

Lecture Notes in Artificial Intelligence 6581
Edited by R. Goebel, J. Siekmann, and W. Wahlster

Subseries of Lecture Notes in Computer Science

Karl Erich Wolff Dmitry E. Palchunov
Nikolay G. Zagoruiko Urs Andelfinger (Eds.)

Knowledge Processing
and Data Analysis

First International Conference, KONT 2007
Novosibirsk, Russia, September 14-16, 2007
and First International Conference, KPP 2007
Darmstadt, Germany, September 28-30, 2007
Revised Selected Papers

13

Series Editors

Randy Goebel, University of Alberta, Edmonton, Canada
Jörg Siekmann, University of Saarland, Saarbrücken, Germany
Wolfgang Wahlster, DFKI and University of Saarland, Saarbrücken, Germany

Volume Editors

Karl Erich Wolff
Hochschule Darmstadt, Germany
E-mail: karl.erich.wolff@t-online.de

Dmitry E. Palchunov
Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
E-mail: palch@math.nsc.ru

Nikolay G. Zagoruiko
Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
E-mail: zag@math.nsc.ru

Urs Andelfinger
Hochschule Darmstadt, Germany
E-mail: u.andelfinger@fbi.h-da.de

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-22139-2 e-ISBN 978-3-642-22140-8
DOI 10.1007/978-3-642-22140-8
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2011930320

CR Subject Classification (1998): I.2.4, I.2, H.2.8, F.4.1, H.3.1-3

LNCS Sublibrary: SL 7 – Artificial Intelligence

© Springer-Verlag Berlin Heidelberg 2011

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

This volume collects the proceedings of two related international conferences on
foundations and practical applications of mathematical methods of data analy-
sis, of Formal Concept Analysis and of methods for information extraction from
natural language texts. The first conference, named Knowledge - Ontology -
Theory 2007 (KONT 2007), was held during September 14–16, 2007 in Novosi-
birsk (Russia) at the Sobolev Institute of Mathematics in cooperation with the
Russian Foundation for Basic Research and the Association for Pattern Recog-
nition and Image Analysis of the Russian Federation. The second conference, the
International Conference on Knowledge Processing in Practice (KPP 2007), was
held during September 28–30, 2007 in Darmstadt (Germany) at the University of
Applied Sciences in cooperation with the Ernst Schröder Center for Conceptual
Knowledge Processing and the Darmstadt University of Technology.

The aim of both conferences was to bring together practitioners and
researchers in the interdisciplinary field of mathematical and concept-based
knowledge processing. Knowledge processing today spans a broad spectrum of
approaches and techniques from data analysis and pattern recognition over arti-
ficial intelligence with information retrieval and machine learning to conceptual
knowledge processing with its graphical tools for knowledge visualization. From
a lifecycle perspective, the field of knowledge processing covers the following
main stages: data collection and pre-processing, discovery of regularities, cre-
ation of subject domain theories, application of formal knowledge structures,
formal reasoning and interpretation in the application domain.

At both conferences, particular emphasis was placed on the technology and
experience transfer aspects between practitioners and academic researchers in or-
der to foster mutual learning and application-oriented research and development
in the area of knowledge processing based on real empirical needs.

The contributions were all refereed and the accepted papers are collected in
this volume. They cover four main focus areas which should, however, not be
understood as mutually exclusive. Rather, all contributions share the common
foundation that conceptual structures are essential to semantically meaningful
and valid representation and processing of formal knowledge structures. The
main focus areas are as follows: I: Applications of Conceptual Structures, II:
Concept-Based Software, III: Ontologies as Conceptual Structures and IV: Data
Analysis.

Part I: Applications of Conceptual Structures

This part on applications of conceptual structures brings together contributions
that cover the history of conceptual knowledge processing (Wille) and concep-
tual extensions of Rough Set Theory (Ganter) as well as contributions from

VI Preface

modal logics (Shilov, Garanina) and applications of Temporal Concept Analysis
(Wolff) for gene expression data of arthritic patients (Wollbold et al.) and infor-
mation retrieval in science (Ponomaryov et al.). In most contributions, practical
applications and experiences are also shown.

R. Wille outlines the vast experience base and major development steps that
have been achieved since 1980 in the Darmstadt Research Group on Concept
Analysis. The focus is on the application side and on historically reconstructing
the evolutionary path of extending the mathematical theory of Formal Concept
Analysis by a collection of methods for conceptual knowledge processing.

B. Ganter presents an application of Formal Concept Analysis in Rough Set
Theory, introduced by Pawlak (1982), who based this theory on the idea of an
approximation of a set by equivalence classes of an equivalence relation, called
indiscernibility relation, on a given universe U of objects. Ganter generalizes
this idea by introducing a preorder (reflexive and transitive) on the set U. The
conceptual representation shows that this preorder expresses that one object
concept is a subconcept of another one. The corresponding definable sets are the
preorder ideals. They form a distributive lattice as in the case of the indiscerni-
bility relation. Connections to functional dependencies, linguistic variables, and
decision making are mentioned.

S.O. Kuznetsov presents an innovative algorithm which constructs the lattice
of graph sets in a top-down way, starting from the smallest subgraphs of the
graphs in a dataset. In contrast to previous bottom-up algorithms this approach
allows one to stop at an appropriate level of approximation (projection), thus
saving much time and space and making the computational complexity more
tractable.

N.V. Shilov and N. Garanina present a summary of recent studies of the
model-checking problem for certain combinations of propositional logics for knowl-
edge, time, and actions. After a short overview of these logics they provide a brief
introduction to modal logics and Kripke models using the example of Elementary
Propositional Dynamic Logic (EPDL). Then they describe propositional logics
for epistemic agents, branching temporal logic with actions, combined logics of
knowledge, actions, and time, and finally model checking problems in combined
logics.

K.E. Wolff presents new results in Temporal Concept Analysis. He starts
with an example of a moving high-pressure zone and explains the basic notions
in Temporal Conceptual Semantic Systems referring to this example. One of the
main results is the purely conceptual introduction of the notion of a state of an
object at some time granule (with respect to some view and some selection). The
states are special cases of traces of an object. These traces generalize the notion of
a volume of an object in some space. In practical applications the used semantic
scales are a valuable tool for the representation of a suitable granularity. This is
shown by an application in the chemical industry setting where the behavior of
a distillation column over 20 days is represented by a lifetrack in a nested line
diagram visualizing four many-valued attributes. The same technique is also used
in the next article in the field of biomedicine.

Preface VII

J. Wollbold, R. Huber, R.W. Kinne, and K.E. Wolff present a cooperation
between scientists from medicine, biology, and mathematics. They investigate
disease processes of rheumatoid arthritis using time series of gene expression
data. For the purpose of understanding their complicated temporal data they
represent these data as a Temporal Conceptual Semantic System as introduced
by Wolff (in the previous article). The application of transition diagrams which
represent simultaneously the movement of several patients in some genetic space,
represented by a concept lattice, yields valuable insight into genetic processes,
for example, by finding new hypotheses concerning gene regulation. By applying
concept-based analysis techniques the article points to innovative directions for
research compared with the current state of the art in this field of biomedicine.

D. Ponomaryov, N. Omelianchuk, V. Mironova, E. Zalevsky, N. Podkolodny,
E. Mjolsness, and N. Kolchanov present an innovative approach to automate the
extraction process of formal knowledge structures from scientific publications.
The goal is to contribute to a better exploitation and more comprehensive usage
of already published research results in a specific scientific domain. The value of
this work lies in accelerating the formation of hypotheses and theories, which is
demonstrated with a concrete example in the field of botany.

Part II: Concept-Based Software

This part on concept-based software focuses around methodical challenges and
approaches for supporting software development and software usage with concept-
based tools and techniques.

A.S. Kleshchev explores the potential of ontologies as conceptual structures
for supporting domain analysis and simulation in software development. He ex-
tends the approach also to technical applications, e.g., in optimizing compilers
based on ontologies in formal knowledge structures.

G. Stumme discusses problems arising from the empirical success of social
bookmarking. While social bookmarking allows for a bottom-up approach in
jointly organizing and sharing knowledge assets and bookmarks on the Internet,
users are increasingly getting lost in the tons of available meta-information that
they are collectively generating. The author presents recent empirical research
results that might help users in keeping control over the mass of poorly structured
information elements in social bookmarking systems.

U. Priss and J. Old explore new ways of reducing large formal data struc-
tures in the field of lexical databases so that they are better understandable
for humans. The challenge here is to keep as much as possible of all the rele-
vant semantics of a specific data search while omitting as much as possible of
the non-relevant or empty search results. To this purpose they borrow the term
‘weeding’ from biology: with every search they want to preserve as much of the
valuable ingredients while collecting as few weeds as possible. They also present
practical implementations for their ideas.

VIII Preface

Part III: Ontologies as Conceptual Structures

This part on ontologies as conceptual structures focuses on developing tax-
onomies and conceptual structures, which are increasingly called ‘ontologies,’
for given problem domains. The aim is to support meaningful knowledge repre-
sentation, knowledge communication and knowledge retrieval.

D.E. Palchunov describes the idea of a ‘Virtual Catalog,’ a synthesis of
search engines and Internet catalogs. A Virtual Catalog can be considered as
an ontology-based technology for information retrieval. To formulate and satisfy
the information need of the users, three types of ontologies are created: an ontol-
ogy of the subject domain of interest, an ontology for various types of Internet
resources, and an ontology for the types of information search tasks (which is not
yet implemented in the described system). The elaboration of the toolkit for the
formalization of search queries is a very important part of this research. For that
purpose, ontologies are developed as networks of sentences of First-Order-Logic.
Two application fields are used to demonstrate the practicality of the approach.

I.L. Artemieva presents experiences and problems with the construction of
ontologies for domains with complicated structure—as for example a multilevel
ontology for chemistry, which serves as the main example in this paper to intro-
duce a general method for constructing multilevel ontologies. This paper is part
of a project of the Presidium of the Russian Academy of Sciences.

Y.A. Zagorulko and O.I. Borovikova describe a comprehensive approach to
formalize knowledge structures in the field of humanities using ontologies. They
also describe a method for building such an ontology and an ontology description
logic, and they have developed an end-user-oriented editor to actively contribute
to the further evolution of the ontology. The resulting IT system is accessible
via a so-called knowledge portal.

A. Marchuk presents a dynamic information system on historical facts. The
unique characteristic for historical facts is that a given topic (information about
countries, persons, office documents) evolves over time. What is a historic fact
today, is very often a different historic fact tomorrow as new developments have
to be added to the fact to keep it up to date. The proposed approach is capable of
automatically keep track of dynamic changes to historic facts. The benefit is that
we can thus create databases which no longer become obsolete. The approach has
been tested in practical applications at the A.P. Ershov Institute of Informatics
Systems.

N. Loukachevitch discusses problems that arise when developing ontologies in
the field of linguistics and natural languages. In (natural) languages taxonomic
relationships cannot always be resolved in simple logical structures. For example,
the basic rule “If class A is a subclass of class B, then each instance of class A
is also an instance of B” may not be true in many cases for the conceptual
structures in natural languages. The paper addresses ways for revealing typical
mistaken taxonomic relationships in such situations. The findings have been
derived from practical experiences with a large thesaurus and ontology on natural
sciences and technologies.

Preface IX

Part IV: Data Analysis

This part on data analysis focuses on mathematical considerations, techniques,
and algorithms for automated discovery of knowledge structures, data mining,
similarity analysis, and approaches to visualize knowledge structures.

N.G. Zagoruiko introduces a formal representation of an empirical theory
and applies it for tasks of several types in data mining, for example, the task
of generating a data-dependent partition of a given set. Then the correspond-
ing formal empirical theory represents (all) possible clustering methods as its
formal objects, which are formally described in some language V by a set of
characteristics (or attributes). Then a test algorithm T constructs for each clus-
tering method a quality value. With respect to some chosen threshold the class
of admissible clustering methods is introduced as the set of those clustering
methods whose quality value exceeds the chosen threshold. In the second part
of the paper the author reports on his approach for the construction of a mea-
sure of similarity, namely, his successful Function of Rival Similarity (FRiS).
The paper finishes with some ideas concerning a strengthening of the empirical
Data-Mining Theory.

I.A. Borisova, V.V. Dyubanov, N.G. Zagoruiko, and O.A. Kutnenko presents
practical applications of the Function of Rival Similarity (FriS) to basic tasks of
data mining. They first demonstrate the use of the FRiS-function for selecting
typical representatives (stolps) of classes, which will be used for the recognition
of new objects. Then, they demonstrate the application of FRiS to several tasks,
for example, the tasks of type SDX, i.e., to the simultaneous construction of a
classification (task S) of observable objects, building decision rules (task D) and
the selection of informative subsets of attributes (task X). It is also shown that
the FriS-based algorithms are invariant to the ratio of the number of objects
to the number of attributes in the dataset and to the type of the probability
distribution of the samples.

V.B. Barakhnin, V.A. Nekhayeva, and A.M. Fedotov analyze and compare
three algorithms to solve the problem of computerized selection of Internet doc-
uments on scientific subjects based on similarity determination. It is concluded
that the FRiS-algorithm which is based on Zagoruiko’s principle of rival similar-
ity is the best out of the analyzed algorithms, followed by the greedy algorithm.

E. Vityaev and S. Smerdov consider predictions provided by Inductive Sta-
tistical (I-S) inference which are, by Hempel, statistically ambiguous. To avoid
this ambiguity, Hempel introduced the Requirement of Maximum Specificity
(RMS). Vityaev and Smerdov introduce maximum specific (MS) rules and prove
that they satisfy the RMS. The authors also prove that I-S inferences using MS
rules avoid the problem of statistical ambiguity. To introduce a probability of
events and sentences they use the product probability as in the case of statistical
independence; using this product probability they introduce the notion of a prob-
abilistic law and study semantic probabilistic inference, probabilistic Herbrand
models, and predictions based on semantic probabilistic inference. Finally, they
shortly describe a computer program, DISCOVERY, based on semantic proba-
bilistic inference.

X Preface

B. Kovalerchuk and A. Balinsky propose a novel approach for analyzing mul-
tidimensional data. They focus on the observation that often a human user can
easily catch a border between patterns visually, but its analytical form can be
quite complex to describe and difficult to discover by formal algorithms. The pa-
per describes a new technique for extracting patterns and relations visually from
multidimensional data using the process of data monotonization that gives the
opportunity to use the theory of monotone Boolean and k-valued functions. The
major novelty of the approach is in visualization of structural relations between
n-dimensional objects instead of traditional attempts to visualize each attribute
value of n-dimensional objects. Experiments with breast cancer data show the
advantages of this approach in uncovering a visual border between benign and
malignant cases in breast cancer diagnostics.

G. Lbov and V. Berikov present an algorithm for event tree construction on
the basis of an analysis of expert knowledge and multivariate time series. The
algorithm uses the Bayesian criterion for decision tree pruning. It can be used for
the analysis of extreme events in the conditions of high a priori uncertainty about
them. In this case an expert can contribute additional statistical information
concerning the object under investigation. Experiments with artificial and real
data sets confirm the usefulness of the proposed algorithm.

November 2010 Dmitry E. Palchunov
Nikolay G. Zagoruiko

Karl Erich Wolff
Urs Andelfinger

KONT 2007 Organization

Executive Committee

Conference Committee
Conference Chair Y.I. Zhuravlev, Full Member of the

Russian Academy of Sciences
Co-chairs D.E. Palchunov and

N.G. Zagoruiko

Program Committee Ablamejko S.V. (Minsk, Belarus)
Cheremisina E.N. (Dubna, Russia)
Fedotov A.M. (Novosibirsk, Russia)
Gavrilova T.A. (St. Petersburg, Russia)
Gladun V.P. (Kiev, Ukraine)
Ganter B. (Dresden, Germany)
Herre H. (Leipzig, Germany)
Kleshchev A.S. (Vladivostok, Russia)
Kolchanov N.A. (Novosibirsk, Russia)
Kovalerchuk B. (Seattle, USA)
Kuznetsov S.O. (Moscow, Russia)
Lbov G.S. (Novosibirsk, Russia)
Marchuk A.G. (Novosibirsk, Russia)
Mihalskij R.S. (Washington, USA)
Samokhvalov K.F. (Novosibirsk, Russia)
Sviridenko D.I. (Moscow, Russia)
Tselishchev V.V. (Novosibirsk, Russia)
Vasiljev S.N. (Moscow, Russia)
Vityaev E.E. (Novosibirsk, Russia)
Wolff K.E. (Darmstadt, Germany)
Zelger J. (Innsbruck, Austria)

Organizing Committee Palchunov D.E., Chair
Zagoruiko N.G., Chair
Yakhyaeva G.E., Scientific Secretary
Borisova I.A .
Korovina M.V.
Lbov G.S.
Pavlovskij E.N.
Rjaskin A.N.
Salomatina N.V.
Vasilenko N.M.
Vityaev E.E.
Vlasov D.J.

XII KONT 2007 Organization

Sponsoring Institutions

Russian Fund of Basic Research
Russian Academy of Natural Sciences
Institute of Mathematics of the Siberian Branch of the
Russian Academy of Sciences
Novosibirsk State University

KPP 2007 Organization

Executive Committee

Conference Committee
Honorary Chair Rudolf Wille

University of Technology, Darmstadt, Germany
Conference Chair Karl Erich Wolff

University of Applied Sciences, Darmstadt,
Germany

Co-chair Urs Andelfinger
University of Applied Sciences, Darmstadt,

Germany

Program Committee Bernhard Ganter, University of Technology,
Dresden, Germany

Wolfgang Hesse, University of Marburg,
Germany

Sergei O. Kuznetsov, Higher School of
Economics, Moscow, Russia

Dmitry E. Palchunov, Institute of Mathematics
SB RAS, Novosibirsk State University,
Novosibirsk, Russia

Nikolay V. Shilov, Institute of
Informatics Systems, Novosibirsk, Russia

Uta Störl, University of Applied Sciences,
Darmstadt, Germany

Gerd Stumme, University of Kassel, Germany

Organizing Committee Urs Andelfinger
Karl Erich Wolff

Sponsoring Institutions

Darmstadt University of Applied Sciences
Center for Research and Development at
Darmstadt University of Applied Sciences
Mathematics and Science Faculty at Darmstadt University of Applied Sciences
Computer Science Faculty at Darmstadt University of Applied Sciences
Ernst Schröder Center for Conceptual Knowledge Processing

Table of Contents

Part I: Applications of Conceptual Structures

Conceptual Knowledge Processing: Theory and Practice 1
Rudolf Wille

Non-symmetric Indiscernibility . 26
Bernhard Ganter

Computing Graph-Based Lattices from Smallest Projections 35
Sergei O. Kuznetsov

Combined Logics of Knowledge, Time, and Actions for Reasoning
about Multi-agent Systems . 48

Nikolay V. Shilov and Natalia O. Garanina

Applications of Temporal Conceptual Semantic Systems 59
Karl Erich Wolff

Conceptual Representation of Gene Expression Processes 79
Johannes Wollbold, René Huber, Raimund Kinne, and
Karl Erich Wolff

From Published Expression and Phenotype Data to Structured
Knowledge: The Arabidopsis Gene Net Supplementary Database and
Its Applications . 101

Denis Ponomaryov, Nadezhda Omelianchuk, Victoria Mironova,
Eugene Zalevsky, Nikolay Podkolodny, Eric Mjolsness, and
Nikolay Kolchanov

Part II: Concept-Based Software

How Can Ontologies Contribute to Software Development? 121
Alexander S. Kleshchev

A Comparison of Content-Based Tag Recommendations in Folksonomy
Systems . 136

Jens Illig, Andreas Hotho, Robert Jäschke, and Gerd Stumme

Data Weeding Techniques Applied to Roget’s Thesaurus 150
Uta Priss and L. John Old

XVI Table of Contents

Part III: Ontologies as Conceptual Structures

Virtual Catalog: The Ontology-Based Technology for Information
Retrieval . 164

Dmitry E. Palchunov

Ontology Development for Domains with Complicated Structures 184
Irina L. Artemieva

Technology of Ontology Building for Knowledge Portals on
Humanities . 203

Yury Zagorulko and Olesya Borovikova

Methods and Technologies of Digital Historical Factography 217
Alexander Marchuk

Establishment of Taxonomic Relationships in Linguistic Ontologies 232
Natalia Loukachevitch

Part IV: Data Analysis

Problems in Constructing an Empirical Theory of Data Mining 243
Nikolay G. Zagoruiko

Use of the FRiS-Function for Taxonomy, Attribute Selection and
Decision Rule Construction . 256

Irina A. Borisova, Vladimir V. Dyubanov,
Olga A. Kutnenko, and Nikolay G. Zagoruiko

Similarity Determination for Clustering Textual Documents 271
Vladimir Barakhnin, Vera Nekhaeva, and Anatolii Fedotov

On the Problem of Prediction . 280
Evgenii Vityaev and Stanislav Smerdov

Visual Data Mining and Discovery in Multivariate Data Using
Monotone n-D Structure . 297

Boris Kovalerchuk and Alexander Balinsky

Construction of an Event Tree on the Basis of Expert Knowledge and
Time Series . 314

Gennady Lbov and Vladimir Berikov

Author Index . 321

Conceptual Knowledge Processing:

Theory and Practice�

Rudolf Wille

Fachbereich Mathematik, Technische Universität Darmstadt,
Schloßgartenstr. 7, D–64289 Darmstadt
wille@mathematik.tu-darmstadt.de

Abstract. Conceptual Knowledge Processing is understood as the gen-
eral scientific discipline which activitates acts of thinking such as repre-
senting, reasoning, acquiring, and communicating conceptual knowledge.
In this contribution, first a short introduction to the foundation of Con-
ceptual Knowledge Processing is presented. Then the theoretical back-
ground based on Formal Concept Analysis is sketched. The main content
of this contribution is a discussion of the practice of Conceptual Knowl-
edge Processing which demonstrates for twelve selected general acts of
thinking how they can be successfully applied by using different methods
of Conceptual Knowledge Processing.

Contents
1. Conceptual Knowledge Processing
2. Theory
3. Practice

3.1. Exploring
3.2. Searching
3.3. Recognizing
3.4. Identifying
3.5. Investigating
3.6. Analyzing
3.7. Making aware
3.8. Deciding
3.9. Improving
3.10. Restructuring
3.11. Memorizing
3.12. Informing

4. Summary

1 Conceptual Knowledge Processing

The term “Conceptual Knowledge Processing” denominates a central idea which
brings together humanistic and social scientists, mathematicians, and computer
� This paper is an updated English version of the German publication [Wi00b].

K.E. Wolff et al. (Eds.): KONT/KPP 2007, LNAI 6581, pp. 1–25, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

2 R. Wille

scientists to support a humanitarian approach in dealing with the means of
information processing, transfer, and knowledge communication. The shared ob-
jectives are those methods and instruments that process information and knowl-
edge which support human beings to think, to judge and act rationally and
to create the circumstances for critical discourse. The organization, established
to promote the request of Conceptual Knowledge Processing, is the “Ernst-
SchröderZentrum für Begriffliche Wissensverarbeitung e.V.” founded in
Darmstadt in 1993 [Wi94].

Conceptual Knowledge Processing prefers an understanding of knowledge
according to which ambitious knowledge can only be obtained and supported
through conscious reflexion, discursive argumentation, and human communica-
tion based on the existent understanding of life and environment, social conven-
tions and personal experience [Wi00a]. This vision of knowledge strictly related
to humans accords with the present ideas of knowledge management stating
“that knowledge (in contrast to data and information) is always linked to peo-
ple” [PRR99]. The connection between data, information, and knowledge may
therefore, according to K. Devlin [De99], be defined as follows:

data = signs + syntax
information = data + meaning
knowledge = internalized information + ability to utilize it

The component “conceptual” in the name “conceptual knowledge processing”
is to stress the constitutive role of the thinking, debating and communicating
human being for knowledge and its processing.

“Processing” in Conceptual Knowledge Processing refers to the process in
which something is gained by knowledge which is knowledge again or something
approximating knowledge such as a forecast, an opinion, a casual reason etc.
Since for processing knowledge formal procedures and means of language are used
which causes formal representations of knowledge, humans have to constitute
again knowledge out of such representations.

To understand this process, the basic relation between the form and the con-
tent must be clarified for Conceptual Knowledge Processing. A branch of philos-
ophy which makes a statement of principle on this is the pragmatic philosophy
which was initiated by Ch. S. Peirce and is presently continued among oth-
ers in the discourse philosophy of K.-O. Apel and J. Habermas. According to
pragmatic philosophy, knowledge is formed in an unlimited process of human
thinking, debating and communicating. In this process, reflection on the effects
of thinking is significant and real experiences lead to re-thinking time and again.
In this process, form and content are related to the extent that they may not be
separated without loss (cf. [Wi94]).

2 Theory

The theory of Conceptual Knowledge Processing is mainly based upon formaliza-
tions of the traditional philosophical logic with its doctrines of concept, judgment,

Conceptual Knowledge Processing: Theory and Practice 3

and conclusion. The mathematical theory of concepts and concept hierarchies
has been elaborated to a great extent in the last thirty years mostly at the TU
Darmstadt under the name “Formal Concept Analysis” [GW99]. In the last ten
years, Formal Concept Analysis has been extended to a mathematical theory
of judgment and conclusion called “Contextual Logic” [Wi08], which was based
on a mathematization of J. F. Sowa’s theory of conceptual graphs [So84]. With
all these formalizations, contents are integrated in such a way that the arising
structures can effectively support the process of knowledge creation.

To comprehend this, the fundamental terms of Formal Concept Analysis shall
be first explained via an example. A data table as in Fig. 1 is mathematically

Fig. 1. Formal context of the German presidents from 1949 to 2004

understood to be a formal context consisting of a set of objects (in the example:
the Presidents of the Federal Republic of Germany up to 2004), a set of attributes
(in the example: age of entering office < 60, age of entering office ≥ 60, one
office period, two office periods, party membership: CDU, SPD, or FDP), and a
relation (in the example represented by the crosses in the data table) indicating
which object has which attribute.

Each formal context gives rise to formal concepts which form according to the
subconcept-superconcept ordering the so-called concept lattice of the context. A
formal concept consists of a set of objects, its extent, and a set of attributes,
its intent. The extent consists of all those objects of the context which have all

4 R. Wille

Fig. 2. Concept lattice of the German presidents from 1949 to 2004

attributes of the intent and, dually, the intent consists of all those attributes
of the context which apply to all objects of the extent. A formal concept is a
subconcept of another concept if its extent is part of the extent of the other
concept or - which is equivalent - if its intent contains the intent of the other
concept.

To make conceptual connections in data tables more transparent, it has proven
effective to represent the concept lattice derived from such a data table by a line
diagram as shown in Fig. 2. The small circles of the line diagram represent the
formal concepts of the given context and the ascending sequences of line sections
represent subconcept-superconcept ordering. Thus, the small circle labelled by
“Heuss” depicts a subconcept of the concept which is represented by the small
circle labelled by “FDP”. This indicates that Heuss was a member of the FDP
party.

In general, the extent and the intent of a formal concept may be read from a
line diagram as follows: The extent of a concept consists of all objects whose de-
nominations are attached to a small circle belonging to a descending sequence of
line segments starting from the small circle representing the considered concept.
Dually, the intent of a concept consists of all attributes whose denominations
are attached to a small circle belonging to an ascending sequence of line seg-
ments starting from the small circle representing the considered concept. Hence,
in Fig. 2, the small circle without labels on the right of the CDU circle represents
the formal concept whose extent consists of the German presidents “Carstens”,
“Herzog”, “Heinemann” and “Rau” and whose intent consists of the attributes
“age of entering office ≥ 60” and “one office period”.

Conceptual Knowledge Processing: Theory and Practice 5

From what was said it follows that the original context can be reconstructed
from the line diagram, i. e. no data is lost when a concept lattice and its line
diagram is built up. For arbitrary data tables informative concept lattices can be
constructed, even when these data tables contain, instead of crosses, numbers or
other arbitrary symbols; then the method of conceptual scaling [GW99] is used
which allows to construct formal contexts with corresponding concept lattices out
of data tables and even databases. To reveal the multitude of possible relations,
relational scaling [GW99] has been introduced to contextual logic which allows,
for instance, the derivation of linguistic formulations and their representation
by concept graphs. Since the early 1980’s software for conceptual analysis of
data has been developed to a great extent; up to now, TOSCANA is the most
attractive program system for Formal Concept Analysis and its applications (see
[KSVW94], [BH05]).

————————

How Formal Concept Analysis is based on the the mathematical notions of
a formal context and its concept lattice, this shall be briefly sketched at the
end of this theory section. A formal context is defined as an incidence structure
(G, M, I) where G and M are sets and I is a binary relation between G and M
(i.e. I ⊆ G × M); the elements of G are called objects, those of M attributes,
and the relationship (g, m) ∈ I (often described also by gIm) is read: the object
g has the attribute m. A Galois connection between the power sets of G and M
is defined by the following derivation operators (X ⊆ G and Y ⊆ M):

X �→ X ′ := {m ∈ M | gIm for all g ∈ X},
Y �→ Y ′ := {g ∈ G | gIm for all m ∈ Y }.

A formal concept of a formal context K := (G, M, I) is a pair (A, B) with A ⊆ G,
B ⊆ M , A = B′, and B = A′; A is called the extent and B is called the
intent of the formal concept (A, B). The subconcept-superconcept-relation is
mathematized by (A1, B1) ≤ (A2, B2) :⇔ A1 ⊆ A2(⇔ B1 ⊇ B2). The set of all
formal concepts of K together with the order-relation ≤ is denoted by B(K). A
general method of construction of formal concepts uses the derivation operators
to obtain for X ⊆ G and Y ⊆ M the formal concepts (X ′′, X ′) and (Y ′, Y ′′).
For an object g ∈ G its object concept γg := (g′′, g′) is the smallest concept in
B(K) whose extent contains g, and for an attribute m ∈ M its attribute concept
μm := (m′, m′′) is the largest concept in B(K) whose intent contains m.

