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I ntroduction

D. Michie (1), D. J. Spiegelhalter (2) and C. C. Taylor (3)
(1) University of Strathclyde, (2) MRC Biostatistics Unit, Cambridge! and (3) University
of Leeds

1.1 INTRODUCTION

The aim of this book is to provide an up-to-date review of different approaches to clas-
sification, compare their performance on a wide range of challenging data-sets, and draw
conclusions on their applicability to realistic industrial problems.

Before describing the contents, we first need to define what we mean by classification,
give some background to the different perspectives on the task, and introduce the European
Community StatLog project whose results form the basis for this book.

1.2 CLASSIFICATION

The task of classification occurs in a wide range of human activity. At its broadest, the
term could cover any context in which some decision or forecast is made on the basis of
currently available information, and a classification procedure is then some formal method
for repeatedly making such judgments in new situations. In this book we shall consider a
more restricted interpretation. We shall assume that the problem concerns the construction
of aprocedurethat will be applied to acontinuing sequence of cases, in which each new case
must be assigned to one of a set of pre-defined classes on the basis of observed attributes
or features. The construction of a classification procedure from a set of data for which the
true classes are known has al so been variously termed pattern recognition, discrimination,
or supervised learning (in order to distinguish it from unsupervised learning or clustering
in which the classes are inferred from the data).

Contextsinwhich a classification task isfundamental include, for example, mechanical
proceduresfor sorting letters on the basis of machine-read postcodes, assigning individuals
to credit status on the basis of financial and other personal information, and the preliminary
diagnosis of a patient’s disease in order to select immediate treatment while awaiting
definitivetest results. Infact, some of the most urgent problemsarising in science, industry

1 Address for correspondence: MRC Biostatistics Unit, Institute of Public Health, University Forvie Site,
Robinson Way, Cambridge CB2 2SR, U .K.



2 Introduction [Ch.1

and commerce can be regarded as classification or decision problems using complex and
often very extensive data.

We note that many other topics come under the broad heading of classification. These
include problems of control, which is briefly covered in Chapter 13.

1.3 PERSPECTIVESON CLASSIFICATION

Asthe book’stitle suggests, awide variety of approaches has been taken towardsthis task.
Three main historical strands of research can be identified: statistical, machine learning
and neural network. These have largely involved different professional and academic
groups, and emphasised different issues. All groups have, however, had some objectivesin
common. They have all attempted to derive procedures that would be able:

e toequal, if not exceed, a human decision-maker’s behaviour, but have the advantage
of consistency and, to a variable extent, explicitness,

e tohandle awide variety of problems and, given enough data, to be extremely general,

e tobeusedin practical settings with proven success.

1.3.1 Statistical approaches

Two main phasesof work on classification can beidentified within the statistical community.
The first, “classical” phase concentrated on derivatives of Fisher's early work on linear
discrimination. The second, “modern” phase exploits more flexible classes of models,
many of which attempt to provide an estimate of thejoint distribution of the featureswithin
each class, which can in turn provide a classification rule.

Statistical approaches are generally characterised by having an explicit underlying
probability model, which provides a probability of being in each class rather than simply a
classification. In addition, it is usually assumed that the techniques will be used by statis-
ticians, and hence some human intervention is assumed with regard to variable selection
and transformation, and overall structuring of the problem.

1.3.2 Machinelearning

Machine Learning is generally taken to encompass automatic computing procedures based
on logical or binary operations, that learn a task from a series of examples. Here we
are just concerned with classification, and it is arguable what should come under the
Machine Learning umbrella. Attention has focussed on decision-tree approaches, in which
classification results from a sequence of logical steps. These are capable of representing
the most complex problem given sufficient data (but this may mean an enormous amount!).
Other techniques, such as genetic algorithms and inductive logic procedures (ILP), are
currently under active development and in principle would allow us to deal with more
general types of data, including cases where the number and type of attributes may vary,
and where additional layers of learning are superimposed, with hierarchical structure of
attributes and classes and so on.

Machine Learning aims to generate classifying expressions simple enough to be un-
derstood easily by the human. They must mimic human reasoning sufficiently to provide
insight into the decision process. Like statistical approaches, background knowledge may
be exploited in development, but operation is assumed without human intervention.
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1.3.3 Neural networks

Thefield of Neural Networks has arisen from diverse sources, ranging from the fascination
of mankindwith understanding and emul ating the human brain, to broader issuesof copying
human abilities such as speech and the use of language, to the practical commercial,
scientific, and engineering disciplines of pattern recognition, modelling, and prediction.
The pursuit of technology is a strong driving force for researchers, both in academia and
industry, in many fields of science and engineering. In neura networks, as in Machine
Learning, the excitement of technological progressis supplemented by the challenge of
reproducing intelligence itself.

A broad classof techniquescan comeunder thisheading, but, generally, neural networks
consist of layers of interconnected nodes, each node producing a non-linear function of its
input. The input to a node may come from other nodes or directly from the input data.
Also, some nodes are identified with the output of the network. The complete network
therefore represents a very complex set of interdependencies which may incorporate any
degree of nonlinearity, allowing very general functions to be modelled.

In the simplest networks, the output from one node is fed into another node in such a
way as to propagate “messages’ through layers of interconnecting nodes. More complex
behaviour may be modelled by networksin which thefinal output nodes are connected with
earlier nodes, and then the system has the characteristics of ahighly nonlinear system with
feedback. It has been argued that neural networks mirror to a certain extent the behaviour
of networks of neuronsin the brain.

Neural network approachescombinethe complexity of someof thestatistical techniques
with the machine learning objective of imitating human intelligence: however, thisis done
at amore “unconscious’ level and hence thereis no accompanying ability to make learned
concepts transparent to the user.

1.3.4 Conclusions

Thethreebroad approachesoutlined aboveform the basisof the grouping of proceduresused
in thisbook. The correspondence between type of technique and professional background
isinexact: for example, techniques that use decision trees have been developed in parallel
both within the machine learning community, motivated by psychological research or
knowledge acquisition for expert systems, and within the statistical profession asaresponse
to the perceived limitations of classical discrimination technigques based on linear functions.
Similarly strong parallelsmay be drawn between advanced regression techniques devel oped
in statistics, and neural network model swith abackground in psychol ogy, computer science
and artificial intelligence.

It isthe aim of this book to put all methods to the test of experiment, and to give an
objective assessment of their strengths and weaknesses. Techniques have been grouped
according to the above categories. It is not aways straightforward to select a group: for
example some procedures can be considered as a devel opment from linear regression, but
have strong affinity to neural networks. When deciding on a group for a specific technique,
we have attempted to ignoreits professional pedigree and classify according to its essential
nature.
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1.4 THE STATLOG PROJECT

The fragmentation amongst different disciplines has almost certainly hindered communi-
cation and progress. The StatLog project 2 was designed to break down these divisions
by selecting classification procedures regardless of historical pedigree, testing them on
large-scale and commercially important problems, and hence to determine to what ex-
tent the various techniques met the needs of industry. This depends critically on a clear
understanding of:

1. theaimsof each classification/decision procedure;

2. theclass of problemsfor which it is most suited;

3. measures of performance or benchmarks to monitor the success of the method in a
particular application.

About 20 procedureswere considered for about 20 datasets, so that resultswere obtained
from around 20 x 20 = 400 large scale experiments. The set of methods to be considered
was pruned after early experiments, using criteria developed for multi-input (problems),
many treatments (algorithms) and multiple criteria experiments. A management hierarchy
led by Daimler-Benz controlled the full project.

The objectives of the Project were threefold:

1. toprovide critical performance measurements on available classification procedures;

2. to indicate the nature and scope of further development which particular methods
require to meet the expectations of industrial users;

3. toindicate the most promising avenues of development for the commercially immature
approaches.

1.4.1 Quality control

TheProject laid down strict guidelinesfor thetesting procedure. First an agreed dataformat
was established, algorithms were “ deposited” at onesite, with appropriate instructions; this
version would be used in the case of any future dispute. Each dataset was then divided
into atraining set and a testing set, and any parameters in an algorithm could be “tuned”

or estimated only by reference to the training set. Once a rule had been determined, it
was then applied to the test data. This procedure was validated at another site by another
(more naive) user for each dataset in the first phase of the Project. This ensured that the
guidelines for parameter selection were not violated, and also gave some information on
the ease-of -use for a non-expert in the domain. Unfortunately, these guidelines were not
followedfor theradia basisfunction (RBF) a gorithm which for some datasets determined
the number of centres and locations with referenceto the test set, so these results should be
viewed with some caution. However, it is thought that the conclusionswill be unaffected.

1.4.2 Caution in theinterpretations of comparisons

There are some strong caveats that must be made concerning comparisons between tech-
niquesin a project such asthis.

First, the exercise is necessarily somewhat contrived. In any real application, there
should be an iterative process in which the constructor of the classifier interacts with the

2ESPRIT project 5170. Comparative testing and evaluation of statistical and logical learning algorithms on
large-scale applicationsto classification, prediction and control
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expert in the domain, gaining understanding of the problem and any limitationsin the data,
and receiving feedback asto the quality of preliminary investigations. In contrast, StatLog
datasets were simply distributed and used as test cases for a wide variety of techniques,
each applied in a somewhat automatic fashion.

Second, the results obtained by applying atechniqueto atest problem depend on three
factors:

1. theessential quality and appropriateness of the technique;
2. theactual implementation of the technique as a computer program ;
3. theskill of the user in coaxing the best out of the technique.

In Appendix B we have described the implementationsused for each technique, and the
availability of more advanced versionsif appropriate. However, it is extremely difficult to
control adequately the variationsin the background and ability of all the experimentersin
StatLog, particularly with regard to dataanalysis and facility in “tuning” proceduresto give
their best. Individual techniques may, therefore, have suffered from poor implementation
and use, but we hope that there is no overall bias against whole classes of procedure.

15 THE STRUCTURE OF THISVOLUME

The present text has been produced by a variety of authors, from widely differing back-
grounds, but with the common aim of making the results of the StatLog project accessible
to awide range of workersin the fields of machine learning, statisticsand neural networks,
and to help the cross-fertilisation of ideas between these groups.

After discussing the general classification problem in Chapter 2, the next 4 chapters
detail the methods that have been investigated, divided up according to broad headings of
Classical statistics, modern statistical techniques, Decision Trees and Rules, and Neural
Networks. The next part of the book concerns the evaluation experiments, and includes
chapters on evaluation criteria, a survey of previous comparative studies, a description of
the data-sets and the results for the different methods, and an analysis of the results which
explores the characteristics of data-sets that make them suitable for particular approaches:
we might call this “machine learning on machine learning”. The conclusions concerning
the experiments are summarised in Chapter 11.

The final chapters of the book broaden the interpretation of the basic classification
problem. Thefundamental theme of representing knowledge using different formalismsis
discussed with relation to constructing classification techniques, followed by a summary
of current approaches to dynamic control now arising from arephrasing of the problemin
terms of classification and learning.
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Classification

R.J. Henery
University of Strathclyde!

2.1 DEFINITION OF CLASSIFICATION

Classification has two distinct meanings. We may be given a set of observations with the
aim of establishing the existence of classes or clusters in the data. Or we may know for
certain that there are so many classes, and the aim is to establish a rule whereby we can
classify a new observation into one of the existing classes. The former type is known
as Unsupervised Learning (or Clustering), the latter as Supervised Learning. In this book
whenwe usetheterm classification, we aretalking of Supervised Learning. Inthe statistical
literature, Supervised Learning is usually, but not always, referred to as discrimination, by
which is meant the establishing of the classification rule from given correctly classified
data.

The existence of correctly classified data presupposes that someone (the Supervisor) is
ableto classify without error, so the question naturally arises: why isit necessary to replace
this exact classification by some approximation?

2.1.1 Rationale

There are many reasons why we may wish to set up a classification procedure, and some
of these are discussed later in relation to the actual datasets used in this book. Here we
outline possible reasons for the examplesin Section 1.2.

1. Mechanical classification procedures may be much faster: for example, postal code
reading machines may be able to sort the majority of |etters, leaving the difficult cases
to human readers.

2. A mail order firm must take a decision on the granting of credit purely on the basis of
information supplied in the application form: human operators may well have biases,
i.e. may make decisions on irrelevant information and may turn away good customers.

1 Address for correspondence: Department of Statistics and Modelling Science, University of Strathclyde,
Glasgow G1 1XH, U.K.
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3. Inthemedical field, we may wish to avoid the surgery that would be the only sure way
of making an exact diagnosis, so we ask if a reliable diagnosis can be made on purely
external symptoms.

4. The Supervisor (refered to above) may be the verdict of history, asin meteorology or
stock-exchange transaction or investment and loan decisions. In this case theissueis
one of forecasting.

2.1.2 |Issues

There are also many issues of concern to the would-be classifier. We list below a few of
these.

e Accuragy. Thereisthe reliability of the rule, usually represented by the proportion
of correct classifications, although it may be that some errors are more serious than
others, and it may be important to control the error rate for some key class.

e Speed. In some circumstances, the speed of the classifier isamajor issue. A classifier
that is 90% accurate may be preferred over one that is 95% accurate if it is 100 times
faster in testing (and such differences in time-scales are not uncommon in neura
networks for example). Such considerations would be important for the automatic
reading of postal codes, or automatic fault detection of items on a production line for
example.

e Comprehensibility. If it is a human operator that must apply the classification proce-
dure, the procedure must be easily understood else mistakes will be made in applying
therule. It isimportant also, that human operators believe the system. An oft-quoted
example is the Three-Mile Island case, where the automatic devices correctly rec-
ommended a shutdown, but this recommendation was not acted upon by the human
operators who did not believe that the recommendation was well founded. A similar
story appliesto the Chernoby! disaster.

e Timeto Learn. Especidly in arapidly changing environment, it may be necessary
to learn a classification rule quickly, or make adjustments to an existing rule in rea
time. “Quickly” might imply also that we need only a small number of observations
to establish our rule.

At one extreme, consider the naive 1-nearest neighbour rule, in which the training set
is searched for the ‘nearest’ (in a defined sense) previous example, whose class is then
assumed for the new case. Thisis very fast to learn (no time at all!), but is very slow in
practice if all the data are used (although if you have a massively parallel computer you
might speed up the method considerably). At the other extreme, there are caseswhereitis
very useful to have a quick-and-dirty method, possibly for eyeball checking of data, or for
providing a quick cross-checking on the results of another procedure. For example, abank
manager might know that the simple rule-of-thumb “only give credit to applicants who
already have a bank account” is afairly reliable rule. If she notices that the new assistant
(or the new automated procedure) is mostly giving credit to customers who do not have a
bank account, she would probably wish to check that the new assistant (or new procedure)
was operating correctly.
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2.1.3 Classdefinitions

An important question, that is improperly understood in many studies of classification,
is the nature of the classes and the way that they are defined. We can distinguish three
common cases, only thefirst leading to what statisticians would term classification:

1. Classes correspond to labels for different populations: membership of the various
populationsis not in question. For example, dogs and cats form quite separate classes
or populations, and it is known, with certainty, whether an animal is a dog or a cat
(or neither). Membership of a class or population is determined by an independent
authority (the Supervisor), the allocation to a class being determined independently of
any particular attributes or variables.

2. Classes result from a prediction problem. Here class is essentially an outcome that
must be predicted from a knowledge of the attributes. In statistical terms, the classis
arandom variable. A typical example isin the prediction of interest rates. Frequently
the question is put: will interest rates rise (class=1) or not (class=0).

3. Classes are pre-defined by a partition of the sample space, i.e. of the attributes
themselves. We may say that classisafunction of the attributes. Thus a manufactured
item may be classed as faulty if some attributes are outside predetermined limits, and
not faulty otherwise. There is a rule that has aready classified the data from the
attributes: the problem is to create a rule that mimics the actual rule as closely as
possible. Many credit datasets are of this type.

In practice, datasets may be mixtures of these types, or may be somewhere in between.

214 Accuracy

On the question of accuracy, we should always bear in mind that accuracy as measured
on the training set and accuracy as measured on unseen data (the test set) are often very
different. Indeed it is not uncommon, especially in Machine Learning applications, for the
training set to be perfectly fitted, but performance on the test set to be very disappointing.
Usually, it isthe accuracy on the unseen data, when the true classification is unknown, that
is of practical importance. The generally accepted method for estimating thisis to use the
given data, in which we assume that all class memberships are known, as follows. Firstly,
we use a substantial proportion (the training set) of the given data to train the procedure.
Thisruleis then tested on the remaining data (the test set), and the results compared with
the known classifications. The proportion correct in the test set is an unbiased estimate of
the accuragy of the rule provided that the training set is randomly sampled from the given
data.

2.2 EXAMPLESOF CLASSIFIERS

To illustrate the basic types of classifiers, we will use the well-known Iris dataset, which
is given, in full, in Kendall & Stuart (1983). There are three varieties of Iris; Setosa,
Versicolor and Virginica. The length and breadth of both petal and sepal were measured
on 50 flowers of each variety. The original problemisto classify anew Irisflower into one
of these three types on the basis of the four attributes (petal and sepal length and width).
To keep this example simple, however, we will look for a classification rule by which the
varieties can be distinguished purely on the basis of the two measurements on Petal Length
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and Width. We have available fifty pairs of measurements of each variety from which to
learn the classification rule.

2.2.1 Fisher'slinear discriminants

Thisis one of the oldest classification procedures, and is the most commonly implemented
in computer packages. The idea is to divide sample space by a series of lines in two
dimensions, planes in 3-D and, generaly hyperplanes in many dimensions. The line
dividing two classes is drawn to bisect the line joining the centres of those classes, the
direction of the line is determined by the shape of the clusters of points. For example, to
differentiate between Versicolor and Virginica, the following rule is applied:

o |f Petal Width < 3.272 — 0.3254 x Peta Length, then Versicolor.
e |f Petal Width > 3.272 — 0.3254 x Petal Length, then Virginica

Fisher’'s linear discriminants applied to the Iris data are shown in Figure 2.1. Six of the
observations would be misclassified.
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Fig. 2.1: Classification by linear discriminants: Iris data.

2.2.2 Decision tree and Rule-based methods

One classof classification proceduresisbased on recursive partitioning of the sample space.
Space is divided into boxes, and at each stage in the procedure, each box is examined to
seeif it may be split into two boxes, the split usually being parallel to the coordinate axes.
An example for the Iris data follows.

e If Petal Length < 2.65 then Setosa.
e If Petal Length > 4.95 then Virginica
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e If 2.65 < Petal Length < 4.95 then :
if Petal Width < 1.65 then Versicolor;
if Petal Width > 1.65 then Virginica

The resulting partition is shown in Figure 2.2. Note that this classification rule has three
mis-classifications.
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Fig. 2.2: Classification by decision tree: Iris data.

Weiss & Kapouleas (1989) give an alternative classification rule for the Iris datathat is
very directly related to Figure2.2. Their rule can be obtained from Figure 2.2 by continuing
the dotted line to the left, and can be stated thus:

e If Petal Length < 2.65 then Setosa.

e If Petal Length > 4.95 or Petal Width > 1.65 then Virginica
e Otherwise Versicolor.

Notice that this rule, while equivalent to the rule illustrated in Figure 2.2, is stated more
concisely, and this formulation may be preferred for thisreason. Notice also that theruleis
ambiguousif Petal Length < 2.65 and Petal Width > 1.65. The quoted rules may be made
unambiguous by applying them in the given order, and they are then just a re-statement of
the previous decision tree. The rule discussed here is an instance of a rule-based method:
such methods have very close links with decision trees.

2.2.3 k-Nearest-Neighbour

Weillustrate thistechnique on the Irisdata. Supposeanew Irisisto beclassified. Theidea
isthat it is most likely to be near to observations from its own proper population. So we
look at the five (say) nearest observations from al previously recorded Irises, and classify
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the observation according to the most frequent class among its neighbours. In Figure 2.3,
the new observation is marked by a +, and the 5 nearest observations lie within the circle
centred onthe+. Theapparent elliptical shapeisdueto the differing horizontal and vertical
scales, but the proper scaling of the observationsisamajor difficulty of this method.

Thisisillustrated in Figure 2.3 , where an observation centred at + would be classified
as Virginicasinceit has4 Virginicaamong its 5 nearest neighbours.
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Fig. 2.3: Classification by 5-Nearest-Neighbours: Iris data.

2.3 CHOICE OF VARIABLES

As we have just pointed out in relation to k-nearest neighbour, it may be necessary to
reduce the weight attached to some variables by suitable scaling. At one extreme, we might
remove some variables altogether if they do not contribute usefully to the discrimination,
although thisis not always easy to decide. There are established procedures (for example,
forward stepwise selection) for removing unnecessary variables in linear discriminants,
but, for large datasets, the performance of linear discriminantsis not seriously affected by
including such unnecessary variables. In contrast, the presence of irrelevant variables is
always a problem with k-nearest neighbour, regardless of dataset size.

2.3.1 Transformationsand combinations of variables

Often problems can be simplified by ajudicioustransformation of variables. With statistical
procedures, the aim is usually to transform the attributes so that their marginal density is
approximately normal, usually by applying a monotonic transformation of the power law
type. Monotonic transformationsdo not affect the M achine Learning methods, but they can
benefit by combining variables, for example by taking ratiosor differencesof key variables.
Background knowledge of the problem is of help in determining what transformation or
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combination to use. For example, in thelrisdata, the product of the variables Petal Length
and Petal Width gives a single attribute which has the dimensions of area, and might be
labelled as Petal Area. It so happens that a decision rule based on the single variable Petal
Areaisagood classifier with only four errors:

o If Petal Area< 2.0 then Setosa
e If 2.0 < Petal Area< 7.4 then Virginica
e If Petal Area> 7.4 then Virginica

Thistree, whileit hasonemore error than thedecision tree quoted earlier, might be preferred
on the grounds of conceptual simplicity as it involves only one “concept”, namely Petal
Area. Also, one less arbitrary constant need be remembered (i.e. there is one less node or
cut-point in the decision trees).

24 CLASSIFICATION OF CLASSIFICATION PROCEDURES

The above three procedures (linear discrimination, decision-tree and rule-based, k-nearest
neighbour) are prototypes for three types of classification procedure. Not surprisingly,
they have been refined and extended, but they still represent the major strands in current
classification practice and research. The 23 procedures investigated in this book can be
directly linked to one or other of the above. However, within this book the methods have
been grouped around the more traditional headings of classical statistics, modern statistical
techniques, Machine Learning and neural networks. Chapters 3 — 6, respectively, are
devoted to each of these. For some methods, the classification is rather abitrary.

2.4.1 Extensionsto linear discrimination

We can include in this group those procedures that start from linear combinations of
the measurements, even if these combinations are subsequently subjected to some non-
linear transformation. There are 7 procedures of thistype: Linear discriminants; logistic
discriminants; quadratic discriminants; multi-layer perceptron (backprop and cascade);
DIPOL92; and projection pursuit. Note that this group consists of statistical and neural
network (specifically multilayer perceptron) methods only.

2.4.2 Decision trees and Rule-based methods

Thisisthe most numerousgroup in the book with 9 procedures: NewlD; AC?; Cal5; CN2;
C4.5; CART; IndCART,; Bayes Tree; and I Trule (see Chapter 5).

243 Density estimates

This group is a little less homogeneous, but the 7 members have this in common: the
procedure is intimately linked with the estimation of the local probability density at each
point in sample space. The density estimate group contains: k-nearest neighbour; radia
basisfunctions; Naive Bayes; Polytrees; Kohonen self-organising net; LV Q; and the kernel
density method. This group also contains only statistical and neural net methods.

25 A GENERAL STRUCTURE FOR CLASSIFICATION PROBLEMS

There are three essential componentsto a classification problem.

1. The relative frequency with which the classes occur in the population of interest,
expressed formally as the prior probability distribution.
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2. Animplicit or explicit criterion for separating the classes: we may think of an un-
derlying input/output relation that uses observed attributes to distinguish a random
individual from each class.

3. The cost associated with making a wrong classification.

Most techniquesimplicitly confound components and, for example, produce a classifi-
cation rulethat is derived conditional on a particular prior distribution and cannot easily be
adapted to achangein class frequency. However, in theory each of these components may
be individually studied and then the results formally combined into a classification rule.
We shall describe this devel opment bel ow.

251 Prior probabilitiesand the Default rule

We need to introduce some notation. Let the classesbe denoted 4;,i = 1,...,q, and let
the prior probability =; for the class A; be:
T = P(Ai)

It is always possible to use the no-data rule: classify any new observation as class Ay,
irrespective of the attributes of the example. This no-data or default rule may even be
adopted in practice if the cost of gathering the data is too high. Thus, banks may give
credit to al their established customers for the sake of good customer relations. here the
cost of gathering the data is the risk of losing customers. The default rule relies only on
knowledge of the prior probabilities, and clearly the decision rule that has the greatest
chance of successisto allocate every new observation to the most frequent class. However,
if some classification errors are more serious than others we adopt the minimum risk (least
expected cost) rule, and the class k is that with the least expected cost (see below).

25.2 Separating classes

Suppose we are able to observe data z on an individual, and that we know the probability
distribution of = within each class A; to be P(z|A;). Then for any two classes 4;, 4; the
likelihoodratio P(z|A;)/ P (xz|A;) providesthetheoretical optimal formfor discriminating
the classes on the basis of data z. The majority of techniques featured in this book can be
thought of asimplicitly or explicitly deriving an approximate form for thislikelihood ratio.

2.5.3 Misclassification costs

Supposethe cost of misclassifying aclass A; object asclass 4; isc(¢, j). Decisionsshould
be based on the principle that the total cost of misclassifications should be minimised: for
anew observation this means minimising the expected cost of misclassification.

Let us first consider the expected cost of applying the default decision rule: allocate
all new observations to the class A4, using suffix d as label for the decision class. When
decision A4 ismadefor all new examples, acost of ¢(z, d) isincurred for class A; examples
and these occur with probability ;. So the expected cost C; of making decision A4; is:

Cy = Z mie(s, d)

The Bayes minimum cost rule chooses that class that has the lowest expected cost. To
see the relation between the minimum error and minimum cost rules, suppose the cost of
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misclassifications to be the same for all errorsand zero when aclassis correctly identified,
i.e supposethat c(i,j) = cfori # jande(s,j) = 0fori = j.
Then the expected cost is

Cy = ch(i, d) = ch = ch = (1l —mg)
i i#d iAd

and the minimum cost ruleis to allocate to the class with the greatest prior probability.

Misclassification costs are very difficult to obtain in practice. Even in situationswhere
it is very clear that there are very great inequalities in the sizes of the possible penalties
or rewards for making the wrong or right decision, it is often very difficult to quantify
them. Typically they may vary from individual to individual, as in the case of applications
for credit of varying amounts in widely differing circumstances. In one dataset we have
assumed the misclassification costs to be the same for all individuals. (In practice, credit-
granting companies must assess the potential costs for each applicant, and in this case the
classification algorithm usually delivers an assessment of probabilities, and the decision is
[eft to the human operator.)

2.6 BAYESRULE GIVEN DATA z

We can now see how the three components introduced above may be combined into a
classification procedure.

When we are given information z about an individual, the situation is, in principle,
unchanged from the no-data situation. The difference is that all probabilities must now
be interpreted as conditional on the dataz. Again, the decision rule with least probability
of error isto allocate to the class with the highest probability of occurrence, but now the
relevant probability is the conditional probability p(A;|z) of class A; given the dataz:

p(Ai|z) = Prob(class4; givenz)
If we wish to use a minimum cost rule, we must first calculate the expected costs of the
various decisions conditional on the given information z.

Now, when decision A; is made for examples with attributes z, a cost of ¢(¢, d)
is incurred for class A; examples and these occur with probability p(A;|z). As the
probabilities p(A;|z) depend on z, so too will the decision rule. So too will the expected
cost C4(z) of making decision Ag4:

Cy(z) = Zp(AA:c)c(i, d)

In the special case of equal misclassification costs, the minimum cost rule isto allocate to
the class with the greatest posterior probability.

When Bayes theorem is used to calculate the conditional probabilities p(A4;|z) for the
classes, we refer to them as the posterior probabilities of the classes. Then the posterior
probabilities p(4;|z) are calculated from aknowledge of the prior probabilities «; and the
conditional probabilities P(z|A4;) of thedatafor each class A;. Thus, for class A; suppose
that the probability of observing data z is P(z|A4;). Bayes theorem gives the posterior
probability p(A;|z) for class 4; as:

p(Ailz) = mP(z|A;)/ E m; P(z|4;)
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The divisor is common to al classes, so we may use the fact that p(A;|z) is proportional
to m; P(z|4;). Theclass A4 with minimum expected cost (minimum risk) is therefore that
for which

ch(i, d)P(z|A;)

isaminimum.

Assuming now that the attributes have continuous distributions, the probabilities above
become probability densities. Suppose that observations drawn from population A; have
probability density function f;(z) = f(z | 4;) and that the prior probability that an obser-
vation belongs to class A; is 7;. Then Bayes theorem computes the probability that an
observation z belongsto class 4; as

p(4ilz) = mifi(z)/ Z m; fi (z)

A classification rule then assigns z to the class A4 with maximal a posteriori probability
given z:

p(Aalz) = maxp(4ile)
As before, the class A4 with minimum expected cost (minimum risk) is that for which

Z?rm(i, d)fi(z)

isaminimum.
Consider the problem of discriminating between just two classes 4; and 4;. Then
assuming as before that ¢(z, ¢) = ¢(7, j) = 0, we should allocate to class i if

mic(i, 3)f; () < mic(5,9) fi(=)
or equivalently

fi(z) _ m; clig)

fi(@) = mic(5,4)
which showsthe pivotal role of the likelihood ratio, which must be greater than the ratio of
prior probabilitiestimesthe relative costs of the errors. We note the symmetry in the above
expression: changes in costs can be compensated in changes in prior to keep constant the
threshold that defines the classification rule - this facility is exploited in some techniques,

although for more than two groups this property only exists under restrictive assumptions
(see Breiman et al., page 112).

2.6.1 Bayesrulein statistics

Rather than deriving p( 4;|z) viaBayestheorem, we could a so usethe empirical frequency
version of Bayesrule, which, in practice, would require prohibiti vely large amounts of data.
However, in principle, the procedure is to gather together all examples in the training set
that have the same attributes (exactly) as the given example, and to find class proportions
p(A4;|z) among these examples. The minimum error ruleisto alocateto the class A4 with
highest posterior probability.

Unlessthe number of attributesisvery small and thetraining dataset very large, it will be
necessary to use approximationsto estimate the posterior class probabilities. For example,
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one way of finding an approximate Bayes rule would be to use not just examples with
attributes matching exactly those of the given example, but to use examples that were near
the given example in some sense. The minimum error decision rule would be to allocate
to the most frequent class among these matching examples. Partitioning algorithms, and
decision trees in particular, divide up attribute space into regions of self-similarity: all
datawithin a given box are treated as similar, and posterior class probabilities are constant
within the box.

Decision rules based on Bayes rules are optima - no other rule has lower expected
error rate, or lower expected misclassification costs. Although unattainable in practice,
they provide the logical basis for all statistical algorithms. They are unattainable because
they assume complete information is known about the statistical distributionsin each class.
Statistical procedures try to supply the missing distributional information in a variety of
ways, but there are two main lines. parametric and non-parametric. Parametric methods
make assumptions about the nature of the distributions (commonly it is assumed that the
distributions are Gaussian), and the problem is reduced to estimating the parameters of
the distributions (means and variances in the case of Gaussians). Non-parametric methods
make no assumptions about the specific distributionsinvolved, and are therefore described,
perhaps more accurately, as distribution-free.

2.7 REFERENCE TEXTS

There are several good textbooks that we can recommend. Weiss & Kulikowski (1991)
give an overall view of classification methodsin atext that is probably the most accessible
to the Machine Learning community. Hand (1981), Lachenbruch & Mickey (1975) and
Kendall et al. (1983) give the statistical approach. Breiman et al. (1984) describe CART,
whichisapartitioning algorithm devel oped by statisticians, and Silverman (1986) discusses
density estimation methods. For neural net approaches, the book by Hertz et al. (1991) is
probably the most comprehensive and reliable. Two excellent texts on pattern recognition
are those of Fukunaga (1990) , who gives athorough treatment of classification problems,
and Devijver & Kittler (1982) who concentrate on the k-nearest neighbour approach.
A thorough treatment of statistical procedures is given in McLachlan (1992), who also
mentions the more important alternative approaches. A recent text dealing with pattern
recognition from avariety of perspectivesis Schalkoff (1992).
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Classical Statistical M ethods

J. M. O. Mitchdll
University of Strathclyde?

3.1 INTRODUCTION

This chapter provides an introduction to the classical statistical discrimination techniques
and is intended for the non-statistical reader. It begins with Fisher’s linear discriminant,
whichrequiresno probability assumptions, and then introduces methods based on maximum
likelihood. Thesearelinear discriminant, quadratic discriminant and logistic discriminant.
Next there is a brief section on Bayes' rules, which indicates how each of the methods
can be adapted to deal with unequal prior probabilities and unequal misclassification costs.
Finally thereis an illustrative example showing the result of applying al three methods to
atwo class and two attribute problem. For full details of the statistical theory involved the
reader should consult a statistical text book, for example (Anderson, 1958).

The training set will consist of examples drawn from ¢ known classes. (Often ¢ will
be2.) Thevaluesof p numerically-valued attributeswill be known for each of n examples,
and these form the attribute vector x = (z1, z2,...,z,). It should be noted that these
methods require numerical attribute vectors, and also require that none of the values is
missing. Where an attribute is categorical with two values, an indicator is used, i.e. an
attribute which takes the value 1 for one category, and O for the other. Where there are
more than two categorical values, indicators are normally set up for each of the values.
However there is then redundancy among these new attributes and the usual procedureis
to drop one of them. In thisway a single categorical attributewith j valuesisreplaced by
j—1 attributeswhose values are 0 or 1. Where the attribute values are ordered, it may be
acceptableto use asingle numerical-valued attribute. Care hasto be taken that the numbers
used reflect the spacing of the categories in an appropriate fashion.

3.2 LINEARDISCRIMINANTS

There are two quite different justifications for using Fisher’s linear discriminant rule: the
first, as given by Fisher (1936), is that it maximises the separation between the classesin

1 Address for correspondence: Department of Statistics and Modelling Science, University of Strathclyde,
Glasgow G1 1XH, U.K.
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a least-sguares sense; the second is by Maximum Likelihood (see Section 3.2.3). We will
give abrief outline of these approaches. For a proof that they arrive at the same solution,
we refer the reader to McLachlan (1992).

3.21 Linear discriminantshy least squares

Fisher's linear discriminant (Fisher, 1936) is an empirical method for classification based
purely on attributevectors. A hyperplane (lineintwo dimensions, planeinthreedimensions,
etc.) inthe p-dimensional attribute space is chosen to separate the known classes as well
as possible. Points are classified according to the side of the hyperplane that they fall on.
For example, see Figure 3.1, which illustrates discrimination between two “digits’, with
the continuous line as the discriminating hyperplane between the two popul ations.

This procedureis also equivalent to at-test or F-test for asignificant difference between
the mean discriminants for the two samples, the t-statistic or F-statistic being constructed
to have the largest possible value.

More precisely, in the case of two classes, let x, X1, X2 be respectively the means of
the attribute vectors overall and for the two classes. Suppose that we are given a set of
coefficients a4, ..., a, and let us call the particular linear combination of attributes

g(x) = ajz;

the discriminant between the classes. We wish the discriminants for the two classes to
differ as much as possible, and one measure for this is the difference g(x1) — g(x2)
between the mean discriminants for the two classes divided by the standard deviation of
the discriminants, s, say, giving the following measure of discrimination:

9(x1) — g(x2)

Sg

This measure of discriminationis related to an estimate of misclassification error based on
the assumption of a multivariate normal distribution for g(x) (note that this is a weaker
assumption than saying that x has a normal distribution). For the sake of argument, we
set the dividing line between the two classes at the midpoint between the two class means.
Then we may estimate the probability of misclassification for one class as the probability
that the normal random variable g(x) for that class is on the wrong side of the dividing
ling, i.e. thewrong side of

9(x1) + g(x2)

2

and thisiseasily seento be
9(%1) — g(x2)
T

g
wherewe assume, without lossof generality, that g(x1) — g(X2) isnegative. If the classes
are not of equal sizes, or if, as is very frequently the case, the variance of g(x) is not the
same for the two classes, the dividing line is best drawn at some point other than the
midpoint.

Rather than use the simple measure quoted above, it is more convenient algebraically

to use an equivalent measure defined in terms of sums of squared deviations, asin analysis
of variance. The sum of squares of g(x) within class 4; is

&
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> (9(x) — (%)%,

the sum being over the examplesin class A;. The pooled sum of squares within classes, v
say, is the sum of these quantities for the two classes (this is the quantity that would give
usastandard deviation s, ). Thetotal sumof squaresof g(x) is>(g(x) — g(X))? = ¢ say,
where this last sum is now over both classes. By subtraction, the pooled sum of squares
between classesist — v, and this last quantity is proportional to (g(%1) — g(X2))?.

In terms of the F-test for the significance of the difference g(x1) — g(x2), wewould
calculate the F-statistic

P (t—v)/1
v/(N —2)
Clearly maximising the F-ratio statistic is equivalent to maximising the ratio t/v, so the
coefficientsa;, j = 1, ..., p may be chosen to maximisetheratio ¢/v. Thismaximisation
problem may be solved analytically, giving an explicit solution for the coefficients a;.
Thereis however an arbitrary multiplicative constant in the solution, and the usual practice
is to normalise the a; in some way so that the solution is uniquely determined. Often one
coefficient is taken to be unity (so avoiding a multiplication). However the detail of this
need not concern us here.

To justify the “least squares’ of thetitle for this section, note that we may choose the
arbitrary multiplicative constant so that the separation g(x1) — g(X2) between the class
mean discriminantsis equal to some predetermined value (say unity). Maximising the F-
ratio is now equivalent to minimising the total sum of squaresv. Put thisway, the problem
isidentical to aregression of class (treated numerically) on the attributes, the dependent
variable class being zero for one class and unity for the other.

The main point about this method is that it isalinear function of the attributes that is
used to carry out the classification. This often workswell, but it is easy to seethat it may
work badly if alinear separator is not appropriate. This could happen for example if the
data for one class formed atight cluster and the the values for the other class were widely
spread around it. However the coordinate system used is of no importance. Equivalent
resultswill be obtained after any linear transformation of the coordinates.

A practical complication isthat for the algorithm to work the pooled sampl e covariance
matrix must be invertible. The covariance matrix for a dataset with n; examples from
class 4;, is

1

n; —

where X isthe n; x p matrix of attribute values, and x is the p-dimensional row-vector
of attribute means. The pooled covariance matrix S is ) (n; — 1)S;/(n — ¢) where the
summation is over all the classes, and the divisor n — ¢ is chosen to make the pooled
covariance matrix unbiased. For invertibility the attributes must be linearly independent,
which means that no attribute may be an exact linear combination of other attributes. In
order to achieve this, some attributes may have to be dropped. Moreover no attribute can
be constant within each class. Of course an attribute which is constant within each class
but not overall may be an excellent discriminator and islikely to be utilised in decision tree
algorithms. However it will cause the linear discriminant algorithm to fail. This situation
can betreated by adding asmall positive constant to the corresponding diagonal element of

S; =

1XTX—>T:T:E,
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the pooled covariance matrix, or by adding random noise to the attribute before applying
the algorithm.

In order to deal with the case of more than two classes Fisher (1938) suggested the use
of canonical variates. First alinear combination of the attributes is chosen to minimise
the ratio of the pooled within class sum of squares to the total sum of squares. Then
further linear functions are found to improve the discrimination. (The coefficients in
these functions are the el genvectors corresponding to the non-zero eigenvalues of acertain
matrix.) In general therewill be min(g—1, p) canonical variates. It may turn out that only
afew of the canonical variates are important. Then an observation can be assigned to the
class whose centroid is closest in the subspace defined by these variates. It is especially
useful when the class means are ordered, or lie along a simple curve in attribute-space. In
the simplest case, the class means lie along a straight line. This is the case for the head
injury data (see Section 9.4.1), for example, and, in general, arises when the classes are
ordered in some sense. In this book, this procedure was not used as a classifier, but rather
in a qualitative sense to give some measure of reduced dimensionality in attribute space.
Since this technique can also be used as a basisfor explaining differencesin mean vectors
asin Analysis of Variance, the procedure may be called manova, standing for Multivariate
Analysis of Variance.

3.2.2 Special case of two classes

The linear discriminant procedure is particularly easy to program when there are just two
classes, for then the Fisher discriminant problem is equivalent to a multiple regression
problem, with the attributes being used to predict the class value which is treated as
a numerical-valued variable. The class values are converted to numerical values: for
example, class A4; is given the value 0 and class A, is given the value 1. A standard
multiple regression package is then used to predict the class value. If the two classes are
equiprobable, the discriminating hyperplane bisects the line joining the class centroids.
Otherwise, the discriminating hyperplaneis closer to the less frequent class. The formulae
aremost easily derived by considering the multiple regression predictor asasingle attribute
that is to be used as a one-dimensional discriminant, and then applying the formulae of
thefollowing section. The procedure is simple, but the details cannot be expressed simply.
See Ripley (1993) for the explicit connection between discrimination and regression.

3.2.3 Linear discriminantsby maximum likelihood

The justification of the other statistical algorithms depends on the consideration of prob-
ability distributions, and the linear discriminant procedure itself has a justification of this
kind. It is assumed that the attribute vectors for examples of class A; are independent
and follow a certain probability distribution with probability density function (pdf) ;. A
new point with attribute vector X is then assigned to that class for which the probability
density function £;(x) is greatest. This is a maximum likelihood method. A frequently
made assumption is that the distributions are normal (or Gaussian) with different means
but the same covariance matrix. The probability density function of the normal distribution
is
1

T g TR )

(3.1)
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where pu is a p-dimensional vector denoting the (theoretical) mean for a class and %2,
the (theoretical) covariance matrix, isap x p (necessarily positive definite) matrix. The
(sample) covariance matrix that we saw earlier is the sample analogue of this covariance
matrix, which is best thought of asa set of coefficientsin the pdf or a set of parametersfor
the distribution. This meansthat the pointsfor the classare distributed in acluster centered
at p of ellipsoidal shape described by .. Each cluster has the same orientation and spread
though their means will of course be different. (It should be noted that there is in theory
no absolute boundary for the clusters but the contours for the probability density function
have ellipsoidal shape. In practice occurrences of examples outside a certain ellipsoid
will be extremely rare.) In this case it can be shown that the boundary separating two
classes, defined by equality of the two pdfs, is indeed a hyperplane and it passes through
the mid-point of the two centres. Its equation is

xT 57 (i — p2) — %(m + )T (1 — p2) = 0, (32)
where p; denotes the population mean for class A;. However in classification the exact
distributionis usually not known, and it becomes necessary to estimate the parameters for
the distributions. With two classes, if the sample means are substituted for u; and the
pooled sample covariance matrix for %2, then Fisher’slinear discriminant is obtained. With
more than two classes, this method does not in genera give the same results as Fisher's
discriminant.

3.24 Morethan two classes

When there are more than two classes, it is no longer possible to use a single linear
discriminant score to separate the classes. The simplest procedure is to calculate a linear
discriminant for each class, this discriminant being just the logarithm of the estimated
probability density function for the appropriate class, with constant terms dropped. Sample
values are substituted for population values where these are unknown (this givesthe “ plug-
in” estimates). Where the prior class proportions are unknown, they would be estimated
by the relative frequencies in the training set.  Similarly, the sample means and pooled
covariance matrix are substituted for the population means and covariance matrix.

Suppose the prior probability of class 4; is;, and that f;(z) isthe probability density
of z in class A;, and is the normal density given in Equation (3.1). The joint probability
of observing class A; and attribute z is =, f;(z) and the logarithm of the probability of
observing class A; and attributex is

1

logm; +x7 %7 s — iu?E_l,ui
to within an additive constant. So the coefficients 3; are given by the coefficients of x

B = 2ty
and the additive constant «; by

1

a; = logm; — E,u;pr_lui
though these can be simplified by subtracting the coefficients for the last class.

The above formulae are stated in terms of the (generally unknown) population pa-
rameters 32, uj and x;. To obtain the corresponding “plug-in” formulae, substitute the
corresponding sample estimators: S for ; x; for p;; and p; for «;, where p; isthe sample
proportion of class A; examples.
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3.3 QUADRATIC DISCRIMINANT

Quadratic discrimination is similar to linear discrimination, but the boundary between two
discrimination regions is now alowed to be a quadratic surface. When the assumption
of equal covariance matrices is dropped, then in the maximum likelihood argument with
normal distributions a quadratic surface (for example, ellipsoid, hyperboloid, etc.) is
obtained. Thistype of discrimination can deal with classificationswhere the set of attribute
values for one class to some extent surrounds that for another. Clarke et al. (1979) find
that the quadratic discriminant procedure is robust to small departures from normality
and that heavy kurtosis (heavier tailed distributions than gaussian) does not substantially
reduce accuracy. However, the number of parametersto be estimated becomes gp(p+1)/2,
and the difference between the variances would need to be considerable to justify the use
of this method, especially for small or moderate sized datasets (Marks & Dunn, 1974).
Occasionally, differencesin the covariances are of scale only and some simplification may
occur (Kendall et al., 1983) . Linear discriminant is thought to be still effective if the
departure from equality of covariancesissmall (Gilbert, 1969). Some aspects of quadratic
dependence may be included in the linear or logistic form (see below) by adjoining new
attributes that are quadratic functions of the given attributes.

3.3.1 Quadraticdiscriminant - programming details

The quadratic discriminant function is most simply defined as the logarithm of the ap-
propriate probability density function, so that one quadratic discriminant is calculated for
each class. The procedure used is to take the logarithm of the probability density function
and to substitute the sample means and covariance matrices in place of the population
values, giving the so-called “plug-in” estimates. Taking the logarithm of Equation (3.1),
and allowing for differing prior class probabilities 7;, we obtain
l0g: fi(2) = loa(ms) — 3 100(1%:]) — 5(x — )97 (x — )

as the quadratic discriminant for class 4;. Hereit is understood that the suffix i refersto
the sample of valuesfrom class 4;.

In classification, the quadratic discriminant is calculated for each class and the class
with the largest discriminant ischosen. To find thea posteriori class probabilities explicitly,
the exponential is taken of the discriminant and the resulting quantities normalised to sum
to unity (see Section 2.6). Thusthe posterior class probabilities P(A;|x) are given by

P(Ailx) = expllog(rs) — 5 10a(Iil) — 5(x — )57 (x — )]
apart from a normalising factor.

If thereisacost matrix, then, no matter the number of classes, the simplest procedureis
to calculate the class probabilities P( A;|x) and associated expected costs explicitly, using
the formulae of Section 2.6. The most frequent problem with quadratic discriminants is
caused when some attribute has zero variance in one class, for then the covariance matrix
cannot be inverted. One way of avoiding this problem is to add a small positive constant
term to the diagonal terms in the covariance matrix (this corresponds to adding random
noise to the attributes). Another way, adopted in our own implementation, is to use some
combination of the class covariance and the pooled covariance.
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Once again, the above formulae are stated in terms of the unknown population pa-
rameters 33;, pi and 7;. To obtain the corresponding “plug-in” formulae, substitute the
corresponding sample estimators: S; for 32;; x; for j; and p; for =;, wherep; isthe sample
proportion of class A; examples.

Many statistical packages allow for quadratic discrimination (for example, MINITAB
has an option for quadratic discrimination, SAS also does quadratic discrimination).

3.3.2 Regularisation and smoothed estimates

The main problem with quadratic discriminants is the large number of parameters that
need to be estimated and the resulting large variance of the estimated discriminants. A
related problem is the presence of zero or near zero eigenvalues of the sample covariance
matrices. Attempts to aleviate this problem are known as regularisation methods, and
the most practically useful of these was put forward by Friedman (1989), who proposed
a compromise between linear and quadratic discriminants via a two-parameter family of
estimates. One parameter controls the smoothing of the class covariance matrix estimates.
The smoothed estimate of the class i covariance matrix is

(1 — 61')51' + 65
where §; is the class ¢ sample covariance matrix and S is the pooled covariance matrix.
When §; is zero, there is no smoothing and the estimated class ¢ covariance matrix is just
the i'th sample covariance matrix S;. When the §; are unity, all classes have the same
covariance matrix, namely the pooled covariance matrix S. Friedman (1989) makes the
valueof §; smaller for classeswith larger numbers. For thei’th samplewith n; observations:
b = 6(N —q)/{6(N —q) + (1—-8)(ni — 1)}
where N = ny +ny + ..+ n,.

The other parameter X is a (small) constant term that is added to the diagonals of the
covariance matrices: thisis done to make the covariance matrix non-singular, and also has
the effect of smoothing out the covariance matrices. As we have already mentioned in
connection with linear discriminants, any singularity of the covariance matrix will cause
problems, and as there is now one covariance matrix for each class the likelihood of such
aproblem is much greater, especially for the classes with small sample sizes.

This two-parameter family of procedures is described by Friedman (1989) as “regu-
larised discriminant analysis’. Various simple procedures are included as special cases:
ordinary linear discriminants (6§ = 1, A = 0); quadratic discriminants (6 = 0, A = 0); and
thevalues§ = 1, A = 1 correspond to a minimum Euclidean distance rule.

Thistype of regularisation has been incorporated in the Strathclyde version of Quadisc.
Very little extra programming effort is required. However, it is up to the user, by trial and
error, to choose the values of § and A. Friedman (1989) gives various shortcut methods for
reducing the amount of computation.

3.3.3 Choiceof regularisation parameters
The default values of 6 = 0 and A = 0 were adopted for the majority of StatLog datasets,
the philosophy being to keep the procedure “pure” quadratic.

The exceptions were those cases where a covariance matrix was not invertible. Non-
default values were used for the head injury dataset (A=0.05) and the DNA dataset (6=0.3
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approx.). In practice, great improvements in the performance of quadratic discriminants
may result from the use of regularisation, especially in the smaller datasets.

34 LOGISTIC DISCRIMINANT
Exactly asin Section 3.2, logistic regression operates by choosing ahyperplane to separate
the classes aswell as possible, but the criterion for a good separation is changed. Fisher’'s
linear discriminants optimises a quadratic cost function whereas in logistic discrimination
it is a conditiona likelihood that is maximised. However, in practice, there is often very
little difference between the two, and the linear discriminants provide good starting values
for the logistic. Logistic discrimination isidentical, in theory, to linear discrimination for
normal distributions with equal covariances, and also for independent binary attributes, so
the greatest differences between the two are to be expected when we are far from these
two cases, for example when the attributes have very non-normal distributions with very
dissimilar covariances.

The method is only partially parametric, as the actua pdfs for the classes are not
modelled, but rather the ratios between them.

Specificaly, the logarithms of the prior odds 7 /7> times the ratios of the probability
density functions for the classes are modelled as linear functions of the attributes. Thus,
for two classes,

71 f1(x)
72 f2(x)
where « and the p-dimensiona vector 3 are the parameters of the model that are to be
estimated. The case of normal distributions with equal covariance is a special case of
this, for which the parameters are functions of the prior probabilities, the class means and
the common covariance matrix. However the model covers other cases too, such as that
where the attributes are independent with values 0 or 1. One of the attractions is that the
discriminant scale covers all real numbers. A large positivevalue indicatesthat class 4; is
likely, while alarge negative value indicates that class A, islikely.

In practice the parameters are estimated by maximum conditional likelihood. The
model implies that, given attribute values x, the conditional class probabilities for classes
A, and A, takethe forms:

log =a+ 0k,

__e&pla+f'x)
PR = T epa+a)
P4 !
Wb = repat A
respectively.

Given independent samples from the two classes, the conditional likelihood for the
parameters o and G is defined to be

Lp) = ] Plx) J] P(4:x)
{4,Sample} {4,Sample}

and the parameter estimates are the valuesthat maximisethislikelihood. They arefound by
iterative methods, as proposed by Cox (1966) and Day & Kerridge (1967). Logistic models
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belong to the class of generalised linear models (GLMs), which generalise the use of linear
regression models to deal with non-normal random variables, and in particular to deal with
binomial variables. In thiscontext, thebinomial variableisanindicator variablethat counts
whether an exampleisclass A; or not. When there are more than two classes, one classis
taken as a reference class, and there are ¢ — 1 sets of parameters for the odds of each class
relative to the reference class. To discuss this case, we abbreviate the notation for o + 5'x
to thesimpler 8'x. For the remainder of this section, therefore, x isa (p + 1)-dimensional
vector with leading term unity, and the leading term in 5 corresponds to the constant «.

Again, the parameters are estimated by maximum conditional likelihood. Given at-
tribute values x, the conditional class probability for class 4;, where ¢ # ¢, and the
conditional class probability for 4, take the forms:

exp(Bix)
P(4; =
(i) S exp(fix)
i=1,..,q
P(A |X) — ;
Y epBix)
i=1,..,q

respectively. Given independent samples from the ¢ classes, the conditional likelihood for
the parameters 3; is defined to be

LB, ... Be—1) = [ Pilx) J] PAakx) ... J[ P4l

{4,Sample} {4,5ample} {4,5ample}

Once again, the parameter estimates are the values that maximise this likelihood.

In the basic form of the algorithm an example is assigned to the class for which the
posterior is greatest if that is greater than O, or to the reference class if al posteriors are
negative.

More complicated models can be accommodated by adding transformations of the
given attributes, for example products of pairs of attributes. As mentioned in Section
3.1, when categorical attributes with » (> 2) values occur, it will generally be necessary
to convert them into »—1 binary attributes before using the algorithm, especially if the
categories are not ordered. Anderson (1984) points out that it may be appropriate to
include transformations or products of the attributes in the linear function, but for large
datasets this may involve much computation. See McLachlan (1992) for useful hints. One
way toincrease complexity of model, without sacrificing intelligibility, isto add parameters
in ahierarchical fashion, and there are then links with graphical models and Polytrees.

3.4.1 Logisticdiscriminant - programming details

M ost statisticspackages can deal with linear discriminant analysisfor two classes. SY STAT
has, in addition, a version of logistic regression capable of handling problems with more
than two classes. If a package has only binary logistic regression (i.e. can only deal with
two classes), Begg & Gray (1984) suggest an approximate procedure whereby classes are
all compared to a reference class by means of logistic regressions, and the results then
combined. The approximation isfairly good in practice according to Begg & Gray (1984).
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Many statistical packages (GLIM, Splus, Genstat) now include a generalised linear
model (GLM) function, enabling logistic regression to be programmed easily, in two
or three lines of code.  The procedure is to define an indicator variable for class 4,
occurrences. The indicator variable is then declared to be a “binomial” variable with the
“logit” link function, and generalised regression performed on the attributes. We used the
package Splus for this purpose. Thisis fine for two classes, and has the merit of requiring
little extra programming effort. For more than two classes, the complexity of the problem
increases substantially, and, although it istechnically still possibleto use GLM procedures,
the programming effort is substantially greater and much less efficient.

The maximum likelihood solution can be found via a Newton-Raphson iterative pro-
cedure, asit is quite easy to write down the necessary derivatives of the likelihood (or,
equivaently, the log-likelihood). The simplest starting procedure is to set the 3; coeffi-
cientsto zero except for the leading coefficients («;) which are set to the logarithms of the
numbers in the various classes: i.e «; = logn;, where n; is the number of class 4;
examples. This ensures that the values of 3; are those of the linear discriminant after the
first iteration. Of course, an alternative would be to use the linear discriminant parameters
as starting values. In subsequent iterations, the step size may occasionally have to be
reduced, but usually the procedure converges in about 10 iterations. Thisis the procedure
we adopted where possible.

However, each iteration requires a separate calculation of the Hessian, and it is here
that the bulk of the computational work is required. The Hessian is a square matrix with
(¢ — 1)(p + 1) rows, and each term requires a summeation over all the observationsin the
whole dataset (although some saving can by achieved using the symmetriesof the Hessian).
Thus there are of order ¢?p? N computations required to find the Hessian matrix at each
iteration. In the KL digits dataset (see Section 9.3.2), for example, ¢ = 10, p = 40,
and N = 9000, so the number of operations is of order 10° in each iteration. In such
cases, it is preferable to use a purely numerical search procedure, or, as we did when
the Newton-Raphson procedure was too time-consuming, to use a method based on an
approximate Hessian. The approximation uses the fact that the Hessian for the zero’th
order iteration is simply a replicate of the design matrix (cf. covariance matrix) used by
thelinear discriminant rule. Thiszero-order Hessian isused for al iterations. In situations
wherethereislittledifference betweenthelinear and logistic parameters, the approximation
is very good and convergence is fairly fast (although a few more iterations are generally
required). However, in the more interesting case that the linear and logistic parameters
are very different, convergence using this procedure is very slow, and it may still be quite
far from convergence after, say, 100 iterations. We generally stopped after 50 iterations:
although the parameter values were generally not stable, the predicted classes for the data
were reasonably stable, so the predictive power of the resulting rule may not be seriously
affected. Thisaspect of logistic regression has not been explored.

The final program used for the trials reported in this book was coded in Fortran, since
the Splus procedure had prohibitive memory requirements. Availablility of the Fortran
code can befound in Appendix B.
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3.5 BAYES RULES

Methods based on likelihood ratios can be adapted to cover the case of unequal mis-
classification costs and/or unequal prior probabilities. Let the prior probabilities be
{m 4 €1,...,q}, and let (¢, j) denote the cost incurred by classifying an example
of Class 4; into class 4;.

Asin Section 2.6, the minimum expected cost solution is to assign the data x to class
Ag chosento minimise ), m;c(4, d) f(x]4;). In the case of two classes the hyperplanein
linear discrimination has the equation

xS (p1 — p2) — %(Nl + p2) (g1 — p2) = Iog(:—jzg: 3)’

theright hand side replacing O that we had in Equation (3.2).

When there are more than two classes, the simplest procedure is to calculate the
class probabilities P(4;|x) and associated expected costs explicitly, using the formul ae of
Section 2.6.

3.6 EXAMPLE

Asiillustration of the differences between the linear, quadratic and logistic discriminants,
we consider a subset of the Karhunen-Loeve version of the digits data later studied in this
book. For simplicity, we consider only the digits ‘1’ and ‘2’, and to differentiate between
them we use only the first two attributes (40 are available, so thisisa substantial reduction
in potential information). The full sample of 900 pointsfor each digit was used to estimate
the parameters of the discriminants, although only a subset of 200 points for each digit is
plotted in Figure 3.1 as much of the detail is obscured when the full set is plotted.

3.6.1 Linear discriminant

Also shown in Figure 3.1 are the sample centres of gravity (marked by a cross). Because
there are equal numbers in the samples, the linear discriminant boundary (shown on the
diagram by afull line) intersectsthelinejoining the centresof gravity at its mid-point. Any
new pointisclassifiedasa ‘1’ if it lies below thelinei.e ison the same side as the centre
of the*1’s). Inthediagram, there are 18 * 2’ sbel ow the line, so they would be misclassified.

3.6.2 Logisticdiscriminant

Thelogistic discriminant procedure usually startswith thelinear discriminant line and then
adjuststhe slope and intersect to maximise the conditional likelihood, arriving at the dashed
line of the diagram. Essentially, the line is shifted towards the centre of the ‘1’s so as to
reduce the number of misclassified ‘2's. This gives 7 fewer misclassified ‘2's (but 2 more
misclassified ‘' 1's) in the diagram.

3.6.3 Quadraticdiscriminant

The quadratic discriminant starts by constructing, for each sample, an elipse centred on
the centre of gravity of the points. In Figure 3.1 it is clear that the distributions are of
different shape and spread, with the distribution of ‘2's being roughly circular in shape
and the *1’s being more elliptical. The line of equal likelihood is now itself an ellipse (in
general a conic section) as shown in the Figure. All points within the ellipse are classified
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as'l's. Relativeto thelogistic boundary, i.e. in the region between the dashed line and the
ellipse, the quadratic rule misclassifiesan extra 7 * 1's(in the upper half of the diagram) but
correctly classifiesan extra8‘2's(in the lower half of the diagram). So the performance of
the quadratic classifier is about the same as the logistic discriminant in this case, probably
due to the skewness of the ‘1’ distribution.

Linear, Logistic and Quadratic discriminants
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Fig. 3.1: Decision boundaries for the three discriminants: quadratic (curved); linear (full line); and
logistic (dashed ling). The data are the first two Karhunen-Loeve components for the digits ‘1’ and

‘2.
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4.1 INTRODUCTION

In the previous chapter we studied the classification problem, from the statistical point of
view, assuming that the form of the underlying density functions (or their ratio) wasknown.
However, in most real problems this assumption does not necessarily hold. In this chapter
we examine distribution-free (often called nonparametric) classification procedures that
can be used without assuming that the form of the underlying densities are known.

Recall that ¢, n, p denote the number of classes, of examples and attributes, respec-
tively. Classes will be denoted by Ai, A,, ..., A, and éttribute values for example :
(i=1,2,...,n)will bedenoted by thep-dimensional vectorx; = (14, 2, ..., %pi) € X.
Elementsin X’ will bedenoted x = (21,22, ..., %p).

The Bayesian approach for all ocating observationsto classes has already been outlined
in Section 2.6. It is clear that to apply the Bayesian approach to classification we have
to estimate f(x | A;) and «; or p(4; | x). Nonparametric methods to do this job will be
discussed in this chapter. We begin in Section 4.2 with kernel density estimation; a close
relativeto thisapproach isthe k-nearest neighbour (k-NN) whichisoutlined in Section 4.3.
Bayesian methods which either allow for, or prohibit dependence between the variables
are discussed in Sections 4.5 and 4.6. A final section deals with promising methods
which have been devel oped recently, but, for various reasons, must be regarded as methods
for the future. To a greater or lesser extent, these methods have been tried out in the
project, but the results were disappointing. In some cases (ACE), thisis due to limitations
of size and memory as implemented in Splus. The pruned implementation of MARS in
Splus (StatSci, 1991) also suffered in a similar way, but a standalone version which also
does classification is expected shortly. We believe that these methods will have aplace in
classification practice, once some relatively minor technical problems have been resolved.
As yet, however, we cannot recommend them on the basis of our empirical trials.

1 Addressfor correspondence: Department of Computer Science and Al, Facultad de Ciencas, University of
Granada, 18071 Granada, Spain



30 Modern statistical techniques [Ch. 4

4.2 DENSITY ESTIMATION

A nonparametric approach, proposed in Fix & Hodges (1951), is to estimate the densities
fi(x),7 =1,2,..., ¢ by nonparametric density estimation. Then once we have estimated
f; (x) and the prior probabilities 7; we can use the formulae of Section 2.6 and the coststo
classify x by minimum risk or minimum error.

Tointroducethe method, we assume that we have to estimate the p—dimensional density
function f(x) of an unknown distribution. Note that we will have to perform this process
for each of the ¢ densities f;(x),j = 1,2, ..., ¢. Then, the probability, P, that a vector x
will fall inaregion R isgiven by

P= /R F(x')dx’

Suppose that n observations are drawn independently according to f(x). Then we can
approach P by k /n wherek isthe number of thesen observationsfallingin’R. Furthermore,
if f(x) does not vary appreciably within R we can write
P~ f(x)V
where V' isthe volume enclosed by R. This leads to the following procedure to estimate
the density at x. Let V,, be the volume of R, k., be the number of samplesfallingin R,
and f(x) the estimate of f(x) based on asample of size n, then
N kn/n
Equation (4.1) can be written in a much more suggestive way. If R,, isap—dimensiona
hypercube and if },, isthe length of the edge of the hypercube we have

(4.1)

n

foo = 230 e (52F) (@2)

where

0 otherwise

Then (4.2) expresses our estimate for f(x) asan average function of x and the samplesx;.
In general we could use

F) = = 30 Kxxi 0n)
i=1

where K (x, x;, A,) arekernel functions. For instance, we could use, instead of the Parzen
window defined above,

1 1 T; — T4 2

J

1 |u;| <1/2 ) =1,2...,
(,D(u):{ |]|_ / J ¥4

The role played by A, isclear. For (4.3), if A, isvery large K (x, x;, An) changes very
slowly with x, resulting in a very smooth estimate for f(x). On the other hand, if A, is
small then f(x) is the superposition of n sharp normal distributions with small variances
centered at the samples producing a very erratic estimate of f(x). The analysis for the
Parzen window is similar.
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Before going into detail s about the kernel functionswe use in the classification problem
and about the estimation of the smoothing parameter A,,, we briefly comment on the mean
behaviour of f(x). We have

E[f(x)] = /K(x,u,)\n)f(u)du

and so the expected value of the estimate f(x) isan averaged value of the unknown density.
By expanding f(x) inaTaylor series (in ),,) about x one can derive asymptotic formulae
for the mean and variance of the estimator. These can be used to derive plug-in estimates
for A, which are well-suited to the goal of density estimation, see Silverman (1986) for
further details.

We now consider our classification problem. Two choices have to be made in order
to estimate the density, the specification of the kernel and the value of the smoothing
parameter. It is fairly widely recognised that the choice of the smoothing parameter is
much more important. With regard to the kernel function we will restrict our attention to
kernels with p independent coordinates, i.e.

P
K(X, X;, )\) = H K(]')(J:j, J:ji, )\)
j=1
with K;y indicating the kernel function component of the jth attribute and A being not
dependent on ;. It isvery important to note that as stressed by Aitchison & Aitken (1976),
this factorisation does not imply the independence of the attributesfor the density we are
estimating.

Itisclear that kernel scould have amore complex form and that the smoothing parameter
could be coordinate dependent. We will not discuss in detail that possibility here (see
McLachlan, 1992 for details). Some commentswill be made at the end of this section.

The kernels we use depend on the type of variable. For continuous variables

1 Lj — Zji i
K(j)(il:]',ic]'i,)\) = \/ﬁap{_<ﬁ) }

= 1 Gy

v —m/logA

For binary variables

RN CIREIDE 1 \1-(=i==z5)’
Koerz) = (r35) ()
1 2
= = )\(=z5—=5)
I+ A
For nominal variableswith T; nominal values
I(z;,z;:) 1-I(z;,z;i)
1 2 A
soeid) = (mmom) (@)
1

. — . S C D
L+(T; —1)A
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whereI(z,y) = 1ifz =y, 0 otherwise.
For ordinal variables with T; nominal values

Azi—wji)?
T e
For the above expressions we can seethat in al caseswe can write

1 2 o
Kiy(zj, zj5,A) = m/\"l (23,254

The problem is that since we want to use the same smoothing parameter, A , for al the
variables, we have to normalise them. To do so we substitute A by A/** where s2 is
defined, depending on the type of variable, by

continuous binary

K(]')(ai]',aiji, )\)

Yoo (e — 75)° Yoo (e — 75)?

nominal ordinal

D AR /() B R W
2n(n —1) n—1 ;(m]l ~ %)
where NV; (k) denotes the number of examples for which attribute j hasthe value k and z;

is the sample mean of the jth attribute.
With this selection of s2 we have

average, ;d’(zjx, 25:)/s* =2 V]
So we can understand the above process as rescaling all the variables to the same scale.

For discrete variables the range of the smoothness parameter istheinterval (0, 1). One
extreme leads to the uniform distribution and the other to a one-point distribution:

A =1 K(w]',ai]'i,].):]./fz—}'
A =0 K(:C]',m]'i,O)Il if Tj = Tji, 0 if acj#:c]'i

For continuous variablestherangeis0 < A < land A = 1 and A = 0 have to be
regarded as limiting cases. As X — 1 we get the “uniform distribution over the real line”
andas A — 0 we get the Dirac spike function situated at the z;;.

Having defined the kernels we will use, we need to choose A. As A — 0 the estimated
density approaches zero at al x except at the sampleswhereit is 1/n timesthe Dirac delta
function. This precludeschoosing A by maximizing thelog likelihood with respectto A. To
estimate a good choice of smoothing parameter, a jackknife modification of the maximum
likelihood method can be used. This was proposed by Habbema et al. (1974) and Duin
(1976) and takes A to maximise [T}, f:(x;) where

~

1 n
fi(xi) = HZK(p)(Xi,Xky)\)

ki
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This criterion makes the smoothness data dependent, leads to an agorithm for an arbi-
trary dimensionality of the data and possesses consistency requirements as discussed by
Aitchison & Aitken (1976).

An extension of the above model for X is to make A; dependent on the kth nearest
neighbour distance to x;, so that we have a A; for each sample point. This gives rise to
the so-called variable kernel model. An extensive description of this model wasfirst given
by Breiman et al. (1977). This method has promising results especially when lognormal
or skewed distributions are estimated. The kernel width A; is thus proportional to the
kth nearest neighbour distance in x; denoted by d;z, i.e A; = ad;,. We take for d;;
the euclidean distance measured after standardisation of all variables. The proportionality
factor « is (inversely) dependent on k. The smoothing value is now determined by two
parameters, « and k; « can bethough of as an overall smoothing parameter, while k defines
the variation in smoothness of the estimated density over the different regions. If, for
example k = 1, the smoothnesswill vary locally while for larger £ values the smoothness
tends to be constant over large regions, roughly approximating the fixed kernel model.

We use aNormal distribution for the component

B 1 L (25—’
K (zj, 240 A0) = adirs; V2w e(p{_Q < adies; ) }

To optimise for « and & the jackknife modification of the maximum likelihood method
can again be applied . However, for the variable kernel this leads to a more difficult two-
dimensional optimisation problem of the likelihood function L(«, k) with one continuous
parameter (o) and one discrete parameter (k).

Silverman (1986, Sections 2.6 and 5.3) studies the advantages and disadvantages of
this approach. He also proposes another method to estimate the smoothing parametersin
avariable kernel model (see Silverman, 1986 and McLachlan, 1992 for details).

Thealgorithm wemainly usedin our trialsto classify by density estimationisALLOC80
by Hermans at al. (1982) (see Appendix B for source).

421 Example

We illustrate the kernel classifier with some simulated data, which comprise 200 obser-
vations from a standard Normal distribution (class 1, say) and 100 (in total) values from
an equal mixture of N(+.8,1) (class 2). The resulting estimates can then be used as a
basis for classifying future observationsto one or other class. Various scenarios are given
in Figure 4.1 where a black segment indicates that observations will be allocated to class
2, and otherwise to class 1. In this example we have used equal priors for the 2 classes
(although they are not equally represented), and hence allocations are based on maximum
estimated likelihood. Itisclear that the rule will depend on the smoothing parameters, and
can result in very disconnected sets. In higher dimensions these segments will become
regions, with potentially very nonlinear boundaries, and possibly disconnected, depending
on the smoothing parametersused. For comparison we also draw the population probability
densities, and the “true” decision regionsin Figure 4.1 (top), which are still disconnected
but very much smoother than some of those constructed from the kernels.
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True Probability Densities with Decision Regions

3 2 1 0 1 2 3
X
kernel estimates with decision regions
(A) smoothing values = 0.3, 0.8 (B) smoothing values = 0.3, 0.4
N 3
-3 -2 -1 0 1 2 3 3 2 1 0 1 2 3
X X

(C) smoothing values = 0.1, 1.0 (D) smoothing values = 0.4, 0.1

N
E m h
‘m  mm m—
-3 -2 -1 0 1 2 3
X

Fig. 4.1: Classification regions for kernel classifier (bottom) with true probability densities (top).
The smoothing parameters quoted in (A) — (D) are the values of A,, used in Equation (4.3) for class
1 and class 2, respectively.
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4.3 K-NEAREST NEIGHBOUR

Suppose we consider estimating the quantities f(x | An), h = 1, ..., ¢ by anearest neigh-
bour method. If we havetraining datain whichtherearen,, observationsfromclass A with
n = Y np, and thehyperspherearound x containing the k nearest observations has volume
v(x) and contains k1(x), . . ., ky(x) observations of classes 4, ..., A, respectively, then
mp, iSestimated by n,/n and f(x | Ay) isestimated by kp(x)/(nnv(x)), which then gives
an estimate of p( Ay, | x) by substitution as p( Ay | x) = kx(x)/k. Thisleadsimmediately
to the classification rule: classify x as belonging to class A, if k. = maxs (k). Thisis
known as the k-nearest neighbour (k-NN) classification rule. For the special case when
= 1, itissimply termed the nearest-neighbour (NN) classification rule.

Thereisaproblem that isimportant to mention. In the above analysisit isassumed that
my, is estimated by ny, /n. However, it could be the case that our sample did not estimate
properly the group-prior probabilities. Thisissueis studied in Davies (1988).

We study in some depth the NN rule. Wefirst try to get aheuristic understanding of why
the nearest-neighbour rule should work. To begin with, notethat the class A i associated
with the nearest neighbour is a random variable and the probability that Ayy = A;
is merely p(A4; |xyn) Where xyn is the sample nearest to x. When the number of
samples is very large, it is reasonable to assume that xy is sufficiently close to x so
that p(A; | x) ~ p(A4;|xyw). In thiscase, we can view the nearest-neighbour rule as a
randomised decision rule that classifies x by selecting the category A; with probability
p(4; | x). Asanonparametric density estimator the nearest neighbour approach yields a
non-smooth curve which does not integrate to unity, and as a method of density estimation
itisunlikely to be appropriate. However, these poor qualities need not extend to the domain
of classification. Note also that the nearest neighbour method is equivalent to the kernel
density estimate as the smoothing parameter tendsto zero, when the Normal kernel function
isused. See Scott (1992) for details.

It is obvious that the use of this rule involves choice of a suitable metric, i.e. how is
the distance to the nearest points to be measured? In some datasets there is no problem,
but for multivariate data, where the measurements are measured on different scales, some
standardisation isusually required. Thisisusually taken to be either the standard deviation
or the range of the variable. If there are indicator variables (as will occur for nominal
data) then the dataiis usually transformed so that all observationslie in the unit hypercube.
Note that the metric can also be class dependent, so that one obtains a distance conditional
on the class. This will increase the processing and classification time, but may lead to
a considerable increase in performance. For classes with few samples, a compromise is
to use a regularised value, in which there is some trade-off between the within — class
value, and the global value of the rescaling parameters. A study on the influence of data
transformation and metrics on the k-NN rule can be found in Todeschini (1989).

To speed up the process of finding the nearest neighbours several approaches have been
proposed. Fukunaka & Narendra (1975) used a branch and bound agorithm to increase
the speed to compute the nearest neighbour, the idea is to divide the attribute space in
regions and explore a region only when there are possibilities of finding there a nearest
neighbour. The regions are hierarchically decomposed to subsets, sub-subsets and so on.
Other ways to speed up the process are to use a condensed-nearest-neighbour rule (Hart,
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1968), areduced-nearest-neighbour-rule (Gates, 1972) or the edited-nearest-neighbour-rule
(Hand & Batchelor, 1978). These methods all reduce the training set by retaining those
observationswhich are used to correctly classify the discarded points, thus speeding up the
classification process. However they have not been implemented in the k-NN programs
used in this book.

The choice of & can be made by cross-validation methods whereby the training data
is split, and the second part classified using a k-NN rule. However, in large datasets, this
method can be prohibitivein CPU time. Indeed for large datasets, the method is very time
consuming for £ > 1 since all the training data must be stored and examined for each
classification. Enas & Choi (1986), have looked at this problem in asimulation study and
proposed rules for estimating & for the two classes problem. See McLachlan (1992) for
details.

In thetrials reported in this book, we used the nearest neighbour (¢ = 1) classifier with
no condensing. (The exception to thiswasthe satellite dataset - see Section 9.3.6 - inwhich
k was chosen by cross-validation.) Distances were scaled using the standard deviation for
each attribute, with the cal cul ation conditional on the class. Tieswere broken by amajority
vote, or asalast resort, the default rule.

431 Example
nearest neighbour classifier
87 1
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Fig. 4.2: Nearest neighbour classifier for one test example.

