready for machine learning? In this chapter you’ll find out what machine
learning is, where it’s already being used around you, and how it might help you in the
future. Next, we’ll talk about some common approaches to solving problems with
machine learning. Last, you’ll find out why Python is so great and why it’s a great lan-
guage for machine learning. Then we’ll go through a really quick example using a mod-
ule for Python called NumPy, which allows you to abstract and matrix calculations.

1.1 What is machine learning?
In all but the most trivial cases, insight or knowledge you’re trying to get out of the
raw data won’t be obvious from looking at the data. For example, in detecting spam
email, looking for the occurrence of a single word may not be very helpful. But look-
ing at the occurrence of certain words used together, combined with the length of the
email and other factors, you could get a much clearer picture of whether the email is
spam or not. Machine learning is turning data into information. 

 Machine learning lies at the intersection of computer science, engineering, and
statistics and often appears in other disciplines. As you’ll see later, it can be applied to
many fields from politics to geosciences. It’s a tool that can be applied to many prob-
lems. Any field that needs to interpret and act on data can benefit from machine
learning techniques. 

 Machine learning uses statistics. To most people, statistics is an esoteric subject
used for companies to lie about how great their products are. (There’s a great manual
on how to do this called How to Lie with Statistics by Darrell Huff. Ironically, this is the
best-selling statistics book of all time.) So why do the rest of us need statistics? The
practice of engineering is applying science to solve a problem. In engineering we’re
used to solving a deterministic problem where our solution solves the problem all the
time. If we’re asked to write software to control a vending machine, it had better work
all the time, regardless of the money entered or the buttons pressed. There are many
problems where the solution isn’t deterministic. That is, we don’t know enough about
the problem or don’t have enough computing power to properly model the problem.
For these problems we need statistics. For example, the motivation of humans is a
problem that is currently too difficult to model. 

 In the social sciences, being right 60% of the time is considered successful. If we
can predict the way people will behave 60% of the time, we’re doing well. How can
this be? Shouldn’t we be right all the time? If we’re not right all the time, doesn’t that
mean we’re doing something wrong? 

 Let me give you an example to illustrate the problem of not being able to model
the problem fully. Do humans not act to maximize their own happiness? Can’t we just
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predict the outcome of events involving humans based on this assumption? Perhaps,
but it’s difficult to define what makes everyone happy, because this may differ greatly
from one person to the next. So even if our assumptions are correct about people
maximizing their own happiness, the definition of happiness is too complex to model.
There are many other examples outside human behavior that we can’t currently
model deterministically. For these problems we need to use some tools from statistics. 

1.1.1 Sensors and the data deluge

We have a tremendous amount of human-created data from the World Wide Web, but
recently more nonhuman sources of data have been coming online. The technology
behind the sensors isn’t new, but connecting them to the web is new. It’s estimated
that shortly after this book’s publication physical sensors will create 20 percent of non-
video internet traffic.1

 The following is an example of an abundance of free data, a worthy cause, and the
need to sort through the data. In 1989, the Loma Prieta earthquake struck northern
California, killing 63 people, injuring 3,757, and leaving thousands homeless. A simi-
larly sized earthquake struck Haiti in 2010, killing more than 230,000 people. Shortly
after the Loma Prieta earthquake, a study was published using low-frequency mag-
netic field measurements claiming to foretell the earthquake.2 A number of subse-
quent studies showed that the original study was flawed for various reasons.3,4 Suppose
we want to redo this study and keep searching for ways to predict earthquakes so we
can avoid the horrific consequences and have a better understanding of our planet.
What would be the best way to go about this study? We could buy magnetometers with
our own money and buy pieces of land to place them on. We could ask the govern-
ment to help us out and give us money and land on which to place these magnetome-
ters. Who’s going to make sure there’s no tampering with the magnetometers, and
how can we get readings from them? There exists another low-cost solution. 

 Mobile phones or smartphones today ship with three-axis magnetometers. The
smartphones also come with operating systems where you can execute your own pro-
grams; with a few lines of code you can get readings from the magnetometers hun-
dreds of times a second. Also, the phone already has its own communication system
set up; if you can convince people to install and run your program, you could record a
large amount of magnetometer data with very little investment. In addition to the
magnetometers, smartphones carry a large number of other sensors including yaw-
rate gyros, three-axis accelerometers, temperature sensors, and GPS receivers, all of
which you could use to support your primary measurements. 

1 http://www.gartner.com/it/page.jsp?id=876512, retrieved 7/29/2010 4:36 a.m.
2 Fraser-Smith et al., “Low-frequency magnetic field measurements near the epicenter of the Ms 7.1 Loma Pri-

eta earthquake,” Geophysical Research Letters 17, no. 9 (August 1990), 1465–68.
3 W. H. Campbell, “Natural magnetic disturbance fields, not precursors, preceding the Loma Prieta earth-

quake,” Journal of Geophysical Research 114, A05307, doi:10.1029/2008JA013932 (2009).
4 J. N. Thomas, J. J. Love, and M. J. S. Johnston, “On the reported magnetic precursor of the 1989 Loma Prieta

earthquake,” Physics of the Earth and Planetary Interiors 173, no. 3–4 (2009), 207–15.



7Key terminology
 The two trends of mobile computing and sensor-generated data mean that we’ll be
getting more and more data in the future.

1.1.2 Machine learning will be more important in the future

In the last half of the twentieth century the majority of the workforce in the developed
world has moved from manual labor to what is known as knowledge work. The clear def-
initions of “move this from here to there” and “put a hole in this” are gone. Things are
much more ambiguous now; job assignments such as “maximize profits,” “minimize
risk,” and “find the best marketing strategy” are all too common. The fire hose of
information available to us from the World Wide Web makes the jobs of knowledge
workers even harder. Making sense of all the data with our job in mind is becoming a
more essential skill, as Hal Varian, chief economist at Google, said: 

I keep saying the sexy job in the next ten years will be statisticians. People think I’m
joking, but who would’ve guessed that computer engineers would’ve been the sexy job of
the 1990s? The ability to take data—to be able to understand it, to process it, to extract
value from it, to visualize it, to communicate it—that’s going to be a hugely important
skill in the next decades, not only at the professional level but even at the educational
level for elementary school kids, for high school kids, for college kids. Because now we
really do have essentially free and ubiquitous data. So the complementary scarce factor is
the ability to understand that data and extract value from it. I think statisticians are
part of it, but it’s just a part. You also want to be able to visualize the data,
communicate the data, and utilize it effectively. But I do think those skills—of being
able to access, understand, and communicate the insights you get from data analysis—
are going to be extremely important. Managers need to be able to access and understand
the data themselves.

                                                —McKinsey Quarterly, January 2009

With so much of the economic activity dependent on information, you can’t afford to
be lost in the data. Machine learning will help you get through all the data and extract
some information. We need to go over some vocabulary that commonly appears in
machine learning so it’s clear what’s being discussed in this book.

1.2 Key terminology
Before we jump into the machine learning algorithms, it would be best to explain
some terminology. The best way to do so is through an example of a system someone
may want to make. We’ll go through an example of building a bird classification sys-
tem. This sort of system is an interesting topic often associated with machine learning
called expert systems. By creating a computer program to recognize birds, we’ve
replaced an ornithologist with a computer. The ornithologist is a bird expert, so we’ve
created an expert system.

 In table 1.1 are some values for four parts of various birds that we decided to mea-
sure. We chose to measure weight, wingspan, whether it has webbed feet, and the color
of its back. In reality, you’d want to measure more than this. It’s common practice to
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measure just about anything you can measure and sort out the important parts later.
The four things we’ve measured are called features; these are also called attributes, but
we’ll stick with the term features in this book. Each of the rows in table 1.1 is an instance
made up of features. 

The first two features in table 1.1 are numeric and can take on decimal values. The
third feature (webbed feet) is binary: it can only be 1 or 0. The fourth feature (back
color) is an enumeration over the color palette we’re using, and I just chose some very
common colors. Say we ask the people doing the measurements to choose one
of seven colors; then back color would be just an integer. (I know choosing one color
for the back of a bird is a gross oversimplification; please excuse this for the purpose
of illustration). 

 If you happen to see a Campephilus principalis (Ivory-billed Woodpecker), give
me a call ASAP! Don’t tell anyone else you saw it; just call me and keep an eye on the
bird until I get there. (There’s a $50,000 reward for anyone who can lead a biologist to
a living Ivory-billed Woodpecker.)

 One task in machine learning is classification; I’ll illustrate this using table 1.1 and
the fact that information about an Ivory-billed Woodpecker could get us $50,000. We
want to identify this bird out of a bunch of other birds, and we want to profit from
this. We could set up a bird feeder and then hire an ornithologist (bird expert) to
watch it and when they see an Ivory-billed Woodpecker give us a call. This would be
expensive, and the person could only be in one place at a time. We could also auto-
mate this process: set up many bird feeders with cameras and computers attached to
them to identify the birds that come in. We could put a scale on the bird feeder to get
the bird’s weight and write some computer vision code to extract the bird’s wingspan,
feet type, and back color. For the moment, assume we have all that information. How
do we then decide if a bird at our feeder is an Ivory-billed Woodpecker or something
else? This task is called classification, and there are many machine learning algorithms
that are good at classification. The class in this example is the bird species; more spe-
cifically, we can reduce our classes to Ivory-billed Woodpecker or everything else. 

Table 1.1 Bird species classification based on four features

Weight (g) Wingspan (cm) Webbed feet? Back color Species 

1 1000.1 125.0 No Brown Buteo jamaicensis

2 3000.7 200.0 No Gray Sagittarius serpentarius

3 3300.0 220.3 No Gray Sagittarius serpentarius

4 4100.0 136.0 Yes Black Gavia immer

5 3.0 11.0 No Green Calothorax lucifer

6 570.0 75.0 No Black Campephilus principalis
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 Say we’ve decided on a machine learning algorithm to use for classification. What
we need to do next is train the algorithm, or allow it to learn. To train the algorithm we
feed it quality data known as a training set. A training set is the set of training examples
we’ll use to train our machine learning algorithms. In table 1.1 our training set has six
training examples. Each training example has four features and one target variable; this is
depicted in figure 1.2. The target variable is what we’ll be trying to predict with our
machine learning algorithms. In classification the target variable takes on a nominal
value, and in the task of regression its value could be continuous. In a training set the
target variable is known. The machine learns by finding some relationship between the
features and the target variable. The target variable is the species, and as I mentioned
earlier, we can reduce this to take nominal values. In the classification problem the tar-
get variables are called classes, and there is assumed to be a finite number of classes. 

NOTE Features or attributes are the individual measurements that, when
combined with other features, make up a training example. This is usually
columns in a training or test set. 

To test machine learning algorithms what’s usually done is to have a training set of
data and a separate dataset, called a test set. Initially the program is fed the training
examples; this is when the machine learning takes place. Next, the test set is fed to the
program. The target variable for each example from the test set isn’t given to the pro-
gram, and the program decides which class each example should belong to. The tar-
get variable or class that the training example belongs to is then compared to the
predicted value, and we can get a sense for how accurate the algorithm is. There are
better ways to use all the information in the test set and training set. We’ll discuss
them later. 

 In our bird classification example, assume we’ve tested the program and it meets
our desired level of accuracy. Can we see what the machine has learned? This is called
knowledge representation. The answer is it depends. Some algorithms have knowledge
representation that’s more readable by humans than others. The knowledge represen-
tation may be in the form of a set of rules; it may be a probability distribution or an
example from the training set. In some cases we may not be interested in building an
expert system but interested only in the knowledge representation that’s acquired
from training a machine learning algorithm. 

Figure 1.2 Features and target variable identified
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We’ve covered a lot of key terms of machine learning, but we didn’t cover them all.
We’ll introduce more key terms in later chapters as they’re needed. We’ll now address
the big picture: what we can do with machine learning. 

1.3 Key tasks of machine learning
In this section we’ll outline the key jobs of machine learning and set a framework that
allows us to easily turn a machine learning algorithm into a solid working application. 

 The example covered previously was for the task of classification. In classification,
our job is to predict what class an instance of data should fall into. Another task in
machine learning is regression. Regression is the prediction of a numeric value. Most
people have probably seen an example of regression with a best-fit line drawn through
some data points to generalize the data points. Classification and regression are exam-
ples of supervised learning. This set of problems is known as supervised because we’re
telling the algorithm what to predict. 

 The opposite of supervised learning is a set of tasks known as unsupervised learning.
In unsupervised learning, there’s no label or target value given for the data. A task
where we group similar items together is known as clustering. In unsupervised learn-
ing, we may also want to find statistical values that describe the data. This is known as
density estimation. Another task of unsupervised learning may be reducing the data
from many features to a small number so that we can properly visualize it in two or
three dimensions. Table 1.2 lists some common tasks in machine learning with algo-
rithms used to solve these tasks.

If you noticed in table 1.2 that multiple techniques are used for completing the same
task, you may be asking yourself, “If these do the same thing, why are there four differ-
ent methods? Why can’t I just choose one method and master it?” I’ll answer that
question in the next section. 

Supervised learning tasks

Classification Regression

k-Nearest Neighbors Linear 

Naive Bayes Locally weighted linear

Support vector machines Ridge

Decision trees Lasso

Unsupervised learning tasks

Clustering Density estimation

k-Means Expectation maximization

DBSCAN Parzen window

Table 1.2 Common 
algorithms used to perform 
classification, regression, 
clustering, and density 
estimation tasks
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1.4 How to choose the right algorithm
With all the different algorithms in table 1.2, how can you choose which one to use?
First, you need to consider your goal. What are you trying to get out of this? (Do you
want a probability that it might rain tomorrow, or do you want to find groups of voters
with similar interests?) What data do you have or can you collect? Those are the big
questions. Let’s talk about your goal. 

 If you’re trying to predict or forecast a target value, then you need to look into
supervised learning. If not, then unsupervised learning is the place you want to be. If
you’ve chosen supervised learning, what’s your target value? Is it a discrete value like
Yes/No, 1/2/3, A/B/C, or Red/Yellow/Black? If so, then you want to look into clas-
sification. If the target value can take on a number of values, say any value from 0.00
to 100.00, or -999 to 999, or +� to -�, then you need to look into regression. 

 If you’re not trying to predict a target value, then you need to look into unsuper-
vised learning. Are you trying to fit your data into some discrete groups? If so and
that’s all you need, you should look into clustering. Do you need to have some numer-
ical estimate of how strong the fit is into each group? If you answer yes, then you prob-
ably should look into a density estimation algorithm. 

 The rules I’ve given here should point you in the right direction but are not
unbreakable laws. In chapter 9 I’ll show you how you can use classification techniques
for regression, blurring the distinction I made within supervised learning. The second
thing you need to consider is your data. 

 You should spend some time getting to know your data, and the more you know
about it, the better you’ll be able to build a successful application. Things to know
about your data are these: Are the features nominal or continuous? Are there missing
values in the features? If there are missing values, why are there missing values? Are
there outliers in the data? Are you looking for a needle in a haystack, something that
happens very infrequently? All of these features about your data can help you narrow
the algorithm selection process. 

 With the algorithm narrowed, there’s no single answer to what the best algorithm
is or what will give you the best results. You’re going to have to try different algorithms
and see how they perform. There are other machine learning techniques that you can
use to improve the performance of a machine learning algorithm. The relative perfor-
mance of two algorithms may change after you process the input data. We’ll discuss
these in more detail later, but the point is that finding the best algorithm is an itera-
tive process of trial and error. 

 Many of the algorithms are different, but there are some common steps you need
to take with all of these algorithms when building a machine learning application. I’ll
explain these steps in the next section. 

1.5 Steps in developing a machine learning application
Our approach to understanding and developing an application using machine learn-
ing in this book will follow a procedure similar to this:
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1 Collect data. You could collect the samples by scraping a website and extracting
data, or you could get information from an RSS feed or an API. You could have a
device collect wind speed measurements and send them to you, or blood glu-
cose levels, or anything you can measure. The number of options is endless. To
save some time and effort, you could use publicly available data. 

2 Prepare the input data. Once you have this data, you need to make sure it’s in a
useable format. The format we’ll be using in this book is the Python list. We’ll
talk about Python more in a little bit, and lists are reviewed in appendix A. The
benefit of having this standard format is that you can mix and match algorithms
and data sources. 

You may need to do some algorithm-specific formatting here. Some algo-
rithms need features in a special format, some algorithms can deal with target
variables and features as strings, and some need them to be integers. We’ll get
to this later, but the algorithm-specific formatting is usually trivial compared to
collecting data.

3 Analyze the input data. This is looking at the data from the previous task. This
could be as simple as looking at the data you’ve parsed in a text editor to make
sure steps 1 and 2 are actually working and you don’t have a bunch of empty val-
ues. You can also look at the data to see if you can recognize any patterns or if
there’s anything obvious, such as a few data points that are vastly different from
the rest of the set. Plotting data in one, two, or three dimensions can also help.
But most of the time you’ll have more than three features, and you can’t easily
plot the data across all features at one time. You could, however, use some
advanced methods we’ll talk about later to distill multiple dimensions down to
two or three so you can visualize the data. 

4 If you’re working with a production system and you know what the data should
look like, or you trust its source, you can skip this step. This step takes human
involvement, and for an automated system you don’t want human involvement.
The value of this step is that it makes you understand you don’t have garbage
coming in.

5 Train the algorithm. This is where the machine learning takes place. This step
and the next step are where the “core” algorithms lie, depending on the algo-
rithm. You feed the algorithm good clean data from the first two steps and
extract knowledge or information. This knowledge you often store in a format
that’s readily useable by a machine for the next two steps. 

In the case of unsupervised learning, there’s no training step because you
don’t have a target value. Everything is used in the next step. 

6 Test the algorithm. This is where the information learned in the previous step is
put to use. When you’re evaluating an algorithm, you’ll test it to see how well it
does. In the case of supervised learning, you have some known values you can
use to evaluate the algorithm. In unsupervised learning, you may have to use
some other metrics to evaluate the success. In either case, if you’re not satisfied,
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you can go back to step 4, change some things, and try testing again. Often the
collection or preparation of the data may have been the problem, and you’ll
have to go back to step 1. 

7 Use it. Here you make a real program to do some task, and once again you see if
all the previous steps worked as you expected. You might encounter some new
data and have to revisit steps 1–5. 

Now we’ll talk about a language to implement machine learning applications. We
need a language that’s understandable by a wide range of people. We also need a lan-
guage that has libraries written for a number of tasks, especially matrix math opera-
tions. We also would like a language with an active developer community. Python is
the best choice for these reasons. 

1.6 Why Python?
Python is a great language for machine learning for a large number of reasons. First,
Python has clear syntax. Second, it makes text manipulation extremely easy. A large
number of people and organizations use Python, so there’s ample development and
documentation. 

1.6.1 Executable pseudo-code 

The clear syntax of Python has earned it the name executable pseudo-code. The default
install of Python already carries high-level data types like lists, tuples, dictionaries, sets,
queues, and so on, which you don’t have to program in yourself. These high-level data
types make abstract concepts easy to implement. (See appendix A for a full descrip-
tion of Python, the data types, and how to install it.) With Python, you can program in
any style you’re familiar with: object-oriented, procedural, functional, and so on. 

 With Python it’s easy to process and manipulate text, which makes it ideal for pro-
cessing non-numeric data. You can get by in Python with little to no regular expres-
sion usage. There are a number of libraries for using Python to access web pages, and
the intuitive text manipulation makes it easy to extract data from HTML. 

1.6.2 Python is popular

Python is popular, so lots of examples are available, which makes learning it fast. Second,
the popularity means that there are lots of modules available for many applications. 

 Python is popular in the scientific and financial communities as well. A number of
scientific libraries such as SciPy and NumPy allow you to do vector and matrix opera-
tions. This makes the code even more readable and allows you to write code that looks
like linear algebra. In addition, the scientific libraries SciPy and NumPy are compiled
using lower-level languages (C and Fortran); this makes doing computations with
these tools much faster. We’ll be using NumPy extensively in this book. 

 The scientific tools in Python work well with a plotting tool called Matplotlib. Mat-
plotlib can plot 2D and 3D and can handle most types of plots commonly used in the
scientific world. We’ll be using Matplotlib extensively throughout this book. 
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 Python also has an interactive shell, which allows you to view and inspect elements
of the program as you’re developing it. 

 A new module for Python, called Pylab, seeks to combine NumPy, SciPy, and Mat-
plotlib into one environment and instillation. At the time of writing, this isn’t yet done
but shows great promise for the future. 

1.6.3 What Python has that other languages don’t have

There are high-level languages that allow you to do matrix math such as MATLAB and
Mathematica. MATLAB has a number of built-in features that make machine learning
easier. MATLAB is also very fast. The problem with MATLAB is that to legally use it will
cost you a few thousand dollars. There are third-party add-ons to MATLAB but nothing
on the scale of an open source project. 

 There are matrix math libraries for low-level languages such as Java and C. The
problem with these languages is that it takes a lot of code to get simple things done.
First, you have to typecast variables, and then with Java it seems that you have to write
setters and getters every time you sneeze. Don’t forget subclassing. You have to sub-
class methods even if you aren’t going to use them. At the end of the day, you have
written a lot of code—sometimes tedious code—to do simple things. This isn’t the
case with Python. Python is clean, concise, and easy to read. Python is easy for non-
programmers to pick up. Java and C aren’t so easy to pick up and much less concise
than Python. 

All of us learn to write in the second grade. Most of us go on to greater things.
                                                                                                                                    —Bobby Knight

Perhaps one day I can replace “write” with “write code” in this quote. Some people are
actually interested in programming languages. But for many people a programming
language is simply a tool to accomplish some other task. Python is a higher-level lan-
guage; this allows you to spend more time making sense of data and less time con-
cerned with how a machine approximates the data. Python easily allows you to
effortlessly express yourself. 

1.6.4 Drawbacks

The only real drawback of Python is that it’s not as fast as Java or C. You can, however,
call C-compiled programs from Python. This gives you the best of both worlds and
allows you to incrementally develop a program. If you experiment with an idea in
Python and decide it’s something you want to pursue in a production system, it will be
easy to make that transition. If the program is built in a modular fashion, you could
first get it up and running in Python and then to improve speed start building por-
tions of the code in C. The Boost C++ library makes this easy to do. Other tools such as
Cython and PyPy allow you write typed versions of Python with performance gains
over regular Python.

 If an idea for a program or application is flawed, then it will be flawed at low speed
as well as high speed. If an idea is a bad idea, writing code to make it fast or scale to a
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large number of users doesn’t change anything. This makes Python so beautiful that
you can quickly see an idea in action and then optimize it if needed. 

 Now that you know the language we’re going to be using, I’m sure you’re ready to
start using it. In the next section, we’ll walk through use of the Python shell and NumPy.

1.7 Getting started with the NumPy library 
We’ll use NumPy heavily in this book because we’ll be doing some linear algebra.
Don’t worry about linear algebra—we just want to do the same math operation on lots
of different data points. If we represent our data as a matrix, we can do simple math
without a bunch of messy loops. Before we get into any machine learning algorithms,
you should make sure you have Python working and NumPy properly installed.
NumPy is a separate module for Python that doesn’t come with most distributions of
Python, so you’ll need to install it after you’ve installed Python. Start a Python shell by
opening a command prompt in Windows or a terminal in Linux and Mac OS. At the
command line, type python for Linux and Mac or c:\Python27\python.exe in Win-
dows. From this point on, anytime you see these symbols 

>>> 

it will mean the Python shell. In the Python shell type the following command. 

>>> from numpy import *

This imports all of the NumPy modules into the current namespace. This is shown in
figure 1.3 on the Mac OS. 

 Next, type the following in the Python shell:

>>> random.rand(4,4)
array([[ 0.70328595,  0.40951383,  0.7475052 ,  0.07061094],
       [ 0.9571294 ,  0.97588446,  0.2728084 ,  0.5257719 ],
       [ 0.05431627,  0.01396732,  0.60304292,  0.19362288],
       [ 0.10648952,  0.27317698,  0.45582919,  0.04881605]])

This creates a random array of size 4x4; don’t worry if the numbers you see are differ-
ent from mine. These are random numbers, so your numbers should look different
from mine.

Figure 1.3 Starting Python from the command line and importing a module in the Python 
shell
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You can always convert an array to a matrix by calling the mat() function; type in the
following: 

>>> randMat = mat(random.rand(4,4))

You will probably have different values than I have here because we’re getting random
numbers:

>>> randMat.I
matrix([[ 0.24497106,  1.75854497, -1.77728665, -0.0834912 ],
        [ 1.49792202,  2.12925479,  1.32132491, -9.75890849],
        [ 2.76042144,  1.67271779, -0.29226613, -8.45413693],
        [-2.03011142, -3.07832136,  1.4420448 ,  9.62598044]])

The .I operator solves the inverse of a matrix. Very easy, huh? Try that in Python with-
out NumPy. If you don’t remember or never learned how to solve the inverse of a
matrix, don’t worry; it was just done for you: 

>>> invRandMat = randMat.I

You can also do matrix multiplication. Let’s see that in action:

>>> randMat*invRandMat
matrix([[  1.00000000e+00,   0.00000000e+00,   2.22044605e-16,
           1.77635684e-15],
        [  0.00000000e+00,   1.00000000e+00,   0.00000000e+00,
           0.00000000e+00],
        [  0.00000000e+00,   4.44089210e-16,   1.00000000e+00,
          -8.88178420e-16],
        [ -2.22044605e-16,   0.00000000e+00,   1.11022302e-16,
           1.00000000e+00]])

This gives you just the identity matrix, a 4x4 matrix where all elements are zero except
the diagonals, which are one. This isn’t exactly true. There are some very small ele-
ments left over in the array. Let’s see the leftover results: 

>>> myEye - eye(4)
matrix([[  0.00000000e+00,  -6.59194921e-17,  -4.85722573e-17,
          -4.99600361e-16],
        [  2.22044605e-16,   0.00000000e+00,  -6.03683770e-16,
          -7.77156117e-16],
        [ -5.55111512e-17,  -1.04083409e-17,  -3.33066907e-16,
          -2.22044605e-16],
        [  5.55111512e-17,   1.56125113e-17,  -5.55111512e-17,

The function eye(4) just creates an identity matrix of size 4.

NumPy matrix vs. array
In NumPy there are two different data types for dealing with rows and columns of num-
bers. Be careful of this because they look similar, but simple mathematical opera-
tions such as multiply on the two data types can have different meanings. The matrix
data type behaves more like matrices in MATLAB.™



17Summary
 If you got through this example, you have NumPy installed correctly. You’re now
ready to start making some powerful programs using machine learning. Don’t worry if
you haven’t seen all these functions before. More NumPy functionality will be intro-
duced as it’s needed in further examples in this book. 

1.8 Summary
Machine learning is already being used in your daily lives even though you may not be
aware of it. The amount of data coming at you isn’t going to decrease, and being able
to make sense of all this data will be an essential skill for people working in a data-
driven industry. 

 In machine learning, you look at instances of data. Each instance of data is com-
posed of a number of features. Classification, one the popular and essential tasks of
machine learning, is used to place an unknown piece of data into a known group. In
order to build or train a classifier, you feed it data for which you know the class. This
data is called your training set. 

 I don’t claim that our expert system used to recognize birds will be perfect or as a
good as a human. But building a machine with accuracy close to that of a human
expert could greatly increase the quality of life. When we build software that can
match the accuracy of a human doctor, people can more rapidly get treatment. Better
prediction of weather could lead to fewer water shortages and a greater supply of
food. The examples where machine learning could be useful are endless. 

 In the next chapter I’ll introduce our first machine learning algorithm. This will
be an example of classification, which is a type of supervised learning. The next six
chapters will be on classification. 



Classifying with
 k-Nearest Neighbors
Have you ever seen movies categorized into genres? What defines these genres, and
who says which movie goes into what genre? The movies in one genre are similar
but based on what? I’m sure if you asked the people involved with making the mov-
ies, they wouldn’t say that their movie is just like someone else’s movie, but in some
way you know they’re similar. What makes an action movie similar to another action
movie and dissimilar to a romance movie? Do people kiss in action movies, and do
people kick in romance movies? Yes, but there’s probably more kissing in romance
movies and more kicking in action movies. Perhaps if you measured kisses, kicks,
and other things per movie, you could automatically figure out what genre a movie
belongs to. I’ll use movies to explain some of the concepts of k-Nearest Neighbors;
then we will move on to other applications. 

This chapter covers
■ The k-Nearest Neighbors classification algorithm
■ Parsing and importing data from a text file
■ Creating scatter plots with Matplotlib
■ Normalizing numeric values
18
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 In this chapter, we’ll discuss our first machine-learning algorithm: k-Nearest
Neighbors. k-Nearest Neighbors is easy to grasp and very effective. We’ll first discuss
the theory and how you can use the concept of a distance measurement to classify
items. Next, you’ll see how to easily import and parse data from text files using
Python. We’ll address some common pitfalls when working with distance calculations
and data coming from numerous sources. We’ll put all of this into action in examples
for improving results from a dating website and recognizing handwritten digits. 

2.1 Classifying with distance measurements 

The first machine-learning algorithm we’ll look at is k-Nearest Neighbors (kNN). It
works like this: we have an existing set of example data, our training set. We have
labels for all of this data—we know what class each piece of the data should fall into.
When we’re given a new piece of data without a label, we compare that new piece of
data to the existing data, every piece of existing data. We then take the most similar
pieces of data (the nearest neighbors) and look at their labels. We look at the top k
most similar pieces of data from our known dataset; this is where the k comes from. (k
is an integer and it’s usually less than 20.) Lastly, we take a majority vote from the k
most similar pieces of data, and the majority is the new class we assign to the data we
were asked to classify. 

 Let’s run through a quick example classifying movies into romance or action mov-
ies. Someone watched a lot of movies and counted the number of kicks and kisses in
each movie. I’ve plotted six movies by the number of kisses and kicks in each movie in
figure 2.1. Now, you find a movie you haven’t seen yet and want to know if it’s a
romance movie or an action movie. To determine this, we’ll use the kNN algorithm. 

k-Nearest Neighbors
Pros: High accuracy, insensitive to outliers, no assumptions about data

Cons: Computationally expensive, requires a lot of memory

Works with: Numeric values, nominal values

Figure 2.1 Classifying movies by plotting the 
number of kicks and kisses in each movie
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We find the movie in question and see how many kicks and kisses it has. It’s plotted as
a large question mark along with a few other movies in figure 2.1. These values are
listed in table 2.1. 

We don’t know what type of movie the question mark movie is, but we have a way of
figuring that out. First, we calculate the distance to all the other movies. I’ve calcu-
lated the distances and shown those in table 2.2. (Don’t worry about how I did these
calculations right now. We’ll get into that in a few minutes.)

Now that we have all the distances to our unknown movie, we need to find the k-nearest
movies by sorting the distances in decreasing order. Let’s assume k=3. Then, the three
closest movies are He’s Not Really into Dudes, Beautiful Woman, and California Man. The
kNN algorithm says to take the majority vote from these three movies to determine the
class of the mystery movie. Because all three movies are romances, we forecast that the
mystery movie is a romance movie. 

 We’ll work through a real machine learning algorithm in this chapter, and along
the way I’ll introduce the Python tools and machine learning terminology. First, how-
ever, we’ll go over a simple example of the kNN algorithm to make sure we’re using
the algorithm correctly. 

Table 2.1 Movies with the number of kicks and number of kisses shown for each movie,
                                 along with our assessment of the movie type

Movie title # of kicks # of kisses Type of movie

California Man 3 104 Romance

He’s Not Really into Dudes 2 100 Romance

Beautiful Woman 1 81 Romance

Kevin Longblade 101 10 Action

Robo Slayer 3000 99 5 Action

Amped II 98 2 Action

? 18 90 Unknown

Movie title Distance to movie “?”

California Man 20.5

He’s Not Really into Dudes 18.7

Beautiful Woman 19.2

Kevin Longblade 115.3

Robo Slayer 3000 117.4

Amped II 118.9 Table 2.2 Distances between each 
movie and the unknown movie
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2.1.1 Prepare: importing data with Python

First, we’ll create a Python module called kNN.py, where we’ll place all the code used
in this chapter. You can create your own file and enter code as we progress, or you can
copy the file kNN.py from the book’s source code. The best way to learn is to start with
a blank module and enter code as it’s used. 

 First, let’s create kNN.py or copy it from the source code repository. We’ll create a
few support functions before we create the full kNN algorithm. Add the following
lines to kNN.py:

from numpy import *
import operator

def createDataSet():
    group = array([[1.0,1.1],[1.0,1.0],[0,0],[0,0.1]])
    labels = ['A','A','B','B']
    return group, labels

In this code, we import two modules. The first one is NumPy, which is our scientific
computing package. The second module is the operator module, which is used later
in the kNN algorithm for sorting; we’ll get to that shortly. 

 The function createDataSet() is there for your convenience. This creates the
dataset and labels, as shown in figure 2.1. Let’s try this out: save kNN.py, change to the
directory where you’ve stored kNN.py, and launch a Python interactive session. To get
started you need to open a new terminal in Linux/Mac OS or in Windows, so open a
command prompt. When you’re using Linux or a Mac, you need to type python at the
command line to get started, and in Windows you need to refer to the Python pro-
gram directly, such as c:\Python26\python.exe, unless you have it aliased. 

 Once you’ve started Python to load your module, you need to type

>>> import kNN

General approach to kNN
1. Collect: Any method.

2. Prepare: Numeric values are needed for a distance calculation. A structured data
format is best.

3. Analyze: Any method.

4. Train: Does not apply to the kNN algorithm.

5. Test: Calculate the error rate.

6. Use: This application needs to get some input data and output structured num-
eric values. Next, the application runs the kNN algorithm on this input data and
determines which class the input data should belong to. The application then
takes some action on the calculated class.
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This will load the kNN module. To make sure that we’re looking at the same dataset, I
created a function called createDataSet. Type the following at the Python command
prompt:

>>> group,labels = kNN.createDataSet()

This creates two variables called group and labels. To inspect each variable, type its
name at the Python command prompt:

>>> group
array([[ 1. ,  1.1],
       [ 1. ,  1. ],
       [ 0. ,  0. ],
       [ 0. ,  0.1]])
>>> labels
['A', 'A', 'B', 'B']

Here we have four pieces of data. Each piece of data has two attributes or features, things
we know about it. In the group matrix each row is a different piece of data. Think of it
as a different measurement or entry in some sort of log. As humans, we can visualize
things in one, two, or sometimes three dimensions, but that’s about the limit of our
brains; to keep things easy to visualize, we’ll use only two features for each data point. 

 The label’s vector carries the labels we’ve given to each of the data points. There
should be as many items in this vector as there are rows in the group matrix. We
assigned the data point (1,1.1) to the class A, and similarly we assigned the data point
(0,0.1) to the class B. The values in this example are arbitrarily chosen for the purpose
of illustration, and the axes are unlabeled. The four data points with class labels are
plotted in figure 2.2. 

 Now that you have an idea of how to parse and load data into Python, and you have
an idea of how the kNN algorithm works, let’s put it all together and do some classification.

Figure 2.2 The four data 
points of our very simple 
kNN example
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2.1.2 Putting the kNN classification algorithm into action 

In this section we’ll build a function, shown in listing 2.1, to run the kNN algorithm on
one piece of data. I’ll first show the function in pseudocode and then in actual
Python, followed by a detailed explanation of what everything in the code does.
Remember, the goal of this function is to use the kNN algorithm to classify one piece
of data called inX. Pseudocode for this function would look like this:

For every point in our dataset:
 calculate the distance between inX and the current point
 sort the distances in increasing order
 take k items with lowest distances to inX
 find the majority class among these items
 return the majority class as our prediction for the class of inX

The Python code for the classify0() function is in the following listing.

def classify0(inX, dataSet, labels, k):
    dataSetSize = dataSet.shape[0]
    diffMat = tile(inX, (dataSetSize,1)) – dataSet
    sqDiffMat = diffMat**2                            
    sqDistances = sqDiffMat.sum(axis=1)           
    distances = sqDistances**0.5                  
    sortedDistIndicies = distances.argsort()
    classCount={} 
    for i in range(k):
        voteIlabel = labels[sortedDistIndicies[i]]                  
        classCount[voteIlabel] = classCount.get(voteIlabel,0) + 1   
    sortedClassCount = sorted(classCount.iteritems(), 

key=operator.itemgetter(1), reverse=True)        
    return sortedClassCount[0][0]

The function classify0() takes four inputs: the input vector to classify called inX,
our full matrix of training examples called dataSet, a vector of labels called labels,
and, finally, k, the number of nearest neighbors to use in the voting. The labels vector
should have as many elements in it as there are rows in the dataSet matrix. You calcu-
late the distances B using the Euclidian distance where the distance between two vec-
tors, xA and xB, with two elements, is given by

For example, the distance between points (0,0) and (1,2) is calculated by

If we are working with four features, the distance between points (1,0,0,1) and (7, 6, 9, 4)
would be calculated by

Listing 2.1 k-Nearest Neighbors algorithm 

Distance 
calculation

B

Voting with lowest
k distances

C

Sort 
dictionaryD

d xA0 xB0– 2 xA1 xB1– 2+=

1 0– 2 2 0– 2+

7 1– 2 6 0– 2 9 0– 2 4 1– 2+ + +
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Following the distance calculation, the distances are sorted from least to greatest (this
is the default). Next, C the first k or lowest k distances are used to vote on the class of
inX. The input k should always be a positive integer. Lastly, D you take the classCount
dictionary and decompose it into a list of tuples and then sort the tuples by the second
item in the tuple using the itemgetter method from the operator module imported
in the second line of the program. This sort is done in reverse so you have largest to
smallest. Finally, you can return the label of the item occurring the most frequently. 

 To predict the class, type the following text at the Python prompt: 

>>> kNN.classify0([0,0], group, labels, 3)

The result should be B. Try to change the [0,0] entry to see how the answer changes. 
 Congratulations, you just made your first classifier! You can do a lot with this sim-

ple classifier. Things will only get easier from here on out. 

2.1.3 How to test a classifier

We built the kNN algorithm and saw that it was giving us answers we would expect. You
may be asking yourself, “At what point does this break?” or “Is it always right?” No, it’s
not always right. There are different ways of exploring how often a classifier is right.
Also, there are different things that impact the performance of a classifier, such as set-
tings of the classifier and the dataset. Different algorithms perform differently on dif-
ferent datasets. That’s why we have six chapters on classification. 

 To test out a classifier, you start with some known data so you can hide the answer
from the classifier and ask the classifier for its best guess. You can add up the number
of times the classifier was wrong and divide it by the total number of tests you gave it.
This will give you the error rate, which is a common measure to gauge how good a clas-
sifier is doing on a dataset. An error rate of 0 means you have a perfect classifier, and
an error rate of 1.0 means the classifier is always wrong. You’ll see this in action with
some solid data later. 

 The example in this section worked, but it wasn’t useful. We’re going to put kNN to
use in real-world examples in the next two sections. First, we’ll look at improving the
results from a dating site with kNN, and then we’ll look at an impressive handwriting
recognition example. We’ll employ testing in the handwriting recognition example to
see if this algorithm is working. 

2.2 Example: improving matches from a dating site with kNN
My friend Hellen has been using some online dating sites to find different people to
go out with. She realized that despite the site’s recommendations, she didn’t like
everyone she was matched with. After some introspection, she realized there were
three types of people she went out with: 

■ People she didn’t like
■ People she liked in small doses 
■ People she liked in large doses
.



25Example: improving matches from a dating site with kNN
After discovering this, Hellen couldn’t figure out what made a person fit into any of
these categories. They all were recommended to her by the dating site. The people
whom she liked in small doses were good to see Monday through Friday, but on the
weekend she’d rather spend time with the people she liked in large doses. Hellen has
asked us to help her filter future matches to categorize them. In addition, Hellen has
collected some data that isn’t recorded by the dating site, but she feels it’s useful in
selecting people to go out with. 

2.2.1 Prepare: parsing data from a text file

The data Hellen collected is in a text file called datingTestSet.txt. Hellen has been col-
lecting this data for a while and has 1,000 entries. A new sample is on each line, and
Hellen has recorded the following features:

■ Number of frequent flyer miles earned per year
■ Percentage of time spent playing video games
■ Liters of ice cream consumed per week

Before we can use this data in our classifier, we need to change it to the format that
our classifier accepts. In order to do this, we’ll add a new function to kNN.py called
file2matrix. This function takes a filename string and outputs two things: a matrix of
training examples and a vector of class labels. 

 Add the following code to your kNN.py.

def file2matrix(filename):
    fr = open(filename)
    numberOfLines = len(fr.readlines())      
    returnMat = zeros((numberOfLines,3))    
    classLabelVector = []
    fr = open(filename)

Listing 2.2 Text record to NumPy parsing code

Example: using kNN on results from a dating site
1. Collect: Text file provided.

2. Prepare: Parse a text file in Python.

3. Analyze: Use Matplotlib to make 2D plots of our data. 

4. Train: Doesn’t apply to the kNN algorithm.

5. Test: Write a function to use some portion of the data Hellen gave us as test ex-
amples. The test examples are classified against the non-test examples. If the
predicted class doesn’t match the real class, we’ll count that as an error.

6. Use: Build a simple command-line program Hellen can use to predict whether
she’ll like someone based on a few inputs.

Get number 
of lines in file

B

Create NumPy 
matrix to returnC
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    index = 0
    for line in fr.readlines():                
        line = line.strip()                             
        listFromLine = line.split('\t')        
        returnMat[index,:] = listFromLine[0:3]
        classLabelVector.append(int(listFromLine[-1]))
        index += 1
    return returnMat,classLabelVector

This code is a great place to demonstrate how easy it is to process text with Python. Ini-
tially, you’d like to know how many lines are in the file. B It reads in the file and
counts the number of lines. Next, C you create a NumPy matrix (actually, it’s a 2D
array, but don’t worry about that now) to populate and return. I’ve hard-coded in the
size of this to be numberOfLines x 3, but you could add some code to make this adapt-
able to the various inputs. Finally, D you loop over all the lines in the file and strip off
the return line character with line.strip(). Next, you split the line into a list of ele-
ments delimited by the tab character: '\t'. You take the first three elements and
shove them into a row of your matrix, and you use the Python feature of negative
indexing to get the last item from the list to put into classLabelVector. You have to
explicitly tell the interpreter that you’d like the integer version of the last item in the
list, or it will give you the string version. Usually, you’d have to do this, but NumPy
takes care of those details for you. 

 To use this, type the following at the Python prompt:

>>> reload(kNN)
>>> datingDataMat,datingLabels = kNN.file2matrix('datingTestSet.txt')

Make sure that the file datingTestSet.txt is in the same directory you’re working from.
Note that before executing the function, I reloaded the kNN.py module. When you
change a module, you need to reload that module or you’ll still be using the old version. 

 After successfully importing the datingTestSet.txt file, take a minute to explore the
data in Python. You should get something similar to the following. 

>>> datingDataMat
array([[  7.29170000e+04,   7.10627300e+00,   2.23600000e-01],
       [  1.42830000e+04,   2.44186700e+00,   1.90838000e-01],
       [  7.34750000e+04,   8.31018900e+00,   8.52795000e-01],
       ...,
       [  1.24290000e+04,   4.43233100e+00,   9.24649000e-01],
       [  2.52880000e+04,   1.31899030e+01,   1.05013800e+00],
       [  4.91800000e+03,   3.01112400e+00,   1.90663000e-01]])

>>> datingLabels[0:20]
['didntLike', 'smallDoses', 'didntLike', 'largeDoses', 'smallDoses',
 'smallDoses', 'didntLike', 'smallDoses', 'didntLike', 'didntLike',
'largeDoses', 'largeDose s', 'largeDoses', 'didntLike', 'didntLike',
'smallDoses', 'smallDoses', 'didntLike', 'smallDoses', 'didntLike']

Now that you have the data imported and properly formatted, let’s take a look at it
and see if we can make any sense of it. “Take a look” can mean many things. It can
mean look at the values in a text file or look at a plot of the values. We’ll next use

Parse line 
to a list

D
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some of Python’s tools to make plots of the data. If we make a plot, we may be able to
distinguish some patterns. 

2.2.2 Analyze: creating scatter plots with Matplotlib

Let’s look at the data in further detail by making some scatter plots of the data from
Matplotlib. This isn’t hard to do. From the Python console, type the following:

>>> import matplotlib
>>> import matplotlib.pyplot as plt
>>> fig = plt.figure()
>>> ax = fig.add_subplot(111)
>>> ax.scatter(datingDataMat[:,1], datingDataMat[:,2])
>>> plt.show()

You should see something like figure 2.3. We’ve plotted the second and third columns
from the datingDataMat matrix. These are all of our values for the features “Percentage

NumPy Array and Python’s Array
We’ll be using the NumPy array extensively in this book. In your Python shell you can
import this using from numpy import array, or it will be imported when you import
all of NumPy. There’s another array type that comes with Python that we won’t be us-
ing. Don’t make the mistake of importing that array because the NumPy array meth-
ods won’t work on it.

Figure 2.3 Dating data without class labels. From this plot it’s difficult to dis-
cern which dot belongs to which group.
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of time spent playing video games” and “Liters of ice cream consumed weekly” for all
the classes put together. 

 It’s hard to see any patterns in this data, but we have additional data we haven’t
used yet—the class values. If we can plot these in color or use some other markers, we
can get a better understanding of the data. The Matplotlib scatter function has addi-
tional inputs we can use to customize the markers. Type the previous code again, but
this time use the following for a scatter function: 

>>> ax.scatter(datingDataMat[:,1], datingDataMat[:,2], 
15.0*array(datingLabels), 15.0*array(datingLabels))

I provided a different marker size and color that depend on the class labels we have in
datingLabels. You should see a plot similar to the one in figure 2.3. It doesn’t look like
you could make much sense of the data from figure 2.3; but if you plot columns 1 and 0
from our matrix, then you’ll see a plot like the one in figure 2.4. From this image, you
can make out three regions where the different classes lie. 

 Now that you can plot data using Matplotlib, you can get a better idea of exactly
what’s going on with our data. From figure 2.5, you can identify some regions where
the different classes lie. 

Figure 2.4 Dating data with markers changed by class label. It’s easier to identify the 
different classes, but it’s difficult to draw conclusions from looking at this data.
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2.2.3 Prepare: normalizing numeric values

If you were to calculate the distance between person 3 and person 4 in table 2.3, you
would have

Which term in this equation do you think is going to make the most difference? The
largest term, the number of frequent flyer miles earned per year, will have the most
effect. The frequent flyer term will dominate even though the percentage of time
spent playing video games and liters of ice cream consumed weekly have the largest
differences of any two features in table 2.3. Why should frequent flyer miles be so
important just because its values are large? It shouldn’t have any extra importance,
unless we want it to, but Hellen believes these terms are equally important. 

Table 2.3 Sample of data from improved results on a dating site

Percentage of time spent 
playing video games

Number of frequent flyer 
miles earned per year

Liters of ice cream 
consumed weekly

Category

1 0.8 400 0.5 1

2 12 134,000 0.9 3

3 0 20,000 1.1 2

4 67 32,000 0.1 2

Figure 2.5 Dating data with frequent flier miles versus percentage of time spent play-
ing video games plotted. The dating data has three features, and these two features 
show areas where the three different classes lie.

0 67– 2 20,000 32,000– 2 1.1 0.1– 2+ +
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When dealing with values that lie in different ranges, it’s common to normalize them.
Common ranges to normalize them to are 0 to 1 or -1 to 1. To scale everything from 0
to 1, you need to apply the following formula: 

newValue = (oldValue-min)/(max-min)

In the normalization procedure, the variables min and max are the smallest and largest
values in the dataset. This scaling adds some complexity to our classifier, but it’s worth
it to get good results. Let’s create a new function in the file kNN.py called autoNorm()
to automatically normalize the data to values between 0 and 1. 

 The autoNorm() function is given in the following listing.

def autoNorm(dataSet):
    minVals = dataSet.min(0)
    maxVals = dataSet.max(0)
    ranges = maxVals - minVals
    normDataSet = zeros(shape(dataSet))
    m = dataSet.shape[0]
    normDataSet = dataSet - tile(minVals, (m,1))
    normDataSet = normDataSet/tile(ranges, (m,1))    
    return normDataSet, ranges, minVals

In the autoNorm() function, you get the minimum values of each column and place
this in minVals; similarly, you get the maximum values. The 0 in dataSet.min(0)
allows you to take the minimums from the columns, not the rows. Next, you calculate
the range of possible values seen in our data and then create a new matrix to return.
To get the normalized values, you subtract the minimum values and then divide
by the range. The problem with this is that our matrix is 1000x3, while the minVals
and ranges are 1x3. To overcome this, you use the NumPy tile() function to create
a matrix the same size as our input matrix and then fill it up with many copies,
or tiles. Note that it B is element-wise division. In other numeric software packages,
the / operator can be used for matrix division, but in NumPy you need to use
linalg.solve(matA,matB) for matrix division. 

 To try out autoNorm, reload kNN.py, execute the function, and inspect the results
at the Python prompt:

>>> reload(kNN)
>>> normMat, ranges, minVals = kNN.autoNorm(datingDataMat)
>>> normMat
array([[ 0.33060119,  0.58918886,  0.69043973],
     [ 0.49199139,  0.50262471,  0.13468257],
       [ 0.34858782,  0.68886842,  0.59540619],
       ...,
       [ 0.93077422,  0.52696233,  0.58885466],
       [ 0.76626481,  0.44109859,  0.88192528],
       [ 0.0975718 ,  0.02096883,  0.02443895]])
>>> ranges
array([  8.78430000e+04,   2.02823930e+01,   1.69197100e+00])
>>> minVals
array([ 0.      ,  0.      ,  0.001818])

Listing 2.3 Data-normalizing code

Element-wise 
division

B
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You could have returned just normMat, but you need the ranges and minimum values
to normalize test data. You’ll see this in action next. 

2.2.4 Test: testing the classifier as a whole program

Now that you have the data in a format you can use, you’re ready to test our classifier.
After you test it, you can give it to our friend Hellen to use. One common task in machine
learning is evaluating an algorithm’s accuracy. One way you can use the existing data is
to take some portion, say 90%, to train the classifier. Then you’ll take the remaining 10%
to test the classifier and see how accurate it is. There are more advanced ways of doing
this, which we’ll address later, but for now let’s use this method. The 10% to be held back
should be randomly selected. Our data isn’t stored in a specific sequence, so you can
take the first 10% or last 10% without upsetting any statistics professors. 

 Earlier, I mentioned that you can measure the performance of a classifier with the
error rate. In classification, the error rate is the number of misclassified pieces of data
divided by the total number of data points tested. An error rate of 0 means you have a
perfect classifier, and an error rate of 1.0 means the classifier is always wrong. In our
code, you’ll measure the error rate with a counter that’s incremented every time a
piece of data is misclassified. The total number of errors divided by the total number
of data points tested will give you the error rate. 

 To test the classifier, you’ll create a new function in kNN.py called datingClassTest.
This function is self-contained, so don’t worry if you closed your Python shell earlier. You
won’t have to go back and type the code again. Enter the code in the following listing
into kNN.py. 

def datingClassTest():
    hoRatio = 0.10      
    datingDataMat,datingLabels = file2matrix('datingTestSet.txt')
    normMat, ranges, minVals = autoNorm(datingDataMat)
    m = normMat.shape[0]
    numTestVecs = int(m*hoRatio)
    errorCount = 0.0
    for i in range(numTestVecs):
        classifierResult = classify0(normMat[i,:],normMat[numTestVecs:m,:],\
                     datingLabels[numTestVecs:m],3)
        print "the classifier came back with: %d, the real answer is: %d"\
                     % (classifierResult, datingLabels[i])
        if (classifierResult != datingLabels[i]): errorCount += 1.0
    print "the total error rate is: %f" % (errorCount/float(numTestVecs))

The datingClassTest function is shown in listing 2.4. This uses file2matrix and
autoNorm() from earlier to get the data into a form you can use. Next, the number of
test vectors is calculated, and this is used to decide which vectors from normMat will be
used for testing and which for training. The two parts are then fed into our original
kNN classifier, classify0. Finally, the error rate is calculated and displayed. Note that
you’re using the original classifier; you spent most of this section manipulating the

Listing 2.4 Classifier testing code for dating site
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data so that you could apply it to a simple classifier. Getting solid data is important and
will be the subject of chapter 20. 

 To execute this, reload kNN and then type kNN.datingClassTest() at the Python
prompt. You should get results similar to the following example: 

>>> kNN.datingClassTest()
the classifier came back with: 1, the real answer is: 1
the classifier came back with: 2, the real answer is: 2
.
.
the classifier came back with: 1, the real answer is: 1
the classifier came back with: 2, the real answer is: 2
the classifier came back with: 3, the real answer is: 3
the classifier came back with: 3, the real answer is: 1
the classifier came back with: 2, the real answer is: 2
the total error rate is: 0.024000

The total error rate for this classifier on this dataset with these settings is 2.4%. Not
bad. You can experiment with different hoRatios and different values of k inside the
datingClassTest function. How does the error change as hoRatio is increased? Note
that the results will vary by algorithm, dataset, and settings. 

 The example showed that we could predict the class with only a 2.4% error. To our
friend Hellen, this means that she can enter a new person’s information, and our sys-
tem will predict whether she’ll dislike or like the person in large or small doses. 

2.2.5 Use: putting together a useful system

Now that you’ve tested the classifier on our data, it’s time to use it to actually classify
people for Hellen. We’ll provide Hellen with a small program. Hellen will find some-
one on the dating site and enter his information. The program predicts how much
she’ll like this person.

 Add the code from the following listing to kNN.py and reload kNN. 

def classifyPerson():
    resultList = ['not at all','in small doses', 'in large doses']
    percentTats = float(raw_input(\
                 "percentage of time spent playing video games?"))
    ffMiles = float(raw_input("frequent flier miles earned per year?"))
    iceCream = float(raw_input("liters of ice cream consumed per year?"))
    datingDataMat,datingLabels = file2matrix('datingTestSet.txt')
    normMat, ranges, minVals = autoNorm(datingDataMat)
    inArr = array([ffMiles, percentTats, iceCream])
    classifierResult = classify0((inArr-\
                   minVals)/ranges,normMat,datingLabels,3)
    print "You will probably like this person: ",\
                   resultList[classifierResult - 1]

The code in listing 2.5 mostly uses things you saw earlier. The only new code is the
function raw_input(). This gives the user a text prompt and returns whatever the
user enters. To see the program in action, type in the following:

Listing 2.5 Dating site predictor function
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>>> kNN.classifyPerson()
percentage of time spent playing video games?10
frequent flier miles earned per year?10000
liters of ice cream consumed per year?0.5
You will probably like this person:  in small doses

You’ve seen how to create a classifier with some data. All of the data is easily read by a
human, but how could you use a classifier on data that isn’t easily read by a human?
The next section contains another example, this time showing how you can apply kNN
to things as diverse as images where the data is in binary form. 

2.3 Example: a handwriting recognition system
We’re going to work through an example of handwriting recognition with our kNN
classifier. We’ll be working only with the digits 0–9. Some examples are shown in fig-
ure 2.6. These digits were processed through image-processing software to make them
all the same size and color.1 They’re all 32x32 black and white. The binary images
were converted to text format to make this example easier, although it isn’t the most
efficient use of memory. 

2.3.1 Prepare: converting images into test vectors

The images are stored in two directories in the chapter 2 source code. The training-
Digits directory contains about 2,000 examples similar to those in figure 2.6. There
are roughly 200 samples from each digit. The testDigits directory contains about 900
examples. We’ll use the trainingDigits directory to train our classifier and testDigits to

1 The dataset is a modified version of the “Optical Recognition of Handwritten Digits Data Set” by E. Alpaydin,
C. Kaynak, Department of Computer Engineering at Bogazici University, 80815 Istanbul Turkey, retrieved
from the UCI Machine Learning Repository (http://archive.ics.uci.edu/ml) on October 3, 2010.

Example: using kNN on a handwriting recognition system
1. Collect: Text file provided.

2. Prepare: Write a function to convert from the image format to the list format
used in our classifier, classify0().

3. Analyze: We’ll look at the prepared data in the Python shell to make sure it’s
correct. 

4. Train: Doesn’t apply to the kNN algorithm.

5. Test: Write a function to use some portion of the data as test examples. The
test examples are classified against the non-test examples. If the predicted
class doesn’t match the real class, you’ll count that as an error.

6. Use: Not performed in this example. You could build a complete program to extract
digits from an image, such a system used to sort the mail in the United States.
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test it. There’ll be no overlap between the two groups. Feel free to take a look at the
files in those folders. 

 We’d like to use the same classifier that we used in the previous two examples, so
we’re going to need to reformat the images to a single vector. We’ll take the 32x32
matrix that is each binary image and make it a 1x1024 vector. After we do this, we can
apply it to our existing classifier. 

 The following code is a small function called img2vector, which converts the
image to a vector. The function creates a 1x1024 NumPy array, then opens the given
file, loops over the first 32 lines in the file, and stores the integer value of the first 32
characters on each line in the NumPy array. This array is finally returned. 

def img2vector(filename):
    returnVect = zeros((1,1024))
    fr = open(filename)
    for i in range(32):
        lineStr = fr.readline()
        for j in range(32):
            returnVect[0,32*i+j] = int(lineStr[j])
    return returnVect

Try out the img2vector code with the following commands in the Python shell, and
compare the results to a file opened with a text editor:

>>> testVector = kNN.img2vector('testDigits/0_13.txt')
>>> testVector[0,0:31]
array([ 0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,
        0.,  1.,  1.,  1.,  1.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,
        0.,  0.,  0.,  0.,  0.])
>>> testVector[0,32:63]
array([ 0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  1.,
        1.,  1.,  1.,  1.,  1.,  1.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,
        0.,  0.,  0.,  0.,  0.])

Figure 2.6 Examples of the handwritten digits dataset
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2.3.2 Test: kNN on handwritten digits

Now that you have the data in a format that you can plug into our classifier, you’re
ready to test out this idea and see how well it works. The function shown in listing 2.6,
handwritingClassTest(), is a self-contained function that tests out our classifier. You
can add it to kNN.py. Before you add it, make sure to add from os import listdir to
the top of the file. This imports one function, listdir, from the os module, so that
you can see the names of files in a given directory. 

def handwritingClassTest():
    hwLabels = []
    trainingFileList = listdir('trainingDigits')   
    m = len(trainingFileList)
    trainingMat = zeros((m,1024))
    for i in range(m):
        fileNameStr = trainingFileList[i]        
        fileStr = fileNameStr.split('.')[0]             
        classNumStr = int(fileStr.split('_')[0]) 
        hwLabels.append(classNumStr)
        trainingMat[i,:] = img2vector('trainingDigits/%s' % fileNameStr)
    testFileList = listdir('testDigits')
    errorCount = 0.0
    mTest = len(testFileList)
    for i in range(mTest):
        fileNameStr = testFileList[i]
        fileStr = fileNameStr.split('.')[0]
        classNumStr = int(fileStr.split('_')[0])
        vectorUnderTest = img2vector('testDigits/%s' % fileNameStr)
        classifierResult = classify0(vectorUnderTest, \
                                trainingMat, hwLabels, 3)
        print "the classifier came back with: %d, the real answer is: %d"\
                                % (classifierResult, classNumStr)
        if (classifierResult != classNumStr): errorCount += 1.0
    print "\nthe total number of errors is: %d" % errorCount
    print "\nthe total error rate is: %f" % (errorCount/float(mTest))

In listing 2.6, you get the contents for the trainingDigits directory B as a list. Then
you see how many files are in that directory and call this m. Next, you create a training
matrix with m rows and 1024 columns to hold each image as a single row. You parse out
the class number from the filename. C The filename is something like 9_45.txt,
where 9 is the class number and it is the 45th instance of the digit 9. You then put this
class number in the hwLabels vector and load the image with the function img2vector
discussed previously. Next, you do something similar for all the files in the testDigits
directory, but instead of loading them into a big matrix, you test each vector individu-
ally with our classify0 function. You didn’t use the autoNorm() function from sec-
tion 2.2 because all of the values were already between 0 and 1. 

 To execute this from the Python shell, type kNN.handwritingClassTest() at the
Python prompt. It’s quite interesting to watch. Depending on your machine’s speed, it

Listing 2.6 Handwritten digits testing code

Get contents of 
directory

B

Process class num 
from filename

C
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will take some time to load the dataset. Then, when the function begins testing, you
can see the results as they come back. You should have output that’s similar to the fol-
lowing example:

>>> kNN.handwritingClassTest()
the classifier came back with: 0, the real answer is: 0
the classifier came back with: 0, the real answer is: 0
.
.
the classifier came back with: 7, the real answer is: 7
the classifier came back with: 7, the real answer is: 7
the classifier came back with: 8, the real answer is: 8
the classifier came back with: 8, the real answer is: 8
the classifier came back with: 8, the real answer is: 8
the classifier came back with: 6, the real answer is: 8
.
.
the classifier came back with: 9, the real answer is: 9
the total number of errors is: 11
the total error rate is: 0.011628

Using the kNN algorithm on this dataset, you were able to achieve an error rate of 1.2%.
You can vary k to see how this changes. You can also modify the handwritingClassTest
function to randomly select training examples. That way, you can vary the number of
training examples and see how that impacts the error rate. 

 Depending on your computer’s speed, you may think this algorithm is slow, and
you’d be right. For each of our 900 test cases, you had to do 2,000 distance calcula-
tions on a 1024-entry floating point vector. Additionally, our test dataset size was 2 MB.
Is there a way to make this smaller and take fewer computations? One modification to
kNN, called kD-trees, allows you to reduce the number of calculations. 

2.4 Summary
The k-Nearest Neighbors algorithm is a simple and effective way to classify data. The
examples in this chapter should be evidence of how powerful a classifier it is. kNN is
an example of instance-based learning, where you need to have instances of data close
at hand to perform the machine learning algorithm. The algorithm has to carry
around the full dataset; for large datasets, this implies a large amount of storage. In
addition, you need to calculate the distance measurement for every piece of data in
the database, and this can be cumbersome. 

 An additional drawback is that kNN doesn’t give you any idea of the underlying
structure of the data; you have no idea what an “average” or “exemplar” instance from
each class looks like. In the next chapter, we’ll address this issue by exploring ways in
which probability measurements can help you do classification. 



Splitting datasets one
 feature at a time:

 decision trees
Have you ever played a game called Twenty Questions? If not, the game works like
this: One person thinks of some object and players try to guess the object. Players
are allowed to ask 20 questions and receive only yes or no answers. In this game, the
people asking the questions are successively splitting the set of objects they can
deduce. A decision tree works just like the game Twenty Questions; you give it a
bunch of data and it generates answers to the game. 

This chapter covers
■ Introducing decision trees
■ Measuring consistency in a dataset
■ Using recursion to construct a decision tree
■ Plotting trees in Matplotlib
37
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 The decision tree is one of the most commonly used classification techniques;
recent surveys claim that it’s the most commonly used technique.1 You don’t have to
know much about machine learning to understand how it works. 

 If you’re not already familiar with decisions trees, the concept is straightforward.
Chances are good that you’ve already seen a decision tree without knowing it. Figure 3.1
shows a flowchart, which is a decision tree. It has decision blocks (rectangles) and termi-
nating blocks (ovals) where some conclusion has been reached. The right and left arrows
coming out of the decision blocks are known as branches, and they can lead to other deci-
sion blocks or to a terminating block. In this particular example, I made a hypothetical
email classification system, which first checks the domain of the sending email address.
If this is equal to myEmployer.com, it will classify the email as “Email to read when
bored.” If it isn’t from that domain, it checks to see if the body of the email contains the
word hockey. If the email contains the word hockey, then this email is classified as “Email
from friends; read immediately”; if the body doesn’t contain the word hockey, then it gets
classified as “Spam; don’t read.” 

 The kNN algorithm in chapter 2 did a great job of classifying, but it didn’t lead to
any major insights about the data. One of the best things about decision trees is that
humans can easily understand the data. 

 The algorithm you’ll build in this chapter will be able to take a set of data, build a
decision tree, and draw a tree like the one in figure 3.1. The decision tree does a great
job of distilling data into knowledge. With this, you can take a set of unfamiliar data
and extract a set of rules. The machine learning will take place as the machine creates
these rules from the dataset. Decision trees are often used in expert systems, and the
results obtained by using them are often comparable to those from a human expert
with decades of experience in a given field. 

1 Giovanni Seni and John Elder, Ensemble Methods in Data Mining: Improving Accuracy Through Combining Predic-
tions, Synthesis Lectures on Data Mining and Knowledge Discovery (Morgan and Claypool, 2010), 28.

Figure 3.1 A decision 
tree in flowchart form
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Now that you know a little of what decision trees are good for, we’re going to get into
the process of building them from nothing but a pile of data. In the first section, we’ll
discuss methods used to construct trees and start writing code to construct a tree.
Next, we’ll address some metrics that we can use to measure the algorithm’s success.
Finally, we’ll use recursion to build our classifier and plot it using Matplotlib. When
we have the classifier working, we’ll take some data of a contact lens prescription and
use our classifier to try to predict what lenses people will need. 

3.1 Tree construction

In this section we’re going to walk through the decision tree–building algorithm, with
all its fine details. We’ll first discuss the mathematics that decide how to split a dataset
using something called information theory. We’ll then write some code to apply this the-
ory to our dataset, and finally we’ll write some code to build a tree. 

 To build a decision tree, you need to make a first decision on the dataset to dictate
which feature is used to split the data. To determine this, you try every feature and mea-
sure which split will give you the best results. After that, you’ll split the dataset into sub-
sets. The subsets will then traverse down the branches of the first decision node. If the
data on the branches is the same class, then you’ve properly classified it and don’t need
to continue splitting it. If the data isn’t the same, then you need to repeat the splitting
process on this subset. The decision on how to split this subset is done the same way as
the original dataset, and you repeat this process until you’ve classified all the data. 

 Pseudo-code for a function called createBranch() would look like this:

Check if every item in the dataset is in the same class:
 If so return the class label
 Else 
     find the best feature to split the data
     split the dataset 
     create a branch node
         for each split
             call createBranch and add the result to the branch node
     return branch node

Please note the recursive nature of createBranch. It calls itself in the second-to-last line.
We’ll write this in Python later, but first, we need to address how to split the dataset. 

Decision trees
Pros: Computationally cheap to use, easy for humans to understand learned results,
missing values OK, can deal with irrelevant features

Cons: Prone to overfitting

Works with: Numeric values, nominal values
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Some decision trees make a binary split of the data, but we won’t do this. If we split on
an attribute and it has four possible values, then we’ll split the data four ways and cre-
ate four separate branches. We’ll follow the ID3 algorithm, which tells us how to split
the data and when to stop splitting it. (See http://en.wikipedia.org/wiki/
ID3_algorithm for more information.) We’re also going to split on one and only one
feature at a time. If our training set has 20 features, how do we choose which one to
use first? 

 See the data in table 3.1. It contains five animals pulled from the sea and asks if
they can survive without coming to the surface and if they have flippers. We would like
to classify these animals into two classes: fish and not fish. Now we want to decide
whether we should split the data based on the first feature or the second feature. To
answer this question, we need some quantitative way of determining how to split the
data. We’ll discuss that next. 

3.1.1 Information gain

We choose to split our dataset in a way that makes our unorganized data more orga-
nized. There are multiple ways to do this, and each has its own advantages and disad-
vantages. One way to organize this messiness is to measure the information. Using

Can survive without 
coming to surface?

Has flippers? Fish?

1 Yes Yes Yes

2 Yes Yes Yes

3 Yes No No

4 No Yes No

5 No Yes No

General approach to decision trees
1. Collect: Any method.

2. Prepare: This tree-building algorithm works only on nominal values, so any contin-
uous values will need to be quantized.

3. Analyze: Any method. You should visually inspect the tree after it is built.

4. Train: Construct a tree data structure. 

5. Test: Calculate the error rate with the learned tree.

6. Use: This can be used in any supervised learning task. Often, trees are used to
better understand the data. 

Table 3.1 Marine animal data
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information theory, you can measure the information before and after the split. Infor-
mation theory is a branch of science that’s concerned with quantifying information. 

 The change in information before and after the split is known as the information
gain. When you know how to calculate the information gain, you can split your data
across every feature to see which split gives you the highest information gain. The split
with the highest information gain is your best option. 

 Before you can measure the best split and start splitting our data, you need to
know how to calculate the information gain. The measure of information of a set is
known as the Shannon entropy, or just entropy for short. Its name comes from the father
of information theory, Claude Shannon.   

If the terms information gain and entropy sound confusing, don’t worry. They’re meant
to be confusing! When Claude Shannon wrote about information theory, John von
Neumann told him to use the term entropy because people wouldn’t know what
it meant.

 Entropy is defined as the expected value of the information. First, we need to
define information. If you’re classifying something that can take on multiple values,
the information for symbol xi is defined as

where p(xi) is the probability of choosing this class. 
 To calculate entropy, you need the expected value of all the information of all pos-

sible values of our class. This is given by 

where n is the number of classes. 
 Let’s see how to calculate this in Python. To start, you’ll create a file called trees.py.

Insert the code from the following listing into trees.py. This listing will do entropy cal-
culations on a given dataset for you.

  

Claude Shannon
Claude Shannon is considered one of the smartest people of the twentieth century.
In William Poundstone’s 2005 book Fortune’s Formula, he wrote this of Claude
Shannon:

“There were many at Bell Labs and MIT who compared Shannon’s insight to Ein-
stein’s. Others found that comparison unfair—unfair to Shannon.”†

† William Poundstone, Fortune’s Formula: The Untold Story of the Scientific Betting System that Beat the Casi-
nos and Wall Street” (Hill and Wang, 2005), 15.

l xi  log2p xi =

H p xi log2p xi 
i 1=
n–=
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from math import log

def calcShannonEnt(dataSet):
    numEntries = len(dataSet)
    labelCounts = {}
    for featVec in dataSet:                        
        currentLabel = featVec[-1]                      
        if currentLabel not in labelCounts.keys():
        labelCounts[currentLabel] = 0              
        labelCounts[currentLabel] += 1             
    shannonEnt = 0.0
    for key in labelCounts:
        prob = float(labelCounts[key])/numEntries
        shannonEnt -= prob * log(prob,2)             
    return shannonEnt

The code in listing 3.1 is straightforward. First, you calculate a count of the number of
instances in the dataset. This could have been calculated inline, but it’s used multiple
times in the code, so an explicit variable is created for it. Next, you create a dictionary
whose keys are the values in the final column. B If a key was not encountered previ-
ously, one is created. For each key, you keep track of how many times this label occurs.
Finally, you use the frequency of all the different labels to calculate the probability of
that label. This probability is used to calculate the Shannon entropy, C and you sum
this up for all the labels. Let’s try out this entropy stuff. 

 The simple data about fish identification from table 3.1 is provided in the trees.py
file by utilizing the createDataSet() function. You can enter it yourself:

def createDataSet():
       dataSet = [[1, 1, 'yes'],
               [1, 1, 'yes'],
               [1, 0, 'no'],
               [0, 1, 'no'],
               [0, 1, 'no']]
labels = ['no surfacing','flippers']
return dataSet, labels

Enter the following in your Python shell: 

>>> reload(trees.py)
>>> myDat,labels=trees.createDataSet()
>>> myDat
[[1, 1, 'yes'], [1, 1, 'yes'], [1, 0, 'no'], [0, 1, 'no'], [0, 1, 'no']]
>>> trees.calcShannonEnt(myDat)
0.97095059445466858

The higher the entropy, the more mixed up the data is. Let’s make the data a little
messier and see how the entropy changes. We’ll add a third class, which is called
maybe, and see how the entropy changes: 

>>> myDat[0][-1]='maybe'
>>> myDat
[[1, 1, 'maybe'], [1, 1, 'yes'], [1, 0, 'no'], [0, 1, 'no'], [0, 1, 'no']]
>>> trees.calcShannonEnt(myDat)
1.3709505944546687

Listing 3.1 Function to calculate the Shannon entropy of a dataset

Create dictionary 
of all possible 
classes

B

Logarithm 
base 2

C
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Let’s split the dataset in a way that will give us the largest information gain. We won’t
know how to do that unless we actually split the dataset and measure the information
gain.

 Another common measure of disorder in a set is the Gini impurity,2 which is the
probability of choosing an item from the set and the probability of that item being
misclassified. We won’t get into the Gini impurity. Instead, we’ll move on to splitting
the dataset and building the tree. 

3.1.2 Splitting the dataset

You just saw how to measure the amount of disorder in a dataset. For our classifier
algorithm to work, you need to measure the entropy, split the dataset, measure the
entropy on the split sets, and see if splitting it was the right thing to do. You’ll do this
for all of our features to determine the best feature to split on. Think of it as a two-
dimensional plot of some data. You want to draw a line to separate one class from
another. Should you do this on the X-axis or the Y-axis? The answer is what you’re try-
ing to find out here. 

 To see this in action, open your editor and add the following code to trees.py.

def splitDataSet(dataSet, axis, value):
    retDataSet = []                          
    for featVec in dataSet:
        if featVec[axis] == value:
            reducedFeatVec = featVec[:axis]        
            reducedFeatVec.extend(featVec[axis+1:])       
            retDataSet.append(reducedFeatVec)      
    return retDataSet

The code in listing 3.2 takes three inputs: the dataset we’ll split, the feature we’ll split
on, and the value of the feature to return. Most of the time in Python, you don’t have
to worry about memory or allocation. Python passes lists by reference, so if you modify
a list in a function, the list will be modified everywhere. To account for this, you create
a new list at the beginning. B You create a new list each time because you’ll be calling
this function multiple times on the same dataset and you don’t want the original data-
set modified. Our dataset is a list of lists; you iterate over every item in the list and if it
contains the value you’re looking for, you’ll add it to your newly created list. Inside the
if statement, you cut out the feature that you split on. C This will be more obvious in
the next section, but think of it this way: once you’ve split on a feature, you’re finished
with that feature. You used the extend() and append() methods of the Python list
type. There’s an important difference between these two methods when dealing with
multiple lists. 

 Assume you have two lists, a and b:

2 For more information, you should check out Introduction to Data Mining by Pan-Ning Tan, Vipin Kumar, and
Michael Steinbach; Pearson Education (Addison-Wesley, 2005), 158.

Listing 3.2 Dataset splitting on a given feature 
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>>> a=[1,2,3]
>>> b=[4,5,6]
>>> a.append(b)
>>> a
[1, 2, 3, [4, 5, 6]]

If you do a.append(b), you have a list with four elements, and the fourth element is a
list. However, if you do

>>> a=[1,2,3]
>>> a.extend(b)
>>> a
[1, 2, 3, 4, 5, 6]

you now have one list with all the elements from a and b. 
Let’s try out the splitDataSet() function on our simple example. Add the code

from listing 3.2 to trees.py, and type in the following at your Python shell:

>>> reload(trees)
<module 'trees' from 'trees.pyc'>
>>> myDat,labels=trees.createDataSet()
>>> myDat
[[1, 1, 'yes'], [1, 1, 'yes'], [1, 0, 'no'], [0, 1, 'no'], [0, 1, 'no']]
>>> trees.splitDataSet(myDat,0,1)
[[1, 'yes'], [1, 'yes'], [0, 'no']]
>>> trees.splitDataSet(myDat,0,0)
[[1, 'no'], [1, 'no']]

You’re now going to combine the Shannon entropy calculation and the splitDataSet()
function to cycle through the dataset and decide which feature is the best to split on.
Using the entropy calculation tells you which split best organizes your data. 

 Open your text editor and add the code from the following listing to trees.py. 

def chooseBestFeatureToSplit(dataSet):
    numFeatures = len(dataSet[0]) - 1      
    baseEntropy = calcShannonEnt(dataSet)
    bestInfoGain = 0.0; bestFeature = -1
    for i in range(numFeatures):        
        featList = [example[i] for example in dataSet]
        uniqueVals = set(featList)                        
        newEntropy = 0.0
        for value in uniqueVals:                            
            subDataSet = splitDataSet(dataSet, i, value)      
            prob = len(subDataSet)/float(len(dataSet))      
            newEntropy += prob * calcShannonEnt(subDataSet) 
        infoGain = baseEntropy - newEntropy                 
        if (infoGain > bestInfoGain):
            bestInfoGain = infoGain          
            bestFeature = I                    
    return bestFeature 

The code in listing 3.3 is the function chooseBestFeatureToSplit(). As you can guess,
it chooses the feature that, when split on, best organizes your data. The functions from

Listing 3.3 Choosing the best feature to split on

Create unique list 
of class labels

B

Calculate 
entropy for 
each split

C

Find the best 
information gain

D



45Tree construction
listing 3.2 and listing 3.1 are used in this function. We’ve made a few assumptions about
the data. The first assumption is that it comes in the form of a list of lists, and all these
lists are of equal size. The next assumption is that the last column in the data or the last
item in each instance is the class label of that instance. You use these assumptions in the
first line of the function to find out how many features you have available in the given
dataset. We didn’t make any assumption on the type of data in the lists. It could be a num-
ber or a string; it doesn’t matter.

 The next part of the code in listing 3.3 calculates the Shannon entropy of the
whole dataset before any splitting has occurred. This gives you the base disorder,
which you’ll later compare to the post split disorder measurements. The first for loop
loops over all the features in our dataset. You use list comprehensions to create a list
of all the ith entries in our dataset, or all the possible values present in the data. B
Next, you use the Python native set data type. Sets are like lists, but a value can occur
only once. Creating a new set from a list is one of the fastest ways of getting the unique
values out of list in Python. 

 Next, you go through all the unique values of this feature and split the data for
each feature. C The new entropy is calculated and summed up for all the unique val-
ues of that feature. The information gain is the reduction in entropy or the reduction
in messiness. I hope entropy makes sense when put in terms of reduction of disorder.
Finally, you compare the information gain among all the features and return the
index of the best feature to split on.  D

 Now let’s see this in action. After you enter the code from listing 3.3 into trees.py,
type the following at your Python shell: 

>>> reload(trees)
<module 'trees' from 'trees.py'>
>>> myDat,labels=trees.createDataSet()
>>> trees.chooseBestFeatureToSplit(myDat)
0
>>> myDat
[[1, 1, 'yes'], [1, 1, 'yes'], [1, 0, 'no'], [0, 1, 'no'], [0, 1, 'no']]

What just happened? The code told you that the 0th feature was the best feature to
split on. Is that right? Does that make any sense? It’s the same data from table 3.1, so
let’s look at table 3.1, or the data from the variable myDat. If you split on the first fea-
ture, that is, put everything where the first feature is 1 in one group and everything
where the first feature is 0 in another group, how consistent is the data? If you do that,
the group where the first feature is 1 will have two yeses and one no. The other group
will have zero yeses and two nos. What if you split on the second feature? The first
group will have two yeses and two nos. The second group will have zero yeses and one
no. The first split does a better job of organizing the data. If you’re not convinced, you
can use the calcShannonEntropy() function from listing 3.1 to test it. 