Therefore, if in a line diagram of B(K) the object names are attached to the
circles of the corresponding object concepts and the attribute names are attached
to the circles of the correponding attribute names, then extent and intent of
the represented concepts and therefore also the corresponding context can be
read from the inscribed line diagram of the concept lattice. The following basic
theorem on concept lattices shows that one can even examine by the inscribtions
whether the presented line diagram represents the concept lattice of the given
formal context or not.

6 R. Wille

Basic Theorem on Concept Lattices [Wi82]. Let K := (G, M, I) be a
formal context. Then B(K) is a complete lattice, called the concept lattice of K,
whose infima and suprema can be described as follows:

∧

t∈T

(At, Bt) = (
⋂

t∈T

At, (
⋃

t∈T

Bt)
′′
),

∨

t∈T

(At, Bt) = ((
⋃

t∈T

At)
′′
,
⋂

t∈T

Bt).

In general a complete lattice L is isomorphic to B(K) if and only if there exist
mappings γ̃ : G → L and μ̃ : M → L such that γ̃G is

∨
-dense in L (i.e.

L = {∨X | X ⊆ γ̃G}), μ̃M is
∧

-dense in L (i.e. L = {∧ X | X ⊆ μ̃M}), and
gIm ⇐⇒ γ̃g ≤ μ̃m for g ∈ G and m ∈ M ; in particular, L ∼= B(L, L,≤).

3 Practice

The ways in which the theoretical basis of conceptual knowledge processing can
practically prove its value shall be demonstrated using selected examples. Each
example represents a given application characterized by a general act of think-
ing or reasoning [Wi99]. At the beginning of each example, the specific meaning
of the characteristic act of thinking for Conceptual Knowledge Processing is
explained. For determining those meanings relevant dictionaries were used to-
gether with word meanings which have been developed within the practice of
Conceptual Knowledge Processing.

3.1 Exploring

“Exploring” means looking for something of which one has only a vage
idea or awareness.

For such an understanding of exploring, a typical example is looking for literature
without knowing exactly what pieces of literature concerning a given theme are
available. Exploring therefore involves an iterative learning about the body of
knowledge before discovery can be successful. To give substance in this effort, a
TOSCANA system for exploring literature was developed for the Library of the
Center for Interdisciplinary Technology Research (ZIT) at Darmstadt University
of Technology.

This system is based on a respectively actualized data context whose objects
are the books in the ZIT-library and whose attributes are standardized keywords,
while the relation of the context shows which keywords are assigned to which
book. To explore the large concept lattice of the data context in a purpose-
oriented manner, line diagrams of meaningful projections of the large concept
lattice were drawn which represent 137 informative themes. These projections
can be activated as conceptual search structures in arbitrary combinations. Fig.
3 shows the line diagrams for the two themes “computer science and knowledge
processing” and “town and traffic”; they represent partial progress on search for
a documentation aimed at literature on “expert systems in traffic”. In the course

Conceptual Knowledge Processing: Theory and Practice 7

Fig. 3. Exploring literature with concept lattices about the theme “expert systems in
the area of traffic”

8 R. Wille

of this exploration the theme “computer science and knowledge processing” was
chosen first; then the theme “town and traffic” was zoomed into the small circle
of the first theme which is labelled from above by the attribute name “expert
system” and from below by the number “60”. This causes that the second line
diagram and the distribution of the 60 books with the keyword “expert sys-
tems” are shown in relation to the keywords of the theme “town and traffic”.
Subsequently, the book number marked by 4 at the small circle with upward
line segments leading to the keywords “traffic” and “means of transport” was
selected which caused the display of the 4 book titles “Digital Disaster”, “Evo-
lutionary Ways into the Future”, “Yearbook of Work and Technology 1991” and
“Cooperative Media” (detailed information can be found in [RW00]).

3.2 Searching

“Searching” shall be understood as looking for something which one can
more or less specify but not localize.

When using the methods of Conceptual Knowledge Processing for search, the
objective is usually to find explicit knowledge whose existence is already known.
In 1992, the Darmstadt Research Group on Formal Concept Analysis was con-
fronted with such a situation when the group was asked by the “Ministry for
Building and Housing” of the German State “Nordrhein-Westfalen” to develop
for them a prototype of a tool which supports architects in finding the relevant
laws and regulations about building constructions. In the period of three years
a TOSCANA-system was developed as such a tool [KSVW94], [EKSW00]. For
this system an extensive data context was elaborated

– whose objects were the relevant paragraphs and text units of the current laws
and regulations, and

– whose attributes, which are understood as keywords, refer to the building
parts and the requirements.

As it is characteristic for TOSCANA-systems, multiple projections of the concept
lattice of the underlying data context are represented by line diagrams which
can be used as conceptual query structures.

In Fig. 4, the line diagram of the search structure “shell of a building” is
depicted and reflects on the keywords (attributes) “chimney”, “roof”, “basement
floor”, “wall”, “fire wall”, “staircase”, “stairs”, and “ceiling”. In order to be able
to elaborate search, the search structure “shell of a building” may be increased
by other search structures such as “interior”, “requirements” etc. But it has
been experienced that even already one search structure with its conceptual
relationships may support the finding of relevant text units. Furthermore, the
overview given by a line diagram can enable experts to find mistakes in the basic
data contexts which, during the project with the ministry, has contributed to
improve the quality of the data again and again.

Conceptual Knowledge Processing: Theory and Practice 9

Fig. 4. The search structure “shell of a building” of an exploration-system for building
laws and regulations

10 R. Wille

3.3 Recognizing

“Recognizing” means to discern and to clarify something.

In Conceptual Knowledge Processing, the method of discerning and clarifying
something is to make conceptual relationships between form and contents obvi-
ous in multiple ways. In a research project, which the Darmstadt Research Group
on Formal Concept Analysis performed in cooperation with a Swiss retail group,
the task was to investigate how far the use of Formal Concept Analysis meth-
ods could clarify customers’ behaviour to buy (by incorporating a TOSCANA-
system into the data warehouse domain) and therewith support the database-
marketing-activities of the combine [HSW00], [He00]. The results of the project
were received positively, in particular, because marketing executives were able
to discuss the data with their business partners based on the presentation of
the data as concept lattices. New insights on the shopping habits of the cus-
tomers were gained and new ideas for marketing activities were subsequently
developed.

Fig. 5. Concept lattices for analyzing purchase activities (above: expenses of women
clothes; below: number of the used departments and purchase of household articles and
interior decorations)

Conceptual Knowledge Processing: Theory and Practice 11

In Fig. 5 the line diagram on the top shows how the spending of 8,323 fe-
male customers in “women’s wear” is distributed (for example: 1,716 customers
spent more than SFR 100 and at most SFR 400 and 1,777 customers spent more
than SFR 400). The line diagram on the bottom combines two aspects of the
purchase activity. The line diagram with large circles depicts the distribution
according to the number of departments visited during the shopping session, the
more detailed line diagram inside the larger circles further explains the respective
number (in the upper part of the big circle) as a department’s share “household
goods” (left side), “interior decoration” (right side) and both (below). For the
marketing department the diagram in steps was interesting for the reasons that
follow. Of the 6,546 female customers who have spent little on clothing (SFR 400
at the most) it shows the number of departments in which they purchased goods
and also their proportion of shopping in “household goods” and “interior deco-
ration”. The 2,001 customers who shopped in 5 to 12 departments, particularly
“household goods” and “interior decoration”, may well be chosen as a target
group for personalized mailings to stimulate their purchasing in the department
“women’s wear”.

3.4 Identification

“Identifying” shall mean to determine the taxonomic position of an object
within a given classification.

Since a taxonomic position in classifications is usually charaterized by specific
attributes, the line diagrams of concept lattices are very well suited to support
the identification of objects (e.g. identifying plants). For the renowned exhibition
on symmetry which was held on the “Mathilden Höhe” in Darmstadt in 1986,
B. Ganter and J. Richter wrote a computer program which is able to determine
the symmetry types of two-dimensional ornaments (e.g. of wallpaper prints) and
can further be used to generate two-dimensional ornaments that match a chosen
symmetry type. The program is based on a formal context having as objects the
17 symmetry types of two-dimensional patterns and as attributes the symmetry
properties which crystallographers use to identify planar symmetries [Wi87].

Fig. 6 shows the concept lattice of this symmetry context. The way that this
lattice supports the identification of a symmetry type shall be explained using
the two-dimensional ornament depicted in Fig. 6 too. In the line diagram the
circles filled black indicate the steps in the identification process. It starts with
the uppermost circle, i.e. the concept, which includes all 17 symmetry types
in its extent. The understanding that “two non-parallel reflection axes” yield a
pattern of symmetries of the ornament leads to the blackened circle two steps
down; the concept depicted by this circle has only the symmetry types p6, p6m,
cmm, p3m1, p31m, p4m and p4g left in its extent. Discovering a “90 degree
rotation” p4m and p4g as a symmetry leads to the formal concept which has
only the symmetry types left in its extent. Since the fixpoint of this rotation lies
not on a reflection axis of some rotation symmetry of the presented ornament,
one can conclude that the example belongs to symmetry p4g.

12 R. Wille

Fig. 6. Concept lattice of symmetry types of two-dimensional patterns

3.5 Investigating

“Investigating” means to study by close examination and systematic in-
quiry.

The formal structures of Conceptual Knowledge Processing, which make data
understandable without any simplification of the original data, have proven their
worth in a wide range of applications by showing (and discovering) relation-
ships between data. In this respect the cooperation with the political scientist
B. Kohler-Koch has had important outcomes. The aim of the cooperation was
the analysis of a data context on international cooperations bound by standards
and regulations. Working on this problem led to the development of TOSCANA-
systems. The objects of the analyzed data context were 18 international coop-
erations characterized by 68 attributes such as factors of influence, typological
qualities, and effects caused by the cooperations extracted from a multitude

Conceptual Knowledge Processing: Theory and Practice 13

Fig. 7. Connection between the “degree of development” and the “power structure” of
international cooperations

of case studies. The thorough examination of this data context using concept-
analytic methods proved enormously valuable for the target of gaining insight
into the requirements for the development and success of international coopera-
tions [Ko89], [KV00].

Out of the fullness of the produced concept structures only one example shall
be discussed here which refers to the following hypothesis widely mentioned in
the literature: “Strongly developed international cooperations can be mostly found
under hegemonic structures.” In Fig. 7 the line diagram shows a concept lattice
whose atoms name 18 power structures of international cooperations while the
coatoms name the degree of development of those cooperations. The concept
lattice makes visible that the cooperations with a high degree of development
divide into 5 of egalitarian and 5 of hegemonic power structures and the coopera-
tions with a low degree of development divide into 3 of egalitarian and 2 of hege-
monic power structure, while all 3 cooperations with an intermediate degree of
development have an egalitarian power structure. These findings seriously call the
“hegemonic” hypothesis into question. During a presentation of TOSCANA on
the CEBIT’93, it became obvious just how politically persuasive the hypothesis
really is. W. Gerhardt, then minister of the Sciences and Humanities in the State
of Hessen, expressed his astonishment about the insights gained by the project.

3.6 Analyzing

“Analyzing” means to theoretically examine facts with regard to their
aim and objective.

Data analysis, understood in this way, significantly influenced the development
of Conceptual Knowledge Processing. In particular, the requirements resulting

14 R. Wille

Fig. 8. The classification aspect “communication content” of a TOSCANA-system for
speech act verbs

from this understanding gave rise to the TOSCANA-methodology for analyz-
ing conceptual data. A convincing example for a purpose- and theory-guided
examination design is the “TOSCANA-system for speech act verbs” which was
established at the Institute for German Language (Institut für deutsche Sprache)
in Mannheim in cooperation with the Darmstadt Research Group on Concept
Analysis. The resulting system is designed to assist the classification of speech
acts, a task formulated by the founder of the speech act theory, J. L. Austin, who
provided the necessary distinctions of the verbs in question. The TOSCANA-
methodology allows to bring together different, language-logically structured
aspects of classification such as meaning, type of event, role allocation, time
allocation etc. These can then be combined in one system which enables to ex-
amine the semantic structures of the speech act verbs with regard to an overall
classification [GH00].

A small insight shall be given by the line diagram in Fig. 8 which illustrates
the classification aspect “information content” (S = speaker, L = listener). In the

Conceptual Knowledge Processing: Theory and Practice 15

line diagram some of the attached numbers are made explicit by the correspond-
ing list of the speech act verbs; for instance, the number 5 belonging to the circle
with the label “S” is replaced by the five words “angeben”, “aufschneiden”, “gro-
machen (sich)”, “prahlen”, “protzen”. These are the speech act words that refer
solely to the speaker. The small, unblotted circle marked “event” is a so-called
“lexical gap”. “Event” exists for language theoretical reasons. In the German
language however, there is no speech act verb which stands for an “event” and
does not - at the same time - stands for an action. It would be interesting to
know if there are languages that contain speech act verbs where the “event”
circle is not a “lexical gap”.

3.7 Making Aware

“Making aware” means to bring something to someone’s consciousness.

Concept lattices again and again contribute to make facts, interrelations, and
point of views more conscious. An impressive proof of this was given by N. Span-
genberg in his habilitation thesis [Sp90]. In Spangenberg’s research, conducted
at the Center for Psychosomatic Medicine at the University of Giessen, concept
lattices were used to evaluate Repertory Grid Tests to enable patients with eat-
ing disorders to become conscious of unsolved conflicts in their families; while
doing so, Spangenberg cooperated with the mathematician K. E. Wolff [SW93].

In the course of the test, the patient names persons that are close to her
and characterizes these persons in her own words (using adjectives). All such
information is then represented in a formal context and its concept lattice. Fi-
nally, the concept lattice is presented to the patient by the therapist in the form
of a line diagram which the patient and the therapist interpret together. How
this may concretely look like shall be demonstrated by a small example. In the
line diagram in Fig. 9 one can read that the set of objects of the underlying
test context consists of the persons “I” (denoted by “myself” in Fig. 9), “ideal”,
“mother”, “father”, “sister”, and “brother-in-law” (“ideal” is meant to mark the
person that the “I” would like to be). The negative characteristics “superficial”
and “easily offended”, which the patient attributes to the mother and the father,
but not to the I and the ideal, are conspicuous. The way the patient characterizes
her immediate family is usually an important indication for the therapist. In this
case this is done using the words “apprehensive”, “difficult”, and “withdrawn”.
To see such a negative evaluation clearly revealled (on the other hand positive
traits are also reinforced) gives, supported by the therapist, the patient a chance
to become aware of the conflicts with her family that may be reasons for this
negative evaluation.

3.8 Deciding

“Deciding” shall mean to resolve a situation of uncertainty by an order.

As Conceptual Knowledge Processing aims at supporting people’s rational think-
ing, judgment and action, it has led to the development of methods which are

16 R. Wille

Fig. 9. Concept-analytical evaluation of a repertory grid test of an anorectic patient

particularly helpful for decision making. Already the concept lattices represented
by line diagrams, by which the inherent conceptual relationships in data con-
texts become transparent, have multifariously proven as means of supporting
decision making. How this can be performed in practice shall be discussed us-
ing data of the National Water Research Institute in Burlington (Ontario): the
objective was to determine which towns on the Canadian coast of Lake Ontario
have locations suitable for swimming and tapping drinking water.

The concept lattice in Fig. 10 shows test values (concept-analytically: many-
valued attributes) of 5 water samples of each of the 26 places (concept-analytically:
objects) along Lake Ontario from the mouth of the Niagara River to the Cataraqui
River/Kingston (see [SW92]). As the level of the pollution of the water rises, as
the lines go down, the line diagram of the concept lattice shows that the places
“STP Outfall”, “Humber River”, “Mouth of Credit River”, “Cataraqui River”,
“Etobikoke Creek”, and “Inside Bay” are extremely polluted (“Fecal Coliform
500” resp. “Coliphage 250”). If an “E. Coli” test value higher than 100 was
considered harmful for swimmers, places “Bronte Creek”, “Outfall area”, and
“Sunnyside Beach” would be banned for swimming. Making the decision - is
swimming permitted or not - depend on the test values of 5 samples (criteria) is
a case of “multicriteria decision making”. In Conceptual Knowledge Processing

Conceptual Knowledge Processing: Theory and Practice 17

Fig. 10. Concept lattice about water pollution at the Canadian coast of Lake Ontario

18 R. Wille

however, the arithmetical mean of the test values is not used to make the deci-
sion, in the contrary the context of the test values is concept-analytically made
transparent in a way that enables the people in question to come to a decision
which is reasonable in its contents.

3.9 Improving

“Improving” has the meaning of enhancement in quality and value.

A requirement for successful improvement is that the facts and the interrela-
tions concerned are well understood. This is supported by methods of Concep-
tual Knowledge Processing which shall be elucidated by an example optimizing
a production of electronic chips. In the example discussed in [WS93], the outer
quality of the chips produced was characterized by the parameters “final weight”
z3, “breadth of a split” z2, and “weightiness” z1 := 100 (z2:z3). These parame-
ters were examined as to their dependance on the four variables “temperature”,
“voltage”, “catalyst”, and “operator”. To do so the 4 variables were set to all
possible combinations of the three levels “low”, “medium”, and “high” which
resulted in 81 test runs.

In Fig. 11 the results of the 81 test runs are depicted in a line diagram using
three steps. The steps comprise the scales of quality shown individually in the
middle of the diagram. The rating of the test values - from poor to good -
starts on the right side (bottom), goes up and then on the left side down again
(according to this the optimum of the values for z3 are lower than 190, for z2
they are higher than 30 and for z1 they are higher than 13). In order to optimize
the setting of the parameters, one must first refer to the large rectangle on the
bottom of the left side which shows the 16 test runs with the best values for z1.
Of these test runs, 2 show the best values for z3 (and almost the best values for
z2) as well as 4 times the best values for z2 of which only 1 value for z3 nearly
belongs to the best. By doing so, 3 test runs have been identified, the settings
of which come close to the best settings for the parameters that are possible.
A more meticulous analysis of the test runs promises to possibly produce even
better settings for the parameters.

3.10 Restructuring

“Restructuring” means to structurally design something new by certain
measures.

Restructuring was adapted successfully in Software Engineering using methods of
Conceptual Knowledge Processing [LS00]. The target of software restructuring is
a transformation and reorganisation of the codes of programs in order to revive
a system. In order to do so, basic principles of software engineering such as
anticipation of changes and modularization must be implied taking criteria such
as high cohesion and light coupling of modules into consideration.

To give an example, the x-window-tool “xload”, which consists of 724 lines
of macro code, will be discussed. According to expert opinion, the program is

Conceptual Knowledge Processing: Theory and Practice 19

Fig. 11. A triply nested line diagram used for optimizing a chip production

20 R. Wille

Fig. 12. Configuration lattice of the X-Window-Tools “xload”

not understandable by examination. Further, documentation does not exist for
xload, changes and extensions are defected by a high probability of mistakes. The
configuration lattice of “xload” with more than 100 elements, which is shown
in Fig. 12 proves that this program is configuration hacking in its purest form.
This concept lattice was used to restructure “xload”; in doing so, inexplicable
configuration areas were modularizingly splitted into partial areas and govern-
ing terms of the program were simplified. After this restructuring (also called
“amputation of irrelevant configurations”) a macro code of 501 lines could be
produced together with a clearly structured configutation lattice consisting of
only 48 concepts.

3.11 Memorizing

“Memorizing” means to store something one has experienced or learned
in order to use it later on.

In Conceptual Knowledge Processing the so-called conceptual data systems (see
[SVW93]), in which relational databases are combined with conceptual retrieval
structures, are widely used to memorize information. How saving and reactivat-
ing of information can be achieved by conceptual data systems shall be explained
using an musicological example of content analysis of text data [MW99]. As base
for a doctoral thesis about the theme “Simplicity. A Reconstruction of a Con-
ceptual Landscape in the Aesthetics of Music of the 18th Century”, a conceptual
data system was elaborated and implemented as a TOSCANA-system. In order

Conceptual Knowledge Processing: Theory and Practice 21

to achieve this, 270 historical sources were searched with regard to a normed
vocabulary consisting of more than 400 text features on the subject of “simplic-
ity”. These features were saved together with their classifications, and overriding
categories were established for a large number of retrieval structures. This struc-
turing of founded contents has to be understood as a process of establishing a
theory which continually gains adherence by repeated checking of the text sources
(aided by the examination of diagrams from the retrieval structures) [Ma00].

Fig. 13. Section of a “conceptual landscape” concerning the music esthetics of the 18th
century

The line diagram in Fig. 13 stems from a “conceptual landscape” (cf. [Wi99])
elaborated in this way. The meet-irreducible elements are labelled by “< 1720”,
“< 1740”, “< 1760”, “< 1780”, “< 1800”, “>= 1720”, “>= 1740”, “>= 1780”,
“>= 1800”, “simplicity literal”, “simplicity not literal”, “positive simplicity lit-
eral” and “noble-simplicity literal” as pictured in Fig. 13. The diagram discloses
that the instances of the phrase “(noble-) simplicity” are most frequent from
1780 through 1800. “Simplicity” appears 45 times and “noble-simplicity” ap-
pears 22 times in the 111 text sources of this time span. The TOSCANA-system
not only supports the recollection of the historic context that the terms were
used, but also supports the process of categorizing and establishing a theory.
This process is reflected in the retrieval structures that are developed.

22 R. Wille

3.12 Informing

“Informing” means to communicate knowledge about something to some-
one.

It has long been a matter of concern for conceptual knowledge processing to
develop an extensive theory and effective methods for conceptual information
and knowledge systems. In the last ten years it has become increasingly im-
portant to include relational contexts into the formal conceptual basis of such
systems in a systematic manner. The developed contextual logic [Wi00a] serves
as the theoretical basis for the extended theory which makes able formal de-
scriptions of knowledge representations by concept graphs and information maps
and allows formal derivations from data [EGSW00]. Its methods can be applied
to information systems such as “information about air connections”, “orienta-
tion in environments for learning”, “search for literature in libraries” and many
others.

Fig. 14. Information map of flight connections in Austria

Fig. 14 shows an information map for air connections in Austria, in particular
for the usecase of a passenger who lives in Vienna and wants to meet his business
partners over a weekend in Graz, Innsbruck, and Salzburg. The information map
shows possible flights for a departure from Vienna after 07:00 on a Saturday and
for an arrival in Vienna before 20:00 on the following Sunday. It is easily inferred
that the traveler has two main (but distinctly different) options [EGSW00]. The
traveler will probably make his final decision for one flight or the other according
to reasons that are not to be found in the map. The program for information
maps for air connections used for Fig. 14 was developed by B. Groh who also
programmed such an information map for the domestic flights in Australia.

Conceptual Knowledge Processing: Theory and Practice 23

4 Summary

Conceptual knowledge processing is obliged to a pragmatical understanding of
knowledge according to which knowledge develops from an unlimited process
of human thinking, arguing, and communicating, and lives on throughout this
process. Theoretically, it is based upon contextual logic which aims for mutual
combination of form and contents. This theoretical concept determines concep-
tual knowledge processing in practice with lasting effect. The significance of
conceptual knowledge processing lies in its support for general acts of thinking
such as exploring, searching, recognizing, identifying, investigating, analyzing,
making aware, deciding, improving, restructuring, memorizing, informing, and
others.

References

[BH05] Becker, P., Hereth Correia, J.: The ToscanaJ Suite for Implementing Con-
ceptual Information Systems. In: FCA 2005. LNCS (LNAI), vol. 3626, pp.
324–348. Springer, Heidelberg (2005)

[De99] Devlin, K.: Infosense. Turning information into knowledge. Freeman, New
York (1999)

[EGSW00] Eklund, P., Groh, B., Stumme, G., Wille, R.: A contextual-logic extension
of TOSCANA. In: Ganter, B., Mineau, G.W. (eds.) ICCS 2000. LNCS
(LNAI), vol. 1867, pp. 453–467. Springer, Heidelberg (2000)

[EKSW00] Eschenfelder, D., Kollewe, W., Skorsky, M., Wille, R.: Ein Erkundungssys-
tem zum Baurecht: Methoden der Entwicklung eines TOSCANA-Systems.
In: [SW00], pp. 254–272

[GH00] Großkopf, A., Harras, G.: Begriffliche Erkundung semantischer Strukturen
von Sprechaktverben. In: [SW00], pp. 273–295

[GW99] Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Founda-
tions. Springer, Heidelberg (1999)

[He00] Hereth, J.: Formale Begriffsanalyse im Data Warehousing. Diplomarbeit.
FB Mathematik, TU Darmstadt (2000)

[HSW00] Hereth, J., Stumme, G., Wille, R., Wille, U.: Conceptual knowledge dis-
covery and data analysis. In: Ganter, B., Mineau, G.W. (eds.) ICCS 2000.
LNCS (LNAI), vol. 1867, pp. 421–437. Springer, Heidelberg (2000)

[Ko89] Kohler-Koch, B.: Zur Empirie und Theorie internationaler Regime. In:
Kohler-Koch, B. (Hrsg.) Regime in den internationalen Beziehungen, pp.
15–85. Nomos, Baden-Baden (1989)

[KV00] Kohler-Koch, B., Vogt, F.: Normen- und regelgeleitete internationale
Kooperationen - Formale Begriffsanalyse in der Politikwissenschaft. In:
[SW00], pp. 325–340

[KSVW94] Kollewe, W., Skorsky, M., Vogt, F., Wille, R.: TOSCANA - ein Werkzeug
zur begrifflichen Analyse und Erkundung von Daten. In: [WZ94], pp.
267–288

[LS00] Lindig, C., Snelting, G.: Formale Begriffsanalyse im Software Engineering.
In: [SW00], pp. 151–175

24 R. Wille

[Ma00] Mackensen, K.: Simplizität. Genese und Wandel einer musikästhetischen
Kategorie des 18. Jahrhunderts. Bärenreiter, Kassel (2000)

[MW99] Mackensen, K., Wille, U.: Qualitative text analysis supported by concep-
tual data systems. Quality & Quantity 33, 135–156 (1999)

[PW99] Prediger, S., Wille, R.: The lattice of concept graphs of a relationally scaled
context. In: Tepfenhart, W., Cyre, W. (eds.) ICCS 1999. LNCS (LNAI),
vol. 1640, pp. 401–414. Springer, Heidelberg (1999)

[PRR99] Probst, G., Raub, S., Romhardt, K.: Wissen managen: wie Unternehmen
ihre wertvollste Ressource optimal nutzen. 3. Aufl. Gabler, Wiesbaden
(1999)

[RW00] Rock, T., Wille, R.: Ein TOSCANA-Erkundungssystem zur Literatur-
suche. In: [SW00], pp. 239–253

[SVW93] Scheich, P., Skorsky, M., Vogt, F., Wachter, C., Wille, R.: Conceptual
data systems. In: Opitz, O., Lausen, B., Klar, R. (eds.) Information and
Classification, pp. 72–84. Springer, Heidelberg (1993)

[So84] Sowa, J.F.: Conceptual Structures: Information Processing in Mind and
Machine. Addison-Wesley, Reading (1984)

[Sp90] Spangenberg, N.: Familienkonflikte essgestörter Patientinnen. Eine em-
pirische Untersuchung mit der Repertory Grid Technik. Habilitationss-
chrift, Universität Gießen (1990)

[SW93] Spangenberg, N., Wolff, K.E.: Datenreduktion durch die Formale Be-
griffsanalyse von Repertory Grids. In: Scheer, J.W., Catina, A. (Hrsg.)
Einführung in die Repertory Grid Technik. Bd.2: Klinische Forschung und
Praxis. Huber, Bern, pp. 38–54 (1993)

[SW92] Strahringer, S., Wille, R.: Towards a structure theory for ordinal data.
In: Schader, M. (ed.) Analyzing and Modeling Data and Knowledge, pp.
129–139. Springer, Heidelberg (1992)

[SW00] Stumme, G., Wille, R. (Hrsg.): Begriffliche Wissensverarbeitung: Metho-
den und Anwendungen. Springer, Heidelberg (2000)

[Wi82] Wille, R.: Restructuring lattice theory: an approach based on hierarchies
of concepts. In: Rival, I. (ed.) Ordered Sets, pp. 445–470. Reidel, Dordrecht
(1982) (reprinted in: LNAI 5548, Springer, Heidelberg 2009)

[Wi87] Wille, R.: Bedeutungen von Begriffsverbänden. In: Ganter, B., Wille,
R., Wolff, K.E. (Hrsg.) Beiträge zur Begriffsanalyse, pp. 161–211. B.I.-
Wissenschaftsverlag, Mannheim (1987)

[Wi94] Wille, R.: Plädoyer für eine philosophische Grundlegung der Begrifflichen
Wissensverarbeitung. In: [WZ94], pp. 11–25

[Wi99] Wille, R.: Conceptual landscapes of knowledge: a pragmatic paradigm
for knowledge processing. In: Gaul, W., Locarek-Junge, H. (eds.) Clas-
sification in the Information Age, pp. 344–356. Springer, Heidelberg
(1999)

[Wi00a] Wille, R.: Contextual Logic summary. In: Stumme, G. (ed.) Working with
Conceptual Structures. Contributions to ICCS 2000, Shaker, Aachen, pp.
265–276 (2000)

[Wi00b] Wille, R.: Begriffliche Wissensverarbeitung: Theorie und Praxis. Infor-
matik Spektrum 23, 357–369 (2000); gekürzte Version In: Schmitz B.
(Hrsg.): Thema Forschung: Information, Wissen, Kompetenz. Heft 2/2000,
TU Darmstadt, pp. 128–140

Conceptual Knowledge Processing: Theory and Practice 25

[Wi08] Wille, R.: Formal Concept Analysis and Contextual Logic. In: Hitzler,
P., Schärfe, H. (eds.) Conceptual structures in practice. Chapman and
Hall/CRS Press (to appear)

[WZ94] Wille, R., Zickwolff, M. (Hrsg.): Begriffliche Wissensverarbeitung: Grund-
fragen und Aufgaben. B.I.-Wissenschaftsverlag, Mannheim (1994)

[WS93] Wolff, K.E., Stellwagen, M.: Conceptual optimization in the production
of chips. In: Janssen, J., Skiadas, C.H. (eds.) Applied Stochastic Models
and Data Analysis, vol. II, pp. 1054–1064. World Scientific Publ. Comp.,
Singapore (1993)

Non-symmetric Indiscernibility

Bernhard Ganter

Technische Universität Dresden

Abstract. Rough Sets were introduced to express approximations based
on an indiscernibility equivalence relation (Pawlak [4,5]). They have a nat-
ural lattice structure, which can nicely be described and widely generalised
in the language of Formal Concept Analysis [2]. One instance of such a gen-
eralisation seems to be particularly promising: That of an indiscernibility
preorder. The mathematical theory is almost the same as in the case of
an equivalence relation, and some of the applications can be carried over.
However, using preorders as indiscenibility relations needs getting used to,
since such relations are not necessarily symmetric. We give an introduc-
tion and clarify the role of isolated and singleton elements.