The following example shows how the nearest (k = 1) neighbour classifier works. The
data are a random subset of dataset 36 in Andrews & Herzberg (1985) which examines
the relationship between chemical subclinical and overt nonketotic diabetesin 145 patients
(see above for more details). For ease of presentation, we have used only 50 patients and
two of the six variables; Relativeweight and Glucose area, and the dataare shownin Figure
4.2 The classifications of 50 patients are one of overt diabetic (1), chemical diabetic (2)
and normal(3) are labeled on the graph. In this example, it can be seen that Glucose Area
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(y-axis) ismore useful in separating the three classes, and that class3iseasier to distinguish
than classes 1 and 2. A new patient, whose condition is supposed unknown is assigned the
same classification as his nearest neighbour on the graph. The distance, as measured to
each point, needs to be scaled in some way to take account for different variability in the
different directions. In this case the patient is classified asbeing in class 2, and is classified
correctly.

Thedecision regionsfor the nearest neighbour are composed of piecewiselinear bound-
aries, which may be disconnected regions. These regions are the union of Dirichlet cells;
each cell consists of points which are nearer (in an appropriate metric) to agiven observa-
tion than to any other. For this data we have shaded each cell according to the class of its
centre, and the resulting decision regions are shown in Figure 4.3

nearest neighbour decision regions

800 1000 1200 1400
L L L L

Glucose area

600
.

400
L

0.8 0.9 10 11 12
Relative weight

Fig. 4.3: Decision regions for nearest neighbour classifier.

4.4 PROJECTION PURSUIT CLASSIFICATION

As we have seen in the previous sections our goal has been to estimate
{f(x|4;),7;,7=1,...,¢} inorder to assign x to class 4;, when
Y clio, )i x| 45) <D eli, i) (x| 43) Vi
j j
We assume that we know 7,57 = 1,...,¢ and to simplify problems transform our
minimum risk decision problem into a minimum error decision problem. To do so we
simply alter {=;} and {c(z, 5) } to {=} } and {c'(¢, j)} such that
c’(i,j)w} =c(¢,j)m; Vi,j
constraining {¢'(¢, j)} to be of the form
i oo | constant ifj # ¢
¢(i,5) = { 0 otherwise
Then an approximation to «; is
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7r;» x E (4, 7)
p

(see Breiman et al., 1984 for details).
With these new prior and costs x is assigned to class 4;, when

# f(x|Ai,) > 7 f(x| 4;) Vi
or
(A, | x) > B(4;|x) Vj
So our final goal isto build agood estimator {p(4; |x),7=1,...,¢}
To define the quality of an estimator d(x) = {#(4; |x),j =1, ..., ¢} wecould use
B[ (p(4; |x) — B(4A; | %))’] (4.4)

J
Obvioudly the best estimator is dg(x) = {p(4;|x),j = 1,..., ¢}, however, (4.4) is
uselesssinceit containstheunknownquantities{p(4; | x),7 = 1, ..., ¢} that wearetrying
to estimate. The problem can be put into a different setting that resolvesthe difficulty. Let
Y, X arandom vector on {4,,...,4,} x X with distribution p(4;,x) and define new
variablesZ;, 5 =1,...,q by

7. — 1 ifY =4
771 0 otherwise

then E[Z; | x] = p(4; | x). We then define the mean square error R*(d) by
E[ (Z; — B(4; |%))%] (45)

J
The very interesting point is that it can be easily shown that for any class probability
estimator d we have
R*(d) — R*(d5) = E[Y_(p(4; | x) - $(4; | x))?)
j

and so to compare two estimators di(x) = {p(4;|x),7 = 1,...,¢} and da(x) =
{p'(4;|z),5j=1,...,¢} wecan comparethevauesof R*(d,) and R*(d5).

When projection pursuit techniques are used in classification problems E[Z;, | x] is
modelled as

M V4
E[Zk |X] = 7&; + Z ﬁkm"/)m(z a]'ml'j)
m=1 ji=1

with Zy, = EZy, By = 0, By, = Land 3% _, oZ,, = 1. The coefficients fm, ajm
and the functions v,,, are parameters of the model and are estimated by least squares.
Equation (4.5) is approximated by

M V4
E W;ca Z[Zkl —Zp — E ﬁkm"/)m(z O‘jmmji)2]/n (46)
& m=1 ji=1

with
~_ | 1 ifinobservations, Y = A;
¥ =1 0 otherwise



Sec. 4.4] Projection pursuit classification 39

Then the above expression is minimised with respect to the parameters Fi,,, al, =
(atim, - - -, apm) and the functions ¢,y .

The “projection” part of the term projection pursuit indicates that the vector x is
projected onto thedirectionvectorsasy, as, . . ., aar togetthelengthsa;zt,i = 1,2, ..., M
of the projections, and the “pursuit” part indicates that the optimization technique is used
to find “good direction” vectors ay, as, . . ., aps.

A few words on the ¢ functions are in order. They are special scatterplot smoother
designed to have the following features: they are very fast to compute and have a variable
span. Aee StatSci (1991 for details.

It is the purpose of the projection pursuit algorithm to minimise (4.6) with respect to
the parameters o, Brm and functions,,, 1 <k <¢,1 <7 <p, 1 <m < M, given
thetraining data. The principal task of the user isto choose M , the number of predictive
terms comprising the model. Increasing the number of terms decreases the bias (model
specification error) at the expense of increasing the variance of the (model and parameter)
estimates.

The strategy is to start with a relatively large value of M (say M = M) and find
all models of size My, and less. That is, solutions that minimise L, are found for M =
Mp, My — 1,My, — 2,...,1in order of decreasing M. The starting parameter values
for the numerical search in each M-term model are the solution values for the M most
important (out of M + 1) terms of the previous model. The importance is measured as

q

In =Y WelBem| (1<m< M)

k=1

normalised so that the most important term has unit importance. (Note that the variance of
all the ¢,,, isone.) The starting point for the minimisation of the largest model, M = M,
isgiven by an My, term stagewise model (Friedman & Stuetzle, 1981 and StatSci, 1991 for
avery precise description of the process).

The sequence of solutions generated in this manner is then examined by the user and a
final model is chosen according to the guidelines above.

The algorithm we used in the trials to classify by projection pursuit is SMART (see
Friedman, 1984 for details, and Appendix B for availability)

44.1 Example

This method is illustrated using a 5-dimensional dataset with three classes relating to
chemical and overt diabetes. The data can be found in dataset 36 of Andrews & Herzberg
(1985) and were first published in Reaven & Miller (1979). The SMART model can be
examined by plotting the smooth functions in the two projected data co-ordinates:

0.9998z; + 00045z, - 0.0213z3 + 0.0010z4 - 0.0044zs

z; - 00065z, - 0.0001z3 + 0.0005z, - 0.0008zs

These are given in Figure 4.4 which aso shows the class values given by the projected
points of the selected training data (100 of the 145 patients). The remainder of the model
chooses the values of 3;,, to obtain alinear combination of the functions which can then
be used to model the conditional probabilities. In this example we get

Ff1 = -0.05 P12 = -0.33
P21 = -040 B2 = 0.34
Ba1 = 046 P32 = -0.01
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smooth functions with training data projections

fi
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Fig. 4.4: Projected training data with smooth functions.

The remaining 45 patients were used as a test data set, and for each class the unscaled
conditional probability can be obtained using the relevant coefficients for that class. These
are shown in Figure 4.5, where we have plotted the predicted value against only one of the
projected co-ordinate axes. It isclear that if we choose the model (and hence the class) to
maximise this value, then we will choose the correct class each time.

45 NAIVE BAYES

All the nonparametric methods described so far in this chapter suffer from the requirements
that all of the sample must be stored. Since alarge number of observations is needed to
obtain good estimates, the memory requirements can be severe.

In this section we will make independence assumptions, to be described later, among
the variables involved in the classification problem. In the next section we will address
the problem of estimating the relations between the variables involved in a problem and
display such relations by mean of adirected acyclic graph.

The naive Bayes classifier is obtained as follows. We assume that the joint distribution
of classes and attributes can be written as

P
P(Agz1,. . zn) =7 [ [ fl=g | A) Vi
ji=1

the problem is then to obtain the probabilities {m;, f(z; | A;), Vi,j}. The assumption
of independence makes it much easier to estimate these probabilities since each attribute
can be treated separately. If an attribute takes a continuous value, the usual procedureisto
discretise the interval and to use the appropriate frequency of the interval, although there
is an option to use the normal distribution to calcul ate probabilities.

The implementation used in our trialsto obtain anaive Bayes classifier comes from the
IND package of machine learning algorithms IND 1.0 by Wray Buntine (see Appendix B
for availability).
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Estimated (unscaled) conditional probabilities
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Fig. 4.5: Projected test data with conditional probablities for three classes. Class 1 (top), Class 2
(middle), Class 3 (bottom).

46 CAUSAL NETWORKS

We start this section by introducing the concept of causal network.
Let G = (V, E) beadirected acyclic graph (DAG). With each nodev € V afinite state
space €2, isassociated. The total set of configuration is the set

Q = XUEVQ’U

Typical elementsof 2, aredenoted z,, and elementsof Q are(z,, v € V). We assumethat
we have a probability distribution P(V') over €2, where we use the short notation

P(V)=P{X, = zy,v €V}

Definition1 Let G = (V, E) be a directed acyclic graph (DAG). For each v € V let
c(v) C V bethe set of all parents of v and d(v) C V be the set of all descendent of v.
Furthermorefor v € V let a(v) bethe set of variablesin V excluding v and v's descendent.
Then if for every subset W C a(v), W and v are conditionallyindependent given ¢(v), the
C = (V, E, P)iscalled a causal or Bayesian network.

There are two key results establishing the relations between a causal network C =
(V, E, P)and P(V). The proofs can be found in Neapolitan (1990).

Thefirst theorem establishesthat if C = (V, E, P) isacausa network, then P(V') can
be written as

P(V) =[] P(v]e(v))
veV

Thus, in a causal network, if one knows the conditional probability distribution of each
variable given its parents, one can compute the joint probability distribution of all the
variables in the network. This obviously can reduce the complexity of determining the
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distribution enormously. The theorem just established shows that if we know that a DAG
and a probability distribution constitute a causal network, then the joint distribution can
be retrieved from the conditional distribution of every variable given its parents. This
does not imply, however, that if we arbitrarily specify a DAG and conditional probability
distributions of every variables given its parents we will necessary have a causal network.
Thisinverse result can be stated as follows.

Let V be a set of finite sets of alternatives (we are not yet calling the members of V
variables since we do not yet have aprobability distribution) and let G = (V, E) beaDAG.
In addition, for v € V let ¢(v) C V be the set of al parents of v, and let a conditional
probability distribution of v given ¢(v) be specified for every event in ¢(v), that iswe have
aprobability distribution P(v | ¢(v)). Then ajoint probability distribution P of the vertices
inV isuniquely determined by

P(V) =[] B(v]c(v))
veEV
and C = (V, E, P) constitutes a causal network.

We illustrate the notion of network with a simple example taken from Cooper (1984).
Suppose that metastatic cancer is a cause of brain tumour and can aso cause an increase
in total serum calcium. Suppose further that either a brain tumor or an increase in total
serum calcium could cause a patient to fall into a coma, and that a brain tumor could cause
papilledema. Let

a1 = metastatic cancer present  a, =metastatic cancer not present
b1 =serum calciumincreased b, = serum calcium not increased

¢1 = brain tumor present ¢ = brain tumor not present
d1 = comapresent dz = comanot present
e1 = papilledema present ez = papilledemanot present

Fig. 4.6: DAG for the cancer problem.

Then, the structure of our knowledge-base is represented by the DAG in Figure 4.6.
This structure together with quantitative knowledge of the conditional probability of every
variablegiven all possible parent states define acausal network that can be used asdeviceto
perform efficient (probabilistic) inference, (absorb knowledge about variables asit arrives,
be able to see the effect on the other variables of one variable taking a particular value and
so on). See Pearl (1988) and Lauritzen & Spiegelhalter (1988).
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So, once a causa network has been built, it constitutes an efficient device to perform
probabilistic inference. However, there remains the previous problem of building such
a network, that is, to provide the structure and conditional probabilities necessary for
characterizing the network. A very interesting task is then to develop methods ableto learn
the net directly from raw data, as an aternative to the method of eliciting opinions from
the experts.

In the problem of learning graphical representations, it could be said that the statistical
community has mainly worked in the direction of building undirected representations:
chapter 8 of Whittaker (1990) provides a good survey on selection of undirected graphical
representations up to 1990 from the statistical point of view. The program BIFROST
(Hgjsgaard et al., 1992) has been developed, very recently, to obtain causal models. A
second literature on model selection devoted to the construction of directed graphs can be
found in the social sciences (Glymour et al., 1987; Spirtes et al., 1991) and the artificial
intelligence community (Pearl, 1988; Herkovsits & Cooper, 1990; Cooper & Herkovsits,
1991 and Fung & Crawford, 1991).

In this section we will concentrate on methods to build a simplified kind of causal
structure, polytrees (singly connected networks); networks where no more than one path
exists between any two nodes. Polytrees, are directed graphs which do not contain loops
in the skeleton (the network without the arrows) that allow an extremely efficient local
propagation procedure.

Before describing how to build polytrees from data, we comment on how to use a
polytreein aclassification problem. In any classification problem, wehave aset of variables
W ={X;,i=1,...,p} that (possibly) have influence on a distinguished classification
variable A. The problem is, given a particular instantiation of these variables, to predict
thevalue of 4, that is, to classify this particular casein one of the possible categories of A.
For thistask, we need a set of examples and their correct classification, acting asatraining
sample. In this context, we first estimate from this training sample a network (polytree),
structuredisplaying the causal relationshipsamongthevariablesV = {X;,i =1, .., p}UA4;
next, in propagation mode, givenanew casewith unknown classification, wewill instantiate
and propagate the avail able information, showing the more likely value of the classification
variable A.

It isimportant to note that this classifier can be used even when we do not know the
value of all the variables in V. Moreover, the network shows the variables in V' that
directly have influence on A4, in fact the parents of A, the children of A and the other
parents of the children of A (the knowledge of these variables makes A independent of
the rest of variablesin V')(Pearl, 1988). So the rest of the network could be pruned, thus
reducing the complexity and increasing the efficiency of the classifier. However, since
the process of building the network does not take into account the fact that we are only
interested in classifying, we should expect as a classifier a poorer performance than other
classification oriented methods. However, the built networks are able to display insights
into the classification problem that other methods lack. We now proceed to describe the
theory to build polytree-based representationsfor a general set of variables Yy, . . ., Yy,.

Assume that the distribution P(y) of m discrete-value variables (which we are trying
to estimate) can be represented by some unknown polytree Fy, that is, P(y) hasthe form
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P(y) = [ P(w | 95000 ¥a6) -+ ¥5s))
i=1
where {y;, ), Yj.(), - - - Y5.6) } IS the (possibly empty) set of direct parents of the variable
X; in Fy, and the parents of each variable are mutually independent. So we are aiming
at simpler representations than the one displayed in Figure 4.6. The skeleton of the graph
involved in that exampleis not atree.

Then, according to key results seen at the beginning of this section, we have a causal
network C = (Y, E, P) and (Y, E) isapolytree. We will assumethat P(y) is nondegen-
erate, meaning that there exists a connected DAG that displays al the dependencies and
independencies embedded in P.

It is important to keep in mind that a naive Bayes classifier (Section 4.5) can be
represented by a polytree, more precisely atree in which each attribute node has the class
variable C as a parent.

The first step in the process of building a polytree isto learn the skeleton. To build the
skeleton we have the following theorem:

Theorem 1  If a nondegenerate distribution P(y) is representable by a polytree Fy, then
any Maximum Weight Spanning Tree (MWST) where the weight of the branch connecting
Y; and'Y; is defined by
P(yi,y;)
1(Y;,Y;)) = Y Plys, y5)log o~

will unambiguously recover the skeleton of Fj.

Having found the skeleton of the polytree we move on to find the directionality of the
branches. To recover the directions of the branches we use the following facts: nondegen-
eracy impliesthat for any pairs of variables(Y;, Y;) that do not have a common descendent
we have

1(Y;,7;) >0
Furthermore, for the pattern

Y, Y, < Y; 4.7
we have

I(Y;,Y;) =0 and I(Y;,Y; |Yz) >0
where

P(y;, y; | )
vi | ye)P(y5 | yr)

Y4,95,9%

and for any of the patterns

Y, Y Y, ViV > Y andY; Y, - Y]
we have

I(Y;,Y;) > 0 and I(Y;,Y; | Yz) = 0
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Taking all these facts into account we can recover the head—to—head patterns, (4.7),
which arethereally important ones. Therest of the branches can be assigned any direction
as long as we do not produce more head-to—head patterns. The algorithm to direct the
skeleton can be found in Pearl (1988).

The program to estimate causal polytrees used in our trials is CASTLE, (Causal
Structures From Inductive Learning). It has been developed at the University of Granada
for the ESPRIT project StatLog (Acid et al. (19914a); Acid et al. (1991b)). See Appendix
B for availability.

4.6.1 Example

We now illustrate the use of the Bayesian learning methodology in a simple model, the
digit recognition in a calculator.

Digits are ordinarily displayed on electronic watches and calculators using seven hor-
izontal and vertical lights in on—off configurations (see Figure 4.7). We number the lights
as shown in Figure 4.7. Wetake Z = (Cl,Z1, Z, ..., Z7) to be an eight—-dimensional

JlcaH5o lo~

1
2 3
4
5 6
7
Fig. 4.7: Digits.
vector where Cl = i denotesthe ith digit, i = 0,1, 2,...,9 and when fixing C! to i the
remaining (Z1, Zs, . . ., Z7) isaseven dimensiona vector of zeros and ones with z,,, = 1

if thelight in the m positionison for the é¢h digit and z,, = 0 otherwise.

We generate examples from a faulty calculator. The data consist of outcomes from
the random vector Cl, X1, X5, . .., X7 where Cl isthe class |abel, the digit, and assumes
the values in 0, 1,2,...,9 with equa probability and the X, X5, ..., X7 are zero-one
variables. Given the value of C1, the X1, X5, ..., X7 are each independently equal to the
value corresponding to the Z; with probability 0.9 and are in error with probability 0.1.
Our aim isto build up the polytree displaying the (in)dependenciesin X .

We generatefour hundred samplesof thisdistributionand usethem asalearning sample.
After reading in the sample, estimating the skeleton and directing the skeleton the polytree
estimated by CASTLE isthe one shown in Figure 4.8. CASTLE then tells us what we had
expected:

Z; and Z; are conditionally independent given Cl, 1,5 =1,2,...,7

Finally, we examine the predictive power of this polytree. The posterior probabilities of
each digit given some observed patterns are shown in Figure 4.9.
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= CASTLE
(File w) (Edit w) { Utilities v) { Learning ¥) ( Propagation v )

I WD)

(L [¥)—[]

|:|I:I
L Propagation |
Fig. 4.8: Obtained polytree.

Digit 0 1 2 3 4 5 6 7 8 9
L 463 0 2 0 0 0 519 0 16 0
‘ 0 749 0 0 0 0 0 251 0 0
| 1 0 971 0 6 0 1 12 0 0
3 1 0 0 280 0 699 19 2 0 0
5 21 0 0 913 0 0 1 2 63
h 290 0 0 0 0 644 51 5 10 0

Fig. 4.9: Probabilities x 1000 for some ‘digits'.
4.7 OTHER RECENT APPROACHES

The methods discussed in this section are available via anonymousftp from statlib, internet
address 128.2.241.142. A version of ACE for nonlinear discriminant analysisis available
asthe S coded function gdisc. MARS is available in a FORTRAN version. Since these
algorithms were not formally included in the StatLog trias (for various reasons), we give
only abrief introduction.

471 ACE

Nonlinear transformation of variablesisacommonly used practice in regression problems.
The Alternating Conditional Expectation algorithm (Breiman & Friedman, 1985) is a
simple iterative scheme using only bivariate conditional expectations, which finds those
transformations that produce the best fitting additive model.

Suppose we have two random variables: the response, Y and the predictor, X, and we
seek transformations 6(Y") and f(X) sothat E{6(Y)|X} ~ f(X). The ACE agorithm
approaches this problem by minimising the squared-error objective

E{6(Y) - F(X)}*. (4.8)

For fixed 6, the minimising f is f(X) = E{6(Y)|X},and conversely, for fixed f the
minimising 8 isé(Y) = E{f(X)|Y }. Thekey ideain the ACE algorithm isto begin with
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some starting functions and alternate these two steps until convergence. With multiple
predictors X, . . ., X,, ACE seeksto minimise

e =E {e(Y) - ij (Xj)} (4.9)

In practice, given a dataset, estimates of the conditional expectations are constructed
using an automatic smoothing procedure. In order to stop the iterates from shrinking
to zero functions, which trivially minimise the squared error criterion, 6(Y) is scaled
to have unit variance in each iteration. Also, without loss of generality, the condition
Ef = Ef, = ... = Ef, = 0isimposed. The agorithm minimises Equation (4.9)
through a seriesof single-function minimisationsinvolving smoothed estimates of bivariate
conditional expectations. For a given set of functions f1, ..., f,, minimising (4.9) with
respect to §(Y') yieldsanew 6(Y)

| B[S0 £(X)Y]
B(Y) = bpeu(Y) =
|7 [ s |

with || || = [E(.)?] """, Next e* is minimised for each f; in turn with given (Y") and
f; i yielding the solution

(4.10)

1/2

fi(Xi) = finew(Xi) = B [9(3’) - (%) |Xi] (4.11)
i#i

This constitutes one iteration of the algorithm which terminates when an iteration fails to

decrease e2.

ACE places no restriction on the type of each variable. The transformation functions
6(Y), f1(X1),..., fo(Xp) assumevalues on the real line but their arguments may assume
values on any set so ordered real, ordered and unordered categorical and binary variables
can al be incorporated in the same regression equation. For categorica variables, the
procedure can be regarded as estimating optimal scores for each of their values.

For use in classification problems, the response is replaced by a categorical variable
representing the class labels, A;. ACE then finds the transformations that make the
relationship of (A) tothe f;(X;) aslinear as possible.

472 MARS

The MARS (Multivariate Adaptive Regression Spline) procedure (Friedman, 1991) is
based on a generalisation of spline methods for function fitting. Consider the case of only
one predictor variable, z. An approximating ¢*”* order regression spline function fq(:c) is
obtained by dividing therange of = valuesinto X + 1 digjoint regions separated by X points
called “knots’. The approximation takes the form of a separate ¢** degree polynomial in
each region, constrained so that the function and its ¢ — 1 derivativesare continuous. Each
q*" degree polynomial isdefined by ¢ + 1 parameters so thereare atotal of (K + 1)(g + 1)
parameters to be adjusted to best fit the data. Generally the order of the spline is taken to
below (g < 3) . Continuity requirements place ¢ constraints at each knot location making
atotal of K¢ constraints.
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Whileregression splinefitting can be implemented by directly solving this constrained
minimisation problem, it ismore usual to convert the problem to an unconstrained optimi-
sation by chosing aset of basisfunctionsthat span the space of all ¢** order splinefunctions
(given the chosen knot locations) and performing alinear least squares fit of the response
on thisbasis function set. In this case the approximation takes the form

K+g

folz) = 3" ax B (x) (4.12)
k=0

where the values of the expansion coefficients {ay, }f *+¢ are unconstrained and the continu-

ity constraints are intrinsically embodied in the basis functions {B,(cq) (z)}E*2. Onesuch
basis, the “truncated power basis’, is comprised of the functions

{e'} o {(z —te)1 1 (4.13)
where {t;, }X are the knot locations defining the K + 1 regions and the truncated power
functions are defined

0 z < tk
— ) = =

(z —tr)§ = { (@—t)? z >t (4.14)
The flexibility of the regression spline approach can be enhanced by incorporating an au-
tomatic knot selection strategy as part of the data fitting process. A simple and effective
strategy for automatically selecting both the number and locations for the knots was de-
scribed by Smith(1982), who suggested using the truncated power basis in a numerical
minimisation of the least squares criterion

N
i=1

Here the coefficients {b;}3 , {ax}¥ can be regarded as the parameters associated with
amultiple linear least squares regression of the response y on the “variables’ {z?}§ and
{(z —tx)% }. Adding or deleting aknot isviewed as adding or deleting the corresponding
variable (z —t)% . The strategy involvesstarting with avery large number of eligible knot
locations {t1, . . ., k.. } ; Wemay choose one at every interior data point, and considering
corresponding variables {(z — ¢ )i}f m gs candidates to be selected through a statistical
variable subset selection procedure. This approach to knot selection is both elegant and
powerful. It automatically selects the number of knots K and their locations ¢4, . . ., tx
thereby estimating the global amount of smoothing to be applied as well as estimating the
separate relative amount of smoothing to be applied locally at different locations.

The multivariate adaptive regression spline method (Friedman, 1991) can beviewed as
amultivariate generalisation of this strategy. An approximating spline function fq(x) of n
variables is defined analogously to that for one variable. The n-dimensional space R™ is
dividedinto aset of disjoint regions and within each one fq (x) istaken to be a polynomial
inn variableswith the maximum degree of any single variable being ¢. The approximation
and its derivatives are constrained to be everywhere continuous. This places constraints on
the approximating polynomials in seperate regions along the (n — 1)-dimensional region
boundaries. As in the univariate case, f,(x) is most easily constructed using a basis
function set that spans the space of all ¢** order n-dimensional spline functions.

2
K

q
Yi Ebja:j — Zak(m — tk)q+
0

o (4.15)
i= k=1
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MARS implements a forward/backward stepwise selection strategy. The forward se-
lection begins with only the constant basis function Bg(x) = 1 in the model. In each
iteration we consider adding two terms to the model

Bj(z —t)+
Bj(t—z)4
where B; is one of the basis functions aready chosen, z is one of the predictor variables
not represented in B; and ¢ is a knot location on that variable. The two terms of this
form, which cause the greatest decrease in the residual sum of squares, are added to the
model. The forward selection process continues until a relatively large number of basis
functionsis included in a deliberate attempt to overfit the data. The backward “ pruning”
procedure, standard stepwise linear regression, is then applied with the basis functions
representing the stock of “variables’. The best fitting model is chosen with the fit measured
by a cross-validation criterion.
MARS is able to incorporate variables of different type; continuous, discrete and
categorical.

(4.16)
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Machine Learning of Rulesand Trees

C. Feng (1) and D. Michie (2)
(1) The Turing Ingtitute! and (2) University of Strathclyde

Thischapter isarrangedin threesections. Section 5.1 introducesthe broad ideas underlying
the main rule-learning and tree-learning methods. Section 5.2 summarises the specific
characteristics of algorithms used for comparative trials in the StatLog project. Section
5.3 looks beyond the limitations of these particular trials to new approaches and emerging
principles.

5.1 RULESAND TREESFROM DATA: FIRST PRINCIPLES
5.1.1 Datafit and mental fit of classifiers

In & 1943 lecture (for text see Carpenter & Doran, 1986) A.M.Turing identified Machine
Learning (ML)? as a precondition for intelligent systems. A more specific engineering
expression of the same idea was given by Claude Shannon in 1953, and that year also
saw thefirst computational learning experiments, by Christopher Strachey (see Muggleton,
1993). After steady growth ML hasreached practical maturity under two distinct headings:
(a) as ameans of engineering rule-based software (for example in “expert systems’) from
sample cases volunteered interactively and (b) as a method of data analysis whereby rule-
structured classifiersfor predicting the classes of newly sampled cases are obtained from a
“training set” of pre-classified cases. We are here concerned with heading (b), exemplified
by Michalski and Chilausky’s (1980) landmark use of the AQ11 algorithm (Michalski &
Larson, 1978) to generate automatically a rule-based classifier for crop farmers.

Rules for classifying soybean diseases were inductively derived from atraining set of
290 records. Each comprised a description in the form of 35 attribute-values, together
with a confirmed allocation to one or another of 15 main soybean diseases. When used to

1 Addresses for correspondence: Cao Feng, Department of Computer Science, University of Ottowa, Ottowa,
K1N 6N5, Canada; Donald Michie, Academic Research Associates, 6 Inveralmond Grove, Edinburgh EH4 6RA,
UK.

2This chapter confines itself to a subset of machine learning algorithms, i.e. those that output propositional
classifiers. InductiveLogic Programming (ILP) usesthe symbol system of predicate (as opposed to propositional)
logic, and is described in Chapter 12
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classify 340 or so new cases, machine-learned rules proved to be markedly more accurate
than the best existing rules used by soybean experts.

As important as a good fit to the data, is a property that can be termed “mental fit”.
As statisticians, Breiman and colleagues (1984) see data-derived classifications as serving
“two purposes: (1) to predict the response variable corresponding to future measurement
vectors as accurately as possible; (2) to understand the structural relationships between the
response and the measured variables” ML takes purpose (2) one step further. The soybean
rules were sufficiently meaningful to the plant pathologist associated with the project that
he eventually adopted them in place of his own previous reference set. ML requires that
classifiers should not only classify but should also constitute explicit concepts, that is,
expressions in symbolic form meaningful to humans and evaluable in the head.

We need to dispose of confusion between the kinds of computer-aided descriptions
which form the ML practitioner’s goal and those in view by statisticians. Knowledge-
compilations, “ meaningful to humansand evaluablein the head” , are availablein Michal ski
& Chilausky’spaper (their Appendix 2), and in Shapiro & Michie (1986, their Appendix B)
in Shapiro (1987, hisAppendix A), and in Bratko, Mozetic & Lavrac (1989, their Appendix
A), among other sources. A glance at any of these computer-authored constructions will
suffice to show their remoteness from the main-stream of statistics and its goals. Yet ML
practitionersincreasingly need to assimilate and use statistical techniques.

Once they are ready to go it alone, machine learned bodies of knowledge typically
need little further human intervention. But a substantial synthesis may require months
or years of prior interactive work, first to shape and test the overall logic, then to develop
suitable sets of attributesand definitions, and finally to select or synthesi ze voluminous data
files as training material. This contrast has engendered confusion as to the role of human
interaction. Like music teachers, ML engineers abstain from interaction only when their
pupil reachestheconcert hall. Thereafter abstentionistotal, clearing theway for new forms
of interaction intrinsic to the pupil’s delivery of what has been acquired. But during the
process of extracting descriptionsfrom datathe working method of ML engineersresemble
that of any other data analyst, being essentially iterative and interactive.

In ML the“knowledge” orientationissoimportant that data-derived classifiers, however
accurate, are not ordinarily acceptable in the absence of mental fit. The reader should bear
this point in mind when evaluating empirical studies reported elsewhere in this book.
StatLog's use of ML agorithms has not always conformed to purpose (2) above. Hence
the reader is warned that the book’ s use of the phrase “ machine learning” in such contexts
is by courtesy and convenience only.

The Michal ski-Chilausky soybean experiment exemplifies supervised learning,

given: a sample of input-output pairs of an unknown class-membership function,

required: a conjectured reconstruction of the function in the form of a rule-based

expression human-evaluable over the domain.
Note that the function’s output-set is unordered (i.e. consisting of categoric rather than
numerical values) and its outputs are taken to be names of classes. The derived function-
expression is then a classifier. In contrast to the prediction of numerical quantities, this
book confines itself to the classification problem and follows a scheme depicted in Figure
5.1.
Constructing ML-type expressions from sample data is known as “concept learning”.
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Fig. 5.1: Classification process from training to testing.

The first such learner was described by Earl Hunt (1962). This was followed by Hunt,
Marin & Stone's (1966) CLS. The acronym stands for “Concept Learning System”. In
ML, the requirement for user-transparency imparts a bias towards logical, in preference to
arithmetical, combinations of attributes. Connectives such as “and”, “or”, and “if-then”
supply the glue for building rule-structured classifiers, as in the following englished form
of arulefrom Michalski and Chilausky’s soybean study.

if leaf malformation is absent and stem isabnormal and internal discoloration
isblack
then Diagnosisis CHARCOAL ROT

Example cases (the “training set” or “learning sample”) are represented as vectors of
attribute-val ues paired with class names. The generic problemisto find an expression that
predicts the classes of new cases (the “test set”) taken at random from the same population.
Goodness of agreement between the true classes and the classes picked by the classifier is
then used to measure accuracy. An underlying assumption is that either training and test
sets are randomly sampled from the same data source, or full statistical allowance can be
made for departures from such aregime.

Symboalic learning is used for the computer-based construction of bodies of articulate
expertise in domains which lie partly at least beyond the introspective reach of domain
experts.  Thus the above rule was not of human expert authorship, athough an expert
can assimilate it and pass it on. To ascend an order of magnitude in scale, KARDIO's
comprehensive treatise on ECG interpretation (Bratko et al., 1989) does not contain a
single rule of human authorship. Above the level of primitive descriptors, every formu-
lation was data-derived, and every data item was generated from a computable logic of
heart/electrocardiograph interaction. Independently constructed statistical diagnosis sys-
tems are commercialy available in computer-driven ECG kits, and exhibit accuraciesin
the 80% — 90% range. Here the ML product scores higher, being subject to error only if
theinitial logical model contained flaws. None have yet cometo light. But the difference
that illuminates the distinctive nature of symbolic ML concerns mental fit. Because of its
mode of construction, KARDIO is able to support its decisions with insight into causes.
Statistically derived systems do not. However, developments of Bayesian treatments ini-
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tiated by ML-leaning statisticians (see Spiegelhalter, 1986) and statistically inclined ML
theorists (see Pearl, 1988) may change this.

Although marching to a different drum, ML people have for some time been seen asa
possibly useful source of algorithms for certain data-analyses required in industry. There
are two broad circumstances that might favour applicability:

1. categorica rather than numerical attributes;
2. strong and pervasive conditional dependencies among attributes.

Asan example of what is meant by a conditional dependency, let ustake the classification
of vertebrates and consider two variables, namely “breeding-ground” (values. sea, fresh-
water, land) and “skin-covering” (values: scales, feathers, hair, none). As avalue for the
first, “sed’ votes overwhelmingly for FISH. If the second attribute has the value “none”,
then on its own thiswould virtually clinch the case for AMPHIBIAN. But in combination
with “breeding-ground = sead” it switches identification decisively to MAMMAL. Whales
and some other sea mammals now remain the only possibility. “Breeding-ground” and
“skin-covering” are said to exhibit strong conditional dependency. Problems characterised
by violent attribute-interactions of this kind can sometimes be important in industry. In
predicting automobile accident risks, for example, information that a driver is in the age-
group 17 — 23 acquires great significance if and only if sex = male.

To examine the “horses for courses’ aspect of comparisons between ML, neura -net
and statistical algorithms, a reasonable principle might be to select datasets approximately
evenly among four main categories as shown in Figure 5.2.

conditiona dependencies

strongand  weak or
pervasive absent

all or mainly categorical + (+)
attributes
all or mainly numerical + )
Key: + ML expected to do well

(+) ML expected to do well, marginally
) ML expected to do poorly, marginally

Fig. 5.2: Relative performance of ML algorithms.

In StatLog, collection of datasets necessarily followed opportunity rather than design,
so that for light upon these particular contrasts the reader will find much that is suggestive,
but less that is clear-cut. Attention is, however, called to the Appendices which contain
additional information for readers interested in following up particular algorithms and
datasets for themselves.

Classification learning is characterised by (i) the data-description language, (ii) the
language for expressing the classifier, —i.e asformulae, rules, etc. and (iii) the learning
algorithm itself. Of these, (i) and (ii) correspond to the *observation language” and
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“hypothesis language” respectively of Section 12.2. Under (ii) we consider in the present
chapter the machine learning of if-then rule-sets and of decision trees. The two kinds of
language are interconvertible, and group themselves around two broad inductive inference
strategies, namely specific-to-general and general-to-specific

5.1.2 Specific-to-general: a paradigm for rule-learning

Michalski’s AQ11 and related algorithms were inspired by methods used by electrical en-
gineersfor simplifying Boolean circuits (see, for example, Higonnet & Grea, 1958). They
exemplify the specific-to-general, and typically start with a maximally specific rule for
assigning cases to a given class, — for example to the class MAMMAL in ataxonomy of
vertebrates. Such a“seed”, asthe starting ruleiscalled, specifies avaluefor every member
of the set of attributes characterizing the problem, for example

Rule 1.123456789  if skin-covering = hair, breathing = lungs, tail = none, can-fly =
y, reproduction = viviparous, legs =y, warm-blooded =y, diet =
carnivorous, activity = nocturnal
then MAMMAL.

We now take the reader through the basics of specific-to-genera rule learning. Asamini-
malist tutorial exercise we shall builda MAMMAL-recogniser.

The initial rule, numbered 1.123456789 in the above, is so specific as probably to be
capable only of recognising bats. Specificity isrelaxed by dropping attributesone at atime,
thus:

Rule 1.23456789 if breathing = lungs, tail = none, can-fly =y, reproduction =
viviparous, legs = y, warm-blooded =y, diet = carnivorous, ac-
tivity = nocturnal
then MAMMAL;

Rule 1.13456789 if skin-covering = hair, tail = none, can-fly =y, reproduction =
viviparous, legs =y, warm-blooded =y, diet = carnivorous, activity
= nocturnal
then MAMMAL;

Rule 1.12456789 if skin-covering = hair, breathing = lungs, can-fly =y, reproduction
= viviparous, legs = y, warm-blooded =y, diet = carnivorous,
activity = nocturnal
then MAMMAL;

Rule 1.12356789 if skin-covering = hair, breathing = lungs, tail = none, reproduction
= viviparous, legs = y, warm-blooded =y, diet = carnivorous,
activity = nocturnal
thenMAMMAL;

Rule 1.12346789 if skin-covering = hair, breathing = lungs, tail = none, can-fly =y,
legs=Yy, warm-blooded =y, diet = carnivorous, activity = nocturnal

bf then MAMMAL,;
and so on for all the ways of dropping a single attribute, followed by al the ways of drop-
ping two attributes, three attributes etc. Any rule which includes in its cover a“negative
example”, i.e. anon-mammal, isincorrect and is discarded during the process. The cycle
terminates by saving a set of shortest rules covering only mammals. Asaclassifier, such a
set is guaranteed correct, but cannot be guaranteed complete, as we shall see later.
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In the present case the terminating set has the single-attribute description:
Rule1.1 if skin-covering = hair
then MAMMAL;
The process now iterates using a new “seed” for each iteration, for example:
Rule 2.123456789  if skin-covering = none, breathing = lungs, tail = none, can-fly =
n, reproduction = viviparous, legs = n, warm-blooded =y, diet =
mixed, activity = diurnal

then MAMMAL;
leading to the following set of shortest rules:

Rule2.15 if skin-covering = none, reproduction = viviparous
then MAMMAL;

Rule 2.17 if skin-covering = none, warm-blooded =y
then MAMMAL;

Rule 2.67 if legs = n, warm-blooded =y
then MAMMAL;

Rule 2.57 if reproduction = viviparous, warm-blooded = y
then MAMMAL;

Of these, the first covers naked mammals. Amphibians, although uniformly naked, are
oviparous. The second has the same cover, since amphibians are not warm-blooded, and
birds, although warm-blooded, are not naked (we assume that classificationisdone on adult
forms). The third covers various naked marine mammals. So far, these rules collectively
contribute little information, merely covering a few overlapping pieces of a large patch-
work. But thelast ruleat astroke covers almost the whole classof mammals. Every attempt
at further generalisation now encounters negative examples. Dropping “warm-blooded”
causes the rule to cover viviparous groups of fish and of reptiles. Dropping “viviparous”
causes the rule to cover birds, unacceptable in a mammal-recogniser. But it also has the
effect of including the egg-laying mammals “Monotremes”, consisting of the duck-billed
platypus and two species of spiny ant-eaters. Rule 2.57 fails to cover these, and is thus
an instance of the earlier-mentioned kind of classifier that can be guaranteed correct, but
cannot be guaranteed complete. Conversion into a complete and correct classifier is not
an option for this purely specific-to-general process, since we have run out of permissible
generalisations. The construction of Rule 2.57 hasthus stalled in sight of the finishing line.
But linking two or more rulestogether, each correct but not complete, can effect the desired
result. Below we combine the rule yielded by the first iteration with, in turn, the first and
the second rule obtained from the second iteration:

Rulel.1 if skin-covering = hair
then MAMMAL;
Rule2.15 if skin-covering = none, reproduction = viviparous
then MAMMAL;
Rulel.1 if skin-covering = hair
then MAMMAL;
Rule2.17 if skin-covering = none, warm-blooded =y
then MAMMAL;

These can equivalently be written as digunctiverules:
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if skin-covering = hair
or skin-covering = none, reproduction = viviparous
then MAMMAL;
and
if skin-covering = hair
or skin-covering = none, warm-blooded =y
then MAMMAL;

Inruleinduction, following Michal ski, an attribute-test iscalled asel ector, aconjunction
of selectorsisacomplex, and a digunction of complexesis called acover. If aruleistrue
of an example we say that it coversthe example. Rule learning systems in practical use
qualify and elaborate the above simple scheme, including by assigning a prominent role to
general-to-specific processes. In the StatLog experiment such algorithms are exemplified
by CN2 (Clarke & Niblett, 1989) and I Trule. Both generate decision rules for each class
in turn, for each class starting with a universal rule which assigns all examples to the
current class. Thisrule ought to cover at least one of the examples belonging to that class.
Specialisations are then repeatedly generated and explored until all rules consistent with
the data are found. Each rule must correctly classify at least a prespecified percentage of
the examples belonging to the current class. As few as possible negative examples, i.e
examples in other classes, should be covered. Specialisations are obtained by adding a
condition to the left-hand side of the rule.

CN2 is an extension of Michalski’s (1969) algorithm AQ with several techniques to
process noise in the data. The main technique for reducing error is to minimise (k +
1)/(k+n+ c) (Laplacian function) wherek isthe number of examples classified correctly
by arule, n isthe number classified incorrectly, and c is the total number of classes.

I Trule produces rules of the form “if ... then ... with probability ..”. This agorithm
contains probabilistic inference through the J- measure, which evaluates its candidate rules.
Jmeasure is a product of prior probabilities for each class and the cross-entropy of class
values conditional on the attribute values. [Trule cannot deal with continuous numeric
values. It needs accurate evaluation of prior and posterior probabilities. So when such
information is not present it is prone to misuse. Detailed accounts of these and other
algorithms are given in Section 5.2.

5.1.3 Decision trees

Reformulation of the MAMM A L -recogni ser as acompl eted decision treewould require the
implicit “else NOT-MAMMAL” to be made explicit, asin Figure 5.3. Construction of the
complete outline taxonomy as a set of descriptive concepts, whether in rule-structured or
tree-structured form, would entail repetition of theinduction processfor BIRD, REPTILE,
AMPHIBIAN and FISH.

In order to bemeaningful to the user (i.e. to satisfy the “mental fit” criterion) it has been
found empirically that trees should be as small and as linear as possible. In fully linear
trees, such asthat of Figure 5.3, an internal node (i.e. attribute test) can be the parent of at
most one internal node. All its other children must be end-node or “leaves’ (outcomes).
Quantitative measures of linearity are discussed by Arbab & Michie (1988), who present
an algorithm, RG, for building trees biased towards linearity. They also compare RG with
Bratko's (1983) AOCDL directed towards the same end. We now consider the genera



Sec. 5.1] Rulesand trees from data: first principles 57
skin-covering?

N

none hair scales feathers

| I

MAMMAL NOT-MAMMAL NOT-MAMMAL

viviparous?
no yas\
NOT-MAMMAL MAMMAL

Fig. 5.3: Trandation of a mammal-recognising rule (Rule 2.15, see text) into tree form. The
attribute-val ues that figured in the rule-sets built earlier are here set larger in bold type. Therest are
tagged with NOT-MAMMAL labels.

properties of agorithmsthat grow trees from data.

5.1.4 General-to-specific: top-down induction of trees

In common with CN2 and I Trule but in contrast to the specific-to-general earlier style of
Michalski’s AQ family of rule learning, decision-tree learning is general-to-specific. In
illustrating with the vertebrate taxonomy example we will assume that the set of nine at-
tributes are sufficient to classify without error al vertebrate speciesinto oneof MAMMAL,
BIRD, AMPHIBIAN, REPTILE, FISH. Later we will consider elaborations necessary in
underspecified or in inherently “noisy” domains, where methods from statistical dataanal-
ysis enter the picture.

As shown in Figure 5.4, the starting point is a tree of only one node that allocates all
casesin the training set to asingle class. In the case that a mammal-recogniser is required,
thisdefault class could be NOT-MAMMAL. The presumption hereisthat in the population
there are more of these than there are mammals.

Unless all vertebratesin the training set are non-mammals, some of the training set of
cases associated with this single node will be correctly classified and others incorrectly,
— in the terminology of Breiman and colleagues (1984), such a node is “impure”’. Each
available attribute is now used on atrial basisto split the set into subsets. Whichever split
minimises the estimated “impurity” of the subsets which it generatesis retained, and the
cycleisrepeated on each of the augmented tree’s end-nodes.

Numerical measures of impurity are many and various. They all aim to capture the
degree to which expected frequencies of belonging to given classes (possibly estimated, for
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example, in the two-class mammal/not-mammal problem of Figure5.4 as M /(M + M"))
are affected by knowledge of attributevalues. In general the goodnessof a split into subsets
(for example by skin-covering, by breathing organs, by tail-type, etc.) istheweighted mean
decrease in impurity, weights being proportional to the subset sizes. Let us see how these
ideas work out in a specimen development of a mammal-recognising tree. To facilitate
comparison with the specific-to-general induction shown earlier, the tree is represented in
Figure 5.5 as an if-then-else expression. We underline class names that label temporary
leaves. These are nodes that need further splitting to remove or diminish impurity.

This simple taxonomic example lacks many of the complicating factors encountered
in classification generally, and lendsitself to this simplest form of decision tree learning.
Complications arisefrom the use of numerical attributesin addition to categorical, from the
occurrence of error, and from the occurrence of unequal misclassification costs. Error can
inhere in the values of attributes or classes (“noise”), or the domain may be deterministic,
yet the supplied set of attributes may not support error-free classification. But to round off
the taxonomy example, the following from Quinlan (1993) gives the simple essence of tree
learning:

To construct adecisiontreefrom aset 7" of training cases, let the classes be denoted

C1,Cs, ..., C;. There arethree possibilities:

e T contains one or more cases, al belonging to asingle class C;
The decision treefor T" is aleaf identifying class C;.

e T containsno cases:
The decision tree is again a leaf, but the class to be associated with the |eaf
must be determined from information other than 7. For example, the lesf
might be chosen in accordance with some background knowledge of the
domain, such asthe overall majority class.

e T contains casesthat belong to a mixture of classes:
In this situation, the idea is to refine 7" into subsets of cases that are, or
seem to be heading towards, single-class collections of cases. A test is
chosen based on a single attribute, that has two or more mutually exclusive
outcomes 01,03, ...,0,. T is partitioned into subsets 71,75, ..., Tn,
where T; contains all the casesin 7" that have outcome Oi of the chosen test.
The decision tree for T' consists of a decision node identifying the test and
one branch for each possible outcome. The same tree-building machinery
is applied recursively to each subset of training cases, so that the ith branch
leads to the decision tree constructed from the subset 7; of training cases.

Note that this schema is general enough to include multi-class trees, raising a tactical
problem in approaching the taxonomic material. Should we build in turn a set of yes/no
recognizers, one for mammals, one for birds, one for reptiles, etc., and then daisy-chain
them into atree? Or should we apply the full multi-class procedure to the data wholesale,
risking a disorderly scattering of different classlabels along the resulting tree’s perimeter?
If the entire tree-building process is automated, as for the later standardised comparisons,
the second regime is mandatory. But in interactive decision-tree building there is no
generaly “correct” answer. The analyst must be guided by context, by user-requirements
and by intermediate results.



Sec. 5.1] Rulesand trees from data: first principles 59
empty attribute-test

""""""""""""""""" if no misclassifications
confirm leaf (solid lines)

empty attribute-test

NOT-MAMMAL and EXIT

if misclassifications occur
choose an attribute for
splitting the set; for each,
calculate a purity measure
from the tabulations below:

skin-covering?

feathers none hair scales TOTAL
number of MAMMAL S in set: Mfa  MNO Mphg MSC M
number of NOT-MAMMALS: Mte  Mno Mpy Msc M’
breathing?
lungs gills
number of MAMMALSs in subset m|y mgi M
number of NOT-MAMMALSs m, mg M’
tail?

long short none

number of MAMMALSin set m|g Mgh MNO M
number of NOT-MAMMALSs m, Mg, Mho M’
and so on

Fig. 5.4: First stagein growing adecisiontree fromatraining set. The single end-nodeis acandidate
to be a leaf, and is here drawn with broken lines. It classifies all cases to NOT-MAMMAL. If
correctly, the candidateis confirmed asaleaf. Otherwise available attribute-applications are tried for
their abilities to split the set, saving for incorporation into the tree whichever maximises some chosen
purity measure. Each saved subset now serves as a candidate for recursive application of the same
split-and-test cycle.
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Step 1: construct asingle-leaf tree rooted in the empty attribute test:

if O
then NOT-MAMMAL

Step2: if no impure nodes then EXIT

Step 3: construct from the training set all single-attribute trees and, for each, calculate the
weighted mean impurity over its leaves,

Step 4: retain the attribute giving least impurity. Assume thisto be skin-covering:

if (skin-covering = hair)
then MAMMAL

if (skin-covering = feathers)
then NOT-MAMMAL

if (skin-covering = scales)
then NOT-MAMMAL

if (skin-covering = none)
then NOT-MAMMAL

Step 5: if no impure nodes then EXIT
Otherwise apply Steps 3, and 4 and 5 recursively to each impure node, thus

Step 3: construct from the NOT-MAMMAL subset of Step 4 all single-attributetrees and,
for each, calculate the weighted mean impurity over its leaves,

Step 4: retain theattributegivingleast impurity. Perfect scoresareachieved by “viviparous”
and by “warm-blooded”, giving:

if (skin-covering = hair) and if (skin-covering = hair)

then MAMMAL then MAMMAL

if (skin-covering = feathers) if (skin-covering = feathers)

then NOT-MAMMAL then NOT-MAMMAL

if (skin-covering = scales) if (skin-covering = scales)

then NOT-MAMMAL then NOT-MAMMAL

if (skin-covering = none) if (skin-covering = none)

then if (reproduction = viviparous) then if (warm-blooded = y)

then MAMMAL then MAMMAL

else NOT-MAMMAL else NOT-MAMMAL
Step 5: EXIT

Fig. 5.5: lllustration, using the MAMMAL problem, of the basic idea of decision-tree induction.
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Either way, thecrux istheideaof refining T “into subsets of casesthat are, or seemto be
heading towards, single-class collectionsof cases” Thisisthe sameasthe earlier described
search for purity. Departurefrom purity is used asthe “splitting criterion”, i.e. as the basis
on which to select an attribute to apply to the members of aless pure node for partitioning
it into purer sub-nodes. But how to measure departure from purity? In practice, as noted
by Breiman et al., “overall misclassification rate is not sensitive to the choice of a splitting
rule, aslong asit is within a reasonable class of rules” For a more general consideration
of splitting criteria, wefirst introduce the case where total purity of nodesis not attainable:
i.e. some or all of the leaves necessarily end up mixed with respect to class membership.
In these circumstances the term “noisy data” is often applied. But we must remember that
“noise” (i.e. irreducible measurement error) merely characterises one particular form of
inadequate information. Imagine the multi-class taxonomy problem under the condition
that “ skin-covering”, “tail”, and “viviparous’ are omitted from the attribute set. Owlsand
bats, for example, cannot now be discriminated. Stopping rules based on complete purity
have then to be replaced by something less stringent.

5.1.5 Stoppingrulesand class probability trees

One method, not necessarily recommended, is to stop when the purity measure exceeds
some threshold. The trees that result are no longer strictly “decision trees’ (although
for brevity we continue to use this generic term), since aleaf is no longer guaranteed to
contain a single-class collection, but instead a frequency distribution over classes. Such
trees are known as “ class probability trees’. Conversion into classifiersrequires a separate
mapping from distributionsto classlabels. One popular but simplistic procedure says* pick
the candidate with the most votes’. Whether or not such a “plurality rule’” makes sense
dependsin each case on (1) the distribution over the classes in the population from which
the training set was drawn, i.e. on the priors, and (2) differential misclassification costs.
Consider two errors; classifying the shuttle main engine as “ok to fly” when it is not, and
classifying it as“not ok” whenit is. Obviously the two costs are unequal .

Use of purity measures for stopping, sometimes called “forward pruning”, has had
mixed results. The authors of two of the leading decision tree algorithms, CART (Breiman
et al., 1984) and C4.5 (Quinlan 1993), independently arrived at the opposite philosophy,
summarised by Breiman and colleagues as “Prune instead of stopping. Grow a tree that
is much too large and prune it upward ..” Thisis sometimes called “backward pruning”.
These authors' definition of “much too large” requiresthat we continue splitting until each
terminal node

either ispure,
or containsonly identical attribute-vectors(inwhich casesplittingisimpossible),
or has fewer than a pre-specified number of distinct attribute-vectors.

Approaches to the backward pruning of these “much too large” trees form the topic of a
later section. We first return to the concept of a node’s purity in the context of selecting
one attributein preference to another for splitting a given node.

5.1.6 Splittingcriteria

Readers accustomed to working with categorical data will recognise in Figure 5.4 cross-
tabulations reminiscent of the “contingency tables’ of statistics. For example it only
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requires completion of the column totals of the second tabulation to create the standard
input to a “two-by-two” x2. The hypothesis under test is that the distribution of cases
between MAMMALSs and NOT-MAMMALSs is independent of the distribution between
the two breathing modes. A possible rule says that the smaller the probability obtained
by applying a x? test to this hypothesis then the stronger the splitting credentials of the
attribute “breathing”. Turning to the construction of multi-class trees rather than yes/no
concept-recognisers, an adequate number of fishes in the training sample would, under
almost any purity criterion, ensure early selection of “breathing”. Similarly, given adequate
representation of reptiles, “tail=long” would score highly, since lizards and snakes account
for 95% of living reptiles. The corresponding 5 x 3 contingency table would have the form
givenin Table 5.1. On the hypothesis of no association, the expected numbersinthes: x j
cells can be got from the marginal totals. Thusexpected e;; = Nyps x Nlong/Nv where N
isthetotal in the training set. Then 3 [(observed — expected)?/expected] is distributed as
x?, with degrees of freedom equal to (; — 1) x (j — 1), i.e 8inthiscase.
Table5.1: Cross-tabulation of classesand “tail” attribute-values
tail?
long short none Totals
number in MAMMAL ni1 na1 nai Ny

number in BIRD N1y ngg N3y Np
number in REPTILE ni3 Na3 nas NR
number in AMPHIBIAN Nn14 Nog N34 Ny
number in FISH nis nas N3s Np
Total Niong  Nsort  Nnone N

Suppose, however, that the“tail” variablewere not presented in theform of acategorical
attribute with three unordered values, but rather as a number, — as the ratio, for example,
of the length of the tail to that of the combined body and head. Sometimes the first step
is to apply some form of clustering method or other approximation. But virtually every
algorithm then selects, from all the dichotomous segmentations of the numerical scale
meaningful for a given node, that segmentation that maximises the chosen purity measure
over classes.

With suitablerefinements, the CHAID decision-treealgorithm (CHi-squared Automatic
Interaction Detection) uses a splitting criterion such as that illustrated with the foregoing
contingency table (Kass, 1980). Although not included in the present trials, CHAID enjoys
widespread commercial availability throughitsinclusion asan optional modulein the SPSS
statistical analysis package.

Other approaches to such tabulations as the above use information theory. We then
enquire “what is the expected gain in information about a case’s row-membership from
knowledge of itscolumn-membership?’. Methodsand difficultiesare discussed by Quinlan
(1993). The reader is aso referred to the discussion in Section 7.3.3, with particular
reference to “ mutual information”.

A related, but more direct, criterion applies Bayesian probability theory to theweighing
of evidence (see Good, 1950, for the classical treatment) in a sequential testing framework
(Wald, 1947). Logarithmic measure is again used, namely log-odds or “plausibilities’
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of hypotheses concerning class-membership. The plausibility-shift occasioned by each
observation is interpreted as the weight of the evidence contributed by that observation.
We ask: “what expected total weight of evidence, bearing on the ; class-membership
hypotheses, is obtainable from knowledge of an attribute’s values over the i x j cells?’.
Preference goes to that attribute contributing the greatest expected total (Michie, 1990;
Michie & Al Attar, 1991). The sequential Bayes criterion has the merit, once the tree is
grown, of facilitating the recalculation of probability estimates at the leaves in the light of
revised knowledge of the priors.

In their CART work Breiman and colleagues initially used an information-theoretic
criterion, but subsequently adopted their “Gini” index. For a given node, and classes with
estimated probabilities p(j), j = 1,...,J, the index can be written 1 — " p2(j). The
authors note anumber of interesting interpretations of thisexpression. But they also remark
that “... within a wide range of splitting criteria the properties of the final tree selected
are surprisingly insensitive to the choice of splitting rule. The criterion used to prune or
recombine upward is much more important.”

517 Gettinga“right-sized tree”

CART'’s, and C4.5's, pruning startswith growing “atree that ismuch too large”. How large
is“too large”? Astree-growth continues and end-nodes multiply, the sizes of their associ-
ated samples shrink. Probability estimates formed from the empirical class-frequencies at
theleaves accordingly suffer escalating estimation errors. Yet thisonly saysthat overgrown
trees make unreliable probability estimators. Given an unbiased mapping from probability
estimates to decisions, why should their performance as classifiers suffer?

Performanceisindeed impaired by overfitting, typically more severely in tree-learning
than in some other multi-variate methods. Figure 5.6 typifies a universally observed
relationship between the number of terminal nodes (z-axis) and misclassification rates (y-
axis). Breiman et al., from whose book the figure has been taken, describe this relationship
as“afairly rapid initial decrease followed by along, flat valley and then agradual increase
... Inthislong, flat valley, the minimum “is aimost constant except for up-down changes
well withinthe+1 SErange” Meanwhilethe performance of thetree on thetraining sample
(not shown in the Figure) continues to improve, with an increasingly over-optimistic error
rate usually referred to asthe “resubstitution” error. Animportant lesson that can be drawn
from inspection of the diagram is that large simplifications of the tree can be purchased at
the expense of rather small reductions of estimated accuracy.

Overfitting is the process of inferring more structure from the training sample than is
justified by the population fromwhich it was drawn. Quinlan (1993) illustrates the seeming
paradox that an overfitted tree can be aworse classifier than one that has no information at
all beyond the name of the dataset’s most numerous class.

This effect is readily seen in the extreme example of random data in which the
classof each caseisquite unrelated to its attribute values. | constructed an artificial
dataset of this kind with ten attributes, each of which took the value 0 or 1 with
equal probability. The classwasa so binary, yeswith probability 0.25 and no with
probability 0.75. One thousand randomly generated casesweresplit intp atraining
set of 500 and atest set of 500. From this data, C4.5'sinitial tree-building routine
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Fig. 5.6: A typica plot of misclassification rate against different levels of growth of a fitted tree.
Horizontal axis: no. of terminal nodes. Vertical axis: misclassification rate measured on test data.
produces a nonsensical tree of 119 nodes that has an error rate of more than 35%
on the test cases

....For the random data above, a tree consisting of just the leaf no would have an
expected error rate of 25% on unseen cases, yet the elaborate tree is noticeably
less accurate. While the complexity comes as no surprise, the increased error
attributable to overfitting is not intuitively obvious. To explain this, suppose we
have a two-class task in which a case’s class is inherently indeterminate, with
proportion p > 0.5 of the cases belonging to the majority class (here no). If a
classifier assigns all such cases to this mgjority class, its expected error rate is
clearly 1 — p. If, on the other hand, the classifier assigns a case to the majority
class with probability p and to the other class with probability 1 — p, its expected
error rate is the sum of

¢ the probability that a case belonging to the majority class is assigned to the
other class, p x (1 — p), and

¢ the probability that a case belonging to the other class is assigned to the
majority class, (1 —p) x pwhichcomesto2 x p x (1 —p). Sincepisat least
0.5, thisis generally greater than 1 — p, so the second classifier will have a
higher error rate. Now, the complex decision tree bears a close resemblance
to this second type of classifier. The tests are unrelated to class so, like a
symbolic pachinko machine, the tree sends each case randomly to one of the
leaves. ...

Quinlan points out that the probability of reaching aleaf labelled with class C isthe same
as the relative frequency of C in the training data, and concludes that the tree’'s expected
error rate for the random dataabove is2 x 0.25 x 0.75 or 37.5%, quite closeto the observed
value.

Given the acknowledged perils of overfitting, how should backward pruning be applied
to atoo-largetree? The methods adopted for CART and C4.5 follow different philosophies,
and other decision-tree algorithms have adopted their own variants. We have now reached
thelevel of detail appropriateto Section 5.2 , in which specific features of the various tree
and rule learning algorithms, including their methods of pruning, are examined. Before
proceeding to these candidates for trial, it should be emphasized that their selection was
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necessarily to a large extent arbitrary, having more to do with the practical logic of co-
ordinating a complex and geographically distributed project than with judgements of merit
or importance. Apart from the omission of entire categories of ML (aswith the genetic and
ILP algorithms discussed in Chapter 12) particular contributionsto decision-tree learning
should be acknowledged that would otherwise lack mention.

First amajor historical role, which continues today, belongs to the Assistant algorithm
developed by Ivan Bratko's group in Slovenia (Cestnik, Kononenko and Bratko, 1987).
Assistant introduced many improvements for dealing with missing values, attribute split-
ting and pruning, and has also recently incorporated the m-estimate method (Cestnik and
Bratko, 1991; see aso Dzeroski, Cesnik and Petrovski, 1993) of handling prior probability
assumptions.

Second, animportant nicheisoccupiedinthecommercial sector of ML by the X pertRule
family of packagesdeveloped by Attar SoftwareLtd. Facilitiesfor large-scaledataanalysis
are integrated with sophisticated support for structured induction (see for example Attar,
1991). These and other features make this suite currently the most powerful and versatile
facility available for industrial ML.

52 STATLOG'SML ALGORITHMS
52.1 Treelearning: further featuresof C4.5

The reader should be aware that the two versions of C4.5 used in the StatLog trials differin
certain respects from the present version which was recently presented in Quinlan (1993).
The version on which accounts in Section 5.1 are based is that of the radical upgrade,
described in Quinlan (1993).

522 NewlD

NewlID isasimilar decision tree algorithm to C4.5. Similar to C4.5, NewlID inputs a set of
examples E, aset of attributesa; and aclassc. Itsoutput isadecision tree, which performs
(probabilistic) classification. Unlike C4.5, NewlID does not perform windowing. Thusits
core procedureis simpler:

1. Setthecurrent examples C to E.
2. If C satisfiesthe termination condition, then output the current tree and halt.

3. For each attribute a;, determine the value of the evaluation function. With the attribute
a; that hasthe largest value of this function, divide the set C' into subsets by attribute
values. For each such subset of examples Ey,, recursively re-enter at step (i) with £
set to Ey,. Set the subtrees of the current node to be the subtrees thus produced.

Thetermination conditionissimpler than C4.5, i.e. it terminateswhen the node contains
all examples in the same class. This simple-minded strategy tries to overfit the training
data and will produce a complete tree from the training data. NewlID deals with empty
leaf nodes as C4.5 does, but it also considers the possibility of clashing examples. If the
set of (untested) attributes is empty it labels the leaf node as CLASH, meaning that it is
impossible to distinguish between the examples. In most situations the attribute set will
not be empty. So NewlD discards attributes that have been used, as they can contribute no
more information to the tree.
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For classification problems, where the class values are categorical, the eval uation func-
tion of NewlD is the information gain function gain(c,a). It does a similar 1-level
lookahead to determine the best attribute to split on using a greedy search. It also handles
numeric attributesin the same way as C4.5 does using the attribute subsetting method.

Numeric class values
NewlID allows numeric class values and can produce a regression tree. For each split, it
aims to reduce the spread of class values in the subsets introduced by the split, instead of
trying to gain the most information. Formally, for each ordered categorical attribute with
valuesintheset {v;|j = 1, ..., m}, it chooses the one that minimises the value of:

E variance({classof e) | attributevalueof e = v;})

i=1
For numeric attributes, the attribute subsetting method is used instead.

When the class value is numeric, the termination function of the algorithm will also
be different. The criterion that al examples share the same class value is no longer
appropriate, and the following criterion is used instead: the algorithm terminates at a node
N with examples S when

o(S) <1/ko(E)
where ¢(.S) isthe standard deviation, E isthe original example set, and the constant & isa
user-tunable parameter.
Missing values
There are two types of missing valuesin New!D: unknown values and “don’t-care” values.
During the training phase, if an example of class ¢ has an unknown attribute value, it is
split into “fractional examples’ for each possible value of that attribute. The fractions of
the different values sum to 1. They are estimated from the numbers of examples of the
same class with aknown value of that attribute.

Consider attribute a with values yes and no. There are 9 examples at the current node
in class ¢ with valuesfor a: 6 yes, 2 no and 1 missing (‘7). Naively, we would split the
‘? intheratio 6 to 2 (i.e. 75% yes and 25% no). However, the Laplace criterion gives a
better estimate of the expected ratio of yes to no using the formula:

fraction(yes) = (ncyes +1)/(nc+ ng)
(6+1)/(8+2),

where
¢ yes 1Stheno. examplesin class c with attributea = yes
n. isthetotal no. examplesin classc
n, isthetotal no. examplesinwith a

and similarly for fraction(no). Thislatter Laplace estimateis used in NewlID.
“Don’'t-care’s (‘*’) are intended as a short-hand to cover al the possible values of the

don’'t-care attribute. They are handled in asimilar way to unknowns, except the exampleis

simply duplicated, not fractionalised, for each value of the attribute when being inspected.
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Thus, inasimilar casewith 6 yes’s, 2 no’sand 1 **’, the **’ example would be considered
as 2 examples, one with value yes and one with value no. This duplication only occurs
when inspecting the split caused by attribute a. If adifferent attributeb isbeing considered,
the example with & = * and a known value for b is only considered as 1 example. Note
thisis an ad hoc method because the duplication of examples may cause the total number
of examples at the leaves to add up to more than the total number of examples originally in
thetraining set.

When atreeisexecuted, and thetesting example has an unknown value for the attribute
being tested on, the example is again split fractionally using the Laplace estimate for the
ratio — but as the testing example's class value is unknown, all the training examples at
the node (rather than just those of class ¢) are used to estimate the appropriate fractions
to split the testing example into. The numbers of training examples at the node are found
by back-propagating the example counts recorded at the leaves of the subtree beneath the
node back to that node. The class predicted at a node is the mgjority class there (if atie
with more than one mgjority class, select the first ). The example may thus be classified,
say, f1 ascy and f, ascy, wheree; and ¢, are the majority classes at the two leaves where
the fractional examples arrive.

Rather than predicting the majority class, a probabilistic classification is made, for
example, aleaf with[6, 2] for classesc; and ¢, classifiesan example 75% as c; and 25% as
¢z (rather than simply as ¢, ). For fractional examples, the distributionswould be weighted
and summed, for example, 10% arrives at leaf [6,2], 90% at leaf [1,3] = classratios are
10% x [6,2] + 90% x [1,3] =[1.5,2.9], thus the exampleis 34% ¢; and 66% c;.

A testing example tested on an attribute with a don’t-care value is simply duplicated
for each outgoing branch, i.e. a whole example is sent down every outgoing branch, thus
counting it as several examples.

Tree pruning

The pruning algorithm works as follows. Given a tree T' induced from a set of learning
examples, a further pruning set of examples, and a threshold value R: Then for each
internal node N of the T, if the subtree of T" lying below N provides R% better accuracy
for the pruning examplesthan node N does (if labelled by the majority classfor thelearning
examples at that node), then leave the subtree unpruned; otherwise, pruneit (i.e. delete the
sub-tree and make node N aleaf-node). By default, R is set to 10%, but one can modify it
to suit different tasks.

Apart from the features described above (which are more relevant to the version of
NewlD used for StatLog), NewlID has a number of other features. NewID can have binary
splits for each attribute at a node of atree using the subsetting principle. It can deal with
ordered sequential attributes (i.e. attributes whose values are ordered). NewlD can also
accept a pre-specified ordering of attributes so the more important ones will be considered
first, and the user can force NewlID to choose a particular attribute for splitting at a node.
It can also deal with structured attributes.

523 AC?

AC?isnot asingleagorithm, it isaknowledgeacquisition environment for expert systems
which enables its user to build a knowledge base or an expert system from the analysis
of examples provided by the human expert. Thus it placed considerable emphasis on the
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dialog and interaction of the system with the user. The user interacts with AC? viaa
graphical interface. Thisinterfaceis consisting of graphical editors, which enable the user
to define the domain, to interactively build the data base, and to go through the hierarchy
of classes and the decision tree.

AC? can be viewed as an extension of atreeinduction algorithm that is essentially the
sameasNewlD. Because of itsuser interface, it allowsamore natural manner of interaction
with a domain expert, the validation of the trees produced, and the test of its accuracy and
reliability. It also provides a simple, fast and cheap method to update the rule and data
bases. It produces, from data and known rules (trees) of the domain, either a decision tree
or a set of rules designed to be used by expert system.

5.2.4 Further featuresof CART

CART, Classification and Regression Tree, isabinary decision tree algorithm (Breiman et
al., 1984), which has exactly two branchesat each internal node. We have used two different
implementations of CART: the commercial version of CART and IndCART, which is part
of the Ind package (also see Naive Bayes, Section 4.5). IndCART differsfrom CART as
described in Breiman et al. (1984) in using a different (probably better) way of handling
missing values, in not implementing the regression part of CART, and in the different
pruning settings.

Evaluation function for splitting

The evaluationfunction used by CART isdifferent fromthat inthe D3 family of algorithms.
Consider the case of aproblem with two classes, and anode has 100 examples, 50 from each
class, the node has maximum impurity. If asplit could be found that split the datainto one
subgroup of 40:5 and another of 10:45, then intuitively theimpurity has been reduced. The
impurity would be completely removed if a split could be found that produced sub-groups
50:0 and 0:50. In CART thisintuitiveidea of impurity isformalised in the GINI index for
the current node ¢:

Gini(c) =1— Zp?
J

where p; is the probability of class j in c. For each possible split the impurity of the
subgroupsis summed and the split with the maximum reduction inimpurity chosen.

For ordered and numeric attributes, CART considersall possible splitsin the sequence.
For n valuesof theattribute, therearen — 1 splits. For categorical attributesCART examines
all possible binary splits, which is the same as attribute subsetting used for C4.5. For n
values of the attribute, thereare 27~ — 1 splits. At each node CART searches through the
attributes one by one. For each attribute it finds the best split. Then it compares the best
single splits and selects the best attribute of the best splits.
Minimal cost complexity tree pruning
Apart from the evaluation function CART’smost crucial differencefrom the other machine
learning algorithms is its sophisticated pruning mechanism. CART treats pruning as a
tradeoff between two issues: getting the right size of a tree and getting accurate estimates
of the true probabilities of misclassification. This process is known as minimal cost-
complexity pruning.
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It is atwo stage method. Considering the first stage, let 7' be a decision tree used to
classify n examplesin thetraining set C. Let E bethe misclassified set of sizem. If I(T")
isthe number of leavesin T' the cost complexity of T" for some parameter « is:

Ry = R(T) + o - (1),

where R(T") = m/n isthe error estimate of T'. If we regard « as the cost for each lef,
R, isalinear combination of its error estimate and a penalty for its complexity. If « is
small the penalty for having a large number of leaves is small and 7" will be large. As «
increases, the minimising subtree will decreasein size. Now if we convert some subtree S
to aleaf. The new tree T, would misclassify & more examples but would contain (.S) — 1
fewer leaves. The cost complexity of T, isthe sameasthat of T if

B k

S ((S) - 1)
It can be shown that thereisaunique subtree T, which minimises R, (T") for any value of «
such that all other subtrees have higher cost complexities or have the same cost complexity
and have T, asa pruned subtree.

For T, = T', we can find the subtree such that « isas above. Let thistreebe T;. There
is then a minimising sequence of trees7y D T3 D ..., where each subtree is produced by
pruning upward from the previous subtree. To produce T;; from 7; we examine each
non-leaf subtree of 7; and find the minimum value of «. The one or more subtrees with
that value of o will be replaced by leaves. The best treeis selected from this series of trees
with the classification error not exceeding an expected error rate on some test set, whichis
done at the second stage.

Thislatter stage selectsasingletree based onitsreliability, i.e. classification error. The
problem of pruning is now reduced to finding which tree in the sequence is the optimally
sized one. If the error estimate R(Tp) was unbiased then the largest tree T; would be
chosen. However this is not the case and it tends to underestimate the number of errors.
A more honest estimate is therefore needed. In CART this is produced by using cross-
validation. Theideais that, instead of using one sample (training data) to build a tree and
another sample (pruning data) to test the tree, you can form several pseudo-independent
samples from the original sample and use these to form a more accurate estimate of the
error. The general method is:

1. Randomly split the original sample E into n equal subsamples Sy, ..., S,.
2. Fori=1ton:
a) Build atreeon thetraining set S — S;; and
b) Determinethe error estimate R; using the pruning set S;.
3. Form the cross-validation error estimate as
= ||
PR

=1

Cross-validation and cost complexity pruning is combined to select the value of «.
The method is to estimate the expected error rates of estimates obtained with 77, for all
values of « using cross-validation. From these estimates, it is then possible to estimate an
optimal value a,; of o for which the estimated true error rate of T, ,, for al thedataisthe
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minimum for all values of . The value a.,: is that value of a which minimises the mean
cross-validation error estimate. Once T,,, has been determined, the tree that is finally
suggested for use is that which minimises the cost-complexity using a.,,; and all the data.
The CART methodology therefore involves two quite separate calculations. First the
value of a,; is determined using cross-validation. Ten fold cross-validation is recom-
mended. The second step is using this value of «,, to grow thefinal tree.
Missing values
Missing attribute values in the training and test data are dealt with in CART by using
surrogate splits. The idea is this: Define a measure of similarity between any two splits
s and s’ of anode N. If the best split of NV is the split s on the attribute a, find the split
s’ on the attributes other than a that is most similar to s. If an example has the value of a
missing, decide whether it goesto the left or right sub-tree by using the best surrogate split.
If it is missing the variable containing the best surrogate split, then the second best is used,
and so on.

525 Cal5

Cal5 is especially designed for continuous and ordered discrete valued attributes, though
an added sub-algorithm is able to handle unordered discrete valued attributes as well.

Let the examples £ be sampled from the examples expressed with n attributes. CALS5
separates the examples from the n dimensions into areas represented by subsets E; €
E (i =1,...,n) of samples, wheretheclassc; (j = 1, ..., m) exists with a probability

p(c;) > B
where 8 < 1 is a decision threshold. Similar to other decision tree methods, only class
areas bounded by hyperplanes paralléel to the axes of the feature space are possible.
Evaluation function for splitting
The tree will be constructed sequentially starting with one attribute and branching with
other attributes recursively, if no sufficient discrimination of classes can be achieved. That
is, if at anode no decision for a class ¢; according to the above formula can be made, a
branch formed with a new attribute is appended to the tree. If this attribute is continuous,
adiscretisation, i.e. intervals corresponding to qualitative val ues has to be used.

Let N be a certain non-leaf node in the tree construction process. At first the attribute
with the best local discrimination measure at this node has to be determined. For that
two different methods can be used (controlled by an option): a statistical and an entropy
measure, respectively. Thestatistical approach isworkingwithout any knowledgeabout the
result of the desired discretisation. For continuous attributesthe quotient (see Meyer-Brotz
& Schirmann, 1970):

A2
quotient(N) = YR,
is a discrimination measure for a single attribute, where A is the standard deviation of
examples in N from the centroid of the attribute value and D is the mean value of the
square of distances between the classes. This measure has to be computed for each
attribute. The attribute with the least value of quotient(N) is chosen as the best one for
splitting at this node. The entropy measure provided as an evaluation function requires an
intermediate discretisation at N for each attribute a; using the splitting procedure described
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below. Then the gain g(N, a;) of information will be computed for a;,¢ € 1, ...,n by the
well known 1D3 entropy measure (Quinlan, 1986). The attribute with the largest value of
the gain is chosen as the best one for splitting at that node. Note that at each node N all
available attributes ay, as, . . ., a, Will be considered again. If a; is selected and occurs
already inthe pathto IV, than the discretisation procedure (see bel ow) leadsto arefinement
of an aready existing interval.