 Now that you can measure how organized a dataset is and you can split the data,
it’s time to put all of this together and build the decision tree. 
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3.1.3 Recursively building the tree

You now have all the components you need to create an algorithm that makes deci-
sion trees from a dataset. It works like this: you start with our dataset and split it based
on the best attribute to split. These aren’t binary trees, so you can handle more than
two-way splits. Once split, the data will traverse down the branches of the tree to
another node. This node will then split the data again. You’re going to use the princi-
ple of recursion to handle this. 

 You’ll stop under the following conditions: you run out of attributes on which to
split or all the instances in a branch are the same class. If all instances have the same
class, then you’ll create a leaf node, or terminating block. Any data that reaches this
leaf node is deemed to belong to the class of that leaf node. This process can be seen
in figure 3.2.

 The first stopping condition makes this algorithm tractable, and you can even set
a bound on the maximum number of splits you can have. You’ll encounter other
decision-tree algorithms later, such as C4.5 and CART. These do not “consume” the
features at each split. This creates a problem for these algorithms because they split

Figure 3.2 Data paths while splitting
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the data, but the number of features doesn’t decrease at each split. Don’t worry about
that for now. You can simply count the number of columns in our dataset to see if
you’ve run out of attributes. If our dataset has run out of attributes but the class labels
are not all the same, you must decide what to call that leaf node. In this situation,
you’ll take a majority vote. 

 Open your editor of choice. Before you add the next function, you need to add the
following line to the top of trees.py: import operator. Now, add the following func-
tion to trees.py:

def majorityCnt(classList):
    classCount={}
    for vote in classList:
        if vote not in classCount.keys(): classCount[vote] = 0
        classCount[vote] += 1
    sortedClassCount = sorted(classCount.iteritems(), 

key=operator.itemgetter(1), reverse=True)
    return sortedClassCount[0][0] 

This function may look familiar; it’s similar to the voting portion of classify0 from
chapter 2. This function takes a list of class names and then creates a dictionary
whose keys are the unique values in classList, and the object of the dictionary is the
frequency of occurrence of each class label from classList. Finally, you use the
operator to sort the dictionary by the keys and return the class that occurs with the
greatest frequency.

 Open trees.py in your editor and add the code from the following listing. 

def createTree(dataSet,labels):
    classList = [example[-1] for example in dataSet]
    if classList.count(classList[0]) == len(classList):
        return classList[0]                               
    if len(dataSet[0]) == 1:                       
        return majorityCnt(classList)                
    bestFeat = chooseBestFeatureToSplit(dataSet)
    bestFeatLabel = labels[bestFeat]
    myTree = {bestFeatLabel:{}}
    del(labels[bestFeat])                                  
    featValues = [example[bestFeat] for example in dataSet]   
    uniqueVals = set(featValues)                           
    for value in uniqueVals:
        subLabels = labels[:] 
        myTree[bestFeatLabel][value] = createTree(splitDataSet\
                          (dataSet, bestFeat, value),subLabels)
    return myTree

The code in listing 3.4 takes two inputs: the dataset and a list of labels. The list of
labels contains a label for each of the features in the dataset. The algorithm could
function without this, but it would be difficult to make any sense of the data. All of the
previous assumptions about the dataset still hold. You first create a list of all the class
labels in our dataset and call this classList. The first stopping condition is that if all the

Listing 3.4 Tree-building code
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class labels are the same, then you return this label. B The second stopping condition
is the case when there are no more features to split. C If you don’t meet the stopping
conditions, then you use the function created in listing 3.3 to choose the best feature.
Next, you create your tree. 

 You’ll use the Python dictionary to store the tree. You could have created a special
data type, but it’s not necessary. The myTree dictionary will be used to store the tree,
and you’ll see how that works soon. You get all the unique values from the dataset for
our chosen feature: bestFeat. D The unique value code uses sets and is similar to a
few lines in listing 3.3. 

 Finally, you iterate over all the unique values from our chosen feature and recur-
sively call createTree() for each split of the dataset. This value is inserted into our
myTree dictionary, so you end up with a lot of nested dictionaries representing our
tree. Before we get into the nesting, note that the subLabels = labels[:] line makes
a copy of labels and places it in a new list called subLabels. You do this because Python
passes lists by reference and you’d like the original list to be the same every time you
call createTree(). 

 Let’s try out this code. After you add the code from listing 3.4 to trees.py, enter the
following in your Python shell: 

>>> reload(trees)
<module 'trees' from 'trees.pyc'>
>>> myDat,labels=trees.createDataSet()
>>> myTree = trees.createTree(myDat,labels)
>>> myTree
{'no surfacing': {0: 'no', 1: {'flippers': {0: 'no', 1: 'yes'}}}}

The variable myTree contains the nested dictionaries, which you’re using to represent
our tree structure. Reading left to right, the first key, 'no surfacing', is the name of
the first feature that was split by the create tree. The value of this key is another dic-
tionary. This second dictionary’s keys are the splits of the 'no surfacing' feature. The
values of these keys are the children of the 'no surfacing' node. The values are
either a class label or another dictionary. If the value is a class label, then that child is
a leaf node. If the value is another dictionary, then that child node is a decision node
and the format repeats itself. In our example, we have three leaf nodes and two deci-
sion nodes. 

 Now that you’ve properly constructed the tree, you need to display it so that
humans can properly understand the information. 

3.2 Plotting trees in Python with Matplotlib annotations
The tree you made in the previous section is great, but it’s a little difficult to visualize.
In this section, we’ll use Matplotlib to create a tree you can look at. One of the great-
est strengths of decision trees is that humans can easily understand them. The plot-
ting library we used in the previous chapter is extremely powerful. Unfortunately,
Python doesn’t include a good tool for plotting trees, so we’ll make our own. We’ll
write a program to draw a decision tree like the one in figure 3.3. 
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3.2.1 Matplotlib annotations

Matplotlib has a great tool, called annotations, that can add text near data in a plot.
Annotations are usually used to explain some part of the data. But having the text on
top of the data looks ugly, so the tool has a built-in arrow that allows you to draw the text
a safe distance away from the data yet show what data you’re talking about. Figure 3.4
shows this in action. We have a point at (0.2, 0.1), and we placed some text at (0.35, 0.3)
and an arrow pointing to the point at (0.2, 0.1).  

We’re going to hijack the annotations and use them for our tree plotting. You can
color in the box of the text and give it a shape you like. Next, you can flip the arrow
and have it point from the data point to the text box. Open your text editor and cre-
ate a new file called treePlotter.py. Add the code from the following listing.

  

Figure 3.3 Sample decision tree

Plot or graph? 
Why use the word plot? Why not use the word graph for talking about showing data
in an image? In some disciplines, the word graph has a different meaning. In applied
mathematics, it’s a representation of a set of objects (vertices) connected by edges.
Any combination of the vertices can be connected by edges. In computer science, a
graph is a data structure that’s used to represent the concept from mathematics. 
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import matplotlib.pyplot as plt

decisionNode = dict(boxstyle="sawtooth", fc="0.8")
leafNode = dict(boxstyle="round4", fc="0.8")             
arrow_args = dict(arrowstyle="<-")                

def plotNode(nodeTxt, centerPt, parentPt, nodeType): 
    createPlot.ax1.annotate(nodeTxt, xy=parentPt,       
xycoords='axes fraction',
    xytext=centerPt, textcoords='axes fraction',
    va="center", ha="center", bbox=nodeType, arrowprops=arrow_args)

def createPlot():
    fig = plt.figure(1, facecolor='white')
    fig.clf()
    createPlot.ax1 = plt.subplot(111, frameon=False)
    plotNode('a decision node', (0.5, 0.1), (0.1, 0.5), decisionNode)
    plotNode('a leaf node', (0.8, 0.1), (0.3, 0.8), leafNode)
    plt.show()

If createPlot() doesn’t look like createPlot() in the example text file, don’t worry.
You’ll change it later. The code in the listing begins by defining some constants that
you’ll use for formatting the nodes. B Next, you create the plotNode() function, which
actually does the drawing. It needs a plot to draw these on, and the plot is the global vari-
able createPlot.ax1. In Python, all variables are global by default, and if you know what
you’re doing, this won’t get you into trouble. Lastly, you have the createPlot() func-
tion, which is the master. Here, you create a new figure, clear it, and then draw on two
nodes to demonstrate the different types of nodes you’ll use in plotting your tree. 

 To give this code a try, open your Python shell and import the treePlotter file.

>>> import treePlotter
>>> treePlotter.createPlot()

Listing 3.5 Plotting tree nodes with text annotations
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You should see something that looks like figure 3.5. You can alter the points in
plotNode() C to see how the X,Y position changes. 

 Now that you can plot the nodes, you’re ready to combine more of these to plot a
whole tree. 

3.2.2 Constructing a tree of annotations 

You need a strategy for plotting this tree. You have X and Y coordinates. Now, where
do you place all the nodes? You need to know how many leaf nodes you have so that
you can properly size things in the X direction, and you need to know how many levels
you have so you can properly size the Y direction. You’re going to create two new
functions to get the two items you’re looking for. The next listing has the functions
getNumLeafs() and getTreeDepth(). Add these two functions to treePlotter.py.

def getNumLeafs(myTree):
    numLeafs = 0
    firstStr = myTree.keys()[0]
    secondDict = myTree[firstStr]
    for key in secondDict.keys():
        if type(secondDict[key]).__name__=='dict':  
            numLeafs += getNumLeafs(secondDict[key])       
        else:   numLeafs +=1                        
    return numLeafs

def getTreeDepth(myTree):
    maxDepth = 0
    firstStr = myTree.keys()[0]
    secondDict = myTree[firstStr]
    for key in secondDict.keys():
        if type(secondDict[key]).__name__=='dict':

Listing 3.6 Identifying the number of leaves in a tree and the depth
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            thisDepth = 1 + getTreeDepth(secondDict[key])
        else:   thisDepth = 1
        if thisDepth > maxDepth: maxDepth = thisDepth
    return maxDepth

The two functions in listing 3.6 have the same structure, which you’ll use again later.
The structure is built around how you store the tree in a Python dictionary. The first
key is the label of the first split, and the values associated with that key are the children
of the first node. You get out the first key and value, and then you iterate over all of
the child nodes. You test to see if the child nodes are dictionaries by using the Python
type() method. B If the child node is of type dict, then it is another decision node
and you must recursively call your function. The getNumLeafs() function traverses
the entire tree and counts only the leaf nodes; then it returns this number. The sec-
ond function, getTreeDepth(), counts the number of times you hit a decision node.
The stopping condition is a leaf node, and once this is reached you back out of your
recursive calls and increment the count. To save you some time, I added a simple func-
tion to output premade trees. This will save you the trouble of making a tree from
data every time during testing. 

 Enter the following into treePlotter.py:

def retrieveTree(i):
    listOfTrees =[{'no surfacing': {0: 'no', 1: {'flippers': \
                    {0: 'no', 1: 'yes'}}}},
                  {'no surfacing': {0: 'no', 1: {'flippers': \
                    {0: {'head': {0: 'no', 1: 'yes'}}, 1: 'no'}}}}
                  ]
    return listOfTrees[i]

Save treePlotter.py and enter the following into your Python shell: 

>>> reload(treePlotter)
<module 'treePlotter' from 'treePlotter.py'>
>>> treePlotter.retrieveTree (1)
{'no surfacing': {0: 'no', 1: {'surfacing': {0: {'head': {0: 'no', 1: 

'yes'}}, 1: 'no'}}}}
>>> myTree = treePlotter.retrieveTree (0)
>>> treePlotter.getNumLeafs(myTree)
3
>>> treePlotter.getTreeDepth(myTree)
2

The retrieveTree() function pulls out a predefined tree for testing. You can see that
getNumLeafs() returns three leaves, which is what tree 0 has. The function
getTreeDepth() also returns the proper number levels. 

 Now you can put all of these elements together and plot the whole tree. When
you’re finished, the tree will look something like the one in figure 3.6 but without the
labels on the X and Y axes. 

 Open your text editor and enter the code from the following listing into
treePlotter.py. Note that you probably already have a version of treePlotter().
Please change it to look like the following code. 
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def plotMidText(cntrPt, parentPt, txtString):     
    xMid = (parentPt[0]-cntrPt[0])/2.0 + cntrPt[0]    
    yMid = (parentPt[1]-cntrPt[1])/2.0 + cntrPt[1]
    createPlot.ax1.text(xMid, yMid, txtString)    

def plotTree(myTree, parentPt, nodeTxt):
    numLeafs = getNumLeafs(myTree)         
    getTreeDepth(myTree)                             
    firstStr = myTree.keys()[0] 
    cntrPt = (plotTree.xOff + (1.0 + float(numLeafs))/2.0/plotTree.totalW,\
                           plotTree.yOff)
    plotMidText(cntrPt, parentPt, nodeTxt)               
    plotNode(firstStr, cntrPt, parentPt, decisionNode)
    secondDict = myTree[firstStr]
    plotTree.yOff = plotTree.yOff - 1.0/plotTree.totalD 
    for key in secondDict.keys():                             
        if type(secondDict[key]).__name__=='dict': 
            plotTree(secondDict[key],cntrPt,str(key)) 
        else:   
            plotTree.xOff = plotTree.xOff + 1.0/plotTree.totalW
            plotNode(secondDict[key], (plotTree.xOff, plotTree.yOff), 
                cntrPt, leafNode)
            plotMidText((plotTree.xOff, plotTree.yOff), cntrPt, str(key))
    plotTree.yOff = plotTree.yOff + 1.0/plotTree.totalD

def createPlot(inTree):
    fig = plt.figure(1, facecolor='white')
    fig.clf()
    axprops = dict(xticks=[], yticks=[])
    createPlot.ax1 = plt.subplot(111, frameon=False, **axprops)
    plotTree.totalW = float(getNumLeafs(inTree))
    plotTree.totalD = float(getTreeDepth(inTree))
    plotTree.xOff = -0.5/plotTree.totalW; plotTree.yOff = 1.0;
    plotTree(inTree, (0.5,1.0), '')
    plt.show()

The createPlot() function is the main function you’ll use, and it calls plotTree(),
which in turns calls many of the previous functions and plotMidText(). The function
plotTree() does the majority of the work. The first thing that happens in plotTree()
is the calculation of width and height of the tree. C Two global variables are set up to
store the width (plotTree.totalW) and depth of the tree (plotTree.totalD). These
variables are used in centering the tree nodes vertically and horizontally. The
plotTree() function gets called recursively like getNumLeafs() and getTreeDepth()
from listing 3.6. The width of the tree is used to calculate where to place the decision
node. The idea is to place this in the middle of all the leaf nodes below it, not place it
in the middle of its children. Also note that you use two global variables to keep track
of what has already been plotted and the appropriate coordinate to place the next
node. These values are stored in plotTree.xOff and plotTree.yOff. Another thing
to point out is that you’re plotting everything on the x-axis from 0.0 to 1.0 and on the
y-axis from 0.0 to 1.0. Figure 3.6 has these values labeled for your convenience. The

Listing 3.7 The plotTree function
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center point for the current node is plotted with its total width split by the total num-
ber of leafs in the global tree. This allows you to split the x-axis into as many segments
as you have leaves. The beautiful thing about plotting everything in terms of the
image width is that you can resize the image, and the node will be redrawn in its
proper place. If this was drawn in terms of pixels, that wouldn’t be the case. You
couldn’t resize the image as easily.

 Next, you plot the child value or the value for the feature for the split going down
that branch. D The code in plotMidText() calculates the midpoint between the par-
ent and child nodes and puts a simple text label in the middle. B 

 Next, you decrement the global variable plotTree.yOff to make a note that you’re
about to draw children nodes. E These nodes could be leaf nodes or other decision
nodes, but you need to keep track of this. You decrement rather than increment
because you start drawing from the top of the image and draw downward. You next
recursively go through the tree in a similar fashion as the getNumLeafs() and
getTreeDepth() functions. If a node is a leaf node, you draw a leaf node. If not, you
recursively call plotTree() again. Finally, after you finish plotting the child nodes,
you increment the global Y offset. 

Figure 3.6 Tree plotting of simple dataset showing figure position axes
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The last function in listing 3.7 is createPlot(), which handles setting up the image,
calculating the global tree size, and kicking off the recursive plotTree() function. 

 Let’s see this in action. After you add the function to treePlotter.py, type the follow-
ing in your Python shell: 

>>> reload(treePlotter)
<module 'treePlotter' from 'treePlotter.pyc'>
>>> myTree=treePlotter.retrieveTree (0)
>>> treePlotter.createPlot(myTree)

You should see something like figure 3.6 without the axis labels. Now let’s alter the
dictionary and plot it again. 

>>> myTree['no surfacing'][3]='maybe'
>>> myTree
{'no surfacing ': {0: 'no', 1: {'flippers': {0: 'no', 1: 'yes'}}, 3: 

'maybe'}}
>>> treePlotter.createPlot(myTree)

You should see something that looks like figure 3.7 (and a lot like a headless stick fig-
ure.) Feel free to play around with the tree data structures and plot them out. 

 Now that you can build a decision tree and plot out the tree, you can to put it to
use and see what you can learn from some data and this algorithm. 

Figure 3.7 Tree plotting 
with more than two splits
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3.3 Testing and storing the classifier 
The main focus of the first section of this book is on classification. We’ve done a lot of
work in this chapter so far building the tree from data and plotting the tree so a
human can make some sense of the data, but we haven’t yet done any classification. 

 In this section, you’ll build a classifier that uses our tree, and then you’ll see how to
persist that classifier on disk for longer storage in a real application. Finally, you’ll put
our decision tree code to use on some real data to see if you can predict what type of
contact lenses a person should use.

3.3.1 Test: using the tree for classification

You want to put our tree to use doing some classification after you’ve learned the tree
from our training data, but how do you do that? You need our tree and the label vec-
tor that you used in creating the tree. The code will then take the data under test and
compare it against the values in the decision tree. It will do this recursively until it hits
a leaf node; then it will stop because it has arrived at a conclusion. 

 To see this in action, open your text editor and add the code in the following list-
ing to trees.py. 

def classify(inputTree,featLabels,testVec):
    firstStr = inputTree.keys()[0]
    secondDict = inputTree[firstStr]
    featIndex = featLabels.index(firstStr)     
    for key in secondDict.keys():
        if testVec[featIndex] == key:
            if type(secondDict[key]).__name__=='dict':
                classLabel = classify(secondDict[key],featLabels,testVec)
            else:   classLabel = secondDict[key]
    return classLabel

The code in listing 3.8 follows the same format as the other recursive functions in this
chapter. A problem with storing your data with the label as the feature’s identifier is
that you don’t know where this feature is in the dataset. To clear this up, you first split
on the “no surfacing” attribute, but where is that in the dataset? Is it first or second?
The Labels list will tell you this. You use the index method to find out the first item in
this list that matches firstStr. B With that in mind, you can recursively travel the
tree, comparing the values in testVec to the values in the tree. If you reach a leaf
node, you’ve made your classification and it’s time to exit. 

 After you’ve added the code in listing 3.8 to your trees.py file, enter the following
in your Python shell:

>>> myDat,labels=trees.createDataSet()
>>> labels
['no surfacing', 'flippers']
>>> myTree=treePlotter.retrieveTree (0)
>>> myTree
{'no surfacing': {0: 'no', 1: {'flippers': {0: 'no', 1: 'yes'}}}}

Listing 3.8 Classification function for an existing decision tree
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>>> trees.classify(myTree,labels,[1,0])
'no'
>>> trees.classify(myTree,labels,[1,1])
'yes'

Compare these results to figure 3.6. You have a first node called “no surfacing” that
has two children, one called 0, which has a label of “no”, and one that’s another deci-
sion node called “flippers”. This checks out. The “flippers” node had two children. Is
this the same as between the tree you plotted and the tree data structure? Yes. 

 Now that you’ve built a classifier, it would be nice to be able to store this so you
don’t have to rebuild the tree every time you want to do classification. 

3.3.2 Use: persisting the decision tree

Building the tree is the majority of the work. It may take a few seconds with our small
datasets, but, with large datasets, this can take a long time. When it’s time to classify
items with a tree, you can do it quickly. It would be a waste of time to build the tree
every time you wanted to make a classification. To get around this, you’re going to use
a Python module, which is properly named pickle, to serialize objects, as shown in the
following listing. Serializing objects allows you to store them for later use. Serializing
can be done with any object, and dictionaries work as well. 

def storeTree(in
putTree,filename):
    import pickle
    fw = open(filename,'w')
    pickle.dump(inputTree,fw)
    fw.close()
    
def grabTree(filename):
    import pickle
    fr = open(filename)
    return pickle.load(fr)

You can experiment with this in your Python shell by typing in the following:

>>> trees.storeTree(myTree,'classifierStorage.txt')
>>> trees.grabTree('classifierStorage.txt')
{'no surfacing': {0: 'no', 1: {'flippers': {0: 'no', 1: 'yes'}}}}

Now you have a way of persisting your classifier so that you don’t have to relearn it
every time you want to classify something. This is another advantage of decision trees
over another machine learning algorithm like kNN from chapter 2; you can distill the
dataset into some knowledge, and you use that knowledge only when you want to clas-
sify something. Let’s use the tools you’ve learned thus far on the Lenses dataset. 

3.4 Example: using decision trees to predict contact lens type 
In this section, we’ll go through an example that predicts the contacts lens type that
should be prescribed. You’ll take a small dataset and see if you can learn anything

Listing 3.9 Methods for persisting the decision tree with pickle 
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from it. You’ll see if a decision tree can give you any insight as to how the eye doctor
prescribes contact lenses. You can predict the type of lenses people will use and under-
stand the underlying processes with a decision tree. 

The Lenses dataset3 is one of the more famous datasets. It’s a number of observations
based on patients’ eye conditions and the type of contact lenses the doctor prescribed.
The classes are hard, soft, and no contact lenses. The data is from the UCI database
repository and is modified slightly so that it can be displayed easier. The data is stored
in a text file with the source code download. 

 You can load the data by typing the following into your Python shell:

>>> fr=open('lenses.txt’)
>>> lenses=[inst.strip().split('\t') for inst in fr.readlines()]
>>> lensesLabels=['age', 'prescript', 'astigmatic', 'tearRate']
>>> lensesTree = trees.createTree(lenses,lensesLabels)
>>> lensesTree
{'tearRate': {'reduced': 'no lenses', 'normal': {'astigmatic': {'yes': 
{'prescript': {'hyper': {'age': {'pre': 'no lenses', 'presbyopic': 
'no lenses', 'young':'hard'}}, 'myope': 'hard'}}, 'no': {'age': {'pre': 
'soft', 'presbyopic': {'prescript': {'hyper': 'soft', 'myope': 
'no lenses'}}, 'young': 'soft'}}}}}}
>>> treePlotter.createPlot(lensesTree)

That tree looks difficult to read as a line of text; it’s a good thing you have a way to plot
it. The tree plotted using our createPlot() function is shown in figure 3.8. If you fol-
low the different branches of the tree, you can see what contact lenses should be pre-
scribed to a given individual. One other conclusion you can draw from figure 3.8 is
that a doctor has to ask at most four questions to determine what type of lenses a
patient will need.

3 The dataset is a modified version of the Lenses dataset retrieved from the UCI Machine Learning Repository
November 3, 2010 [http://archive.ics.uci.edu/ml/machine-learning-databases/lenses/]. The source of the
data is Jadzia Cendrowska and was originally published in “PRISM: An algorithm for inducing modular rules,”
in International Journal of Man-Machine Studies (1987), 27, 349–70.

Example: using decision trees to predict contact lens type
1. Collect: Text file provided.

2. Prepare: Parse tab-delimited lines.

3. Analyze: Quickly review data visually to make sure it was parsed properly. The fi-
nal tree will be plotted with createPlot().

4. Train: Use createTree() from section 3.1.

5. Test: Write a function to descend the tree for a given instance.

6. Use: Persist the tree data structure so it can be recalled without building the
tree; then use it in any application.
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The tree in figure 3.8 matches our data well; however, it probably matches our data
too well. This problem is known as overfitting. In order to reduce the problem of over-
fitting, we can prune the tree. This will go through and remove some leaves. If a leaf
node adds only a little information, it will be cut off and merged with another leaf.
We’ll investigate this further when we revisit decision trees in chapter 9. 

 In chapter 9 we’ll also investigate another decision tree algorithm called CART.
The algorithm we used in this chapter, ID3, is good but not the best. ID3 can’t handle
numeric values. We could use continuous values by quantizing them into discrete
bins, but ID3 suffers from other problems if we have too many splits. 

3.5 Summary
A decision tree classifier is just like a work-flow diagram with the terminating blocks
representing classification decisions. Starting with a dataset, you can measure the
inconsistency of a set or the entropy to find a way to split the set until all the data
belongs to the same class. The ID3 algorithm can split nominal-valued datasets. Recur-
sion is used in tree-building algorithms to turn a dataset into a decision tree. The tree
is easily represented in a Python dictionary rather than a special data structure. 

 Cleverly applying Matplotlib’s annotations, you can turn our tree data into an eas-
ily understood chart. The Python Pickle module can be used for persisting our tree.
The contact lens data showed that decision trees can try too hard and overfit a dataset.
This overfitting can be removed by pruning the decision tree, combining adjacent
leaf nodes that don’t provide a large amount of information gain. 

 There are other decision tree–generating algorithms. The most popular are C4.5
and CART. CART will be addressed in chapter 9 when we use it for regression. 

Figure 3.8 Decision 
tree generated by the 
ID3 algorithm
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 The first two chapters in this book have drawn hard conclusions about data such as
“This data instance is in this class!” What if we take a softer approach, such as “Well,
I’m not quite sure where that data should go. Maybe here? Maybe there?” What if we
assign a probability to a data instance belonging to a given class? This will be the focus
of the next chapter. 



Classifying
 with probability

 theory: naïve Bayes
In the first two chapters we asked our classifier to make hard decisions. We asked
for a definite answer for the question “Which class does this data instance belong
to?” Sometimes the classifier got the answer wrong. We could instead ask the classi-
fier to give us a best guess about the class and assign a probability estimate to that
best guess. 

 Probability theory forms the basis for many machine-learning algorithms, so it’s
important that you get a good grasp on this topic. We touched on probability a bit
in chapter 3 when we were calculating the probability of a feature taking a given

This chapter covers
■ Using probability distributions for classification
■ Learning the naïve Bayes classifier
■ Parsing data from RSS feeds
■ Using naïve Bayes to reveal regional attitudes
61
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value. We calculated the probability by counting the number of times the feature
equals that value divided by the total number of instances in the dataset. We’re going
to expand a little from there in this chapter. 

 We’ll look at some ways probability theory can help us classify things. We start out
with the simplest probabilistic classifier and then make a few assumptions and learn
the naïve Bayes classifier. It’s called naïve because the formulation makes some naïve
assumptions. Don’t worry; you’ll see these in detail in a bit. We’ll take full advantage of
Python’s text-processing abilities to split up a document into a word vector. This will
be used to classify text. We’ll build another classifier and see how it does on a real-
world spam email dataset. We’ll review conditional probability in case you need a
refresher. Finally, we’ll show how you can put what the classifier has learned into
human-readable terms from a bunch of personal ad postings.

4.1 Classifying with Bayesian decision theory

Naïve Bayes is a subset of Bayesian decision theory, so we need to talk about Bayesian
decision theory quickly before we get to naïve Bayes. 

 Assume for a moment that we have a dataset with two classes of data inside. A plot
of this data is shown in figure 4.1. 

Naïve Bayes
Pros: Works with a small amount of data, handles multiple classes

Cons: Sensitive to how the input data is prepared

Works with: Nominal values

Figure 4.1 Two proba-
bility distribu-tions with 
known parameters de-
scribing the distribu-
tion
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We have the data shown in figure 4.1 and we have a friend who read this book; she found
the statistical parameters of the two classes of data. (Don’t worry about how to find the
statistical parameters for this type of data now; we’ll get to that in chapter 10.) We have
an equation for the probability of a piece of data belonging to Class 1 (the circles): p1(x,
y), and we have an equation for the class belonging to Class 2 (the triangles): p2(x, y).
To classify a new measurement with features (x, y), we use the following rules: 

If p1(x, y) > p2(x, y), then the class is 1.
If p2(x, y) > p1(x, y), then the class is 2.

Put simply, we choose the class with the higher probability. That’s Bayesian decision
theory in a nutshell: choosing the decision with the highest probability. Let’s get back
to the data in figure 4.1. If you can represent the data in six floating-point numbers,
and the code to calculate the probability is two lines in Python, which would you
rather do?

1 Use kNN from chapter 1, and do 1,000 distance calculations.
2 Use decision trees from chapter 2, and make a split of the data once along the

x-axis and once along the y-axis. 
3 Compute the probability of each class, and compare them 

The decision tree wouldn’t be very successful, and kNN would require a lot of calcula-
tions compared to the simple probability calculation. Given this problem, the best
choice would be the probability comparison we just discussed. 

 We’re going to have to expand on the p1 and p1 probability measures I provided
here. In order to be able to calculate p1 and p2, we need to discuss conditional proba-
bility. If you feel that you have a good handle on conditional probability, you can skip
the next section. 

4.2 Conditional probability 
Let’s spend a few minutes talking about probability and conditional probability. If
you’re comfortable with the p(x,y|c1) symbol, you may want to skip this section. 

 Let’s assume for a moment that we have a jar containing seven stones. Three of these
stones are gray and four are black, as shown in figure 4.2. If we stick a hand into this jar
and randomly pull out a stone, what are the chances that the stone will be gray? There
are seven possible stones and three are gray, so the probability is 3/7. What is the

Bayes?
This interpretation of probability that we use belongs to the category called Bayesian
probability; it’s popular and it works well. Bayesian probability is named after Thomas
Bayes, who was an eighteenth-century theologian. Bayesian probability allows prior
knowledge and logic to be applied to uncertain statements. There’s another
interpretation called frequency probability, which only draws conclusions from data
and doesn’t allow for logic and prior knowledge. 
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probability of grabbing a black stone? It’s 4/7. We
write the probability of gray as P(gray). We calcu-
lated the probability of drawing a gray stone
P(gray) by counting the number of gray stones
and dividing this by the total number of stones. 

 What if the seven stones were in two buckets?
This is shown in figure 4.3. 

 If you want to calculate the P(gray) or
P(black), would knowing the bucket change the
answer? If you wanted to calculate the probabil-
ity of drawing a gray stone from bucket B, you
could probably figure out how do to that. This is known as conditional probability. We’re
calculating the probability of a gray stone, given that the unknown stone comes from
bucket B. We can write this as P(gray|bucketB), and this would be read as “the prob-
ability of gray given bucket B.” It’s not hard to see that P(gray|bucketA) is 2/4 and
P(gray|bucketB) is 1/3. 

 To formalize how to calculate the conditional probability, we can say

P(gray|bucketB) = P(gray and bucketB)/P(bucketB) 

Let’s see if that makes sense: P(gray and bucketB) = 1/7. This was calculated by taking
the number of gray stones in bucket B and dividing by the total number of stones. Now,
P(bucketB) is 3/7 because there are three stones in bucket B of the total seven stones.
Finally, P(gray|bucketB) = P(gray and bucketB)/P(bucketB) = (1/7) / (3/7) = 1/3.
This formal definition may seem like too much work for this simple example, but it will
be useful when we have more features. It’s also useful to have this formal definition if
we ever need to algebraically manipulate the conditional probability. 

 Another useful way to manipulate conditional probabilities is known as Bayes’ rule.
Bayes’ rule tells us how to swap the symbols in a conditional probability statement. If
we have P(x|c) but want to have P(c|x), we can find it with the following:

Figure 4.3 Seven stones sitting in two buckets

p c x  p x c p c 
p x 

---------------------------=

Figure 4.2 A collection has seven 
stones that are gray or black. If we ran-
domly select a stone from this set, the 
probability it will be a gray stone 
is 3/7. Similarly, the probability of se-
lecting a black stone is 4/7.
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Now that we’ve discussed conditional probability, we need to see how to apply this to
our classifier. The next section will discuss how to use conditional probabilities with
Bayesian decision theory. 

4.3 Classifying with conditional probabilities
In section 4.1, I said that Bayesian decision theory told us to find the two probabilities: 

If p1(x, y) > p2(x, y), then the class is 1.
If p2(x, y) > p1(x, y), then the class is 2.

These two rules don’t tell the whole story. I just left them as p1() and p2() to keep it
as simple as possible. What we really need to compare are p(c1|x,y) and p(c2|x,y).
Let’s read these out to emphasize what they mean. Given a point identified as x,y, what
is the probability it came from class c1? What is the probability it came from class c2?.
The problem is that the equation from our friend is p(x,y|c1), which is not the same.
We can use Bayes’ rule to switch things around. Bayes’ rule is applied to these state-
ments as follows:

With these definitions, we can define the Bayesian classification rule:

If P(c1|x, y) > P(c2|x, y), the class is c1.
If P(c1|x, y) < P(c2|x, y), the class is c2. 

Using Bayes’ rule, we can calculate this unknown from three known quantities. We’ll
soon write some code to calculate these probabilities and classify items using Bayes’ rule.
Now that we’ve introduced a bit of probability theory, and you’ve seen how you can
build a classifier with it, we’re going to put this in action. The next section will intro-
duce a simple yet powerful application of the Bayesian classifier. 

4.4 Document classification with naïve Bayes
One important application of machine learning is automatic document classification.
In document classification, the whole document such as an individual email is our
instance and the features are things in that email. Email is an example that keeps
coming up, but you could classify news stories, message board discussions, filings with
the government, or any type of text. You can look at the documents by the words used
in them and treat the presence or absence of each word as a feature. This would give
you as many features as there are words in your vocabulary. Naïve Bayes—an extension
of the Bayesian classifier introduced in the last section—is a popular algorithm for the
document-classification problem. 

 Earlier I mentioned that we’re going to use individual words as features and look
for the presence or absence of each word. How many features is that? Which (human)
language are we assuming? It may be more than one language. The estimated total

p ci x,y 
p x,y ci p ci 

p x,y 
---------------------------------=
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number of words in the English language is over 500,000.1] To be able to read in Eng-
lish, it’s estimated that you need to understand thousands of words. 

 Let’s assume that our vocabulary is 1,000 words long. In order to generate good
probability distributions, we need enough data samples. Let’s call this N samples. In
previous examples in this book, we had 1,000 examples for the dating site, 200 exam-
ples per digit in the handwriting recognition, and 24 examples for our decision tree.
Having 24 examples was a little bit low, 200 samples was better, and 1,000 samples was
great. In the dating example we had three features. Statistics tells us that if we need N
samples for one feature, we need N10 for 10 features and N1000 for our 1,000-feature
vocabulary. The number will get very large very quickly. 

 If we assume independence among the features, then our N1000 data points get
reduced to 1000*N. By independence I mean statistical independence; one feature or
word is just as likely by itself as it is next to other words. We’re assuming that the word
bacon is as likely to appear next to unhealthy as it is next to delicious. We know this
assumption isn’t true; bacon almost always appears near delicious but very seldom near
unhealthy. This is what is meant by naïve in the naïve Bayes classifier. The other assump-
tion we make is that every feature is equally important. We know that isn’t true either.
If we were trying to classify a message board posting as inappropriate, we probably
don’t need to look at 1,000 words; maybe 10 or 20 will do. Despite the minor flaws of
these assumptions, naïve Bayes works well in practice. 

 At this point you know enough about this topic to get started with some code. If
everything doesn’t make sense right now, it might help to see this in action. In the
next section, we’ll start to implement the naïve Bayes classifier in Python. We’ll go
through everything that’s needed to classify text with Python. 

1 http://hypertextbook.com/facts/2001/JohnnyLing.shtml retrieved October 20, 2010.

General approach to naïve Bayes
1. Collect: Any method. We’ll use RSS feeds in this chapter.

2. Prepare: Numeric or Boolean values are needed. 

3. Analyze: With many features, plotting features isn’t helpful. Looking at histo-
grams is a better idea.

4. Train: Calculate the conditional probabilities of the independent features.

5. Test: Calculate the error rate.

6. Use: One common application of naïve Bayes is document classification. You
can use naïve Bayes in any classification setting. It doesn’t have to be text.



67Classifying text with Python
4.5 Classifying text with Python
In order to get features from our text, we need to split up the text. But how do we do
that? Our features are going to be tokens we get from the text. A token is any combina-
tion of characters. You can think of tokens as words, but we may use things that aren’t
words such as URLs, IP addresses, or any string of characters. We’ll reduce every piece
of text to a vector of tokens where 1 represents the token existing in the document
and 0 represents that it isn’t present. 

 To see this in action, let’s make a quick filter for an online message board that flags
a message as inappropriate if the author uses negative or abusive language. Filtering
out this sort of thing is common because abusive postings make people not come back
and can hurt an online community. We’ll have two categories: abusive and not. We’ll
use 1 to represent abusive and 0 to represent not abusive. 

 First, we’re going to show how to transform lists of text into a vector of numbers.
Next, we’ll show how to calculate conditional probabilities from these vectors. Then,
we’ll create a classifier, and finally, we’ll look at some practical considerations for
implementing naïve Bayes in Python. 

4.5.1 Prepare: making word vectors from text

We’re going to start looking at text in the form of word vectors or token vectors, that
is, transform a sentence into a vector. We consider all the words in all of our docu-
ments and decide what we’ll use for a vocabulary or set of words we’ll consider. Next,
we need to transform each individual document into a vector from our vocabulary. To
get started, open your text editor, create a new file called bayes.py, and add the code
from the following listing. 

def loadDataSet():
    postingList=[['my', 'dog', 'has', 'flea', \
                  'problems', 'help', 'please'],
                 ['maybe', 'not', 'take', 'him', \
                  'to', 'dog', 'park', 'stupid'],
                 ['my', 'dalmation', 'is', 'so', 'cute', \
                   'I', 'love', 'him'],
                 ['stop', 'posting', 'stupid', 'worthless', 'garbage'],
                 ['mr', 'licks', 'ate', 'my', 'steak', 'how',\
                   'to', 'stop', 'him'],
                 ['quit', 'buying', 'worthless', 'dog', 'food', 'stupid']]
    classVec = [0,1,0,1,0,1]    #1 is abusive, 0 not
    return postingList,classVec
                 
def createVocabList(dataSet):
    vocabSet = set([])                         
    for document in dataSet:
        vocabSet = vocabSet | set(document)          
    return list(vocabSet)

def setOfWords2Vec(vocabList, inputSet):

Listing 4.1 Word list to vector function

Create an 
empty set

B

Create the union 
of two setsC
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    returnVec = [0]*len(vocabList)             
    for word in inputSet:
        if word in vocabList:
            returnVec[vocabList.index(word)] = 1
        else: print "the word: %s is not in my Vocabulary!" % word
    return returnVec

The first function creates some example data to experiment with. The first variable
returned from loadDatSet() is a tokenized set of documents from a Dalmatian (spot-
ted breed of dog) lovers message board. The text has been broken up into a set of
tokens. Punctuation has been removed from this text as well. We’ll return to text pro-
cessing later. The second variable of loadDatSet() returns a set of class labels. Here
you have two classes, abusive and not abusive. The text has been labeled by a
human and will be used to train a program to automatically detect abusive posts. 

 Next, the function createVocabList() will create a list of all the unique words in all
of our documents. To create this unique list you use the Python set data type. You can
give a list of items to the set constructor, and it will only return a unique list. First, you
create an empty set. B Next, you append the set with a new set from each document.
C The | operator is used for union of two sets; recall that this is the bitwise OR operator
from C. Bitwise OR and set union also use the same symbols in mathematical notation. 

 Finally, after you have our vocabulary list, you can use the function
setOfWords2Vec(), which takes the vocabulary list and a document and outputs a vec-
tor of 1s and 0s to represent whether a word from our vocabulary is present or not in
the given document. You then create a vector the same length as the vocabulary list and
fill it up with 0s. D Next, you go through the words in the document, and if the word
is in the vocabulary list, you set its value to 1 in the output vector. If everything goes well,
you shouldn’t need to test if a word is in vocabList, but you may use this later. 

 Now let’s look at these functions in action. Save bayes.py, and enter the following
into your Python shell: 

>>> import bayes
>>> listOPosts,listClasses = bayes.loadDataSet()
>>> myVocabList = bayes.createVocabList(listOPosts)
>>> myVocabList
['cute', 'love', 'help', 'garbage', 'quit', 'I', 'problems', 'is', 'park', 
'stop', 'flea', 'dalmation', 'licks', 'food', 'not', 'him', 'buying', 
'posting', 'has', 'worthless', 'ate', 'to', 'maybe', 'please', 'dog', 
'how', 'stupid', 'so', 'take', 'mr', 'steak', 'my']

If you examine this list, you’ll see that there are no repeated words. The list is
unsorted, and if you want to sort it, you can do that later. 

 Let’s look at the next function setOfWords2Vec():

>>> bayes.setOfWords2Vec(myVocabList, listOPosts[0])
[0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 
0, 0, 0, 0, 0, 0, 1]
>>> bayes.setOfWords2Vec(myVocabList, listOPosts[3])
[0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 
0, 1, 0, 0, 0, 0, 0]

Create a vector 
of all 0sD
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This has taken our vocabulary list or list of all the words you’d like to examine and cre-
ated a feature for each of them. Now when you apply a given document (a posting to
the Dalmatian site), it will be transformed into a word vector. Check to see if this makes
sense. What’s the word at index 2 in myVocabList? It should be help. This word should
be in our first document. Now check to see that it isn’t in our fourth document. 

4.5.2 Train: calculating probabilities from word vectors

Now that you’ve seen how to convert from words to numbers, let’s see how to calculate
the probabilities with these numbers. You know whether a word occurs in a document,
and you know what class the document belongs to. Do you remember Bayes’ rule
from section 3.2? It’s rewritten here, but I’ve changed the x,y to w. The bold type
means that it’s a vector; that is, we have many values, in our case as many values as
words in our vocabulary. 

We’re going to use the right side of the formula to get the value on the left. We’ll do
this for each class and compare the two probabilities. How do we get the stuff on the
right? We can calculate p(ci) by adding up how many times we see class i (abusive
posts or non-abusive posts) and then dividing by the total number of posts. How can
we get p(w|ci)? This is where our naïve assumption comes in. If we expand w into
individual features, we could rewrite this as p(w0,w1,w2..wN|ci). Our assumption that
all the words were independently likely, and something called conditional indepen-
dence, says we can calculate this probability as p(w0|ci)p(w1|ci)p(w2|ci)...p(wN|ci).
This makes our calculations a lot easier. 

 Pseudocode for this function would look like this:

Count the number of documents in each class
for every training document:

 for each class:
    if a token appears in the document ➞ increment the count for that token
     increment the count for tokens
 for each class:
    for each token:
         divide the token count by the total token count to get conditional probabilities
 return conditional probabilities for each class

The code in the following listing will do these calculations for us. Open your text edi-
tor and insert this code into bayes.py. This function uses some functions from NumPy,
so make sure you add from numpy import * to the top of bayes.py. 

def trainNB0(trainMatrix,trainCategory):
    numTrainDocs = len(trainMatrix)
    numWords = len(trainMatrix[0])

Listing 4.2 Naïve Bayes classifier training function 

p ci w 
p w ci p ci 

p w 
------------------------------=
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    pAbusive = sum(trainCategory)/float(numTrainDocs)
    p0Num = zeros(numWords); p1Num = zeros(numWords) 
    p0Denom = 0.0; p1Denom = 0.0                            
    for i in range(numTrainDocs):
        if trainCategory[i] == 1:
            p1Num += trainMatrix[i]            
            p1Denom += sum(trainMatrix[i])            
        else:
            p0Num += trainMatrix[i]
            p0Denom += sum(trainMatrix[i])
    p1Vect = p1Num/p1Denom          #change to log()      
    p0Vect = p0Num/p0Denom          #change to log()
    return p0Vect,p1Vect,pAbusive

The function in listing 4.2 takes a matrix of documents, trainMatrix, and a vector
with the class labels for each of the documents, trainCategory. The first thing you do
is calculate the probability the document is an abusive document (class=1). This is
P(1) from above; because this is a two-class problem, you can get P(0) by 1-P(1). For
more than a two-class problem, you’d need to modify this a little. 

 You initialize the numerator and denominator for the p(wi|c1) and p(wi|c0) calcu-
lations. B Since you have so many ws, you’re going to use NumPy arrays to calculate
these values quickly. The numerator is a NumPy array with the same number of ele-
ments as you have words in your vocabulary. In the for loop you loop over all the
documents in trainMatrix, or our training set. Every time a word appears in a docu-
ment, the count for that word (p1Num or p0Num) gets incremented, and the total num-
ber of words for a document gets summed up over all the documents. C You do this
for both classes. 

 Finally, you divide every element by the total number of words for that class. D
This is done compactly in NumPy by dividing an array by a float. This can’t be done
with regular Python lists. Try it out to see for yourself. Finally, the two vectors and one
probability are returned. 

 Let’s try this out. After you’ve added the code from listing 4.2 to bayes.py, open
your Python shell and enter the following:

>>> from numpy import *
>>> reload(bayes)
<module 'bayes' from 'bayes.py'>
>>> listOPosts,listClasses = bayes.loadDataSet()

This loads the data from preloaded values. 
>>> myVocabList = bayes.createVocabList(listOPosts)

You’ve now created a list of all our words in myVocabList.
>>> trainMat=[]
>>> for postinDoc in listOPosts:
...     trainMat.append(bayes.setOfWords2Vec(myVocabList, postinDoc))
...

This for loop populates the trainMat list with word vectors. Now let’s get the proba-
bilities of being abusive and the two probability vectors: 

>>> p0V,p1V,pAb=bayes.trainNB0(trainMat,listClasses)
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Let’s look inside each of these variables: 

>>> pAb
0.5
This is just the probability of any document being abusive. 
>>> p0V
array([ 0.04166667,  0.04166667,  0.04166667,  0.        ,  0.        ,
                    .
                    .
        0.04166667,  0.        ,  0.04166667,  0.        ,  0.04166667,
        0.04166667,  0.125     ])
>>> p1V
array([ 0.        ,  0.        ,  0.        ,  0.05263158,  0.05263158,
                            .
                            .
        0.        ,  0.15789474,  0.        ,  0.05263158,  0.        ,
        0.        ,  0.        ])

First, you found the probability that a document was abusive: pAb; this is 0.5, which is
correct. Next, you found the probabilities of the words from our vocabulary given
the document class. Let’s see if this makes sense. The first word in our vocabulary is
cute. This appears once in the 0 class and never in the 1 class. The probabilities
are 0.04166667 and 0.0. This makes sense. Let’s look for the largest probability.
That’s 0.15789474 in the P(1) array at index 21. If you look at the word in myVocabList
at index 26, you’ll see that it’s the word stupid. This tells you that the word stupid is most
indicative of a class 1 (abusive). 

 Before we can go on to classification with this, we need to address a few flaws in the
previous function. 

4.5.3 Test: modifying the classifier for real-world conditions 

When we attempt to classify a document, we multiply a lot of probabilities together to
get the probability that a document belongs to a given class. This will look something
like p(w0|1)p(w1|1)p(w2|1). If any of these numbers are 0, then when we multiply
them together we get 0. To lessen the impact of this, we’ll initialize all of our occur-
rence counts to 1, and we’ll initialize the denominators to 2. 

 Open bayes.py in your text editor, and change lines 4 and 5 of trainNB0() to

p0Num = ones(numWords); p1Num = ones(numWords) 
p0Denom = 2.0; p1Denom = 2.0

Another problem is underflow: doing too many multiplications of small numbers.
When we go to calculate the product p(w0|ci)p(w1|ci)p(w2|ci)...p(wN|ci) and many
of these numbers are very small, we’ll get underflow, or an incorrect answer. (Try to
multiply many small numbers in Python. Eventually it rounds off to 0.) One solution
to this is to take the natural logarithm of this product. If you recall from algebra,
ln(a*b) = ln(a)+ln(b). Doing this allows us to avoid the underflow or round-off
error problem. Do we lose anything by using the natural log of a number rather than
the number itself? The answer is no. Figure 4.4 plots two functions, f(x) and
ln(f(x)). If you examine both of these plots, you’ll see that they increase and
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decrease in the same areas, and they have their peaks in the same areas. Their values
are different, but that’s fine. To modify our classifier to account for this, modify the
last two lines before the return to look like this:

p1Vect = log(p1Num/p1Denom)
p0Vect = log(p0Num/p0Denom) 

We’re now ready to build the full classifier. It’s quite simple when we’re using vector
math with NumPy. Open your text editor and add the code from the following listing
to bayes.py. 

def classifyNB(vec2Classify, p0Vec, p1Vec, pClass1):
    p1 = sum(vec2Classify * p1Vec) + log(pClass1)         
    p0 = sum(vec2Classify * p0Vec) + log(1.0 - pClass1)
    if p1 > p0:
        return 1
    else: 
        return 0

def testingNB():
    listOPosts,listClasses = loadDataSet()
    myVocabList = createVocabList(listOPosts)
    trainMat=[]
    for postinDoc in listOPosts:
        trainMat.append(setOfWords2Vec(myVocabList, postinDoc))

Listing 4.3 Naïve Bayes classify function

Figure 4.4 Arbitrary functions f(x) and ln(f(x)) increasing together. This shows 
that the natural log of a function can be used in place of a function when you’re interested 
in finding the maximum value of that function.

Element-wise 
multiplicationB
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    p0V,p1V,pAb = trainNB0(array(trainMat),array(listClasses))
    testEntry = ['love', 'my', 'dalmation']
    thisDoc = array(setOfWords2Vec(myVocabList, testEntry))
    print testEntry,'classified as: ',classifyNB(thisDoc,p0V,p1V,pAb)
    testEntry = ['stupid', 'garbage']
    thisDoc = array(setOfWords2Vec(myVocabList, testEntry))
    print testEntry,'classified as: ',classifyNB(thisDoc,p0V,p1V,pAb)

The code in listing 4.3 takes four inputs: a vector to classify called vec2Classify and three
probabilities calculated in the function trainNB0(). You use NumPy arrays to multiply
two vectors. B The multiplication is element–wise; that is, you multiply the first elements
of both vectors, then the second elements, and so on. You next add up the values for all
of the words in our vocabulary and add this to the log probability of the class. Finally,
you see which probability is greater and return the class label. That isn’t too hard, is it?

 The second function in listing 4.3 is a convenience function to wrap up everything
properly and save you some time from typing all the code from section 4.3.1. 

 Let’s try it out. After you’ve added the code from listing 4.3, enter the following
into your Python shell:

>>> reload(bayes)
<module 'bayes' from 'bayes.pyc'>
>>>bayes.testingNB()
['love', 'my', 'dalmation'] classified as:  0
['stupid', 'garbage'] classified as:  1

Change the text and see what the classifier spits out. This example is overly simplistic,
but it demonstrates how the naïve Bayes classifier works. We’ll next make a few
changes to it so that it will work even better. 

4.5.4 Prepare: the bag-of-words document model

Up until this point we’ve treated the presence or absence of a word as a feature. This
could be described as a set-of-words model. If a word appears more than once in a
document, that might convey some sort of information about the document over just
the word occurring in the document or not. This approach is known as a bag-of-words
model. A bag of words can have multiple occurrences of each word, whereas a set of
words can have only one occurrence of each word. To accommodate for this we need
to slightly change the function setOfWords2Vec() and call it bagOfWords2VecMN(). 

 The code to use the bag-of-words model is given in the following listing. It’s nearly
identical to the function setOfWords2Vec() listed earlier, except every time it encoun-
ters a word, it increments the word vector rather than setting the word vector to 1 for
a given index. 

def bagOfWords2VecMN(vocabList, inputSet):
    returnVec = [0]*len(vocabList)
    for word in inputSet:
        if word in vocabList:
            returnVec[vocabList.index(word)] += 1
    return returnVec

Listing 4.4 Naïve Bayes bag-of-words model
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Now that we have a classifier built, we should be able to put this into action classifying
spam. 

4.6 Example: classifying spam email with naïve Bayes
In the previous simple example we imported a list of strings. To use naïve Bayes on
some real-life problems we’ll need to be able to go from a body of text to a list of
strings and then a word vector. In this example we’re going to visit the famous use of
naïve Bayes: email spam filtering. Let’s first look at how we’d approach this problem
with our general framework. 

First, we’ll create some code to parse text into tokens. Next, we’ll write a function that
ties together the parsing and the classification code from earlier in this chapter. This
function will also test the classifier and give us an error rate. 

4.6.1 Prepare: tokenizing text 

The previous section showed how to create word vectors and use naïve Bayes to classify
with these word vectors. The word vectors in the previous section came premade. Let’s
see how to create your own lists of words from text documents. 

 If you have a text string, you can split it using the Python string .split() method.
Let’s see this in action. Enter the following into your Python shell: 

>>> mySent='This book is the best book on Python or M.L. I have ever laid 

➥ eyes upon.'
>>> mySent.split()
['This', 'book', 'is', 'the', 'best', 'book', 'on', 'Python', 'or', 'M.L.',
 'I', 'have', 'ever', 'laid', 'eyes', 'upon.']

That works well, but the punctuation is considered part of the word. You can use regu-
lar expressions to split up the sentence on anything that isn’t a word or number:

>>> import re
>>> regEx = re.compile('\\W*')
>>> listOfTokens = regEx.split(mySent)

Example: using naïve Bayes to classify email
1. Collect: Text files provided.

2. Prepare: Parse text into token vectors.

3. Analyze: Inspect the tokens to make sure parsing was done correctly. 

4. Train: Use trainNB0() that we created earlier. 

5. Test: Use classifyNB() and create a new testing function to calculate the error
rate over a set of documents. 

6. Use: Build a complete program that will classify a group of documents and print
misclassified documents to the screen.
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>>> listOfTokens
['This', 'book', 'is', 'the', 'best', 'book', 'on', 'Python', 'or', 'M', 
'L', '', 'I', 'have', 'ever', 'laid', 'eyes', 'upon', ''] 

Now you have a list of words. But you have some empty strings you need to get rid of.
You can count the length of each string and return only the items greater than 0. 

>>> [tok for tok in listOfTokens if len(tok) > 0]

Finally, the first word in the sentence is capitalized. If you were looking at sentences,
this would be helpful. You’re just looking at a bag of words, so you want all the words
to look the same whether they’re in the middle, end, or beginning of a sentence.
Python has built-in methods for converting strings to all lowercase (.lower()) or all
uppercase (.upper()). This will solve our problem. Let’s change our list comprehen-
sion to the following:

>>> [tok.lower() for tok in listOfTokens if len(tok) > 0]
['this', 'book', 'is', 'the', 'best', 'book', 'on', 'python', 'or', 'm', 
'l', 'i', 'have', 'ever', 'laid', 'eyes', 'upon']

Now let’s see this in action with a full email from our email dataset. The email dataset
is in a folder called email, with two subfolders called spam and ham. 

>>> emailText = open('email/ham/6.txt').read()
>>> listOfTokens=regEx.split(emailText)

The file named 6.txt in the ham folder is quite long. It’s from a company
telling me that they no longer support something. One thing to notice is that
we now have words like en and py because they were originally part of a URL:
/answer.py?hl=en&answer=174623. When we split the URL we got a lot of words. We’d
like to get rid of these words, so we’ll filter out words with less than three characters.
We used one blanket text-parsing rule for this example. In a real-world parsing pro-
gram, you should have more advanced filters that look for things like HTML and URIs.
Right now, a URI will wind up as one of our words; www.whitehouse.gov will wind up
as three words. Text parsing can be an involved process. We’ll create a bare-bones
function, and you can modify as you see fit. 

4.6.2 Test: cross validation with naïve Bayes 

Let’s put this text parser to work with a whole classifier. Open your text editor and add
the code from this listing to bayes.py.

def textParse(bigString):    
    import re
    listOfTokens = re.split(r'\W*', bigString)
    return [tok.lower() for tok in listOfTokens if len(tok) > 2]

def spamTest():
    docList=[]; classList = []; fullText =[]
    for i in range(1,26):

Listing 4.5 File parsing and full spam test functions
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        wordList = textParse(open('email/spam/%d.txt' % i).read())  
        docList.append(wordList)                                    
        fullText.extend(wordList)                                   
        classList.append(1)                                         
        wordList = textParse(open('email/ham/%d.txt' % i).read())   
        docList.append(wordList)                                    
        fullText.extend(wordList)                                   
        classList.append(0)
    vocabList = createVocabList(docList)
    trainingSet = range(50); testSet=[] 
    for i in range(10):                                    
        randIndex = int(random.uniform(0,len(trainingSet)))   
        testSet.append(trainingSet[randIndex])             
        del(trainingSet[randIndex])                        
    trainMat=[]; trainClasses = []
    for docIndex in trainingSet:
        trainMat.append(setOfWords2Vec(vocabList, docList[docIndex]))
        trainClasses.append(classList[docIndex])
    p0V,p1V,pSpam = trainNB0(array(trainMat),array(trainClasses))
    errorCount = 0
    for docIndex in testSet:                                           
        wordVector = setOfWords2Vec(vocabList, docList[docIndex])      
        if classifyNB(array(wordVector),p0V,p1V,pSpam) != 

classList[docIndex]:                                              
            errorCount += 1
    print 'the error rate is: ',float(errorCount)/len(testSet)

The first function, textParse(), takes a big string and parses out the text into a list of
strings. It eliminates anything under two characters long and converts everything to
lowercase. There’s a lot more parsing you could do in this function, but it’s good
enough for our purposes. 

 The second function, spamTest(), automates the naïve Bayes spam classifier. You
load the spam and ham text files into word lists. B Next, you create a test set and a
training set. The emails that go into the test set and the training set will be randomly
selected. In this example, we have 50 emails total (not very many). Ten of the emails
are randomly selected to be used in the test set. The probabilities will be computed
from only the documents in the training set. The Python variable trainingSet is a list
of integers from 0 to 49. Next, you randomly select 10 of those files. C As a number is
selected, it’s added to the test set and removed from the training set. This randomly
selecting a portion of our data for the training set and a portion for the test set is
called hold-out cross validation. You’ve done only one iteration, but to get a good esti-
mate of our classifier’s true error, you should do this multiple times and take the aver-
age error rate. 

 The next for loop iterates through all the items in the test set and creates word vec-
tors from the words of each email and the vocabulary using setOfWords2Vec(). These
words are used in traindNB0() to calculate the probabilities needed for classification.
You then iterate through the test set and classify each email in the test set. D If the
email isn’t classified correctly, the error count is incremented, and finally the total
percentage error is reported. 
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text files
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 Give this a try. After you’ve entered the code from listing 4.5, enter the following
into your Python shell:

>>> bayes.spamTest()
the error rate is:  0.0
>>> bayes.spamTest()
classification error ['home', 'based', 'business', 'opportunity', 
'knocking', 'your', 'door', 'don', 'rude', 'and', 'let', 'this', 'chance', 
'you', 'can', 'earn', 'great', 'income', 'and', 'find', 'your', 
'financial', 'life', 'transformed', 'learn', 'more', 'here', 'your', 
'success', 'work', 'from', 'home', 'finder', 'experts']
the error rate is:  0.1

The function spamTest() displays the error rate from 10 randomly selected emails.
Since these are randomly selected, the results may be different each time. If there’s an
error, it will display the word list for that document to give you an idea of what was
misclassified. To get a good estimate of the error rate, you should repeat this proce-
dure multiple times, say 10, and average the results. I did that and got an average
error rate of 6%. 

 The error that keeps appearing is a piece of spam that was misclassified as ham. It’s
better that a piece of spam sneaks through the filter than a valid email getting shoved
into the spam folder. There are ways to bias the classifier to not make these errors, and
we’ll talk about these in chapter 7. 

 Now that we’ve used naïve Bayes to classify documents, we’re going to look at
another use for it. The next example will show how to interpret the knowledge
acquired from training the naïve Bayes classifier. 

4.7 Example: using naïve Bayes to reveal local attitudes 
from personal ads
Our next and final example is a fun one. We looked at two practical applications of the
naïve Bayes classifier. The first one was to filter out malicious posts on a website, and the
second was to filter out spam in email. There are a number of other uses for classifica-
tion. I’ve seen someone take the naïve Bayes classifier and train it with social network
profiles of women he liked and women he didn’t like and then use the classifier to test
how he would like an unknown person. The range of possibilities is limited only by your
imagination. It’s been shown that the older someone is, the better their vocabulary
becomes. Could we guess a person’s age by the words they use? Could we guess other
factors about the person? Advertisers would love to know specific demographics about
a person to better target the products they promote. Where would you get such training
material? The internet abounds with training material. Almost every imaginable niche
has a dedicated community where people have identified themselves as belonging to
that community. The Dalmatian owners’ site used in section 4.3.1 is a great example. 

 In this last example, we’ll take some data from personals ads from multiple people
for two different cities in the United States. We’re going to see if people in different
cities use different words. If they do, what are the words they use? Can the words peo-
ple use give us some idea what’s important to people in different cities? 
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We’re going to use the city that each ad comes from to train a classifier and then see
how well it does. Finally, we’re not going to use this to classify anything. We’re going to
look at the words and conditional probability scores to see if we can learn anything
specific to one city over another.

4.7.1 Collect: importing RSS feeds

The first thing we’re going to need to do is use Python to download the text. Luckily,
the text is readily available in RSS form. Now all we need is an RSS reader. Universal
Feed Parser is the most common RSS library for Python. 

 You can view documentation here: http://code.google.com/p/feedparser/. You
should be able to install it like other Python packages, by unzipping the downloaded
package, changing your directory to the unzipped package, and then typing >>python
setup.py install at the command prompt. 

 We’re going to use the personal ads from Craigslist, and hopefully we’ll stay Terms
Of Service compliant. To open the RSS feed from Craigslist, enter the following at
your Python shell:

>>> import feedparser
>>>ny=feedparser.parse('http://newyork.craigslist.org/stp/index.rss')

I’ve decided to use the step, or strictly platonic, section from Craigslist because other
sections can get a little lewd. You can play around with the feed and check out the
great documentation at feedparser.org. To access a list of all the entries type

>>> ny['entries']
>>> len(ny['entries'])
100

You can create a function similar to spamTest() to automate your testing. Open your
text editor and enter the code from the following listing.

Example: using naïve Bayes to find locally used words
1. Collect: Collect from RSS feeds. We’ll need to build an interface to the RSS feeds.

2. Prepare: Parse text into token vectors.

3. Analyze: Inspect the tokens to make sure parsing was done correctly. 

4. Train: Use trainNB0() that we created earlier. 

5. Test: We’ll look at the error rate to make sure this is actually working. We can
make modifications to the tokenizer to improve the error rate and results.

6. Use: We’ll build a complete program to wrap everything together. It will display
the most common words given in two RSS feeds.
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def calcMostFreq(vocabList,fullText):      
    import operator                               
    freqDict = {}                          
    for token in vocabList:                
        freqDict[token]=fullText.count(token)
    sortedFreq = sorted(freqDict.iteritems(), key=operator.itemgetter(1),\
                 reverse=True) 
    return sortedFreq[:30]

def localWords(feed1,feed0):
    import feedparser
    docList=[]; classList = []; fullText =[]
    minLen = min(len(feed1['entries']),len(feed0['entries']))
    for i in range(minLen):
        wordList = textParse(feed1['entries'][i]['summary'])  
        docList.append(wordList)
        fullText.extend(wordList)
        classList.append(1) 
        wordList = textParse(feed0['entries'][i]['summary'])
        docList.append(wordList)
        fullText.extend(wordList)
        classList.append(0)
    vocabList = createVocabList(docList)
    top30Words = calcMostFreq(vocabList,fullText)           
    for pairW in top30Words:                                   
        if pairW[0] in vocabList: vocabList.remove(pairW[0])
    trainingSet = range(2*minLen); testSet=[] 
    for i in range(20):
        randIndex = int(random.uniform(0,len(trainingSet)))
        testSet.append(trainingSet[randIndex])
        del(trainingSet[randIndex])  
    trainMat=[]; trainClasses = []
    for docIndex in trainingSet:
        trainMat.append(bagOfWords2VecMN(vocabList, docList[docIndex]))
        trainClasses.append(classList[docIndex])
    p0V,p1V,pSpam = trainNB0(array(trainMat),array(trainClasses))
    errorCount = 0
    for docIndex in testSet: 
        wordVector = bagOfWords2VecMN(vocabList, docList[docIndex])
        if classifyNB(array(wordVector),p0V,p1V,pSpam) != \
            classList[docIndex]:
            errorCount += 1
    print 'the error rate is: ',float(errorCount)/len(testSet)
    return vocabList,p0V,p1V

The code in listing 4.6 is similar to the spamTest() function in listing 4.5 with some
added features. One helper function is included in listing 4.6; the function is called
calcMostFreq(). B The helper function goes through every word in the vocabulary
and counts how many times it appears in the text. The dictionary is then sorted by fre-
quency from highest to lowest, and the top 100 words are returned. You’ll see why this
is important in a second.

 The next function, localWords(), takes two feeds as arguments. The feeds should
be loaded outside this function. The reason for doing this is that feeds can change

Listing 4.6 RSS feed classifier and frequent word removal functions
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over time, and if you want to make some changes to our code to see how it performs,
you should have the same input data. Reloading the feeds will give you new data, and
you won’t be sure whether our code changed or new data changed our results. The
function localWords() is mostly the same as spamTest() from listing 4.5. The differ-
ences are that you access feeds C instead of files, and you call calcMostFreq() to get
the top 100 words and then remove these words. D The rest of the function is similar
to spamTest(), except the last line returns values that you’ll use later. 

 You can comment out the three lines that removed the most frequently used words
and see the performance before and after. D When I did this, I had an error rate of 54%
without these lines and 70% with the lines included. An interesting observation is that
the top 30 words in these posts make up close to 30% of all the words used. The size of
the vocabList was ~3000 words when I was testing this. A small percentage of the total
words makes up a large portion of the text. The reason for this is that a large percentage
of language is redundancy and structural glue. Another common approach is to not just
remove the most common words but to also remove this structural glue from a pre-
defined list. This is known as a stop word list, and there are a number of sources of this
available. (At the time of writing, http://www.ranks.nl/resources/stopwords.html has
a good list of stop words in multiple languages.) 

 After you’ve entered the code from listing 4.6 into bayes.py, you can test it in
Python by typing in the following:

>>> reload(bayes)
<module 'bayes' from 'bayes.py'>
>>>ny=feedparser.parse('http://newyork.craigslist.org/stp/index.rss')
>>>sf=feedparser.parse('http://sfbay.craigslist.org/stp/index.rss')
>>> vocabList,pSF,pNY=bayes.localWords(ny,sf)
the error rate is:  0.1
>>> vocabList,pSF,pNY=bayes.localWords(ny,sf)
the error rate is:  0.35

To get a good estimate of the error rate, you should do multiple trials of this and take
the average. The error rate here is much higher than for the spam testing. That is not
a huge problem because we’re interested in the word probabilities, not actually classi-
fying anything. You can play around the number of words removed by caclMostFreq()
and see how the error rate changes. 

4.7.2 Analyze: displaying locally used words

You can sort the vectors pSF and pNY and then print out the words from vocabList at
the same index. There’s one last piece of code that does this for you. Open bayes.py
one more time and enter the code from the following listing. 

def getTopWords(ny,sf):
    import operator
    vocabList,p0V,p1V=localWords(ny,sf)
    topNY=[]; topSF=[]

Listing 4.7 Most descriptive word display function
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    for i in range(len(p0V)):
        if p0V[i] > -6.0 : topSF.append((vocabList[i],p0V[i]))
        if p1V[i] > -6.0 : topNY.append((vocabList[i],p1V[i]))
    sortedSF = sorted(topSF, key=lambda pair: pair[1], reverse=True)
    print "SF**SF**SF**SF**SF**SF**SF**SF**SF**SF**SF**SF**SF**SF**
    for item in sortedSF:
        print item[0]
    sortedNY = sorted(topNY, key=lambda pair: pair[1], reverse=True)
    print "NY**NY**NY**NY**NY**NY**NY**NY**NY**NY**NY**NY**NY**NY **"
    for item in sortedNY:
        print item[0]

The function getTopWords() in listing 4.7 takes the two feeds and first trains and tests
the naïve Bayes classifier. The probabilities used are returned. Next, you create two
lists and store tuples inside the lists. Rather than just return the top X words, you
return all words above a certain threshold. The tuples are then sorted by their condi-
tional probabilities. 

 To see this in action, enter the following in your Python shell after you’ve saved
bayes.py. 

>>> reload(bayes)
<module 'bayes' from 'bayes.pyc'>
>>> bayes.getTopWords(ny,sf)
the error rate is:  0.2
SF**SF**SF**SF**SF**SF**SF**SF**SF**SF**SF**SF**SF**SF**SF**SF**
love
time
will
there
hit
send
francisco
female
NY**NY**NY**NY**NY**NY**NY**NY**NY**NY**NY**NY**NY**NY**NY**NY**
friend
people
will
single
sex
female
night
420
relationship
play
hope

The words from this output are entertaining. One thing to note: a lot of stop words
appear in the output. It would be interesting to see how things would change if
you removed the fixed stop words. In my experience, the classification error will also
go down. 
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4.8 Summary
Using probabilities can sometimes be more effective than using hard rules for classifi-
cation. Bayesian probability and Bayes’ rule gives us a way to estimate unknown proba-
bilities from known values. 

 You can reduce the need for a lot of data by assuming conditional independence
among the features in your data. The assumption we make is that the probability of
one word doesn’t depend on any other words in the document. We know this assump-
tion is a little simple. That’s why it’s known as naïve Bayes. Despite its incorrect
assumptions, naïve Bayes is effective at classification. 

 There are a number of practical considerations when implementing naïve Bayes in
a modern programming language. Underflow is one problem that can be addressed
by using the logarithm of probabilities in your calculations. The bag-of-words model is
an improvement on the set-of-words model when approaching document classifica-
tion. There are a number of other improvements, such as removing stop words, and
you can spend a long time optimizing a tokenizer. 

 The probability theory you learned in this chapter will be used again later in the
book, and this chapter was a great introduction to the full power of Bayesian probabil-
ity theory. We’re going to take a break from probability theory. You’ll next see a classi-
fication method called logistic regression and some optimization algorithms. 



Logistic regression
This is an exciting chapter because this is the first chapter where we encounter
optimization algorithms. If you think about it, many of the things we do in life are
optimization problems. Some examples of optimization from daily life are these:
How do we get from point A to point B in the least amount of time? How do we
make the most money doing the least amount of work? How do we design an
engine to produce the most horsepower while using the least amount of fuel? The
things we can do with optimization are powerful. I’ll introduce a few optimization
algorithms to train a nonlinear function for classification. 

 If you’re not familiar with regression, don’t worry. We’re going to cover that in
the next part of this book, which starts with chapter 8. Perhaps you’ve seen some
data points and then someone fit a line called the best-fit line to these points; that’s
regression. What happens in logistic regression is we have a bunch of data, and with

This chapter covers
■ The sigmoid function and the logistic 

regression classifier
■ Our first look at optimization
■ The gradient descent optimization algorithm
■ Dealing with missing values in the our data
83
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the data we try to build an equation to do classification for us. The exact math behind
this you’ll see in the next part of the book, but the regression aspects means that we
try to find a best-fit set of parameters. Finding the best fit is similar to regression, and
in this method it’s how we train our classifier. We’ll use optimization algorithms to
find these best-fit parameters. This best-fit stuff is where the name regression comes
from. We’ll talk about the math behind making this a classifier that puts out one of
two values.

In this chapter you’ll first learn what logistic regression is, and then you’ll learn some
optimization algorithms. In our study of optimization algorithms, you’ll learn gradi-
ent ascent, and then we’ll look at a modified version called stochastic gradient ascent.
These optimization algorithms will be used to train our classifier. Next, you’ll see logis-
tic regression in action predicting whether a horse with an illness will live or die. 

5.1 Classification with logistic regression and the sigmoid 
function: a tractable step function

We’d like to have an equation we can give all of our features and it will predict the
class. In the two-class case, the function will spit out a 0 or a 1. Perhaps you’ve seen this

General approach to logistic regression
1. Collect: Any method.

2. Prepare: Numeric values are needed for a distance calculation. A structured data
format is best.

3. Analyze: Any method.

4. Train: We’ll spend most of the time training, where we try to find optimal coeffi-
cients to classify our data.

5. Test: Classification is quick and easy once the training step is done.

6. Use: This application needs to get some input data and output structured nu-
meric values. Next, the application applies the simple regression calculation on
this input data and determines which class the input data should belong to.
The application then takes some action on the calculated class.

Logistic regression
Pros: Computationally inexpensive, easy to implement, knowledge representation
easy to interpret 

Cons: Prone to underfitting, may have low accuracy

Works with: Numeric values, nominal values
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before; it’s called the Heaviside step function, or sometimes just the step function.
The problem with the Heaviside step function is that at the point where it steps from 0
to 1, it does so instantly. This instantaneous step is sometimes difficult to deal with.
There’s another function that behaves in a similar fashion, but it’s much easier to deal
with mathematically. This function is called the sigmoid. The sigmoid is given by the
following equation:

Two plots of the sigmoid are given in figure 5.1. At 0 the value of the sigmoid is 0.5. For
increasing values of x, the sigmoid will approach 1, and for decreasing values of x, the
sigmoid will approach 0. On a large enough scale (the bottom frame of figure 5.1), the
sigmoid looks like a step function. 

 For the logistic regression classifier we’ll take our features and multiply each one
by a weight and then add them up. This result will be put into the sigmoid, and we’ll
get a number between 0 and 1. Anything above 0.5 we’ll classify as a 1, and anything
below 0.5 we’ll classify as a 0. You can also think of logistic regression as a proba-
bility estimate. 

 z  1

1 e z–
+

-----------------=

Figure 5.1 A plot of the sigmoid function on two scales; the top plot shows the sigmoid 
from -5 to 5, and it exhibits a smooth transition. The bottom plot shows a much larger 
scale where the sigmoid appears similar to a step function at x=0.
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The question now becomes, what are the best weights, or regression coefficients to
use, and how do we find them? The next section will address this question. 

5.2 Using optimization to find the best regression coefficients
The input to the sigmoid function described will be z, where z is given by the following: 

In vector notation we can write this as z=wTx. All that means is that we have two vectors
of numbers and we’ll multiply each element and add them up to get one number. The
vector x is our input data, and we want to find the best coefficients w, so that this clas-
sifier will be as successful as possible. In order to do that, we need to consider some
ideas from optimization theory. 

 We’ll first look at optimization with gradient ascent. We’ll then see how we can use
this method of optimization to find the best parameters to model our dataset. Next,
we’ll show how to plot the decision boundary generated with gradient ascent. This will
help you visualize the successfulness of gradient ascent. Next, you’ll learn about sto-
chastic gradient ascent and how to make modifications to yield better results. 

5.2.1 Gradient ascent 

The first optimization algorithm we’re going to look at is called gradient ascent. Gra-
dient ascent is based on the idea that if we want to find the maximum point on a func-
tion, then the best way to move is in the direction of the gradient. We write the gradient
with the symbol and the gradient of a function f(x,y) is given by the equation

This is one of the aspects of machine learning that can be confusing. The math isn’t

difficult. You just need to keep track of what symbols mean. So this gradient means

that we’ll move in the x direction by amount  and in the y direction by amount

. The function f(x,y) needs to be defined and differentiable around the points

where it’s being evaluated. An example of this is shown in figure 5.2. 

 The gradient ascent algorithm shown in figure 5.2 takes a step in the direction
given by the gradient. The gradient operator will always point in the direction of the
greatest increase. We’ve talked about direction, but I didn’t mention anything to do
with magnitude of movement. The magnitude, or step size, we’ll take is given by the
parameter . In vector notation we can write the gradient ascent algorithm as

This step is repeated until we reach a stopping condition: either a specified number of
steps or the algorithm is within a certain tolerance margin. 

z w0x0 w1x1 w2x2  wnxn+ + + +=



f x,y 

f x,y 
x

----------------

f x,y 
y

---------------- 
 
 
 

=

f x,y 
x

------------------

f x,y 
y

------------------



w :=w + wf(w)
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Let’s put this into action on our logistic regression classifier and some Python. First,
we need a dataset. Consider the dataset plotted in figure 5.3.

  

Figure 5.2 The gradient ascent algorithm moves in the direction of the gradient evaluated at 
each point. Starting with point P0, the gradient is evaluated and the function moves to the 
next point, P1. The gradient is then reevaluated at P1, and the function moves to P2. This 
cycle repeats until a stopping condition is met. The gradient operator always ensures that we’re 
moving in the best possible direction.

Gradient descent
Perhaps you’ve also heard of gradient descent. It’s the same thing as gradient as-
cent, except the plus sign is changed to a minus sign. We can write this as 

With gradient descent we’re trying to minimize some function rather than maximize it. 

w :=w - wf(w)
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5.2.2 Train: using gradient ascent to find the best parameters 

There are 100 data points in figure 5.3. Each point has two numeric features: X1 and
X2. We’ll try to use gradient ascent to fit the best parameters for the logistic regression
model to our data. We’ll do this by finding the best weights for this given dataset.

 Pseudocode for the gradient ascent would look like this:

Start with the weights all set to 1
Repeat R number of times:

 Calculate the gradient of the entire dataset
 Update the weights vector by alpha*gradient
 Return the weights vector

The code in the following listing implements gradient ascent. To see it in action, open
your text editor and create a new file called logRegres.py. Then enter the following
code.

Figure 5.3 Our simple dataset. We’re going to attempt to use gradient descent to find the best weights 
for a logistic regression classifier on this dataset.
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def loadDataSet():
    dataMat = []; labelMat = []
    fr = open('testSet.txt')
    for line in fr.readlines():
        lineArr = line.strip().split()
        dataMat.append([1.0, float(lineArr[0]), float(lineArr[1])])
        labelMat.append(int(lineArr[2]))
    return dataMat,labelMat

def sigmoid(inX):
    return 1.0/(1+exp(-inX))

def gradAscent(dataMatIn, classLabels):
    dataMatrix = mat(dataMatIn)              
    labelMat = mat(classLabels).transpose()           
    m,n = shape(dataMatrix)
    alpha = 0.001
    maxCycles = 500
    weights = ones((n,1))
    for k in range(maxCycles):              
        h = sigmoid(dataMatrix*weights)                              
        error = (labelMat - h)                                       
        weights = weights + alpha * dataMatrix.transpose()* error    
    return weights

The code in listing 5.1 starts out with a convenience function, loadDataSet(). This
opens the text file testSet.txt and reads every line. The first two values on the line are
X1 and X2, and the third value is the class label for our dataset. In addition, this sets
the value of X0 to 1.0, which is a convention we use. The next function, sigmoid(), is
our function from section 5.2. 