1 Indiscernibility

The notion of indiscernibility is fundamental for the theory of Rough Sets, where
(in the most basic case1) it is expressed by an equivalence relation on a set U ,
called the universe. The elements of the universe usually correspond to data base
objects and therefore have attributes, and two objects are called indiscernible if
they have exactly the same values for all attributes under consideration.

In the language of Formal Concept Analysiswe express this setting as follows:
For a given formal context (U, M, I), define the indiscernibility equivalence
relation ∼ on U by

g ∼ h : ⇐⇒ g′ = h′.

This indeed yields an equivalence. The equivalence classes of this relation and
their unions are the definable sets. Any subset A ⊆ U of the universe contains
a largest definable set R(A), and there is a smallest definable set R(A) contain-
ing it. These sets are called the lower and the upper approximation of A.
Formally,

R(A) := {u ∈ U | ∀x∼u x ∈ A}
R(A) := {u ∈ U | ∃x∼u x ∈ A}.

The pair (R(A), R(A)) is the rough set approximation of A. Note that both
R(A) and R(A) are definable sets, and that every definable set A satisfies R(A) =
A = R(A).

We suggest a generalised notion of indiscernibility by dropping the condition
of symmetry. We claim that this is rather natural in absence of the negation of
attributes. Given a formal context (U, M, I) and objects g, h ∈ U , let us say that

g is ≥–discernible from h iff g has an attribute that h does not have.

1 Variations have extensively been studied, see [8].

K.E. Wolff et al. (Eds.): KONT/KPP 2007, LNAI 6581, pp. 26–34, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Non-symmetric Indiscernibility 27

So g is ≥–discernible from h iff g′ \ h′
= ∅. Negating, we find that g is ≥–
indiscernible from h iff g′ ⊆ h′. This obviously defines a preorder. The equiv-
alence relation obtained by intersecting this preorder with its dual is of course
the original indiscernibility equivalence relation.

Calling a non-symmetric relation an indiscernibility relation is somewhat
counterintuitive and may lead to confusion. Fortunately, this preorder is also
known under a different name: It is the dual of the object preorder of the
formal context (U, M, I), defined by

g ≥ h : ⇐⇒ g′ ⊆ h′ ⇐⇒ γg ≥ γh.

We therefore use the symbol ≥ for the indiscernibility preorder. This view also
gives an alternative interpretation: g is indiscernible from h if h is a specialisation
of g in the sense that h has all the attributes describing g. Then g is indiscernible
from all its specialisations, but discernible from its proper generalisations. The
preorder is therefore also called specialisation preorder.

The approximation operators can easily be generalised:

R(A) := {u ∈ U | ∀x≤u x ∈ A}
R(A) := {u ∈ U | ∃x≥u x ∈ A}.

So u belongs to the lower approximation of A iff every object that u is indis-
cernible from belongs to A. And u is in the upper approximation of A iff some
element from A is indiscernible from u. In other words: In order to be in the
lower approximation, the element and all its specialisations must belong to A.
The upper approximation consists of all objects that are specialisations of some
element of A.

Both the lower and the upper approximation contain with each element all
elements it is indiscernible from, i.e., all its specialisations. In other words, each
approximation is a preorder ideal in the object preorder. In the non-symmetric
case these replace the definable sets.

We illustrate the definitions of the approximation operators by a small ex-
ample. Let U be the set of all three-letter words made from letters a, b, and ∗,
where ∗ is a wildcard replacing either a or b. Then U has 27 elements:

U = { aaa, aab, aa∗, aba, abb, ab∗, a∗a, a∗b, a∗∗,
baa, bab, ba∗, bba, bbb, bb∗, b∗a, b∗b, b∗∗,
∗aa, ∗ab, ∗a∗, ∗ba, ∗bb, ∗b∗, ∗∗a, ∗∗b, ∗∗∗ }.

Structure this object set by the six attributes

“first letter is a”, “first letter is b”, “second letter is a”, etc . . .
(for a ∗, none of the attributes is given).

Now let
A := {a∗b, baa, bab, ba∗, bba, bb∗}.

We find that
R(A) = {baa, bab, ba∗, bba}

28 B. Ganter

and
R(A) = {aab, abb, a∗b, baa, bab, ba∗, bba, bbb, bb∗}.

2 Functional Dependencies and Indiscernibility

We have mentioned in Section 1 that indiscernibility equivalence relations of-
ten are derived from relational data bases. In the language of Formal Concept
Analysissuch a data base corresponds to a many-valued context (G, M, W, I)
with object set G, attribute set M , a set W of attribute values and a ternary
relation I ⊆ G × M × W , such that (g, m, w1) ∈ I and (g, m, w2) ∈ I together
imply w1 = w2. We read (g, m, w) ∈ I as “the value of attribute m for object g
is w”, and abbreviate this occasionally as m(g) = w.

Two objects g and h of a many-valued context are indiscernible with respect
to M if m(g) = m(h) holds for all attributes m ∈ M . More generally g and h
are indiscernible with respect to a subset M0 ⊆ M if m(g) = m(h) holds for all
m ∈ M0. Obviously all these indiscernibility relations are equivalence relations
on G.

A functional dependency A → B (where A, B ⊆ M) holds in a many-
valued context if object pairs indiscernible with respect to A are always also
indiscernible with respect to B. Formally, the condition is this: If m(g) = m(h)
for all m ∈ A, then also m(g) = m(h) for all m ∈ B. It is somewhat self-
suggesting how to connect functional dependencies with formal context implica-
tions: From a given many-valued context (G, M, W, I) construct a formal context
(G × G, M, IN) by

(g, h) IN m : ⇐⇒ m(g) = m(h).

Without problems it can be proved that the implications holding in this context
are precisely the functional dependencies of (G, M, W, I).

It is worthwhile to describe the formal concepts of the context (G×G, M, IN)
obtained above. Each such formal concept (A, B) has as its extent A a subset
of G × G, i.e., a relation on G, and as its intent a subset B ⊆ M of attributes.
Indeed, (A, B) is a formal concept of (G, M, IN) precisely if A is the indiscerni-
bility corresponding to B and at the same time B is the maximal attribute set
inducing this indiscernibility relation. We call such a maximal set a coreduct, in
analogy to a reduct, which in Rough Set Theory is a minimal set determining
an indiscernibility relation.

3 Linguistic Variables

Formal Concept Analysis offers a more structural view of data than functional
dependencies can express. Functional dependencies are based (only) on the equal-
ity or inequality of attribute values, but often there is more information available.
For example, the values of an attribute may carry a (partial) order. This is the
case both for numerical attribute values and for the values of a so-called lin-
guistic variable (Zadeh [7], see also Wolff [6]). There is no unified definition

Non-symmetric Indiscernibility 29

of linguistic variables, the term refers to quantities with values from language,
like “large” or “cold”. Formal Concept Analysisoffers a natural formalisation
of linguistic variables: Many-valued attributes. There is no restriction on what
the values of a many-valued attribute should be. Words, or even sentences from
language are permitted as well as numerical values.

The set of all values of a many-valued attribute may be structured. Some
attribute values may imply others, some may be mutually exclusive. For example
“very cold” is usually meant to be stronger than “cold”, and to be exclusive to
“hot”. Such value constraints can be expressed in Formal Concept Analysisusing
the method of conceptual scaling. For our purposes here it suffices however to
assume that the attribute values are preordered, i.e., that there is a reflexive
and transitive subsumption relation � on the values. a � b expresses that every
object having attribute value a also (implicitly) has the value b. The subsumption
order is actually the object order, as introduced above, of the conceptual scale
corresponding to the linguistic variable.

The presence of such a subsumption relation suggests a non-symmetric inter-
pretation of indiscernibility, as in the following example:

Consider a data set on persons with a linguistic variable for family relation-
ships, the values of which include “mother” and “parent”, and assume that
“parent” subsumes “mother”. Then every attribute-definable subset containing
all parents automatically contains all mothers, but not vice versa. Therefore
the attribute value ”‘parent”’ cannot discern from ”‘mother”’, but ”‘mother”’
discerns from ”‘parent”’.

If one follows this view, then the natural new definition of the indiscernibility
relation for a many-valued context

(G, M, (W,�), I)

with ordered values is to call an object h indiscernible from an object g iff

m(g) � m(h) for all m ∈ M.

What we obtain is exactly the indiscernibility preorder of the derived formal
context, as defined in Section 1.

The data base construction given in the previous section can easily be modi-
fied. From the given many-valued context (G, M, (W,�), I) construct the context

(G × G, M, IO)

by
(g, h) IO m : ⇐⇒ m(g) � m(h).

The concept extents of this formal context are precisely the dual indiscernibility
preorders with respect to their intents. The intents are precisely the coreducts
for this notion of indiscernibility. The implications of (G × G, M, IO) are the
same as the ordinal dependencies of (G, M, (W,�), I), defined as follows: An
attribute set B ⊆ M is ordinally dependent on an attribute set A ⊆ M iff
whenever m(g) � m(h) holds for all m in A then it also holds for all m ∈ B.
Note that ordinal dependency implies functional dependency. Therefore every
intent of (G × G, M, IN) is also an intent of (G × G, M, IO).

30 B. Ganter

4 Decision Making

Given a formal context (U, M, I) and a subset A ⊆ U , the task of decision making
is to describe A in terms of attribute combinations. Usually, A is not a concept
extent.

One builds decision rules, resembling implications, by selecting subsets H ⊆
M of attributes in such a way that H ′ ⊆ A. In the theory of JSM-reasoning,
such subsets are called hypotheses for A. Usually, A is described using several
hypotheses H1, H2, . . . , attempting to solve

A = H ′
1 ∪ H ′

2 ∪ . . .

as well as possible.
Not every subset admits such a description. In fact, the sets A that can be

described in the above-mentioned form

A = H ′
1 ∪ H ′

2 ∪ . . .

are precisely the definable sets defined earlier, i.e., the preorder ideals of the
object preorder. Indeed, every extent H ′ is a preorder ideal, and if A is a preorder
ideal, then

A =
⋃

g∈A

(g′)′.

Rough sets for non-symmetric indiscernibility relations therefore use the same
definable sets for their approximations as JSM-theory can describe using (dis-
junctions of) hypotheses. We summarise our findings in the following theorem.

Theorem 1 (characterising the definable sets). Let (U, M, I) be a formal
context, let ≤ be its object preorder and let the lower and upper approximation
operator be defined as above. Then the following families of sets are identical:

1. The images of the lower approximation operator,
2. the images of the upper approximation operator,
3. the unions of extents of (U, M, I),
4. the preorder ideals of the object preorder ≤,
5. the extents of (U, U,
≥).

These sets are called the definable object sets of (U, M, I). The union and the
intersection of definable sets is definable.

Together with S. Kuznetsov we have worked out some computational aspects of
hypothesis generation in terms of non-symmetric indiscernibility, see [3]

5 The Lattice of Rough Set Approximations

The definable sets, ordered by set inclusion, form a distributive complete lattice.
The lattice operations are set union and intersection. The pairs (A, B) of defin-
able sets are the elements of the direct square of this lattice and thereby form

Non-symmetric Indiscernibility 31

a lattice as well. The rough set approximations (R(A), R(A)) are contained in
this lattice, but do not necessarily form a sublattice, because the upper approx-
imation of an intersection is not necessarily the intersection of the individual
upper approximations. Instead, the rough set approximations generate a com-
plete sublattice of the lattice of pairs of definable sets. We can say a little more:
Since

R(A) ⊆ R(A)

holds for all sets A ⊆ U , the complete sublattice generated by such pairs must
be contained in the order relation of the lattice of definable sets.

We have given elsewhere [2] a characterisation of this sublattice. It is the
concept lattice of the formal context in Figure 1.

U �≥

U

U �≥

U

�≥

∗

Fig. 1. The formal context for the lattice of rough set approximations in the case of
an indiscernibility preorder. The relation in the lower left quadrant is U × U , except
for those pairs (u, u), where u is an isolated point, i.e., both minimal and maximal in
the preorder.

The context construction given in [2] is more general. It is based on the fact
that subdirect products of complete lattices can be described by so-called P -
fusions of formal contexts.

That isolated points need special treatment is familiar already from the the-
ory of indiscernibility equivalence relations, where they correspond to singleton
equivalence classes. For preorders we even have to distinguish two cases:

Isolated points, that is, objects incomparable to all other objects. If u is
isolated, then

u ∈ R(A) ⇐⇒ u ∈ A ⇐⇒ u ∈ R(A).

Moreover,

(R(A ∪ {u}), R(A ∪ {u})) = (R(A) ∪ {u}, R(A) ∪ {u}).

As a consequence, the lattice of rough set approximations splits into a direct
product of the two-element lattice and the lattice of rough set approxima-
tions not containing u.

Singleton equivalence classes, consisting of those elements u which do not
have a mutually indiscernible partner, i.e., an element v
= u such that u ≥ v

32 B. Ganter

and v ≥ u. Let u be such an element, and assume that ↓ u
= {u}. Then
both ↓ u\{u} and ↓ u are definable sets, and they differ only by u. But then
(↓ u \ {u}, ↓ u) cannot be of the form

(↓ u \ {u}, ↓ u) = (R(A), R(A))

for some A ⊆ U . Note that
– for A :=↓ u \ {u} we get (R(A), R(A)) = (↓ u \ {u}, ↓ u \ {u}), and
– for A := {u} we get (R(A), R(A)) = (∅, ↓ u), but

(↓ u \ {u}, ↓ u \ {u}) ∨ (∅, ↓ u) = (↓ u \ {u}, ↓ u).

Some remarks must be made about generating the lattice of rough set approx-
imations. It was said above that the pairs (R(A), R(A)) do not form, but merely
generate a sublattice of the lattice of pairs of definable sets. This is irritating
in two different ways: Firstly, we may discover that the set of such pairs, with
the induced ordering, is indeed lattice ordered, but not a sublattice. Secondly, it
may be asked if the properly generated elements have a meaning. Why should
we consider pairs that do not actually approximate anything?

It turns out that the properly generated elements are exceptional cases, caused
by singleton equivalence classes. Simply doubling such points removes the prob-
lem, as will be shown below. Before going into more detail, we demonstrate the
effect by continuing a small example from [2]. Figure 2 shows an ordered set,
representing the indiscernibility (pre-)order of our example. Next to it there is
the lattice of its order ideals. These are, according to Theorem 1, precisely the
definable sets.

The ordered set has 4 elements and consequently 16 subsets A, which indeed
have mutually distinct rough set approximations (R(A), R(A)). They correspond
to the shaded elements in Figure 3. We know from [2] that the lattice generated
by the rough set approximations is isomorphic to the order of the lattice in
Figure 2 (since there are no isolated elements). Indeed, there are 31 comparabil-
ities in the lattice of definable sets (Figure 2) and consequently 31 elements in
Figure 3. Approximately half of these elements are actually approximations. For
example, (∅, {f, m}) and ({f, m}, {f, m, p, w}) are generated, but are not rough
set approximations.

father mother

parent woman

father mother

parent

woman

Fig. 2. An ordered set, and its lattice of order ideals (with object labels only)

Non-symmetric Indiscernibility 33

f

m

p

w

f m

p

w

Fig. 3. The lattice of rough set approximations. Each concept extent E corresponds to
a pair consisting of a lower and of an upper approximation. The lower approximation
is formed by the underlined elements, the upper by the overlined elements in E. The
shaded elements correspond to the pairs (R(A),R(A)), A ⊆ {f, m, p, w}.

Doubling all elements results in the same lattice structure. But now all lattice
elements are rough sets. Figure 4 shows how the two above-mentioned elements
are obtained.

Theorem 2. An indiscernibility preorder has no singleton equivalence classes if
and only if each pair in the sublattice generated by rough set approximations is
itself a rough set approximation.

Proof. Suppose there are no singleton equivalence classes. In particular then the
preorder has no isolated points. The generated sublattice therefore consist of all
pairs (L, U) of definable sets with L ⊆ U . Now let A := L ∪ R, where R is a
system of representatives of the equivalence classes of U (containing exactly one
element from each equivalence class in U). Obviously, L is the largest union of
equivalence classes contained in A, and U is the smallest union of equivalence
classes containing A. But both U and L are definable sets. Therefore

(L, U) = (R(A), R(A)).

34 B. Ganter

father mother

parent woman

father mother

parent woman

Fig. 4. The indiscernibility preorder from Figure 2, with doubled elements. Doubled
elements have the same label and are mutually indiscernible. Choosing for A the
set of marked elements yields (R(A), R(A)) = (∅, {f, m}) for the left diagram and
(R(A), R(A)) = ({f, m}, {f, m, p, w}) for the right one.

The converse was already discussed above: If {u} is a singleton equivalence class,
then (↓ u \ {u}, ↓ u) is an ordered pair of definable sets, but not of the form
(R(A), R(A)) for any A ⊆ U . ��

6 Conclusion

Non-symmetric indiscernibility relations,more precisely indiscernibility preorders,
arise naturally from hierarchically structured data. Indiscernibility equivalence
relations are obtained from scaling many-valued data nominally, while the gen-
eral method of conceptual scaling leads to indiscernibility preorders. Definable
sets turn out to be the preorder ideals. They form a distributive lattice, as in
the case of an equivalence relation. The role of isolated points and singleton
equivalence classes is more complicated, but can be handled.

References

1. Baixeries, J.: A Formal Concept Analysis Framework To Model Functional Depen-
dencies. In: Proceedings of Mathematical Methods for Learning (2004)

2. Ganter, B.: Lattices of Rough Set Abstractions as P-Products. In: Medina, R.,
Obiedkov, S. (eds.) ICFCA 2008. LNCS (LNAI), vol. 4933, pp. 199–216. Springer,
Heidelberg (2008)

3. Ganter, B., Kuznetsov, S.: Scale Coarsening as Feature Selection. In: Medina, R.,
Obiedkov, S. (eds.) ICFCA 2008. LNCS (LNAI), vol. 4933, pp. 217–228. Springer,
Heidelberg (2008)

4. Pawlak, Z.: Rough Sets. International Journal of Computer and Information Sci-
ences 11, 341–356 (1982)

5. Pawlak, Z.: Rough Sets: Theoretical Aspects of Reasoning About Data. Kluwer
Academic Publishing, Dordrecht (1991)

6. Wolff, K.E.: Concepts in Fuzzy Scaling Theory: Order and Granularity. Fuzzy Sets
and Systems 132(1) (2002)

7. Zadeh, L.: The concept of a linguistic variable and its applications to approximate
reasoning. Parts I–III, Information Sciences 8 (1975), 9 (1976)

8. See for an extensive bibliography, http://roughsets.home.pl/

Computing Graph-Based Lattices from Smallest

Projections

Sergei O. Kuznetsov

State University Higher School of Economics (SU HSE),
Pokrovskii bd. 11, Moscow 109028, Russia

skuznetsov@hse.ru

Abstract. From the mathematical perspective, lattices of closed de-
scriptions, which arise often in practical applications can be reduced to
concept lattices by means of the Basic Theorem of Formal Concept Anal-
ysis (FCA). From the computational perspective, in many cases it is more
advantageous to process closed descriptions and their lattices directly,
without reducing them to concept lattices. Here a method for computing
lattices with descriptions given by sets of graphs, starting with rough
approximations is considered and compared to previous approaches.

1 Introduction

Recently, the problem of analyzing data given by labeled (hyper)graphs attracted
much attention in various computer science communities due to its importance
in many applications, from chemistry to text analysis [2, 9, 14, 15, 17, 20, 28–30].
Like in Data mining of 1990s the researchers came to the idea of a closed graph
which can be very useful for defining association rules on graphs: As reported
in [30], CloseGraph algorithm computes frequent graphs much faster than its
forerunner gSpan [29], and WARMR [15], an ILP program.

As for FCA, a lattice on (closed) sets of labeled graphs, representing molecules,
was proposed much earlier [18–21]. The lattice on graph sets is induced by an
operation which takes a pair of graphs to the set of its maximal common sub-
graphs. This operation induces a meet (infimum) operation on sets of labeled
(hyper)graphs: it is idempotent (X � X = X), commutative (X � Y = Y � X),
and associative (X � (Y � Z) = (X � Y) � Z). These properties allow one to
compute similarity of graph sets by means of algorithms for computing closed
sets (see review [16]) well-known in Formal Concept Analysis [12].

In [11] we described a general framework, called pattern structures, which
allows one to define similar lattices for sets of arbitrary partially-ordered de-
scriptions and relate them to concept lattices using the Basic Theorem of FCA.

The main problem in practical implementation of these lattices is that of com-
putational complexity, e.g., in case of graph sets even testing subgraph isomor-
phism is an NP-complete problem, the problem of computing common maximal
subgraphs of two graphs being NP-hard.

K.E. Wolff et al. (Eds.): KONT/KPP 2007, LNAI 6581, pp. 35–47, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

36 S.O. Kuznetsov

A theoretical means for approximate computation in semilattices, called pro-
jections of pattern structures, was proposed in [11] and the first computer im-
plementation was described in [7].

The algorithm computing the lattice of graph sets described in [20] constructs
the lattice (seen in the same perspective as a concept lattice) in a bottom-up
way, starting from object “intents” (given by graphs). This algorithm is a simple
modification of a standard FCA algorithm, however it does not realize the idea
of constructing a sequence of projections, starting with the roughest one, and
refining it until an appropriate level [11]. In standard FCA, this would be an
algorithm which proceeds from attribute extents, however, one does not have
attributes when working with graph sets.

In this paper we propose an algorithm which constructs the lattice of graph
sets in a top-down way, starting from smallest subgraphs of the graphs in a
dataset. We show the advantages of this algorithm over the previous, bottom-up
algorithm.

The paper is organized as follows. In the second section we describe the general
theoretical framework for computing similarity (meet) of graph sets together
with a means for its approximate computations. In the third section we discuss
a method for analyzing graph datasets based on the framework and discuss
its drawbacks. In the fourth section we propose a new algorithm, discuss its
complexity and advantages over the previous approach.

2 Pattern Structures on Sets of Graphs

In [18–20] a semilattice on sets of graphs with labeled vertices and edges was
proposed and in [11] this semilattice was generalized to arbitrary pattern struc-
tures. As in the general case, the lattice on graph sets is based on a natural
“containment” (i.e., in case of graphs, subgraph isomorphism) relation between
graphs with labeled vertices and edges. Consider an ordered set P of connected
graphs1 with vertex and edge labels from the set L with partial order �. Each
labeled graph Γ from P is a quadruple of the form ((V, l), (E, b)), where V is
a set of vertices, E is a set of edges, l:V → L is a function assigning labels to
vertices, and b: E → L is a function assigning labels to edges.

For two graphs Γ1 := ((V1, l1), (E1, b1)) and Γ2 := ((V2, l2), (E2, b2)) from P
we say that Γ1 dominates Γ2 or Γ2 ≤ Γ1 (or Γ2 is a subgraph of Γ1) if there
exists an injection ϕ:V2 → V1 such that it

– respects edges: (v, w) ∈ E2 ⇒ (ϕ(v), ϕ(w)) ∈ E1,
– fits under labels: l2(v) � l1(ϕ(v)), (v, w) ∈ E2 ⇒ b2(v, w) � b1(ϕ(v), ϕ(w)).

Obviously, (P,≤) is a partially ordered set.
Example 1. Let L = {C, NH2, CH3, OH, x} then we have the following rela-
tions:

1 Omitting the condition of connectedness, one obtains a (computationally harder)
model that accounts for multiple occurrences of subgraphs.

Computing Graph-Based Lattices from Smallest Projections 37

C CH3

C

Cl

≤
CH3 C OH

C

Cl CH3

x C x

C

NH2 OH

≤
NH2 C OH

C

Cl CH3

vertex labels are unordered x � A for any vertex label A ∈ L

Now a similarity operation � on graph sets can be defined as follows: For two
graphs X and Y from P

{X} � {Y } := {Z | Z ≤ X, Y, ∀Z∗ ≤ X, Y Z∗ 	≥ Z},
i.e., {X} � {Y } is the set of all maximal common subgraphs of graphs X and
Y . Similarity of non-singleton sets of graphs {X1, . . . , Xk} and {Y1, . . . , Ym} is
defined as

{X1, . . . , Xk} � {Y1, . . . , Ym} := MAX≤(∪i,j({Xi} � {Yj})),
where MAX≤(X) returns maximal (w.r.t. ≤) elements of X . Here is an example
of applying �:

CH3 C OH

C

NH2

⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

⎫
⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

�
CH3 C Cl

C

OH

,

C CH3

C

Cl

⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

⎫
⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

=
C

C

OH

,

C CH3

C

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

The similarity operation � on graph sets is commutative: X � Y = Y � X and
associative: (X � Y) � Z = X � (Y � Z).

A set X of labeled graphs from P for which � is idempotent, i.e., X � X =
X holds, is called a pattern of P . For patterns we have MAX≤(X) = X . For
example, for each graph g ∈ P the set {g} is a pattern. On the contrary, for
Γ1, Γ2 ∈ P such that Γ1 ≤ Γ2 the set {Γ1, Γ2} is not a pattern. Denote by D
the set of all patterns of P , then (D,�) is a semilattice with infimum (meet)
operator �. The natural subsumption order on patterns is given by

c � d : ⇐⇒ c � d = c.

Let E be a set of example names, and let δ : E → D be a mapping, taking
each example name to {g} for some labeled graph g ∈ P (thus, g is the “graph
description” of example e). The triple (E, (D,�), δ) is a particular case of a
pattern structure [11]. Another example of an operation � may be the following
semilattice on closed intervals from [19]: for a, b, c, d ∈ R, [a, b] � [c, d] = [max
{a, c}, min {b, d}] if [a, b] and [c, d] overlap, otherwise [a, b] � [c, d] = ∅. This
semilattice, where numbers are values of the activation energy (computed for
molecules by a standard procedure, e.g. see [32]) was used in predicting toxicity
of alcohols and halogen-substituted hydrocarbons (see Section 4). The resulting
similarity semilattice in this application is that on pairs, where the first element
is a graph set and the second element is a numerical interval.

38 S.O. Kuznetsov

Derivation operators are defined as

A� := �e∈A δ(e) for A ⊆ E

and

d� := {e ∈ E | d � δ(e)} for d ∈ D.

For a, b ∈ D the pattern implication a → b holds if a� ⊆ b�, and the pattern
association rule a −→c,s b with confidence c and support s holds if |a�∩b�|

|G| ≥ s

and |a�∩b�|
|a�| ≥ c. Implications are the exact association rules, i.e., association

rules with confidence = 1. Operator (·)�� is a closure operator on patterns, since
it is

idempotent: d���� = d��,
extensive: d � d��,
monotone: d�� � (d ∪ c)��.

For a set X the set X�� is called closure of X . A set of labeled graphs X
is called closed if X�� = X . This definition is related to the notion of a closed
graph [30], which is important for computing association rules between graphs.
Closed graphs are defined in [30] in terms of “counting inference” as follows.

Given a labeled graph dataset D, the support of a graph g or support(g) is
the set (or the number) of graphs in D, in which g is a subgraph. A graph g is
called closed if no supergraph f of g (i.e., a graph such that g is isomorphic to
a subgraph of f) has the same support.

Note that the definitions distinguish between a closed graph g and the closed
set {g} consisting of one graph g. Closed sets of graphs form a meet semilattice
w.r.t. the infimum or meet operator. A finite meet semilattice is completed to a
lattice by introducing a unit (maximal) element. Closed graphs do not have this
property, since in general, there can be no supremum and/or no infimum of two
given closed graphs. Let a dataset described by a pattern structure (E, (D,�), δ)
be given.

Proposition. The following two properties hold for a pattern structure
(E, (D,�), δ):

1. For a closed graph g there is a closed set of graphs G such that g ∈ G.
2. For a closed set of graphs G and an arbitrary g ∈ G, graph g is closed.

Proof. 1. Consider the closed set of graphs G = {g}��. Since G consists of all
maximal common subgraphs of graphs that have g as a subgraph, G contains as
an element either g or a supergraph f of g. In the first case, property 1 holds.
In the second case, we have that each graph in G that has g as a subgraph also
has f as a subgraph, so f has the same support as g, which contradicts the fact
that g is closed. Thus, G = {g}�� is a closed set of graphs satisfying property 1.
2. Consider a closed set of graphs G and g ∈ G. If g is not a closed graph, then
there is a supergraph f of it with the same support as g has and hence, with the
same support as G has. Since G is the set of all maximal common subgraphs of
the graphs describing examples from the set G� (i.e, its support), f ∈ G should

Computing Graph-Based Lattices from Smallest Projections 39

hold. This contradicts the fact that g ∈ G, since a closed set of graphs cannot
contain as elements a graph and a supergraph of it (otherwise, its closure does
not coincide with itself). �

Therefore, one can use algorithms for computing closed sets of graphs, e.g., the
algorithm in [20], to compute closed graphs. With this algorithm one can also
compute all frequent closed sets of graphs, i.e., closed sets of graphs with support
above a fixed minsup threshold (by introducing a minor variation of the condition
that terminates computation branches).