Discretisation
All examplesm; € E reachingthe current node NV are ordered along the axis of the selected
new attribute a; according to increasing values. Intervals, which contain an ordered set of
values of the attribute, are formed recursively on the a;-axis collecting examples from | eft
to right until a class decision can be made on a given level of confidence «.

Let I beacurrent interval containing n examples of different classes and n; the number
of examples belonging to class ¢;. Then n;/n can be used to obtain an estimate of the
probability p(c;|N') on the current node N. The hypothesis:

H1: Thereexistsaclassc; occurring in I withp(c;|N) > 3,
will be tested against:

H2: For all classes ¢; occurring in I theinequality p(c;|N) < 8 holds on acertain level
of confidence 1 — « (for agiven ).

An estimation onthelevel 1 — « yieldsaconfidenceinterval d(c;) for p(¢;|N) andina
long sequence of examples the true value of probability lies within d(c;) with probability

1 — a. Theformulafor computing this confidence interval:
2ac; (655

d(e;) = dac;(1 — —

(e:) 2an—|—2:F2an—|—2 aei( n

is derived from the Tchebyschev inequality by supposing a Bernoulli distribution of class
labelsfor each class ¢;; see Unger & Wysotski (1981)).
Taking into account this confidence interval the hypotheses H1 and H2 are tested by:

H1: d(c;) > B,

i.e Hlistrue, if the complete confidence interval lies above the predefined threshold, and
H2: d(¢;) <B(i=1,...)

i.e. this hypothesisistrue, if for each class ¢; the complete confidence interval is less than

the threshold.
Now thefollowing “ meta-decision” on the dominance of aclassin I can be defined as:

)+1

1. If there exists a class ¢;, where H1 is true then ¢; dominatesin I. Theinterval T is
closed. The corresponding peth of the treeis terminated.

2. If for all classes appearing in I the hypothesis H2 is true, then no class dominates in
I. In this case the interval will be closed, too. A new test with another attribute is
necessary.

3. If neither 1. nor 2. occurs, theinterval I hasto be extended by the next example of the
order of the current attribute. If there are no more examples for a further extension of
I amajority decision will be made.
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Merging
Adjacent intervals I;, I+, with the same classlabel can be merged. Theresultant intervals
yield the leaf nodes of the decision tree. The same rule is applied for adjacent intervals
whereno classdominates and which contain identical remaining classesdueto thefollowing
elimination procedure. A classwithin an interval I isremoved, if the inequality:
d(cl) > 1/n_r

is satisfied, where ny is the total number of different class labels occurring in I (i.e a
class will be omitted, if its probability in I isless than the value of an assumed constant
distribution of all classes occurring in I). These resultant intervalsyield the intermediate
nodesin the construction of the decisiontree, for which further branching will be performed.

Every intermediate node becomes the start node for a further iteration step repesting
the steps from sections 5.2.5t0 5.2.5. The algorithm stops when all intermediate nodes are
all terminated. Note that a mgjority decisionis made at anode if, because of atoo small «,
no estimation of probability can be done.

Discrete unordered attributes

To distinguish between the different types of attributes the program needs a special input
vector. The algorithm for handling unordered discrete valued attributes is similar to that
described in sections 5.2.5 to 5.2.5 apart from interval construction. Instead of intervals
discrete points on the axis of the current attribute have to be considered. All exampleswith
the same value of the current discrete attribute are related to one point on the axis. For
each point the hypotheses H1 and H2 will be tested and the corresponding actions (a) and
(b) performed, respectively. If neither H1 nor H2 istrue, a majority decision will be made.
This approach also allows handling mixed (discrete and continuous) valued attributes.

Probability threshold and confidence

As can be seen from the above two parameters affect the tree construction process: thefirst
isapredefined threshold 8 for accept a node and the second is a predefined confidencelevel
«. If the conditional probability of aclass exceedsthe threshold 3 thetreeis pre-pruned at
that node. The choice of 5 should depend on the training (or pruning) set and determines
theaccuracy of the approximation of the classhyperplane, i.e. theadmissibleerror rate. The
higher the degree of overlapping of class regions in the feature space the less the threshold
has to be for getting a reasonabl e classification result.

Therefore by selecting the value of G the accuracy of the approximation and simulta-
neously the complexity of the resulting tree can be controlled by the user. In addition to
aconstant G the algorithm allows to choose the threshold 3 in a class dependent manner,
taking into account different costs for misclassification of different classes. With other
words the influence of a given cost matrix can be taken into account during training, if the
different costs for misclassification can be reflected by a class dependent threshold vector.
One approach has been adopted by CALS5:

1. every columni (i = 1, ..., m) of the cost matrix will be summed up (S;);

2. thethreshold of that classrelating to the column ¢, for which S; isamaximum (S,,4.)
has to be chosen by the user like in the case of aconstant threshold (Gpm.az);

3. theother thresholds &; will be computed by the formula

Bi = 6(Si/Smaz)  Bmaz (=1, ..., m).
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From experience é should be set to one. Thus all values of the class dependent thresholds
are proportiona to their corresponding column sums of the cost matrix, which can be
interpreted as a penalty measure for misclassification into those classes.

Compared with the threshold the confidence level « for estimating the appropriate class
probability has an inversely proportional effect. The less the value of « the better the
demanded quality of estimation and the worse the ability to separate intervals, since the
algorithm is enforced to construct large intervalsin order to get sufficient statistics.

A suitable approach for the automatically choosing the parameters « and G is not
available. Therefore a program for varying the parameter o between, by default, 0.15 and
0.6 and 3 between, by default, 0.4 and 0.9 in steps of 0.05 is used to predefine the best
parameter combination, i.e. that which givesthe minimum cost (or error rate, respectively)
on atest set. However, this procedure may be computationally expensive in relation to the
number of attributes and the size of data set.

52.6 Bayestree

This is a Bayesian approach to decision trees that is described by Buntine (1992), and is
available in the IND package. It is based on afull Bayesian approach: as such it requires
the specification of prior class probabilities (usually based on empirical class proportions),
and a probability model for the decision tree. A multiplicative probability model for the
probability of atreeis adopted. Using this form simplifies the problem of computing tree
probabilities, and the decision to grow atree from a particular node may then be based on
the increase in probability of the resulting tree, thus using only information local to that
node. Of all potential splits at that node, that split is chosen which increases the posterior
probability of the tree by the greatest amount.

Post-pruning is done by using the same principle, i.e. choosing the cut that maximises
the posterior probability of the resulting tree. Of all those tree structures resulting from
pruning a node from the given tree, choose that which has maximum posterior probability.

An aternative to post-pruning is to smooth class probabilities. As an example is
dropped down the tree, it goes through various nodes. The class probahilities of each node
visited contributeto the final class probabilities (by aweighted sum), so that thefinal class
probabilities inherit probabilities evaluated higher up the tree. This stabilises the class
probability estimates (i.e. reduces their variance) at the expense of introducing bias.

Costs may beincluded in learning and testing via a utility function for each class (the
utility isthe negative of the cost for the two-class case).

5.2.7 Rule-learning algorithms: CN2

This algorithm of Clark and Niblett's was sketched earlier. It aims to modify the basic
AQ algorithm of Michalski in such a way as to equip it to cope with noise and other
complications in the data. In particular during its search for good complexes CN2 does
not automatically remove from consideration a candidate that is found to include one or
more negative example. Rather it retains a set of complexesin its search that is evaluated
statistically as covering alarge number of examples of agiven classand few of other classes.
Moreover, the manner in which the search is conducted is general-to-specific. Each tria
specialisation step takes the form of either adding a new conjunctive term or removing a
digunctive one. Having found a good complex, the algorithm removes those examples it
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covers from the training set and adds the rule “if <complex> then predict <class>" to the
end of therulelist. The process terminates for each given class when no more acceptable
complexes can be found.

Clark & Niblett's (1989) CN2 algorithm has the following main features: 1) the
dependence on specific training examples during search (a feature of the AQ algorithm)
is removed; 2) it combines the efficiency and ability to cope with noisy data of decision-
tree learning with the if-then rule form and flexible search strategy of the AQ family;
3) it contrasts with other approaches to modify AQ to handle noise in that the basic AQ
algorithmitself isgeneralised rather than “ patched” with additional pre- and post-processing
techniques; and 4) it produces both ordered and unordered rules.

CN2 inputs a set of training examples E and output a set of rulescaled rule_list. The
core of CN2 is the procedure as follows, but it needs to use a sub-procedure to return the
value of best_cpx:

1. Letrulelist betheempty list;
2. Letbest_cpx be the best complex found from E;
3. If best_cpx or E isempty then stop and return rule list;
4. Removethe examples covered by best_cpx from E and add therule“if best_cpx then
class=¢” to the end of rule_list where ¢ isthe most common class of examples covered
by best_cpx; re-enter at step (2).
Thissubprocedureisusedfor producing ordered rules. CN2 also producesaset of unordered
rules, which uses a dightly different procedure. To produce unordered rules, the above
procedureisrepeated for each classinturn. Inaddition, in step 4 only the positive examples
should be removed.
The procedure for finding the best complex is as follows:

Let the set star contain only the empty complex and best_cpx be nil;

L et selector s bethe set of all possible selectors;

If star is empty, then return the current best_cpx;

Specialise all complexes in star as newstar, which is the set {z A y|z € star,y €
selector s} and remove al complexesin newstar that are either in star (i.e. the unspe-
cialised ones) or arenull (i.e. big = yes A big = no);

5. For every complex C; in newstar, if C; is statistically significant (in significance)
when tested on E and better than (in goodness) best_cpx according to user-defined
criteria when tested on £, then replace the current value of best_cpx by C;; remove
all worst complexes from newstar until the size of newstar is below the user-defined
maximum,; set star to newstar and re-enter at step (3).

As can be seen from the algorithm, the basic operation of CN2 is that of generating a
complex (i.e. aconjunct of attribute tests) which covers (i.e. is satisfied by) a subset of the
training examples. This complex formsthe condition part of aproductionrule”if condition
then class =¢”, where class is the most common class in the (training) examples which
satisfy the condition. The condition is a conjunction of selectors, each of which represents
atest on the values of an attribute such as“weather=wet”. The search proceedsin both AQ
and CN2 by repeatedly specialising candidate complexes until one which covers a large
number of examples of a single class and few of other classesis located. Details of each
search are outlined below.

N
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The search for specialisations

The CN2 algorithm works in an iterative fashion, each iteration searching for a complex
covering alarge number of examples of asingle class ¢ and few of other classes. (The ex-
amplesof the current class are called “ positive” examples and the other examples are called
“negative” examples.) The complex must be both predictive and reliable, as determined by
CN2's evaluation functions. Having found a good complex, those examples it covers are
removed from the training set and the rule “if <complex> then class=¢” is added to the
end of therule list. This greedy process iterates until no more satisfactory complexes can
be found.

To generate a single rule, CN2 first starts with the most general rule “if true then
class=c” (i.e all examples are class c), where c is the current class. Then CN2 searches
for complexes by carrying out a general-to-specific beam search. The extent of the beam
search for a complex can be regulated by controlling the width (i.e. number of complexes
explored in parallel) of the beam. At each stage in the search, CN2 retains a size-limited
set or star S of “complexes explored so far”. The system examines only specialisations of
this set, carrying out a beam search of the space of complexes. A complex is specialised by
adding a new conjunctive term in one of its selector. Each complex can be specialised in
several ways, and CN2 generates and evaluates all such specialisations. The star istrimmed
after completion of this step by removing its lowest ranking elements as measured by an
evaluation function that we will describe shortly.

The implementation of the specialisation step in CN2 is to repeatedly intersect® the
set of all possible selectors with the current star, eliminating all the null and unchanged
elementsin the resulting set of complexes. (A null complex is one that contains a pair of
incompatible selectors, for example, big = y A big = n).

Search heuristics

There are two heuristics used in the search for the best complexes and both can be tuned
by the user depending on the specific domain: the significance level and the goodness
measure. Significance is an absolute threshold such that any (specialised) complexes
below the threshold will not be considered for selecting the best complex (but they are still
used for further specialisation in the star). Goodness is a measure of the quality of the
complexes so it is used to order the complexes that are above the significance threshold to
select the best complex.

Several difference functions can be chosen to guide the search for a good rule in the
CN2/AQ system, for example:

e “Number of correctly classified examples divided by total number covered’. Thisis
the traditional AQ evaluation function.

e Entropy, similar to the information gain measure used by ID3 (Quinlan, 1986) and
other decision tree algorithms.

e Thelaplacianerror estimate: Accuracy a(n,ne, k) = (n—n.+k—1)/(n+k)where
n iS the total number of examples covered by the rule, n. is the number of positive
examples covered by the rule and & isthe number of classesin the problem.

3Theintersection of set A with set B isthe set {x A y|x € A,y € B}. For example, using ‘.’ to abbreviate
‘A, {a.b,a.c, b.d} intersected with {a, b, ¢, d} is{a.b, a.b.c,a.b.d, a.c,a.c.d, b.d, b.c.d}. If we now remove
unchanged elementsin this set we obtain {a.b.c, a.b.d, a.c.d, b.c.d}.
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CN2 uses one of these criteriaaccording to the user’s choice to order the goodness of rules.
To test significance, CN2 uses the entropy statistic. Thisis given by:

2 Z pi109(p; /i),
i=1

wherethedistributionpy, . . ., p, isthe observed frequency distribution of examplesamong
classes satisfying a given complex and q4, ..., g5, IS the expected frequency distribution of
the same number of examples under the assumption that the complex selects examples
randomly. Thisistaken asthe N = ) p; covered examples distributed among classes
with the same probability as that of examples in the entire training set. This statistic
provides an information-theoreti c measure of the (non-commutative) distance between the
two distributions. The user provides a threshold of significance below which rules are
rejected.
Missing values
Similar to Newl D, CN2 candeal with unknown or don’t-carevalues. During rulegeneration,
asimilar policy of handling unknownsand don’t-caresisfollowed: unknownsare split into
fractional examples and don'’t-cares are duplicated.

Each rule produced by CN2 is associated with a set of counts which corresponds to
the number of examples, covered by the rule, belonging to each class. Strictly speaking,
for the ordered rules the counts attached to rules when writing the rule set should be those
encountered during rule generation. However, for unordered rules, the countsto attach are
generated after rule generation in asecond pass, following the execution policy of splitting
an example with unknown attribute value into equal fractionsfor each valuerather than the
L aplace-estimated fractions used during rule generation.

When normally executing unordered rules without unknowns, for each rule which fires
the class distribution (i.e. distribution of training examples among classes) attached to the
rule is collected. These are then summed. Thus a training example satisfying two rules
with attached class distributions [8,2] and [0,1] has an expected distribution [8,3] which
resultsin ¢, being predicted, or [c1 : ¢z] = [8/11 : 3/11] if probabilistic classification is
desired. The built-in rule executer followsthe first strategy (the exampleis classed simply
Cl).

With unordered CN2 rules, an attribute test whose value is unknown in the training
example causes the example to be examined. If the attribute has three values, 1/3 of the
example is deemed to have passed the test and thus the final class distribution is weighted
by 1/3 when collected. A similar rule later will again cause 1/3 of the example to pass
the test. A don't-carevalue is always deemed to have passed the attribute test in full (i.e
weight 1). The normalisation of the class counts means that an example with a don’t-care
can only count as a single example during testing, unlike NewlD where it may count as
representing several examples.

With ordered rules, asimilar policy is followed, except after a rule has fired absorbing,
say, 1/3 of the testing example, only the remaining 2/3s are sent down the remainder of
therulelist. The first rule will cause 1/3 x class frequency to be collected, but a second
similar rulewill cause 2/3 x 1/3 x classfrequency to be collected. Thusthe fraction of the
example gets less and less as it progresses down the rule list. A don’t-care value always
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passes the attributetest in full, and thus no fractional example remainsto propagate further
down therulelist.

Numeric attributesand rules

For numeric attributes, CN2 will partition the valuesinto two subsets and test which subset
each example belongs to. The drawback with a naive implementation of this is that it
requires2™ — 1 evaluationswheren isthe number of attributevalues. Breiman et al. (1984)
proved that in the special case where there are two class valuesit is possible to find an
optimal split withn — 1 comparisons. In the general case heuristic methods must be used.

The AQ algorithm produces an unordered set of rules, whereas the version of the CN2
algorithm used in StatLog produces an ordered list of rules. Unordered rules are on the
whole more comprehensible, but require also that they are qualified with some numeric
confidence measure to handle any clashes which may occur. With an ordered list of rules,
clashes cannot occur as each rule in the list is considered to have precedence over all
subsequent rules.

Relation between CN2 and AQ

There are several differencesbetween these two algorithms; however, it ispossibleto show
that strong rel ationships exist between the two, so much so that simple modifications of the
CN2 system can be introduced to enable it to emulate the behaviour of the AQ algorithm.
See Michalski & Larson (1978).

AQ searches for rules which are completely consistent with the training data, whereas
CN2 may prematurely halt specialisation of a rule when no further rules above a certain
threshold of statistical significance can be generated viaspecialisation. Thus, the behaviour
of AQ in thisrespect is equivalent to setting the threshold to zero.

When generating specialisations of a rule, AQ considers only specialisations which
exclude a specific negative example from the coverage of a rule, whereas CN2 considers
all specialisations. However, specialisations generated by CN2 which don’t exclude any
negative examples will be rejected, as they do not contribute anything to the predictive
accuragy of therule. Thus, the two algorithms search the same space in different ways.

Whereas published descriptions of AQ leave open the choice of evaluation function to
use during search, the published norm is that of “number of correctly classified examples
divided by total examples covered”. The original CN2 agorithm uses entropy as its
evaluation function. To obtain a synthesis of the two systems, the choice of evaluation
function can be user-selected during start of the system.

AQ generates order-independent rules, whereas CN2 generates an ordered list of rules.
To modify CN2 to produce order-independent rules requires a change to the evaluation
function, and a change to the way examples are removed from the training set between
iterations of thecomplex-finding algorithm. Thebasic searcha gorithm remainsunchanged.

5.2.8 ITrule

Goodman & Smyth’s (1989) I Trule algorithm uses afunction called the J-measure to rank
the hypotheses during decision rule construction. Its output is a set of probability rules,
which are the most informative selected from the possible rules depending on the training
data.

The algorithm iterates through each attribute (including the class attribute) valuein turn
to build rules. It keeps a ranked list of the K best rules determined to that point of the
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algorithm execution (KX is the size of the beam search). The J-measure of the Kth rule
is used as the running minimum to determine whether a new rule should be inserted into
therulelist. For each attribute value the algorithm must find all possible conditionsto add
to the left hand side of an over-general rule to speciaise it. Or it may decide to drop a
condition to generalise an over-specific rule. The rules considered are those limited by the
minimum running J-measure value, which prevents the algorithm from searching a large
rule space.

Three points should be noted. First, ITrule produces rules for each attribute value. So
it can also capture the dependency relationships between attributes, between attributesand
classes and between class values. Secondly, 1 Trule not only specialises existing rules but
also generalises them if the need arises. Specialisation is done through adding conditions
to the left hand side of the rule and generalisation is done through dropping conditions.
Finally, I Truleonly deal swith categorical examples soit generally needsto convert numeric
attributes and discrete values.

Evaluation function: the J-measure

Let ¢ bean attributewith valuesinthe set {a;|¢ = 1, ..., [} and b be an attribute with values
in{b;|i = 1,...,m}. The J-measure is a method for calculating the information content
I(alb = b;) of atributea given the value of attributed = b;. Itis

pa;lb;)
p(ai|bj)in
E " pa)
wherep(a;|b;) |sthecond|t|onal probability of « = a; givenb = b; and p(a; ) isthea priori
probability of a = a;. These can normally be estimated from the (conditional) relative
frequency of the value of a;. When the distribution is uniform and the data set is sufficient
such estimates can be reasonable accurate. The I Trule a gorithms uses a maximum entropy
estimator:

a+n+1
a+B+N+2
where o and  are parameters of an initial density estimate, n is the number of the
(conditional) event a = a; inthedataand N isthe (conditional) total number of a.
The average information content is therefore defined as:

Javg alb_b Zp ):p(bj)‘](a|b:bj)'

p:

The aboveistrue becauseit tak% into account the fact that the probabilities of other values
of b are zero. Thefirst term p(b;) can be interpreted as a measure of the simplicity of the
hypothesisthat a isrelated to b. The second term J(a|b = b;) isequal to the cross-entropy
of the variable a with the condition “« is dependent on the event b = b;”. Cross-entropy is
known to measure the goodness of fit between two distributions; see Goodman & Smyth
(1989).

Rule searching strategy

I Trule performsboth generalisation and specialisation. It startswithamodel driven strategy
muchlike CN2. But itsrulesall have probability attached from thebeginning. So auniversal
rule will be
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If All Conditions Then Current Class with probability 1.

To specialise arule such as one with current J-value J,,4(alb = b;) it calculates the
al possible values of Juu4(alb = bj, ¢ = ¢) for attribute c. If Jauq(aldb = bj,c = cp) >
Javg(alb = b;) then it insert the new rule with specialised condition ¢ = ¢y, into the rule
list. Thisprocess continuesuntil no rule can be produced to cover remaining examples. To
generalise arule, with the current j-measure value J,, 4 (alb = b;, ¢ = cx) it requires

Javg(alb = b;) > aJayg(alb = b, c = cx),

wherea = "(b:bbjf;:)ck) Namely the increasein simplicity is sufficiently compensated for

by the decrease in cross-entropy.

5.3 BEYOND THE COMPLEXITY BARRIER

All ML designers, whether rule-oriented or tree-oriented agree that, to the extent that the
datapermits, mental fit isanindispensiblehall-mark. Thus, discussing requirementsof rule
learning systems Clark & Niblett (1989) state that “for the sake of comprehensibility, the
induced rules should be as short as possible. However, when noise is present, overfitting
can lead to long rules. Thus, to induce short rules, one must usually relax the requirement
that the induced rules be consistent with all the training data” Such measures constitute
the analogue of “pruning” of trees. But tree pruning and rule-set simplification measures
may encounter complexity barriers that limit how much can be done in the direction of
mental fit while retaining acceptable accuracy. When this occurs, are there other directions
in which descriptive adequacy can still be sought?

5.3.1 Treesintorules

A tree that after pruning still remains too big to be comprehensible is a sign that a more
powerful description language is required. A modest, but often effective, step starts by
recognising that there is no intrinsic difference in expressive power between rulesets and
trees, yet rule languages seem to lend themselves more to user-friendliness. A successful
exploitation of this idea takes the form of a compressive re-organisation of induced trees
into rule-sets. Quinlan’strees-into-rules algorithm (see his 1993 book for the most recent
version) startswith the set formed from aC4.5 decision tree by identifying each root-to-leaf
pathwitharule. Eachruleissimplified by successively dropping conditions (attribute-tests)
in the specific-to-genera styleillustrated at the beginning of this chapter. The difference
liesin the sophistication of criteriaused for retracting atrial generalisation whenit isfound
to result in inclusion of cases not belonging to the rule's decision class. In the noise-free
taxonomy problem of the earlier tutorial example, a single “false positive” was taken to
bar dropping the given condition. Aswith CN2 and some other rule-learners, a statistical
criterion is substituted. Quinlan’sis based on forming from the training set “pessimistic”
estimates of the accuracy that a candidate rule would show on atest set.

When specific-to-general simplification has run its course for each class in turn, a
final scan is made over each ruleset for any that, in the context of the other rules, are
not contributing to the ruleset’s accuracy. Any such passengers are dropped. The end of
this stage leaves as many subsets of if-then rules (“covers’ in the earlier terminology) as
there are classes, i.e. one subset for each class. These subsets are then ordered prior to
use for classifying new cases. The ordering principle first applies the subset which on the
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training set gives fewest false positives. The one with most false positivesis the last to be
applied. By that time some of the false-positive errorsthat it could have made have been
pre-empted by other rule-sets. Finally adefault classis chosen to which al caseswhich do
not match any rule are to be assigned. Thisis calculated from the frequency statistics of
such left-oversin the training set. Whichever class appears most frequently among these
left-oversis selected as the default classification.

Rule-structured classifiers generated in this way turn out to be smaller, and better in
“mental fit”, than the trees from which the process starts. Yet accuracy isfound to be fully
preserved when assayed against test data. A particularly interesting feature of Quinlan’s
(1993) account, for which space allows no discussion here, is hisdetailed illustration of the
Minimum Description Length (MDL) Principle, according to which the storage costs of
rulesets and of their exceptions are expressed in a common information-theoretic coinage.
This is used to address a simplification problem in building rule-sets that is essentially
similar to the regulation of the pruning processin decision trees. Thetrade-off in each case
is between complexity and predictive accuracy.

5.3.2 Manufacturing new attributes

If a user-friendly description still cannot be extracted more radical treatment may be
required. The data-description language’s vocabulary may need extending with new com-
binations formed from the original primitive attributes. The effects can be striking.

Consider the problem of classifying as “illegal” or “legal” the chessboard positions
formed by randomly placing the three pieces White king, White rook and Black king.
Combinatorially there are 643 positions, or 262,144. Assume that it is White's turn to
move. Approximately two thirds of the positions are then illegal. Two or more pieces
may have been placed on the same square, or the two kings may be diagonally or directly
adjacent. Additionally positions in which the Black king isin check from the White rook
areasoillegal (recall that it is White to move).

A problem is presented for inductive analysis as a training set of n cases sampled
randomly from the total space of possible 3-piece placements, as shown in Table 5.2.

Given sufficiently large n, Table 5.2 constitutes what McCarthy and Hayes (1969)
termed an “epistemologically adequate” representation: it supplies whatever facts are in
principle needed to obtain solutions. But for decision-tree learning, the representation is
not “heuristically adequate”. Michie & Bain (1992) applied a state-of-the-art decision-tree
learner (XpertRule) of roughly similar power to C4.5, to training sets of 700 examples.
The resulting 27-node tree performed on test data with only 69% accuracy, not differing
significantly from that achievable by making the default conjecture“illegal” for every case.

The next step was to augment the six attributes with fifteen new ones, manufactured
by forming all possible pairwise differences among the original six. With the augmented
attribute set, two random partitions of a file of 999 cases were made into atraining set of
698 and atest set of 301. Trees of 99% and 97% accuracy now resulted, with 49 nodes and
41 nodes respectively.

For making these very successful constructions the algorithm seized on just six at-
tributes, all newly manufactured, namely the three pairwise differences among attributes
1, 3, and 5, and the three among attributes 2, 4, and 6. In this way, even though in a
verbose and contorted style, it was able to express in decision-tree language certain key
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Table 5.2: The six attributes encode a position according to the scheme: al = file(BK); a2
=rank (BK); a3 = filg(WR); &4 = rank(WR); a5 = file(BK); a6 = rank(BK).

IDno. al a2 a3 a4 & ab class

1 7 8 1 7 6 8 yes
2 6 5 8 4 6 8 no
3 2 3 3 5 8 7 no
4 2 2 5 7 5 1 yes

n-1 2 7 5 3 2 3 yes
n 7 1 5 4 3 6 no
sub-descriptions, — such asthe crucial same-file and same-rank rel ation between White rook
and Black king. Whenever one of these relations holdsit isa good bet that the position is
illegal.

The gainin classification accuracy isimpressive, yet no amount of added training data
could inductively refine the above “excellent bet” into a certainty. The reason again lies
with persisting limitations of the description language. To define the cases where the
classifier's use of samefile(WR, BK) and samerank(WR, BK) lets it down, one needs to
say that this happens if and only if the WK is between the WR and BK. Decision-tree
learning, with attribute-set augmented as described, can patch together subtreesto do duty
for samefile and samerank. But an equivalent feat for a sophisticated three-place relation
such as “between” is beyond the expressive powers of an attribute-value propositional -
level language. Moreover, the decision-tree learner’s constructions were described above
as “very successful” on purely operational grounds of accuracy relative to the restricted
amount of training material, i.e. successful in predictivity. In terms of “descriptivity” the
trees, while not as opague as those obtained with primitive attributes only, were still far
from constituting intelligible theories.

5.3.3 Inherent limitsof propositional-level learning

Construction of theories of high descriptivity is the shared goal of human analysts and
of ML. Yet the propositional level of ML is too weak to fully solve even the problem
here illustrated. The same task, however, was proved to be well within the powers (1) of
Dr. Jane Mitchell,a gifted and experienced human data analyst on the academic staff of
Strathclyde University, and (2) of a predicate-logic ML system belonging to the Induc-
tive Logic Programming (ILP) family described in Chapter 12. The two independently
obtained theories were complete and correct. One theory-discovery agent was human,
namely a member of the academic staff of a University Statistics department. The other
was an ILP learner based on Muggleton & Feng's (1990) GOLEM, with “Closed World
Speciaization” enhancements (Bain, private communication). In essentials the two theo-
ries closely approximated to the one shown below in the form of four if-then rules. These
are here given in english after back-interpretation into chessterms. Neither of the learning
agents had any knowledge of the meaning of the task, which was simply presented asin
Table5.2. They did not know that it had anything to do with chess, nor even with objects
placed on plane surfaces. The background knowledge given to the ILP learner was similar
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in amount to that earlier given to XpertRule in the form of manufactured attributes.

1. if WR and BK either occupy samefile and WK is not directly between
or if they occupy the same rank and WK is not directly between
then the position isillegal;

2. if WK and BK either are vertically adjacent
or are horizontally adjacent
or are diagonally adjacent
then the position isillegal;

3. if any two pieces are on the same square
then the position isillegal;

4. otherwisethe positionislegal.

Construction of thistheory requires certain key sub-concepts, notably of “ directly between”.
Definitionswere invented by the machinelearner, using lower-level conceptssuch as*less-
than”, as background knowledge. “Directly between” holds among the three co-ordinate
pairsif either thefirst co-ordinatesareall equal and the second co-ordinatesarein ascending
or descending progression, or the second co-ordinatesareall equal and thefirst co-ordinates
show the progression. Bain’s|L P package approached therel ation piece-wise, viainvention
of “between-file” and “ between-rank”. The human learner doubtless came ready-equipped
with some at least of the concepts that the ML system had to invent. None the less, with
unlimited access to training data and the use of standard statistical analysis and tabulation
software, the task of theory building still cost two days of systematic work. Human
learners given hours rather than days constructed only partial theories, falling far short
even of operational adequacy (see also Muggleton, S.H., Bain, M., Hayes-Michie, J.E. and
Michie, D. (1989)).

Bain's new work has the further interest that learning takes place incrementally, by
successive refinement, a style sometimes referred to as “non-monotonic”. Generalisations
made in the first pass through training data yield exceptions when challenged with new
data. As exceptions accumulate they are themselves generalised over, to yield sub-theories
which qualify the main theory. These refinements are in turn challenged, and so forth to
any desired level.

The KRK illegality problem was originally included in StatLog’s datasets. In the
interests of industrial relevance, artificial problemswere not retained except for expository
purposes. No connection, however, exists between a data-set’s industrial importance and
itsintrinsic difficulty. All of the ML algorithms tested by StatLog were of propositional
type. If descriptive adequacy is a desideratum, none can begin to solve the KRK-illegal
problem. It would be a mistake, however, to assume that problems of complex logical
structure do not occur in industry. They can be found, for example, in trouble-shooting
complex circuitry (Pearce, 1989), in inferring biological activity from specifications of
macromolecular structure in the pharmaceutical industry (see last section of Chapter 12)
and in many other large combinatorial domains. AsInductive Logic Programming matures
and assimilates techniques from probability and statistics, industrial need seems set to
explore these more powerful ML description languages.
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5.3.4 A human-machine compromise: structured induction

In industrial practice more mileage can be got from decision-tree and rule learning than
the foregoing account might lead one to expect. Comparative trials like StatLog’s, having
a scientific end in view, necessarily exclude approaches in which the agorithm’'s user
intervenes interactively to help it. The inability of propositional learning to invent new
attributes can be by-passed in practical contexts where human-computer interaction can
plug thegap. From this, an approach knownas* structured induction” has cometo dominate
commercial ML. The method, originated by Shapiro & Niblett (1982) (see also Shapiro,
1987) assigns the task of attribute-invention to the user, in a manner that partitions the
problem into a hierarchy of smaller problems. For each smaller problem a solution treeis
separately induced.

Structured induction is closely related to the software discipline of “structured pro-
gramming”. For large problems the industrial stream of ML work will continue to flow
along this human-computer channel. It may for some time remain exceptiona for prob-
lem complexity to force users to look beyond rule-based ML and multivariate statistics.
Because the StatLog ground-rules of comparative trials necessarily barred the user from
substantive importation of domain-specific knowledge, structured induction does not figure
in thisbook. But industrially oriented readers may find advantage in studying cases of the
method’s successful field use. One such account by Leech (1986) concerned process and
quality control in uranium refining. A well-conceived application of structured decision-
tree induction transformed the plant from unsatisfactory to highly satisfactory operation,
and is described in sufficient detail to be used as aworking paradigm. Similar experience
has been reported from other industries (see Michie, 1991, for review).
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Neural Networks

R. Rohwer (1), M. Wynne-Jones (1) and F. Wysotzki (2)
(1) Aston University! and (2) Fraunhofer-Ingtitute

6.1 INTRODUCTION

Thefield of Neural Networks has arisen from diverse sources, ranging from the fascination
of mankind with understanding and emul ating the human brain, to broader issuesof copying
human abilities such as speech and the use of language, to the practical commercial,
scientific, and engineering disciplines of pattern recognition, modelling, and prediction.
For a good introductory text, see Hertz et al. (1991) or Wasserman (1989).

Linear discriminants were introduced by Fisher (1936), as a statistical procedure for
classification. Here the space of attributes can be partitioned by a set of hyperplanes, each
defined by a linear combination of the attribute variables. A similar model for logical
processing was suggested by McCulloch & Pitts (1943) as a possible structure bearing
similarities to neuronsin the human brain, and they demonstrated that the model could be
used to build any finite logical expression. The McCulloch-Pitts neuron (see Figure 6.1)
consists of a weighted sum of its inputs, followed by a non-linear function called the em
activation function, originally athreshold function. Formally,

1if E]» WrjL; — K Z 0
Yk = (6.1)

0 otherwise

Other neuron models are quite widely used, for example in Radial Basis Function
networks, which are discussed in detail in Section 6.2.3.

Networks of McCulloch-Pitts neurons for arbitrary logical expressions were hand-
crafted, until the ability to learn by reinforcement of behaviour was developed in Hebb's
book ‘The Organisation of Behaviour’ (Hebb, 1949). It was established that the func-
tionality of neural networks was determined by the strengths of the connections between
neurons; Hebb's learning rule prescribesthat if the network respondsin a desirable way to
agiven input, then the weights should be adjusted to increase the probability of a similar

1 Address for correspondence: Dept. of Computer Science and Applied Mathematics, Aston University,
Birmingham B4 7ET, U .K.



Sec. 6.2] Introduction 85

| output yy

1

—Ia

\@ o
Z weighted sum

weight vector wy,

input vector x

Fig. 6.1: McCulloch and Pitts neuron.

responseto similar inputsin the future. Conversely, if the network responds undesirably to
an input, the weights should be adjusted to decrease the probability of asimilar response.

A distinction isoften made, in pattern recognition, between supervised and unsuper vised
learning. The former describes the case where the the training data, measurements on the
surroundings, are accompanied by label sindicating the class of event that the measurements
represent, or more generally adesired response to the measurements. Thisisthe moreusual
case in classification tasks, such as those forming the empirical basis of this book. The
supervised learning networks described later in this chapter are the Perceptron and Multi
Layer Perceptron (MLP), the Cascade Correlation learning architecture, and Radial Basis
Function networks.

Unsupervised learning refers to the case where measurements are not accompanied by
classlabels. Networksexist which can model the structure of samplesin the measurement,
or attribute space, usualy in terms of a probability density function, or by representing the
datain terms of cluster centres and widths. Such modelsinclude Gaussian mixture models
and Kohonen networks.

Once amodel has been made, it can be used as aclassifier in one of two ways. Thefirst
isto determine which class of pattern in the training data each node or neuron in the model
responds most strongly to, most frequently. Unseen data can then be classified according to
theclasslabel of the neuron with the strongest activation for each pattern. Alternatively, the
Kohonen network or mixture model can be used asthefirst layer of aRadia Basis Function
network, with a subsequent layer of weights used to calculate a set of class probabilities.
Theweightsin thislayer are calculated by alinear one-shot learning algorithm (see Section
6.2.3), giving radial basis functions a speed advantage over non-linear training algorithms
such as most of the supervised learning methods. Thefirst layer of aRadial Basis Function
network can alternatively beinitialised by choosing a subset of the training data points to
use as centres.
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6.2 SUPERVISED NETWORKSFOR CLASSIFICATION

In supervised learning, we have an instance of data, ¢, comprising an attribute vector X;
and atarget vector Y;. We process X; with anetwork, to produce an output y;, which has
the same form as the target vector Y.

The parameters of the network w are modified to optimise the match between outputs
and targets, typicaly by minimising the total squared error

B= Y- Yo

It might seem more natural to use a percentage misclassification error measure in classi-
fication problems, but the total squared error has helpful smoothness and differentiability
properties. Although the total squared error was used for training in the StatLog trials,
percentage misclassification in the trained networks was used for evaluation.

6.2.1 Perceptrons and Multi Layer Perceptrons
The activation of the McCulloch-Pitts neuron has been generalised to the form

y;i = fj (Z wjiXi) (6.2)

where the activation function, f; can be any non-linear function. The nodes have been
divided into aninput layer I and an output layer O. Thethreshold level, or bias of Equation
(6.1) has been included in the sum, with the assumption of an extra component in the vector
X whosevalue isfixed at 1. Rosenblatt studied the capabilities of groups of neuronsin a
single layer, and hence all acting on the same input vectors; this structure was termed the
Perceptron (Rosenblatt, 1958), and Rosenblatt proposed the Perceptron Learning Rule for
learning suitable weights for classification problems (Rosenblatt, 1962). When f isahard
threshold function (i.e., discontinuously jumps from a lower to an upper limiting value),
Equation (6.2) defines anon-linear function across ahyperplanein the attribute space; with
athreshold activation function the neuron output is ssmply 1 on one side of the hyperplane
and O on the other. When combined in a perceptron structure, neurons can segment the
attribute spaceinto regions, and thisformsthe basis of the capability of perceptron networks
to perform classification.

Minsky and Papert pointed out, however, that many real world problems do not fall
into this ssimple framework, citing the exclusive-or problem as the simplest example. Here
it is necessary to isolate two convex regions, joining them together in asingle class. They
showed that while this was not possible with a perceptron network, it can be done with
atwo layer perceptron structure (Minsky & Papert, 1969). This formed the Multi Layer
Perceptron (MLP) which is widely in use today, although the Perceptron Learning Rule
(also called the Delta Rule) could not be generalised to find weights for this structure.

A learning rule was proposed in 1985 which allowsthe multi layer perceptron to learn.
This Generalised Delta Rule (Section 6.2.2) defines a notion of back-propagation of error
derivativesthrough the network (Werbos, 1974; Hinton et al., 1985 and 1986), and enables
alarge class of modelswith different connection structures, or architectures to be trained.
These publications initiated the recent academic interest in neural networks, and the field
subsequently came to the attention of industrial users.
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Fig. 6.2: MLP Structure.
6.2.2 Multi Layer Perceptron structure and functionality

Figure 6.2 shows the structure of a standard two-layer perceptron. The inputs form the
input nodes of the network; the outputs are taken from the output nodes. The middlelayer
of nodes, visibleto neither theinputs nor the outputs, istermed the hidden layer, and unlike
theinput and output layers, itssizeis not fixed. The hidden layer is generally used to make
abottleneck, forcing the network to make asimple model of the system generating the data,
with the ability to generalise to previously unseen patterns.

The operation of this network is specified by

y o= (ngf”:cj)

i

v = f@ (Z wﬁfmyﬁm) (6.3)
J
This specifies how input pattern vector z is mapped into output pattern vector 4(°), viathe
hidden pattern vector y(), in amanner parameterised by the two layers of weights w (¥ 1)
and w(TH) The univariate functions f(*) aretypically each set to
1
f(z) = l1+e2
which varies smoothly from 0 at —oo to 1 at oo, asathreshold function would do abruptly.
If the number of hidden layer nodes is less than the number of degrees of freedom
inherent in the training data, the activations of the hidden nodes tend to form an orthogonal
set of variables, either linear or non-linear combinations of the attribute variables, which
span as large a subspace of the problem as possible. With a little extra constraint on

(6.4)
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the network, these internal variables form a linear or non-linear principal component
representation of the attribute space. If the data has noise added that is not an inherent
part of the generating system, then the principal component network acts as a filter of the
lower-variance noise signal, provided the signal to noise ratio of the data is sufficiently
high. This property gives MLPs the ahility to generalise to previously unseen patterns, by
modelling only the important underlying structure of the generating system. The hidden
nodes can be regarded as detectors of abstract features of the attribute space.

Universal Approximators and Universal Computers
In the Multilayer Perceptron (MLP) such as the two-layer version in Equation (6.3), the
output-layer node values y are functions of the input-layer node values X (and the weights
w). It can beshown (Funahashi, 1989) that thetwo-layer ML P can approximatean arbitrary
continuous mapping arbitrarily closely if thereis no limit to the number of hidden nodes.
In this sense the MLP is a universal function approximator. This theorem does not imply
that more complex MLP architectures are pointless; it can be more efficient (in terms of
the number of nodes and weights required) to use different numbers of layersfor different
problems. Unfortunately there is a shortage of rigorous principles on which to base a
choice of architecture, but many heuristic principles have been invented and explored.
Prominent among these are symmetry principles (Lang et al., 1990; Le Cun et al., 1989)
and constructive algorithms (Wynne-Jones, 1991).

The MLP is afeedforward network, meaning that the output vector y is a function of
the input vector X and some parameters w; we can say

y = F(x;w) (6.5)
for some vector function F givenin detail by (6.3) in the 2-layer case. It isalso possibleto

define arecurrent network by feeding the outputs back to the inputs. The general form of
arecurrent perceptronis

v(t+1)=f (E wz’jyj(t)) )
J
which could be written
y(t+1)=F(y(t);w)
Thisis a discrete-time model; continuous-time models governed by a differential equation
of similar structure are aso studied.

Recurrent networksare universal computersin the sensethat given an infinite number of
nodes, they can emulate any cal culation which can be done on a Universal Turing machine.
(The infinite number of nodes is needed to simulate the infinite Turing tape.) This result
is easily proved for hard-threshold recurrent perceptrons by sketching a 1-node network
which performs not-AND and another which functions as a FLIP-FLOPR. These elements
are dl that are required to build a computer.

This chapter focuses on feedforward neural network models because they are simpler
to use, better understood, and closely connected with statistical classification methods.
However recurrent networksattract agreat deal of researchinterest becauseof their potential

to serve as a vehicle for bringing statistical methodsto bear on algorithm design (Rohwer
19914, 1991b, 1992; Rohwer et al., 1992; Shastri & Ajjanagadde 1993) .
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Training MLPs by nonlinear regression

In neural network parlance, training isthe processof fitting network parameters(itsweights)
to given data. The training data consists of a set of examples of corresponding inputs and
desired outputs, or “targets’. Let thei'™ example be given by input X;; for input dimension
J and target Y;; for target dimension j. Usually aleast-squares fit is obtained by finding
the parameters which minimise the error measure

=3 EZ (%3s — Y5) 6.6)

where y;; arethe output values obtained by substituting the inputs X;; for z; in (6.3). If
thefit is perfect, £ = 0; otherwise E > 0.

Probabilistic interpretation of MLP outputs

If thereisaone-to-many relationship betweentheinputsand targetsin thetraining data, then
itisnot possiblefor any mapping of theform (6.5) to perform perfectly. Itisstraightforward
to show (Bourlard & Wellekens, 1990) that if a probability density P(Y|X) describes the
data, then the minimum of (6.6) is attained by the map taking X to the average target

/ dYP(Y|X)Y (6.7)

Any given network might or not be able to approximate this mapping well, but when
trained as well as possibleit will form its best possible approximation to this mean. Many
commonly-used error measures in addition to (6.6) share this property (Hampshire &
Pearlmuter, 1990).

Usually classification problems are represented using one-out-of-N output coding. One
output node is allocated for each class, and the target vector Y,; for example i isal 0's
except for a1 on the node indicating the correct class. In this case, the value computed
by the 5 target node can be directly interpreted as the probability that the input pattern
belongs to class ;. Collectively the outputs express P(Y|X). This not only provides
helpful insight, but also provides a principle with which neural network models can be
combined with other probabilistic models (Bourlard & Wellekens, 1990) .

The probabilistic interpretation of the the output nodes|eads to a natural error measure
for classification problems. Given that the value y;; output by the jth target node given the
ith training input X;, is P(Y;; = 1), s01 — y;; is P(Yj; = 0), the probability of the entire
collection of training outputsY is

H v (L—yia) 6.8)
Thisisthe e<ponent| al of the cross-entropy,
E= Z Z (Yj:logyjs + (1 — Yj3) log(1 — y;s)) (6.9)

Therefore the cross-entropy can be used as an error measure instead of a sum of squares
(6.6). It happens that its minimum also lies at the average target (6.7), so the network
outputs can till beinterpreted probabilistically, and furthermore the minimisation of cross-
entropy is equivalent to maximisation of the likelihood of the training datain classification
problems.?

2The cross-entropy (6.9) hasthisinterpretation when an input can simultaneously be amember of any number
of classes, and membership of one class provides no information about membership of another. If an input can
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The probabilisticinterpretation of ML P outputsin classification problems must be made
with some caution. It only appliesif the network is trained to its minimum error, and then
only if thetraining data accurately represents the underlying probability density P(Y|X).
The latter condition is problematic if X belongs to a continuous space or a large discrete
set, because technically a large or infinite amount of data is required. This problem is
intimately related to the overtraining and generalisation issues discussed bel ow.

For the theoretical reasons given here, the cross-entropy is the most appropriate error
measure for use in classification problems, although practical experience suggestsit makes
little difference. The sum of squareswas used in the StatLog neural network trials.
Minimisation methods
Neural network models are trained by adjusting their weight matrix parameters w so as
to minimise an error measure such as (6.6). In the simplest cases the network outputs are
linear in the weights, making (6.6) quadratic. Then the minimal error can be found by
solving a linear system of equations. This special case is discussed in Section 6.2.3 in
the context of Radial Basis Function networks, which have this property. In the generic,
nonlinear case the minimisation is accomplished using avariant of Gradient Descent. This
produces alocal minimum, aw from which any infinitesimal change increases E, but not
necessarily the global minimum of E(w).

First order gradient based methods
The gradient VE(w) of E(w) isthe vector field of derivatives of E:
dE(w) dE(w)

VE(w) = ( duy | dw, )
(afield because the vector depends on w) A linear approximation to E(w) in the infinites-
imal vicinity of an arbitrary weight matrix w° is given by

E(w) = E(w°) + VE(w®) - (w — w?) (6.10)
Clearly then, at any point w of the parameter space (weight space) of the network, the
vector VE points in the direction of fastest increase of E; i.e, of al the infinitesimal
changes éw (of a given magnitude) which one could make to w, a change in the direction
of VE increases E the most. Consequently an adjustment of w in the direction of —VE
provides the maximum possible decreasein E. The basic strategy in gradient descent isto
compute the gradient and adjust the weightsin the opposite direction.

The problem with this method is that the theorem on maximal descent only applies
to infinitesimal adjustments. The gradient changes as well as the error, so the optimal
direction for (infinitesimal) descent changes when w is adjusted. The Pure Gradient
Descent algorithm requires a step size parameter n, chosen small enough for nVE to be
effectively infinitesimal so far as obtaining descent is concerned, but otherwise as large as
possible, in the interests of speed. The weights are repeatedly adjusted by

w —w —nVE(w) (6.11)
until the error E failsto descend.

In practice, trial and error is used to look for the largest step size n which will work.
With large step sizes, the gradient will tend to change dramatically with each step. A

belong to one and only one class, then the simple entropy, obtained by dropping the terms involving (1 — y),
should be used.



Sec. 6.2] Supervised networksfor classification 91

popular heuristic isto use amoving average of the gradient vector in order find asystematic
tendency. Thisisaccomplished by addingamomentumtermto (6.11), involving aparameter
all:

w —w —nVE(w)+ adwgg

Here 6w 4 refers to the most recent weight change.

These methodsoffer the benefit of simplicity, but their performance depends sensitively
on the parameters n and « (Toolenaere, 1990). Different values seem to be appropriate
for different problems, and for different stages of training in one problem. This circum-
stance has given rise to a plethora of heuristics for adaptive variable step size algorithms
(Toolenaere, 1990; Silva& Almeida, 1990; Jacobs, 1988) .

Second-Order methods

The underlying difficulty in first order gradient based methods is that the linear approxi-
mation (6.10) ignoresthe curvature of E(w). This can be redressed by extending (6.10) to
the quadratic approximation,

E(w) = E(wo) + VE'(WO) -odw + 6WVVE'(WO)6W

where VV E is the matrix with components jjﬁu -, called the inverse Hessian (or the

Hessian, depending on conventions), and éw = w — w°. The change 6w = —1HVE,
where H~! = VVE, brings w to a stationary point of this quadratic form. This may be a
minimum, maximum, or saddle point. If itisaminimum, then astep in that direction seems
agood idea; if not, then a positive or negative step (whichever has a negative projection
on the gradient) in the conjugate gradient direction, HV E, is at least not unreasonable.
Therefore alarge class of algorithms has been developed involving the conjugate gradient.

Most of these algorithms require explicit computation or estimation of the Hessian H .
The number of components of H isroughly half the square of the number of components
of w, so for large networks involving many weights, such agorithms lead to impractical
computer memory regquirements. But onealgorithm, generally called the conjugategradient
algorithm, or the memoryless conjugate gradient algorithm, does not. This algorithm
maintains an estimate of the conjugate direction without directly representing H .

The conjugate gradient algorithm uses a sequence of linesearches, one-dimensional
searchesfor theminimum of E(w), starting from the most recent estimate of the minimum
and searching for the minimum in the direction of the current estimate of the conjugate
gradient. Linesearch algorithms are comparatively easy because the issue of direction
choice reduces to a binary choice. But because the linesearch appears in the inner loop
of the conjugate gradient algorithm, efficiency isimportant. Considerable effort therefore
goes into it, to the extent that the linesearch is typically the most complicated module of
a conjugate gradient implementation. Numerical round-off problems are another design
consideration in linesearch implementations, because the conjugate gradient is often nearly
orthogonal to the gradient, making the variation of E(w) aong the conjugate gradient
especialy small.

The update rule for the conjugate gradient direction s is

s «— —VE + asg|g (6.12)

where
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oo (VE-VEyyqg) -VE 6.13)
VEqq - VEq|q

(Thisisthe Polak-Ribiere variant; there are others.) Somewhat intricate proofs exist which
show that if E were purely quadratic in w, s were initialised to the gradient, and the
linesearches were performed exactly, then s would converge on the conjugate gradient
and E would converge on its minimum after as many iterations of (6.12) as there are
components of w. In practice good performance is often obtained on much more general
functions using very imprecise linesearches. It is necessary to augment (6.13) with arule
to reset s to —V E whenever s becomes too nearly orthogonal to the gradient for progress
to continue.

An implementation of the conjugate gradient algorithm will have several parameters
controlling the details of the linesearch, and others which define exactly when to reset s
to —V E. But unlike the step size and momentum parameters of the simpler methods, the
performance of the conjugate gradient method is relatively insensitive to its parameters if
they are set within reasonable ranges. All algorithms are sensitive to process for selecting
initial weights, and many other factors which remain to be carefully isolated.

Gradient calculationsin MLPs

It remains to discuss the computation of the gradient VE(w) in the case of an MLP
neural network model with an error measure such as (6.6). The calculation is conveniently
organised as a back propagation of error (Rumelhart et al., 1986; Rohwer & Renals, 1988).
For anetwork with asinglelayer of hidden nodes, thiscal culation proceeds by propagating
node output valuesy forward from theinput to output layers for each training example, and
then propagating quantities é related to the output errors backwards through a linearised
version of the network. Products of és and ys then give the gradient. In the case of a
network with an input layer (I), a single hidden layer (H), and an output or target layer
(T"), the calculation is:

y o= (Z@f”%)

j

v = f@ (EwwH) (H))

T

658 = (wi— Vi)

() _ (T) (D), (TH)

b7 = 25 Wi
dE/duw]™) = Eé(T)f'(T) ) (6.14)
dE/duw'f") = Eéj(f)f;EH)in (6.15)

The index 7 is summed over training examples, while the js and ks refer to nodes, and

() _ @
= g ‘ac:f‘l (v52)
This network architecture was used in the work reported in this book.
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linear output weights

non-linear receptive fields in attribute space
Fig. 6.3: A Radia Basis Function Network.

Onlinevs. Batch
Note that both the error E (6.6) and the gradient V E (6.14, 6.15) are a sum over examples.
These could be estimated by randomly selecting a subset of examples for inclusion in the
sum. In the extreme, a single example might be used for each gradient estimate. Thisis
a Sochastic Gradient method. If asimilar strategy is used without random selection, but
with the data taken in the order it comes, the method is an Online one. If a sum over all
training datais performed for each gradient calculation, then the methodisa Batch variety.
Online and Stochastic Gradient methods offer a considerable speed advantage if the
approximation is serviceable. For problems with large amounts of training data they are
highly favoured. However, these approximations cannot be used directly in the conjugate
gradient method, because it is built on procedures and theorems which assumethat E isa
given function of w which can be evaluated precisely so that meaningful comparisons can
be made at nearby arguments. Therefore the stochastic gradient and Online methods tend
to be used with simple step-size and momentum methods. There is some work on finding
a compromise method (Mgller, 1993).

6.2.3 Radial Basis Function networks

Theradial basi sfunction network consistsof alayer of units performinglinear or non-linear
functions of the attributes, followed by a layer of weighted connections to nodes whose
outputs have the same form as the target vectors. It has a structure like an MLP with one
hidden layer, except that each node of the the hidden layer computesan arbitrary function of
theinputs (with Gaussians being the most popular), and the transfer function of each output
node is the trivial identity function. Instead of “synaptic strengths’ the hidden layer has
parametersappropriate for whatever functions arebeing used; for example, Gaussian widths
and positions. This network offers a number of advantages over the multi layer perceptron
under certain conditions, although the two models are computationally equivalent.

These advantages include a linear training rule once the locations in attribute space
of the non-linear functions have been determined, and an underlying model involving
localised functionsin the attribute space, rather than the long-range functions occurring in
perceptron-based models. The linear learning rule avoids problems associated with local
minima; in particular it provides enhanced ability to make statments about the accuracy of
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the probabilistic interpretation of the outputsin Section 6.2.2.

Figure 6.3 shows the structure of aradial basis function; the non-linearities comprise a
position in attribute space at which thefunctionislocated (often referred to asthefunction’s
centre), and a non-linear function of the distance of an input point from that centre, which
canbeany function at all. Common choicesinclude agaussian responsefunction, exp(—z?2)
and inverse multiquadrics ([z2 + ¢?]~ %), aswell as non-local functions such as thin plate
splines (22 log z) and multiquadrics ([z2 + ¢?] %). Although it seems counter-intuitiveto try
and produce an interpolating function using non-localised functions, they are often found
to have better interpolating properties in the region populated by the training data.

The Radial Basis Function network approach involvesthe expansion or pre-processing
of input vectorsinto ahigh-dimensional space. This attemptsto exploit atheorem of Cover
(2965) which impliesthat a classification problem cast in a high-dimensional spaceismore
likely to be linearly separable than would be the case in alow-dimensional space.

Training: choosing the centres and non-linearities

A number of methods can be used for choosing the centres for a radia basis function
network. It isimportant that the distribution of centres in the attribute space should be
similar to, or at |east cover the sameregion asthetraining data. 1t isassumedthat thetraining
data is representative of the problem, otherwise good performance cannot be expected on
future unseen patterns.

A first order technique for choosing centresis to take points on a square grid covering
theregion of attribute space covered by the training data. Alternatively, better performance
might be expected if the centres were sampled at random from the training dataitself, using
some or al samples, since the more densely populated regions of the attribute space would
have a higher resolution model than sparser regions. In this case, it is important to ensure
that at |east one samplefrom each classis used as a prototype centre. In the experimentsin
this book, the number of samples required from each class was cal cul ated before sampling,
thereby ensuring this condition was met.

When centre positions are chosen for Radial Basis Function networks with localised
non-linear functions such as Gaussian receptive fields, it isimportant to calculate suitable
variances, or spreads for the functions. This ensures that large regions of space do not
occur between centres, where no centres respond to patterns, and conversaly, that no pair
of centres respond nearly identically to all patterns. This problemis particularly prevalent
in high dimensional attribute spaces because volume depends sensitively on radius. For
a quantitative discussion of this point, see Prager & Fallside (1989). In the experiments
reported in this book, the standard deviations of the Gaussian functionswere set separately
for each coordinate directionto thedistanceto the nearest centrein that direction, multiplied
by an arbitrary scaling parameter (set to 1.0).

Other methodsinclude using a‘ principled’ clustering techniqueto position the centres,
such as a Gaussian Mixture model or a Kohonen network. These models are discussed in
Section 6.3.

Training: optimising the weights

Asmentioned in Section 6.2.2, radial basisfunction networksaretrained simply by solving
alinear system. The same problem arisesin ordinary linear regression, the only difference
being that the input to the linear system isthe output of the hidden layer of the network, not
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the attribute variablesthemselves. There are afew subtleties however, which are discussed
here. Let y,(f ) bethe output of the k™ radial basis function on the :™ example. The output
of each target node j is computed using the weights w;;, as

Yiji = E wj ky(H) (616)

Let the desired output for example < on target node j be Y;;. The error measure (6.6)
written out in full isthen

2
Z (Z w]kykZ ]Z) (6.17)

jt
which has |ts minimum where the derivative

dwrs Z Z wryi Y — Z Yoiy' ) (6.18)
vanishes. Let R be the correl ation matrix of the radial basis function outputs,
Rj), = Zy,ﬁf”y](f”. (6.19)

The weight matrix w* which minimises E lies where the gradient vanishes:
Wi = Z E Yt R7Y), (6.20)

Thus, the problem is solved by inverting the square H x H matrix R, where H is the
number of radial basis functions.

The matrix inversion can be accomplished by standard methods such as LU decompo-
sition (Renals & Rohwer, 1989) and (Presset. al., 1988) if R isneither singular nor nearly
so. Thisistypically the case, but things can go wrong. If two radial basis function centres
are very close together a singular matrix will result, and a singular matrix is guaranteed
if the number of training samplesis not at least as great as H. Thereis no practical way
to ensure a non-singular correlation matrix. Consequently the safest course of action isto
use adlightly more computationally expensive singular value decomposition method. Such
methods provide an approximate inverse by diagonalising the matrix, inverting only the
eigenvalues which exceed zero by a parameter-specified margin, and transforming back to
the original coordinates. This provides an optimal minimum-norm approximation to the
inversein the least-mean-squares sense.

Another approach to the entire problem is possible (Broomhead & Lowe, 1988) . Let
n be the number of training examples. Instead of solving the H x H linear system given
by the derivatives of E (6.18), this method focuses on the linear system embedded in the
error formula (6. 17) itself'

E wirt = vy, (6.21)

Unlessn = H, thisisarectangular system. In general an exact solution does not exist, but
the optimal solution in the least-squares sense is given by the pseudo-inverse (Kohonen,
1989) y ()™ of y(H), the matrix with elements y+":

w =Yyt (6.22)
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Thisformulais applied directly. Theidentity Y+ = Y(YY)*, where~ denotesthe matrix
transpose, can be applied to (6.22) to show that the pseudo-inverse method gives the same
result as (6.20):

+
w* = Y3 (y<H)§<H>) (6.23)

The requirement to invert or pseudo-invert a matrix dependent on the entire dataset
makes this a batch method. However an online variant is possible, known as Kalman
Filtering (Scalero & Tepedelenlioglu, 1992). It is based on the somewhat remarkable fact
that an exact expression exists for updating the inverse correlation R~ L if another example
is added to the sum (6.19), which does not require recomputation of the inverse.

6.2.4 Improvingthe generalisation of Feed-Forward networks

Constructive algorithms and pruning

A number of techniqueshave emerged recently, which attempt to improve on the perceptron
and multilayer perceptron training algorithms by changing the architecture of the networks
as training proceeds. These techniques include pruning useless nodes or weights, and
constructive algorithms where extra nodes are added as required. The advantages include
smaller networks, faster training times on serial computers, and increased generalisation
ability, with a consequent immunity to noise. In addition, it is frequently much easier to
interpret what the trained network is doing. Aswas noted earlier, a minimalist network
usesits hidden layer to model as much of the problem as possible in the limited number of
degrees of freedom availableinitshidden layer. With such anetwork, one can then begin to
draw analogies with other pattern classifying techniques such as decision trees and expert
systems.

To make a network with good generalisation ability, we must determine a suitable
number of hidden nodes. If there are too few, the network may not learn at all, while too
many hidden nodes lead to over-learning of individual samples at the expense of forming
a near optimal model of the data distributions underlying the training data. In this case,
previously unseen patterns are labeled according to the nearest neighbour, rather than in
accordance with a good model of the problem. An easy to read introduction to the issues
invioved in over-training a network can be found in Geman (1992). Early constructive
algorithms such as Upstart (Frean, 1990a, 1990b) and the Tiling Algorithm (Mézard &
Nadal, 1989) built multi-layer feed-forward networks of perceptron units (Rosenblatt,
1958), which could be applied to problems involving binary input patterns. Convergence
of such agorithms is guaranteed if the data is linearly separable, and use of the Pocket
algorithm (Gallant, 1985) for training allows an approximate solution to be found for non
linearly-separable datasets. These networks do not usually include a stopping criterion to
halt the creation of new layers or nodes, so every sample in the training data is learned.
This has strong repercussionsif the training set isincomplete, has noise, or is derived from
a classification problem where the distributions overlap.

Later methods apply to more general problemsand are suitable for statistical classifica-
tion problems (Ash, 1989; Fahiman & Lebiére, 1990; Hanson, 1990; Refenes & Vithlani,
1991, and Wynne-Jones, 1992, 1993) . They often build a single hidden layer, and incorpo-
rate stopping criteriawhich alow them to converge to solutions with good generalisation
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ability for statistical problems. Cascade Correlation (Fahlman & Lebiére, 1990) is an
example of such a network algorithm, and is described bel ow.

Pruning has been carried out on networksin threeways. Thefirstisaheuristic approach
based on identifying which nodes or weights contribute little to the mapping. After these
have been removed, additional training leads to a better network than the original. An
alternative technique is to include terms in the error function, so that weights tend to zero
under certain circumstances. Zero weights can then be removed without degrading the
network performance. This approach is the basis of regularisation, discussed in more
detail below. Finally, if we define the sensitivity of the global network error to the removal
of aweight or node, we can remove the weights or nodes to which the global error is least
sensitive. The sensitivity measure does not interfere with training, and involves only a
small amount of extra computational effort. A full review of these techniques can be found
in Wynne-Jones (1991).

Cascade Correlation: A Constructive Feed-Forward network

Cascade Correlation isa paradigm for building afeed-forward network astraining proceeds
in a supervised mode (Fahlman & Lebiére, 1990) . Instead of adjusting the weightsin a
fixed architecture, it begins with a small network, and adds new hidden nodes one by one,
creating a multi-layer structure. Once a hidden node has been added to a network, its
input-side weights are frozen and it becomes a permanent feature-detector in the network,
available for output or for creating other, more complex feature detectors in later layers.
Cascade correlation can offer reduced training time, and it determinesthe size and topol ogy
of networks automatically.

Cascade correlation combinestwo ideas: first the cascade architecture, in which hidden
nodes are added one at atime, each using the outputs of all othersin addition to the input
nodes, and second the maximisation of the correlation between a new unit’soutput and the
residual classification error of the parent network. Each node added to the network may be
of any kind. Examplesinclude linear nodes which can be trained using linear algorithms,
threshold nodes such as single perceptrons where simple learning rules such as the Delta
rule or the Pocket Algorithm can be used, or non-linear nodes such as sigmoids or Gaussian
functions requiring Delta rules or more advanced algorithms such as Fahlman’s Quickprop
(Fahlman, 1988a, 1988b). Standard ML P sigmoids were used in the StatlLog trials.

At each stage in training, each node in a pool of candidate nodes is trained on the
residual error of the parent network. Of these nodes, the one whose output has the greatest
correlation with the error of the parent is added permanently to the network. The error
function minimised in this scheme is S, the sum over all output units of the magnitude of
the correlation (or, more precisely, the covariance) between V', the candidate unit’s value,
and E; ,, theresidual error observed at output unit o for example <. S is defined by:

S = Z Z(Vz —V) (B, — E,)

%

The quantities V and E, arethe values of V and E, averaged over all patterns.
In order to maximise S, the partial derivative of the error is calculated with respect to
each of the weights coming into the node, w;. Thus:
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Bw; ; oo(Bio — Eo)fiLjs (6.24)
where o, is the sign of the correlation between the candidate’s value and the output o, f;
isthe derivativefor pattern ¢ of the candidate unit’ s activation function withe respect to the
sum of itsinputs, and I; ; is the input the candidate unit receives for pattern <.

The partial derivativesare used to perform gradient ascent to maximise S. When S no
longer improvesin training for any of the candidate nodes, the best candidate is added to
the network, and the others are scrapped.

In benchmarks on a toy problem involving classification of data points forming two
interlocked spirals, cascade correlation is reported to be ten to one hundred times faster
than conventional back-propagation of error derivatives in a fixed architecture network.
Empirical tests on arange of real problems(Yang & Honavar, 1991) indicate a speedup of
oneto two orders of magnitude with minimal degradation of classification accuracy. These
results were only obtained after many experiments to determine suitable values for the
many parameters which need to be set in the cascade correlation implementation. Cascade
correlation can a so be implementedin computerswith limited precision (Fahlman, 1991b),
and in recurrent networks (Hoehfeld & Fahlman, 1991).

Bayesian regularisation

In recent years the formalism of Bayesian probability theory has been applied to the
treatment of feedforward neural network models as nonlinear regression problems. This
has brought about a greatly improved understanding of the generalisation problem, and
some new techniques to improve generalisation. None of these techniques were used in
the numerical experiments described in this book, but a short introduction to this subject is
provided here.

A reasonable scenario for a Bayesian treatment of feedforward neural networksis to
presumethat each target training data vector Y was produced by running the corresponding
input training vector X through some network and corrupting the output with noise from a
stationary source. The network involved is assumed to have been drawn from a probability
distribution P(w), which isto be estimated. The most probable w in this distribution can
be used as the optimal classifier, or a more sophisticated average over P(w) can be used.
(The latter technique is marginalisation (MacKay, 1992a).)

The notation used here for probability densitiesis somewhat cavalier. In discussions
involving several probability density functions, the notation should distinguish one density
function from another, and further notation should be used when such adensity isindicated
at a particular point; for example, Py can designate the density function over weights,
and Py (w) would designate this density at the particular point w, which confusingly and
unsignificantly hasthe same nameasthe label index of P. However, atempting opportunity
to choose names which introduce this confusion will arise in almost every instance that
a density function is mentioned, so we shall not only succumb to the temptation, but
furthermore adopt the common practice of writing P(w) when Py (w) is meant, in order
to be concise. Technically, thisis an appalling case of using a function argument name
(which isordinarily arbitrary) to designate the function.

The Bayesian analysisisbuilt on aprobabilistic interpretation of the error measure used
in training. Typically, asin Equations (6.6) or (6.9), it is additive over input-output pairs
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Y;i.e it can be expressed as

E(Y;,w) = E e(Yp,w) (6.25)
P

for some function e, where Y is al the training data, the set of input-output pairsin the
sum. Y iscomposed of all theinput data X, regarded as fixed, and all the target data 'Y,
regarded as a noi se-corrupted, w-dependent function of X, drawn from a distribution with
density function P(Y |w) (or technically P(Y|w, X). The Bayesian argument requiresthe
assumptionthat P(Y |w) isafunction of E aone. Thus, different choices of E correspond
to different probabilistic interpretations. Given this assumption, and the assumption that
training data samples are produced independently of each other,

the relationship between E(Y; w) and P(Y |w) can only have theform
P(Y|w) = ——e#E(YiW) (6.27)
Zy

for some parameter 5. Zy isthe normalisation term
Zy = / dye PE(Yiw) (6.28)

an integral over all possibletarget training data sets of the size under consideration.

If ein(6.25) isafunctiononly of y, —Y,, asis(6.6), then Zy turnsout to beindependent
of w, aresult which is useful later®. The only common form of e which does not have
thisformisthe cross-entropy (6.9). But thisis normally used in classification problems, in
which case (6.9) and (6.8) together justify the assumption that P(Y|w) depends only on
E(Y;w) andimply for (6.28) that 5 = 1 and Zy = 1, so Zy isstill independent of w.

Density (6.27) can also be derived from somewhat different assumptions using a
maximum-entropy argument (Bilbro & van den Bout, 1992). It plays a prominent role
in thermodynamics, and thermodynamics jargon has drifted into the neural networks liter-
ature partly in conseguence of the analogiesit underlies.

The probability of the weights given the data P(w|Y) is of greater interest than the
probability of the data given the weights P(Y|w) (the likelihood), but unfortunately the
additivity argument does not go through for this. Instead, Bayes' rule

_ P(Y|w)P°(w)

P(WIY) = =5

(6.29)

can be used to convert P(Y|w) from Equation (6.27), and aprior over theweights P%(w),
into the desired distribution. The probability of thedata P(Y') isgiven by thenormalisation
condition as

P(Y) = /de(Y|w)P°(w) (6.30)

3Thereis afurther technicality; the integral (6.28) over target data must be with respect to uniform measure,
which may not always be reasonable.
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Bayesian methods inevitably require aprior, P°(w) in this case. P°(w) must express the
notion that some weight matrices are more reasonable, a priori, than others. As discussed
above, thisis normally expressed through regularisation terms added to the error measure.
For example, the view that large weights are unreasonable might be expressed by adding a
“weight decay” term of theform aw - w to E(Y; w).

Typically, the regularisation error a E(w) is additive over the weights and an indepen-
dence assumption like (6.26) is reasonable, so given that the prior depends only on the
regularisation term, then it hasthe form

PO(W) — %e—aE(W)

where Z° is given by normalisation.
Assembling al the pieces, the posterior probability of the weights given the datais

e—ﬁE(Y;W)—aE(W)
P(w|Y) =

[ dwrePE(Yiw!)—aB(w) (631
provided that (6.28) does not depend on w. This ensures that the denominator of (6.31)
does not depend on w, so the usual training process of minimising E (Y; w) + %E’(w)
finds the maximum of P(w|Y).

The Bayesian method helps with one of the most troublesome steps in the regularisa-
tion approach to obtaining good generalisation, deciding the values of the regularisation
parameters. Theratio «/3 expresses the relative importance of smoothing and data-fitting,
which deserves to be decided in a principled manner. The Bayesian Evidence formalism
provides a principle and an implementation. It can be computationally demanding if used
precisely, but there are practicable approximations.

The Evidence formalism simply assumes a prior distribution over the regularisation
parameters, and sharpensit using Bayes' rule:

P(Y|a, 5)P%(a, )
P(Y)

If auniform prior P°(«, 3) is assumed, then the most likely regularisation parameters
are those which maximise the evidence P(Y|«, 5), which is given by (6.30), the denom-
inator of (6.29). Note with reference to (6.29) that the goal of maximising the evidence
opposes the goal of maximising P(w|Y); the regularisation parameters « and 3, and the
weightsw are optimised for opposing purposes. Thisexpressesthe Bayesian quantification
of the compromise between data fitting and smoothing.

This method of setting regularisation parameters does not provide a guarantee against
overfitting (Wolpert, 1992), but it helps. In setting the regularisation parameters by max-
imising (6.30) P(Y), one attemptsto find aprior P°(w) under which “usually” networks
w fit the data 'Y well. This objectiveis not diametrically opposed to the later objective of
selecting the best-fitting w. Indeed, the distribution P(w) which maximises the evidence
is one which is concentrated on asingle overfit w. Thisis prevented only if the the distri-
bution of weight matrices parameterised by the regularisation parameters does not include
such highly concentrated distributions. Therefore it remains an art to select reasonable
functional formsfor the regularisers, but once selected, the determination of the parameters

P, BY) =

(6.32)
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themselves is a matter of calculation. The art of selecting regularisation functions has
become an interesting research area (Nowlan & Hinton, 1992).

The calculation of (6.32) involves an integration which is generally non-trivial, but
which can be done easily in a Gaussian approximation. Typically thisisgood enough. This
requires computation of the second derivatives of the error measure, which is prohibitive
for large problems, but in this case a further approximation is possible and often adequate
(MacKay, 1992b).

6.3 UNSUPERVISED LEARNING

Interest in Unsupervised Learning has increased greatly in recent years. It offersthe possi-
bility of exploring the structure of data without guidance in the form of class information,
and can often reveal features not previously expected or known about. These might in-
clude the division of data that was previously thought to be a single uniform cluster, into
anumber of smaller groups, each with separate identifiable properties. The clusters found
offer amodel of the datain terms of cluster centres, sizes and shapes, which can often be
described using less information, and in fewer parameters than were required to store the
entire training data set. This has obvious advantages for storing, coding, and transmitting
stochastically generated data; if its distribution in the attribute space is known, equivalent
data can be generated from the model when required.

While general, unsupervised learning methods such as Boltzmann machines are com-
putationally expensive, iterative clustering algorithms such as Kohonen networks, K-means
clustering and Gaussian Mixture models offer the same modelling power with greetly re-
duced training time. Indeed, while class labels are not used to constrain the structure
learned by the models, freedom from this constraint coupled with careful initialisation of
the models using any prior information available about the data, can yield very quick and
effective models. These models, known collectively as \ector Quantizers, can be used as
the non-linear part of supervised learning models. In this case alinear part is added and
trained later to implement the mapping from activation in different parts of the model, to
probabl e classes of event generating the data.

6.3.1 TheK-meansclusteringalgorithm

The principleof clustering requiresarepresentation of a set of datato be found which offers
amodel of the distribution of samplesin the attribute space. The K-means agorithm (for
example, Krishnaiah & Kanal, 1982) achieves this quickly and efficiently as a model with
a fixed number of cluster centres, determined by the user in advance. The cluster centres
areinitially chosen from the data, and each centre forms the code vector for the patch of
theinput space in which al pointsare closer to that centre than to any other. Thisdivision
of the space into patches is known as a Voronoi tessellation. Since the initial allocation of
centres may not form a good model of the probability distribution function (PDF) of the
input space, there follows a series of iterations where each cluster centre is moved to the
mean position of all the training patternsin its tessellation region.

A generalised variant of the K-means algorithm is the Gaussian Mixture Model, or
Adaptive K-means. In this scheme, Voronoi tessellations are replaced with soft transitions
from one centre's receptive field to another’s. Thisis achieved by assigning a variance to
each centre, thereby defining a Gaussian kernel at each centre. These kernels are mixed
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Fig. 6.4: K-Means clustering: within each patch the centre is moved to the mean position of the
patterns.

together by aset of mixingweightsto approximatethe PDF of theinput data, and an efficient
algorithm exists to calculate iteratively a set of mixing weights, centres, and variances for
the centres (Dubes & Jain, 1976, and Wu & Chan, 1991). While the number of centresfor
these algorithmsisfixed in advancein more popular implementations, sometechniques are
appearing which allow new centres to be added as training proceeds. (Wynne-Jones, 1992
and 1993)

6.3.2 Kohonen networksand Learning Vector Quantizers

Kohonen's network algorithm (Kohonen, 1984) also provides a Voronoi tessellation of the
input space into patcheswith corresponding code vectors. It has the additional feature that
the centres are arranged in alow dimensional structure (usually a string, or a square grid),
such that nearby pointsin thetopological structure (the string or grid) map to nearby points
in the attribute space. Structures of thiskind are thought to occur in nature, for examplein
the mapping from the ear to the auditory cortex, and the retinotopic map from the retinato
the visual cortex or optic tectum.