 The real work is done in the function gradAscent(), which takes two inputs. The
first input, dataMatIn, is a 2D NumPy array, where the columns are the different fea-
tures and the rows are the different training examples. Our example data has two
features plus the 0th feature and 100 examples, so it will be a 100x3 matrix. In B you
take the input arrays and convert them to NumPy matrices. This is the first time in this
book where you’re using NumPy matrices, and if you’re not familiar with matrix math,
then some calculations can seem strange. NumPy can operate on both 2D arrays and
matrices, and the results will be different if you assume the wrong data type. Please see
appendix A for an introduction to NumPy matrices. The input classLabels is a 1x100
row vector, and for the matrix math to work, you need it to be a column vector, so you
take the transpose of it and assign that to the variable labelMat. Next, you get the size
of the matrix and set some parameters for our gradient ascent algorithm. 

 The variable alpha is the step size you’ll take toward the target, and maxCycles is
the number of times you’re going to repeat the calculation before stopping. The for
loop iterates over the dataset, and finally you return the weights. One thing I’d like to
stress is that the calculations in C are matrix operations. The variable h is not one

Listing 5.1 Logistic regression gradient ascent optimization functions

Convert to NumPy 
matrix data type

B

Matrix
multiplication

C
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number but a column vector with as many elements as you have data points, 100 in
this example. The multiplication dataMatrix * weights is not one multiplication but
actually 300. 

 Lastly, one thing I’d like to mention is that the first two lines in the formula in C
may not be familiar, and I haven’t really derived them. A little math is needed to
derive the equations used here, and I’ll leave it to you to look into that further if
desired. Qualitatively you can see we’re calculating the error between the actual class
and the predicted class and then moving in the direction of that error. 

 Let’s see this in action. Open your text editor and add the code from listing 5.1.
 Type the following at your Python shell: 

>>> import logRegres
>>> dataArr,labelMat=logRegres.loadDataSet()
>>> logRegres.gradAscent(dataArr,labelMat)
matrix([[ 4.12414349],
        [ 0.48007329],
        [-0.6168482 ]])

5.2.3 Analyze: plotting the decision boundary 

We’re solving for a set of weights used to make a line that separates the different classes
of data. How can we plot this line to understand this optimization procedure? In order
to make a plot like this, you’ll need the code in the next listing. Open logRegres.py and
add in the following code.

def plotBestFit(wei):
    import matplotlib.pyplot as plt
    weights = wei.getA()
    dataMat,labelMat=loadDataSet()
    dataArr = array(dataMat)
    n = shape(dataArr)[0] 
    xcord1 = []; ycord1 = []
    xcord2 = []; ycord2 = []
    for i in range(n):
        if int(labelMat[i])== 1:
            xcord1.append(dataArr[i,1]); ycord1.append(dataArr[i,2])
        else:
            xcord2.append(dataArr[i,1]); ycord2.append(dataArr[i,2])
    fig = plt.figure()
    ax = fig.add_subplot(111)
    ax.scatter(xcord1, ycord1, s=30, c='red', marker='s')
    ax.scatter(xcord2, ycord2, s=30, c='green')
    x = arange(-3.0, 3.0, 0.1)
    y = (-weights[0]-weights[1]*x)/weights[2]           
    ax.plot(x, y)
    plt.xlabel('X1'); plt.ylabel('X2');
    plt.show() 

The code in listing 5.2 is a straightforward plot using Matplotlib. The only thing
worth pointing out is B where I set the sigmoid function to 0. If you remember

Listing 5.2 Plotting the logistic regression best-fit line and dataset

Best-fit 
lineB
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from section 5.2, an input of 0 was our center line to split things classified as a 1 and
a 0. I set  and solved for X2 in terms of X1 (remember, X0 was 0). 

 To use the code in listing 5.2, type the following:

>>> reload(logRegres)
<module 'logRegres' from 'logRegres.py'>
>>> logRegres.plotBestFit(weights.getA())

You should get something similar to the plot in figure 5.4. 
 The classification is pretty good. From the image, it appears that we’ll misclassify

only two to four data points. One thing to stress is that this method took a lot of calcu-
lations; even our simple example used 300 multiplications on a tiny dataset. We’ll
need to alter the algorithm a little in order for it to work on real-world datasets, and
we’ll do that in the next section. 

5.2.4 Train: stochastic gradient ascent

The previous optimization algorithm, gradient ascent, uses the whole dataset on each
update. This was fine with 100 examples, but with billions of data points containing
thousands of features, it’s unnecessarily expensive in terms of computational

0 w0x0 w1x1 w2x2+ +=

Figure 5.4 The logistic regression best-fit line after 500 cycles of gradient ascent
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resources. An alternative to this method is to update the weights using only one
instance at a time. This is known as stochastic gradient ascent. Stochastic gradient ascent
is an example of an online learning algorithm. This is known as online because we can
incrementally update the classifier as new data comes in rather than all at once. The
all-at-once method is known as batch processing. 

 Pseudo-code for the stochastic gradient ascent would look like this:

Start with the weights all set to 1
For each piece of data in the dataset:

 Calculate the gradient of one piece of data
 Update the weights vector by alpha*gradient
 Return the weights vector

The following listing contains the stochastic gradient ascent algorithm. 

def stocGradAscent0(dataMatrix, classLabels):
    m,n = shape(dataMatrix)
    alpha = 0.01
    weights = ones(n)   
    for i in range(m):
        h = sigmoid(sum(dataMatrix[i]*weights))
        error = classLabels[i] - h
        weights = weights + alpha * error * dataMatrix[i]
    return weights

You can see that stochastic gradient ascent is similar to gradient ascent except that the
variables h and error are now single values rather than vectors. There also is no
matrix conversion, so all of the variables are NumPy arrays. 

 To try this out, enter the code from listing 5.3 into logRegres.py and enter the fol-
lowing into your Python shell:

>>> reload(logRegres)
<module 'logRegres' from 'logRegres.py'>
>>> dataArr,labelMat=logRegres.loadDataSet()
>>> weights=logRegres.stocGradAscent0(array(dataArr),labelMat)
>>> logRegres.plotBestFit(weights)

After executing the code to plot the best-fit line, you should see something similar to
figure 5.4; I’ve have plotted this in figure 5.5. The resulting best-fit line is OK but cer-
tainly not as great as the previous example from gradient ascent. If we were to use this
as our classifier, we’d misclassify one-third of the results. 

 Directly comparing the stochastic gradient ascent algorithm in listing 5.3 to the
code in listing 5.1 is unfair; the gradient ascent code had 500 iterations over the entire
dataset. One way to look at how well the optimization algorithm is doing is to see if it’s
converging. That is, are the parameters reaching a steady value, or are they constantly
changing? I took the stochastic gradient ascent algorithm in listing 5.3 and modified it
to run through the dataset 200 times. I then plotted the weights, as shown in figure 5.6. 

Listing 5.3 Stochastic gradient ascent



93Using optimization to find the best regression coefficients
Figure 5.5 Our simple dataset with solution from stochastic gradient ascent after one 
pass through the dataset. The best-fit line isn’t a good separator of the data.

Figure 5.6 Weights versus iteration number for one pass through the dataset, with this method. It takes 
a large number of cycles for the weights to reach a steady-state value, and there are still local fluctuations.
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Figure 5.6 shows how the weights change in our simple stochastic gradient ascent
algorithm over 200 iterations of the algorithm. Weight 2, labeled X2 in figure 5.5,
takes only 50 cycles to reach a steady value, but weights 1 and 0 take much longer. An
additional item to notice from this plot is that there are small periodic variations, even
though the large variation has stopped. If you think about what’s happening, it should
be obvious that there are pieces of data that don’t classify correctly and cause a large
change in the weights. We’d like to see the algorithm converge to a single value rather
than oscillate, and we’d like to see the weights converge more quickly.

 The stochastic gradient ascent algorithm of listing 5.3 has been modified to
address the problems shown in figure 5.6, and this is given in the following listing. 

def stocGradAscent1(dataMatrix, classLabels, numIter=150):
    m,n = shape(dataMatrix)
    weights = ones(n)   
    for j in range(numIter):        dataIndex = range(m)
        for i in range(m):
            alpha = 4/(1.0+j+i)+0.01               
            randIndex = int(random.uniform(0,len(dataIndex)))        
            h = sigmoid(sum(dataMatrix[randIndex]*weights))
            error = classLabels[randIndex] - h
            weights = weights + alpha * error * dataMatrix[randIndex]
            del(dataIndex[randIndex])
    return weights

The code in listing 5.4 is similar to that of listing 5.3, but two things have been added
to improve it. 

 The first thing to note is that in B alpha changes on each iteration. This will improve
the oscillations that occur in the dataset shown in figure 5.6 or high-frequency oscilla-
tions. Alpha decreases as the number of iterations increases, but it never reaches 0
because there’s a constant term in B. You need to do this so that after a large number
of cycles, new data still has some impact. Perhaps you’re dealing with something that’s
changing with time. Then you may want to let the constant term be larger to give more
weight to new values. The second thing about the decreasing alpha function is that it
decreases by 1/(j+i); j is the index of the number of times you go through the dataset,
and i is the index of the example in the training set. This gives an alpha that isn’t strictly
decreasing when j<<max(i). The avoidance of a strictly decreasing weight is shown to
work in other optimization algorithms, such as simulated annealing. 

 The second improvement in listing 5.4 appears in C. Here, you’re randomly
selecting each instance to use in updating the weights. This will reduce the periodic
variations that you saw in figure 5.6. The way you randomly select a value from a list of
integers and then delete it from the list is similar to what we did in chapter 3. 

 An optional argument to the function has also been added. If no third argument is
given, then 150 iterations will be done. But if a third argument is given, that will over-
ride the default. 

Listing 5.4 Modified stochastic gradient ascent

Alpha changes with 
each iteration

B

Update vectors are
randomly selected C
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Figure 5.7 shows how the weights change with each update similar to
stocGradAscent1().

 If you compare figure 5.7 with figure 5.6, you’ll notice two things. The first thing
you may notice is that the coefficients in figure 5.7 don’t show the regular motion like
those in figure 5.6. This is due to the random vector selection of stocGradAscent1().
The second thing you’ll notice is that the horizontal axis is much smaller in figure 5.7
than in figure 5.6. This is because with stocGradAscent1() we can converge on
weights much more quickly. Here we use only 20 passes through the dataset, whereas
we used 500 with the previous two methods. 

 Let’s see this code in action on the same dataset as the previous examples. After
you’ve entered the code from listing 5.4 into logRegres.py, enter the following in your
Python shell:

>>> reload(logRegres)
<module 'logRegres' from 'logRegres.py'>
>>> dataArr,labelMat=logRegres.loadDataSet()
>>> weights=logRegres.stocGradAscent1(array(dataArr),labelMat)
>>> logRegres.plotBestFit(weights)

You should see a plot similar to that in figure 5.8. The results are similar to those of
GradientAscent(), but far fewer calculations were involved. 

Figure 5.7 Coefficient convergence in stocGradAscent1() with random vector selection 
and decreasing alpha. This method is much faster to converge than using a fixed alpha.
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The default number of iterations is 150, but you can change this by adding a third
argument to stocGradAscent1() like

>>> weights=logRegres.stocGradAscent1(array(dataArr),labelMat, 500)

You’ve seen a few optimization algorithms so far. There are many more to explore. A
number of books have been written on the subject. You can also adjust the parameters
in our algorithm to give better results for a given dataset. 

 So far we’ve looked at how the weights change, but we haven’t done a lot of classi-
fication, which is the purpose of this section and chapter. In the next section, we’ll put
stochastic gradient ascent to work on a problem of horse colic.

5.3 Example: estimating horse fatalities from colic 
In this section, we’ll use logistic regression to try to predict if a horse with colic will live
or die. The data1 has 368 instances with 28 features. I’m not a horse expert. From what
I’ve read, horse colic is a general term used to describe gastrointestinal pain in horses.
The pain may or may not be from gastrointestinal problems. The dataset contains

1 Dataset retrieved from UCI Machine Learning Repository on 11/1/2010 (http://archive.ics.uci.edu/ml/
datasets/Horse+Colic). Data originally created by Mary McLeish and Matt Cecile, Department of Computer
Science, University of Guelph, Guelph, Ontario, Canada N1G 2W1.

Figure 5.8 The coefficients with the improved stochastic gradient descent algorithm
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measurements from horses seen by a hospital for colic. Some of the measurements are
subjective, and some are difficult to measure, such as the pain level in the horse. 

In addition to the obvious problems with the data, there’s another problem: 30% of
the values are missing. We’ll first handle the problem of how to deal with missing val-
ues in a dataset, and then we’ll use logistic regression and stochastic gradient ascent to
forecast whether a horse will live or die. 

5.3.1 Prepare: dealing with missing values in the data

Missing values in your data is a big problem, and there have been many pages of
text books dedicated to dealing with this problem. Well, why it is a problem? Say you
have 100 instances with 20 features, and the data was collected by a machine. What if a
sensor on this machine was broken and one feature was useless? Do you throw out all
the data? What about the 19 other features; do they have anything useful to tell you?
Yes, they do. Sometimes data is expensive, and you don’t have the option to throw it
out or collect it all over again, so you need a method for handling this problem. 

 Here are some options:

■ Use the feature’s mean value from all the available data.
■ Fill in the unknown with a special value like -1.
■ Ignore the instance.
■ Use a mean value from similar items.
■ Use another machine learning algorithm to predict the value.

The dataset we’ll use in the next section will be preprocessed so that we can easily use
it with our existing algorithm. During the preprocessing, I decided to do two things
from the list. First, I had to replace all the unknown values with a real number because
we’re using NumPy, and in NumPy arrays can’t contain a missing value. The number
chosen was 0, which happens to work out well for logistic regression. The intuition is

Example: using logistic regression to estimate horse fatalities from colic
1. Collect: Data file provided.

2. Prepare: Parse a text file in Python, and fill in missing values.

3. Analyze: Visually inspect the data.

4. Train: Use an optimization algorithm to find the best coefficients. 

5. Test: To measure the success, we’ll look at error rate. Depending on the error
rate, we may decide to go back to the training step to try to find better values for
the regression coefficients by adjusting the number of iterations and step size. 

6. Use: Building a simple command-line program to collect horse symptoms and out-
put live/die diagnosis won’t be difficult. I’ll leave that up to you as an exercise.
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this: we want a value that won’t impact the weight during the update. The weights are
updated according to

weights = weights + alpha * error * dataMatrix[randIndex]

If dataMatrix is 0 for any feature, then the weight for that feature will simply be

weights = weights

Also, the error term will not be impacted by this because sigmoid(0)=0.5, which is totally
neutral for predicting the class. For these reasons, replacing missing values with 0 allows
us to keep our imperfect data without compromising the learning algorithm. Also, none
of the features take on 0 in the data, so in some sense it’s a special value.

 Second, there was a missing class label in the test data. I simply threw it out. It’s
hard to replace a missing class label. This solution makes sense given that we’re using
logistic regression, but it may not make sense with something like kNN. 

 The data was preprocessed from its original form and the modified version was
placed in two files, horseColicTest.txt and horseColicTraining.txt. You can see the
data at http://archive.ics.uci.edu/ml/datasets/Horse+Colic if you want to compare
the original data and the preprocessed data. 

 Now that we have a clean set of data and a good optimization algorithm, we’re
going to put all these parts together and build a classifier to see if we can predict
whether a horse will die from colic. 

5.3.2 Test: classifying with logistic regression 

We spent a lot of time in the previous sections of this chapter talking about optimiza-
tion algorithms. We didn’t actually classify anything. With logistic regression you don’t
need to do much to classify an instance. All you have to do is calculate the sigmoid of
the vector under test multiplied by the weights optimized earlier. If the sigmoid gives
you a value greater than 0.5, the class is 1, and it’s 0 otherwise. 

 To see this in action, open your favorite text editor and enter the following code in
logRegres.py. 

def classifyVector(inX, weights):
    prob = sigmoid(sum(inX*weights))
    if prob > 0.5: return 1.0
    else: return 0.0

def colicTest():
    frTrain = open('horseColicTraining.txt') 
    frTest = open('horseColicTest.txt')
    trainingSet = []; trainingLabels = []
    for line in frTrain.readlines():
        currLine = line.strip().split('\t')
        lineArr =[]
        for i in range(21):
            lineArr.append(float(currLine[i]))
        trainingSet.append(lineArr)

Listing 5.5 Logistic regression classification function
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        trainingLabels.append(float(currLine[21]))
    trainWeights = stocGradAscent1(array(trainingSet), trainingLabels, 500)
    errorCount = 0; numTestVec = 0.0
    for line in frTest.readlines():
        numTestVec += 1.0
        currLine = line.strip().split('\t')
        lineArr =[]
        for i in range(21):
            lineArr.append(float(currLine[i]))
        if int(classifyVector(array(lineArr), trainWeights))!= 
            int(currLine[21]):
            errorCount += 1
    errorRate = (float(errorCount)/numTestVec)
    print "the error rate of this test is: %f" % errorRate
    return errorRate

def multiTest():
    numTests = 10; errorSum=0.0
    for k in range(numTests):
        errorSum += colicTest()
    print "after %d iterations the average error rate is:
        %f" % (numTests, errorSum/float(numTests))

The first function in listing 5.5 is classifyVector(). This takes the weights and an
input vector and calculates the sigmoid. If the value of the sigmoid is more than 0.5,
it’s considered a 1; otherwise, it’s a 0. 

 The next function in listing 5.5 is colicTest(). This is a standalone function that
opens the test set and training set and properly formats the data. First, the training set
is loaded. You use the convention that the last column contains the class value. Origi-
nally, the data had three class values representing what happened to the horse: lived,
died, or was euthanized. For the purposes of this exercise, I bundled died and eutha-
nized into one category called “did not live.” After this data is loaded, the weights vector
is calculated using stocGradAscent1(). I used 500 iterations in training the weights; this
is shown to improve performance over the default 150 iterations. Feel free to change this
value. After the weights are calculated, the test set is loaded and an error rate is calcu-
lated. colicTest() is totally a standalone function. If you run it multiple times, you’ll
get slightly different results because of the random components. If the weights totally
converged in stocGradAscent1(), then there would be no random components. 

 The last function, multiTest(), runs the function colicTest() 10 times and takes
the average. To see this in action, enter the following at your Python shell:

>>> reload(logRegres)
<module 'logRegres' from 'logRegres.py'>
>>> logRegres.multiTest()
the error rate of this test is: 0.358209
the error rate of this test is: 0.432836
the error rate of this test is: 0.373134
                           .
                           .
the error rate of this test is: 0.298507
the error rate of this test is: 0.313433
after 10 iterations the average error rate is: 0.353731
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After 10 iterations, the data had a 35% error rate. This wasn’t bad with over 30% of
the values missing. You can alter the number of iterations in colicTest() and the
alpha size in stochGradAscent1() to get results approaching a 20% error rate. We’ll
revisit this example in chapter 7. 

5.4 Summary
Logistic regression is finding best-fit parameters to a nonlinear function called the sig-
moid. Methods of optimization can be used to find the best-fit parameters. Among the
optimization algorithms, one of the most common algorithms is gradient ascent. Gra-
dient ascent can be simplified with stochastic gradient ascent. 

 Stochastic gradient ascent can do as well as gradient ascent using far fewer comput-
ing resources. In addition, stochastic gradient ascent is an online algorithm; it can
update what it has learned as new data comes in rather than reloading all of the data
as in batch processing. 

 One major problem in machine learning is how to deal with missing values in the
data. There’s no blanket answer to this question. It really depends on what you’re
doing with the data. There are a number of solutions, and each solution has its own
advantages and disadvantages. 

 In the next chapter we’re going to take a look at another classification algorithm
similar to logistic regression. The algorithm is called support vector machines and is
considered one of the best stock algorithms.



Support vector machines
I’ve seen more than one book follow this pattern when discussing support vector
machines (SVMs): “Here’s a little theory. Now SVMs are too hard for you. Just down-
load libsvm and use that.” I’m not going to follow that pattern. I think if you just
read a little bit of the theory and then look at production C++ SVM code, you’re
going to have trouble understanding it. But if we strip out the production code and
the speed improvements, the code becomes manageable, perhaps understandable. 

 Support vector machines are considered by some people to be the best stock clas-
sifier. By stock, I mean not modified. This means you can take the classifier in its basic
form and run it on the data, and the results will have low error rates. Support vector
machines make good decisions for data points that are outside the training set.

 In this chapter you’re going to learn what support vector machines are, and I’ll
introduce some key terminology. There are many implementations of support vector

This chapter covers
■ Introducing support vector machines
■ Using the SMO algorithm for optimization
■ Using kernels to “transform” data
■ Comparing support vector machines with other 

classifiers
101
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machines, but we’ll focus on one of the most popular implementations: the sequential
minimal optimization (SMO) algorithm. After that, you’ll see how to use something
called kernels to extend SVMs to a larger number of datasets. Finally, we’ll revisit the
handwriting example from chapter 1 to see if we can do a better job with SVMs. 

6.1 Separating data with the maximum margin

To introduce the subject of support vector machines I need to explain a few concepts.
Consider the data in frames A–D in figure 6.1; could you draw a straight line to put all
of the circles on one side and all of the squares on another side? Now consider the
data in figure 6.2, frame A. There are two groups of data, and the data points are sep-
arated enough that you could draw a straight line on the figure with all the points of
one class on one side of the line and all the points of the other class on the other side
of the line. If such a situation exists, we say the data is linearly separable. Don’t worry if
this assumption seems too perfect. We’ll later make some changes where the data
points can spill over the line. 

Support vector machines
Pros: Low generalization error, computationally inexpensive, easy to interpret results

Cons: Sensitive to tuning parameters and kernel choice; natively only handles binary
classification

Works with: Numeric values, nominal values

Figure 6.1 Four examples of datasets that aren’t linearly separable
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The line used to separate the dataset is called a separating hyperplane. In our simple 2D
plots, it’s just a line. But, if we have a dataset with three dimensions, we need a plane
to separate the data; and if we have data with 1024 dimensions, we need something
with 1023 dimensions to separate the data. What do you call something with 1023
dimensions? How about N-1 dimensions? It’s called a hyperplane. The hyperplane is
our decision boundary. Everything on one side belongs to one class, and everything
on the other side belongs to a different class. 

 We’d like to make our classifier in such a way that the farther a data point is from
the decision boundary, the more confident we are about the prediction we’ve made.
Consider the plots in figure 6.2, frames B–D. They all separate the data, but which one
does it best? Should we minimize the average distance to the separating hyperplane?
In that case, are frames B and C any better than frame D in figure 6.2? Isn’t something
like that done with best-fit lines? Yes, but it’s not the best idea here. We’d like to find
the point closest to the separating hyperplane and make sure this is as far away from
the separating line as possible. This is known as margin. We want to have the greatest
possible margin, because if we made a mistake or trained our classifier on limited
data, we’d want it to be as robust as possible. 

 The points closest to the separating hyperplane are known as support vectors. Now
that we know that we’re trying to maximize the distance from the separating line to
the support vectors, we need to find a way to optimize this problem. 

Figure 6.2 Linearly separable data is shown in frame A. Frames B, C, and D show 
possible valid lines separating the two classes of data.
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6.2 Finding the maximum margin
How can we measure the line that best
separates the data? To start with, look at
figure 6.3. Our separating hyperplane
has the form wTx+b. If we want to find the
distance from A to the separating plane,
we must measure normal or perpendic-
ular to the line. This is given by |wTx+b|/
||w||. The constant b is just an offset like
w0 in logistic regression. All this w and b
stuff describes the separating line, or
hyperplane, for our data. Now, let’s talk
about the classifier. 

6.2.1 Framing the optimization problem in 
terms of our classifier 

I’ve talked about the classifier but
haven’t mentioned how it works. Under-
standing how the classifier works will
help you to understand the optimization problem. We’ll have a simple equation like the
sigmoid where we can enter our data values and get a class label out. We’re going to
use something like the Heaviside step function, f(wTx+b), where the function f(u) gives
us -1 if u<0, and 1 otherwise. This is different from logistic regression in the previous
chapter where the class labels were 0 or 1. 

 Why did we switch from class labels of 0 and 1 to -1 and 1? This makes the math
manageable, because -1 and 1 are only different by the sign. We can write a single
equation to describe the margin or how close a data point is to our separating hyper-
plane and not have to worry if the data is in the -1 or +1 class. 

 When we’re doing this and deciding where to place the separating line, this mar-
gin is calculated by label*(wTx+b). This is where the -1 and 1 class labels help out. If a
point is far away from the separating plane on the positive side, then wTx+b will be a
large positive number, and label*(wTx+b) will give us a large number. If it’s far from
the negative side and has a negative label, label*(wTx+b) will also give us a large posi-
tive number. 

 The goal now is to find the w and b values that will define our classifier. To do this,
we must find the points with the smallest margin. These are the support vectors briefly
mentioned earlier. Then, when we find the points with the smallest margin, we must
maximize that margin. This can be written as

max
w,b

min
n

label wTx b+   1
w

--------
 
 
 

arg

Figure 6.3 The distance from point A to the 
separating plane is measured by a line normal 
to the separating plane.
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Solving this problem directly is pretty difficult, so we can convert it into another form
that we can solve more easily. Let’s look at the inside of the previous equation, the part
inside the curly braces. Optimizing multiplications can be nasty, so what we do is hold
one part fixed and then maximize the other part. If we set label*(wTx+b) to be 1 for
the support vectors, then we can maximize ||w||-1 and we’ll have a solution. Not all of
the label*(wTx+b) will be equal to 1, only the closest values to the separating hyper-
plane. For values farther away from the hyperplane, this product will be larger. 

 The optimization problem we now have is a constrained optimization problem
because we must find the best values, provided they meet some constraints. Here, our
constraint is that label*(wTx+b) will be 1.0 or greater. There’s a well-known method for
solving these types of constrained optimization problems, using something called
Lagrange multipliers. Using Lagrange multipliers, we can write the problem in terms of
our constraints. Because our constraints are our data points, we can write the values of
our hyperplane in terms of our data points. The optimization function turns out to be

subject to the following constraints:

This is great, but it makes one assumption: the data is 100% linearly separable. We
know by now that our data is hardly ever that clean. With the introduction of some-
thing called slack variables, we can allow examples to be on the wrong side of the deci-
sion boundary. Our optimization goal stays the same, but we now have a new set of
constraints: 

The constant C controls weighting between our goal of making the margin large and
ensuring that most of the examples have a functional margin of at least 1.0. The con-
stant C is an argument to our optimization code that we can tune and get different
results. Once we solve for our alphas, we can write the separating hyperplane in terms
of these alphas. That part is straightforward. The majority of the work in SVMs is find-
ing the alphas.

 There have been some large steps taken in coming up with these equations here. I
encourage you to seek a textbook to see a more detailed derivation if you’re
interested.1,2 

1 Christopher M. Bishop, Pattern Recognition and Machine Learning (Springer, 2006).
2 Bernhard Schlkopf and Alexander J. Smola, Learning with Kernels: Support Vector Machines, Regularization, Opti-

mization, and Beyond (MIT Press, 2001).
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6.2.2 Approaching SVMs with our general framework

In chapter 1, we defined common steps for building machine learning–based applica-
tions. These steps may change from one machine learning task to another and from
one algorithm to another. It’s worth taking a few minutes to see how these will apply to
the algorithm we’re looking at in this chapter. 

Now that we have a little bit of the theory behind us, we’d like to be able to program
this problem so that we can use it on our data. The next section will introduce a sim-
ple yet powerful algorithm for doing so. 

6.3 Efficient optimization with the SMO algorithm 
The last two equations in section 6.2.1 are what we’re going to minimize and some con-
straints that we have to follow while minimizing. A while back, people were using qua-
dratic solvers to solve this optimization problem. (A quadratic solver is a piece of software
that optimizes a quadratic function of several variables, subject to linear constraints on
the variables.) These quadratic solvers take a lot of computing power and are complex.
All of this messing around with optimization is to train our classifier. When we find the
optimal values of , we can get our separating hyperplane or line in 2D and then easily
classify data. 

 We’ll now discuss the SMO algorithm, and then we’ll write a simplified version of it
so that you can properly understand how it works. The simplified version works on
small datasets. In the next section we’ll move from the simplified to the full version,
which works much faster than the simplified version. 

6.3.1 Platt’s SMO algorithm 

In 1996 John Platt published a powerful algorithm he called SMO3 for training the
support vector machines. Platt’s SMO stands for Sequential Minimal Optimization,

3 John C. Platt, “Using Analytic QP and Sparseness to Speed Training of Support Vector Machines” in Advances
in Neural Information Processing Systems 11, M. S. Kearns, S. A. Solla, D. A. Cohn, eds (MIT Press, 1999), 557–63.

General approach to SVMs
1. Collect: Any method.

2. Prepare: Numeric values are needed. 

3. Analyze: It helps to visualize the separating hyperplane. 

4. Train: The majority of the time will be spent here. Two parameters can be adjusted
during this phase. 

5. Test: Very simple calculation. 

6. Use: You can use an SVM in almost any classification problem. One thing to
note is that SVMs are binary classifiers. You’ll need to write a little more code
to use an SVM on a problem with more than two classes. 
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and it takes the large optimization problem and breaks it into many small problems.
The small problems can easily be solved, and solving them sequentially will give you
the same answer as trying to solve everything together. In addition to getting the same
answer, the amount of time is greatly reduced. 

 The SMO algorithm works to find a set of alphas and b. Once we have a set of
alphas, we can easily compute our weights w and get the separating hyperplane. 

 Here’s how the SMO algorithm works: it chooses two alphas to optimize on each
cycle. Once a suitable pair of alphas is found, one is increased and one is decreased.
To be suitable, a set of alphas must meet certain criteria. One criterion a pair must
meet is that both of the alphas have to be outside their margin boundary. The second
criterion is that the alphas aren’t already clamped or bounded. 

6.3.2 Solving small datasets with the simplified SMO

Implementing the full Platt SMO algorithm can take a lot of code. We’ll simplify it in
our first example to get an idea of how it works. After we get the simplified version
working, we’ll build on it to see the full version. The simplification uses less code but
takes longer at runtime. The outer loops of the Platt SMO algorithm determine the
best alphas to optimize. We’ll skip that for this simplified version and select pairs of
alphas by first going over every alpha in our dataset. Then, we’ll choose the second
alpha randomly from the remaining alphas. It’s important to note here that we
change two alphas at the same time. We need to do this because we have a constraint:

Changing one alpha may cause this constraint to be violated, so we always change two
at a time. 

 To do this we’re going to create a helper function that randomly selects one inte-
ger from a range. We also need a helper function to clip values if they get too big.
These two functions are given in the following listing. Open a text editor and add the
code to svmMLiA.py. 

def loadDataSet(fileName):
    dataMat = []; labelMat = []
    fr = open(fileName)
    for line in fr.readlines():
        lineArr = line.strip().split('\t')
        dataMat.append([float(lineArr[0]), float(lineArr[1])])
        labelMat.append(float(lineArr[2]))
    return dataMat,labelMat

def selectJrand(i,m):
    j=i 
    while (j==i):
        j = int(random.uniform(0,m))
    return j

def clipAlpha(aj,H,L):
    if aj > H: 

Listing 6.1 Helper functions for the SMO algorithm 

 ai label i  0=
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        aj = H
    if L > aj:
        aj = L
    return aj

The data that’s plotted in figure 6.3 is available in the file testSet.txt. We’ll use this
dataset to develop the SMO algorithm. The first function in listing 6.1 is our familiar
loadDatSet(), which opens up the file and parses each line into class labels, and our
data matrix. 

 The next function, selectJrand(), takes two values. The first one, i, is the index
of our first alpha, and m is the total number of alphas. A value is randomly chosen and
returned as long as it’s not equal to the input i. 

 The last helper function, clipAlpha(), clips alpha values that are greater than H or
less than L. These three helper functions don’t do much on their own, but they’ll be
useful in our classifier. 

 After you’ve entered the code from listing 6.1 and saved it, you can try these out
using the following:

>>> import svmMLiA
>>> dataArr,labelArr = svmMLiA.loadDataSet('testSet.txt')
>>> labelArr
[-1.0, -1.0, 1.0, -1.0, 1.0, 1.0, 1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, 
1.0...

You can see that the class labels are -1 and 1 rather than 0 and 1. 
 Now that we have these working, we’re ready for our first version of the SMO

algorithm. 
 Pseudocode for this function would look like this:

Create an alphas vector filled with 0s
While the number of iterations is less than MaxIterations:

 For every data vector in the dataset:
     If the data vector can be optimized:
         Select another data vector at random
         Optimize the two vectors together 
        If the vectors can’t be optimized ➞ break
If no vectors were optimized ➞ increment the iteration count

The code in listing 6.2 is a working version of the SMO algorithm. In Python, if we end
a line with \, the interpreter will assume the statement is continued on the next line.
There are a number of long lines in the following code that need to be broken up, so
I’ve used the \ symbol for this. Open the file svmMLiA.py and enter the code from the
following listing. 

def smoSimple(dataMatIn, classLabels, C, toler, maxIter):
    dataMatrix = mat(dataMatIn); labelMat = mat(classLabels).transpose()
    b = 0; m,n = shape(dataMatrix) 

Listing 6.2 The simplified SMO algorithm 
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    alphas = mat(zeros((m,1)))
    iter = 0
    while (iter < maxIter):
        alphaPairsChanged = 0
        for i in range(m):
            fXi = float(multiply(alphas,labelMat).T*\
                       (dataMatrix*dataMatrix[i,:].T)) + b
            Ei = fXi - float(labelMat[i])
            if ((labelMat[i]*Ei < -toler) and (alphas[i] < C)) or \
                ((labelMat[i]*Ei > toler) and \
                (alphas[i] > 0)):                              
                j = selectJrand(i,m)                         
                fXj = float(multiply(alphas,labelMat).T*\
                           (dataMatrix*dataMatrix[j,:].T)) + b
                Ej = fXj - float(labelMat[j])
                alphaIold = alphas[i].copy();
 alphaJold = alphas[j].copy();
                if (labelMat[i] != labelMat[j]):         
                    L = max(0, alphas[j] - alphas[i])         
                    H = min(C, C + alphas[j] - alphas[i])
                else:                                    
                    L = max(0, alphas[j] + alphas[i] - C)
                    H = min(C, alphas[j] + alphas[i])    
                if L==H: print "L==H"; continue
                eta = 2.0 * dataMatrix[i,:]*dataMatrix[j,:].T - \
                      dataMatrix[i,:]*dataMatrix[i,:].T - \ 
                      dataMatrix[j,:]*dataMatrix[j,:].T
                if eta >= 0: print "eta>=0"; continue
                alphas[j] -= labelMat[j]*(Ei - Ej)/eta
                alphas[j] = clipAlpha(alphas[j],H,L)
                if (abs(alphas[j] - alphaJold) < 0.00001): print \
                        "j not moving enough"; continue
                alphas[i] += labelMat[j]*labelMat[i]*\
                          (alphaJold - alphas[j])                  
                b1 = b - Ei- labelMat[i]*(alphas[i]-alphaIold)*\
                     dataMatrix[i,:]*dataMatrix[i,:].T - \
                     labelMat[j]*(alphas[j]-alphaJold)*\
                     dataMatrix[i,:]*dataMatrix[j,:].T             
                b2 = b - Ej- labelMat[i]*(alphas[i]-alphaIold)*\
                     dataMatrix[i,:]*dataMatrix[j,:].T - \
                     labelMat[j]*(alphas[j]-alphaJold)*\
                     dataMatrix[j,:]*dataMatrix[j,:].T              
                if (0 < alphas[i]) and (C > alphas[i]): b = b1      
                elif (0 < alphas[j]) and (C > alphas[j]): b = b2    
                else: b = (b1 + b2)/2.0                             
                alphaPairsChanged += 1
                print "iter: %d i:%d, pairs changed %d" % \
                                  (iter,i,alphaPairsChanged)
        if (alphaPairsChanged == 0): iter += 1
        else: iter = 0
        print "iteration number: %d" % iter
    return b,alphas

This is one big function, I know. It’s probably the biggest one you’ll see in this book.
This function takes five inputs: the dataset, the class labels, a constant C, the tolerance,
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and the maximum number of iterations before quitting. We’ve been building func-
tions in this book with a common interface so you can mix and match algorithms and
data sources. This function takes lists and inputs and transforms them into NumPy
matrices so that you can simplify many of the math operations. The class labels are
transposed so that you have a column vector instead of a list. This makes the row of
the class labels correspond to the row of the data matrix. You also get the constants m
and n from the shape of the dataMatIn. Finally, you create a column matrix for the
alphas, initialize this to zero, and create a variable called iter. This variable will hold a
count of the number of times you’ve gone through the dataset without any alphas
changing. When this number reaches the value of the input maxIter, you exit. 

 In each iteration, you set alphaPairsChanged to 0 and then go through the entire
set sequentially. The variable alphaPairsChanged is used to record if the attempt to
optimize any alphas worked. You’ll see this at the end of the loop. First, fXi is calcu-
lated; this is our prediction of the class. The error Ei is next calculated based on the
prediction and the real class of this instance. If this error is large, then the alpha cor-
responding to this data instance can be optimized. This condition is tested B. In the
if statement, both the positive and negative margins are tested. In this if statement,
you also check to see that the alpha isn’t equal to 0 or C. Alphas will be clipped at 0 or
C, so if they’re equal to these, they’re “bound” and can’t be increased or decreased, so
it’s not worth trying to optimize these alphas. 

 Next, you randomly select a second alpha, alpha[j], using the helper function
described in listing 6.1 C. You calculate the “error” for this alpha similar to what you
did for the first alpha, alpha[i]. The next thing you do is make a copy of alpha[i]
and alpha[j]. You do this with the copy() method, so that later you can compare the
new alphas and the old ones. Python passes all lists by reference, so you have to
explicitly tell Python to give you a new memory location for alphaIold and
alphaJold. Otherwise, when you later compare the new and old values, we won’t see
the change. You then calculate L and H D, which are used for clamping alpha[j]
between 0 and C. If L and H are equal, you can’t change anything, so you issue the
continue statement, which in Python means “quit this loop now, and proceed to the
next item in the for loop.” 

Eta is the optimal amount to change alpha[j]. This is calculated in the long line
of algebra. If eta is 0, you also quit the current iteration of the for loop. This step is a
simplification of the real SMO algorithm. If eta is 0, there’s a messy way to calculate
the new alpha[j], but we won’t get into that here. You can read Platt’s original paper
if you really want to know how that works. It turns out this seldom occurs, so it’s OK if
you skip it. You calculate a new alpha[j] and clip it using the helper function from
listing 6.1 and our L and H values. 

 Next, you check to see if alpha[j] has changed by a small amount. If so, you quit
the for loop. Next, alpha[i] is changed by the same amount as alpha[j] but in the
opposite direction E. After you optimize alpha[i] and alpha[j], you set the con-
stant term b for these two alphas F. 
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 Finally, you’ve finished the optimization, and you need to take care to make sure
you exit the loops properly. If you’ve reached the bottom of the for loop without hit-
ting a continue statement, then you’ve successfully changed a pair of alphas and you
can increment alphaPairsChanged. Outside the for loop, you check to see if any
alphas have been updated; if so you set iter to 0 and continue. You’ll only stop and
exit the while loop when you’ve gone through the entire dataset maxIter number of
times without anything changing. 

 To see this in action, type in the following:

>>> b,alphas = svmMLiA.smoSimple(dataArr, labelArr, 0.6, 0.001, 40)

The output should look something like this:
iteration number: 29
j not moving enough
iteration number: 30
iter: 30 i:17, pairs changed 1
j not moving enough
iteration number: 0
j not moving enough
iteration number: 1

This will take a few minutes to converge. Once it’s done, you can inspect the results:

>>> b
matrix([[-3.84064413]])

You can look at the alphas matrix by itself, but there’ll be a lot of 0 elements inside. To
see the number of elements greater than 0, type in the following:

>>> alphas[alphas>0]
matrix([[ 0.12735413,  0.24154794,  0.36890208]])

Your results may differ from these because of the random nature of the SMO algo-
rithm. The command alphas[alphas>0] is an example of array filtering, which is spe-
cific to NumPy and won’t work with a regular list in Python. If you type in alphas>0,
you’ll get a Boolean array with a true in every case where the inequality holds. Then,
applying this Boolean array back to the original matrix will give you a NumPy matrix
with only the values that are greater than 0. 

 To get the number of support vectors, type

>>> shape(alphas[alphas>0])

To see which points of our dataset are support vectors, type
>>> for i in range(100):
...     if alphas[i]>0.0: print dataArr[i],labelArr[i]

You should see something like the following:

...
[4.6581910000000004, 3.507396] -1.0
[3.4570959999999999, -0.082215999999999997] -1.0
[6.0805730000000002, 0.41888599999999998] 1.0

The original dataset with these points circled is shown in figure 6.4. 
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Using the previous settings, I ran this 10 times and took the average time. On my humble
laptop this was 14.5 seconds. This wasn’t bad, but this is a small dataset with only 100
points. On larger datasets, this would take a long time to converge. In the next section
we’re going speed this up by building the full SMO algorithm.

6.4 Speeding up optimization with the full Platt SMO
The simplified SMO works OK on small datasets with a few hundred points but slows
down on larger datasets. Now that we’ve covered the simplified version, we can move
on to the full Platt version of the SMO algorithm. The optimization portion where we
change alphas and do all the algebra stays the same. The only difference is how we
select which alpha to use in the optimization. The full Platt uses some heuristics that
increase the speed. Perhaps in the previous section when executing the example you
saw some room for improvement. 

 The Platt SMO algorithm has an outer loop for choosing the first alpha. This alter-
nates between single passes over the entire dataset and single passes over non-bound
alphas. The non-bound alphas are alphas that aren’t bound at the limits 0 or C. The
pass over the entire dataset is easy, and to loop over the non-bound alphas we’ll first
create a list of these alphas and then loop over the list. This step skips alphas that we
know can’t change. 

 The second alpha is chosen using an inner loop after we’ve selected the first alpha.
This alpha is chosen in a way that will maximize the step size during optimization. In
the simplified SMO, we calculated the error Ej after choosing j. This time, we’re going
to create a global cache of error values and choose from the alphas that maximize step
size, or Ei-Ej. 

Figure 6.4 SMO sample dataset 
showing the support vectors circled 
and the separating hyperplane after 
the simplified SMO is run on the data
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 Before we get into the improvements, we’re going to need to clean up the code
from the previous section. The following listing has a data structure we’ll use to clean
up the code and three helper functions for caching the E values. Open your text edi-
tor and enter the following code. 

class optStruct:
    def __init__(self,dataMatIn, classLabels, C, toler):  
        self.X = dataMatIn
        self.labelMat = classLabels
        self.C = C
        self.tol = toler
        self.m = shape(dataMatIn)[0]
        self.alphas = mat(zeros((self.m,1)))
        self.b = 0
        self.eCache = mat(zeros((self.m,2)))      

def calcEk(oS, k):
    fXk = float(multiply(oS.alphas,oS.labelMat).T*\
          (oS.X*oS.X[k,:].T)) + oS.b
    Ek = fXk - float(oS.labelMat[k])
    return Ek

def selectJ(i, oS, Ei):                         
    maxK = -1; maxDeltaE = 0; Ej = 0
    oS.eCache[i] = [1,Ei]  
    validEcacheList = nonzero(oS.eCache[:,0].A)[0]
    if (len(validEcacheList)) > 1:
        for k in validEcacheList:  
            if k == i: continue 
            Ek = calcEk(oS, k)
            deltaE = abs(Ei - Ek)
            if (deltaE > maxDeltaE):                 
                maxK = k; maxDeltaE = deltaE; Ej = Ek   
        return maxK, Ej
    else:   
        j = selectJrand(i, oS.m)
        Ej = calcEk(oS, j)
    return j, Ej

def updateEk(oS, k):
    Ek = calcEk(oS, k)
    oS.eCache[k] = [1,Ek]

The first thing you do is create a data structure to hold all of the important values.
This is done with an object. You don’t use it for object-oriented programming; it’s
used as a data structure in this example. I moved all the data into a structure to save
typing when you pass values into functions. You can now pass in one object. I could
have done this just as easily with a Python dictionary, but that takes more work trying
to access member variables; compare myObject.X to myObject['X']. To accomplish
this, you create the class optStruct, which only has the init method. In this method,
you populate the member variables. All of these are the same as in the simplified SMO

Listing 6.3 Support functions for full Platt SMO
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code, but you’ve added the member variable eCache, which is an mx2 matrix B. The
first column is a flag bit stating whether the eCache is valid, and the second column is
the actual E value. 

 The first helper function, calcEk(), calculates an E value for a given alpha and
returns the E value. This was previously done inline, but you must take it out because it
occurs more frequently in this version of the SMO algorithm.

 The next function, selectJ(), selects the second alpha, or the inner loop alpha C.
Recall that the goal is to choose the second alpha so that we’ll take the maximum step
during each optimization. This function takes the error value associated with the first
choice alpha (Ei) and the index i. You first set the input Ei to valid in the cache.
Valid means that it has been calculated. The code nonzero(oS.eCache[:,0].A)[0] cre-
ates a list of nonzero values in the eCache. The NumPy function nonzero() returns a list
containing indices of the input list that are—you guessed it—not zero. The nonzero()
statement returns the alphas corresponding to non-zero E values, not the E
values. You loop through all of these values and choose the value that gives you a max-
imum change D. If this is your first time through the loop, you randomly select an alpha.
There are more sophisticated ways of handling the first-time case, but this works for
our purposes. 

 The last helper function in listing 6.3 is updateEk(). This calculates the error and
puts it in the cache. You’ll use this after you optimize alpha values. 

 The code in listing 6.3 doesn’t do much on its own. But when combined with the
optimization and the outer loop, it forms the powerful SMO algorithm. 

 Next, I’ll briefly present the optimization routine, to find our decision boundary.
Open your text editor and add the code from the next listing. You’ve already seen this
code in a different format. 

def innerL(i, oS):
    Ei = calcEk(oS, i)
    if ((oS.labelMat[i]*Ei < -oS.tol) and (oS.alphas[i] < oS.C)) or\
       ((oS.labelMat[i]*Ei > oS.tol) and (oS.alphas[i] > 0)):
        j,Ej = selectJ(i, oS, Ei)                                   
        alphaIold = oS.alphas[i].copy(); alphaJold = oS.alphas[j].copy();
        if (oS.labelMat[i] != oS.labelMat[j]):
            L = max(0, oS.alphas[j] - oS.alphas[i])
            H = min(oS.C, oS.C + oS.alphas[j] - oS.alphas[i])
        else:
            L = max(0, oS.alphas[j] + oS.alphas[i] - oS.C)
            H = min(oS.C, oS.alphas[j] + oS.alphas[i])
        if L==H: print "L==H"; return 0
        eta = 2.0 * oS.X[i,:]*oS.X[j,:].T - oS.X[i,:]*oS.X[i,:].T - \
              oS.X[j,:]*oS.X[j,:].T
        if eta >= 0: print "eta>=0"; return 0
        oS.alphas[j] -= oS.labelMat[j]*(Ei - Ej)/eta
        oS.alphas[j] = clipAlpha(oS.alphas[j],H,L)
        updateEk(oS, j)                             

Listing 6.4 Full Platt SMO optimization routine
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        if (abs(oS.alphas[j] - alphaJold) < 0.00001): 
             print "j not moving enough"; return 0
        oS.alphas[i] += oS.labelMat[j]*oS.labelMat[i]*\
                      (alphaJold - oS.alphas[j])
        updateEk(oS, i)                                      
        b1 = oS.b - Ei- oS.labelMat[i]*(oS.alphas[i]-alphaIold)*\
             oS.X[i,:]*oS.X[i,:].T - oS.labelMat[j]*\
             (oS.alphas[j]-alphaJold)*oS.X[i,:]*oS.X[j,:].T
        b2 = oS.b - Ej- oS.labelMat[i]*(oS.alphas[i]-alphaIold)*\
             oS.X[i,:]*oS.X[j,:].T - oS.labelMat[j]*\
             (oS.alphas[j]-alphaJold)*oS.X[j,:]*oS.X[j,:].T
        if (0 < oS.alphas[i]) and (oS.C > oS.alphas[i]): oS.b = b1
        elif (0 < oS.alphas[j]) and (oS.C > oS.alphas[j]): oS.b = b2
        else: oS.b = (b1 + b2)/2.0
        return 1
    else: return 0

The code in listing 6.4 is almost the same as the smoSimple() function given in list-
ing 6.2. But it has been written to use our data structure. The structure is passed in as
the parameter oS. The second important change is that selectJ() from listing 6.3 is
used to select the second alpha rather than selectJrand()B. Lastly C, you update
the Ecache after alpha values change. The final piece of code that wraps all of this up
is shown in the following listing. This is the outer loop where you select the first
alpha. Open your text editor and add the code from this listing to svmMLiA.py. 

def smoP(dataMatIn, classLabels, C, toler, maxIter, kTup=('lin', 0)):
    oS = optStruct(mat(dataMatIn),mat(classLabels).transpose(),C,toler)
    iter = 0
    entireSet = True; alphaPairsChanged = 0
    while (iter < maxIter) and ((alphaPairsChanged > 0) or (entireSet)):
        alphaPairsChanged = 0
        if entireSet:                                        
            for i in range(oS.m):        
                alphaPairsChanged += innerL(i,oS)
            print "fullSet, iter: %d i:%d, pairs changed %d" %\
    (iter,i,alphaPairsChanged)
            iter += 1
        else:                                      
            nonBoundIs = nonzero((oS.alphas.A > 0) * (oS.alphas.A < C))[0]
            for i in nonBoundIs:
                alphaPairsChanged += innerL(i,oS)
                print "non-bound, iter: %d i:%d, pairs changed %d" % \
                (iter,i,alphaPairsChanged)
            iter += 1
        if entireSet: entireSet = False 
        elif (alphaPairsChanged == 0): entireSet = True  
        print "iteration number: %d" % iter
    return oS.b,oS.alphas

The code in listing 6.5 is the full Platt SMO algorithm. The inputs are the same as the
function smoSimple(). Initially you create the data structure that will be used to hold

Listing 6.5 Full Platt SMO outer loop 
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all of your data. Next, you initialize some variables you’ll use to control when you exit
the function. The majority of the code is in the while loop, similar to smoSimple() but
with a few more exit conditions. You’ll exit from the loop whenever the number of iter-
ations exceeds your specified maximum or you pass through the entire set without
changing any alpha pairs. The maxIter variable has a different use from smoSimple()
because in that function you counted an iteration as a pass through the entire set when
no alphas were changed. In this function an iteration is defined as one pass through the
loop regardless of what was done. This method is superior to the counting used in
smoSimple() because it will stop if there are any oscillations in the optimization.

 Inside the while loop is different from smoSimple(). The first for loop goes over
any alphas in the dataset B. We call innerL() to choose a second alpha and do opti-
mization if possible. A 1 will be returned if any pairs get changed. The second for
loop goes over all the non-bound alphas, the values that aren’t bound at 0 or C. C

 You next toggle the for loop to switch between the non-bound loop and the full
pass, and print out the iteration number. Finally, the constant b and the alphas are
returned. 

 To see this in action, type the following in your Python shell:

>>> dataArr,labelArr = svmMLiA.loadDataSet('testSet.txt')
>>> b,alphas = svmMLiA.smoP(dataArr, labelArr, 0.6, 0.001, 40)
non-bound, iter: 2 i:54, pairs changed 0
non-bound, iter: 2 i:55, pairs changed 0
iteration number: 3
fullSet, iter: 3 i:0, pairs changed 0
fullSet, iter: 3 i:1, pairs changed 0
fullSet, iter: 3 i:2, pairs changed 0

You can inspect b and alphas similarly to what you did here. Was this method faster?
On my humble laptop I did this algorithm with the settings listed previously 10 times
and took the average. The average time on my machine was 0.78 seconds. Compare
this to smoSimple()on the same dataset, which took an average of 14.5 seconds. The
results will be even better on larger datasets, and there are many ways to make this
even faster. 

 What happens if you change the tolerance value? How about if you change the
value of C? I mentioned briefly at the end of section 6.2 that the constant C gives
weight to different parts of the optimization problem. C controls the balance between
making sure all of the examples have a margin of at least 1.0 and making the margin
as wide as possible. If C is large, the classifier will try to make all of the examples prop-
erly classified by the separating hyperplane. The results from this optimization run are
shown in figure 6.5. Comparing figure 6.5 to 6.4 you see that there are more support
vectors in figure 6.5. If you recall, figure 6.4 was generated by our simplified algo-
rithm, which randomly picked pairs of alphas. This method worked, but it wasn’t as
good as the full version of the algorithm, which covered the entire dataset. You may
also think that the support vectors chosen should always be closest to the separating
hyperplane. Given the settings we have for C, the support vectors circled give us a
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solution that satisfies the algorithm. When you have a dataset that isn’t linearly separa-
ble, you’ll see the support vectors bunch up closer to the hyperplane.

 You might be thinking, “We just spent a lot of time figuring out the alphas, but how
do we use this to classify things?” That’s not a problem. You first need to get the hyper-
plane from the alphas. This involves calculating ws. The small function listed here will
do that for you:

def calcWs(alphas,dataArr,classLabels):
    X = mat(dataArr); labelMat = mat(classLabels).transpose()
    m,n = shape(X)
    w = zeros((n,1))
    for i in range(m):
        w += multiply(alphas[i]*labelMat[i],X[i,:].T)
    return w

The most important part of the code is the for loop, which just multiplies some things
together. If you looked at any of the alphas we calculated earlier, remember that most
of the alphas are 0s. The non-zero alphas are our support vectors. This for loop goes
over all the pieces of data in our dataset, but only the support vectors matter. You
could just as easily throw out those other data points because they don’t contribute to
the w calculations. 

 To use the function listed previously, type in the following:

>>> ws=svmMLiA.calcWs(alphas,dataArr,labelArr)
>>> ws
array([[ 0.65307162],
     [-0.17196128]])

Now to classify something, say the first data point, type in this: 

>>> datMat=mat(dataArr)
>>> datMat[0]*mat(ws)+b
matrix([[-0.92555695]])

Figure 6.5 Support vectors shown af-
ter the full SMO algorithm is run on the 
dataset. The results are slightly differ-
ent from those in figure 6.4.
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If this value is greater than 0, then its class is a 1, and the class is -1 if it’s less than 0.
For point 0 you should then have a label of -1. Check to make sure this is true:

>>> labelArr[0]
-1.0

Now check to make sure other pieces of data are properly classified: 

>>> datMat[2]*mat(ws)+b
matrix([[ 2.30436336]])
>>> labelArr[2]
1.0
>>> datMat[1]*mat(ws)+b
matrix([[-1.36706674]])
>>> labelArr[1]
-1.0

Compare these results to figure 6.5 to make sure it makes sense. 
 Now that we can successfully train our classifier, I’d like to point out that the two

classes fit on either side of a straight line. If you look at figure 6.1, you can probably
find shapes that would separate the two classes. What if you want your classes to be
inside a circle or outside a circle? We’ll next talk about a way you can change the clas-
sifier to account for different shapes of regions separating your data. 

6.5 Using kernels for more complex data
Consider the data in figure 6.6. This is similar to the data in figure 6.1, frame C. Ear-
lier, this was used to describe data that isn’t linearly separable. Clearly there’s some
pattern in this data that we can recognize. Is there a way we can use our powerful tools
to capture this pattern in the same way we did for the linear data? Yes, there is. We’re
going to use something called a kernel to transform our data into a form that’s easily
understood by our classifier. This section will explain kernels and how we can use
them to support vector machines. Next, you’ll see one popular type of kernel called
the radial bias function, and finally we’ll apply this to our existing classifier.

6.5.1 Mapping data to higher dimensions with kernels 

The points in figure 6.1 are in a circle. The human brain can recognize that. Our clas-
sifier, on the other hand, can only recognize greater than or less than 0. If we just
plugged in our X and Y coordinates, we wouldn’t get good results. You can probably
think of some ways to change the circle data so that instead of X and Y, you’d have
some new variables that would be better on the greater-than- or less-than-0 test. This is
an example of transforming the data from one feature space to another so that you
can deal with it easily with your existing tools. Mathematicians like to call this mapping
from one feature space to another feature space. Usually, this mapping goes from a lower-
dimensional feature space to a higher-dimensional space. 

 This mapping from one feature space to another is done by a kernel. You can think
of the kernel as a wrapper or interface for the data to translate it from a difficult for-
matting to an easier formatting. If this mapping from a feature space to another feature
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space sounds confusing, you can think of it as another distance metric. Earlier we
encountered distance metrics. There were many different ways to measure the dis-
tance, and the same is true with kernels, as you’ll see soon. After making the substitu-
tion, we can go about solving this linear problem in high-dimensional space, which is
equivalent to solving a nonlinear problem in low-dimensional space. 

 One great thing about the SVM optimization is that all operations can be written in
terms of inner products. Inner products are two vectors multiplied together to yield a
scalar or single number. We can replace the inner products with our kernel functions
without making simplifications. Replacing the inner product with a kernel is known as
the kernel trick or kernel substation. 

 Kernels aren’t unique to support vector machines. A number of other machine-
learning algorithms can use kernels. A popular kernel is the radial bias function,
which we’ll introduce next. 

6.5.2 The radial bias function as a kernel 

The radial bias function is a kernel that’s often used with support vector machines. A
radial bias function is a function that takes a vector and outputs a scalar based on the
vector’s distance. This distance can be either from 0,0 or from another vector. We’ll
use the Gaussian version, which can be written as

Figure 6.6 This data can’t be easily separated with a straight line in two dimensions, 
but it’s obvious that some pattern exists separating the squares and the circles.
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where  is a user-defined parameter that determines the “reach,” or how quickly this
falls off to 0. 

 This Gaussian version maps the data from its feature space to a higher feature
space, infinite dimensional to be specific, but don’t worry about that for now. This is a
common kernel to use because you don’t have to figure out exactly how your data
behaves, and you’ll get good results with this kernel. In our example we have data
that’s basically in a circle; we could have looked over the data and realized we only
needed to measure the distance to the origin; however, if we encounter a new dataset
that isn’t in that format, then we’re in big trouble. We’ll get great results with this
Gaussian kernel, and we can use it on many other datasets and get low error rates
there too. 

 If you add one function to our svmMLiA.py file and make a few modifications,
you’ll be able to use kernels with our existing code. Open your svmMLiA.py code and
enter the function kernelTrans(). Also, modify our class, optStruct, so that it looks
like the code given in the following listing.

def kernelTrans(X, A, kTup): 
    m,n = shape(X)
    K = mat(zeros((m,1)))
    if kTup[0]=='lin': K = X * A.T 
    elif kTup[0]=='rbf':
        for j in range(m):
            deltaRow = X[j,:] - A
            K[j] = deltaRow*deltaRow.T
        K = exp(K /(-1*kTup[1]**2))                  
    else: raise NameError('Houston We Have a Problem -- \
    That Kernel is not recognized')
    return K

class optStruct:
    def __init__(self,dataMatIn, classLabels, C, toler, kTup):  
        self.X = dataMatIn
        self.labelMat = classLabels
        self.C = C
        self.tol = toler
        self.m = shape(dataMatIn)[0]
        self.alphas = mat(zeros((self.m,1)))
        self.b = 0
        self.eCache = mat(zeros((self.m,2))) 
        self.K = mat(zeros((self.m,self.m)))
        for i in range(self.m):
            self.K[:,i] = kernelTrans(self.X, self.X[i,:], kTup)

I think it’s best to look at our new version of optStruct. This has everything the same
as the previous optStruct with one new input: kTup. This kTup is a generic tuple that
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contains the information about the kernel. You’ll see this in action in a little bit. At the
end of the initialization method a matrix K gets created and then populated by calling
a function kernelTrans(). This global K gets calculated once. Then, when you want to
use the kernel, you call it. This saves some redundant computations as well. 

 When the matrix K is being computed, the function kernelTrans() is called multi-
ple times. This takes three inputs: two numeric types and a tuple. The tuple kTup
holds information about the kernel. The first argument in the tuple is a string describ-
ing what type of kernel should be used. The other arguments are optional arguments
that may be needed for a kernel. The function first creates a column vector and then
checks the tuple to see which type of kernel is being evaluated. Here, only two choices
are given, but you can expand this to many more by adding in other elif statements. 

 In the case of the linear kernel, a dot product is taken between the two inputs,
which are the full dataset and a row of the dataset. In the case of the radial bias func-
tion, the Gaussian function is evaluated for every element in the matrix in the for
loop. After the for loop is finished, you apply the calculations over the entire vector.
It’s worth mentioning that in NumPy matrices the division symbol means element-wise
rather than taking the inverse of a matrix, as would happen in MATLAB. B 

 Lastly, you raise an exception if you encounter a tuple you don’t recognize. This is
important because you don’t want the program to continue in this case. 

 Code was changed to use the kernel functions in two preexisting functions:
innerL() and calcEk(). The changes are shown in listing 6.7. I hate to list them out
like this. But relisting the entire functions would take over 90 lines, and I don’t think
anyone would be happy with that. You can copy the code from the source code down-
load to get these changes without manually adding them. Here are the changes:

innerL():
                              .
                              .
                              .
eta = 2.0 * oS.K[i,j] - oS.K[i,i] - oS.K[j,j]
                              .
                              .
                              .
b1 = oS.b - Ei- oS.labelMat[i]*(oS.alphas[i]-alphaIold)*oS.K[i,i] -\ 
                   oS.labelMat[j]*(oS.alphas[j]-alphaJold)*oS.K[i,j]
b2 = oS.b - Ej- oS.labelMat[i]*(oS.alphas[i]-alphaIold)*oS.K[i,j]-\ 
                   oS.labelMat[j]*(oS.alphas[j]-alphaJold)*oS.K[j,j]
                             .
                             .
                             .

def calcEk(oS, k):
    fXk = float(multiply(oS.alphas,oS.labelMat).T*oS.K[:,k] + oS.b)
    Ek = fXk - float(oS.labelMat[k])
    return Ek

Listing 6.7 Changes to innerL() and calcEk() needed to user kernels



122 CHAPTER 6 Support vector machines
Now that you see how to apply a kernel during training, let’s see how you’d use it dur-
ing testing. 

6.5.3 Using a kernel for testing

We’re going to create a classifier that can properly classify the data points in figure 6.6.
We’ll create a classifier that uses the radial bias kernel. The function earlier had one
user-defined input: . We need to figure out how big to make this. We’ll create a function
to train and test the classifier using the kernel. The function is shown in the following
listing. Open your text editor and add in the function testRbf().

def testRbf(k1=1.3):
    dataArr,labelArr = loadDataSet('testSetRBF.txt')
    b,alphas = smoP(dataArr, labelArr, 200, 0.0001, 10000, ('rbf', k1)) 
    datMat=mat(dataArr); labelMat = mat(labelArr).transpose()
    svInd=nonzero(alphas.A>0)[0]
    sVs=datMat[svInd]                                    
    labelSV = labelMat[svInd];
    print "there are %d Support Vectors" % shape(sVs)[0]
    m,n = shape(datMat)
    errorCount = 0
    for i in range(m):
        kernelEval = kernelTrans(sVs,datMat[i,:],('rbf', k1))
        predict=kernelEval.T * multiply(labelSV,alphas[svInd]) + b
        if sign(predict)!=sign(labelArr[i]): errorCount += 1
    print "the training error rate is: %f" % (float(errorCount)/m)
    dataArr,labelArr = loadDataSet('testSetRBF2.txt')
    errorCount = 0
    datMat=mat(dataArr); labelMat = mat(labelArr).transpose()
    m,n = shape(datMat)
    for i in range(m):
        kernelEval = kernelTrans(sVs,datMat[i,:],('rbf', k1))
        predict=kernelEval.T * multiply(labelSV,alphas[svInd]) + b
        if sign(predict)!=sign(labelArr[i]): errorCount += 1    
    print "the test error rate is: %f" % (float(errorCount)/m)

This code only has one input, and that’s optional. The input is the user-defined vari-
able for the Gaussian radial bias function. The code is mostly a collection of stuff
you’ve done before. The dataset is loaded from a file. Then, you run the Platt SMO
algorithm on this, with the option 'rbf' for a kernel. 

 After the optimization finishes, you make matrix copies of the data to use in matrix
math later, and you find the non-zero alphas, which are our support vectors. You also
take the labels corresponding to the support vectors and the alphas. Those are the
only values you’ll need to do classification. 

 The most important lines in this whole listing are the first two lines in the for
loops. These show how to classify with a kernel. You first use the kernelTrans() func-
tion you used in the structure initialization method. After you get the transformed
data, you do a multiplication with the alphas and the labels. The other important

Listing 6.8 Radial bias test function for classifying with a kernel
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thing to note in these lines is how you use only the data for the support vectors. The
rest of the data can be tossed out. 

 The second for loop is a repeat of the first one but with a different dataset—the
test dataset. You now can compare how different settings perform on the test set and
the training set. 

 To test out the code from listing 6.8, enter the following at the Python shell:

>>> reload(svmMLiA)
<module 'svmMLiA' from 'svmMLiA.pyc'>
>>> svmMLiA.testRbf()
                    .
                    .
fullSet, iter: 11 i:497, pairs changed 0
fullSet, iter: 11 i:498, pairs changed 0
fullSet, iter: 11 i:499, pairs changed 0
iteration number: 12
there are 27 Support Vectors
the training error rate is: 0.030000
the test error rate is: 0.040000

You can play around with the k1 parameter to see how the test error, training error,
and number of support vectors change with k1. The first example with sigma very
small (0.1) is shown in figure 6.7. 

Figure 6.7 Radial bias function with the user-defined parameter k1=0.1. The user-
defined parameter reduces the influence of each support vector, so you need more sup-
port vectors.
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In figure 6.7 we have 100 data points, and 85 of them are support vectors. The optimi-
zation algorithm found it needed these points in order to properly classify the data.
This should give you the intuition that the reach of the radial bias is too small. You can
increase sigma and see how the error rate changes. I increased sigma and made
another plot, shown in figure 6.8. 

 Compare figure 6.8 with figure 6.7. Now we have only 27 support vectors. This is
much smaller. If you watch the output of the function testRbf(), you’ll see that the
test error has gone down too. This dataset has an optimum somewhere around this
setting. If you make the sigma smaller, you’ll get a lower training error but a higher
testing error. 

 There is an optimum number of support vectors. The beauty of SVMs is that they
classify things efficiently. If you have too few support vectors, you may have a poor
decision boundary (this will be demonstrated in the next example). If you have too
many support vectors, you’re using the whole dataset every time you classify some-
thing—that’s called k-Nearest Neighbors. 

 Feel free to play around with other settings in the SMO algorithm or to create new
kernels. We’re now going to put our support vector machines to use with some larger
data and compare it with a classifier you saw earlier. 

Figure 6.8 Radial bias kernel function with user parameter k1=1.3. Here we have fewer 
support vectors than in figure 6.7. The support vectors are bunching up around the de-
cision boundary.
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6.6 Example: revisiting handwriting classification
Consider the following hypothetical situation. Your manager comes to you and says,
“That handwriting recognition program you made is great, but it takes up too much
memory and customers can’t download our application over the air. (At the time of
writing there’s a 10 MB limit on certain applications downloaded over the air. I’m sure
this will be laughable at some point in the future.) We need you to keep the same per-
formance with less memory used. I told the CEO you’d have this ready in a week. How
long will it take?” I’m not sure how you’d respond, but if you wanted to comply with
their request, you could consider using support vector machines. The k-Nearest
Neighbors algorithm used in chapter 2 works well, but you have to carry around all
the training examples. With support vector machines, you can carry around far fewer
examples (only your support vectors) and achieve comparable performance. 

Using some of the code from chapter 2 and the SMO algorithm, let’s build a system to
test a classifier on the handwritten digits. Open svmMLiA.py and copy over the function
img2vector() from knn.py in chapter 2. Then, add the code in the following listing. 

def loadImages(dirName):
    from os import listdir
    hwLabels = []
    trainingFileList = listdir(dirName) 
    m = len(trainingFileList)
    trainingMat = zeros((m,1024))
    for i in range(m):
        fileNameStr = trainingFileList[i]
        fileStr = fileNameStr.split('.')[0] 
        classNumStr = int(fileStr.split('_')[0])
        if classNumStr == 9: hwLabels.append(-1)
        else: hwLabels.append(1)
        trainingMat[i,:] = img2vector('%s/%s' % (dirName, fileNameStr))
    return trainingMat, hwLabels 

Listing 6.9 Support vector machine handwriting recognition 

Example: digit recognition with SVMs
1. Collect: Text file provided.

2. Prepare: Create vectors from the binary images.

3. Analyze: Visually inspect the image vectors. 

4. Train: Run the SMO algorithm with two different kernels and different settings for
the radial bias kernel. 

5. Test: Write a function to test the different kernels and calculate the error rate.

6. Use: A full application of image recognition requires some image processing,
which we won’t get into. 
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def testDigits(kTup=('rbf', 10)):
    dataArr,labelArr = loadImages('trainingDigits')
    b,alphas = smoP(dataArr, labelArr, 200, 0.0001, 10000, kTup)
    datMat=mat(dataArr); labelMat = mat(labelArr).transpose()
    svInd=nonzero(alphas.A>0)[0]
    sVs=datMat[svInd] 
    labelSV = labelMat[svInd];
    print "there are %d Support Vectors" % shape(sVs)[0]
    m,n = shape(datMat)
    errorCount = 0
    for i in range(m):
        kernelEval = kernelTrans(sVs,datMat[i,:],kTup)
        predict=kernelEval.T * multiply(labelSV,alphas[svInd]) + b
        if sign(predict)!=sign(labelArr[i]): errorCount += 1
    print "the training error rate is: %f" % (float(errorCount)/m)
    dataArr,labelArr = loadImages('testDigits')
    errorCount = 0
    datMat=mat(dataArr); labelMat = mat(labelArr).transpose()
    m,n = shape(datMat)
    for i in range(m):
        kernelEval = kernelTrans(sVs,datMat[i,:],kTup)
        predict=kernelEval.T * multiply(labelSV,alphas[svInd]) + b
        if sign(predict)!=sign(labelArr[i]): errorCount += 1    
    print "the test error rate is: %f" % (float(errorCount)/m)

The function loadImages() appeared as part of handwritingClassTest() earlier in
kNN.py. It has been refactored into its own function. The only big difference is that in
kNN.py this code directly applied the class label. But with support vector machines, you
need a class label of -1 or +1, so if you encounter a 9 it becomes -1; otherwise, the label
is +1. Actually, support vector machines are only a binary classifier. They can only
choose between +1 and -1. Creating a multiclass classifier with SVMs has been studied
and compared. If you’re interested, I suggest you read a paper called “A Comparison of
Methods for Multiclass Support Vector Machines” by C. W. Hus et al.4 Because we’re
doing binary classification, I’ve taken out all of the data except the 1 and 9 digits. 

 The next function, testDigits(), isn’t super new. It’s almost the exact same code
as testRbf(), except it calls loadImages() to get the class labels and data. The other
small difference is that the kernel tuple kTup is now an input, whereas it was assumed
that you were using the rbf kernel in testRbf(). If you don’t add any input arguments
to testDigits(), it will use the default of (‘rbf’, 10) for kTup. 

 After you’ve entered the code from listing 6.9, save svmMLiA.py and type in the
following:

>>> svmMLiA.testDigits(('rbf', 20))
                    .
                    .
L==H
fullSet, iter: 3 i:401, pairs changed 0
iteration number: 4

4 C. W. Hus, and C. J. Lin, “A Comparison of Methods for Multiclass Support Vector Machines,” IEEE Transac-
tions on Neural Networks 13, no. 2 (March 2002), 415–25.
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there are 43 Support Vectors
the training error rate is: 0.017413
the test error rate is: 0.032258

I tried different values for sigma as well as trying the linear kernel and summarized
them in table 6.1. 

The results in table 6.1 show that we achieve a minimum test error with the radial bias
function kernel somewhere around 10. This is much larger than our previous exam-
ple, where our minimum test error was roughly 1.3. Why is there such a huge differ-
ence? The data is different. In the handwriting data, we have 1,024 features that could
be as high as 1.0. In the example in section 6.5, our data varied from -1 to 1, but we
had only two features. How can you tell what settings to use? To be honest, I didn’t
know when I was writing this example. I just tried some different settings. The answer
is also sensitive to the settings of C. There are other formulations of the SVM that
bring C into the optimization procedure, such as v-SVM. A good discussion about
v-SVM can be found in chapter 3 of Pattern Recognition, by Sergios Theodoridis and
Konstantinos Koutroumbas.5 

 It’s interesting to note that the minimum training error doesn’t correspond to a
minimum number of support vectors. Also note that the linear kernel doesn’t have
terrible performance. It may be acceptable to trade the linear kernel’s error rate for
increased speed of classification, but that depends on your application.

6.7 Summary
Support vector machines are a type of classifier. They’re called machines because they
generate a binary decision; they’re decision machines. Support vectors have good gen-
eralization error: they do a good job of learning and generalizing on what they’ve
learned. These benefits have made support vector machines popular, and they’re con-
sidered by some to be the best stock algorithm in unsupervised learning. 

Table 6.1 Handwritten digit performance for different kernel settings

Kernel, settings Training error (%) Test error (%) # Support vectors

RBF, 0.1 0 52 402

RBF, 5 0 3.2 402

RBF, 10 0 0.5 99

RBF, 50 0.2 2.2 41

RBF, 100 4.5 4.3 26

Linear 2.7 2.2 38

5 Sergios Theodoridis and Konstantinos Koutroumbas, Pattern Recognition, 4th ed. (Academic Press, 2009), 133.
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 Support vector machines try to maximize margin by solving a quadratic optimiza-
tion problem. In the past, complex, slow quadratic solvers were used to train support
vector machines. John Platt introduced the SMO algorithm, which allowed fast train-
ing of SVMs by optimizing only two alphas at one time. We discussed the SMO optimi-
zation procedure first in a simplified version. We sped up the SMO algorithm a lot by
using the full Platt version over the simplified version. There are many further
improvements that you could make to speed it up even further. A commonly cited ref-
erence for further speed-up is the paper titled “Improvements to Platt’s SMO Algo-
rithm for SVM Classifier Design.”6

 Kernel methods, or the kernel trick, map data (sometimes nonlinear data) from a
low-dimensional space to a high-dimensional space. In a higher dimension, you can
solve a linear problem that’s nonlinear in lower-dimensional space. Kernel methods
can be used in other algorithms than just SVM. The radial-bias function is a popular
kernel that measures the distance between two vectors. 

 Support vector machines are a binary classifier and additional methods can be
extended to classification of classes greater than two. The performance of an SVM is
also sensitive to optimization parameters and parameters of the kernel used. 

 Our next chapter will wrap up our coverage of classification by focusing on some-
thing called boosting. A number of similarities can be drawn between boosting and sup-
port vector machines, as you’ll soon see.

6 S. S. Keerthi, S. K. Shevade, C. Bhattacharyya, and K. R. K. Murthy, “Improvements to Platt’s SMO Algorithm
for SVM Classifier Design,” Neural Computation 13, no. 3,( 2001), 637–49.



Improving classification
 with the AdaBoost

 meta-algorithm
If you were going to make an important decision, you’d probably get the advice of
multiple experts instead of trusting one person. Why should the problems you
solve with machine learning be any different? This is the idea behind a meta-
algorithm. Meta-algorithms are a way of combining other algorithms. We’ll focus
on one of the most popular meta-algorithms called AdaBoost. This is a powerful
tool to have in your toolbox because AdaBoost is considered by some to be the
best-supervised learning algorithm. 

 In this chapter we’re first going to discuss different ensemble methods of classi-
fication. We’ll next focus on boosting and AdaBoost, an algorithm for boosting.

This chapter covers
■ Combining similar classifiers to improve 

performance
■ Applying the AdaBoost algorithm
■ Dealing with classification imbalance
129
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We’ll then build a decision stump classifier, which is a single-node decision tree. The
AdaBoost algorithm will be applied to our decision stump classifier. We’ll put our clas-
sifier to work on a difficult dataset and see how it quickly outperforms other classifica-
tion methods. 

 Finally, before we leave the subject of classification, we’re going to talk about a gen-
eral problem for all classifiers: classification imbalance. This occurs when we’re trying
to classify items but don’t have an equal number of examples. Detecting fraudulent
credit card use is a good example of this: we may have 1,000 negative examples for
every positive example. How do classifiers work in such a situation? You’ll see that you
may need to use alternate metrics to evaluate a classifier’s performance. This subject
isn’t unique to AdaBoost, but because this is the last classification chapter, it’s a good
time to discuss it. 

7.1 Classifiers using multiple samples of the dataset

You’ve seen five different algorithms for classification. These algorithms have individ-
ual strengths and weaknesses. One idea that naturally arises is combining multiple clas-
sifiers. Methods that do this are known as ensemble methods or meta-algorithms. Ensemble
methods can take the form of using different algorithms, using the same algorithm with
different settings, or assigning different parts of the dataset to different classifiers. We’ll
next talk about two methods that use multiple instances of the same classifier and alter
the dataset applied to these classifiers. Finally, we’ll discuss how to approach AdaBoost
with our general framework for approaching machine-learning problems.

7.1.1 Building classifiers from randomly resampled data: bagging

Bootstrap aggregating, which is known as bagging, is a technique where the data is
taken from the original dataset S times to make S new datasets. The datasets are the
same size as the original. Each dataset is built by randomly selecting an example from
the original with replacement. By “with replacement” I mean that you can select the
same example more than once. This property allows you to have values in the new
dataset that are repeated, and some values from the original won’t be present in the
new set.

 After the S datasets are built, a learning algorithm is applied to each one individu-
ally. When you’d like to classify a new piece of data, you’d apply our S classifiers to the
new piece of data and take a majority vote. 

AdaBoost
Pros: Low generalization error, easy to code, works with most classifiers, no param-
eters to adjust

Cons: Sensitive to outliers

Works with: Numeric values, nominal values
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 There are more advanced methods of bagging, such as random forests. A good dis-
cussion of these methods can be found at http://www.stat.berkeley.edu/~breiman/
RandomForests/cc_home.htm. We’ll now turn our attention to boosting: an ensemble
method similar to bagging. 