Computing � may require considerable computation resources: even testing
� is NP-complete. To approximate graph sets we consider projection (kernel)
operators [11], i.e. mappings of the form ψ: D → D that are

monotone: if x � y, then ψ(x) � ψ(y),
contractive: ψ(x) � x, and
idempotent: ψ(ψ(x)) = ψ(x).

Any projection of the semilattice (D,�) is �-preserving, i.e., for any X, Y ∈ D

ψ(X � Y) = ψ(X) � ψ(Y),

which helps us to relate learning results in projections to those with initial
representation (see Section 3).

In our computer experiments in [22] we used several types of projections of
sets of labeled graphs that are natural in chemical applications:

– k-chain projection: a set of graphs X is taken to the set of all chains with k
vertices that are subgraphs of at least one graph of the set X ;

– k-vertex projection: a set of graphs X is taken to the set of all subgraphs
with k vertices that are subgraphs of at least one graph of the set X ;

– k-cycles projection: a set of graphs X is taken to the set of all subgraphs
consisting of k adjacent cycles of a minimal cyclic basis of at least one graph
of the set X .

3 Analyzing Graph Datasets Using Lattice-Based
Approaches

JSM-hypotheses were defined in [6] by means of a special logical language for
standard object-attribute representation. These hypotheses were redefined as
JSM- or concept-based hypotheses in [10, 11, 19, 20] in terms of Formal Concept
Analysis (FCA). For graph sets hypotheses can be defined as follows. Suppose
we have a set of positive examples E+ and a set of negative examples E− w.r.t.
a target attribute.

A graph set h ∈ D is a positive hypothesis iff

h� ∩ E− = ∅ and ∃A ⊆ E+ : A� = h.

40 S.O. Kuznetsov

Γ1: Γ2: Γ3: Γ4:

Γ5: Γ6:

{1,2,3,4}

{1,2,3} {2,3,4}

{1,2} {2,3}

{1} {2} {3} {4}

∅

������
�����

������
�����

,

������
�����

������
����� ,

������
�����

������
�����

, ,

������
�����

������
�����

������
�����

������
�����

������
�����

������
�����

,

������
�����

������
�����

,

������
�����

������
�����

������
�����

������
�����

������
�����

������
�����

(+)-examples 1, 2, 3, 4

(-)-example 6

�

Fig. 1.

Informally, a positive hypothesis is a similarity of positive examples, which does
not cover any negative example. A negative hypothesis is defined analogously, by
interchanging + and −.

The meet-preserving property of projections implies that a hypothesis Hp in
data under projection ψ corresponds to a hypothesis H in the initial represen-
tation for which the image under projection is equal to Hp, i.e., ψ(H) = Hp.

Hypotheses are used for classification of undetermined examples along the
lines of [6] in the following way. If e is an undetermined example (example
with the unknown target value), then a hypothesis h with h � δ(e) is for the
positive classification of g if h is a positive hypothesis and h is for the negative
classification of e if h is a negative hypothesis.

An undetermined example e is classified positively if there is a hypothesis
for its positive classification and no hypothesis for its negative classification.
Example e is classified negatively in the opposite case. If there are hypotheses for

Computing Graph-Based Lattices from Smallest Projections 41

both positive and negative classification, then some other methods (e.g., based
on standard statistical techniques) may be applied. Obviously, for classification
purposes it suffices to use only hypotheses minimal w.r.t. subsumption �.

Notwithstanding its simplicity, the model of learning and classification with
concept-based hypotheses proved to be efficient in numerous computer experi-
ments, including PTC competition [4, 25].

An algorithm for computing hypotheses on closed graph sets was described
in [20]. In [22] the algorithm was realized by simulating � operation with usual
set-theoretic intersection ∩ in the following way. For each example e described
by a labeled graph δ(e) first a set of all subgraphs of δ(e) is computed up to the
projection level k = N . Each such subgraph is declared to be a binary attribute
and example e is represented by the set S(e) of binary attributes that correspond
to subgraphs of δ(e). For two examples e1 and e2 the intersection S(e1) ∩ S(e2)
is equivalent to finding the similarity ψ(δ(e1)) � ψ(δ(e2)).

Example 2. In Figure 1 consider JSM-hypotheses for the dataset with posi-
tive examples described by graphs Γ1,..,Γ4 and negative examples described by
graphs Γ5 and Γ6. Here Γ1 � Γ2 � Γ3 and Γ2 � Γ3 � Γ4 are minimal positive
hypotheses, whereas Γ1 � Γ2 � Γ3 � Γ4 is not a positive hypothesis.

Standard Weka procedures for C4.5, Naive Bayes and JRip were run [22] in
QuDA environment [13, 26]. Computing concept-based hypotheses in QuDA is
realized by means of algorithms for computing lattices of closed sets (or concept
lattices), see review [16].

After that reduction of attributes [12] was performed: each column of the
example/attribute binary table that is equal to the (component-wise) product
(conjunction) of some other columns, was removed. Reduction guarantees [12]
that thus reduced set of columns gives rise to the isomorphic lattice of closed sets
of attributes and thus, to the same set of concept-based hypotheses as defined
above.

The whole PBRL (project-binarize-reduce-learn) procedure proposed in [22]
looks as follows:

1. For each example e and for k compute i-projections of δ(e) for 1 ≤ i ≤ k.
The subgraphs from these projections are declared to be attributes;

2. Compose example/attribute context;
3. For each learning method LM run LM, classify examples from test sets,

compute cross validation;
4. Clarify and reduce the binary (example/attribute) context;
5. For reduced context and for each learning method LM run LM, classify

examples from test sets, compute cross-validation.

Using this approach we analyzed several chemical datasets2 in [22]. For each
dataset we computed graph projections: mostly, k-vertex projections and k-
cycles projections for the dataset with polycyclic aromatic hydrocarbons. Every
subgraph of each graph in the projection (up to isomorphism) was declared to

2 These datasets can be downloaded from http://ilp05-viniti.narod.ru

42 S.O. Kuznetsov

be a binary attribute, so each graph dataset was turned into a binary object-
attribute table, which was then reduced. For each dataset we ran several learning
methods realized within QuDA environment (JSM or concept-based hypotheses,
induction of decision trees by C4.5, Naive Bayes, JRip) comparing the results
with those based on same learning methods and a chemical (descriptor) attribute
language, called FCSS [1], with predefined descriptors.

Although the results of comparison were in favor of graph representation, the
major problem of this approach that we encountered in [22] was that of space
complexity: although usually the reduced set of attributes was feasible, the initial
set of attributes before reduction was too large. For databases we studied, we
usually could not produce projections of size larger than 9 for all graphs in the
database. By the definition of a projection, one cannot do it object-incrementally,
but one can do it attribute-incrementally. For graph projections this means that
one should start from smallest subgraphs of graphs from a dataset and proceed
by increasing the graph size. Another point is that instead of considering k-
projections of graphs, one can consider closures of these projections, since they
are subgraphs of the same graphs in the dataset as the initial k-projections. Thus,
we come up to the necessity of designing an algorithm that would construct the
pattern lattice on graph sets in the top-down way: starting with smallest possible
graphs.

4 A Top-Down Algorithm

In this section we propose a top-down algorithm for computing the set of all
pattern concepts together with the covering relation on the set of concepts (i.e.,
graph of the diagram).

Assume that graph edges are unlabeled. This does not result in the loss of
generality, since the case with labeled edges can be reduced to the one with
labeled vertices. Let the set of vertex labels be L = {l1, . . . , ln}, the vertex
labeling function is denoted by l(·) and G = {Γ1, . . . , Γm} denotes a set of graphs.
For i ∈ [1, m], let Γi = (Vi, Ei) and for j ∈ [1, |Vi|] let vj

i denote the jth vertex
of Γi. Let also k ∈ [1, n], and Λ be a special symbol.

if k < n then next(G, Γi, v
j
i , ak) = (G, Γi, v

j
i , ak+1) else

if j < |Vi| then next(G, Γi, v
j
i , ak) = (G, Γi, v

j+1
i , a1) else

if i < m then next(G, Γi, v
j
i , ak) = (G, Γi+1, v

1
i+1, a1)

else next(G, Γi, v
j
i , ak) = Λ.

The function “+” below realizes the idea of a “minimal extension” of a graph
set. If we consider only connected subgraphs, the function +(G, Γi, v

j
i , ak) is

defined as follows: +Λ = Λ,

+(G, Γi, v
j
i , ak) := (G \ Γi) ∪ Γ ∗

i ,

where

Γ ∗
i = (V ∗

i , E∗
i), V ∗

i = Vi ∪ {v}, E∗
i = Ei ∪ (vj

i , v), v 	∈ Vi, l(v) = ak.

Computing Graph-Based Lattices from Smallest Projections 43

If one considers not necessarily connected subgraphs, then the definition of next
and “+” should be made independent of the “connecting” vertex vj

i , e.g., for “+”
operation as

+(G, Γi, ak) := (G \ Γi) ∪ Γ ∗
i ,

where
Γ ∗

i = (V ∗
i , Ei), V ∗

i = Vi ∪ {v}, v 	∈ Vi, l(v) = ak.

Further on we consider only the case of connected subgraphs, the case with
general subgraphs is treated similarly.

By definitions, (+next(G, Γi, v
j
i , ak))� is the set of objects with common de-

scription (+next(G, Γi, v
j
i , ak)), i.e., a pattern extent. The pattern

(+next(G, Γi, v
j
i , ak))��

is the closure of the pattern

(+next(G, Γi, v
j
i , ak)).

We set by definition Λ�� = Λ� = ∅.
If X stays for a pattern concept (G�,G) the function covers(X) computes

concepts which X covers in the lattice order, i.e., taking the set
⋃

i,j,k

(+(next(G, Γi, v
j
i , ak)))�

it returns concepts that correspond to maximal extents of this set. This function
can be efficiently realized (in O(|X |2 ·|G|) time), since extents are given as tuples.

There can be various efficient implementations of storing concepts together
with the covering relation on them. For the sake of simplicity we consider here
the one, consisting of the (lexicographically ordered) extent list, where from each
extent there is a pointer to the corresponding intent and a pointer to the set
of concepts covered by the pattern concept with this extent. So, the function
save(X ,covers(X)) takes a concept X , the corresponding set covers(X) and
inserts extent of X in the list of extents, making pointers to intent of X and
elements of covers(X) in the list of extents.

The top-down algorithm for graph lattices (TDAGL) traverses the diagram of
the lattice in a standard depth-first way. The right margin shows the worst-case
complexity of the algorithms steps

tdagl(X):
mark X as visited O(1)
process(X) O((α + β) · maxi|Vi| · m · n · |G|)
for all Y ∈ covers(X) and Y not visited do

tdagl(Y)

44 S.O. Kuznetsov

The procedure process(X) for X = (G�,G��) is described as follows:

process(X)
for all i, j, k

compute (+next(G, Γi, v
j
i , ak))�� O(α · maxi|Vi| · m · n · |G|)

compute (+next(G, Γi, v
j
i , ak))� O(β · maxi|Vi| · m · n · |G|)

save(X , covers(X)) O(|G|)
for all Y ∈ covers(X) do

if extent(Y) 	∈ extentlist then insert(extent(Y), extentlist)
O(|G| · |covers(X)|).

4.1 Top-Down and Bottom-Up Algorithms

The total worst-case complexity of TDAGL, which constructs the set of all pat-
tern concepts together with the covering relation on them is

O((α + β) · | ≺ | · maxi|Vi| · m · n · |G|),
where | ≺ | is the size of the covering relation ≺ on pattern concepts (i.e., the
number of edges in the lattice diagram). This complexity is similar to that of
the bottom-up algorithm.

If we compare computing graph-based hypotheses with a bottom-up algorithm
from [20] and TDAGL, we see that the latter one, supplied with an additional
command line, can backtrack generating a graph set G such that G� ⊆ G+,
thus outputting minimal hypotheses. With TDAGL one can efficiently compute
“weaker” hypotheses, based on a relaxation of the definition of a positive hy-
pothesis that allows for a restricted amount of counterexamples: |G� ∩G−| ≤ k,
where k is a parameter.

Another advantage of TDAGL in comparison with the algorithm described
in [20] is that the former can be considered as an algorithm for level-wise con-
struction of projections, starting from smallest ones. To be more precise, TDAGL
constructs closures (in the sense of (·)�� operator) of projections, which is more
useful. Indeed, consider two graph projections p1 and p2 that are subgraphs of
same graphs from the graph dataset. In PBRL procedure (see Section 2) these
two projections would first correspond to different attributes (they will be clari-
fied only on step 4), thus resulting in the above mentioned drastic growth of the
number of attributes. However, in TDAGL the two projections p1 and p2 will
occur together in the same pattern intent. Actually, the kth level of TDAGL out-
put gives closures of kth projections, the number of which is much smaller than
that of kth projections. The graphs comprising these closures may be declared
attributes of the representation context, thus making the number of attributes
smaller than the number of initial attributes in PBRL. Thus, TDAGL allows
one to change the first step of PBRL to

1*. For each example e and for k compute k-projections of δ(e). The graphs from
closures of these projections are declared to be attributes.

Computing Graph-Based Lattices from Smallest Projections 45

5 Conclusions

Lattices arising from descriptions other than sets of attributes are well-known
in FCA. Mathematically they are reduced to concept lattices by means of the
Basic Theorem of FCA. From the computer science perspective these lattices
present problems related to computational complexity.

A method for computing lattices with descriptions given by sets of graphs,
starting with rough approximations (low-level projections) was proposed. The
algorithm starts from minimal subgraphs and proceeds stepwise using lexico-
graphical order on lists of extents. In contrast to the previous algorithm which
constructs the lattice of graph sets bottom-up (starting from object descrip-
tions), this approach allows one to stop at an appropriate level of approximation
(projection), thus saving much time and space.

Acknowledgments. This work was supported by the joint COMO project of
the Deutsche Forschungsgemeinschaft (DFG) and the Russian Foundation for
Basic Research (RFBR).

References

1. Avidon, V.V., Pomerantsev, A.B.: Structure-Activity Relationship Oriented Lan-
guages for Chemical Structure Representation. J. Chem. Inf. Comput. Sci. 22(4),
207–214 (1982)

2. Borgelt, C., Berthold, M.R.: Mining Molecular Fragments: Finding Relevant Sub-
structures of Molecules. In: Zhong, N., Yu, P.S. (eds.) Proc. 2nd IEEE International
Conference on Data Mining, ICDM 2002, pp. 51–58 (2002)

3. Blinova, V.V., Dobrynin, D.A.: Languages for Representing Chemical Compounds
for Intelligent Systems of Chemical Design. Automatic Documentation and Math-
ematical Linguistics 3 (2000)

4. Blinova, V.G., Dobrynin, D.A., Finn, V.K., Kuznetsov, S.O., Pankratova, E.S.:
Toxicology analysis by means of the JSM-method. Bioinformatics 19, 1201–1207
(2003)

5. Cook, D.J., Holder, L.B.: Graph-Based Data Mining. IEEE Intelligent Sys-
tems 15(2), 32–41 (2000)

6. Finn, V.K.: Plausible Reasoning in Systems of JSM Type. Itogi Nauki i Tekhniki,
Seriya Informatika 15, 54–101 (1991) (in Russian)

7. Ganter, B., Grigoriev, P.A., Kuznetsov, S.O., Samokhin, M.V.: Concept-Based
Data Mining with Scaled Labeled Graphs. In: Wolff, K.E., Pfeiffer, H.D., Delugach,
H.S. (eds.) ICCS 2004. LNCS (LNAI), vol. 3127, pp. 94–108. Springer, Heidelberg
(2004)

8. Gonzalez, J.A., Holder, L.B., Cook, D.J.: Application of Graph-Based Concept
Learning to the Predictive Toxicology Domain. In: Helma, C., King, R.D., Kramer,
S., Srinivasan, A. (eds.) Proc. Workshop on Predictive Toxicology Challegnge at the
5th Conference on Data Mining and Knowledge Discovery, PKDD 2001, September
6 (2001)

9. Gonzalez, J.A., Holder, L.B., Cook, D.J.: Experimental Comparison of Graph-
Based Relational Concept Learning with Inductive Logic Programming Systems.
In: Matwin, S., Sammut, C. (eds.) ILP 2002. LNCS (LNAI), vol. 2583, pp. 84–100.
Springer, Heidelberg (2003)

46 S.O. Kuznetsov

10. Ganter, B., Kuznetsov, S.: Formalizing Hypotheses with Concepts. In: Ganter, B.,
Mineau, G.W. (eds.) ICCS 2000. LNCS (LNAI), vol. 1867, pp. 342–356. Springer,
Heidelberg (2000)

11. Ganter, B., Kuznetsov, S.O.: Pattern structures and their projections. In: Delu-
gach, H.S., Stumme, G. (eds.) ICCS 2001. LNCS (LNAI), vol. 2120, pp. 129–142.
Springer, Heidelberg (2001)

12. Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations.
Springer, Heidelberg (1999)

13. Grigoriev, P.A., Yevtushenko, S.A.: Elements of an Agile Discovery Environment.
In: Grieser, G., Tanaka, Y., Yamamoto, A. (eds.) DS 2003. LNCS (LNAI), vol. 2843,
pp. 311–319. Springer, Heidelberg (2003)

14. Inokuchi, A., Washio, T., Motoda, H.: Complete Mining of Frequent Patterns from
Graphs: Mining Graph Data. Machine Learning 50(3), 321–354 (2003)

15. King, R.D., Srinivasan, A., Dehaspe, L.: WARMR: A Data Mining tool for chemical
data. J. of Computer-Aided Molecular Design 15(2), 173–181 (2001)

16. Kuznetsov, S.O., Obiedkov, S.A.: Comparing performance of algorithms for gen-
erating concept lattices. J. Exp. Theor. Artif. Intell. 14(2-3), 189–216 (2002)

17. Kramer, S.: Structural Regression Trees. In: Proc. 13th National Conference on
Artificial Intelligence, AAAI 1996, pp. 812–819. AAAI Press/MIT Press (1996)

18. Kuznetsov, S.O.: Similarity operation on hypergraphs as a basis of plausible infer-
ence. In: Proc. 1st Soviet Conference on Artificial Intelligence, vol. 1, pp. 442–448
(1988)

19. Kuznetsov, S.O.: JSM-method as a machine learning method. Itogi Nauki i
Tekhniki, ser. Informatika 15, 17–50 (1991) (in Russian)

20. Kuznetsov, S.O.: Learning of Simple Conceptual Graphs from Positive and Neg-
ative Examples. In: Żytkow, J.M., Rauch, J. (eds.) PKDD 1999. LNCS (LNAI),
vol. 1704, pp. 384–391. Springer, Heidelberg (1999)

21. Liquiere, M., Sallantin, J.: Structural Machine Learning with Galois Lattice and
Graphs. In: Shavlik, J.W. (ed.) Proc. 15th International Conference on Machine
Learning, ICML 1998, pp. 305–313 (1998)

22. Kuznetsov, S.O., Samokhin, M.V.: Learning Closed Sets of Labeled Graphs for
Chemical Applications. In: Kramer, S., Pfahringer, B. (eds.) ILP 2005. LNCS
(LNAI), vol. 3625, pp. 190–208. Springer, Heidelberg (2005)

23. Nguyen, P.C., Washio, T., Ohara, K., Motoda, H.: Using a Hash-Based Method for
Apriori-Based Graph Mining. In: Boulicaut, J.-F., Esposito, F., Giannotti, F., et
al. (eds.) PKDD 2004. LNCS (LNAI), vol. 3202, pp. 349–361. Springer, Heidelberg
(2004)

24. Pfahringer, B.: The Futility of Trying to Predict Carcinogenicity of Chemi-
cal Compounds. In: Helma, C., King, R.D., Kramer, S., Srinivasan, A. (eds.)
Proc. of the Workshop on Predictive Toxicology Challenge at the 5th Confer-
ence on Data Mining and Knowledge Discovery, PKDD 2001, September 7 (2001),
http://www.predictive-toxicology.org/ptc/

25. Helma, C., King, R.D., Kramer, S., Srinivasan, A. (eds.): Proc. of the Workshop
on Predictive Toxicology Challegnge at the 5th Conference on Data Mining and
Knowledge Discovery, PKDD 2001, September 7 (2001),
http://www.predictive-toxicology.org/ptc/

26. Grigoriev, P.A., Yevtushenko, S.A., Grieser, G.: QuDA, a data miner’s discovery
environment, FG Intellektik, FB Informatik, Technische Universität Darmstadt,
Technical Report AIDA-03-06 (2003),
http://www.intellektik.informatik.tu-darmstadt.de/~peter/QuDA.pdf

Computing Graph-Based Lattices from Smallest Projections 47

27. Sebag, M.: Delaying the Choice of Bias: A Disjunctive Version Space Approach. In:
Saitta, L. (ed.) Proc. of the 13th International Conference on Machine Learning,
pp. 444–452 (1996)

28. Washio, T., Motoda, H.: State of the art of graph-based data mining. SIGKDD
Explorations Newsletter 5(1), 59–68 (2003)

29. Yan, X., Han, J.: gSpan: Graph-Based Substructure Pattern Mining. In: Proc.
IEEE Int. Conf. on Data Mining, ICDM 2002, pp. 721–724 (2002)

30. Yan, X., Han, J.: CloseGraph: mining closed frequent graph patterns. In: Getoor,
L., Senator, T.E., Domingos, P., Faloutsos, C. (eds.) Proc. of the 9th ACM
SIGKDD Int. Conf. on Knowledge Discovery and Data Mining, KDD 2003, pp.
286–295. ACM Press, New York (2003)

31. Witten, I.H., Frank, E.: Data Mining: Practical Machine Learning Tools with Java
Implementations. Morgan Kaufmann, San Francisco (2000)

32. Yan, L.-S.: Study of carcinogenic mechanism of polycyclic aromatic hydrocarbons-
extended by region theory and its quantitative model. Carcinogenesis 6(1), 1–6
(1985)

33. Woo, Y.-T., et al.: Use of mechanism-based structure-activity relationships anal-
ysis in carcinogenic ranking for drinking water desinfection by-products. Environ.
Health Perspect. (1), 75–87 (2002)

Combined Logics

of Knowledge, Time, and Actions
for Reasoning about Multi-agent Systems

Nikolay V. Shilov and Natalia O. Garanina

Institute of Informatics Systems, Russian Academy of Sciences
6, Lavrentiev ave., 630090, Novosibirsk, Russia

{shilov,garanina}@iis.nsk.su

Abstract. We present a summary of our studies (in period 2002-2007)
of the model checking problem for finitely-generated synchronous/asyn-
chronous environments with/without perfect recall for combinations of
propositional logics of (common) knowledge, (branching) time, and
actions.

1 Introduction

In recent years a surge of interest to applications of modal logics for specification
and validation of complex systems became evident. It holds in particular for
combined logics of knowledge, time and actions for reasoning about multi-agent
systems. In the next paragraphs we explain what are logics of knowledge, time
and actions from a viewpoint of mathematicians and philosophers. It provides
us a historic perspective and a scientific context for these logics.

For mathematicians and philosophers logics of actions, time, and knowledge
can be introduced in few sentences. A logic of actions (ex., EPDL – Elementary
Propositional Dynamic Logic [15]) is a polymodal variant of a basic modal logic
K [3] to be interpreted over arbitrary Kripke models. A logic of time (ex., PLTL
– Propositional Linear Temporal Logic [7]) is a modal logic with a number of
modalities that correspond to “next time”, “always”, “sometimes”, and “until”
to be interpreted in Kripke models over partial orders (discrete linear orders for
PLTL in particular). Finally, a logic of knowledge or epistemic logic (ex., PLK
– Propositional Logic of Knowledge [8,27]) is a polymodal variant of another
basic modal logic S5 [3] to be interpreted over Kripke models where all binary
relations are equivalences. We provide a brief introduction to modal logics in the
next section 2 with the aid of Elementary Propositional Dynamic Logic.

Variety of modal logics used for specification of multi-agent systems is due
to different properties to be expressed, and (also) due to complexity of model
checking and decidability problems for different logics. Dynamic logic and tem-
poral logics (and theirs variants with fixpoints) are very popular for reasoning
about actions and time. Combinations of these logics with logic of knowledge
becomes an actual research topic due to naturalness of notions of knowledge and

K.E. Wolff et al. (Eds.): KONT/KPP 2007, LNAI 6581, pp. 48–58, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Combined Logics of Knowledge, Time, and Actions for Reasoning 49

action, and their interactions for reasoning about multi-agent systems. Please
refer to section 3 for the definition of background and combined logics.

A number of techniques for (semi)automatic processing of a number of com-
bined logics have been under study. A comprehensive survey of examined logics,
techniques, and results is out of scope of the paper. Nevertheless we would like
to point out to some relevant research [5,6,8,10,13,14,17,18,23,25,26,33,34].

In contrast, the paper overviews and summarizes our research on model check-
ing problem for pairwise combinations of state-based program and branching-
time temporal logics

(1) Elementary Propositional Dynamic Logic (EPDL),
(2) Computation Tree Logic extended by actions (Act-CTL),
(3) the propositional μ-Calculus (μC)

with the following epistemic logics

(a) Propositional Logic of Knowledge for n agents (PLKn),
(b) Propositional Logic of Common Knowledge for n agents (PLCn).

Results of these studies are presented in the section 4. Previously they (altogether
with formal proofs) have been published by parts in a technical report [29], in
proceedings [30,11,32,12], and in a journal [31].

2 Elements of Modal Logic

All modal logics are languages that are characterized by syntax and semantics.
Let us define below a very simple modal logic in this way. This logic is called
Elementary Propositional Dynamic Logic (EPDL).

Let true, false be Boolean constants, Prp and Rel be disjoint sets of propo-
sitional and relational variables respectively. The syntax of the classical proposi-
tional logic consists of formulas which are constructed from propositional
variables and Boolean connectives ‘¬’ (negation), ‘∧’ (conjunction), ‘∨’ (disjunc-
tion), ‘→’ (implication), and ‘↔’ (equivalence) in accordance with the standard
rules. EPDL has additional formula constructors, modalities, which are associ-
ated with relational variables: if r is a relational variable and φ is a formula of
EPDL then

– ([r]φ) is a formula which is read as “box r-φ” or “after r always φ”;
– (〈r〉φ) is a formula which is read as “diamond r-φ” or “after r sometimes φ”.

The semantics of EPDL is defined in models, which are called Labeled Transition
Systems (LTS) by Computer Scientists and Kripke1 models by mathematicians
and philosophers. A model M is a pair (D, I) where the domain (or the universe)
D is a set, while the interpretation I is a pair of mappings (P, R). Elements of

1 Due to pioneering papers of Saul Aaron Kripke (born in 1940) on models for modal
logics.

50 N.V. Shilov and N.O. Garanina

the domain D are called states by Computer Scientists and worlds by mathe-
maticians and philosophers. The interpretation maps propositional variables to
sets of states P : Prp → 2D and relational variables to binary relations on states
R : Rel → 2D×D. We write I(p) and I(r) instead of P (p) and R(r) whenever it
is implicit that p and r are propositional and relational variables respectively.

Every model M = (D, I) can be viewed as a directed graph (infinite maybe)
with nodes and edges labeled by propositional and action variables respectively.
Its nodes are states of D. A node s ∈ D is marked by a propositional variable
p ∈ Prp iff s ∈ I(p). A pair of nodes (s1, s2) ∈ D×D is an edge of the graph iff
(s1, s2) ∈ I(r) for some relational variable r ∈ Rel; in this case the edge (s1, s2)
is marked by this relational variable r. Conversely, a graph with nodes and edges
labeled by propositional and relational variables respectively can be considered
as a model.

For every model M = (D, I) the entailment (validity, satisfiability) relation
‘|=M ’ between states and formulas can be defined by induction on formula struc-
ture: for every state s ∈ D

– s |=M true and not s |=M false;
– for any propositional variable p, s |=M p iff s ∈ I(p);
– for any formula φ, s |=M (¬φ) iff it is not the case s |=M φ;
– for any formulas φ and ψ,

• s |=M (φ ∧ ψ) iff s |=M φ and s |=M ψ;
• s |=M (φ ∨ ψ) iff s |=M φ or s |=M ψ;

– for any relational variable r, and formula φ,
• s |=M ([r]φ) iff (s, t) ∈ I(r) implies t |=M φ for every state t;
• s |=M (〈r〉φ) iff (s, t) ∈ I(r) and t |=M φ for some state t.

Semantics of the above kind is called possible worlds semantics.
Let us explain EPDL pragmatics by the following puzzle example. Alice and

Bob play the Number Game. Positions in the game are integers in [1..109]. An
initial position is a random number. Alice and Bob make alternating moves:
Alice, Bob, Alice, Bob, etc. Available moves are the same for both: if a current
position is n ∈[1..99] then (n + 1) and (n + 10) are possible next positions. A
player wins the game iff the opponent is the first to enter [100..109]. The problem:
to find all initial positions where Alice has a winning strategy.

Kripke model for the game is quite obvious:

– States correspond to game positions, i.e. integers in [1..109].
– Propositional variable fail is interpreted by [100..109].
– Relational variable move is interpreted by possible moves.

Formula ¬fail ∧ 〈move〉(¬fail ∧ [move]fail) is valid in those states where the
game is not lost, and there exists a move after which the game is not lost, and
then all possible moves always lead to a loss in the game. Hence this EPDL
formula is valid in those states where Alice has a 1-round winning strategy
against Bob.

Combined Logics of Knowledge, Time, and Actions for Reasoning 51

3 Combining Knowledge, Actions and Time

3.1 Propositional Logic for Epistemic Agents

Logics for reasoning about knowledge are also known as epistemic logics. One
of the simplest epistemic logics is Propositional Logic of Knowledge for n > 0
agents (PLKn) is defined below. Please refer to [8] for the definition of the more
complicated Propositional Logic of Common knowledge for n > 0 agents (PLCn).