In training, the winning node of the network, which is the nearest node in the input
space to a given training pattern, moves towards that training pattern, while dragging with
its neighbouring nodes in the network topology. Thisleadsto a smooth distribution of the
network topology in anon-linear subspace of the training data.

Vector Quantizers that conserve topographic relations between centres are also partic-
ularly useful in communications, where noise added to the coded vectors may corrupt the
representation a little; the topographic mapping ensuresthat asmall change in code vector
is decoded as a small change in attribute space, and hence a small change at the output.
These models have been studied extensively, and recently unified under the framework of
Bayes theory (Luttrell, 1990, 1993).

Although it is fundamentally an unsupervised learning a gorithm, The Learning Vector
Quantizer can be used as a supervised vector quantizer, where network nodes have class
labels associated with them. The Kohonen Learning Rule is used when the winning node
represents the same class as a new training pattern, while a difference in class between
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the winning node and a training pattern causes the node to move away from the training
pattern by the same distance. Learning Vector Quantizers are reported to give excellent
performance in studies on statistical and speech data (Kohonen et al., 1988).

6.3.3 RAMnets

One of the oldest practical neurally-inspired classification algorithms is still one of the
best. It isthe n-tuple recognition method introduced by Bledsoe & Browning (1959) and
Bledsoe (1961) , which later formed the basis of a commercia product known as Wisard
(Aleksander et al., 1984) . The algorithm is simple. The patterns to be classified are bit
stringsof agivenlength. Several (let ussay N) setsof n bitlocations are selected randomly.
These are the n-tuples. Therestriction of a pattern to an n-tuple can be regarded as an n-bit
number which constitutes a ‘feature’ of the pattern. A pattern is classified as belonging to
the classfor which it has the most featuresin common with at least 1 pattern in the training
data
To be precise, the class assigned to unclassified pattern u is

N

ar

gmax (Z e (E 6al(u),m(v))) (6.33)
=1 vEC,

where C. is the set of training patterns in class ¢, ©(z) = 0 for © < 0, ©(z) = 1 for

© > 0, §; ; isthe Kronecker delta (6; ; = 1 if < = j and O otherwise.) and o;(u) is the 4t

feature of pattern u:

n—1
a(u) =Dty (H2 (6.34)
§=0

Here u; isthesth bit of « and 7:(3) isthejth bit of the ;1 n-tuple.
With C classes to distinguish, the system can be implemented as a set of NC RAMS,
in which the memory content m.;,, at address « of the i RAM allocated to class ¢ is

Mg = O (E 604,0(,’(1})) (635)
vEC,

Thus m.;,, is set if any pattern of C. has feature o and unset otherwise. Recognition is

accomplished by tallying the set bitsin the RAMS of each class at the addresses given by

the features of the unclassified pattern.

RAMPnets are impressive in that they can be trained faster than MLPs or radial basis
function networks by orders of magnitude, and often provide comparable results. Exper-
imental comparisons between RAMnets and other methods can be found in Rohwer &
Cressy (1989) .

6.4 DIPOL92

This is something of a hybrid algorithm, which has much in common with both logistic
discrimination and some of the nonparametric statistical methods. However, for historical
reasonsit isincluded here.
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6.4.1 Introduction

DIPOL92 isalearning algorithm which constructs an optimised piecewise linear classifier
by atwo step procedure. In thefirst step the initial positions of the discriminating hyper-
planes are determined by pairwise linear regression. To optimise these positionsin relation
to the misclassified patterns an error criterion function is defined. This function is then
minimised by a gradient descent procedure for each hyperplane separately. As an option
in the case of non—convex classes (e.g. if aclass has amultimodal probability distribution)
a clustering procedure decomposing the classes into appropriate subclasses can be applied.
(In this case DIPOL 92 isreally athree step procedure.)

Seen from amore general point of view DIPOL92 is a combination of a statistical part
(regression) with a learning procedure typical for artificial neural nets. Compared with
most neural net algorithms an advantage of DIPOL92 is the possibility to determine the
number and initial positionsof the discriminating hyperplanes(correspondingto “ neurons”)
apriori, i.e beforelearning starts. Using the clustering procedure thisis true even in the
case that a class has several distinct subclasses. There are many relations and similarities
between statistical and neural net algorithms but a systematic study of these relations is
still lacking.

Another distinguishing feature of DIPOL92 is the introduction of Boolean variables
(signsof the normals of the discriminating hyperplanes) for the description of classregions
on asymbolic level and using them in the decision procedure. Thisway additional layers
of “hidden units’ can be avoided.

DIPOL 92 has some similarity with the MADALINE-system (Widrow, 1962) which is
also apiecewiselinear classification procedure. But instead of applying amajority function
for classdecision onthesymboliclevel (asinthecase of MADALINE) DIPOL92 usesmore
general Boolean descriptions of class and subclass segments, respectively. This extends
the variety of classification problems which can be handled considerably.

6.4.2 Pairwiselinear regression

Supposethat X C ®? istheset of dataz = (=1, ..., 2,). Then linear regression is used
to discriminate between two classes A; and A, by defining the dependent variable b as
follows:

if zedA;, then b= +1

if zeds, then b=-1
Let W bethelinear regressionfunction W : X — RwithW(z) = wotwiz1+. . .+ wpzp.
Then a pattern z is correctly classified if

W(z) >0 for =zed;

W(z) <0 for =zed,
For each pair of classes a discriminating regression function can be cal culated.

6.4.3 Learning procedure

The following criterion function is defined. For all misclassified patterns the squared
distances from the corresponding decision hyperplane multiplied by the costs for these
misclassifications are summed up. Suppose that W = 0 defines the decision hyperplane
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between the classes 4; and A,, respectively. Then let m; be the set of all misclassified
patternsof class 4,1, i.e, zeA; and W (z) < 0, let m; bethe set of all misclassified patterns
of class A, i.e, zeA; and W(z) > 0, and let ¢(4, j) be the costs of the misclassification
of the class A4; into the class A;. We then minimise:

FW)=c(1,2) 3 Wl | o) 3 W(“’;

ll]1? llll

Temy

This means that costs are included explicitly in the learning procedure which consists of
minimizing the criterion function with respect to wg, wy, . . ., w,, by a gradient descent
algorithm for each decision surface successively.

Temo

6.4.4 Clustering of classes

To handle also problemswith non—convex (especially non simply—connected class regions),
one can apply a clustering procedure before the linear regression iscarried out. For solving
the clustering problem a minimum-—sguared—error algorithm is used. Suppose that a class
Ay has been partitioned into g, clusters Ay ;) (i = 1, ..., gz) With k; elements and mean
Vectors s; given by

87_':% Z 4

? T EAk(v.)

Then the criterion function
9%

7= el

1=1 zeAw(s)
is calculated. Patterns are moved from one cluster to another if such a move will improve
the criterion function J. The mean vectors and the criterion function are updated after
each pattern move. Like hill—climbing algorithmsin general, these approaches guarantee
local but not global optimisation. Different initial partitions and sequences of the training
patterns can lead to different solutions. In the case of clustering the number of two—class
problems increases correspondingly.

We note that by the combination of the clustering algorithm with the regression tech-
nigue the number and initial positions of discriminating hyperplanes are fixed a priori (i.e.
beforelearning) in areasonable manner, even in the case that some classes have multimodal
distributions (i.e consist of several subclasses). Thus awell known bottleneck of artificial
neural nets can at least be partly avoided.

6.4.5 Description of the classification procedure

If the discriminating hyperplanes were calculated then any patternz = (z1, ..., z,) (con-
tained in the training set or not) can be classified, i.e, the class predicted. For the pairwise
discrimination of the ¢ classes ¢* = ¢(q — 1)/2 hyperplanes W* are calculated (in the
case of clustering the number ¢ ischanged into g + n.s:). Thefollowing ¢*—dimensional
vector V;, isformed for each class 4y, : if thefunction W* discriminatesthe classes 4; and
Aj, then thei-th component V4, ; isequal to 1, if A = A, isequal to-1,if A = Ay, andis
equal to 0in al other cases. On the basis of the discriminant functions a vector function
sw is defined for each pattern z
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sw:X —{1,0,—1}¢
with

sw(z); = sign(W'(z))
For each class A;, the function

Sy X -G
(G isthe set of integers) is defined by

e
Si(z) = E Vi,i x sw(z);
i=1

A pattern z is uniquely classified by the discriminating hyperplanes W* (i = 1,...,¢*)
into the class 4y, if

Sk(l?) =q— 17
i.e, with respect to the ¢ — 1 hyperplanes, which discriminate the class A; from the other
g — 1 classes, the pattern z is placed in the halfspace, belonging to class A (Vi,; and
Wt(z) have the same sign for all V4, ; # 0). For al other classesj, j # k, S; < ¢ — 1
isvalid, because at least with respect to the hyperplane, which discriminates class j from
class Ay, the pattern z is placed in the halfspace of class A, (V;,; and W*(z) have not the
same sign).

A pattern z is not uniquely classified if
max Sj(z) < ¢ —1
J

In this case all classes j were determined with S; (z) = max; S;(z). If thereisonly one
such class then z will be assigned to this class. If there are several classes let M be the
set of the classes with this property, M = {j1, ..., 71} For each class j; all hyperplanes
discriminating the class j; against al other classes are found. Those of the hyperplanes
W7 for each class j; are selected for which z is misclassified, i.e, for each class j; aset
of hyperplanes H;, = {W},, ..., W/} is determined for which z is not in the halfspace
of class j;. The Euclidian distance of z to al these hyperplanes W, are calculated. z is
assigned to that class for which the minimum
]r.]!lﬂg s:nl‘],l.r.-l.,r V[/ji(li)
isreached.



v

Methods for Comparison

R.J. Henery
University of Strathclyde!

7.1 ESTIMATION OF ERROR RATESIN CLASSIFICATION RULES

In testing the accuracy of aclassificationrule, it iswidely known that error ratestend to be
biased if they are estimated from the same set of data as that used to construct the rules.
At one extreme, if a decision tree for example is allowed to grow without limit to the
number of leavesin the tree, it is possible to classify the given data with 100% accuracy,
in general at the expense of creating a very complex tree-structure. In practice complex
structures do not always perform well when tested on unseen data, and this is one case
of the general phenomenon of over-fitting data. Of course, overfitting is of most concern
with noisy data, i.e. datain which 100% correct classification isimpossiblein principle as
there are conflicting examples. However, the problem also arises with noise-free datasets,
where, in principle, 100% correct classification is possible. Among the StatLog datasets,
for example, there is one dataset (Shuttle) that is probably noise free, and it is possible
to classify the given data 100% correctly. However, certain classes are represented so
infrequently that we cannot be sure what the true classification procedure should be. Asa
genera rule, we expect that very simple structures should be used for noisy data, and very
complex structures only for data that are noise-free. What is clear is that we should adjust
the complexity to suit the problem at hand, otherwise the procedure will be biased.

For example, most decision tree procedures (such as CART by Breiman et al., 1984)
restrict the size of the decision tree by pruning, i.e. by cutting out some branches if they
do not lead to useful dichotomies of the data. Even if some measure of pruning is added to
avoid over-fitting the data, the apparent error-rate, estimated by applying the induced rule
ontheoriginal data, isusually over-optimistic. One way of correcting for thisbiasisto use
two independent samples of data: oneto learn the rule and another to test it. A method that
is more suitable for intermediate sample sizes (of order 1000) is cross-validation, which
first came to prominence when Lachenbruch & Mickey (1968) suggested the |eave-one-out
procedure. A closely related method, which isused for small sample sizes, isthe bootstrap

1 Address for correspondence: Department of Statistics and Modelling Science, University of Strathclyde,
Glasgow G1 1XH, U.K.
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procedure of Efron (1983). Thesethree methodsof estimating error rates are now described
briefly.

7.1.1 Train-and-Test

The essential ideais this: a sample of data (the training data) is given to enable a classifi-
cation rule to be set up. What we would like to know is the proportion of errors made by
this rule when it is up-and-running, and classifying new observations without the benefit
of knowing the true classifications. To do this, we test the rule on a second independent
sample of new observations (the test data) whose true classifications are known but are not
told to the classifier. The predicted and true classificationson the test data give an unbiased
estimate of the error rate of the classifier. To enable this procedure to be carried out from
agiven set of data, a proportion of the data is selected at random (usually about 20-30%)
and used asthetest data. The classifier istrained on the remaining data, and then tested on
the test data. Thereis a dight loss of efficiency here as we do not use the full sample to
train the decision rule, but with very large datasets thisis not amajor problem. We adopted
this procedure when the number of examples was much larger than 1000 (and allowed
the use of atest sample of size 1000 or so). We often refer to this method as “one-shot”
train-and-test.

7.1.2 Cross-validation

For moderate-sized samples, the procedure we adopted was cross-validation. In its most
elementary form, cross-validation consists of dividing the data into m subsamples. Each
sub-sample s predicted viathe classification rule constructed from the remaining (m — 1)
subsamples, and the estimated error rate isthe average error rate from these m subsamples.
In this way the error rate is estimated efficiently and in an unbiased way. The rulefinally
used is calculated from al the data. The leave-one-out method of Lachenbruch & Mickey
(1968) is of course m-fold cross-validation with m equal to the number of examples. Stone
(1974) describes cross-validation methods for giving unbiased estimates of the error rate.

A practical difficulty with the use of cross-validation in computer-intensive methods
such as neural networksis the m-fold repetition of the learning cycle, which may require
much computational effort.

7.1.3 Bootstrap

The more serious objection to cross-validation is that the error estimates it produces are
too scattered, so that the confidence intervals for the true error-rate are too wide. The
bootstrap procedure gives much narrower confidence limits, but the penalty paid is that
the estimated error-rates are optimistic (i.e. are biased downwards). The trade-off between
bias and random error meansthat, asageneral rule, the bootstrap method is preferred when
the sample sizeis small, and cross-validation when the sample sizeislarge. In conducting
a comparative trial between methods on the same dataset, the amount of bias is not so
important so long as the bias is the same for all methods. Since the bootstrap represents
the best way to reduce variability, the most effective way to conduct comparisons in small
datasets is to use the bootstrap. Since it is not so widely used in classification trials as
perhaps it should be, we give an extended description here, although it must be admitted
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that we did not use the bootstrap in any of our trials as we judged that our samples were
large enough to use either cross-validation or train-and-test.

In statistical terms, the bootstrap is a non-parametric procedure for estimating param-
eters generally and error-ratesin particular. The basic ideaisto re-use the original dataset
(of sizen) to obtain new datasets a so of sizen by re-sampling with replacement. See Efron
(2983) for the definitiveintroduction to the subject and Crawford (1989) for an application
to CART. Breiman et al. (1984) note that there are practical difficulties in applying the
bootstrap to decision trees.

In the context of classification, the bootstrap ideaisto replicate the whole classification
experiment alarge number of times and to estimate quantities like bias from these replicate
experiments. Thus, to estimatetheerror ratein small samples(of sizen say), alarge number
B of bootstrap replicate samples are created, each sample being a replicate (randomly
chosen) of the original sample. That is, a random sample of size n is taken from the
original sample by sampling with replacement. Sampling with replacement means, for
example, that some data points will be omitted (on average about 1/e = 37% of data will
not appear in the bootstrap sample). Also, some data points will appear more than once
in the bootstrap sample. Each bootstrap sample is used to construct a classification rule
which is then used to predict the classes of those origina data that were unused in the
training set (so about 1/e = 37% of the original datawill be used as test set). This gives
one estimate of the error rate for each bootstrap sample. The average error rates over all
bootstrap samples are then combined to give an estimated error rate for the origina rule.
See Efron (1983) and Crawford (1989) for details. The main properties of the bootstrap
have been summarised by Efron(1983) asfollows.

Properties of cross-validation and bootstrap

Efron (1983) givesthefollowing propertiesof the bootstrap asan estimator of error-rate. By
taking B very large (Efron recommends approximately 200), the statistical variability inthe
average error rate eqqoy 1SSMall, and for small sample size n, this means that the bootstrap
will have very much smaller statistical variability than the cross-validation estimate.

The bootstrap and cross-validation estimates are generally close for large sample sizes,
and theratio between the two estimates approaches unity asthe samplesizetendsto infinity.

The bootstrap and cross-validation methods tend to be closer for smoother cost-
functions than the 0-1 loss-function implicit in the error rates discussed above. However
the Bootstrap may be biased, even for large samples.

The effective sample size is determined by the number in the smallest classification
group. Efron (1983) quotes a medical example with n = 155 cases, but primary interest
centres on the 33 patients that died. The effective sample size hereis 33.

For large samples, group-wise cross-validation may give better results than the leave-
one-out method, although this conclusion seems doubtful.

7.1.4 Optimisation of parameters

Frequently it is desirable to tune some parameter to get the best performance from an
algorithm: examples might be the amount of pruning in a decision tree or the number of
hidden nodes in the multilayer perceptron. When the objective isto minimisethe error-rate
of the tree or perceptron, the training data might be divided into two parts: one to build the
tree or perceptron, and the other to measure the error rate. A plot of error-rate against the
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parameter will indicate what the best choice of parameter should be. However, the error
rate corresponding to this choice of parameter is a biased estimate of the error rate of the
classification rulewhen tested on unseen data. When it is necessary to optimise a parameter
in this way, we recommend athree-stage processfor very large datasets: (i) hold back 20%
as atest sample; (ii) of the remainder, divide into two, with one set used for building the
rule and the other for choosing the parameter; (iii) use the chosen parameter to build arule
for the complete training sample (containing 80% of the original data) and test thisrule on
the test sample.

Thus, for example, Watkins (1987) gives adescription of cross-validation in the context
of testing decision-treeclassification a gorithms, and uses cross-validation asameans of se-
lecting better decisiontrees. Similarly, in thisbook, cross-validation wasused by Backprop
infinding the optimal number of nodesin the hidden layer, followingthe procedureoutlined
above. Thiswasdonealso for thetrialsinvolving Cascade. However, cross-validation runs
involve a greatly increased amount of computational labour, increasing the learning time
m~—fold, and this problem is particularly serious for neural networks.

In StatLog, most procedureshad atuning parameter that can be set to adefault value, and
where this was possible the default parameters were used. Thiswasthe case, for example,
with the decision trees: generally no attempt was made to find the optimal amount of
pruning, and accuracy and “mental fit” (see Chapter 5) is thereby sacrificed for the sake of
speed in the learning process.

7.2 ORGANISATION OF COMPARATIVE TRIALS

We describe in this section what we consider to be the ideal setup for comparing classi-
fication procedures. It not easy to compare very different algorithms on a large number
of datasets, and in practice some compromises have to be made. We will not detail the
compromises that we made in our own trials, but attempt to set out the ideals that we tried
to follow, and give a brief description of the UNIX-based procedures that we adopted.
If a potential trialist wishes to perform another set of trials, is able to cast the relevant
algorithms into the form that we detail here, and moreover is able to work within a UNIX
environment, then we can recommend that he uses our test procedures. Thiswill guarantee
comparability with the majority of our own results.

In the following list of desiderata, we use the notation filel, file2, ... to denote arbitrary
files that either provide data or receive output from the system. Throughout we assume
that files used for training/testing are representative of the population and are statistically
similar to each other.

1. Training Phase. Themost elementary functionality required of any learning algorithm,
isto be ableto take datafrom onefilefilel (by assumption filel contains known classes)
and createthe rules.

e (Optionally) The resulting rules (or parameters defining the rule) may be saved
to another file file3;

e (Optionaly) A cost matrix (in file2 say) can be read in and used in building the
rules

2. Testing Phase. The algorithm can read in the rules and classify unseen data, in the
following sequence:
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e Readintherulesor parameters from the training phase (either passed on directly
from the training phase if that immediately precedes the testing phase or read
from the file file3)

e Read in a set of unseen data from a file filed4 with true classifications that are
hidden from the classifier

e (Optionally) Read in a cost matrix from afile file5 (normally file5 = file2) and
use this cost matrix in the classification procedure

e (Optionally) Output the classifications to afile file6

e If true classifications were provided in the test file filed, output to file file7 a
confusion matrix whoserowsrepresent the true classificationsand whose columns
represent the classifications made by the algorithm

The two steps above constitute the most basic element of a comparative trial, and we
describethis basic element asasimple Train-and-Test (TT) procedure. All algorithms used
in our trials were able to perform the Train-and-Test procedure.

7.2.1 Cross-validation

To follow the cross-validation procedure, it is necessary to build an outer loop of control
procedures that divide up the original file into its component parts and successively use
each part astest file and the remaining part as training file. Of course, the cross-validation
procedure resultsin a succession of mini-confusion matrices, and these must be combined
to give the overall confusion matrix. All this can be done within the Evaluation Assistant
shell provided the classification procedure is capable of the simple Train-and-Test steps
above. Some more sophisticated algorithms may have a cross-validation procedure built
in, of course, and if so thisisadistinct advantage.

7.2.2 Bootstrap

The use of the bootstrap procedure makes it imperative that combining of results, files etc.
is done automatically. Once again, if an algorithm is capable of simple Train-and-Test,
it can be embedded in a bootstrap loop using Evaluation Assistant (although perhaps we
should admit that we never used the bootstrap in any of the datasets reported in this book).

7.2.3 Evaluation Assistant

Evaluation Assistant is a tool that facilitates the testing of learning agorithms on given
datasets and provides standardised performance measures. In particular, it standardises
timings of the various phases, such as training and testing. It also provides statistics
describing thetrial (mean error rates, total confusion matrices, etc. etc.). It can be obtained
from J. Gama of the University of Porto. For details of this, and other publicly available
software and datasets, see Appendices A and B. Two versions of Evaluation Assistant exist:
- Command version (EAC)
- Interactive version (EAI)
The command version of Evaluation Assistant (EAC) consists of a set of basic commands
that enable the user to test learning algorithms. This version is implemented as a set of
C-shell scriptsand C programs.

The interactive version of Evaluation Assistant (EAI) provides an interactive interface
that enables the user to set up the basic parameters for testing. It isimplemented in C and
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the interactive interface exploits X windows. Thisversion generates a customised version
of some EAC scriptswhich can be examined and modified before execution.
Both versions run on a SUN SPARCstation and other compatible workstations.

7.3 CHARACTERISATION OF DATASETS

An important objective is to investigate why certain algorithms do well on some datasets
and not so well on others. This section describes measures of datasets which may help to
explain our findings. These measures are of three types: (i) very simple measures such
as the number of examples; (ii) statistically based, such as the skewness of the attributes;
and (iii) information theoretic, such as the information gain of attributes. We discuss
information theoretic measures in Section 7.3.3. There is a need for a measure which
indicates when decision trees will do well. Bearing in mind the success of decision trees
in image segmentation problems, it seems that some measure of multimodality might be
useful in this connection.

Some algorithms have built in measures which are given as part of the output. For
example, CASTLE measuresthe Kullback-Leibler informationin adataset. Such measures
are useful in establishing the validity of specific assumptions underlying the algorithm and,
although they do not always suggest what to do if the assumptions do not hold, at |east they
give an indication of internal consistency.

The measures should continue to be elaborated and refined in the light of experience.

7.3.1 Simplemeasures

The following descriptors of the datasets give very simple measures of the complexity or
size of the problem. Of course, these measures might advantageously be combined to give
other measures more appropriate for specific tasks, for example by taking products, ratios
or logarithms.

Number of observations, N

Thisis the total number of observationsin the whole dataset. In some respects, it might
seem more sensible to count only the observationsin the training data, but thisis generally
alargefraction of thetotal number in any case.

Number of attributes, p

The total number of attributesin the data as used in the trials. Where categorical attributes
were originally present, these were converted to binary indicator variables.

Number of classes, q

The total number of classes represented in the entire dataset.

Number of binary attributes, Bin.att

The total number of number of attributes that are binary (including categorical attributes
coded as indicator variables). By definition, the remaining p — Bin.att attributes are
numerical (either continuous or ordered) attributes.

7.3.2 Statistical measures

The following measures are designed principally to explain the performance of statistical
algorithms, but are likely to be more generally applicable. Often they are much influenced
by the simple measures above. For example, the skewness measure often reflects the
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number of binary attributes, and if thisis so, the skewness and kurtosis are directly related
to each other. However, the statistical measuresin thissection aregenerally defined only for
continuous attributes. Although it is possible to extend their definitionsto include discrete
and even categorical attributes, the most natural measuresfor such data aretheinformation
theoretic measures discussed in section 7.3.3.

Test statistic for homogeneity of covariances

Thecovariance matricesarefundamental in thetheory of linear and quadratic discrimination
detailed in Sections 3.2 and 3.3, and the key in understanding when to apply one and not
the other liesin the homogeneity or otherwise of the covariances. One measure of the lack
of homogeneity of covariances is the geometric mean ratio of standard deviations of the
populations of individual classes to the standard deviations of the sample, and is given by
SD_ratio (seebelow). Thisquantity isrelated to atest of the hypothesisthat all populations
have a common covariance structure, i.e. to the hypothesis Hy : 1 =X, = ... = L,
which can betested viaBox’s M test statistic:

M = 72 , —1)log|S; 1S,

where

202+ 3p—1
v o= 1= 6(p+ 1)( q—l{znz—l n—q}
and S; and S are the unbiased estimators of the :—th sample covariance matrix and the
pooled covariance matrix respectively. This statistic has an asymptotic Xp(p +1)(a=1) /2
distribution: and the approximation is good if each n; exceeds 20, and if ¢ and p are both
much smaller than every n;.

In datasetsreported in thisvolume these criteriaare not always met, but the M —statistic
can till be computed, and used as a characteristic of the data. The M —statistic can bere-
expressed as the geometric mean ratio of standard deviations of the individual populations
to the pooled standard deviations, viathe expression

M
SD_ratio = e(p{ (i 1)}
The SD _ratio is strictly greater than unity if the covariances differ, and is equa to unity
if and only if the M-statistic is zero, i.e. all individual covariance matrices are equa to the
pooled covariance matrix.
In every dataset that we looked at the M —dtatistic is significantly different from zero,
in which casethe SD_ratio issignificantly greater than unity.

Mean absolute correlation coefficient, corr.abs

The set of correlations p;; between all pairs of attributes give some indication of the
interdependence of the attributes, and ameasure of that interdependence may be calculated
asfollows. Thecorrelations p;; between all pairs of attributesare calculated for each class
separately. The absolute values of these correlationsare averaged over all pairs of attributes
and over all classes giving the measure corr.abs = p which isameasure of interdependence
between attributes.
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If corr.absis near unity, there is much redundant information in the attributes and some
procedures, such as logistic discriminants, may have technical problems associated with
this. Also, CASTLE, for example, may be misled substantially by fitting relationships to
the attributes, instead of concentrating on getting right the relationship between the classes
and the attributes.

Canonical discriminant correlations

Assume that, in p—dimensional space, the sample points from one class form clusters of
roughly elliptical shape around its population mean. In generd, if thereare ¢ classes, the g
meanslieinag — 1 dimensional subspace. On the other hand, it happensfrequently that the
classesform somekind of sequence, so that the population meansare strung out along some
curvethat liesin k—dimensional space, wherek < ¢ — 1. The simplest case of al occurs
when & = 1 and the population means lie along a straight line. Canonical discriminants
are away of systematically projecting the mean vectors in an optima way to maximise
the ratio of between-mean distances to within-cluster distances, successive discriminants
being orthogonal to earlier discriminants. Thus the first canonical discriminant gives the
best single linear combination of attributesthat discriminates between the populations. The
second canonical discriminant is the best single linear combination orthogonal to the first,
and so on. The success of these discriminantsis measured by the canonical correlations. If
the first canonical correlation is close to unity, the ¢ meanslie along a straight line nearly.
If the k + 1th canonical correlation is near zero, the meansliein k—dimensiona space.

Proportion of total variation explained by first k (=1,2,3,4) canonical discriminants

This is based on the idea of describing how the means for the various populations differ
in attribute space. Each class (population) mean defines a point in attribute space, and,
at its simplest, we wish to know if there is some simple relationship between these class
means, for example, if they lie along a straight line. The sum of the first £ eigenvalues of
the canonical discriminant matrix divided by the sum of al the eigenval ues represents the
“proportion of total variation” explained by the first & canonical discriminants. The total
variation hereistr(X). We calculate, as fractk, the values of

A+ 2/ A+ A+ ..+ Ap) for k=1,23,4

This gives ameasure of collinearity of the class means. When the classes form an ordered
seguence, for example soil types might be ordered by wetness, the class means typically
lie dong a curve in low dimensional space. The A’s are the squares of the canonical
correlations. The significance of the A’s can be judged from the x? statistics produced by
“manova’. This representation of linear discrimination, which is due to Fisher (1936), is
discussed also in Section 3.2.

Departure from normality

The assumption of multivariate normality underlies much of classical discrimination pro-
cedures. But the effects of departures from normality on the methods are not easily or
clearly understood. Moreover, in analysing multiresponse data, it is not known how ro-
bust classical procedures are to departures from multivariate normality. Most studies on
robustness depend on simulation studies. Thus, it is useful to have measures for verifying
the reasonableness of assuming normality for a given dataset. If available, such a measure
would be helpful in guiding the subsequent analysis of the data to make it more normally
distributed, or suggesting the most appropriate discrimination method. Andrews et al.
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(1973), whose excellent presentation we follow in this section, discussavariety of methods
for assessing normality.

With multiresponse data, the possibilities for departure from joint normality are many
and varied. One implication of this is the need for a variety of techniques with differing
sensitivities to the different types of departure and to the effects that such departures have
on the subsequent analysis.

Of great importance here is the degree of commitment one wishes to make to the
coordinate system for the multiresponse observations. At one extreme is the situation
where the interest is completely confined to the observed coordinates. In this case, the
marginal distributions of each of the observed variables and conditional distributions of
certain of these given certain others would be the objects of interest.

At the other extreme, the class of all nonsingular linear transformations of the variables
would be of interest. One possibility isto look at al possible linear combinations of the
variables and find the maximum departure from univariate normality in these combinations
(Machado, 1983). Mardiaet al. (1979) give multivariatemeasures of skewnessand kurtosis
that are invariant to affine transformations of the data: critical values of these statistics for
small samplesare given in Mardia (1974). These measures are difficult to compare across
datasets with differing dimensionality. They also have the disadvantage that they do not
reduce to the usual univariate statistics when the attributes are independent.

Our approach isto concentrate on the original coordinates by looking at their marginal
distributions. Moreover, the emphasishereis on ameasure of non-normality, rather than on
atest that tells us how statistically significant is the departure from normality. See Ozturk
& Romeu (1992) for areview of methods for testing multivariate normality.

Univariate skewness and kurtosis
The usual measure of univariate skewness (Kendall et al., 1983) is+;, whichistheratio of
the mean cubed deviation from the mean to the cube of the standard deviation

7 = E(X - p)?/o®
although, for test purposes, it isusual to quotethe square of thisquantity: 8; = v2. Another

measure is defined via the ratio of the fourth moment about the mean to the fourth power
of the standard deviation:

B2 = E(X — p)*/c*.
The quantity 5» — 3 isgenerally known asthe kurtosis of the distribution. However, we will
refer to 3, itself asthe measure of kurtosis: sincewe only use this measure rel ative to other
measurements of the same quantity within this book, this slight abuse of the term kurtosis
may be tolerated. For the normal distribution, the measuresare 5; = 0 and 5, = 3, and
we will say that the skewnessis zero and the kurtosis is 3, although the usual definition of
kurtosis gives a value of zero for anormal distribution.

Mean skewness and kurtosis

Denote the skewness statistic for attribute ¢ in population A; by v1(¢,j). As asingle
measure of skewness for the whole dataset, we quote the mean of the absolute value of
v1(4,7), averaged over al attributes and over all populations. This gives the measure
skew_abs. For a normal population, skew_abs is zero: for uniform and exponentia
variables, the theoretical values of skew_abs are zero and 2 respectively. Similarly, wefind
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the mean of the univariate standardised fourth moment 5 (%, 5), averaged over all attributes
and populations. This givesthe measure 3,. For anormal population, 5, = 3 exactly, and
the corresponding figures for uniform and exponential variablesare 1.8 and 9, respectively.
Univariate skewness and kurtosis of correlated attributes

The univariate measures above have very large variances if the attributes are highly corre-
lated. 1t may therefore be desirable to transform to uncorrelated variables before finding
the univariate skewness and kurtosis measures. This may be achieved via the symmetric
inverse square-root of the covariance matrix. The corresponding kurtosis and skewness
measure (kurt_inv and skew_tnv say) may be morereliable for correlated attributes. By
construction, these measures reduce to the univariate values if the attributes are uncorre-
lated. Although they were calculated for al the datasets, these particular measures are not
guoted in the tables, asthey are usually similar to the univariate statistics.

7.3.3 Information theoretic measures

For the most part, the statisti cal measures above werebased on the assumption of continuous
attributes. The measureswe discuss now are motivated by information theory and are most
appropriate for discrete (and indeed categorical) attributes, although they are able to deal
with continuous attributes also. For this reason, these measures are very much used by
the machine learning community, and are often used as a basis for splitting criteria when
building decision trees. They correspond to the deviance statisticsthat arise in the anaysis
of contingency tables (McCullagh & Nelder, 1989). For a basic introduction to the subject
of information theory, see, for example, Jones (1979).

Entropy of attributes, H(X)

Entropy is a measure of randomness in a random variable. In general terms the entropy
H(X) of adiscreterandom variable X is defined as the sum

H(X) = _Z‘Ii log, g

where ¢; is the probability that X takes on thei’th value. Conventionally, logarithms are
to base 2, and entropy isthen said to be measured in units called "bits" (binary information
units). In what follows, all logarithms are to base 2. The special casesto remember are:

e Equal probabilities (uniform distribution). The entropy of a discrete random variable
is maximal when all ¢; are equal. If there are k possible values for X, the maximal
entropy islog k.

e Continuous variable with given variance. Maximal entropy is attained for normal
variables, and this maximal entropy is 0.5 log(2woe) .

In the context of classification schemes, the point to note is that an attribute that does
not vary at all, and therefore has zero entropy, contains no information for discriminating
between classes.

The entropy of acollection of attributesis not simply related to theindividual entropies,
but, as a basic measure, we can average the entropy over all the attributes and take this as
aglobal measure of entropy of the attributes collectively. Thus, asameasure of entropy of
the attributes we take the H (X') averaged over al attributes X, ..., X,:

B(X) = 5t Y H(X)
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This measureis strictly appropriate only for independent attributes.

The definition of entropy for continuous distributionsis analogous to the discrete case,
with an integra replacing the summation term. This definition is no use for empirical
data, however, unless some very drastic assumptions are made (for example assuming that
the data have a normal distribution), and we are forced to apply the discrete definition
to al empirical data. For the measures defined below, we discretised al numerical data
into equal-length intervals. The number of intervals was chosen so that there was a fair
expectation that there would be about ten observations per cell in the two-way table of
attribute by class. As there are dg cellsin a two-way table of attribute (with d discrete
levels) by class(with g classes), and thereare N examples, thismeanschoosing N/dgq = 10.
The simplest, but not the best, procedure is to divide the range of the attributeinto d equal
intervals. A morerefined procedure would have the number and width of intervalsvarying
from attribute to attribute, and from dataset to dataset. Unless the data are very extensive,
the estimated entropies, even for discrete variables, are likely to be severely biased. Blyth
(1958) discusses methods of reducing the bias.

Entropy of classes, H(C)

In many of our datasets, some classes have very low probabilities of occurrence, and,
for practical purposes, the very infrequent classes play little part in the assessment of
classification schemes. It is therefore inappropriate merely to count the number of classes
and use this as a measure of complexity. An aternativeis to use the entropy H(C) of the
class probability distribution:

H(C) = —Eﬂ'i |Og7ri

where 7; isthe prior probability for class A;. Entropy isrelated to the average length of a
variable length coding scheme, and there are direct links to decision trees (see Jones, 1979
for example). Sinceclassisessentially discrete, theclassentropy H (C) hasmaximal value
when the classes are equally likely, so that H(C) is at most log g, where ¢ is the number
of classes. A useful way of looking at the entropy H (C) isto regard 2(€) as an effective
number of classes.

Joint entropy of class and attribute, H(C, X)

Thejoint entropy H(C, X) of two variables C and X is ameasure of total entropy of the
combined system of variables, i.e. the pair of variables (C, X). If p;; denotes the joint
probability of observing class A; and the j-th value of attribute X, the joint entropy is
defined to be:

H(C,X) = —Zpi]' |ngi]'.
ij

Thisis asimple extension of the notion of entropy to the combined system of variables.
Mutual information of class and attribute, M (C, X)

Themutual information M (C, X)) of twovariablesC and X isameasure of common infor-
mation or entropy shared between the two variables. If the two variables are independent,
thereisno shared information, and the mutual information M (C, X ) iszero. If p;; denotes
thejoint probability of observing class A; and the j-th value of attribute X, if the marginal
probability of class 4; isw;, andif themarginal probability of attribute X taking on its j-th
valueis g;, then the mutual information is defined to be (note that there is no minus sign):
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Dij
M(C,X) =" pilog( ;)
ij v

.

Equivalent definitions are:

M(C, X) H(C) - H(C|X)

M(C,X) = H(X)-H(X|C)
The conditional entropy H(C|X), for example, which we have not yet defined, may be
defined formally by the equation in which it appears above, but it has a distinct meaning,
namely, the entropy (i.e. randomness or noise) of the class variable that is not removed by
knowing the value of the attribute X. Minimum mutual information M (C, X) is zero, and
this occurs when class and attribute are independent. The maximum mutual information
M (C, X) occurs when one of H(C|X) or H(X|C) is zero. Suppose, for example, that
H(C|X) iszero. Thiswould mean that the value of classis fixed (non-random) once the
value of X is known. Class C is then completely predictable from the attribute X, in
the sense that attribute X contains all the information needed to specify the class. The
corresponding limits of M(C, X) are

0 < M(C,X) < min(H(C), H(X)).

Sincethereare many attributes, we have tabul ated an average of the mutual information

M(C, X) taken over al attributes X4, . .., X,

M(C,X) = P_lZM(C',Xi)

This average mutual information gives a measure of how much useful information about
classes is provided by the average attribute.

Mutual information may be used asa splitting criterion in decision tree algorithms, and
is preferable to the gain ratio criterion of C4.5 (Pagallo & Haussler, 1990).
Equivalent number of attributes, EN.attr
The information required to specify the class is H(C), and no classification scheme can
be completely successful unless it provides at least H(C) bits of useful information.
This information is to come from the attributes taken together, and it is quite possible
that the useful information M(C, X) of all attributes together (here X stands for the
vector of attributes (X, ..., X,)) is grester than the sum of the individual informations
M(C, X1)+....+ M(C, X,). However, in the simplest (but most unrealistic) casethat all
attributes are independent, we would have

MC,X)= MC, X))+ ...+ M(C,X,)

In this case the attributes contributeindependent bits of useful information for classification
purposes, and we can count up how many attributeswould berequired, on average, by taking
the ratio between the class entropy H(C) and the average mutual information M(C, X).
Of course, we might do better by taking the attributeswith highest mutual information, but,
in any case, the assumption of independent useful bits of information is very dubious in
any case, so this simple measureis probably quite sufficient:
H(C)

ENattr = — "2
M(C, X)
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Noisiness of attributes, NSratio

If the useful information is only asmall fraction of the total information, we may say that
thereis alarge amount of noise. Thus, take M (C, X) as ameasure of useful information
about class, and H(X) — M(C, X) as ameasure as non-useful information. Then large
values of theratio

H(X)- M(C,X)
M(C, X)

imply a dataset that contains much irrelevant information (noise). Such datasets could be
condensed considerably without affecting the performance of the classifier, for example by
removing irrelevant attributes, by reducing the number of discrete levels used to specify
the attributes, or perhaps by merging qualitative factors. The notation NS.ratio denotes the
Noise-Signal-Ratio. Note that this is the reciprocal of the more usual Signal-Noise-Ratio
(SNR).

Irrelevant attributes

The mutual information M (C, X;) between class and attribute X; can be used to judge
if attribute X; could, of itself, contribute usefully to a classification scheme. Attributes
with small values of M (C, X;) would not, by themselves, be useful predictors of class. In
this context, interpreting the mutual information as a deviance statistic would be useful,
and we can give a lower bound to statistically significant values for mutual information.
Suppose that attribute X and class are, in fact, statistically independent, and suppose
that X has d distinct levels. Assuming further that the sample size N is large, then it
is well known that the deviance statistic 2N M (C, X) is approximately equal to the chi-
sguare statistic for testing the independence of attribute and class (for example Agresti,
1990). Therefore2N M (C, X) has an approximate X?q—l)(d—l) distribution, and order of
magnitude calculations indicate that the mutual information contributes significantly (in
the hypothesistesting sense) if its value exceeds (d — 1)(q — 1) /N, where g isthe number
of classes, N isthe number of examples, and d is the number of discrete levels for the
attribute.

In our measures, d is the number of levels for integer or binary attributes, and for
continuous attributes we chose d = N/10g (so that, on average, there were about 10
observations per cell in the two-way table of attribute by class), but occasionally the
number of levelsfor so-called continuous attributeswas lessthan d = N/10q. If we adopt
acritical level for the x?, ;) 4_;, distribution astwice the number of degrees of freedom,
for the sake of argument, we abtain an approximate critical level for the mutual information
as2(q — 1)(d — 1)/2N. With our chosen value of d, thisis of order 1/10 for continuous
attributes.

We have not quoted any measure of thisform, asalmost all attributesarerelevant inthis
sense (and this measure would have little information content!). In any case, an equivalent
measure would be the difference between the actual number of attributes and the value of
EN.attr.

Correlated normal attributes

When attributes are correlated, the calculation of information measures becomes much
more difficult, so difficult, in fact, that we have avoided it altogether. The above univariate

NS.ratio =
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measurestake no account of any lack of independence, and are therefore very crude approx-
imations to reality. There are, however, some simple results concerning the multivariate
normal distribution, for which the entropy is

0.5 log(2me|Z|)

where | 2| is the determinant of the covariance matrix of thevariables. Similar results hold
for mutual information, and there are then links with the statistical measures elaborated
in Section 7.3.2. Unfortunately, even if such measures were used for our datasets, most
datasets are so far from normality that the interpretation of the resulting measures would
be very questionable.

7.4 PRE-PROCESSING

Usually there is no control over the form or content of the vast majority of datasets.
Generally, they are already converted from whatever raw data was available into some
“suitable” format, and there is no way of knowing if the manner in which this was done
was consistent, or perhaps chosen to fit in with some pre-conceived type of analysis. In
some datasets, it is very clear that some very drastic form of pre-processing has aready
been done — see Section 9.5.4, for example.

7.4.1 Missingvalues

Some algorithms (e.g. Naive Bayes, CART, CN2, Bayes Tree, NewlD, C4.5, Cal5, AC?)
can deal with missing values, whereas others require that the missing values be replaced.
The procedure Discrim was not able to handle missing values, although this can be done
in principle for linear discrimination for certain types of missing value. In order to get
comparable results we settled on a general policy of replacing all missing values. Where
an attribute value was missing it was replaced by the global mean or median for that
attribute. If the class value was missing, the whole observation was omitted. Usually, the
proportion of caseswith missing information wasvery low. Asa separateexercise it would
be of interest to learn how much information is lost (or gained) in such a strategy by those
algorithms that can handle missing values.

Unfortunately, there are various ways in which missing values might arise, and their
treatment is quite different. For example, a clinician may normally use the results of a
blood-test in making a diagnosis. If the blood-test is not carried out, perhaps because of
faulty equipment, the blood-test measurements are missing for that specimen. A situation
that may appear similar, results from doing measurements on a subset of the population,
for example only doing pregnancy tests on women, where the test is not relevant for men
(and so is missing for men). Inthefirst case, the measurements are missing at random, and
in the second the measurements are structured, or hierarchical. Although the treatment of
thesetwo cases should beradically different, the necessary information is often lacking. In
at least one dataset (technical), it would appear that this problem arisesin a very extreme
manner, as it would seem that missing values are coded as zero, and that a large majority
of observationsis zero.

7.4.2 Feature selection and extraction

Some datasets are so large that many algorithms have problems just entering the data, and
the sheer size of the dataset has to be reduced. In this case, to achieve uniformity, a data
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reduction process was performed in advance of the trials. Again it is of interest to note
which algorithms can cope with the very large datasets. There are several waysin which
data reduction can take place. For example, the Karhunen-L oeve transformation can be
used with very little loss of information — see Section 9.6.1 for an example. Another way
of reducing the number of variablesis by a stepwise procedure in a Linear Discriminant
procedure, for example. Thiswastried on the“ Cut50” dataset, in which aversion “Cut20”
with number of attributesreduced from 50 to 20 wasal so considered. Resultsfor both these
versions are presented, and make for an interesting paired comparison: see the section on
paired comparisons for the Cut20 dataset in Section 10.2.2.

In some datasets, particularly image segmentation, extra relevant information can be
included. For example, we can use the prior knowledge that examples which are “neigh-
bours’ are likely to have the same class. A dataset of this type is considered in Section
9.6.5 in which a satellite image uses the fact that attributes of neighbouring pixels can give
useful information in classifying the given pixel.

Especially in an exploratory study, practitioners often combine attributesin an attempt
to increase the descriptive power of the resulting decision tree/rules etc. For example, it
might be conjectured that it is the sum of two attributesz; + =z, that isimportant rather
than each attribute separately. Alternatively, someratiosareincludedsuchaszi/(z1 +z2).
In our trials we did not introduce any such combinations. On the other hand, there existed
already somelinear combinationsof attributesin some of the datasetsthat welooked at. We
took the view that these combinations were included because the dataset provider thought
that these particular combinations were potentially useful. Although capable of running on
attributes with linear dependencies, some of the statistical procedures prefer attributes that
arelinearly independent, so when it came to running LDA (Discrim), QDA (Quadisc) and
logistic discrimination (Logdisc) we excluded attributes that were linear combinations of
others. This was the case for the Belgian Power data which is described in section 9.5.5.
Although, in principle, the performance of linear discriminant procedures is not affected
by the presence of linear combinations of attributes, in practice the resulting singularities
are best avoided for numerical reasons.

Astheperformanceof statistical proceduresisdirectly related to thestatistical properties
of the attributes, it is generally advisable to transform the attributes so that their marginal
distributions are as near normal as possible. Each attribute is considered in turn, and
some transformation, usually from the power-law family, is made on the attribute. Most
frequently, thisis done by taking the square-root, logarithm or reciprocal transform. These
transforms may help the statistical procedures: in theory, at least, they have no effect on
non-parametric procedures, such as the decision trees, or Naive Bayes.

7.4.3 Largenumber of categories

We describe now the problemsthat arise for decision trees and statistical algorithms alike
when an attribute has a large number of categories. Firstly, in building a decision tree, a
potential split of acategorical attribute is based on some partitioning of the categories, one
partition going down one side of the split and the remainder down the other. The number of
potential splitsis 2% where L is the number of different categories (levels) of the attribute.
Clearly, if L ismuch larger than ten, there is an enormous computational |oad, and the tree
takes a very long time to train. However, there is a computational shortcut that applies
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to two-class problems (see Clark & Pregibon, 1992 for example). The shortcut method is
not implemented in all StatLog decision-tree methods. With the statistical algorithms, a
categorical attribute with L categories (levels) needs L — 1 binary variables for acomplete
specification of the attribute.

Now it is a fact that decision trees behave differently for categorical and numerical
data. Two datasets may be logically equivalent, yet give rise to different decision trees.
Asatrivial example, with two numerical attributes X and Y, statistical algorithms would
probably seeexactly the same predictivevalueinthe pair of attributes(X + Y,X — Y) asin
theoriginal pair (X,Y’), yet the decision treeswould be different, asthe decision boundaries
would now be at an angle of 45 degrees. When categorical attributesare replaced by binary
variables the decision trees will be very different, as most decision tree procedures [ook
at all possible subsets of attribute values when considering potential splits. There is the
additional, although perhaps not so important, point that the interpretation of the tree is
rendered more difficult.

It is therefore of interest to note where decision tree procedures get almost the same
accuracies on an original categorical dataset and the processed binary data. NewlD, as
run by 1Soft for example, obtained an accuracy of 90.05% on the processed DNA data
and 90.80% on the origina DNA data (with categorical attributes). These accuracies are
probably within what could be called experimental error, so it seemsthat New! D does about
aswell on either form of the DNA dataset.

In such circumstances, we have taken the view that for comparative purposes it is
better that all algorithms are run on exactly the same preprocessed form. This way we
avoid differencesin preprocessing when comparing performance. When faced with a new
application, it will pay to consider very carefully what form of preprocessing should be
done. Thisisjust astrue for statistical algorithmsasfor neural nets or machine learning.

7.4.4 Biasin classproportions

First, some general remarkson potential biasin credit datasets. We do not know theway in
which the credit datasets were collected, but it is very probablethat they were biased in the
following way. Most credit companies are very unwilling to give credit to al applicants.
As aresult, data will be gathered for only those customers who were given credit. If the
credit approval processis any good at all, the proportion of bad risks among all applicants
will be significantly higher than in the given dataset. It is very likely also, that the profiles
of creditors and non-creditors are very different, so rules deduced from the creditors will
have much less relevance to the target population (of all applicants).

When the numbers of good and bad risk examples are widely different, and one would
expect that the bad risk examples would be relatively infrequent in awell managed lending
concern, it becomesrather avkward to include al the datain the training of a classification
procedure. On the one hand, if we are to preserve the true class proportionsin the training
sample, the total number of examples may have to be extremely largein order to guarantee
sufficient bad risk examplesfor areliablerule. On the other hand, if wefollow the common
practice in such cases and take as many bad risk examples as possible, together with a
matching number of good risk examples, we are constructing a classification rule with its
boundaries in the wrong places. The common practice is to make an adjustment to the
boundaries to take account of the true class proportions. In the case of two classes, such
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an adjustment is equivalent to allocating different misclassification costs (see Sections 2.6
and 10.2.1). For example, if the true bad risk proportion is 5%, and a rule is trained on
an artificial sample with equal numbers of good and bad risks, the recommendation would
be to classify as bad risk only those examples whose assessed posterior odds of being bad
risk were 19 to 1 (95% to 5%). Thisis equivalent to learning on the artificial sample, with
the cost of misclassifying bad risks as 19 times that of misclassifying good risk examples.
For such a procedure to work, it is necessary that a classification procedure returns class
probabilities asits output, and the user can then allocate according to his prior probabilities
(or according to misclassification costs). Many decision trees, CART and Bayes tree for
example, now output class probabilities rather than classes. But the majority of decision
treesin this project do not do so. And, in any casg, it isby no meanstrue that this artificial
procedure is, in fact, a proper procedure at all. Consider again the case where bad risks
form 5% of the population, and suppose that we are given a single normally distributed
variable (say “bank balance”) on which to classify. For simplicity, suppose also that good
and bad risk customersdiffer only in their mean bank balance. Whentrained on an artificial
sample with equal good and bad risks, a decision tree method would, correctly, divide the
population into two regions above and below the midpoint between the two mean bank
balances. In the artificial sample there will be a proportion, p say, of good examples above
this boundary and, approximately, p bad examples below the boundary. So, for example,
if a potential customer has bank balance above this boundary, we can assess the class
probabilities as p for being good and 1 — p for bad. No matter what adjustment is made
for the true prior odds of being bad risk, it is clear that the allocation rule can only take
one of two forms:. either allocate everyone to being good (or bad); or alocate good or bad
according as bank balance is above or below the established boundary. In the situation we
have described, however, it is clear that it is the boundary that should move, rather than
adjust the probabilities. The way to modify the procedureis to overgrow the tree and then
to take the costs and/or priors into account when pruning. See Michie & Attar (1991) for
further details.

7.45 Hierarchical attributes

It often happens that information is relevant only to some of the examples. For example,
certain questions in a population census may apply only to the householder, or certain
medical conditions apply to females. There is then a hierarchy of attributes: primary
variables refer to al members (Sex is a primary attribute); secondary attributes are only
relevant when the appropriate primary attribute is applicable (Pregnant is secondary to
Sex = Female); tertiary variables are relevant when a secondary variable applies (Duration
of preghancy is tertiary to Pregnant = True); and so on. Note that testing all members of
a population for characteristics of pregnancy is not only pointless but wasteful. Decision
tree methods are readily adapted to deal with such hierarchical datasets, and the algorithm
AC? has been so designed.

TheMachineFault dataset (see Section 9.5.7), which wascreated by | Soft, isan example
of a hierarchical dataset, with some attributes being present for one subclass of examples
and not for others. Obviously AC? can deal with this dataset in itsoriginal form, but, from
the viewpoint of the other algorithms, the dataset is unreadable, asit has a variable number
of attributes. Therefore, an alternative version needs to be prepared. Of course, the flat
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form has lost some of the information that was availablein the hierarchical structure of the
data. Thefact that AC? does best on this dataset when it usesthis hierarchical information
suggests that the hierarchical structureis related to the decision class.

Coding of hierarchical attributes

Hierarchical attributes can be coded into flat format without difficulty, in that a one-to-one
correspondence can be set up between the hierarchically structured data and the flat format.
We illustrate the procedure for an artificial example. Consider the primary attribute Sex.
When Sex takes the value “male”, the value of attribute Baldness is recorded as one of
(Yes No), but when Sex takes the value “female” the attribute Baldness is simply “Not
applicable”. One way of coding this information in flat format is to give two attributes,
with z; denoting Sex and z; Baldness. The three possible triples of values are (1 1), (1
0) and (0 0). In this formulation, the primary variable is explicitly available through the
value of z1, but there is the difficulty, here not too serious, that when z, is equal to O,
it is not clear whether this means “not bald” or “not applicable’. Strictly, there are three
possible values for z,: “bald”, “not bald” and “not applicable”, the first two possibilities
applying only to males. This gives a second formulation, in which the two attributes are
lumped together into a single attribute, whose possible values represent the possible states
of the system. In the example, the possible states are “bald male”, “not bald male” and
“female’. Of course, none of the above codings enables ordinary classifiers to make use
of the hierarchical structure: they are designed merely to represent the information in flat
form with the same number of attributes per example. Breiman et al. (1984) indicate how
hierarchical attributes may be programmed into a tree-building procedure. A logical flag
indicatesif atest on an attribute is permissible, and for a secondary attribute thisflag is set
to “true” only when the corresponding primary attribute has already been tested.

7.4.6 Collection of datasets

For the most part, when data are gathered, there is an implicit understanding that the data
will be analysed by a certain procedure, and the data-gatherer usually sets down the data
in a format that is acceptable to that procedure. For example, if linear discriminants are
to be used, it is inappropriate to include linear combinations of existing attributes, yet the
judicioususe of sumsor differencescan makeall thedifferenceto adecisiontree procedure.
In other cases, the data may have some additional structure that cannot be incorporated in
the given procedure, and this structure must be removed, or ignored in some way.

7.4.7 Preprocessing strategy in StatLog

The general strategy with datasets was to circul ate the datasets exactly as received, and 11
datasets were sent out in exactly the same format as they came in. For these 11 datasets,
the only processing was to permute the order of the examples. In four datasets substantial
preprocessing was necessary, and in three of these datasets it is possible that the resulting
dataset has lost some vital information, or has been biased in some way. For example,
the credit management dataset was processed to make the class proportions representative.
Another source of potential bias isthe way in which categorical attributes are trested — a
problem that is most acute in the DNA dataset.
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Review of Previous Empirical Comparisons

R.J. Henery
University of Strathclyde!

8.1 INTRODUCTION

It is very difficult to make sense of the multitude of empirical comparisons that have been
made. So often, theresults are apparently in direct contradiction, with one author claiming
that decision trees are superior to neural nets, and another making the opposite claim.
Even alowing for differencesin the types of data, it is almost impossible to reconcile the
various claims that are made for this or that algorithm as being faster, or more accurate,
or easier, than some other algorithm. There are no agreed objective criteria by which to
judge algorithms, and in any case subjective criteria, such as how easy an algorithmis to
program or run, are also very important when a potential user makes his choice from the
many methods available.

Nor is it much help to say to the potential user that a particular neural network, say,
is better for a particular dataset. Nor are the [abels neural network and Machine Learning
particularly helpful either, asthere are different types of algorithmswithin these categories.
What isrequired is some way of categorising the datasets into types, with a statement that
for such-and-such atype of dataset, such-and-such atype of algorithmislikely to do well.

The situation is made more difficult because rapid advances are being made in all
three areas: Machine Learning, Neural Networks and Statistics. So many comparisons are
made between, say, a state-of-the-art neural network and an outmoded Machine Learning
procedure like ID3.

8.2 BASIC TOOLBOX OF ALGORITHMS

Before discussing the various studies, let us make tentative proposals for candidates in
future comparative trials, i.e. let us say what, in our opinion, form the basis of a toolbox
of good classification procedures. In doing so, we are implicitly making a criticism of any
comparative studies that do not include these basic algorithms, or something like them.
Most are available as public domain software. Any that are not can be made available

1 Address for correspondence: Department of Statistics and Modelling Science, University of Strathclyde,
Glasgow G1 1XH, U.K.
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from the database of agorithms administered from Porto (see Appendix B). So thereis no
excuse for not including them in future studies!

1. We should probably aways include the linear discriminant rule, as it is sometimes
best, but for the other good reason that is a standard algorithm, and the most widely
available of all procedures.

2. On the basis of our results, the k-nearest neighbour method was often the outright
winner (although if there are scaling problems it was sometimes outright loser too!)
so it would seem sensible to include k-nearest neighbour in any comparative studies.
Although the generally good performance of k-nearest neighbour is well known, it is
surprising how few past studies have involved this procedure, especialy asit is so easy
to program.

3. In many cases where k-nearest neighbour did badly, the decision-tree methods did
relatively well, for example in the (non-cost-matrix) credit datasets. So some kind of
decision tree should be included.

4. Yet again, some of the newer statistical procedures got very good resultswhen all other
methodswere struggling. So wewould also recommend theinclusion of, say, SMART
as amodern statistical procedure.

5. Representing neural networks, we would probably choose LVQ and/or radial basis
functions, as these seem to have a distinct edge over the version of backpropagation
that we used. However, asthe performance of LV Q seemsto mirror that of k-NN rather
closely, we would recommend inclusion of RBF rather than LVQ if k-NN is already
included.

Any comparative study that does not include the majority of these algorithms is clearly
not aiming to be complete. Also, any comparative study that looks at only two procedures
cannot give reliable indicators of performance, as our results show.

8.3 DIFFICULTIESIN PREVIOUSSTUDIES

Bearing in mind our choice of potential candidates for comparative studies, it will quickly

become obvious that most previous studies suffer from the major disadvantage that their

choice of algorithmsistoo narrow. There are many other sources of difficulty, and before
giving detailed consideration of past empirical studies, welist the pitfallsthat await anyone
carrying out comparative studies. Of course, our own study was not entirely free from them
either.

The choice of algorithmsistoo narrow;

e Inmany cases, the authors have developed their own pet algorithm, and are expert in
their own field, but they are not so expert in other methods, resulting in a natural bias
against other methods;

e The chosen agorithms may not represent the state of the art;

The datasets are usually small or simulated, and so not representative of real-life
applications;

e Thereisasubstantial biasin the choice of dataset, in simulations especially, giving a
substantial biasin favour of certain algorithms;

e Often the choice of criteriais biased in favour of one type of algorithm, sometimes
even using unrealistic cost criteria.
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e Especialy across comparative studies, there may be problems due to differences in
the way the data were pre-processed, for example by removing or replacing missing
values, or transforming categorical to numerical attributes.

e The class definitions may be more suited to some algorithms than others. Also, the
class proportions in the training set may well differ substantially from the population
values - often deliberately so.

e Some comparative studies used variant, but not identical, datasets and agorithms.

We have attempted to minimisethe above problemsin our own study, for exampl e, by adopt-
ing a uniform policy for missing values and a uniform manner of dealing with categorical
variablesin some, but not all, of the datasets.

8.4 PREVIOUSEMPIRICAL COMPARISONS

While it is easy to criticise past studies on the above grounds, nonetheless many useful
comparative studies have been carried out. What they may lack in generality, they may
gain in specifics, the conclusion being that, for at least one dataset, algorithm A is superior
(faster or more accurate ...) than algorithm B. Other studies may also investigate other
aspects more fully than we did here, for example, by studying learning curves, i.e. the
amount of data that must be presented to an algorithm before it learns something useful.
In studying particular characteristics of algorithms, the role of simulations is crucia, as
it enables controlled departures from assumptions, giving a measure of robustness etc..
(Although we have used some simulated data in our study, namely the Belgian datasets,
this was done because we believed that the simulations were very close to the real-world
problem under study, and it was hoped that our trials would help in understanding this
particular problem.)

Here we will not discuss the very many studies that concentrate on just one procedure
or set of cognate procedures: rather we will look at cross-disciplinary studies comparing
algorithmswith widely differing capabilities. Among theformer however, we may mention
comparisons of symbolic (ML) proceduresin Clark & Boswell (1991), Sammut (1988),
Quinlanet al. (1986) and Aha(1992); statistical proceduresin Cherkaoui & Cleroux (1991),
Titterington et al. (1981) and Remme et al. (1980), and neural networks in Huang et al.
(1991), Fahiman (1991a), Xu et al. (1991) and Ersoy & Hong (1991). Severa studies use
simulated data to explore various aspects of performance under controlled conditions, for
example, Cherkaoui & Cleroux (1991) and Remme et al. (1980).

8.5 INDIVIDUAL RESULTS

Particular methods may do well in some specific domains and for some performance
measures, but not in all applications. For example, k-nearest neighbour performed very
well in recognising handwritten characters (Aha, 1992) and (Kressel, 1991) but not aswell
on the sonar-target task (Gorman & Sejnowski, 1988).

8.6 MACHINE LEARNING vs. NEURAL NETWORK

With the recent surge in interest in both Machine Learning and Neural Networks, there
are many recent studies comparing algorithms from these two areas. Commonly, such
studies do not include any statistical algorithms; for example Fisher & McKusick (1989)
and Shavlik et al. (1989) and Shavlik et al. (1989) used arelatively old symbolic algorithm
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ID3, which has been repeatedly shown to be less effective than its successors (NewID and
C4.5 in this book).

Kirkwood et al. (1989) found that a symbolic algorithm, 1D3, performed better than
discriminant analysis for classifying the gait cycle of artificial limbs. Tsaptsinos et al.
(1990) aso found that 1D3 was more preferable on an engineering control problem than
two neural network algorithms. However, on different tasks other researchersfound that a
higher order neural network (HONN) performed better than D3 (Spivoska & Reid, 1990)
and back-propagation did better than CART (Atlas et al., 1991). Gorman & Sejnowski
(1988) reported that back-propagati on outperformed nearest neighbour for classifying sonar
targets, whereas some Bayes al gorithms were shown to be better on other tasks (Shadmehr
& D’Argenio, 1990).

More extensive comparisons have also been carried out between neural network and
symbolic methods. However, the results of these studies were inconclusive. For example,
whereas Weiss & Kulikowski (1991) and Weiss & Kapouleas (1989) reported that back-
propagation performed worse than symbolic methods (i.e. CART and PVM), Fisher &
McKusick (1989) and Shavlik et al. (1989) indicated that back-propagation did as well or
better than ID3. Since these are the most extensive comparisons to date, we describe their
findings briefly and detail their limitationsin the following two paragraphs.

First, Fisher & McKusick (1989) compared the accuracy and learning speed (i.e. the
number of exampl e presentati onsrequired to achieve asymptotic accuracy) of D3 and back-
propagation. Thisstudy isrestrictedin the selection of agorithms, eval uation measures, and
datasets. Whereas|D3 cannot tol erate noise, several descendants of 1D3 can tolerate noise
more effectively (for example, Quinlan, 1987b), which would improve their performance
on many noisy data sets. Furthermore, their measure of speed, which simply counted the
number of example presentations until asymptotic accuracy was attained, unfairly favours
ID3. Whereas the training examples need be given to ID3 only once, they were repeatedly
presented to back-propagation to attain asymptotic accuracies. However, their measure
ignored that back-propagation’s cost per example presentation is much lower than ID3's.
Thismeasure of speed waslater addressed in Fisher et al. (1989), where they defined speed
as the product of total example presentations and the cost per presentation. Finally, the
only data set with industrial ramifications used in Fisher & McKusick (1989) isthe Garvan
Institute’ sthyroid disease data set. We advocate using more such data sets.

Second, Mooney et al. (1989) and Shavlik et al. (1991) compared similar algorithms
on a larger collection of data sets. There were only three algorithms involved (i.e. 1D3,
perceptron and back-propagation). Although it is useful to compare the relative perfor-
mance of a few agorithms, the symbolic learning and neural network fields are rapidly
developing; there are many newer algorithms that can also solve classification tasks (for
example, CN2 (Clark & Boswell, 1991), C4.5 (Quinlan, 1987b), and radial basis networks
(Poggio & Girosi, 1990). Many of these can outperform the algorithms selected here. Thus,
they should aso be included in a broader evaluation. In both Fisher & McKusick (1989),
Mooney et al. (1989) and Shavlik et al. (1991), data sets were separated into a collection
of training and test sets. After each system processed a training set its performance, in
terms of error rate and training time, was measured on the corresponding test set. Thefinal
error rate was the geometric means of separate tests. Mooney et al. (1989) and Shavlik
et al. (1991) measured speed differently from Fisher et al. (1989); they used the length of
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training. In both measures, Mooney et al. (1989) and Shavlik et al. (1991) and Fisher et al.
(1990) found that back-propagation was significantly slower than 1D3. Other significant
characteristics are: 1) they varied the number of training examples and studied the effect
on the performance that this will have; and 2) they degenerated data in several ways and
investigated the sensitivity of the agorithmsto the quality of data.

8.7 STUDIESINVOLVING ML, k-NN AND STATISTICS

Thrun, Mitchell, and Cheng (1991) conducted a co-ordinated comparison study of many
algorithms onthe MONK s problem. This problem features 432 simul ated robots classified
into two classes using six attributes. Although some algorithms outperformed others, there
was no apparent analysis of the results. This study is of limited practical interest as it
involved simulated data, and, even lessredlistically, was capable of error-free classification.

Other small-scale comparisons include Huang & Lippmann (1987), Bonelli & Parodi
(1991) and Sethi & Otten (1990), who all concluded that the various neural networks
performed similarly to, or slightly better than, symbolic and statistical algorithms.

Weiss& Kapouleas(1989) involved afew (linear) discriminantsandignored much of the
new development in modern statistical classification methods. Ripley (1993) compared a
diverseset of statistical methods, neural networks, and adecision treeclassifier on the Tsetse
fly data. Thisisarestricted comparison because it has only one data set and includes only
one symbolic algorithm. However, somefindings are nevertheless interesting. In accuracy,
the results favoured nearest neighbour, the decision tree algorithm, back-propagation and
projection pursuit. Thedecision tree algorithm rapidly produced most interpretableresults.
More importantly, Ripley (1993) also described the “ degree of frustration” in getting some
algorithmsto producethe eventual results (whereasothers, for example, Fisher & McKusick
(1989) and Shavlik et al. (1991) did not). The neural networkswere badinthisrespect: they
were very sensitive to various system settings (for example, hidden units and the stopping
criterion) and they generally converged to the final accuracies slowly.

Of course, the inclusion of statistical algorithms does not, of itself, make the com-
parisons valid. For example, statisticians would be wary of applying a Bayes algorithm
to the four problems involved in Weiss & Kapouleas (1989) because of the lack of basic
information regarding the prior and posterior probabilitiesin the data. This same criticism
could be applied to many, if not most, of the datasets in common use. The class pro-
portions are clearly unrealistic, and as aresult it is difficult to learn the appropriate rule.
Machine Learning algorithms in particular are generally not adaptable to changesin class
proportions, although it would be straightforward to implement this.

8.8 SOME EMPIRICAL STUDIESRELATING TO CREDIT RISK

As thisis an important application of Machine Learning methods, we take some time to
mention some previous empirical studies concerning credit datasets.

8.8.1 Traditional and statistical approaches

An empirical study of a point awarding approach to Credit Scoring is made by Haussler
(1979, 19814, 1981b). Fahrmeir et al. (1984) compare the results of a point awarding
approach with the results obtained by the linear discriminant. InVon Stein & Ziegler (1984)
the authors use the k-nearest neighbour approach to analyse the problem of prognosisand
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surveillance of corporate credit risk. Linear discriminant is applied by Bretzger (1991) to
early risk recognition in disposition credits. In a comprehensive study of corporate credit
granting reported in Srinivisan & Kim (1987), the authors evaluate various approaches
including parametric, nonparametric and Judgemental classification procedures. Withinthe
nonparametric approachesthey usea“recursive partitioning” method based on the decision
tree concept. Their results show that this “recursive partitioning” approach performs better
than the others.

8.8.2 MachineLearning and Neural Networks

Several empirical studies deal with credit-scoring problem using machine learning and
neural networks. The CART method (Breiman et al., 1984) is used by Hofmann (1990) to
analyse consumer credit granting. Hofmann concludes that CART has major advantages
over discriminant analysis and emphasises the ability of CART to deal with mixed datasets
containing both qualitative and quantitative attributes.

Carter & Catlett (1987) use machine learning in assessing credit card applications.
Besides decision trees they a so apply probability trees (that produce probability values to
the final nodes of the tree). This means that the algorithm is able decide for a good or bad
credit risk with a certain probability attached as well as incorporating costs.

One example of theapplication of neural networksto solving the credit scoring problem
isreported in Schumann et al. (1992).

Michie (1989) reports a case where the aim of the credit-granting procedure was to
keep the bad debt rate among those granted credit down to 9%. While some procedures
accepted only 20% of applications, the ML procedure was able to double the proportion of
acceptances while keeping the bad-debt rate within bounds. ML procedures almost always
output a Yes-No decision, and this may be inconvenient in situations where costs may vary
from applicant to applicant. In some situations, the bad-debt risk could be allowed to rise
to say 18%, but it would be necessary to re-train the decision tree, using adifferent pruning
parameter.
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Dataset Descriptions and Results

Various StatL og partners
See Appendix C for afull list!

9.1 INTRODUCTION

We group the dataset results according to domain type, although thisdistinction is perhaps
arbitrary at times. There are three credit datasets, of which two follow in the next section;
the third dataset (German credit) involved a cost matrix, and so isincluded in Section 9.4
with other cost matrix datasets. Several of the datasets involve image data of one form
or another. In some cases we are attempting to classify each pixel, and thus segment the
image, and in other cases, we need to classify the wholeimage as an object. Similarly the
data may be of raw pixel form, or else processed data. These datasets are given in Section
9.3. The remainder of the datasets are harder to group and are contained in Section 9.5.
See the appendices for general availability of datasets, algorithms and related software.

The tables contain information on time, memory and error ratesfor thetraining and test
sets. The time has been standardised for a SUN IPC workstation (quoted at 11.1 SPECs),
and for the cross-validation studies the quoted times are the average for each cycle. The
unit of memory is the maximum number of pages used during run time. This quantity is
obtained from the set time UNIX command and includesthe program requirements as well
asdataand rulesstored during execution. Ideally, wewould liketo decomposethis quantity
into memory required by the program itself, and the amount during the training, and testing
phase, but this was not possible. A page is currently 4096 bytes, but the quoted figures
are considered to be very crude. Indeed, both time and memory measurements should be
treated with great caution, and only taken as a rough indication of the truth.

In al tables we quote the error rate for the “Default” rule, in which each observation
is allocated to the most common class. In addition thereis a“rank” column which orders
the algorithms on the basis of the error rate for the test data. Note, however, that thisis not
the only measure on which they could be ranked, and many practitioners will place great
importance on time, memory, or interpretability of the algorithm’s*“ classifying rule”. We
use the notation **’ for missing (or not applicable) information, and ‘FD’ to indicate that

1 Addressfor correspondence: Charles Taylor, Department of Statistics, University of Leeds, Leeds LS2 9JT,
UK.
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an algorithm failed on that dataset. We tried to determinereasonsfor failure, but with little
success. In most cases it was a “Segmentation Violation” probably indicating a lack of
memory.

In Section 9.6, we present both the statistical and information-based measures for all
of the datasets, and give an interpreation for afew of the datasets.

9.2 CREDIT DATASETS
9.21 Credit management (Cred.Man)

This dataset was donated to the project by amajor British engineering company, and comes
from the general areaof credit management, that isto say, assessing methods for pursuing
debt recovery. Credit Scoring (CS) is one way of giving an objective score indicative of
credit risk: it aimsto give a numerical score, usually containing components from various
factors indicative of risk, by which an objective measure of credit risk can be obtained.
The aim of a credit scoring system isto assess the risk associated with each application for
credit. Being able to assess the risk enables the bank to improve their pricing, marketing
and debt recovery procedures. Inability to assess the risk can result in lost business. It
is aso important to assess the determinants of the risk: Lawrence & Smith (1992) state
that payment history is the overwhelming factor in predicting the likelihood of default in
mobilehome credit cases. Risk assessment may influencethe severity with which bad debts
are pursued. Although it might be thought that the proper end product in this application
should be arisk factor or probability assessment rather than a yes-no decision, the dataset
was supplied with pre-allocated classes. The aim in this dataset was therefore to classify
customers (by simple train-and-test) into one of the two given classes. The classes can be
interpreted as the method by which debtswill be retrieved, but, for the sake of brevity, we
refer to classes as “good” and “bad” risk.

Table 9.1: Previoudly obtained resultsfor the original Credit management data, with equal
class proportions (* supplied by the Turing Ingtitute, ** supplied by the dataset providers).

algorithm error rate
New!D* 0.05
CN2* 0.06
Neural Net** 0.06

The original dataset had 20 000 examples of each class. To make this more repre-
sentative of the population as a whole (where approximately 5% of credit applicants were
assessed — by a human — as bad risk), the dataset used in the project had 20 000 examples
with 1000 of these being class 1 (bad credit risk) and 19 000 class 2 (good credit risk). As
is common when the (true) proportion of bad creditsis very small, the default rule (to grant
credit to al applicants) achieves asmall error rate (whichisclearly 5%inthiscase). Insuch
circumstances the credit-granting company may well adopt the default strategy for the sake
of good customer relations —see Lawrence & Smith (1992). However, most decision tree
algorithms do worse than the default if they are allowed to train on the given datawhich is
strongly biased towards bad credits (typically decision tree algorithms have an error rate of
around 6% error rate). This problem disappearsif the training set has the proper class pro-
portions. For example, aversion of CART (the Splus module tree()) obtained an error rate
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Table 9.2: Resultsfor the Credit management dataset (2 classes, 7 attributes, (train, test)=
(15000, 5000) observations).

Max. Time (sec.) Error Rate
Algorithm || Storage Train Test | Train | Test | Rank
Discrim 68 322 3.8 | 0.031 | 0.033 13
Quadisc 71 67.2 12.5 | 0.051 | 0.050 21
Logdisc 889 165.6 14.2 | 0.031 | 0.030 8
SMART 412 | 27930.0 5.4 | 0.021 | 0.020 1
ALLOCS80 220 | 22069.7 * | 0.033 | 0.031 10
k-NN 108 | 124187.0 | 968.0 | 0.028 | 0.088 22
CASTLE 48 370.1 81.4 | 0.051 | 0.047 19

CART FD FD FD | FD FD
INdCART 1656 423.1 | 415.7 | 0.010 | 0.025 6
NewlID 104 3035.0 2.0 | 0.000 | 0.033 13
AC? 7250 5418.0 | 3607.0 | 0.000 | 0.030 8
Baytree 1368 53.1 3.3 | 0.002 | 0.028 7
NaiveBay 956 24.3 2.8 | 0.041 | 0.043 16
CN2 2100 2638.0 9.5 | 0.000 | 0.032 12
C4.5 620 171.0 | 158.0 | 0.014 | 0.022 3
[Trule 377 4470.0 1.9 | 0.041 | 0.046 18
Ca5 167 553.0 7.2 | 0.018 | 0.023 4
Kohonen 715 * * | 0.037 | 0.043 16
DIPOL92 218 2340.0 57.8 | 0.020 | 0.020 1
Backprop 148 5950.0 3.0 | 0.020 | 0.023 4
RBF 253 435.0 26.0 | 0.033 | 0.031 10
LVQ 476 2127.0 52.9 | 0.024 | 0.040 15
Default * * * | 0.051 | 0.047 19

of 5.8% on the supplied data but only 2.35% on the dataset with proper class proportions,
whereas linear discriminants obtained an error rate of 5.4% on the supplied dataand 2.35%
on the modified proportions. (The supplier of the credit management dataset quotes error
rates for neural nets and decision trees of around 5-6% also when trained on the 50-50
dataset). Note that the effective bias is in favour of the non-statistical algorithms here, as
statistical algorithms can cope, to a greater or lesser extent, with prior class proportions
that differ from the training proportions.