7.1.2 Boosting

Boosting is a technique similar to bagging. In boosting and bagging, you always use
the same type of classifier. But in boosting, the different classifiers are trained sequen-
tially. Each new classifier is trained based on the performance of those already
trained. Boosting makes new classifiers focus on data that was previously misclassified
by previous classifiers. 

 Boosting is different from bagging because the output is calculated from a
weighted sum of all classifiers. The weights aren’t equal as in bagging but are based on
how successful the classifier was in the previous iteration.

 There are many versions of boosting, but this chapter will focus on the most popu-
lar version, called AdaBoost. 

We’re now going to discuss some of the theory behind AdaBoost and why it works so
well. 

7.2 Train: improving the classifier by focusing on errors
An interesting theoretical question is can we take a weak classifier and use multiple
instances of it to create a strong classifier? By “weak” I mean the classifier does a better
job than randomly guessing but not by much. That is to say, its error rate is greater
than 50% in the two-class case. The “strong” classifier will have a much lower error
rate. The AdaBoost algorithm was born out of this question. 

General approach to AdaBoost
1. Collect: Any method.

2. Prepare: It depends on which type of weak learner you’re going to use. In this
chapter, we’ll use decision stumps, which can take any type of data. You could
use any classifier, so any of the classifiers from chapters 2–6 would work. Simple
classifiers work better for a weak learner. 

3. Analyze: Any method.

4. Train: The majority of the time will be spent here. The classifier will train the weak
learner multiple times over the same dataset. 

5. Test: Calculate the error rate.

6. Use: Like support vector machines, AdaBoost predicts one of two classes. If
you want to use it for classification involving more than two classes, then you’ll
need to apply some of the same methods as for support vector machines. 
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 AdaBoost is short for adaptive boosting. AdaBoost works this way: A weight is applied
to every example in the training data. We’ll call the weight vector D. Initially, these
weights are all equal. A weak classifier is first trained on the training data. The errors
from the weak classifier are calculated, and the weak classifier is trained a second time
with the same dataset. This second time the weak classifier is trained, the weights of
the training set are adjusted so the examples properly classified the first time are
weighted less and the examples incorrectly classified in the first iteration are weighted
more. To get one answer from all of these weak classifiers, AdaBoost assigns  values
to each of the classifiers. The  values are based on the error of each weak classifier.
The error  is given by 

and  is given by

The AdaBoost algorithm can be seen schematically in figure 7.1. 

 number of incorrectly classified examples
total number of examples

----------------------------------------------------------------------------------------------=

 1
2
----  ln 1 –


----------- 
 =

Figure 7.1 Schematic representation of AdaBoost; with the dataset on the left side, the dif-
ferent widths of the bars represent weights applied to each instance. The weighted predictions 
pass through a classifier, which is then weighted by the triangles ( values). The weighted 
output of each triangle is summed up in the circle, which produces the final output.
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After you calculate , you can update the weight vector D so that the examples that are
correctly classified will decrease in weight and the misclassified examples will increase
in weight. D is given by

if correctly predicted and

if incorrectly predicted.
 After D is calculated, AdaBoost starts on the next iteration. The AdaBoost algo-

rithm repeats the training and weight-adjusting iterations until the training error is 0
or until the number of weak classifiers reaches a user-defined value. 

 We’re going to build up to the full AdaBoost algorithm. But, before we can do that,
we need to first write some code to create a weak classifier and to accept weights for
the dataset. 

7.3 Creating a weak learner with a decision stump
A decision stump is a simple decision tree. You saw how decision trees work earlier. Now,
we’re going to make a decision stump that makes a decision on one feature only. It’s a
tree with only one split, so it’s a stump. 

 While we’re building the AdaBoost code, we’re going to first work with a simple
dataset to make sure we have everything straight. You can create a new file called ada-
boost.py and add the following code:

def loadSimpData():
    datMat = matrix([[ 1. ,  2.1],
        [ 2. ,  1.1],
        [ 1.3,  1. ],
        [ 1. ,  1. ],
        [ 2. ,  1. ]])
    classLabels = [1.0, 1.0, -1.0, -1.0, 1.0]
  return datMat,classLabels 

You can see this data in figure 7.2. Try choosing one value on one axis that totally sep-
arates the circles from the squares. It’s not possible. This is the famous 45 problem
that decision trees are notorious for having difficulty with. AdaBoost will need to use
multiple decision stumps to properly classify this dataset. By using multiple decision
stumps, we’ll be able to build a classifier to completely classify the data. 

 You can load the dataset and class labels by typing in 

>>> import adaboost
>>> datMat,classLabels=adaboost.loadSimpData()

Now that you have the dataset loaded, we can create a few functions to build our deci-
sion stump. 

Di
t 1+  Di

t e –

Sum D 
---------------------=
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The first one will be used to test if any of values are less than or greater than the
threshold value we’re testing. The second, more involved function will loop over a
weighted version of the dataset and find the stump that yields the lowest error.
The pseudo-code will look like this:

Set the minError to +
For every feature in the dataset:
     For every step:
        For each inequality:
          Build a decision stump and test it with the weighted dataset
          If the error is less than minError: set this stump as the best stump
Return the best stump

Let’s now build this function. Enter the code from the following listing into ada-
boost.py and save the file. 

def stumpClassify(dataMatrix,dimen,threshVal,threshIneq):
    retArray = ones((shape(dataMatrix)[0],1))
    if threshIneq == 'lt':

Listing 7.1 Decision stump–generating functions

Figure 7.2 Simple data used to check the AdaBoost building functions. It’s not possible 
to choose one threshold on one axis that separates the squares from the circles. AdaBoost 
will need to combine multiple decision stumps to classify this set without error.
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        retArray[dataMatrix[:,dimen] <= threshVal] = -1.0
    else:
        retArray[dataMatrix[:,dimen] > threshVal] = -1.0
    return retArray

def buildStump(dataArr,classLabels,D):
    dataMatrix = mat(dataArr); labelMat = mat(classLabels).T
    m,n = shape(dataMatrix)
    numSteps = 10.0; bestStump = {}; bestClasEst = mat(zeros((m,1)))
    minError = inf 
    for i in range(n):
        rangeMin = dataMatrix[:,i].min(); rangeMax = dataMatrix[:,i].max();
        stepSize = (rangeMax-rangeMin)/numSteps
        for j in range(-1,int(numSteps)+1):
            for inequal in ['lt', 'gt']: 
                threshVal = (rangeMin + float(j) * stepSize)
                predictedVals = \
                        stumpClassify(dataMatrix,i,threshVal,inequal)
                errArr = mat(ones((m,1)))
                errArr[predictedVals == labelMat] = 0
                weightedError = D.T*errArr                            
                #print "split: dim %d, thresh %.2f, thresh ineqal: \
                       %s, the weighted error is %.3f" %\
                       (i, threshVal, inequal, weightedError)
                if weightedError < minError:
                    minError = weightedError
                    bestClasEst = predictedVals.copy()
                    bestStump['dim'] = i
                    bestStump['thresh'] = threshVal
                    bestStump['ineq'] = inequal
    return bestStump,minError,bestClasEst

The code in listing 7.1 contains two functions. The first function, stumpClassify(),
performs a threshold comparison to classify data. Everything on one side of the thresh-
old is thrown into class -1, and everything on the other side is thrown into class +1. This
is done using array filtering, by first setting the return array to all 1s and then setting val-
ues that don’t meet the inequality to -1. You can make this comparison on any feature
in the dataset, and you can also switch the inequality from greater than to less than. 

 The next function, buildStump(), will iterate over all of the possible inputs to
stumpClassify() and find the best decision stump for our dataset. Best here will be
with respect to the data weight vector D. You’ll see how this is done in a bit. The func-
tion starts out by making sure the input data is in the proper format for matrix math.
Then, it creates an empty dictionary called bestStump, which you’ll use to store the
classifier information corresponding to the best choice of a decision stump given this
weight vector D. The variable numSteps will be used to iterate over the possible values
of the features. You also initialize the variable minError to positive infinity; this vari-
able is used in finding the minimum possible error later. 

 The main portion of the code is three nested for loops. The first one goes over all
the features in our dataset. You’re considering numeric values, and you calculate the
minimum and maximum to see how large your step size should be. Then, the next

Calculate
weighted

error B
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for loop loops over these values. It might make sense to set the threshold outside the
extremes of your range, so there are two extra steps outside the range. The last for
loop toggles your inequality between greater than and less than. 

 Inside the nested three for loops, you call stumpClassify() with the dataset and
your three loop variables. stumpClassify() returns its class prediction based on these
loop variables. You next create the column vector errArr, which contains a 1 for any
value in predictedVals that isn’t equal to the actual class in labelMat. You multiply
these errors by the weights in D and sum the results to give you a single number:
weightedError. B This is the line where AdaBoost interacts with the classifier. You’re
evaluating your classifier based on the weights D, not on another error measure. If you
want to use another classifier, you’d need to include this calculation to define the best
classifier for D. 

 You next print out all the values. This line can be commented out later, but it’s
helpful in understanding how this function works. Last, you compare the error to
your known minimum error, and if it’s below it, you save this decision stump in your
dictionary bestStump. The dictionary, the error, and the class estimates are all
returned to the AdaBoost algorithm. 

 To see this in action, enter the following in the Python shell:

>>> D = mat(ones((5,1))/5)
>>> adaboost.buildStump(datMat,classLabels,D)
split: dim 0, thresh 0.90, thresh ineqal: lt, the weighted error is 0.400
split: dim 0, thresh 0.90, thresh ineqal: gt, the weighted error is 0.600
split: dim 0, thresh 1.00, thresh ineqal: lt, the weighted error is 0.400
split: dim 0, thresh 1.00, thresh ineqal: gt, the weighted error is 0.600
                                   .
                                   .
split: dim 1, thresh 2.10, thresh ineqal: lt, the weighted error is 0.600
split: dim 1, thresh 2.10, thresh ineqal: gt, the weighted error is 0.400
({'dim': 0, 'ineq': 'lt', 'thresh': 1.3}, matrix([[ 0.2]]), array([[-1.],
       [ 1.],
       [-1.],
       [-1.],
       [ 1.]]))

As buildStump iterates over all of the possible values, you can see the output, and
finally you can see the dictionary returned. Does this dictionary correspond to the
lowest possible weighted error? Are there other settings that have this same error? 

 The decision stump generator that you made is a simplified version of a decision
tree. It’s what you’d call the weak learner, which means a weak classification algo-
rithm. Now that you’ve built the decision stump–generating code, we’re ready to
move on to the full AdaBoost algorithm. In the next section, we’ll create the AdaBoost
code to use multiple weak learners. 

7.4 Implementing the full AdaBoost algorithm 
In the last section, we built a classifier that could make decisions based on weighted
input values. We now have all we need to implement the full AdaBoost algorithm.
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We’ll implement the algorithm outlined in section 7.2 with the decision stump built in
section 7.3. 

 Pseudo-code for this will look like this:

For each iteration:
    Find the best stump using buildStump()
    Add the best stump to the stump array
    Calculate alpha
    Calculate the new weight vector – D
    Update the aggregate class estimate
    If the error rate ==0.0 : break out of the for loop

To put this function into Python, open adaboost.py and add the code from the follow-
ing listing. 

def adaBoostTrainDS(dataArr,classLabels,numIt=40):
    weakClassArr = []
    m = shape(dataArr)[0]
    D = mat(ones((m,1))/m)   
    aggClassEst = mat(zeros((m,1)))
    for i in range(numIt):
        bestStump,error,classEst = buildStump(dataArr,classLabels,D)
        print "D:",D.T
        alpha = float(0.5*log((1.0-error)/max(error,1e-16)))
        bestStump['alpha'] = alpha  
        weakClassArr.append(bestStump)                 
        print "classEst: ",classEst.T
        expon = multiply(-1*alpha*mat(classLabels).T,classEst)
        D = multiply(D,exp(expon))                              
        D = D/D.sum()                                         
        aggClassEst += alpha*classEst               
        print "aggClassEst: ",aggClassEst.T               
        aggErrors = multiply(sign(aggClassEst) != 
                    mat(classLabels).T,ones((m,1))) 
        errorRate = aggErrors.sum()/m               
        print "total error: ",errorRate,"\n"
        if errorRate == 0.0: break
    return weakClassArr
>>> classifierArray = adaboost.adaBoostTrainDS(datMat,classLabels,9)
D: [[ 0.2  0.2  0.2  0.2  0.2]]
classEst:  [[-1.  1. -1. -1.  1.]]
aggClassEst:  [[-0.69314718  0.69314718 -0.69314718 -0.69314718 
               0.69314718]]
total error:  0.2

D: [[ 0.5    0.125  0.125  0.125  0.125]]
classEst:  [[ 1.  1. -1. -1. -1.]]
aggClassEst:  [[ 0.27980789  1.66610226 -1.66610226 -1.66610226 
              -0.27980789]]
total error:  0.2

Listing 7.2 AdaBoost training with decision stumps

Calculate 
D for next 
iteration

B

Aggregate error 
calculation

C
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D: [[ 0.28571429  0.07142857  0.07142857  0.07142857  0.5       ]]
classEst:  [[ 1.  1.  1.  1.  1.]]
aggClassEst:  [[ 1.17568763  2.56198199 -0.77022252 -0.77022252
              0.61607184]]
total error:  0.0

The AdaBoost algorithm takes the input dataset, the class labels, and one parameter,
numIt, which is the number of iterations. This is the only parameter you specify for
the whole AdaBoost algorithm. 

 You set the number of iterations to 9. But the algorithm reached a total error of 0
after the third iteration and quit, so you didn’t get to see all nine iterations. Interme-
diate output from each of the iterations comes from the print statements. You’ll com-
ment these out later, but for now let’s look at the output to see what’s going on under
the hood of the AdaBoost algorithm. 

 The DS at the end of the function names stands for decision stump. Decision
stumps are the most popular weak learner in AdaBoost. They aren’t the only one you
can use. This function is built for decision stumps, but you could easily modify it for
other base classifiers. Any classifier will work. You could use any of the algorithms we
explored in the first part of this book. The algorithm will output an array of decision
stumps, so you first create a new Python list to store these. You next get m, the number
of data points in your dataset, and create a column vector, D. 

 The vector D is important. It holds the weight of each piece of data. Initially, you’ll
set all of these values equal. On subsequent iterations, the AdaBoost algorithm will
increase the weight of the misclassified pieces of data and decrease the weight of the
properly classified data. D is a probability distribution, so the sum of all the elements
in D must be 1.0. To meet this requirement, you initialize every element to 1/m. You
also create another column vector, aggClassEst, which gives you the aggregate esti-
mate of the class for every data point. 

 The heart of the AdaBoost algorithm takes place in the for loop, which is exe-
cuted numIt times or until the training error becomes 0. The first thing that is done in
this loop is to build a decision stump with the buildStump() function described ear-
lier. This function takes D, the weights vector, and returns the stump with the lowest
error using D. The lowest error value is also returned as well as a vector with the esti-
mated classes for this iteration D. 

 Next, alpha is calculated. This will tell the total classifier how much to weight the
output from this stump. The statement max(error,1e-16) is there to make sure you
don’t have a divide-by-zero error in the case where there’s no error. The alpha value is
added to the bestStump dictionary, and the dictionary is appended to the list. This
dictionary will contain all you need for classification. 

 The next three lines B are used to calculate new weights D for the next iteration.
In the case that you have 0 training error, you want to exit the for loop early. This is
calculated C by keeping a running sum of the estimated class in aggClassEst. This
value is a floating point number, and to get the binary class you use the sign() func-
tion. If the total error is 0, you quit the for loop with the break statement. 
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 Let’s look at the intermediate output. Remember, our class labels were [1.0, 1.0, -1.0,
-1.0, 1.0]. In the first iteration, all the D values were equal; then only one value, the first
data point, was misclassified. So, in the next iteration, the D vector puts 0.5 weight on
the first data point because it was misclassified previously. You can see the total class by
looking at the sign of aggClassEst. After the second iteration, you can see that the first
data point is correctly classified, but the last data point is now wrong. The D value now
becomes 0.5 for the last element, and the other values in the D vector are much smaller.
Finally, in the third iteration the sign of all the values in aggClassEst matches your class
labels and the training error becomes 0, so you can quit. 

 To see classifierArray type in

>>> classifierArray
[{'dim': 0, 'ineq': 'lt', 'thresh': 1.3, 'alpha': 0.69314718055994529},
    {'dim': 1, 'ineq': 'lt', 'thresh': 1.0, 'alpha': 0.9729550745276565}, 
    {'dim': 0,'ineq': 'lt', 'thresh': 0.90000000000000002, 'alpha': 
      0.89587973461402726}]

This array contains three dictionaries, which contain all of the information you’ll need
for classification. You’ve now built a classifier, and the classifier will reduce the training
error to 0 if you wish. How does the test error look? In order to see the test error, you
need to write some code for classification. The next section will discuss classification. 

7.5 Test: classifying with AdaBoost
Once you have your array of weak classifiers and alphas for each classifier, testing is
easy. You’ve already written most of the code in adaBoostTrainDS() in listing 7.2. All
you need to do is take the train of weak classifiers from your training function and
apply these to an instance. The result of each weak classifier is weighted by its alpha.
The weighted results from all of these weak classifiers are added together, and you
take the sign of the final weighted sum to get your final answer. The code to do this is
given in the next listing. Add the following code to adaboost.py, and then you can use
it to classify data with the classifier array from adaboostTrainDS(). 

def adaClassify(datToClass,classifierArr):
    dataMatrix = mat(datToClass)
    m = shape(dataMatrix)[0]
    aggClassEst = mat(zeros((m,1)))
    for i in range(len(classifierArr)):
        classEst = stumpClassify(dataMatrix,classifierArr[i]['dim'],\
                                 classifierArr[i]['thresh'],\
                                 classifierArr[i]['ineq'])
        aggClassEst += classifierArr[i]['alpha']*classEst
        print aggClassEst
    return sign(aggClassEst)

The function in listing 7.3 is adaClassify(), which, as you may have guessed, classifies
with a train of weak classifiers. The inputs are datToClass, which can be multiple data

Listing 7.3 AdaBoost classification function
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instances or just one to be classified, and classifierArr, which is an array of weak clas-
sifiers. The function adaClassify() first converts datToClass to a NumPy matrix and
gets m, the number of instances in datToClass. Then it creates aggClassEst, which is
a column vector of all 0s. This is the same as adaBoostTrainDS(). 

 Next, you look over all of the weak classifiers in classifierArr, and for each of
them you get a class estimate from stumpClassify(). You saw stumpClassify() ear-
lier when you were building stumps. At that time you iterated over all of the possible
stump values and chose the stump with the lowest weighted error. Here you’re simply
applying the stump. This class estimate is multiplied by the alpha value for each stump
and added to the total: aggClassEst. I’ve added a print statement so you can see how
aggClassEst evolves with each iteration. Finally, you return the sign of aggClassEst,
which gives you a +1 if its argument is greater than 0 and a -1 if the argument is less
than 0. 

 Let’s see this in action. After you’ve added the code from listing 7.3, type the fol-
lowing at the Python shell:

>>> reload(adaboost)
<module 'adaboost' from 'adaboost.py'>

If you don’t have the classifier array, you can enter the following:

>>> datArr,labelArr=adaboost.loadSimpData()
>>> classifierArr = adaboost.adaBoostTrainDS(datArr,labelArr,30)

Now you can classify by typing this:

>>> adaboost.adaClassify([0, 0],classifierArr)
[[-0.69314718]]
[[-1.66610226]]
[[-2.56198199]]
matrix([[-1.]])

You can see that the answer for point [0,0] gets stronger with each iteration. You can
also do this with multiple points:

>>> adaboost.adaClassify([[5, 5],[0,0]],classifierArr)
[[ 0.69314718]
            .
            .
[-2.56198199]]
matrix([[ 1.],
        [-1.]])

The answer for both points gets stronger with each iteration. In the next section we’re
going to apply this to a much bigger and harder dataset from the real world. 

7.6 Example: AdaBoost on a difficult dataset
In this section we’re going to try AdaBoost on the dataset from chapter 4. It’s the
horse colic dataset. In chapter 4 we tried to predict whether a horse with colic would
live or die by using logistic regression. Let’s see if we can do better with AdaBoost and
the decision stumps. 
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Before you use the functions from the previous code listings in this chapter, you need
to have a way to load data from a file. The familiar loadDataSet() is given in the fol-
lowing listing.

def loadDataSet(fileName):      
    numFeat = len(open(fileName).readline().split('\t')) 
    dataMat = []; labelMat = []
    fr = open(fileName)
    for line in fr.readlines():
        lineArr =[]
        curLine = line.strip().split('\t')
        for i in range(numFeat-1):
            lineArr.append(float(curLine[i]))
        dataMat.append(lineArr)
        labelMat.append(float(curLine[-1]))
    return dataMat,labelMat

The function in listing 7.4 is loadDataSet(), which you’ve seen many times before.
It’s slightly improved this time because you don’t have to specify the number of fea-
tures in each file. It automatically detects this. The function also assumes that the last
feature is the class label. 

 To use it, enter the following in your Python shell after you’ve saved adaboost.py: 

>>> datArr,labelArr = adaboost.loadDataSet('horseColicTraining2.txt')
>>> classifierArray = adaboost.adaBoostTrainDS(datArr,labelArr,10)
total error: 0.284280936455
total error: 0.284280936455
                    .
                    .
total error: 0.230769230769
>>> testArr,testLabelArr = adaboost.loadDataSet('horseColicTest2.txt')
>>> prediction10 = adaboost.adaClassify(testArr,classifierArray)
To get the number of misclassified examples type in:

Listing 7.4 Adaptive load data function 

Example: using AdaBoost on a difficult dataset
1. Collect: Text file provided.

2. Prepare: We need to make sure the class labels are +1 and -1, not 1 and 0. 

3. Analyze: Manually inspect the data. 

4. Train: We’ll train a series of classifiers on the data using the adaBoost-
TrainDS() function. 

5. Test: We have two datasets. With no randomization, we can have an apples-to-
apples comparison of the AdaBoost results versus the logistic regression results. 

6. Use: We’ll look at the error rates in this example. But you could create a web-
site that asks a trainer for the horse’s symptoms and then predicts whether
the horse will live or die.
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>>> errArr=mat(ones((67,1)))
>>> errArr[prediction10!=mat(testLabelArr).T].sum()
16.0

To get the error rate, divide this number by 67. 
 I’ve repeated the process for a number of weak classifiers between 1 and 10,000.

The results are listed in table 7.1. The test error is excellent for this dataset. If you
remember, in chapter 5 we looked at this dataset with logistic regression. At that time,
the average error rate was 0.35. With AdaBoost we never have an error rate that high,
and with only 50 weak learners we achieved high performance.

 If you look at the Test Error column in table 7.1, you’ll see that the test error reaches
a minimum and then starts to increase. This sort of behavior is known as overfitting. It
has been claimed in literature that for well-behaved datasets the test error for AdaBoost
reaches a plateau and won’t increase with more classifiers. Perhaps this dataset isn’t
“well behaved.” It did start off with 30% missing values, and the assumptions made for
the missing values were valid for logistic regression but they may not work for a decision
tree. If you went back to our dataset and replaced all the 0s with other values—perhaps
averages for a given class—would you have better performance?  

AdaBoost and support vector machines are considered by many to be the most power-
ful algorithms in supervised learning. You can draw a number of similarities between
the two. You can think of the weak learner in AdaBoost as a kernel in support vector
machines. You can also write the AdaBoost algorithm in terms of maximizing a mini-
mum margin. The way these margins are calculated is different and can lead to differ-
ent results, especially with higher dimensions. 

 In the next section we’re going to leave AdaBoost and talk about a problem com-
mon to all classifiers. 

7.7 Classification imbalance 
Before we leave the subject of classification, there’s a topic that needs to be addressed.
In all six chapters on classification, we assumed that the cost of classifying things is
equal. In chapter 5, for example, we built a system to detect whether a horse with

Number of Classifiers Training Error Test Error

1 0.28 0.27

10 0.23 0.24

50 0.19 0.21

100 0.19 0.22

500 0.16 0.25

1000 0.14 0.31

10000 0.11 0.33

Table 7.1 AdaBoost test and training 
errors for a range of weak classifiers. 
This dataset is particularly difficult. 
Usually AdaBoost reaches a test error 
plateau, and the error doesn’t increase 
with more classifiers.
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stomach pain would end up living or dying. We built the classifier but didn’t talk
about what happens after classification. Let’s say someone brings a horse to us and
asks us to predict whether the horse will live or die. We say die, and rather than delay
the inevitable, making the animal suffer and incurring veterinary bills, they have it
euthanized. Perhaps our prediction was wrong, and the horse would have lived. Our
classifier is only 80% accurate, after all. If we predicted this incorrectly, then an expen-
sive animal would have been destroyed, not to mention that a human was emotionally
attached to the animal. 

 How about spam detection? Is it OK to let a few spam messages arrive in your inbox
as long as real email never gets put into the spam folder? What about cancer detec-
tion? Is it better to tell someone to go for a second opinion as long as you never let
someone with a disease go untreated? 

 The examples for this abound, and it’s safe to say that in most cases the costs aren’t
equal. In this section, we’ll examine a different method for measuring performance
of our classifiers and some graphical techniques for visualizing the performance of
different classifiers with respect to this problem. Then we’ll look at two methods of
altering our classification algorithms to take into account the costs of making differ-
ent decisions. 

7.7.1 Alternative performance metrics: precision, recall, and ROC

So far in this book we’ve measured the success of the classification tasks by the error
rate. The error rate was the number of misclassified instances divided by the total num-
ber of instances tested. Measuring errors this way hides how instances were misclassi-
fied. There’s a tool commonly used in machine learning that gives you a better view of
classification errors called a confusion matrix. A confusion matrix for a three-class prob-
lem involving predicting animals found around the house is shown in table 7.2.  

With a confusion matrix you get a better understanding of the classification errors. If
the off-diagonal elements are all zero, then you have a perfect classifier. 

 Let’s consider another confusion matrix, this time for the simple two-class prob-
lem. The confusion matrix is given in table 7.3. In the two-class problem, if you cor-
rectly classify something as positive, it’s called a True Positive, and it’s called a True
Negative when you properly classify the negative class. The other two possible cases
(False Negative and False Positive) are labeled in table 7.3. 

Predicted

Dog Cat Rat

Actual

Dog 24 2 5

Cat 2 27 0

Rat 4 2 30 Table 7.2 Confusion matrix 
for a three-class problem
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With these definitions we can define some new metrics that are more useful than
error rate when detection of one class is more important than another class. The first
term is Precision = TP/(TP+FP). Precision tells us the fraction of records that were posi-
tive from the group that the classifier predicted to be positive. The second term we
care about is Recall = TP/(TP+FN). Recall measures the fraction of positive examples the
classifier got right. Classifiers with a large recall don’t have many positive examples
classified incorrectly. 

 You can easily construct a classifier that achieves a high measure of recall or preci-
sion but not both. If you predicted everything to be in the positive class, you’d have
perfect recall but poor precision. Creating a classifier that maximizes both precision
and recall is a challenge. 

 Another tool used for measuring classification imbalance is the ROC curve. ROC
stands for receiver operating characteristic, and it was first used by electrical engi-
neers building radar systems during World War II. An example ROC curve is shown
in figure 7.3. 

Predicted

+1 -1

Actual
+1 True Positive (TP) False Negative (FN)

-1 False Positive (FP) True Negative (TN)

Figure 7.3 ROC for AdaBoost horse colic detection system using 10 decision stumps

Table 7.3 Confusion matrix for a 
two-class problem, with different 
outcomes labeled
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The ROC curve in figure 7.3 has two lines, a solid one and a dashed one. The x-axis in
figure 7.3 is the number of false positives, and the y-axis is the number of true posi-
tives. The ROC curve shows how the two rates change as the threshold changes. The
leftmost point corresponds to classifying everything as the negative class, and the
rightmost point corresponds to classifying everything in the positive class. The dashed
line is the curve you’d get by randomly guessing. 

ROC curves can be used to compare classifiers and make cost-versus-benefit deci-
sions. Different classifiers may perform better for different threshold values, and it
may make sense to combine them in some way. You wouldn’t get this type of insight
from simply looking at the error rate of a classifier. 

 Ideally, the best classifier would be in upper left as much as possible. This would
mean that you had a high true positive rate for a low false positive rate. For example,
in spam classification this would mean you catch all the spam and don’t allow any
legitimate emails to get put in the spam folder. 

 One metric to compare different ROC curves is the area under the curve (AUC).
The AUC gives an average value of the classifier’s performance and doesn’t substitute
for looking at the curve. A perfect classifier would have an AUC of 1.0, and random
guessing will give you a 0.5. 

 In order to plot the ROC you need the classifier to give you a numeric score of how
positive or negative each instance is. Most classifiers give this to you, but it’s usually
cleaned up before the final discrete class is delivered. Naïve Bayes gives you a probability.
The input to the sigmoid in logistic regression is a numeric value. AdaBoost and SVMs
both compute a numeric value that’s input to the sign() function. All of these values
can be used to rank how strong the prediction of a given classifier is. To build the ROC
curve, you first sort the instances by their prediction strength. You start with the lowest
ranked instance and predict everything below this to be in the negative class and every-
thing above this to be the positive class. This corresponds to the point 1.0,1.0. You move
to the next item in the list, and if that is the positive class, you move the true positive rate,
but if that instance is in the negative class, you change the true negative rate. 

 This procedure probably sounds confusing but it will become clear when you look
at the code in the following listing. Open adaboost.py and add the following code.

def plotROC(predStrengths, classLabels):
    import matplotlib.pyplot as plt
    cur = (1.0,1.0) 
    ySum = 0.0 
    numPosClas = sum(array(classLabels)==1.0)
    yStep = 1/float(numPosClas)
    xStep = 1/float(len(classLabels)-numPosClas)
    sortedIndicies = predStrengths.argsort()       
    fig = plt.figure()
    fig.clf()
    ax = plt.subplot(111)
    for index in sortedIndicies.tolist()[0]:

Listing 7.5 ROC plotting and AUC calculating function

Get sorted 
index

B
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        if classLabels[index] == 1.0:
            delX = 0; delY = yStep;
        else:
            delX = xStep; delY = 0;
            ySum += cur[1]
        ax.plot([cur[0],cur[0]-delX],[cur[1],cur[1]-delY], c='b')
        cur = (cur[0]-delX,cur[1]-delY)
    ax.plot([0,1],[0,1],'b--')
    plt.xlabel('False Positive Rate'); plt.ylabel('True Positive Rate')
    plt.title('ROC curve for AdaBoost Horse Colic Detection System')
    ax.axis([0,1,0,1])
    plt.show()
    print "the Area Under the Curve is: ",ySum*xStep

The code in listing 7.5 takes two inputs; the first is a NumPy array or matrix in a row
vector form. This is the strength of the classifier’s predictions. Our classifier and our
training functions generate this before they apply it to the sign() function. You’ll see
this function in action in a bit, but let’s discuss the code first. The second input is the
classLabels you used earlier. You first input pyplot and then create a tuple of floats
and initialize it to 1.0,1.0. This holds your cursor for plotting. The variable ySum is used
for calculating the AUC. You next calculate the number of positive instances you have,
by using array filtering, and set this value to numPosClas. This will give you the number
of steps you’re going to take in the y direction. You’re going to plot in the range of 0.0
to 1.0 on both the x- and y-axes, so to get the y step size you take 1.0/numPosClas. You
can similarly get the x step size. 

 You next get the sorted index B, but it’s from smallest to largest, so you start at the
point 1.0,1.0 and draw to 0,0. The next three lines set up the plot, and then you loop
over all the sorted values. The values were sorted in a NumPy array or matrix, but
Python needs a list to iterate over, so you call the tolist() method. As you’re going
through the list, you take a step down in the y direction every time you get a class of 1.0,
which decreases the true positive rate. Similarly, you take a step backward in the x direc-
tion (false positive rate) for every other class. This code is set up to focus only on the 1s
so you can use either the 1,0 or +1,-1 class labels. 

 To compute the AUC, you need to add up a bunch of small rectangles. The width
of each of these rectangles will be xStep, so you can add the heights of all the rectan-
gles and multiply the sum of the heights by xStep once to get the total area. The
height sum (ySum) increases every time you move in the x direction. Once you’ve
decided whether you’re going to move in the x or y direction, you draw a small,
straight-line segment from the current point to the new point. The current point, cur,
is then updated. Finally, you make the plot look nice and display it by printing the
AUC to the terminal. 

 To see this in action, you’ll need to alter the last line of adaboostTrainDS() to 

return weakClassArr,aggClassEst

in order to get the aggClassEst out. Next, type in the following at your Python shell:
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>>> reload(adaboost)
<module 'adaboost' from 'adaboost.pyc'>
>>> datArr,labelArr = adaboost.loadDataSet('horseColicTraining2.txt')
>>> classifierArray,aggClassEst = 

adaboost.adaBoostTrainDS(datArr,labelArr,10)
>>> adaboost.plotROC(aggClassEst.T,labelArr)
the Area Under the Curve is: 0.858296963506

You should also see an ROC plot identical to figure 7.3. This is the performance of our
AdaBoost classifier with 10 weak learners. Remember, we had the best performance
with 40 weak learners? How does the ROC curve compare? Is the AUC better? 

7.7.2 Manipulating the classifier’s decision with a cost function 

Besides tuning the thresholds of our classifier, there are other approaches you
can take to aid with uneven classification costs. One such method is known as cost-
sensitive learning. Consider the cost matrix in table 7.4. The top table encodes
the costs of classification as we’ve been using it up to this point. You calculate the
total cost with this cost matrix by TP*0+FN*1+FP*1+TN*0. Now consider the cost
matrix in the bottom frame of table 7.4. The total cost using this cost matrix will be
TP*-5+FN*1+FP*50+TN*0. Using the second cost matrix, the two types of incorrect
classification will have different costs. Similarly, the two types of correct classification
will have different benefits. If you know these costs when you’re building the classi-
fier, you can select a classifier with the minimum cost. 

There are many ways to include the cost information in classification algorithms. In
AdaBoost, you can adjust the error weight vector D based on the cost function. In
naïve Bayes, you could predict the class with the lowest expected cost instead of the
class with the highest probability. In SVMs, you can use different C parameters in the
cost function for the different classes. This gives more weight to the smaller class,
which when training the classifier will allow fewer errors in the smaller class.

Predicted

+1 -1

Actual
+1 0 1

-1 1 0

Predicted

+1 -1

Actual
+1 -5 1

-1 50 0
Table 7.4 Cost matrix 
for a two-class problem
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7.7.3 Data sampling for dealing with classification imbalance 

Another way to tune classifiers is to alter the data used to train the classifier to deal
with imbalanced classification tasks. This is done by either undersampling or oversam-
pling the data. Oversample means to duplicate examples, whereas undersample means to
delete examples. Either way, you’re altering the data from its original form. The sam-
pling can be done either randomly or in a predetermined fashion. 

 Usually there’s a rare case that you’re trying to identify, such as credit card fraud.
As mentioned previously, the rare case is the positive class. You want to preserve as
much information as possible about the rare case, so you should keep all of the exam-
ples from the positive class and undersample or discard examples from the negative
class. One drawback of this approach is deciding which negative examples to toss out.
The examples you choose to toss out could carry valuable information that isn’t con-
tained in the remaining examples. 

 One solution for this is to pick samples to discard that aren’t near the decision
boundary. For example, say you had a dataset with 50 fraudulent credit card transac-
tions and 5,000 legitimate transactions. If you wanted to undersample the legitimate
transactions to make the dataset equally balanced, you’d need to throw out 4,950
examples, which may also contain valuable information. This may seem extreme, so
an alternative is to use a hybrid approach of undersampling the negative class and
oversampling the positive class. 

 To oversample the positive class, you could replicate the existing examples or add
new points similar to the existing points. One approach is to add a data point interpo-
lated between existing data points. This process can lead to overfitting. 

7.8 Summary
Ensemble methods are a way of combining the predictions of multiple classifiers to
get a better answer than simply using one classifier. There are ensemble methods that
use different types of classifiers, but we chose to look at methods using only one type
of classifier. 

 Combining multiple classifiers exploits the shortcomings of single classifiers, such
as overfitting. Combining multiple classifiers can help, as long as the classifiers are sig-
nificantly different from each other. This difference can be in the algorithm or in the
data applied to that algorithm. 

 The two types of ensemble methods we discussed are bagging and boosting. In
bagging, datasets the same size as the original dataset are built by randomly sampling
examples for the dataset with replacement. Boosting takes the idea of bagging a step
further by applying a different classifier sequentially to a dataset. An additional
ensemble method that has shown to be successful is random forests. Random forests
aren’t as popular as AdaBoost, so they aren’t discussed in this book. 

 We discussed the most popular variant of boosting, called AdaBoost. AdaBoost
uses a weak learner as the base classifier with the input data weighted by a weight vec-
tor. In the first iteration the data is equally weighted. But in subsequent iterations the
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data is weighted more strongly if it was incorrectly classified previously. This adapting
to the errors is the strength of AdaBoost. 

 We built functions to create a classifier using AdaBoost and the weak learner, deci-
sion stumps. The AdaBoost functions can be applied to any classifier, as long as the
classifier can deal with weighted data. The AdaBoost algorithm is powerful, and it
quickly handled datasets that were difficult using other classifiers. 

 The classification imbalance problem is training a classifier with data that doesn’t
have an equal number of positive and negative examples. The problem also exists
when the costs for misclassification are different from positive and negative examples.
We looked at ROC curves as a way to evaluate different classifiers. We introduced pre-
cision and recall as metrics to measure the performance classifiers when classification
of one class is more important than classification of the other class. 

 We introduced oversampling and undersampling as ways to adjust the positive and
negative examples in a dataset. Another, perhaps better, technique was introduced for
dealing with classifiers with unbalanced objectives. This method takes the costs of mis-
classification into account when training a classifier. 

 We’ve introduced a number of powerful classification techniques so far in this
book. This is the last chapter on classification, and we’ll move on to regression next
to complete our study of supervised learning algorithms. Regression is much like
classification, but instead of predicting a nominal class, we’ll be predicting a contin-
uous value. 





Part 2

Forecasting numeric
 values with regression

This part of the book, chapters 8 and 9, covers regression. Regression is a
continuation of supervised learning from chapters 1 through 7. Recall that
supervised learning is machine learning when we have a target variable, or some-
thing we want to predict. The difference between regression and classification is
that in regression our target variable is numeric and continuous. 

 Chapter 8 covers an introduction to linear regression, locally weighted linear
regression, and shrinkage methods. Chapter 9 takes some ideas from tree build-
ing in chapter 3 and applies these to regression to create tree-based regression.





Predicting numeric
 values: regression
The previous chapters focused on classification that predicts only nominal values
for the target variable. With the tools in this chapter you’ll be able to start predict-
ing target values that are continuous. You may be asking yourself, “What can I
do with these tools?” “Just about anything” would be my answer. Companies may
use this for boring things such as sales forecasts or forecasting manufacturing
defects. One creative example I’ve seen recently is predicting the probability of
celebrity divorce.

 In this chapter, we’ll first discuss linear regression, where it comes from, and how
to do it in Python. We’ll next look at a technique for locally smoothing our estimates
to better fit the data. We’ll explore shrinkage and a technique for getting a regression

This chapter covers

■ Linear regression

■ Locally weighted linear regression

■ Ridge regression and stagewise linear regression

■ Predicting the age of an abalone and an antique 
selling price
153
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estimate in “poorly formulated” problems. We’ll explore the theoretical notions of bias
and variance. Finally, we’ll put all of these techniques to use in forecasting the age of
abalone and the future selling price of antique toys. To get the data on the antique toys,
we’ll first use Python to do some screen scraping. It’s an action-packed chapter. 

8.1 Finding best-fit lines with linear regression

Our goal when using regression is to predict a numeric target value. One way to do
this is to write out an equation for the target value with respect to the inputs. For
example, assume you’re trying to forecast the horsepower of your sister’s boyfriend’s
automobile. One possible equation is

HorsePower = 0.0015*annualSalary - 0.99*hoursListeningToPublicRadio

This is known as a regression equation. The values 0.0015 and -0.99 are known as regres-
sion weights. The process of finding these regression weights is called regression. Once
you’ve found the regression weights, forecasting new values given a set of inputs is
easy. All you have to do is multiply the inputs by the regression weights and add them
together to get a forecast.

 When we talk about regression, we often mean linear regression, so the terms
regression and linear regression are used interchangeably in this chapter. Linear regres-
sion means you can add up the inputs multiplied by some constants to get the output.
There’s another type of regression called nonlinear regression in which this isn’t true;
the output may be a function of the inputs multiplied together. For example, our
horsepower equation written as

HorsePower = 0.0015*annualSalary/hoursListeningToPublicRadio 

is an example of a nonlinear regression. We won’t deal with nonlinear regression in
this chapter.    

Linear regression
Pros: Easy to interpret results, computationally inexpensive

Cons: Poorly models nonlinear data

Works with: Numeric values, nominal values

General approach to regression
1. Collect: Any method.

2. Prepare: We’ll need numeric values for regression. Nominal values should be
mapped to binary values.

3. Analyze: It’s helpful to visualized 2D plots. Also, we can visualize the regression
weights if we apply shrinkage methods.



155Finding best-fit lines with linear regression
How can we go from a bunch of data to our regression equation? Our input data is in
the matrix X, and our regression weights in the vector w. For a given piece of data X1

our predicted value is given by y1 = XT1w. We have the Xs and ys, but how can we find
the ws? One way is to find the ws that minimize the error. We define error as the differ-
ence between predicted y and the actual y. Using just the error will allow positive and
negative values to cancel out, so we use the squared error. 

 We can write this as

We can also write this in matrix notation as (y-Xw)T(y-Xw). If we take the derivative of
this with respect to w, we’ll get XT(y-Xw). We can set this to zero and solve for w to get
the following equation:

The little symbol on top of the w tells us that this is the best solution we can come up
with for w at the moment. The value we have for w is based on the data we have and
may not perfectly describe the data, so we use a “hat” to describe our best estimate
given the data. 

(continued)
4. Train: Find the regression weights.

5. Test: We can measure the R2, or correlation of the predicted value and data, to
measure the success of our models. 

6. Use: With regression, we can forecast a numeric value for a number of inputs.
This is an improvement over classification because we’re predicting a continu-
ous value rather than a discrete category.

The origins of regression
What we know today as regression was invented by the cousin of Charles Darwin,
Francis Galton. Galton did his first regression in 1877 to estimate the size of pea
seeds based on the size of their parents’ seeds. Galton performed regression on a
number of things, including the heights of humans. He noticed that if parents were
above average in height, their children also tended to be above average but not as
much as their parents. The heights of children were regressing toward a mean val-
ue. Galton noticed this behavior in a number of things he studied, and so the tech-
nique is called regression, despite the English word having no relationship to
predicting numeric values.†

† Ian Ayres, Super Crunchers (Bantam Books, 2008), 24.
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Something else to note about the equation is that it uses XTX-1, which is a matrix
inverse. This equation will work provided the matrix inverse exists. The matrix inverse
may not exist, and we’ll need to check for this when putting this into code. 

 Solving this problem is one of the most common applications of statistics, and
there are a number of ways to do it other than the matrix method. By using the matrix
method with NumPy, we can write a few lines and get an answer. This method is also
known as OLS, which stands for “ordinary least squares.” 

 To see this in action, look at the plot in figure 8.1. We’d like to see how to create a
best-fit line for this data. 

 The code in the following listing will allow you to create a best-fit line for the data
in figure 8.1. Open a text editor and create a new file called regression.py, and then
add the following code. 

from numpy import *

def loadDataSet(fileName): 
    numFeat = len(open(fileName).readline().split('\t')) - 1 
    dataMat = []; labelMat = []
    fr = open(fileName)
    for line in fr.readlines():
        lineArr =[]
        curLine = line.strip().split('\t')
        for i in range(numFeat):

Listing 8.1 Standard regression function and data-importing functions

Figure 8.1 Example data from file ex0.txt
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            lineArr.append(float(curLine[i]))
        dataMat.append(lineArr)
        labelMat.append(float(curLine[-1]))
    return dataMat,labelMat

def standRegres(xArr,yArr):
    xMat = mat(xArr); yMat = mat(yArr).T
    xTx = xMat.T*xMat
    if linalg.det(xTx) == 0.0:
        print "This matrix is singular, cannot do inverse"
        return
    ws = xTx.I * (xMat.T*yMat)
    return ws

The first function, loadDataSet(), is the same as loadDataSet() from chapter 7. This
function opens a text file with tab-delimited values and assumes the last value is the
target value. The second function, standRegres(), is the function that computes the
best-fit line. You first load the x and y arrays and then convert them into matrices.
Next you compute XTX and then test if its determinate is zero. If the determinate
is zero, then you’ll get an error when you try to compute the inverse. NumPy has a lin-
ear algebra library called linalg, which has a number of useful functions; you can call
linalg.det() to compute the determinate. If the determinate is nonzero, you com-
pute the ws and return them. If you didn’t check to see if the determinate was zero
before attempting to compute the inverse, you’d get an error. NumPy’s linear algebra
library also has a function for solving for unknown matrices, with which you could
have written ws = xTx.I * (xMat.T*yMat) as ws = linalg.solve(xTx,xMat.T*yMatT).

 Let’s see this in action. Using loadDataSet(), you can import the data into two
arrays, one for the X values and one for Y values. The Y values are our target values
similar to our class labels in all of the classification algorithms. 

>>> import regression
>>> from numpy import *
>>> xArr,yArr=regression.loadDataSet('ex0.txt')

Let’s look at the first two pieces of data: 

>>> xArr[0:2]
[[1.0, 0.067732000000000001], [1.0, 0.42781000000000002]]

The first value is always a 1.0. This is our X0 value, and we assume it’s a 1.0 to account
for a constant offset. The second value, X1, is our value in the plot. 

 Now let’s see standRegres() in action: 

>>> ws = regression.standRegres(xArr,yArr)
>>> ws
matrix([[ 3.00774324],
        [ 1.69532264]])

The variable ws is now our weights, which we multiply by our constant tern, and the
second one we multiply by our input variable X1. Because we’re assuming X0=1, we’ll
get y=ws[0]+ws[1]*X1. We also want to call this predicted y something other than the
actual data, so this is called yHat. Let’s compute yHat with our new ws: 
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>>> xMat=mat(xArr) 
>>> yMat=mat(yArr)
>>> yHat = xMat*ws

Now we can plot this to see a plot of our data and our best-fit line: 

>>> import matplotlib.pyplot as plt
>>> fig = plt.figure()
>>> ax = fig.add_subplot(111)
>>> ax.scatter(xMat[:,1].flatten().A[0], yMat.T[:,0].flatten().A[0]) 
    <matplotlib.collections.CircleCollection object at 0x04ED9D30>

These commands create the figure and plot the original data. To plot the best-fit line
we’ve calculated, we need to plot yHat. Pyplot will have a problem if the points on our
line are out of order, so we first sort the points in ascending order:

>>> xCopy=xMat.copy()
>>> xCopy.sort(0)
>>> yHat=xCopy*ws
>>> ax.plot(xCopy[:,1],yHat)
[<matplotlib.lines.Line2D object at 0x0343F570>]
>>> plt.show()

You should see a plot similar to the one in figure 8.2. 
 You can make a model of almost any dataset, but how good is the model? Consider

for a moment the two plots in figure 8.3. If you do a linear regression on both of the
plots, you’ll get the exact same results. The plots are obviously not the same, but how
can you measure the difference? One way you can calculate how well the predicted
value, yHat, matches our actual data, y, is with the correlation between the two series. 

Figure 8.2 Data from ex0.txt with a best-fit line fitted to the data
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In Python the NumPy library comes with a command to generate the correlation coef-
ficients. You can calculate the correlation between the estimate output and the actual
outputs by the command corrcoef(yEstimate,yActual. Let’s try this out on the data
points from the previous example.

 First, you need to get an estimate, as we did at the beginning of the example:

>>> yHat = xMat*ws

Now you can look at the correlation coefficients. You need to transpose yMat so that
you have both of the vectors as row vectors: 

>>> corrcoef(yHat.T, yMat)
array([[ 1.        ,  0.98647356],
       [ 0.98647356,  1.        ]])

This gives you the correlation between all possible pairs; elements on the diagonal
are 1.0 because the correlation between yMat and yMat is perfect. The correlation
between yHat and yMat is 0.98. 

 The best-fit line does a great job of modeling the data as if it were a straight line.
But it looks like the data has some other patterns we may want to take advantage of.
How can we take advantage of these patterns? One way is to locally adjust our forecast
based on the data. We’ll discuss such an approach next. 

Figure 8.3 Two sets of data, which both give the same regression weights of 0,2.0. The 
top plot has a correlation coefficient of 0.58, whereas the bottom plot has a correlation 
coefficient of 0.99.
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8.2 Locally weighted linear regression 
One problem with linear regression is that it tends to underfit the data. It gives us the
lowest mean-squared error for unbiased estimators. With the model underfit, we
aren’t getting the best predictions. There are a number of ways to reduce this mean-
squared error by adding some bias into our estimator. 

 One way to reduce the mean-squared error is a technique known as locally weighted
linear regression (LWLR). In LWLR we give a weight to data points near our data point
of interest; then we compute a least-squares regression similar to section 8.1. This type
of regression uses the dataset each time a calculation is needed, similar to kNN. The
solution is now given by 

where W is a matrix that’s used to weight the data points. 
LWLR uses a kernel something like the kernels demonstrated in support vector

machines to weight nearby points more heavily than other points. You can use any ker-
nel you like. The most common kernel to use is a Gaussian. The kernel assigns a
weight given by

This builds the weight matrix W, which has only diagonal elements. The closer the data
point x is to the other points, the larger w(i,i) will be. There also is a user-defined
constant k that will determine how much to weight nearby points. This is the only
parameter that we have to worry about with LWLR. You can see how different values of
k change the weights matrix in figure 8.4.

ŵ XTWX 
1–
XTWy=

w i,i  exp x i  x–

2k–
2

-----------------------
 
 
 

=

Figure 8.4 Plot showing 
the original data in the top 
frame and the weights ap-
plied to each piece of data 
(if we were forecasting the 
value of x=0.5.) The sec-
ond frame shows that with 
k=0.5, most of the data is 
included, whereas the bot-
tom frame shows that if 
k=0.01, only a few local 
points will be included in 
the regression.
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To see this in action, open your text editor and add the code from the following listing
to regression.py.

def lwlr(testPoint,xArr,yArr,k=1.0):
    xMat = mat(xArr); yMat = mat(yArr).T
    m = shape(xMat)[0]
    weights = mat(eye((m)))                      
    for j in range(m):
        diffMat = testPoint - xMat[j,:]               
        weights[j,j] = exp(diffMat*diffMat.T/(-2.0*k**2))
    xTx = xMat.T * (weights * xMat)
    if linalg.det(xTx) == 0.0:
        print "This matrix is singular, cannot do inverse"
        return
    ws = xTx.I * (xMat.T * (weights * yMat))
    return testPoint * ws

def lwlrTest(testArr,xArr,yArr,k=1.0):
    m = shape(testArr)[0]
    yHat = zeros(m)
    for i in range(m):
        yHat[i] = lwlr(testArr[i],xArr,yArr,k)
    return yHat

The code in listing 8.2 is used to generate a yHat estimate for any point in the x space.
The function lwlr() creates matrices from the input data similar to the code in list-
ing 8.1; then it creates a diagonal weights matrix called weights. B The weights matrix
is a square matrix with as many elements as data points. This assigns one weight to each
data point. The function next iterates over all of the data points and computes a value,
which decays exponentially as you move away from the testPoint. C The input k con-
trols how quickly the decay happens. After you’ve populated the weights matrix, you can
find an estimate for testPoint similar to standRegres(). 

 The other function in listing 8.2 is lwlrTest(), which will call lwlr() for every
point in the dataset. This is helpful for evaluating the size of k. 

 Let’s see this in action. After you’ve entered the code from listing 8.2 into regres-
sion.py, save it and type the following in the Python shell:

>>> reload(regression)
<module 'regression' from 'regression.py'>

If you need to reload the dataset, you can type in

>>> xArr,yArr=regression.loadDataSet('ex0.txt')

You can estimate a single point with the following:

>>> yArr[0]
3.1765129999999999
>>> regression.lwlr(xArr[0],xArr,yArr,1.0)
matrix([[ 3.12204471]])
>>> regression.lwlr(xArr[0],xArr,yArr,0.001)
matrix([[ 3.20175729]])

Listing 8.2 Locally weighted linear regression function 

Create diagonal 
matrix

B

Populate weights 
with exponentially 
decaying values

C
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To get an estimate for all the points in our dataset, you can use lwlrTest(): 

>>> yHat = regression.lwlrTest(xArr, xArr, yArr,0.003)

You can inspect yHat, so now let’s plot these estimates with the original values. Plot
needs the data to be sorted, so let’s sort xArr: 

xMat=mat(xArr)
>>> srtInd = xMat[:,1].argsort(0)
>>> xSort=xMat[srtInd][:,0,:]

Now you can plot this with Matplotlib:

>>> import matplotlib.pyplot as plt
>>> fig = plt.figure()
>>> ax = fig.add_subplot(111)
>>> ax.plot(xSort[:,1],yHat[srtInd])
[<matplotlib.lines.Line2D object at 0x03639550>]
>>> ax.scatter(xMat[:,1].flatten().A[0], mat(yArr).T.flatten().A[0] , s=2, 

c='red')
<matplotlib.collections.PathCollection object at 0x03859110>
>>> plt.show()

You should see something similar to the plot in the bottom frame of figure 8.5. Fig-
ure 8.5 has plots for three different values of k. With k=1.0, the weights are so large
that they appear to weight all the data equally, and you have the same best-fit line as
using standard regression. Using k=0.01 does a much better job of capturing the
underlying pattern in the data. The bottom frame in figure 8.5 has k=0.003. This is
too noisy and fits the line closely to the data. The bottom panel is an example of
overfitting, whereas the top panel is an example of underfitting. You’ll see how to
quantitatively measure overfitting and underfitting in the next section. 

Figure 8.5 Plot showing locally weighted lin-
ear regression with three smoothing values. 
The top frame has a smoothing value of k=1.0, 
the middle frame has k=0.01, and the bottom 
frame has k=0.003. The top value of k is no 
better than least squares. The middle value cap-
tures some of the underlying data pattern. The 
bottom frame fits the best-fit line to noise in the 
data and results in overfitting.
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One problem with locally weighted linear regression is that it involves numerous com-
putations. You have to use the entire dataset to make one estimate. Figure 8.5 demon-
strated that using k=0.01 gave you a good estimate of the data. If you look at the
weights for k=0.01 in figure 8.4, you’ll see that they’re near 0 in for most of the data
points. You could save a lot of computing time by avoiding these calculations. 

 Now that you’ve seen two methods of finding best-fit lines, let’s put it to use pre-
dicting the age of an abalone. 

8.3 Example: predicting the age of an abalone
Let’s see our regression example in action on some real live data. In the data folder
there is some data from the UCI data repository describing the age of a shellfish
called abalone. The year is known by counting the number of layers in the shell of
the abalone. 

 Add the following code to regression.py: 

def rssError(yArr,yHatArr): 
    return ((yArr-yHatArr)**2).sum()

>>> abX,abY=regression.loadDataSet('abalone.txt')
>>> yHat01=regression.lwlrTest(abX[0:99],abX[0:99],abY[0:99],0.1)
>>> yHat1=regression.lwlrTest(abX[0:99],abX[0:99],abY[0:99],1)
>>> yHat10=regression.lwlrTest(abX[0:99],abX[0:99],abY[0:99],10)

The function rssError() will give us a single number describing the error of our
estimate: 

>>> regression.rssError(abY[0:99],yHat01.T)
56.842594430533545
>>> regression.rssError(abY[0:99],yHat1.T)
429.89056187006685
>>> regression.rssError(abY[0:99],yHat10.T)
549.11817088257692

Using a smaller kernel will give us a lower error, so why don’t we use the smallest
kernel all the time? Using the smallest kernel will overfit our data. This may or may
not give us the best results on new data. Let’s see how well these predictions work on
new data: 

>>> yHat01=regression.lwlrTest(abX[100:199],abX[0:99],abY[0:99],0.1)
>>> regression.rssError(abY[100:199],yHat01.T)
25619.926899338669
>>> yHat1=regression.lwlrTest(abX[100:199],abX[0:99],abY[0:99],1)
>>> regression.rssError(abY[100:199],yHat1.T)
573.5261441895808
>>> yHat10=regression.lwlrTest(abX[100:199],abX[0:99],abY[0:99],10)
>>> regression.rssError(abY[100:199],yHat10.T)
517.57119053830979

Did you see that? This is our test error, and the smallest value of the test error
occurred with a kernel size of 10. The kernel size of 10 gave us the largest training
error. Let’s see how these errors compare to our simple linear regression:
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>>> ws = regression.standRegres(abX[0:99],abY[0:99])
>>> yHat=mat(abX[100:199])*ws
>>> regression.rssError(abY[100:199],yHat.T.A)
518.63631532450131

Simple linear regression did almost as well as the locally weighted linear regression.
This demonstration illustrates one fact, and that is that in order to choose the best
model you have to see how the model does on unknown data. Is 10 the best kernel
size? Perhaps, but to get a better estimate you should do the previous test 10 times
with 10 different samples of data and compare the results.

 This example showed how one method—locally weighted linear regression—can
be used to build a model that may be better at forecasting than regular regression.
The problem with locally weighted linear regression is that you need to “carry
around” the dataset. You need to have the training data available to make predictions.
We’ll now explore a second class of methods for improving forecasting accuracy.
These methods have some added benefits, as you’ll soon see. 

8.4 Shrinking coefficients to understand our data
What if we have more features than data points? Can we still make a prediction using
linear regression and the methods we’ve seen already? Then answer is no, not using
the methods we’ve seen already. The reason for this is that when we try to compute
(XTX)-1 we’ll get an error. 

 If we have more features than data points (n>m), we say that our data matrix X isn’t
full rank. When the data isn’t full rank, we’ll have a difficult time computing the
inverse. 

 To solve this problem, statisticians introduced the concept of ridge regression, which
is the first of two shrinkage methods we’ll look at in this section. We’ll then discuss the
lasso, which is better but difficult to compute. We’ll finally examine a second shrink-
age method called forward stagewise regression, which is an easy way to approximate
the lasso. 

8.4.1 Ridge regression 

Ridge regression adds an additional matrix I to the matrix XTX so that it’s non-singular,
and we can take the inverse of the whole thing: XTX + I. The matrix I is an mxm identity
matrix where there are 1s in the diagonal elements and 0s elsewhere. The symbol  is
a user-defined scalar value, which we’ll discuss shortly. The formula for estimating our
coefficients is now

Ridge regression was originally developed to deal with the problem of having more
features than data points. But it can also be used to add bias into our estimations, giv-
ing us a better estimate. We can use the  value to impose a maximum value on the
sum of all our ws. By imposing this penalty, we can decrease unimportant parameters.
This decreasing is known as shrinkage in statistics. 

ŵ XTX I+ 
1–
XTy=



165Shrinking coefficients to understand our data
Shrinkage methods allow us to throw out unimportant parameters so that we can get a
better feel and human understanding of the data. Additionally, shrinkage can give us
a better prediction value than linear regression. 

 We choose  to minimize prediction error. This is similar to other parameter-
selection methods we used in the chapters on classification. We take some of our
data, set it aside for testing, and then use the remaining data to determine the ws.
We then test this model against our test data and measure its performance. This is
repeated with different  values until we find a  that minimizes prediction error. 

 Let’s see this in action. First, open regression.py and add the code from the follow-
ing listing.

def ridgeRegres(xMat,yMat,lam=0.2):
    xTx = xMat.T*xMat
    denom = xTx + eye(shape(xMat)[1])*lam
    if linalg.det(denom) == 0.0:
        print "This matrix is singular, cannot do inverse"
        return
    ws = denom.I * (xMat.T*yMat)
    return ws

def ridgeTest(xArr,yArr):
    xMat = mat(xArr); yMat=mat(yArr).T
    yMean = mean(yMat,0)
    yMat = yMat - yMean                       
    xMeans = mean(xMat,0)                         
    xVar = var(xMat,0)                        
    xMat = (xMat - xMeans)/xVar               
    numTestPts = 30
    wMat = zeros((numTestPts,shape(xMat)[1]))
    for i in range(numTestPts):
        ws = ridgeRegres(xMat,yMat,exp(i-10))
        wMat[i,:]=ws.T
    return wMat

The code in listing 8.3 contains two functions: one to calculate weights, ridgeRegres(),
and one to test this over a number of lambda values, ridgeTest(). 

 The first function, ridgeRegres(), implements ridge regression for any given
value of lambda. If no value is given, lambda defaults to 0.2. Lambda is a reserved key-
word in Python, so you use the variable lam instead. You first construct the matrix XTX.
Next, you add on the ridge term multiplied by our scalar lam. The identity matrix is
created by the NumPy function eye(). Ridge regression should work on datasets that

Listing 8.3 Ridge regression 

What is the ridge in ridge regression?
Ridge regression uses the identity matrix multiplied by some constant . If you look
at I (the identity matrix), you’ll see that there are 1s across the diagonal and 0s
elsewhere. This ridge of 1s in a plane of 0s gives you the ridge in ridge regression.

Normalization 
code

B
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would give an error with regular regression, so you shouldn’t need to check to see if
the determinant is zero, right? Someone could enter 0 for lambda and you’d have a
problem, so you put in a check. If the matrix isn’t singular, the last thing the code
does is calculate the weights and return them. 

 To use ridge regression and all shrinkage methods, you need to first normalize your
features. If you read chapter 2, you’ll remember that we normalized our data to give each
feature equal importance regardless of the units it was measured in. The second func-
tion in listing 8.3, ridgeTest(), shows an example of how to normalize the data. This
is done by subtracting off the mean from each feature and dividing by the variance. B

 After the regularization is done, you call ridgeRegres() with 30 different lambda
values. The values vary exponentially so that you can see how very small values of
lambda and very large values impact your results. The weights are packed into a
matrix and returned. 

 Let’s see this in action on our abalone dataset. 

>>> reload(regression)
>>> abX,abY=regression.loadDataSet('abalone.txt')
>>> ridgeWeights=regression.ridgeTest(abX,abY)

We now have the weights for 30 different values of lambda. Let’s see what these look
like. To plot them out, enter the following commands in your Python shell: 

>>> import matplotlib.pyplot as plt
>>> fig = plt.figure()
>>> ax = fig.add_subplot(111)
>>> ax.plot(ridgeWeights)
>>> plt.show()

You should see a plot similar to figure 8.6. In figure 8.6 you can see the regression
coefficients plotted versus log(). On the very left where  is the smallest, you have

Figure 8.6 Regression co-
efficient values while using 
ridge regression. For very 
small values of  the coef-
ficients are the same as 
regular regression, where-
as for very large values of 
the regression coefficients 
shrink to 0. Somewhere in 
between these two ex-
tremes, you can find values 
that allow you to make bet-
ter predictions.
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the full values of our coefficients, which are the same as linear regression. On the
right side, the coefficients are all zero. Somewhere in the middle, you have some coef-
ficient values that will give you better prediction results. To find satisfactory answers,
you’d need to do cross-validation testing. A plot, shown in figure 8.6, also tells you
which variables are most descriptive in predicting your output, by the magnitude of
these coefficients. 

 There are other shrinkage methods such as the lasso, LAR, PCA regression,1 and
subset selection. These methods can be used to improve prediction accuracy and
improve your ability to interpret regression coefficients similarly to ridge regression.
We’ll now talk about a method called the lasso. 

8.4.2 The lasso

It can be shown that the equation for ridge regression is the same as our regular least-
squares regression and imposing the following constraint:

This means that the sum of the squares of all our weights has to be less than or equal
to . When two or more of the features are correlated, we may have a very large posi-
tive weight and a very large negative weight using regular least-squares regression. By
using ridge regression we’re avoiding this problem because the weights are subject to
the previous constraint. 

 Similar to ridge regression, there’s another shrinkage technique called the lasso.
The lasso imposes a different constraint on the weights: 

The only difference is that we’re taking the absolute value instead of the square of all
the weights. Using a slightly different constraint will give us different results. If  is
small enough, some of the weights are forced to be exactly 0, which makes it easier to
understand our data. The mathematical difference of the constraints may seem trivial,
but it makes things a lot harder to solve. To solve this we now need a quadratic pro-
gramming algorithm. Instead of using the quadratic solver, I’ll introduce an easier
method for getting results similar to the lasso. This is called forward stagewise regression.

8.4.3 Forward stagewise regression

There’s an easier algorithm than the lasso that gives close results: stagewise linear
regression. This algorithm is a greedy algorithm in that at each step it makes the
decision that will reduce the error the most at that step. Initially, all the weights are

1 Trevor Hastie, Robert Tibshirani, and Jerome Friedman, The Elements of Statistical Learning: Data Mining, Infer-
ence, and Prediction, 2nd ed. (Springer, 2009).
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set to 0. The decision that’s made at each step is increasing or decreasing a weight
by some small amount. 

 Pseudo-code would look like this:

Regularize the data to have 0 mean and unit variance
For every iteration:
    Set lowestError to +
    For every feature:
        For increasing and decreasing:
             Change one coefficient to get a new W
             Calculate the Error with new W
             If the Error is lower than lowestError: set Wbest to the current W
       Update set W to Wbest

To see this in action, open regression.py and add the code from the following listing.

def stageWise(xArr,yArr,eps=0.01,numIt=100):
    xMat = mat(xArr); yMat=mat(yArr).T
    yMean = mean(yMat,0)
    yMat = yMat - yMean     
    xMat = regularize(xMat)
    m,n=shape(xMat)
    ws = zeros((n,1)); wsTest = ws.copy(); wsMax = ws.copy()
    for i in range(numIt):
        print ws.T
        lowestError = inf; 
        for j in range(n):
            for sign in [-1,1]:
                wsTest = ws.copy()
                wsTest[j] += eps*sign
                yTest = xMat*wsTest
                rssE = rssError(yMat.A,yTest.A)
                if rssE < lowestError:
                    lowestError = rssE
                    wsMax = wsTest
        ws = wsMax.copy()
        returnMat[i,:]=ws.T
    return returnMat

The function stageWise() in listing 8.4 is a demonstration of the stagewise linear
regression algorithm, which approaches the lasso solution but is much easier to
compute. The function takes the following inputs: our input data, xArr; and the vari-
able we’re forecasting, yArr. Additionally there are two parameters. One is eps, the
step size to take at each iteration, and the second is numIt, which is the number
of iterations. 

 You start off by converting the input data into matrices and normalizing the fea-
tures to 0 mean and unit variance. You next make a vector, ws, to hold our w values,
and you create two copies for use in the greedy optimization. Next, you loop over the

Listing 8.4 Forward stagewise linear regression 
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optimization procedure numIt times. In each of these iterations you print out the w
vector so you have some idea what’s going on inside. 

 The greedy optimization is two for loops that loop over all the possible features
and see how the error changes if you increase or decrease that feature. The error is
measured by the squared error, which is calculated by the rssError() function given
earlier. You initially set this error to + and then compare all the errors. The value giv-
ing the lowest error is chosen. You then repeat this procedure. 

 Let’s see this in action. After you’ve entered the code from listing 8.4 into regres-
sion.py, save it and type the following in your Python shell:

>>> reload(regression)
<module 'regression' from 'regression.pyc'>
>>> xArr,yArr=regression.loadDataSet('abalone.txt')
>>> regression.stageWise(xArr,yArr,0.01,200)
[[ 0.  0.  0.  0.  0.  0.  0.  0.]]
[[ 0.    0.    0.    0.01  0.    0.    0.    0.  ]]
[[ 0.    0.    0.    0.02  0.    0.    0.    0.  ]]
                                .
                                .
[[ 0.04  0.    0.09  0.03  0.31 -0.64  0.    0.36]]
[[ 0.05  0.    0.09  0.03  0.31 -0.64  0.    0.36]]
[[ 0.04  0.    0.09  0.03  0.31 -0.64  0.    0.36]]

One thing to notice is that w1 and w6 are exactly 0. This means they don’t contribute
anything to the result. These variables are probably not needed. With the eps variable
set to 0.01, after some time the coefficients will all saturate and oscillate between cer-
tain values because the step size is too large. Here you can see that the first weight is
oscillating between 0.04 and 0.005. 

 Let’s try again with a smaller step size and many more steps: 

>>> regression.stageWise(xArr,yArr,0.001,5000)
[[ 0.  0.  0.  0.  0.  0.  0.  0.]]
[[ 0.     0.     0.     0.001  0.     0.     0.     0.   ]]
[[ 0.     0.     0.     0.002  0.     0.     0.     0.   ]]
                                  .
                                  .
[[ 0.044 -0.011  0.12   0.022  2.023 -0.963 -0.105  0.187]]
[[ 0.043 -0.011  0.12   0.022  2.023 -0.963 -0.105  0.187]]
[[ 0.044 -0.011  0.12   0.022  2.023 -0.963 -0.105  0.187]]

Let’s compare these answers to the least-squares weights. You can get the least-squares
weights by typing in the following:

>>> xMat=mat(xArr)
>>> yMat=mat(yArr).T
>>> xMat=regression.regularize(xMat)
>>> yM = mean(yMat,0)
>>> yMat = yMat - yM
>>> weights=regression.standRegres(xMat,yMat.T)
>>> weights.T
matrix([[ 0.0430442 , -0.02274163,  0.13214087,  0.02075182,  2.22403814,
         -0.99895312, -0.11725427,  0.16622915]])
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You can see after 5,000 iterations that the results from the stagewise linear regression
algorithm are close to the results using regular least squares. Results from 1,000 itera-
tions with an epsilon value of 0.005 are shown in figure 8.7.

 The practical benefit of the stagewise linear regression algorithm isn’t that you can
make these cool plots like the one in figure 8.7. The benefit is this algorithm allows
you to better understand your models and build better models. When building a
model, you’d want to run this algorithm and find out which features are important.
You may choose to stop collecting data for unimportant features. Ultimately, you’d
want to build many models with w values from the algorithm and after every 100 itera-
tions test these. To test these models, you’d do something like tenfold cross validation
and choose the model that minimizes error. 

 When we apply a shrinkage method such as stagewise linear regression or ridge
regression, we say we’re adding bias to our model. At the same time, we’re reducing
the model variance. The next section will explain the relationship and how these
affect our results. 

8.5 The bias/variance tradeoff
Anytime you have a difference between your model and your measurements, you have
an error. When thinking about “noise” or error in our model, you have to consider
the sources. You could be trying to simplify a complex process. This will create so-
called noise or errors between your model and your measurements so that you won’t
be able to understand the true process that’s generating your data. This will also cause

Figure 8.7 Coefficient values from the abalone dataset versus iteration of the 
stagewise linear regression algorithm. Stagewise linear regression gives values 
close to the lasso values with a much simpler algorithm.
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differences. There could also be noise or problems with your measurement process.
Let me show you an example. In sections 8.1 and 8.2, we played around with some
two-dimensional data. This data was loaded from a file. To tell you the truth, I gener-
ated the data. The equation I used to generate the data was

y = 3.0 + 1.7x + 0.1sin(30x)+0.06N(0,1), 

where N(0,1) is a normal distribution with 0 mean and unit variance. We were trying
to model this with a straight line. The best we could do with this type of model was to
get the 3.0 + 1.7x part, and we’d still have an error of 0.1sin(30x)+0.06N(0,1). We
came close to this in section 8.1. In sections 8.2 and 8.3, we used locally weighted lin-
ear regression to capture the underlying structure. That structure was hard to under-
stand, so we used different amounts of local weights to find a solution that gave us the
smallest test error. 

 A plot of training and test error is shown in figure 8.8. The top curve is the test
error, and the bottom curve is training error. If you remember from section 8.3, as we
decreased the size of the kernel, our training error got smaller. This corresponds to
starting on the left side of figure 8.8 and then moving to the right as the kernel
becomes smaller. 

Figure 8.8 The bias variance tradeoff illustrated with test error and training error. 
The training error is the top curve, which has a minimum in the middle of the plot. In 
order to create the best forecasts, we should adjust our model complexity where the 
test error is at a minimum.



172 CHAPTER 8 Predicting numeric values: regression
It’s popular to think of our errors as a sum of three components: bias, error, and ran-
dom noise. In sections 8.2 and 8.3, we were adding variance to our model by adding
an increasingly smaller kernel. 

 In section 8.4, when we applied our shrinkage methods, some of the coefficients
became small and some became zero. This is an example of adding bias to our model.
By shrinking some of our components to exactly zero, we were reducing the complex-
ity of our model. We had eight features. When we eliminated two of them, our model
was easier for a human to understand, but it could give us smaller prediction error
also. The left side of figure 8.8 shows our coefficients taking on very small values. The
right side of the figure shows our coefficients totally unconstrained. 

 Variance is something we can measure. If we took a random sample of our abalone
data, say, 100 points, and generated a linear model, we’d have a set of weights. Say we
took another set of random points and generated another linear model. Comparing
the amount that the weights change will tell us the variance in our model. This con-
cept of a bias and variance tradeoff is popular in machine learning and will come up
again and again. 

 Now let’s see if we can put some of these ideas to use. We’ll next examine some
data from a real-world auction site and experiment with some regression methods.
You’ll see the bias/variance trade-off in action as we find the best ridge regression
model for our data.

8.6 Example: forecasting the price of LEGO sets
Are you familiar with the LEGO brand of toys? If not, LEGO makes construction toys that
are composed of many small plastic blocks of varying size. Because of the high quality
of the parts, the blocks hold together without any adhesives. Beyond being a simple toy,
LEGO sets are popular with many adults. Usually the blocks are sold as sets, which
include all the pieces to make something specific such as a boat, castle, or famous build-
ing. LEGO makes a number of amazing sets varying from 10s of pieces to 5,000 pieces. 

 A LEGO set will typically be available for a few years and then will be discontinued.
After the sets are discontinued, they continue to be traded by collectors. My friend
Dangler would like to predict how much LEGO sets will sell for. We’ll help him by
building a model using the regression techniques in this chapter. 

Example: using regression to predict the price of a LEGO set
1. Collect: Collect from Google Shopping API.

2. Prepare: Extract price data from the returned JSON.

3. Analyze: Visually inspect the data.

4. Train: We’ll build different models with stagewise linear regression and straight-
forward linear regression.

5. Test: We’ll use cross validation to test the different models to see which one per-
forms the best.

6. Use: The resulting model will be the object of this exercise.
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In this example we’ll get some data on the prices for different datasets. Then, we’ll
build a regression model with that data. The first thing we need to figure out is how
we can get the data. 

8.6.1 Collect: using the Google shopping API

The wonderful people at Google have provided us with an API for retrieving prices
via the Search API for Shopping. Before you can use the API, you’ll need to sign up
for a Google account and then visit the Google API console to enable this Shopping
API. Now you can make HTTP requests and get back information about available
products in JSON form. Python comes with a module for parsing JSON, so all you
have to do is sort through the returned JSON for the information you want. You can
read more about the API and what is returned with the Shopping API at http://
code.google.com/apis/shopping/search/v1/getting_started.html.

 Open regression.py and add the code from the following listing to implement
code to retrieve this information.

from time import sleep
import json
import urllib2
def searchForSet(retX, retY, setNum, yr, numPce, origPrc):
    sleep(10)
    myAPIstr = 'get from code.google.com'
    searchURL = 'https://www.googleapis.com/shopping/search/v1/public/

products?\
      key=%s&country=US&q=lego+%d&alt=json' % (myAPIstr, setNum)
    pg = urllib2.urlopen(searchURL)
    retDict = json.loads(pg.read())
    for i in range(len(retDict['items'])):
        try:
            currItem = retDict['items'][i]
            if currItem['product']['condition'] == 'new':
                newFlag = 1
            else: newFlag = 0
            listOfInv = currItem['product']['inventories']
            for item in listOfInv:
                sellingPrice = item['price']
                if  sellingPrice > origPrc * 0.5:     
                    print "%d\t%d\t%d\t%f\t%f" %\
                      (yr,numPce,newFlag,origPrc, sellingPrice)
                    retX.append([yr, numPce, newFlag, origPrc])
                    retY.append(sellingPrice)
        except: print 'problem with item %d' % i

def setDataCollect(retX, retY):
    searchForSet(retX, retY, 8288, 2006, 800, 49.99)
    searchForSet(retX, retY, 10030, 2002, 3096, 269.99)
    searchForSet(retX, retY, 10179, 2007, 5195, 499.99)
    searchForSet(retX, retY, 10181, 2007, 3428, 199.99)
    searchForSet(retX, retY, 10189, 2008, 5922, 299.99)
    searchForSet(retX, retY, 10196, 2009, 3263, 249.99)

Listing 8.5 Shopping information retrieval function

Filter out 
fractional sets

B
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The first function in listing 8.5 is searchForSet(), which will call the Google Shop-
ping API and extract the correct data. You need to import a few modules:
time.sleep(), json, and urllib2. But first you sleep for 10 seconds, which is just a
precaution to prevent making too many API calls too quickly. Next, you format the
search URL with your API key and the set you’re looking for. This is opened and
parsed with the json.loads() method. Now you have a dictionary. All you have to do
is find the price and the condition. 

 Part of the returned results is an array of items. You’ll iterate over these items,
extracting whether the item is new or not and the listed price. The LEGO sets are com-
posed of many small pieces, and sometimes a used set will be missing some pieces.
Sellers will offer fragments of a set. These fragments are sometimes returned with the
search results, so you need a way to filter these out. You could look for common terms
in the description or employ naïve Bayes. I’ve instead chosen a simple heuristic: if a
set is selling for less than half of its original price, it’s probably a fractional set. B
These sets are ignored. Successfully parsed sets are printed to the screen and
appended to the lists retX and retY.

 The final function in listing 8.5 is setDataCollect(), which calls searchForSet()
multiple times. The additional arguments to searchForSet() are relevant data col-
lected from www.brickset.com that pass through to the output file. 

 Let’s see this in action. After you’ve added the code from listing 8.5, save regres-
sion.py and enter the following commands in your Python shell:

>>> lgX = []; lgY = []
>>> regression.setDataCollect(lgX, lgY)
2006    800     1       49.990000       549.990000
2006    800     1       49.990000       759.050000
2006    800     1       49.990000       316.990000
2002    3096    1       269.990000      499.990000
2002    3096    1       269.990000      289.990000
                          .
                          .
2009    3263    0       249.990000      524.990000
2009    3263    1       249.990000      672.000000
2009    3263    1       249.990000      580.000000

Inspect lgX and lgY to make sure they’re not empty. We’re next going to use the data
to build a regression equation that will forecast the selling price of antique LEGO sets.