A special terminology, notation and Kripke models are used in this frame-
work. A set of relational symbols Rel in PLKn consists of natural numbers [1..n]
representing names of agents. Notation for modalities is: if i ∈ [1..n] and φ is
a formula, then (Kiφ) and (Siφ) are used instead of ([i]φ) and (〈i〉φ). These
formulas are read as “(an agent) i knows φ” and “(an agent) i can suppose φ”.
For every agent i ∈[1..n] in every model M = (D, I), interpretation I(i) is an
“indistinguishability relation”, i.e. an equivalence relation between states that
the agent i can not distinguish. Every model M , where all agents are interpreted
in this way, is denoted as (D,∼1, ... ∼n, I) with explicit I(1) =∼1, ... I(n) =∼n

instead of the brief standard notation (D, I). An agent knows some “fact” φ in
a state s of the model M , if the fact is valid in every state t of this model that
the agent can not distinguish from s: s |=M (Kiφ) iff t |=M φ for every state t
such that s ∼i t. Similarly, an agent can suppose a “fact” φ in a state s of the
model M , if the fact is valid in some state t of this model that the agent can not
distinguish from s: s |=M (Siφ) iff t |=M φ for some state t such that s ∼i t.

The above possible worlds semantics of knowledge has been introduced in
[16]. A philosophical “motivation” behind it goes back to Plato who defined
“knowledge as true belief”, i.e. a personal (by an “agent”) perception (“belief”)
of the unverse that holds in the current state of the world (i.e. “is true”). Please
refer to [16,8,27] for more information.

3.2 Branching Temporal Logic with Actions

Another propositional polymodal logic is Computational Tree Logic with Ac-
tions (Act-CTL). Act-CTL is a variant of a basic propositional branching time
temporal logic, namely Computational Tree Logic (CTL) [7,4]. In Act-CTL the
set of relational symbols consists of action symbols Act. Each action symbol can
be interpreted by an “instant action” that is executable in one “undividable”
moment of time.

Act-CTL notation for basic modalities is: if b ∈ Act and φ is a formula, then
(AbXφ) and (EbXφ) are used instead of ([b]φ) and (〈b〉φ). But syntax of Act-
CTL has also some other special constructs associated with action symbols: if
b ∈ Act and φ and ψ are formulas, then (AbGφ), (AbFφ), (EbGφ), (EbFφ),
Ab(φUψ) and Eb(φUψ) are also formulas of Act-CTL. In formulas of Act-CTL
prefix ‘A’ is read as “for every run”, ‘E’ – “for some run”, a sub-index ‘b’ is
read as “in b-run(s)”, and stem ‘X’ is read as “next state”, ‘G’ – “always” or
“globally”, ‘F’ – “sometimes” or “future”, ‘U’ – “until”.

52 N.V. Shilov and N.O. Garanina

We have already explained semantics of (AbXφ) and (EbXφ) by referencing
to ([b]φ) and (〈b〉φ). Constructs ‘AbG’, ‘AbF’, ‘EbG’, and ‘EbF’ can be ex-
pressed in terms of ‘Ab(. . .U . . .)’ and ‘Eb(. . .U . . .)’, for example: (EbGφ) ≡
(Eb(trueUφ). (Please, refer to [31] for details.) Thus let us define below seman-
tics of ‘Ab(. . .U . . .)’ and ‘Eb(. . .U . . .)’ only.

Let M = (D, I) be a model. If b ∈ Act is an action symbol, then a partial
b-run is a sequence of states s0, . . . sk, s(k+1), · · · ∈ D (maybe infinite) such that
(sk, , s(k+1)) ∈ I(b) for every consecutive pair of states within this sequence; a
b-run is an infinite partial b-run or a finite b-run that can not be continued.
Then semantics of constructs ‘Ab(. . .U . . .)’ and ‘Eb(. . .U . . .)’ can be defined
as follows:

– s |=M (Ab(φUψ) iff for every b-run s0, . . . sk, . . . that starts in s (i.e. s0 = s)
there exists some n ≥ 0 for which sn |=M ψ and sk |=M φ for every k ∈
[0..(n − 1)];

– s |=M (Eb(φUψ) iff for some b-run s0, . . . sk, . . . that starts in s (i.e. s0 = s)
there exists some n ≥ 0 for which sn |=M ψ and sk |=M φ for every k ∈
[0..(n − 1)].

The standard branching-time temporal logic CTL can be treated as Act-CTL
with a single implicit action symbol for a tick of clocks. As follows from the
above, CTL and EPDL can be expressed in Act-CTL. In the next section 4 we
use a so-called propositional μ-Calculus (μC) of D. Kozen [20,22] that is more
expressive than Act-CTL. Please refer [28] for a gentle introduction of μC.

3.3 Combined Logics of Knowledge, Actions, and Time

There are many combined polymodal logics for reasoning about multi-agent sys-
tems. Maybe the most advanced is Belief-Desire-Intention (BDI) logic [33,34].
An agent’s beliefs correspond to information the agent has about the world.
(This information may be incomplete or incorrect; in BDI agent’s knowledge is
just a true belief.) An agent’s intensions correspond to the allocated tasks. An
agent’s desires represent what it has committed to achieve. Admissible actions
are actions of individual agents; they may be constructed from primitive ac-
tions by means of composition, non-deterministic choice, iteration, and parallel
execution. But semantics of BDI and reasoning in BDI are quite complicated.

In contrast, let us discuss below a simple example of a combined logic of
knowledge, actions and time – namely Propositional Logic of Knowledge and
Branching Time for n > 0 agents Act-CTL-Kn. For a formal definition of other
combined logics that are in use in this paper, please, refer to [11,31,32].

First we provide a formal definition of Act-CTL-Kn, then discuss some prag-
matics, and then – in the next section 4 – introduce and study model checking
as a reasoning mechanism.

Let [1..n] be a set of agents (n > 0), and Act be a finite alphabet of ac-
tion symbols. Syntax of Act-CTL-Kn admits epistemic modalities Ki and Si for
every i ∈ [1..n], and branching-time constructs AbX, EbX, AbG, EbG, AbF,
EbF, Ab(. . .U . . .), and Eb(. . .U . . .) for every b ∈ Act. Semantics is defined

Combined Logics of Knowledge, Time, and Actions for Reasoning 53

in terms of entailment in environments. An (epistemic) environment is a tuple
E = (D,∼1, . . . ∼n, I) that is a model for PLKn and for Act-CTL simultane-
ously. Entailment relation |=E is defined by induction according to the standard
definition for propositional connectives (see semantics of EPDL), and the above
definitions of epistemic modalities and branching time constructs.

We are mostly interested in trace-based perfect recall synchronous environ-
ments generated from background finite environments. “Finitely generated trace-
based” means that possible “worlds” are runs of finite-state machine(s). There
are several opportunities how to define semantics of combined logics on runs. In
particular, there are two extreme cases: Forgetful Asynchronous Systems (FAS)
and Synchronous systems with Perfect Recall (PRS). “Perfect recall” means that
every agent has a log-file with all his/her observations along a run, while “forget-
ful” means that information of this kind is not available. “Synchronous” means
that every agent can distinguish runs of different lengths, while “asynchronous”
means that some runs of different lengths may be indistinguishable.

4 Model Checking Problem for Combined Logics

It is quite natural that in the FAS case combined logics Act-CTL-Kn can express
as much as it can express in the background finite system. In contrast, in the
PRS case Act-CTL-Kn becomes much more expressive than in the background
finite environment. Importance of combined logics in the framework of trace-
based semantics with synchronous perfect recall rely upon their characteristic as
logics of agent’s learning or knowledge acquisition. We would like to argue this
characteristic by the following single-agent Fake Coin Puzzle FCP (N, M).

– A set consists of (N + 1) enumerated coins. The last coin is a valid one. A
single coin with a number in [1..N] is fake, but all other coins with numbers
in [1..N] are valid. All valid coins have the same weight that differs from the
weight of the fake. Is it possible to identify the fake by balancing coins M
times at most?

In FCP (N, M) the agent (i.e. a person who has to solve the puzzle) does not
know neither a number of the fake, nor whether it is lighter or heavier than the
valid coins. Nevertheless, this number is in [1..N], and the fake coin is either
lighter (l) or heavier (h). The agent can make balancing queries and read bal-
ancing results after each query. Every balancing query is an action b(L, R) which
consists in balancing of two disjoint sets of coins: with numbers L ⊆ [1..N + 1]
on the left pan, and with numbers R ⊆ [1..N + 1] on the right pan, |L| = |R|.
There are three possible balancing results: ‘<’, ‘>’, and ‘=’, which means that
the left pan is lighter, heavier than or equal to the right pan, respectively. Of
course, there are initial states (marked by ini) which represent a situation when
no query has been made.

Let us summarize. The agent acts in the environment generated from a finite
space [1..N] × {l, h} × {<, >, =, ini}. His/her admissible actions are balancing
queries b(L, R) for disjoint L, R ⊆ [1..N+1] with |L| = |R|. The only information

54 N.V. Shilov and N.O. Garanina

EXPTIME-complete D
︷ ︸︸ ︷

linear M
EPDL-Cn <

linear M
Act-CTL-Cn <

exp. M
µPLCn

n=1
‖

n>1∨ n=1
‖

n>1∨ ‖
linear M

EPDL-Kn
︸ ︷︷ ︸

PSPACE-
complete D

<
linear M

Act-CTL-Kn <
exp. M
µPLKn

︸ ︷︷ ︸

EXPTIME-complete D

Fig. 1. Logic fusion summary

available for the agent (i.e., which gives him/her an opportunity to distinguish
states) is a balancing result. The agent should learn fake coin number from a
sequence which may start from any initial state and then consists of M queries
and corresponding results. Hence a single agent logic Act-CTL-K1 seems to be
a very natural framework for expressing FCP (N, M) as follows: to validate or
refute whether

s |=E (EBX . . .EBX︸ ︷︷ ︸
M times

∨

f∈[1..N]

K1(fake coin number = f))

for every initial state s, where E is the PRS environment generated from a
[1..N]×{l, h}×{<, >, =, ini}, and B is a balancing query

⋃
L,R⊆[1..N+1] b(L, R).

The model checking problem for a combined logic (Act-CTL-Kn in particular)
and a class of epistemic environments (ex., PRS or FAS environments) is to val-
idate or refute s |=E φ, where E is a finitely-generated environment in the class,
s is an ‘initial state’ of the environment E, and φ is a formula of the logic. The
above re-formulation of FCP (N, M) is a particular example of a model checking
problem for a formula of Act-CTL-Kn and some finitely-generated perfect recall
environment.

In particular, papers [29,30,11] have examined model checking as well as the
expressive power and the decidability for combinations of listed logics in Kripke
semantics. These results are summarized in Fig. 1. Notation adopted in this fig-
ure can be explained as follows. “PSPACE/EXTIME-complete D” means that
the decidability problem is PSPACE/EXTIME-complete respectively. Notation
“linear/exp. M” means that there exists a model checker with linear or expo-
nential time complexity. (In)equalities stay for expressive power. Parameter n
stays for the number of agents in the multi-agent system.

It is quite natural that in the FAS case neither of the discussed combined
logics can express more than it can express in a background finite system. In
other words, for formulae of these logics every system is an abstraction of for-
getful asynchronous traces generated by this system. It implies that all results
represented in Fig. 1 remain valid for the FAS case.

In contrast, in the PRS case the model checking problem becomes much more
complicated than in background finite systems. We have demonstrated that if

Combined Logics of Knowledge, Time, and Actions for Reasoning 55

the number of agents n in a multi-agent system is n > 1 then the model checking
problem in perfect recall synchronous semantics

– is PSPACE-complete for EPDL-Cn,
– has non-elementary upper and lower bounds for Act-CTL-Kn,
– is undecidable for Act-CTL-Cn, μPLKn and μPLCn.

These results correlate with [25] where model checking problem for synchronous
systems with perfect recall and fusion of PLKn and PLCn with Propositional
Logic of Linear Time (PLLT) has been examined. The cited paper has demon-
strated that model checking for synchronous systems with perfect recall in the
two agents case (n = 2)

– is PSPACE-complete for UNTIL-free PLLT-Cn,
– has non-elementary upper and lower bounds for PLLT-Kn,
– is undecidable for PLLT-Cn.

We should remark that our results and the results presented in [25] are closely
related to [24], where PSPACE-completeness and undecidability have been
proved for model checking formulae of PLCn in synchronous and asynchronous
systems with perfect recall. The paper [25] and the present paper extend time-
free results from [24] for linear/branching time respectively.

Paper [25] also has suggested a tree-like data structures for model checking
of linear time and knowledge with bounded nesting. This abstraction is very
convenient for representation of knowledge evolution and update. It comprises
the trees whose depth is equal to knowledge nesting [24]. Paper [25] has demon-
strated that the model checking problem for PLLT-Kn in the synchronous perfect
recall semantics can be reduced to the problem of emptiness of Büchi automaton
whose inputs are infinite sequences of these trees.

We have adopted similar trees for model checking Act-CTL-Kn in PRS se-
mantics in [31]. The cited paper has presented a “direct” (update+abstraction)-
algorithm for model checking Act-CTL-Kn in perfect recall synchronous envi-
ronments. The algorithm is based on a transformation of Act-CTL-Kn formulas
into formulas of Act-CTL, and on a reduction of an infinite synchronous per-
fect recall system to a finite model TRk which consists of k-trees (special finite
trees of height k). The complexity of the algorithm is given by the following
proposition.

Proposition 1
For every integer k ≥ 1 and n ≥ 1, synchronous environment with perfect recall
PRS(E), every formula φ of Act-CTL-Kn with the knowledge depth k at most,
the model checking problem is decidable with the upper bound

O
(
f × exp(n × d, k) × (exp(n × d, k − 1))2

n3

)
,

where f is the size of the formula, d is the number of states in DE , and the
function exp(a, b) is

exp(a, b) =
{

a, if b = 0,

a × 2exp(a,b−1), otherwise.

56 N.V. Shilov and N.O. Garanina

Unfortunately, the upper bound for the size of this finite model is a non-elementary
function of the number of states [31]. Hence a straightforward use of a model
checker for CTL for model checking Act-CTL on k-trees is likely to be a non-
feasible task. Roughly speaking, this space is too big to be treated as finite. It
implies that it makes sense to try to apply techniques which have been developed
for infinite-state model checking, for model checking Act+n-CTL on k-trees.

A very popular approach to infinite-state model checking is a formalism of
well-structured labeled transition systems [1,9]. Foundational papers [1,9] have
proved the decidability of liveness (reachability) and progress (eventuality) prop-
erties in well-structured single action labeled transition systems. Roughly speak-
ing, a well-structured single action labeled transition system is provided with a
(pre-)order, and its transitions ‘preserve’ this (pre-)order, and its labeling forms
cones with respect to this (pre-)order. Paper [21] has generalized cited decid-
ability results for disjunctive formulae of the propositional μ-Calculus [20,2] in
well-structured labeled multi-action transition systems. Model checking of dis-
junctive properties in well-structured labeled transition systems computes finite
bases of cones of states that enjoy the property.

In the paper [32] we have demonstrated that the model TRk provided with
a sub-tree partial order forms a well-structured labeled transition system where
every property expressible in the μ-Calculus, can be characterized by a finite
computable set of maximal trees that enjoy the property. We tried feasibility
of this approach to model checking of Act-CTL-Kn in trace-based perfect recall
synchronous environment by automatic model checking a simple, but “huge”
example2.

Acknowledgements. Research has been supported by joint grant RFBR 05-
01-04003-a-DFG project COMO, GZ: 436 RUS 113/829/0-1, and currently is
supported in parts by Integration Program 2/12 of Russian Academy of Science
and by grant RFBR 10-01-00532-a.

References

1. Abdulla, P.A., Ĉerâns, K., Jonsson, B., Tsay, Y.-K.: Algorithmic analysis of pro-
grams with well quasi-ordered domains. Information and Computation 160(1-2),
109–127 (2000)

2. Arnold, A., Niwinski, D.: Rudiments of µ-calculus. North Holland, Amsterdam
(2001)

3. Bull, R., Segerberg, K.: Basic Modal Logic. In: Gabbay, D., Cuenthner, F. (eds.)
Handbook of Philosophical Logic, vol. 3. Kluwer Academic Publishers, Dordrecht
(2001)

4. Clarke, E., Grumberg, O., Peled, D.: Model Checking. MIT Press, Cambridge
(1999)

5. Dixon, C., Fernandez Gago, M.-C., Fisher, M., van der Hoek, W.: Using Temporal
Logics of Knowledge in the Formal Verification of Security Protocols. In: Proceedings
of TIME 2004, Tatihou, Normandie, France, July 1-3. IEEE, Los Alamitos (2004)

2 The size of the initial environment is 120000 and the size of the generated finite
model is about 1036000.

Combined Logics of Knowledge, Time, and Actions for Reasoning 57

6. Dixon, C., Nalon, C., Fisher, M.: Tableau for Logics of Time and Knowledge with
Interactions Relating to Synchrony. Journal of Applied Non-Classical Logics 14(4),
397–445 (2004)

7. Emerson, E.A.: Temporal and Modal Logic. In: van Leeuwen, J., Meyer, A.R.,
Nivat, M., Paterson, M., Perrin, D. (eds.) Handbook of Theoretical Computer
Science (B). Elsevier, The MIT Press (1990)

8. Fagin, R., Halpern, J.Y., Moses, Y., Vardi, M.Y.: Reasoning about Knowledge.
MIT Press, Cambridge (1995)

9. Finkel, A., Schnoebelen, P.: Well-structured transition systems everywhere! Theor.
Comp. Sci. 256(1-2), 63–92 (2001)

10. Gammie, P., van der Meyden, R.: MCK: Model checking the logic of knowledge.
In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp. 479–483. Springer,
Heidelberg (2004)

11. Garanina, N.O., Kalinina, N.A., Shilov, N.V.: Model checking knowledge, actions
and fixpoints. In: Proc. of Concurrency, Specification and Programming Work-
shop CS&P 2004, Germany, Humboldt Universitat, Berlin, Informatik-Bericht,
vol. 2(170), pp. 351–357 (2004)

12. Garanina, N.O., Shilov, N.V.: Model Checking Knowledge of acting Agents with
log-files. In: Meetings of Minds: Proc. of Int. Workshop Logic, Rationality and
Interaction, China (2007)

13. Halpern, J.Y., Vardi, M.Y.: The complexity of Reasoning About Knowledge and
Time. In: Proc. of Symp. Theor. of Computing (STOC), pp. 304–315 (1986)

14. Halpern, J.Y., van der Meyden, R., Vardi, M.Y.: Complete Axiomatizations for
Reasoning about Knowledge and Time. SIAM Journal on Computing 33(3), 674–
703 (2004)

15. Harel, D., Kozen, D., Tiuryn, J.: Dynamic Logic. MIT Press, Cambridge (2000)

16. Hintikka, J.: Knowledge and Belief. Cornell University Press, Ithica (1962)

17. van der Hoek, W., Wooldridge, M.J.: Model Checking Knowledge and Time. In:
Bošnački, D., Leue, S. (eds.) SPIN 2002. LNCS, vol. 2318, pp. 95–111. Springer,
Heidelberg (2002)

18. Kacprzak, M., Lomuscio, A., Penczek, W.: Unbounded Model Checking for Knowl-
edge and Time. In: Proceedings of the CS&P 2003 Workshop, Warsaw University,
vol. 1, pp. 251–264 (2003)

19. Kacprzak, M., Penczek, W.: Model Checking for Alternating-Time mu-Calculus
via Translation to SAT. In: Proc. of Concurrency, Specification and Program-
ming Workshop CS&P 2004, Germany, Humboldt Universitat, Berlin, Informatik-
Bericht, vol. 2(170) (2004)

20. Kozen, D.: Results on the Propositional Mu-Calculus. Theoretical Computer Sci-
ence 27(3), 333–354 (1983)

21. Kouzmin, E.V., Shilov, N.V., Sokolov, V.A.: Model Checking µ-Calculau in Well-
Structured Transition Systems. In: Proceedings of 11th International Symposium
on Temporal Representation and Reasoning (TIME 2004), France, pp. 152–155.
IEEE Press, Los Alamitos (2004)

22. Kozen, D., Tiuryn, J.: Logics of Programs. In: Handbook of Theoretical Computer
Science, vol. B, pp. 789–840. Elsevier, MIT Press (1990)

23. Lomuscio, A., Penczek, W.: Verifying Epistemic Properties of Multi-agent Systems
via Bounded Model Checking. Fundamenta Informaticae 55(2), 167–185 (2003)

24. van der Meyden, R.: Common Knowledge and Update in Finite Environments.
Information and Computation 140(2), 115–157 (1998)

58 N.V. Shilov and N.O. Garanina

25. van der Meyden, R., Shilov, N.V.: Model checking knowledge and time in systems
with perfect recall. In: Pandu Rangan, C., Raman, V., Sarukkai, S. (eds.) FST
TCS 1999. LNCS, vol. 1738, pp. 432–445. Springer, Heidelberg (1999)

26. van der Meyden, R., Wong, K.: Complete Axiomatizations for Reasoning about
Knowledge and Branching Time. Studia Logica 75(1), 93–123 (2003)

27. Rescher, N.: Epistemic Logic. Survey of the Logic of Knowledge. University of
Pittsburgh Press, Pittsburgh (2005)

28. Shilov, N.V., Yi, K.: How to find a coin: propositional program logics made easy.
In: Current Trends in Theoretical Computer Science, vol. 2, pp. 181–213. World
Scientific, Singapore (2004)

29. Shilov, N.V., Garanina, N.O.: Combining Knowledge and Fixpoints. Preprint n.
98 of A.P. Ershov Institute of Informatics Systems, Novosibirsk (2002)

30. Shilov, N.V., Garanina, N.O.: Model Checking Knowledge And Fixpoints. In: Proc.
4th Int. Workshop on Fixed Points on Computer Science, Copenhagen, Denmark,
pp. 25–39 (2002)

31. Shilov, N.V., Garanina, N.O., Choe, K.-M.: 2.7. Update and Abstraction in Model
Checking of Knowledge and Branching Time. Fundameta Informaticae 72(1-3),
347–361 (2006)

32. Shilov, N.V., Garanina, N.O.: Well-Structured Model Checking of Multiagent Sys-
tems. In: Virbitskaite, I., Voronkov, A. (eds.) PSI 2006. LNCS, vol. 4378, pp. 363–
376. Springer, Heidelberg (2007)

33. Wooldridge, M.: Practical reasoning with procedural knowledge: A logic of BDI
agents with know-how. In: Gabbay, D.M., Ohlbach, H.J. (eds.) FAPR 1996. LNCS,
vol. 1085, pp. 663–678. Springer, Heidelberg (1996)

34. Wooldridge, M.: An Introduction to Multiagent Systems. John Wiley & Sons Ltd.,
Chichester (2002)

Applications of

Temporal Conceptual Semantic Systems�

Karl Erich Wolff

Mathematics and Science Faculty
Darmstadt University of Applied Sciences

Holzhofallee 38, D-64295 Darmstadt, Germany
karl.erich.wolff@t-online.de

Abstract. Based on Formal Concept Analysis the notion of a Temporal
Conceptual Semantic System is introduced as a formal conceptual rep-
resentation for temporal systems with arbitrary discrete or continuous
semantic scales. In this paper, we start with an example of a weather map
with a moving high pressure zone to explain the basic notions for Tem-
poral Conceptual Semantic Systems. The central philosophical notion of
an object is represented as a formal concept or, more flexible, as a tuple
of concepts. Generalizing the idea of a volume of an object in physics we
introduce the notion of a trace of an object in some space. This space
is described as a continuous or discrete concept lattice. Combining the
notion of a trace of an object with the notion of a time granule yields the
notion of a state of an object at some time granule. This general notion
of a state allows for a clear conceptual understanding of particles, waves
and Heisenberg’s Uncertainty Relation. Besides these theoretical aspects,
Temporal Conceptual Semantic Systems can be used very effectively in
practice. That is shown for data of a distillation column using a nested
transition diagram.

1 Introduction

In this paper we introduce a simple and powerful conceptual framework which is
closely connected to many quite different fields of classical and modern knowledge
representation. This framework has been developed in Conceptual Knowledge
Processing which is based on Formal Concept Analysis [18, 10]. First ideas for
this framework have been developed in applications of conceptual scaling in
Fuzzy Theory [37, 38, 25], Rough Set Theory [14, 21], and General Systems
Theory [5, 11, 12, 13, 20]. One of the basic intuitive notions in General Systems
Theory is the notion of a state, but the formalization of this notion leads to
many difficulties. We cite L. Zadeh [36]:

To define the notion of a state in a way which would make it applicable
to all systems is a difficult, perhaps impossible, task.

� Supported by DFG project COMO, GZ: 436 RUS 113/829/0-1.

K.E. Wolff et al. (Eds.): KONT/KPP 2007, LNAI 6581, pp. 59–78, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

60 K.E. Wolff

The notion of a state was defined in a first conceptual version by the author in
[20] and generalized in several steps to the actual notion of a state in a Temporal
Conceptual Semantic System in this paper. During this development a common
generalization of the notion of states in physics [8, 6, 7, 27] and in automata
theory [1, 9, 24] had been established. For a long time it was not clear how to
define a conceptual notion of a state such that the quantum theoretical states
which possess a probability distribution are also describable. The main step into
that direction was the introduction of Conceptual Semantic Systems [26] which
reached the aim to find a common conceptual description of particles and waves
in physics.

Based on the notion of aspects a first conceptual representation of Heisenberg’s
Uncertainty Relation has been presented in [29]. This has been developed fur-
ther in [30] where a more general object notion, the instance selection and an
explicit representation of measurements has been introduced. In the paper at
hand the basic notions in Temporal Concept Analysis as developed by the au-
thor in previous articles [22, 23, 26, 27, 28, 29, 30] are generalized and clarified
by the notion of a Temporal Conceptual Semantic System (TCSS). That is based
on the notion of a Conceptual Semantic System (CSS) where two new tools are
introduced, namely the formal representation of objects by tuples of concepts
of the semantic scales and the instance selection which assigns to each tuple of
concepts a “relevant” subset of the set of instances. In the following section we
use a moving high pressure zone as a typical example of a distributed temporal
object in a TCSS. We explain this special TCSS starting with a data table and
interpreting the values of the data table as formal concepts of suitable formal
contexts. For readers who are not familiar with the notions in Formal Concept
Analysis [10] we introduce some formal contexts and their concept lattices in
this example of a moving high pressure zone. Later on we will introduce the
mathematical definitions around TCSSs.

2 Example: A Moving High Pressure Zone

As a small example we construct a TCSS which yields a weather map with
a moving high pressure zone over Germany. To keep the data table small we
construct a map of Germany using a coarse grid of longitude and latitude co-
ordinates into which we embed 15 towns. To represent a moving high pressure
zone we assume that the pressure has been measured in some weather stations
(WS) at two consecutive days, say Monday and Tuesday. The data are shown in
Tab.1 where the rows 1,...,15 show the latitude and longitude values of 15 Ger-
man towns, the rows 16,...,25 show the pressure values (in hectopascal (hPa))
measured at certain days at certain weather stations located in some of the
previously mentioned towns.

In Table 1 the row labeled by instance 1 tells that the place Berlin has latitude
52.5 and longitude 13.4 and no time and no pressure is recorded in this line,
shown by the sign “/” in the column for time and pressure. Instance 16 tells
that Weather Station Dortmund has latitude 51.5 and longitude 7.5 and has
reported at Monday a pressure of 1020 hectopascal.

Applications of Temporal Conceptual Semantic Systems 61

Table 1. Data table of a Moving High Pressure Zone

instance place latitude longitude time pressure

1 Berlin 52.5 13.4 / /

2 Dortmund 51.5 7.5 / /

3 Dresden 51.0 13.7 / /

4 Frankfurt (Main) 50.1 8.7 / /

5 Frankfurt (Oder) 52.3 14.5 / /

6 Freiburg 48.0 7.9 / /
7 Hamburg 53.6 10.0 / /

8 Kassel 51.3 9.5 / /

9 Köln 51.0 7.0 / /

10 Magdeburg 52.1 11.6 / /

11 München 48.1 11.6 / /

12 Nürnberg 49.5 11.1 / /

13 Passau 48.6 13.5 / /

14 Saarbrücken 49.2 7.0 / /

15 Wilhelmshaven 53.5 8.1 / /

16 WS Dortmund 51.5 7.5 Monday 1020

17 WS Frankfurt (Main) 50.1 8.7 Monday 1030

18 WS Hamburg 53.6 10.0 Monday 970

19 WS Kassel 51.3 9.5 Monday 1010
20 WS München 48.1 11.6 Monday 980

21 WS Berlin 52.5 13.4 Tuesday 1020

22 WS Dresden 51.1 13.7 Tuesday 1010

23 WS Frankfurt (Oder) 52.3 14.5 Tuesday 1030

24 WS Hamburg 53.6 10.0 Tuesday 970

25 WS München 48.1 11.6 Tuesday 980

2.1 Basic Conceptual Notions

For the conceptual representation of knowledge as it is contained in Table 1
we interpret the values in each column as elements of a conceptual hierarchy
which is formally represented as the concept lattice of a formal context. In For-
mal Concept Analysis [10] a formal context K is defined as a triple (G, M, I)
of sets such that I ⊆ G × M . The set G is called the set of formal objects
(“Gegenstände”), M is called the set of formal attributes (“Merkmale”), and the
binary relation I is called the incidence relation of the formal context (G, M, I).
For g ∈ G and m ∈ M we write “gIm” instead of “(g, m) ∈ I”. A for-
mal concept of a formal context (G, M, I) is a pair (A, B) where A ⊆ G,
B ⊆ M , and A = {g ∈ G | ∀m∈BgIm} and B = {m ∈ M | ∀g∈AgIm}.
The set A is called the extent, and B the intent of the formal concept (A, B).
The set B(K) of all formal concepts of a formal context K is ordered by:
(A, B) ≤ (C, D) :⇔ A ⊆ C(⇔ B ⊇ D). The ordered set (B(K), ≤) is a complete
lattice, called the concept lattice of K. For each formal object g ∈ G the smallest
concept containing g in its extent is called the object concept γ(g) of g. Dually

62 K.E. Wolff

the attribute concept μ(m) of a formal attribute m is defined. It can be proved
easily that ∀g∈G,m∈MgIm ⇔ γ(g) ≤ μ(m).