In this dataset the classes were chosen by an expert on the basis of the given attributes
(see below) and it is hoped to replace the expert by an algorithm rule in the future. All
attribute values are numeric. The dataset providers supplied the performance figures for
algorithms which have been applied to the data drawn from the same source.Note that the
figures given in Table 9.1 were achieved using the original dataset with equal numbers of
examples of both classes.

The best results (in terms of error rate) were achieved by SMART, DIPOL92 and the
tree algorithms C4.5 and Cal5. SMART is very time consuming to run: however, with
credit type datasets small improvements in accuracy can save vast amounts of money so
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this has to be considered if sacrificing accuracy for time. k-NN did badly due to irrelevant
attributes; with avariable selection procedure, it obtained an error rate of 3.1%. CASTLE,
Kohonen, I Trule and Quadisc perform poorly (the result for Quadisc equalling the default
rule). CASTLE uses only attribute 7 to generate the rule, concluding that thisis the only
relevant attribute for the classification. Kohonen works best for datasets with equal class
distributions which is not the case for the dataset as preprocessed here. At the cost of
significantly increasing the CPU time, the performance might be improved by using a
larger Kohonen net.

The best result for the Decision Tree agorithms was obtained by C4.5 which used the
smallest tree with 62 nodes. Cal5 used 125 nodes and achieved asimilar error rate; NewlD
and AC? used 448 and 415 nodes, respectively, which suggests that they over trained on
this dataset.

9.2.2 Australian credit (Cr.Aust)

Table 9.3: Results for the Australian credit dataset (2 classes, 14 attributes, 690 observa-
tions, 10-fold cross-validation).

Max. | Time(sec.) Error Rate
Algorithm || Storage | Train | Test | Train | Test | Rank
Discrim 366 318 | 6.7 0139 | 0.141 3
Quadisc 353 305 | 7.2 0.185 | 0.207 21
Logdisc 329 210 | 18.0 | 0.125 | 0.141 3
SMART 762 | 246.0 | 0.2 | 0.090 | 0.158 13
ALLOC80 102 | 876.9 * 10194 | 0.201 19
k-NN 758 30| 7.0 | 0.000 | 0.181 15
CASTLE 62 46.8 | 53| 0.144 | 0.148 8
CART 149 684 | 16| 0.145 | 0.145 6
INdCART 668 34.2 | 32.7 | 0.081 | 0.152 10
NewlID 28 152 | 0.3 | 0.000 | 0.181 15
AC? 404 | 400.0 | 14.0 | 0.000 | 0.181 15
Baytree 524 72| 040000 | 0171 14
NaiveBay 420 37| 040136 | 0.151 9
CN2 215 42.0| 30| 0.001| 0.204 20
C45 62 6.0 1.0 | 0.099 | 0.155 12
[Trule 124 | 1736 | 06 | 0.162 | 0.137 2
Ca5 128 240 | 220132 | 0131 1

Kohonen FD FD | FD | FD FD
DIPOL92 52 556 | 2.0 | 0.139 | 0.141 3
Backprop 147 | 1369.8 | 0.0 | 0.087 | 0.154 11
RBF 231 122 | 24| 0.107 | 0.145 6
LVQ 81| 260.8 | 7.2 | 0.065| 0.197 18
Default * * * | 0.440 | 0.440 22

The aim is to devise a rule for assessing applications for credit cards. The dataset has
been studied before (Quinlan, 19873, 1993) . Interpretation of the resultsis made difficult
because the attributes and classes have been coded to preserve confidentiality, however
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examples of likely attributes are given for another credit data set in Section 9.4.3. For
our purposes, we replaced the missing values by the overall medians or means (5% of the
examples had some missing information).

Dueto the confidentiality of the classes, it was not possible to assess the relative costs
of errors nor to assess the prior odds of good to bad customers. We decided therefore to
use the default cost matrix. The use of the default cost matrix isnot realistic. In practiceit
is generally found that it is very difficult to beat the simplerule: “Give credit if (and only
if) the applicant has a bank account”. We do not know, with this dataset, what successthis
default rule would have. The results were obtained by 10-fold cross validation.

The best result here was obtained by Cal5, which used only an average of less than 6
nodesinitsdecision tree. By contrast AC? and New!I D used around 70 nodes and achieved
higher error rates, which suggests that pruning is necessary.

9.3 IMAGE DATASETS
9.3.1 Handwritten digits (Dig44)

This dataset consists of 18000 examples of the digits 0 to 9 gathered from postcodes on
letters in Germany. The handwritten examples were digitised onto images with 16 x 16
pixels and 256 grey levels. They were read by one of the automatic address readers built
by a German company. These wereinitially scaled for height and width but not “thinned”
or rotated in a standard manner. An example of each digitisgivenin Figure 9.1.

F12345673

Fig. 9.1: Hand-written digits from German postcodes (16 x 16 pixels).

The dataset was divided into a training set with 900 examples per digit and a test set
with 900 exampl es per digit. Due to lack of memory, very few agorithms could cope with
the full dataset. In order to get comparable results we used a version with 16 attributes
prepared by averaging over 4 x 4 neighbourhoodsin the original images.

For thek-NN classifier thisaveraging resulted in an increase of the error rate from 2.0%
to 4.7%, whereasfor Discrim the error rate increased from 7.4%to 11.4%. Backprop could
also cope with all 256 attributes but when presented with all 9000 examplesin thetraining
set took an excessively long timeto train (over two CPU days).

The fact that kK-NN and LVQ do quite well is probably explained by the fact that they
make the fewest restrictive assumptions about the data. Discriminant analysis, on the other
hand, assumes that the data follows a multi-variate normal distribution with the attributes
obeying a common covariance matrix and can model only linear aspects of the data. The
fact that Quadisc, using a reduced version of the dataset, does better than Discrim, using
either the full version or reduced version, shows the advantage of being able to model
non-linearity. CASTLE approximates the data by a polytree and this assumption is too
restrictive in this case. Naive Bayes assumes the attributes are conditionally independent.
That Naive Bayes does so badly is explained by the fact that the attributes are clearly not
conditionally independent, since neighbouring pixelsare likely to have similar grey levels.
It is surprising that Cascade does better than Backprop, and this may be attributed to the
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Table 9.4: Resultsfor the 4 x 4 digit dataset (10 classes, 16 attributes, (train, test) = (9000,
9000) observations).

Max. Time (sec.) Error Rate
Algorithm || Storage Train Test | Train | Test | Rank
Discrim 252 65.3 30.2 | 0.111 | 0.114 12
Quadisc 324 194.4 152.0 | 0.052 | 0.054 2
Logdisc 1369 | 5110.2 138.2 | 0.079 | 0.086 10
SMART 337 | 19490.6 33.0 | 0.096 | 0.104 11
ALLOCS80 393 | 1624.0 | 7041.0 | 0.066 | 0.068 5
k-NN 497 | 2230.7 | 2039.2 | 0.016 | 0.047 1
CASTLE 116 252.6 | 4096.8 | 0.180 | 0.170 20
CART 240 251.6 40.8 | 0.180 | 0.160 19
INdCART 884 | 36145 50.6 | 0.011 | 0.154 17
NewlID 532 500.7 112.5 | 0.080 | 0.150 16
AC? 770 | 10596.0 | 22415.0 * 0.155 18
Baytree 186 | 1117.0 59.8 | 0.015 | 0.140 14
NaiveBay 129 42.7 61.8 | 0.220 | 0.233 23
CN2 1926 | 3325.9 119.9 | 0.000 | 0.134 13
C4.52 248 778.1 60.6 | 0.041 | 0.149 15
[Trule 504 | 1800.1 9000 * 0.222 22
Ca5 1159 571.0 55.2 | 0.118 | 0.220 21
Kohonen 646 | 67176.0 | 2075.1 | 0.051 | 0.075 7
DIPOL92 110 191.2 43.6 | 0.065 | 0.072 6
Backprop 884 | 28910.0 110.0 | 0.072 | 0.080 8
RBF 268 | 1400.0 250.0 | 0.080 | 0.083 9
LVQ 249 | 13426 123.0 | 0.040 | 0.061 3
Cascade 2442 | 19171.0 1.0 | 0.064 | 0.065 4
Default * * * | 0.900 | 0.900 24

Backprop procedure being trapped in a local minimum or to having insufficient time to
train. Either way, Backprop should really do better here, and one suggestion would be
to start the Backprop procedure with the parameters found from Cascade. In this project
we ran all algorithms independently, without reference to others, and we did not try to
hybridise or run procedures in tandem, athough thereis no doubt that there would be great
benefit from pooling the results.

The above dataset is close to “raw” pixel data. A minimum of processing has been
carried out, and the results could almost certainly be improved upon using deformable
templates or some other statistical pattern recognition technique. Note, however, that
comparison of performance across handwritten digit datasets should not be made, since
they vary widely in quality. In this dataset only zeroes and sevens with strokes are used,
and there are afew intentional “mistakes’, for example adigitised “!” isclassified asal,
and the capital “B” is classed as an 8.

The original 256 attribute dataset has been analysed by Kressel (1991) using (i) a
multilayer perceptron with one hidden layer and (ii) linear discriminants with selected
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quadratic terms. Both methods achieved about 2% error rates on the test set. (2.24% for

the linear/quadratic classifier and 1.91% errors for the MLP). hidden layer.

9.3.2 Karhunen-Loevedigits (KL)
Table 9.5: Resultsfor the KL digits dataset (10 classes, 40 attributes, (train, test) = (9000,

9000) observations).

Max. Time (sec.) Error Rate
Algorithm || Storage Train Test | Train | Test | Rank
Discrim 306 87.1 53.9 | 0.070 | 0.075 10
Quadisc 1467 1990.2 | 1647.8 | 0.016 | 0.025 3
Logdisc 1874 | 31918.3 194.4 | 0.032 | 0.051 7
SMART 517 | 174965.8 57.7 | 0.043 | 0.057 9
ALLOC80 500 | 23239.9 | 23279.3 | 0.000 | 0.024 2
k-NN 500 0.0 | 6706.4 | 0.000 | 0.020 1
CASTLE 779 4535.4 | 56052.7 | 0.126 | 0.135 12

CART FD FD FD | FD FD
INdCART 341 3508.0 46.9 | 0.003 | 0.170 16
NewlID 1462 779.0 109.0 | 0.000 | 0.162 13
AC? 1444 | 15155.0 937.0 | 0.000 | 0.168 15
Baytree 289 1100.4 53.0 | 0.006 | 0.163 14
NaiveBay 1453 64.9 76.0 | 0.205 | 0.223 20
CN2 732 2902.1 99.7 | 0.036 | 0.180 17
C45 310 1437.0 35.5 | 0.050 | 0.180 17
[Trule 1821 * | 81750 * 0.216 19
Ca5 1739 3053.4 64.3 | 0.128 | 0.270 21

Kohonen FD FD FD | FD FD
DIPOL92 221 462.8 80.0 | 0.030 | 0.039 5
Backprop 1288 | 129600.0 4.0 | 0.041 | 0.049 6
RBF 268 1700.0 580.0 | 0.048 | 0.055 8
LVQ 368 1692.1 158.1 | 0.011 | 0.026 4
Cascade 2540 | 10728.0 1.0 | 0.063 | 0.075 10
Default * * * | 0.900 | 0.900 22

An alternative data reduction technique (to the 4 x 4 averaging above) was carried out
using thefirst 40 principal components. It isinteresting that, with the exception of Cascade
correlation, the order of performance of the algorithms is virtually unchanged (see Table
9.5) and that the error rates are now very similar to those obtained (where available) using
theoriginal 16 x 16 pixels.

Theresultsfor the digits dataset and the KL digitsdataset are very similar so aretreated
together. Most algorithms perform afew percent better on the KL digits dataset. The KL
digits dataset is the closest to being normal. This could be predicted beforehand, as it
is alinear transformation of the attributes that, by the Central Limit Theorem, would be
closer to normal than the original. Because there are very many attributes in each linear
combination, the KL digits dataset is very close to normal (skewness = 0.1802, kurtosis =
2.9200) as against the exact normal values of (skewness = 0, kurtosis = 3.0).
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In both Digits datasets dataset K-NN comestop and RBF and “ALLOC80” aso do fairly
well —in fact ALLOCS8O0 failed and an equivalent kernel method, with smoothing parameter
asymptotically chosen, was used. These three algorithms are all closely related. Kohonen
also doeswell inthe Digits dataset (but for some reason failed on KL digits); Kohonen has
some similaritieswith k-NN type algorithms. The success of such a gorithms suggests that
the attributes are equally scaled and equally important. Quadisc also does well, coming
second in both datasets. The KL version of digits appears to be well suited to Quadisc:
there is a substantial difference in variances (SD_ratio = 1.9657), while at the same time
the distributions are not too far from multivariate normality with kurtosis of order 3.

Backprop and LVQ do quite well on the 4 x 4 digits dataset, bearing out the oft-
repeated claim in the neura net literature that neural networks are very well suited to
pattern recognition problems (e.g. Hecht-Nelson, 1989) .

The Decision Tree algorithms do not do very well on these digits datasets. The tree
sizes aretypically in the region of 700-1000 nodes.

9.3.3 Vehiclesilhouettes (Vehicle)

_d
- g

Fig. 9.2: Vehiclesilhouettes prior to high level feature extraction. These are clockwise from top left:
Double decker bus, Opel Manta 400, Saab 9000 and Chevrolet van.

A problem in object recognition is to find a method of distinguishing 3D objects within a
2D image by application of an ensemble of shape feature extractors to the 2D silhouettes
of the objects. This data was originally gathered at the Turing Institute in 1986-87 by
J.P. Siebert. Four “Corgi” model vehicles were used for the experiment: a double decker
bus, Chevrolet van, Saab 9000 and an Opel Manta 400. This particular combination of
vehicles was chosen with the expectation that the bus, van and either one of the carswould
be readily distinguishable, but it would be more difficult to distinguish between the cars.
The vehicleswere rotated and a number of image silhouettes were obtained from avariety
of orientations and angles. All images were captured with a spatial resolution of 128 x
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128 pixels quantised to 64 grey levels.

These images were cleaned up, binarised and subsequently processed to produce 18
variables intended to characterise shape. For example, circularity, radius ratio, compact-
ness, scaled variance along major and minor axes, etc. A total of 946 examples were
obtained but 100 were retained in case of dispute, so the trials reported here used only 846
examples and the algorithms were run using 9-fold cross-validation to obtain error rates,
givenin Table 9.6

Table 9.6: Results for the vehicle dataset (4 classes, 18 attributes, 846 observations, 9-fold
cross-validation).

Max. Time (sec.) Error Rate
Algorithm || Storage Train | Test | Train | Test | Rank
Discrim 231 16.3 3.0 | 0.202 | 0.216 6
Quadisc 593 2509 | 286 | 0.085 | 0.150 1
Logdisc 685 757.9 8.3 | 0.167 | 0.192 4
SMART 105 | 2502.5 0.7 | 0.062 | 0.217 7
ALLOCS80 227 30.0 | 10.0 | 0.000 | 0.173 3
k-NN 104 163.8 | 22.7 | 0.000 | 0.275 11
CASTLE 80 131 1.8 | 0.545 | 0.505 22
CART 158 244 0.8 | 0.284 | 0.235 8
INdCART 296 1133 0.4 | 0.047 | 0.298 16
NewlID * 18.0 1.0 | 0.030 | 0.298 16
AC? 776 | 31350 | 121.0 * 0.296 15
Baytree 71 271 05| 0.079 | 0.271 10
NaiveBay 56 54 0.6 | 0.519 | 0.558 23
CN2 * 100.0 1.0 | 0.018 | 0.314 19
C4.5° * 174.0 2.0 | 0.065 | 0.266 9
[Trule 307 985.3 * * 0.324 20
Ca5 171 233 05| 0.068 | 0.279 12
Kohonen 1441 | 5962.0 | 50.4 | 0.115 | 0.340 21
DIPOL92 64 150.6 82| 0.079 | 0.151 2
Backprop 186 | 14411.2 3.7 | 0.168 | 0.207 5
RBF 716 | 17359 | 11.8 | 0.098 | 0.307 18
LVQ 77 229.1 28| 0.171 | 0.287 14
Cascade 238 289.0 1.0 | 0.263 | 0.280 13
Default * * * | 0.750 | 0.750 24

One would expect this dataset to be non-linear since the attributes depend on the angle
at which the vehicle isviewed. Therefore they are likely to have a sinusoidal dependence,
although this dependence was masked by issuing the dataset in permuted order. Quadisc
does very well, and thisis due to the highly non-linear behaviour of this data. One would
have expected the Backprop algorithm to perform well on this dataset since, it is claimed,
Backprop can successfully model the non-linear aspects of a dataset. However, Backprop
is not straightforward to run. Unlike discriminant analysis, which requires no choice of
free parameters, Backprop requires essentially two free parameters - the number of hidden



140 Dataset descriptionsand results [Ch.9

nodes and the training time. Neither of these is straightforward to decide. This figure
for Backprop was obtained using 5 hidden nodes and a training time of four hours for
the training time in each of the nine cycles of cross-validation. However, one can say
that the sheer effort and time taken to optimise the performance for Backprop is a major
disadvantage compared to Quadisc which can achieve a much better result with alot less
effort. DIPOL92 does nearly aswell as Quadisc. As compared with Backprop it performs
better and is quicker to run. It determines the number of nodes (hyperplanes, neurons)
and the initial weights by a reasonable procedure at the beginning and doesn’t use an
additional layer of hidden units but instead a symbolic level. The poor performance of
CASTLE is explained by the fact that the attributes are highly correlated. In consequence
the relationship between classand attributesisnot built strongly into the polytree. Thesame
explanation accounts for the poor performance of Naive Bayes. k-NN, which performed
so well on the raw digits dataset, does not do so well here. This is probably because in
the case of the digits the attributeswere all commensurate and carried equal weight. In the
vehicle dataset the attributes all have different meaningsand it is not clear how to build an
appropriate distance measure.

The attributes for the vehicle dataset, unlike the other image analysis, were generated
using image analysis tools and were not simply based on brightness levels. This suggests
that the attributes are less likely to be equally scaled and equally important. This is
confirmed by the lower performances of k-NN, LVQ and Radial Basis functions, which
treat all attributes equally and have a built in mechanism for normalising, which is often
not optimal. ALLOCS80 did not perform well here, and so an alternative kernel method was
used which allowed for correlations between the attributes, and this appeared to be more
robust than the other three algorithms although it still failsto learn the difference between
the cars. The original Siebert (1987) paper showed machine learning performing better
than k-NN, but there is not much support for thisin our results. Thetreesizesfor AC? and
Cal5 were 116 and 156 nodes, respectively.

The high value of fract2 = 0.8189 (see Table 9.30) might indicate that linear discrimina-
tion could be based on just two discriminants. This may relate to the fact that the two cars
are not easily distinguishable, so might be treated as one (reducing dimensionality of the
mean vectors to 3D). However, although the fraction of discriminating power for the third
discriminant is low (1 - 0.8189), it is still statistically significant, so cannot be discarded
without a small loss of discrimination.

9.34 Letter recognition (L etter)

The dataset was constructed by David J. Slate, Odesta Corporation, Evanston, IL 60201.
The objective here is to classify each of alarge number of black and white rectangular
pixel displays as one of the 26 capital letters of the English alphabet. (One-shot train and
test was used for the classification.) The character images produced were based on 20
different fonts and each letter within these fonts was randomly distorted to produce afile
of 20000 unique images. For each image, 16 numerical attributes were calculated using
edge counts and measures of statistical moments which were scaled and discretised into a
range of integer valuesfrom O to 15.

Perfect classification performance is unlikely to be possible with this dataset. One of
the fonts used, Gothic Roman, appears very different from the others.
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Table 9.7: Results for the letters dataset (26 classes, 16 attributes, (train, test) = (15000,
5000) observations).

Max. Time (sec.) Error Rate
Algorithm || Storage Train Test | Train | Test | Rank
Discrim 78 325.6 84.0 | 0.297 | 0.302 18
Quadisc 80 3736.2 | 1222.7 | 0.101 | 0.113 4
Logdisc 316 5061.6 38.7 | 0.234 | 0.234 12
SMART 881 | 400919.0 | 184.0 | 0.287 | 0.295 17
ALLOC80 758 | 39574.7 * | 0.065 | 0.064 1
k-NN 200 14.8 | 2135.4 | 0.000 | 0.068 2
CASTLE 1577 9455.3 | 29334 | 0.237 | 0.245 13

CART FD FD FD | FD FD
INdCART 3600 1098.2 | 1020.2 | 0.010 | 0.130 8
NewlID 376 1056.0 2.0 | 0.000 | 0.128 7

AC? 2033 2529.0 92.0 | 0.000 | 0.245 13
Baytree 2516 275.5 7.1 0.015 | 0.124 6
NaiveBay 1464 74.6 17.9 | 0.516 | 0.529 20
CN2 * | 40458.3 52.2 | 0.021 | 0.115 5
C4.5 1042 309.0 | 292.0 | 0.042 | 0.132 9

[Trule 593 | 223254 69.1 | 0.585 | 0.594 21
Ca5 1554 1033.4 8.2 | 0.158 | 0.253 16
Kohonen 1204 * *10.218 | 0.252 15
DIPOL92 189 1303.4 79.5 | 0.167 | 0.176 10
Backprop 154 | 277445.0 22.0| 0.323 | 0.327 19
RBF 418 * *10.220 | 0.233 11
LVQ 377 1487.4 47.8 | 0.057 | 0.079 3
Default * * * 1 0.955 | 0.960 22

Quadiscisthe best of the classical statistical algorithms on this dataset. Thisisperhaps
not surprising since the measures data gives some support to the assumptions underlying
the method. Discrim does not perform well although the logistic version is a significant
improvement. SMART is used here with a 22 term model and its poor performance
is surprising. A number of the attributes are non-inear combinations of some others
and SMART might have been expected to model this well. ALLOCB80 achieves the best
performance of all with k-NN close behind. In this dataset all the attributes are pre—scaled
and all appear to beimportant so good performancefrom k-NN isto be expected. CASTLE
constructs a polytree with only one attribute contributing to the classification which is too
restrictive with this dataset. Naive Bayes assumes conditional independence and this is
certainly not satisfied for a number of the attributes. NewID and AC? were only trained
on 3000 examples drawn from the full training set and that in part explains their rather
uninspiring performance. NewID builds a huge tree containing over 1760 nodes while the
AC? treeisabout half the size. Thisdifference probably explains some of the differencein
their respective results. Cal5 and C4.5 aso build complex trees while CN2 generates 448
rules in order to classify the training set. ITrule is the poorest algorithm on this dataset.
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Generally we would not expect ITrule to perform well on datasets where many of the
attributes contributed to the classification asit is severely constrained in the complexity of
the rulesit can construct. Of the neural network agorithms, Kohonen and LV Q would be
expected to perform well for the same reasons as k-NN. Seen in that light, the Kohonen
result is alittle disappointing.

In a previous study Frey & Slate (1991) investigated the use of an adaptive classifier
system and achieved a best error rate of just under 20%.

9.3.5 Chromosomes (Chrom)

Table 9.8: Results for the chromosome dataset (24 classes, 16 attributes, (train, test) =
(20000, 20 000) observations).

Max. Time (sec.) Error Rate
Algorithm || Storage Train Test | Train | Test | Rank
Discrim 1586 830.0 357.0 | 0.073 | 0.107 3
Quadisc 1809 1986.3 | 1607.0 | 0.046 | 0.084 1
Logdisc 1925 | 20392.8 2914 | 0.079 | 0.131 8
SMART 1164 | 307515.4 929 | 0.082 | 0.128 7

ALLOCS80 1325 | 184435.0 * 10192 | 0.253 18

k-NN 1097 20.1 | 14140.6 | 0.000 | 0.123 5

CASTLE 279 230.2 96.2 | 0.129 | 0.178 15
CART FD FD FD | FD FD

INdCART 3768 2860.3 | 2763.8 | 0.007 | 0.173 11
NewlID 1283 552.0 17.0 | 0.000 | 0.176 14
AcC? 1444 1998.0 138.0 | 0.000 | 0.234 16
Baytree 2840 1369.5 29.7 | 0.034 | 0.164 10
NaiveBay 1812 107.8 61.0 | 0.260 | 0.324 19
CN2 1415 9192.6 131.9 | 0.010 | 0.150 9

C45 589 1055.3 * 1 0.038 | 0.175 13
[Trule 637 | 34348.0 30.0 | 0.681 | 0.697 20
Ca5 1071 564.5 315 | 0.142 | 0.244 17
Kohonen 1605 * * 1 0109 | 0.174 12
DIPOL92 213 961.8 258.2 | 0.049 | 0.091 2
Backprop FD FD FD | FD FD
RBF 471 * * 1 0.087 | 0.129 6
LVQ 373 1065.5 * | 0.067 | 0.121 4
Default * * * | 0.956 | 0.956 21

This data was obtained via the MRC Human Genetics Unit, Edinburgh from the routine
amniotic 2668 cell data set (courtesy C. Lundsteen, Righospitalet, Copenhagen). In our
trials we used only 16 features (and 40000 examples) which are a subset of a larger
database which has 30 features and nearly 80000 examples. The subset was selected to
reduce the scale of the problem, and selecting the features defined as level 1 (measured
directly from the chromosomeimage) and level 2 (measuresrequiring the axis, e.g. length,
to be specified). We omitted observations with an “unknown” class as well as features
with level 3 (requiring both axis and profile and knowledge of the chromosome polarity)
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and level 4 (requiring both the axis and both the polarity and the centrometre location).
Classification was done using one-shot train-and-test.

Theresult for ALLOC80isvery poor, and thereason for thisisnot clear. An alternative
kernel classifier (using a Cauchy kernel, to avoid numerical difficulties) gave an error rate
of 10.67% which is much better. Although quadratic discriminants do best here, there
is reason to believe that its error rate is perhaps not optimal as there is clear evidence of
non-normality in the distribution of the attributes.

The best of Decision Tree results is obtained by CN2 which has 301 rules. C4.5 and
AC? have 856 and 626 terminal nodes, respectively, and yet obtain very differnt error rates.
By contrast NewlID has 2967 terminal nodes, but does about as well as C4.5.

Further details of this dataset can be found in Piper & Granum (1989) who have done
extensive experiments on selection and measurement of variables. For the dataset which
resembl ed the one above most closely, they achieved an error rate of 9.2%.

9.3.6 Landsat satelliteimage (Satlm)

Theoriginal Landsat datafor this database was generated from data purchased from NASA
by the Australian Centre for Remote Sensing, and used for research at the University of
New South Wales. The sample database was generated taking a small section (82 rowsand
100 columns) from the original data. The classification for each pixel was performed on
the basis of an actual site visit by Ms. Karen Hall, when working for Professor John A.
Richards, at the Centre for Remote Sensing. The database is a (tiny) sub-area of a scene,
consisting of 82 x 100 pixels, each pixel covering an area on the ground of approximately
80*80 metres. The information given for each pixel consists of the class value and the
intensitiesin four spectral bands (fromthe green, red, and infra-red regions of the spectrum).

The original data are presented graphically in Figure 9.3. Thefirst four plots (top row
and bottom left) show the intensities in four spectral bands: Spectral bands 1 and 2 are
in the green and red regions of the visible spectrum, while spectral bands 3 and 4 are in
the infra-red (darkest shadings represent greatest intensity). The middle bottom diagram
shows the land use, with shadings representing the seven original classesin the order: red
soil, cotton crop, vegetation stubble, mixture (all types present), grey soil, damp grey soil
and very damp grey soil, with red as lightest and very damp grey as darkest shading. Also
shown (bottom right) are the classes as predicted by linear discriminants. Note that the
most accurate predictions are for cotton crop (rectangular region bottom left of picture),
and that the predicted boundary damp-vary damp grey soil (L-shape top left of picture) is
not well positioned.

So that information from the neighbourhood of a pixel might contributeto the classifi-
cation of that pixel, the spectraof the eight neighbours of apixel wereincluded as attributes
together with the four spectraof that pixel. Each line of data correspondsto a3 x 3 square
neighbourhood of pixels completely contained within the 82 x 100 sub-area. Thus each
line contains the four spectral bands of each of the 9 pixelsinthe 3 x 3 neighbourhood and
the class of the central pixel which was one of: red soil, cotton crop, grey soil, damp grey
soil, soil with vegetation stubble, very damp grey soil. The “mixed-pixels’, of which there
were 8.6%, were removed for our purposes, so that there are only six classesin this dataset.

The examples were randomised and certain lines were deleted so that simple recon-
struction of the original image was not possible. The datawere divided into atrain set and
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Fig. 9.3: Satelliteimage dataset. Spectral band intensities as seen from asatellitefor asmall (8.2¥6.6
km) region of Australia. Also given are the actual land use as determined by on-site visit and the
estimated classes as given by linear discriminants.

atest set with 4435 examplesin the train set and 2000 in the test set and the error rates are
givenin Table 9.9.

In the satellite image dataset k-NN performs best. Not surprisingly, radial basis func-
tions, LVQand “ALLOC80" also dofairly well asthesethreealgorithmsareclosely related.
[Infact, ALLOCSO failed on this dataset, so an equivalent method, using an asymptotically
chosen bandwidth, was used.] Their success suggests that all the attributes are equally
scaled and equally important. There appearsto be little to choose between any of the other
algorithms, except that Naive Bayes does badly (and its close relative CASTLE also does
relatively badly).

The Decision Tree algorithms perform at about the same level, with CART giving the
best result using 66 nodes. Cal5 and AC? used treeswith 156 and 116 nodes, respectively,
which suggests more pruning is desired for these algorithms.

Thisdataset hasthe highest correl ation between attributes(corr.abs= 0.5977). Thismay
partly explain thefailure of Naive Bayes (assumes attributesare conditionally independent),
and CASTLE (confused if several attributes contain equal amounts of information). Note
that only three canonical discriminants are sufficient to separate al six class means (fract3
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Table 9.9: Results for the satellite image dataset (6 classes, 36 attributes, (train, test) =
(4435, 2000) observations).

Maximum Time (sec.) Error Rate
Algorithm Storage Train Test | Train | Test | Rank
Discrim 254 67.8 119 | 0.149 | 0.171 19
Quadisc 364 157.0 52.9 | 0.106 | 0.155 14
Logdisc 1205 | 44141 41.2 | 0.119 | 0.163 17
SMART 244 | 27376.2 10.8 | 0.123 | 0.159 16
ALLOCS80 244 | 63840.2 | 28756.5 | 0.036 | 0.132 5
k-NN 180 | 2104.9 944.1 | 0.089 | 0.094 1
CASTLE * 75.0 80.0 | 0.186 | 0.194 21
CART 253 329.9 14.2 | 0.079 | 0.138 6
INdCART 819 | 2109.2 9.2 | 0.023 | 0.138 6
NewlID 1800 226.0 53.0 | 0.067 | 0.150 10
AC? * | 8244.0 | 17403.0 * 0.157 15
Baytree 161 247.8 10.2 | 0.020 | 0.147 9
NaiveBay 133 75.1 16.5 | 0.308 | 0.287 22
CN2 682 | 1664.0 35.8 | 0.010 | 0.150 10
C4.5% 1150 434.0 1.0 | 0.040 | 0.150 10

[Trule FD FD FD | FD FD
Ca5 412 764.0 7.2 | 0125 | 0.151 13
Kohonen * | 12627.0 129.0 | 0.101 | 0.179 20
DIPOL92 293 764.3 110.7 | 0.051 | 0.111 3
Backprop 469 | 72494.5 52.6 | 0.112 | 0.139 8
RBF 195 564.2 741 | 0111 | 0.121 4
LVQ 227 | 12732 44.2 | 0.048 | 0.105 2
Cascade 1210 | 7180.0 10 | 0.112 | 0.163 17
Default * * * | 0.758 | 0.769 23

= 0.9691). This may be interpreted as evidence of seriation, with the three classes “grey
soil”, “ damp grey soil” and “very damp grey soil” forming a continuum. Equally, thisresult
can beinterpreted asindicating that the original four attributesmay be successfully reduced
to three with no loss of information. Here “information” should be interpreted as mean
square distance between classes, or equivalently, as the entropy of a normal distribution.

The examples were created using a3 x 3 neighbourhood so it is no surprise that there
is a very large correlation amongst the 36 variables. The results from CASTLE suggest
that only three of the variables for the centre pixel are necessary to classify the observation.
However, other algorithms found a significant improvement when information from the
neighbouring pixels was used.

9.3.7 Image segmentation (Segm)

The instances were drawn randomly from a database of 7 outdoor colour images. These
were hand segmented to create a classification for every pixel as one of brickface, sky,
foliage, cement, window, path, grass. There were 19 attributes appropriate for each 3 x 3
region, for example summary measures of contrast in the vertical and horizontal directions.
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Table 9.10: Results for the image segmentation dataset (7 classes, 11 attributes, 2310
observations, 10-fold cross-validation).

Max. Time (sec.) Error Rate
Algorithm || Storage Train Test | Train | Test | Rank
Discrim 365 73.6 6.6 | 0.112 | 0.116 19
Quadisc 395 49.7 155 | 0.155 | 0.157 20
Logdisc 535 301.8 8.4 | 0.098 | 0.109 17
SMART 144 | 13883.9 0.5 | 0.039 | 0.052 11
ALLOCS80 124 | 15274.3 * | 0.033 | 0.030 1
k-NN 171 5.0 28.0 | 0.000 | 0.077 16
CASTLE 142 465.4 38.3 | 0.108 | 0.112 18
CART 175 79.0 2.3 | 0.005 | 0.040 6
INdCART 744 | 14105 | 1325.1 | 0.012 | 0.045 9
NewlID * 386.0 2.0 | 0.000 | 0.034 4
AC? 7830 | 18173.0 | 479.0 | 0.000 | 0.031 2
Baytree 676 677.3 26.9 | 0.000 | 0.033 3
NaiveBay 564 516.4 29.0 | 0.260 | 0.265 21
CN2 174 114.2 2.7 | 0.003 | 0.043 8
C4.5 57 142.0 1.3 | 0.013 | 0.040 6
[Trule 139 545.7 19.9 | 0.445 | 0.455 22
Ca5 373 247.1 13.7 | 0.042 | 0.062 13
Kohonen 233 | 11333.2 8.5 | 0.046 | 0.067 14
DIPOL92 91 503.0 25.0 | 0.021 | 0.039 5
Backprop 148 | 88467.2 0.4 | 0.028 | 0.054 12
RBF 381 65.0 11.0 | 0.047 | 0.069 15
LVQ 123 368.2 6.4 | 0.019 | 0.046 10
Default * * * | 0.760 | 0.760 23

Average error rates were obtained via 10-fold cross-validation, and are given in Table 9.10.

AC? did very well here and used an average of 52 nodes in its decision trees. It is
interesting here that ALL OC80 does so much better than k-NN. The reason for this isthat
ALLOCS80 has a variable selection option which was initially run on the data, and only
5 of the original attributes were finaly used. When 14 variables were used the error rate
increased to 21%. Indeed asimilar attribute selection procedure increased the performance
of k-NN to a very similar error rate. This discrepancy raises the whole issue of pre-
processing the data before algorithms are run, and the substantial difference this can make.
It is clear that there will till be a place for intelligent analysis alongside any black-box
techniques for quite some timel

9.3.8 Cut

This dataset was supplied by a StatLog partner for whom it is commercially confidential.
The dataset was constructed during an investigation into the problem of segmenting indi-
vidual charactersfrom joined written text. Figure 9.4 shows an example of theword “Eins’
(German for One). Each example consists of a number of measurements made on the text
relative to a potential cut point along with a decision on whether to cut the text at that
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Fig. 9.4: The German word “Eins’ with an indication of where it should be cut to separate the
individual letters.

point or not. As supplied, the dataset contained examples with 50 real valued attributes.
In an attempt to assess the performance of algorithms relative to the dimensionality of the
problem, a second dataset was constructed from the original using the “best” 20 attributes
selected by stepwise regression on the whole dataset. Thiswasthe only processing carried
out on this dataset. The original and reduced datasets were tested. In both cases training
sets of 11220 examples and test sets of 7480 were used in asingle train-and-test procedure
to assess accuracy.

Although individual results differ between the datasets, the ranking of methods is
broadly the same and so we shall consider all the results together. The default rule in both
cases would give an error rate of around 6% but since Kohonen, the only unsupervised
method in the project, achieves an error rate of 5% for both datasetsit seems reasonable to
choose this value as our performance threshold.

This is a dataset on which k-nearest neighbour might be expected to do well; all
attributes are continuous with little correlation, and this proves to be the case. Indeed,
with a variable selection option k-NN obtained an error rate of only 2.5%. Conversely,
the fact that K-NN does well indicates that many variables contribute to the classification.
ALLOCS80 approachesk-NN performance by undersmoothing leading to overfitting on the
training set. While this may prove to be an effective strategy with large and representative
training sets, it is not recommended in general. Quadisc, CASTLE and Naive Bayes
perform poorly on both datasets because, in each case, assumptions underlying the method
do not match the data.

Quadisc assumes multi—variate normality and unequal covariance matrices and neither
of these assumptionsis supported by the data measures. CASTLE achieves default perfor-
mance using only one variable, in line with the assumption implicit in the method that only
a small number of variables will determine the class. Naive Bayes assumes conditional
independence amongst the attributes and this is unlikely to hold for a dataset of thistype.

Machine learning algorithms generally perform well although with wide variation in
tree sizes. Baytree and INdCART achieve low error rates at the expense of building trees
containing more than 3000 nodes. C4.5 performs almost as well, though building a tree
containing 159 terminal nodes. Cal5 producesavery parsimonioustree, containing only 26
nodes for the Cut20 dataset, which is very easy to understand. AC? and New!D build trees
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Table 9.11: Comparative results for the Cut20 dataset (2 classes, 20 attributes, (train, test)
= (11 220, 7480) observations).

Max. Time (sec.) Error Rate
Algorithm || Storage Train Test | Train | Test | Rank
Discrim 71 1155 22.7 | 0.052 | 0.050 15
Quadisc 75 394.8 | 214.2 | 0.090 | 0.088 22
Logdisc 1547 587.0 | 101.2 | 0.046 | 0.046 13
SMART 743 | 21100.5 21.8 | 0.047 | 0.047 14
ALLOC80 302 | 32552.2 * | 0.033 | 0.037 4
k-NN 190 | 54810.7 | 6052.0 | 0.031 | 0.036 2
CASTLE 175 | 1006.0 | 368.5 | 0.060 | 0.061 17

CART FD FD FD | FD FD
INdCART 1884 * * | 0.002 | 0.040 6
NewlID 1166 | 14450 3.0 | 0.000 | 0.039 5
AC? 915 917.0 48.0 | 0.000 | 0.063 19

Baytree 1676 145.3 259 | 0.002 | 0.034 1
NaiveBay 1352 83.6 276 | 0.074 | 0.077 20
CN2 9740 | 5390.0 | 470.0 | 0.000 | 0.042 8
C4.5 2436 293.0 28.0 | 0.010 | 0.036 2

[Trule 630 | 11011.0 50.9 | 0.083 | 0.082 21
Ca5 188 455.5 234 | 0.043 | 0.045 11
Kohonen 1046 * * | 0.046 | 0.050 15
DIPOL92 379 506.0 36.1 | 0.043 | 0.045 11
Backprop 144 | 88532.0 7.0 | 0.037 | 0.043 9
RBF 901 | 6041.0 | 400.0 | 0.042 | 0.044 10
LVQ 291 | 1379.0 86.9 | 0.029 | 0.041 7

* *

Default * 0.059 | 0.061 17

with 38 and 339 nodes, respectively. 1Trule, like CASTLE, cannot deal with continuous
attributes directly and also discretises such variables before processing. The major reason
for poor performance, though, is that tests were restricted to conjunctions of up to two
attributes. CN2, which tested conjunctions of up to 5 attributes, achieved a much better
error rate. AC? could not handle the full dataset and the results reported are for a 10%
subsample.

It isinteresting that almost al algorithms achieve a better result on Cut50 than Cut20.
This suggests that the attributes excluded from the reduced dataset contain significant
discriminatory power. Cal5 achieves its better performance by building a tree five times
larger than that for Cut20. NewID and AC? both build significantly smaller trees (196
and 28 nodes) and classify more accurately with them. C4.5 uses a tree with 142 nodes
with a slight improvement in accuracy. Similarly CN2 discovers asmaller set of rules for
Cut50 which deliver improved performance. This general improvement in performance
underlines the observation that what is “best” or “optimal” in linear regression terms may
not be “best” for other agorithms.
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Table 9.12: Results for the Cut50 dataset (2 classes, 50 attributes, (train, test) = (11220,
7480) observations).

Max. Time (sec.) Error Rate
Algorithm || Storage Train Test | Train | Test | Rank
Discrim 73 449.2 52.5 | 0.052 | 0.050 15
Quadisc 77| 2230.7 | 1244.2 | 0.092 | 0.097 21
Logdisc 1579 | 19904 | 227.0 | 0.038 | 0.037 7
SMART 779 | 63182.0 50.4 | 0.035 | 0.039 12
ALLOCS80 574 | 32552.2 * | 0.030 | 0.034 3
k-NN 356 | 62553.6 | 6924.0 | 0.025 | 0.027 1
CASTLE 765 | 7777.6 | 1094.8 | 0.060 | 0.061 18

CART FD FD FD | FD FD

INdCART 3172 | 2301.4 | 2265.4 | 0.004 | 0.037 7

NewlID 1166 | 1565.0 2.0 | 0.000 | 0.038 10

AC? 1812 | 1850.0 47.0 | 0.000 | 0.054 18

Baytree 2964 324.0 65.4 | 0.001 | 0.035 4

NaiveBay 2680 219.4 69.9 | 0.106 | 0.112 22
*

CN2 28600.0 | 501.0 | 0.000 | 0.030 2
C4.5 * 711.0 31.0 | 0.008 | 0.035 4
[Trule 642 | 61287.5 * * 0.084 20
Ca5 508 | 11319 58.7 | 0.030 | 0.037 7
Kohonen * * * | 0.046 | 0.050 15
DIPOL92 884 | 12425 96.9 | 0.031 | 0.036 6
Backprop 146 | 18448.0 12.0 | 0.041 | 0.041 14
RBF 649 | 6393.0 | 1024.0 | 0.036 | 0.038 10
LVQ 476 | 2991.2 | 205.0 | 0.024 | 0.040 13
Default * * * |1 0.059 | 0.061 17

9.4 DATASETSWITH COSTS

The following three datasets were all tackled using cross-validation. The “error rates’
that have been used as a measure of performance are now replaced by average costs per
observation (averaged over all cyclesin cross-validation). The average cost is obtained for
all algorithms by multiplying the confusion matrix by the cost matrix, summing the entries,
and dividing by the number of observations. In the case of a cost matrix in which all errors
have unit cost — normally referred to as “no cost matrix” — this measure of average cost is
the same asthe error rates quoted previously. Note that some algorithmsdid not implement
the cost matrix, athough in principle this would be straightforward. However, we still
include al of the algorithms in the tables, partly for completeness but primarily to show
the effect of ignoring the cost matrix. In general, those algorithms which do worse than the
Default rule are those which do not incorporate costs into the decision making process.

9.4.1 Headinjury (Head)

The data set is a series of 1000 patients with severe head injury collected prospectively by
neurosurgeons between 1968 and 1976. Thishead injury study wasinitiated in the Institute
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of Neurological Sciences, Glasgow. After 4 years 2 Netherlands centres (Rotterdam and
Groningen) joined the study, and late data came a so from Los Angeles. The details of the
data collection are given in Jennet et al. (1979).

The original purpose of the head injury study was to investigate the feasibility of pre-
dicting the degree of recovery which individual patients would attain, using data collected
shortly after injury. Severely head injured patients require intensive and expensive treat-
ment; even with such care almost half of them die and some survivors remain seriously
disabled for life. Clinicians are concerned to recognise which patients have potential for
recovery, so asto concentrate their endeavours on them. Outcome was categorised accord-
ing to the Glasgow Outcome Scale, but the five categories described therein were reduced
to three for the purpose of prediction. These were:

d/v dead or vegetative;

sev severe disability;

m/g moderate disability or good recovery.
Table 9.13 givesthe different cost of various possible misclassifications.
Table 9.13: Misclassification costs for the head injury dataset. The column represents the
predicted class, and the row the true class.

| dv. sev m/g
dv | O 10 75
sev | 10 0 90
m/g | 750 100 O

The dataset had a very large number of missing values for patients (about 40%) and
these were replaced with the median value for the appropriate class. This makes our
version of the data considerably easier for classification than the original data, and has
the merit that all procedures can be applied to the same dataset, but has the disadvantage
that the resulting rules are unreadlistic in that this replacement strategy is not possible for
real data of unknown class. Nine fold cross-validation was used to estimate the average
misclassification cost. The predictive variables are age and various indicators of the brain
damage, as reflected in brain dysfunction. These are listed below. Indicators of brain
dysfunction can vary considerably during the few days after injury. Measurements were
therefore taken frequently, and for each indicant the best and worst states during each of
a number of successive time periods were recorded. The data supplied were based on the
best state during the first 24 hours after the onset of coma. The EMV scorein thetableis
known in the medical literature as the Glasgow Coma Scale.

e Age, groupedinto decades0 — 9,10 — 19,...,60 — 69, 70+
e Thesumof E, M and V scores, i.e. EMV score, i.e.
Eye opening in response to stimulation (E)
Motor response of best limb in responseto stimulation (M)

Verbal response to stimulation (V)
e Motor Response Pattern. An overall summary of the motor responsesin all four limbs
e Changein neurological function over thefirst 24 hours
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¢ Eyeindicant. A summary of SEM, OCSand OVS; i.e
Spontaneous Eye Movements (SEM)
Oculocephalics (OCS)

Oculovestibulars (OVS)

e Pupil reaction to light

Table 9.14: Results for the head injury dataset (3 classes, 6 attributes, 900 observations,
9-fold cross-validation). Algorithmsin italics have not incorporated costs.

Max. | Time(sec.) | Average Costs
Algorithm || Storage | Train | Test | Train | Test | Rank
Discrim 200 126 | 3.1 | 19.76 | 19.89 3
Quadisc 642 36.6 | 32.0 | 17.83 | 20.06 4
Logdisc 1981 | 7364 | 7.3 | 16.60 | 17.96 1
SMART 81| 5722 | 35| 1359 | 21.81 8
ALLOCS80 191 141|383 | 189 | 31.90 13
k-NN 144 90| 112 | 9.20 | 35.30 15
CASTLE 82 26| 20| 1887 | 20.87 6
CART 154 176 | 0.8 | 19.84 | 20.38 5
INdCART 88 55| 04| 25.76 | 25.52 11
NewlD 38 90| 3.0 1891 | 53.64 20
AC? 400 | 624.0 | 28.0 | 17.88 | 56.87 21
Baytree 73 25| 03] 1094 | 22.69 9
NaiveBay 52 29| 03] 2368 | 23.95 10
CN2 149 243 | 30| 14.36 | 53.55 19
C4.5° 339 50| 0.2 | 59.82 | 82.60 24
[Trule 97 6.5 * * 37.61 16
Ca5s 51 30| 02| 3254 | 33.26 14
Kohonen 90 | 17720 | 30| 356 | 70.70 23
DIPOL92 41 100 | 10| 2531 | 26.52 12
Backprop 518 | 3125 | 31.9 | 1823 | 21.53 7
RBF 150 174 | 5.1 | 53.37 | 63.10 22
LVQ 82| 190.7 | 1.2 | 29.30 | 46.58 18
Cascade 271 | 1810 | 10| 1525 | 19.46 2
Default * * * | 44.10 | 44.10 17

SMART and DIPOL 92 arethe only algorithmsthat as standard can utilise costs directly
in the training phase (we used in our results a modified version of Backprop that could
utilise costs, but this is very experimental). However, athough these two algorithms do
reasonably well, they are not the best. Logistic regression doesvery well and so do Discrim
and Quadisc

CART, IndCART, Bayes Tree and Cal5 are the only decision trees that used a cost
matrix here, and hence the others have performed worse than the Default rule. CART and
Cal5 both had trees of around 5-7 nodes, whereas AC? and NewID both had around 240
nodes. However, using error rate as a criterion we cannot judge whether these algorithms
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were under-pruning, since no cost matrix wasused in the classifier. But, for interpretability,
the smaller trees are preferred.

Titterington et al. (1981) compared several discrimination procedureson thisdata. Our
dataset differs by replacing al missing values with the class median and so the results are
not directly comparable.

9.4.2 Heart disease (Heart)
Table 9.15: Resultsfor the heart disease dataset (2 classes, 13 attributes, 270 observations,
9-fold cross-validation). Algorithmsin italics have not incorporated costs.

Max. | Time(sec.) | Average Costs
Algorithm || Storage | Train | Test | Train | Test | Rank
Discrim 223 77| 18| 0315 | 0.393 2
Quadisc 322 | 182 | 92| 0.274 | 0422 5
Logdisc 494 | 799 | 4.2 | 0.271| 0.396 3
SMART 88 | 3500 | 0.1 | 0.264 | 0.478 10
ALLOCS80 95| 312 | 52| 0.394 | 0.407 4
k-NN 88 00| 1.0 0.000 | 0.478 10
CASTLE 93| 200 | 34| 0374 | 0441 6
CART 142 41| 0.8 | 0463 | 0.452 8
INdCART 65 84| 01| 0261 | 0.630 18
NewlD 21 9.0| 3.0 0.000 | 0.844 24
AC? 209 | 2430 | 7.0 | 0.000 | 0.744 20
Baytree 63 27| 030111 | 0.526 14
NaiveBay 50 15| 10| 0351 | 0.374 1
CN2 125 | 19.2 | 4.7 | 0.206 | 0.767 21
C4.5° 93| 294 | 08| 0439 | 0.781 22
[Trule 102 51 * * 0.515 13
Ca5 51 23| 0.8 0330 | 0444 7
Kohonen 36 | 2271 | 19| 0429 | 0.693 19
DIPOL92 53| 18.0 | 0.3 | 0.429 | 0.507 12
Backprop 299 | 128.2 | 129 | 0.381 | 0.574 16
RBF 154 | 204 | 3.7 | 0.303 | 0.781 22
LVQ 54| 76.6 | 1.0 | 0.140 | 0.600 17
Cascade 122 | 783 | 1.0 | 0.207 | 0.467 9
Default * * * | 0.560 | 0.560 15

This database comes from the Cleveland Clinic Foundation and was supplied by Robert
Detrano, M.D., Ph.D. of the V.A. Medical Center, Long Beach, CA. It is part of the
collection of databases at the University of California, Irvine collated by David Aha.

The purpose of the dataset isto predict the presence or absence of heart disease giventhe
results of various medical testscarried out on apatient. Thisdatabase contains 13 attributes,
which have been extracted from a larger set of 75. The database originally contained 303
examples but 6 of these contained missing class values and so were discarded leaving 297.
27 of these were retained in case of dispute, leaving a final total of 270. There are two
classes: presenceand absence(of heart-disease). Thisisareduction of thenumber of classes
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in the original dataset in which there were four different degrees of heart-disease. Table
9.16 gives the different costs of the possible misclassifications. Nine fold cross-validation
was used to estimate the average misclassification cost. Naive Bayes performed best on
the heart dataset. This may reflect the careful selection of attributes by the doctors. Of the
decision trees, CART and Cal5 performed the best. Cal5 tuned the pruning parameter, and
used an average of 8 nodesin the trees, whereas AC? used 45 nodes. However, AC? did
not take the cost matrix into account, so the prefered pruning is still an open question.

This data has been studied in the literature before, but without taking any cost matrix
into account and so the results are not comparable with those obtained here.

Table 9.16: Misclassification costsfor the heart disease dataset. The columns represent the
predicted class, and the rows the true class.
| absent present
absent ‘ 0 1

present 5 0

9.4.3 German credit (Cr.Ger)

Table9.17: Cost matrix for the German credit dataset. The columns are the predicted class
and the rows the true class.

| good  bad
good 0 1
bad 5 0

The original dataset (provided by Professor Dr. Hans Hofmann, Universitét Hamburg)
contained some categorical/symbolic attributes. For algorithms that required numerical
attributes, a version was produced with several indicator variables added. The attributes
that were ordered categorical were coded as integer. This preprocessed dataset had 24
numerical attributes and 10-fold cross-validation was used for the classification, and for
uniformity all algorithms used this preprocessed version. It isof interest that NewID did
the trials with both the preprocessed version and the original data, and obtained nearly
identical error rates (32.8% and 31.3%) but rather different tree sizes (179 and 306 nodes).
The attributes of the original dataset include:

status of existing current account,

duration of current account,

credit history,

reason for loan request (e.g. new car, furniture),

credit amount,

savings account/bonds,

length of employment,

installment rate in percentage of disposableincome,

marital status and sex,

length of time at presentresidence,

age and

job.
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Results are given in Table 9.18. The providers of this dataset suggest the cost matrix
of Table 9.17. It is interesting that only 10 agorithms do better than the Default. The
results clearly demonstrate that some Decision Tree algorithms are at a disadvantage when
costs are taken into account. That it is possible to include costs into decision trees, is
demonstrated by the good results of Cal5 and CART (Breiman et al., 1984). Cal5 achieved
agood result with an average of only 2 nodes which would lead to very transparent rules.
Of those algorithmsthat did not include costs, C4.5 used atree with 49 nodes (with an error
rate of 27.3%), whereas AC? and NewID used an average of over 300 nodes (with error
rates of 29.4% and 32.8% respectively).

Table 9.18: Results for the German credit dataset (2 classes, 24 attributes, 1000 observa-
tions, 10-fold cross-validation). Algorithmsin italics have not incorporated costs.

Maximum Time (sec.) Average Costs
Algorithm Storage | Train | Test | Train | Test | Rank
Discrim 556 50.1 7.3 | 0.509 | 0.535 1
Quadisc 534 53.6 8.2 | 0431 | 0.619 9
Logdisc 391 56.0 6.7 | 0499 | 0.538 2
SMART 935 | 6522.9 * |1 0.389 | 0.601 6
ALLOCS80 103 | 9123.3 * | 0597 | 0.584 4
k-NN 286 24 9.0 | 0.000 | 0.694 10
CASTLE 93 | 109.9 95| 0.582 | 0.583 3
CART 95| 114.0 1.1 | 0.581 | 0.613 8
INdCART 668 | 337.5 | 248.0 | 0.069 | 0.761 14
Newl D 118 128 | 15.2 | 0.000 | 0.925 19
AC? 771 | 9668.0 | 232.0 | 0.000 | 0.878 17
Baytree 79 74 0.4 | 0.126 | 0.778 15
NaiveBay 460 26.0 5.3 | 0.600 | 0.703 12
CN2 320 | 116.8 3.1 | 0.000 | 0.856 16
C45 82 13.7 1.0 | 0.640 | 0.985 22
[Trule 69 325 3.0 * 0.879 18
Cal5 167 195 1.9 | 0.600 | 0.603 7
Kohonen 152 | 5897.2 53| 0.689 | 1.160 23
DIPOL92 53 77.8 50 | 0574 | 0.599 5
Backprop 148 | 2258.5 0.0 | 0.446 | 0.772 13
RBF 215 245 34 (0848 | 0.971 21
LVQ 97 | 3227 4.7 | 0.229 | 0.963 20
Default * * * | 0.700 | 0.700 11

9.5 OTHER DATASETS
This section contains rather a“mixed bag” of datasets, mostly of anindustrial application.

9.5.1 Shuttlecontrol (Shuttle)

The dataset was provided by Jason Catlett who was then at the Basser Department of
Computer Science, University of Sydney, N.SW., Australia. The data originated from
NASA and concern the position of radiators within the Space Shuttle. The problem
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appears to be noise-free in the sense that arbitrarily small error rates are possible given
sufficient data.
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Fig. 9.5: Shuttle data: attributes 1 and 9 for the two classes Rad_Flow and High only. The symbols
“+” and “-" denote the state Rad_Flow and High respectively. The 40856 examples are classified
correctly by the decision tree in the right diagram.

The data was divided into atrain set and a test set with 43500 examples in the train
set and 14500 in the test set. A single train-and-test was used to calculate the accuracy.
With samples of this size, it should be possible to obtain an accuracy of 99 - 99.9%.
Approximately 80% of the data belong to class 1. At the other extreme, there are only 6
examples of class 6 in the learning set.

The shuttle dataset also departs widely from typical distribution assumptions. The
attributes are numerical and appear to exhibit multimodality (we do not have a good
statistical test to measure this). Some feeling for this dataset can be gained by looking at
Figure9.5. It showsthat arectangular box (with sidesparallel to the axes) may be drawn to
enclose all examplesin the class“High”, although the lower boundary of thisbox (X9 less
than 3) is so close to examples of class “Rad_Flow” that this particular boundary cannot
be clearly marked to the scale of Figure 9.5. In the whole dataset, the data seem to consist
of isolated islands or clusters of points, each of which is pure (belongsto only one class),
with one class comprising several such islands. However, neighbouring islands may be
very close and yet come from different populations. The boundaries of the islands seem to
be parallel with the coordinate axes. If this picture is correct, and the present data do not
contradict it, asit is possible to classify the combined dataset with 100% accuracy using a
decision tree, then it is of interest to ask which of our algorithms are guaranteed to arrive
at the correct classification given an arbitrarily large learning dataset. In the following, we
ignore practical matters such as training times, storage requirements etc., and concentrate
on the limiting behaviour for an infinitely large training set.
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Table 9.19: Results for the shuttle dataset with error rates are in % (7 classes, 9 attributes,
(train, test) = (43500, 14 500) observations).

Max. Time (sec.) % Error

Algorithm || Storage Train Test | Train | Test | Rank
Discrim 1957 507.8 102.3 | 498 | 483 20
Quadisc 1583 708.6 1766 | 6.35| 6.72 21
Logdisc 1481 6945.5 106.2 | 3.94 | 3.83 18
SMART 636 | 110009.8 932 | 061 | 059 14
ALLOC80 636 | 55215.0 | 183330 | 095 | 0.83 15
k-NN 636 | 32531.3 | 104820 | 039 | 044 11
CASTLE 77 461.3 149.7 | 370 | 3.80 17
CART 176 79.0 23| 0.04 | 0.08 5
INdCART 329 1151.9 16.2 | 0.04 | 0.09 6
NewlD 1535 6180.0 * | 0.00| 0.01 1
AC? 200 25530 | 2271.0| 0.00| 0.32 8
Baytree 368 240.0 168 | 0.00 | 0.02 2
NaiveBay 225 1029.5 224 | 460 | 450 19
CN2 1432 | 11160.0 * | 0.00| 0.03 3
c4.57 3400 | 137424 111 | 0.04| 0.0 7
[Trule 665 | 91969.7 * * 1 041 9
Ca5 372 3134 103 | 0.03 | 0.03 3

Kohonen FD FD FD FD FD
DIPOL92 674 2068.0 1762 | 044 | 048 13
Backprop 144 5174.0 210 | 450 | 043 10
RBF 249 * *| 160 | 140 16
LVQ 650 2813.3 838 | 040 | 044 11
Default * * * | 21.59 | 20.84 22

Procedures which might therefore be expected to find a perfect rule for this dataset
would seem to be: k-NN, Backprop and ALLOCS80. ALLOCS8O0 failed here, and the result
obtained by another kernel method (using a sphered transformation of the data) was far
from perfect. RBF should also be capable of perfect accuracy, but some changes would be
required in the particular implementation used in the project (to avoid singularities). Using
a variable selection method (selecting 6 of the attributes) k-NN achieved an error rate of
0.055%.

Decision trees will aso find the perfect rule provided that the pruning parameter is
properly set, but may not do so under all circumstances as it is occasionally necessary
to override the splitting criterion (Breiman et al., 1984) . Although a machine learning
procedure may find a decision tree which classifies perfectly, it may not find the simplest
representation. The tree of Figure 9.5, which was produced by the Splus procedure treg(),
gets 100% accuracy with five terminal nodes, whereasit is easy to construct an equivalent
tree with only three terminal nodes (see that the same structure occursin both halves of the
tree in Figure 9.5). It is possible to classify the full 58 000 examples with only 19 errors
using a linear decision tree with nine terminal nodes. Since there are seven classes, this
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isaremarkably simple tree. This suggests that the data have been generated by a process
that is governed by alinear decision treg, that is, a decision tree in which tests are applied
sequentially, the result of each test being to allocate one section of the data to one class
and to apply subsequent tests to the remaining section. Asthere are very few examples of
class 6 in the whole 58 000 dataset, it would require enormous amounts of datato construct
reliable classifiersfor class6. The actual trees produced by the algorithms are rather small,
as expected: AC? has 13 nodes, and both Cal5 and CART have 21 nodes.

952 Diabetes(Diab)

Thisdataset wasoriginally donated by Vincent Sigillito, Applied PhysicsL aboratory, Johns
Hopkins University, Laurel, MD 20707 and was constructed by constrained sel ection from
a larger database held by the National Institute of Diabetes and Digestive and Kidney
Diseases. It ispublicly available from the machinelearning database at UCI (see Appendix
A). All patients represented in this dataset are females at least 21 yearsold of Pimalndian
heritage living near Phoenix, Arizona, USA.

The problem posed hereisto predict whether a patient would test positive for diabetes
according to World Health Organization criteria (i.e. if the patients' 2 hour post—oad
plasmaglucoseis at least 200 mg/dl.) given a number of physiological measurements and
medical test results. The attribute details are given below:

number of times pregnant

plasma glucose concentration in an oral glucose tolerance test

diastolic blood pressure ( mm/Hg )

triceps skin fold thickness ( mm )

2-hour serum insulin ( mu U/ml )

body massindex ( kg/m? )

diabetes pedigree function

age (years)

This is a two class problem with class value 1 being interpreted as “tested positive
for diabetes’. There are 500 examples of class 1 and 268 of class 2. Twelve—fold cross
validation was used to estimate prediction accuracy.

The dataset israther difficult to classify. The so-called” class’ valueisreally abinarised
form of another attribute which isitself highly indicative of certain types of diabetes but
does not have a one-to—one correspondence with the medical condition of being diabetic.

No agorithm performs exceptionally well, although ALLOCB80 and k-NN seem to
be the poorest. Automatic smoothing parameter selection in ALLOCS80 can make poor
choices for datasets with discrete valued attributes and k-NN can have problems scaling
such datasets. Overall though, it seems reasonable to conclude that the attributes do not
predict the class well. Cal5 uses only 8 nodes in its decision tree, whereas Newld, which
performslesswell, has 119 nodes. AC? and C4.5 have 116 and 32 nodes, repectively and
CN2 generates 52 rules, although there is not very much difference in the error rates here.

This dataset has been studied by Smith et al. (1988) using the ADAP algorithm. Using
576 examples as a training set, ADAP achieved an error rate of .24 on the remaining 192
instances.



158 Dataset descriptionsand results [Ch.9

Table 9.20: Results for the diabetes dataset (2 classes, 8 attributes, 768 observations,
12-fold cross-validation).

Max. Time (sec.) Error Rate
Algorithm || Storage | Train | Test | Train | Test | Rank
Discrim 338 274 6.5 | 0.220 | 0.225 3
Quadisc 327 244 6.6 | 0.237 | 0.262 11
Logdisc 311 30.8 6.6 | 0.219 | 0.223 1
SMART 780 | 3762.0 * 1 0.177 | 0.232 4
ALLOCS80 152 | 13741 * 1 0.288 | 0.301 21
k-NN 226 1.0 2.0 | 0.000 | 0.324 22
CASTLE 82 35.3 4.7 | 0.260 | 0.258 10
CART 144 29.6 0.8 | 0.227 | 0.255 9
INdCART 596 | 215.6 | 209.4 | 0.079 | 0.271 14
NewlID 87 9.6 | 10.2 | 0.000 | 0.289 19
AC? 373 | 4377.0 | 241.0 | 0.000 | 0.276 18
Baytree 68 104 0.3 | 0.008 | 0.271 14
NaiveBay 431 250 7.2 | 0.239 | 0.262 11
CN2 190 384 2.8 | 0.010 | 0.289 19
C4.5 61 115 09 | 0.131 | 0.270 13
[Trule 60 31.2 15| 0.223 | 0.245 6
Ca5 137 | 236.7 0.1 | 0.232 | 0.250 8
Kohonen 62 | 1966.4 251 0134 | 0.273 17
DIPOL92 52 35.8 0.8 | 0.220 | 0.224 2
Backprop 147 | 7171.0 0.1 | 0.198 | 0.248 7
RBF 179 4.8 0.1 | 0.218 | 0.243 5
LVQ 69 | 1395 12| 0.101 | 0.272 16
Default * * * | 0.350 | 0.350 23

9.5.3 DNA

This classification problem is drawn from the field of molecular biology. Splice junctions
are points on a DNA sequence at which “superfluous’ DNA is removed during protein
creation. The problem posed hereisto recognise, given asequence of DNA, the boundaries
between exons (the parts of the DNA sequence retained after splicing) and introns (the parts
of the DNA that are spliced out). The dataset used in the project is a processed version
of the Irvine Primate splice-junction database. Each of the 3186 examples in the database
consists of awindow of 60 nucleotides, each represented by one of four symbolic values
(a,c,9.1), and the classification of the middle point in the window as one of; intron—extron
boundary, extron—intron boundary or neither of these. Processinginvolved theremoval of a
small number of ambiguous examples (4), conversion of the original 60 symbolic attributes
to 180 or 240 binary attributesand the conversion of symbolic classlabelsto numeric labels
(see Section 7.4.3). Thetraining set of 2000 was chosen randomly from the dataset and the
remaining 1186 examples were used as the test set.

This is basically a partitioning problem and so we might expect, in advance, that
Decision Tree algorithms should do well. The classes in this problem have a heirarchical
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Table 9.21: Results for the DNA dataset (3 classes, 60/180/240 attributes, (train, test) =
(2000, 1186) observations).

Max. Time (sec.) Error Rate
Algorithm || Storage Train | Test | Train | Test | Rank
Discrim 215 9285 | 31.1 | 0.034 | 0.059 4
Quadisc 262 | 1581.1 | 808.6 | 0.000 | 0.059 4
Logdisc 1661 | 5057.4 | 76.2 | 0.008 | 0.061 6
SMART 247 | 79676.0 | 16.0 | 0.034 | 0.115 17
ALLOC80 188 | 14393.5 * | 0.063 | 0.057 3
k-NN 247 | 24275 | 882.0 | 0.000 | 0.146 20
CASTLE 86 396.7 | 225.0 | 0.061 | 0.072 8
CART 283 615.0 8.6 | 0.075 | 0.085 11
INdCART 729 523.0 | 515.8 | 0.040 | 0.073 9
NewlID 729 698.4 1.0 | 0.000 | 0.100 15
AC? 9385 | 12378.0 | 87.0 | 0.000 | 0.100 15
Baytree 727 817 | 105 | 0.001 | 0.095 13
NaiveBay 727 51.8 | 14.8 | 0.052 | 0.068 7
CN2 10732 869.0 | 74.0 | 0.002 | 0.095 13
C4.5 1280 9.0 2.0 | 0.040 | 0.076 10
[Trule 282 | 22116 59| 0.131 | 0.135 19
Ca5 755 | 1616.0 75| 0104 | 0.131 18
Kohonen 2592 * * 1 0.104 | 0.339 21
DIPOL92 518 2134 | 10.1 | 0.007 | 0.048 2
Backprop 161 | 4094.0 9.0 | 0.014 | 0.088 12
RBF 1129 * * 1 0.015 | 0.041 1

LVQ FD FD FD | FD FD
Default * * * | 0475 | 0.492 22

structure; the primary decision is whether the centre point in the window is a splice—
junction or not. If it is a spliceqjunction then the secondary classification is asto its type;
intron—extron or extron—ntron.

Unfortunately comparisons between algorithms are more difficult than usual with this
dataset as a number of methods were tested with a restricted number of attributes; some
were tested with attribute values converted to 180 binary values, and some to 240 binary
values. CASTLE and CART only used the middle 90 binary variables. NewID, CN2 and
CA4.5 used the original 60 categorical variables and k-NN, Kohonen, LVQ, Backprop and
RBF used the one—of—four coding. The classical statistical agorithms perform reasonable
well achieving roughly 6% error rate. k-NN is probably hampered by the large number of
binary attributes, but Naive Bayes does rather well helped by the fact that the attributes are
independent.

Surprisingly, machine learning algorithms do not outperform classical statistical al-
gorithms on this problem. CASTLE and CART were at a disadvantage using a smaller
window although performing reasonably. INdCART used 180 attributes and improved on
the CART error rate by around 1%. ITrule and Cal5 are the poorest performers in this
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group. ITrule, using only uni—variate and bi—variate tests, is too restricted and Cal5 is
probably confused by the large number of attributes.

Of the neural network algorithms, Kohonen performsvery poorly not hel ped by unequal
class proportions in the dataset. DIPOL92 constructs an effective set of piecewise linear
decision boundaries but overall, RBF is the most accurate algorithm using 720 centres. It
is rather worrying here, that LV Q claimed an error rate of 0, and this result was unchanged
when thetest datahad the classes permuted. No reason could befound for this phenomenon
— presumably it was caused by the excessive number of attributes — but that the algorithm
should “lie” with no explanation or warning is still a mystery. This problem did not occur
with any other dataset.

In order to assess the importance of the window size in this problem, we can examine
in a little more detail the performance of one of the machine learning algorithms. CN2
classified the training set using 113 rules involving tests on from 2 to 6 attributes and
misclassifying 4 examples. Table 9.22 shows how frequently attributesin different ranges
appeared inthose 113 rules. From the tableit appearsthat awindow of size 20 contains the

Table 9.22: Frequency of occurrence of attributesin rules generated by CN2 for the DNA
training set.

110 1120 21-30 3140 41-50 5160

class1 | 17 10 12 59 7 2
class2 | 17 28 78 21 13 11
class3 6 8 57 55 4 3

total | 40 46 147 135 24 16

most important variables. Attributesjust after the middle of the window are most important
in determining class 1 and those just before the middle are most important in determining
class 2. For class 3, variables close to the middle on either side are equally important.
Overall though, variables throughout the 60 attribute window do seem to contribute. The
question of how many attributes to use in the window is vitally important for procedures
that include many parameters - Quadisc gets much better results (error rate of 3.6% on the
test set) if it isrestricted to the middle 20 categorical attributes.

It is therefore of interest to note that decision tree procedures get amost the same
accuracies on the original categorical data and the processed binary data. NewID, obtained
an error rate of 9.95% on the preprocessed data (180 variables) and 9.20% on the original
data (with categorical attributes). These accuracies are probably within what could be
called experimental error, so it seemsthat NewlID does about as well on either form of the
dataset. There is a little more to the story however, as the University of Wisconsin ran
several algorithms on this dataset. In Table 9.23 we quote their results alongside ours for
nearest neighbour. In this problem, ID3 and NewID are probably equivalent, and the slight
discrepancies in error rates achieved by 1D3 at Wisconsin (10.5%) compared to NewID
(9.95%) in this study are attributable to the different random samples used. This cannot be
the explanation for the differencesbetween thetwo nearest neighbour results: there appears
to be an irreconcilable difference, perhaps due to preprocessing, perhaps due to “distance’
being measured in a conditional (class dependent) manner.

Certainly, the Kohonen algorithm used here encountered a problem when defining dis-
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tances in the attribute space. When using the coding of 180 attributes, the Euclidean
distances between pairs were not the same (the squared distances were 2.0 for pairs
(4,0),(4,G),(C,G) but only 1.0 for the pairs involving T": (4,T),(C,T),(G,T)).
Therefore Kohonen needs the coding of 240 attributes. This coding was also adopted by
other algorithms using distance measures (k-NN, LV Q).

Table 9.23: DNA dataset error ratesfor each of the three classes. splicejunctionisintron—
Extron (1E), Extron— ntron (EI) or Neither. All trials except the last were carried out by the
University of Wisconsin, sometimes with local implementations of published algorithms,
using ten-fold cross-validation on 1000 examples randomly selected from the compl ete set
of 3190. Thelast trial was conducted with atraining set of 2000 examples and atest set of
1186 examples.

Algorithm Neither El IE | Overdll
KBANN 462 | 756 | 847 6.28
Backprop 529 | 574 | 10.75 6.69
PEBLS 6.86 | 818 | 7.55 7.36
PERCEPTRON 399 | 16.32 | 1741 10.31
ID3 8.84 | 10.58 | 13.99 10.50
Cobweb 11.80 | 15.04 | 9.46 12.08
N Neighbour (Wisconsin) 3111 | 1165 | 9.09 20.94
N Neighbour (Leeds) 050 | 25.74 | 36.79 14.60

9.5.4 Technical (Tech)

Table 9.24: The four most common classes in the technical data, classified by the value of
attribute X52.

Range of X52 Aso Ars Az Arg
< -0.085 0 1 0| 180
-0.085, -0.055 260 0 0 0
-0.055, +0.055 0| 324 0 0
+0.055, +0.085 0 0 | 1036 0
> +0.085 0 0 0] 392

Very little is known about this dataset as the nature of the problem domain is secret. It
is of commercia interest to Daimler-Benz AG, Germany. The dataset shows indications
of some sort of preprocessing, probably by some decision-tree type process, before it
was received. To give only one instance, consider only the four most common classes
(Aso, A7z, A7z, Avg), and consider only one attribute (X52). By simply tabulating the
valuesof attribute X52 it becomes obviousthat the classifications are being made according
to symmetrically placed boundaries on X52, specifically the two boundaries at -0.055 and
+0.055, and a so the boundaries at -0.085 and +0.085. These boundaries divide the range
of X52 into fiveregions, and if welook at the classes contained in these regions we get the
frequency table in Table 9.24. The symmetric nature of the boundaries suggests strongly
that the classes have been defined by their attributes, and that the class definitions are only
concerned with inequalities on the attributes. Needlessto say, such a system is perfectly
suited to decision trees, and we may remark, in passing, that the above table was discovered
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by a decision tree when applied to the reduced technical dataset with all 56 attributes but
with only the four most common classes (in other words, the decision tree could classify
the reduced dataset with 1 error in 2193 examples using only one attribute).

Table 9.25: Resultsfor the technical dataset (91 classes, 56 attributes, (train, test) = (4500,
2580) observations).

Max. Time (sec.) Error Rate
Algorithm || Storage Train Test | Train | Test | Rank
Discrim 365 421.3 200.8 | 0.368 | 0.391 15
Quadisc 334 | 19567.8 | 11011.6 | 0.405 | 0.495 17
Logdisc 354 | 18961.2 1959 | 0.350 | 0.401 16
SMART 524 | 21563.7 56.8 | 0.356 | 0.366 14
ALLOCS80 FD FD FD | FD FD
k-NN 213 | 51299 | 2457.0 | 0.007 | 0.204 9
CASTLE FD FD FD | FD FD
CART FD FD FD | FD FD
INdCART 3328 | 14186 | 1423.3 | 0.007 | 0.095 2
NewlID 592 527.1 12.5 | 0.000 | 0.090 1
AC? 7400 | 5028.0 273.0 | 0.006 | 0.102 3
Baytree 1096 1755 9.8 | 0.019 | 0.174 6
NaiveBay 656 169.2 81.6 | 0.323 | 0.354 12
CN2 * | 3980.0 465.0 | 0.048 | 0.123 5
C45 2876 384.0 96.0 | 0.050 | 0.120 4
[Trule FD FD FD | FD FD
Cal5 842 | 24221 7.1 0.110 | 0.183 7
Kohonen 640 * * 1 0.326 | 0.357 13
DIPOL92 941 | 7226.0 | 1235.0 | 0.080 | 0.192 8
Backprop FD FD FD | FD FD
RBF 510 | 1264.0 323.0 | 0.304 | 0.324 11
LVQ 559 | 24432 87.3 | 0.196 | 0.261 10
Default * * * | 0.770 | 0.777 18

The dataset consists of 7080 examples with 56 attributes and 91 classes. The attributes
are al believed to be real: however, the majority of attribute values are zero. This may be

the numerical value“0” or more likely “not relevant”, “not measured” or “not applicable”.
One-shot train and test was used to cal cul ate the accuracy.