8.6.2 Train: building a model 

Now that we’ve collected some real data from the internet, we’d like to use it to build
a model. The model can be used to make predictions. It can also be used to give us a
better understanding of the forces driving the data. Let’s see how to do this with Python. 

 First, you should add in a 1 for X0. To do this, you create a matrix of all 1s: 

>>> shape(lgX)
(58, 4)
>>> lgX1=mat(ones((58,5)))
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Next, copy over our data to the first through fifth columns: 

>>> lgX1[:,1:5]=mat(lgX)

Check to make sure that data was copied over correctly: 

>>> lgX[0]
[2006.0, 800.0, 0.0, 49.990000000000002]
>>> lgX1[0]
matrix([[  1.00000000e+00,   2.00600000e+03,   8.00000000e+02,
           0.00000000e+00,   4.99900000e+01]])

The data is the same, but now it has a 1 in the 0th feature. Finally, let’s compute a
regression for this dataset:

>>> ws=regression.standRegres(lgX1,lgY)
>>> ws
matrix([[  5.53199701e+04],
        [ -2.75928219e+01],
        [ -2.68392234e-02],
        [ -1.12208481e+01],
        [  2.57604055e+00]])

Check out the results, to see if this works: 

>>> lgX1[0]*ws
matrix([[ 76.07418853]])
>>> lgX1[-1]*ws
matrix([[ 431.17797672]])
>>> lgX1[43]*ws
matrix([[ 516.20733105]])

The regression works. Now let’s look at the model it constructed. The model says the
price of a set will be 

$55319.97-27.59*Year-0.00268*NumPieces-11.22*NewOrUsed+2.57*original price

The predictions were pretty good, but the model isn’t satisfactory. It may fit the data,
but it doesn’t seem to make sense. It seems that sets with more pieces will sell for less,
and there’s a penalty for a set being new. 

 Let’s try this again but with one of our shrinkage methods, say ridge regression.
Earlier you saw how to shrink coefficients, but now you’ll see how to determine the
best coefficients. Open regression.py and insert the following code:

def crossValidation(xArr,yArr,numVal=10):
    m = len(yArr)                           
    indexList = range(m)
    errorMat = zeros((numVal,30))
    for i in range(numVal):
        trainX=[]; trainY=[]            
        testX = []; testY = []             
        random.shuffle(indexList)
        for j in range(m):

Listing 8.6 Cross-validation testing with ridge regression

Create training and 
test containers

B
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            if j < m*0.9: 
                trainX.append(xArr[indexList[j]])     
                trainY.append(yArr[indexList[j]])            
            else:                                     
                testX.append(xArr[indexList[j]])      
                testY.append(yArr[indexList[j]])      
        wMat = ridgeTest(trainX,trainY)    
        for k in range(30):
            matTestX = mat(testX); matTrainX=mat(trainX) 
            meanTrain = mean(matTrainX,0)                   
            varTrain = var(matTrainX,0)                  
            matTestX = (matTestX-meanTrain)/varTrain 
            yEst = matTestX * mat(wMat[k,:]).T + mean(trainY)
            errorMat[i,k]=rssError(yEst.T.A,array(testY))
    meanErrors = mean(errorMat,0)
    minMean = float(min(meanErrors))
    bestWeights = wMat[nonzero(meanErrors==minMean)]
    xMat = mat(xArr); yMat=mat(yArr).T
    meanX = mean(xMat,0); varX = var(xMat,0)
    unReg = bestWeights/varX                                 
    print "the best model from Ridge Regression is:\n",unReg
    print "with constant term: ",\                           
          -1*sum(multiply(meanX,unReg)) + mean(yMat)         

The function crossValidation() in listing 8.6 takes three arguments; the first two,
lgX and lgY, are assumed to be lists of the X and Y values of a dataset in question. The
third argument, crossValidation(), takes the number of cross validations to run. If
no value is entered, it will default to 10. Both lgX and lgY are assumed to have the
same length. The crossValidation() function starts by measuring the number of
data points, m. This will be used to split the data into two sets: one test set and one
training set. B The split between training and test sets will be done with 90% going to
the training set and 10% going to the test set. You first create containers for the train-
ing and test sets. C Next, you create a list and randomly shuffle the elements of that
list using the NumPy random.shuffle() function. You’ll use this to randomly select a
set of data points for the training or test set. 

 Once you’ve randomly shuffled the data points, you create a new matrix, wMat, to
store all of the coefficients from ridge regression. If you recall from section 8.4.1,
ridgeTest() uses 30 different values of  to create 30 different weights. You next loop
over all 30 sets of weights and test them using the test set created earlier. Ridge regres-
sion assumes that the data has been normalized, so you have to normalize your test
data with the same parameters used to normalize the training data. D The error for
each of these is calculated using the rssError() function and stored in wMat. 

 After all of the cross validations have been done, errorMat has a number of error esti-
mates for the different  values used in ridgeTest(). The average of all these error
estimates is calculated. You next want to display the weights and compare them to the
least-squares solution obtained by standRegres(). The problem with comparing the
weights is that ridge regression uses regularized values whereas standRegres() doesn’t.
To have a direct comparison you need to undo the regularization. The regularization
is undone and the values are displayed. E

Split data 
into test and 
training sets

C

Regularize test 
with training 
params

D

Undo 
regularization

E
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 To see all of this in action, enter the code from listing 8.6, save regression.py, and
type in the following: 

>>> regression.crossValidation(lgX,lgY,10)
The best model from Ridge Regression is:
[[ -2.96472902e+01 -1.34476433e-03 -3.38454756e+01  2.44420117e+00]]
with constant term: 59389.2069537

Let’s compare this to the regular least-squares solution. The price is given by 

$59389.21-29.64*Year-0.00134*NumPieces-33.85*NewOrUsed+2.44*original price. 

This isn’t wildly different from the least-squares solution. What you were looking for
was a model that was easier to interpret. You didn’t get that. In order to get that, you
need to look at how the regularized coefficients change as you apply the shrinkage. To
do that, type in the following: 

>>> regression.ridgeTest(lgX,lgY)
array([[ -1.45288906e+02,  -8.39360442e+03,  -3.28682450e+00,
   4.42362406e+04],
[ -1.46649725e+02,  -1.89952152e+03,  -2.80638599e+00,
          4.27891633e+04], 
                                     .
                                     .
[ -4.91045279e-06,   5.01149871e-08,   2.40728171e-05,
   8.14042912e-07]])

These are the regularized coefficients for different levels of shrinkage. Looking at the
first line, you can see that the magnitude of the fourth term is 5 times larger than the
second term, which is 57 times larger than the first term. You get the idea. These
results tell you that if you had to choose one feature to predict the future, you should
choose the fourth feature, which is the original price. If you had to choose two fea-
tures, you should choose the fourth and the second terms. 

 This sort of analysis allows you to digest a large amount of data. It may not seem
critical when you have only 4 features, but if you have 100 or more features, it will be
more important to understand which features are critical and which aren’t. 

8.7 Summary
Regression is the process of predicting a target value similar to classification. The dif-
ference between regression and classification is that the variable forecasted in regres-
sion is continuous, whereas it’s discrete in classification. Regression is one of the most
useful tools in statistics. Minimizing the sum-of-squares error is used to find the best
weights for the input features in a regression equation. Regression can be done on
any set of data provided that for an input matrix X, you can compute the inverse of
XTX. Just because you can compute a regression equation for a set of data doesn’t
mean that the results are very good. One test of how “good” or significant the results
are is the correlation between the predicted values yHat and the original data y. 

 When you have more features than data points, you can’t compute the inverse of
XTX. If you have more data points than features, you still may not be able to compute
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XTX if the features are highly correlated. Ridge regression is a regression method that
allows you to compute regression coefficients despite being unable to compute the
inverse of XTX. 

 Ridge regression is an example of a shrinkage method. Shrinkage methods impose
a constraint on the size of the regression coefficients. Another shrinkage method
that’s powerful is the lasso. The lasso is difficult to compute, but stagewise linear
regression is easy to compute and gives results close to those of the lasso. 

 Shrinkage methods can also be viewed as adding bias to a model and reducing the
variance. The bias/variance tradeoff is a powerful concept in understanding how
altering a model impacts the success of a model. 

 The methods explored in this chapter are powerful. Sometimes our data will have
complex interactions, perhaps nonlinear interactions that will be difficult to model
with linear models. The next chapter explores a few techniques that use trees to cre-
ate forecasts for our data. 



Tree-based regression
The linear regression methods we looked at in chapter 8 contain some powerful
methods. These methods create a model that needs to work for all of the data
points (locally weighted linear regression is the exception). When the data has
many features that interact in complicated ways, building a global model can be dif-
ficult if not foolish. We know there are many nonlinearities in real life. How can we
expect to model everything with a global linear model? 

 One way to build a model for our data is to subdivide the data into sections that
can be modeled easily. These partitions can then be modeled with linear regression
techniques from chapter 8. If we first partition the data and the results don’t fit a
linear model, then we can partition the partitions. Trees and recursion are useful
tools for this sort of portioning. 

 We’ll first examine a new algorithm for building trees, called CART. CART is an
acronym for Classification And Regression Trees. It can be applied to regression or
classification, so this is a valuable tool to learn. Next, we’ll build and plot the trees

This chapter covers
■ The CART algorithm
■ Regression and model trees
■ Tree-pruning algorithms
■ Building a GUI in Python
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in Python. We’ll make the code flexible enough that it can be used for multiple prob-
lems. We’ll next apply the CART algorithm to create regression trees. We’ll explore a
technique called tree pruning, which helps to prevent overfitting our trees to our
data. Next, we’ll explore a more advanced algorithm called model trees. In a model
tree, we build a linear model at each leaf node instead of using mean values as in
regression trees. The algorithms to build these trees have a few adjustable parameters,
so we’ll next see how to create a GUI in Python with the Tkinter module. Finally, we’ll
use this GUI to explore the impact of various tree-building parameters. 

9.1 Locally modeling complex data 

In chapter 3, we used decision trees for classification. Decision trees work by successively
splitting the data into smaller segments until all of the target variables are the same or
until the dataset can no longer be split. Decision trees are a type of greedy algorithm that
makes the best choice at a given time without concern for global optimality.

 The algorithm we used to construct trees in chapter 3 was ID3. ID3 chooses the best
feature on which to split the data and then splits the data into all possible values that
the feature can take. If a feature can take on four possible values, then there will be a
four-way split. After the data is split on a given feature, that feature is consumed or
removed from future splitting opportunities. There is some argument that this type of
splitting separates the data too quickly. Another way to split the data is to do binary
splits. If a piece of data has a feature equal to the desired split value, then it will go
down the left side of the tree; otherwise, it will go down the right. 

 The ID3 algorithm had another limitation: it couldn’t directly handle continuous
features. Continuous features can be handled in ID3 if they’re first made into dis-
crete features. This quantization destroys some of the inherent information in a con-
tinuous variable. Using binary splits allows us to easily adapt our tree-building
algorithm to handle continuous features. To handle continuous variables, we choose
a feature; values greater than the desired value go on the left side of the tree and all
the other values go on the right side. Binary splits also save time during the tree con-
struction, but this is a moot point because we usually build the tree offline and time
isn’t a huge concern.

CART is a well-known and well-documented tree-building algorithm that makes
binary splits and handles continuous variables. CART can handle regression with a sim-
ple modification. In chapter 3, we used the Shannon entropy as our measure of how

Tree-based regression
Pros: Fits complex, nonlinear data

Cons: Difficult to interpret results

Works with: Numeric values, nominal values
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unorganized the sets were. If we replace the Shannon entropy with some other mea-
sure, we can use a tree-building algorithm for regression. 

 We’ll first build the CART algorithm with regression trees in mind. Regression trees
are similar to trees used for classification but with the leaves representing a numeric
value rather than a discrete one. 

With an idea of how to approach the problem, we can start writing some code. In the
next section we’ll discuss the best way to build a tree with the CART algorithm in
Python. 

9.2 Building trees with continuous and discrete features
As we build a tree, we’ll need to have a way of storing the different types of data mak-
ing up the tree. We’re going to use a dictionary for our tree data structure, similar to
chapter 3. The dictionary will have the following four items: 

■ Feature —A symbol representing the feature split on for this tree.
■ Value—The value of the feature used to split.
■ Right—The right subtree; this could also be a single value if the algorithm

decides we don’t need another split. 
■ Left—The left subtree similar to the right subtree. 

This is a little different from the structure we used in chapter 3. In chapter 3, we had a
dictionary to store every split. The dictionary could contain two or more values. In the
CART algorithm, only binary splits are allowed, so we can fix our tree data structure.
The tree will have a right key and a left key that will store either another branch or a
value. The dictionary will also have two more keys: feature and value. These will tell us
what feature of our data to split on and the value of that feature to make the split. You
could also create this data structure using object-oriented programming patterns.
You’d create the tree node in Python using the following code: 

General approach to tree-based regression
1. Collect: Any method.

2. Prepare: Numeric values are needed. If you have nominal values, it’s a good idea
to map them into binary values.

3. Analyze: We’ll visualize the data in two-dimensional plots and generate trees as
dictionaries. 

4. Train: The majority of the time will be spent building trees with models at the leaf
nodes.

5. Test: We’ll use the R2 value with test data to determine the quality of our models. 

6. Use: We’ll use our trees to make forecasts. We can do almost anything with
these results. 
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class treeNode():
    def __init__(self, feat, val, right, left):
        featureToSplitOn = feat
        valueOfSplit = val
        rightBranch = right
        leftBranch = left

When working with a less-flexible language like C++, you’d probably want to imple-
ment your trees using object-oriented patterns. Python is flexible enough that you can
use dictionaries as your tree data structure and write less code than if you used a spe-
cific class. Python isn’t strongly typed, so our branches can contain other trees,
numeric values, or vectors, as you’ll see later. 

 We’re going to create two types of trees. The first type is called a regression tree, and
it contains a single value for each leaf of the tree. We’ll create this type in section 9.4.
The second type of tree we’ll create is called a model tree, and it has a linear equation at
each leaf node. We’ll create that in section 9.5. We’ll try to reuse as much code as pos-
sible when creating the two types of trees. Let’s start by making some tree-building
code that can be used for either type of tree. 

 Pseudo-code for createTree() would look like this:

Find the best feature to split on:
    If we can’t split the data, this node becomes a leaf node
    Make a binary split of the data
    Call createTree() on the right split of the data
    Call createTree() on the left split of the data

Open your favorite text editor and create a file called regTrees.py; then add the fol-
lowing code. 

from numpy import *

def loadDataSet(fileName):
    dataMat = []               
    fr = open(fileName)
    for line in fr.readlines():
        curLine = line.strip().split('\t')
        fltLine = map(float,curLine)          
        dataMat.append(fltLine)
    return dataMat

def binSplitDataSet(dataSet, feature, value):
    mat0 = dataSet[nonzero(dataSet[:,feature] > value)[0],:][0]
    mat1 = dataSet[nonzero(dataSet[:,feature] <= value)[0],:][0]
    return mat0,mat1

def createTree(dataSet, leafType=regLeaf, errType=regErr, ops=(1,4)):
    feat, val = chooseBestSplit(dataSet, leafType, errType, ops)
    if feat == None: return val                    
    retTree = {}
    retTree['spInd'] = feat

Listing 9.1 CART tree-building code

Map everything 
to float()

B

Return leaf value if 
stopping condition metC
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    retTree['spVal'] = val
    lSet, rSet = binSplitDataSet(dataSet, feat, val)
    retTree['left'] = createTree(lSet, leafType, errType, ops)
    retTree['right'] = createTree(rSet, leafType, errType, ops)
    return retTree  

Listing 9.1 contains three functions. The first one, loadDataSet(), is similar to the pre-
vious versions of this function from other chapters. In previous chapters you broke the
target variable off into its own list, but here you’ll keep the data together. This function
takes a file with tab-delimited values and breaks each line into a list of floats. B

 The second function in listing 9.1 is binSplitDataSet(). This takes three argu-
ments: a dataset, a feature on which to split, and a value for that feature. The function
returns two sets. The two sets are created using array filtering for the given feature
and value. 

 The last function in listing 9.1 is createTree(), which builds a tree. There are four
arguments to createTree(): a dataset on which to build the tree and three optional
arguments. The three optional arguments tell the function which type of tree to create.
The argument leafType is the function used to create a leaf. The argument errType is
a function used for measuring the error on the dataset. The last argument, ops, is a tuple
of parameters for creating a tree. 

 The function createTree() is a recursive function that first attempts to split the
dataset into two parts. The split is determined by the function chooseBestSplit(),
which we haven’t written yet. If chooseBestSplit() hits a stopping condition, it will
return None and the value for a model type C. In the case of regression trees, this model
is a constant value; in the case of model trees, this model is a linear equation. You’ll see
how these stopping conditions work later. If a stopping condition isn’t hit, then you cre-
ate a new dictionary and split the dataset into two portions. The function createTree()
gets recursively called on the two splits. 

 The code in listing 9.1 is straightforward enough. You can’t see createTree() in
action until we write chooseBestSplit(), but you can test out the other two func-
tions. After you’ve entered the code from listing 9.1 into regTrees.py, save it and type
in the following:

>>> import regTrees
>>> testMat=mat(eye(4))
>>> testMat
matrix([[ 1.,  0.,  0.,  0.],
        [ 0.,  1.,  0.,  0.],
        [ 0.,  0.,  1.,  0.],
        [ 0.,  0.,  0.,  1.]])

You’ve created a simple matrix. Now let’s split it by the value in a given column. 

>>> mat0,mat1=regTrees.binSplitDataSet(testMat,1,0.5)
>>> mat0
matrix([[ 0.,  1.,  0.,  0.]])
>>> mat1
matrix([[ 1.,  0.,  0.,  0.],
      [ 0.,  0.,  1.,  0.],
        [ 0.,  0.,  0.,  1.]])
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Entertaining isn’t it? To see this do some more exciting stuff, let’s fill out the
chooseBestSplit() function for the case of regression trees. By filling out
chooseBestSplit() with code specific to regression, we’ll be able to use the CART
code from listing 9.1 to build regression trees. In the next section, we’ll finish this
function and build regression trees. 

9.3 Using CART for regression
In order to model the complex interactions of our data, we’ve decided to use trees to
partition the data. How should we split up the partitions? How will we know when
we’ve split up the data enough? The answer depends on how we’re modeling the final
values. The regression tree method breaks up data using a tree with constant values
on the leaf nodes. This strategy assumes that the complex interactions of the data can
be summarized by the tree. 

 In order to construct a tree of piecewise constant values, we need to be able to
measure the consistency of data. In chapter 3, when we used trees for classification, we
measured the disorder of the values at a given node. How can we measure the disor-
der of continuous values? Measuring this disorder for a set of data is quite easy. We
first calculate the mean value of a set and then find how much each piece of data devi-
ates from this mean value. In order to treat positive and negative deviations equally,
we need to get the magnitude of the deviation from the mean. We can get this magni-
tude with the absolute value or the squared value. I’ve described something
commonly done in statistics, and that’s calculating the variance. The only difference is
the variance is the mean squared error and we want the total error. We can get this
total squared error by multiplying the variance of a dataset by the number of elements
in a dataset.

 With this error rule and the tree-building algorithm from the previous section, we
can now write code to construct a regression tree from a dataset. 

9.3.1 Building the tree

In order to build a regression tree, we need to create a few pieces of code to get
createTree() from listing 9.1 to work. The first thing we need is a function,
chooseBestSplit(), that given an error metric will find the best binary split for our
data. The function chooseBestSplit() also needs to know when to stop splitting
given our error metric and a dataset. When chooseBestSplit() does decide to stop
splitting, we need to generate a leaf node. So chooseBestSplit()does only two
things: split a dataset by the best possible split and generate a leaf node for a dataset. 

 If you noticed in listing 9.1, chooseBestSplit() has three arguments in addition
to the data set. They’re the leafType, errType, and ops. The leafType argument is a
reference to a function that we use to create the leaf node. The errType argument is a
reference to a function that will be used to calculate the squared deviation from the
mean described earlier. Finally, ops is a tuple of user-defined parameters to help with
tree building. 
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 The function chooseBestSplit() is the most involved; this function finds the best
place to split the dataset. It looks over every feature and every value to find the thresh-
old that minimizes error. Pseudo-code would look like this:

For every feature:
    For every unique value:
        Split the dataset it two
        Measure the error of the two splits
        If the error is less than bestError ➞ set bestSplit to this split and update bestError
Return bestSplit feature and threshold

To create the code for these three functions, open regTrees.py and enter the code
from the following listing. 

def regLeaf(dataSet):
    return mean(dataSet[:,-1])

def regErr(dataSet):
    return var(dataSet[:,-1]) * shape(dataSet)[0]

def chooseBestSplit(dataSet, leafType=regLeaf, errType=regErr, ops=(1,4)):
    tolS = ops[0]; tolN = ops[1]
    if len(set(dataSet[:,-1].T.tolist()[0])) == 1:
        return None, leafType(dataSet)                    
    m,n = shape(dataSet)
    S = errType(dataSet)
    bestS = inf; bestIndex = 0; bestValue = 0
    for featIndex in range(n-1):
        for splitVal in set(dataSet[:,featIndex]):
            mat0, mat1 = binSplitDataSet(dataSet, featIndex, splitVal)
            if (shape(mat0)[0] < tolN) or (shape(mat1)[0] < tolN): continue
            newS = errType(mat0) + errType(mat1)
            if newS < bestS: 
                bestIndex = featIndex
                bestValue = splitVal
                bestS = newS
    if (S - bestS) < tolS:                   
        return None, leafType(dataSet)                    
    mat0, mat1 = binSplitDataSet(dataSet, bestIndex, bestValue) 
    if (shape(mat0)[0] < tolN) or (shape(mat1)[0] < tolN):
        return None, leafType(dataSet)                      
    return bestIndex,bestValue

The first function in listing 9.2 is regLeaf(), which generates the model for a leaf
node. When chooseBestSplit() decides that you no longer should split the data, it
will call regLeaf() to get a model for the leaf. The model in a regression tree is the
mean value of the target variables. 

 The second function in listing 9.2 is our error estimate, regErr(). This function
returns the squared error of the target variables in a given dataset. You could have first
calculated the mean, then calculated the deviation, and then squared it, but it’s easier

Listing 9.2 Regression tree split function

Exit if all values 
are equal

B

Exit if low error 
reduction

C

Exit if split 
creates small 
dataset

D
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to call var(), which calculates the mean squared error. You want the total squared
error, not the mean, so you can get it by multiplying by the number of instances in
a dataset. 

 The last function in listing 9.2 is chooseBestSplit(), which is the real workhorse
of the classification tree. The job of this function is to find the best way to do a binary
split on the data. If a “good” binary split can’t be found, then this function returns
None and tells createTree() to generate a leaf node. The value of the leaf node is also
returned with None. There are three conditions that will generate a leaf node instead
of split in chooseBestSplit(); you’ll see them shortly. If a “good” split is found, the
feature number and value of the split are returned. 

 The function chooseBestSplit() starts out by assigning the values of ops to tolS
and tolN. These two values are user-defined settings that tell the function when to quit
creating new splits. The variable tolS is a tolerance on the error reduction, and tolN
is the minimum data instances to include in a split. The next thing chooseBestSplit()
does is check the number of unique values by creating a set from all the target variables.
If this set is length 1, then you don’t need to try to split the set and you can return. B
Next, chooseBestSplit() measures the size of the dataset and measures the error on
the existing dataset. This error S will be checked against new values of the error to see
if splitting reduces the error. You’ll see this shortly. 

 A few variables that will be used to find the best split are created and initialized. You
next iterate over all the possible features and all the possible values of those features to
find the best split. The best split is determined by the lowest error of the sets after the
split. If splitting the dataset improves the error by only a small amount, you choose not
to split and create a leaf node. C Another test you perform is to check the size of the
two splits. If this is less than our user-defined parameter tolN, you choose not to split
and return a leaf node. Finally, if none of these early exit conditions have been met,
you return the feature on which to split and the value to perform the split. D

9.3.2 Executing the code 

Let’s see this in action on some data. Consider the data plotted in figure 9.1. We’ll
generate a regression tree from this data. 

 After you’ve entered the code from listing 9.2 into regTrees.py, save it and enter
the following commands in your Python shell:

>>>reload(regTrees)
<module 'regTrees' from 'regTrees.pyc'>
>>> from numpy import *

The data from figure 9.1 is stored in a file called ex00.txt. 
>>> myDat=regTrees.loadDataSet('ex00.txt')
>>> myMat = mat(myDat)
>>> regTrees.createTree(myMat)
{'spInd': 0, 'spVal': matrix([[ 0.48813]]), 
'right': -0.044650285714285733, 
'left': 1.018096767241379}

Now let’s try this out on some data with more splits. Consider the data in figure 9.2. 



187Using CART for regression
Figure 9.1 Simple dataset for evaluating regression trees with the CART algorithm

Figure 9.2 Piecewise constant data for testing regression trees
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The data used to construct figure 9.2 is stored in a tab-delimited text file called ex0.txt.
To build a tree from this data, enter the following commands in your Python shell: 

>>> myDat1=regTrees.loadDataSet('ex0.txt')
>>> myMat1=mat(myDat1)
>>> regTrees.createTree(myMat1)
{'spInd': 1, 'spVal': matrix([[ 0.39435]]), 'right': {'spInd': 1, 'spVal': 
matrix([[ 0.197834]]), 'right': -0.023838155555555553, 'left': 
1.0289583666666664}, 'left': {'spInd': 1, 'spVal': matrix([[ 0.582002]]), 
'right': 1.9800350714285717, 'left': {'spInd': 1, 'spVal': matrix([[ 
0.797583]]), 'right': 2.9836209534883724, 'left': 3.9871632000000004}}}

Check the tree data structure to make sure that there are five leaf nodes. Try out the
regression trees on some more complex data and see what happens. 

 Now that we’re able to build regression trees, we need to find a way to check if
we’ve been doing something wrong. We’ll next examine tree pruning, which modifies
our decision trees so that we can make better predictions. 

9.4 Tree pruning
Trees with too many nodes are an example of a model overfit to the data. How do we
know when we’re overfitting? In the previous chapters we used some form of cross-
validation with a test set to find out when we’re overfitting. Decision trees are no
different. This section will talk about ways around this and ways to combat overfitting
our data.  

 The procedure of reducing the complexity of a decision tree to avoid overfitting is
known as pruning. You’ve done pruning already. By using the early stopping condi-
tions in chooseBestSplit(), you were employing prepruning. Another form of prun-
ing involves a test set and a training set. This is known as postpruning, and we’ll
investigate its effectiveness in this section, but first let’s discuss some of the drawbacks
of prepruning. 

9.4.1 Prepruning 

The results for these two simple experiments in the previous section were satisfactory,
but there was something going on behind the scenes. The trees built are sensitive to
the settings we used for tolS and tolN. For other values of our data we may not get
such a nice answer as we did in the last section. To see what I mean, enter the follow-
ing command in your Python shell: 

>>> regTrees.createTree(myMat,ops=(0,1))

This creates a much bigger tree than the two-leaf tree in the previous section. It cre-
ates a leaf node for every instance in the dataset. 

 Consider for a second the plot in figure 9.3. This plot looks similar to the one in
figure 9.1. If you look more closely at the y-axis, you’ll see that figure 9.3 has 100x the
magnitude as figure 9.1. That shouldn’t be a problem, right? Well, let’s try to build a
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tree using this data. The data is stored in a text file called ex2.txt. To create a tree,
enter the following commands in your Python shell. 

>>> myDat2=regTrees.loadDataSet('ex2.txt')
>>> myMat2=mat(myDat2)
>>> regTrees.createTree(myMat2)
{'spInd': 0, 'spVal': matrix([[ 0.499171]]), 'right': {'spInd': 0, 
'spVal': matrix([[ 0.457563]]), 'right': -3.6244789069767438, 
'left': 7.9699461249999999}, 'l
.
.
0, 'spVal': matrix([[ 0.958512]]), 'right': 112.42895575000001, 
'left': 105.248
2350000001}}}}

What do you notice? The tree we built from figure 9.1 had only two leaf nodes. This
tree has a lot more. The problem is that one of our stopping conditions, tolS, is sensi-
tive to the magnitude of the errors. If we mess around with the options and square the
error tolerance, perhaps we can get a tree with two leaves: 

>>> regTrees.createTree(myMat2,ops=(10000,4))
{'spInd': 0, 'spVal': matrix([[ 0.499171]]), 'right': -2.6377193297872341,
 'left': 101.35815937735855}

We shouldn’t have to mess around with the stopping conditions to give us the tree
we’re looking for. In fact, we’re often not sure what we’re looking for. That’s what
machine learning is all about. The machine is supposed to tell us the big picture. 

Figure 9.3 Simple piecewise constant data from figure 9.1 with magnitude enhanced 100x
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 The next section will discuss postpruning, which uses a test set to prune the tree.
This is a more idealistic method of pruning because it doesn’t use any user-defined
parameters. 

9.4.2 Postpruning

The method we’ll use will first split our data into a test set and a training set. First,
you’ll build the tree with the setting that will give you the largest, most complex tree
you can handle. You’ll next descend the tree until you reach a node with only leaves.
You’ll test the leaves against data from a test set and measure if merging the leaves
would give you less error on the test set. If merging the nodes will reduce the error on
the test set, you’ll merge the nodes. 

 Pseudo-code for prune() would look like this:

Split the test data for the given tree:
    If the either split is a tree: call prune on that split
    Calculate the error associated with merging two leaf nodes
    Calculate the error without merging
    If merging results in lower error then merge the leaf nodes

To see this in action, open regTrees.py and enter the code from the following listing. 

def isTree(obj):
    return (type(obj).__name__=='dict')

def getMean(tree):
    if isTree(tree['right']): tree['right'] = getMean(tree['right'])
    if isTree(tree['left']): tree['left'] = getMean(tree['left'])
    return (tree['left']+tree['right'])/2.0

def prune(tree, testData):
    if shape(testData)[0] == 0: return getMean(tree)  
    if (isTree(tree['right']) or isTree(tree['left'])):
        lSet, rSet = binSplitDataSet(testData, tree['spInd'],
                     tree['spVal'])
    if isTree(tree['left']): tree['left'] = prune(tree['left'], lSet)
    if isTree(tree['right']): tree['right'] =  prune(tree['right'], rSet)
    if not isTree(tree['left']) and not isTree(tree['right']):
        lSet, rSet = binSplitDataSet(testData, tree['spInd'],
                     tree['spVal'])
        errorNoMerge = sum(power(lSet[:,-1] - tree['left'],2)) +\
            sum(power(rSet[:,-1] - tree['right'],2))
        treeMean = (tree['left']+tree['right'])/2.0
        errorMerge = sum(power(testData[:,-1] - treeMean,2))
        if errorMerge < errorNoMerge: 
            print "merging"
            return treeMean
        else: return tree
    else: return tree

Listing 9.3 Regression tree-pruning functions 

Collapse tree if 
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Listing 9.3 contains three functions: isTree(), getMean(), and prune(). The function
isTree() tests if a variable is a tree. It returns a Boolean type. You can use this to find
out when you’ve found a branch with only leaf nodes. 

 The function getMean() is a recursive function that descends a tree until it hits
only leaf nodes. When it finds two leaf nodes, it takes the average of these two nodes.
This function collapses a tree. You’ll see where this is needed in prune(). 

 The main function in listing 9.3 is prune(), which takes two inputs: a tree to prune
and testData to use for pruning the tree. The first thing you do in prune() is check
to see if the test data is empty B. The function prune() gets called recursively and
splits the data based on the tree. Our tree is generated with a different set of data
from our test data, and there will be instances where the test data doesn’t contain val-
ues in the same range as the original dataset. In this case, what should you do? Is the
data overfit, in which case it would get pruned, or is the model correct and no prun-
ing would be done? We’ll assume it’s overfit and prune the tree. 

 Next, you test to see if either branch is a tree. If so, you attempt to prune it by call-
ing prune on that branch. After you’ve attempted to prune the left and right
branches, you test to see if they’re still trees. If the two branches aren’t trees, then they
can be merged. You split the data and measure the error. If the error from merging
the two branches is less than the error from not merging, you merge the branches. If
there’s no measurable benefit to merging, you return the original tree. 

 Let’s set this in action. After you’ve entered the code from listing 9.3 into
regTrees.py, save it and enter the following commands in your Python shell:

>>> reload(regTrees)
<module 'regTrees' from 'regTrees.pyc'>

To create the largest possible tree, type in the following:

>>> myTree=regTrees.createTree(myMat2, ops=(0,1))

To load the test data, type in the following: 

>>> myDatTest=regTrees.loadDataSet('ex2test.txt')
>>> myMat2Test=mat(myDatTest)

To prune the tree, enter the following:

>>> regTrees.prune(myTree, myMat2Test)
merging
merging
merging
                                   .
                                   .
merging
{'spInd': 0, 'spVal': matrix([[ 0.499171]]), 'right': {'spInd': 0, 'spVal':
                                   .
                                   .
01, 'left': {'spInd': 0, 'spVal': matrix([[ 0.960398]]), 'right': 123.559747, 

'left': 112.386764}}}, 'left': 92.523991499999994}}}}
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A large number of nodes were pruned off the tree, but it wasn’t reduced to two nodes
as we had hoped. It turns out that postpruning isn’t as effective as prepruning. You
can employ both to give the best possible model. 

 In the next section we’ll reuse a lot of the tree-building code to create a new type
of tree. This tree will still have binary splits, but the leaf nodes will contain linear mod-
els of the data instead of constant values. 

9.5 Model trees 
An alternative to modeling the data as a simple constant value at each leaf node is to
model it as a piecewise linear model at each leaf node. Piecewise linear means that you
have a model that consists of multiple linear segments. If you aren’t clear, you’ll see
what it means in a second. Consider for a moment the data plotted in figure 9.4. Do
you think it would be better to model this dataset as a bunch of constant values or as
two straight lines? I say two straight lines. I’d make one line from 0.0 to 0.3 and one
line from 0.3 to 1.0; we’d then have two linear models. This is called piecewise linear
because a piece of our dataset is modeled by one linear model (0.0 to 0.3) and
another piece (0.3 to 1.0) is modeled by a second linear model.

 One of the advantages of decision trees over other machine learning algorithms is
that humans can understand the results. Two straight lines are easier to interpret than
a big tree of constant values. The interpretability of model trees is one reason why
you’d choose them over regression trees. The second reason is higher accuracy. 

Figure 9.4 Piecewise linear data to test model tree-creation functions
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With a simple change, we can use the functions written earlier to generate linear mod-
els at the leaf nodes instead of constant values. We’ll use the tree-generating algorithm
to break up the data into segments that can easily be represented by a linear model.
The most important part of the algorithm is the error measurement. 

 The tree-generating code is already there. But we need to write some code to
determine the error of a proposed split. Do you remember when we were writing
createTree() there were two arguments that we never changed? We made those
arguments instead of hard coding them for regression trees so that we could change
those arguments for a model tree and reuse the code for model trees. 

 How do we measure the error and determine the best split? We can’t use the same
error we used in the regression tree. For a given dataset, we first fit a linear model to
the data, and then we measure how much the actual target values differ from values
forecasted by our linear model. This error is then squared and summed. Let’s write
some code to implement this. Open regTrees.py and add in the following code:

def linearSolve(dataSet):
    m,n = shape(dataSet)
    X = mat(ones((m,n))); Y = mat(ones((m,1)))     
    X[:,1:n] = dataSet[:,0:n-1]; Y = dataSet[:,-1]        
    xTx = X.T*X 
    if linalg.det(xTx) == 0.0:
        raise NameError('This matrix is singular, cannot do inverse,\n\
        try increasing the second value of ops')
    ws = xTx.I * (X.T * Y)
    return ws,X,Y

def modelLeaf(dataSet):
    ws,X,Y = linearSolve(dataSet)
    return ws

def modelErr(dataSet):
    ws,X,Y = linearSolve(dataSet)
    yHat = X * ws
    return sum(power(Y - yHat, 2))

The first function in listing 9.4 is called linearSolve(), which is used by the other
two functions. This formats the dataset into the target variable Y and the indepen-
dent variable X B. X and Y are used to perform a simple linear regression as you did
in chapter 8. In this function, you also raise an exception if the inverse of the matrix
can’t be determined. 

 The next function, modelLeaf(), is used to generate a model for a leaf node once
you’ve determined to no longer split the data. This function is similar to regLeaf()
from listing 9.2. All this does is call linearSolve() on the dataset and return the
regression coefficients: ws. 

 The final function, modelErr(), computes the error for a given dataset. This is
used in chooseBestSplit() to determine which split to take. This will be used in

Listing 9.4 Leaf-generation function for model trees

Format data 
in X and Y

B
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place of the regErr() from listing 9.2. This calls linearSolve() on the dataset and
computes the squared error of yHat and Y. 

 That’s all the code you need to write to create a model tree using the functions
from listings 9.1 and 9.2. To see this in action, save regTrees.py and enter the follow-
ing into your Python shell:

>>> reload(regTrees)
<module 'regTrees' from 'regTrees.pyc'>

The data from figure 9.4 is stored in a tab-delimited text file called exp2.txt. 

>>> myMat2 = mat(regTrees.loadDataSet('exp2.txt'))

Now to use createTree() with our model tree functions, you enter the functions as
arguments to createTree(): 

>>> regTrees.createTree(myMat2, regTrees.modelLeaf, regTrees.modelErr,
 (1,10))
{'spInd': 0, 'spVal': matrix([[ 0.285477]]), 'right': matrix([[
 3.46877936], [ 1.18521743]]), 'left': matrix([[  1.69855694e-03],
       [  1.19647739e+01]])}

The code created two models, one for the values less than 0.285477 and one for val-
ues greater. The data in figure 9.4 was generated with a split value at 0.3. The linear
models given by the createTree() function are y=3.468+1.1852x and
y=0.0016985+11.96477x. These are close to the actual values I used to generate the
data in figure 9.4. The actual models used were y=3.5+1.0x and y=0+12x with Gauss-
ian noise added. The data from figure 9.4 along with the generated linear models is
plotted in figure 9.5.

Figure 9.5 Results 
of model tree algo-
rithm applied to the 
dataset in figure 9.4
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Which is better, model tree, regression tree, or one of the models from chapter 8? By
looking at the correlation coefficient, sometimes called the R2 value, you can get an
objective answer. You can calculate the correlation coefficients in NumPy by the com-
mand corrcoef(yHat,y, rowvar=0), where yHat is the predicted values and y is the
actual values of the target variable. 

 You’ll now see an example where we compare the results from the previous chap-
ter using standard linear regression to the methods in this chapter using tree-based
methods. We’ll compare the results using corrcoef() to see which one is the best. 

9.6 Example: comparing tree methods to standard regression
Now that you can create model trees and regression trees and do regular regression,
let’s test them to see which one is the best. We’re going to first write a few quick func-
tions to give us a forecast for any given input once we have a tree. Next, we’re going to
use this to calculate the test error for three different regression models. We’ll test
these models on some data relating a person’s intelligence with the number of speeds
on their bicycle. 

 The data is nonlinear and can’t be easily modeled by a global linear model from
chapter 8. Also, the data used in this example is purely fictional. 

 First, let’s write some functions to give us a value, for a given input and a given tree.
Open regTrees.py and enter the code from the following listing.

def regTreeEval(model, inDat):
    return float(model)

def modelTreeEval(model, inDat):
    n = shape(inDat)[1]
    X = mat(ones((1,n+1)))
    X[:,1:n+1]=inDat
    return float(X*model)

def treeForeCast(tree, inData, modelEval=regTreeEval):
    if not isTree(tree): return modelEval(tree, inData)
    if inData[tree['spInd']] > tree['spVal']:
        if isTree(tree['left']): 
               return treeForeCast(tree['left'], inData , modelEval)
        else: 
            return modelEval(tree['left'], inData)
    else:
        if isTree(tree['right']): 
               return treeForeCast(tree['right'], inData , modelEval)
        else: 
            return modelEval(tree['right'], inData)

def createForeCast(tree, testData, modelEval=regTreeEval):
    m=len(testData)
    yHat = mat((m,1))
    for i in range(m):
        yHat[i,0] = treeForeCast(tree, mat(testData[i]), modelEval)
    return yHat

Listing 9.5 Code to create a forecast with tree-based regression
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The function treeForeCast() takes a single data point or row vector and will return a
single floating-point value. This gives one forecast for one data point, for a given tree.
You have to tell treeForeCast() what type of tree you’re using so that it can use the
proper model at the leaf. The argument modelEval is a reference to a function used to
evaluate the data at a leaf node. The function treeForeCast()follows the tree based on
the input data until a leaf node is hit. When a leaf node is hit, it calls modelEval() on
the input data. The default value for modelEval() is regTreeEval().

 To evaluate a regression tree leaf node, you call regTreeEval(), which returns the
value at the leaf node. To evaluate a model tree node, you call modelTreeEval(). The
function modelTreeEval() reformats the input data to account for the 0th order term
and then calculates the forecasted value and returns it. regTreeEval() has two inputs
even though only one is used because it needs to have the same function signature
as modelTreeEval().

 Finally, the function createForeCast() calls treeForeCast() multiple times. This
function is useful when you want to evaluate a test set, because it returns a vector of
forecasted values. You’ll see this in action in a moment. 

 Now consider the dataset in figure 9.6. I plotted data collected for various bicycle rid-
ers, relating their IQ to the number of speeds on their bicycle. We’re going to build mul-
tiple models for this dataset and then test them against a test set. You can find this data
in the file bikeSpeedVsIq_train.txt and find a test set in the file bikeSpeedVsIq_test.txt.

Figure 9.6 Data relating the number of speeds on a person’s bicycle to their intelli-
gence quotient; this data will be used to test tree-based regression against standard 
linear regression.
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We’re going to build three models for the data in figure 9.6. First, save the code from
listing 9.5 in regTrees.py and enter the following in your Python shell: 

>>>reload(regTrees)

Next, you need to build a tree for the data: 

>>> trainMat=mat(regTrees.loadDataSet('bikeSpeedVsIq_train.txt'))
>>> testMat=mat(regTrees.loadDataSet('bikeSpeedVsIq_test.txt'))
>>> myTree=regTrees.createTree(trainMat, ops=(1,20))
>>> yHat = regTrees.createForeCast(myTree, testMat[:,0])
>>> corrcoef(yHat, testMat[:,1],rowvar=0)[0,1]
0.96408523182221306

Now try it with a model tree with the same settings, but you’ll make a model tree
instead of a regression tree: 

>>> myTree=regTrees.createTree(trainMat, regTrees.modelLeaf, 
    regTrees.modelErr,(1,20))
>>> yHat = regTrees.createForeCast(myTree, testMat[:,0], 
    regTrees.modelTreeEval)
>>> corrcoef(yHat, testMat[:,1],rowvar=0)[0,1]
0.9760412191380623

Remember, for these R2 values, the closer to 1.0 the better, so the model tree did bet-
ter than the regression tree. Now let’s see it for a standard linear regression. You don’t
need to import any code from chapter 8; you have a linear equation solver already
written in linearSolve(): 

>>> ws,X,Y=regTrees.linearSolve(trainMat)
>>> ws
matrix([[ 37.58916794],
    [  6.18978355]])

To get the yHat values, you can loop over the test data:

>>> for i in range(shape(testMat)[0]):
...     yHat[i]=testMat[i,0]*ws[1,0]+ws[0,0]
...

Finally, you check the R2 value:

>>> corrcoef(yHat, testMat[:,1],rowvar=0)[0,1]
0.94346842356747584

The R2 value is lower than the other two methods, so we’ve shown that the trees do a
better job at predicting complex data than a simple linear model. I’m sure you’re not
surprised, but I wanted to show you how to qualitatively compare the different regres-
sion models. 

 We’ll now explore a framework for building graphical user interfaces in Python.
You can use this GUI to explore different regression tools. 
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9.7 Using Tkinter to create a GUI in Python
Machine learning gives us some powerful tools to extract information from poorly
understood data. Being able to present this information to people in an easily under-
stood manner is important. In addition, if you can give people the ability to interact
with the data and algorithms, you’ll have an easier time explaining things. If all you do
is generate static plots and output numbers to the Python shell, you’re going to have a
harder time communicating your results. If you can write some code that allows peo-
ple to explore the data, on their own terms, without instruction, you’ll have much less
explaining to do. One way to help present the data and give people a way to interact
with it is to build a GUI, or graphical user interface, as shown in figure 9.7.   

Example: building a GUI to tune a regression tree
1. Collect: Text file provided.

2. Prepare: We need to parse the file with Python, and get numeric values.

3. Analyze: We’ll build a GUI with Tkinter to display the model and the data. 

4. Train: We’ll train a regression tree and a model tree and display the models with
the data. 

5. Test: No testing will be done.

6. Use: The GUI will allow people to play with different settings for prepruning and
to choose different types of models to use.

Figure 9.7 Default 
treeExplore GUI, showing a 
regression tree and the input 
data with settings tolN=10
and tolS=1.0
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In this final section, we’re going to look at how to build a GUI in Python. You’ll first
see how to use an existing module called Tkinter to build a GUI. Next, you’ll see how
to interface Tkinter with the library we’ve been using for making plots. We’ll create a
GUI to give people the ability to explore regression trees and model trees. 

9.7.1 Building a GUI in Tkinter

There are a number of GUI frameworks for Python. Tkinter is one framework that’s
easy to work with and comes with the standard Python build. Tkinter works on Win-
dows, Mac OS, and most Linux builds. 

 Let’s get started with the overly simple Hello World example. In your Python shell,
type in the following commands:

>>> from Tkinter import *
>>> root = Tk()

At this point, a small window will appear, or something is wrong. To fill out this win-
dow with our text, enter the following commands:

>>> myLabel = Label(root, text="Hello World")
>>> myLabel.grid()

Now your text box should display the text you entered. That was pretty easy, wasn’t it? 
 To be complete, you should add the following line:

>>> root.mainloop()

This kicks off the event loop, which handles mouse clicks, keystrokes, and redrawing,
among other things. 

 A GUI in Tkinter is made up of widgets. Widgets are things like text boxes, buttons,
labels, and check buttons. The label we made, myLabel, is the only widget in our
overly simple Hello World example. When we called the .grid() method of myLabel,
we were telling the geometry manager where to put myLabel. There are a few differ-
ent geometry managers in Tkinter. grid puts widgets in a two-dimensional table. You
can specify the row and column of each widget. Here we didn’t specify any row or col-
umns, and myLabel defaulted to row 0, column 0. 

 Let’s put together the widgets for our tree explorer. Create a new Python file called
treeExplore.py. Enter the code from the following listing. 

from numpy import *

from Tkinter import *
import regTrees

def reDraw(tolS,tolN):
    pass

def drawNewTree():
    pass

Listing 9.6 TkInter widgets used to build tree explorer GUI
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root=Tk()

Label(root, text="Plot Place Holder").grid(row=0, columnspan=3)

Label(root, text="tolN").grid(row=1, column=0)
tolNentry = Entry(root)
tolNentry.grid(row=1, column=1)
tolNentry.insert(0,'10')
Label(root, text="tolS").grid(row=2, column=0)
tolSentry = Entry(root)
tolSentry.grid(row=2, column=1)
tolSentry.insert(0,'1.0')
Button(root, text="ReDraw", command=drawNewTree).grid(row=1, column=2,\
                                                 rowspan=3)
chkBtnVar = IntVar()
chkBtn = Checkbutton(root, text="Model Tree", variable = chkBtnVar)
chkBtn.grid(row=3, column=0, columnspan=2)

reDraw.rawDat = mat(regTrees.loadDataSet('sine.txt'))
reDraw.testDat = arange(min(reDraw.rawDat[:,0]),\
                      max(reDraw.rawDat[:,0]),0.01)
reDraw(1.0, 10)

root.mainloop()

The code in listing 9.6 sets up the proper Tkinter modules and arranges them using
the grid geometry manager. Two placeholder functions are included also. These will
be filled out later. The format of this code is the same as our simple example of how
we first created a root widget of type Tk and then inserted a label. You can see how
we use the grid() method, with the row and column settings. You can also specify
columnspan and rowspan to tell the geometry manager to allow a widget to span more
than one row or column. There are other settings you can use as well. 

 New widgets that you haven’t seen yet are Entry, Checkbutton, and IntVar. The
Entry widget is a text box where a single line of text can be entered. Checkbutton and
IntVar are self-explanatory. In order to read the state of Checkbutton, you need to
create a variable, which is why you have IntVar. 

 At the end, you initialize some global variables associated with reDraw(); you’ll use
these later. I didn’t include an exit or quit button. I think if people want to quit, they
can close the window. Adding an extra close button is redundant. If you want to add
one, you can insert the following code:

Button(root, text='Quit',fg="black", command=root.quit).grid(row=1, 
column=2)

If you save the code in listing 9.6 and execute it, you
should see something similar to figure 9.8. 

 Now that we have the GUI working the way we
want it to, let’s make it create plots. We’re going to
plot out a dataset and on the same chart plot out fore-
casted values from our tree-based regression meth-
ods. You’ll see how to do this in the next subsection.

Figure 9.8 Our tree explorer using 
various TkInter widgets
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9.7.2 Interfacing Matplotlib and Tkinter

We’ve made many plots in this book with Matplotlib. How can we put one of those plots
in our GUI? To do this, I’m going to introduce the concept of a backend, and then we’ll
alter the Matplotlib backend (only in our GUI) to display in the Tkinter GUI. 

 The creators of Matplotlib have a frontend, which is the user-facing code such as
the plot() and scatter() methods. They’ve also created a backend, which interfaces
the plot with many different applications. You could alter the backend to have your
plots displayed in PNG, PDF, SVG, and so on. We’re going to set our backend to TkAgg.
Agg is a C++ library to make raster images from a figure. TkAgg allows us to use Agg
with our selected GUI framework, Tk. TkAgg allows Agg to render on a canvas. We can
place a canvas in our Tk GUI and arrange it with .grid(). 

 Let’s replace the Plot Place Holder label with our canvas. Delete the Plot Place
Holder label and add in the following code:

reDraw.f = Figure(figsize=(5,4), dpi=100)
reDraw.canvas = FigureCanvasTkAgg(reDraw.f, master=root)
reDraw.canvas.show()
reDraw.canvas.get_tk_widget().grid(row=0, columnspan=3)

This code creates a Matplotlib figure and assigns it to the global variable reDraw.f. It
next creates a canvas widget, similar to the other widgets. 

 We can now connect this canvas with our tree-creating functions. To see this in
action, open treeExplore.py and add the following code. Remember that we previ-
ously made stubs for reDraw() and drawTree(), so make sure that you don’t have two
copies of the same function. 

import matplotlib
matplotlib.use('TkAgg')
from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg
from matplotlib.figure import Figure

def reDraw(tolS,tolN):
    reDraw.f.clf()        
    reDraw.a = reDraw.f.add_subplot(111)
    if chkBtnVar.get():                           
        if tolN < 2: tolN = 2
        myTree=regTrees.createTree(reDraw.rawDat, regTrees.modelLeaf,\
                                   regTrees.modelErr, (tolS,tolN))
        yHat = regTrees.createForeCast(myTree, reDraw.testDat, \
                                       regTrees.modelTreeEval)
    else:
        myTree=regTrees.createTree(reDraw.rawDat, ops=(tolS,tolN))
        yHat = regTrees.createForeCast(myTree, reDraw.testDat)
    reDraw.a.scatter(reDraw.rawDat[:,0], reDraw.rawDat[:,1], s=5) 
    reDraw.a.plot(reDraw.testDat, yHat, linewidth=2.0) 
    reDraw.canvas.show()

def getInputs():

Listing 9.7 Code for Integrating Matplotlib and TkInter

See if check box 
has been selected

B
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    try: tolN = int(tolNentry.get())
    except: 
        tolN = 10 
        print "enter Integer for tolN"
        tolNentry.delete(0, END)            
        tolNentry.insert(0,'10')                  
    try: tolS = float(tolSentry.get())
    except: 
        tolS = 1.0 
        print "enter Float for tolS"
        tolSentry.delete(0, END)
        tolSentry.insert(0,'1.0')
    return tolN,tolS

def drawNewTree():
    tolN,tolS = getInputs()
    reDraw(tolS,tolN)

The first thing you do in listing 9.7 is import Matplotlib and set the backend to TkAgg.
There are two more import statements that glue together TkAgg and a Matplotlib figure. 

 We should first talk about drawNewTree(). If you recall from listing 9.6, this is the
function that gets called when someone clicks the button labeled ReDraw. This func-
tion does two things: first, it calls getInputs(), which gets values from the entry
boxes. Next, it calls reDraw() with the values from the entry boxes, and a beautiful
plot is made. We’ll discuss each of those functions in turn. 

 The function getInputs() tries to figure out what the user entered, without crash-
ing the program. We’re expecting a float for tolS and an integer for tolN. To get the
text a user entered, you call the .get() method on the Entry widget. Form validation
can consume a lot of your time when GUI programming, but it’s important to have a
successful user experience. You use the try:, except: pattern here. If Python can
interpret the text as an integer, you use that integer. If it can’t recognize it, you print
an error, clear the entry box, and restore the default value. B You follow a similar pro-
cedure for tolS, and the values are returned. 

 The function reDraw() is where the tree drawing takes place. This function assumes
that the input values are valid. The first thing that’s done is to clear the previous figure,
so you don’t have two plots on top of each other. When the function is cleared, the sub-
plot is deleted, so you need to add a new one. Next, you see whether the check box has
been checked. C Depending on the state of the check box, you build a model tree or
a regression tree with the tolS and tolN settings. After the tree is built, you create fore-
casted values from our testDat, which are evenly spaced points in the same range as
our data. Finally, the actual data and the forecasted values are plotted. I plotted the
actual data with scatter() and the forecasted values with plot(). The scatter()
method creates discrete points and the plot() method creates a continuous line. 

 Let’s see how this works. Save treeExplore.py and execute it. If you’re writing code
in an IDE, you can execute it with a run command. From the command line, you can
execute it with python treeExplore.py. You should see something like figure 9.7 at
the beginning of this section. 

Clear error and 
replace with default

C
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The GUI in figure 9.7 has all of the widgets from figure 9.8 with the placeholder label
replaced with a Matplotlib plot. The default value shows a regression tree with eight
leaf nodes. Let’s try out the model tree. Click the Model Tree text box and click the
ReDraw button. You should see something similar to figure 9.9. 

 You should try treeExplore with different values. The dataset has 200 points. See
what happens when you set tolN to 150. To build the biggest tree possible, remember
that we set tolN to 1 and tolS to 0. Try that and see what happens.

9.8 Summary
Oftentimes your data contains complex interactions that lead to nonlinear relation-
ships between the input data and the target variables. One method to model these
complex relationships is to use a tree to break up the predicted value into piecewise
constant segments or piecewise linear segments. A tree structure modeling the data
with piecewise constant segments is known as a regression tree. When the models are
linear regression equations, the tree is known as a model tree. 

 The CART algorithm builds binary trees and can handle discrete as well as continu-
ous split values. Model trees and regression trees can be built with the CART algorithm
as long as you use the right error measurements. When building a tree, there’s a ten-
dency for the tree-building algorithm to build the tree too closely to the data, result-
ing in an overfit model. An overfit tree is often more complex that it needs to be. To
make the tree less complex, a process of pruning is applied to the tree. Two methods
of pruning are prepruning, which prunes the tree as it’s being built, and postpruning,

Figure 9.9 The 
treeExplore GUI building a 
model tree over the same data 
and same settings as figure 9.7. 
The model tree does a better job 
of forecasting the data than the 
regression tree.
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which prunes the tree after it’s built. Prepruning is more effective but requires user-
defined parameters.

 Tkinter is a GUI toolkit for Python. It’s not the only one, but it’s the most com-
monly used. Tkinter allows you to build widgets and arrange those widgets. You can
make a special widget for Tkinter that allows you to display Matplotlib plots. The inte-
gration of Matplotlib and Tkinter allows you to build powerful GUIs where people can
explore machine learning algorithms in a more natural way.

 This is our last chapter on regression. I hope you won’t miss it. I may. We’ll now
leave behind the security of supervised learning and head to the unknown waters of
unsupervised learning. In regression and classification (supervised learning), we had
a target variable. This isn’t the case in unsupervised learning, as you’ll see shortly. The
next chapter is on k-means clustering. 



Part 3

Unsupervised learning

This third part of Machine Learning in Action deals with unsupervised learn-
ing. This is a break from what was covered in the first two sections. In unsuper-
vised learning we don’t have a target variable as we did in classification and
regression. Instead of telling the machine “Predict Y for our data X,” we’re ask-
ing “What can you tell me about X?” Things we ask the machine to tell us about
X may be “What are the six best groups we can make out of X?” or “What three
features occur together most frequently in X?”

 We start our study of unsupervised learning by discussing clustering (group-
ing similar items together) and the k-means clustering algorithm in chapter 10.
Next, we look into association analysis or shopping basket analysis with the Apri-
ori algorithm in chapter 11. Association analysis can help us answer the question
“What items are mostly commonly bought together?” We finish our study of
unsupervised learning in chapter 12 with a more efficient algorithm for associa-
tion analysis: the FP-growth algorithm.





Grouping unlabeled items
 using k-means clustering
The 2000 and 2004 presidential elections in the United States were close—very close.
The largest percentage of the popular vote that any candidate received was 50.7%
and the lowest was 47.9%. If a percentage of the voters were to have switched sides,
the outcome of the elections would have been different. There are small groups of
voters who, when properly appealed to, will switch sides. These groups may not be
huge, but with such close races, they may be big enough to change the outcome of
the election.1 How do you find these groups of people, and how do you appeal to
them with a limited budget? The answer is clustering. 

This chapter covers
■ The k-means clustering algorithm
■ Cluster postprocessing
■ Bisecting k-means
■ Clustering geographic points

1 For details on how microtargeting was used successfully in the 2004 U.S. presidential campaign, see
Fournier, Sosnik, and Dowd, Applebee’s America (Simon & Schuster, 2006).
207
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 Let me tell you how it’s done. First, you collect information on people either with
or without their consent: any sort of information that might give some clue about
what is important to them and what will influence how they vote. Then you put this
information into some sort of clustering algorithm. Next, for each cluster (it would be
smart to choose the largest one first) you craft a message that will appeal to these vot-
ers. Finally, you deliver the campaign and measure to see if it’s working. 

 Clustering is a type of unsupervised learning that automatically forms clusters of
similar things. It’s like automatic classification. You can cluster almost anything, and
the more similar the items are in the cluster, the better your clusters are. In this chap-
ter, we’re going to study one type of clustering algorithm called k-means. It’s called k-
means because it finds k unique clusters, and the center of each cluster is the mean of
the values in that cluster. You’ll see this in more detail in a little bit. 

 Before we get into k-means, let’s talk about cluster identification. Cluster identifi-
cation tells an algorithm, “Here’s some data. Now group similar things together and
tell me about those groups.” The key difference from classification is that in classifica-
tion you know what you’re looking for. That’s not the case in clustering. Clustering is
sometimes called unsupervised classification because it produces the same result as clas-
sification but without having predefined classes. 

 With cluster analysis we’re trying to put similar things in a cluster and dissimilar
things in a different cluster. This notion of similarity depends on a similarity mea-
surement. You’ve seen different similarity measures in previous chapters, and they’ll
come up in later chapters as well. The type of similarity measure used depends on
the application. 

 We’ll build the k-means algorithm and see it in action. We’ll next discuss some
drawbacks of the simple k-means algorithm. To improve some of these problems, we
can apply postprocessing to produce better clusters. Next, you’ll see a more efficient
version of k-means called bisecting k-means. Finally, you’ll see an example where we’ll
use bisecting k-means to find optimal parking locations while visiting multiple night-
life hotspots. 

10.1 The k-means clustering algorithm

k-means is an algorithm that will find k clusters for a given dataset. The number of
clusters k is user defined. Each cluster is described by a single point known as the
centroid. Centroid means it’s at the center of all the points in the cluster. 

k-means clustering
Pros: Easy to implement 

Cons: Can converge at local minima; slow on very large datasets 

Works with: Numeric values
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 The k-means algorithm works like this. First, the k centroids are randomly assigned
to a point. Next, each point in the dataset is assigned to a cluster. The assignment is done
by finding the closest centroid and assigning the point to that cluster. After this step, the
centroids are all updated by taking the mean value of all the points in that cluster. 

 Here’s how the pseudo-code would look: 

Create k points for starting centroids (often randomly)
While any point has changed cluster assignment
    for every point in our dataset:
        for every centroid
           calculate the distance between the centroid and point
        assign the point to the cluster with the lowest distance 
    for every cluster calculate the mean of the points in that cluster
        assign the centroid to the mean

I mentioned “closest” centroid. This implies some sort of distance measure. You can
use any distance measure you please. The performance of k-means on a dataset will be
determined by the distance measure you use. Let’s get started coding this. First, create
a file called kMeans.py and enter the code from the following listing.

from numpy import *

def loadDataSet(fileName): 
    dataMat = []          
    fr = open(fileName)
    for line in fr.readlines():
        curLine = line.strip().split('\t')
        fltLine = map(float,curLine) 
        dataMat.append(fltLine)
    return dataMat

def distEclud(vecA, vecB):

Listing 10.1 k-means support functions

General approach to k-means clustering
1. Collect: Any method.

2. Prepare: Numeric values are needed for a distance calculation, and nominal val-
ues can be mapped into binary values for distance calculations.

3. Analyze: Any method.

4. Train: Doesn’t apply to unsupervised learning.

5. Test: Apply the clustering algorithm and inspect the results. Quantitative error
measurements such as sum of squared error (introduced later) can be used. 

6. Use: Anything you wish. Often, the clusters centers can be treated as represen-
tative data of the whole cluster to make decisions. 
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    return sqrt(sum(power(vecA - vecB, 2)))

def randCent(dataSet, k):
    n = shape(dataSet)[1]
    centroids = mat(zeros((k,n)))
    for j in range(n):                     
        minJ = min(dataSet[:,j]) 
        rangeJ = float(max(dataSet[:,j]) - minJ)
        centroids[:,j] = minJ + rangeJ * random.rand(k,1)
    return centroids

The code in listing 10.1 contains a few helper functions you’ll need for the k-means
algorithm. The first function, loadDataSet(), is the same as in previous chapters. It
loads a text file containing lines of tab-delimited floats into a list. Each of these lists is
appended to a list called dataMat, which is returned. The return value is a list contain-
ing many other lists. This format allows you to easily pack values into a matrix. 

 The next function, distEclud(), calculates the Euclidean distance between two
vectors. This is our initial distance function, which you can replace with other distance
metrics. 

 Finally, the last function in listing 10.1 is randCent(), which creates a set of k ran-
dom centroids for a given dataset. The random centroids need to be within the
bounds of the dataset. This is accomplished by finding the minimum and maximum
values of each dimension in the dataset. Random values from 0 to 1.0 are then chosen
and scaled by the range and minimum value to ensure that the random points are
within the bounds of the data. OK, let’s see these three functions in action. Save
kMeans.py and enter the following code in your Python shell:

>>> import kMeans
>>> from numpy import *

To create a data matrix from a text file, enter the following (testSet.txt is included
with the source code for chapter 10): 

>>> datMat=mat(kMeans.loadDataSet('testSet.txt'))

You can explore this two-dimensional matrix. We’ll use it later to test the full k-means
algorithm. Let’s see if randCent() works now. First, let’s see what the minimum and
maximum values are in our matrix:

>>> min(datMat[:,0])
matrix([[-5.379713]])
>>> min(datMat[:,1])
matrix([[-4.232586]])
>>> max(datMat[:,1])
matrix([[ 5.1904]])
>>> max(datMat[:,0])
matrix([[ 4.838138]])

Now let’s see if randCent() produces a value between min and max.

>>> kMeans.randCent(datMat, 2)
matrix([[-3.24278889, -0.04213842],
        [-0.92437171,  3.19524231]])

Create cluster 
centroids
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It does, so these functions work as promised. Last, let’s test the distance metric. 

>>> kMeans.distEclud(datMat[0], datMat[1])
5.184632816681332

Now that we have the support functions working, we’re ready to implement the full
k-means algorithm. The algorithm will create k centroids, then assign each point to
the closest centroid, and then recalculate the centroids. This process will repeat
until the points stop changing clusters. Open kMeans.py and enter the code from
the following listing. 

def kMeans(dataSet, k, distMeas=distEclud, createCent=randCent):
    m = shape(dataSet)[0]
    clusterAssment = mat(zeros((m,2))) 
    centroids = createCent(dataSet, k)
    clusterChanged = True
    while clusterChanged:
        clusterChanged = False
        for i in range(m):
            minDist = inf; minIndex = -1
            for j in range(k):                                
                distJI = distMeas(centroids[j,:],dataSet[i,:])  
                if distJI < minDist:                          
                    minDist = distJI; minIndex = j
            if clusterAssment[i,0] != minIndex: clusterChanged = True
            clusterAssment[i,:] = minIndex,minDist**2
        print centroids
        for cent in range(k):                                            
            ptsInClust = dataSet[nonzero(clusterAssment[:,0].A==cent)[0]]
            centroids[cent,:] = mean(ptsInClust, axis=0)                 
    return centroids, clusterAssment

The k-means algorithm appears in listing 10.2. The function kMeans() accepts four
input parameters. The dataset and the number of clusters to generate are the only
required parameters. A function to use as the distance metric is optional, and a func-
tion to create the initial centroids is also optional. The function starts out by finding
the number of items in the dataset and then creates a matrix to store cluster assign-
ments. The cluster assignment matrix, called clusterAssment, has two columns; one
column is for the index of the cluster and the second column is to store the error.
This error is the distance from the cluster centroid to the current point. We’ll use this
error later on to measure how good our clusters are. 

 You iterate until none of the data points changes its cluster. You create a flag called
clusterChanged, and if this is True you continue iterating. The iteration is handled by
a while loop. You next loop over all the data points to find the closest centroid. This is
done by looping over all the centroids and measuring the distance to each one. B
The distance is measured by whatever function you pass to distMeas. The default is
distEclud(), which we wrote in listing 10.1. If any of these clusters changes, you
update the clusterChanged flag.

Listing 10.2 The k-means clustering algorithm

Find the 
closest 
centroid

B

Update centroid
location

C
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Finally, you loop over all the centroids and update their values. C This is done by first
doing some array filtering to get all the points in a given cluster. Next, you take the
mean values of all these points. The option axis=0 in the mean calculation does the
mean calculation down the columns. Finally, the centroids and cluster assignments
are returned. See figure 10.1.

 Let’s see the code from listing 10.2 in action. After saving kMeans.py, enter the fol-
lowing in your Python shell:

>>> reload(kMeans)
<module 'kMeans' from 'kMeans.pyc'>

If you don’t have a copy of datMat from the previous example, you can enter the fol-
lowing command (remember to import NumPy):

>>> datMat=mat(kMeans.loadDataSet('testSet.txt'))

Now you can cluster the data points in datMat. I have a hunch there should be four clus-
ters, because the image looks like there could be four clusters, so enter the following:

>>> myCentroids, clustAssing = kMeans.kMeans(datMat,4)
[[-4.06724228  0.21993975]
 [ 0.73633558 -1.41299247]
 [-2.59754537  3.15378974]
 [ 4.49190084  3.46005807]]
[[-3.62111442 -2.36505947]

Figure 10.1 Clusters resulting from k-means clustering. After three iterations, the 
algorithm converged on these results. Data points with similar shapes are in similar 
clusters. The cluster centers are marked with a cross. 
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 [ 2.21588922 -2.88365904]
 [-2.38799628  2.96837672]
 [ 2.6265299   3.10868015]]
[[-3.53973889 -2.89384326]
 [ 2.65077367 -2.79019029]
 [-2.46154315  2.78737555]
      [ 2.6265299   3.10868015]]

The four centroids are displayed. You can see after three iterations that k-means con-
verges. A plot of these four centroids, along with the original data, is given in figure 10.1.

 Everything went smoothly with this clustering, but things don’t always go that way.
We’ll next talk about some possible problems with k-means clustering and how to fix
those problems. 

10.2 Improving cluster performance with postprocessing 
We talked about putting data points in k clusters where k is a user-defined parameter.
How does the user know that k is the right number? How do you know that the clus-
ters are good clusters? In the matrix with the cluster assignments is a value represent-
ing the error of each point. This value is the squared error. It’s the squared distance of
the point to the cluster center. We’ll discuss ways you can use this error to find out the
quality of your clusters. 

 Consider for a moment the plot in figure 10.2. This is the result of running k-
means on a dataset with three clusters. k-means has converged, but the cluster assign-
ment isn’t that great. The reason that k-means converged but we had poor clustering
was that k-means converges on a local minimum, not a global minimum. (A local min-
imum means that the result is good but not necessarily the best possible. A global
minimum is the best possible.) 

Figure 10.2 Cluster 
centroids incorrectly 
assigned because of 
poor initialization with 
random initialization in 
k-means. Additional 
postprocessing is re-
quired to clean up the 
clusters.
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One metric for the quality of your cluster assignments you can use is the SSE, or sum
of squared error. This is the sum of the values in column 1 of clusterAssment in list-
ing 10.2. A lower SSE means that points are closer to their centroids, and you’ve done
a better job of clustering. Because the error is squared, this places more emphasis on
points far from the centroid. One sure way to reduce the SSE is to increase the num-
ber of clusters. This defeats the purpose of clustering, so assume that you have to
increase the quality of your clusters while keeping the number of clusters constant. 

 How can you fix the situation in figure 10.2? You can postprocess the clusters. One
thing you can do is take the cluster with the highest SSE and split it into two clusters.
You can accomplish this by filtering out the points from the largest cluster and then
running k-means on just those points with a k value set to 2. 

 To get your cluster count back to the original value, you could merge two clusters.
From looking at figure 10.2, it seems obvious to merge the incorrectly placed cen-
troids at the bottom of the figure. That was easy to visualize in two dimensions, but
how could you do that in 40 dimensions? 

 Two quantifiable ideas are merging the closest centroids or merging the two cen-
troids that increase the total SSE the least. You could calculate distances between all
centroids and merge the closest two. The second method would require merging two
clusters and then calculating the total SSE. You’d have to repeat this for all pairs of
clusters to find the best pair to merge. We’ll next discuss an algorithm that uses these
cluster-splitting techniques to form better clusters. 

10.3 Bisecting k-means
To overcome the problem of poor clusters because of k-means getting caught in a
local minimum, another algorithm has been developed. This algorithm, known as
bisecting k-means, starts out with one cluster and then splits the cluster in two. It then
chooses a cluster to split. The cluster to split is decided by minimizing the SSE.
This splitting based on the SSE is repeated until the user-defined number of clusters
is attained. 

 Pseudocode for bisecting k-means will look like this:

Start with all the points in one cluster
While the number of clusters is less than k
    for every cluster
        measure total error
        perform k-means clustering with k=2 on the given cluster
        measure total error after k-means has split the cluster in two
    choose the cluster split that gives the lowest error and commit this split

Another way of thinking about this is to choose the cluster with the largest SSE and
split it and then repeat until you get to the user-defined number of clusters. This
doesn’t sound too difficult to code, does it? To see this in action, open kMeans.py and
enter the code from the following listing. 
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s

def biKmeans(dataSet, k, distMeas=distEclud):
    m = shape(dataSet)[0]
    clusterAssment = mat(zeros((m,2)))
    centroid0 = mean(dataSet, axis=0).tolist()[0]  
    centList =[centroid0]                                  
    for j in range(m):
        clusterAssment[j,1] = distMeas(mat(centroid0), dataSet[j,:])**2
    while (len(centList) < k):
        lowestSSE = inf
        for i in range(len(centList)):
            ptsInCurrCluster =\                                   
                   dataSet[nonzero(clusterAssment[:,0].A==i)[0],:] 
            centroidMat, splitClustAss = \                        
                   kMeans(ptsInCurrCluster, 2 , distMeas)         
            sseSplit = sum(splitClustAss[:,1])
            sseNotSplit = \
              sum(clusterAssment[nonzero(clusterAssment[:,0].A!=i)[0],1])
            print "sseSplit, and notSplit: ",sseSplit,sseNotSplit
            if (sseSplit + sseNotSplit) < lowestSSE:
                bestCentToSplit = i
                bestNewCents = centroidMat
                bestClustAss = splitClustAss.copy()
                lowestSSE = sseSplit + sseNotSplit
        bestClustAss[nonzero(bestClustAss[:,0].A == 1)[0],0] =\ 
                             len(centList)                        
        bestClustAss[nonzero(bestClustAss[:,0].A == 0)[0],0] =\ 
                             bestCentToSplit                    
        print 'the bestCentToSplit is: ',bestCentToSplit
        print 'the len of bestClustAss is: ', len(bestClustAss)
        centList[bestCentToSplit] = bestNewCents[0,:]    
        centList.append(bestNewCents[1,:])
        clusterAssment[nonzero(clusterAssment[:,0].A == \
                             bestCentToSplit)[0],:]= bestClustAss
    return mat(centList), clusterAssment

The code in listing 10.3 has the same arguments as kMeans() in listing 10.2. You give it
a dataset, the number of clusters you want, and a distance measure, and it gives you the
clusters. Similar to kMeans() in listing 10.2, you can change the distance metric used.

 The function starts out by creating a matrix to store the cluster assignment and
squared error for each point in the dataset. Next, one centroid is calculated for the
entire dataset, and a list is created to hold all the centroids. B Now that you have a
centroid, you can go over all the points in the dataset and calculate the error between
that point and the centroid. Later, you’ll need the error. 

 Next, you enter the while loop, which splits clusters until you have the desired
number of clusters. You can measure the number of clusters you have by measuring
the number of items in the cluster list. You’re going to iterate over all the clusters and
find the best cluster to split. To do this, you need to compare the SSE after each split.
You first initialize the lowest SSE to infinity; then you start looping over each cluster in
the centList cluster list. For each of these clusters, you create a dataset of only the

Listing 10.3 The bisecting k-means clustering algorithm 

Initially create 
one cluster

B

Try 
splitting 
every 
cluster

C

Update 
the cluster 
assignment

D
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points from that cluster. This dataset is called ptsInCurrCluster and is fed into
kMeans(). The k-means algorithm gives you two new centroids as well as the squared
error for each of those centroids. C These errors are added up along with the error
for the rest of the dataset. If this split produces the lowest SSE, then it’s saved. After
you’ve decided which cluster to split, it’s time to apply this split. Applying the split is as
easy as overwriting the existing cluster assignments for the cluster you’ve decided to
split. When you applied kMeans() with two clusters, you had two clusters returned
labeled 0 and 1. You need to change these cluster numbers to the cluster number
you’re splitting and the next cluster to be added. This is done with two array filters. D
Finally, these new cluster assignments are updated and the new centroid is appended
to centList. 

 When the while loop ends, the centroid list and the cluster assignments are
returned, the same way that they’re done in kMeans(). 

 Let’s see this in action. After you’ve entered the code from listing 10.3, save
kMeans.py and enter the following in your Python shell: 

>>> reload(kMeans)
<module 'kMeans' from 'kMeans.py'>

You can run it on our original dataset or you can load the “difficult” dataset in figure 10.2
by entering the following:

>>> datMat3=mat(kMeans.loadDataSet('testSet2.txt'))

To run biKmeans(), enter the following command:

>>> centList,myNewAssments=kMeans.biKmeans(datMat3,3)
sseSplit, and notSplit:  491.233299302 0.0
the bestCentToSplit is:  0
the len of bestClustAss is:  60
sseSplit, and notSplit:  75.5010709203 35.9286648164
sseSplit, and notSplit:  21.40716341 455.304634485
the bestCentToSplit is:  0
the len of bestClustAss is:  40

Now, let’s inspect the centroids:

>>> centList
[matrix([[-3.05126255,  3.2361123 ]]), matrix([[-0.28226155, -2.4449763 ]]), 

matrix([[ 3.1084241,  3.0396009]])]

You can run this multiple times and the clustering will converge to the global mini-
mum, whereas the original kMeans() would occasionally get stuck in the local
minimum. A plot of the data points and centroids after running biKmeans() is shown
in figure 10.3. 

 Now that you have the bisecting k-means algorithm working, you’re ready to put it
to use on some real data. In the next section, we’ll take some geographic coordinates
on a map and create clusters from that. 
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10.4 Example: clustering points on a map
Here’s the situation: your friend Drew wants you to take him out on the town for his
birthday. A number of other friends are going to come also, so you need to provide a
plan that everyone can follow. Drew has given you a list of places he wants to go. This
list is long; it has 70 establishments in it. I included the list in a file called portland-
Clubs.txt, which is packaged with the code. The list contains similar establishments in
the greater Portland, Oregon, area. 

 Seventy places in one night! You decide the best strategy is to cluster these places
together. You can arrange transportation to the cluster centers and then hit the places
on foot. Drew’s list includes addresses, but addresses don’t give you a lot of informa-
tion about how close two places are. What you need are the latitude and longitude.
Then, you can cluster these places together and plan your trip. 

Figure 10.3 Cluster assignment after running the bisecting k-means algorithm. The 
cluster assignment always results in good clusters.

Example: using bisecting k-means on geographic data
1. Collect: Use the Yahoo! PlaceFinder API to collect data.

2. Prepare: Remove all data except latitude and longitude.

3. Analyze: Use Matplotlib to make 2D plots of our data, with clusters and map.

4. Train: Doesn’t apply to unsupervised learning.

5. Test: Use biKmeans(), developed in section 10.4.

6. Use: The final product will be your map with the clusters and cluster centers.
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You need a service that will convert an address to latitude and longitude. Luckily, Yahoo!
provides such a service. We’re going to explore how to use the Yahoo! PlaceFinder API.
Then, we’ll cluster our coordinates and plot the coordinates along with cluster centers
to see how good our clustering job was. 

10.4.1 The Yahoo! PlaceFinder API 

The wonderful people at Yahoo! have provided a free API that will return a latitude
and longitude for a given address. You can read more about it at the following URL:
http://developer.yahoo.com/geo/placefinder/guide/. 