2.2 The Scales of Our Example

In our example of a moving high pressure zone we represent the values in the col-
umn for time as formal concepts of the formal context Stime, called the semantic
scale for time, shown in Table 2.

Table 2. The time scale Stime

Stime Monday Tuesday days

Monday × ×
Tuesday × ×

/

In the formal context Stime the “missing value” “/” is treated as a formal ob-
ject without any attribute. The concept lattice B(Stime) is shown in Fig. 1. The
arrow in Fig. 1 represents the time relation which is used to define transitions;
that will be discussed later.

Fig. 1. The semantic scale for time with time relation

Similarly to the column for time we choose semantic scales for the other four
columns of Table 1 which are different from the instance column; the instance
column shows just a labeling of the rows.

The semantic scale Sp for pressure is defined as a modified interordinal scale
on the multiples of 10 in the interval [970, 1030]. Its concept lattice is shown in
Fig. 2.

In this interordinal scale for pressure we choose the attribute concept μ(≥
1010) for the representation of the notion of “high pressure”, and call this formal
concept High. Combined with the formal concept Monday in the time scale
we like to form the tuple (High, Monday) as our formal representation of such
an abstract “object” like “the High at Monday”. To express formally that an

Applications of Temporal Conceptual Semantic Systems 63

Fig. 2. The semantic scale for pressure

abstract object like High can move over some landscape we have to connect the
information about pressure and time with the places and their longitude and
latitude values. For that purpose we use the “artificial key” of the instances.
The theory for Temporal Conceptual Semantic Systems will be given in the next
sections. As a result of that theory we show a visualization of the movement of
the selected high pressure zone in Fig. 3.

Concerning the construction of the weather map in Fig. 3 we just mention
the main steps:

– The construction of a grid of latitude-longitude-values as a semi-product of
two ordinal scales for latitude and longitude.

– The construction of a map by embedding places using their latitude-longitude-
values.

– The embedding of the traces of the chosen tuples of concepts, as for example
the traces of the tuple (High, Monday) and (High, Tuesday) as visualized
by ellipses in Fig. 3.

– The graphical representation of the time relation by arrows connecting the
traces of the chosen tuples.

The details of the construction of the weather map in Fig. 3 can be seen in [31].

3 Conceptual Semantic Systems

3.1 Main Ideas

For describing systems like for example physical or technical systems, social sys-
tems or the system of a family as represented by a psychological questionnaire
we focus on system descriptions by data. We use Conceptual Semantic Systems
as a simple and general tool for describing observations in reality. If there are

64 K.E. Wolff

Fig. 3. A Weather Map with a Moving High Pressure Zone

regularities in a system, they can be described by dependencies among many-
valued attributes, in the most simple case by functional dependencies.

In the following definition of a Conceptual Semantic System (CSS) we start
with a family of formal contexts whose formal concepts are used as “basic seman-
tic concepts” for the description of statements about some part of the reality.
These statements are formally represented in the rows of a data table whose
values are the chosen basic semantic concepts.

Remark: In the definition of a Conceptual Semantic System we do not explicitly
represent the relational aspect of a statement as it is done in Conceptual Graphs
[16, 17], in Power Context Families and Concept Graphs [19]. Recently, these
relational structures have been combined with temporal CSSs by the author in
Temporal Relational Semantic Systems [33, 34, 35].

In the data table of a CSS the rows are indexed by a set G which plays the
role of an “artificial” key of the data table. G is also the set of formal objects
of the semantically derived context which will be defined later. Our advice, that
these formal objects should not be used in applications for the representation of
objects in reality, yields the necessity of an alternative representation of objects
in Conceptual Semantic Systems which will be given in the following sections.

Applications of Temporal Conceptual Semantic Systems 65

3.2 Definition of a Conceptual Semantic System

Definition 1. “Conceptual Semantic System”
Let M be a set, and for each m ∈ M let Sm := (Gm, Nm, Im) be a formal context
and B(Sm) its concept lattice. Let G be a set and

λ : G × M → ⋃
m∈M B(Sm)

be a mapping such that λ(g, m) ∈ B(Sm).
Then the quadruple

K := (G, M, (B(Sm))m∈M , λ)

is called a Conceptual Semantic System (CSS) with semantic scales (Sm)m∈M .
The elements of M are called many-valued attributes; the elements of G are
called instances. We write m(g) := λ(g, m) and m(G) := {m(g) | g ∈ G}.
We mention that the mapping λ can be interpreted as a (possibly infinite) data
table whose values m(g) “in column m” are formal concepts of the given seman-
tic scale Sm. For any instance g the tuple (m(g)|m ∈ M) is interpreted as a
short description of a statement connecting the concepts m(g) where m ∈ M .
A concept m(g) may denote for example the grammatical subject, or the gram-
matical object, or the grammatical predicate of a statement. That allows for
the representation of arbitrary, not only binary, relations; that has been made
explicit in [35].

One of the main points in our intended interpretation of Conceptual Semantic
Systems is that the instances are not interpreted as meaningful concepts, as for
example objects like persons or particles. That differs strongly from the usual
interpretation of many-valued contexts [10] where the formal objects are intended
to represent objects in “reality”. As formal objects they have to form a key in
the data table of the many-valued context. In Conceptual Semantic Systems
we are much more flexible in practical applications since we do not need an
object domain whose objects form a key in the data table. Now we represent
the information given in the ’data table’ λ of a CSS by a single formal context,
called the semantically derived context of the CSS.

Definition 2. “Semantically derived context”
Let K := (G, M, (B(Sm))m∈M , λ) be a CSS with semantic scales

Sm = (Gm, Nm, Im) (m ∈ M),

and let int(c) denote the intent of a concept c. Then the formal context

K := (G, N, J) where N := {(m, n) | m ∈ M, n ∈ Nm} and
gJ(m, n) :⇐⇒ n ∈ int(m(g))

is called the semantically derived context of K.

We mention that a CSS K := (G, M, (B(Sm))m∈M , λ) can be reconstructed
from its semantically derived context K := (G, N, J) and the semantic scales
(Sm)m∈M , since each value (A, B) = λ(g, m) is uniquely determined by the

66 K.E. Wolff

intent of the object concept of g in the m−part Km := (G, {m}×Nm, J ∩ (G×
({m} × Nm))) of K. The corresponding “reconstruction property” for scaled
many-valued contexts does not hold if there exists at least one scale Sm whose
object concept mapping γm is not injective. The precise connection between the
semantically derived context of a CSS and the derived context of a many-valued
context is described in [31].

3.3 Object Representation by Tuples of Semantic Concepts

In the main interpretation of contexts and many-valued contexts the formal
objects are used to represent certain “objects” in reality, like for example “living
beings” in the formal context of Figure 1.1 in [10], p. 18. That led to difficulties
in the formal representation of temporal systems where time granules, like for
example hours or days, are used as formal objects. Clearly, in such data we do not
want to represent other kinds of objects, like persons, also as formal objects. A
very successful formal representation was the notion of an actual object, defined
as a pair (p, t) of an object (for example a person) and a time granule; these
actual objects had been chosen as formal objects of such “temporal” contexts.
That led the author to the notion of a CTSOT (Conceptual Time Systems with
actual Objects and a Time relation) [22, 23, 27] which are very well suited for
the representation of life tracks of objects. The disadvantage of the CTSOTs
is that distributed objects like a high pressure zone on a weather map can not
be represented in a CTSOT since each actual object has, as a formal object,
exactly one object concept in each part of the derived context - and is therefore
not distributed.

That led the author to the notion of a CSS with the interpretation that the
usually numerous kinds of general objects, like for example persons and places,
should be treated in a symmetric way in the CSS. Hence none of these kinds of
objects should play the special role of being represented by the formal objects.
Therefore, we interpret the set of formal objects of a CSS as a “meaningless
syntactical key” which can be understood as a set of labels for the rows of a
data table. It is very advantageous in practical applications that we do not have
to search for a kind of objects in practice which can be represented as a key of
our intended data table.

In the following we represent objects, like for example persons, days or towns,
as formal concepts of the chosen semantic scales of a CSS. Then we would also
like to have a formal representation of concatenations of formal concepts of
different semantic scales as for example the notions of actual objects like (High,
Monday). For that purpose we introduce for a given CSS the set of tuples of
semantic concepts over M .

Definition 3. “Tuples of semantic concepts”
Let K := (G, M, (B(Sm))m∈M , λ) be a CSS. Then

T (M) := {(cm)m∈M∗ | cm ∈ B(Sm), ∅ �= M∗ ⊆ M}
is called the set of tuples of semantic concepts over M .

Applications of Temporal Conceptual Semantic Systems 67

Remark: Of course a tuple (cm)m∈M∗ is understood as a mapping which maps
each element m ∈ M∗ to a formal concept cm ∈ B(Sm).

Definition 4. “Key of a CSS”
Let K := (G, M, (B(Sm))m∈M , λ) be a CSS. A set K ⊆ M is called a key of K,
if the mapping λK : G −→ T (K) where λK(g) := (λ(g, m))m∈K is injective.

In the following we do not assume that there exists a key of a CSS K. Even the
attribute set M need not be a key, that is “multiple rows” are not forbidden.
Clearly, if there exists a key K of K, then the tuples of λK(G), called the occurring
K-tuples, could be used for the representation of “objects in reality” which could
then be represented by the formal objects in G. That corresponds to the standard
interpretation of formal objects in contexts and many-valued contexts.

The tuples of semantic concepts will be used in the following twice: first,
we will use it in the next section in the definition of a selection. Second, we
will introduce a specified subset O of T (M) as the set of temporal objects in
the definition of a Temporal Conceptual Semantic System. In our example of a
moving high pressure zone the 1-tuple (High) is a temporal object. To define
for a temporal object its state at a time granule in some space, for example in a
weather map, as indicated in Fig. 3 by an ellipse with the label (High,Monday),
we introduce in the next section the notion of a σ-Q-trace of a tuple where σ is
a selection and Q is a view.

3.4 Views, Selections, and Traces

Now we recall the definitions of views, selections, and traces from [32].
Definition 5. “View”
Let K := (G, N, J) be a formal context. Then any subset Q ⊆ N is called a view
of K. The subcontext KQ := (G, Q, J ∩ (G × Q)) is called the Q−part of K.

In the following the concept lattice of the Q−part of a view Q of the semanti-
cally derived context of a CSS will be used as a “landscape” into which further
information is embedded. To describe this embedding of information we use the
following notion of a selection.

Definition 6. “Instance selection”
Let K := (G, M, (B(Sm))m∈M , λ) be a CSS, T (M) the set of tuples of semantic
concepts over M . For a subset T ⊆ T (M) any mapping

σ : T → P(G) := {X | X ⊆ G}
is called an instance selection on T . For c ∈ T the set σ(c) ⊆ G is called the
instance selection of c or the selection of c.

The standard instance selection in database theory is
σdb((cm)m∈M∗) := {g ∈ G | ∀m∈M∗ m(g) = cm}.

In Conceptual Semantic Systems we may use other instance selections, for ex-
ample

σα((cm)m∈M∗) := {g ∈ G | ∀m∈M∗ m(g) ≤ cm}.

68 K.E. Wolff

The instance selection σα is used in our example to select for the formal concept
High of the pressure scale all instances g such that the pressure value of g is a
sub-concept of High. It is noteworthy that High does not occur as a pressure
value in Tab. 1.

Definition 7. “σ-Q-trace of a tuple”
Let K := (G, M, (B(Sm))m∈M , λ) be a CSS with semantically derived context
K := (G, N, J), σ an instance selection on T ⊆ T (M), c ∈ T , and Q ⊆ N a view
with object concept mapping γQ. Then the set γQ(σ(c)) is called the σ-Q-trace
of the tuple c.

In our example of the moving high pressure zone the selection of the tuple
(High,Monday) is chosen as the set of all instances g such that pressure(g) ≥
1010 and time(g) = Monday. The σ-Q-trace of this tuple is marked in Fig. 3 by
the left ellipse. That is conceptually the same technique as to represent towns,
mountains, and rivers in a geographical map. In that sense, the notion of a trace
generalizes also the geometrical notion of a volume.

3.5 Precise and Distributed Tuples

Definition 8. “precise and distributed tuples”
Let K := (G, M, (B(Sm))m∈M , λ) be a CSS with semantically derived context
K := (G, N, J), σ an instance selection on T ⊆ T (M), c ∈ T , and Q ⊆ N a
view with object concept mapping γQ. Then c is called

– σ-precise in B(KQ) ⇐⇒ |γQ(σ(c))| = 1;
– σ-distributed in B(KQ) ⇐⇒ |γQ(σ(c))| ≥ 2.

The tuple (High,Monday) is a good example for a distributed tuple since its
σ-Q-trace has more than one object concept. Each of the towns in Fig. 3 has a
trace with exactly one object concept. They are examples of precise 1-tuples.

4 Temporal Conceptual Semantic Systems

Temporal Concept Analysis has been introduced by the author [22, 23] as the
theory of temporal phenomena described with tools of Formal Concept Analysis.
The notion of a Temporal Conceptual Semantic System generalizes previous
notions of temporal systems in Temporal Concept Analysis. It covers discrete,
continuous, and hybrid systems as special cases.

From [31, 32] we recall the definition of a Temporal Conceptual Semantic
System (TCSS). There are four main ideas which are mathematically described
in the definition of a TCSS:

1. A TCSS should be a CSS having a specified many-valued time attribute
T whose scale contains all temporal concepts which are needed for the given
purpose. Instead of a single time attribute we could also introduce a non-empty
set of time attributes. The corresponding changes are explicitly written down by
the author in his paper [35] on Temporal Relational Semantic Systems.

Applications of Temporal Conceptual Semantic Systems 69

2. It also should have a specified set O of temporal objects which are used to
describe moving objects (like cars) as opposed to static objects (like houses),
clearly with respect to the given purpose.
3. Each temporal object o ∈ O is associated with a binary relation Ro of base
transitions where each base transition is a pair of formal concepts from the time
scale ST . Each base transition of the temporal object o describes one step of o
in time; other temporal objects may do other steps in time.
4. Each temporal object o of a TCSS is represented as a tuple of semantic
concepts over M:
o := (cm)m∈M∗ ∈ T (M).

Definition 9. “Temporal Conceptual Semantic System”
Let K := (G, M, (B(Sm))m∈M , λ) be a CSS, T ∈ M , O ⊆ T (M) , and for each
o ∈ O let Ro be a binary relation on B(ST). Then the quadruple

(K, T,O, (Ro)o∈O)

is called a Temporal Conceptual Semantic System (TCSS) with time attribute
T , the set O of temporal objects, and for each temporal object o ∈ O its time
relation Ro. The elements of Ro are called base transitions of o. The elements
of B(ST) are called time granules.

One of the central notions in temporal systems is that of a state which is intro-
duced in the following section.

4.1 States

The notion of a state is used in all system descriptions, but, to the best of
my knowledge, nowhere defined mathematically clear in such a way that it is
connected with a formal description of objects, time, and granularity [27, 36].
That seems to be necessary if we wish to say that “an object is at some time
granule in some state”. The author has introduced in [20] a definition of a state
in a Conceptual Time System as an object concept of a formal object which was
interpreted as a time granule. Later on this definition was extended to CTSOTs
where pairs (p, t) of objects (e.g persons) and time granules are used as formal
objects. That led to a very useful notion of a state of an object at some time
granule, but that state was also just a single object concept. That did not fit
with the idea that a state should be connected with a certain (probability)
distribution, as for example in Quantum Theory [2, 15]. The introduction of
CSSs and its distributed objects yields a solution also for this case [28].

The following definition generalizes the notion of a state as defined in [28] by
introducing arbitrary instance selections and the object representation by tuples
of semantic concepts.

Definition 10. “State of a temporal object at a time granule”
Let (K, T,O, (Ro)o∈O) be a TCSS and K = (G, M, (B(Sm))m∈M , λ). Let σ
be an instance selection and Q be a view of the semantically derived context
K = (G, N, J) of K. For each temporal object o = (cm)m∈M∗ ∈ O where T /∈ M∗

70 K.E. Wolff

and each time granule t ∈ B(ST) the tuple (o, t) is called an “actual object”.
The σ-Q-state of the temporal object o at time granule t is defined as

γQ(σ(o, t))
which is the σ-Q-trace of the actual object (o, t).

Remark: The actual object (o, t) is an (n + 1)-tuple, if the temporal object o is
an n-tuple of scale concepts.

Examples:

1. If a TCSS (K, T,O, (Ro)o∈O) has a many-valued attribute P �= T whose
semantic scale is interpreted as a scale for persons, and {P, T } forms a key
in K, then the TCSS can be represented as a CTSOT [23, 27], and for each
view Q of the semantically derived context K each actual person (p, t) ∈
B(SP) × B(ST) is precise in B(KQ) with respect to the usual database
selection σdb. In that sense each person is at each time granule at exactly
one “place” (= object concept) in B(KQ). That led for CTSOTs to the
notion of a life track of a person [23, 27]. The following definitions of life
spaces and life tracks generalize that notion to TCSSs.

2. Distributed states: If the σ-Q-state of the temporal object o at time granule
t is distributed in the sense that the actual object (o, t) is σ-distributed in
B(KQ), then the relative frequency distribution of the instances g ∈ G on the
object concepts of the σ-Q-state γQ(σ(o, t)) forms a probability distribution
associated with that state. As opposed to the probability distribution of a
quantum mechanical state the probability distribution of a σ-Q-state has a
clear frequency interpretation which is relevant for practical measurements.
For the special case of the instance selection σα and a spatio-temporal CSS
this has been discussed in detail by the author in [28].

4.2 Life Space and Life Track

In this section we generalize the notion of life tracks as introduced in the frame-
work of CTSOTs [27] to TCSSs.

Definition 11. “Life space and life track of a temporal object”
Let (K, T,O, (Ro)o∈O) be a TCSS and K = (G, M, (B(Sm))m∈M , λ). Let σ
be an instance selection and Q be a view of the semantically derived context
K = (G, N, J) of K. For each temporal object o = (cm)m∈M∗ ∈ O where T /∈ M∗

we call the set
SσQ(o) :=

⋃
t∈T (G) γQ(σ(o, t))

the σ-Q-life space of the temporal object o.
The set

LσQ(o) := {((o, t), γQ(σ(o, t))) | t ∈ T (G)}
is called the labeled σ-Q-life space of o.
If |γQ(σ(o, t))| ≤ 1 for each t ∈ T (G), then we call LσQ(o) the σ-Q-life track of
o.

Applications of Temporal Conceptual Semantic Systems 71

Remarks:

(1) The notion of a life space of an object can be used for example for the formal
representation of the habitat of a biological species from temporal occurrence
data of individual animals of that species. In that case it would be useful to
choose a semantic scale for the observed animals of that species where the single
animals are sub-concepts of a species-concept. For that scale the instance selec-
tion σα will be useful for the generation of the habitat of that species in some
geographic map B(KQ).
(2) In our example of a moving high pressure zone (cf. Fig. 3) the labeled life
space of the concept High is visualized by the two labeled ellipses.
(3) If the life space of a temporal object is a life track, then we get the usual
labelling of a life track where each state is labeled by all time granules at which
the object has “visited” that state.

4.3 Transitions

The basic idea of a transition of an object is a “change of the object from
one state to another”, for example the transition of a person from one place to
another. As opposed to automata theory [1, 9] - where transitions are defined
as pairs of states, and states are not explicitly connected with time, and objects
are not made explicit - we use for the definition of a transition not only a pair of
states, but also an object, which performs the transition, and its time relation.

To define a transition in a TCSS (K, T,O, (Ro)o∈O) we use a temporal object
o ∈ O as a representation of an object which performs the transition. To repre-
sent the direction from the initial place of the transition of o to the final place
of the transition we use a base transition (s, t) ∈ Ro. To represent the space in
which the transition is performed we use the concept lattice B(KQ) of a suit-
able view Q of the semantically derived context of K. To represent the place of
an object o at a time granule t in the “map” B(KQ) we use the σ-Q-trace of
the actual object (o, t) with respect to some instance selection σ. The following
definition of a σ-Q-transition of a temporal object generalizes the corresponding
definition of a transition in a CTSOT [27].

Definition 12. “σ-Q-transition of a temporal object”
Let (K, T,O, (Ro)o∈O) be a TCSS and K = (G, M, (B(Sm))m∈M , λ). Let σ
be an instance selection and Q be a view of the semantically derived context
K = (G, N, J) of K. For each temporal object o = (cm)m∈M∗ ∈ O where T /∈ M∗

and each base transition (s, t) ∈ Ro we call the pair
(((o, s), (o, t)), (γQ(σ(o, s)), γQ(σ(o, t))))

the σ-Q-transition of o induced by the base transition (s, t) leading from the
initial place ((o, s), γQ(σ(o, s))) to the final place ((o, t), γQ(σ(o, t))).

This definition of a transition has the advantage that the initial place as well as
the final place of a transition are elements of the labeled life space of the given
object.

72 K.E. Wolff

4.4 The Life Space Digraph

On the labeled life space of an object o we can easily introduce a digraph by
“transporting” the time relation Ro into the life space. That generalizes the life
track digraph for CTSOTs [27].

Definition 13. “Life space digraph of a temporal object”
Let (K, T,O, (Ro)o∈O) be a TCSS and K = (G, M, (B(Sm))m∈M , λ). Let σ
be an instance selection and Q be a view of the semantically derived context
K = (G, N, J) of K. For each temporal object o = (cm)m∈M∗ ∈ O where T /∈ M∗

the life space digraph of o is defined as the directed graph

(LσQ(o), R̂o)

where

((o, s), γQ(σ(o, s))) R̂o ((o, t), γQ(σ(o, t))) ⇔ s Ro t.

An example of a small life space digraph with two vertices and one arc can be
seen in Fig. 3 where the thick arrow represents the σ-Q-transition of the object
High induced by the base transition (Monday,Tuesday).

The life space digraphs can be used very effectively for animations of TCSSs.
First computer versions for these animations exist in the computer program
SIENA which is a part of the program TOSCANAJ [3, 4].

4.5 Particles and Waves in Temporal Conceptual Semantic Systems

In [26] the author has introduced the notions of particles and waves in spatio-
temporal Conceptual Semantic Systems based on the special instance selection
σα and on a more restrictive notion for objects. In the following definition we
generalize that to Temporal Conceptual Semantic Systems with its represen-
tation of objects by tuples of semantic concepts and with arbitrary instance
selections.

Definition 14. “Particles and Waves”
Let (K, T,O, (Ro)o∈O) be a TCSS and K = (G, M, (B(Sm))m∈M , λ). Let σ
be an instance selection and Q be a view of the semantically derived context
K = (G, N, J) of K. A temporal object o is called a

– σ-Q-particle ⇔ |γQ(σ(o, t))| ≤ 1 for all t ∈ T (G);
– σ-Q-wave ⇔ |γQ(σ(o, t))| ≥ 2 for all t ∈ T (G);
– full σ-Q-wave ⇔ o is a σ-Q-wave and γQ(σ(o, t))=γQ(G) for all t∈T (G).

It has been proven by the author in [26] that each classical particle in physics
can be described by a particle as defined above, and each classical wave can be
described by a wave as defined above. Of course many more specific wave notions
can be defined.

Applications of Temporal Conceptual Semantic Systems 73

5 An Application of TCSS: The Behavior of a Distillation
Column

5.1 The Data of the Distillation Column

The following application of Temporal Conceptual Semantic Systems in the
chemical industry shows the behavior of a distillation column during 20 days.
At each day the values of 13 many-valued attributes (“variables”) like reflux,
energy1, input, and pressure have been measured once. The resulting data table
with 20 rows and 13 columns has the variable day as its key. This data table
is one of the most simple types of a TCSS. There is only one temporal object,
namely the distillation column. The time is represented just by the labels from 1
to 20 for the 20 days of measurement. The time relation for the single temporal
object is just the predecessor relation on the integers from 1 to 20. All many-
valued attributes have been scaled by an ordinal scale having a small chain as
its concept lattice.

Even though the data table is quite small it is not easy to understand the be-
haviour of the distillation column in all 13 variables simultaneously. Therefore,
we first studied the variables which are most important for the experts. It was
easy for these experts to understand and interpret the behaviour of the distilla-
tion column in transition diagrams with two or three variables, like in Fig.4; but
they had difficulties understanding not-nested line diagrams representing four or
more variables.

5.2 Visualization of a Life Track in a Nested Line Diagram

In the following we visualize the behaviour of the distillation column with re-
spect to the four variables previously mentioned. Preparing this 4-dimensional
representation we first show in Fig.4 the life track of the distillation column in
a transition diagram for the variables reflux and energy1, each scaled with a
3-chain where the top concept represents the big values, the bottom concept the
small values as indicated by the names of the scale variables, as for example
“reflux ≤ 133”.

We see in Fig.4 that the distillation column is at the first day in the state γ(1),
the object concept of day 1, labeled by 1. There the reflux is small and energy1
lies in the middle category in this scaling. At the second day the distillation
column is in the state γ(2), the top concept in this lattice, where each of the
two variables has a big value in this scaling. At the third day the destillation
column “visits” the state of the first day again. The task to follow the life track
visually can be supported by an animation using the computer program SIENA
in TOSCANAJ [3, 4].

To visualize now the behavior of the destillation column for the four selected
variables we first generate a concept lattice for the two variables input and
pressure where the input is scaled in a 5-chain, while the pressure is scaled in
a 4-chain in the same way as before. Using Peter Becker’s latest (unpublished)
2010-version of SIENA one can generate from two given scales a nested line

74 K.E. Wolff

Fig. 4. Life track of a distillation column in a line diagram representing reflux and
energy1

diagram. Employing the Temporal Concept Analysis tool of SIENA one can
embed life tracks into the nested line diagram. This led to the nested transition
diagram in Fig.5 which is explained now.

The coarse structure represented by the 8 ellipses shows the concept lattice for
the variables reflux and energy1 as in Fig.4. The fine structure inside the ellipses
shows the concept lattice for the variables input and pressure. Only in the top el-
lipse the attributes of the fine structure are named. In Fig.5 we see in the coarse
structure, that at the first (and the ninth) day the measured value for the reflux is
≤ 133, for the energy1 ≤ 660 and not ≤ 570 as we can see also from Fig.4. Look-
ing at the fine structure in Fig.5 we see that at the first day the values for input
are ≤ 630 and not ≤ 615 while the first-day values for the pressure are ≤ 120
and not ≤ 115. That shows the successful visualization of four variables in each
single state of the distillation column. The meaning of the transitions between
states is also successfully visualized: as a simple example we just mention, that
arrows within a single ellipse represent transitions where the attributes of the
coarser structure are constant in the granularity of the outer scale; for example
the transition from the state at day 16 to the state at day 17, shortly described
by the base transition (16,17), is constant in the outer scale, and changes only
the value of the input from the top level to the next lower level. Another extrem

Applications of Temporal Conceptual Semantic Systems 75

Fig. 5. Life track of a distillation column in a nested line diagram representing reflux,
energy1, input and pressure

example is the transition (1,2) which changes all four variables. In the same way
the meaning of the other arrows can be easily understood from Fig.5.

The main advantage of the transition diagrams in this application was that
the experts of this distillation column realized that they had some wrong ideas
about the behaviour of their distillation column. Using transition diagrams in a
self-chosen granularity the experts developed visually supported state spaces for
the understanding and the control of the production processes in the distillation
column.

For another useful application of TCSSs in a biomedical study of disease
processes in arthritic patients the reader is referred to the next article in this
volume: Conceptual Representation of Gene Expression Processes by Johannes
Wollbold, René Huber, Raimund Kinne, and Karl Erich Wolff.

76 K.E. Wolff

6 Conclusions and Future Research

We have generalized the basic notions in Temporal Concept Analysis, namely
states, transitions, life tracks, the digraph of a life track, particles and waves to
the actual notion of a Temporal Conceptual Semantic System. The main new
tools are the representation of objects by tuples of concepts of the semantic
scales and the introduction of an instance selection which generalizes the usual
instance selection for data bases. As opposed to classical time representations
we did not use any linear ordering of the set of time granules, but all the clas-
sical time representations as continuous time, discrete time, and the usual time
representation with several time attributes for years, months, and days with its
cyclic time structures are included as special cases. One of the most promising
advantages of Temporal Conceptual Semantic Systems is that the applicability
is now much broader than before, since it is no longer necessary to search for an
object domain which can be used as a key for the data. The main advantage with
respect to the visualization is that trace diagrams combine the ordinal structure
of concept lattice with the benefits of Venn diagrams.

Future research will focus on applications in many fields, mainly in the rep-
resentation of relational data. A first success was the combination of conceptual
scaling and concept graphs in Conceptual Relational Semantic Systems [33, 34]
and its extension to Temporal Relational Semantic Systems [35]. For practical
applications it will be very useful to introduce new graphical tools for the con-
struction of animated trace diagrams into the computer programs of Formal
Concept Analysis.