The results for this dataset seem quite poor athough all are significantly better than
the default error rate of 0.777. Several algorithms failed to run on the dataset as they
could not cope with the large number of classes. The decision tree algorithms IndCART,
NewlID and AC? gave the best resultsin terms of error rates. Thisreflectsthe nature of the
preprocessing which made the dataset more suited to decision trees algorithms. However,
theoutput produced by thetreealgorithmsis (not surprisingly) difficultto interpret—NewI D
has a tree with 590 terminal nodes, C4.5 has 258 nodes, Cal5 has 507 nodes and AC? has
589 nodes. Statistical algorithms gave much poorer resultswith Quadisc giving the highest
error rate of all. They appear to over-train dlightly as aresult of too many parameters.
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9.5.5 Belgian power (Belg)
Table 9.26: Resultsfor the Belgian Power | (2 classes, 28 attributes, (train, test) = (1250,
1250) observations).

Max. Time (sec.) Error Rate
Algorithm || Storage | Train | Test | Train | Test | Rank
Discrim 588 73.8 | 27.8 | 0.022 | 0.025 6
Quadisc 592 85.2 | 405 | 0.036 | 0.052 18
Logdisc 465 | 1304 | 27.1 | 0.002 | 0.007 2
SMART 98 | 7804.1 | 15.6 | 0.003 | 0.006 1
ALLOCS80 125 | 3676.2 * | 0.026 | 0.044 16
k-NN 86 1.0 | 137.0 | 0.000 | 0.059 21
CASTLE 279 | 230.2 | 96.2 | 0.029 | 0.047 17
CART 170 | 1351 8.5 | 0.009 | 0.034 11
INdCART 293 86.5 | 854 | 0.007 | 0.034 11
NewlID 846 | 1420 1.0 | 0.017 | 0.027 7
AC? 222 | 1442.0 | 79.0 | 0.000 | 0.034 11
Baytree 289 24.7 6.7 | 0.000 | 0.030 9
NaiveBay 276 174 7.6 | 0.046 | 0.062 22
CN2 345 | 2722 | 16.9 | 0.000 | 0.032 10
C4.5 77 66.0 | 11.6 | 0.010 | 0.040 15
[Trule 293 | 1906.2 | 41.1 | 0.043 | 0.065 23
Ca5 62 13.9 7.2 | 0.025 | 0.029 8
Kohonen 216 | 7380.6 | 54.9 | 0.026 | 0.056 20
DIPOL92 49 430 | 119 | 0.015 | 0.018 4
Backprop 146 | 478.0 20| 0.011 | 0.027 3
RBF * | 1214 | 29.3| 0.021 | 0.034 11
LVQ 115 | 977.7 | 32.0| 0.002 | 0.054 19
Cascade 391 | 806.0 1.0 | 0.005 | 0.019 5
Default * * * | 0.363 | 0.362 24

The object of this dataset isto find afast and reliable indicator of instability in large scale
power systems. The dataset is confidential to StatLog and belongsto T. van Cutsemand L.
Wehenkel, University of Liege, Institut Montefiore, Sart-Tilman, B-4000 Liege, Belgium.

The emergency control of voltage stability isstill initsinfancy but oneimportant aspect
of this control is the early detection of critical statesin order to reliably trigger automatic
corrective actions. This dataset has been constructed by simulating up to five minutes
of the system behaviour. Basically, a case is labelled stable if all voltages controlled by
On-Load Tap Changers are successfully brought back to their set-point values. Otherwise,
the system becomes unstable.

There are 2500 exampl es of stable and unstable states each with 28 attributeswhich in-
volve measurements of voltage magnitudes, active and reactive power flows and injections.
Statistical agorithms cannot be run on datasets which have linearly dependent attributes
and there are 7 such attributes (X18,X19,X20,X21,X23,X27,X28) in the Belgian Power
dataset. These have to be removed when running the classical statistical algorithms. No
other form of pre-processing was done to this dataset. Train and test sets have 1250
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Kohonen Map - Belgian Power data

N
N
N

PR RPRPRPRPRPRPRPRPRELPRELPNNMNNMNNMNMNONN
PR RPRPRPRPRPRERPRPREPRENNMNNMNNMNNMNNMNDNDDN
PR RPRPRPRPRPREPREPNNMNOMNNMNMNNONNMNONN
PR RPRPRPRPRPEPRLPNONNMNNOMNMNNONNONNDDN
PR RPRPRPRPRPREPNNMNREPRNOMNNMNNODNODN

PR R RPRPRPRPERNOMNNMNMNNONNMNNOMNNMNNMNNODNRN

P PR RPRPRPRPRPRENNMNMNNMNNMNNOMNNOMNNONNDEREDN

PP RPRPRPRPRPERPNOMNNMNMNNONNMNNOMNNMNNNODNR

PR RPRRPRRPRPRPRPRPREPREPNRNRRERERPR
PR RPRRPRRPRRPRPRRPRPRPREPRPENNNMNONR
PR RPRRPRRPRRPRRPRRPRPRPREPRPRREPRLPNNMNDEN

PR R RPRRPRRPRPRPRPRPREPRPRPRELPRLRNMNNMNNONN
PR RPRPRPRPRRPRPRPRPREPRPRELPEREPNNNMNNDN
PR RPRPRRPRPRPRPRPRPEPRLPENNNMNODNDN

PR RPRRPRRPRPRPRPRPREPRPRLPRELNNMNMNONN
PR RPRRPRRPRPRRPRREPRPREPEPRLNOMNMNNMNNOMNODN
PR RPRPRRPRPRRPRRPRPRPREPRPENNMNODNDN
PR RPRPRRPRPRPRRPRPRPEPRLRNMNNMNNNMNONDN

[N
=
=
[any
=
=
[N
=
=
=
=

11
11
11
11
21
2 2
2 2
2 2
2 2
21
21
21
11
11
11
11
11
11
11
11
data,

Fig. 9.6: Kohonen map of the Belgian Power
2 appear to have two distinct clusters.

showing potentia clustering. Both classes 1 and

examples each and single train-and-test is used for the classification.

The statistical algorithms SMART and L ogdisc produced resultswhich aresignificantly
better than the other algorithms tested on this dataset. Logdisc is approximately 50 times
quicker at training than SMART and still produced an error rate of lessthan 1%. DIPOL92
also gives a fairly low error rate and is not time consuming to run. k-NN was confused
by irrelevant attributes, and a variable selection option reduced the error rate to 3.4%. The
Kohonen map of this data may help to understand this dataset. The clustering apparent
in Fig. 9.5.5 shows, for example, that there may be two distinct types of “stable state”
(denoted by 2). Thedecision treesdid not do so well here. It isinteresting that the smallest
tree was produced by Cal5, with 9 nodes, and the largest tree was produced by NewlID with
129 nodes, and yet the error rates are very similar at 2.9% and 2.7%, respectively.

Information about class clusters can be incorporated directly into the DIPOL 92 model
and helps to produce more accurate results. There is a more technical description of this
dataset in van Cutsem et al. (1991) .

9.5.6 Belgian power Il (Belgll)

This dataset is drawn from a larger simulation than the one which produced the Belgian
Power dataset. The objective remains to find afast and reliable indicator of instability in
large scale power systems. This dataset is also confidential and belongsto the University
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Table 9.27: Resultsfor the Belgian Power |1 dataset (2 classes, 57 attributes, (train, test) =
(2000, 1000) observations).

Max. Time (sec.) Error Rate
Algorithm || Storage Train | Test | Train | Test | Rank
Discrim 75 107.5 9.3 | 0.048 | 0.041 15
Quadisc 75 516.8 | 211.8 | 0.015 | 0.035 13
Logdisc 1087 336.0 | 43.6 | 0.031 | 0.028 12
SMART 882 | 11421.3 3.1 | 0.010 | 0.013 1
ALLOC80 185 | 62384 * | 0.057 | 0.045 16
k-NN 129 408.5 | 103.4 | 0.000 | 0.052 17
CASTLE 80 9.5 4.3 | 0.062 | 0.064 18
CART 232 4679 | 11.8 | 0.022 | 0.022 7
INdCART 1036 3495 | 335.2 | 0.004 | 0.014 2
NewlID 624 131.0 0.5 | 0.000 | 0.017 4
AC? 3707 | 3864.0 | 92.0 | 0.000 | 0.019 6
Baytree 968 83.7 | 11.8 | 0.000 | 0.014 2
NaiveBay 852 549 | 125 | 0.087 | 0.089 23
CN2 4708 967.0 | 28.0 | 0.000 | 0.025 9
C4.5 1404 184.0 | 18.0 | 0.008 | 0.018 5
[Trule 291 | 9024.1 | 179 | 0.080 | 0.081 21
Ca5 103 62.1 9.8 | 0.037 | 0.026 10
Kohonen 585 * * | 0.061 | 0.084 22
DIPOL92 154 954 | 13.1 | 0.030 | 0.026 10
Backprop 148 | 4315.0 1.0 | 0.021 | 0.022 7
RBF * * * | 0.037 | 0.035 13
LVQ 194 | 1704.0 | 50.8 | 0.018 | 0.065 19
Default * * * | 0.076 | 0.070 20

of Liege and Electricite de France. The training set consists of 2000 examples with 57
attributes. Thetest set contains 1000 examples and therearetwo classes. No pre-processing
was done and one-shot train-and-test was used to cal cul ate the accuragy.

As for the previous Belgian Power dataset, SMART comes out top in terms of test
error rate (although it takes far longer to run than the other algorithms considered here).
Logdisc hasn’t done so well on this larger dataset. k-NN was again confused by irrelevant
attributes, and a variable selection option reduced the error rate to 2.2%. The machine
learning algorithms INdCART, NewID, AC?, Baytree and C4.5 give consistently good
results. The tree sizes here were more similar with AC? using 36 nodes, C4.5 25 nodes,
and NewID using 37 nodes. Naive Bayesisworst and along with Kohonen and I Trule give
poorer results than the default rule for the test set error rate (0.074).

There is a detailed description of this dataset and related results in Wehenkel et al.
(1993) .

9.5.7 Machinefaults (Faults)

Due to the confidential nature of the problem, very little is known about this dataset. It
was donated to the project by the software company 1Soft, Chemin de Moulon, F-91190
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Table 9.28: Results for the Machine Faults dataset (3 classes, 45 attributes, 570 observa-
tions, 10-fold cross-validation).

Max. Time (sec.) Error Rate
Algorithm || Storage Train | Test | Train | Test | Rank
Discrim 457 51.1 | 6.8 | 0.140 | 0.204 3
Quadisc 299 46.0 | 84 | 0.107 | 0.293 8
Logdisc 406 676 | 6.2 | 0.122 | 0.221 4
SMART 105 | 13521.0 * 1 0.101 | 0.339 17
ALLOCS80 129 802.4 * 1 0.341 | 0.339 17
k-NN 87 260.7 | 52| 0.376 | 0.375 20
CASTLE 176 350.3 | 17.3 | 0.254 | 0.318 12
CART 164 906 | 09 | 0.244 | 0.318 12
INdCART 672 36.7 | 37.2 | 0.156 | 0.335 16
NewlID * * * | 0.000 | 0.304 10
AC? 826 265.0 | 9.0 | 0.000 | 0.174 1
Baytree 596 86| 18| 0.003 | 0.283 7
NaiveBay 484 33| 040232 | 0274 6
CN2 1600 69.2 | 7.8 | 0.000 | 0.354 19
C45 700 63| 1.7 | 0.125 | 0.305 11
[Trule 75 421 | 1.8 | 0.331 | 0.330 15
Ca5 197 4728 | 1.2 | 0.231 | 0.297 9
Kohonen 188 * * 1 0.193 | 0.472 22
DIPOL92 52 54.0 | 10.0 | 0.120 | 0.191 2
Backprop 147 | 37246 | 0.0 | 0.028 | 0.228 5
RBF 332 58.6 | 12.0 | 0.102 | 0.320 14
LVQ 72 906 | 23| 0.019 | 0.444 21
Default * * * | 0.610 | 0.610 23

Gif sur Yvette, France. The only information known about the dataset is that it involves
the financial aspect of mechanical maintenance and repair. The aim is to evaluate the cost
of repairing damaged entities. The original dataset had multiple attribute values and a few
errors. This was processed to split the 15 attributes into 45. The original train and test
sets supplied by 1Soft were concatenated and the examples permuted randomly to form a
dataset with 570 examples. The pre-processing of hierarchical datais discussed further in
Section 7.4.5. There are 45 numerical attributesand 3 classes and classification was done
using 10-fold cross-validation.

Thisisthe only hierarchical dataset studied here. Compared with the other algorithms,
AC? givesthe best error rate. The AC? trials were done on the original dataset whereas
the other algorithms on the project used a transformed dataset because they cannot handle
datasets expressed in the knowledge representation language of AC2. In other words, this
dataset was preprocessed in order that other algorithms could handle the dataset. This
preprocessing was done without loss of information on the attributes, but the hierarchy
between attributes was destroyed. The dataset of this application has been designed to run
with AC?, thus all the knowledge entered has been used by the program. Thisexplains (in
part) the performance of AC? and underlines the importance of structuring the knowledge
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for an application. Although this result is of interest, it was not strictly afair comparison,
since AC? used domain-specific knowledge which the other algorithms did not (and for
the most part, could not). In addition, it should be pointed out that the cross-validation
procedure used with AC? involved a different splitting method that preserved the class
proportions, so this will aso bias the result somewhat. The size of the tree produced by
AC? is 340 nodes, whereas Cal5 and NewID used trees with 33 nodes and 111 nodes,
respectively.

Kohonen givesthe poorest result which is surprising as this neural net algorithm should
do better on datasets with nearly equal class numbers. It is interesting to compare this
with the results for k-NN. The algorithm should work well on all datasets on which any
algorithm similar to the nearest—neighbour algorithm (or aclassical cluster analysis) works
well. Thefact the k-NN performs badly on this dataset suggests that Kohonen will too.

9.5.8 Tsetsefly distribution (Tsetse)

Zimbabwe Tsetse Fly Distribution

LATITUDE

26 28 30 32

LONGITUDE

Fig. 9.7: Tsetse map: The symbols “+” and “-” denote the presence and absence of tsetse flies
respectively.
Tsetseflies are one of the most prevalent insect hosts spreading disease (namely tripanoso-
miasis) from cattle to humans in Africa. In order to limit the spread of disease it is of
interest to predict the distribution of flies and types of environment to which they are best
suited.

The tsetse dataset contains interpolated data contributed by CSIRO Division of For-
restry, Australia (Booth et al., 1990 ) and was donated by Trevor H. Booth, PO Box 4008,
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Queen Victoria Terrace, Canberra, ACT 2600, Australia.

Tsetsefileswere eradicated from most of Zimbabwe but amap of presence/absencewas
constructed before any eradication programme and this provides the classified examples.
For a total of 4999 sgquares of side 7km, data has been collected from maps, climatic
databases and remotely sensed information. The main interest is in the environmental
conditions under which the tsetse fly thrives and the dataset used here consisted of 14
attributes related to this (shown below). The 2 classes are presence or absence of flies
and the classification was done using one-shot train-and-test. The training set had 3500
examples and the test set had 1499. Both had roughly equal numbers in both classes.

All attribute values are numeric and indicated below. The original data had measure-
ments of latitude and longitude as attributes which were used to construct the map. These
attributes were dropped as the purpose is to identify the environmental conditions suitable
for flies.

elevation

annual average NV DI vegetation index

NV DI vegetation index for February

NV DI vegetation index for September

max - min NV DI index

annual evaporation

annual rainfall

max of monthly mean temperature maxima

max of monthly mean temperature

mean of monthly means

min of monthly means minima

min of monthly means

max of monthly mean temperature maxima- min of monthly means minima
number of months with temperature < 15.3 degrees

The machine learning algorithms produce the best (CN2) and worst (I Trule) resultsfor
this dataset. The decision tree algorithms C4.5, CART, NewID and AC? all giverise to
fairly accurate classification rules. The modern statistical algorithms, SMART, ALLOCS80
and k-NN do significantly better than the classical statistical algorithms (Discrim, Quadisc
and Logdisc). With a variable selection procedure k-NN obtains an error rate of 3.8%,
again indicating some unhelpful attributes.

Similar work has been done on this dataset by Booth et al. (1990) and Ripley (1993)
The dataset used by Ripley was dlightly different in that the attributes were normalised
to be in the range [0,1] over the whole dataset. Also, the train and test sets used in the
classification were both samples of size 500 taken from the full dataset, which explains the
lessaccurateresults achieved. For example, linear discriminantshad an error rate of 13.8%,
an agorithm similar to SMART had 10.2%, 1-nearest neighbour had 8.4% and Backprop
had 8.4%. The best results for LVQ was 9% and for tree algorithms an error rate of 10%
was reduced to 9.6% on pruning.

However, the conclusions of both studies agree. The nearest neighbour and LVQ
algorithmswork well (although they provide no explanation of the structurein the dataset).
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Table 9.29: Results for the tsetse dataset (2 classes, 14 attributes, (train, test) = (3500,
1499) observations).

Max. Time (sec.) Error Rate
Algorithm || Storage | Train | Test | Train | Test | Rank
Discrim 69 258 3.6 | 0120 | 0.122 20
Quadisc 73 585 | 19.7 | 0.092 | 0.098 17
Logdisc 599 | 139.7 | 219 | 0.116 | 0.117 18
SMART 179 | 7638.0 4.0 | 0.042 | 0.047 6
ALLOC80 138 | 1944.7 * | 0.053 | 0.057 12
k-NN 99 | 3898.8 | 276.0 | 0.053 | 0.057 12
CASTLE 233 | 458.0 | 1723 | 0.141 | 0.137 21
CART 182 63.5 3.8 | 0.006 | 0.041 5
INdCART 1071 * * | 0.009 | 0.039 3
NewlID 207 49.0 1.0 | 0.000 | 0.040 4
AC? 2365 | 2236.0 | 173.0 | 0.000 | 0.047 6
Baytree 979 219 2.6 | 0.001 | 0.037 2
NaiveBay 811 135 27| 0128 | 0.120 19
CN2 6104 | 468.0 | 21.0 | 0.000 | 0.036 1
C45 840 320 4.0 | 0.015 | 0.049 8
[Trule 199 | 7614 34| 0.233 | 0.228 22
Ca5 123 49.6 2.4 | 0.041 | 0.055 11
Kohonen * * * | 0.055 | 0.075 16
DIPOL92 131 | 406.1 | 53.3 | 0.043 | 0.053 10
Backprop 144 | 1196.0 2.0 | 0.059 | 0.065 14
RBF 1239 * * | 0.043 | 0.052 9
LVQ 141 | 536.5| 14.0 | 0.039 | 0.065 14
Default * * * 1 0.492 | 0.488 23

That the tree-based methods provide a very good and interpretable fit can be seen from
the results of AC2, CART, Ca5 and NewID. Similar error rates were obtained for AC?
(which used 128 nodes), C4.5 (which used 92 nodes) and NewID (which used 130 nodes).
However, Cal5 used only 72 nodes, and achieved adlightly higher error rate, which possibly
suggests over-pruning. CASTLE has ahigh error rate compared with the other algorithms
— it appears to use only one attribute to construct the classification rule. The MLP result
(Backprop) isdirectly comparable with the result achieved by Ripley (attributevalueswere
normalised) and gave a slightly better result (error rate 1.9% lower). However, the overall
conclusion is the same in that MLPs did about the same as LVQ and nearest-neighbour,
both of which are much simpler to use.

9.6 STATISTICAL AND INFORMATION MEASURES
We give, in Tables 9.30 and 9.31, the statistical and information measures as described in
Section 7.3.2 and 7.3.3 for al of the datasets. As the calculation of the measuresinvolved
substantial computations, some of the measures were calculated for reduced datasets. For
example, the measures for KL-digits are based on the training examples only.

The following notes are made for afew of the datasets only and are not meant to be
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comprehensive. Rather, some instructive points are chosen for illustrating the important
ideas contained in the measures.

9.6.1 KL-digitsdataset

The dataset that looks closest to being normal is the Karhunen-Loeve version of digits.
This could be predicted beforehand, as it is a linear transformation of the attributes that,
by the Central Limit Theorem, would be closer to normal than the original. Because there
are very many attributesin each linear combination, the KL-digits dataset is very close to
normal with skewness = 0.1802, and kurtosis = 2.92, as against the exact normal val ues of
skewness = 0 and kurtosis = 3.0.

Rather interestingly, the multivariate kurtosis statistic kurt_inv for KL digits show
a very marked departure from multivariate normality (3.743), despite the fact that the
univariate statistics are close to normal (e.g. kurtosis = 2.920). Thisis not too surprising:
it is possible to take a linear transform from Karhunen-L oeve space back to the origina
highly non-normal dataset. This shows the practical desirability of using a multivariate
version of kurtosis.

The KL version of digits appears to be well suited to quadratic discriminants. there
is a substantial difference in variances (SD_ratio = 1.9657), while at the same time the
distributionsare not too far from multivariate normality with kurtosis of order 3. Also, and
more importantly, there are sufficient examples that the many parameters of the quadratic
discriminants can be estimated fairly accurately.

AlsotheKL version appearsto have agreater differencein variances(SD_ratio =1.9657)
than the raw digit data (SD_ratio = 1.5673). Thisis an artefact: the digits data used here
is got by summing over aset of 4 x 4 pixels. Theoriginal digits data, with 256 attributes,
had several attributes with zero variances in some classes, giving rise to an infinite value
for SD_ratio.

The total of the individual mutual informations for the KL dataset is 40 x 0.2029 =
8.116, and thisfigure can be compared with the corresponding total for the 4x4 digit dataset,
namely 16 x 0.5049 = 8.078. These datasets are ultimately derived from the same dataset,
so it is no surprise that these totals are rather close. However, most algorithms found the
KL attributes more informative about class (and so obtained reduced error rates).

9.6.2 Vehiclesilhouettes

In the vehicle dataset, the high value of fract2 = 0.9139 might indicate that discrimination
could be based on just two discriminants. This may relate to the fact that the two cars
are not easily distinguishable, so might be treated as one (reducing dimensionality of the
mean vectors to 3D). However, although the fraction of discriminating power for the third
discriminant is low (1 - 0.9139), it is still statistically significant, so cannot be discarded
without a small loss of discrimination.

Thisdataset alsoillustrates that using mean stati stics may mask significant differencesin
behaviour between classes. For example, in the vehicle dataset, for some of the popul ations
(vehicle types 1 and 2), Mardia's kurtosis statistic is not significant. However, for both
vehicletypes 1 and 2, the univariate statistics are very significantly low, indicating marked
departure from normality. Mardia's statistic does not pick this up, partly because the
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Table 9.30: Table of measuresfor datasets

Measures 171

Cred.Man | CrAust | Dig44 KL Vehicle
N 20000 690 | 18000 | 18000 846
p 7 14 16 40 18
k 2 2 10 10 4
Bin.att 0 4 0 0 0
Cost 0 0 0 0 0
SD 10975 | 12623 | 1.5673 | 1.9657 | 1.5392
corr.abs 0.1146 | 0.1024 | 0.2119 | 0.1093 | 0.4828
cancorl 0.6109 | 0.7713 | 0.8929 | 0.9207 | 0.8420
cancor2 0.8902 | 0.9056 | 0.8189
fractl 1.0000 | 1.0000 | 0.2031 | 0.1720 | 0.4696
fract2 0.4049 | 0.3385 | 0.9139
skewness 6.1012 | 19701 | 0.8562 | 0.1802 | 0.8282
kurtosis 93.1399 | 12.5538 | 5.1256 | 2.9200 | 5.1800
H(C) 0.2893 | 09912 | 3.3219 | 3.3219 | 1.9979
H(X) 27416 | 23012 | 6.5452 | 5.5903 | 4.2472
M(C,X) 0.0495 | 0.1130 | 0.5049 | 0.2029 | 0.3538
Letter | Chrom | Satlm Segm CUT
N 20000 | 40000 6435 2310 | 18700
p 16 16 36 11 20
k 26 24 6 7 2
Bin.att 0 0 0 0 0
Cost 0 0 0 0 0
SD 18795 | 1.3218 | 1.2970 | 4.0014 | 1.0320
corr.abs 0.2577 | 0.1885 | 0.5977 | 0.1425 | 0.2178
cancorl 0.8896 | 0.9884 | 0.9366 | 0.9760 | 0.5500
cancor2 0.8489 | 0.9191 | 0.9332 | 0.9623
fractl 0.1680 | 0.1505 | 0.3586 | 0.3098 | 1.0000
fract2 0.3210 | 0.2807 | 0.7146 | 0.6110
skewness || 0.5698 | 0.4200 | 0.7316 | 2.9580 | 0.9012
kurtosis 35385 | 4.4024 | 4.1737 | 24.4813 | 3.5214
H(C) 46996 | 45603 | 24734 | 28072 | 0.3256
H(X) 3.0940 | 5.6411 | 55759 | 3.0787 | 4.6908
M(C,X) || 05189 | 1.3149 | 0.9443 | 0.6672 | 0.0292
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Table 9.31: Table of measuresfor datasets

[Ch.9

Head Cr.Ger Heart Shuttle Diab DNA
N 900 1000 270 58000 768 3186
p 6 24 13 9 8 180
k 3 2 2 7 2 3
Bin.att 1 9 5 0 0 180
Cost 1 1 1 0 0 0
SD 11231 | 1.0369 | 1.0612 1.6067 | 1.0377 1.5407
corr.abs 0.1217 | 0.0848 | 0.1236 0.3558 | 0.1439 0.0456
cancorl 0.7176 | 0.5044 | 0.7384 0.9668 | 0.5507 0.8729
cancor2 0.1057 0.6968 0.8300
fractl 0.9787 | 1.0000 | 1.0000 0.6252 | 1.0000 0.5252
fract2 1.0000 0.9499 1.0000
skewness 1.0071 | 1.6986 | 0.9560 44371 | 1.0586 2.5582
kurtosis 5.0408 | 7.7943 | 3.6494 | 160.3108 | 5.8270 | 29.5674
H(C) 1.3574 | 0.8813 | 0.9902 0.9653 | 0.9331 1.4725
H(X) 19786 | 15031 | 1.6386 34271 | 45301 0.8072
M(C, X) 0.1929 | 0.0187 | 0.0876 0.3348 | 0.1120 0.0218
Tech Belg Belgll Faults Tsetse
N 7078 2500 3000 570 4999
p 56 28 57 45 14
k 91 2 2 3 2
Bin.att 0 0 0 43 0
Cost 0 0 0 0 0
sb 22442 | 15124 | 1.0638 | 1.1910 | 1.1316
corr.abs 0.3503 | 0.1216 | 0.0751 | 0.3676
cancorl 09165 | 0.8869 | 0.5286 | 0.8842 | 0.7792
cancor2 0.6818 0.3002
fractl 05575 | 1.0000 | 1.0000 | 0.8966 | 1.0000
fract2 0.866 1.000
skewness 6.7156 | 04334 | 11180 | 1.8972 | 0.6483
kurtosis 108.2963 | 2.6581 | 6.7738 | 6.9866 | 4.3322
H(C) 48787 | 09453 | 0.3879 | 15749 | 0.9998
H(X) 0.3672 | 54853 | 3.8300 | 0.8717 | 3.8755
M(C, X) 0.1815 | 0.3172 | 0.0421 | 0.0366 | 0.2850
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number of attributes is fairly large in relation to the number of examples per class, and
partly because Mardia s statistic is less efficient than the univariate statistics.

9.6.3 Headinjury

Among the datasets with more than two classes, the clearest evidence of collinearity isin
the head injury dataset. Here the second canonical correlation is not statistically different
from zero, with a critical level of « = 0.074.

It appears that a single linear discriminant is sufficient to discriminate between the
classes (more precisely: a second linear discriminant does not improve discrimination).
Therefore the head injury dataset isvery closeto linearity. Thismay also be observed from
the value of fractl = 0.979, implying that the three class meanslie close to a straight line.
In turn, this suggests that the class values reflect some underlying continuum of severity,
so thisis not a true discrimination problem. Note the similarity with Fisher's original use
of discrimination as a means of ordering populations.

Perhaps this dataset would best be dealt with by a pure regression technique, either
linear or logistic. If so, Manovagivesthe best set of scoresfor the three categories of injury
as (0.681,-0.105,-0.725), indicating that the middle group is dightly nearer to category 3
than 1, but not significantly nearer.

It appears that there is not much difference between the covariance matrices for the
three populations in the head dataset (SD_ratio = 1.1231), so the procedure quadratic
discrimination is not expected to do much better than linear discrimination (and will
probably do worse as it uses many more parameters).

9.6.4 Heart disease

The leading correlation coefficient cancorl = 0.7384 in the heart dataset is not very high
(bear in mind that it is correlation? that gives a measure of predictability). Therefore the
discriminating power of the linear discriminant is only moderate. This ties up with the
moderate success of linear discriminantsfor this dataset (cost for the training data of 0.32).

9.6.5 Satelliteimage dataset

The satellite image data is the only dataset for which there appears to be very large
correlations between the attributes (corr.abs = 0.5977), although there may be some large
correlations in the vehicle dataset (but not too many presumably) since here corr.abs =
0.4828.

Note that only three linear discriminants are sufficient to separate all six class means
(fract3 = 0.9691). This may be interpreted as evidence of seriation, with the three classes
“grey soil”, “damp grey soil” and “very damp grey soil” forming a continuum. Equally,
thisresult can beinterpreted asindicating that the original 36 attributes may be successfully
reduced to three with no loss of information. Here “information” should be interpreted
as mean square distance between classes, or equivalently, as the entropy of a normal
distribution.

9.6.6 Shuttlecontrol

The class entropy H(C') is 0.965 and this figure gives an effective number of classes of
2H(C) = 1.952, which is approximately 2. This can be interpreted as follows. Although
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there are six classesin the shuttle dataset, some class probabilities are very low indeed: so
low, in fact, that the complexity of the classification problem is on a par with atwo-class
problem.

9.6.7 Technical

Although all attributesare nominally continuous, there are very many zeroes, so many that
we can regard some of the attributes as nearly constant (and equal to zero). Thisisshown
by the average attribute entropy H(X) = 0.379, which is substantially less than one bit.
The average mutual information M (C, X) = 0.185and thisisabout half of theinformation
carried by each attribute, so that, although the attributes contain little information content,
thisinformation contains relatively little noise.

9.6.8 Belgian power |1

The Belgian Power |1 dataset is aprime candidate for data compression asthe ratio of noise
to useful information is very high (NS.ratio = 137.9). Substantial reduction in the size of
the dataset is possible without affecting the accuracy of any classification procedure. This
does not mean that the dataset is “noisy” in the sense of not allowing good prediction.
The better algorithms achieve an error rate of less than 2% on the existing dataset, and
would achieve the same error rate on the condensed dataset. This is particularly true for
the decision trees: typically they use only asmall number of attributes.
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Analysisof Results

P. B. Brazdil (1) and R. J. Henery (2)
(1) University of Porto! and (2) University of Strathclyde

10.1 INTRODUCTION
We analyse the results of the trials in this chapter using several methods:

The section on Results by Subject Areas shows that Neural Network and Statistical
methods do better in some areas and Machine Learning proceduresin others. Theidea
is to give someindication of the subject areas where certain methods do best.
Multidimensional Scaling is a method that can be used to point out similarities in
both algorithms and datasets using the performance (error-rates) of every combination
algorithm x dataset asabasis. The aim hereisto understand the relationship between
the various methods.

Weal so describeasimple-minded attempt at expl oring therel ationship between pruning
and accuracy of decision trees.

A principal aim of StatLog wasto relate performance of algorithms (usually interpreted
as accuracy or error-rate) to characteristics or measures of datasets. Here the aim is
to give objective measures describing a dataset and to predict how well any given
algorithm will perform on that dataset. We discuss several ways in which this might
be done. This includes an empirical study of performance related to statistical and
information-theoretic measures of the datasets. In particular, one of the learning
algorithms under study (C4.5) is used in an ingenious attempt to predict performance
of all algorithms (including C4.5!) from the measures on a given dataset.

The performance of an algorithm may be predicted by the performance of similar
algorithms. If results are already available for a few yardstick methods, the hope is
that the performance of other methods can be predicted from the yardstick results.

In presenting these analyses, we aim to give many different views of the results so that a
reasonably complete (although perhaps not always coherent) picture can be presented of a
very complex problem, namely, the problem of explaining why some algorithms do better

1 Address for correspondence: Laboratory of Al and Computer Science (LIACC), University of Porto, R.

Campo Alegre 823, 4100 Porto, Portugal
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on some datasets and not so well on others. These differing analyses may give conflicting
and perhaps irreconcilable conclusions. However, we are not yet at the stage where we can
say that this or that analysisis the final and only word on the subject, so we present all the
factsin the hope that the reader will be able to judge what is most relevant to the particular
application at hand.

10.2 RESULTSBY SUBJECT AREAS

To begin with, the results of the trials will be discussed in subject areas. Thisis partly
because this makesfor easier description and interpretation, but, moreimportantly, because
the performance of the various algorithmsis much influenced by the particular application.
Severa datasets are closely related, and it is easier to spot differences when comparisons
are made within the same dataset type. So we will discuss the results under four headings:

Datasets Involving Costs
Credit Risk Datasets
Image Related Datasets
Others

Of course, these headings are not necessarily digjoint: one of our datasets (German credit)
was a credit dataset involving costs. The feature dominating performance of algorithmsis
costs, so the German credit dataset is listed under the Cost datasets.

We do not attempt to give any absolute assessment of accuracies, or average costs. But
we have listed the algorithmsin each heading by their average ranking within this heading.
Algorithms at the top of the table do well, on average, and agorithms at the bottom do
badly.

To illustrate how the ranking was cal cul ated, consider the two (no-cost) credit datasets.
Because, for example, Cal5 is ranked 1st in the Australian.credit and 4th in the credit
management dataset, Cal5 has a total rank of 5, which isthe smallest total of all, and Cal5
isthereforetop of thelisting in the Credit datasets. Similarly, DIPOL92 has atotal rank of
7,and sois2nd in thelist.

Of course, other considerations, such as memory storage, time to learn etc., must not
be forgotten. In this chapter, we take only error-rate or average cost into account.

10.2.1 Credit datasets

We have results for two credit datasets. In two of these, the problem is to predict the
creditworthiness of applicants for credit, but they are all either coded or confidential to
a greater or lesser extent. So, for example, we do not know the exact definition of
“uncreditworthy” or “bad risk”. Possible definitionsare (i) “More than one month late with
the first payment”; (ii) “More than two months late with the first payment”; or even (iii)
“The (human) credit manager has already refused credit to this person”.

e Credit Management. Credit management data from the UK (confidential).

e German. Credit risk data from Germany.

e Austraian. Credit risk datafrom (Quinlan, 1993)

It may bethat these classificationsare defined by ahuman: if so, thentheaim of thedecision
ruleisto devise aprocedure that mimicsthe human decision process as closely as possible.
Machine Learning procedures are very good at this, and this probably reflects a natural
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tendency for human decisionsto be made in asequential manner. It isthen correspondingly
easy for ahuman to understand the Decision Tree methods as this best reflects the human
decision process.

Costs of misclassification

Intwo of our credit datasets, we were unable to assess either the prior odds of good-bad or
the relative costs of making the wrong decisions. However, in the German credit data, we
were given an independent assessment that the relative cost of granting credit to a bad risk
customer was 5 times that of turning down an application from a good risk customer, or
c(g,b)/c(b, g) = b, wherec(d, g) isthe cost of misclassifying abad credit risk as good and
c(g, b) isthe cost of misclassifying a good credit risk as bad. (Implicitly, we assume that
the proportions of good-bad risks in the training sample reflect those in the population).
Also, in the credit management dataset, it was explicitly stated by the dataset provider that
errors of either type were equally important - a statement that we interpreted to mean that
the cost-ratio was unity.

On the other hand, the definition of “bad” risk may be defined by the lateness of
payments, or non-payment. The task here is to assess the degree of risk. Most datasets
of this nature lose much useful information by binarising some measure of badness. For
example, acustomer may be classed asa “bad” risk if the first repayment is more than one
month late, whereas a more natural approach would be to predict the number of months
before the first payment is made. The StatLog versions of Machine Learning methods
were not generally well adapted to prediction problemshowever. Apart from anything else,
prediction problems involve some cost function (usually but not necessarily quadratic): the
important point is that some errors are more serious than others.

Generally in credit risk assessment, the cost of misclassification is a vital element.
The classification of a bad credit risk as good usually costs more than classification of
a good credit risk as bad. Unfortunately, credit institutes cannot give precise estimates
of the cost of misclassification. On the other hand, many of the algorithmsin this study
cannot use a cost matrix in performing the classification task, although there have recently
been some attempts to consider misclassification costs in learning algorithms such NewID
and C4.5 (see Knoll, 1993). If we were to judge learning algorithms solely on the basis
of average misclassification cost, this would penalise the ML algorithms. In some of the
datasets therefore, we used the average error rate instead: this is equivalent to average
misclassification cost in avery special case aswe will now show.

Recall that ¢(b, g) is the cost of misclassifying a bad credit risk as good and ¢(g, b) is
the cost of misclassifying a good credit risk as bad. Suppose also that E(b) and E(g) are
the error rates in the classification of bad and good risks, respectively. Denoting the prior
probabilities of good and bad risks by 7, and w3, we can calculate the expected cost of
misclassification as :

K =c(b, g)mE(b) + c(g,b)7,E(g) (10.1)
As mentioned above, in practice it is very difficult to find out the values of ¢(b, g) and
c(g,b) (seefor example Srinivisan & Sim, 1987 ). Because of this, it is often assumed that
c(b, g) _ Ty
c(g,b)

(10.2)
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Using assumption (10.2), one can get the expected misclassification cost K from equation
(10.1)

K = c(b, g)m[E(b) + E(g)] (10.3)
In equation (10.3) the factor ¢(b, g)m is the same for all algorithms, so one can use the
total error rate ¢

¢ =E(b)+ E(g)
as an equivalent eval uation criterion when comparing the performance of algorithms.

Results and conclusions
Table 10.1: Error ratesfor Credit Datasets ordered by their average rank over the datasets.

credit Cr.Aus | Cr.Man
CALS 0.131 0.023
DIPOL92 0.141 0.020
Logdisc 0.141 0.030
SMART 0.158 0.020

C4.5 0.155 | 0.022
INdCART 0.152 | 0.025
Bprop 0.154 | 0.023
Discrim 0.141 0.033
RBF 0.145 | 0.031
Baytree 0.171 0.028
[Trule 0.137 0.046
AC2 0.181 | 0.030
k-NN 0.181 | 0.031

Naivebay 0.151 | 0.043
CASTLE 0.148 | 0.047
ALLOCS80 || 0.201 | 0.031

CART 0.145

NewlID 0.181 0.033
CN2 0.204 0.032
LVQ 0.197 0.040
Kohonen 0.043
Quadisc 0.207 0.050
Default 0.440 0.050

The table of error rates for the credit datasetsis given in Table 10.1. In reading this table,
the reader should beware that:

¢ Not much can beinferred from only two casesre the suitability of thisor that algorithm
for credit datasets generally;
e Inreal credit applications, differential misclassification costs tend to loom large, if not
explicitly then by implication.
It is noteworthy that three of the top six algorithms are decision trees (Cal5, C4.5 and
INdCART), while the algorithm in second place (DIPOL92) is akin to a neura network.
We may concludethat decisiontrees do reasonably well on credit datasets. This conclusion
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would probably bestrengthenedif wehad persuaded CART to run on the credit management
dataset, as it is likely that the error rate for CART would be fairly similar to INndCART’s
value, and then CART would come above INndCART in this table. However, where values
were missing, asisthe case with CART, the result was assumed to be the default value - an
admittedly very conservative procedure, so CART appears low down in Table 10.1.

By itself, the conclusionthat decisiontreesdo well on credit datasets, whilegiving some
practical guidance on aspecific application area, does not explain why decision trees should
be successful here. A likely explanation isthat both datasets are partitioning datasets. This
isknown to betruefor the credit management dataset where a human classified the data on
the basis of the attributes. We suspect that it holds for the other credit dataset also, in view
of the following facts: (i) they are both credit datasets; (ii) they are near each other in the
multidimensional scaling representation of all datasets; and (iii) they are similar in terms
of number of attributes, number of classes, presence of categorical attributes etc. Part of
the reason for their success in this subject area is undoubtedly that decision tree methods
can cope more naturally with alarge number of binary or categorical attributes (provided
the number of categories is small). They aso incorporate interaction terms as a matter of
course. And, perhaps more significantly, they mirror the human decision process.

10.2.2 Image datasets

Image classification problems occur in a wide variety of contexts. In some applications,
the entire image (or an object in the image) must be classified, whereasin other cases the
classification proceeds on a pixel-by-pixel basis (possibly with extra spatial information).
One of thefirst problemsto betackled was of LANDSAT data, where Switzer (1980, 1983)
considered classification of each pixel in aspatial context. A similar dataset was used in
our trials, whereby the attributes (but not the class) of neighbouring pixelswas used to aid
the classification (Section 9.3.6). A further image segmentation problem, of classifying
each pixel is considered in Section 9.3.7. An alternative problem is to classify the entire
image into one of severa classes. An example of thisis object recognition, for example
classifying a hand-written character (Section 9.3.1), or a remotely sensed vehicle (Section
9.3.3). Another example in our trials is the classification of chromosomes (Section 9.3.5),
based on a number of features extracted from an image.

There are different “levels’ of image data. At the simplest level we can consider the
grey values at each pixel asthe set of variablesto classify each pixel, or the whole image.
Our trials suggest that the latter are not likely to work unlessthe imageis rather small; for
example classifying a hand-written number on the basis of 16 x 16 grey levels defeated
most of our algorithms. The pixel data can be further processed to yield a sharper image,
or other information which is still pixel-based, for example a gradient filter can be used
to extract edges. A more promising approach to classify imagesis to extract and select
appropriate features and the vehicle silhouette (Section 9.3.3) and chromosome (Section
9.3.5) datasetsare of thistype. Theissueof extracting theright featuresis aharder problem.
The temptation is to measure everything which may be useful but additional information
which is not relevant may spoil the performance of a classifier. For example, the nearest
neighbour method typically treats all variables with equal weight, and if some are of no
value then very poor results can occur. Other algorithms are more robust to this pitfall.

For presentation purposes we will categorise each of the nine image datasets as being
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one of Segmentation or Object Recognition, and we give the results of the two types
Separately.

Results and conclusions: Object Recognition

Table 10.2: Error rates for Object Recognition Datasets. Algorithms are listed in order
of their average ranking over the five datasets. Algorithms near the top tend to do well at
object recognition.

object KL | Digits | Vehic | Chrom | Letter
Quadisc 0.025 | 0.054 | 0.150 | 0.084 | 0.113
k-NN 0.020 | 0.047 | 0.275 | 0.123 | 0.070
DIPOL92 || 0.039 | 0.072 | 0.151 | 0.091 | 0.176
LVQ 0.026 | 0.061 | 0.287 | 0.121 | 0.079

ALLOCS0 || 0.024 | 0.068 | 0.173 | 0.253 | 0.064
Logdiscr 0.051 | 0.086 | 0.192 | 0.131 | 0.234
Discrim 0.075 | 0.114 | 0.216 | 0.107 | 0.302
SMART 0.057 | 0.104 | 0.217 | 0.128 | 0.295

RBF 0.055 | 0.083 | 0.307 | 0.129 | 0.233
Baytree 0.163 | 0.140 | 0.271 | 0.164 | 0.124
Backprop || 0.049 | 0.080 | 0.207 0.327
CN2 0.180 | 0.134 | 0.314 | 0.150 | 0.115
C45 0.180 | 0.149 | 0.266 | 0.175 | 0.132
NewID 0.162 | 0.150 | 0.298 | 0.176 | 0.128

INdCART || 0.170 | 0.154 | 0.298 | 0.173 | 0.130
Cascade 0.075 | 0.065 | 0.280

AC? 0.168 | 0.155 | 0.296 | 0.234 | 0.245
Kohonen 0.075 | 0.340 | 0.174 | 0.252
CASTLE 0.135 | 0.170 | 0.505 | 0.178 | 0.245
Ca5 0.270 | 0.220 | 0.279 | 0.244 | 0.253
CART 0.160 | 0.235

[Trule 0.216 | 0.222 | 0.324 | 0.697 | 0.594

NaiveBay | 0.223 | 0.233 | 0.558 | 0.324 | 0.529
Default 0.900 | 0.900 | 0.750 | 0.960 | 0.960

Table 10.2 gives the error-rates for the five object recognition datasets. It is believed that
this group contains pure discrimination datasets (digit, vehicle and letter recognition). On
these datasets, standard statistical procedures and neural networks do well overall.

It would be wrong to draw general conclusionsfrom only five datasets but we can make
the following points. The proponents of backpropagation claim that it has a special ability
to model non-linear behaviour. Some of these datasets have significant non-linearity and it
is true that backpropagation does well. However, in the case of the digitsit performs only
marginally better than quadratic discriminants, which can also model non-linear behaviour,
and in the case of the vehicles it performs significantly worse. When one considers the
large amount of extra effort required to optimise and train backpropagation one must ask
whether it really offers an advantage over more traditional algorithms. Ripley (1993) also
raises some important points on the use and claims of Neural Net methods.
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CASTLE performs poorly but thisis probably because it is not primarily designed for
discrimination. Its main advantage is that it gives an easily comprehensible picture of the
structure of the data. It indicates which variablesinfluence one another most strongly and
can identify which subset of attributesare the most strongly connected to the decision class.
However, it ignores weak connections and this is the reason for its poor performance, in
that weak connections may still have an influence on the final decision class.

SMART and linear discriminants perform similarly on these datasets. Both of these
work with linear combinations of the attributes, although SMART is more genera in that
it takes non-linear functions of these combinations. However, quadratic discriminants
performs rather better which suggests that a better way to model non-linearity would be to
input selected quadratic combinations of attributesto linear discriminants.

The nearest neighbour algorithm doeswell if all the variablesare useful in classification

and if there are no problems in choosing the right scaling. Raw pixel data such as the
satellite data and the hand-written digits satisfy these criteria. If some of the variables are
misleading or unhelpful then a variable selection procedure should precede classification.
The algorithm used here was not efficient in cpu time, since no condensing was used.
Resultsfrom Ripley (1993) indicatethat condensing doesnot greatly affect the classification
performance.
Paired Comparison on Digits Data: KL and the 4x4 digits data represent different
preprocessed versions of one and the same original dataset. Not unexpectedly, there is
a high correlation between the error-rates (0.944 with two missing values: CART and
Kohonen on KL).

Of much moreinterest is the fact that the statistical and neural net procedures perform
much better on the KL version than on the 4x4 version. On the other hand, Machine
Learning methods perform rather poorly on the 4x4 version and do even worse on the KL
version. Itisrather difficult to account for this phenomenon. ML methods, by their nature,
do not seem to cope with situations where the information is spread over alarge number of
variables. By construction, the Karhunen-Loeve dataset deliberately creates variables that
are linear combinations of the original pixel gray levels, with the first variable containing
“most” information, the second variable containing the maximum information orthogonal
to thefirst, etc.. From one point of view therefore, the first 16 KL attributes contain more
information than the complete set of 16 attributesin the 4x4 digit dataset (as the latter is
aparticular set of linear combinations of the original data), and the improvement in error
rates of the statistical proceduresis consistent with this interpretation.

Results and conclusions: Segmentation

Table 10.3 gives the error rates for the four segmentation problems. Machine Learning
procedures do fairly well in segmentation datasets, and traditional statistical methods
do very badly. The probable explanation is that these datasets originate as partitioning
problems.

Paired Comparison of Cut20 and Cut50: The dataset Cut20 consists of the first 20
attributes in the Cut50 dataset ordered by importance in a stepwise regression procedure.
One would therefore expect, and generally one observes, that performance deteriorates
when the number of attributesis decreased (so that the information content is decreased).
One exception tothisruleis quadratic discrimination which doesbadly in the Cut20 dataset
and even worseinthe Cut50data. Thisistheconverse of the paired comparisonin thedigits
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Table 10.3: Error rates for Segmentation Datasets. Algorithms are listed in order of their
average ranking over the four datasets. Algorithms near the top tend to do well in image
segmentation problems.

segment Satim | Segm | Cut20 | Cut50

ALLOCS80 || 0.132 | 0.030 | 0.037 | 0.034
Baytree 0.147 | 0.033 | 0.034 | 0.035

k-NN 0.094 | 0.077 | 0.036 | 0.027
DIPOL92 | 0.111 | 0.039 | 0.045 | 0.036
C4.5 0.150 | 0.040 | 0.036 | 0.035
NewlID 0.150 | 0.034 | 0.039 | 0.038
CN2 0.150 | 0.043 | 0.042 | 0.030
INdCART || 0.138 | 0.045 | 0.040 | 0.037
LVQ 0.105 | 0.046 | 0.041 | 0.040
RBF 0.121 | 0.069 | 0.044 | 0.038
Backprop || 0.139 | 0.054 | 0.043 | 0.041
Cab 0.151 | 0.062 | 0.045 | 0.037
SMART 0.159 | 0.052 | 0.047 | 0.039
AC? 0.157 | 0.031 | 0.063 | 0.054
Logdisc 0.163 | 0.109 | 0.046 | 0.037
CART 0.138 | 0.040

Kohonen 0.179 | 0.067 | 0.050 | 0.050
Discrim 0.171 | 0.116 | 0.050 | 0.050
CASTLE 0.194 | 0.112 | 0.061 | 0.061
Quadisc 0.155 | 0.157 | 0.088 | 0.097
Default 0.760 | 0.857 | 0.060 | 0.060
NaiveBay | 0.287 | 0.265 | 0.077 | 0.112
ITrule 0.455 | 0.082 | 0.084
Cascade 0.163

dataset: it appearsthat algorithmsthat are already doing badly on the most informative set
of attributes do even worse when the less informative attributes are added.

Similarly, Machine Learning methods do better on the Cut50 dataset, but there is a
surprise: they use smaller decision trees to achieve greater accuracy. This must mean
that some of the “less significant” attributes contribute to the discrimination by means of
interactions (or non-linearities). Here the phrase “less significant” is used in a technical
sense, referring to the least informative attributesin linear discriminants. Clearly attributes
that have little information for linear discriminants may have considerable value for other
procedures that are capable of incorporating interactions and non-linearities directly.

k-NN is best for images

Perhaps the most striking result in the images datasets is the performance of k-nearest
neighbour, with four outright top places and two runners-up. It would seem that, in terms
of error-rate, best results in image data are obtained by k-nearest neighbour.
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10.2.3 Datasetswith costs

There are two medical datasets and one credit dataset in this section. These areillustrative
of the application areaswhere costs are important. There are two waysin which algorithms
canincorporate costsinto adecisionrule: atthelearning stage or during thetest stage. Most
statistical procedures are based on estimates of probabilities, and incorporate costs only at
the final test stage (in evaluating the expected cost of misclassification). However, some
procedures can incorporate costs into the learning stage. One simple way to do this might
be to give extra weight to observations from classes with high costs of misclassification.

Results and conclusions

Table 10.4: Average costs for Datasets with Cost Matrices. Algorithms are listed in order
of their average ranking over the three datasets. Algorithms near the bottom cannot cope
with costs.

costs Head | Heart | Cr.Ger
Discrim 19.890 | 0.393 | 0.535
Logdisc 17.960 | 0.396 | 0.538
CASTLE 20.870 | 0.441 | 0.583
Quadisc 20.060 | 0.422 | 0.619
ALLOCS80 || 31.900 | 0.407 | 0.584
CART 20.380 | 0.452 | 0.613
NaiveBay || 23.950 | 0.374 | 0.703
SMART 21.810 | 0.478 | 0.601

Ca5 33.260 | 0.444 | 0.603
DIPOL92 || 26.520 | 0.507 | 0.599
k-NN 35.300 | 0478 | 0.694

Cascade 19.500 | 0.467
Backprop || 21.530 | 0.574 | 0.772
Baytree 22690 | 0526 | 0.778
INdCART || 25,520 | 0.630 | 0.761
Default 44.100 | 0.560 | 0.700

ITrule 37.610 | 0515 | 0.879
LvVQ 46.580 | 0.600 | 0.963
CN2 53,550 | 0.767 | 0.856
AC? 56.870 | 0.744 | 0.878
NewlD 53.640 | 0.844 | 0.925
Kohonen 0.693 | 1.160
RBF 63.100 | 0.781 | 0.971
C45 82.600 | 0.781 | 0.985

The average costs of the various algorithms are given in Table 10.4. There are some
surprises in this table, particularly relating to the default procedure and the performance
of most Machine Learning and some of the Neural Network procedures. Overall, it would
seem that the ML procedures do worse than the default (of granting credit to everyone, or
declaring everyone to be serioudly ill).
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10.2.4 Other datasets

Table 10.5: Error rates for remaining datasets. The shuttle error ratesarein %. Algorithms
arelisted in order of their average ranking over the eight datasets. Most of the problemsin
the table are partitioning problems, so it is fairly safe to say that algorithms near the top of
the table are most suited to partitioning problems.

others Belg | NewBel | Tset | Diab | DNA | Faults | Shutt | Tech
DIPOL92 .018 026 | .053 | .224 | .048 | .191 480 | .192
Baytree .030 014 | 037 | .271| .095| .283 020 | .174
NewID .027 017 | .040 | .289 | .100 | .304 .010 | .090
IndCART .034 014 | 039 | 271 | .073| .335 .090 | .095
AC? .034 019 | .047 | 276 | .100 | .174 320 | .102
C45 .040 018 | .049 | 270 | .076 | .305 100 | .120
Cab .029 026 | .055| 250 | .131 | .297 .030 | .183
SMART .006 013 | .047 | 232 | 141 | .339 590 | .366
Logdisc .007 028 | .117 | 223 | .061| .221| 3.830| .401
CN2 .032 025 | 036 | 289 | .095| .3%4 .030 | .123
CART .034 022 | 041 | 255 | .085| .318 .080

Backprop 017 022 | .065| .248 | .088 | .228 430

RBF .034 035 | .052 | 243 | .041| .320| 1400 | .324
Discrim .025 041 | 122 | 225 | .059| .204 | 4.830| .391
Quadisc .052 035 | .098 | 262 | .059 | .293 | 6.720 | .495
ALLOCS80 || .044 045 | 057 | 301 | .057 | .339 .830

NaiveBay .062 089 | .120 | .262 | .068 | .274 | 4.500 | .354
CASTLE .047 064 | 137 | 258 | .072| .318 | 3.800

k-NN .059 052 | .057 | .324 | .155| .375 440 | .204
[Trule .065 081 | 228 | .245| .135| .330 410

LvVQ .054 .065 | .065 | .272 444 440 | 261
Kohonen .056 .084 | 075 | 273 | .339| .472 357
Default .362 074 | 490 | .350 | .480 | .610 | 21.400 | .770

Of the remaining datasets, at least two (shuttle and technical) are pure partitioning
problems, with boundaries characteristically parallel to the attribute axes, a fact that can
be judged from plots of the attributes. Two are simulated datasets (Belgian and Belgian
Power 11), and can be described as somewhere between prediction and partitioning. The
aim of the tsetse dataset can be precisely stated as partitioning amap into two regions, so as
to reproduce a given partitioning as closely as possible. The tsetse dataset is also artificial
insofar as some of the attributes have been manufactured (by an interpolation from a small
amount of information). The Diabetes dataset is a prediction problem.

The nature of the other datasets (DNA, Machine Faults), i.e. whether we are dealing
with partitioning, prediction or discrimination, is not known precisely.

Results and conclusions

Table 10.5 givesthe error-rates for these eight datasets. It is perhaps inappropriate to draw
general conclusionsfrom such amixed bag of datasets. However, it would appear, from the
performance of the algorithms, that the datasets are best dealt with by Machine Learning
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or Neural Network procedures. How much relevance this has to practical problems is
debatable however, as two are simulated and two are pure partitioning datasets.

10.3 TOPFIVE ALGORITHMS

In Table 10.6 we present the algorithms that came out top for each of the 22 datasets. Only
the top five algorithms are quoted. The table is quoted for reference only, so that readers
can see which algorithms do well on a particular dataset. The algorithmsthat make the top
five most frequently are DIPOL92 (12 times), ALLOCS80 (11), Discrim (9), Logdiscr and
Quadisc (8), but not too much should be made of these figures as they depend very much
on the mix of problems used.

Table 10.6: Top five algorithmsfor all datasets.

Dataset First Second Third Fourth Fifth
KL k-NN ALLOCS80 | Quadisc LVQ DIPOL92
Dig44 k-NN Quadisc LVQ Cascade ALLOC80
Satim k-NN LVQ DIPOL92 | RBF ALLOCS80
Vehic Quadisc DIPOL92 | ALLOCS80 | Logdiscr Bprop
Head Logdiscr Cascade Discrim Quadisc CART
Heart Naivebay | Discrim Logdiscr ALLOCS80 | Quadisc
Belg SMART Logdiscr Bprop DIPOL92 | Discrim
Segm ALLOCS80 | AC2 Baytree NewlID DIPOL92
Diab Logdiscr DIPOL92 | Discrim SMART RBF
Cr.Ger Discrim Logdiscr CASTLE | ALLOCS80 | DIPOL92
Chrom || Quadisc DIPOL92 | Discrim LVQ k-NN
CrAus || CALS [Trule Discrim Logdiscr DIPOL92
Shuitt NewlID Baytree CN2 CALS5 CART
DNA RBF DIPOL92 | ALLOCS80 | Discrim Quadisc
Tech NewlID INdCART | AC2 C4.5 CN2
NewBel || SMART INdCART | Baytree NewlID C4.5

| Soft AC2 DIPOL92 | Discrim Logdiscr Bprop
Tset CN2 Baytree INdCART | NewlD CART
cut20 Baytree k-NN C4.5 ALLOCS80 | NewID
cut50 k-NN CN2 ALLOCS0 | Baytree C4.5
CrMan || SMART DIPOL92 | C45 CALS5 Bprop
letter ALLOCS0 | k-NN LVQ Quadisc CN2

Table 10.7 givesthe same information as Table 10.6, but here it isthe type of algorithm
(Statistical, Machine Learning or Neural Net) that is quoted.

In the Head injury dataset, the top five algorithms are all Statistical, whereas the top
five are al Machine Learning for the Shuttle and Technical datasets. Between these two
extremes, there is a variety. Table 10.8 orders the datasets by the number of Machine
Learning, Statistical or Neural Network agorithmsthat are in the top five.

From inspection of the frequenciesin Table 10.8, it appearsthat Neural Networks and
Statistical procedures do well on the same kind of datasets. In other words, Neural Nets
tend to do well when statistical procedures do well and vice versa. Asan objective measure
of thistendency, a correspondence analysiscan be used. Correspondence analysis attempts
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Table 10.7: Topfiveagorithmsfor all datasets, by type: MachineLearning (ML); Statistics
(Stat); and Neural Net (NN).

Dataset || First | Second | Third | Fourth | Fifth
KL Stat Stat Stat NN NN
Dig44 Stat Stat NN NN Stat
Satim Stat NN NN NN Stat
Vehic Stat NN Stat Stat NN
Head Stat NN Stat Stat ML
Heart Stat Stat Stat Stat Stat
Belg Stat Stat NN NN Stat
Segm Stat ML ML ML NN
Diab Stat NN Stat Stat NN
Cr.Ger Stat Stat Stat Stat NN
Chrom Stat NN Stat NN Stat
Cr.Aus ML ML Stat Stat NN
Shutt ML ML ML ML ML
DNA NN NN Stat Stat Stat
Tech ML ML ML ML ML
NewBd || Stat ML ML ML ML
| Soft ML NN Stat Stat NN
Tset ML ML ML ML ML
cut20 ML Stat ML Stat ML
cut50 Stat ML Stat ML ML
Cr.Man || Stat NN ML ML NN
letter Stat Stat NN Stat ML

to give scores to the rows (here datasets) and columns (here procedure types) of an array
with positive entries in such away that the scores are mutually consistent and maximally
correlated. For adescription of correspondence analysis, see Hill (1982) and Mardia et al.
(1979) . It turns out that the optimal scores for columns 2 and 3 (neural net and statistical
procedures) are virtually identical, but these are quite different from the score of column
1 (the ML procedures). It would appear therefore that neura nets are more similar to
statistical procedures than to ML. In passing we may note that the optimal scoresthat are
given to the datasets may be used to give an ordering to the datasets, and this ordering can
be understood as a measure of how suited the dataset is to ML procedures. If the same
scores are allocated to neural net and statistical procedures, the corresponding ordering of
the datasetsis exactly that givenin the table, with datasets at the bottom being more of type
ML.

10.3.1 Dominators

It is interesting to note that some agorithms always do better than the default (among
the datasets we have looked at). There are nine such: Discrim, Logdisc, SMART, k-NN,
ALLOCS80, CART, Cal5, DIPOL92 and Cascade. These algorithms* dominate” the default
strategy. Also, in the seven datasets on which Cascade was run, 1 Trule is dominated by
Cascade. The only other case of an agorithm being dominated by others is Kohonen: it
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Table 10.8: Datasets ordered by algorithm type. Datasets at the top are most suited to
Statistical and Neural Net procedures. Datasets at the bottom most suited to Machine
Learning.

Dataset
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is dominated by DIPOL 92, Cascade and LV Q. These comparisons do not include datasets
where results is missing (NA), so we should really say: “Where results are available,
Kohonen is aways worse than DIPOL92 and LVQ”. Since we only have results for 7
Cascade trials, the comparison Cascade-Kohonen is rather meaningless.

104 MULTIDIMENSIONAL SCALING

It would be possible to combine the results of al thetrialsto rank the algorithms by overall
success rate or average success rate, but not without some rather arbitrary assumptions
to equate error rates with costs. We do not attempt to give such an ordering, as we
believe that thisis not profitable. We prefer to give a more objective approach based on
multidimensional scaling (an equivalent procedure would be correspondence analysis). In
so doing, the aim is to demonstrate the close relationships between the algorithms, and,
at the same time, the close similarities between many of the datasets. Multidimensional
scaling has no background theory: it isan exploratory tool for suggesting relationshipsin
data rather than testing pre-chosen hypotheses. Thereis no agreed criterion which tellsus
if the scaling is successful, although there are generally accepted guidelines.
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10.4.1 Scaling of algorithms

To apply multidimensional scaling, thefirst problem, paradoxically, isto scalethevariables.
Theideaisto scale the error-rates and average costs in such away that each dataset carries
equal weight. Thisisnot easy. In each dataset, we rescaled so that the error-rate (or average
cost) had a minimum of zero and amaximum of unity. Such arescalingisarbitrary, and can
only bejustified a posteriori, insofar as the results confirm known relationships. Once the
initial scaling has been done, distances between all pairs of algorithms must be computed.
Distance was taken to be the Euclidean distance between the rescaled error-rates on the
22 datasets. This results in a distance matrix representing distances between all pairs
of agorithms in 23-dimensional space. The distance matrix can then be decomposed,
by an orthogonal decomposition, into distances in a reduced space. Most conveniently,
the dimensions of the reduced space are chosen to be two, so that the algorithms can be
represented as pointsin a 2-dimensional plot. Thisplot isgivenin Figure 10.1.

Multidimensional scaling of 23 algorithms (22 datasets)
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Fig. 10.1: Multidimensional scaling representation of algorithmsin the 22-dimensional space (each
dimension is an error rate or average cost measured on a given dataset). Points near to each other in
this 2-D plot are not necessarily closein 22-D.

Whether the 2-dimensional plot isagood picture of 22-dimensional space can bejudged
from a comparison of the set of distancesin 2-D compared to the set of distancesin 22-D.
One simple way to measure the goodness of the representation is to compare the total
squared distances. Let D, be the total of the sguared distances taken over all pairs of
points in the 2-dimensional plot, and let D4, be the total squared distances over al pairs
of pointsin 22-dimensions. The “stress’ ¢ isdefined tobe 1 — D5/ D,,. For Figure 10.1
the“stress” figure is 0.266. Considering the number of initial dimensionsis very high, this
isareasonably small “stress’, although we should say that, conventionally, the “stress’ is
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said to be small when less than 0.05. With a 3-dimensional representation, the stress factor
would be 0.089, indicating that it would be more sensible to think of algorithms differing
in at least 3-dimensions. A three-dimensional representation would raise the prospect of
representing all results in terms of three scaling coordinates which might be interpretable
as error-rates of three (perhaps notional) algorithms.

Because the stress figure is low relative to the number of dimensions, points near each
other in Figure 10.1 probably represent algorithms that are similar in performance. For
example, the Machine Learning methods CN2, NewID and IndCART are very close to
each other, and in general, all the machine learning procedures are close in Figure 10.1.
Before jumping to the conclusion that they are indeed similar, it is as well to check the
tables of results (although the stress is low, it is not zero so the distances in Figure 10.1
are approximate only). Looking at the individual tables, the reader should see that, for
example, CN2, NewID and IndCART tend to come at about the same place in every table
apart from a few exceptions. So strong is this similarity, that one is tempted to say that
marked deviations from this general pattern should be regarded with suspicion and should
be double checked.

10.4.2 Hierarchical clustering of algorithms

Hierarchical Clustering - 23 algorithms (22 datasets)
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Fig. 10.2: Hierarchical clustering of algorithms using standardised error rates and costs.

There is another way to look at relationships between the algorithms based on the set
of paired distances, namely by a hierarchical clustering of the algorithms. The resulting
Figure 10.2 does indeed capture known similarities (linear and logistic discriminants are
very close), and is very suggestive of other relationships.

It isto be expected that some of the similarities picked up by the clustering procedure
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will be accidental. In any case, algorithms should not be declared as similar on the basis
of empirical evidence alone, and true understanding of the relationships will follow only
when theoretical grounds are found for similaritiesin behaviour.

Finally, we should say something about somedissimilarities. Thereare somesurprising
“errors’ in the clusterings of Figure 10.2. For example, CART and IndCART are attached
to dlightly different clusterings. Thisis a major surprise, and we do have ideas on why
thisisindeed true, but, nonetheless, CART and IndCART were grouped together in Tables
10.1-10.5 to facilitate comparisons between the two.

10.4.3 Scaling of datasets

The same set of re-scaled error rates may be used to give a 2-dimensional plot of datasets.
From a formal point of view, the multidimensional scaling procedure is applied to the
transpose of the matrix of re-scaled error rates. The default algorithm was excluded from
this exercise as distances from this to the other algorithms were going to dominate the
picture.

Multidimensional scaling of 22 datasets (23 algorithms)
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Fig. 10.3: Multidimensional scaling representation of the Datasets in 23-dimensional space (each
dimension is an error rate and cost achieved by a particular algorithms). The symbols ML, NN and
Stat below each dataset indicate which type of algorithm achieved the lowest error-rate or cost on
that dataset. Datasets near to each other in this 2-D plot are not necessarily closein 23-D.

Figure 10.3 is a multidimensional scaling representation of the error rates and costs
given in Tables 10.1-10.5. Each dataset in Tables 10.1-10.5 is described by a point in
23-dimensional space, the coordinates of which are the (scaled) error rates or costs of
the various algorithms. To help visualise the relationships between the points (datasets),
they have been projected down to 2-dimensionsin such away as to preserve their mutual
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distances as much as possible. This projection is fairly successful asthe “stress’ factor is
only 0.149 (avalue of 0.01 is regarded as excellent, a value of 0.05 is good). Again, a 3-
dimensional representation might be more “acceptable” with a stress factor of 0.063. Such
a 3-D representation could be interpreted as saying that datasets differ in three essentially
orthogonal ways, and is suggestive of a description of datasets using just three measures.
Thisideais explored further in the next subsection.

Several interesting similarities are obvious from Figure 10.3. The Costs datasets are
closeto each other, asarethe two types of image datasets. In addition, thecredit datasetsare
all at the top of the diagram (except for the German credit data which involves costs). The
two pathologically partitioned datasets Shuttle and Technical are together at the extreme
top right of the diagram.

In view of these similarities, it is tempting to classify datasets of unknown origin by
their proximitiesto other datasets of known provenance. For example, the Diabetes dataset
is somewhere between a partitioning type dataset (cf. credit data) and a prediction type
dataset (cf. head injury).

Interpretation of Scaling Coordinates

The plotting coordinates for the 2-dimensional description of datasets in Figure 10.3 are
derived by orthogonal transformation of the original error rates/costs. These coordinates
clearly represent distinctivefeatures of the datasets as similar datasets are grouped together
in the diagram. This suggests either that the scaling coordinates might be used as charac-
teristics of the datasets, or, equivalently, might be related to characteristics of the datasets.
Thissuggeststhat welook at these coordinatesand try to rel ate them to the dataset measures
that we defined in Chapter 7. For example, it turns out that the first scaling coordinate is
positively correlated with the number of examplesin the dataset. In Figure 10.3, thismeans
that thereisatendency for the larger datasetsto lie to the right of the diagram. The second
scaling coordinate is correlated with the curious ratio kurtosis/q, where g is the number of
classes. Thisimplies that a dataset with small kurtosis and large number of classes will
tend to lie in the bottom half of Figure 10.3. However, the correlations are quite weak, and
in any case only relate to a subspace of two dimensions with a “stress’ of 0.149, so we
cannot say that these measures capture the essential differences between datasets.

10.4.4 Best algorithmsfor datasets

In Figure 10.3, each dataset has been labelled by the type of algorithm that does best on
that particular dataset. For example, the algorithm AC? (of type ML) comes out top on the
Faults dataset, so the dataset Faults has the label ML attached. Inspecting Figure 10.3, a
very clear pattern emerges. Machine Learning procedures generally do best on datasets at
the top or at the extreme right of the diagram. Statistical and Neural Network procedures
do best on datasetsin thelower half and to the left of the diagram. Of course, this patternis
very closely related to the fact that datasets from particular application areas are clustered
together.

In the spirit of Correspondence Analysis, it would be possible to use the scaling coor-
dinates of datasets or algorithms to come up with a mutually consistent set of coordinates
that express the rel ationships between datasets and algorithms. This can be done, but there
are too many missing valuesin the tablesfor the usual version of correspondence analysis
(no missing values allowed).
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1045 Clustering of datasets

Starting from the distances in 23-dimensions, a standard clustering algorithm (using the
furthest neighbour option) gives the clustering of Figure 10.4.

Hierarchical Clustering - 22 datasets (based on 23 algorithms)
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Fig. 10.4: Hierarchical clustering of datasets based on standardised error rates and costs.

10.5 PERFORMANCE RELATED TO MEASURES: THEORETICAL

There are very few theoretical indicators for algorithm accuracy. What little there are,
make specific distributional assumptions, and the only question is whether these specific
assumptions are valid. In such cases, it is possible to build checks into the algorithm that
givean indication if the assumptions are valid.

10.5.1 Normal distributions

The statistical measures were defined in Section 7.3.2 with a view to monitoring the
success of the two discriminant procedures that are associated with the normal distribution,
namely linear and quadratic discriminants. Within the class of normal distributions, the
measure SD_ratio provides a guide as to the relative suitability of linear and quadratic
discrimination. If sample sizes are so large that covariance matrices can be accurately
measured, it would be legitimate to use the quadratic version exclusively, as it reduces
to the linear rule in the special case of equality of covariances. Practically speaking, the
advice must be reversed: use linear discriminants unlessthe sample size is very large, the
distribution is known to be nearly normal and the covariances are very different. So we
consider now when to use quadratic discriminants. It should be noted that this advice is
absolute in the sense that it is based only on measures related to the dataset.
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10.5.2 Absolute performance: quadratic discriminants

In theory, quadratic discrimination is the best procedure to use when the data are normally
distributed, especially so if the covariances differ. Because it makes very specific distribu-
tional assumptions, and so is very efficient for normal distributions, it isinadvisable to use
quadratic discrimination for non-normal distributions(a common situation with parametric
procedures - they are not robust to departures from the assumptions), and, because it uses
many more parameters, it is also not advisable to use quadratic discrimination when the
sample sizes are small. We will now relate these facts to our measures for the datasets.

The ideal dataset for quadratic discrimination would be a very large, normally dis-
tributed, dataset with widely differing covariance matrices. In terms of the measures,
ideally we want 5; = skewness = 0, 8> = kurtosis = 3, and SD_ratio much greater than
unity.

The most normal dataset in our study is the KL digits dataset, as 5; = skewness =
0.18 (and thisis small), 3> = kurtosis = 2.92 (and thisis near 3), and, most importantly,
SD_ratio = 1.97 (and this is much greater than unity). This dataset is nearest ideal, so
it is predictable that quadratic discrimination will achieve the lowest error rate. In fact,
quadratic discriminants achieve an error rate of 2.5%, and this is only bettered by k-NN
with an error rate of 2.0% and by ALLOCB80 with an error rate of 2.4%.

At the other extreme, the least normal dataset is probably the shuttle dataset, with
(1 = skewness = 4.4 (very large)), B2 = kurtosis = 160.3 (nowhere near 3), and, to make
matters worse, the SD_ratio = 1.12 (and this is not much greater than unity). Therefore,
we can predict that thisis the least appropriate dataset for quadratic discrimination, and it
is no surprise that quadratic discriminants achieve an error rate of 6.72%, which is worst
of all our results for the shuttle dataset. The decision tree methods get error rates smaller
than this by afactor of 100!

The important proviso should always be borne in mind that there must be enough data
to estimate all parameters accurately.

10.5.3 Relative performance: Logdiscvs. DIPOL92

Another fruitful way of looking at the behaviour of algorithmsis by making paired compar-
isons between closely related algorithms. This extremely useful device is best illustrated
by comparing logistic discrimination (Logdisc) and DIPOL92. From their construction, we
can see that DIPOL92 and logistic discrimination have exactly the same formal decision
procedure in one special case, namely the case of two-class problemsin which thereis no
clustering (i.e. both classes are “pure”). Where the two differ then, will be in multi-class
problems (such asthedigitsor | etters datasets) or in two-class problemsin which the classes
are impure (such as the Belgian Power dataset).

With thisin mind, it is of interest to compare the performance of DIPOL92 when it does
not use clustering with the performance of logistic discrimination, asis donein Table 10.9.
The accuracies/average costs quoted for logistic discrimination are those in the main tables
of Chapter 9. Those quoted for DIPOL92 are for the no-clustering version of DIPOL,
and so are different, in general, from those in the main tables. Either in Table 10.9 or
in the main tables, it is clear that sometimes one procedure is better and sometimes the
other. From what is known about the algorithms, however, we should look at the two-class
problems separately, and, if this is done, a pattern emerges. Indeed from Table 10.9, it
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Table 10.9: Logistic Discriminantsvs. DIPOL92 with no clustering.

Dataset Logdisc | DIPOL92 (no clustering) | No. classes(q)
Belgian 0.0072 0.0184 2
Chromosome || 0.1310 0.0917 24
Credit Aus 0.1406 0.1406 2
Credit Ger 0.5380 0.5440 2
Credit Man 0.0300 0.0292 2
Cut20 0.0460 0.0480 2
Cut50 0.0370 0.0490 2
DNA 0.0610 0.0490 3
Diabetes 0.2230 0.2380 2
Digit44 0.0860 0.0700 10
Faults 0.2210 0.2000 3
KL digit 0.0510 0.0400 10
Letter 0.2340 0.1770 26
New.Belg 0.0280 0.0380 2
Sat. image 0.1630 0.1480 6
Segmentation || 0.1090 0.0510 7
Shuttle 0.0380 0.0530 7
Technical 0.4010 0.3530 91
Tsetse 0.1170 0.1210 2
Vehicle 0.1910 0.2070 4

seems that generally Logdisc is better than DIPOL92 for two-class problems. Knowing
this, we can look back at the main tables and come to the following conclusions about the
relative performance of Logdisc and DIPOL92.