 In order to use it, you need to sign up for an API key. To do that, you have to sign
up for the Yahoo! Developer Network: http://developer.yahoo.com/. Create a desk-
top app and you’ll get an appid. You’re going to need the appid to use the geocoder.
A geocoder takes an address and returns the latitude and longitude of that address.
The code listing will wrap all this together. Open kMeans.py and add the code from
the following listing.

import urllib
import json
def geoGrab(stAddress, city):
    apiStem = 'http://where.yahooapis.com/geocode?'  
    params = {}
    params['flags'] = 'J'                           
    params['appid'] = 'ppp68N8t'
    params['location'] = '%s %s' % (stAddress, city)
    url_params = urllib.urlencode(params)
    yahooApi = apiStem + url_params      
    print yahooApi                               
    c=urllib.urlopen(yahooApi)
    return json.loads(c.read())

from time import sleep
def massPlaceFind(fileName):
    fw = open('places.txt', 'w')
    for line in open(fileName).readlines():
        line = line.strip()
        lineArr = line.split('\t')
        retDict = geoGrab(lineArr[1], lineArr[2])
        if retDict['ResultSet']['Error'] == 0:
            lat = float(retDict['ResultSet']['Results'][0]['latitude'])
            lng = float(retDict['ResultSet']['Results'][0]['longitude'])
            print "%s\t%f\t%f" % (lineArr[0], lat, lng)
            fw.write('%s\t%f\t%f\n' % (line, lat, lng))
        else: print "error fetching"
        sleep(1)
    fw.close()

The code in listing 10.4 contains two functions: geoGrab() and massPlaceFind(). The
function geoGrab() gets a dictionary of values from Yahoo, while massPlaceFind()
automates this and saves the relevant information to a file. 

Listing 10.4 Yahoo! PlaceFinder API

Set JSON as 
return type

B

Print 
outgoing URL

C
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 In geoGrab(), you first set the apiStem for Yahoo APIs; then you create a diction-
ary. You’ll set various values of this dictionary, including flags=J, so that the output
will be returned in the JSON format. B (If you’re not familiar with JSON, don’t worry.
It’s a format for serializing arrays and dictionaries, but we won’t look at any JSON.
JSON stands for JavaScript Object Notation. You can find more information at
www.json.org.) You next use the urlencode() function from urllib to pack up your
dictionary in a format you can pass on in a URL. Finally, open the URL and read the
return value. The return value is in JSON format, so you use the JSON Python module
to decode it into a dictionary. The decoded dictionary is returned, and you’ve finished
geocoding one address. 

 The second function in listing 10.4 is massPlaceFind(). This opens a tab-delimited
text file and gets the second and third fields. These are fed to geoGrab(). The output
dictionary from geoGrab() is then checked to see if there are any errors. If not, then the
latitude and longitude are read out of the dictionary. These values are appended to the
original line and written to a new file. If there’s an error, you don’t attempt to extract
the latitude and longitude. Last, the sleep function is called to delay massPlaceFind()
for one second. This is done to ensure that you don’t make too many API calls too
quickly. If you do, you may get blocked, so it’s a good idea to put in this delay. 

 After you’ve saved kMeans.py, enter the following in your Python shell:

>>> reload(kMeans)
<module 'kMeans' from 'kMeans.py'>

To try out geoGrab, enter a street address and a city string such as

>>> geoResults=kMeans.geoGrab('1 VA Center', 'Augusta, ME')
http://where.yahooapis.com/

geocode?flags=J&location=1+VA+Center+Augusta%2C+ME&appid=ppp68N6k

The actual URL used is printed so you can see exactly what’s going on. If you get sick
of seeing the URL, feel free to comment out that print statement in listing 10.4. C
Now let’s see what was returned. It should be a big dictionary. 

>>> geoResults
{u'ResultSet': {u'Locale': u'us_US', u'ErrorMessage': u'No error', 
u'Results': [{u'neighborhood': u'', u'house': u'1', u'county': u'Kennebec 
County', u'street': u'Center St', u'radius': 500, u'quality': 85, u'unit': 
u'', u'city': u'Augusta', u'countrycode': u'US', u'woeid': 12759521, 
u'xstreet': u'', u'line4': u'United States', u'line3': u'', u'line2': 
u'Augusta, ME  04330-6410', u'line1': u'1 Center St', u'state': u'Maine', 
u'latitude': u'44.307661', u'hash': u'B8BE9F5EE764C449', u'unittype': u'', 
u'offsetlat': u'44.307656', u'statecode': u'ME', u'postal': u'04330-6410', 
u'name': u'', u'uzip': u'04330', u'country': u'United States', 
u'longitude': u'-69.776608', u'countycode': u'', u'offsetlon': u'-
69.776528',u'woetype': 11}], u'version': u'1.0', u'Error': 0, u'Found': 1, 
u'Quality': 87}}

This is a dictionary with one key, ResultSet, which contains another dictionary with the
following keys: Locale, ErrorMessage, Results, version, Error, Found, and Quality.
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 You can explore all these things, but the two we’re interested in are Error and
Results. 

 The Error key tells us the error code. 0 means that there were no errors. Anything
else means that we didn’t get the address we were looking for. You can get this error by
typing

>>> geoResults['ResultSet']['Error']
0

Now let’s see the latitude and longitude. You can get these by entering the following: 

>>> geoResults['ResultSet']['Results'][0]['longitude']
u'-69.776608'
>>> geoResults['ResultSet']['Results'][0]['latitude']
u'44.307661'

These are strings, and you’ll have to get them as floats using float() to use them as
numbers. Now, to see this in action on multiple lines, execute the second function in
listing 10.4: 

>>> kMeans.massPlaceFind('portlandClubs.txt')
Dolphin II      45.486502       -122.788346
                           .
                           .
                            
Magic Garden    45.524692       -122.674466
Mary's Club     45.535101       -122.667390
Montego's       45.504448       -122.500034

This generates a text file called places.txt in your working directory. We’ll now use the
points for clustering. We’ll plot the clubs along with their cluster centers on a map of
the city. 

10.4.2 Clustering geographic coordinates

Now that we have a list properly formatted with geographic coordinates, we can clus-
ter the clubs together. We used the Yahoo! PlaceFinder API to get the latitude and lon-
gitude of each point. Now we need to use that to calculate a distance between points
and for cluster centers. 

 The clubs we’re trying to cluster in this example are given to us in latitude and lon-
gitude, but this isn’t enough to tell us a distance. Near the North Pole, you can walk a
few meters, and your longitude will vary by tens of degrees. Walk the same distance at
the equator, and your longitude varies a fraction of a degree. You can use something
called the spherical law of cosines to compute the distance between two sets of lati-
tude and longitude. To see this implemented in code along with a function for plot-
ting the clustered clubs, open kMeans.py and add the code from the following listing. 

def distSLC(vecA, vecB):                          
    a = sin(vecA[0,1]*pi/180) * sin(vecB[0,1]*pi/180)
    b = cos(vecA[0,1]*pi/180) * cos(vecB[0,1]*pi/180) * \
                      cos(pi * (vecB[0,0]-vecA[0,0]) /180)

Listing 10.5 Spherical distance measure and cluster-plotting functions 
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    return arccos(a + b)*6371.0

import matplotlib
import matplotlib.pyplot as plt
def clusterClubs(numClust=5):
    datList = []
    for line in open('places.txt').readlines():
        lineArr = line.split('\t')
        datList.append([float(lineArr[4]), float(lineArr[3])])
    datMat = mat(datList)
    myCentroids, clustAssing = biKmeans(datMat, numClust, \
                                          distMeas=distSLC)
    fig = plt.figure()
    rect=[0.1,0.1,0.8,0.8]
    scatterMarkers=['s', 'o', '^', '8', 'p', \
                    'd', 'v', 'h', '>', '<']
    axprops = dict(xticks=[], yticks=[])
    ax0=fig.add_axes(rect, label='ax0', **axprops)
    imgP = plt.imread('Portland.png')                
    ax0.imshow(imgP)
    ax1=fig.add_axes(rect, label='ax1', frameon=False)
    for i in range(numClust):
        ptsInCurrCluster = datMat[nonzero(clustAssing[:,0].A==i)[0],:]
        markerStyle = scatterMarkers[i % len(scatterMarkers)]
        ax1.scatter(ptsInCurrCluster[:,0].flatten().A[0],\
                    ptsInCurrCluster[:,1].flatten().A[0],\
                   marker=markerStyle, s=90)
    ax1.scatter(myCentroids[:,0].flatten().A[0],\
                myCentroids[:,1].flatten().A[0], marker='+', s=300)
    plt.show()

The code in listing 10.5 contains two functions. The first one, distSLC(), is the a dis-
tance metric for two points on the earth’s surface. The second one, clusterClubs(),
clusters the clubs from a text file and plots them. 

 The function distSLC() returns the distance in miles for two points on the earth’s
surface. Two points are given in latitude and longitude, and you use the spherical law
of cosines to calculate the distance between these two points. Our latitudes and longi-
tudes are given in degrees, but sin() and cos() take radians as inputs. You convert
from degrees to radians by dividing by 180 and multiplying by pi. Pi was imported
when you imported everything from NumPy. 

 The second function, clusterClubs(), takes one input that’s the number of clus-
ters you’d like to create. This function wraps up parsing a text file, clustering, and
plotting. You first create an empty list and then open places.txt and get the fourth and
fifth fields, which contain the latitude and longitude. A matrix is then created from
the list of latitude/longitude pairs. You next run biKmeans() on these data points and
use the distSLC() distance measure for your clustering. You then plot the clusters
and cluster centers. 

 In order to plot the clusters, you first create a figure and a rectangle. You’re going
to use this rectangle to determine the amount of the figure to dedicate to plotting.
Next, you create a list of all the available marker types for scatter plotting. You’ll use
this later to give a unique marker to each cluster. You next use imread() to create a

Create matrix 
from image

B
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matrix from an image. B You can plot this matrix using imshow(). Next, you create a
new plot on the same figure as the image you just plotted. This allows you to use two
coordinate systems without any scaling or shifting. Next, you loop over every cluster
and plot these out. A marker type is chosen from scatterMarkers, which you created
earlier. You use the index i % len(scatterMarkers) so that you can loop over the list
if you have more clusters than available marker types. Finally, the clusters are plotted
as crosses, and you show the plot. 

 To see this in action, enter the following in your Python shell after you’ve saved
kMeans.py: 

>>> reload(kMeans)
<module 'kMeans' from 'kMeans.py'>
>>> kMeans.clusterClubs(5)
sseSplit, and notSplit:  3073.83037149 0.0
the bestCentToSplit is:  0
                       .
                       .
                       .
sseSplit, and notSplit:  307.687209245 1118.08909015
the bestCentToSplit is:  3
the len of bestClustAss is:  25

A figure similar to figure 10.4 should appear after you’ve executed this command. 
 Try this out with different cluster numbers. What do you think is a good number of

clusters?

Figure 10.4 Clustering of nighttime entertainment locations in Portland, Oregon
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10.5 Summary
Clustering is a technique used in unsupervised learning. With unsupervised learning
you don’t know what you’re looking for, that is, there are no target variables. Cluster-
ing groups data points together, with similar data points in one cluster and dissimilar
points in a different group. A number of different measurements can be used to mea-
sure similarity. 

 One widely used clustering algorithm is k-means, where k is a user-specified num-
ber of clusters to create. The k-means clustering algorithm starts with k-random clus-
ter centers known as centroids. Next, the algorithm computes the distance from every
point to the cluster centers. Each point is assigned to the closest cluster center. The
cluster centers are then recalculated based on the new points in the cluster. This pro-
cess is repeated until the cluster centers no longer move. This simple algorithm is
quite effective but is sensitive to the initial cluster placement. To provide better clus-
tering, a second algorithm called bisecting k-means can be used. Bisecting k-means
starts with all the points in one cluster and then splits the clusters using k-means with
a k of 2. In the next iteration, the cluster with the largest error is chosen to be split.
This process is repeated until k clusters have been created. Bisecting k-means creates
better clusters than k-means. 

 k-means and its derivatives aren’t the only clustering algorithms. Another type of
clustering, known as hierarchical clustering, is also a widely used clustering algorithm.
In the next chapter, we’ll examine the Apriori algorithm for finding association rules
in a dataset. 



Association analysis
 with the Apriori algorithm
A trip to the grocery store provides many examples of machine learning in action
today and future uses of it. The way items are displayed, the coupons offered to you
after you purchase something, and loyalty programs all are driven by massive
amounts of data crunching. The store wants to get as much money as possible from
you, and they certainly will use technology for this purpose. 

 Loyalty programs, which give the customer a discount by using a loyalty card,
can give the store a glimpse at what one consumer is purchasing. If you don’t use a
loyalty card, the store can also look at the credit card you used to make the pur-
chases. If you don’t use a loyalty card and pay with cash, a store can look at the
items purchased together. (For more ideas on possible uses of technology in the
grocery store, see The Numerati by Stephen Baker.) 

This chapter covers
■ The Apriori algorithm
■ Frequent item set generation
■ Association rule generation
■ Finding association rules in voting
224
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 Looking at items commonly purchased together can give stores an idea of customers’
purchasing behavior. This knowledge, extracted from the sea of data, can be used for
pricing, marketing promotions, inventory management, and so on. Looking for hidden
relationships in large datasets is known as association analysis or association rule learning.
The problem is, finding different combinations of items can be a time-consuming task
and prohibitively expensive in terms of computing power. Brute-force solutions aren’t
capable of solving this problem, so a more intelligent approach is required to find fre-
quent itemsets in a reasonable amount of time. In this chapter we’ll focus on the Apriori
algorithm to solve this problem. 

 We’ll first discuss association analysis in detail, and then we’ll discuss the Apriori
principle, which leads to the Apriori algorithm. We’ll next create functions to effi-
ciently find frequent items sets, and then we’ll extract association rules from the fre-
quent items sets. We’ll finish up with an example of extracting association rules from
congressional voting records and an example of finding common features in poison-
ous mushrooms.

11.1 Association analysis

Association analysis is the task of finding interesting relationships in large datasets.
These interesting relationships can take two forms: frequent item sets or association
rules. Frequent item sets are a collection of items that frequently occur together. The sec-
ond way to view interesting relationships is association rules. Association rules suggest
that a strong relationship exists between two items. I’ll illustrate these two concepts
with an example. A list of transactions from a grocery store is shown in figure 11.1.

 Frequent items sets are lists of items that commonly appear together. One example
from figure 11.1 is {wine, diapers, soy milk}. (Recall that sets are denoted by a pair of
brackets {}). From the dataset we can also find an association rule such as diapers ➞
wine. This means that if someone buys diapers, there’s a good chance they’ll buy wine.
With the frequent item sets and association rules, retailers have a much better under-
standing of their customers. Although common examples of association analysis are

Apriori
Pros: Easy to code up 

Cons: May be slow on large datasets

Works with: Numeric values, nominal values

Figure 11.1 A simple 
list of transactions 
from a natural foods 
grocery store called 
Hole Foods
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from the retail industry, it can be applied to a number of other industries, such as web-
site traffic analysis and medicine.

How do we define these so-called interesting relationships? Who defines what’s inter-
esting? When we’re looking for frequent item sets, what’s the definition of frequent?
There are a number of concepts we can use to select these things, but the two most
important are support and confidence.

 The support of an itemset is defined as the percentage of the dataset that contains
this itemset. From figure 11.1, the support of {soy milk} is 4/5. The support of {soy
milk, diapers} is 3/5 because of the five transactions, three contained both soy milk
and diapers. Support applies to an itemset, so we can define a minimum support and
get only the itemsets that meet that minimum support.

 The confidence is defined for an association rule like {diapers} ➞ {wine}. The confi-
dence for this rule is defined as support({diapers, wine})/support({diapers}). From
figure 11.1, the support of {diapers, wine} is 3/5. The support for diapers is 4/5, so the
confidence for diapers ➞ wine is 3/4 = 0.75. That means that in 75% of the items in
our dataset containing diapers, our rule is correct. 

 The support and confidence are ways we can quantify the success of our associa-
tion analysis. Let’s assume we wanted to find all sets of items with a support greater
than 0.8. How would we do that? We could generate a list of every combination of
items and then count how frequently that occurs. It turns out that doing this can be
very slow when we have thousands of items for sale. In the next section we’ll address
this in detail, and we’ll look at something called the Apriori principle, which will allow
us to reduce the number of calculations we need to do to learn association rules. 

11.2 The Apriori principle 
Let’s assume that we’re running a grocery store with a very limited selection. We’re
interested in finding out which items were purchased together. We have only four
items: item0, item1, item2, and item3. What are all the possible combinations in which
can be purchased? We can have one item, say item0, alone, or two items, or three items,
or all of the items together. If someone purchased two of item0 and four of item2, we
don’t care. We’re concerned only that they purchased one or more of an item. 

diapers ➞ beer
The most famous example of association analysis is diapers Þ beer. It has been
reported that a grocery store chain in the Midwest of the United States noticed that
men bought diapers and beer on Thursdays. The store could have profited from this
by placing diapers and beer close together and making sure they were full price on
Thursdays, but they did not.† 

† DSS News, “Ask Dan! What is the true story about data mining, beer and diapers?” http://www
.dssresources.com/newsletters/66.php, retrieved March 28, 2011.
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A diagram showing all possible combina-
tions of the items is shown in figure 11.2.
To make the diagram easier to read, we
use the item number such as 0 instead of
item0. Also, the first set is a big Ø, which
means the null set or a set containing no
items. Lines connecting item sets indi-
cate that two or more sets can be com-
bined to form a larger set. 

 Remember that our goal is to find sets
of items that are purchased together fre-
quently. If you recall from section 11.1,
we measured frequency by the support of
a set. The support of a set counted the
percentage of transactions that con-
tained that set. How do we calculate this
support for a given set, say {0,3}? Well, we go through every transaction and ask, ”Did this
transaction contain 0 and 3?” If the transaction did contain both those items, we incre-
ment the total. After scanning all of our data, we divide the total by the number of trans-
actions, and we have our support. This result is for only one set: {0,3}. We’ll have to do
this many times to get the support for every possible set. We can count the sets in fig-
ure 11.2 and see that for four items, we have to go over the data 15 times. This number
gets large quickly. A data set that contains N possible items can generate 2N-1 possible
itemsets. Stores selling 10,000 or more items aren’t uncommon. Even a store selling 100
items can generate 1.26*1030 possible itemsets. This would take a very long time to com-
pute on a modern computer. 

 To reduce the time needed to compute this value, researchers identified some-
thing called the Apriori principle. The Apriori principle helps us reduce the number
of possible interesting itemsets. The Apriori principle says that if an itemset is fre-
quent, then all of its subsets are frequent. In figure 11.2 this means that if {0,1} is
frequent, then {0} and {1} have to be frequent. This rule as it is doesn’t help us, but if

General approach to the Apriori algorithm
1. Collect: Any method.

2. Prepare: Any data type will work as we’re storing sets.

3. Analyze: Any method.

4. Train: Use the Apriori algorithm to find frequent itemsets.

5. Test: Doesn’t apply.

6. Use: This will be used to find frequent itemsets and association rules between
items.

Figure 11.2 All possible itemsets from the avail-
able set {0, 1, 2, 3}
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we turn it inside out, it will help us. The rule turned around says that if an itemset is
infrequent, then its supersets are also infrequent, as shown in figure 11.3. 

In figure 11.3, the shaded itemset {2,3} is
known to be infrequent. From this
knowledge, we know that itemsets
{0,2,3}, {1,2,3}, and {0,1,2,3} are also infre-
quent. This tells us that once we’ve com-
puted the support of {2,3}, we don’t have
to compute the support of {0,2,3}, {1,2,3},
and {0,1,2,3} because we know they won’t
meet our requirements. Using this prin-
ciple, we can halt the exponential
growth of itemsets and in a reasonable
amount of time compute a list of fre-
quent item sets. 

 In the next section, you’ll see the
Apriori algorithm based on this Apriori
principle. We’ll code it in Python and
put it to use on a simple data set from
our fictional grocery store, Hole Foods. 

11.3 Finding frequent itemsets with the Apriori algorithm
We discussed in section 11.1 that in association analysis we’re after two things: fre-
quent item sets and association rules. We first need to find the frequent itemsets, and
then we can find association rules. In this section, we’ll focus only on finding the fre-
quent itemsets. 

 The way to find frequent itemsets is the Apriori algorithm. The Apriori algorithm
needs a minimum support level as an input and a data set. The algorithm will gener-
ate a list of all candidate itemsets with one item. The transaction data set will then be
scanned to see which sets meet the minimum support level. Sets that don’t meet the
minimum support level will get tossed out. The remaining sets will then be combined
to make itemsets with two elements. Again, the transaction dataset will be scanned
and itemsets not meeting the minimum support level will get tossed. This procedure
will be repeated until all sets are tossed out. 

Apriori
A priori means “from before” in Latin. When defining a problem, it’s common to state
prior knowledge, or assumptions. This is written as “a priori.” In Bayesian statistics,
it’s common to make inferences conditional upon this a priori knowledge. A priori
knowledge can come from domain knowledge, previous measurements, and so on. 

Figure 11.3 All possible itemsets shown, with in-
frequent itemsets shaded in gray. With the knowl-
edge that the set {2,3} is infrequent, we can deduce 
that {0,2,3}, {1,2,3}, and {0,1,2,3} are also infre-
quent, and we don’t need to compute their support.
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11.3.1 Generating candidate itemsets

Before we code the whole algorithm in Python, we’ll need to create a few helper func-
tions. We’ll create a function to create an initial set, and we’ll create a function to scan
the dataset looking for items that are subsets of transactions. Pseudocode for scanning
the dataset would look like this:

For each transaction in tran the dataset:
For each candidate itemset, can:
        Check to see if can is a subset of tran
        If so increment the count of can
For each candidate itemset:
If the support meets the minimum, keep this item
Return list of frequent itemsets

To see this in action, create a file called apriori.py and add the following code.

def loadDataSet():
    return [[1, 3, 4], [2, 3, 5], [1, 2, 3, 5], [2, 5]]

def createC1(dataSet):
    C1 = []
    for transaction in dataSet:
        for item in transaction:
            if not [item] in C1:
                C1.append([item])
    C1.sort()
    return map(frozenset, C1)                    

def scanD(D, Ck, minSupport):
    ssCnt = {}
    for tid in D:
        for can in Ck:
            if can.issubset(tid):
                if not ssCnt.has_key(can): ssCnt[can]=1
                else: ssCnt[can] += 1
    numItems = float(len(D))
    retList = []
    supportData = {}
    for key in ssCnt:
        support = ssCnt[key]/numItems          
        if support >= minSupport:
            retList.insert(0,key)
        supportData[key] = support
    return retList, supportData

Listing 11.1 contains three functions: loadDataSet(), which creates a simple dataset
for testing, createC1(), and scanD(). 

 The function createC1() creates—you guessed it—C1. C1 is a candidate itemset of
size one. In the Apriori algorithm, we create C1, and then we’ll scan the dataset to see
if these one itemsets meet our minimum support requirements. The itemsets that do

Listing 11.1 Apriori algorithm helper functions

Create a frozenset 
of each item in C1

B

Calculate support 
for every itemset

C
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meet our minimum requirements become L1. L1 then gets combined to become C2
and C2 will get filtered to become L2. I think you get the idea. 

 So here you need a function, createC1(), that creates our first list of candidate
itemsets, C1. You need a special function for the first list of candidate itemsets because
initially you’re reading from input, whereas later lists will be properly stored format-
ted. The format you’re using is frozensets. Frozensets are sets that are frozen, which
means they’re immutable; you can’t change them. You need to use the type frozenset
instead of set because you’ll later use these sets as the key in a dictionary; you can do
that with frozensets but not with sets. 

 You first create an empty list, C1. This will be used to store all our unique values.
Next, you iterate over all the transactions in our dataset. For each transaction, you
iterate over all the items in that transaction. If an item isn’t in C1, you add it to C1. You
don’t simply add the item; you add a list containing just one item. You do this to cre-
ate a set of each item, because later in the Apriori algorithm you’ll be doing set opera-
tions. You can’t create a set of just one integer in Python. It needs to be a list (try it
out). That’s why you create a list of single-item lists. Finally, you sort the list and then
map every item in the list to frozenset() and return this list of frozensets. B 

 The second function in listing 11.1 is scanD(). This function takes three argu-
ments: a dataset, Ck, a list of candidate sets, and minSupport, which is the minimum
support you’re interested in. This is the function you’ll use to generate L1 from C1.
Additionally, this function returns a dictionary with support values for use later. This
function creates an empty dictionary, ssCnt, and then goes over all the transactions in
the dataset and all the candidate sets in C1. If the sets of C1 are part of the dataset,
then you’ll increment the count in the dictionary. The set is the key in the dictionary.
After you’ve scanned over all the items in the dataset and all the candidate sets, you
need to calculate the support. Sets that don’t meet your minimum support levels
won’t be output. First, you create an empty list that will hold the sets that do meet the
minimum support. The next loop goes over every element in the dictionary and mea-
sures the support. C If the support meets your minimum support requirements, then
you add it to retList. You insert any new sets at the beginning of the list with
retList.insert(0,key). It isn’t necessary to insert at the beginning; it just makes the
list look organized. You also return supportData, which holds the support values for
your frequent itemsets. This will be useful in the next section. 

 Let’s see this in action! After you’ve saved apriori.py, enter the following in your
Python shell:

>>> import apriori

Now let’s import the dataset:

>>> dataSet=apriori.loadDataSet()
>>> dataSet
[[1, 3, 4], [2, 3, 5], [1, 2, 3, 5], [2, 5]]

Now create our first candidate itemset, C1:
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>>> C1=apriori.createC1(dataSet)
>>> C1
[frozenset([1]), frozenset([2]), frozenset([3]), frozenset([4]), 

frozenset([5])]

C1 contains a list of all the items in frozenset. Now let’s create D, which is a dataSet in
the set form:

>>> D=map(set,dataSet)
>>> D
[set([1, 3, 4]), set([2, 3, 5]), set([1, 2, 3, 5]), set([2, 5])]

Now that you have everything in set form, you can remove items that don’t meet our
minimum support. For this example use 0.5 as our minimum support level:

>>> L1,suppData0=apriori.scanD(D, C1, 0.5)
>>> L1
[frozenset([1]), frozenset([3]), frozenset([2]), frozenset([5])]

These four items make up our L1 list, that is, the list of one-item sets that occur in at
least 50% of all transactions. Item 4 didn’t make the minimum support level, so it’s
not a part of L1. That’s OK. By removing it, you’ve removed more work from when you
find the list of two-item sets. 

11.3.2 Putting together the full Apriori algorithm

Pseudo-code for the whole Apriori algorithm would look like this:

While the number of items in the set is greater than 0:
    Create a list of candidate itemsets of length k
    Scan the dataset to see if each itemset is frequent
    Keep frequent itemsets to create itemsets of length k+1

Now that you can filter out sets, it’s time to build the full Apriori algorithm. Open
apriori.py and add the code from the following listing. 

def aprioriGen(Lk, k): #creates Ck
    retList = []
    lenLk = len(Lk)
    for i in range(lenLk):
        for j in range(i+1, lenLk): 
            L1 = list(Lk[i])[:k-2]; L2 = list(Lk[j])[:k-2]
            L1.sort(); L2.sort()                           
            if L1==L2:                                   
                retList.append(Lk[i] | Lk[j]) 
    return retList

def apriori(dataSet, minSupport = 0.5):
    C1 = createC1(dataSet)
    D = map(set, dataSet)
    L1, supportData = scanD(D, C1, minSupport)
    L = [L1]

Listing 11.2 The Apriori algorithm

Join sets if 
first k-2 items 
are equal

B
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    k = 2
    while (len(L[k-2]) > 0):
        Ck = aprioriGen(L[k-2], k)
        Lk, supK = scanD(D, Ck, minSupport)     
        supportData.update(supK)
        L.append(Lk)
        k += 1
    return L, supportData

The code in listing 11.2 contains two functions: aprioriGen() and apriori(). The
main function is apriori(); it will call aprioriGen() to create candidate itemsets: Ck. 

 The function aprioriGen() will take a list of frequent itemsets, Lk, and the size of
the itemsets, k, to produce Ck. For example, it will take the itemsets {0}, {1}, {2} and so
on and produce {0,1} {0,2}, and {1,2}. This is accomplished by first creating an empty
list and then measuring how many elements are in Lk. Next, compare each item in Lk
with all of the other items in Lk. The two for loops accomplish that. Next, take two
sets in our list and compare them. If the first k-2 items are equal, then you combine
the two sets to make a set of size k. B The sets are combined using the set union,
which is the | symbol in Python. 

 The k-2 thing may be a little confusing. Let’s look at that a little further. When you
were creating {0,1} {0,2}, {1,2} from {0}, {1}, {2}, you just combined items. Now, what if
you want to use {0,1} {0,2}, {1,2} to create a three-item set? If you did the union of every
set, you’d get {0, 1, 2}, {0, 1, 2}, {0, 1, 2}. That’s right. It’s the same set three times. Now
you have to scan through the list of three-item sets to get only unique values. You’re
trying to keep the number of times you go through the lists to a minimum. Now, if you
compared the first element {0,1} {0,2}, {1,2} and only took the union of those that had
the same first item, what would you have? {0, 1, 2} just one time. Now you don’t have to
go through the list looking for unique values. 

 Everything gets wrapped up in the apriori() function. You give this a dataset and
a support number, and it will generate a list of candidate itemsets. This works by first cre-
ating C1 and then taking the dataset and turning that into D, which is a list of sets. You
use the map function to map set() to every item in the dataSet list. Next, you use
scanD() from listing 11.1 to create L1 and place this inside a list, L. L will contain L1, L2,
L3, .... Now that you have L1, you want to find L2, L3, .... This is done with a while loop,
which creates larger lists of larger itemsets until the next-largest itemset is empty. If this
sounds confusing, hold on a second, and you’ll see how it works. You use aprioriGen()
to create Ck. Then you use scanD() to create Lk from Ck. Ck is a list of candidate itemsets,
and then scanD() goes through Ck and throws out itemsets that don’t meet the mini-
mum support levels. C This Lk list gets appended to L, and then you increment k and
repeat. Finally, when Lk is empty, you return L and exit. 

 To see this in action, enter the following after you’ve saved apriori.py:

>>> reload(apriori)
<module 'apriori' from 'apriori.pyc'>

This created six unique two-item sets. Now let’s check out apriori:

Scan data set to 
get Lk from Ck

C
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>>> L,suppData=apriori.apriori(dataSet)
>>> L
[[frozenset([1]), frozenset([3]), frozenset([2]), frozenset([5])], 
[frozenset([1, 3]), frozenset([2, 5]), frozenset([2, 3]), frozenset([3, 5])],
[frozenset([2, 3, 5])], []]

L contains some lists of frequent itemsets that met a minimum support of 0.5. Let’s
look at those:

>>> L[0]
[frozenset([1]), frozenset([3]), frozenset([2]), frozenset([5])]
>>> L[1]
[frozenset([1, 3]), frozenset([2, 5]), frozenset([2, 3]), 
frozenset([3, 5])]
>>> L[2]
[frozenset([2, 3, 5])]
>>> L[3]
[]

Each of these itemsets was generated in apriori() with aprioriGen(). Let’s see how
aprioriGen() works:

>>> apriori.aprioriGen(L[0], 2)
[frozenset([1, 3]), frozenset([1, 2]), frozenset([1, 5]), 
frozenset([2, 3]), frozenset([3, 5]), frozenset([2, 5])]

The six items here are the candidate itemset Ck. Four of these items are in L[1], and
the other two items get filtered out by scanD().

 Let’s try it with a support of 70%:

>>> L,suppData=apriori.apriori(dataSet,minSupport=0.7)
>>> L
[[frozenset([3]), frozenset([2]), frozenset([5])], [frozenset([2, 5])], []]

The variable suppData is a dictionary with the support values of our itemsets. We don’t
care about those values right now, but we’ll use them in the next section. 

 You now know which items occur in 70% of all transactions, and you can begin to
draw conclusions from this. You can take this data and begin to draw conclusions,
which many applications do, or you can take it and generate association rules to try to
get an if-then understanding of the data. We’ll do that in the next section. 

11.4 Mining association rules from frequent item sets 
Back in section 11.2, I mentioned that you can look for many interesting things with
association analysis. Two common things that people look for are frequent itemsets
and association rules. You just saw how you can find frequent itemsets with the Apriori
algorithm. Now we need to figure out how to find association rules. 

 To find association rules, we first start with a frequent itemset. We know this set of
items is unique, but we want to see if there is anything else we can get out of these
items. One item or one set of items can imply another item. From the grocery store
example, if we have a frequent itemset, {soy milk, lettuce}, one example of an associa-
tion rule is soy milk ➞ lettuce. This means if someone purchases soy milk, then there’s
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a statistically significant chance that they’ll purchase lettuce. The converse doesn’t
always hold. That is, just because soy milk ➞ lettuce is statistically significant, it doesn’t
mean that lettuce ➞ soy milk is statistically significant. (In the study of logic, the set on
the left side of the arrow is called the antecedent, and the set on the right side of the
arrow is the consequent.)

 In section 11.3, we quantified an itemset as frequent if it met our minimum sup-
port level. We have a similar measurement for association rules. This measurement is
called the confidence. The confidence for a rule P ➞ H is defined as support(P | H)/
support(P). Remember, in Python, the | symbol is the set union; the mathematical
symbol is U. P | H means all the items in set P or in set H. We calculated the support for
all the frequent itemsets in the previous section. Now, when we want to calculate the
confidence, all we have to do is call up those support values and do one divide. 

 From one frequent itemset, how many association rules can we have? Figure 11.4
shows a lattice with all the different possible association rules from the itemset
{0,1,2,3}. To find interesting rules, we generate a list of possible rules and then test the
confidence of each rule. If the confidence doesn’t meet our minimum requirement,
then we throw out the rule. 

 Similar to frequent itemset generation in the last section, we can generate many
association rules for each frequent itemset. It would be good if we could reduce the
number of rules to keep the problem tractable. We can observe that if a rule doesn’t
meet the minimum confidence requirement, then subsets of that rule also won’t meet
the minimum. Please refer to figure 11.4. Assume that the rule 0,1,2 ➞ 3 doesn’t meet
the minimum confidence. We know that any rule where the left-hand side is a subset
of {0,1,2} will also not meet the minimum confidence. I shaded all of those rules in fig-
ure 11.4. 

 We can use this property of association rules to reduce the number of rules we
need to test. Similar to the Apriori algorithm in listing 11.2, we can start with a fre-
quent itemset. We’ll then create a list of sets with one item on the right-hand side and
test all of those. Next, we’ll merge the remaining rules to create a list of rules with two
items on the right-hand side. This sort of approach is known as level-wise. To see this
in action, open apriori.py and add the following code. 

Figure 11.4 Association rule 
lattice for the frequent itemset 
{0,1,2,3}. The gray area shows 
rules with a low confidence. If 
we find that 0,1,2 ➞ 3 is a low 
confidence rule, then all other 
rules with 3 in the consequent 
(shaded) will also have a low 
confidence.
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def generateRules(L, supportData, minConf=0.7):  
    bigRuleList = []
    for i in range(1, len(L)):              
        for freqSet in L[i]:
            H1 = [frozenset([item]) for item in freqSet]
            if (i > 1):
                rulesFromConseq(freqSet, H1, supportData, bigRuleList,\
                                minConf)
            else:
                calcConf(freqSet, H1, supportData, bigRuleList, minConf) 
    return bigRuleList

def calcConf(freqSet, H, supportData, brl, minConf=0.7):
    prunedH = [] 
    for conseq in H:
        conf = supportData[freqSet]/supportData[freqSet-conseq] 
        if conf >= minConf: 
            print freqSet-conseq,'-->',conseq,'conf:',conf
            brl.append((freqSet-conseq, conseq, conf))
            prunedH.append(conseq)
    return prunedH

def rulesFromConseq(freqSet, H, supportData, brl, minConf=0.7):
    m = len(H[0])
    if (len(freqSet) > (m + 1)):                         
        Hmp1 = aprioriGen(H, m + 1)                                
        Hmp1 = calcConf(freqSet, Hmp1, supportData, brl, minConf)
        if (len(Hmp1) > 1):    
            rulesFromConseq(freqSet, Hmp1, supportData, brl, minConf)

The code in listing 11.3 contains three functions. The first one, generateRules(), is the
main command, which calls the other two. The other two functions, rulesFromConseq()
and calcConf(), generate a set of candidate rules and evaluate those rules, respectively. 

 The generateRules() function takes three inputs: a list of frequent itemsets, a dic-
tionary of support data for those itemsets, and a minimum confidence threshold. It’s
going to generate a list of rules with confidence values that we can sort through later.
These rules are stored in bigRuleList. If no minimum confidence threshold is given,
it’s set to 0.7. The other two inputs are the exact outputs from the apriori() function
in listing 11.2. This function loops over every frequent itemset in L and creates a list of
single-item sets: H1 for each frequent itemset. You start with the frequent itemsets that
have two or more items because it’s impossible to create a rule from a single item. B
If you started with the {0,1,2} set, H1 would be [{0},{1},{2}]. If the frequent itemset has
more than two items in it, then it could be considered for further merging. The merg-
ing is done with rulesFromConseq(), which we’ll discuss last. If the itemset only has
two items in it, then you calculate the confidence with calcConf(). 

 You’re interested in calculating the confidence of a rule and then finding out
which rules meet the minimum confidence. All of this is done in calcConf(), and the

Listing 11.3 Association rule-generation functions

Get only sets with 
two or more items

B

Try further 
merging

C

Create Hm+1
new candidates D
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rest of listing 11.3 prepares rules for this. You’ll return a list of rules that meet the min-
imum confidence; to hold this you create an empty list, prunedH. Next, you iterate
over all the itemsets in H and calculate the confidence. The confidence is calculated
with support values in supportData. By importing these support values, you save a lot
of computing time. If a rule does meet the minimum confidence, then you print the
rule to the screen. The passing rule is also returned and will be used in the next func-
tion, rulesFromConseq(). You also fill in the list brl, which is the bigRuleList passed
in earlier. 

 To generate more association rules from our initial itemset, you use the
rulesFromConseq() function. This takes a frequent itemset and H, which is a list of
items that could be on the right-hand side of a rule. The code then measures m, which
is the size of the itemsets in H. C You next see if the frequent itemset is large enough
to have subsets of size m removed; if so, you proceed. You use the aprioriGen() func-
tion from listing 11.2 to generate combinations of the items in H without repeating. D
This is stored in Hmp1, which will be the H list in the next iteration. Hmp1 contains all
the possible rules. You want to see if any of these make sense by testing their confi-
dence in calcConf(). If more than one rule remains, then you recursively call
rulesFromConseq() with Hmp1 to see if you could combine those rules further. 

 To see this in action, save apriori.py and enter the following in your Python shell: 

>>> reload(apriori)
<module 'apriori' from 'apriori.py'>
Now let’s generate a set of frequent itemsets with a support of 0.5:
>>> L,suppData=apriori.apriori(dataSet,minSupport=0.5)
>>> rules=apriori.generateRules(L,suppData, minConf=0.7)
>>> rules
 [(frozenset([1]), frozenset([3]), 1.0), (frozenset([5]), frozenset([2]), 
1.0), (frozenset([2]), frozenset([5]), 1.0)]
frozenset([1]) --> frozenset([3]) conf: 1.0
frozenset([5]) --> frozenset([2]) conf: 1.0
frozenset([2]) --> frozenset([5]) conf: 1.0

This gives you three rules: {1} ➞ {3},{5} ➞ {2},and {2} ➞ {5}. It’s interesting to see that
the rule with 2 and 5 can be flipped around but not the rule with 1 and 3. Let’s lower
the confidence threshold and see what we get: 

>>> rules=apriori.generateRules(L,suppData, minConf=0.5)
>>> rules
 [(frozenset([3]), frozenset([1]), 0.6666666666666666), (frozenset([1]), 
frozenset([3]), 1.0), (frozenset([5]), frozenset([2]), 1.0), 
(frozenset([2]), frozenset([5]), 1.0), (frozenset([3]), frozenset([2]), 
0.6666666666666666), (frozenset([2]), frozenset([3]), 0.6666666666666666), 
(frozenset([5]), frozenset([3]), 0.6666666666666666), (frozenset([3]), 
frozenset([5]), 0.6666666666666666), (frozenset([5]), frozenset([2, 3]), 
0.6666666666666666), (frozenset([3]), frozenset([2, 5]), 
0.6666666666666666), (frozenset([2]), frozenset([3, 5]), 
0.6666666666666666)]
frozenset([3]) --> frozenset([1]) conf: 0.666666666667
frozenset([1]) --> frozenset([3]) conf: 1.0
frozenset([5]) --> frozenset([2]) conf: 1.0
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frozenset([2]) --> frozenset([5]) conf: 1.0
frozenset([3]) --> frozenset([2]) conf: 0.666666666667
frozenset([2]) --> frozenset([3]) conf: 0.666666666667
frozenset([5]) --> frozenset([3]) conf: 0.666666666667
frozenset([3]) --> frozenset([5]) conf: 0.666666666667
frozenset([5]) --> frozenset([2, 3]) conf: 0.666666666667
frozenset([3]) --> frozenset([2, 5]) conf: 0.666666666667
frozenset([2]) --> frozenset([3, 5]) conf: 0.666666666667

We got a lot more rules (11) once we lowered the confidence. Now that you see this
works on a trivial dataset, let’s put it to work on a bigger, real-life dataset. In the next
section we’ll examine the voting records of the U.S. congress. 

11.5 Example: uncovering patterns in congressional voting
Now that we can find frequent itemsets and association rules, it’s time to put these
tools to use on a real-life dataset. What can we use? Shopping is a good example, but
it’s played out. Another example is search terms from a search engine. That sounds
interesting, but a more interesting example I saw was voting by members of the
U.S. congress.

 There’s a data set of congressional voting records from 1984 in the University of
California at Irvine machine learning dataset repository: http://archive.ics.uci.edu/
ml/datasets/Congressional+Voting+Records. This is a little old, and the issues don’t
mean much to me. Let’s try to get some more recent data. There are a number of
organizations devoted to making government data public. One organization is Project
Vote Smart (http://www.votesmart.org), which has a public API. You’ll see how to get
the data from Votesmart.org into a format that you can use for generating frequent
itemsets and association rules. This data could be used for campaign purposes or to
forecast how politicians will vote.

Next, we’ll take the voting records and create a transaction database. This will require
some creative thinking. Finally, we’ll use the code written earlier in this chapter to
generate a list of frequent itemsets and association rules.

Example: finding association rules in congressional voting records
1. Collect: Use the votesmart module to access voting records.

2. Prepare: Write a function to process votes into a series of transaction records.

3. Analyze: We’ll look at the prepared data in the Python shell to make sure it’s
correct. 

4. Train: We’ll use the apriori() and generateRules() functions written earlier
in this chapter to find the interesting information in the voting records.

5. Test: Doesn’t apply.

6. Use: For entertainment purposes, but you could use the results for a political
campaign or to forecast how elected officials will vote. 
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11.5.1 Collect: build a transaction data set of congressional voting records

Project Vote Smart has collected a large amount of government data. They have also pro-
vided a public API to access this data at http://api.votesmart.org/docs/terms.html.
Sunlight Labs has written a Python module to access this data. The Python module is
well documented at https://github.com/sunlightlabs/python-votesmart. We’re going
to get some recent voting data from the U.S. congress and try to learn some association
rules from this.

 We eventually want the data to be in the same form as shown in figure 11.1. Each
row will be a member of the U.S. congress, and the columns will be different things
they’ve voted on. Let’s start by trying to get some things that they voted on recently. If
you haven’t installed python-votesmart and gotten an API key, you’ll need to do that
now. You can see appendix A for how to install python-votesmart. 

 To get started with the votesmart API, you need to import votesmart: 

>>> from votesmart import votesmart

Next, you need to enter your API key:1

>>> votesmart.apikey = '49024thereoncewasamanfromnantucket94040'

Now you can start using the votesmart API. To get the 100 most recent bills enter 

>>> bills = votesmart.votes.getBillsByStateRecent()

To see what each bill is, enter the following: 
>>> for bill in bills:
...     print bill.title,bill.billId
...
Amending FAA Rulemaking Activities 13020
Prohibiting Federal Funding of National Public Radio 12939
Additional Continuing Appropriations 12888
Removing Troops from Afghanistan 12940
                           .
                           .
                           .
"Whistleblower Protection" for Offshore Oil Workers 11820

When you get this book, the most recent 100 bills will be different, so I’ve saved the
top 100 titles and billIds to a file called recent100bills.txt. 

 You can get further information about each of these bills by using the getBill()
method. We’ll use that last bill, the “Whistleblower Protection” bill, which has a
billId of 11820. Let’s see that in action: 

>>> bill = votesmart.votes.getBill(11820)

This returns a BillDetail object with a whole lot of information. You can investigate
all the information there, but what we’re interested in are the actions taken on the
bill. You can see these by entering

>>> bill.actions

1 This key is just an example. You need to request your own key at http://votesmart.org/share/api/register.
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This will give you a number of actions—one when the bill is introduced and another
when the bill is voted on. We’re interested in the one where the voting took place. You
can get this by typing in the following commands:

>>> for action in bill.actions:
...     if action.stage=='Passage':
...             print action.actionId
...
31670

This isn’t the full story. There are multiple stages to a bill. A bill is introduced, voted
on by congress, and voted on by the House of Representatives before it goes through
the executive office. The Passage stage can be deceptive because it could be in the Pas-
sage stage at the executive office, where there is no vote. 

 To get all the votes from a single bill, use the getBillActionVotes() method:

>>> voteList = votesmart.votes.getBillActionVotes(31670)

voteList is a list of Vote objects. To see what’s inside, enter the following:

>>> voteList[22]
Vote({u'action': u'No Vote', u'candidateId': u'430', u'officeParties':
     u'Democratic', u'candidateName': u'Berry, Robert'})
>>> voteList[21]
Vote({u'action': u'Yea', u'candidateId': u'26756', u'officeParties':
      u'Democratic', u'candidateName': u'Berman, Howard'})

Now that we’ve played around with all the relevant APIs, we can put all this together.
We’re going to write a function to go from the billIds in the text file to an actionId.
As I mentioned earlier, not every bill has been voted on, and some bills have been
voted on in multiple places. We have to filter out the actionIds to get actionIds that
will give us some vote data. I’ve filtered the 100 bills down into 20 bills that I thought
were interesting. It’s provided in a file called recent20bills.txt. We’ll write one func-
tion called getActionIds() to handle filtering out the actionIds. Open apriori.py
and enter the code from the following listing.2 

from time import sleep
from votesmart import votesmart
votesmart.apikey = '49024thereoncewasamanfromnantucket94040'
def getActionIds():

    actionIdList = []; billTitleList = []
    fr = open('recent20bills.txt') 
    for line in fr.readlines():
        billNum = int(line.split('\t')[0])
        try:
            billDetail = votesmart.votes.getBill(billNum) 
            for action in billDetail.actions:

Listing 11.4 Functions for collecting action IDs for bills in Congress

2 Don’t forget to enter your API key instead of the example key!
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                if action.level == 'House' and \    
                (action.stage == 'Passage' or \             
                  action.stage == 'Amendment Vote'):
                    actionId = int(action.actionId)
                    print 'bill: %d has actionId: %d' % (billNum, actionId)
                    actionIdList.append(actionId)
                    billTitleList.append(line.strip().split('\t')[1])
        except:
            print "problem getting bill %d" % billNum
        sleep(1)                                     
    return actionIdList, billTitleList

The code in listing 11.4 imports sleep so that you can delay the API calls, and it imports
the votesmart module. The getActionsIds() function will get actionIds for the bills
stored in recent20bills.txt. You start by importing API key and then creating two empty
lists. The lists will be used to return the actionsIds and titles. You first open the file
recent20bills.txt and then for each line split it by the tab and enter a try, except block.
It’s good practice to use these when dealing with outside APIs because you may get an
error, and you don’t want an error to waste all the time you spent fetching data. So you
first try to get a billDetail object using the getBill() method. You next iterate over
all the actions in this bill looking for something with some voting data. There’s voting
data on the Passage stage and the Amendment Vote stage, so you look for those. Now
there’s also a Passage stage at the executive level and that doesn’t contain any voting
data, so you make sure the level is House B. If this is true, you print the actionId to
the screen and append it to actionIdList. At this time, you also append the bill title
to billTitleList. This way, if there is an error with the API call, you don’t append
billTitleList. If there is an error, the except block is called, which prints the error to
the screen. Finally, there’s a sleep of one second to be polite and not bombard Votes-
mart.org with a bunch of rapid API calls C. The actionIdList and billTitleList are
returned for further processing. 

 Let’s see this in action. After you enter the code from listing 11.4 into apriori.py,
enter the following commands: 

>>> reload(apriori)
<module 'apriori' from 'apriori.py'>
>>> actionIdList,billTitles = apriori.getActionIds()
bill: 12939 has actionId: 34089
bill: 12940 has actionId: 34091
bill: 12988 has actionId: 34229
                    .
                    .
                    .

The actionId is displayed, but it’s also being added to the output, actionIdList, so
that you can use it later. If there is an error, then the try..except code will catch it. I
had one error when I was getting all the actiondIds. Now you can move on to getting
votes on these actionIds. 

 The candidates can vote Yea or Nay, or they can choose not to vote. We need a way
of encoding this into something like an itemset and a transaction database. Remember

Filter out 
actions that 
have votes

B

Delay to 
be polite

C
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that a transaction data set has only the absence or presence of an item, not the quantity
in it. With our voting data, we can treat the presence of a Yea or Nay as an item. 

 There are two major political parties in the United States: Republicans and Demo-
crats. We’d like to encode this information in our transaction dataset. Luckily this
information comes over in the vote data. This is how we’ll construct the transaction
dataset: we’ll create a dictionary with the politician’s name as the key. When the politi-
cian is first encountered we’ll add him/her to the dictionary along with their political
affiliation—Democrat or Republican. We’ll use zero for a Democrat, and one for a
Republican. Now how do we encode the votes? For each bill we’ll make two items:
bill+'Yea' and bill+'Nay'. This method will allow us to properly encode if a politi-
cian didn’t vote at all. The translation from votes to items is shown in figure 11.5.

 Now that we have a system for encoding
the votes to items, it’s time to generate our
transaction dataset. Once we have the
transaction dataset, we can use the Apriori
code written earlier. We’re going to write a
function to take in a series of actionIds
and fetch the voting records from Votes-
mart’s API. Then we’ll encode the voting
for each candidate into an itemset. Each
candidate is going to be a row or a transac-
tion in the transaction dataset. To see this
in action, open apriori.py and add the
code from the following listing.

def getTransList(actionIdList, billTitleList): 
    itemMeaning = ['Republican', 'Democratic']
    for billTitle in billTitleList:                 
        itemMeaning.append('%s -- Nay' % billTitle)       
        itemMeaning.append('%s -- Yea' % billTitle) 
    transDict = {} 
    voteCount = 2
    for actionId in actionIdList:
        sleep(3)
        print 'getting votes for actionId: %d' % actionId
        try:
            voteList = votesmart.votes.getBillActionVotes(actionId)
            for vote in voteList:
                if not transDict.has_key(vote.candidateName): 
                    transDict[vote.candidateName] = []
                    if vote.officeParties == 'Democratic':
                        transDict[vote.candidateName].append(1)
                    elif vote.officeParties == 'Republican':
                        transDict[vote.candidateName].append(0)
                if vote.action == 'Nay':
                    transDict[vote.candidateName].append(voteCount)

Listing 11.5 Transaction list population with voting data
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Figure 11.5 Mapping between congressional 
information and item numbers
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                elif vote.action == 'Yea':
                    transDict[vote.candidateName].append(voteCount + 1)
        except: 
            print "problem getting actionId: %d" % actionId
        voteCount += 2
    return transDict, itemMeaning

The getTransList() function will create the transaction dataset so that you can use
the Apriori code written earlier to generate frequent itemsets and association rules. It
also creates a title list so that you can easily see what each item means. The first thing
you do is create the meaning list, itemMeaning, with the first two elements. When you
want to know what something means, all you have to do is enter the item number as
the index to itemMeaning. Next, you loop over all the bills you have and add Nay or
Yea to the bill title and then add it to the itemMeaning list. B Next you create an
empty dictionary to add the items to. You then start going over every actionId you
obtained from getActionIds(). The first thing you do is sleep; this is a delay placed
in the for loop so that you don’t make too many API calls too quickly. Next, you print
to screen what you’re trying to do so that you can see this is working. You now have the
try.except block, which tries to use the Votesmart API to get all the votes on a partic-
ular actionId. Then, you loop over all the votes (usually there are more than 400
votes in voteList.) When you loop over all the votes, you fill up transDict by using
the politician’s name as the dictionary key. If you haven’t encountered a politician
before, you get his/her party affiliation. Each politician in the dictionary has a list to
store the items they voted on or their party affiliation. Then you see if this politician
voted Nay or Yea on this bill. If they voted either way, then you add this to the list. If
something goes wrong during the API call, the except block is called, and it prints an
error message to the screen and the function continues. Finally, the transDict trans-
action dictionary and the item meaning list, itemMeaning, are returned. 

 Let’s try this out by getting the first two items voted on and see if our code is working:

>>> reload(apriori)
<module 'apriori' from 'apriori.py'>
>>>transDict,itemMeaning=apriori.getTransList(actionIdList[:2], 

billTitles[:2])
getting votes for actionId: 34089
getting votes for actionId: 34091

Let’s see what’s inside transDict:

>>> for key in transDict.keys():
...     print transDict[key]
[1, 2, 5]
[1, 2, 4]
[0, 3, 4]
[0, 3, 4]
[1, 2, 4]
[0, 3, 4]
[1]
[1, 2, 5]
[1, 2, 4]
[1]
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[1, 2, 4]
[0, 3, 4]
[1, 2, 5]
[1, 2, 4]
[0, 3, 4]

Don’t be alarmed if many of these lists look similar. Many politicians vote alike. Now,
given a list of items, you can quickly decode what it means with the itemMeaning list:

>>> transDict.keys()[6]
u' Doyle,  Michael 'Mike''
>>> for item in transDict[' Doyle,  Michael 'Mike'']:
...     print itemMeaning[item]
...
Republican
Prohibiting Federal Funding of National Public Radio -- Yea
Removing Troops from Afghanistan – Nay

Your output may be different depending on the results returned from the Votesmart
server. 

 Now, let’s try it with the full list:

>>> transDict,itemMeaning=apriori.getTransList(actionIdList, billTitles)
getting votes for actionId: 34089
getting votes for actionId: 34091
getting votes for actionId: 34229
                    .
                    .
                    .

Now, before you’re ready to use the Apriori algorithm we developed earlier, you need
to make a list of all the transactions. You can do that with a list comprehension similar
to the previous for loop:

>>> dataSet = [transDict[key] for key in transDict.keys()]

Doing this throws out the keys, which are the politicians’ names. That’s OK. You
aren’t interested in that. You’re interested in the items and associations among
them. We’re now going to mine the frequent itemsets and association rules using the
Apriori algorithm. 

11.5.2 Test: association rules from congressional voting records

Now you can apply the Apriori algorithm from section 11.3. If you try the default sup-
port setting of 50%, you won’t get many frequent itemsets:

>>> L,suppData=apriori.apriori(dataSet, minSupport=0.5)
>>> L
[[frozenset([4]), frozenset([13]), frozenset([0]), frozenset([21])], 

[frozenset([13, 21])], []]

Using a lower minimum support of 30% gives you many more frequent itemsets:

>>> L,suppData=apriori.apriori(dataSet, minSupport=0.3)
>>> len(L)
8
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With a support of 30%, you have lots of frequent itemsets. You even have six sets with
seven items inside: 

>>> L[6]
[frozenset([0, 3, 7, 9, 23, 25, 26]), frozenset([0, 3, 4, 9, 23, 25, 26]), 

frozenset([0, 3, 4, 7, 9, 23, 26]), frozenset([0, 3, 4, 7, 9, 23, 25]), 
frozenset([0, 4, 7, 9, 23, 25, 26]), frozenset([0, 3, 4, 7, 9, 25, 26])]

You now have the frequent itemsets. We could stop here, but let’s try to generate asso-
ciation rules using the code we wrote in section 11.4. You can first try the default min-
imum confidence of 0.7:

>>> rules = apriori.generateRules(L,suppData)

That generated way too many rules. Let’s try increasing the minimum confidence:

>>> rules = apriori.generateRules(L,suppData, minConf=0.95)
frozenset([15]) --> frozenset([1]) conf: 0.961538461538
frozenset([22]) --> frozenset([1]) conf: 0.951351351351
                                   .
                                   .
                                   .
frozenset([25, 26, 3, 4]) --> frozenset([0, 9, 7]) conf: 0.97191011236
frozenset([0, 25, 26, 4]) --> frozenset([9, 3, 7]) conf: 0.950549450549

Try increasing the confidence even more: 

>>> rules = apriori.generateRules(L,suppData, minConf=0.99)
frozenset([3]) --> frozenset([9]) conf: 1.0
frozenset([3]) --> frozenset([0]) conf: 0.995614035088
frozenset([3]) --> frozenset([0, 9]) conf: 0.995614035088
frozenset([26, 3]) --> frozenset([0, 9]) conf: 1.0
frozenset([9, 26]) --> frozenset([0, 7]) conf: 0.957547169811
                                   .
                                   .
                                   .
frozenset([23, 26, 3, 4, 7]) --> frozenset([0, 9]) conf: 1.0
frozenset([23, 25, 3, 4, 7]) --> frozenset([0, 9]) conf: 0.994764397906
frozenset([25, 26, 3, 4, 7]) --> frozenset([0, 9]) conf: 1.0

These all provide some interesting rules. To find out what each rule means, enter the
rule number as the index to itemMeaning:

>>> itemMeaning[26]
'Prohibiting the Use of Federal Funds for NASCAR Sponsorships -- Nay'
>>> itemMeaning[3]
'Prohibiting Federal Funding of National Public Radio -- Yea'
>>> itemMeaning[9]
'Repealing the Health Care Bill -- Yea'

I’ve included the following rules in figure 11.6: {3} ➞ {0}, {22} ➞ {1}, and {9,26} ➞ {0,7}.
 There are many more interesting and entertaining rules in the data. Do you

remember that we initially used the support level of 30%? This means that these
rules show up in at least 30% of all the transactions. That is meaningful because
what it says is that we’re going to see these association rules in at least 30% of the
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votes, and in the case of {3} ➞ {0} this rule is right 99.6% of the time. I wish I could
bet on this sort of stuff. 

11.6 Example: finding similar features in poisonous mushrooms
Sometimes you don’t want to look for the frequent itemsets; you may only be inter-
ested in itemsets containing a certain item. In the final example, we’re going to look
for common features in poisonous mushrooms. You can then use these common fea-
tures to help you avoid eating mushrooms that are poisonous. The UCI Machine
Learning Repository has a dataset with 23 features taken from species of gilled mush-
rooms. Each of the features contains nominal values. We’re going to need to trans-
form these nominal values into a set similar to what we did with the votes in the
previous example. Luckily, this transformation was already done for us.3 Roberto
Bayardo has parsed the UCI mushrooms dataset into a set of features for each sample
of mushroom. Each possible value for each feature is enumerated, and if a sample
contains that feature, then its integer value is included in the dataset. Let’s take a
closer look at the dataset. It’s included in the source repository under the name mush-
room.dat. Compare this to the original dataset located at http://archive.ics.uci.edu/
ml/machine-learning-databases/mushroom/agaricus-lepiota.data. 

 Take a look at the first few lines of the prepared file mushroom.dat: 

1 3 9 13 23 25 34 36 38 40 52 54 59 63 67 76 85 86 90 93 98 107 113
2 3 9 14 23 26 34 36 39 40 52 55 59 63 67 76 85 86 90 93 99 108 114
2 4 9 15 23 27 34 36 39 41 52 55 59 63 67 76 85 86 90 93 99 108 115

The first feature is poisonous or edible. If a sample is poisonous, you get a 1. If it’s edi-
ble, you get a 2. The next feature is cap shape, which has six possible values that are
represented with the integers 3–8. 

 To find features in common with poisonous mushrooms, you can run the Apriori
algorithm and look for itemsets with feature 2. 

>>> mushDatSet = [line.split() for line in 
open('mushroom.dat').readlines()]

3 “Frequent Itemset Mining Dataset Repository” retrieved July 10, 2011; http://fimi.ua.ac.be/data/.

Figure 11.6 Association 
rules {3} ➞ {0}, {22} ➞ {1}, 
and {9,26} ➞ {0,7} with 
their meanings and confi-
dence levels
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Now let’s run the Apriori algorithm on this dataset:

>>> L,suppData=apriori.apriori(mushDatSet, minSupport=0.3)

Now you can search the frequent itemsets for the poisonous feature 2: 

>>> for item in L[1]:
...     if item.intersection('2'): print item
...
frozenset(['2', '59'])
frozenset(['39', '2'])
frozenset(['2', '67'])
frozenset(['2', '34'])
frozenset(['2', '23'])

You can also repeat this for the larger itemsets:

>>> for item in L[3]:
...     if item.intersection('2'): print item
...
frozenset(['63', '59', '2', '93'])
frozenset(['39', '2', '53', '34'])
frozenset(['2', '59', '23', '85'])
frozenset(['2', '59', '90', '85'])
frozenset(['39', '2', '36', '34'])
frozenset(['39', '63', '2', '85'])
frozenset(['39', '2', '90', '85'])
frozenset(['2', '59', '90', '86'])

Now you need to look up these features so you know what to look for in wild mush-
rooms. If you see any of these features, avoid eating the mushroom. One final dis-
claimer: although these features may be common in poisonous mushrooms, the
absence of these features doesn’t make a mushroom edible. Eating the wrong mush-
room can kill you.

11.7 Summary
Association analysis is a set of tools used to find interesting relationships in a large set
of data. There are two ways you can quantify the interesting relationships. The first
way is a frequent itemset, which shows items that commonly appear in the data
together. The second way of measuring interesting relationships is association rules.
Association rules imply an if..then relationship between items. 

 Finding different combinations of items can be a time-consuming task and prohib-
itively expensive in terms of computing power. More intelligent approaches are
needed to find frequent itemsets in a reasonable amount of time. One such approach
is the Apriori algorithm, which uses the Apriori principle to reduce the number of sets
that are checked against the database. The Apriori principle states that if an item is
infrequent, then supersets containing that item will also be infrequent. The Apriori
algorithm starts from single itemsets and creates larger sets by combining sets that
meet the minimum support measure. Support is used to measure how often a set
appears in the original data. 
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 Once frequent itemsets have been found, you can use the frequent itemsets to gen-
erate association rules. The significance of an association rule is measured by confi-
dence. Confidence tells you how many times this rule applies to the frequent itemsets. 

 Association analysis can be performed on many different items. Some common
examples are items in a store and pages visited on a website. Association analysis has
also been used to look at the voting history of elected officials and judges. 

 The Apriori algorithm scans over the dataset each time you increase the length of
your frequent itemsets. When the datasets become very large, this can drastically
reduce the speed of finding frequent itemsets. The next chapter introduces the FP-
growth algorithm.4 In contrast to Apriori, it only needs to go over the dataset twice,
which can lead to a significant increase in speed. 

4 H. Li, Y. Wang, D. Zhang, M. Zhang, and E. Chang, “PFP: Parallel FP-Growth for Query Recommendation,”
RecSys 2008, Proceedings of the 2008 ACM Conference on Recommender Systems; http://portal.acm.org/
citation.cfm?id=1454027.



Efficiently
 finding frequent

 itemsets with FP-growth
Have you ever gone to a search engine, typed in a word or part of a word, and the
search engine automatically completed the search term for you? Perhaps it recom-
mended something you didn’t even know existed, and you searched for that
instead. That has happened to me, sometimes with comical results when I started a
search with “why does....” To come up with those search terms, researchers at the
search company used a version of the algorithm we’ll discuss in this chapter. They
looked at words used on the internet and found pairs of words that frequently
occur together.1 This requires a way to find frequent itemsets efficiently.

This chapter covers
■ Finding common patterns in transaction data
■ The FP-growth algorithm
■ Finding co-occurring words in a Twitter feed

1 J. Han, J. Pei, Y. Yin, R. Mao, “Mining Frequent Patterns without Candidate Generation: A Frequent-Pattern
Tree Approach,” Data Mining and Knowledge Discovery 8 (2004), 53–87.
248
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 This chapter expands on the topics in the previous chapter. This chapter covers a
great algorithm for uncovering frequent itemsets. The algorithm, called FP-growth, is
faster than Apriori in the previous chapter. It builds from Apriori but uses some differ-
ent techniques to accomplish the same task. That task is finding frequent itemsets or
pairs, sets of things that commonly occur together, by storing the dataset in a special
structure called an FP-tree. This results in faster execution times than Apriori, com-
monly with performance two orders of magnitude better. 

 In the last chapter, we discussed ways of looking at interesting things in datasets.
Two of the most common ways of looking at things in the dataset are frequent itemsets
and association rules. In chapter 11, we did both. In this chapter, we’ll focus on fre-
quent itemsets. We’ll dive deeper into that task, exploring the FP-growth algorithm,
which allows us to mine data more efficiently. This algorithm does a better job of find-
ing frequent itemsets, but it doesn’t find association rules.

 The FP-growth algorithm is faster than Apriori because it requires only two scans of
the database, whereas Apriori will scan the dataset to find if a given pattern is frequent
or not—Apriori scans the dataset for every potential frequent item. On small datasets,
this isn’t a problem, but when you’re dealing with larger datasets, this will be a prob-
lem. The FP-growth algorithm scans the dataset only twice. The basic approach to
finding frequent itemsets using the FP-growth algorithm is as follows:

1 Build the FP-tree. 
2 Mine frequent itemsets from the FP-tree.

We’ll discuss the FP-tree data structure and then look at how to encode a dataset in
this structure. We’ll next look at how we can mine frequent itemsets from the FP-
tree. Finally, we’ll look at an example of mining commonly used words from a
stream of Twitter text and an example of mining common patterns in people’s web-
browsing behavior.

12.1 FP-trees: an efficient way to encode a dataset

The FP-growth algorithm stores data in a compact data structure called an FP-tree.
The FP stands for “frequent pattern.” An FP-tree looks like other trees in computer sci-
ence, but it has links connecting similar items. The linked items can be thought of as a
linked list. An example FP-tree is shown in figure 12.1. 

 Unlike a search tree, an item can appear multiple times in the same tree. The FP-
tree is used to store the frequency of occurrence for sets of items. Sets are stored as

FP-growth
Pros: Usually faster than Apriori. 

Cons: Difficult to implement; certain datasets degrade the performance.

Works with: Nominal values.
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Figure 12.1 An example FP-tree. 
The FP-tree looks like a generic tree 
with links connecting similar items.

paths in the tree. Sets with similar items will share
part of the tree. Only when they differ will the tree
split. A node identifies a single item from the set
and the number of times it occurred in this
sequence. A path will tell you how many times a
sequence occurred. Don’t worry if this sounds con-
fusing. Shortly we’ll walk through how to create
this tree. 

 The links between similar items, known as node
links, will be used to rapidly find the location of sim-
ilar items. Don’t worry if this sounds a little confus-
ing right now; we’ll work through a simple
example. The data used to generate the tree in fig-
ure 12.1 is shown in table 12.1.

In figure 12.1 the item z appeared five times, and the set {r,z} appeared once. We can
conclude that z must have appeared four times with other symbols or on its own. Let’s
look at the other possibilities for z. The set {t,s,y,x,z} appeared two times, and the set
{t,r,y,x,z} appeared once. The item z has a 5 next to it, so it occurred five times, and we
have four accounted for, so it must have appeared once on its own. Inspect table 12.1
to verify that this is true. I mentioned that {t,r,y,x,z} appeared once, but in the transac-
tion dataset you can see item 005 was {y,r,x,z,q,t,p}. What happened to q and p? 

 We used the term support in chapter 11, which was a minimum threshold, below
which we considered items infrequent. If you set the minimum support to 3 and apply
frequent item analysis, you’ll get only itemsets that appear three or more times. In
generating the tree in figure 12.1, the minimum support was 3, so q and p don’t
appear in the tree. 

 The FP-growth algorithm works like this. First, you build the FP-tree, and then you
mine it for frequent itemsets. To build the tree, you scan the original dataset twice.
The first pass counts the frequency of occurrence of all the items. Remember the
Apriori principle from chapter 11. If an item is infrequent, supersets containing that
item will also be infrequent, so you don’t have to worry about them. You use the first

TID Items in transaction 

001 r, z, h, j, p

002 z, y, x, w, v, u, t, s

003 z

004 r, x, n, o, s

005 y, r, x, z, q, t, p

006 y, z, x, e, q, s, t, m
Table 12.1 Sample transaction dataset, 
used to generate the FP-tree in figure 12.1
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pass to count the frequency of occurrence and then address only the frequent items in
the second pass. 

12.2 Build an FP-tree
In the second pass of the dataset, you build the FP-tree. In order to build a tree you
need a container to hold the tree. 

12.2.1 Creating the FP-tree data structure 

The tree in this chapter is more involved than the other trees in this book, so you’ll
create a class to hold each node of the tree. Create a file called fpGrowth.py and add
the code from the following listing. 

class treeNode:
    def __init__(self, nameValue, numOccur, parentNode):
        self.name = nameValue
        self.count = numOccur
        self.nodeLink = None
        self.parent = parentNode
        self.children = {}

    def inc(self, numOccur):
        self.count += numOccur
        
    def disp(self, ind=1):
        print '  '*ind, self.name, ' ', self.count
        for child in self.children.values():
            child.disp(ind+1)

The code in listing 12.1 is a class definition for the nodes of the FP-tree. It has vari-
ables to hold the name of the node, a count. The nodeLink variable will be used to
link similar items (the dashed lines in figure 12.1). Next, the parent variable is used to
refer to the parent of this node in the tree. Often, you don’t need this in trees because
you’re recursively accessing nodes. Later in this chapter, you’ll be given a leaf node

Listing 12.1 FP-tree class definition 

General approach to FP-growth
1. Collect: Any method.

2. Prepare: Discrete data is needed because we’re storing sets. If you have contin-
uous data, it will need to be quantized into discrete values. 

3. Analyze: Any method.

4. Train: Build an FP-tree and mine the tree.

5. Test: Doesn’t apply.

6. Use: This can be used to identify commonly occurring items that can be used
to make decisions, suggest items, make forecasts, and so on. 
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and you’ll need to ascend the tree, which requires a pointer to the parent. Lastly, the
node contains an empty dictionary for the children of this node. 

 There are two methods in listing 12.1; inc()increments the count variable by a
given amount. The last method, disp(), is used to display the tree in text. It isn’t
needed to create the tree, but it’s useful for debugging. 

 Try out this code:

>>> import fpGrowth
>>> rootNode = fpGrowth.treeNode('pyramid',9, None)

This creates a single tree node. Now, let’s add a child node to it: 

>>> rootNode.children['eye']=fpGrowth.treeNode('eye', 13, None)

To display the child node, type

>>> rootNode.disp()
   pyramid   9
     eye   13

Add another node to see how two child nodes are displayed:

>>> rootNode.children['phoenix']=fpGrowth.treeNode('phoenix', 3, None)
>>> rootNode.disp()
   pyramid   9
     eye   13
     phoenix   3

Now that you have the tree data structure built, you can construct the FP-tree. 

12.2.2 Constructing the FP-tree

In addition to the FP-tree shown in figure 12.1,
you need a header table to point to the first
instance of a given type. The header table will
allow you to quickly access all of the elements
of a given type in the FP-tree. The header table
is shown in figure 12.2. 

 You’ll use a dictionary as your data struc-
ture to store the header table. In addition to
storing pointers, you can use the header table
to keep track of the total count of every type
of element in the FP-tree. 

 The first pass through the dataset will
count the frequency of occurrence of each
item. Then, you’ll eliminate any items that
don’t meet the minimum support. In the next step, you’ll build the FP-tree. When you
build the tree, you’ll take each itemset and add it to an existing path if one exists. If it
doesn’t exist, you’ll create a new path. Each transaction is a set, which is an unordered
collection. If you have {z,x,y} and {y,z,r}, you need the similar items to overlap. To solve

Figure 12.2 FP-tree with header table. The 
header table serves as a starting point to 
find similar items.
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this, you need to sort each set before it’s added to the tree. The sort is done using the
absolute item frequency. Using the values in the header table in figure 12.2, the fil-
tered and reordered dataset from table 12.1 is shown in table 12.2. 

After you have the transactions filtered and sorted, you can start building the tree. You
start with the null set (symbol Ø) and add frequent itemsets to it. The filtered and
sorted transactions are successively added to the tree, incrementing existing elements
and branching out if no existing element exists. This process is illustrated in figure 12.3
with the first two transactions from table 12.2.

Now that you have an idea of how to go from a transaction dataset to an FP-tree, let’s
write some code to create the tree. Open fpGrowth.py and add the code from the fol-
lowing listing. 

def createTree(dataSet, minSup=1): 
    headerTable = {}
    for trans in dataSet
        for item in trans:
            headerTable[item] = headerTable.get(item, 0) + dataSet[trans]

Table 12.2 Transaction dataset with infrequent items removed and items reordered

TID Items in transaction Filtered and sorted transactions 

001 r, z, h, j, p z, r

002 z, y, x, w, v, u, t, s z, x, y, s, t

003 z z

004 r, x, n, o, s x, s, r

005 y, r, x, z, q, t, p z, x, y, r, t

006 y, z, x, e, q, s, t, m z, x, y, s, t

Listing 12.2 FP-tree creation code

Figure 12.3 An illustration of the 
FP-tree creation process, showing 
the first two steps in creating the 
FP-tree using the data in table 12.2
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    for k in headerTable.keys():               
        if headerTable[k] < minSup:                  
            del(headerTable[k])                
    freqItemSet = set(headerTable.keys())
    if len(freqItemSet) == 0: return None, None       
    for k in headerTable:
        headerTable[k] = [headerTable[k], None]  
    retTree = treeNode('Null Set', 1, None) 
    for tranSet, count in dataSet.items(): 
        localD = {}
        for item in tranSet:                        
            if item in freqItemSet:                      
                localD[item] = headerTable[item][0] 
        if len(localD) > 0:
            orderedItems = [v[0] for v in sorted(localD.items(), 
                                     key=lambda p: p[1], reverse=True)]
            updateTree(orderedItems, retTree, \        
                       headerTable, count)            
    return retTree, headerTable 

def updateTree(items, inTree, headerTable, count):
    if items[0] in inTree.children:
        inTree.children[items[0]].inc(count) 
    else:   
        inTree.children[items[0]] = treeNode(items[0], count, inTree)
        if headerTable[items[0]][1] == None: 
            headerTable[items[0]][1] = inTree.children[items[0]]
        else:
            updateHeader(headerTable[items[0]][1],
                                inTree.children[items[0]])
    if len(items) > 1:   
        updateTree(items[1::], inTree.children[items[0]], 
                                   headerTable, count)   

def updateHeader(nodeToTest, targetNode): 
    while (nodeToTest.nodeLink != None): 
        nodeToTest = nodeToTest.nodeLink
    nodeToTest.nodeLink = targetNode

The code in listing 12.2 has three functions. The first one, createTree(), takes the
dataset and the minimum support as arguments and builds the FP-tree. This makes
two passes through the dataset. The first pass goes through everything in the dataset
and counts the frequency of each term. These are stored in the header table. Next,
the header table is scanned and items occurring less than minSup are deleted. B If no
item is frequent, then you do no further processing. C Next, the header table is
slightly expanded so it can hold a count and pointer to the first item of each type.
You then create the base node, which contains the null set Ø. Finally, you iterate over
the dataset again, this time using only items that are frequent. D These items are
sorted, as shown in table 12.2, and the updateTree() method is called. E We’ll dis-
cuss updateTree() next. 

 To grow the FP-tree (this is where the growth in FP-growth comes from), you call
updateTree with an itemset. Figure 12.3 illustrates what happens in updateTree(). It

Remove items 
not meeting 
min support

B

If no items meet 
min support, exitC

Sort transactions 
by global 
frequency

D

Populate tree with 
ordered freq itemset

E

Recursively call 
updateTree on 
remaining itemsF
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first tests if the first item in the transaction exists as a child node. If so, it updates the
count of that item. If the item doesn’t exist, it creates a new treeNode and adds it as a
child. At this time, the header table is also updated to point to this new node. The
header table is updated with the updateHeader() function, which we’ll discuss next.
The last thing updateTree() does is recursively call itself with the first element in the
list removed. F

 The last function in listing 12.2 is updateHeader(), which makes sure the node
links point to every instance of this item in the tree. You start with the first nodeLink in
the header table and then follow the nodeLinks until you find the end. This is a linked
list. When working with trees, the natural reaction is to do everything recursively. This
can get you in trouble when working with a linked list because if the list is long
enough, you’ll hit the limits of recursion.

 Before you can run this example, you need a dataset. You can get this from the code
repo, or you can enter it by hand. The loadSimpDat() function will return a list of trans-
actions. These are the same as the transactions in table 12.1. The createTree() func-
tion will be used later when you’re mining the tree so it doesn’t take the input data as
lists. It expects a dictionary with the itemsets as the dictionary keys and the frequency
as the value. A createInitSet() function does this conversion for you, so add these to
fpGrowth.py, as shown in the following listing. 

def loadSimpDat():
    simpDat = [['r', 'z', 'h', 'j', 'p'],
               ['z', 'y', 'x', 'w', 'v', 'u', 't', 's'],
               ['z'],
               ['r', 'x', 'n', 'o', 's'],
               ['y', 'r', 'x', 'z', 'q', 't', 'p'],
               ['y', 'z', 'x', 'e', 'q', 's', 't', 'm']]
    return simpDat

def createInitSet(dataSet):
    retDict = {}
    for trans in dataSet:
        retDict[frozenset(trans)] = 1
    return retDict

OK, let’s see this in action. After you’ve entered the code from listing 12.3 to
fpGrowth.py, enter the following in your Python shell: 

>>> reload(fpGrowth)
<module 'fpGrowth' from 'fpGrowth.py'>

First, let’s load the example dataset:

>>> simpDat = fpGrowth.loadSimpDat()
>>> simpDat
[['r', 'z', 'h', 'j', 'p'], ['z', 'y', 'x', 'w', 'v', 'u', 't', 's'], 
['z'], ['r', 'x', 'n', 'o', 's'], ['y', 'r', 'x', 'z', 'q', 't', 'p'], 
['y', 'z', 'x', 'e', 'q', 's', 't', 'm']]

Listing 12.3 Simple dataset and data wrapper
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Now, you need to format this for createTree():

>>> initSet = fpGrowth.createInitSet(simpDat)
>>> initSet
{frozenset(['e', 'm', 'q', 's', 't', 'y', 'x', 'z']): 1, frozenset(['x', 
's', 'r', 'o', 'n']): 1, frozenset(['s', 'u', 't', 'w', 'v', 'y', 'x', 
'z']): 1, frozenset(['q', 'p', 'r', 't', 'y', 'x', 'z']): 1, 
frozenset(['h', 'r', 'z', 'p', 'j']): 1, frozenset(['z']): 1}

Now, you can create the FP-tree:

>>> myFPtree, myHeaderTab = fpGrowth.createTree(initSet, 3)

You can display a text representation of the tree with the disp() method:

>>> myFPtree.disp()
   Null Set   1
     x   1
       s   1
         r   1
     z   5
       x   3
         y   3
           s   2
             t   2
           r   1
             t   1
       r   1

The item and its frequency count are displayed with indentation representing the
depth of the tree. Verify that this tree is the same as the one in figure 12.2. 