References

[1] Arbib, M.A.: Theory of Abstract Automata. Prentice Hall, Englewood Cliffs
(1970)

[2] Auletta, G.: Foundations and Interpretations of Quantum Mechanics. World Sci-
entific Publishing Co. Pte. Ltd., Singapore (2000)

[3] Becker, P.: Multi-dimensional Representation of Conceptual Hierarchies. In:
Stumme, G., Mineau, G. (eds.) Proceedings of the 9th International Conference
on Conceptual Structures, Supplementary Proceedings, pp. 33–46. Department of
Computer Science, University Laval (2001)

[4] Becker, P., Hereth Correia, J.: The ToscanaJ Suite for Implementing Conceptual
Information Systems. In: Ganter, B., Stumme, G., Wille, R. (eds.) FCA 2005.
LNCS (LNAI), vol. 3626, pp. 324–348. Springer, Heidelberg (2005)

[5] Bertalanffy, L.v.: General System Theory. George Braziller, New York (1969)
[6] Butterfield, J. (ed.): The Arguments of Time. Oxford University Press, Oxford

(1999)
[7] Butterfield, J., Isham, C.J.: On the Emergence of Time in Quantum Gravity. In:

Butterfield, J. (ed.) The Arguments of Time. Oxford University Press, Oxford
(1999)

[8] Castellani, E. (ed.): Interpreting Bodies: Classical and Quantum Objects in Mod-
ern Physics. Princeton University Press, Princeton (1998)

[9] Eilenberg, S.: Automata, Languages, and Machines, vol. A. Academic Press,
London (1974)

Applications of Temporal Conceptual Semantic Systems 77

[10] Ganter, B., Wille, R.: Formal Concept Analysis: mathematical foundations.
Springer, Heidelberg (1999); German version: Springer, Heidelberg (1996)

[11] Kalman, R.E., Falb, P.L., Arbib, M.A.: Topics in Mathematical System Theory.
McGraw-Hill Book Company, New York (1969)

[12] Lin, Y.: General Systems Theory: A Mathematical Approach. Kluwer Aca-
demic/Plenum Publishers, New York (1999)

[13] Mesarovic, M.D., Takahara, Y.: General Systems Theory: Mathematical Founda-
tions. Academic Press, London (1975)

[14] Pawlak, Z.: Rough Sets: Theoretical Aspects of Reasoning About Data. Kluwer
Academic Publishers, Dordrecht (1991)

[15] Neumann, J.v.: Mathematical Foundations of Quantum Mechanics (engl. trans-
lation of Neumann, J.v.: Mathematische Grundlagen der Quantenmechanik.
Springer, Berlin (1932)). University Press, Princeton (1932)

[16] Sowa, J.F.: Conceptual structures: information processing in mind and machine.
Addison-Wesley, Reading (1984)

[17] Sowa, J.F.: Knowledge representation: logical, philosophical, and computational
foundations. Brooks Cole Publ. Comp., Pacific Grove (2000)

[18] Wille, R.: Restructuring lattice theory: an approach based on hierarchies of con-
cepts. In: Rival, I. (ed.) Ordered sets, pp. 445–470. Reidel, Dordrecht (1982);
Reprinted in: Ferré, S., Rudolph, S. (eds.): Formal Concept Analysis. ICFCA
2009. LNAI 5548, pp. 314–339. Springer, Heidelberg (2009)

[19] Wille, R.: Conceptual Graphs and Formal Concept Analysis. In: Delugach, H.S.,
Keeler, M.A., Searle, L., Lukose, D., Sowa, J.F. (eds.) ICCS 1997. LNCS (LNAI),
vol. 1257, pp. 290–303. Springer, Heidelberg (1997)

[20] Wolff, K.E.: Concepts, States, and Systems. In: Dubois, D.M. (ed.) Proceedings
of Computing Anticipatory Systems. American Institute of Physics, Conference,
vol. 517, pp. 83–97 (2000)

[21] Wolff, K.E.: A Conceptual View of Knowledge Bases in Rough Set Theory. In:
Ziarko, W.P., Yao, Y. (eds.) RSCTC 2000. LNCS (LNAI), vol. 2005, pp. 220–228.
Springer, Heidelberg (2001)

[22] Wolff, K.E.: Temporal Concept Analysis. In: Mephu Nguifo, E., et al. (eds.) ICCS
2001 International Workshop on Concept Lattices-Based Theory, Methods and
Tools for Knowledge Discovery in Databases, pp. 91–107. Stanford University,
Palo Alto (2001)

[23] Wolff, K.E.: Transitions in Conceptual Time Systems. International Journal of
Computing Anticipatory Systems 11, 398–412 (2002)

[24] Wolff, K.E.: Interpretation of Automata in Temporal Concept Analysis. In: Priss,
U., Corbett, D.R., Angelova, G. (eds.) ICCS 2002. LNCS (LNAI), vol. 2393, pp.
341–353. Springer, Heidelberg (2002)

[25] Wolff, K.E.: Concepts in Fuzzy Scaling Theory: Order and Granularity. Fuzzy
Sets and Systems 132, 63–75 (2002)

[26] Wolff, K.E.: ‘Particles’ and ‘Waves’ as Understood by Temporal Concept Analysis.
In: Wolff, K.E., Pfeiffer, H.D., Delugach, H.S. (eds.) ICCS 2004. LNCS (LNAI),
vol. 3127, pp. 126–141. Springer, Heidelberg (2004)

[27] Wolff, K.E.: States, Transitions, and Life Tracks in Temporal Concept Analysis.
In: Ganter, B., Stumme, G., Wille, R. (eds.) FCA 2005. LNCS (LNAI), vol. 3626,
pp. 127–148. Springer, Heidelberg (2005)

[28] Wolff, K.E.: States of Distributed Objects in Conceptual Semantic Systems. In:
Dau, F., Mugnier, M.-L., Stumme, G. (eds.) ICCS 2005. LNCS (LNAI), vol. 3596,
pp. 250–266. Springer, Heidelberg (2005)

78 K.E. Wolff

[29] Wolff, K.E.: A Conceptual Analogue of Heisenberg’s Uncertainty Relation. In:
Ganter, B., Kwuida, L. (eds.) Contributions to ICFCA 2006, pp. 19–30. Verlag
Allgemeine Wissenschaft (2006)

[30] Wolff, K.E.: Conceptual Semantic Systems - Theory and Applications. In: Gon-
charov, S., Downey, R., Ono, H. (eds.) Mathematical Logic in Asia, pp. 287–300.
World Scientific, New Jersey (2006)

[31] Wolff, K.E.: Basic Notions in Temporal Conceptual Semantic Systems. In: Gély,
A., Kuznetsov, S.O., Nourine, L., Schmidt, S.E. (eds.) Contributions to ICFCA
2007, pp. 97–120. Clermont-Ferrand, France (2007)

[32] Wolff, K.E.: Applications of Temporal Conceptual Semantic Systems. In:
Zagoruiko, N.G., Palchunov, D.E. (eds.) Knowledge - Ontology - Theory, vol. 2,
pp. 3–16. Russian Academy of Sciences. Sobolev Institute for Mathematics,
Novosibirsk (2007)

[33] Wolff, K.E.: Relational Semantic Systems, Power Context Families, and Concept
Graphs. In: Wolff, K.E., Rudolph, S., Ferré, S. (eds.) Contributions to ICFCA
2009, pp. 63–78. Verlag Allgemeine Wissenschaft, Darmstadt (2009)

[34] Wolff, K.E.: Relational Scaling in Relational Semantic Systems. In: Rudolph, S.,
Dau, F., Kuznetsov, S.O. (eds.) ICCS 2009. LNCS (LNAI), vol. 5662, pp. 307–320.
Springer, Heidelberg (2009)

[35] Wolff, K.E.: Temporal Relational Semantic Systems. In: Croitoru, M., Ferré, S.,
Lukose, D. (eds.) ICCS 2010. LNCS (LNAI), vol. 6208, pp. 165–180. Springer,
Heidelberg (2010)

[36] Zadeh, L.A.: The Concept of State in System Theory. In: Mesarovic, M.D. (ed.)
Views on General Systems Theory, pp. 39–50. John Wiley & Sons, New York
(1964)

[37] Zadeh, L.A.: Fuzzy sets. Information and Control 8, 338–353 (1965)
[38] Zadeh, L.A.: The concept of a linguistic variable and its application to approxi-

mate reasoning. Part I: Inf. Science 8, 199–249, Part II: Inf. Science 8, 301–357;
Part III: Inf. Science 9, 43–80 (1975)

Conceptual Representation of

Gene Expression Processes

Johannes Wollbold1, René Huber2,3, Raimund Kinne2, and Karl Erich Wolff4

1 Steinbeis Transfer Center for Proteome Analysis, Rostock, Germany
jwollbold@gmx.de

2 University Hospital Jena, Experimental Rheumatology Group
raimund.w.kinne@med.uni-jena.de

3 Institute of Clinical Chemistry, Hannover Medical School, Hannover, Germany
huber.rene@mh-hannover.de

4 University of Applied Sciences, Mathematics and Science Faculty,
Darmstadt, Germany

karl.erich.wolff@t-online.de

Abstract. The present work visualizes and interprets gene expression
data of arthritic patients using the mathematical theory of Formal Con-
cept Analysis (FCA). For the purpose of representing gene expression pro-
cesses we employ the branch of Temporal Concept Analysis (TCA) which
has been introduced during the last ten years in order to support concep-
tual reasoning about temporal phenomena. In TCA, movements of gen-
eral objects in abstract or “real” space and time can be described in a
conceptual framework. For our purpose in this paper we only need a spe-
cial case of the general notion of a Conceptual Semantic System (CSS),
namely a Conceptual Time System with actual Objects and a Time relation
(CTSOT). In the theory of CTSOTs, there are clear mathematical defi-
nitions of notions of objects, states, situations, transitions and life tracks.
It is very important for our application that these notions are compatible
with the granularity of the chosen scaling of the original data.

This paper contributes to the biomedical study of disease processes in
rheumatoid arthritis (RA) and the inflammatory disease control osteo-
arthritis (OA), focusing on their molecular regulation. Time series of
messenger RNA (mRNA) concentration levels in synovial cells from RA
and OA patients were measured for a period of 12 hours after cytokine
stimulation. These data are represented simultaneously as life tracks in
transition diagrams of concept lattices constructed from the mRNA mea-
surements for small sets of interesting genes. Biologically interesting dif-
ferences between the two groups of patients are revealed. The transition
diagrams are compared to literature and expert knowledge in order to
explain the observed transitions by influences of certain proteins on gene
transcription and to deduce new hypotheses concerning gene regulation.

1 Introduction

The present work is based on a cooperation among scientists from medicine,
biology, and mathematics. In the first part of this introduction, the biomedi-
cal side is presented, in the second part the mathematical side, focussing on a

K.E. Wolff et al. (Eds.): KONT/KPP 2007, LNAI 6581, pp. 79–100, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

80 J. Wollbold et al.

knowledge representation using Formal Concept Analysis (FCA) [10] and its
branch of Temporal Concept Analysis (TCA) [19,24].

1.1 Gene Expression Processes in Arthritic Patients

In this paper we investigate gene expression time series for patients suffering
from rheumatoid arthritis (RA). RA is characterized by chronic inflammation,
accompanied by the destruction of multiple joints perpetuated by the synovial
membrane (SM, or synovium) (Figure 1). A major component of the inflamed
SM are activated, aggressive synovial fibroblasts (SFB, or synoviocytes).

Fig. 1. The knee joint: normal morphology (left) and schematic representation of
rheumatoid arthritis features (right) [13, Figure 1]

To understand normal and destructive cellular reactions, the biomedical
theory has developed models describing processes at the molecular level. A fun-
damental process is gene expression, which is a sequence of two phases, transcrip-
tion and translation (Figure 2): i) during transcription, messenger ribonucleic
acid (mRNA) is produced from the genetic DNA template (i.e., a DNA sequence
coding for a single protein); and ii) during translation, proteins are built from
amino acids using these mRNA templates. [1]

Proteins are the main regulators of life processes; they activate almost every
chemical reaction within an organism as enzymes, build new structures during cell
division or transduce biochemical signals from the cell surface to the cytoplasm
and the nucleus, e.g., by phosphorylation of target proteins. These signals can ac-
tivate another class of proteins, the transcription factors, which bind to the DNA
and are thus able to initiate, enhance or repress transcription. [1] These mutual
dependencies are represented as gene regulatory networks like in Figure 5.

Conceptual Representation of Gene Expression Processes 81

Fig. 2. Gene expression: the two phases of transcription and translation
[www.scientificpsychic.com/fitness/aminoacids1.html]

In normal joints, SFB show a balanced expression of proteins, regulating the
formation and degradation of the extracellular matrix (ECM), which provides
structural support to the cells. In RA, however, SFB have a decisive influence
on the development and progression of the disease by predominant expression
and secretion of pro-inflammatory cytokines and tissue-degrading enzymes, thus
maintaining joint inflammation and degradation of ECM components of cartilage
and bone [8], [13]. In addition, enhanced formation of soft ECM components (an
attempt of wound healing resulting in fibrosis) in the affected joints is also driven
by SFB, which express enhanced amounts of collagens.

Central transcription factors involved as key players in the RA pathogenesis
and activation of SFB are AP1, NFκB, ETS1, and SMAD [26]. These tran-
scription factors show binding activity for their cognate recognition sites in pro-
moters of inflammation-related cytokines (e.g., TNFα) and matrix-degrading
target genes, e.g., collagenase (MMP1) and stromelysin 1 (MMP3). The latter
are highly expressed in RA and contribute to tissue degradation by destruction
of ECM components.

Based on this knowledge we analyzed the expression of 18 genes, which can
be classified into five functional groups:

1. Structural proteins (COL1A1 and COL1A2)
2. Enzymes degrading ECM molecules (MMP1, -3, -9, and -13)
3. Molecules inhibiting these proteases (TIMP1)
4. Transcription factors (ETS1, FOS, JUN, JUNB, JUND, NKFB1, SMAD3,

SMAD4, SMAD7) regulating the expression of the above genes
5. External signaling molecules TNFα (TNF) and TGFβ (TGFB1)

Virtually all of these genes can be expressed in fibroblasts and are involved in
ECM turnover.

Since several years, progress of experimental techniques in molecular biology
has allowed to collect high-throughput data for large sets of genes, e.g., by a

82 J. Wollbold et al.

single gene chip (microarray) measuring the concentration levels of the mRNA
for almost all 25.000 human genes. However, conclusions from such data have to
be drawn with caution, since mRNA and protein concentrations sometimes are
only weakly correlated.

In our approach we investigate the microarray measurements of the mRNA
levels for the 18 genes mentioned above.

A main task of systems biology is to model the behavior of biological systems
by regulatory network models. A classical approach are Boolean networks, first
proposed by Kauffman et al. [11]. A Boolean network mainly consists of a di-
rected graph with n nodes, which are interpreted as genes. At each point of time,
formally represented as a non-negative integer, a gene may be either active (’on’;
gene expression ’yes’) or inactive (’off ’; gene expression ’no’). Therefore, a state
of a Boolean network at a time point t is defined as a sequence (s1, ..., sn) of n
binary state values si where si = 0 (respectively 1) if and only if the i-th gene is
off (respectively on) at time point t. The arcs of the Boolean network are used to
represent temporal dependencies between genes; in [11] it is assumed that there
is an integer k ≤ n so that each gene has exactly k incoming arcs from k genes
which influence the given gene. This influence of k genes on a gene i is described
by a time-independent Boolean function βi which maps each of the 2k possible
k-tuples of 0’s and 1’s into the set {0, 1}. These Boolean functions determine
for each state (s1, ..., sn) at time t uniquely a state at time t + 1. Therefore,
the transitions from the state at time t to the state at time t + 1 generate a
functional digraph; its cycles are interpreted as stable behavioral types of the
biological system described by the Boolean network.

In [26], we collected literature knowledge related to the formation and remod-
elling of ECM, performed dynamic simulations by Boolean networks, compared
them to observed time series and made analyses based on the attribute explo-
ration algorithm of Formal Concept Analysis (FCA). In the present work we
extend this study employing the temporal branch of FCA, Temporal Concept
Analysis (TCA), for the representation of gene expression processes. As the
main graphical tool we use transition diagrams (as for example in Figure 4) for
the visualization of these processes. As opposed to Boolean networks in which
only a single “system” moves through the state space, the systems in TCA al-
low for a general and structured representation of multiple temporal objects. In
Figure 4 there are six temporal objects, namely patients, each one with its life
track. A short introduction into that field will be given in the next sections.

1.2 Temporal Concept Analysis

To give a very short overview over Temporal Concept Analysis (TCA) we men-
tion something about its roots, some basic ideas, and its relation to other tem-
poral theories.

FCA was introduced 1982 by Wille [18], [10]; it is based on order theory,
especially lattice theory [6], which has its roots in classical ordinal structures in
logic, algebra and geometry. The central definition in FCA is the mathematical
notion of a formal concept which formalizes the philosophical notion of a concept

Conceptual Representation of Gene Expression Processes 83

as a unit of thought with its two parts, the extension and the intension. Formal
concepts are defined in a formal context (G, M, I) consisting of a set G of (formal)
objects, a set M of (formal) attributes and a binary relation I ⊆ G×M between
these two sets. If a pair (g, m) of an object g and an attribute m belongs to that
relation one says that “g has the attribute m”. The set of all formal concepts of
a formal context is an ordered set with respect to the conceptual hierarchy (see
Chapter 2.2). This ordered set is even a complete lattice which means that any set
of formal concepts has a supremum (the smallest common super-concept) and an
infimum (the greatest common sub-concept). Concept lattices can be graphically
represented by line diagrams which represent the given formal context without
any loss of information. Since arbitrary data tables, formally described as many-
valued contexts, can be represented via conceptual scaling as formal contexts,
the line diagrams of concept lattices can be used to represent any data table.

The basic idea to represent the notion of a state as a formal concept led to
the introduction of TCA [19]. Within the framework of conceptual time systems
it was possible to capture the notion of a time granule which generalizes and
clarifies the notion of a time point or moment. The introduction of a general
notion for temporal objects led to the notion of a state of a temporal object at a
time granule. To define also transitions it was necessary to introduce the notion of
a time relation (of a temporal object). That led to the conceptual representation
of life tracks of objects. The basic structure in which states, transitions and life
tracks are defined is called a Conceptual Time System with actual Objects and a
Time relation (CTSOT) [20,24]. They are graphically represented in transition
diagrams as in Figure 4, 6, 7 or 9.

To define a life track of an object one needs the property that an object is at
exactly one place at each time granule. This property is the basic assumption
for the notion of a particle in classical physics. The investigation of this property
with respect to the granularity for objects, space and time led to the notion of a
temporal Conceptual Semantic System (CSS) in which particles and waves can
be represented as special distributed objects [22]. That improves our conceptual
understanding of basic notions in many other temporal theories as for example
in classical physics, in quantum physics, in automata theory [21] and in the
theory of Turing machines [23]. It also yields a clear mathematical basis for the
semantics of situations as discussed in [3,4].

In the following we do not need the general notion of a temporal Conceptual
Semantic Systems since the gene expression data can be easily represented as a
CTSOT. That will be explained in the next section.

2 Data of Gene Expression Processes and Its Conceptual
Representation

2.1 Organization of the Data

The data evaluated in this paper are partly shown in Table 1. The full data ta-
ble mainly consists of mRNA-measurements applied to cells of six patients and is

84 J. Wollbold et al.

published in [26]. Three of these patients (labelled 87, 220, and 221) suffered
from rheumatoid arthritis (RA), the other three (190, 202, and 205) suffered
from osteoarthritis (OA). Fibroblasts isolated from the joints of these patients
have been independently stimulated with two different proteins, namely the pro-
inflammatory tumor necrosis factor α (TNFα) and the transforming growth
factor β (TGFB1), which acts as a partial antagonist of TNFα. At 0, 1, 2, 4,
and 12 hours after stimulation with one of these factors, mRNA measurements
for all genes have been taken, using Affymetrix U133 Plus 2.0 chips; in this study,
we are interested in the named 18 genes. Logarithmic values (ln-values) of such
mRNA-measurements are represented in Table 1.

Table 1. Ln-values of the mRNA measurements for the genes MMP1, MMP9, and
TIMP1

Key Time Patient Disease Stimulation MMP1 MMP9 TIMP1

N87 0 0 N87 RA TNF 7.91 4.42 10.58
N87 1 1 N87 RA TNF 9.34 4.02 10.28
N87 2 2 N87 RA TNF 10.07 4.97 10.63
N87 4 4 N87 RA TNF 10.42 4.35 10.63
N87 12 12 N87 RA TNF 10.61 5.18 10.67

G205 0 0 G205 OA TGFB1 7.08 4.60 10.28
G205 1 1 G205 OA TGFB1 6.92 4.73 10.44
G205 2 2 G205 OA TGFB1 6.99 5.02 10.43
G205 4 4 G205 OA TGFB1 6.98 4.93 10.31
G205 12 12 G205 OA TGFB1 10.46 5.55 10.51

Reading for example row N87 4 in Table 1, 4 hours after stimulation with
TNF, the ln-value of the mRNA measurement for the gene MMP1 in the cells
of the RA-patient 87 was 10.42, 4.35 for MMP9, and 10.63 for TIMP1. The row
label ’N87 4’ represents by ’N’ the stimulation with TNF, by ’87’ the label of
the patient, and by ’4’ the duration of 4 hours after stimulation. Similarly, in
’G205 12’ the ’G’ represents the stimulation with TGFB1. The full data table
has 2 × 6 × 5 = 60 rows and 22 columns, 4 for Time, Patient, Disease and
Stimulation, and 18 for genes. Table 1 shows only 10 of the rows and 7 of the
columns. The two columns labeled ’Disease’ and ’Stimulation’ are useful for the
conceptual investigation of combinations of the values in these two columns.
The conceptual representation and visualization of data will be explained in the
following subsection.

2.2 Conceptual Visualization of Data

In the following we represent and visualize our above-mentioned data using FCA.
Some basic notions are given for the unexperienced reader, on the basis of the
data presented in Table 1. For this purpose, we start with the formal context I5

shown in Table 2. Its set of formal objects is G := {0, 1, 2, 4, 12}, the set of time
values in Table 1; since we are interested in representing time intervals we choose

Conceptual Representation of Gene Expression Processes 85

the set of formal attributes as M := {≤ 0,≤ 1,≤ 2,≤ 4,≤ 12,≥ 0,≥ 1,≥ 2,≥
4,≥ 12}; the incidence relation of I5 is the set of all those pairs (g, m) ∈ G×M
which have a cross in Table 2.

Table 2. The formal context I5 describing temporal intervals

I5 ≤ 0 ≤ 1 ≤ 2 ≤ 4 ≤ 12 ≥ 0 ≥ 1 ≥ 2 ≥ 4 ≥ 12

0 × × × × × ×
1 × × × × × ×
2 × × × × × ×
4 × × × × × ×

12 × × × × × ×

Instead of a mathematical introduction of formal concepts and concept lattices -
which can be found in [10] - we explain the meaning of the main notions using the
diagram in Figure 3. This diagram represents the concept lattice of the formal
context I5; we now explain it roughly using some examples.

Fig. 3. The concept lattice of the formal context I5. Circles represent formal concepts
and lines the order relation.

First, we mention that all formal objects and all formal attributes of I5 occur
in Figure 3. Each circle describes a formal concept; for example, the circle at
the top describes the top concept ; as any formal concept it consists of a pair
(A, B) of two sets, where A is called its extent, and B is called its intent ; for
the top concept the extent is the set G of all objects, and the intent is the set of
those attributes shared by all objects, hence it is the set {<= 12, >= 0}. In the
cross table of I5 this top concept can be visualized as the rectangle full of crosses
spanned by its extent G and its intent {<= 12, >= 0}. In the diagram, the extent
of any formal concept, represented by some circle, is the set of objects occuring
under that circle; its intent is the set of all attributes occuring above this circle.
For example, the circle placed vertically under the top concept represents the
formal concept c14 := ({1, 2, 4}, {<= 4, <= 12, >= 0, >= 1}).

86 J. Wollbold et al.

In the following, we need two important special kinds of formal concepts,
namely the object concepts and the attribute concepts. In the diagram they are
represented by those circles which are labeled by an object (resp. attribute)
name. For example, the circle with the lower label 1 represents the object concept
of 1, denoted by γ(1) = ({1}, {<= 1, <= 2, <= 4, <= 12, >= 0, >= 1}); the
circle with the upper label [>= 1] represents the attribute concept μ(>= 1) =
({1, 2, 4, 12}, {>= 1, >= 0, <= 12}).

If we are interested in those formal objects which satisfy two attributes, say
{>= 1, <= 4}, then we get the set {1, 2, 4} which is the intersection of the
extents of the attribute concepts μ(>= 1) and μ(<= 4). It can be shown, that
the intersection of extents is again an extent; in our example it is the extent
of the previously mentioned concept c14 which is the infimum of μ(>= 1) and
μ(<= 4) and the supremum of the object concepts of 1, 2, 4. This formal concept
is neither an object concept nor an attribute concept. In the formal context I5

each extent of a formal concept is an interval in the set G; as an extreme example,
the bottom concept has the empty set as its extent and M as its intent.

For any two formal concepts (A, B), (C, D) of a formal context we say that
(A, B) is a subconcept of (C, D) if and only if the extent A is a subset of the
extent C:

(A, B) ≤ (C, D) :⇔ A ⊆ C (1)

That can be expressed equivalently by the inverse inclusion for the intents:
B ⊇ D. (A, B) is called a lower neighbour of (C, D) if and only if (A, B) is
a subconcept of (C, D) and their is no other concept between (A, B) and (C, D);
the lower neighbourhood relation is indicated in the diagram by upwards lead-
ing lines. Therefore, the diagrams for representing concept lattices are also called
line diagrams. Using the conceptual hierarchy one can prove (see [10]) that any
formal context can be reconstructed from its concept lattice, since an object g
has an attribute m if and only if the object concept of g is a subconcept of the
attribute concept of m:

gIm ⇔ γ(g) ≤ μ(m) for all g ∈ G and m ∈ M. (2)

Hence, looking at a concept lattice one can see the whole information given in
its formal context. In the next section we explain and use conceptual scaling,
the standard method for transforming arbitrary data into a formal context.

2.3 Conceptual Scaling

The main idea for the visualization of arbitrary data is to transform these data
into a formal context and to use a well-drawn line diagram of its concept lattice
for understanding the data. The main technique for this transformation is con-
ceptual scaling. It has been developed in the Research Group Concept Analysis
at Darmstadt University of Technology between 1982 and 1989 (see [9], [10],
[18]). In these references, basic definitions for conceptual scaling are introduced:
the notions of a many-valued context (mathematizing arbitrary data tables),
conceptual scales (which are formal contexts for the purpose of introducing a

Conceptual Representation of Gene Expression Processes 87

suitable granularity for the values of each many-valued attribute), and the de-
rived context of a scaled many-valued context. The derived context represents the
many-valued context in the granularity of the chosen scales. The main method
for conceptual scaling is plain scaling [10]. It is often applied, for example when
using thresholds for numerical values of a many-valued attribute. One of the
main advantages of conceptual scaling is its flexibility in applications.

As a small example we construct the formal context shown in Table 3 from the
MMP1-MMP9-TIMP1 part of Table 1. In this formal context we represent for
example the TNF-stimulated patient 87 at time point 0 by N87 0. The incidence
relation of this formal context is constructed from Table 1 by a threshold scaling
whose main idea is “to make a cross if and only if the value is greater than a
suitable threshold”.

For these data it is meaningful to introduce for each many-valued attribute
two different thresholds depending on the two different stimulations TNF and
TGFB1, since the data had been normalized independently. Further, thresholds
have to be determined for each gene separately, because the absolute expres-
sion values are very different. We have chosen these thresholds as described in
Table 4. Since we do not like to mention these thresholds in the names of the at-
tributes of the derived context we call these attributes “MMP1=1”, “MMP9=1”,
“TIMP1=1” to express for example that “MMP1 is on”. For the conceptually
advanced reader we mention that this scaling is not a plain scaling as described
in [10, p. 38].

The stimulation-dependent scaling is explained by the following example: In
the column “MMP1=1” of Table 3 the formal object N87 1 has a cross since
N87 1 is TNF-stimulated and MMP1(N87 1) = 9.34 > 8.65; the formal ob-
ject G205 12 has a cross in the column “MMP1=1” since G205 12 is TGFB1-
stimulated and MMP1(G205 12) = 10.46 > 7.29.

These thresholds were determined by the first author using a procedure based
upon Wards agglomerative hierarchical clustering method [16]. At each step in
this algorithm, which starts from the partition of all singletons, the union of
every possible cluster pair is considered and two clusters whose fusion results in
minimum information loss are combined. Information loss is defined by Ward in
terms of an error sum-of-squares criterion (ESS). For our purpose of a coarse
threshold scaling we generate for each of the considered genes and for each
stimulus a partition with only two clusters for the set of the ln-values of the
mRNA measurements. Let this set be {xi|1 ≤ i ≤ n} and xi ≥ xj for i ≤ k.
Then Ward partitioning into two classes signifies determining an index i that
minimizes

ESS :=
i∑

j=1

(xj − μ1)2 +
n∑

j=i+1

(xj − μ2)2

=(i − 1)σ2(x1, ..., xi) + (n − i − 1)σ2(xi+1, ..., xn),
i = 1, ..., n.

μ1, μ2 : group means, σ2: group variance.

(3)

88 J. Wollbold et al.

Table 3. Derived context of the mRNA measurements for the genes MMP1, MMP9,
and TIMP1

Key MMP1=1 MMP9=1 TIMP1=1

N87 0 ×
N87 1 ×
N87 2 × ×
N87 4 × ×
N87 12 × × ×
G205 0
G205 1 ×
G205 2 × ×
G205 4 ×
G205 12 × × ×

Table 4. Thresholds for stimulation-dependent scaling

Stimulation MMP1 MMP9 TIMP1

TNF > 8.65 > 4.97 > 10.46
TGFB1 > 7.29 > 4.86 > 10.39

Thus, for each of the considered genes and for each stimulus, the ln-values
x1, ..., xn of the mRNA measurements of all patients and time points were sorted
into two groups with threshold xi.