Rules comparing Logdisc to DIPOL92

We can summarise our conclusions viz-a-viz logistic and DIPOL by the following rules,
which amount to saying that DIPOL92 is usually better than Logdisc except for the cases
stated.

e |F number of examplesissmall,

— ORIIF cost matrix involved,
— ORIF number of classes= 2

* AND if nodistinct clusters within classes

e THEN Logdisc is better than DIPOL92
e ELSEDIPOL92 is better than Logdisc

10.5.4 Pruning of decision trees

This section looks at a small subset of the trials relating to decision tree methods. The
specific aim isto illustrate how error rate (or cost) is related to the complexity (number of
nodes) of the decision tree.

There is no obvious way of telling if the error-rate of a decision tree is near optimal,
indeed the whole question of what is to be optimised is a very open one. In practice a
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Hypothetical error rates for three algorithms
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Fig. 10.5: Hypothetical dependence of error rates on number of end nodes (and so on pruning) for
three algorithms on two datasets.

balance must be struck between conflicting criteria. One way of achieving abalanceisthe
use of cost-complexity as a criterion, as is done by Breiman et al. (1984). This balances
complexity of the tree against the error rate, and is used in their CART procedure as a
criterion for pruning the decision tree. All the decision trees in this project incorporate
some kind of pruning, and the extent of pruning is controlled by a parameter. Generaly, a
treethat isoverpruned hastoo high an error rate because the decision tree does not represent
the full structure of the dataset, and the tree is biased. On the other hand, atree that is
not pruned has too much random variation in the allocation of examples. In between these
two extremes, thereis usually an optimal amount of pruning. If an investigator is prepared
to spend some time trying different values of this pruning parameter, and the error-rate
is tested against an independent test set, the optimal amount of pruning can be found by
plotting the error rate against the pruning parameter. Equivalently, the error-rate may be
plotted against the number of end nodes. Usually, the error rate drops quite quickly to its
minimum value as the number of nodes increases, increasing slowly as the nodes increase
beyond the optimal value.

The number of end nodes is an important measure of the complexity of a decision tree.
If the decision tree achieves something near the optimal error-rate, the number of end nodes
is also measure of the complexity of the dataset. Although it is not to be expected that all
decision treeswill achieve their optimal error-rates with the same number of end-nodes, it
seems reasonable that most decision trees will achieve their optimal error-rates when the
number of end-nodes matches the complexity of the dataset.

Considerations like these lead us to expect that the error-rates of different algorithms



196 Analysisof results [Ch. 10

on the same dataset will behave as sketched in Figure 10.5.

To achieve some kind of comparability between datasets, al the curves for one dataset
canbemoved horizontally and vertically onthelogarithmic scale. Thisamountsto rescaling
all the results on that dataset so that the global minimum error rateis unity and the number
of nodes at the global minimum is unity.

When no attempt is made to optimise the amount of pruning, we resort to the following
plausible argument to compare algorithms. Consider, for example, the Cut20 dataset. Four
algorithms were tested, with very widely differing error rates and nodes, as shown in Table
10.10. Asthelowest error rateisachieved by C4.5, makeeverything relativeto C4.5, so that
the relative number N/ Ngpt of nodes and relative error rates E/Egpt are given in Table
10.10 These standardised results for the Cut20 dataset are plotted in Figure 10.6, along

Table 10.10: Error rates and number of end nodes for four decision trees on the Cut20
dataset. Note that C4.5 achieves the lowest error rate, so we speculate that the optimal
number of end nodes for decision treesis about 159.

Algorithm || No. end nodes | Error rate
AC? 38 0.063
Ca5 14 0.045
C4.5 159 0.036
NewlID 339 0.039

Table 10.11: Error rates and number of end nodesfor four algorithmsrelative to the values
for C4.5.

Algorithm || N/Nop: | E/Eqps
AC? 0.239 1.750
Cabs 0.088 1.250
C45 1.000 1.000
NewlD 2.132 1.083

with standardised results from 15 other datasets for which we had the relevant information,
with the name of the algorithm as label. Of course, each dataset will give rise to at least
one point with N/N,,; = 1 and E/E,,; = 1, but we are here concerned with the results
that are not near this* optimal” point.

Note that Cal5 appears most frequently in the left of the Figure 10.6 (where it has less
nodes than the “best” algorithm) and both NewID and AC? appear most frequently in the
right of the diagram (where they have too many nodes). It would also appear that C4.5is
most likely to use the “best” number of nodes - and thisis very indirect evidence that the
amount of pruning used by C4.5is correct on average, athough this conclusion isbased on
asmall number of datasets.

One would expect that a well-trained procedure should attain the optimal number of
nodeson average, butitisclear that Cal5isbiased towardssmall numbers (this may be done
deliberately to obtain trees with simple structure), whereas NewID and AC? are biased
towards more complex trees. In the absence of information on the relative weights to be
attached to complexity (number of nodes) or cost (error rate), we cannot say whether Cal5
has struck the right balance, but it does seem clear that NewID and AC? often use very
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Excess error rate vs. excess no. nodes
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Fig. 10.6: Error rate and number of nodes for 16 datasets. Results for each dataset are scaled
separately so that the algorithm with lowest error rate on that dataset has unit error rate and unit
number of nodes.

complex structures with no compensation in reduced error rate.

10.6 RULE BASED ADVICE ON ALGORITHM APPLICATION

Many different statistical and machine learning al gorithms have been devel oped in the past.
If we areinterested in applying these algorithmsto concrete taskswe haveto consider which
learning algorithmisbest suited for which problem. A satisfactory answer requiresacertain
know-how of this area, which can be acquired only with experience. We consider here
if Machine Learning techniques themselves can be useful in organizing this knowledge,
specifically the knowledge embedded in the empirical results of the StatLog trials. Theaim
is to relate the performance of agorithms to the characteristics of the datasets using only
the empirical data. The process of generating a set of rules capable of relating these two
conceptsisreferred to as meta-level learning.

10.6.1 Objectives

It appears that datasets can be characterised using certain features such as number of
attributes, their types, amount of unknown values or other statistical parameters. It is
reasonable to try to match the features of datasets with our past knowledge concerning
the algorithms. If we select the algorithm that most closely matches the features of the
dataset, then we increase the chances of obtaining useful results. The advantage isthat not
all agorithms need to be tried out. Those algorithms that do not match the data can be
excluded, and so, a great deal of effort can be saved.
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In order to achieve this aim, we need to determine which dataset features are relevant.
After that, various instances of learning tasks can be examined with the aim of formu-
lating a “theory” concerning the applicability of different machine learning and statistical
algorithms.

The knowledge concerning which algorithm is applicable can be summarised in the
form of rules stating that if the given dataset has certain characteristics then learning a
particular algorithm may be applicable. Each rule can, in addition, be qualified using a
certain measure indicating how reliable the rule is. Rules like this can be constructed
manually, or with the help of machine learning methods on the basis of past cases. In this
section we are concerned with this latter method. The process of constructing the rules
represents akind of meta-level learning.

Asthenumber of testswasgenerally limited, few people have attempted to automate the
formulation of atheory concerning the applicability of different algorithms. One exception
was the work of Aha (1992) who represented this knowledge using the following rule
schemas:

If the given dataset has characteristics C1...Cn,
Then

try the learning algorithm Li

in preference to learning algorithm Lj

One example of such arule schemais:

If (# training instances < 737) AND
(# prototypes per class > 5.5) AND
(# relevant attributes > 8.5)

Then IB1 >> C4

where IB1 >> C4 means that algorithm IB1 is predicted to have significantly higher
accuracies than algorithm C4. Our approach differs from Aha's in several respects. The
main differenceisthat weare not concerned withjust acomparison between two al gorithms,
but rather a group of them.

Our aim is to obtain rules which would indicate when a particular algorithm works
better than therest. A number of interesting relationshipshave emerged. However, in order
to have reliable results, we would need quite an extensive set of test results, certainly much
more than the 22 datasets considered in this book.

As part of the overall aim of matching features of datasets with our past knowledge of
algorithms, we need to determine which dataset features are relevant. Thisis not known
a priori, so, for exploratory purposes, we used the reduced set of measures given in Table
10.12. Thisincludes certain simple measures, such as number of examples, attributes and
classes, and more complex statistical and information-based measures. Some measures
represent derived quantities and include, for example, measures that are ratios of other
measures. These and other measures are given in Sections 7.3.1 —7.3.3.

10.6.2 Usingtest resultsin metalevel learning

Here we have used all of the available results - as listed in Chapter 9. The results for each
dataset were analysed with the objective of determining which agorithms achieved low
error rates (or costs). All algorithms with low error rates were considered applicable to
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Table 10.12: Measuresused in Metalevel Learning.

Measure Definition

Simple

N Number of examples

p Number of attributes

q Number of Classes

Bin.att Number of Binary Attributes

Cost Cost matrix indicator

Statistical

SD Standard deviation ratio (geometric mean)
corr.abs Mean absolute correlation of attributes
cancorl First canonical correlation (7.3.2)

fractl Fraction separability due to cancorl
skewness Skewness - mean of |E(X — u)3| / o3
kurtosis Kurtosis - mean of |E(X — p)*| / o*

I nformation theory

H(C) Entropy (complexity) of class

H(X) Mean entropy (complexity) of attributes
M(C,X) Mean mutual information of class and attributes
EN.attr Equivalent number of attributes H(C) / M(C, X)
NS.ratio Noise-signal ratio (H(X) — M(C, X)) / M(C, X)

this dataset. The other algorithms were considered inapplicable. This categorisation of
the test results can be seen as a preparatory step for the metalevel learning task. Of course,
the categorisation will permit us also to make prediction regarding which algorithms are
applicable on a new dataset.

Of course, the question of whether the error rate is high or low is rather relative. The
error rate of 15% may be excellent in some domains, while 5% may be bad in others.
This problem is resolved using a method similar to subset selection in statistics. First,
the best algorithm is identified according to the error rates. Then an acceptable margin
of tolerance is calculated. All agorithms whose error rates fall within this margin are
considered applicable, while the others are labelled asinapplicable. Thelevel of tolerance
can reasonably be defined in terms of the standard deviation of the error rate, but since
each agorithm achieves a different error rate, the appropriate standard deviation will vary
across algorithms.

To keep things simple, we will quote the standard deviations for the error rate of the
“best” algorithm, i.e. that which achievesthe lowest error rate. Denote the lowest error rate
by ER. Then the standard deviation is defined by

EM = +/ER(1 - ER)/NT,

where N'T' is the number of examplesin the test set. Then all algorithms whose error rates
fal within theinterval (ER, ER + kE M) are considered applicable. Of course we still
need to choose a value for k£ which determines the size of the interval. This affects the
confidence that the truly best algorithm appears in the group considered. The larger the
value of &, the higher the confidence that the best algorithm will bein thisinterval.
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For example, let us consider the tests on the Segmentation dataset consisting of 2310
examples. The best algorithm appears to be ALLOCB80 with the error rate of 3% (ER =
0.03). Then

EM = /0.03(1 - 0.03)/2310 = 0.0035
whichis0.35%. In this example, we can say with high confidence that the best algorithms
areinthegroup with error ratesbetween 3% and £ x 0.35%. If £ = 1theinterval isrelatively
small < 3%, 3.35% > andincludesonly two other algorithms (AC?, BayesTree) apart from
ALLOCS80. All the algorithmsthat lie in thisinterval can be considered applicableto this
dataset, and the othersinapplicable. If we enlarge the margin, by considering larger values
of k, we get amore relaxed notion of applicability (see Table 10.13).
Table 10.13: Classified Test Results on Image Segmentation Dataset for k=16.

Algorithm Error Class Margin
ALLOCB80 .030 Appl 0.030 Margin for k=0
AC? 031 Appl
BayesTree .033 Appl

0.0335 Margin for k=1
NewlID 034 Appl

0.037 Margin for k=2
C4.5 .040 Appl
CART .040 Appl
DIPOL92 .040 Appl
CN2 .043  Appl

0.044 Margin for k=4
INdCART .045 Appl
LVQ 046  Appl
SMART .052 Appl
Backprop .054 Appl

0.058 Margin for k=8

Ca5 062 Appl
Kohonen .067 Appl
RBF 069 Appl

k-NN 077  Appl
0.086 Margin for k=16

Logdisc .109 Non-Appl
CASTLE .112 Non-Appl
Discrim  .116  Non-Appl
Quadisc .157 Non-Appl
Bayes .265 Non-Appl
[Trule 455 Non-Appl
Default  .900 Non-Appl

The decision as to where to draw the line (by choosing a value for k) is, of course,
rather subjective. In this work we had to consider an additional constraint related to the
purpose we had in mind. Asour objectiveis to generate rules concerning applicability of
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algorithms we have opted for the more relaxed scheme of appplicability (k = 8 or 16), so
as to have enough examplesin each class (Appl, Non-Appl).

Some of the tests results analysed are not characterised using error rates, but rather
costs. Consequently the notion of error margin discussed earlier has to be adapted to
costs. The standard error of the mean cost can be calculated from the confusion matrices
(obtained by testing), and the cost matrix. The valuesobtained for the leading algorithm in
the three relevant datasets were:

Dataset Algorithm Mean cost Standard error of mean
German credit Discrim 0.525 0.0327
Heart disease Discrim 0.415 0.0688
Head injury Logdisc 18.644 1.3523

In the experiments reported later the error margin was simply set to the values 0.0327,
0.0688 and 1.3523 respectively, irrespective of the algorithm used.

Joining data relative to one algorithm

The problem of learning was divided into several phases. In each phase all the test results
relative to just one particular algorithm (for example, CART) were joined, while all the
other results (relative to other algorithms) were temporarily ignored. The purpose of this
strategy was to simplify the class structure. For each algorithm we would have just two
classes (Appl and Non-Appl). This strategy worked better than the obvious solution that
included all available datafor training. For example, when consideringthe CART algorithm
and amargin of £ = 16 we get the scheme illustrated in Figure 10.7. The classified test

CART-Appl, Satim CART-Non-Appl, KL
CART-Appl, Vehic CART-Non-Appl, Dig44
CART-Appl, Head CART-Non-Appl, Chrom
CART-Appl, Heart CART-Non-Appl, Shut
CART-Appl, Belg CART-Non-Appl, Tech
CART-Appl, Segm CART-Non-Appl, Cut
CART-Appl, Diab CART-Non-Appl, Cr.Man
CART-Appl, Cr.Ger CART-Non-Appl, L etter
CART-Appl, Cr.Aust

CART-Appl, DNA

CART-Appl, Belgll

CART-Appl, Faults

CART-Appl, Tsetse

Fig. 10.7: Classified test resultsrelative to one particular algorithm (CART).

results are then modified as follows. The dataset name is simply substituted by a vector
containing the corresponding dataset characteristics. Values which are not available or
missing are simply represented by “ 7. This extended dataset isthen used in the meta-level
learning.

Choice of algorithmfor learning

A question arises as to which algorithm we should use in the process of meta-level learn-
ing. We have decided to use C4.5 for the following reasons. First, as our results have
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demonstrated, this algorithm achieves quite good results overall. Secondly, the decision
tree generated by C4.5 can be inspected and analysed. This is not the case with some
statistical and neural learning agorithms.

So, for example, when C4.5 has been supplied with the partial test results relative to
CART agorithm, it generated the decision treein Figure 10.8. The figures that appear on

N > 6435 : Non-Appl (8.0)

N <= 6435:

| Skew <= 0.57 : Non-Appl (2.0)
| Skew > 0.57 : Appl (12.0)

Fig. 10.8: Decision tree generated by C4.5 relative to CART.

the right hand side of each leaf are either of the form (N) or (N/E), where N represents
the total number of examples satisfying the conditions of the associated branch, and E
the number of examples of other classes that have been erroneously covered. If the data
contains unknown values, the numbers N and E may be fractional.

It has been argued that rules are more legible than trees. The decision tree shown earlier
can be transformed into a rule form using a very simple process, where each branch of a
treeis simply transcribed as arule. The applicability of CART can thus be characterised
using the rules in Figure 10.9.

CART-Appl — N < 6435, Skew > 0.57
CART-Non-Appl — N > 6435
CART-Non-Appl — N < 6435, Skew < 0.57

Fig. 10.9: Rules generated by C4.5 relative to CART.

Quinlan (1993) has argued that rules obtained from decision trees can be improved
upon in variousways. For example, itis possibleto eliminate conditionsthat areirrelevant,
or even drop entire rulesthat areirrelevant or incorrect. In addition it is possible to reorder
the rules according to certain criteria and introduce a default rule to cover the cases that
have not been covered. The program C4.5 includes a command that permits the user to
transform a decision tree into a such a rule set. The rules produced by the system are
characterised using (pessimistic) error rate estimates.

As is shown in the next section, error rate (or its estimate) is not an ideal measure,
however. Thisis particularly evident when dealing with continuous classes. This problem
has motivated us to undertake a separate evaluation of all candidate rules and characterise
them using a new measure. The aim is to identify those rules that appear to be most
informative.

10.6.3 Characterizing predictive power

The rules concerning applicability of a particular algorithm were generated on the basis of
only about 22 examples (each case represents the results of particular test on a particular
dataset). Of these, only a part represented “positive examples’, corresponding to the
datasets on which the particular algorithm performed well. Thisisrather amodest number.
Also, the set of dataset descriptors used may not be optimal. We could thus expect that the
rules generated capture a mixture of relevant and fortuitous regul arities.
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In order to strengthen our confidencein the results we have decided to evaluate the rules
generated. Our aim was to determine whether the rules could actually be used to make
useful predictions concerning its applicability. We have adopted a leave-one-out procedure
and applied it to datasets, such as the one shown in Table 10.13.

Following this procedure, we used all but one items in training, while the remaining
itemwas usedfor testing. Of course, the set of rules generated in each pass could be slightly
different, but the form of the ruleswas not our primary interest here. We were interested to
verify how successful the rules were in predicting the applicability (or non-applicability)
of the algorithm.

Let us analyse an example. Consider, for example, the problem of predicting the
applicability of CART. This can be characterised using confusion matrices, such as the
ones shown in Figure 10.10, showing results relative to the error margin k=16. Note that
an extra (simulated) dataset has been used in the following calculations and tables, which
iswhy the sumis now 22.

Appl Non-appl
Appl 11 2
Non-appl 1 8

Fig. 10.10: Evaluation of the meta-rules concerning applicability of CART. The rows represent the
true class, and the columns the predicted class.

The confusion matrix showsthat the rules generated were capableof correctly predicting
the applicability of CART on an unseen dataset in 11 cases. Incorrect prediction was made
only in 1 case. Similarly, if we consider non-applicability, we see that correct prediction
ismadein 8 cases, and incorrect onein 2. This gives arather good overall success rate of
86%.

We notice that success rate is not an ideal measure, however. As the margin of
applicability is extended (by making % larger), more caseswill get classified as applicable.
If we consider an extreme case, when the margin covers all algorithms, we will get an
apparent successrate of 100%. Of coursewe are not interested in such auseless procedure!

This apparent paradox can be resolved by adopting the measure called information
score (1S) (Kononenko & Bratko, 1991) in the evaluation. This measure takesinto account
prior probabilities. The information score associated with a definite positive classification
is defined as —log P(C'), where P(C) represents the prior probability of class C. The
information scores can be used to weigh all classifier answers. In our case we have two
classes Appl and Non-Appl. The weights can be represented conveniently in the form of an
information score matrix as shown in Figure 10.11.

Appl Non- Appl
Appl —log P(Appl) —log(1 — P(Non-Appl))
Non-Appl  —log(1 — P(Appl)) —logP(Non- Appl)

Fig. 10.11: Information Score Matrix. The rows represent the true class, and the columns the
predicted class.

The information scores can be used to calculate thetotal information provided by arule
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on the given dataset. Thiscan be done simply by multiplying each element of the confusion
matrix by the corresponding element of the information score matrix.

The quantities P(Appl) and P(Non-Appl) can be estimated from the appropriate fre-
quencies. If weconsider thefrequency of Appl and Non-Appl for al algorithms (irrespective
of the algorithm in question), we get akind of absolute reference point. This enablesusto
make comparisonsright across different algorithms.

For example, for the value of log P(Appl) we consider a dataset consisting of 506
cases (23 algorithms x 22 datasets). As it happens 307 cases fall into the class Appl.
The information associated with —log P(Appl) is —10g(307/506) = 0.721. Similarly, the
value of —log P(Non-Appl) is—1og(199/506) = 1.346.

We notice that due to the distribution of this data (given by a relatively large margin
of applicability of ¥ = 16), the examples of applicable cases are relatively common.
Consequently, the information concerning applicability has a somewhat smaller weight
(.721) than the information concerning non-applicability (1.346).

If we multiply the elements of the confusion matrix for CART by the corresponding
elements of the information score matrix we get the matrix shown in Figure 10.12.

Appl Non-Appl
Appl 7.93 2.69
Non-Appl 0.72 10.77

Fig. 10.12: Adjusted confusion matrix for CART. The rows represent the true class, and the columns
the predicted class.

Thismatrix isin away similar to the confusion matrix shown earlier with the exception
that the error counts have been weighted by the appropriate information scores. To obtain
an estimate of the average information relative to one case, we need to divide al elements
by the number of cases considered (i.e 22). This way we get the scaled matrix in Figure
10.13.

Appl Non-Appl
Appl 0.360 0.122
Non-Appl 0.033 0.489

Fig. 10.13: Rescaled adjusted confusion matrix for CART.

This information provided by the classification of Appl is0.360 — 0.033 = 0.327 bits.
Theinformation provided by classification of Non-Appl issimilarly 0.489 — 0.122 = 0.367
bits.

This information obtained in the manner described can be compared to the information
provided by a default rule. This can be calculated simply as follows. First we need to
decide whether the algorithm should be applicable or non-applicable by default. This
is quite simple. We just look for the classification which provides us with the highest
information.

If we consider the previousexample, the class Appl isthe correct default for CART. This
is because the information associated with this default is (13 x 0.721 — 9 x 0.721)/22 =
0.131 which is greater than the information associated with the converse rule (i.e that
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CART is Non-Appl).

How can we decide whether the rules involved in classification are actually useful?
Thisis quite straightforward. A rule can be considered useful if it provides us with more
information than the default. If we come back to our example, we see that the classification
for Appl provides uswith .327 bits, while the default classification provides only .131 bits.
Thisindicatesthat the rules used in the classification are more informative than the default.
In consequence, the actual rule should be kept and the default rule discarded.

10.6.4 Rulesgenerated in metalevel learning

Figure 10.14 contains some rules generated using the method described. As we have
not used a uniform notion of applicability throughout, each ruleis qualified by additional
information. The symbol Appl,; represents the concept of applicability derived on the
basis of the best error rate. In case of Appl |16 the interval of applicability is (Best error
rate, Best error rate + 16 STD's) and the interval of non-applicability is (Best error rate +
16 STD’s, 1).

Each rule also shows the information score. This parameter gives an estimate of the
usefulnessof eachrule. Therulespresented could be supplemented by another set generated
on the basis of the worst error rate (i.e. the error rate associated with the choice of most
common class or worse). In the case of Appl 15 the interval of applicability is (Best error
rate, Default error rate- 8 STD's) and the interval of non-applicability is (Default error rate
-8STD’s, 1).

The set of rules generated includes a number of “default rules” which can be easily
recognised (they do not have any conditions on the right hand side of “«").

Each rule included shows al so the normalised information score. This parameter gives
an estimate of the usefulness of each rule. Only those rules that could be considered
minimally useful (with information score > .300) have been included here. All rules for
CART are also shown, as these were discussed earlier. In the implemented system we use
afew more rules which are a bit less informative (with inf. scoresdownto .100).
Discussion
The problem of learning rules for all algorithms simultaneoudly isformidable. We want to
obtain a sufficient number rules to qualify each algorithm. To limit the complexity of the
problem we have considered one algorithm at atime. This facilitated the construction of
rules. Considering that the problem is difficult, what confidence can we have that the rules
generated are minimally sensible?

One possihility isto try to evaluate the rules, by checking whether they are capable of
giving useful predictions. Thisis what we have done in one of the earlier sections. Note
that measuring simply the success rate has the disadvantage that it does not distinguish
between predictions that are easy to make, and those that are more difficult. Thisis why
we have evaluated the rules by examining how informative they arein general.

For example, if we examine the rulesfor the applicability of CART we observe that the
rules provide us with useful information if invoked. These measures indicate that the rules
generated can indeed provide us with useful information.

Instead of evaluating rulesin the way shown, we could present them to some expert to
seeif hewould find them minimally sensible. On aquick glancethe condition“N < 6435”
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Decision Tree and Rule Algorithms:

C4.5-A ppll16
NewlID-Appl |16
AC?-Non-Appl |5
CART-Appl |5
CART-Appl 116
CART-Non-Appl |16
INdCART-Appl |16
Cal5-Appl |16
CN2-Appl ;16
[Trule-Non-Appl |&
[Trule-Non-Appl |16

Statistical Algorithms:
Discrim-Appl |s
Discrim-Non-Appl |5
Discrim-Non-Appl |16
Quadisc-Appl |&
Logdisc-Appl ;s
Logdisc-Non-Appl |16
ALLOCS80-Appl |&
ALLOC80-Appl |16
k-NN-Appl ;16
Bayes-Non-Appl |&
Bayes-Non-Appl |16
BayTree-Appl ;16
BayTree-Non-Appl |16
CASTLE-Non-Appl |5
CASTLE-Non-Appl |16

—N < 4999, Kurtosis > 2.92
—N < 6435, Skew > 0.57
—N > 6435

—k<7

— N> 768

—N > 1000

«—N < 1000

~—N > 1000
—k>4

«—N < 1000

—N < 3186
—k>4

— k<7

—k>7

—N > 768, Cost =0
«—Binatt=0

Neural Network Algorithms:

Dipol92-Appl |&
Dipol92-Appl |16
RBF-Non-Appl |5
LVQ-Appl ;16
BackProp-Appl ;s
Kohonen-Non-Appl |s
Cascade-Non-Appl |5
Cascade-Non-Appl |16

Fig. 10.14: Somerules generated in Meta-Level Learning.

—N < 3000

—
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isabit puzzling. Why should CART perform reasonably well, if the number of examples
isless than this number?

Obvioudly, as the rules were generated on the basis of a relatively small number of
examples, therules could contain somefortuitousfeatures. Of course, unlesswe have more
data available it is difficult to point out which features are or are not relevant. However, it
is necessary to note that the condition “N < 6435” is not an absolute one. Rules should
not be simply interpreted as - “The algorithm performs well if such and such condition is
satisfied”. The correct interpretationissomething like - “Theagorithmislikely to compete
well under the conditions stated, provided no other more informative rule applies’. This
view helpsalso to understand better therulefor Discrim algorithm generated by the system.

Discrim-Appl «— N < 1000

The condition “N < 1000” does not express all the conditions of applicability of agorithm
Discrim, and could appear rather strange. However, the condition does make sense. Some
algorithms have a faster learning rate than others. These algorithms compete well with
others, provided the number of examples is small. The fast learning algorithms may
however be overtaken by others later. Experiments with learning curves on the Satellite
Image dataset show that the Discrim algorithm is among the first six algorithms in terms
of error rate as long as the number of examples is relatively small (100, 200 etc.). This
algorithm seems to pick up quickly what is relevant and so we could say, it competes
well under these conditions. When the number of examplesis larger, however, Discrim is
overtaken by other algorithms. With the full training set of 6400 examples Discrim isin
19th place in the ranking. Thisis consistent with the rule generated by our system. The
condition generated by the system is not so puzzling as it seems at first glance!

Thereisof course awell recognised problem that should be tackled. Many conditions
contain numeric tests which are either true or false. It does not make sense to consider the
Discrim algorithm applicableif the number of examplesislessthan 1000, and inapplicable,
if this number isjust a bit more. A more flexible approach is needed (for example using
flexible matching).

10.6.5 Application Assistant

Rules generated in the way described permit us to give recommendations as to which
classification algorithm could be used with a given dataset. This is done with the help of
akind of expert system called an Application Assistant (AplAs). This system contains a
knowledge base which isinterpreted by aninterpreter. The knowledge base containsall the
rules shown in the previous section. The interpreter is quite standard, but uses a particular
method for resolution of conflicts.

We notice that the knowledge base may contain potentially conflicting rules. In general
several rules may apply, some of which may recommend the use of a particular algorithm
while others may be against it. Some people believe that knowledge bases should always
be cleaned up so that such situations would not arise. This would amount to obliterating
certain potentially useful information and so we prefer to deal with the problem in the
following way.

For every algorithm we consider all the rules satisfying the conditions and sum all the
information scores. The information scores associated with the recommendation to apply
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an algorithm are taken with a positive sign, the others with a negative one. For example, if
we get arecommendationto apply an algorithmwith anindication that thisis apparently 0.5
bitsworth, and if we also get an opposite recommendation (i.e. not to apply thisalgorithm)
with an indication that thisis 0.2 bits worth, we will go ahead with the recommendation,
but decrease the information score accordingly (i.e. to 0.3 bits).

The output of thisphaseisalist of algorithms accompanied by their associated overall
information scores. A positive score can be interpreted as an argument to apply the
algorithm. A negative score can beinterpreted as an argument against the application of the
algorithm. Moreover, the higher the score, the more informativeis the recommendation in
general. Theinformation score can bethen considered as astrength of the recommendeation.

The recommendations given are of course not perfect. They do not guarantee that
the first algorithm in the recommendation ordering will have the best performance in
reality. However, our results demonstrate that the algorithms accompanied by a strong
recommendation do perform quitewell in general. Theoppositeisalsotrue. Thealgorithms
that have not been recommended have a poorer performancein genera. In other words, we
observe that there is a reasonable degree of correlation between the recommendation and
theactual test results. Thisisillustrated in Figure 10.15 which showsthe recommendations
generated for one particular dataset (L etters).
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Fig. 10.15: Recommendations of the Application Assistant for the Letters dataset.

The recommendations were generated on the basis of a rules set similar to the one
shown in Figure 10.14 (the rule set included just a few more rules with lower information
scores).

The top part shows the algorithms with high success rates. The algorithms on the right
are accompanied by a strong recommendation concerning applicability. We notice that
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several algorithms with high success rates apear there. The algorithm that is accompanied
by the strongest reccomendation for this dataset is ALLOCSO0 (Information Score = 0.663
bits). This algorithm has also the highest success rate of 93.6 %. The second placein the
ordering of algorithms recommended is k-NN shared by k-NN and DIPOL92. We note that
k-NN is avery good choice, while DIPOL92 is not too bad either.

The correlation between the information score and success rate could, of course, be
better. The algorithm CASTLE is given somewhat too much weight, while BayTree which
is near the top is somewhat undervalued. The correlation could be improved, in the first
place, by obtaining more test results. The results could also be improved by incorporating
a better method for combining rules and the corresponding information scores. 1t would be
beneficial to consider a so other potentially useful setsof rules, including the onesgenerated
on the basis of other values of k, or even different categorisation schemes. For example, all
algorithms with a performance near the default rule could be considered non-applicable,
while all others could be classified as applicable.

Despite thefact that thereisroom for possible improvements, the Application Assistant
seems to produce promising results. The user can get a recommendation as to which
algorithm could beusedwith anew dataset. Although therecommendationisnot guaranteed
alwaysto give the best possible advice, it narrows down the user’s choice.

10.6.6 Criticism of metalevel learning approach

Before accepting any rules, generated by C4.5 or otherwise, it is wise to check them
against known theoretical and empirical facts. The rules generated in metalevel learning
could contain spurious rules with no foundation in theory. If the rule-based approach has
shortcomings, how should we proceed? Would it be better to use another classification
scheme in place of the metalevel learning approach using C4.5? As there are insufficient
data to construct the rules, the answer is probably to use an interactive method, capable of
incorporating prior expert knowledge (background knowledge). As one simple example,
if it is known that an algorithm can handle cost matrices, this could simply be provided to
the system. As another example, the knowledge that the behaviour of NewID and AC? is
likely to be similar could also be useful to the system. The rules for AC? could then be
constructed fromtherulefor NewlD, by adding suitable conditionsconcerning, for example
the hierarchical structure of the attributes. Also, some a gorithms have inbuilt checks on
applicability, such as linear or quadratic discriminants, and these should be incorporated
into the learnt rules.

10.6.7 Criticism of measures

Some of the statistical measures are in fact more complex in structure than the learning
the rules. For example, the programming effort in calculating SD_ratio is greater than
that in establishing the linear discriminant rule. Indeed, to find SD_ratio requires virtually
all the quantities needed in finding the quadratic discriminant. This poses the question:
if it is easier to run, say linear discriminants and NewlD, why not run them and use the
performance of these procedures as yardsticks by which to judge the performance of other
algorithms? The similarities evident in the empirical results strongly suggest that the best
predictor for logistic regression islinear discriminants (with logistic regression doing that
little better on average), and AC? is very similar to NewID (if thereis no hierarchy), and
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so on. Thisidea can be formalised as we indicate in the next section.

10.7 PREDICTION OF PERFORMANCE

What is required is a few simple yardstick methods, readily available (preferably in the
public domain), that can be run quickly onthe given dataset. We also need aset of rulesthat
will predict the performance of al other agorithms from the yardstick results. As afirst
suggestion, consider Discrim, INndCART and k-NN. They contain a statistical, a decision-
tree and a non-parametric method, so represent the main strands. The question is this:
can they represent the full range of algorithms? In the terminology of multidimensional
scaling: do they span the reduced space in which most algorithm results reside? The multi-
dimensional scaling diagram in Figure 10.1 suggests that a three- or even two-dimensional
subspace is sufficient to represent all results.

To give a few examples. Let Discrim, k-NN and IndCART represent the error rates
achieved by the respective methods. To predict the accuracy of Logdisc from these three
referencefigures, we can useamultiple regression of Logdisc on thethreevariablesDiscrim,
k-NN and IndCART (with no intercept term). After dropping non-significant terms from
the regression, this produces the formula: Logdisc = 0.79Discrim, with a squared
correlation coefficient of 0.921. See Table 10.14 for asummary of the regression formulae
for all the algorithms (excepting Discrim, k-NN and IndCART naturally).

Table 10.14: Predictorsfor error-rates based on Discrim, k-NN and IndCART.

Algorithm || Discrim | k-NN | IndCART | R-square | ntrials
Quadisc 1.34 0.640 22
Logdisc 0.79 0.921 22
SMART 0.54 0.450 22
ALLOCS80 0.80 0.846 21
CASTLE 112 0.56 0.874 21
CART 0.74 0.860 15
NewlID 1.23 0.840 22
AC? 112 0.723 22
Baytree 0.89 0.897 22
Naivebay 1.43 0.79 0.840 22
CN2 0.29 1.01 0.862 22
C4.5 117 0.752 22
[Trule 1.87 0.601 20
CALS5 0.97 0.709 22
Kohonen 124 0.672 18
DIPOL92 0.29 0.533 22
Bprop 0.53 0.679 20
Cascade 0.78 0.684 6
RBF 0.88 0.534 22
LVQ 1.05 0.821 21

The Discrim coefficient of 0.79 in the L ogdisc example showsthat L ogdiscis generally
about 21% more accurate than Discrim, and that the performance of the other two reference
methods does not seem to help in the prediction. With an R-squared value of 0.921, we can
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be quite confident that Logdisc does better than Discrim. This result should be quaified
with information on the number of attributes, normality of variables, etc, — and these are
quantities that can be measured. In the context of deciding if further trials on additional
algorithms are necessary, take the example of the shuttle dataset, and consider what action
to recommend after discovering Discrim = 4.83%, INdCART = 0.09% and k-NN = 0.44%.
It does not look as if the error rates of either Logdisc or SMART will get anywhere near
INdCART’svalue, and the best prospect of improvement lies in the decision tree methods.

Consider DIPOL 92 now. There appearsto be no really good predictor, asthe R-squared
value is relatively small (0.533). This means that DIPOL92 is doing something outside
the scope of the three reference algorithms. The best single predictor is: DIPOL92 =
0.29 Discrim, apparently indicating that DIPOL92 is usually much better than Discrim
(although not so much better that it would challenge INndCART’sgood value for the shuttle
dataset). This formula just cannot be true in general however: al we can say is that,
for datasets around the size in StatLog, DIPOL92 has error rates about one third that of
Discrim, but considerable fluctuation round this value is possible. If we have available the
three reference results, the formula would suggest that DIPOL92 should be tried unless
either K-NN or CART gets an accuracy much lower than a third of Discrim. Knowing
the structure of DIPOL92 we can predict a good deal more however. When there are just
two classes (and 9 of our datasets were 2-class problems), and if DIPOL92 does not use
clustering, DIPOL92 isvery similar indeed to logistic regression (they optimise on slightly
different criteria). So the best predictor for DIPOL92 in 2-class problems with no obvious
clustering will be Logdisc. At the other extreme, if many clusters are used in the initial
stages of DIPOL 92, then the performance is bound to approach that of, say, radia basis
functionsor LVQ.

Also, while on the subject of giving explanations for differencesin behaviour, consider
the performance of ALLOC80 compared to k-NN. From Table 10.14 it is clear that AL-
LOCB80 usualy outperforms k-NN. The reason is probably due to the mechanism within
ALLOCS80 whereby irrelevant attributes are dropped, or perhaps because a surrogate was
substituted for ALLOCB80 when it performed badly. If such strategies were instituted for
k-NN, it is probable that their performanceswould be even closer.

Finally, we should warn that such rules should be treated with great caution, aswe have
already suggested in connection with the rules derived by C4.5. It is especially dangerous
to draw conclusions from incomplete data, as with CART for example, for the reason
that a “Not Available” result is very likely associated with factors leading to high error
rates, such asinability to cope with large numbers of categories, or large amounts of data.
Empirical rules such as those we have put forward should be refined by the inclusion of
other factorsin the regression, these other factorsbeing directly related to known properties
of the algorithm. For example, to predict Quadisc, aterm involving the measures SD_ratio
would be required (if that is not too circular an argument).

10.7.1 ML on ML vs. regression

Two methods have been given above for predicting the performance of agorithms, based
respectively on rule-based advice using dataset measures (ML on ML) and comparison with
reference algorithms (regression). It isdifficult to compare directly the success rates of the
respective predictions, as the former is stated in terms of proportion of correct predictions
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and the latter in terms of squared correlation. We now give a simple method of comparing
the predictability of performance from the two techniques. The R-squared value R? from
regression and the C4.5 generated rule error rate e can be compared by the following
formulawhich is based on the assumption of equal numbers of Non-Appl and Appl:

R? = (1-2¢)?
Asit should, this formula gives a correlation of R = 0 when the error rate is 0.5, as pure
guesswork would get half the cases correct. To give an example in using this formula, the
CART rules (k=16) had 3 errorsin 22, with an error rate of
2
= —=20.1364
T
and an approximate R-square val ue of
R? = (1-2x0.1364)* = 0.529

Thisissomewnhat lessthanthevalue(R? = 0.860) obtained using the regression techniques
of this section.
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(1) University of Strathclyde, (2) MRC Biostatistics Unit, Cambridge and (3) University
of Leeds'

11.1 INTRODUCTION

In thischapter wetry to draw together the evidence of the comparative trials and subsequent
analyses, comment on the experiences of the users of the algorithms, and suggest topicsand
areas which need further work. We begin with some comments on each of the methods. It
should be noted herethat our commentsare often directed towardsaspecificimplementation
of a method rather than the method per se. In some instances the slowness or otherwise
poor performance of an algorithm is due at least in part to the lack of sophistication of the
program. In addition to the potential weakness of the programmer, there is the potential
inexperience of the user. To give an example, the trials of AC? reported on previous
chapters were based on a version programmed in LISP. A version is now available in the
C language which cuts the CPU time by a factor of 10. In terms of error rates, observed
differencesin goodness of result can arise from

1. different suitabilities of the basic methods for given datasets

2. different sophistications of default procedures for parameter settings

3. different sophistication of the program user in selection of options and tuning of
parameters

4. occurrence and effectiveness of pre-processing of the data by the user

The stronger a program in respect of 2, then the better buffered against shortcomings in
3. Alternatively, if there are no options to select or parameters to tune, then item 3 is not
important.

Wegiveageneral view of the ease-of-useand the suitable applications of thea gorithms.
Some of the properties are subject to different interpretations. For example, in general a
decision tree is considered to be less easy to understand than decision rules. However, both
are much easier to understand than a regression formulawhich contains only coefficients,
and some algorithms do not give any easily summarised rule at all (for example, k-NN).

1 Addressfor correspondence: Department of Statistics, University of Leeds, LeedsLS2 9JT, U.K.
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The remaining sections discuss more general issues that have been raised in the trials,
such as time and memory requirements, the use of cost matrices and general warnings on
theinterpretation of our results.

11.1.1 User’'sguideto programs

Here we tabulate some measures to summarise each agorithm. Some are subjective
guantities based on the user’s perception of the programsused in StatLog, and may not hold
for other implementations of the method. For example, many of the classical statistical
algorithms can handle missing values, whereas those used in this project could not. This
would necessitate a “front-end” to replace missing values before running the algorithm.
Similarly, al of these programs should be able to incorporate costs into their classification
procedure, yet some of them have not. In Table 11.1 we give information on various basic
capabilities of each algorithm.

11.2 STATISTICAL ALGORITHMS
11.2.1 Discriminants

It canfairly be said that the performance of linear and quadratic discriminants was exactly
as might be predicted on the basis of theory. When there was sufficient data, and the class
covariance matrices quite dissimilar then quadratic discriminant did better, although at the
expense of some computational costs. Severa practical problems remain however:

1. theproblem of deleting attributesif they do not contribute usefully to the discrimination
between classes (see McLachlan, 1992)

2. thedesirability of transformingthedata; and the possibility of including somequadratic
terms in the linear discriminant as a compromise between pure linear and quadratic
discrimination. Much work needs to be done in this area.

Wefoundthat therewaslittle practical differencein the performanceof ordinary and logistic
discrimination. This has been observed before - Fienberg (1980) quotes an example where
the superiority of logistic regression over discriminant analysisis “dight” - and is related
to the well-known fact that different link functions in generalised linear models often fit
empirical data equally well, especially in the region near classification boundaries where
the curvature of the probability surface may be negligible. McLachlan (1992) quotes
several empirical studies in which the allocation performance of logistic regression was
very similar to that of linear discriminants.

In view of the much greater computational burden required, the advice must be to use
linear or quadratic discriminantsfor large datasets. The situation may well be different for
small datasets.

11.22 ALLOCS80

This agorithm was never intended for the size of datasets considered in this book, and it
often failed on the larger datasets — with no adequate diagnostics. It can accept attribute
data with both numeric and logical values and in this respect appears superior to the
other statistical algorithms. The cross-validation methods for parameter selection are
too cumbersome for these larger datasets, although in principle they should work. An
outstanding problem here is to choose good smoothing parameters - this program uses a
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Table 11.1: Users guide to the classification algorithms.

Algorithm | MV | Cost | Interp. | Compreh. | Params | User-fr. | Data
Discrim || N T 3 4 4 Y N
Quadisc || N T 2 3 3 Y N
Logdisc || N T 3 4 4 Y N
SMART || N LT 1 2 1 N NC

ALLOC80 || N LT 1 2 2 N NC

k-NN N T 1 5 2 N N
CASTLE || N T 3 3 3 Y NC
CART || Y T 5 4 5 Y NC
INdCART || Y T 5 4 5 Y NC
NewID || Y N 5 4 4 Y NC
AC? Y N 5 4 4 Y NCH
Baytree | Y T 4 4 5 N NC
NaiveBay || Y T 3 4 4 Y N
CN2 | Y N 5 4 4 Y NC
C45 | Y N 5 4 4 Y NC
[Trule || N N 3 4 4 N NC
Cas || vy LT 5 4 5 Y NC
Kohonen N N 1 1 1 N N
DIPOL92 | N LT 2 3 2 N NC
Backprop || N T 1 3 3 N N
RBF || N N 1 1 1 N N
LVQ || N N 1 1 1 N N
Cascade | N T 1 3 2 N N
Key:
MV whether the program accepts missing values
Cost whether the program has a built-in facility to deal with a cost matrix
at learning (L), testing (T) or not at all (N)
Interp. whether the program gives an easily understood classifier (5 = very
easy to interpret)
Compreh. whether the principle of the method is easily understood (5 = very
easy to grasp)
Params whether the program has good user-guidelines or automatic selection
of important parameters.
User-fr. whether the program is user-friendly
Data Typeof dataallowedin the attributes (N = numerical, C = categorical,

H= hierarchical). However, note that categorical data can always be
transormed to numerical.
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multiplicative kernel, which may be rather inflexible if some of the attributes are highly
correlated. Fukunaga (1990) suggests a“pre-whitening” of the datawhich is equivalent to
using a multivariate normal kernel with parameters estimated from the sample covariance
matrix. This method has shown promise in some of the datasets here, although it is not
very robust, and of course still needs smoothing parameter choices.

ALLOCS80 hasadlightly lower error-rate than k-NN, and uses marginally less storage,
but takes about twice as long in training and testing (and k-NN is aready a very slow
algorithm). However, since k-NN was always set to k = 1 this may not generally be true.
Indeed, ¥ = 1 isaspecia case of the kernel method so it should be expected to do better.

11.2.3 Nearest Neighbour

Although this method did very well on the whole, as expected it was slowest of al for the
very large datasets. However, it is known (Hart, 1968) that substantial time saving can
be effected, at the expense of some slight loss of accuracy, by using a condensed version
of the training data. An areathat requires further study isin fast data-based methods for
choosing appropriate distance measures, variable selection and the appropriate number of
neighbours. The program in these trials normally used just the nearest neighbour which
is certainly not optimal. A simulation study on this problem was carried out by Enas &
Choi (1986) . It is clear from many of the results that substantial improved accuracy can
be obtained with careful choice of variables, but the current implementation is much too
dow. Indeed, LVQ has about the same error-rate as k-NN, but is about 6 times faster, and
uses about 25% less storage.

Where scaling of attributes is not important, such as in object recognition datasets,
k-nearest neighbour isfirst in thetrials. Yet the explanatory power of k-nearest neighbour
might be said to be very small.

11.24 SMART

SMART is both a classification and regression type algorithm which is most easily used
in batch mode. It is a very slow algorithm to train, but quite quick in the classification
stage. The output is virtually incomprehensible to a non-statistician, but a graphical front-
end could be written to improve the interpretability. See the example in Section 4.4.1.
In addition there are some difficulties in choosing the number of terms to include in the
model. Thisisasimilar problem to choosing the smoothing parameter in kernel methods,
or the number of neighboursin a nearest neighbour classifier. A major advantage SMART
has over most of the other algorithmsis that it accepts a cost matrix in its training as well
asin itstesting phase which, in principle, ought to make it much more suited for tackling
problems where costs are important.

11.25 NaiveBayes

Naive Bayes can easily handle unknown or missing values. The main drawback of the
algorithmis perhapsits “naivety”, i.e. it usesdirectly Bayestheorem to classify examples.
In addition, for those not fluent with the statistical background there is generally little
indication of why it has classified some examples in one class or the other.

Theory indicates, and our experience confirms, that Naive Bayes does best if the
attributes are conditionally independent given the class. This seems to hold true for many
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medical datasets. One reason for this might be that doctors gather as many different
(“independent”) bits of relevant information as possible, but they do not include two
attributes where one would do. For example, it could be that only one measure of high
blood pressure (say diastolic) would be quoted although two (diastolic and systolic) would
be available.

11.2.6 CASTLE

In essence CASTLE isafull Bayesian modelling agorithm, i.e. it builds a comprehensive
probabilistic model of the events (in this case attributes) of theempirical data. 1t can beused
to infer the probability of attributes as well as classes given the values of other attributes.
The main reason for using CASTLE isthat the polytree models the whole structure of the
data, and no special roleis givento the variable being predicted, viz. the class of the object.
However instructivethis may be, it is not the principal task in the above trials (which isto
produce a classification procedure). So maybe there should be an option in CASTLE to
produce a polytreewhich classifiesrather than fitsall the variables. To emphasisethe point,
it is easy to deflect the polytree algorithm by making it fit irrelevant bits of the tree (that are
strongly related to each other but are irrelevant to classification). CASTLE can normally
be used in both interactive and batch modes. It accepts any data described in probabilities
and events, including descriptions of attributes-and-class pairs of data such as that used
here. However, all attributes and classes must be discretised to categorical or logical data.
The results of CASTLE arein the form of a (Bayesian) polytree that provides a graphical
explanation of the probabilistic relationships between attributes and classes. Thus it is
better in term of comprehensibility compared to some of the other statistical algorithmsin
its explanation of the probabilistic relationships between attributes and classes.

The performance of CASTLE should be related to how “tree-like” the dataset is. A
major criticism of CASTLE isthat thereisno internal measure that tells us how closely the
empirical dataare fitted by the chosen polytree . We recommend that any futureimplemen-
tation of CASTLE incorporates such a* polytree” measure. It should be straightforward to
build a goodness-of-fit measure into CASTLE based on a standard test.

As a classifier, CASTLE did best in the credit datasets where, generally, only a few
attributes are important, but its most useful feature isthe ability to produce simple models
of the data. Unfortunately, simple modelsfitted only afew of our datasets.

11.3 DECISION TREES

There is a confusing diversity of Decision Tree algorithms, but they all seem to perform
at about the same level. Five of the decision trees (AC?2, NewID, Cal5, C4.5, IndCART)
considered in thisbook are similar in structureto the original ID3 algorithm, with partitions
being made by splitting on an attribute, and with an entropy measure for the splits. There
are no indications that this or that splitting criterion is best, but the case for using some
kind of pruning is overwhelming, although, again, our results are too limited to say exactly
how much pruning to use. It was hoped to relate the performance of a decision tree to
some measuresof complexity and pruning, specifically the average depth of thetree and the
number of terminal nodes (leaves). 1n a sense CART’s cost-complexity pruning automates
this. Cal5 has generally much fewer nodes, so gives a simpler tree. AC? generally has
many more nodes, and occasionally scores a success because of that. The fact that all
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the decision trees perform at the same accuracy with such different pruning procedures
suggests that much work needs to be done on the question of how many nodesto use.

Onthe basis of our trials on the Tsetse fly data and the segmentation data, we speculate
that Decision Tree methods will work well compared to classical statistical methods when
the data are multimodal. Their success in the shuttle and technical datasets is due to the
specia structure of these datasets. In the case of the technical dataset observations were
partly pre-classified by the use of a decision tree, and in the shuttle dataset we believe that
this may also be so, although we have been unable to obtain confirmation from the data
provider.

Among the decision trees, INdCART, CART and Cal5 method emerge as superior to
others because they incorporate costs into decisions. Both CART and IndCART can deal
with categorical variables, and CART has an important additional feature in that it has a
systematic method for dealing with missing values. However, for the larger datasets the
commercia package CART often failed where the INndCART implementation did not. In
common with all other decision trees, CART, INndCART and Cal5 have the advantage of
being distribution free.

11.31 AC?and NewID

NewlID and AC? are direct descendants of ID3, and, empirically, their performance as
classifiersis very close. The main reason for choosing AC? would be to use other aspects
of the AC? package, for example, the interactive graphical package and the possibility of
incorporating prior knowledge about the dataset, in particular certain forms of hierarchical
structure; see Chapter 12. We looked at one dataset that was hierarchical in nature, in
which AC? showed considerable advantage over other methods - see Section 9.5.7.

NewlD is based on Ross Quinlan’s original ID3 program which generates decision
trees from examples. It is similar to CN2 in its interface and command system. Similar
to CN2, NewID can be used in both interactive and batch mode. The interactive mode is
its native mode; and to run in batch mode users need to write a Unix shell script as for
CN2. NewlD accepts attribute-val ue data sets with both logical and numeric data. NewlD
has a post-pruning facility that is used to deal with noise. It can also deal with unknown
values. NewlID outputs a confusion matrix. But this confusion matrix must be used with
care because the matrix has an extra row and column for unclassified examples — some
examples are not classified by the decision tree. It does not accept or incorporate a cost
matrix.

AC? isan extension to ID3 style of decision tree classifiers to learn structures from a
predefined hierarchy of attributes. Similarly to ID3 it uses an attribute-value based format
for examples with both logical and numeric data. Because of its hierarchical representation
it can al so encode some relations between attribute values. 1t can berunininteractive mode
and data can be edited visually under its user interface. AC? usesan internal format that is
different from the usual format - mainly due to the need to express hierarchical attributes
whentherearesuch. But for non-hierarchical data, thereisvery limited requirement for data
conversion. AC? can deal with unknown values in examples, and multi-valued attributes.
Itisalso ableto deal with knowledge concerning the studied domain, but with the exception
of the Machine Faults dataset, this aspect was deliberately not studied in this book. The
user interacts with AC? via a graphical interface. This interface consists of graphical
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editors, which enable the user to define the knowledge of the domain, to interactively build
the example base and to go through the hierarchy of classes and the decision tree.

AC? produces decision trees which can be very large compared to the other decision
tree algorithms. The trials reported here suggest that AC? is relatively slow. This older
version used common LISP and has now been superseded by a C version, resulting in a
much faster program.

11.32 C45

C4.5isthedirect descendent of ID3. It isrunin batch modefor training with attribute-value
datainput. For testing, both interactive and batch modes are available. Both logical and
numeric values can be used in the attributes; it needs a declaration for the types and range
of attributes, and such information needsto be placed in a separate file. C4.5is very easy
to set up and run. In fact it is only a set of UNIX commands, which should be familiar
to al UNIX users. There are very few parameters. Apart from the pruning criterion no
major parameter adjustment is needed for most applications - in the trials reported here,
the windowing facility was disabled. C4.5 produces a confusion matrix from classification
results. However, it does not incorporate a cost matrix. C4.5 alows the users to adjust the
degree of the tracing information displayed while the algorithm is running. This facility
can satisfy both the users who do not need to know the internal operations of the algorithm
and the users who need to monitor the intermidate steps of tree construction.

Note that C4.5 has a rule-generating module, which often improves the error rate and
almost invariably the user-transparancy, but this was not used in the comparative trials
reported in Chapter 9.

11.3.3 CART and IndCART

CART and IndCART are decision tree algorithms based on the work of Breiman et al.
(1984). The StatLog version of CART isthecommercial derivativeof theoriginal algorithm
developed at Caltech. Both are classification and regression algorithms but they treat
regression and unknown valuesin the data somewhat differently. In both systemsthere are
very few parameters to adjust for new tasks.

The noise handling mechanism of the two algorithms are very similar. Both can also
deal with unknown values, though in different ways. The algorithms both output a decision
tree and a confusion matrix as output. But only CART incorporates costs (and it does so
in both training and test phases). Notethat CART failed to run in many of trials involving
very large datasets.

11.34 Cal5

Cal5 is a numeric value decision tree classifier using statistical methods. Thus discrete
values have to be changed into numeric ones. Cal5 isvery easy to set up and run. It hasa
number of menus to guide the user to complete operations. However, there are a number
of parameters, and for novice users the meanings of these parameters are not very easy to
understand. The results from different parameter settings can be very different, but tuning
of parametersis implemented in a semi-automatic manner.

The decision trees produced by Cal5 are usually quite small and are reasonably easy
to understand compared to algorithms such as C4.5 when used with default settings of
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pruning parameters. Occasionally, from the point of view of minimising error rates, the
treeis over-pruned, though of course the rules are then more transparent. Cal5 produces a
confusion matrix and incorporates a cost matrix.

11.35 BayesTree

Our trias confirm the results reported in Buntine (1992): Bayes trees are generally slower
in learning and testing, but perform at around the same accuracy as, say, C4.5 or NewID.
However, it isnot so similar to these two a gorithms as one might expect, sometimes being
substantially better (in the cost datasets), sometimes marginally better (in the ssgmented
image datasets) and someti mes noticeably worse. Bayestreealso did surprisingly badly, for
adecisiontree, on the technical dataset. Thisisprobably dueto therelatively small sample
sizes for a large number of the classes. Samples with very small a priori probabilities
are alocated to the most frequent classes, as the dataset is not large enough for the a
priori probabilities to be adapted by the empirical probabilities. Apart from the technical
dataset, Bayes trees probably do well as a result of the explicit mechanism for “pruning”
via smoothing class probabilities, and their success gives empirical justification for the
at-first-sight-artificial model of tree probabilities.

11.4 RULE-BASED METHODS
1141 CN2

The rule-based algorithm CN2 also belongs to the general class of recursive partitioning
algorithms. Of the two possible variants, “ordered” and “unordered” rules, it appears that
“unordered” rulesgivebest results, and then the performanceispractically indistinguishable
from the decision trees, while at the same time offering gainsin “mental fit” over decision
trees. However, CN2 performed badly on the datasetsinvolving costs, although this should
not be difficult to fix. Asa decision tree may be expressed in the form of rules (and vice-
versa), there appearsto be no practical reason for choosing rule-based methodsexcept when
the complexity of the data-domain demands some simplifying change of representation.
Thisis not an aspect with which this book has been concerned.

CN2 can be used in both interactive and batch mode. The interactive modeisits native
mode; and to run in batch mode users need to write a Unix shell script that gives the
algorithm a sequence of instructionsto run. The slight deviation from the other algorithms
isthat it needs a set of declarations that defines the types and range of attribute-valuesfor
each attribute. In general thereisvery little effort needed for data conversion.

CN2 isvery easy to set up and run. In interactive mode, the operations are completely
menu driven. After some familiarity it would be very easy to write a Unix shell script to
run the algorithm in batch mode. There are a few parameters that the users will have to
choose. However, there is only one parameter — rule types — which may have significant
effect on the training results for most applications.

11.4.2 [Trule

Strictly speaking, ITrule is not a classification type algorithm, and was not designed for
large datasets, or for problems with many classes. It is an exploratory tool, and is best
regarded as a way of extracting isolated interesting facts (or rules) from a dataset. The
facts (rules) are not meant to cover al examples. We may say that | Trule does not look for
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the “best set of rules’ for classification (or for any other purpose). Rather it looksfor a set
of “best rules’, each rule being very simplein form (usually restricted to conjunctions of
two conditions), with the rules being selected as having high information content (in the
sense of having high J-measure). Within these limitations, and also with the limitation of
discretised variates, the search for the rules is exhaustive and therefore time-consuming.
Therefore the number of rulesfound isusually limited to some “small” number, which can
be as high as 5000 or more however. For use in classification problems, if the preset rules
have been exhausted, a default rule must be applied, and it is probable that most errors are
committed at this stage. In some datasets, I Trule may generate contradictory rules (i.e.
rules with identical condition parts but different conclusions), and this may also contribute
toahigh error-rate. Thislast fact isconnected with the asymmetric nature of the J-measure
compared to the usual entropy measure. The algorithm does not incorporate a cost matrix
facility, but it would appear a relatively simple task to incorporate costs as all rules are
associated with a probability measure. (In multi-class problems approximate costs would
need to be used, because each probability measure refers to the odds of observing a class
or not).

11.5 NEURAL NETWORKS

With care, neural networks perform very well as measured by error rate. They seem to
provideeither the best or near to best predictive performancein nearly all cases—thenotable
exceptions are the datasets with cost matrices. In terms of computational burden, and the
level of expertise required, they are much more complex than, say, the machine learning
procedures. And there are still several unsolved problems, most notably the problems of
how to incorporate costsinto the learning phase and the optimal choice of architecture. One
major weakness of neural netsisthelack of diagnostic help. If something goeswrong, it is
difficult to pinpoint the difficulty from the mass of inter-related weights and connectivities
in the net. Because the result of learning is a completed network with layers and nodes
linked together with nonlinear functions whose relationship cannot easily be described in
qualitative terms, neural networks are generally difficult to understand.

These algorithms are usually very demanding on the part of the user. Hewill haveto be
responsible for setting up the initial weights of the network, selecting the correct number
of hidden layers and the number of nodes at each layer. Adjusting these parameters of
learning isoften alaborioustask. In addition some of these algorithms are computationally
inefficient. A notable exception here is LVQ which is relatively easy to set up and fast to
run.

11.5.1 Backprop

This software package contains programs which implement Mult-Layer Perceptrons and
Radial Basis Functions, as well as several neural network models which are not discussed
here, including recurrent networks. It is reasonably versatile and flexible in that it can be
used to train avariety of networkswith avariety of methods using avariety of training data
formats. However its functionality is not embellished with a friendly user interface, so its
users need at least a cursory familiarity with UNIX and neural networks, and a significant
block of time to peruse the documentation and work through the demonstrations.

The packageis also modular, and extensible by anyone willing to write source code for
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new modules, based on existing templates and “hooks’. One of the fundamental modules
provides routines for manipulating matrices, submatrices, and linked lists of submatrices.
It includes a set of macros written for the UNIX utility m4 which alows complicated
array-handling routinesto be written using relatively simple m4 source code, which in turn
istrandated into C source by m4. All memory management is handled dynamically.

There are several neural network modules, written as applications to the minimisation
module. These include a specia purpose 3-layer MLP, a fully-connected recurrent MLP,
a fully-connected recurrent MLP with an unusual training algorithm (Silva & Almeida,
1990), and general MLP with architecture specified at runtime. There is also an RBF
network which shares the I/O routines but does not use the minimiser.

Thereisageneral feeling, especially among statisticians, that the multilayer perceptron
is just a highly-parameterised form of non-linear regression. This is not our experience.
In practice, the Backprop procedure lies somewhere between a regression technique and a
decision tree, sometimes being closer to one and sometimes closer to the other. Asaresult,
we cannot make general statements about the nature of the decision surfaces, but it would
seem that they are not in any sense “local” (otherwise there would be a greater similarity
with k-NN). Generally, the absence of diagnostic information and the inability to interpret
the output isagreat disadvantage.

11.5.2 Kohonen and LVQ

Kohonen's net is an implementation of the self-organising feature mapping algorithm
based on the work of Kohonen (1989). Kohonen nets have an inherent parallel feature in
the evaluation of links between “neurons’. So this program is implemented, by Luebeck
University of Germany, on atransputer with an IBM PC asthefront-end for user interaction.
This special hardware requirement thus differs from the norm and makes comparison of
memory and CPU time rather difficult.

Kohonen nets are more general than a number of other neural net algorithms such as
backpropagation. Inasense, it isamodelling tool that can be used to model the behaviour
of asystem with itsinput and output variables (attributes) all modelled as linked neuronal.
In thisrespect, it isvery similar to the statistical algorithm CASTLE — both can be used in
wider areas of applicationsincluding classification and regression. In this book, however,
we are primarily concerned with classification. The network can accept attribute-value
data with numeric values only. This makes it necessary to convert logical or categorical
attributes into numeric data.

In use there are very few indications as to how many nodes the system should have
and how many times the examples should be repeatedly fed to the system for training. All
such parameters can only be decided on atrial-and-error basis. Kohonen does not accept
unknown val ues so data sets must have their missing attribute-valuesreplaced by estimated
values through some statistical methods. Similar to all neural networks, the output of the
Kohonen net normally givesvery littleinsight to users asto why the conclusions have been
derived from the given input data. The weights on the links of the nodes in the net are not
generaly easy to explain from a viewpoint of human understanding.

LVQ is aso based on a Kohonen net and the essential difference between these two
programs is that LV Q uses supervised training, so it should be no surprise that in al the
trials (with the exception of the DNA dataset) the results of LV Q are better than those of
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Kohonen. So, theuse of Kohonen should belimited to clustering or unsuper vised learning,
and LV Q should always be preferred for standard classification tasks. Unfortunately, LVQ
has at least one “bug” that may give seriously misleading results, so the output should be
checked carefully (beware reported error rates of zero!).

11.5.3 Radial basisfunction neural network

The radial basis function neural network (RBF for short) is similar to other neural net
algorithms. But it uses a different error estimation and gradient descent function —i.e. the
radial basis function. Similar to other neural net agorithms the results produced by RBF
are very difficult to understand.

RBF uses a cross-validation technique to handle the noise. As the algorithm trains it
continually tests on asmall set called the“ cross-validation set”. When the error on this set
starts to increase it stops training. Thusit can automatically decide when to stop training,
which is a major advantage of this algorithm compared to other neural net algorithms.
However it cannot cope with unknown values.

The algorithm is fairly well implemented so it is relatively easy to use compared to
many neural network algorithms. Because it only has one parameter to adjust for each new
application — the number of centres of the radial basis function—it isfairly easy to use.

11.5.4 DIPOL92

This algorithm has been included as a neural network, and is perhaps closest to MADA-
LINE, but in fact it is rather a hybrid, and could also have been classified as a “non-
parametric” statistical algorithm. It uses methods related to logistic regression in the first
stage, except that it sets up a discriminating hyperplane between all pairs of classes, and
then minimises an error function by gradient descent. In addition, an optional clustering
procedure allows a class to be treated as several subclasses.

Thisis anew algorithm and the results are very encouraging. Although it never quite
comes first in any one trial, it is very often second best, and its overall performance is
excellent. It would be useful to quantify how much the success of DIPOL92 is due to the
multi-way hyperplanetreatment, and how much isdueto theinitial clustering, andit would
also be useful to automate the selection of clusters (at present the number of subclassesis
a user-defined parameter).

It is easy to use, and is intermediate between linear discriminants and multilayer
perceptron in ease of interpretation. It strengthens the case for other hybrid algorithms to
be explored.

11.6 MEMORY AND TIME

So far we have said very little about either memory requirements or CPU time to train
and test on each dataset. On reason for thisis that these can vary considerably from one
implementation to another. We can, however, make afew comments.

11.6.1 Memory

In most of these large datasets, memory was not a problem. The exception to this was
the full version of the hand-written digit dataset — see Section 9.3.1. This dataset had 256
variables and 10,000 examples and most algorithms (running on an 8 MB machine) could
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not handleit. However, such problemsarelikely to berarein most applications. A problem
with the interpretation of these figuresis that they were obtained from the UNIX command
set time = (0 "%U %S %M")
and, for a simple FORTRAN program for example, the output is directly related to the
dimension declarations. So an edited version could be cut to fit the given dataset and
produce a “smaller memory requirement”. A more sensible way to quantify memory
would be in terms of the size of the data. For example, in the SAS manual (1985) it states
that the memory required for nearest neighbour is 120p + 4p(p + 1) + n(8p + 16), i.e
for most situations, of order np. If similar results could be stated for all our algorithms
this would make comparisons much more transparent, and al so enable predictions for new
datasets.

As far as our results are concerned, it is clear that the main difference in memory
requirementswill depend on whether the algorithm has to store all the dataor can process
it in pieces. The theory should determine this as well as the numbers, but it is clear that
linear and quadratic discriminant classifiers are the most efficient here.

11.6.2 Time

Again, the results here are rather confusing. The times do not always measure the same
thing, for exampleif thereare parametersto select therearetwo options. User A may decide
to just plug in the parameter(s) and suffer a dight loss in accuracy of the classifier. User
B may decide to choose the parameters by cross-validation and reduce the error rate at the
expense of avastly inflated training time. It is clear then, that more explanation isrequired
and a more thorough investigation to determine selection of parameters and the trade-off
between time and error rate in individua circumstances. There are other anomalies: for
example, SMART often quotes the smallest time to test, and the amount of computation
required isasuperset of that required for Discrim, which usually takeslonger. Soit appears
that the interpretation of results will again be influenced by the implementation. It is of
interest that SMART has the largest ratio of training to testing time in nearly all of the
datasets. As with memory requirements, a statement that time is proportional to some
function of the data size would be preferred. For example, the SAS manual quotesthetime
for the nearest neighbour classifier to test as proportional to tnp where ¢ is the number of
observationsin the training data. The above warnings should make us cautious in drawing
conclusions, in that some algorithms may not require parameter selection. However, if we
sum the training and testing times, we can say generally that

e IndCART takeslonger than CART

e Among the dtatistical algorithms, the “nonparametric” ones take longer, especially
k-NN, SMART and ALLOC80

e Among the decision tree agorithms AC? and I Trule take longer

e Among the neural net algorithms, DIPOL 92 is probably the quickest

11.7 GENERAL ISSUES
11.7.1 Cost matrices

If acost matrix isinvolved, be warned that only CART, Cal5, the statistical proceduresand
some of the neural nets take costs into account at all. Even then, with the exception of
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DIPOL92 and SMART, they do not use costs as part of the learning process.  Of those
algorithmswhich do not incorporate costs, many output ameasurewhich can be interpreted
as a probability, and costs could therefore be incorporated. Thisbook has only considered
three datasets which include costs partly for the very reason that some of the decision tree
programs cannot cope with them. Thereis aclear need to have the option of incorporating
a cost matrix into all classification algorithms, and in principle this should be a simple
matter.

11.7.2 Interpretation of error rates

The previous chapter has aready analysed the results from the trials and some sort of
a pattern is emerging. It is hoped that one day we can find a set of measures which
can be obtained from the data, and then using these measures alone we can predict with
some degree of confidence which algorithms or methods will perform the best. There
is some theory here, for example, the similarity of within-class covariance matrices will
determine the relative performance of linear and quadratic discriminant functions and
also the performance of these relative to decision tree methods (qualitative conditional
dependencieswill favour trees). However, from an empirical perspective thereisstill some
way to go, both from the point of view of determining which measures are important, and
how best to make the prediction. The attempts of the previous chapter show how this
may be done, although more datasets are required before confidence can be attached to the
conclusions.

The request for more datasets raises another issue: What kind of datasets? It is clear
that we could obtain very biased results if we limit our view to certain types, and the
guestion of what is representative is certainly unanswered. Section 2.1.3 outlinesa number
of different dataset types, and is likely that this consideration will play the most important
rolein determining the choice of algorithm.

The comparison of algorithms here is amost entirely of a “black-box” nature. So the
recommendations as they stand are really only applicableto the “naive” user. In the hands
of an expert the performance of an algorithm can be radically different, and of course
there is always the possibility of transforming or otherwise preprocessing the data. These
considerations will often outweigh any choice of algorithm.

11.7.3 Structuringtheresults

Much of the analysisin the previous chapter dependson the scaling of theresults. Itisclear
that to combine results across many datasets, care will need to be taken that they are treated
equally. In Sections 10.4 and 10.7 the scaling was taken so that the error rates (or costs)
for each dataset were mapped to the interval [0, 1], whereas in Section 10.6 the scaling
was done using an estimated standard error for the error rates (or costs). The different
approaches makes the interpretation of the comparisonin Section 10.7.1 rather difficult.
The pattern which emerges from the multidimensional scaling and associated hierar-
chical clustering of the algorithms is very encouraging. It is clear that there is a strong
similarity between the construction and the performance of the algorithms. The hierarchi-
cal clustering of the datasets is not so convincing. However, the overall picturein Figure
10.3 confirms the breakdown of analysis by subject area (see Section 10.2) in that convex
hulls which do not overlap can be drawn around the datasets of the specific subject areas.
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An outlier hereisthe Tsetse fly data - which could aso easily been placed in the category
of “image datasets:segmentation”, since the data are of a spatial nature, although itis not a
standard image!

Theanalysisof Section 10.6 isapromising one, though thereisnot enough datato make
strong conclusions or to take the rules too seriously. However, it might be better to predict
performance on a continuous scale rather than the current approach which discretises the
algorithmsinto “Applicable’ and “Non-Applicable’. Indeed, thechoiceof k = 8 or k = 16
(see Section 10.6.3) isvery much larger than the more commonly used 2 or 3 standard errors
in hypothesistesting.

The attemptsto predict performance using the performance of “benchmark” agorithms
(see Section 10.7) is highly dependent on the choice of datasets used. Also, it needs to be
remembered that the coefficients reported in Table 10.14 are not absolute. They are again
based on a transformation of all the results to the unit interval. So for example, the result
that the error rate for ALLOCS80 could be predicted by taking 0.8 x the error rate for k-NN
takes into account the error rates for all of the other algorithms. If we only consider this
pair (k-NN and ALLOCB80) then we get a coefficient of 0.9 but thisis still influenced by
one or two observations. An alternativeisto consider the average percentage improvement
of ALLOCS80, which is 6.4%, but none of these possibilities takes account of the different
sample sizes.

11.7.4 Removal of irrelevant attributes

There are many examples where the performance of algorithms may be improved by
removing irrelevant attributes. A specific example is the DNA dataset, where the middle
20 of the 60 nominal attributesare by far the most relevant. If adecision tree, for example,
is presented with this middle section of the data, it performs much better. The sameistrue
of quadratic discriminants, and, thisis avery general problem with black-box procedures.
There are ways of removing variables in linear discriminants, for example, but these did
not have much effect on accuragcy, and this variable selection method does not extend to
other algorithms.

11.7.5 Diagnosticsand plotting

Very few procedures contain internal consistency checks. Even where they are available
in principle, they have not been programmed into our implementations. For example,
guadratic discrimination relieson multivariatenormality, and therearetestsfor this, but they
are programmed separately. Similarly CASTLE should be able to check if the assumption
of polytree structureis areasonable one, but thisis not programmed in. The user must then
rely on other waysof doing such checks. Animportant, but very much underused, methodis
simply to plot selected portions of the data, for example pairsof coordinateswith the classes
as labels. This often gives very important insights into the data. The manova procedure,
multidimensional scaling, principal components and projection pursuit (SMART) all give
useful waysin which multidimensional data can be plotted in two dimensions.

11.7.6 Exploratory data

If the object of the exercise is to explore the process underlying the classifications them-
selves, for example by finding out which variables are important or by gaining an insight
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into the structure of the classification process, then neural nets, k-nearest neighbour and
ALLOCS8O0 are unlikely to be much use. No matter what procedure is actually used, it is
often best to pruneradically, by keeping only two or three significant termsin aregression,
or by using trees of depth two, or using only a small number of rules, in the hope that the
important structure is retained. Less important structures can be added on later as greater
accuragy isrequired. It should also be bornein mind that in exploratory work it is common
to include anything at all that might conceivably be relevant, and that often the first task is
to weed out theirrelevant information before the task of exploring structure can begin.

11.7.7 Special features

If a particular application has some special features such as missing values, hierarchical
structure in the attributes, ordered classes, presence of known subgroups within classes
(hierarchy of classes), etc. etc., thisextra structure can be used in the classification process
to improve performance and to improve understanding. Also, it is crucial to understand if
the class values are in any sense random variables, or outcomes of a chance experiment, as
this alters radically the approach that should be adopted.

The Procrustean approach of forcing all datasets into a common format, as we have
done in the trials of this book for comparative purposes, is not recommended in general.
The general ruleisto use all the available external information, and not to throw it away.

11.7.8 From classification to knowledge organisation and synthesis

In Chapter 5 it was stressed that Machine L earning classifiers should possess a mental fit to
the data, so that the learned concepts are meaningful to and evaluable by humans. On this
criterion, the neural net algorithms are relatively opaque, whereas most of the statistical
methods which do not have mental fit can at least determine which of the attributes are
important. However, the specific black-box use of methods would (hopefully!) never
take place, and it isworth looking forwards more speculatively to Al uses of classification
methods.

For example, KARDIO's comprehensive treatise on ECG interpretation (Bratko et al .,
1989) does not contain a single rule of human authorship. Seen in this light, it becomes
clear that classification and discrimination are not narrow fiel dswithin statistics or machine
learning, but that the art of classification can generate substantial contributionsto organise
(and improve) human knowledge, — even, asin KARDIO, to manufacture new knowledge.

Another context in which knowledge derived from humans and datais synthesised is
in the area of Bayesian expert systems (Spiegelhalter et al., 1993), in which subjective
judgments of model structure and conditional probabilities are formally combined with
likelihoods derived from data by Bayes theorem: this provides a way for a system to
smoothly adapt a model from being initially expert-based towards one derived from data.
However, this representation of knowledge by causal nets is necessarily rather restricted
because it does demand an exhaustive specification of the full joint distribution. However,
such systems form a complete model of a process and are intended for more than sim-
ply classification. Indeed, they provide a unified structure for many complex stochastic
problems, with connections to image processing, dynamic modelling and so on.
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Knowledge Representation

Claude Sammut
University of New South Walest

12.1 INTRODUCTION

In 1956, Bruner, Goodnow and Austin published their book A Sudy of Thinking, which
became alandmark in psychology and would later have a major impact on machine learn-
ing. The experiments reported by Bruner, Goodnow and Austin were directed towards
understanding a human’s ability to categorise and how categories are learned.
We begin with what seems a paradox. The world of experience of any normal
man is composed of atremendous array of discriminably different objects, events,
people, impressions...But were we to utilise fully our capacity for registering the
differencesinthingsand to respond to each event encountered as unique, wewould
soon be overwhelmed by the complexity of our environment... The resolution of
thisseeming paradox ... isachieved by man’'s capacity to categorise. To categorise
isto render discriminably different things equivalent, to group objects and events
and people around us into classes... The process of categorizing involves... an act
of invention... If we have learned the class “house” as a concept, new exemplars
can be readily recognised. The category becomes a tool for further use. The
learning and utilisation of categories represents one of the most elementary and
genera forms of cognition by which man adjusts to his environment.
The first question that they had to deal with was that of representation: what is a con-
cept? They assumed that objects and events could be described by a set of attributes and
were concerned with how inferences could be drawn from attributes to class membership.
Categories were considered to be of three types: conjunctive, disunctive and relational .
...when one learns to categorise a subset of eventsin a certain way, one is doing
more than simply learning to recogniseinstances encountered. Oneisalsolearning
arule that may be applied to new instances. The concept or category is basically,
this “rule of grouping” and it is such rules that one constructs in forming and
attaining concepts.