 Now that you’ve created the FP-tree, it’s time to mine it for the frequent items. 

12.3 Mining frequent items from an FP-tree
Most of the hard work is over. We won’t be writing as much code as we did in section 12.1.
Now that you have the FP-tree, you can extract the frequent itemsets. You’ll follow some-
thing similar to the Apriori algorithm where you start with the smallest sets containing
one item and build larger sets from there. But you’ll do this with the FP-tree, and you’ll
no longer need the original dataset. 

 There are three basic steps to extract the frequent itemsets from the FP-tree, as
follows:

1 Get conditional pattern bases from the FP-tree.
2 From the conditional pattern base, construct a conditional FP-tree.
3 Recursively repeat steps 1 and 2 on until the tree contains a single item.

Now, you’ll focus on the first step, which is finding the conditional pattern base. After
that you’ll create conditional FP-trees from each of the conditional pattern bases.
You’ll finally write a little code to wrap these two functions together and get the fre-
quent itemsets from the FP-tree. 
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12.3.1 Extracting conditional pattern bases

You’ll start with the single items you found to be frequent in the last section. You
already have these items in the header table. For each of these items, you’ll get the
conditional pattern base. The conditional pattern base is a collection of paths that end
with the item you’re looking for. Each of those paths is a prefix path. In short, a prefix
path is anything on the tree between the item you’re looking for and the tree root. 

 Referring back to figure 12.2, the prefix paths for the symbol r are {x,s}, {z,x,y}, and
{z}. Each of these prefix paths also has a count associated with it. The count is the same
number as the beginning item. This identifies the number of rs on each path. Table 12.3
lists all of the prefix paths for each frequent item in our example. 

The prefix paths will be used to create a conditional FP-tree, but don’t worry about
that for now. To get these prefix paths, you could exhaustively search the tree until
you hit your desired frequent item, or you could use a more efficient method. The
more efficient method you’ll use takes advantage of the header table created earlier.
The header table is the starting point for a linked list containing items of the same
type. Once you get to each item, you can ascend the tree until you hit the root node. 

 Code to find the prefix paths is shown in the following listing. Add it to
fpGrowth.py. 

def ascendTree(leafNode, prefixPath): 
    if leafNode.parent != None:                   
        prefixPath.append(leafNode.name)
        ascendTree(leafNode.parent, prefixPath)

def findPrefixPath(basePat, treeNode): 
    condPats = {}
    while treeNode != None:
        prefixPath = []
        ascendTree(treeNode, prefixPath)
        if len(prefixPath) > 1: 
            condPats[frozenset(prefixPath[1:])] = treeNode.count
        treeNode = treeNode.nodeLink
    return condPats

Frequent item Prefix paths

z {}5

r {x,s}1, {z,x,y}1, {z}1

x {z}3, {}1

y {z,x}3

s {z,x,y}2, {x}1

t {z,x,y,s}2, {z,x,y,r}1

Listing 12.4 A function to find all paths ending with a given item

Recursively 
ascend the treeB

Table 12.3 Prefix paths 
for each frequent item
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The code in listing 12.4 is used to generate a conditional pattern base given a single item.
This is accomplished by visiting every node in the tree that contains the given
item. When you were creating the tree, you used the header table to point to the
first item of this type and successive item to link together. The findPrefixPath()
function iterates through the linked list until it hits the end. For each item it encounters,
it calls ascendTree(), which ascends the tree, collecting the names of items it encoun-
ters. B This list is returned and added to the conditional pattern base dictionary
called condPats.

 Let’s see this in action with the tree you made earlier: 

>>> reload(fpGrowth)
<module 'fpGrowth' from 'fpGrowth.py'>
>>> fpGrowth.findPrefixPath('x', myHeaderTab['x'][1])
{frozenset(['z']): 3}
>>> fpGrowth.findPrefixPath('z', myHeaderTab['z'][1])
{}
>>> fpGrowth.findPrefixPath('r', myHeaderTab['r'][1])
{frozenset(['x', 's']): 1, frozenset(['z']): 1,
    frozenset(['y', 'x', 'z']): 1}

Check to see if these values match the values in table 12.3. Now that you have the con-
ditional pattern bases, we can move on to creating conditional FP-trees. 

12.3.2 Creating conditional FP-trees

For each of your frequent items, you’ll create a conditional FP-tree. You’ll create a
conditional tree for z and x and so on. You’ll create the conditional pattern bases you
just found as the input data to create these trees with the same tree-generating code.
Then, you’ll recursively find frequent items, find conditional pattern bases, and then
find another conditional tree. For example, for the frequent item t, you’ll create a
conditional FP-tree. Then, you’ll repeat this process for {t,y}, {t,x}, .... The creation of
the conditional FP-tree for item t is shown in figure 12.4.

 In figure 12.4, note that items s and r are part of the conditional pattern bases, but
they don’t make it to the conditional FP-tree. Why is this? If we’re still talking about s

Figure 12.4 The creation of the 
conditional FP-tree for item t. Ini-
tially the tree starts out as only 
the null set as the root. Next, the 
set {y,x,z} is added from the orig-
inal set {y,x,s,z}; the character s
didn’t make it because it didn’t 
meet the minimum support. Sim-
ilarly, {y,x,z} is added from the 
original set {y,x,r,z}.
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and r, aren’t they frequent items? They’re frequent items, but they aren’t frequent
items in t’s conditional tree: {t,r} and {t,s} aren’t frequent. 

 Next, you mine the conditional tree for {t,z}, {t,x}, and {t,y}. These will lead to more
complex frequent itemsets. This process repeats until you run out of items in the con-
ditional tree. Then you know you can stop. The code to do this is relatively straightfor-
ward with a little recursion and the code we wrote earlier. Open fpGrowth.py and add
the code from the following listing.

def mineTree(inTree, headerTable, minSup, preFix, freqItemList):
    bigL = [v[0] for v in sorted(headerTable.items(), 
                                  key=lambda p: p[1])]
    for basePat in bigL:                                 
        newFreqSet = preFix.copy()
        newFreqSet.add(basePat)
        freqItemList.append(newFreqSet)
        condPattBases = findPrefixPath(basePat, headerTable[basePat][1])
        myCondTree, myHead = createTree(condPattBases,\                    
                                       minSup)                             
        if myHead != None:             
            mineTree(myCondTree, myHead, minSup, newFreqSet, freqItemList)

The process of creating conditional trees and prefix paths and conditional bases
sounds complex, but the code to do this is relatively simple. The code starts by sorting
the items in the header table by their frequency of occurrence. (Remember that the
default sort is lowest to highest.) B Then, each frequent item is added to your list of
frequent itemsets, freqItemList. Next, you recursively call findPrefixPath() from
listing 12.4, to create a conditional base. This conditional base is treated as a new data-
set and fed to createTree(). C I added enough flexibility to createTree() that it
could be reused to create conditional trees. Finally, if the tree has any items in it,
you’ll recursively call mineTree(). D

 Let’s see the code from listing 12.5 in action by putting the whole program
together. After you’ve added the code from listing 12.5 to fpGrowth.py, save the file,
and enter the following your Python shell:

>>> reload(fpGrowth)
<module 'fpGrowth' from 'fpGrowth.py'>

Now create an empty list to store all the frequent itemsets:

>>> freqItems = []

Now, run mineTree() and all the conditional trees will be displayed. 

>>> fpGrowth.mineTree(myFPtree, myHeaderTab, 3, set([]), freqItems)
conditional tree for: set(['y'])
   Null Set   1
     x   3

Listing 12.5 The mineTree function recursively finds frequent itemsets.

Start from bottom 
of header table

B

Construct cond. FP-tree from
cond. pattern base

C

Mine cond. FP-tree D
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       z   3
conditional tree for:  set(['y', 'z'])
   Null Set   1
     x   3
conditional tree for:  set(['s'])
   Null Set   1
     x   3
conditional tree for:  set(['t'])
   Null Set   1
     y   3
       x   3
         z   3
conditional tree for:  set(['x', 't'])
   Null Set   1
     y   3
conditional tree for:  set(['z', 't'])
   Null Set   1
     y   3
       x   3
conditional tree for:  set(['x', 'z', 't'])
   Null Set   1
     y   3
conditional tree for:  set(['x'])
   Null Set   1
     z   3

To get the output like the previous code, I added two lines to mineTree(): 

print 'conditional tree for: ',newFreqSet
myCondTree.disp(1)

These were added in the last if statement: if myHead != None: before call to the mineTree
function.

 Now, let’s check to see if the itemsets returned matched the condition trees:

>>> freqItems
 [set(['y']), set(['y', 'z']), set(['y', 'x', 'z']), set(['y', 'x']), 

set(['s']), set(['x', 's']), set(['t']), set(['y', 't']), set(['x', 
't']), set(['y', 'x', 't']), set(['z', 't']), set(['y', 'z', 't']), 
set(['x', 'z', 't']), set(['y', 'x', 'z', 't']), set(['r']), set(['x']), 
set(['x', 'z']), set(['z'])]

The itemsets match the conditional FP-trees, which is what you’d expect. Now that you
have the full FP-growth algorithm working, let’s try it out on a real-world example.
You’ll see if you can get some common words from the microblogging site, Twitter. 

12.4 Example: finding co-occurring words in a Twitter feed
You’ll be using a Python library called python-twitter. The source code can be found
at http://code.google.com/p/python-twitter/. As you may have guessed, it allows you
to access the microblogging site, Twitter, with Python. If you aren’t familiar with Twit-
ter.com, it’s a channel for communicating with others. Posts are limited to 140 charac-
ters in length. Each post is called a tweet. 
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 The documentation for the Twitter API can be found at http://dev.twitter.com/doc.
The keywords aren’t exactly the same between the API documentation and the Python
module. I recommend looking at the Python file twitter.py to fully understand how to
use the library. See appendix A for installation instructions for the module. You’ll use
only one small portion of the library, but you can do much more with the API, so I
encourage you to explore all functionality of the API. 

You need two sets of credentials before you can start using the API. The first set is
consumer_key and consumer_secret, which you can get from the Twitter Dev site
when you register to develop an app (https://dev.twitter.com/apps/new). These keys
are specific to the app you’re going to be writing. The second set, access_token_key
and access_token_secret, are specific to a Twitter user. To get these, you need to check
out the get_access_token.py file that comes with the Twitter-Python install (or get
them from Twitter Dev site). This is a command-line Python script that uses OAuth to
tell Twitter that this application has the right to post on behalf of this user. Once that’s
done, you can put those values into the previous code and get moving.

 You’re going to use the FP-growth algorithm to find frequent words in tweets for a
given search term. You’ll retrieve as many tweets as you can (1,400) and then put the
tweets through the FP-growth algorithm. Add the code from the following listing to
fpGrowth.py.

import twitter
from time import sleep
import re

def getLotsOfTweets(searchStr):
    CONSUMER_KEY = 'get when you create an app'
    CONSUMER_SECRET = 'get when you create an app'
    ACCESS_TOKEN_KEY = 'get from Oauth, specific to a user'

Listing 12.6 Code to access the Twitter Python library

Example: finding co-occurring words in a Twitter feed
1. Collect: Use the python-twitter module to access tweets.

2. Prepare: Write a function to remove URLs, remove punctuation, convert to lower-
case, and create a set of words from a string.

3. Analyze: We’ll look at the prepared data in the Python shell to make sure it’s cor-
rect. 

4. Train: We’ll use createTree() and mineTree(), developed earlier in this chap-
ter, to perform the FP-growth algorithm. 

5. Test: Doesn’t apply.

6. Use: Not performed in this example. You could do sentiment analysis or pro-
vide search query suggestion.
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    ACCESS_TOKEN_SECRET = 'get from Oauth, specific to a user'
    api = twitter.Api(consumer_key=CONSUMER_KEY,  
                      consumer_secret=CONSUMER_SECRET,
                      access_token_key=ACCESS_TOKEN_KEY, 
                      access_token_secret=ACCESS_TOKEN_SECRET)
    #you can get 1500 results 15 pages * 100 per page
    resultsPages = []
    for i in range(1,15):
        print "fetching page %d" % i
        searchResults = api.GetSearch(searchStr, per_page=100, page=i)
        resultsPages.append(searchResults)
        sleep(6)
    return resultsPages

There are three library imports you’ll need to add: one for the twitter library, one
for regular expressions, and the sleep function. You’ll use the regular expressions to
help parse the text later. 

 The getLotsOfTweets() function handles authentication and then creates an
empty list. The search API allows you to get 100 tweets at a time. Each of those is con-
sidered a page, and you’re allowed 14 pages. After you make the search call, there’s a
six-second sleep to be polite by not making too many requests too quickly. There’s also
a print statement to let you know the program is still running and not dead. 

 Let’s get some tweets. Enter the following in your Python shell:

>>> reload(fpGrowth)
<module 'fpGrowth' from 'fpGrowth.py'>

I’m going to search for a stock symbol named RIMM:

>>> lotsOtweets = fpGrowth.getLotsOfTweets('RIMM')
fetching page 1
fetching page 2
                           .
                           .
                           .

The lotsOtweets list contains 14 lists with 100 tweets inside. You can explore the
tweets by typing

>>> lotsOtweets[0][4].text
u"RIM: Open The Network, Says ThinkEquity: In addition, RIMM needs to 
reinvent its image, not only demonstrating ... http://bit.ly/lvlV1U"

As you can see, some people put URLs in the tweets, and when you parse them, you’ll
get a mess. You need to remove URLs, so you can get at the words in the tweet. We’ll
now write some code to parse the tweets into a list of strings, and a function to run the
FP-growth algorithm on the dataset. Add the following code to fpGrowth.py:

def textParse(bigString):
    urlsRemoved = re.sub('(http[s]?:[/][/]|www.)([a-z]|[A-Z]|[0-9]|[/

.]|[~])*',
                         '', bigString)

Listing 12.7 Text parsing and glue code
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    listOfTokens = re.split(r'\W*', urlsRemoved)
    return [tok.lower() for tok in listOfTokens if len(tok) > 2]

def mineTweets(tweetArr, minSup=5):
    parsedList = []
    for i in range(14):
        for j in range(100):
            parsedList.append(textParse(tweetArr[i][j].text))
    initSet = createInitSet(parsedList)
    myFPtree, myHeaderTab = createTree(initSet, minSup)
    myFreqList = []
    mineTree(myFPtree, myHeaderTab, minSup, set([]), myFreqList)
    return myFreqList

The first function in listing 12.7 is from chapter 4, but I added one line to remove URLs.
This calls the regular expression module and removes any URLs. The other function in
listing 12.7, mineTweets(), calls textParse on every tweet. Lastly, mineTweets() wraps
up some commands we used in section 12.2 to build the FP-tree and mine it. A list of all
the frequent itemsets is returned. 

 Let’s try this out:

>>> reload(fpGrowth)
<module 'fpGrowth' from 'fpGrowth.py'>

Let’s look for sets that occur more than 20 times:
>>> listOfTerms = fpGrowth.mineTweets(lotsOtweets, 20)

How many sets occurred in 20 or more of the documents?
>>> len(listOfTerms)
455

The day before I wrote this, a company that trades under the RIMM ticker symbol had
a conference call that didn’t please investors. The stock opened 22% lower than it had
closed the previous day. Let’s see if that shows up in the tweets:

>>> for t in listOfTerms:
...     print t
set([u'rimm', u'day'])
set([u'rimm', u'earnings'])
set([u'pounding', u'value'])
set([u'pounding', u'overnight'])
set([u'pounding', u'drops'])
set([u'pounding', u'shares'])
set([u'pounding', u'are'])
                            .
                            .
                            .
set([u'overnight'])
set([u'drops', u'overnight'])
set([u'motion', u'drops', u'overnight'])
set([u'motion', u'drops', u'overnight', u'value'])
set([u'drops', u'overnight', u'research'])
set([u'drops', u'overnight', u'value', u'research'])
set([u'motion', u'drops', u'overnight', u'value', u'research'])
set([u'motion', u'drops', u'overnight', u'research'])
set([u'drops', u'overnight', u'value'])
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It would be interesting to try out some other values for minSupport and some other
search terms. 

 Recall that the FP-trees are built by applying one instance at a time. But you assume
that all the data is present and you iterate over all the available data. You could rewrite
the createTree() function to take in one instance at a time and grow the tree with
inputs from the Twitter stream. There’s a good map-reduce version of FP-growth that
can be used to scale this to multiple machines. Google has used it to find frequent co-
occurring words, running a large body of text through it, similar to the example we
did here.2

12.5 Example: mining a clickstream from a news site
All right; that last example was cool, but you’re probably thinking to yourself, “Dude,
this algo is supposed to be fast. That was only 1,400 tweets!” You’re right. Let’s look at
this on a bigger file. In the source repository is a file called kosarak.dat, which con-
tains close to one million records.3 Each line of this file contains news stories viewed
by a user. Some users viewed only a single story, whereas someone viewed 2,498 stories.
The users and the stories are anonymized as integers, so there won’t be much you can
get from viewing the frequent itemsets, but this does a good job of demonstrating the
speed of the FP-growth algorithm. 

 First, load the dataset into a list:

>>> parsedDat = [line.split() for line in open('kosarak.dat').readlines()]

Next, you need to format the initial set:

>>> initSet = fpGrowth.createInitSet(parsedDat)

Now, create the FP tree and look for stories or sets of stories that at least 100,000 peo-
ple viewed:

>>> myFPtree, myHeaderTab = fpGrowth.createTree(initSet, 100000)

Creating this tree and scanning the one million lines took only a few seconds on my
humble laptop. This should demonstrate the power of the FP-growth algorithm. Now
you need to create an empty list to hold the frequent itemsets:

>>> myFreqList = []
>>> fpGrowth.mineTree(myFPtree, myHeaderTab, 100000, set([]), myFreqList)

Let’s see how many stories or sets of stories were viewed by 100,000 or more people:

>>> len(myFreqList)
9

2 H. Li, Y. Wang, D. Zhang, M. Zhang, E. Chang, “PFP: Parallel FP-Growth for Query Recommendation,” RecSys
’08, Proceedings of the 2008 ACM Conference on Recommender Systems; http://infolab.stanford.edu/
~echang/recsys08-69.pdf.

3 Hungarian online news portal clickstream retrieved July 11, 2011; from Frequent Itemset Mining Dataset
Repository, http://fimi.ua.ac.be/data/, donated by Ferenc Bodon.
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Nine. Now let’s see which ones:

>>> myFreqList
[set(['1']), set(['1', '6']), set(['3']), set(['11', '3']), set(['11', '3', 

'6']), set(['3', '6']), set(['11']), set(['11', '6']), set(['6'])]

Try this out with some other settings, perhaps lowering the support level. 

12.6 Summary
The FP-growth algorithm is an efficient way of finding frequent patterns in a dataset.
The FP-growth algorithm works with the Apriori principle but is much faster. The
Apriori algorithm generates candidate itemsets and then scans the dataset to see if
they’re frequent. FP-growth is faster because it goes over the dataset only twice. The
dataset is stored in a structure called an FP-tree. After the FP-tree is built, you can find
frequent itemsets by finding conditional bases for an item and building a conditional
FP-tree. This process is repeated, conditioning on more items until the conditional FP-
tree has only one item. 

 The FP-growth algorithm can be used to find frequent words in a series of text doc-
uments. The microblogging site Twitter provides a number of APIs for developers to
use their services. The Python module Python-Twitter allows easy access to Twitter.
Applying the FP-growth algorithm to a Twitter feed on a certain topic can give you
some summary information for that topic. There are a number of other uses for fre-
quent itemset generation such as shopping transactions, medical diagnosis, and study
of the atmosphere.

 In the next few chapters we’ll be looking at some additional tools. Chapters 13
and 14 will cover some dimensionality-reduction techniques. You can use these tech-
niques to distill your data down to only the important information and remove the
noise. Chapter 15 will cover MapReduce, which you’ll need when your data exceeds
the processing abilities of one machine. 





Part 4

Additional tools

This fourth and final part of Machine Learning in Action covers some additional
tools that are commonly used in practice and can be applied to the material from
the first three parts of the book. The tools cover dimensionality-reduction tech-
niques, which you can use to preprocess the inputs before using any of the algo-
rithms from the first three parts of this book. This part also covers map reduce,
which is a technique for distributing jobs to thousands of machines. 

 Dimensionality reduction is the task of reducing the number of inputs you
have; this can reduce noise and improve the performance of machine learning
algorithms. Chapter 13 is the first chapter on dimensionality reduction; we look
at principal component analysis, an algorithm for realigning our data in the
direction of the most variance. Chapter 14 is the second chapter on dimension-
ality reduction; we look at the singular value decomposition, which is a matrix
factorization technique that you can use to approximate your original data and
thereby reduce its dimensionality. 

 Chapter 15 is the final chapter in this book, and it discusses machine learn-
ing on big data. The term big data refers to datasets that are larger than the main
memory of the machine you’re using. If you can’t fit the data in main memory,
you’ll waste a lot of time moving data between memory and a disk. To avoid this,
you can split a job into multiple segments, which can be performed in parallel
on multiple machines. One popular method for doing this is map reduce, which
breaks jobs into map tasks and reduce tasks. Some common tools for doing map
reduce in Python are discussed in chapter 15, along with a discussion of how to
break up machine learning algorithms to fit the map reduce paradigm.





Using
 principal component

 analysis to simplify data
Assume for a moment that you’re watching a sports match involving a ball on a flat
monitor, not in person. The monitor probably contains a million pixels, and the
ball is represented by, say, a thousand pixels. In most sports, we’re concerned with
the position of the ball at a given time. For your brain to follow what’s going on,
you need to follow the position of the ball on the playing field. You do this natu-
rally, without even thinking about it. Behind the scene, you’re converting the mil-
lion pixels on the monitor into a three-dimensional image showing the ball’s
position on the playing field, in real time. You’ve reduced the data from one mil-
lion dimensions to three. 

This chapter covers
■ Dimensionality reduction techniques
■ Principal component analysis
■ Reducing the dimensionality of semiconductor data
269
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 In this sports match example, you’re presented with millions of pixels, but it’s the
ball’s three-dimensional position that’s important. This is known as dimensionality
reduction. You’re reducing data from more than one million values to the three relevant
values. It’s much easier to work with data in fewer dimensions. In addition, the relevant
features may not be explicitly presented in the data. Often, we have to identify the rel-
evant features before we can begin to apply other machine learning algorithms. 

 This chapter is the first of two that cover dimensionality reduction. In dimensional-
ity reduction we’re preprocessing the data. After we’ve preprocessed the data, we can
proceed with other machine learning techniques. This chapter begins with a survey of
dimensionality reduction techniques and then moves to one of the more common
techniques called principal component analysis. We’ll next work through an example
showing how principal component analysis can be used to reduce a dataset from 590
features to six. 

13.1 Dimensionality reduction techniques 
Throughout this book one of the problems has been displaying data and results
because the book is only two dimensional, but our data frequently isn’t. Sometimes,
we can show three-dimensional plots or show only the relevant features, but fre-
quently we have more features than we can display. Displaying data isn’t the only prob-
lem with having a large number of features. A short list of other reasons we want to
simplify our data includes the following: 

■ Making the dataset easier to use
■ Reducing computational cost of many algorithms
■ Removing noise
■ Making the results easier to understand

There are dimensionality reduction techniques that work on labeled and unlabeled
data. Here we’ll focus on unlabeled data because it’s applicable to both types. 

 The first method for dimensionality reduction is called principal component analysis
(PCA). In PCA, the dataset is transformed from its original coordinate system to a new
coordinate system. The new coordinate system is chosen by the data itself. The first
new axis is chosen in the direction of the most variance in the data. The second axis is
orthogonal to the first axis and in the direction of an orthogonal axis with the largest
variance. This procedure is repeated for as many features as we had in the original
data. We’ll find that the majority of the variance is contained in the first few axes.
Therefore, we can ignore the rest of the axes, and we reduce the dimensionality of
our data. We’ll cover this in more depth in section 13.2. 

Factor analysis is another method for dimensionality reduction. In factor analysis,
we assume that some unobservable latent variables are generating the data we observe.
The data we observe is assumed to be a linear combination of the latent variables and
some noise. The number of latent variables is possibly lower than the amount of
observed data, which gives us the dimensionality reduction. Factor analysis is used in
social sciences, finance, and other areas. 
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 Another common method for dimensionality reduction is independent component
analysis (ICA). ICA assumes that the data is generated by N sources, which is similar to
factor analysis. The data is assumed to be a mixture of observations of the sources.
The sources are assumed to be statically independent, unlike PCA, which assumes the
data is uncorrelated. As with factor analysis, if there are fewer sources than the
amount of our observed data, we’ll get a dimensionality reduction. 

 Of the three methods of dimensionality reduction, PCA is by far the most com-
monly used. We’ll focus on PCA in this chapter, and we won’t cover ICA or factor anal-
ysis. In the next section, I’ll describe PCA and then you’ll write some code to perform
PCA in Python. 

13.2 Principal component analysis

We’ll first discuss some of the theory behind PCA, and then you’ll see how to do PCA
in Python with NumPy.

13.2.1 Moving the coordinate axes

Consider for a moment the mass of data in
figure 13.1. If I asked you to draw a line cov-
ering the data points, what’s the longest
possible line you could draw? I’ve drawn a
few choices. Line B is the longest of these
three lines. In PCA, we rotate the axes of the
data. The rotation is determined by the
data itself. The first axis is rotated to cover
the largest variation in the data: line B in
figure 13.1. The largest variation is the data
telling us what’s most important. 

 After choosing the axis covering the
most variability, we choose the next axis,
which has the second most variability, pro-
vided it’s perpendicular to the first axis.
The real term used is orthogonal. On this
two-dimensional plot, perpendicular and
orthogonal are the same. In figure 13.1,
line C would be our second axis. With PCA,

Principal component analysis
Pros: Reduces complexity of data, indentifies most important features

Cons: May not be needed, could throw away useful information

Works with: Numerical values

Figure 13.1 Three choices for lines that span 
the entire dataset. Line B is the longest and ac-
counts for the most variability in the dataset.
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we’re rotating the axes so that they’re lined up with the most important directions
from the data’s perspective. 

 Now that you have the axis rotation down, let’s talk about dimensionality reduction.
Rotating the axes hasn’t reduced the number of dimensions. Consider figure 13.2,
which has three classes plotted. If we want to separate the classes, we could use a deci-
sion tree. Remember that decision trees make a decision based on one feature at a time.
We could find some values on the x-axis that do a good job of separating the different
classes. We’d have some rule such as if (X<4), then we have class 0. If we used a little
more complex classifier, say a support vector machine, we could get better separation
of the classes with a hyperplane and a classification rule such as if (w0*x+w1*y+b) > 0,
then we have class 0. The support vector machine may give us better margin than the
decision tree, but the hyperplane is harder to interpret. 

 By doing dimensionality reduction with PCA on our dataset, we can have the best
of both worlds: we can have a classifier as simple as a decision tree, while having mar-
gin as good as the support vector machine. Look at the lower frame of figure 13.2. In
this frame, I took the data from the top frame and plotted it after the PCA. The mar-
gin on this will be larger than the decision tree margin when using only the original
data. Also, because we have only one dimension to worry about, we can have rules to
separate the classes that are much sim-
pler than the support vector machine. 

 In figure 13.2, we have only one axis
because the other axis was just noise and
didn’t contribute to the separation of
the classes. This may seem trivial in two
dimensions, but it can make a big differ-
ence when we have more dimensions. 

 Now that we’ve gone over some of
what goes on in PCA, let’s write some
code to do this. Earlier, I mentioned that
we take the first principal component to
be in the direction of the largest variabil-
ity of the data. The second principal
component will be in the direction of
the second largest variability, in a direc-
tion orthogonal to the first principal
component. We can get these values by
taking the covariance matrix of the data-
set and doing eigenvalue analysis on the
covariance matrix. 

 Once we have the eigenvectors of the
covariance matrix, we can take the top N
eigenvectors. The top N eigenvectors
will give us the true structure of the N

Figure 13.2 Three classes in two dimensions. When 
the PCA is applied to this dataset, we can throw out 
one dimension, and the classification problem be-
comes easier.
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most important features. We can then multiply the data by the top N eigenvectors to
transform our data into the new space. 

13.2.2 Performing PCA in NumPy

Pseudocode for transforming out data into the top N principal components would
look like this:

Remove the mean
Compute the covariance matrix
Find the eigenvalues and eigenvectors of the covariance matrix
Sort the eigenvalues from largest to smallest
Take the top N eigenvectors
Transform the data into the new space created by the top N eigenvectors

Create a file called pca.py and add the code from the following listing to compute
the PCA.

from numpy import *

def loadDataSet(fileName, delim='\t'):
    fr = open(fileName)
    stringArr = [line.strip().split(delim) for line in fr.readlines()]
    datArr = [map(float,line) for line in stringArr]
    return mat(datArr)

def pca(dataMat, topNfeat=9999999):
    meanVals = mean(dataMat, axis=0)
    meanRemoved = dataMat - meanVals          
    covMat = cov(meanRemoved, rowvar=0)
    eigVals,eigVects = linalg.eig(mat(covMat))
    eigValInd = argsort(eigVals)             
    eigValInd = eigValInd[:-(topNfeat+1):-1] 
    redEigVects = eigVects[:,eigValInd]        
    lowDDataMat = meanRemoved * redEigVects             
    reconMat = (lowDDataMat * redEigVects.T) + meanVals
    return lowDDataMat, reconMat

Listing 13.1 The PCA algorithm

Eigenvalue analysis
Eigenvalue analysis is an area of linear algebra that allows us to uncover the
underlying “true” structure of the data by putting it in a common format. In eigenvalue
analysis, we usually talk about eigenvectors and eigenvalues. In the following
equation, Av = v, eigenvectors are v and eigenvalues are . Eigenvalues are simply
scalar values, so Av = v says when we multiply the eigenvectors by some matrix, A,
we get the eigenvectors (v), again multiplied by some scalar values . Luckily, NumPy
comes with some modules for finding the eigenvectors and eigenvalues. The NumPy
linalg module has the eig() method, which we can use to find the eigenvectors
and eigenvalues. 

Remove 
mean

B

Sort top N smallest 
to largest

C

Transform data into 
new dimensionsD
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The code in listing 13.1 contains the usual NumPy import and loadDataSet(). The
function loadDataSet() is slightly different from the versions we used in previous
chapters because it uses two list comprehensions to create the matrix. 

 The pca() function takes two arguments: the dataset on which we’ll perform PCA
and the second optional argument, topNfeat, which is the top N features to use. If
you don’t provide a value for topNfeat, it will return the top 9,999,999 features, or as
many as the original dataset has. 

 First, you calculate the mean of the original dataset and remove it. B Next, you
compute the covariance matrix and calculate the eigenvalues. You use argsort() to
get the order of the eigenvalues. You can now use the order of the eigenvalues to sort
the eigenvectors in reverse order and get the topNfeat largest eigenvectors. C The
top N largest eigenvectors form a matrix that will be used to transform our original
data into the new space with N features. D Lastly, you reconstruct the original data
and return it for debug along with the reduced dimension dataset. 

 That wasn’t bad, was it? Let’s take a look at this in action to make sure you have it
right before we get into a big example. 

>>> import pca

I included a dataset with 1000 points in the testSet.txt file. You can load it into mem-
ory with

>>> dataMat = pca.loadDataSet('testSet.txt')

Now, let’s do the PCA of this dataset:

>>> lowDMat, reconMat = pca.pca(dataMat, 1)

lowDMat contains the matrix in our reduced dimensions, which should be one dimen-
sion; let’s check that out:

>>> shape(lowDMat)
(1000, 1)

Let’s plot it with the original data:

>>> import matplotlib
>>>import matplotlib.pyplot as plt
fig = plt.figure()
ax = fig.add_subplot(111)
>>> ax.scatter(dataMat[:,0].flatten().A[0], dataMat[:,1].flatten().A[0],
 marker='^', s=90)
<matplotlib.collections.PathCollection object at 0x029B5C50>
>>> ax.scatter(reconMat[:,0].flatten().A[0], reconMat[:,1].flatten().A[0],
 marker='o', s=50, c='red')
<matplotlib.collections.PathCollection object at 0x0372A210>plt.show()

You should see something similar to figure 13.3. Repeat the previous steps, but use

>>> lowDMat, reconMat = pca.pca(dataMat, 2)

The reconstructed data should overlap the original data because no features are
removed. You should see something similar to figure 13.3 but without the straight line. 



275Example: using PCA to reduce the dimensionality of semiconductor manufacturing data
Now that we have PCA working on a simple dataset, let’s move to a real-world example.
We’ll reduce the dimensionality of a dataset from a semiconductor factory. 

13.3 Example: using PCA to reduce the dimensionality of 
semiconductor manufacturing data
Semiconductors are made in some of the most high-tech factories on the planet. The
factories or fabrications (fabs) cost billions of dollars and take an army to operate.
The fab is only modern for a few years, after which it needs to be replaced. The pro-
cessing time for a single integrated circuit takes more than a month. With a finite life-
time and a huge cost to operate, every second in the fab is extremely valuable. If
there’s some flaw in the manufacturing process, we need to know as soon as possible,
so that precious time isn’t spent processing a flawed product. 

 Some common engineering solutions find failed products, such as test early and
test often. But some defects slip through. If machine learning techniques can be used
to further reduce errors, it will save the manufacturer a lot of money. 

 We’ll now look at some data for such a task. It’s a larger dataset than we’ve
used so far, and it has a lot of features—590 features to be exact.1 Let’s see if we
can reduce that. You can find the dataset at http://archive.ics.uci.edu/ml/
machine-learning-databases/secom/.

1 SECOM Data Set retrieved from the UCI Machine Learning Repository: http://archive.ics.uci.edu/ml/
datasets/SECOM on June 1, 2011.

Figure 13.3 The original dataset 
(triangles) plotted with the first 
principal component (circles)
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 The data contains a lot of missing values. These values are recorded as NaN, which
stands for Not a Number. We can do several things to work with the missing values (see
chapter 5). With 590 features, almost every instance has a NaN, so throwing out incom-
plete instances isn’t a realistic approach. We could replace all the NaNs with 0s, but that
may be a bad idea because we don’t know what these values mean. If they’re things like
temperature in kelvins, setting the values to zero is a bad idea. Let’s try to set the missing
values to the mean. We’ll calculate the mean from the values that aren’t NaN. 

 Add the code from the following listing to pca.py. 

def replaceNanWithMean(): 
    datMat = loadDataSet('secom.data', ' ')
    numFeat = shape(datMat)[1]
    for i in range(numFeat):
        meanVal = mean(datMat[nonzero(~isnan(datMat[:,i].A))[0],i])
                                                                     
        datMat[nonzero(isnan(datMat[:,i].A))[0],i] = meanVal
                                                          
    return datMat

The code in listing 13.2 opens the dataset and counts the number of features. Next,
you iterate over all the features. For each feature, you first find the mean value, where
there are values to measure. B Next, you replace any NaN values with the mean. C 

 Now that you have the NaN values removed, you can look at the PCA of this data-
set. First, let’s find out how many features you need and how many you can drop. PCA
will tell you how much information is contained in the data. I’d like to emphasize that
there’s a major difference between data and information. Data is the raw material that
you take in, which may contain noise and irrelevant information. Information is the
relevant material. These aren’t just abstract quantities; you can measure the amount
of information contained in your data and decide how much to keep. 

 Let’s see how to do this. First, replace the NaN values in the dataset with mean val-
ues using the code we just wrote:

dataMat = pca.replaceNanWithMean()

Next, borrow some code from the pca() function because we want to look at the inter-
mediate values, not the output. We’re going to remove the mean:

meanVals = mean(dataMat, axis=0)
meanRemoved = dataMat - meanVals 

Now, calculate the covariance matrix:

covMat = cov(meanRemoved, rowvar=0)

Finally, do Eigenvalue analysis on the covariance matrix:

eigVals,eigVects = linalg.eig(mat(covMat))

Now, let’s look at the eigenvalues:

Listing 13.2 Function to replace missing values with mean

Find mean of non-
NaN values

B

Set NaN values 
to meanC
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>>> eigVals
array([  5.34151979e+07,   2.17466719e+07,   8.24837662e+06,
         2.07388086e+06,   1.31540439e+06,   4.67693557e+05,
         2.90863555e+05,   2.83668601e+05,   2.37155830e+05,
         2.08513836e+05,   1.96098849e+05,   1.86856549e+05,
                                          .
                                          .
                                          .
        0.00000000e+00,   0.00000000e+00,   0.00000000e+00,
        0.00000000e+00,   0.00000000e+00,   0.00000000e+00,
        0.00000000e+00,   0.00000000e+00,   0.00000000e+00,
        0.00000000e+00,   0.00000000e+00,   0.00000000e+00,
        0.00000000e+00,   0.00000000e+00])

You see a lot of values, but what do you notice? Did you notice there are a lot of zeros?
Over 20% of the eigenvalues are zero. That means that these features are copies of
other features in the dataset, and they don’t provide any extra information. 

 Second, let’s look at the magnitude of some of these numbers. The first 15 have mag-
nitudes greater than 105, but after that, the values get really small. This tells you that there
are a few important features, but the number of important features drops off quickly.

 Last, you may notice a few small negative values. These are caused by numerical
errors and should be rounded to zero.

 I’ve plotted the percentage of total variance in figure 13.4. You can see how quickly
the variance drops off after the first few principal components.

Figure 13.4 Percentage of total variance contained in the first 20 principal components. From this plot, 
you can see that most of the variance is contained in the first few principal components, and little infor-
mation would be lost by dropping the higher ones. If we kept only the first six principal components, we’d 
reduce our dataset from 590 features to 6 features, almost a 100:1 compression.
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I also recorded the percentage of variance and the cumulative percentage of variance
for these principal components in table 13.1. If you look at the % Cumulative column,
you’ll notice that after 6 principal components, we’ve covered 96.8% of the variance.
The first 20 principal components cover 99.3% of the variance in the data. This tells us
that if we keep the first 6 principal components and drop the other 584, we’ve achieved
a nearly 100:1 compression. Additionally, dropping the higher principal components
may make the data cleaner because we’re throwing out noisy components. 

Now that you know how much of the information in our dataset is contained in the
first few principal components, you can try some cutoff values and see how they per-
form. Some people use the number of principal components that will give them 90%
of the variance, whereas others use the first 20 principal components. I can’t tell you
exactly how many principal components to use. You’ll have to experiment with differ-
ent values. The number of effective principal components will depend on your dataset
and your application. 

 The analysis tells you how many principal components you can use. You can then
plug this number into the PCA algorithm, and you’ll have reduced data for use in a
classifier.

13.4 Summary
 Dimensionality reduction techniques allow us to make data easier to use and often

remove noise to make other machine learning tasks more accurate. It’s often a pre-
processing step that can be done to clean up data before applying it to some other
algorithm. A number of techniques can be used to reduce the dimensionality of our
data. Among these, independent component analysis, factor analysis, and principal
component analysis are popular methods. The most widely used method is principal
component analysis. 

Table 13.1 % variance for the first 7 principal components of the semiconductor data

Principal component % Variance % Cumulative 

1 59.2 59.2

2 24.1 83.4

3 9.2 92.5

4 2.3 94.8

5 1.5 96.3

6 0.5 96.8

7 0.3 97.1

20 0.08 99.3
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 Principal component analysis allows the data to identify the important features. It
does this by rotating the axes to align with the largest variance in the data. Other axes
are chosen orthogonal to the first axis in the direction of largest variance. Eigenvalue
analysis on the covariance matrix can be used to give us a set of orthogonal axes. 

 The PCA algorithm in this chapter loads the entire dataset into memory. If this
isn’t possible, other methods for finding the eigenvalues can be used. A good paper
for an online method of finding the PCA is “Incremental Eigenanalysis for Classifica-
tion.”2 The singular value decomposition, which is the subject of the next chapter, can
also be used for eigenvalue analysis. 

2 P. Hall, D. Marshall, and R. Martin, “Incremental Eigenanalysis for Classification,” Department of Com-
puter Science, Cardiff University, 1998 British Machine Vision Conference, vol. 1, 286–95; http://
citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.40.4801.



Simplifying data
 with the singular

 value decomposition
Restaurants get rolled into a handful of categories: American, Chinese, Japanese,
steak house, vegan, and so on. Have you ever thought that these categories weren’t
enough? Perhaps you like a hybrid of these categories or a subcategory like Chinese
vegetarian. How can we find out how many categories there are? Maybe we could
ask some human experts? What if one expert tells us we should divide the restau-
rants by sauces, and another expert tells us we should divide restaurants by the
ingredients? Instead of asking an expert, let’s ask the data. We can take data that
records people’s opinions of restaurants and distill it down into underlying factors.

This chapter covers
■ The singular value decomposition matrix factorization
■ Recommendation engines
■ Using the singular value decomposition to improve 

recommendation engines
280
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These may line up with our restaurants categories, a specific ingredient used in cook-
ing, or anything. We can then use these factors to estimate what people will think of a
restaurants they haven’t yet visited. 

 The method for distilling this information is known as the singular value decomposi-
tion (SVD). It’s a powerful tool used to distill information in a number of applications,
from bioinformatics to finance. 

 In this chapter, you’re going to learn what the singular value decomposition is and
how it can be used to reduce the dimensionality of our data. You’ll then see how to do
the SVD in Python and how to map our data from the low-dimensional space. Next,
you’ll learn what recommendation engines are and see them in action. You’ll see how
you can apply the SVD to recommendation engines to improve their accuracy. We’ll
use this recommendation engine to help people find a restaurant to visit. We’ll con-
clude by looking at an example of how the SVD could be used for image compression. 

14.1 Applications of the SVD

We can use the SVD to represent our original data set with a much smaller data set.
When we do this, we’re removing noise and redundant information. Those are noble
goals when we’re trying to save bits, but we’re trying to extract knowledge from data.
When viewed from that perspective, we can think of the SVD as extracting the relevant
features from a collection of noisy data. If this sounds a little strange, don’t worry. I’m
going to show a few examples of where and how this is used to explain the power of
the SVD. 

 First, we’ll discuss how the SVD is used in search and information retrieval using
latent semantic indexing. Next, we’ll discuss how the SVD is used in recommendation
systems. 

14.1.1 Latent semantic indexing

The history of the SVD is over a century old. But it has found more use with the adop-
tion of computers in the last several decades. One of first uses was in the field of infor-
mation retrieval. The method that uses SVD is called latent semantic indexing (LSI) or
latent semantic analysis. 

 In LSI, a matrix is constructed of documents and words. When the SVD is done on
this matrix, it creates a set of singular values. The singular values represent concepts
or topics contained in the documents. This was developed to allow more efficient
searching of documents. A simple search that looks only for the existence of words

The singular value decomposition (SVD)
Pros: Simplifies data, removes noise, may improve algorithm results.

Cons: Transformed data may be difficult to understand.

Works with: Numeric values.
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may have problems if the words are misspelled. Another problem with a simple search
is that synonyms may be used, and looking for the existence of a word wouldn’t tell
you if a synonym was used to construct the document. If a concept is derived from
thousands of similar documents, both of the synonyms will map to the same concept. 

14.1.2 Recommendation systems

Another application of the SVD is in recommendation systems. Simple versions of
recommendation systems compute similarity between items or people. More
advanced methods use the SVD to create a theme space from the data and then com-
pute similarities in the theme space. Consider for a moment the matrix of restau-
rant dishes and reviewers’ opinions of these dishes in figure 14.1. The reviewers were
allowed to rate everything with an integer between 1 and 5. If they didn’t try a dish,
it was given a 0. 

 If we did the SVD of this matrix, we’d have noticed two singular values. (Try it out if
you don’t believe me.) So there appears to be two concepts or themes associated with
the dataset. Let’s see if we can figure out what these concepts are by looking for the 0s
in the figure. Look at the shaded box on the right side. It looks like Ed, Peter, and
Tracy rated Tri Tip and Pulled Pork, but it also appears that these three people didn’t
rate any other dishes. Tri Tip and Pulled Pork are dishes served at American BBQ res-
taurants. The other dishes listed are found in Japanese restaurants. 

 We can think of the singular values as a new space. Instead of being five or seven
dimensional like the matrix in figure 14.1, our matrix is now two dimensional. What
are these two dimensions, and what can they tell us about the data? The two dimen-
sions would correspond to the two groupings in the figure. I shaded one of the
groups in the matrix on the right. We could name these two dimensions after the
common features of the groups. We’d have an American BBQ dimension and a Japa-
nese food dimension. 

Figure 14.1 Restaurant dish data and ratings. The SVD of this matrix can condense 
the data into a few concepts. One concept is shaded in gray on the right side.
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How can we get from our original data to this new space? In the next section we’ll discuss
the SVD in more detail and see how it gives us two matrices called U and VT. The VT matrix
maps from users into the BBQ/Japanese food space. Similarly the U matrix maps from
the restaurant dishes into the BBQ/Japanese food space. Real data usually isn’t as dense
or as well formatted as the data in figure 14.1. I used this for the sake of illustration.

 A recommendation engine can take noisy data, such someone’s rating of certain
dishes, and distill that into these basic themes. With respect to these themes, the rec-
ommendation engine can make better recommendations than using the original data
set. In late 2006 the movie company Netflix held a contest that awarded $1M to any-
one who would provide 10% better recommendations than the state of the art. The
winning team used the SVD in their solution.1

 In the next section we’ll discuss some background material leading up to the SVD,
and we’ll show how to perform the SVD in Python with NumPy. After that, we’ll discuss
recommendation engines in further detail. When you have a good understanding of
recommendations engines, we’ll build a recommendation engine that uses the SVD. 

 The SVD is a type of matrix factorization, which will break down our data matrix
into separate parts. Let’s discuss matrix factorization for a moment. 

14.2 Matrix factorization
Often, a few pieces of data in our dataset can contain most of the information in our
dataset. The other information in the matrix is noise or irrelevant. In linear algebra,
there are many techniques for decomposing matrices. The decomposition is done to
put the original matrix in a new form that’s easier to work with. The new form is a
product of two or more matrices. This decomposition can be thought of like factoring
in algebra. How can we factor 12 into the product of two numbers? (1,12), (2,6), and
(3,4) are all valid answers. 

 The various matrix factorization techniques have different properties that are
more suited for one application or another. One of the most common factorizations is
the SVD. The SVD takes an original data set matrix called Data and decomposes it into
three matrices called U, , and VT. If the original data set Data is size mxn, then U will be
mxm,  will be mxn, and VT will be nxn. Let’s write this out on one line to be clear (the
subscript is the matrix dimensions):

The decomposition creates the , which will have only diagonal elements; all other
elements of this matrix are 0. Another convention is that the diagonal elements of 
are sorted from largest to smallest. These diagonal elements are called singular values
and they correspond to the singular values of our original data set, Data. If you recall
from the last chapter, on principal component analysis, we found the eigenvalues of a
matrix. These eigenvalues told us what features were most important in our data set.

1 Yehuda Koren, “The BellKor Solution to the Netflix Grand Prize,” August 2009; http://www
.netflixprize.com/assets/GrandPrize2009_BPC_BellKor.pdf.

Datamxn UmxmmxnVnxn
T=
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The same thing is true about the singular values in . The singular values and eigen-
values are related. Our singular values are the square root of the eigenvalues
of Data*DataT. 

 I mentioned earlier that  has only diagonal elements sorted from largest to small-
est. One common fact that keeps coming up in science and engineering is that after a
certain number of singular values (call this r) of a data set, the other values will drop
to 0. This means that the data set has only r important features, and the rest of the fea-
tures are noise or repeats. You’ll see a solid example of this in the next section. 

 Don’t worry about how we’re going to break down this matrix. NumPy’s linear
algebra library has a method for doing the SVD, which you’ll see in the next section. If
you’re interested in how to program the SVD, I’d suggest you check the book Numeri-
cal Linear Algebra.2

14.3 SVD in Python 
If the SVD is so great, how can we do it? The linear algebra of doing it is beyond the
scope of this book. There are a number of software packages that will do the factoriza-
tion for us. NumPy has a linear algebra toolbox called linalg. Let’s see this in action to
do the SVD on the matrix 

To do this in Python, enter the following commands in your Python shell:

>>> from numpy import *
>>> U,Sigma,VT=linalg.svd([[1, 1],[7, 7]])

Now you can explore each of these matrices: 

>>> U
array([[-0.14142136, -0.98994949],
[-0.98994949,  0.14142136]])
>>> Sigma
array([ 10.,   0.])
>>> VT
array([[-0.70710678, -0.70710678],
[-0.70710678,  0.70710678]])

Notice that Sigma was returned as a row vector, array([ 10.,   0.]), not a matrix:

array([[ 10.,  0.],
       [ 0.,  0.]]).  

This is done internally by NumPy because the matrix is all zeros except for the diago-
nal elements, so it saves space to return just the diagonal elements. Keep that in mind
when you see Sigma as a vector. OK, let’s do some more decomposing, this time on a
bigger matrix. 

2 L. Trefethen and D. Bau III, Numerical Linear Algebra (SIAM: Society for Industrial and Applied Mathe-
matics, 1997).

1 1
7 7
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 Create a new file called svdRec.py and enter the following code: 

def loadExData():
    return[[1, 1, 1, 0, 0],
           [2, 2, 2, 0, 0],
           [1, 1, 1, 0, 0],
           [5, 5, 5, 0, 0],
           [1, 1, 0, 2, 2],
           [0, 0, 0, 3, 3],
           [0, 0, 0, 1, 1]]

Now let’s do the SVD of this matrix. After you’ve saved svdRec.py, enter the following
at the Python prompt:

>>> import svdRec
>>> Data=svdRec.loadExData()
>>> U,Sigma,VT=linalg.svd(Data)
>>> Sigma
array([  9.72140007e+00,   5.29397912e+00,   6.84226362e-01,
         7.16251492e-16,   4.85169600e-32])

The first three values are much greater than the others in value. (Don’t worry if the
last two values are slightly different from the ones listed here; they’re so small that
running this on different machines will produce slightly different results. The order
of magnitude should be similar to those listed here.) We can drop the last two values.
Now our original data set is approximated by the following:

A schematic representation of this approximation can be seen in figure 14.2. 
 Let’s try to reconstruct the original matrix. First, we’ll build a 3x3 matrix called

Sig3:

>>> Sig3=mat([[Sigma[0], 0, 0],[0, Sigma[1], 0], [0, 0, Sigma[2]]])

Now let’s reconstruct an approximation of the original matrix. Because Sig2 is only 2x2,
we use only the first two columns of U and the first two rows of VT. To do this in Python,
enter the following:

Datamxn Umx33x3V3xn
T

Figure 14.2 Schematic representation of the singular value decomposition. The 
matrix Data is being decomposed here. The light gray areas show the original data, 
and the dark gray areas show the only data used in the matrix approximation.
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>>> U[:,:3]*Sig3*VT[:3,:]
array([[ 1.,  1.,  1.,  0.,  0.],
       [ 2.,  2.,  2., -0., -0.],
       [ 1.,  1.,  1., -0., -0.],
       [ 5.,  5.,  5.,  0.,  0.],
       [ 1.,  1., -0.,  2.,  2.],
       [ 0.,  0., -0.,  3.,  3.],
            [ 0.,  0., -0.,  1.,  1.]])

How did we know to keep only the first three singular values? There are a number of heu-
ristics for the number of singular values to keep. You typically want to keep 90% of the
energy expressed in the matrix. To calculate the total energy, you add up all the squared
singular values. You can then add squared singular values until you reach 90% of the
total. Another heuristic to use when you have tens of thousands of singular values is to
keep the first 2,000 or 3,000. This is a little less elegant than the energy method, but it’s
easier to implement in practice. It’s less elegant because you can’t guarantee that 3,000
values contain 90% of the energy in any dataset. Usually you’ll know your data well
enough that you can make an assumption like this. 

 We’ve now approximated the original matrix closely with three matrices. We can
represent a big matrix with a much smaller one. There are a number of applications
that can be improved with the SVD. I’ll discuss one of the more popular uses, recom-
mendation engines, next.

14.4 Collaborative filtering–based recommendation engines
Recommendation engines are nothing new to people who’ve been using the internet
in the last decade. Amazon recommends items to customers based on their past pur-
chases. Netflix recommends movies for people to watch. News websites recommend
stories for you to read. The list goes on. There are a number of approaches for how to
do this, but the approach we’re going to use is called collaborative filtering. Collabora-
tive filtering works by taking a data set of users’ data and comparing it to the data of
other users. 

 The data is conceptually organized in a matrix like the one in figure 14.2. When
the data is organized this way, you can compare how similar users are or how similar
items are. Both approaches use a notion of similarity, which we’ll discuss in more
detail in a moment. When you know the similarity between two users or two items, you
can use existing data to forecast unknown preferences. For example, say you’re trying
to predict movies. The recommendation engine will see that there’s a movie you
haven’t viewed yet. It will then compute the similarity between the movies you did see
and the movie you didn’t see. If there’s a high similarity, the algorithm will infer that
you’ll like this movie.

 The only real math going on behind the scenes is the similarity measurement, and
that isn’t difficult, as you’ll see next. We’ll first talk about how the similarity between
items is measured. Next, we’ll discuss the tradeoffs between item-based and user-based
similarity measurements. Finally, we’ll discuss how to measure the success of a recom-
mendation engine. 
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14.4.1 Measuring similarity 

We’d like to have some quantitative measurement of how similar two items are. How
would you find that? What if you ran a food-selling website? Maybe you can compare
food by ingredients, calorie count, someone’s definition of the cuisine type, or some-
thing similar. Now let’s say you wanted to expand your business into eating utensils.
Would you use calorie count to describe a fork? The point is that the attributes you
use to describe a food will be different from the attributes you use to describe table-
ware. What if you took another approach at comparing items? Instead of trying to
describe the similarity between items based on
some attributes that an expert tells you are
important, you compare the similarity by what
people think of these items. This is the
approach used in collaborative filtering. It
doesn’t care about the attributes of the items; it
compares similarity strictly by the opinions of
many users. Figure 14.3 contains a matrix of
some users and ratings they gave some of the
dishes mentioned earlier in the chapter.

 Let’s calculate the similarity between Pulled
Pork and Tri Tip. We can use the Euclidian dis-
tance to get started. The Euclidian distance is

and the Euclidian distance for Pulled Pork and Unagi Don is

From this data, Pulled Pork is more similar to Tri Tip than Unagi Don because the dis-
tance between Pulled Pork and Tri Tip is smaller than the distance between Pulled
Pork and Unagi Don. We want the similarity, which should vary between 0 and 1 and
should be larger for more similar items. We can calculate this by similarity = 1/
(1+distance). If the distance is 0, then the similarity is 1.0. If the distance is really big,
then the similarity falls to 0. 

 A second distance measurement is the Pearson correlation. This is the correlation that
we used in chapter 8 to measure the accuracy of our regression equations. This metric
tells us how similar two vectors are. One benefit of this over the Euclidian distance is
that it’s insensitive to the magnitude of users’ ratings. Say one person is manic and rates
everything with 5s; another person isn’t so happy and rates everything with 1s. The Pear-
son correlation tells us that these two vectors are equal. The Pearson correlation is built
into NumPy as the function corrcoef(). We’ll use it soon. The values for the Pearson
correlation range from -1 to +1. We’ll normalize these to the range of 0 to 1.0
by 0.5+0.5*corrcoef(). 

4 4– 2 3 3– 2 2 1– 2+ + 1=

4 2– 2 3 5– 2 2 2– 2+ + 2.83=

Figure 14.3 Simple matrix for demon-
strating similarity measures
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 Another commonly used similarity metric is the cosine similarity. The cosine similarity
measures the cosine of the angle between two vectors. If the angle is 90, then the similarity
is 0; if the vectors point in the same direction, then they have a similarity of 1.0. Like the
Pearson correlation, this ranges from -1 to +1, so we normalize it to the range of 0 to 1.0.
To calculate this, we can take the definition of the cosine of two vectors A and B as

The two parallel lines around A and B means the L2 norm of the vectors. You can
have a norm of any number, but if no number is given, it’s assumed to be the L2
norm. The L2 norm of a vector [4, 2, 2] is given by

Once again the linear algebra toolbox in NumPy can compute the norm for you with
linalg.norm(). 

 Let’s write these similarity measures as functions in Python. Open svdRec.py and
insert the code from listing 14.1. 

from numpy import *
from numpy import linalg as la

def ecludSim(inA,inB):
    return 1.0/(1.0 + la.norm(inA - inB))

def pearsSim(inA,inB):
    if len(inA) < 3 : return 1.0
    return 0.5+0.5*corrcoef(inA, inB, rowvar = 0)[0][1]

def cosSim(inA,inB):
    num = float(inA.T*inB)
    denom = la.norm(inA)*la.norm(inB)
    return 0.5+0.5*(num/denom)

The three functions are the three similarity measures we just discussed. The NumPy
linalg (Linear Algebra) toolbox is imported as la to make the code more readable.
The function assumes that inA and inB are column vectors. The perasSim() function
checks to see if there are three points or more. If not, it returns 1.0 because the two
vectors are perfectly correlated. 

 Let’s give these a try. After you’ve saved svdRec.py, enter the following in your
Python shell: 

>>> reload(svdRec)
<module 'svdRec' from 'svdRec.pyc'>
>>> myMat=mat(svdRec.loadExData())
>>> svdRec.ecludSim(myMat[:,0],myMat[:,4])
0.12973190755680383
>>> svdRec.ecludSim(myMat[:,0],myMat[:,0])
1.0

Listing 14.1 Similarity measures 

cos A B
A B

------------------=

42 32 22
+ +
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The Euclidian similarity measure seems to work; now let’s try the cosine:

>>> svdRec.cosSim(myMat[:,0],myMat[:,4])
0.5
>>> svdRec.cosSim(myMat[:,0],myMat[:,0])
1.0000000000000002

Cosine seems to function; let’s try the Pearson correlation: 

>>> svdRec.pearsSim(myMat[:,0],myMat[:,4])
0.20596538173840329>>> svdRec.pearsSim(myMat[:,0],myMat[:,0])
1.0

All of these metrics assumed the data was in column vectors. We’ll have problems if we
try to use row vectors with these functions. (It would be easy to change the functions
to compute on row vectors.) Column vectors imply that we’re going to use item-based
similarity. We’ll discuss the reason for that next. 

14.4.2 Item-based or user-based similarity? 

We compared the distance between two restaurant dishes. This is known as item-based
similarity. A second method that compares users is known as user-based similarity. If you
refer to figure 14.3, comparing rows (users) is known as user-based similarity; compar-
ing columns is known as item-based similarity. Which one should you use? The choice
depends on how many users you may have or how many items you may have. Item-based
scales with the number of items, and user-based scales with the number of users you
have. If you have something like a store, you’ll have a few thousand items at the most.
The biggest stores at the time of writing have around 100,000 items. In the Netflix com-
petition, there were 480,000 users and 17,700 movies. If you have a lot of users, then
you’ll probably want to go with item-based similarity. 

 For most product-driven recommendation engines, the number of users outnum-
bers the number of items. There are more people buying items than unique items
for sale. 

14.4.3 Evaluating recommendation engines 

How can we evaluate a recommendation engine? We don’t have a target value to pre-
dict, and we don’t have the user here to ask if our prediction is right or wrong. We can
do a form of cross-validation that we’ve done multiple times in other problems. The
way we do that is to take some known rating and hold it out of the data and then make
a prediction for that value. We can compare our predicted value with the real value
from the user. 

 Usually the metric used to evaluate a recommendation engine is root mean
squared error (RMSE). This metric computes the mean of the squared error and then
takes the square root of that. If you’re rating things on a scale of one to five stars and
you have an RMSE of 1.0, it means that your predictions are on average one star off of
what people really think. 



290 CHAPTER 14 Simplifying data with the singular value decomposition
14.5 Example: a restaurant dish recommendation engine 
We’re now going to build a recommendation engine. The topic we’re going to apply
this to is restaurant food. Say you’re sitting at home and you decide to go out to eat,
but you don’t know where you should go or what you should order. This program will
tell you both. 

 We’re first going to create the basic recommendation engine, which looks for
things you haven’t yet tried. The second step is to improve our recommendations by
using the SVD to reduce the feature space. We’ll then wrap up this program with a
human-readable UI so that people can use it. Finally, we’ll discuss some problems with
building recommendation engines. 

14.5.1 Recommending untasted dishes

The recommendation engine will work like this: given a user, it will return the top N
best recommendations for that user. To do this we do the following: 

1 Look for things the user hasn’t yet rated: look for values with 0 in the user-item
matrix. 

2 Of all the items this user hasn’t yet rated, find a projected rating for each item:
that is, what score do we think the user will give to this item? (This is where the
similarity part comes in.)

3 Sort the list in descending order and return the first N items. 

OK, let’s do it. Open your svdRec.py and add the code from the following listing.

def standEst(dataMat, user, simMeas, item):
    n = shape(dataMat)[1]
    simTotal = 0.0; ratSimTotal = 0.0
    for j in range(n):
        userRating = dataMat[user,j]
        if userRating == 0: continue
        overLap = nonzero(logical_and(dataMat[:,item].A>0, \
                                      dataMat[:,j].A>0))[0]  
        if len(overLap) == 0: similarity = 0
        else: similarity = simMeas(dataMat[overLap,item], \
                                   dataMat[overLap,j])
        #print 'the %d and %d similarity is: %f' % (item, j, similarity)
        simTotal += similarity
        ratSimTotal += similarity * userRating
    if simTotal == 0: return 0
    else: return ratSimTotal/simTotal

def recommend(dataMat, user, N=3, simMeas=cosSim, estMethod=standEst):
    unratedItems = nonzero(dataMat[user,:].A==0)[1]         
    if len(unratedItems) == 0: return 'you rated everything'
    itemScores = []
    for item in unratedItems:
        estimatedScore = estMethod(dataMat, user, simMeas, item)
        itemScores.append((item, estimatedScore))
    return sorted(itemScores, \                  
           key=lambda jj: jj[1], reverse=True)[:N]         

Listing 14.2 Item-based recommendation engine

Find items 
rated by 
both users

B

Find unrated 
itemsC

Return top N 
unrated items

D



291Example: a restaurant dish recommendation engine 
Listing 14.2 contains two functions. The first one, called standEst(), calculates the
estimated rating a user would give an item for a given similarity measure. The second
function, called recommend(), is the recommendation engine, and it calls standEst().
We’ll first discuss standEst() and then recommend(). 

 The function standEst() takes a data matrix, a user number, an item number, and
a similarity measure as its arguments. The data matrix is assumed to be organized like
figures 14.1 and 14.2 with users as the row and items as the columns. You first get the
number of items in the dataset, and then you initialize two variables that will be used
to calculate an estimated rating. Next, you loop over every item in the row. If an item
is rated 0, it means that this user has not rated it, and you’ll skip it. The big picture of
this loop is that you’re going to loop over every item that the user has rated and com-
pare it with other items. The variable overLap captures the elements that have been
rated between two items. B If there’s no overlap, the similarity is 0 and you exit this
loop. But if there are overlapping items, you calculate the similarity based on the over-
lapping items. This similarity is then accumulated, along with the product of the simi-
larity and this user’s rating. Finally, you normalize the similarity rating product by
dividing it by the sum of all the ratings. This will give you a number between 0 and 5,
which you can use to rank the forecasted values. 

 The function recommend() generates the top N recommendations. If you don’t
enter anything for N, it defaults to 3. The other arguments to this function are a simi-
larity measurement and an estimation method. You can use any of the similarity mea-
surements from listing 14.1. Right now you have only one option for the estimation
method, but you’ll add another one in the next subsection. The first thing you do is
create a list of unrated items for a given user. C If there are no unrated items, you exit
the function. Otherwise, you loop over all the unrated items. For each unrated item, it
calls stanEst(), which generates a forecasted score for that item. The item’s index
and the estimated score are placed in a list of tuples called itemScores. Finally, this
list is sorted by the estimated score and returned. D The list is sorted in reverse order,
which means largest values first.

 Let’s see this in action. After you’ve saved svdRec.py, enter the following into your
Python shell:

>>> reload(svdRec)
<module 'svdRec' from 'svdRec.py'>

Now let’s load an example matrix. You can use the same matrix from earlier in the
chapter with a few modifications. First, load the original matrix:

>>> myMat=mat(svdRec.loadExData())

This matrix was great for illustrating the SVD, but it’s not that interesting, so let’s alter
a few values: 

>>> myMat[0,1]=myMat[0,0]=myMat[1,0]=myMat[2,0]=4
>>> myMat[3,3]=2

Take a look at the matrix now:
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>>> myMat
matrix([[4, 4, 0, 2, 2],
        [4, 0, 0, 3, 3],
        [4, 0, 0, 1, 1],
        [1, 1, 1, 2, 0],
        [2, 2, 2, 0, 0],
        [1, 1, 1, 0, 0],
        [5, 5, 5, 0, 0]])

OK, now you’re ready for some recommendations. Let’s try the default
recommendation:

>>> svdRec.recommend(myMat, 2)
[(2, 2.5000000000000004), (1, 2.0498713655614456)]

This says user 2 (the third row down; remember we start with 0) would like item 2 with
a project score of 2.5 and item 1 with a project score of 2.05. Now let’s try this for
other similarity metrics: 

>>> svdRec.recommend(myMat, 2, simMeas=svdRec.ecludSim)
[(2, 3.0), (1, 2.8266504712098603)]
>>> svdRec.recommend(myMat, 2, simMeas=svdRec.pearsSim)
[(2, 2.5), (1, 2.0)]

Try this out with multiple users, and change the data set a little to see how it changes
the results. 

 This example illustrates how the recommendations are done using item-based sim-
ilarity and a number of similarity measures. You’ll now see how you can apply the SVD
to your recommendations. 

14.5.2 Improving recommendations with the SVD

Real data sets are much sparser than the version of myMat we used to demonstrate the
recommend() function. A more realistic matrix is shown in figure 14.4. 

Figure 14.4 Larger matrix of users and 
dishes. The presence of the many unrat-
ed items is more realistic than a com-
pletely filled-in matrix.
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You can enter this matrix or you can copy the function loadExData2() from the
code download. Now let’s compute the SVD of this matrix to see how many dimen-
sions you need.

>>>from numpy import linalg as la
>>> U,Sigma,VT=la.svd(mat(svdRec.loadExData2()))
>>> Sigma
array([  1.38487021e+01,   1.15944583e+01,   1.10219767e+01,
         5.31737732e+00,   4.55477815e+00,   2.69935136e+00,
         1.53799905e+00,   6.46087828e-01,   4.45444850e-01,
         9.86019201e-02,   9.96558169e-17])

Now, let’s find the number of singular values that give you 90% of the total energy.
First, you square the values in Sigma.

>>> Sig2=Sigma**2

Now, let’s see the total energy:

>>> sum(Sig2)
541.99999999999932

How about 90% of the total energy:

>>> sum(Sig2)*0.9
487.79999999999939

Let’s see how much energy is contained in the first two elements:

>>> sum(Sig2[:2])
378.8295595113579

That’s under 90%. How about the first three:

>>> sum(Sig2[:3])
500.50028912757909

That should do it. So we can reduce our matrix from an 11-dimensional matrix to
a 3-dimensional matrix. Now let’s create a function to calculate similarities in
our 3-dimensional space. We’re going to use the SVD to map our dishes into a lower-
dimensional space. In the lower-dimensional space, we’ll make recommendations
based on the same similarity metrics we used earlier. We’ll create a function similar
to standEst() in listing 14.2. Open svdRec.py and add the code from the follow-
ing listing. 

def svdEst(dataMat, user, simMeas, item):
    n = shape(dataMat)[1]
    simTotal = 0.0; ratSimTotal = 0.0
    U,Sigma,VT = la.svd(dataMat)
    Sig4 = mat(eye(4)*Sigma[:4])              
    xformedItems = dataMat.T * U[:,:4] * Sig4.I        
    for j in range(n):
        userRating = dataMat[user,j]

Listing 14.3 Rating estimation by using the SVD

Create diagonal 
matrix

B

Create transformed 
itemsC
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        if userRating == 0 or j==item: continue
        similarity = simMeas(xformedItems[item,:].T,\
                             xformedItems[j,:].T)
        print 'the %d and %d similarity is: %f' % (item, j, similarity)
        simTotal += similarity
        ratSimTotal += similarity * userRating
    if simTotal == 0: return 0
    else: return ratSimTotal/simTotal

The code in listing 14.3 contains one function, svdEst(). This will be used in place of
standEst() when you call recommend(). This function creates an estimated rating for
a given item for a given user. If you compare it to standEst() in listing 14.2, you’ll see
that many of the lines are similar. Something unique to this function is that it does an
SVD on the dataset on the third line. After the SVD is done, you use only the singular
values that give you 90% of the energy. The singular values are given to you in the
form of a NumPy array, so to do matrix math you need to build a diagonal matrix with
these singular values on the diagonal. B Next, you use the U matrix to transform our
items into the lower-dimensional space. C 

 The for loop iterates over all the elements in a row for a given user. This serves the
same purpose as the for loop in standEst() except you’re calculating the similarities
in a lower dimension. The similarity measure used is passed into this function as an
argument. Next, you sum up the similarities and the product of the similarities and
the rating that this user gave this item. These are returned to give an estimated rating.
I’ve included one print statement in the for loop so you can see what’s going on with
the similarity measurements. You can comment it out if the output gets annoying. 

 Let’s see this in action. After you’ve entered the code from listing 14.3, save
svdRec.py and enter the following in your Python shell:

>>> reload(svdRec)
<module 'svdRec' from 'svdRec.pyc'>
>>> svdRec.recommend(myMat, 1, estMethod=svdRec.svdEst)
The 0 and 3 similarity is 0.362287.
                    .
                    .
                    .
The 9 and 10 similarity is 0.497753.
[(6, 3.387858021353602), (8, 3.3611246496054976), (7, 3.3587350221130028)]

Now let’s try it with a different distance metric:

>>> svdRec.recommend(myMat, 1, estMethod=svdRec.svdEst, 
simMeas=svdRec.pearsSim)
The 0 and 3 similarity is 0.116304.
                    .
                    .
                    .
The 9 and 10 similarity is 0.566796.
[(6, 3.3772856083690845), (9, 3.3701740601550196), (4, 3.3675118739831169)]

Try that out with a few different similarity metrics. Compare it to the previous method
on this dataset. Which one performs better? 
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14.5.3 Challenges with building recommendation engines

The code in this section works and does an effective job of demonstrating how recom-
mendation engines work and how the SVD distills data into its essential components. I
wrote the code to be as easy to understand as possible, not necessarily the most effi-
cient. For one thing, you don’t need to do the SVD every time you want a projected
value. With our dataset, this didn’t make a difference. But on larger datasets, this will
slow things down. The SVD could be done once when the program is launched. On
large systems, the SVD is done once a day or less often and is done offline.

 There are a number of other scaling challenges, such as representing our matrix.
The matrix in this example had a lot of 0s, and in a real system it would have many
more. Perhaps we could save some memory and computations by storing only the
nonzero values? Another potential source of computing waste is the similarity scores.
In our program, we calculated the similarity scores for multiple items each time we
wanted a recommendation score. The scores are between items, so we reuse them if
another user needs them. Another thing commonly done in practice is to compute
the similarity scores offline and store them. 

 Another problem with recommendation engines is how to make good recommen-
dations with no data. This is known as the cold-start problem and can be difficult.
Another way to phrase this problem is users won’t like this unless it works, and it won’t
work unless users like it. If recommendations are a nice-to-have feature, then this may
not be a big problem, but if the success of your application is linked to the success of
the recommendations, then this is a serious problem. 

 One solution to the cold-start problem is to treat recommendations as a search
problem. Under the hood these are different solutions, but they can be presented to
the user in a transparent manner. To treat these recommendations as a search prob-
lem you could use properties of the items you’re trying to recommend. In our restau-
rant dish example we could tag dishes along a number of parameters such as
vegetarian, American BBQ, expensive, and so on. You could also treat these properties
as data for our similarity calculations. This is known as content-based recommenda-
tion. Content-based recommendation may not be as good as the collaborative-filtering
methods we discussed earlier, but when it’s all you have, it’s a good start. 

14.6 Example: image compression with the SVD
In this last section you’ll see a great example of how the SVD can be used for image
compression. This example allows you to easily visualize how well the SVD is approxi-
mating our data. In the code repository, I included a handwritten digit image. This is
one of the images used in chapter 2. The original image is 32 pixels wide and 32 pixels
long, with a total of 1024 pixels. Can we represent the same image with fewer num-
bers? If we’re able to compress an image, we can save disk space or bandwidth. 

 We can use the SVD to reduce the dimensionality of the data and compress an
image. Let’s see how this works on the handwritten digits. The following listing con-
tains some code for reading the digit and compressing it. To see how good of a job it
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does, we also reconstruct the compressed image. Open svdRec.py and enter the fol-
lowing code. 

def printMat(inMat, thresh=0.8):
    for i in range(32):
        for k in range(32):
            if float(inMat[i,k]) > thresh:
                print 1,
            else: print 0,
        print ''

def imgCompress(numSV=3, thresh=0.8):
    myl = []
    for line in open('0_5.txt').readlines():
        newRow = []
        for i in range(32):
            newRow.append(int(line[i]))
        myl.append(newRow)
    myMat = mat(myl)
    print "****original matrix******"
    printMat(myMat, thresh)
    U,Sigma,VT = la.svd(myMat)
    SigRecon = mat(zeros((numSV, numSV)))
    for k in range(numSV):
        SigRecon[k,k] = Sigma[k]
    reconMat = U[:,:numSV]*SigRecon*VT[:numSV,:]
    print "****reconstructed matrix using %d singular values******" % numSV
    printMat(reconMat, thresh)

The first function in listing 14.4, printMat(), prints a matrix. The matrix will have
floating point values, so you need to define what’s light and what’s dark. You include a
threshold you can tune later. This function iterates over everything in the matrix and
prints a 1 if the value in the matrix is over the threshold and a 0 if not. 

 The next function does the image compression. It allows you to reconstruct an
image with any given number of singular values. This creates a list and then opens
the text file and loads the characters from the file as numeric values. After the matrix
is loaded, you print it to the screen. Next, you take the SVD of the original image
and reconstruct the image. This is done by reconstructing Sigma as SigRecon. Sigma
is a diagonal matrix, so you create a matrix with all 0s and then fill in the diagonal
elements with the first singular values. Finally, SigRecon is used with the trun-
cated U and VT matrices to build the reconstructed matrix. This matrix is printed
using printMat(). 

 Let’s see this function in action:

>>> reload(svdRec)
<module 'svdRec' from 'svdRec.py'>
>>> svdRec.imgCompress(2)
****original matrix******
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Listing 14.4 Image-compression functions 
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0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0
0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0
0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0
0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
(32, 32)
****reconstructed matrix using 2 singular values******
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0
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0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

With as few as two singular values, the image is reconstructed quite accurately. How many
numbers did we use to reconstruct this image? Each of the U and VT matrices was 32x2,
and there were two singular values. That’s a total 64+64+2 = 130. Compare this with the
original number, which was 1024, and you get an almost 10x compression. 

14.7 Summary
The singular value decomposition (SVD) is a powerful tool for dimensionality reduc-
tion. You can use the SVD to approximate a matrix and get out the important features.
By taking only the top 80% or 90% of the energy in the matrix, you get the important
features and throw out the noise. The SVD is employed in a number of applications
today. One successful application is in recommendation engines. 

 Recommendations engines recommend an item to a user. Collaborative filtering is
one way of creating recommendations based on data of users’ preferences or actions.
At the heart of collaborative filtering is a similarity metric. A number of similarity met-
rics can be used to calculate the similarity between items or users. The SVD can be
used to improve recommendation engines by calculating similarities in a reduced
number of dimensions. 

 Calculating the SVD and recommendations can be a difficult engineering problem
on massive datasets. Taking the SVD and similarity calculations offline is one method
of reducing redundant calculations and reducing the time required to produce a rec-
ommendation. In the next chapter, we’ll discuss some tools for working with massive
datasets and doing machine learning on these datasets. 



Big data and MapReduce
I often hear “Your examples are nice, but my data is big, man!” I have no doubt that
you work with data sets larger than the examples used in this book. With so many
devices connected to the internet and people interested in making data-driven
decisions, the amount of data we’re collecting has outpaced our ability to process
it. Fortunately, a number of open source software projects allow us to process large
amounts of data. One project, called Hadoop, is a Java framework for distributing
data processing to multiple machines. 

 Imagine for a second that you work for a store that sells items on the internet,
and you get many visitors—some purchasing items, some leaving before they pur-
chase items. You’d like to be able to identify the ones who make purchases. How do
you do this? You can look at the web server logs and see what pages each person
went to. Perhaps some other actions are recorded; if so, you can train a classifier on

This chapter covers
■ MapReduce
■ Using Python with Hadoop Streaming
■ Automating MapReduce with mrjob
■ Training support vector machines in parallel 

with the Pegasos algorithm
299
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these actions. The only problem is that this dataset may be huge, and it may take mul-
tiple days to train this classifier on a single machine. This chapter will show you some
tools you can use to solve a problem like this: Hadoop and some Python tools built on
top of Hadoop. 

 Hadoop is a free, open source implementation of the MapReduce framework.
You’re going to first learn what MapReduce and the Hadoop project are. You’ll next
see how you can write MapReduce jobs in Python. You’ll test these jobs on a single
machine, and then you’ll see how you can use Amazon Web Services to run full
Hadoop jobs on many machines at one time. Once you’re comfortable running
MapReduce jobs, we’ll discuss common solutions to do machine learning jobs in
MapReduce. You’ll then see a framework for automating MapReduce jobs in Python
called mrjob. Finally, you’ll write a distributed SVM with mrjob that could be used to
train a classifier on multiple machines. 

15.1 MapReduce: a framework for distributed computing 

MapReduce is a software framework for spreading a single computing job across mul-
tiple computers. It’s assumed that these jobs take too long to run on a single com-
puter, so you run them on multiple computers to shorten the time. Some of these jobs
are summaries of daily statistics where running them on a single machine would take
longer than one day. 

 A U.S. patent was issued to Google for MapReduce, although others claim to have
independently developed similar frameworks. Jeffrey Dean and Sanjay Ghemawat from
Google first published the idea in 2004, in a paper titled “MapReduce: Simplified Data
Processing on Large Clusters.”1 The name MapReduce comes from the words map and
reduce, which are functions commonly used in functional programming. 

 MapReduce is done on a cluster, and the cluster is made up of nodes. MapReduce
works like this: a single job is broken down into small sections, and the input data is
chopped up and distributed to each node. Each node operates on only its data. The
code that’s run on each node is called the mapper, and this is known as the map step.
The output from the individual mappers is combined in some way, usually sorted. The
sorted data is then broken into smaller portions and distributed to the nodes for fur-
ther processing. This second processing step is known as the reduce step, and the code

1 J. Dean, S. Ghemawat, “MapReduce: Simplified Data Processing on Large Clusters,” OSDI ’04: 6th Symposium
on Operating System Design and Implementation, San Francisco, CA, December, 2004.

MapReduce
Pros: Processes a massive job in a short period of time.

Cons: Algorithms must be rewritten; requires understanding of systems engineering.

Works with: Numeric values, nominal values.
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run is known as the reducer. The output of the reducer is the final answer you’re look-
ing for. 

 The advantage of MapReduce is that it allows programs to be executed in parallel.
If our cluster has 10 nodes and our original job took 10 hours to process, a MapRe-
duce version of the job can reach the same result in a little more than 1 hour. For
example, say we want to know the maximum temperature in China from the last 100
years. Assume we have valid data from each province for each day over this period.
The data looks like <province> <date> <temp>. We could break up the data by the
number of nodes we have, and each node could look for the maximum among its
data. Each mapper would emit one temperature, <”max”><temp>. All mappers would
produce the same key, which is a string “max.” We’d then need just one reducer to
compare the outputs of the mappers and get our global maximum temperature. 

NOTE: At no point do the individual mappers or reducers communicate
with each other. Each node minds its own business and computes the data it
has been assigned. 

Depending on the type of job, we may require different numbers of reducers. If we
revisit the Chinese temperature example and say we want the maximum temperature
for each year, the mappers would now have to find the maximum temperature for
each year and emit that, so the intermediate data would look like <year> <temp>. Now
we’d need to make sure all values with the same year go to the same reducer. This is
done in the sort between the map and reduce steps. This example illustrates another
point: the way data is passed around. Data is passed in key/value pairs. In our second
Chinese temperature example, the year was the key and the temperature was the
value. We sorted by the year, so we correctly combined similar years; each reducer
would receive common key (year) values.

 From these examples you may have noticed that the number of reducers isn’t
fixed. There are a number of flexible options in a MapReduce implementation. The
orchestration of this is handled by a master node. The master node handles the
orchestration of the whole MapReduce job, including which data is placed on which
node, and it handles the timing of the map, sort, and reduce steps, and so on. The
master node can also handle fault tolerance. Often, multiple copies of the mapper
input data are sent to multiple nodes in the event of a failure. Consider the schematic
representation of a MapReduce cluster in figure 15.1. 

 Each machine in figure 15.1 has two processors and can handle two map or reduce
jobs simultaneously. If Machine 0 was destroyed by a robot airplane during the map
phase, the master node would recognize this. When the master node sensed a failure,
it would remove Machine 0 from the cluster and continue with the job. In some imple-
mentations of MapReduce, additional data is stored on each machine. The input data
to Machine 0 may also be stored on Machine 1 in case Machine 0 gets destroyed by a
robot airplane. In some MapReduce implementations, the nodes need to communi-
cate with the master node, indicating that they’re alive and functioning. If they aren’t
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alive and properly functioning, the master node may restart them or completely take
them out of the pool of available machines. 

 Some key points about MapReduce from the previous example are these:

■ A master node controls the MapReduce job.
■ MapReduce jobs are broken into map and reduce tasks.
■ Map tasks don’t communicate with other map tasks; the same thing is true for

reduce tasks.
■ Between the map and reduce steps, there’s a sort or combine step.
■ Redundant copies of the data are stored on separate machines in case of

machine failure.
■ Data is passed between mappers and reducers in key/value pairs.

One implementation of the MapReduce framework is the Apache Hadoop project. In
the next section we’ll discuss Hadoop and how you can use it with Python. 

15.2 Hadoop Streaming
Hadoop is an open source project written in Java. The Hadoop project has a large set
of features for running MapReduce jobs. In addition to distributed computing,
Hadoop has a distributed filesystem. 

 This isn’t a Java book, nor is it a Hadoop book. You’re going to see just enough of
Hadoop to run MapReduce jobs in Python. If you’re interested in knowing more
about Hadoop, I suggest you pick up Hadoop in Action2 or read documentation on

2 Chuck Lam, Hadoop in Action (Manning Publications, 2010).

Figure 15.1 A schematic repre-
sentation of the MapReduce 
framework. In this example 
there are three machines with 
two processors each in the clus-
ter. Machine 0 fails, but the job 
continues.
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Hadoop’s site (http://hadoop.apache.org/). The book Mahout in Action3 is also a
great source of information if you’re interested in machine learning with MapReduce.

 Hadoop has code that allows you to run distributed programs that are written in lan-
guages other than Java. Because this book is written in Python, you’ll write some MapRe-
duce jobs in Python and then run them in Hadoop Streaming. Hadoop Streaming
(http://hadoop.apache.org/common/docs/current/streaming.html) operates like
the pipes in Linux. (If you aren’t familiar with pipes, they use the symbol | and take the
output from one command and direct it to the input of another command.) If our map-
per was called mapper.py and our reducer was called reducer.py, Hadoop Streaming
would run something similar to the following Linux command:

cat inputFile.txt | python mapper.py | sort | python reducer.py > 
outputFile.txt

In Hadoop Streaming something like this is done over multiple machines. We can use
the Linux command to test our MapReduce scripts written in Python. 

15.2.1 Distributed mean and variance mapper

We’re going to create a MapReduce job that calculates the mean and variance of a
bunch of numbers. This is for demonstration purposes, so we’ll use a small amount of
data. Create a file called mrMeanMapper.py in your favorite editor, and add in the
code from the following listing. 

import sys
from numpy import mat, mean, power

def read_input(file):
    for line in file:
        yield line.rstrip()

input = read_input(sys.stdin)
input = [float(line) for line in input]
numInputs = len(input)
input = mat(input)
sqInput = power(input,2)

print "%d\t%f\t%f" % (numInputs, mean(input), mean(sqInput)) 
print >> sys.stderr, "report: still alive"

This is a straightforward example. You loop over all the input lines and first create a
list of floats. Next, you get the length of that list and then create a NumPy matrix from
that list. You can then quickly square all of the values. Finally, you send out the mean
and the mean of the squared values. These values will be used to calculate the global
mean and variance.

NOTE A good practice is to send out a report to standard error. If jobs don’t report
something to standard error every 10 minutes, then they’ll get killed in Hadoop.

3 Sean Owen, Robin Anil, Ted Dunning, and Ellen Friedman, Mahout in Action (Manning Publications, 2011).

Listing 15.1 Distributed mean and variance mapper
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Let’s see the code from listing 15.1 in action. There’s an input file with 100 numbers
in a file called inputFile.txt in the source code download. You can experiment with
the mapper before you even touch Hadoop by typing the following command in a
Linux window:

cat inputFile.txt | python mrMeanMapper.py

You can also do this on Windows by typing the following in a DOS terminal: 

python mrMeanMapper.py < inputFile.txt

You should see something like this:

100     0.509570        0.344439
report: still alive

The first line is the standard output, which we’ll feed into the reducer. The second
line, which was written to standard error, will be sent to the master node to report to
the master that the node is still alive. 

15.2.2 Distributed mean and variance reducer

Now that we have the mapper working, let’s work on the reducer. The mapper took raw
numbers and collected them into intermediate values for our reducer. We’ll have many
of these mappers doing this in parallel, and we’ll need to combine all those outputs into
one value. We now need to write the reducer so we can combine the intermediate key
value pairs. Open your text editor and create a file called mrMeanReducer.py; then
enter the code from the following listing.

import sys
from numpy import mat, mean, power

def read_input(file):
    for line in file:
        yield line.rstrip()

input = read_input(sys.stdin)
mapperOut = [line.split('\t') for line in input]
cumVal=0.0
cumSumSq=0.0
cumN=0.0
for instance in mapperOut:
    nj = float(instance[0])
    cumN += nj
    cumVal += nj*float(instance[1])
    cumSumSq += nj*float(instance[2])
mean = cumVal/cumN
varSum = (cumSumSq - 2*mean*cumVal + cumN*mean*mean)/cumN
print "%d\t%f\t%f" % (cumN, mean, varSum)
print >> sys.stderr, "report: still alive"

Listing 15.2 Distributed mean and variance reducer
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The code in listing 15.2 is the reducer, and this receives the output of the values from
listing 15.1. These values are then combined to form a global mean and variance,
which was the goal of this exercise. 

 You can practice with this on your local machine by typing the following at the
command prompt:

%cat inputFile.txt | python mrMeanMapper.py | python mrMeanReducer.py

In DOS, enter the following command:

%python mrMeanMapper.py < inputFile.txt | python mrMeanReducer.py

You’ll see how to run this on many machines at one time. Perhaps you don’t have 10
servers sitting around your house. That’s OK. You’ll learn where you can rent them by
the hour in the next section. 

15.3 Running Hadoop jobs on Amazon Web Services
If you want to run your MapReduce jobs on 100 machines at the same time, you need
to find 100 machines. You could buy them yourself or you could rent them from some-
one else. Amazon rents out parts of its massive computing infrastructure to developers
through Amazon Web Services (AWS) at http://aws.amazon.com/.

AWS powers websites, streaming video, mobile applications, and the like. Storage,
bandwidth, and compute power are metered, and you’re billed only for your use of
each of these, by the hour with no long-term contracts. This is what makes AWS so
attractive—you pay only for what you use. Say you have an idea that takes 1,000 com-
puters per day. You can get set up on AWS and experiment for a few days. Then, if you
decide it’s a bad idea, you can shut it down and you don’t have to pay for those 1,000
computers any longer. We’ll next talk about a few services currently available on AWS,
then we’ll walk through getting set up on AWS, and finally we’ll run a Hadoop Stream-
ing job on AWS. 

15.3.1 Services available on AWS

A large number of services are available on AWS. All of them have names that to the
informed seem totally logical and to the uninformed seem totally cryptic. AWS is con-
stantly evolving and adding new services. Some basic, stable services that you’ll be
using are these:

■ S3—Simple Storage Service is used for storing data on the internet and is used
in conjunction with other AWS products. Here you’re renting some sort of stor-
age device, so you pay by the amount of data you store and the length of time
you store that data. 

■ EC2—Elastic Compute Cloud is a service for using server instances. This is the
heart of many common AWS-based systems. You can configure the server to run
almost any operating system. A server can be started from a machine image in a
matter of minutes. You can create, store, and share machine images. The elastic
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part of the name comes from the ability to quickly expand the number of serv-
ers you’re running as your demands require. 

■ Elastic MapReduce—This is the AWS MapReduce implementation. This is built
on a slightly older release of Hadoop. (Amazon wanted to have a stable release,
and so they made a few modifications, which prevents them from having the
bleeding-edge release of Hadoop.) It has a nice GUI and simplifies the setup of
Hadoop jobs. You don’t have to mess with adding files to Hadoop’s filesystem or
configuring Hadoop machines. In Elastic MapReduce (EMR) you can run Java
jobs or Hadoop Streaming jobs. We’ll focus on Hadoop Streaming. 

A large number of other services are available for use. We’ll focus on EMR, although to
use it we need to use S3. EMR takes files from S3 and starts up EC2 instances with
Hadoop installed. 

15.3.2 Getting started with Amazon Web Services 

To get started with AWS, you need to create an account on AWS. To use AWS you’ll need
a credit card; the exercises in the rest of the chapter will cost around $1 USD. Go to http:
//aws.amazon.com/ and there will be a button in the top right that says “Sign Up Now,”
similar to figure 15.2. Follow the instructions on the next three pages to get signed up
for Amazon Web Services. Make sure you sign up for S3, Elastic MapReduce, and EC2. 

Figure 15.2 The upper-right portion of the landing page at http://aws.amazon.com/, showing where 
to start the sign-up process for Amazon Web Services
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After you’ve created an account with AWS, log into the AWS console and click the EC2,
Elastic MapReduce, and S3 tabs to make sure you signed up to use each of these ser-
vices. If you aren’t signed up for a service, you’ll see something similar to figure 15.3. 

 You’re now ready to run a Hadoop job on Amazon’s computers. We’ll walk
through running a Hadoop job on EMR. 

15.3.3 Running a Hadoop job on EMR

Once you’ve signed up for all the required Amazon services, log into the AWS console
and click the S3 tab. You’ll need to upload our files to S3 in order for the AWS version
of Hadoop to find our files. 

1 First, you’ll need to create a new bucket. You can think of a bucket as a drive.
Create a new bucket; for example, I created one called rustbucket. Note: bucket
names are unique and shared among all users. You should create a unique
name for your bucket.

2 Now create two new folders, one called mrMeanCode and one called mrMean-
Input. You’re going to upload the Python MapReduce files you created earlier
to mrMeanCode. The other folder, mrMeanInput, is where you’ll store the
input to your Hadoop job. 

3 Upload the file inputFile.txt to the folder mrMeanInput in your bucket (for
example, rustbucket). 

Figure 15.3 AWS Console showing a service I’m not signed up for yet. If you get this window for S3, 
EC2, or Elastic MapReduce, sign up for those services.
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4 Upload the files mrMeanMapper.py and mrMeanReducer.py to the folder
mrMeanCode in your bucket. Now that you have all the files uploaded, you’re
ready to launch your first Hadoop job on multiple machines.

5 Click the Elastic MapReduce tab. Next, click the Create New Job Flow button.
Name the job flow mrMean007. Below that are two check boxes and a drop-down
box. Click the Run Your Own Application radio button. On the drop-down
menu, select Streaming. Your screen should look like figure 15.4. Click the Con-
tinue button.

6 In this step, you give the input arguments to Hadoop. If these settings aren’t
correct, your job will fail. Enter the values in the following fields on the Specify
Parameters screen (be sure to include the quotes):

Input Location*: <your bucket name>/mrMeanInput/inputFile.txt

Output Location*: <your bucket name>/mrMean007Log

Mapper*: "python s3n:// <your bucket name>/mrMeanCode/mrMeanMapper.py"

Reducer*: "python s3n:// <your bucket name>/mrMeanCode/mrMeanReducer.py"

You can leave the Extra Args field blank. This is where you’d specify extra argu-
ments such as restricting the number of reducers. Your screen should look like
figure 15.5. Click Continue.

Figure 15.4 The Create a New Job Flow screen of Elastic MapReduce
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7 The next window is the Configure EC2 Instances window, where you specify the
number of servers that will crunch your data. The default is 2; you can change it
to 1. You can also specify the type of EC2 instance you want to use. You can use a
more powerful machine with larger memory, but it will cost more. In practice,
big jobs are usually run on Large (or better) instances. Please refer to http://
aws.amazon.com/ec2/#instance for more details. For this trivial demonstra-
tion, you can use one Small machine. Your screen should look like figure 15.6.
Click Continue.

Figure 15.5 The Specify Parameters screen of Elastic MapReduce

Figure 15.6 The Configure EC2 Instances screen of Elastic MapReduce. Here you 
set the size of the servers and number of servers you’ll use on your MapReduce job. 
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8 The next screen is Advanced Options, where you can set options for debugging.
Make sure you enable logging. For the Amazon S3 Log Path, enter s3n://
<your bucket name> /mrMean007DebugLog. You won’t be able to enable Hadoop
debugging unless you’ve signed up for SimpleDB. SimpleDB is an Amazon tool
for easy access to nonrelational databases. We won’t use it. We should be able to
debug our Hadoop Streaming jobs without it. When a Hadoop job fails, a lot of
information is written to this directory. If your job does fail, you can go back
and read some of this information to see what went wrong. Your screen should
look like figure 15.7. Click Continue.

9 The critical settings are now finished. You can select the defaults on the Boot-
strap Actions page and continue to the Review page. Make sure everything
looks right; then click the Create Job Flow button at the bottom. Your job
has now been created. Click the Close button on the next page, and you’ll
be brought back to the Elastic MapReduce console. As your job runs, its
progress will be displayed in this console. Don’t worry if it takes a while to run
such a trivial job. A new server instance is being configured. You should see
something like figure 15.8. (You probably won’t have as many failed jobs as
shown here.) 

Figure 15.7 The Advanced Options screen of Elastic MapReduce. Here you set the path of where 
the debug files will be placed. You can also set Keep Alive and a key pair to log into the machine 
if a job fails. This is a good idea when you want to inspect the exact environment your code will 
be run on.
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A few minutes after your job has started running, it will finish. You can inspect the out-
puts in S3 by clicking the S3 tab at the top of the console. When the S3 console comes
up, click the bucket you created earlier (rustbucket in this example). Inside this
bucket, you should see a mrMean007Log folder. Double-click the folder, and the con-
sole will open it. Inside, you should see a file called part-00000. Double-click this file to
download it to your local machine. This is the output of your reducer. Open it with a
text editor. The output should be 

100     0.509570    0.344439

This is the same output that we got when testing the job on our local machine using
pipes. Things worked on this job, but if they didn’t work, how would you know what
went wrong? Back on the Elastic MapReduce tab, if you click a completed job, you’ll see
a Debug button with the cartoon of a small green insect on it. Clicking this will bring
up a debug window, which gives you access to different log files. Click the Controller
link, and you’ll see the Hadoop command. You can also see the Hadoop version. 

 Now that you have a taste of what it’s like to run a Hadoop Streaming job, we’re
going to discuss how to execute machine learning algorithms on Hadoop. MapRe-
duce is a system that allows you to run many programs on many computers, but these
programs need to be written a little differently for MapReduce.   

Figure 15.8 The Elastic MapReduce console showing MapReduce jobs. The MapReduce job in this 
chapter has started in this figure.

Skipping AWS
If you don’t want to get your credit card out or are afraid that someone on the internet
will steal your information, you can run this same task on a local machine. These
steps assume you have Hadoop installed (http://hadoop.apache.org/common/
docs/stable/#Getting+Started). 

1. Copy data to HDFS:

>hadoop fs -copyFromLocal inputFile.txt mrmean-i
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15.4 Machine learning in MapReduce
Using MapReduce with 10 machines isn’t the same as having a computer 10 times big-
ger than your current computer. If the MapReduce jobs are written properly, it may
feel like this. But you can’t take every program and get an instant speedup. The map
and reduce tasks need to be properly written. 

 Many machine learning algorithms don’t intuitively fit in a MapReduce frame-
work. It doesn’t matter. As the old adage goes, “Necessity is the mother of invention.”
Inventive scientists and engineers have written MapReduce solutions to almost every
popular machine learning algorithm. 

 The following brief list identifies popular machine learning algorithms from this
book and their MapReduce implementations: 

■ Naïve Bayes—This is one of a few algorithms that’s naturally implementable in
MapReduce. In MapReduce, it’s easy to calculate sums. In naïve Bayes, we were
calculating the probability of a feature given a class. We can give the results
from a given class to an individual mapper. We can then use the reducer to sum
up the results. 

■ k-Nearest Neighbors—Trying to find similar vectors in a small dataset can take a
large amount of time. In a massive dataset, it can limit daily business cycles. One
approach to speed this up is to build a tree, such as a tree to narrow the search
for closest vectors. This works well when the number of features is under 10. A pop-
ular method for performing a nearest neighbor search on higher-dimensional
items such as text, images, and video is locality-sensitive hashing. 

■ Support vector machines—The Platt SMO algorithm that we used in chapter 6
may be difficult to implement in a MapReduce framework. There are other
implementations of SVMs that use a version of stochastic gradient descent such
as the Pegasos algorithm. There’s also an approximate version of SVM called
proximal SVM, which computes a solution much faster and is easily applied to a
MapReduce framework.4 

4 Glenn Fung, Olvi L. Mangasarian, “PSVM: Proximal Support Vector Machine,” http://www.cs.wisc.edu/dmi/
svm/psvm/.

(continued)
2. Start the job:

>hadoop jar $HADOOP_HOME/contrib/streaming/hadoop-0.20.2-stream-
ing.jar -input mrmean-i -output mrmean-o -mapper "python mrMeanMap-
per.py" -reducer "python mrMeanReducer.py"

3. Check the data:

>hadoop fs -cat mrmean-o/part-00000

4. Get the data:

>hadoop fs -copyToLocal mrmean-o/part-00000 .

That’s it. 
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■ Singular value decomposition—The Lanczos algorithm is an efficient method
for approximating eigenvalues. This algorithm can be applied in a series of
MapReduce jobs to efficiently find the singular values in a large matrix. The
Lanczos algorithm can similarly be used for principal component analysis. 

■ k-means clustering—One popular version of distributed clustering is known as
canopy clustering. You can calculate the k-means clusters by using canopy clus-
tering first and using the canopies as the k initial clusters. 

If you’re interested in learning how a few more common machine learning tasks are
solved in MapReduce, check out the Apache Mahout project (http://
mahout.apache.org/) and Mahout in Action. The book is especially good at explaining
common implementation details for dealing with massive datasets. The Apache
Mahout project is written in Java. Another great source for properly writing MapRe-
duce jobs is a book called Data Intensive Text Processing with Map/Reduce by Jimmy Lin
and Chris Dyer. 

 Now let’s explore a Python tool for running MapReduce jobs.

15.5 Using mrjob to automate MapReduce in Python
Of the algorithms listed previously, a number of them are iterative. They can be com-
pleted in a few MapReduce jobs but not one. The simple example we looked at in sec-
tion 15.3 on Amazon’s EMR ran in a single job. What if we wanted to run AdaBoost on
a very large dataset? What if we wanted to run 10 MapReduce jobs? 

 There are some frameworks for automating MapReduce job flow, such as Cascad-
ing and Oozie, but none of these run on Amazon’s EMR. Amazon’s EMR supports Pig,
which can use Python scripts, but doing this would require learning another scripting
language. (Pig is an Apache project which provides a higher-level language for data
processing.  Pig turns the data processing commands into Hadoop MapReduce jobs.)
There are a few tools for running MapReduce jobs from within Python, and one I’m
particularly fond of is called mrjob. 

 Mrjob (http://packages.python.org/mrjob/)5 was an internal framework at Yelp
(a restaurant review website) until they made it open source in late 2010. You can see
appendix A for how to install it. We’re going to show how to use mrjob next, and then
we’ll rewrite the global mean and variance calculation we did earlier in mrjob. I think
you’ll find mrjob both helpful and convenient. (Mrjob is useful as a learning tool, but
it’s still Python. To get the best performance, you should use Java.) 

15.5.1 Using mrjob for seamless integration with EMR

Mrjob runs Hadoop Streaming on Elastic MapReduce as we did in section 15.3. The
main difference is that you don’t have to worry about uploading your data to S3 and
then typing in the commands correctly. All of this is handled by mrjob. With mrjob
you can also run MapReduce jobs on your own Hadoop cluster or in nondistributed

5 Mrjob documentation: http://packages.python.org/mrjob/index.html; source code can be found here:
https://github.com/Yelp/mrjob.
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mode for testing. The switch from running a job locally to running it on EMR is easy.
For example, to run a job locally, you’d enter something like this: 

% python mrMean.py < inputFile.txt > myOut.txt

Now to run that same job on EMR you’d type

% python mrMean.py -r emr < inputFile.txt > myOut.txt

All of the uploading and form filling that we did in section 15.3 is done automatically
from mrjob. You can add another command to run the job on your local Hadoop clus-
ter if you happen to have one. You can also add numerous command-line arguments
to specify the number of servers you want on EMR or the type of server. 

 In section 15.3 we had two separate files for our mapper and reducer. In mrjob the
mapper and reducer can reside in the same script. We’ll now look inside a script to see
how it works. 

15.5.2 The anatomy of a MapReduce script in mrjob

You can do a lot of things with mrjob, but to get started we’ll go over a typical MapRe-
duce job. The best way to explain this is with an example. We’ll solve the same mean/
variance problem so that we can focus on the subtleties of the framework. The code in
listing 15.3 serves the same purpose as listings 15.1 and 15.2. Open a text editor, cre-
ate a new file called mrMean.py, and enter the code from the following listing. 

from mrjob.job import MRJob

class MRmean(MRJob):
    def __init__(self, *args, **kwargs):
        super(MRmean, self).__init__(*args, **kwargs)
        self.inCount = 0
        self.inSum = 0
        self.inSqSum = 0

    def map(self, key, val):             
        if False: yield
        inVal = float(val)
        self.inCount += 1
        self.inSum += inVal
        self.inSqSum += inVal*inVal

    def map_final(self):                      
        mn = self.inSum/self.inCount
        mnSq = self.inSqSum/self.inCount
        yield (1, [self.inCount, mn, mnSq])

    def reduce(self, key, packedValues):
        cumVal=0.0; cumSumSq=0.0; cumN=0.0
        for valArr in packedValues: 
            nj = float(valArr[0])
            cumN += nj
            cumVal += nj*float(valArr[1])

Listing 15.3 Mrjob implementation of distributed mean variance calculation

Receives 
streaming inputs

Processing after all 
inputs have arrived
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            cumSumSq += nj*float(valArr[2])
        mean = cumVal/cumN
        var = (cumSumSq - 2*mean*cumVal + cumN*mean*mean)/cumN
        yield (mean, var) 

    def steps(self):
        return ([self.mr(mapper=self.map, reducer=self.reduce,\
             mapper_final=self.map_final)])

if __name__ == '__main__':
    MRmean.run()

This code calculates a distributed mean and variance. The input text is broken up into
multiple mappers and these calculate intermediate values, which are accumulated in
the reducer to give a global mean and variance. 

 You need to create a new class that inherits from the class MRjob. In this example,
I’ve called that class MRmean. Your mapper and reducer are methods of this class.
There’s another method called steps(), which defines the steps taken. You don’t
have to do just map-reduce. You could do map-reduce-reduce-reduce, or map-reduce-
map-reduce-map-reduce. You’ll see an example of this in the next section. In the
steps() method you tell mrjob the names of your mapper and reducer. If you don’t
specify anything, it will look for methods called mapper and reducer. 

 Let’s talk about the behavior of mapper. The mapper acts like the inside of a for
loop and will get called for every line of input. If you want to do something after
you’ve received all the lines of the input, you can do that in mapper_final. This may
seem strange at first, but it’s convenient in practice. You can share state between
mapper() and mapper_final(). So in our example we accumulate the input values
in mapper(), and when we have all the values we compute the mean and the mean
of the squared values and send these out. Values are sent out of the mapper via the
yield statement. 

 Values are represented as key/value pairs. If you want to send out multiple values,
a good idea is to pack them up in a list. Values will be sorted after the map step by the
key. Hadoop has options for changing how things are sorted, but the default sort
should work for most applications. Values with the same key value will be sent to the
same reducer. You need to think through what you use for the key so that similar val-
ues will be collected together after the sort phase. I used the key 1 for all the mapper
outputs because I want one reducer, and I want all of the mapper outputs to wind up
at the same reducer. 

 The reducer in mrjob behaves differently than the mapper. At the reducer, the
inputs are presented as iterable objects. To iterate over these, you need to use some-
thing like a for loop. You can’t share state between the mapper or mapper_final and
the reducer. The reason for this is that the Python script isn’t kept alive from the map
and reduce steps. If you want to communicate anything between the mapper and
reducer, it should be done through key/value pairs. At the bottom of the reducer, I
added a yield without a key because these values are destined for output. If they were
going to another mapper, I’d put in a key value. 
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 Enough talk. Let’s see this in action. To run the mapper only, enter the following
commands in your Linux/DOS window, not in your Python shell. The file inputFile.txt
is in the Ch15 code download. 

%python mrMean.py --mapper < inputFile.txt

You should get an output like this: 

1    [100, 0.50956970000000001, 0.34443931307935999]

To run the full function, remove the --mapper option. 

%python mrMean.py < inputFile.txt

You’ll get a lot of text describing the intermediate steps, and finally the output will be
displayed to the screen: 

                                    .
                                    .
                                    .
streaming final output from c:\users\peter\appdata\local
\temp\mrMean.Peter.20110228.172656.279000\output\part-00000
0.50956970000000001     0.34443931307935999
removing tmp directory c:\users\peter\appdata\local\
temp\mrMean.Peter.20110228.172656.279000

To stream the valid output into a file, enter the following command:
%python mrMean.py < inputFile.txt > outFile.txt

Finally, to run on Amazon’s Elastic MapReduce, enter this command. (Make sure you
have AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY environment variables set. See
appendix A on how to set these.)

%python mrMean.py -r emr < inputFile.txt > outFile.txt

Now that you know how to use mrjob, let’s put this to use on a machine learning prob-
lem. In the next section we’ll do an iterative algorithm with mrjob, something that we
couldn’t do with just Elastic MapReduce. 

15.6 Example: the Pegasos algorithm for distributed SVMs 
In chapter 4, we looked at an algorithm for text classification called naïve Bayes. If you
remember from chapter 4, we treated our text documents as vectors in a space of our
vocabulary. In chapter 6, we looked at support vector machines, or SVMs, for classifica-
tion. SVMs can work well on text classification; we treat each document as a vector with
tens of thousands of features. 

 Doing text classification on a large number of documents presents a large machine
learning challenge. How do we train our classifier over so much data? The MapRe-
duce framework can help if we can break up our algorithm into parallel tasks. If you
remember from chapter 6, the SMO algorithm optimized two support vectors at a
time. The SMO algorithm also looped through the entire dataset, stopping at values
that needed attention. This algorithm doesn’t seem to be easy to parallelize. 
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One alternative to the SMO algorithm is the Pegasos algorithm. The Pegasos algo-
rithm can easily be written for MapReduce. We’ll investigate the Pegasos algorithm
next, and then you’ll see how to write a distributed version of Pegasos. Finally, we’ll
run the distributed version in mrjob. 

15.6.1 The Pegasos algorithm

Pegasos is an acronym for Primal Estimated sub-GrAdient Solver. This algorithm uses
a form of stochastic gradient descent to solve the optimization problem defined by
support vector machines. It’s shown that the number of iterations required is deter-
mined by the accuracy you desire, not the size of the dataset. Please see the original
paper for more detail.6 There are two versions, a long and a short version: I recom-
mend the long version of the paper. 

 Recall from chapter 6 that in a support vector machine we’re trying to find a sepa-
rating hyperplane. In our two-dimensional examples we’re trying to find a line that
properly separates the two classes of data. The Pegasos algorithm works like this: A set
of randomly selected points from our training data is added to a batch. Each of these
points is tested to see if it’s properly classified. If so, it’s ignored. If it’s not properly
classified, it’s added to the update set. At the end of the batch, the weights vector is
updated with the improperly classified vectors. The cycle is repeated. 

 Pseudocode would look like this:

Set w to all zeros
For each batch
        Choose k data vectors randomly
        For each vector

6 S. Shalev-Shwartz, Y. Singer, N. Srebro, “Pegasos: Primal Estimated sub-GrAdient SOlver for SVM,” Proceed-
ings of the 24th International Conference on Machine Learning 2007.

General approach to MapReduce SVM
1. Collect: Data provided in text file.

2. Prepare: The input data is in a useable format already, so preparation isn’t need-
ed. If you need to prepare a massive data set, it probably would be a good idea
to write this as a map job so you could parse in parallel.

3. Analyze: None.

4. Train: With SVMs, we spend most of the time and effort on training. This is no
different in MapReduce.

5. Test: Visually inspect the hyperplane in two dimensions to see if the algorithm is
working.

6. Use: This example won’t build a full application, but it demonstrates how to
train an SVM on a massive dataset. An application of this is text classification,
where we have tens of thousands of features and many documents.
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            If the vector is incorrectly classified:
                Change the weights vector: w
        Accumulate the changes to w

To show you this algorithm in action, I’ve include a working Python version of it in the
following listing.

def predict(w, x):
    return w*x.T

def batchPegasos(dataSet, labels, lam, T, k):
    m,n = shape(dataSet); w = zeros(n); 
    dataIndex = range(m)
    for t in range(1, T+1):
        wDelta = mat(zeros(n)) 
        eta = 1.0/(lam*t)
        random.shuffle(dataIndex)
        for j in range(k): 
            i = dataIndex[j]
            p = predict(w, dataSet[i,:])
            if labels[i]*p < 1: 
                wDelta += labels[i]*dataSet[i,:].A 
        w = (1.0 - 1/t)*w + (eta/k)*wDelta
    return w

The code in listing 15.4 is the sequential version of the Pegasos algorithm. The inputs
T and k set the number of iterations and the batch size, respectively. In each of the T
iterations you recalculate eta, which determines the learning rate or how much the
weights can change. In the outer loop you also select a new set of data points to use in
the next batch. The inner loop is the batch, where you accumulate B the values of
the incorrectly classified values and then update the weights vector. 

 You can run this example with some of the data from chapter 6 if you wish to try it
out. We aren’t going to do much with this code except use it for a starting point for a
MapReduce version. In the next section we’ll build and run a MapReduce version of
Pegasos in mrjob. 

15.6.2 Training: MapReduce support vector machines with mrjob

We’ll implement the Pegasos algorithm from listing 15.4 in MapReduce. We’ll use the
mrjob framework explored in section 15.5 to implement the algorithm. First, we have
to decide how to break up the algorithm into map and reduce steps. What can we do
in parallel? What can’t be done in parallel? 

 If you looked at all the computations going on when running the code from list-
ing 15.4, you’d see that a lot of the time is spent doing the inner product. We can par-
allelize these inner products, but we can’t parallelize the creation of a new w vector.
This gives us a good starting point for writing the MapReduce job. Before we write the
mapper and reducer, let’s write some supporting code. Open your text editor and cre-
ate a new file called mrSVM.py; then add the code from the following listing. 

Listing 15.4 The Pegasos SVM algorithm
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from mrjob.job import MRJob

import pickle
from numpy import *

class MRsvm(MRJob):
    DEFAULT_INPUT_PROTOCOL = 'json_value'

    def __init__(self, *args, **kwargs):
        super(MRsvm, self).__init__(*args, **kwargs)
        self.data = pickle.load(open(\
                 '<path to your Ch15 code directory>\svmDat27'))
        self.w = 0
        self.eta = 0.69
        self.dataList = []
        self.k = self.options.batchsize
        self.numMappers = 1
        self.t = 1

    def configure_options(self):
        super(MRsvm, self).configure_options()
        self.add_passthrough_option(
            '--iterations', dest='iterations', default=2, type='int',
            help='T: number of iterations to run')
        self.add_passthrough_option(
            '--batchsize', dest='batchsize', default=100, type='int',
            help='k: number of data points in a batch')

    def steps(self):
        return ([self.mr(mapper=self.map, mapper_final=self.map_fin,\
                            reducer=self.reduce)]*self.options.iterations)

if __name__ == '__main__':
    MRsvm.run()

The code from listing 15.5 sets up everything so you can do the map and reduce steps
properly. You have an include statement for mrjob, NumPy, and Pickle. Then you cre-
ate the mrjob class called MRsvm. The __init__() method initializes some variables
you’ll use in the map and reduce steps. The Python module Pickle doesn’t like to load
to files pickled with different versions of Python. I’ve included data files pickled with
Python 2.6 and 2.7 in files called svmDat26 and svmDat27, respectively. 

 The configure_options() method sets up some values you can enter from the
command line. These are the number of iterations (T) and the batch size (k). Both of
those arguments are optional, and if they aren’t set, they’ll default to the values in list-
ing 15.5. 

 Finally, the steps() method tells mrjob what jobs to do and in what order. It cre-
ates a Python list with map, map_fin, and reduce steps, and then multiplies this by the
number of iterations, which repeats the list for each iteration. In order for this big
chain of jobs to work properly, the mapper has to be able to read the data coming out
of the reducer. We didn’t have this requirement in our single MapReduce job, so we’ll
have to be more careful with our inputs and outputs. 

Listing 15.5 Distributed Pegasos periphery code in mrjob
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 Let’s take a second to define the inputs and outputs: 
Mapper 

 Inputs: <mapperNum, valueList>
 Outputs: nothing

Mapper_final

 Inputs: nothing
 Outputs: <1, valueList >

Reducer

 Inputs: <mapperNum, valueList >
 Outputs: <mapperNum, valueList >

The values passed in are lists. The first element in the list is a string detailing what type
of data is stored in the rest of the list. Two examples of valueList are ['x', 23] and
['w',[1, 5, 6]]. Every mapper_final will emit the same key; this is to make sure that
all of the key/value pairs come to one reducer. 

 With our inputs and outputs defined, let’s write the mapper and reducer methods.
Open mrSVM.py and add the following methods to the MRsvm class. 

def map(self, mapperId, inVals): 
        if False: yield
        if inVals[0]=='w':
            self.w = inVals[1]
        elif inVals[0]=='x':
            self.dataList.append(inVals[1])
        elif inVals[0]=='t': self.t = inVals[1] 
    def map_fin(self):
        labels = self.data[:,-1]; X=self.data[:,0:-1]
        if self.w == 0: self.w = [0.001]*shape(X)[1]
        for index in self.dataList:
            p = mat(self.w)*X[index,:].T  
            if labels[index]*p < 1.0:
                yield (1, ['u', index])
        yield (1, ['w', self.w])
        yield (1, ['t', self.t])
    def reduce(self, _, packedVals):
        for valArr in packedVals: 
            if valArr[0]=='u':  self.dataList.append(valArr[1])
            elif valArr[0]=='w': self.w = valArr[1]
            elif valArr[0]=='t':  self.t = valArr[1] 
        labels = self.data[:,-1]; X=self.data[:,0:-1]
        wMat = mat(self.w);   wDelta = mat(zeros(len(self.w)))
        for index in self.dataList:
            wDelta += float(labels[index])*X[index,:]        
        eta = 1.0/(2.0*self.t)          
        wMat = (1.0 - 1.0/self.t)*wMat + (eta/self.k)*wDelta
        for mapperNum in range(1,self.numMappers+1):
            yield (mapperNum, ['w', wMat.tolist()[0] ]) 

Listing 15.6 Distributed Pegasos mapper and reducer code 
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            if self.t < self.options.iterations:
                yield (mapperNum, ['t', self.t+1])
                for j in range(self.k/self.numMappers):
                    yield (mapperNum, ['x',\
                    random.randint(shape(self.data)[0]) ])

The first method in listing 15.6 is the map(); this is the distributed part. This takes in the
values and stores them for processing in map_fin(). The inputs could be one of three
types: the w vector, the t value, or x. The t value is the iteration number and isn’t used
in this calculation. You can’t save state, so if there are any variables that you want to per-
sist from one iteration to the next, you can either pass them around in key/value pairs
or write them to disk. It’s easier and faster just to pass this value around. 

 The map_fin() method is executed when all of the inputs have arrived. At this
point you’ll have your weights vector w and a list of x values for this batch. Each x value
is an integer. It’s not the data but an index. The data is stored on disk and loaded into
memory when the script is executed. When map_fin() starts, it splits the data into
labels and data. Next, it iterates over all of the values in the current batch, which are
stored in self.dataList. If any of these values is incorrectly classified, then it’s emit-
ted to the reducer. To keep state between the mapper and reducer, the w vector and
the t values are sent to the reducer. 

 Finally, there should be only one reducer. This first iterates over all the key/value
pairs and unpacks the values to local variables. Any value in dataList will be used to
update the w vector. The updates are accumulated in wDelta. B Then wMat is updated
by wDelta and the learning rate eta. After wMat has been updated, it’s time to start the
whole process over. A new batch of random vectors is chosen and emitted. The key of
all these values is the mapper number. 

 To see this in action, you need to start the job with some data that looks like it
came out of the reducer. I’ve attached a file called kickStart.txt that will do this. To
execute the previous code on your local machine, enter the following command: 

%python mrSVM.py < kickStart.txt
                                   .
                                   .
                                   .
streaming final output from c:\users\peter\appdata\local\temp
\mrSVM.Peter.20110301.011916.373000\output\part-00000
1       ["w", [0.51349820499999987, -0.084934502500000009]]
removing tmp directory c:\users\peter\appdata\local\temp
\mrSVM.Peter.20110301.011916.373000

The output vector is given here. A plot of this vector is shown in figure 15.9 with 2
and 50 iterations.   

 If you want to run the job on EMR, add the -r emr command. The default number
of servers to use for this job is 1. To increase that, add --num-ec2-instances=2 or
whatever positive integer you like. Here’s an example: 

%python mrSVM.py -r emr --num-ec2-instances=3 < kickStart.txt > myLog.txt

To see all of the options available, enter %python mrSVM.py –h.
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Now that you know how to write and launch machine learning jobs on many
machines, we’ll talk about whether doing this is really necessary. 

15.7 Do you really need MapReduce? 
Without knowing who you are, I can say that you probably don’t need MapReduce
or Hadoop because the vast majority of computing needs can be met with a single

Figure 15.9 Results from the distributed Pegasos algorithm after multiple iterations. 
The algorithm converges quickly, and further iterations give only a slightly better solution.

Debugging mrjob
Debugging a mrjob script can be much more frustrating that debugging a simple
Python script. Here are some suggestions to speed up your debug: 

■ Make sure you have all the dependencies installed: boto, simplejson, and
optionally PyYAML.

■ You can set a number of parameters in ~/.mrjob.conf; make sure these are correct.
■ Debug as much as you can locally before sending jobs to EMR. There’s nothing

worse than waiting 10 minutes to find out you made a mistake when you could
have found that out in 10 seconds.

■ Look in the base_temp_dir; this is set in ~/.mrjob.conf. On my machine it’s
under /scratch/$USER. You can see the input and output of your jobs there;
this is helpful for debugging. 

■ Run one step at a time.
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computer. These big-data tools were made by the Googles, Yelps, and Facebooks of
the world, but how many of those companies are there? 

 Making the most of your resources can save time and energy. If you find your com-
puting jobs taking too long, ask yourself the following questions: Could you rewrite
your code in a more efficient language like C or Java? If you already are using one of
those languages, are you writing your code in the most memory-efficient manner? Is
your processing constrained by memory or the processor? Perhaps you don’t know the
answer to these questions. It may be helpful to consult someone who does. 

 Most people don’t realize how much number crunching they can do on a single com-
puter. If you don’t have big data problems, you don’t need MapReduce and Hadoop. It’s
great to know they exist and to know what you could do if you had big-data problems.

15.8 Summary 
When your computing needs have exceeded the capabilities of your computing
resources, you may consider buying a better machine. It may happen that your com-
puting needs have exceeded the abilities of reasonably priced machines. One solution
to this is to break up your computing into parallel jobs. One paradigm for doing this is
MapReduce. In MapReduce you break your jobs into map and reduce steps. 

 A typical job can use the map step to process data in parallel and then combine the
data in the reduce step. This many-to-one model is typical but not the only way of
combining jobs. Data is passed between the mapper and reducers with key/value
pairs. Typically, data is sorted by the value of the keys after the map step. Hadoop is a
popular Java project for running MapReduce jobs. Hadoop has an application for
running non-Java jobs called Hadoop Streaming. 

 Amazon Web Services allows you to rent computing resources by the hour. One
tool Amazon Web Services makes available is Elastic MapReduce, which allows people
to run Hadoop Streaming jobs. Simple one-step MapReduce jobs can be written and
run from the Elastic MapReduce management console. More complex jobs need an
additional tool. One relatively new open source tool is called mrjob. With mrjob you
can run multiple MapReduce jobs sequentially. With minimal setup, mrjob handles
the dirty steps associated with Amazon Web Services. 

 A number of machine learning algorithms can be easily written as MapReduce jobs.
Some machine learning jobs need to be creatively redefined in order to use them in
MapReduce. Support vector machines are a powerful tool for text classification, but
training a classifier on a large number of documents can involve a large amount of com-
puting resources. One approach to creating a distributed classifier for support vector
machines is the Pegasos algorithm. Machine learning algorithms that may require mul-
tiple MapReduce jobs such as Pegasos are easily implemented in mrjob. 

 This concludes the main body of material for this book. Thanks for reading. I
hope this book opened many new doors for you. There’s much more to be explored
in the mathematics of machine learning or the practical implementation in code. I
look forward to seeing what interesting applications you create with the tools and
techniques from this book. 





appendix A:
Getting started with Python

In this appendix we’ll go through instructions for installing Python on the three
most popular operating systems. In addition, there’s a short introduction to Python
and instructions for installing the Python modules used in this book. A discussion
on NumPy is saved for appendix B, where it more appropriately fits in with a discus-
sion on linear algebra. 

A.1 Installing Python 
To follow all of the examples in this book, you’re going to need Python 2.7, NumPy,
and Matplotlib. The examples aren’t guaranteed to work with Python 3.X, because
Python doesn’t provide backward compatibility. The easiest way to get these mod-
ules is through package installers. These are available on Mac OS and Linux. 

A.1.1 Windows

You can download Python here: http://www.python.org/getit/. Select the appro-
priate Windows installer (either 64-bit or 32-bit) and follow the instructions. 

 To get NumPy you can get the binary from http://sourceforge.net/projects/
numpy/files/NumPy/. It’s much easier than trying to build it yourself. 

 Once the installer is finished, you can start a Python shell. To do this, first open
a command prompt by typing cmd in the find window. Then type in the following:

>c:\Python27\python.exe

This should start a Python shell telling you which version you’re using, when it was
built, and so on. 

 If you want to type c:\Python27\python.exe every time you start a Python shell,
that’s fine, but you can also create an alias for the command python. I’ll leave the
details of creating an alias up to you. 
325
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 You’ll also want to get the latest Matplotlib binary. You can find the latest version at
the Matplotlib home page: http://matplotlib.sourceforge.net/. Installing this binary
is relatively easy; just download the installer and click through the installation steps. 

A.1.2 Mac OS X

The best way to get Python, NumPy, and Matplotlib installed on Mac OS X is to use Mac-
Ports. MacPorts is a free tool that simplifies compiling and installing software on your
Mac. You can read more about MacPorts here: http://www.macports.org/. First, you
need to download MacPorts. The best way to do that is to download the appropriate
.dmg file. On this site you can select the .dmg file that corresponds to the version of Mac
OS X that you have. Once you have the .dmg downloaded, install it. Then when you’ve
installed MacPorts, open a new terminal window and enter the following command:

>sudo port install py27-matplotlib

This will install Python, NumPy, and Matplotlib. It will take a while depending on how
fast your machine and internet connection are. Install times of one hour are not
abnormal. 

 You can install Python, NumPy, and Matplotlib separately if you don’t want to
install MacPorts. There are now Mac OS X binary installers for all three of these librar-
ies, which make installing super easy. 

A.1.3 Linux

The best way to get Python, NumPy, and Matplotlib in Debian/Ubuntu is to use apt-
get, or the corresponding package manager in other distributions. If you install Mat-
plotlib, then it will check to see if you have all the dependencies. Since Python and
NumPy are dependencies of Matplotlib, installing Matplotlib will ensure that you have
the other two. 

 To install Matplotlib, open a command shell and enter the following command:

>sudo apt-get install python-matplotlib

This will take some time depending on how fast your machine and internet connec-
tion are. 

 Now that you’ve installed Python, let’s discuss some of the data types used in Python. 

A.2 A quick introduction to Python
Now we can go over a few of the features of the language that we use in this book. This
is not an exhaustive description of Python; for that I suggest you try “How to Think Like
a Computer Scientist” by Elkner, Downey, and Meyers at http://openbookproject.net/
/thinkCSpy/; the contents are available for free online. We’ll go over collection types
and control structures, something found in almost every programming language.
We’ll just review them to see how Python handles them. Finally, in this section we’ll
review list comprehensions, which I think are the most confusing part of getting started
with Python. 
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A.2.1 Collection types

Python has a number of ways of storing a collection of items, and you can add many
modules to create more container types. Following is a short list of the commonly
used containers in Python: 

1 Lists—Lists are an ordered collection of objects in Python. You can have any-
thing in a list: numbers, bool, strings, and so on. To create a list you use two
brackets. The following code illustrates the creation of a list called jj and the
addition of an integer and a string: 

>>> jj=[]
>>> jj.append(1)
>>> jj.append('nice hat')
>>> jj
[1, 'nice hat']

Similarly, you can put elements into a list directly. You could create the list jj in
one pass with the following statement: 

 >>> jj = [1, 'nice hat']

Python also has an array data type, which, similar to other programming lan-
guages, can contain only one type of data. This array type is faster than lists
when you’re looping. We won’t use this structure in this book because it could
be confused with the array type in NumPy. 

2 Dictionaries—A dictionary is an unordered key/value type of storage container.
You can use strings and numbers for the key. In other languages, a dictionary
may be called an associative array or map. In the following code we create a dic-
tionary and adds two items to it: 

>>> jj={}
>>> jj['dog']='dalmatian'
>>> jj[1]=42
>>> jj
{1: 42, 'dog': 'dalmatian'}

You can also create this dictionary in one line with the following command:

>>> jj = {1: 42, 'dog': 'dalmatian'}

3 Sets—A set is just like a set in mathematics. If you aren’t familiar with that, it
means a unique collection of items. You can create a set from a list by entering
the following: 

>>> a=[1, 2, 2, 2, 4, 5, 5]
>>> sA=set(a)
>>> sA
set([1, 2, 4, 5])

Sets can then do math operations on sets, such as the union, intersection, and
difference. The union is done by the pipe symbol, |, and the intersection is
done by the ampersand symbol, &. 
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>>> sB=set([4, 5, 6, 7])
>>> sB
set([4, 5, 6, 7])
>>> sA-sB
set([1, 2])
>>> sA | sB
set([1, 2, 4, 5, 6, 7])
>>> sA & sB
set([4, 5])

A.2.2 Control structures

In Python, indentation matters. Some people actually complain about this, but it
forces you to write clean, readable code. In for loops, while loops, or if statements,
you use indentation to tell the machine which lines of code belong inside these loops.
The indentation can be done with spaces or tabs. In some other languages, you use
braces, { }, or keywords. By using indentation instead of braces, Python saves a lot of
space. Let’s see how to write some common control statements: 

1 If—The if statement is quite straightforward. You can use it on one line
like so:

>>> if jj < 3:  print "it's less than three man"

Or, for multiple lines, you can use an indent to tell the interpreter you have
more than one line. You can use this indent with just one line of code if you
prefer. 

>>> if jj < 3:
...     print "it's less than three man"
...     jj = jj + 1

Multiple conditionals, like else if, are written as elif, and the keyword else
is used for a default condition.

>>> if jj < 3: jj+=1
... elif jj==3: jj+=0
... else: jj = 0

2 For—A for loop in Python is like the enhanced for loop in Java or C++0x.
If you’re not familiar with those, it simply means that the for loop goes over
every item in a collection. Let me give you some examples from lists, sets,
and dictionaries: 

>>> sB=set([4, 5, 6, 7])
>>> for item in sB:
...     print item
...
4
5
6
7

Now let’s see how to loop over a dictionary: 
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>>> jj={'dog': 'dalmatian', 1: 45}
>>> for item in jj:
...     print item, jj[item]
...
1 45
dog dalmatian

The items iterated over are actually the dictionary keys. 

A.2.3 List comprehensions 

I think the most confusing thing for people new to Python is list comprehensions. List
comprehensions are an elegant way of generating a list without writing a lot of code.
But the way they work is a little bit backwards. Let’s see one in action. Then we’ll dis-
cuss it. 

>>> a=[1, 2, 2, 2, 4, 5, 5]
>>> myList = [item*4 for item in a]
>>> myList 
[4, 8, 8, 8, 16, 20, 20]

List comprehensions are always enclosed in brackets. This one is equivalent to the fol-
lowing code:

>>> myList=[]
>>> for item in a:
...     myList.append(item*4)
...
>>> myList
[4, 8, 8, 8, 16, 20, 20]

The resulting myList is the same, but we used less code with the list comprehension.
The confusing part is that the item that gets appended to the list is in front of the for
loop. This is contrary to the way the English text is read, from left to right. 

 Let’s see a more advanced list comprehension. We’re now going to use only values
greater than 2. 

>>> [item*4 for item in a if item>2]
[16, 20, 20]

You can get really creative with list comprehensions, and if at some point they become
difficult to read, you’ll be better off writing out the code. That way, other people can
read your code. Now that we’ve reviewed some basics, the next section discusses how
to install Python modules used in this book. 

 For most pure Python modules (modules that don’t have bindings to other
languages), you can change the directory to where you’ve unzipped the code and
type > python setup.py install. This is the default, and if you’re ever unsure how
to install something, try this command. Python will install the modules to a direc-
tory inside the main Python directory called Libs/site-packages/, so you don’t have
to worry about where the module was installed or deleting it when you clean out
your downloads folder. 
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A.3 A quick introduction to NumPy
Having installed the NumPy library, you may be wondering, “What good is this?” Offi-
cially, NumPy is a matrix type for Python, and a large number of functions to operate
on these matrices. Unofficially, it’s a library that makes doing calculations easy and
faster to execute, because the calculations are done in C rather than Python.  

 Despite the claim that it’s a matrix library, there are actually two fundamental data
types in NumPy: the array and the matrix. The operations on arrays and matrices are
slightly different. If you’re familiar with MATLAB™, then the matrix will be most famil-
iar to you. Both types allow you to remove looping operators you’d have to have using
only Python. Here’s an example of things you can do with arrays:

>>> from numpy import array
>>> mm=array((1, 1, 1))
>>> pp=array((1, 2, 3))
>>> pp+mm
array([2, 3, 4])

That would have required a for loop in regular Python. 
 Here are some more operations that would require a loop in regular Python:

Multiply every number by a constant 2:

>>> pp*2
array([2, 4, 6])

Square every number: 

>>> pp**2
array([1, 4, 9])

You can now access the elements in the array like it was a list: 

>>> pp[1]
2

You can also have multidimensional arrays: 

>>> jj = array([[1, 2, 3], [1, 1, 1]])

These can also be accessed like lists:

>>> jj[0]
array([1, 2, 3])
>>> jj[0][1]
2

You can also access the elements like a matrix:

>>> jj[0,1]
2

When you multiply two arrays together, you multiply the elements in the first array by
the elements in the second array:

>>> a1=array([1, 2,3])
>>> a2=array([0.3, 0.2, 0.3])
>>> a1*a2
array([ 0.3,  0.4,  0.9])
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Now let’s talk about matrices:
 Similar to arrays, you need to import matrix or mat from NumPy:

>>> from numpy import mat, matrix

The NumPy keyword mat is a shortcut for matrix.

>>> ss = mat([1, 2, 3])
>>> ss
matrix([[1, 2, 3]])
>>> mm = matrix([1, 2, 3])
>>> mm
matrix([[1, 2, 3]])

You can access the individual elements of a matrix like this: 

>>> mm[0, 1]
2

You can convert Python lists into NumPy matrices: 

>>> pyList = [5, 11, 1605]
>>> mat(pyList)
matrix([[   5,   11, 1605]])

Now let’s try to multiply two matrices together:

>>> mm*ss
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
  File "c:\Python27\lib\site-packages\numpy\matrixlib\defmatrix.py", 
line 330, i
n __mul__
    return N.dot(self, asmatrix(other))
ValueError: objects are not aligned

That causes an error and won’t be done. The matrix datatype enforces the mathemat-
ics of matrix operations. You can’t multiply a 1x3 matrix by a 1x3 matrix; the inner
numbers must match. One of the matrices will need to be transposed so you can mul-
tiply a 3x1 and a 1x3 matrix or a 1x3 and a 3x1 matrix. The NumPy matrix data type
has a transpose method, so you can do this multiplication quite easily: 

>>> mm*ss.T
matrix([[14]])

We took the transpose of ss with the .T method. 
 Knowing the dimensions is helpful when debugging alignment errors. If you want

to know the dimensions of an array or matrix, you can use the shape function in
NumPy:

>>> from numpy import shape
>>> shape(mm)
(1, 3)
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What if you wanted to multiply every element in matrix mm by every element in
ss? This is known as element-wise multiplication and can be done with the NumPy
multiply function:

>>> from numpy import multiply
>>> multiply(mm, ss)
matrix([[1, 4, 9]])

The matrix and array data types have a large number of other useful methods avail-
able such as sorting:

>>> mm.sort()
>>> mm
matrix([[1, 2, 3]])

Be careful; this method does sort in place, so if you want to keep the original order of
your data, you must make a copy first. You can also use the argsort() method to give
you the indices of the matrix if a sort were to happen: 

>>> dd=mat([4, 5, 1])
>>> dd.argsort() 
matrix([[2, 0, 1]])

You can also calculate the mean of the numbers in a matrix:

>>> dd.mean()
3.3333333333333335

Let’s look at multidimensional arrays for a second:

>>> jj = mat([[1, 2, 3,], [8, 8, 8]])
>>> shape(jj)
(2, 3)

This is a matrix of shape 2x3; to get all the elements in one row, you can use the colon
(:) operator with the row number. For example, to get all the elements in row 1,
you’d enter

>>> jj[1,:]
matrix([[8, 8, 8]])

You can also specify a range of elements. To get all the elements in row 1, columns 0–1,
you’d use the following statement:

>>> jj[1,0:2]
matrix([[8, 8]])

This method of indexing can simplify programming with NumPy. 
 Beyond the array and matrix data types, a large number of other functions in

NumPy are very useful. I encourage you to see the full documentation at http://
docs.scipy.org/doc/. 
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A.4 Beautiful Soup
We use Beautiful Soup to search and parse HTML. To install Beautiful Soup just down-
load the module: http://www.crummy.com/software/BeautifulSoup/#Download.

 Next, unzip it and cd into the directory where you’ve unzipped it. Then enter the
following command: 

>python setup.py install

If you’re on Linux and it tells you that you don’t have permission to install it, type in
the following: 

>sudo python setup.py install

With most Python modules this is how you’ll install them. Be sure to read the
README.txt included with each module you download. 

A.5 Mrjob
Mrjob is used to launch map reduce jobs on Amazon Web Services. Installing mrjob is
as easy as installing other modules in Python. Download the code here: https://
github.com/Yelp/mrjob. There’s a button on the left side that says ZIP. Click that and
download the latest version. Unzip and untar the file, and then cd into the directory
that you just unzipped. Enter the standard Python install command:

>python setup.py install

The GitHub listing has a lot of code samples, and there’s a good page with official
Python documentation here: http://packages.python.org/mrjob/. 

 Before you actually use it on Amazon Web Services, you need to set two environ-
ment variables: $AWS_ACCESS_KEY_ID and $AWS_SECRET_ACCESS_KEY. These are values
unique to your account (I’m assuming you have an account), and you get them when
you log into AWS under Account > Security Credentials. 

 To set these in Windows, open a command prompt and enter the following: 

>set AWS_ACCESS_KEY_ID=1269696969696969

To verify that it worked, type in

>echo %AWS_ACCESS_KEY_ID%

Make sure you set AWS_SECRET_ACCESS_KEY also. 
 To set these on Mac OS X (newer versions of OS X use the bash shell), open a ter-

minal window and enter the following:

>AWS_ACCESS_KEY_ID=1269696969696969
>export AWS_ACCESS_KEY_ID

Similarly, you can set AWS_SECRET_ACCESS_KEY. Strings don’t need quotes. 
 Ubuntu Linux also uses the bash shell by default, so the Mac OS X instructions

should work. If you’re using another shell, you’ll have to research how to set the envi-
ronment variables yourself, but it isn’t difficult. 
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A.6 Vote Smart
Project Vote Smart is a data source for political data from the United States of Amer-
ica; see http://www.votesmart.org/. They provide a REST API to retrieve their data.
Sunlight Labs has written a well-documented Python interface for this API. If you want
to use the API, you first need to get an API key, which you can obtain from here: http:
//votesmart.org/services_api.php.

 You can download the Python interface here: https://github.com/sunlightlabs/
python-votesmart. On the left side is a download button labeled ZIP. Click that
and download the most recent version. Once you’ve downloaded that file, change
your directory to the downloaded and unzipped file folder. Then enter the follow-
ing command:

>python setup.py install

Be patient because the API key takes some time to become active. My API key wasn’t
active until 30 minutes after I applied for it. You’ll get an email saying your API key has
been approved. Then you’re ready to start finding out what those greasy politicians
are up to!

A.7 Python-Twitter
Python-Twitter is a module to interface with data from Twitter. The code is hosted on
Google Code here: http://code.google.com/p/python-twitter/. You can download
the code here: http://code.google.com/p/python-twitter/downloads/list. To install
this module untar the tarball, and then change to untarred directory and enter 

>python setup.py install

That should be it; you’ll need to get a Twitter API key, and then you’ll be able to start
getting and posting data to Twitter from your Python code. 



appendix B:
Linear algebra

To understand advanced machine learning topics, you need to know some linear
algebra. If you want to take an algorithm from an academic paper and implement it
in code or investigate algorithms outside of this book, you’ll probably need a basic
understanding of linear algebra. This appendix should serve as a light refresher or
introduction if you’ve had this material before but it’s been a while and you need a
reminder. If you’ve never had this material before, I recommend that you take a
course at a university, work through a self-study book, or watch a video. Free tuto-
rial videos are available on the internet1 as well as full recordings of semester-long
courses.2 Have you ever heard “Math is not a spectator sport”? It’s true. Working
through examples on your own is necessary to reinforce what you’ve watched oth-
ers do in a book or video. 

 We’ll first discuss the basic building block of linear algebra, the matrix. Then
we’ll discuss some basic operations on matrices, including taking the matrix
inverse. We’ll address the vector norm, which often appears in machine learning,
and we’ll conclude by discussing how we can apply calculus to linear algebra.

B.1 Matrices 
The most basic data type in linear algebra is the matrix. A matrix is made up of
rows and columns. 

 A simple example of this is shown in figure B.1. This matrix contains three rows
and three columns. The row numbering usually begins at the top, and column

1 Gilbert Strang has some lectures that are free to view at http://www.youtube.com/watch?v=ZK3O402wf1c.
You can also get the course materials at http://ocw.mit.edu/courses/mathematics/18-06-linear-algebra-
spring-2010/. His lectures aren’t difficult to follow and communicate the key points of linear algebra. In
addition, his graduate-level course on computational science is very good: http://www.youtube.com/
watch?v=CgfkEUOFAj0.

2 I’ve heard many great things about the linear algebra videos on Kahn Academy’s website: http://
www.khanacademy.org/#linear-algebra.
335
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numbering begins on the left. The first row contains the
numbers 9, 9, and 77. Similarly, the third column con-
tains the numbers 77, 18, and 10. In NumPy you can find
the number of columns and rows of a given matrix,
myMat, by typing numpy.shape(myMat). This returns the
results as (columns, rows). 

 In every chapter in this book we’ve used vectors,
which are special cases of matrices containing only a
single column or row. Often, a vector will be men-
tioned without specifying row or column. If this is the
case, assume it’s a column vector. Figure B.2 shows a
column vector on the left side. The column vector has
shape 3x1. On the right side of figure B.2 is a row vec-
tor, which has shape 1x3. Keeping track of the shape
will be important when we’re doing matrix operations
such as multiplication. 

 One of the most basic matrix operations is the
transpose. The transpose is flipping the matrix along
its diagonal. The rows become columns and the
columns become rows. Figure B.3 illustrates this pro-
cess for a matrix B. The transpose is written with a
capital T in superscript. The transpose is
often used to manipulate matrices to make
calculations easier. 

 You can add a number to a matrix or multi-
ply a matrix by a number; these operations are
applied to each element separately/indepen-
dently. These are called scalar operations
because the relative values of the elements in
the matrix don’t change; only the scale
changes. If you want to scale your data by a
constant or add a constant offset, you’ll need
scalar multiplication and addition. Figure B.4
shows scalar multiplication and addition. 

 Now let’s look at some matrix operations.
How would you add two matrices together?
First of all, the matrices must be the same size.
If the matrices are the same size, you can add
them together. To do this you add the elements
in the same position. An example of this is
shown in figure B.5. Matrix subtraction is sim-
ilar, but you subtract the elements rather than
add them. 

Figure B.1 A simple 3x3 matrix 
showing the directions of rows 
and columns

Figure B.2 A column vector on 
the left side and a row vector on 
the right side

Figure B.3 The transpose rotates a matrix, 
and the rows become columns.

Figure B.4 Scalar operations on our matrix 
result in every element being multiplied or 
added by a scalar value.
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More interesting, multiplication is multiplying two matrices. Multiplying two matrices
isn’t as simple as scalar multiplication. To multiply two matrices, they must have a
matching inner dimension. For example, you can multiply a 3x4 matrix and a 4x1
matrix but not a 3x4 matrix and a 1x4 matrix. The size of the resulting matrix from
multiplying a 3x4 and 4x1 is 3x1. A quick way to check if you can multiply two matrices
and the resulting size is to write the dimensions next to each other like this:
(3x4)(4x1). Because the middle terms match, you can do the multiplication. By drop-
ping the middle terms, you can see the size of the resulting matrix: 3x1. Figure B.6
illustrates an example of matrix multiplication. 

Essentially what we did in figure B.6 was take every row of the 3x2 matrix and rotate it
to align with the 2x1 matrix and then multiply these together and take the sum.
Another way to think of matrix multiplication is a sum of columns. I’ve rewritten the
multiplication from figure B.6 as a sum of columns in figure B.7. 

 In this second method of matrix multiplication, the same result was achieved but
we reorganized how we were looking at the multiplication. Rethinking matrix multi-
plication as the sum of columns in figure B.7 will be helpful in certain algorithms,
such as map reduce versions of matrix multiplication. In general, the definition of
matrix multiplication for a matrix X and matrix Y is

Figure B.5 Matrix addition

Figure B.6 An illustration of matrix 
multiplication, showing a 3x2 
matrix multiplied by a 2x1, resulting 
in a 3x1 matrix

Figure B.7 Matrix 
multiplication as a 
sum of columns

XY ij XikYkj
k 1=

m

=
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If you doubt that two operations are
equal, you can always write them out
using this summation form. 

 A common operation in machine
learning is the dot product between two
vectors. This was done in chapter 6 with
support vector machines. The dot product
is an element-wise multiplication, then
summing up every element in the resulting vector. This is illustrated in figure B.8. 

 Often there’s a physical meaning associated with a dot product, such as how much
one vector moves in the direction of another vector. The dot product can be used to
find the cosine between two vectors. In any program that supports matrix multiplica-
tion, you can get the dot product of two vectors X and Y by multiplying the transpose
of X by Y. If X and Y are both length m, they will have dimensions mx1, so XT will have
dimensions 1xm and XT*Y will have dimensions 1x1. 

B.2 Matrix inverse 
The matrix inverse comes up a lot when you’re manipulating algebraic equations of
matrices. The matrix X is the inverse of matrix Y if XY=I where I is the identity matrix.
(The identity matrix often written as I is a matrix that’s all 0s except for the diagonals,
which are 1s. You can multiply other matrices by the identity matrix and get the origi-
nal matrix.) The practical drawback to the matrix inverse is that it becomes messy for
matrices larger than a few elements and is rarely computed by hand. It helps to know
when you can’t take the inverse of a matrix. Knowing this will help you avoid making
errors in your programs. You write the inverse of a matrix B as B-1. 

 A matrix has to be square to be invertible. By square, I
mean the number of rows and columns has to be equal. Even
if the matrix is square, it may not be invertible. If a matrix is
not invertible, we say that it’s singular or degenerate. A matrix
can be singular if you can express one column as a linear
combination of other columns. If you could do this, you
could reduce a column in the matrix to all 0s. An example of
such a matrix is shown in figure B.9. This becomes a problem
when computing the inverse of the matrix, because you’ll try
to divide by zero. I’ll show you this shortly. 

 There are many ways to calculate the inverse of a matrix.
One way is to rearrange some terms in the matrix and divide
every element by the determinant. The determinant is special
value associated with a square matrix that can tell you a num-
ber of things about the matrix. Figure B.10 shows the hand calculations for taking the
inverse of a 2x2 matrix. Note how the determinant written with det() is calculated.
You multiply every term by this determinant. If one column of the matrix was all 0s,

Figure B.8 An illustration of the dot product of 
two vectors

Figure B.9 An example 
of a singular matrix. This 
matrix has a column of 
0s, which means you 
won’t be able to take the 
inverse of this matrix.
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then your determinant would also be 0. This leads to dividing by 0, which isn’t possi-
ble, so you can’t take the inverse of such a matrix. This is why you must have a matrix
that’s full rank in order to take the inverse. 

 You’ve seen how the inverse of a 2x2 matrix is calculated. Now, let’s look at how the
inverse of a 3x3 matrix would be calculated; you’ll see it gets much more complex.
Figure B.11 shows the calculations involved in computing the inverse of a 3x3 matrix. 

The take-home lesson is that computing the inverse gets really messy after two or
three terms because the determinant has n! elements. You don’t deal with such small
matrices often, so calculating the inverse is usually done by a computer. 

B.3 Norms 
The norm is something that comes up often in machine learning literature. The norm
of a matrix is written with two vertical lines on each side of the matrix like this: ||A||.
Let’s talk about vector norms first. 

 The vector norm is an operation that assigns a positive scalar value to any vector.
You can think of this as the length of the vector, which is useful in many machine
learning algorithms such as k-Nearest Neighbors. If you have a vector z=[3,4] the
length is . This is also known as the L2 norm and is written as ||z|| or ||z||2. 

Figure B.10 Calculating the inverse of a 
square matrix B. Since we’re multiplying 
every element by 1/det(B), det(B)
can’t be zero. If we have a singular 
matrix, det(B) will be zero and we can’t 
take the inverse.

Figure B.11 The inverse of a 3x3 matrix, C. With larger matrices the inverse becomes more 
difficult to calculate by hand. The determinant of a matrix with size n contains n! elements.

32 42+ 5=
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 Using a different norm can give better results in some machine learning algo-
rithms, such as the lasso for regression. The L1 norm is zalso popular, and this is some-
times known as the Manhattan distance. The L1 norm of z is 3+4=7, and it’s written as
||z||1. You can have a norm of any number, and in general they’re defined as 

The vector norms are used when determining the magnitude or significance of vec-
tors, as in an input. In addition to the function defined here, you could create a vector
norm any way you wanted as long as it converted from a vector to a scalar value. 

B.4 Matrix calculus 
In addition to adding, subtracting, and dividing matrices and vectors, you can do cal-
culus operations, such as the derivative on vectors and matrices. This is needed in
algorithms such as gradient descent. These are no harder than the standard calculus
operations. It just involves understanding the notation and definitions. 

 If you have a vector , you can take the derivative of A with respect to

x as , which gives you another vector. Now if you want to take the derivative

of A with respect to another vector, you’ll have a matrix. Say you have another vector

Now if you want to take the derivative of A (a 2x1 vector) with respect to B (a 3x1 vec-
tor), you’ll have a 3x2 matrix:  

More generally, this is 

z p z p

i 1=

n

 
 
  1 p

=

A xsin y–

3xsin 4y–
=

dA
dx
-------- xcos

3 xcos
=

B
x
y
z

=

dA
dB
--------

xcos 3 xcos
1– 4–

0 0

=

dA
dB
--------

dA1
dx1
---------- dA2

dx2
----------

dA1
dx1
---------- dA2

dx2
----------

dA1
dx1
---------- dA2

dx2
----------

=



appendix C:
Probability refresher

In this appendix we’ll go through some of the basic concepts of probability.
The subject deserves more treatment than this appendix provides, so think of this
as a quick refresher if you’ve had this material in the past but need to be
reminded about some of the details. For someone who hasn’t had this material
before, I recommend studying more than this humble appendix. A number of
good tutorials and videos are available from the Khan Academy that can be used
for self-study.1 

C.1 Intro to probability 
Probability is defined as how likely something is to occur. You can calculate the prob-
ability of an event occurring from observed data by dividing the number of times
this event occurred by the total number of events. Let me give some examples of
these events:

■ A coin is flipped and lands heads up.
■ A newborn baby is a female.
■ An airplane lands safely.
■ The weather is rainy.

Let’s look at some of these events and how we can calculate the probability. Say
we’ve collected some weather data from the Great Lakes region of the United
States. We’ve classified the weather into three categories: {clear, rainy, snowing}.
This data is shown in table C.1. 

 From this table we can calculate the probability the weather is snowing. The
data in table C.1 is limited to seven measurements, and some days are missing in
the sequence. But this is the only data we have. The probability of an event is

1 Khan Academy. http://www.khanacademy.org/?video=basic-probability#probability.
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written as P(event). Let’s calculate the probability the weather is snowing as
P(weather = snowing):

I wrote this as P(weather = snowing). But weather is the only variable that can take the
value of snowing, so we can write this as P(snowing) to save some writing. With this
basic definition of probability we calculate the probabilities of weather = rainy and
weather = clear. Double-check that P(rainy) = 2/7 and P(clear) = 3/7. You’ve seen
how to calculate the probability of one variable taking one specific value, but what if
we’re concerned with more than one variable? 

C.2 Joint probability 
What if we want to see the probability of two events happening at the same time, such
as weather = snowing and day of week = 2? You can probably figure out how to calcu-
late this; you count the number of examples where both of these events are true and
divide it by the total number of events. Let’s calculate this simple example: There’s
one data point where weather = snowing and day of week = 2, so the probability would
be 1/7. Now this is usually written with a comma separating the variables: P(weather =
snowing, day_of_week = 2) or P(X,Y) for some events X and Y. 

 Often you’ll see some symbol like P(X,Y|Z). The vertical bar is used to represent con-
ditional probability, so this statement is asking for the probability of X AND Y conditioned
on the event Z. A quick refresher on conditional probability is given in chapter 4 if you
want to review it. 

 You just need a few basic rules to manipulate probabilities. Once you have a firm
grasp on these, you can manipulate probabilities like algebraic expressions and infer
unknown quantities from known quantities. The next section will introduce these
basic rules. 

Table C.1 Weather measurements for late winter in the Great Lakes region

Reading number Day of week Temperature (˚F) Weather

1 1 20 clear

2 2 23 snowing

3 4 18 snowing

4 5 30 clear

5 1 40 rainy

6 2 42 rainy

7 3 40 clear

P weather snowing=  number of times weather = snowing
total number of readings

= --------------------------------------------------------------------------------- 2
7
----=
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C.3 Basic rules of probability
The basic rules (axioms) of probability allow us to do algebra with probabilities. These
are as fundamental as the rules of algebra and should not be ignored. I’ll discuss each
of them in turn and show how it relates to our weather data in table C.1. 

 The probabilities we calculated were fractions. If on all the days we recorded it was
snowing, then P(snowing) would be 7/7 or 1. Now if on none of the days it was snow-
ing, P(snowing) would be 0/7 or 0. It shouldn’t be a huge surprise then that for any
event X, 0?P(x)?1.0. 

 The compliment operator is written as
~snowing, ¬snowing, or snowing. This com-
pliment means any event except given
(snowing). In our weather example from
table C.1, the other possible events were
rainy and clear. So in our world of three pos-
sible weather events, P(¬snowing) =

P(rainy) + P(clear) = 5/7. Remember
P(snowing) was 2/7, so P(snowing) +

P(¬snowing) = 1. Another way of saying this
is snowing + ¬snowing is always true. It might
help to visualize these events in a diagram.
One particularly useful type is a Venn dia-
gram, which is useful for visualizing sets of
things. Figure C.1 shows the set of all possible
weather conditions. Snowing takes up the
circled area on the diagram. Not snowing
takes up the remainder of the diagram. 

 The last basic rule of probability con-
cerns multiple variables. Consider the Venn
diagram in figure C.2 depicting two events
from table C.1. The first event is that
weather = snowing; the second event is day
of week = 2. These events aren’t mutually
exclusive; this just means that they can hap-
pen at the same time. There are some days
when it’s snowing and the day of week = 2;
there are some other days when it’s snow-
ing but the day of week is not 2. There’s an
area where these two regions overlap, but
they don’t completely overlap. 

 The area of overlap in figure C.2 can be
thought of as the intersection of the two
events. This is written as (weather =

snowing) AND (day of week = 2). That is

Figure C.1 The top frame shows the event 
snowing in the circle while all other events are 
outside the circle. The bottom frame shows not 
snowing or all other events. The sum of snowing 
and not snowing makes up all known events.

Figure C.2 A Venn diagram showing the inter-
section of two non–mutually exclusive events.
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straightforward. What if we want to calculate P((weather = snowing) OR (day of week
= 2))? This can be calculated by P(snowing or day of week = 2) = P(snowing) + P(day
of week = 2) - P(snowing AND day of week = 2). We have that last subtracted part to
avoid double counting the intersection. Let me write this in simpler terms: P(X OR Y) =
P(X) + P(Y) - P(X AND Y). This also leads us to an interesting result, a way of algebra-
ically moving between ANDs and ORs of probabilities. 

 With these basic rules of probability, we can accomplish a lot. With assumptions or
prior knowledge, we can calculate the probabilities of events we haven’t directly
observed. 



appendix D:
Resources

Collecting data can be a lot of fun, but if you have a good idea for an algorithm or
want to try something out, finding data can be a pain. This appendix contains a col-
lection of links to known datasets. These sets range in size from 20 lines to trillions
of lines, so you should have no problem finding a dataset to meet your needs:

■ http://archive.ics.uci.edu/ml/—The best-known source of datasets for
machine learning is the University of California at Irvine. We used fewer
than 10 data sets in this book, but there are more than 200 datasets in this repos-
itory. Many of these datasets are used to compare the performance of algo-
rithms so that researchers can have an objective comparison of performance. 

■ http://aws.amazon.com/publicdatasets/—If you’re a big data cowboy, then
this is the link for you. Amazon has some really big datasets, including the
U.S. census data, the annotated human genome data, a 150 GB log of Wiki-
pedia’s page traffic, and a 500 GB database of Wikipedia’s link data.

■ http://www.data.gov—Data.gov is a website launched in 2009 to increase the
public’s access to government datasets. The site was intended to make all
government data public as long as the data was not private or restricted for
security reasons. In 2010, the site had over 250,000 datasets. It’s uncertain
how long the site will remain active. In 2011, the federal government
reduced funding for the Electronic Government Fund, which pays for
Data.gov. The datasets range from products recalled to a list of failed banks. 

■ http://www.data.gov/opendatasites—Data.gov has a list of U.S. states, cities,
and countries that hold similar open data sites.

■ http://www.infochimps.com/—Infochimps is a company that aims to give
everyone access to every dataset in the world. Currently, they have more
than 14,000 datasets available to download. Unlike other listed sites, some
of the datasets on Infochimps are for sale. You can sell your own datasets
here as well. 
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■ http://www.datawrangling.com/some-datasets-available-on-the-web—Data
Wrangling is a private blog with a large number of links to various data
sources on the internet. It’s a bit dated, but many of the links are still good.

■ http://metaoptimize.com/qa/questions/—This isn’t a data source but a ques-
tion-and-answer site that’s machine learning focused. There are many practitio-
ners here willing to help out. 
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