1 Addressfor correspondence: School of Computer Scienceand Engineering, Artificial Intelligence L aboratory,
University of New South Wales, PO Box 1, Kensigton, NSW 2033, Australia
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The notion of arule as an abstract representation of a concept in the human mind came to
be questioned by psychologists and there is till no good theory to explain how we store
concepts. However, the same questions about the nature of representation arise in machine
learning, for the choice of representation heavily determines the nature of a learning
algorithm. Thus, one critical point of comparison among machine learning algorithms is
the method of knowledge representation employed.

In this chapter we will discuss various methods of representation and compare them
according to their power to express complex concepts and the effects of representation on
the time and space costs of learning.

122 LEARNING, MEASUREMENT AND REPRESENTATION

A learning programisonethat is capable of improving its performance through experience.
Given a program, P, and some input, z, a normal program would yield the same result
P(z) = y after every application. However, alearning program can alter its initial state
so that its performance is modified with each application. Thus, we can say P(z|q) = v.
That is, y is the result of applying program P to input, z, given the initial state, g. The
goal of learning is to construct a new initial, ¢’, so that the program alters its behaviour to
give a more accurate or quicker result. Thus, one way of thinking about what a learning
program does is that it builds an increasingly accurate approximation to a mapping from
input to output.

The most common learning task isthat of acquiring afunction which maps objects, that
share common properties, to the same class value. This is the categorisation problem to
which Bruner, Goodnow and Austin referred and much of our discussionwill be concerned
with categorisation.

Learning experience may be in the form of examples from a trainer or the results of
trial and error. In either case, the program must be able to represent its observations
of the world, and it must also be able to represent hypotheses about the patterns it may
find in those observations. Thus, we will often refer to the observation language and the
hypothesis language. The observation language describes the inputs and outputs of the
program and the hypothesis language describes the internal state of the learning program,
which corresponds to its theory of the concepts or patterns that exist in the data.

The input to a learning program consists of descriptions of objects from the universe
and, in the case of supervised learning, an output value associated with the example. The
universe can be an abstract one, such as the set of all natural numbers, or the universe
may be a subset of the real-world. No matter which method of representation we choose,
descriptions of objects in the real world must ultimately rely on measurements of some
properties of those objects. These may be physical properties such as size, weight, colour,
etc or they may be defined for objects, for example the length of time a person has been
employed for the purpose of approving a loan. The accuracy and reliability of alearned
concept depends heavily on the accuracy and reliability of the measurements.

A programislimited in the conceptsthat it can learn by the representational capabilities
of both observation and hypothesislanguages. For example, if an attribute/valuelist is used
to represent examples for an induction program, the measurement of certain attributes and
not others clearly places bounds on the kinds of patterns that the learner can find. The
learner issaid to be biased by its observationlanguage. The hypothesislanguage also places
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constraints on what may and may not be learned. For example, in thelanguage of attributes
and values, relationships between objects are difficult to represent. Whereas, a more
expressive language, such asfirst order logic, can easily be used to describe relationships.

Unfortunately, representational power comes at a price. Learning can be viewed as a
search through the space of all sentences in alanguage for a sentence that best describes
the data. The richer the language, the larger the search space. When the search spaceis
small, it is possible to use “brute force” search methods. If the search space isvery large,
additional knowledge is required to reduce the search.

We will divide our attention among three different classes of machine learning algo-
rithms that use distinctly different approaches to the problem of representation:

Instance-based lear ning algorithms learn concepts by storing prototypic instances of the
concept and do not construct abstract representations at all.

Function approximation algorithmsinclude connectionist and statistics methods. These
algorithms are most closely related to traditional mathematical notions of approxima-
tion and interpolation and represent concepts as mathematical formulae.

Symbolic learning algorithms learn concepts by constructing a symbolic which de-
scribes a class of objects. We will consider algorithms that work with representations
equivalent to propositional logic and first-order logic.

12.3 PROTOTYPES

The simplest form of learning is memorisation. When an object is observed or the solution
to aproblemisfound, it is stored in memory for future use. Memory can be thought of as
alook up table. When a new problem is encountered, memory is searched to find if the
same problem has been solved before. If an exact match for the searchisrequired, learning
is slow and consumes very large amounts of memory. However, approximate matching
allows a degree of generalisation that both speeds learning and saves memory.

For example, if we are shown an object and we want to know if it is a chair, then we
compare the description of this new object with descriptions of “typical” chairs that we
have encountered before. If the description of the new object is “close” to the description
of one of the stored instances then wemay call it achair. Obviously, we must defined what
we mean by “typical” and “close”.

To better understand the issues involved in learning prototypes, we will briefly de-
scribe three experimentsin Instance-based learning (IBL) by Aha, Kibler & Albert (1991).
IBL learns to classify objects by being shown examples of objects, described by an at-
tribute/valuelist, along with the class to which each example belongs.

12.3.1 Experiment 1

In thefirst experiment (1B1), to learn a concept simply required the program to store every
example. When an unclassified object was presented for classification by the program, it
used a simple Euclidean distance measure to determine the nearest neighbour of the object
and the class givento it wasthe class of the neighbour.

This simple scheme works well, and is tolerant to some noise in the data. Its major
disadvantageis that it requires alarge amount of storage capacity.
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12.3.2 Experiment 2

The second experiment (1B2) attempted to improve the space performance of IB1. In this
case, when new instances of classes were presented to the program, the program attempted
to classify them. Instances that were correctly classified were ignored and only incorrectly
classified instances were stored to become part of the concept.

Whilethis scheme reduced storage dramatically, it was|ess noise-tol erant than thefirst.

12.3.3 Experiment 3

The third experiment (IB3) used a more sophisticated method for evaluating instances to
decideif they should be kept or not. IB3issimilar to I1B2 with the followingadditions. 1B3
maintains a record of the number of correct and incorrect classification attempts for each
saved instance. Thisrecord summarised an instance’s classification performance. B3 uses
a significance test to determine which instances are good classifiers and which ones are
believed to be noisy. The latter are discarded from the concept description. This method
strengthens noise tolerance, while keeping storage requirements down.

12.3.4 Discussion

Fig. 12.1: The extension of an IBL concept is shown in solid lines. The dashed lines represent the
target concept. A sample of positive and negative examplesis shown. Adapted from Aha, Kibler and
Albert (1991).



232  Knowledge Representation [Ch. 12

IB1is strongly related to the k-nearest neighbour methods described in Section 4.3. Here
k is1. The main contribution of Aha, Kibler and Albert (1991) is the attempt to achieve
satisfactory accuracy while using less storage. The algorithms presented in Chapter 4
assumed that all training data are available. Whereas 1B2 and 1B3 examine methods for
“forgetting” instances that do not improve classification accuracy.

Figure 12.1 shows the boundaries of an imaginary concept in atwo dimensions space.
The dashed lines represent the boundaries of the target concept. The learning procedure
attempts to approximate these boundaries by nearest neighbour matches. Note that the
boundaries defined by the matching procedure are quite irregular. This can have its
advantages when the target concept does not have aregular shape.

Learning by remembering typical examples of a concept has several other advantages.
If an efficient indexing mechanism can be devised to find near matches, this representation
can be very fast as a classifier since it reduces to a table look up. It does not require any
sophisticated reasoning system and is very flexible. Aswe shall see later, representations
that rely on abstractions of concepts can run into trouble with what appear to be simple
concepts. For example, an abstract representation of a chair may consist of a description
of the number legs, the height, etc. However, exceptions abound since anything that can be
sat on can be thought of as achair. Thus, abstractions must often be augmented by lists of
exceptions. Instance-based representation does not suffer from this problem since it only
consists exceptions and is designed to handle them efficiently.

One of the major disadvantages of this style of representation is that it is necessary to
define asimilarity metric for objectsin the universe. This can often be difficult to do when
the objects are quite complex.

Another disadvantage is that the representation is not human readable. In the previ-
ous section we made the distinction between an language of observation and a hypothesis
language. When learning using prototypes, the language of observation may be an at-
tribute/value representation. The hypothesis language is simply a set of attribute/value or
feature vectors, representing the prototypes. While examples are often a useful means
of communicating ideas, a very large set of examples can easily swamp the reader with
unnecessary detail and failsto emphasisimportant features of a class. Thus a collection of
typical instances may not convey much insight into the concept that has been learned.

12.4 FUNCTION APPROXIMATION

As we saw in Chapters 3, 4 and 6, statistical and connectionist approaches to machine
learning are related to function approximation methods in mathematics. For the purposes
of illustration let us assume that the learning task is one of classification. That is, we wish
to find ways of grouping objectsin auniverse. In Figure 12.2 we have auniverse of objects
that belong to either of two classes“+” or “-".

By function approximation, we describeasurfacethat separatesthe objectsinto different
regions. Thesimplest functionisthat of alineandlinear regression methodsand perceptrons
are used to find linear discriminant functions.

Section 6.1 described the perceptron pattern classifier. Given a binary input vector, X,
aweight vector, w, and athreshold value, 7', if,

Ewi:ci >T
i
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Fig. 12.2: A linear discrimination between two classes.

then the output is 1, indicating membership of aclass, otherwiseitisO, indicating exclusion
fromtheclass. Clearly, w - x —T" describesahyperplaneand the goa of perceptronlearning
isto find aweight vector, w, that resultsin correct classification for all training examples.
The perceptron is an example of alinear threshold unit (LTU). A single LTU can only
recognise one kind of pattern, provided that the input space is linearly separable. If we
wish to recognise more than one pattern, several LTU’s can be combined. In this case,
instead of having a vector of weights, we have an array. The output will now be a vector:

u=Wx

where each element of u indicates membership of aclass and each row in W is the set of
weights for one LTU. This architectureis called a pattern associator.

LTU’scan only producelinear discriminant functionsand consequently, they arelimited
in the kinds of classesthat can be learned. However, it wasfound that by cascading pattern
associators, it is possible to approximate decision surfaces that are of a higher order than
simple hyperplanes. In cascaded system, the outputs of one pattern associator are fed into
the inputs of another, thus:

u=W(Vx)

To facilitate learning, afurther modification must be made. Rather than using asimple
threshold, as in the perceptron, multi-layer networks usually use a non-linear threshold
such asasigmoid function. Like perceptron learning, back-propagation attemptsto reduce
the errors between the output of the network and the desired result. Despite the non-linear
threshold, multi-layer networks can still be thought of as describing a complex collection
of hyperplanes that approximate the required decision surface.
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Fig. 12.3: A Pole Balancer.

12.4.1 Discussion

Function approximation methods can often produce quite accurate classifiers because they
are capable of constructing complex decision surfaces. The observation language for
algorithms of this class is usually a vector of numbers. Often preprocessing will convert
raw data into a suitable form. For example, Pomerleau (1989) accepts raw data from a
cameramounted on amoving vehicle and selects portions of theimage to processfor input
to a neural net that learns how to steer the vehicle. The knowledge acquired by such a
system is stored as weights in a matrix. Therefore, the hypothesis language is usually an
array of real numbers. Thus, theresults of learning are not easily availablefor inspection by
a human reader. Moreover, the design of a network usually requires informed guesswork
on the part of the user in order to obtain satisfactory results. Although some effort has been
devoted to extracting meaning from networks, the still communicate little about the data.

Connectionist learning algorithms are still computational ly expensive. A critical factor
in their speed is the encoding of the inputs to the network. Thisisalso critical to genetic
algorithms and we will illustrate that problem in the next section.

125 GENETIC ALGORITHMS

Genetic algorithms (Holland, 1975) perform a search for the solution to a problem by
generating candidate solutions from the space of all solutions and testing the performance
of the candidates. The search method is based on ideas from genetics and the size of
the search space is determined by the representation of the domain. An understanding of
genetic algorithms will be aided by an example.

A very common problem in adaptive control islearning to balance a pole that is hinged
on a cart that can move in one dimension aong a track of fixed length, as show in Figure
12.3. The control must use “bang-bang” control, that is, aforce of fixed magnitude can be
applied to push the cart to the left or right.

Before we can begin to learn how to control this system, it is necessary to represent
it somehow. We will use the BOXES method that was devised by Michie & Chambers
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Fig. 12.4: Discretisation of pole balancer state space.

(1968). The measurementstaken of the physical system are the angle of the pole, 8, and its
angular velocity and the position of the cart, z, and its velocity. Rather than treat the four
variables as continuous values, Michie and Chambers chose to discretise each dimension
of the state space. One possible discretisation is shown in Figure 12.4.

Thisdiscretisation resultsin3 x 3 x 6 x 3 = 162 “boxes’ that partition the state space.
Each box has associated with it an action setting which tells the controller that when the
system isin that part of the state space, the controller should apply that action, which isa
push to the left or a push to the right. Since there is a simple binary choice and there are
162 boxes, there are 2162 possible control strategies for the pole balancer.

The simplest kind of learning in this case, is to exhaustively search for the right
combination. However, this is clearly impractical given the size of the search space.
Instead, we can invoke a genetic search strategy that will reduce the amount of search
considerably.

In genetic learning, we assume that there is a population of individuas, each one of
which, represents a candidate problem solver for a given task. Like evolution, genetic
algorithmstest each individual from the population and only thefittest surviveto reproduce
for the next generation. The algorithm creates new generations until at least oneindividual
isfound that can solve the problem adequately.

Each problem solver isachromosome. A position, or set of positionsin achromosome
is called a gene. The possible values (from a fixed set of symbols) of a gene are known
as alleles. In most genetic algorithm implementations the set of symbolsis {0, 1} and
chromosome lengths are fixed. Most implementations also use fixed population sizes.

The most critical problem in applying a genetic algorithm is in finding a suitable
encoding of the examples in the problem domain to a chromosome. A good choice of
representation will make the search easy by limiting the search space, a poor choice will
result in alarge search space. For our pole balancing example, we will use avery simple
encoding. A chromosomeis astring of 162 boxes. Each box, or gene, can take values: 0
(meaning push left) or 1 (meaning push right). Choosing the size of the population can be
tricky since a small population size provides an insufficient sample size over the space of
solutions for a problem and large population requires alot of evaluation and will be slow.
In thisexample, 50 is a suitable population size.
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Each iteration in a genetic algorithm is called a generation. Each chromosome in a
population is used to solve a problem. Its performance is evaluated and the chromosomeis
given somerating of fitness. The population is also given an overall fitnessrating based on
the performance of its members. The fitness value indicates how close a chromosome or
populationisto therequired solution. For pole balancing, the fithessval ue of achromosome
may be the number of time stepsthat the chromosomeis able to keep the pole balanced for.

New sets of chromosomes are produced from one generation to the next. Reproduction
takes place when selected chromosomes from one generation are recombined with others
to form chromosomesfor the next generation. The new ones are called offspring. Selection
of chromosomes for reproduction is based on their fitness values. The average fitness of
population may also becalculated at end of each generation. For polebalancing, individuals
whosefitnessisbel ow averagearerepl aced by reproduction of above average chromosomes.
The strategy must be modified if two few or two many chromosomessurvive. For example,
at least 10% and at most 60% must survive.

Operators that recombine the selected chromosomes are called genetic operators. Two
common operators are crossover and mutation. Crossover exchanges portions of a pair of
chromosomesat arandomly chosen point called thecrossover point. Somelmplementations
have more than one crossover point. For example, if there are two chromosomes, X and
Y:

X =100101011 Y = 111010010
and the crossover point is 4, the resulting offspring are:
0O, = 100110010 O, = 111001011

Offspring produced by crossover cannot contain information that is not already in the
population, so an additional operator, mutation, isrequired. Mutation generatesan offspring
by randomly changing the values of genes at one or more gene positions of a selected
chromosome. For example, if the following chromosome,

Z = 100101011
is mutated at positions 2, 4 and 9, then the resulting offspring is:
O = 110001010

The number of offspring produced for each new generation depends on how members are
introduced so as to maintain a fixed population size. In a pure replacement strategy, the
whole population is replaced by a new one. In an dlitist strategy, a proportion of the
population survivesto the next generation.

In polebalancing, al offspring are created by crossover (except when morethe 60% will
survivefor morethanthree generationswhen therateisreducedto only 0.75 being produced
by crossover). Mutation is a background operator which helpsto sustain exploration. Each
offspring produced by crossover has a probability of 0.01 of being mutated beforeit enters
the population. If more then 60% will survive, the mutation rate isincreased to 0.25.

The number of offspring an individual can produce by crossover is proportional to its
fitness:

fitness value

- - x Number of children
population fitness
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Fig. 12.5: Discrimination on attributes and values.

where the number of childrenis the total number of individualsto be replaced. Mates are
chosen at random among the survivors.

The pole balancing experiments described above, were conducted by Odetayo (1988).
This may not be the only way of encoding the problem for a genetic algorithm and so other
solutions may be possible. However, this requires effort on the part of the user to devise a
clever encoding.

12.6  PROPOSITIONAL LEARNING SYSTEMS

Rather than searching for discriminant functions, symbolic learning systems find expres-
sions equivalent to sentences in some form of logic. For example, we may distinguish
objects according to two attributes: size and colour. We may say that an object belongsto
class 3 if its colour isred and its size is very small to medium. Following the notation of
Michalski (1983), the classesin Figure 12.5 may be written as:

classl «— size = large A colour € {red,orange}
class2 «— size € {small, medium} A colour € {orange, yellow}
class3 «— size € {v_small ... medium} A colour = blue

Note that this kind of description partitions the universe into blocks, unlike the function
approximation methods that find smooth surfaces to discriminate classes.

Interestingly, one of the popular early machine learning agorithms, Ag (Michalski,
1973), had its origins in switching theory. One of the concerns of switching theory isto
find ways of minimising logic circuits, that is, simplifying the truth table description of the
function of a circuit to a simple expression in Boolean logic. Many of the algorithmsin
switching theory take tables like Figure 12.5 and search for the best way of covering all of
the entriesin the table.

Ag, uses acovering algorithm, to build its concept description:

cover := {}
repeat
select one positive example, e
construct the set of all conjunctive expressions
that cover e and no negative example in E-
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Fig. 12.6: Decision tree learning.

choose the ‘‘best’’ expression, x, from this set
add x as a new disjunct of the concept
remove all positive examples covered by x

until there are no positive examples left

The “best” expression is usually some compromise between the desire to cover as
many positive examples as possible and the desire to have as compact and readable a
representation as possible. In designing Ag, Michalski was particularly concerned with the
expressiveness of the concept description language.

A drawback of the Aq learning algorithm isthat it does not use statistical information,
present in the training sample, to guide induction. However, decision tree learning algo-
rithms (Quinlan, 1993) do. The basic method of building a decision tree is summarised
in Figure 12.6. An simple attribute/value representation is used and so, like Ag, decision
trees are incapable of representing relational information. They are, however, very quick
and easy to build.

e Thealgorithm operates over a set of training instances, C.

e Ifadlinstancesin C areinclass P, create anode P and stop. Otherwise select afeature,
F and create a decision node.

e Partition the traning instancesin C' into subsets according to the values v; of F.
e Apply the algorithm recursively to each if the subsets of C.
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Fig. 12.7: The dashed line showsthe real division of objectsin the universe. The solid lines show a
decision tree approximation.

Decision tree learning algorithms can be seen as methods for partitioning the universe
into successively smaller rectangles with the goal that each rectangle only contains objects
of oneclass. Thisisillustrated in Figure12.7.

12.6.1 Discussion

Michalski has aways argued in favour of rule-based representations over tree structured
representations, on the grounds of readability. When the domain iscomplex, decision trees
can become very “bushy” and difficult to understand, whereas rules tend to be modular
and can be read in isolation of the rest of the knowledge-base constructed by induction.
On the other hand, decision trees induction programs are usualy very fast. A compromise
is to use decision tree induction to build an initial tree and then derive rules from the tree
thus transforming an efficient but opague representation into a transparent one (Quinlan,
1987b).

It is instructive to compare the shapes that are produced by various learning systems
when they partition the universe. Figure 12.7 demonstrates one weakness of decision tree
and other symbolic classification. Since they approximate partitions with rectangles (if
the universeis 2-dimensional) there is an inherent inaccuracy when dealing with domains
with continuous attributes. Function approximation methods and IBL may be ableto attain
higher accuracy, but at the expense of transparency of the resulting theory. It is more
difficult to make general comments about genetic algorithms since the encoding method
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Fig. 12.8: Generalisation as set covering.

will affect both accuracy and readability.

As we have seen, useful insights into induction can be gained by visualising it as
searching for a cover of abjects in the universe. Unfortunately, there are limits to this
geometric interpretation of learning. If we wish to learn concepts that describe complex
objects and relationships between the objects, it becomes very difficult to visualise the
universe. For thisreason, it isoften useful to rely on reasoning about the concept description
language.

As we saw, the cover in Figure 12.5 can be expressed as clauses in propositional
logic. We can establish a correspondence between sentences in the concept description
language (the hypothesislanguage) and adiagrammiati c representation of the concept. More
importantly, we can create a correspondence between generalisation and specialisation
operations on the sets of objects and generalisation and specialisation operations on the
sentences of the language.

For example, Figure 12.8 shows two sets, labelled class 1 and class 2. It is clear that
class 1 is a generalisation of class 2 since it includes a larger number of objects in the
universe. We aso call class 2 a specialisation of class 1. By convention, we say the
description of class 1 isageneralisation of the description of class 2. Thus,

classl «— size = large (12.1)
isageneralisation of
class2 — size = large A colour = red (12.2)

Oncewehave established the correspondence between sets of objectsand their descriptions,
it isoften convenient to forget about the objects and only consider that we are working with
expressions in alanguage. The reason is simple. Beyond a certain point of complexity, it
isnot possibleto visualise sets, but it isrelatively easy to apply simple transformations on
sentencesin aformal language. For example, Clause (12.2) can be generalised very easily
to Clause (12.1) by dropping one of the conditions.
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In the next section we will look at learning algorithms that deal with relational infor-
mation. In this case, the emphasis on language is essential since geometric interpretations
no longer provide us with any real insight into the operation of these algorithms.

127 RELATIONSAND BACKGROUND KNOWLEDGE

Inductions systems, aswe have seen so far, might be described as“ what you seeiswhat you
get”. That is, the output class descriptions use the same vocabulary as the input examples.
However, we will see in this section, that it is often useful to incorporate background
knowledge into learning.

We use a simple example from Banerji (1980) to the use of background knowledge.
There is a language for describing instances of a concept and another for describing
concepts. Suppose we wish to represent the binary number, 10, by aleft-recursive binary
tree of digits“0” and “1”:

[head: [head: 1; tail: nill; tail: 0]

“head” and “tail” are the names of attributes. Their values follow the colon. The concepts
of binary digit and binary number are defined as:

zEedigit = z=0Vz=1
z €num = (tail(z) € digit A head(z) = nil)
vV (tail(z) € digit A head(z) € num)

Thus, an object belongsto a particular class or concept if it satisfies the logical expression
in the body of the description. Predicatesin the expression may test the membership of an
object in apreviously learned concept.

Banerji alwaysemphasi sed the importance of adescription languagethat could “grow”.
That is, its descriptive power should increase as new conceptsare learned. This can clearly
be seen in the example above. Having learned to describe binary digits, the concept of
digit becomes available for usein the description of more complex concepts such ashinary
number.

Extensibility is a natural and easily implemented feature of horn-clause logic. In
addition, a description in horn-clause logic is a logic program and can be executed. For
example, to recognise an object, a horn clause can be interpreted in a forward chaining
manner. Suppose we have a set of clauses:

C1 « P AP (12.3)

Cy « Py APpC (12.4)
and an instance:

P1y A P1a A Poy N\ Pay (12.5)

Clause (12.3) recognises the first two terms in expression (12.5) reducing it to

Py APy ANCy
Clause (12.4) reduces thisto C,. That is, clauses (12.3) and (12.4) recognise expression
(12.5) asthe description of an instance of concept Cs.

When clauses are executed in a backward chaining manner, they can either verify that
the input object belongs to a concept or produce instances of concepts. In other words,
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larger(hammer, feather).
denser(hammer, feather).
heavier(A, B) :— denser(A, B), larger(A, B).

:— heavier(hammer, feather).

heavier(A, B) :— denser(A, B), larger(A, B). :— heavier(hammer, feather).

denser(hammer, feather). Aenser( hammer, feather ),

larger( hammer, feather ).
larger(hammer, feather).

\ :— larger(hammer, feather).

[

Fig. 12.9: A resolution proof tree from Muggleton & Feng (1990).

we attempt to prove an assertion is true with respect to a background theory. Resolution
(Robinson, 1965) provides an efficient means of deriving a solution to a problem, giving
a set of axioms which define the task environment. The algorithm takes two terms and
resolves them into a most general unifier, asillustrated in Figure 12.9 by the execution of
asimple Prolog program.

The box in the figure contains clauses that make up the theory, or knowledge base, and
the question to be answered, namely, “is it true that a hammer is heavier than a feather”?
A resolution proof is a proof by refutation. That is, answer the question, we assume that
it is false and then seeif the addition, to the theory, of this negative statement resultsin a
contradiction.

Theliteralson the left hand side of a Prolog clause are positive. Those on the left hand
side are negative. The proof procedure looks for complimentary literals in two clauses,
i.e literals of opposite sign that unify. In the example in Figure 12.9, heavier(A, B) and
heaver(hammer, feather) unify to create the first resolvent:

denser(hammer, feather), heavier(hammer, feather)

A side effect of unification is to create variable substitutions A/hammer, B/ feather.
By continued application of resolution, we can eventually derive the empty clause, which
indicates a contradiction.

Plotkin’s (1970) work “originated with a suggestion of R.J. Popplestone that since
unification is useful in automatic deduction by the resolution method, its dual might prove
helpful for induction. The dual of the most general unifier of two literals is called the
least general generalisation”. At about the same time that Plotkin took up this idea, J.C.
Reynolds was also developing the use of least general generalisations. Reynolds (1970)
also recogni sed the connection between deductive theorem proving and inductivelearning:
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Robinson’ sUnification Algorithm allows the computation of the greatest common
instance of any finite set of unifiable atomic formulas. This suggests the existence
of a dua operation of “least common generalisation”. It turns out that such an
operation exists and can be computed by a simple algorithm.

The method of least general generalisations is based on subsumption. A clause C; sub-
sumes, or is more general than, another clause C; if there is a substitution o such that
02 2 Cla.

Theleast general generalisation of

r(g9(a), a) (12.6)
and  p(g(b),b) (12.7)
is p(g(X),X) (12.8)

Under the substitution {a/X}, (12.8) is equivaent to (12.6), and under the substitu-
tion {b/X}, (12.8) is equivalent to (12.7). Therefore, the least genera generalisation of
p(g(a),a) and p(g(b),d) isp(g(X), X) and resultsin the inverse substitution { X /{a, b} }.
Buntine (1988) pointed out that simple subsumption is unable to take advantage of
background information which may assist generalisation.
Suppose we are given two instances of a concept cuddly_pet,

cuddly pet(X) — fluffy(X) Adog(X) (12.9)

cuddly pet(X) — fluffy(X) Acat(X) (12.10)
Suppose we a so know the following:

pet(X) — dog(X) (12.11)

pet(X) — cat(X)
According to subsumption, the least general generalisation of (12.4) and (12.5) is:
cuddly pet(X) « fluffy(X)

since unmatched literals are dropped from the clause. However, given the background
knowledge, we can see that thisis an over-generalisation. A better oneis:

cuddly pet(X) « fluffy(X) A pet(X) (12.12)

The moral being that a generalisation should only be done when the relevant background
knowledge suggestsit. So, observing (12.9), use clause (12.11) asarewriteruleto produce
ageneralisation which is Clause (12.12). which also subsumes Clause (12.10).

Buntine drew on earlier work by Sammut (Sammut & Banerji, 1986) in constructing his
generalised subsumption. Muggleton & Buntine (1998) took this approach a step further
and realised that through the application of afew simple rules, they could invert resolution
as Plotkin and Reynolds had wished. Here are two of the rewrite rules in propositional
form:

Given aset of clauses, the body of one of which is completely contained in the bodies
of the others, such as:

X «— AANBACADAE
Y —« AABAC
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the absor ption operation resultsin:
X «— YADAE
Y «— AABAC
Intra-construction takes a group of rules all having the same head, such as:
X « BACADAE
X « AANBADAF
and replaces them with:
X « BADANZ
Z «— CAE
Z «— AANF

These two operations can be interpreted in terms of the proof tree shown in Figure 12.9.
Resolution accepts two clauses and applies unification to find the maximal common unifier.
In the diagram, two clauses at the top of a“V” are resolved to produce the resolvent at
the apex of the “V”. Absorption accepts the resolvent and one of the other two clausesto
produce the third. Thus, it inverts the resolution step.

Intra-construction automatically creates a new term in its attempt to simplify descrip-
tions. Thisisan essential feature of inverse resolution since there may be termsin atheory
that are not explicitly shown in an example and may have to be invented by the learning
program.

12.7.1 Discussion

These methods and others (Muggleton & Feng, 1990; Quinlan, 1990) have made relational
learning quite efficient. Becausethe language of Horn-clauselogic is more expressive than
the other concept description languages we have seen, it is now possible to learn far more
complex concepts than was previously possible. A particularly important application of
this style of learning is knowledge discovery. There are now vast databases accumulating
information on the genetic structure of human beings, aircraft accidents, company invento-
ries, pharmaceuticalsand countlessmore. Powerful induction programsthat use expressive
languages may be avital aid in discovering useful patternsin all these data.

For example, the realities of drug design require descriptive powers that encompass
stereo-spatial and other long-range rel ations between different parts of amolecule, and can
generate, in effect, new theories. The pharmaceutical industry spends over $250 million
for each new drug released onto the market. The greater part of this expenditure reflects
today’ sunavoidably “scatter-gun” synthesisof compounds which might possess biological
activity. Even alimited capability to construct predictive theories from data promises high
returns.

The relational program Golem was applied to the drug design problem of modelling
structure-activity relations (King et al., 1992). Training data for the program was 44
trimethoprim analogues and their observed inhibition of E. coli dihydrofolate reductase.
A further 11 compounds were used as unseen test data. Golem obtained rules that were
statistically more accurate on the training data and also better on the test data than a Han-
sch linear regression model. Importantly, relational learning yields understandable rules
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that characterise the stereochemistry of the interaction of trimethoprim with dihydrofolate
reductase observed crystallographically. In this domain, relationa learning thus offers a
new approach which complements other methods, directing the time-consuming process
of the design of potent pharmacological agents from alead compound, —variants of which
need to be characterised for likely biological activity before committing resources to their
synthesis.

12.8 CONCLUSIONS

We have now completed a rapid tour of a variety of learning algorithms and seen how the
method of representing knowledgeis crucial in the following ways:

¢ Knowledge representation determines the concepts that an algorithm can and cannot
learn.

¢ Knowledge representation affects the speed of learning. Some representations lend
themselves to more efficient implementation than others. Also, the more expressive
the language, the larger is the search space.

¢ Knowledge representation determines the readability of the concept description. A
representation that is opague to the user may alow the program to learn, but a repre-
sentation that is transparent also allowsthe user to learn.

Thus, when approaching a machine learning problem, the choice of knowledge represen-
tation formalism is just as important as the choice of learning algorithm.
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L earning to Control Dynamic Systems
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13.1 INTRODUCTION

The emphasisin controller design has shifted from the precision requirements towgrdsthe
followiong objectives(Leitch & Francis, 1986; Enterline, 1988; Verbruggen and Astrém,
1989; Astrém, 1991; Sammut & Michie, 1991; AIRTC92, 1992):

e control without complete prior knowledge (to extend the range of automatic control
applications),

o reliability, robustness and adaptivity (to provide successful performance in the real-
world environment),

e transparency of solutions (to enable understanding and verification),

e generdlity (tofacilitate the transfer of solutionsto similar problems),

o realisation of specified characteristics of system response (to please customers).

These problems are tackled in different ways, for example by using expert systems (Dvo-
rak, 1987), neural networks (Miller et al., 1990; Hunt et al., 1992), fuzzy control (Lee,
1990) and genetic algorithms (Renders & Nordvik, 1992). However, in the absence of a
complete review and comparative evaluations, the decision about how to solve a problem
at hand remains a difficult task and is often taken ad hoc. Leitch (1992) has introduced a
step towards a systematisation that could provide some guidelines. However, most of the
approaches provide only partia fulfilment of the objectives stated above. Taking into ac-
count also increasing complexity of modern systems together with real-time requirements,
one must agree with Schoppers (1991), that designing control means looking for a suitable
compromise. It should be tailored to the particular problem specifications, since some
objectives are normally achieved at the cost of some others.

Another important research themeis concerned with the repli cation of human operators
subconscious skill. Experienced operators manage to control systems that are extremely
difficult to be modelled and controlled by classical methods. Therefore, a“ natural” choice
would be to mimic such skilful operators. One way of doing this is by modelling the

1 Addressfor correspondence: Jozef Stefan Ingtitute, Univerzav Lubljani, 61111 Ljubljana, Slovenia
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operator’sstrategy in theform of rules. Themain problemishow to establish the appropriate
set of rules: Whilegaining skill, people often lose their awareness of what they are actually
doing. Their knowledgeisimplicit, meaning that it can be demonstrated and observed, but
hardly ever described explicitly in away needed for the direct transfer into an automatic
controller. Although the problem is general, it is particularly tough in the case of control
of fast dynamic systems where subconscious actions are more or less the prevailing form
of performance.

@)
Dynamic Learning Control
system " system — " rue
Partial
() knowledge
Dynamic Learning Control
system - system - rue
Learni ng Control
system " rule

Fig. 13.1: Three modes of learning to control a dynamic system: (a) Learning from scratch,
(b) Exploiting partial knowledge, (c) Extracting human operator’s skill.

The aim of this chapter is to show how the methods of machine learning can help
in the construction of controllers and in bridging the gap between the subcognitive skill
and its machine implementation. First successful attempts in learning control treated the
controlled system as a black box (for example Michie & Chambers, 1968), and a program
learnt to control it by trials. Due to the black box assumption, initial control decisions
are practically random, resulting in very poor performance in the first experiments. On
the basis of experimental evidence, control decisions are evaluated and possibly changed.
Learning takes place until a certain success criterion is met. Later on, this basic idea
was implemented in different ways, ranging from neural networks (for example Barto
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et al., 1983; Anderson, 1987) to genetic algorithms (for example Odetayo & McGregor,
1989). Recently, the research concentrated on removing the deficiencies inherent to these
methods, like the obscurity and unreliability of the learned control rules (Bain, 1990;
Sammut & Michie, 1991; Sammut & Cribb, 1990) and time-consuming experimentation
(Sammut, 1994) while still presuming no prior knowledge. Until recently, this kind of
learning control has remained predominant. However, some of the mentioned deficiences
are closely related to the black box assumption, which is hardly ever necessary in such
a strict form. Therefore, the latest attempts take advantage of the existing knowledge,
being explicit and formulated at the symbolic level (for example Urban€ic & Bratko, 1992;
Bratko, 1993; Varsek et al., 1993), or implicit and observablejust asoperator’sskill (Michie
et al., 1990; Sammut et al., 1992; Camacho & Michie, 1992; Michie & Camacho, 1994).
The structure of the chapter follows this introductory discussion. We consider three
modes of learning to control a system. The three modes, illustrated in Figure 13.1, are:
(8 Thelearning system learnsto control adynamic system by trial and error, without any
prior knowledge about the system to be controlled (Iearning from scratch).
(b) Asin (a), but the learning system exploits some partial explicit knowledge about the
dynamic system.
(c) Thelearning system observes a human operator and learns to replicate the operator’s
skill.
Experimentsin learning to control are popularly carried out using the task of controlling
the pole-and-cart system. In Section 13.2 we therefore describe this experimental domain.
Sections 13.3 and 13.4 describe two approaches to learning from scratch: BOXES and
genetic learning. In Section 13.5 the learning system exploits partial explicit knowledge.
In Section 13.6 the learning system exploits the operator’s skill.

13.2 EXPERIMENTAL DOMAIN

The main ideas presented in this chapter will be illustrated by using the pole balancing
problem (Anderson & Miller, 1990) asacase study. So let us start with adescription of this
control task which has often been chosen to demonstrate both classical and nonconventional
control techniques. Besides being an attractive benchmark, it also bears similarities with
tasks of significant practical importance such as two-legged walking, and satellite attitude
control (Sammut & Michie, 1991). The system consists of arigid pole and a cart. The cart
can move left and right on abounded track. The poleishinged to thetop of the cart so that
it can swing in the vertical plane. Inthe Al literature, thetask is usually just to prevent the
pole from falling and to keep the cart position within the specified limits, while the control
regime isthat of bang-bang. The control force has afixed magnitude and al the controller
can do isto change the force direction in regular timeintervals.

Classical methods (for example Kwakernaak & Sivan, 1972) can be applied to con-
trolling the system under several assumptions, including complete knowledge about the
system, that is a differential equations model up to numerical values of its parameters.
Alternative approaches tend to weaken these assumptions by constructing control rulesin
two essentially different ways: by learning from experience, and by qualitative reasoning.
The first one will be presented in more detail later in this chapter. The second one will
be described here only up to the level needed for comparison and understanding, giving a
general idea about two solutions of this kind:
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Fig. 13.2: Makarovi¢'srulefor pole balancing.

e A solution, distinguished by its simplicity, was derived by Makarovi¢ (1988) (see
Figure 13.2). Rules of the same tree structure, but with the state variables ordered in
different ways, were experimentally studied by DZeroski (1989). He showed that no
less than seven permutations of state variables yielded successful control rules. We
denote such rules as M (P), where P is a permutation of the variables, determining
their top-down order.

¢ Another solution wasinferred by Bratko (1991) from avery simplequalitativemodel of
theinverted pendulum system. The derived control rule is described by the following
relations:

Zgod = ko(k1 (2 — ) —2) (13.1)
1.

Pref = Efcgoal (13.2)

Pgod = ka(ks(pret — ) — ¢) (13.3)

F = —M{($ga) (13.4)

where z¢ and rer denote reference values to be reached, zqoa and @goa denote goal
values required for successful control, and M denotes a monotonically increasing
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function passing through the point (0, 0).

When the system is to be controlled under the bang-bang regime, control action A
is determined by the sign of force F: if FF > 0then A = pos €else A = neg.
Assuming zr¢ = 0 and k4 > 0 without loss of generality, Equations (13.1)—(13.4) can
be simplified and normalised, resulting in

F =dgn(pi1z + p22 + pap + ¢), (13.5)
wherep;,i =1, ..., 3 arenumerical parameters.

Both MakaroviC's and Bratko's rule successfully control the inverted pendulum, provided
the appropriate values of the numerical parameters are chosen. Moreover, there exists a
set of parameter values that makes Bratko's rule equivalent to the bang-bang variant of a
classical control rule using the sign of pole-placement controller output (DZeroski, 1989).

13.3 LEARNING TO CONTROL FROM SCRATCH: BOXES

In learning approaches, trials are performed in order to gain experimental evidence about
different control decisions. A trial startswiththe system positionedin aninitial state chosen
from a specified region, and lasts until failure occurs or successful control is performed
for a prescribed maximal period of time. Failure occurs when the cart position or pole
inclination exceeds the given boundaries. The duration of atrial is called survival time.
Learning is carried out by performing trials repeatedly until a certain success criterion is
met. Typically, thiscriterion requires successful control within atrial to exceed a prescribed
period of time. Initial control decisions are usually random. On the basis of experimental
evidence, they are evaluated and possibly changed, thus improving control quality. This
basic idea has been implemented in many different ways, for example in BOXES (Michie
& Chambers, 1968), Adaptive Critic reinforcement method (Barto et al., 1983), CART
(Connell & Utgoff, 1987), multilayer connectionist approach (Anderson, 1987) and many
others. Geva and Sitte (1993a) provide an exhaustive review. Here, two methods will be
described in more detail: BOXES (Michie & Chambers, 1968) and genetic learning of
control (Varsek et al., 1993). The choice of methods presented here is subjective. It was
guided by our aim to describe recent efforts in changing or upgrading the original ideas.
We chose BOXES because it introduced a learning scheme that was inspirational to much
further work.

13.3.1 BOXES

The BOXES program (Michie & Chambers, 1968) learns a state-action table, i.e. a set
of rules that specify action to be applied to the system in a given state. Of course this
would not be possible for the original, infinite state space. Therefore, the state space is
divided into “boxes’. A box is defined asthe Cartesian product of the values of the system
variables, where al the values belong to an interval from a predefined partition. A typical
partition of the four dimensional state space into boxes distinguish 3 values of z, 3 of z,
6 of ¢ and 3 of ¢, giving 162 boxes. All the points within a box are mapped to the same
control decision. During onetrial, the state-action tableis fixed. When afailureis detected
atria ends. Decisions are evaluated with respect to the accumul ated numeric information:
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how many timesthe system entered a particular state, how successful it was after particular
decisions, etc. The following information is accumulated for each box:

LL: "leftlife”, weighted sum of survival timesafter left decision wastaken in thisstate
during previoustrials,

RL: “right life", the samefor the right decision,

LU: "left usage”, weighted sum of the number of left decisions taken in this state
during previoustrials,

RU: “right usage”, the same for right decisions,

T1,T%,...,Tn: times(i.e steps) at which the system entersthis state during the current
trial.

After atrial the program updates these figures. For the states in which decision “left”
was taken, the new values are;

N

LLnew = LL#DK+Y (Tr —T))
i=1

LUpew = LU+DK+N

RLn., = RLxDK

RUpe = RUxDK

where the meaning of the parametersis as follows:
N number of entriesinto the state during the run,
DK: constant that weighs recent experience relative to earlier experience (DK < 1),
Tr: finishing time of thetrial.
Analogous updates are made for the states with decision “right”.
For thewhole system, GL (“global life”) and GU (“global usage”) are computed after
each trial:

GLpew = GL¥DK +Tp
GUpew = GUxDK +1

Thesevaluesare used for anumeric evaluation of thesuccessfor both actions. The estimates
are computed after atrial for each qualitative state:
LL+ K (GL/GU)
LU+ K
RL+ K (GL/GU)
RU+ K
where K is constant that weighs global experience relative to local experience.

The program chooses the action with the higher estimate to be appliedin the box during
the next trial.

The performance of BOXES is generally described by the number of trials needed for
first achieving 10000 step survival. Figures vary considerably from paper to paper and
are between 84 (Geva & Sitte, 1993b) and 557 (Sammut, 1994). Although interesting,
these figures are not sufficient to validate the learning results. Reliability, robustness and
characteristics of the controller performance are important as well and are discussed in
many papers devoted to BOXES.

I/.left =

Veight
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13.3.2 Refinements of BOXES

Sammut (1994) describes some recent refinements of the basic Michie-Chamberslearning
scheme. The central mechanism of learning in BOXES is the decision rule based on the
“experience” of each box. The experience for each individual box is accumulated in the
variables LL (left action lifetime), LU (left action usage), RL and RU (same for the
right action). The Michie-Chambers rule determines the decision between left and right
action depending on these variables. Theruleisdesigned so that it combinestwo, possibly
conflicting interests: exploitation and exploration. Thefirst isto perform the action that in
the past produced the best results (that is maximum lifetime), and the second isto explore
the alternatives. The alternatives may in the future turn out in fact to be superior to what
appears to be best at present.

The origina Michie-Chambers formulas find a particular compromise between these
two interests. The compromise can be adjusted by varying the parametersin the formulas.

Sammut (1994) describes a series of modifications of the original Michie-Chambers
rule. The following elegant rule (named after Law & Sammut) experimentally performed
the best in terms of learning rate and stability of learning:

if an action has not been tested then choose that action
eseif LL/LU% > RL/RU¥ then choose left

elseif RL/RUX > LL/LU¥ then chooseright

€lse choose an action at random

K is a user defined parameter that adjusts the relative importance of exploitation and
exploration. The lowest reasonable valuefor K is 1. This correspondsto pure exploitation
without any desireto exploretheuntested. By increasing K , the system’s mentality changes
towards experimentalist. Then the system iswilling to experiment with actions that from
past experience look inferior.

A suitable compromisefor K isneeded for overall good performance. For the classical
pole-and-cart problem, it was experimentally found that X = 1.7 isoptimal. Thelearning
rate is relatively stable for values of X between 1.4 and 1.8, and it degrades rapidly when
K decreases below 1.4 or increases above 1.8. The following improvement of the Law &
Sammut rule with respect to the Michie & Chambers rule was reported: on the average
over 20 experiments, the original BOXES needed 557 trials to learn to control the system,
whereas the Law & Sammut rule needed 75 trials (with K = 1.7). In trying to test the
stability of the Law & Sammut rule, it was found that X was slightly, but not significantly,
sensitive to small changes in the learning problem, such as changing the number of boxes
from 162 to 225, or introducing asymmetry in the force (left push twice the right push).

Geva and Sitte (1993a) carried out exhaustive experiments concerning the same topic.
With the appropriate parameter setting the BOXES method performed as well as the
Adaptive Critic reinforcement learning (Barto et al., 1983). They got an average of 52
trials out of 1000 learning experiments (standard deviation was 32).

13.4 LEARNING TO CONTROL FROM SCRATCH: GENETIC LEARNING

Genetic algorithms (GASs) are loosaly based on Darwinian principles of evolution: repro-
duction, genetic recombination, and the “survival of thefittest” (Holland, 1975; Goldberg,
1989). They maintain a set of candidate solutions called a population. Candidate solutions
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are usually represented as binary coded strings of fixed length. The initial population is
generated at random. What happens during cycles called generations is as follows. Each
member of the population is evaluated using a fitness function. After that, the population
undergoes reproduction. Parents are chosen stochastically, but strings with a higher value
of fitness function have higher probability of contributing an offspring. Genetic operators,
such as crossover and mutation, are applied to parents to produce offspring. A subset of
the population is replaced by the offspring, and the process continues on this new genera-
tion. Through recombination and selection, the evol ution convergesto highly fit population
members representing near-optimal solutionsto the considered problem.

When controllers are to be built without having an accurate mathematical model of the
system to be controlled, two problems arise: first, how to establish the structure of the
controller, and second, how to choose numerical valuesfor the controller parameters. Inthe
following, we present a three-stage framework proposed by Varsek et al. (©1993 |EEE).
First, control rules, represented as tables, are obtained without prior knowledge about
the system to be controlled. Next, if-then rules are synthesized by structuring information
encoded in the tables, yielding comprehensible control knowledge. Thiscontrol knowledge
has adequate structure, but it may be non-operational because of inadequate settings of
its numerical parameters. Control knowledge is finally made operational by fine-tuning
numerical parameters that are part of this knowledge. The same fine-tuning mechanism
can aso be applied when available partial domain knowledge suffices to determine the
structure of acontrol rulein advance.

In this approach, the control learning process is considered to be an instance of a
combinatorial optimisation problem. In contrast to the previously described learning
approach in BOXES, where the goal is to maximise survival time, here the goal is to
maximise survival time, and, simultaneously, to minimise the discrepancy between the
desired and actual system behaviour. This criterion is embodied in a cost function, called
theraw fitnessfunction, used to eval uate candidate control rules during thelearning process.
Raw fitness f € [0, 1] iscalculated as follows:

f = S(1-Em)
g _ 1 Y 5
Nk:lsmax
N
— 1 Erry,
FE = —
rr I A
k=1
Err, = li(M_F@) k=1...N
2 L max ¥max ’ ’

i=1
where § isthe normalised survival time, Err isthe normalised error, NV is the number of
trials performed to evaluate a candidate solution, Sy, is the survival timein the k-th trial,
Smax iSthe maximal duration of atrial, and Err;, isthe cumulative error of the k-th trial.
After completing the learning process, solutions were thoroughly evaluated by per-
forming 100 trialswith maximal duration of atrial set to 1 000 000 steps, corresponding to
over 5.5 hours of simulated time. Note that the maximal duration of atrial most frequently
found in the Al literature is 200 seconds.
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Phase 1: Obtaining control without prior knowledge
During this phase, BOXES-like decision rules were learned. For each of the pole-cart
variables z, z, ¢ and ¢, the domain is partitioned into three labelled intervals neg, zero
and pos. Each decision rule is then represented as a four-dimensional array, where each
entry represents a control action. In addition, two partitioning thresholds are required
for each system variable. Candidate solutions, comprising a decision rule along with the
corresponding thresholds, are represented as binary strings.

To calculate a fitness value for each individual, 25 trials were carried out with the
maximal duration of a trial set to 5000 steps. Populations of size 100 were observed
for 60 generations. The experiment was repeated ten times. On average, after about 30
generations, individual srepresenting rules better than Makarovic’sM (¢, ¢, ¢, z) rulewere
discovered.

Phase 2: Inducing rulestructure
To automatically synthesize comprehensible rules obtained during Phase 1, an inductive
learning technique was employed. A derivative of the CN2 algorithm (Clark & Niblett,
1988), named Ginesys PC (Karali¢ & Gams, 1989), was used to compress the GA-induced
BOXESHlike rules into the if-then form. The learning domain for the compression phase
was described in terms of four attributes and the class. The attribute values were interval
labelsfor the pole-cart variables z, z, ¢ and ¢, and the class represented the corresponding
action (i.e. positive or negative control force).

The obtained rules are very close in form to MakaroviC's rule. From the rules shown
by DZeroski (1989) to successfully control the pole-cart system, rules M(p, ¢, z, ),
M(p, p,z,z), and M(p, ¢, , z) were discovered automatically. The performance of the
compressed rules decreased with respect to the original GA-induced BOXES-likerulesdue
to inaccurate interpretation of the interval labels. Asin the case of Table 13.1, the 100%
failure rate of the compressed rule indicates that this rule was never able to balance the
system for 1000 000 steps. Since the defining thresholds were learned during Phase 1 to
performwell with the original GA-induced rules, these threshol ds should be adapted to suit
the new compressed rules.

Phase 3: Fine-tuning by optimizing control performance
In Phase 3, the interpretation of symbolic values, i.e. interval labels, appearing in the
qualitative rule M(¢, ¢, z, ) found in Phase 2 was adjusted to maximise the control
quality. For this purpose, a GA was employed again. This time, each chromosome
represented four binary coded thresholds while the rule structure was set to M (g, ¢, z, )
and left unchanged throughout the optimisation process.

To calculate a fitness value for each individual, only 15 trials were carried out with
maximal duration of atrial set to 2000 steps. Populations of size 50 were evolved for 30
generations. After 30 generations, individual srepresenting rules better than those obtained
during Phase 1 were generated. Through the extensive evaluation, the fine-tuned ruleswere
shown reliable (seeresultsin Table 13.1).

13.4.1 Robustness and adaptation

Additional experiments were carried out. The robustness of learning “from scratch” was
tested by performing the experiment twice: first, with force F € {+10 N, —10 N}, and
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Table 13.1: ((©1993 IEEE) Control performance of GA-induced BOXES-like rule, com-
pressed rule M(p, ¢, z, ), fine-tuned rule M(p, ¢, z, ), and the original Makarovi€'s
rue M(p, ¢, z,z).

Failures | Avg. survival
Rule [%] time [steps] Fitness
GA-based 4 978149 | 0.9442
Compressed 100 9290 | 0.0072
Fine-tuned 0 1000000 | 0.9630
MakaroviC's 0 1000000 | 0.8857

second, with asymmetrical force F' € {+10 N, —5 N}. The possibility of adaptation of
the qualitative rule M(p, ¢, z, z) obtained for symmetrical force F € {+1 N, —1 N} to
the new conditions, F € {+10N,—10N} and F € {+10 N, —5 N}, was examined by
performing two further fine-tuning experiments.

Table 13.2 shows the performance of four rules obtained in these experiments. It can
be seen that GAs can successfully learn to control the pole-cart system also under modified
conditions.

Table 13.2: ((©1993 IEEE) Control performance of GA-induced BOXES-like rules for
F € {+10N,—-10N} and F € {4+10 N,—5 N}, and rule M(p, ¢, z, z) fine-tuned for
Fe{+10N,—-10N}and F € {+10 N, —5 N}.

Failures | Avg. surviva
Rule [%%6] time [steps] Fitness
GA+10-10 0 1000000 | 0.9222
GA+10-5 44 665772 | 0.5572
Tuned+10-10 0 1000000 | 0.9505
Tuned+10-5 0 1000000 | 0.9637

To summarise, successful and comprehensible control rules were synthesized automat-
ically inthree phases. Here, aremark should be made about the number of performed trials.
In thisresearch, it was very high due to the following reasons. First, the emphasiswas put
on the reliability of learned rules and this, of course, demands much more experimentation
in order to ensure good performance on a wide range of initial states. In our recent ex-
periments with a more narrow range of initial states the number of trialswas considerably
reduced without affecting thereliability. Second, the performance of therules after the first
phase was practically the same as that of the rules after the third phase. Maybe the same
controller structure could be obtained in the second phase from less perfect rules. However,
it isdifficult to know when the learned evidence suffices. To conclude, the exhaustiveness
of these experiments was conciously accepted by the authors in order to show that 100%
reliable rules can be learned from scratch.

135 EXPLOITING PARTIAL EXPLICIT KNOWLEDGE
13.5.1 BOXESwith partial knowledge

To see how adding domain knowledge affects speed and results of learning, three series of
experiments were done by UrbanCi¢ & Bratko (1992). The following variants of learning
control rules with program BOXES were explored:
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A. without domain knowledge,
B. with partial domain knowledge, considered as definitely correct, and
C. with partial initial domain knowledge, allowed to be changed during learning.

The following rule served as partial domain knowledge:
if © > Geriticar thenaction RIGHT
eseif ¢ < —@riticar then action LEFT

Although the rule alone is not effective at al (average surviva was 30 steps), it con-
siderably decreased the number of trials needed for achieving 10000 survival time steps
(Table 13.3). At the sametime, thereliability (i.e. the percentage of trialswith the learned
state-action table, surviving more than 10 000 simulation steps) increased from 16.5% to
50%. More detailed description of the experiments is available in UrbanCi¢ & Bratko
(1992).

Table 13.3: Experimental results showing the influence of partial knowledge.

Version | Length of learning | Av. reliability | Av. survival
[av. num. of trials] [ratio] [steps]
A. 427 3/20 4894
B. 50 10/20 7069
C 197 4/20 4679

13.5.2 Exploiting domain knowledge in genetic learning of control

Domain knowledge can be exploited to bypass the costly process of learning a control
rule from scratch. Instead of searching for both the structure of a rule and the values of
numerical parametersrequired by the rule, we can start with aknown rule structure derived
by Bratko (1991) from a qualitative model of pole and cart. Then we employ a GA to tune
the parameters p;, p» and ps appearing in therule.

To calculate a fitness value of an individual, 25 trials were carried out with maximal
duration of a trial set to 2000 steps, corresponding to 40 seconds of simulated time.
Populations of size 30 were evolved for 50 generations. The GA was run 10 times. In
all theruns, the parameter settings, that ensured maximal survival of the system for all 25
initial states, were found. Table 13.4 givesthe best three obtained parameter settings along
with their fitness values.

The parameter tuning and evaluation procedures were repeated identically for two
modified versions of the pole-cart system, one being controlled with symmetrical force
F € {+10 N, —10 N}, and the other with asymmetrical force FF € {+10 N, —5 N}. The
problems were found no harder for the GA thanthe F' € {+1 N, —1 N} case.

It can be noted that in this case, the genetic algorithm is applied just to tune a controller
with known structure. Inasimilar way, other types of controllers can be tuned, for example
the classical PID controller (Urbancic et al., 1992).

13.6 EXPLOITING OPERATOR'SSKILL

13.6.1 Learningto pilot aplane

Sammut et al. (1992) and Michie & Sammut (1993) describe experiments in extracting,
by Machine Learning, the pilot’s subcognitive component of the skill of flying aplane. In
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Table 13.4: ((©1993 |EEE) Control performance of Bratko' scontrol rule (a) with parameter
values found by a GA, and (b) with parameter values that make the rule equivaent to the
bang-bang variant of the classical control rule.

Parameters Failures | Avg. surviva
p1 | p2 | ps [%0] time [steps] Fitness
@ 045 060 2240 0 1,000,000 | 0.9980
0.30 045 19.00 0 1,000,000 | 0.9977
025 040 13.65 0 1,000,000 | 0.9968
Parameters Failures | Avg. surviva
(b) p1 | p2 | p3 [%] | time[steps] | Fitness
[0147 0319 391 0 | 1,000,000 | 0.9781 ]

these experiments, a simulator of the Cessna airplane was used. Human pilots were asked
to fly the simulated plane according to awell defined flight plan. This plan consisted of
seven stagesincluding manouevreslike: take off, flying to a specified point, turning, lining
up with the runway, descending to the runway and landing.

The pilots’ control actions during flight were recorded as “events’. Each event record
consisted of the plane’s state variables and the control action. The values of state variables
belonging to an event were actually taken alittle earlier than the pilot’ saction. The reason
for thiswas that the action was assumed to be the pilot’ sresponse, with some delay, to the
current state of the plane variables. Sammut et al. (1992) stated that it remains debatable
what areally appropriate delay is between the state of the plane variables and control action
invoked by that state:

... the action was performed some time later in response to the stimulus. But how
do we know what the stimulus was? Unfortunately thereis no way of knowing.

The plane'sstate variablesincluded elevation, el evation speed, azimuth, azimuth speed,
airspeed etc. The possible control actions affected four control variables: rollers, elevator,
thrust and flaps. The problem was decomposed into four induction problems, one for each
of the four control variables. These four learning problems were assumed independent.

The control rules were induced by the C4.5 induction program (Quinlan, 1987a). The
total data set consisted of 90 000 events collected from three pilots and 30 flights by each
pilot. The data was segmented into seven stages of the complete flight plan and separate
rules were induced for each stage. Separate control rules were induced for each of the
three pilots. It was decided that it was best not to mix the data corresponding to different
individual s because different pilots carry out their manouevresin different styles.

There was a technical difficulty in using C4.5 in that it requires discrete class values
whereas in the flight problem the control variables are mostly continuous. The continuous
ranges therefore had to be converted to discrete classes by segmentation into intervals. This
segmentation wasdone manually. A more natural learning tool for thisinductiontask would
therefore be one that allows continuous class, such as the techniques of learning regression
treesimplemented in the programs CART (Breiman et al., 1984) and Retis (Karaic¢, 1992).

Sammut et al. (1992) state that control rules for a complete flight were successfully
synthesized resulting in an inductively constructed autopilot. Thisautopilot fliesthe Cessna
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in a manner very similar to that of the human pilot whose data was used to construct the
rules. In some cases the autopilot flies more smoothly than the pilot.

We have observed a ‘clean-up’ effect noted in Michie, Bain and Hayes-Michie
(1990). The flight log of any trainer will contain many spurious actions due to
human inconsistency and corrections required as aresult of inattention. It appears
that effects of these examples are pruned away by CA4.5, leaving a control rule
which flies very smoothly.

It isinteresting to note the comments of Sammut et al. (1992) regarding the contents of
the induced rules:

One of the limitations we have encountered with existing learning algorithms is
that they can only use the primitive attributes supplied in the data. This resultsin
control rules that cannot be understood by a human expert. The rules constructed
by C4.5 are purely reactive. They make decisions on the basis of the values in
a single step of simulation. The induction program has no concept of time and
causality. In connection with this, some strange rules can turn up.

13.6.2 Learning to control container cranes

The world market requires container cranes with as high capacity as possible. One way to
meet thisrequirement isto build bigger and faster cranes; however, this approachislimited
by construction problems aswell as by unpleasant feelings drivers have when moving with
high speeds and accelerations. The other solution is to make the best of the cranes of
“reasonable” size, meaning in the first place the optimisation of the working cycle and
efficient swing damping.

Itisknown that experienced cranedriverscan perform very quickly aslong aseverything
goes as expected, while each subsequent correction considerably affects thetime needed for
accomplishing the task. Also, it isvery difficult to drive for hours and hours with the same
attention, not to mention the years of training needed to gain required skill. Consequently,
interest for cooperation has been reported by chief designer of Metalna Machine Builders,
Steel Fabricators and Erectors, Maribor, which is known world-wide for its large-scale
container cranes. They are aware of insufficiency of classical automatic controllers (for
example Sakawa & Shinido, 1982), which can beeasily disturbedin the presence of wind or
other unpredictablefactors. Thisexplainstheir interestin what can be offered by alternative
methods.

Impressive results have been obtained by predictive fuzzy control (see Yasunobu &
Hasegawa, 1986). Their method involves steps such as describing human operator strate-
gies, defining the meaning of linguistic performance indices, defining the models for
predicting operation results, and converting the linguistic human operator strategies into
predictive fuzzy control rules.

In general, these tasks can be very time consuming, so our focus of attention was on
the automated synthesis of control rules directly from the recorded performance of well-
trained operators. In thisidea, we are following the work of Michie et al. (1990), Sammut
et al. (1992) and Michie & Camacho (1994) who confirmed the findings of Sammut et
al. (1992) using the ACM public-domain simulation of an F-16 combat plane. When
trying to solve the crane control problem inamanner similar to their autopilot construction,
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we encountered some difficulties which are to be investigated more systematically if the
method is to become general.

To transport a container from shore to atarget position on a ship, two operations are to
be performed:

e positioning of thetrolley, bringing it above the target load position, and
e rope operation, bringing the load to the desired height.

The performance requirements are as follows:

e basic safety: obstacles must be avoided, swinging must be kept within prescribed
limits;

e stop-gap accuracy: the gap between the final 1oad position and the target position must
be within prescribed limits;

¢ high capacity: time needed for transportation is to be minimised.

The last requirement forces the two operations to be performed simultaneously. The
task parameters specifying stop-gap accuracy, swinging limits and capacity are given by
the customer and vary from case to case.

Instead of areal crane, asimulator wasused in our experiments. The state of the system
is specified by six variables:

e trolley position and its velocity, =z and z;
e ropeinclination angle and its angular velocity, ¢ and ¢;
¢ ropelength and the length velocity, ! and L.

Timeismeasured in steps. At each step, the state of the system is measured and two control
forces are applied: F, is applied to the trolley in the horizontal direction, and F; in the
direction of therope. (So Ficos(¢) istheforce in the vertical direction.) The next state is
computed using Runge-Kutta numerical simulation of fourth order, taking into account the
dynamic eguations of the system. Parameters of the system (lengths, heights, masses etc.)
are the same asthose of thereal container cranesin Port of Koper. Simulation runson IBM
PC compatible computers and is real-time for 386 (33 MHz or faster) with a mathematical
CO-Processor.
When experimenting with the simulator, one can choose

e input mode “record”, “play” or “auto”,
e output mode “picture” or “instruments’.

In the “record” mode, the values of the current control forces are read from the keyboard,
where one strike at the — or — means a decrease or increase of F, for a certain predefined
step. Similarly, arrows T and | indicate the change of F;. A file containing al control
actions together with the corresponding times and system states is recorded. In the “ play”
mode, recorded experiments can be viewed again, using the recorded files as input. When
“auto” mode is chosen, the current values of control forces are determined by a procedure
representing an automatic controller.

The choice of the output mode enables the graphical representation of the scene (“pic-
ture”) or the variant where the six state variables and the force values are presented as
columns with dynamically changing height, imitating measuring instruments.

Six students volunteered in an experiment where they were asked to learn to control the
crane simulator simply by playing with the simulator and trying various control strategies.
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They were given just the “instrument” version; in fact, they didn’t know which dynamic
system underlied the simulator. In spite of that, they succeeded to learn the task, although
the differences in time needed for this as well as the quality of control were remarkable.
To learn to control the crane reasonably well, it took a subject between about 25 and 200
trials. This amountsto about 1 to 10 hours of real time spent with the simulator.

Our aim was to build automatic controllers from human operators’ traces. We applied
RETIS - a program for regression tree construction (Karalic, 1992) to the recorded data.
The first problem to solve was how to choose an appropriate set of learning examples out
of this enormous set of recorded data. After some initial experiments we found, as in
Sammut et al. (1992), that it was beneficial to use different trials performed by the same
student, since it was practically impossible to find trials perfect in all aspects even among
the successful cases.

In the preparation of learning data, performance was sampled each 0.1 second. The
actions were related to the states with delay which was also 0.1 second. The performance
of the best autodriver induced in these initial experiments can be seen in Figure 13.3. It
resulted from 798 learning examplesfor F,, and 1017 examplesfor F;. The control strategy
it usesisrather conservative, minimising the swinging, but at the cost of time. In further
experiments, we will try to build an autodriver which will successfully cope with load
swinging, resulting in faster and more robust performance.
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Fig. 13.3: The crane simulator response to the control actions of the autodriver.

These experiments indicate that further work is needed regarding the following ques-
tions: what isthe actual delay between the system’s state and the operator’ s action; robust-
ness of induced rules with respect to initial states; comprehensibility of induced control
rules; inducing higher level conceptual description of control strategies.
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13.7 CONCLUSIONS

In this chapter we have treated the problem of controlling a dynamic system mainly as a
classification problem. We introduced three modes of learning to control, depending on
the information available to the learner. Thisinformation included in addition to the usual
exampl es of the behaviour of the controlled system, also explicit symbolic knowledge about
the controlled system, and example actions performed by a skilled human operator.

One point that the described experiments emphasise is the importance of (possibly
incomplete) partial knowledge about the controlled system. Methods described in this
chapter enable natural use of partial symbolic knowledge. Although incomplete, this
knowledge may drastically constrain the search for control rules, thereby eliminating in
advance large numbers of totally unreasonable rules.

Our choice of the approaches to learning to control in this chapter was subjective.
Among a large number of known approaches, we chose for more detailed presentation
those that: first, we had personal experimental experience with, and second, that enable
the use of (possibly partial) symbolic prior knowledge. In all the approaches described,
there was an aspiration to generate comprehensible control rules, sometimes at the cost of
an additional learning stage.

An interesting theme, also described, is “behavioural cloning” where a human’s be-
havioural skill iscloned by alearned rule. Behavioural cloning isinteresting both from the
practical and the research points of view. Much further work is needed before behavioural
cloning may become routinely applicablein practice.

Behavioural cloning isessentialy theregression of the operator’ sdecision functionfrom
examples of higher decisions. It is relevant in this respect to notice a similarity between
this and traditional top-down derivation of control from a detailed model of the system to
be controlled. This similarity is illustrated by the fact that such a top-down approach for
the pole-and-cart system givesthe known linear control rule F' = pyz + paz + p3p + pay
which looksjust like regression equation.

As stated in the introduction, there are several criteria for, and goals of, learning to
control, and several assumptions regarding the problem. As shown by the experience
with various learning approaches, it is important to clarify very precisely what these
goas and assumptions really are in the present problem. Correct statement of these may
considerably affect the efficiency of the learning process. For example, it isimportant to
consider whether some (partial) symbolic knowledge exists about the domain, and not to
assume automatically that it is necessary, or best, to learn everything from scratch. In some
approaches reviewed, such incomplete prior knowledge could also result from a previous
stage of learning when another learning technique was employed.
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A Dataset availability

The “public domain” datasets are listed below with an anonymous ftp address. If you do
not have accessto these, then you can obtain the datasets on diskette from Dr. P. B. Brazdil,
University of Porto, Laboratory of Al and Computer Science, R. Campo Alegre 823,
4100 Porto, Potugal. The main source of datasets isics.uci.edu (128.195.1.1) - the UCI
Repository of Machine Learning Databases and Domain Theories which is managed by
D. W. Aha. The following datasets (amongst many others) arein pub/machine-learning-
databases

australian credit (credit-screening/crx.data statlog/australian)

diabetes (pima-indian-diabetes)

dna (mol ecul ar-biol ogy/spl ice-junction-gene-sequences)

heart disease (heart-disease/ statlog/heart)

letter recognition

image segmentation (statlog/segment)

shuttle control (statlog/shuttle)

LANDSAT satelliteimage (statlog/satimage)

vehicle recognition (statlog/vehicle)

The datasets were often processed, and the processed form can be found in the stat-
log subdirectory where mentioned above. In addition, the processed datasets (as used
in this book) can also be obtained from ftp.strath.ac.uk (130.159.248.24) in directory
Stamg/statlog. These datasets are australian, diabetes, dna, german, heart, letter, satimage,
segment, shuttle, shuttle, and there are associated .doc files aswell as a split into train and
test set (as used in the StatL og project) for the larger datasets.

B Software sources and details

Many of the classical statistical algorithms are available in standard statistical packages.
Herewe list some public domain versions and sources, and some commercial packages. If
asimple rule has been adopted for parameter selection, then we have also described this.
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ALLOCS8O0 is a Fortran program available from J. Hermans, Dept. of Medical Statistics,
Niels Bohrweg 1, 2333 CA Leiden, University of Leiden, The Netherlands.

SMART is a collection of Fortran subroutines developed by J. H. Friedman, Dept. of
Statistics, Sequoia Hall, Stanford University, Stanford, CA 94305, USA.

CASTLE can be obtained from R. Molina, Dept of Computer Science and A.I., Faculty of
Science, University of Granada. 18071-Granada, Spain.

INdCART, Bayes Tree and Naive Bayes. are part of the IND package which is available
fromW. Buntine, NASA AmesResearch Center, MS269-2, Moffett Field, CA 94035-1000,
USA. (email: wray@kronos.arc.nasa.gov)

DIPOL92 and CALS5 is available from F. Wysotzki, Fraunhofer-Ingtitute, Kurstrasse 33,
D-19117 Berlin, Germany.

For DIPOL92 the number of clusters has to be fixed by the user with some systematic
experimentation. All other parameters are determined by the algorithm.

For Ca5 the confidence level for estimation and the threshold for tree pruning were
optimised either by hand or a specia C - shell. An entropy measure to choose the best
discrimination attribute at each current node was used.

Logistic discriminants, Quadratic discrminants and L ogistic discriminants are FOR-
TRAN programs available from R. J. Henery, Department of Statistics and Modelling Sci-
ence, University of Strathclyde, Glasgow G1 1XH, UK. There are also available by anony-
mous ftp from ftp.strath.ac.uk (130.159.248.24) in directory Stamg/statlog/programs.
AC? isavailablefrom H. Perdrix, 1Soft, Chemin de Moulon, 91190 Gif sur Y vette, France.
The user must choose between 4 evaluation functions:

1- the information gain

2- the gain ratio

3- a measure of distance between partitions introduce by Mantaras
4- an information gain measure taking into account the hierarchy of
objects defined by the user.

In the reported results, the fourth option was chosen.

Backprop, Cascade correlation and Radial Basis Function are FORTRAN programs
available from R. Rohwer, Department of Computer Science and Applied Mathematics,
Aston University, Birmingham B4 7ET, UK.

Theinputsfor all datasets were normalised to zero mean and unit variance. The outputs
were converted to a 1-of-n representation; ie., the ith class of an N-class classification
problem wasrepresented as an N-dimensional vector with all componentsequal to 0 except
the ith, whichis 1.

The Multilayer Perceptron simulationswere done with AutoNet on Sun UNIX worksta-
tions. AutoNet iscommercial softwareavailablefrom Paul Gregory, Recognition Research,
140 Church Lane, Marple, Stockport, SK6 7LA, UK, (+44/0) 61 449-8628.

The settings were:

Number of hidden layers = 1.

Hidden and output unit activations : sigmoid.

Weight intialisation +- 1.

10 runsweremade, with 10which of the 10 runswasbest. Random number seedfor eachrun
was = run number (1..10). Having picked the best net by cross validationwithin thetraining
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set, these nets were then used for supplying the performance figures on the whole training
set and on the test set. The figures averaged for cross validation performance measures
were also for the best netsfound during local cross-validation within theindividual training
sets.

Training proceeds in four stages, with different stages using different subsets of the
training data, larger each time. Training proceeds until no improvement in error is achieved
for arun of updates.

The RRNN simulator provided theradial basisfunction code. Thisisfreely available at
the time of writing by anonymous ftp from uk.ac.aston.cs (134.151.52.106). Thispackage
also contains MLP code using the conjugate gradient algorithm, as does AutoNet, and
several other algorithms. Reports on benchmark excercises are available for some of these
MLP programsin Rohwer (1991c).

The centres for the radial basis functions were selected randomly from the training
data, except that centres were allocated to each class in proportion to the number of
representatives of that classin the dataset, with at |east one centre provided to each classin
any case. Each Gaussian radius was set to the distance to the nearest neighboring centre.
Thelinear system was solved by singular value decomposition.

For the small datasetsthe number of centresand thier locationswere selected by training
with various numbers of centres, using 20 different random number seedsfor each number,
and evaluating with a cross validation set withheld from the training data, precisely aswas
done for the MLPs. For the large datasets, time constraints were met by compromising
rigour, in that the test set was used for the cross-validation set. Results for these sets
should therefore be viewed with some caution. This was the case for al data sets, until
thosefor which cross-validation was explicitly required (australian, diabetes, german, isoft,
segment) were repeated with cross-validation to select the number of centres carried out
within the training set only.

The rough guideline followed for deciding on numbers of centres to try is that the
number should be about 100 times the dimension of the input space, unless that would be
more than 10% of the size of the dataset.

LVQ is available from the Laboratory of Computer Science and Information Science,
Helsinki University of Technology, Rakentajanaukio 2 C, SF -02150 Espoo, Finland. It
can also be obtained by anonymous ftp from cochlea.hut .fi (130.233.168.48).

CART isalicensed product of California Statistical Software Inc., 961 Yorkshire Court,
Lafayette, CA 94549, USA.

C4.5 isavailbale from J.R. Quinlan, Dept. of Computer Science, Madsen Building FO9,
University of Sydney, New South Wales, New South Wales.

The parameters used were the defaults. The heuristic wasinformation gain.

Windowing: enabled (but disabled for shuttle and digits datasets)
Probability threshold: default (10%)

No force subsetting

Verbosity for displaying information: 0

Number of decision trees: 10

Pruning confidence level: 10%

However, since the Statl og project was completed, there is amore recent version of C4.5,
so the results contained in this book may not be exactly reproducable.
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NewlID and CN2 are available from Robin Boswell and Tim Niblett, respectively at The
Turing Ingtitute, George House, 36 North Hanover Street, Glasgow G1 2AD, UK.
For NewlID:

[Variance termination threshold]: 10.00;
[Threshold for tree pruning]: 10.00\%;
[Format of tree printing]l: display.

For CN2:

1) Rule type: Ordered rules

2) STAR size: 5

3) Maximum class forcing: Set

4) Error estimate: Laplacian function

5) Significance threshold (chisquared) for accepting rules: 10.00

I Truleisavailable from Prof. R. Goodman, California Ingtitute of Technology, Electrical
Engineering, Mail code 116-81, Pasadena, CA 91125, USA.
For most of the datasetsthe parameters used were:

maximum order of rules: 2
number of rules: 100

although the two “Belgian power” datasets were run with the above parameters set to
(3,5000) and 3,2000).

Kohonen was written by J. Paul, Dhamstr. 20, W-5948 Schmallenberg, Germany for a PC
with an attached transputer board.

k-NN is still under development. For all datasets, except the satelliteimage dataset, £ = 1.
Distance was scaled in a class dependent manner, using the standard deviation. Further
details can be obtained from C. C. Taylor, Department of Statistics, University of Leeds,
Leeds LS2 9JT, UK.

C Contributors

This volume is based on the StatLog project, which involved many workers at over 13
ingtitutions. In this list we aim to include those who contributed to the Project and the
Institutions at which they were primarily based at that time.
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