For this trial of a scaling method, we chose the classical Ward clustering
method and got meanigful results. In a further study, only minor differences
and no improvements were observed when applying k-means clustering or single
linkage clustering, which are also used for the clustering of gene expression data
[26, Data discretisation].

In the next section we shortly introduce the main ideas concerning the con-
ceptual representation of temporal data in transition diagrams.

2.4 Conceptual Time Systems with Actual Objects and a Time
Relation (CTSOT)

In the following we represent and visualize our previously described data, namely
the expression of selected genes in SFB of six arthritic patients during a period
of 12 hours after stimulation. For the representation of these processes we use
TCA. The reader is referred to [24] for an introduction of the notions around
Conceptual Time Systems with actual Objects and a Time relation (CTSOT).
For a more general representation of distributed objects the reader is referred to
the paper “Applications of Temporal Conceptual Semantic Systems” by Wolff
in this volume.

Now we give a short introduction to the main ideas around the notion of a
CTSOT. A CTSOT is a mathematical structure describing a data table whose
row entries are pairs (p,t) where p is called an object (interpreted for example
as a patient) and t a time granule (interpreted for example as a time point or a

Conceptual Representation of Gene Expression Processes 89

time interval). The pair (p,t) is called an actual object. As usual, the column
entries of the data table are many-valued attributes (called variables in statis-
tics). For each many-valued attribute m and each actual object (p, t), the value
m((p, t)) is shown in the corresponding cell where the column of m and the row
of (p, t) meet. A CTSOT has for each of its many-valued attributes m a concep-
tual scale Sm = (Gm, Mm, Im). The derived context of the CTSOT with respect
to these conceptual scales is denoted by K.

For the purpose of a clear introduction of the notion of a state of an actual
object, the set of the many-valued attributes of a CTSOT is split into two parts,
the time part and the event part, leading to a split of the data table and a split
of the derived context K = (KT |KC) into a time part KT and an event part KC .
For each actual object (p, t) the object concept γC(p, t) of the event part KC is
defined as the state of the actual object (p, t).

For the introduction of the notion of a life track of an object p we specify a
time relation Rp on the set of time granules of p. In our example, all objects
(here: patients) have the same time relation, namely just the “next-time-point-
relation” given by the following arrows: 0 → 1 → 2 → 4 → 12. These are
represented by the arrows in the following transition diagrams. A transition
diagram is a line diagram of the concept lattice of a part of the derived context
of a CTSOT together with some arrows. An arrow leading from one object
concept c to another object concept d is drawn if and only if c is the object
concept of an actual object (p, t) and d is the object concept of the actual
object (p, t′) where (t, t′) ∈ Rp, the chosen time relation on the time granules
of p. The set of all object concepts γC(p, t) of an object p is defined as the life
track of p in the state space which is the set of all object concepts of actual
objects in the event part KC .

Now we describe the conceptual time systems which will be evaluated in this
paper.

2.5 Conceptual Time Systems for Six Arthritic Patients

We start with the full many-valued context K0 with 60 formal objects and 22
many-valued attributes as explained in Section 2.1. Its set G of formal objects is
partitioned into the two sets G1 consisting of the 30 TNF-stimulated cases from
N87 0 to N205 12 and G2 consisting of the 30 TGFB1-stimulated cases from
G87 0 to G205 12. In this paper we shall evaluate either the 30 TNF-stimulated
cases in G1 or the 30 TGFB1-stimulated cases in G2. That has the advantage
that we can employ the usual tools for plain scaling of the many-valued subcon-
texts K1 and K2 induced by G1 or G2 to generate the two corresponding derived
contexts using the threshold scaling as explained previously, namely ordinal scal-
ing for the time, and nominal scaling for the other attributes; in addition, we can
reduce the labels of the formal objects, for example from G87 0 to (87, 0), the
usual notation for an actual object. This labeling will be used in the following
diagrams which refer either to all TNF- or to all TGFB1-stimulated cases.

All conceptual time systems in this paper will be constructed from the
“TNF-subcontext” K1 or the “TGF-subcontext” K2 by selecting some of the

90 J. Wollbold et al.

Fig. 4. Transition diagram for six patients after TNF stimulation. Dashed arrows: RA
patients 87, 220, 221; solid arrows: OA patients 190, 202, 205. The first arrow of the
life track of a patient is marked with the label of the patient.

many-valued attributes. The time part will always consist of the single many-
valued attribute “Time”. The event part will be chosen as a subset of the set of
the mRNA measurements for the 18 selected genes. For each patient, the time
relation is 0 → 1 → 2 → 4 → 12.

To explain the notion of a transition diagram we first study the example in
Figure 4. It shows the life tracks of all six patients in the concept lattice of the
formal context with all 6 × 5 = 30 TNF-stimulated actual patients N87 0, ...,
N205 12 as formal objects; its attributes are the three attributes in Table 3, i.e.,
MMP1, MMP9, and TIMP1, and its incidence relation is derived by the plain
scaling indicated in the TNF-row of Table 4. This formal context is the derived
context of the event part KC of a CTSOT with the Time-column as indicated
in Table 1 as its time part.

In the concept lattice of this derived context we see that all 8 possible com-
binations of the 3 attributes occur as intents of formal concepts; while the top
concept has an empty intent, the bottom concept has all three attributes in
its intent. Hence the formal object (190,0) has none of the three attributes,
while (220,0) has the attributes TIMP1=1 and MMP9=1, but not the attribute
MMP1=1.

Conceptual Representation of Gene Expression Processes 91

We now follow the life track of patient 87. At time point 0 patient 87 has
only the attribute “TIMP1=1” (see Table 3 and Figure 4). Hence the object
concept of (87, 0), the state of (87, 0), is the attribute concept of “TIMP1=1”.
The state of (87, 1) is the attribute concept of “MMP1=1”. Therefore a (thin
dashed) arrow is drawn from the circle of the state of (87, 0) to the circle of the
state of (87, 1). This first arrow of the life track of patient 87 is labeled with “87”.
From Figure 4 one can see that patient 87 is in the same state at the time points
2 and 4, namely the concept with the intent {MMP1=1, TIMP1=1}. The life
track of patient 87 ends in the bottom concept where all attributes are fulfilled,
that is all three genes are expressed.

Finally we give a short technical description of the generation of the transi-
tion diagrams in this paper. At first we imported an EXCEL data table of the
many-valued context of a CTSOT into the program CERNATO which is part of
the DECISION SUITE by the distributor NAVICON. This data table has in its
first two columns the labels for the patients (e.g., 87) and the time points (e.g.,
12). Using CERNATO we scaled the many-valued attributes, and the attributes
of the derived context were combined to suitable views, for example to the view
represented by the line diagram in Figure 4. To include the life tracks of objects
into such a line diagram, one has to save the information about the CTSOT and
the views in CERNATO in an xml-file which can be imported into the program
SIENA [5]. There, the life tracks of single or all objects can be easily included
in the line diagram, yielding a transition diagram which can be graphically opti-
mized by the user. In SIENA it is possible to animate the life tracks visualizing
movements along the life tracks. This is of great help for the understanding of
temporal effects.

Since CERNATO is not easily available any more, it is also possible to generate
views with SIENA (by duplicating the context and deleting columns) and to use
EXCEL or programming (e.g. in R) for scaling. If necessary, the authors will
give hints.

After having discussed the conceptual representation of temporal data in
transition diagrams, we now interpret some relevant diagrams from a biologi-
cal and/or medical point of view.

3 Results

To evaluate our gene expression data, we focus on relevant combinations of at-
tributes and observe the temporal behavior of the six patients with respect to
the selected attributes. Clearly, the small number of patients can result only in
preliminary hypotheses, which have to be compared with literature data and
should be validated in future investigations. One of our main sources regarding
the mutual dependency of gene expression is a literature search [26] concerning
18 genes relevant for the formation and degradation of ECM. The main results
of this literature analysis are shown in Figure 5. In this graphic the solid arrows
indicate an induction of the final gene by the initial gene of the arrow. A dashed

92 J. Wollbold et al.

line indicates that the initial gene represses the expression of the final gene; for
example, TNF represses SMAD7. In the following, we will compare the results
in Figure 5 with the hypotheses deduced from the transition diagrams.

3.1 Two Destructive Proteins and Their Antagonist

The matrix-metalloproteases (MMPs) degrade the ECM of cartilage and bone.
Therefore, they are important mediators of the destructive effects in rheumatic
diseases. TIMP1 proteins, secreted by fibroblasts and other cells, bind to MMPs
and neutralize their effects. We chose MMP1 and MMP9 due to their typical be-
haviour and in order to highlight the differences to TIMP1. MMP13 was omitted,
since it was only expressed in RA patients at late time points. The expression
of these genes was analyzed after stimulation with TNF (Figure 4) and TGFB1
(Figure 6), respectively.

Stimulation with TNF. In the case of stimulation with TNF (Figure 4), the
top concept (for which all three genes are off) appears to be the initial state for all
OA patients (190, 202, 205), but for none of the RA patients. It is further striking
that the life tracks of all OA patients remain in the “upper area” where TIMP1
is off, whereas those of the RA patients (87, 220, 221) fall under the attribute
concept of TIMP1=1, with the exception of the two intermediate states γC(87,1)
and γC(220,1) = γC(220,2). Coarsely stated: no OA state has TIMP1 on, but
most of the RA states have it. This could be a hint on an increased constitutive
expression of the protective protein TIMP1 in RA. However, it is known that
higher levels of TIMP1 in RA are compensated by considerably upregulated
MMP expression [2], [7]. Moreover, the original experimental data (compare
Table 1) reveal only small differences. They may be relevant, but should be
checked by comparisons to other results. Thus, the downregulation of TIMP1
at 1 h for RA patient 87 and for 220 at 1 h and 2 h becomes more important.
Finally, Figure 4 shows that MMP1 and MMP9 production increases remarkably
for nearly all transitions; that is in accordance with the activation arrows TNF
→ MMP1 and TNF → MMP9 in Figure 5.

All these facts and observations indicate an accelerated disease progression
in RA. The downregulation of TIMP1 is a surprising new observation regard-
ing studies reporting a TNF-dependent TIMP1 upregulation [4] (compare the
activation arrow TNF → TIMP1 in Figure 5). However, Alsalameh et al. [2]
reported that TIMP1 was induced by TNF only in OA, but not in RA patients.
Our corresponding (negative) result for RA - partly also for OA - supports the
new opinion challenging the TIMP1 induction by TNF in RA.

Stimulation with TGFB1. In Figure 6, the top concept is the initial state
of all OA patients, as in the case of TNF stimulation. This also represents an
internal validation, since the measured value at 0 h for both stimuli (i.e., TNF
and TGFB1) is derived from two independent experiments with cells from the
same batch of patient cells, yielding almost identical results. For patient 190,
MMP1 is upregulated after 4 h. For patient 202, MMP9 is on only after 12 h. The

Conceptual Representation of Gene Expression Processes 93

Fig. 5. Knowledge based network of the genes regulating MMP1, MMP9, TIMP1,
SMAD4 and SMAD7. TNF, TGFB1 : extracellular signaling proteins; JUN, FOS,
SMAD4 : transcription factors; SMAD7 : inhibiting protein of SMAD4 ; MMP1, MMP9 :
matrix destructing proteins; TIMP1 : antagonist of MMPs. Solid arrows: induction,
dashed lines: repression of gene expression.

life track of patient 205 (thin arrows) shows an increasing behavior for MMP9: off
- off - on - on - on at the 5 observation times; at the end, also MMP1 is expressed
(bottom concept). In all RA states TIMP1 is on. That is complementary to the
fact in Figure 4 that TIMP1 is off in all OA states. That means, TIMP1 is always
expressed at a high concentration by the RA cells after TGFB1 stimulation,
and at a low concentration by the OA cells after TNF stimulation. This fact
underlines the bias towards a slightly enhanced expression of TIMP1 protein in
RA, independently of the stimulus. Surprisingly, in Figure 6 only patient 221
shows the expected downregulation of MMP1 (and MMP9) following TGFB1
stimulation [17]. For the patients 202 and 220, MMP1 remains off, for patient 87
on, and for the patients 190 and 205 it is even upregulated. Therefore, we could
not confirm inhibiting effects of TGFB1 on matrix metalloproteases, as reported
elsewhere.

Finally, we observe from Figure 6 that there is no formal concept where only
MMP1 and MMP9 are expressed. They are expressed together at the state rep-
resented by the bottom concept. Thus, the following implication holds:

MMP1 = 1, MMP9 = 1 −→ TIMP1 = 1 (4)

Our biological interpretation of this implication in the case of TGFB1 stimu-
lation is: If MMP1 and MMP9 are both expressed, their effect is balanced by
TIMP1.

94 J. Wollbold et al.

Fig. 6. Transition diagram for six patients after TGFB1 stimulation. Dashed arrows:
RA patients (87, 220, 221); solid arrows: OA patients (190, 202, 205).

3.2 Transcriptional Regulation of TGFB1 Effects

The purpose of the stimulation with TGFB1 was to obtain further insight into
the mechanisms regulating potential TGFB1 effects in the pathogenesis of RA.
We want to understand the behaviour of the main mediators of TGFB1 effects,
the transcription factors SMAD3, SMAD4 and SMAD7. SMAD3 and SMAD4
act together, and SMAD7 is able to inhibit these proteins. This is an effect of sig-
nal transduction, not directly of gene expression, i.e., phosphorylated SMAD7
protein inactivates SMAD3-SMAD4, so that they are not able to bind to the
DNA and to regulate the expression of other genes. Since no knowledge is avail-
able concerning the regulation of SMAD3 gene expression, we identified SMAD3
and SMAD4 in the network in Figure 5.

In Figure 7 we focus on the development of SMAD3, SMAD4 and SMAD7 and
observe a remarkable effect: SMAD7 is upregulated in all patients after 1 hour
and - with the exception of patient 220 - downregulated after 4 hours. After
12 hours also SMAD3 is downregulated (with the single exception of patient
205). SMAD4 is nearly always on (with the exceptions of patient 87 for all time
points, and patient 190 at 0 h). There are no clear differences between RA and
OA patients.

Conceptual Representation of Gene Expression Processes 95

Fig. 7. TGFB1-stimulated patients and their transcription factors SMAD3, SMAD4
and SMAD7. Main effect: SMAD7 upregulation after one hour, SMAD7 downregulation
after 4 hours.

From Figure 5 we see that JUN and FOS are known to induce the expression
of SMAD7. Now, in order to confirm this knowledge or to find other transcription
factors that might be responsible for the SMAD7-effect in Figure 7, we generate
the diagram in Figure 8 with ETS1, FOS, JUN, JUNB, JUND and NFKB1 as
formal attributes. Since the SMAD7-effect shows an upregulation of SMAD7
after 1 hour we search for transcription factors which are upregulated at time
point 0. To visualize that, we have indicated all initial states in Figure 8 by black
circles.

Now we can easily see that JUNB is on in none of the initial states; NFKB1
is on only in the initial state of patient 87; FOS is on only in the initial states of
2 patients, 205 and 220; JUN is on only in the initial states of 3 patients, 190,
202, and 205; ETS1 and JUND are on in the initial states of 4 patients, 202, 205,
220, and 221. We mention, that SMAD4 is on in the initial states of 4 patients,
while SMAD3 is on in the initial states of all 6 patients (Figure 7).

96 J. Wollbold et al.

Fig. 8. Possible influences on SMAD7 upregulation at 1 h: initial states of the obser-
vation (black circles)

Thus, ETS1 and JUND could be involved in the SMAD7 upregulation 1 hour
later, whereas JUN is only confirmed as an inducer in the case of the OA patients.
As will be confirmed in the next paragraph, it is the most plausible hypothesis
that - at least at the beginning of the time series - TGFB1 upregulates SMAD7
by SMAD3 and SMAD4.

This is in accordance to the known fact that a TGFB1 signal can activate the
transcription factor SMAD4. Signaling processes within a cell are much faster
than gene expression (i.e., 10 minutes versus approximatively 1.5 hours), so that
a TGFB1-SMAD4 effect after 1 hour is possible.

As could be seen in Figure 7, SMAD7 was mostly downregulated after 4 h. We
make a parallel investigation to the previous one and regard the transcription
factors at 2 h (Figure 9).

The smallest superconcept of the 2 h states is

({(202,1), (205,1), (87,2), (190,2), (202,2), (205,2), (220,2), (221,2)},
{ETS1, JUNB}),

Conceptual Representation of Gene Expression Processes 97

Fig. 9. Possible influences on SMAD7 downregulation after 4 hours: transitions 1 h →
2 h

i.e., at this time all patients express ETS1 and JUNB (and also two patients
at 1 h). Hence, these two transcription factors could have an influence on the
downregulation of SMAD7 at 4 h. However, ETS1 was on at 0 h for 4 patients and
then had no repressing effect on SMAD7. Since JUNB was off at the initial state
of all patients, it is a more convincing candidate as a repressor of SMAD7. This
assumption would be a new finding and is worth of supplementary experimental
inquiry. It is supported by data about the dependency of SMAD7 transcription
on AP1 complexes containing JUN. This transcription is suppressed in the case
of functional inactive JUN mutants [15]. Since JUNB is discussed as a molecule
characterized (at least in part) by inhibitory effects on transcription [14], JUNB
may indeed negatively influence SMAD7 transcription, if it replaces JUN in the
respective AP1 complexes.

The only known inhibitor of SMAD7 in fibroblasts - NFKB1 - was expressed at
2 h in one patient only. Moreover, NFKB1 could not be activated by TNF, which
is completely lacking in the TGFB1 stimulated cells (the dashed inhibitory arrow
TNF → SMAD7 in Figure 5 stands for the whole signal transduction pathway

98 J. Wollbold et al.

via NFKB1). Following the analysis of Figure 8, JUND could be an activator of
SMAD7. Now we see that the absence of JUND was not the reason for SMAD7
downregulation, since JUND is on for 5 patients at time point 2 h. This also
questions its role as an inducer of SMAD7 at 1 h, so that the positive effect
of SMAD4 on SMAD7 transcription remains as the best explanation, as men-
tioned above.

4 Discussion

With the aid of Temporal Concept Analysis, we were able to derive new biomed-
ical hypotheses from the data. New candidates for SMAD7 induction and repres-
sion were identified, whereas the known inducers FOS and JUN as well as the
repressor NFKB1 were not confirmed to be relevant under the given conditions.
The differences in TIMP1 gene expression for RA and OA patients were difficult
to understand, but literature studies helped to arrive at a plausible interpreta-
tion that partly supports and partly challenges previous knowledge. Finally, our
visualization of the data accentuated a contradiction to the generally supposed
MMP downregulation by TGFB1. These new findings and hypotheses now await
experimental confirmation.

What are the reasons for the inspiration and activation which we got during
our conceptual investigation of gene expression processes? Using FCA it is pos-
sible to represent the data without any loss of information. In the case that we
wish to restrict our view to an expert-oriented, specified granularity one can do
that in many meaningful ways using conceptual scaling. That leads to visual-
izations in line diagrams of concept lattices which activate the semantics of the
expert for a suitable interpretation of the original data.

The main advantage of the transition diagrams in Temporal Concept Analysis
lies in the fact that they generalize the classical visualization of trajectories in
physics. That is based on a generalization of the notions of space and time and
the introduction of a general notion of temporal objects, states, transitions, and
life tracks. Since states in a CTSOT are object concepts of actual objects, the
state space is a subset of the concept lattice of the chosen view. Hence the life
tracks of temporal objects can be represented in transition diagrams of suitable
expert oriented views.

The previously mentioned Boolean networks do not have a notion of a tempo-
ral object. Each Boolean network together with an initial state yields a CTSOT
with a single temporal object, “the system”, which has as its life track just the
set of all future states of the given initial state. Therefore, this approach is not
suited for the visualization of our gene expression data with several patients
which have been represented as temporal objects.

For the gene expression data, the transition diagrams proved to be a very
efficient tool for understanding complicated temporal data. Clearly, it may be
difficult to draw a good transition diagram even with the help of the computer
program SIENA which is a part of the general FCA suite TOSCANAJ [5]. In-
terpreting the transition diagrams, the expert’s free and associative thinking was

Conceptual Representation of Gene Expression Processes 99

supported effectively. We got a deeper insight into the data and were activated
to discuss the gene expression processes with respect to possible causes of the
observed effects.

For future investigations, the actual computer programs should be improved
to admit much more life tracks, to draw nested transition diagrams, and to
include labels of temporal objects at the first transition arrow of a life track.
Clearly, there are many possible wishes for animations of processes which should
be realized in the computer programs for TCA.

In summary, our method stands for a way “back to the roots” in bioinfor-
matics. Against the tendency to apply large scale quantitative data analyses
and complicated algorithms to high throughput measurements yielding hardly
interpretable results, our method activates the whole knowledge of experimental
scientists concerning specific gene interactions and is adapted to their way of
thinking. It is based on a mathematical theory of concepts that represents the
original information with respect to the chosen granularity by a meaningful and
structured visualization.

References

1. Alberts, B., et al.: Molecular Biology of the Cell, with CD-ROM, 5th rev. edn.
Taylor & Francis, London (2008)

2. Alsalameh, S., et al.: Preferential induction of prodestructive matrix
metalloproteinase-1 and proinflammatory interleukin 6 and prostaglandin E2 in
rheumatoid arthritis synovial fibroblasts via tumor necrosis factor receptor-55. J.
Rheumatol. 30(8), 1680–1690 (2003)

3. Barwise, J.: The Situation in Logic. CSLI, Lecture Notes 17, Stanford (1989)

4. Barwise, J., Perry, J.: Situations and Attitudes. MIT Press, Cambridge (1983);
Deutsch: Situationen und Einstellungen: Grundlagen der Situationssemantik. De
Gruyter, Berlin (1987)

5. Becker, P., Hereth Correia, J.: The ToscanaJ Suite for Implementing Conceptual
Information Systems. In: Ganter, B., Stumme, G., Wille, R. (eds.) FCA 2005.
LNCS (LNAI), vol. 3626, pp. 324–348. Springer, Heidelberg (2005)

6. Birkhoff, G.: Lattice Theory, 3rd edn. Amer. Math. Soc., Providence (1967)

7. Cunnane, G., Fitzgerald, O., Beeton, C., Cawston, T.E., Bresnihan, B.: Early joint
erosions and serum levels of matrix metalloproteinase 1, matrix metalloproteinase
3, and tissue inhibitor of metalloproteinases 1 in rheumatoid arthritis. Arthritis.
Rheum. 44(10), 2263–2274 (2001)

8. Dasu, M.R., Barrow, R.E., Spies, M., Herndon, D.N.: Matrix metalloproteinase
expression in cytokine stimulated human dermal fibroblasts. Burns 29(3), 527–531
(2003)

9. Ganter, B., Wille, R.: Conceptual Scaling. In: Roberts, F.S. (ed.) Applications of
Combinatorics and Graph Theory to the Biological and Social Sciences, pp. 139–
167. Springer, Heidelberg (1989)

10. Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations.
Springer, Heidelberg (1999); German version: Springer, Heidelberg (1996)

11. Kauffman, S.A.: Metabolic stability and epigenesis in randomly constructed genetic
nets. J. Theor. Biol. 22(3), 437–467 (1969)

100 J. Wollbold et al.

12. Motameny, S., Versmold, B., Schmutzler, R.: Formal Concept Analysis for the
Identification of Combinatorial Biomarkers in Breast Cancer. In: Medina, R.,
Obiedkov, S.A. (eds.) ICFCA 2008. LNCS (LNAI), vol. 4933, pp. 229–240. Springer,
Heidelberg (2008)

13. Smolen, J.S., Stein, G.: Therapeutic Strategies for Rheumatoid Arthritis. Nature
Reviews 2, 472–488 (2003)

14. Schütte, J., et al.: Jun-B inhibits and c-Fos stimulates the transforming and trans-
activating activities of c-Jun. Cell 59(6), 987–997 (1989)

15. Quan, T., He, T., Voorhees, J.J., Fisher, G.J.: Ultraviolet irradiation induces
Smad7 via induction of transcription factor AP-1 in human skin fibroblasts. J.
Biol. Chem. 280(9), 8079–8085 (2005)

16. Ward, J.H.: Hierarchical grouping to optimize an objective function. J. Amer. Stat.
Assoc. 58, 236–244 (1963)

17. White, L.A., Mitchell, T.I., Brinckerhoff, C.E.: Transforming growth factor beta in-
hibitory element in the rabbit matrix metalloproteinase-1 (collagenase-1) gene func-
tions as a repressor of constitutive transcription. Biochim. Biophys. Acta. 1490(3),
259–268 (2000)

18. Wille, R.: Restructuring lattice theory: an approach based on hierarchies of con-
cepts. In: Rival, I. (ed.) Ordered sets, pp. 445–470. Reidel, Dordrecht (1982)

19. Wolff, K.E.: Temporal Concept Analysis. In: Mephu Nguifo, E., et al. (eds.) ICCS
2001. International Workshop on Concept Lattices-Based Theory, Methods and
Tools for Knowledge Discovery in Databases, pp. 91–107. Stanford University, Palo
Alto (2002)

20. Wolff, K.E.: Transitions in Conceptual Time Systems. International Journal of
Computing Anticipatory Systems CHAOS 11, 398–412 (2002)

21. Wolff, K.E.: Interpretation of Automata in Temporal Concept Analysis. In: Priss,
U., Corbett, D.R., Angelova, G. (eds.) ICCS 2002. LNCS (LNAI), vol. 2393, pp.
341–353. Springer, Heidelberg (2002)

22. Wolff, K.E.: ‘Particles’ and ‘Waves’ as Understood by Temporal Concept Analysis.
In: Wolff, K.E., Pfeiffer, H.D., Delugach, H.S. (eds.) ICCS 2004. LNCS (LNAI),
vol. 3127, pp. 126–141. Springer, Heidelberg (2004)

23. Wolff, K.E.: Turing Machine Representation in Temporal Concept Analysis. In:
Ganter, B., Godin, R. (eds.) ICFCA 2005. LNCS (LNAI), vol. 3403, pp. 360–374.
Springer, Heidelberg (2005)

24. Wolff, K.E.: States, Transitions, and Life Tracks in Temporal Concept Analysis.
In: Ganter, B., Stumme, G., Wille, R. (eds.) Formal Concept Analysis - Founda-
tions and Applications. LNCS (LNAI), vol. 3626, pp. 127–148. Springer, Heidelberg
(2005)

25. Wolff, K.E.: States of Distributed Objects in Conceptual Semantic Systems. In:
Dau, F., Mugnier, M.-L., Stumme, G. (eds.) ICCS 2005. LNCS (LNAI), vol. 3596,
pp. 250–266. Springer, Heidelberg (2005)

26. Wollbold, J., Huber, R., Pohlers, D., Koczan, D., Guthke, R., Kinne, R., Gaus-
mann, U.: Adapted Boolean network models for extracellular matrix formation.
BMC Systems Biology 3, 77 (2009)

From Published Expression and Phenotype Data

to Structured Knowledge: The Arabidopsis Gene
Net Supplementary Database and Its

Applications

Denis Ponomaryov1, Nadezhda Omelianchuk2, Victoria Mironova2,
Eugene Zalevsky2,3, Nikolay Podkolodny2,
Eric Mjolsness4, and Nikolay Kolchanov2,3

1 Institute of Informatics Systems, Novosibirsk, Russia
2 Institute of Cytology and Genetics, Novosibirsk, Russia

3 Novosibirsk State University, Novosibirsk, Russia
4 Institute for Genomics and Bioinformatics, University of California,

Irvine, USA

Abstract. We report on the development progress of the AGNS (Ara-
bidopsis gene net supplementary) database and a AGNS-based informa-
tion system for automation of research on the morphogenesis of
Arabidopsis thaliana (L.), a well-known model plant in system biology.

1 Introduction

At present, a large volume of information on plant genetics is available only in
the form of scientific papers and hence represented as non-structured data. This
appears to be an obstacle for building mathematical models of genetic processes
and planning new experiments. As a rule, the information is summarized in re-
views in which a lot of significant details are inevitably omitted. On the other
hand, the scientific data available in publications are already quite enough for
developing tools for analysis and prediction of regulation of numerous genetic
processes. For solving this problem, a number of information resources have been
developed (TAIR, AREX, Plant Ontology, and others), which summarize data
on morphogenesis of plants. Still, there is increasing need in systems that could
provide access to all possible details from published papers, as well as efficient
tools for analysis and reasoning on these data. In our work, we focus on the de-
velopmental processes of Arabidopsis thaliana (L.), the well-known model plant
in biology. To automate the research, we have developed the AGNS (Arabidopsis
gene net supplementary) database (http://wwwmgs.bionet.nsc.ru/agns) and a
specialized information system equipped with a set of tools for scientific anal-
ysis of data on gene expression and phenotypes of the plant. In the paper, we
report on the progress of our work, from collecting and pre-processing data to
developing tools for data analysis.

The paper is organized as follows. In Section 2 we describe the basic structure
of the AGNS data and in Section 3 give an overview of terminological systems

K.E. Wolff et al. (Eds.): KONT/KPP 2007, LNAI 6581, pp. 101–120, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

102 D. Ponomaryov et al.

developed around the AGNS database. Section 4 contains a survey of tools for
data analysis as well as some implementation details; Section 5 concludes the
paper with an outlook onto further research.

2 The Structure of the AGNS Data

The AGNS database has been developed as a structured data warehouse of ex-
perimental results on gene expression and phenotypes of the wild type, mutant
and transgenic plants of Arabidopsis thaliana. The database has been built on
the basis of annotations of published papers describing these experiments. It is
important to notice that the data structure has not been determined in advance
due to the nature of the source information and the data scheme underwent sev-
eral corrections. Finally, the following four modules have been logically defined
in AGNS (we define their structure by predicates with the corresponding names).
Gene expression database (AGNS ED) contains facts of the form:
AGNS ED(Gene, Anatomy Element, Developmental Stage, Express Level,

IsAbnormal), where Anatomy Element is an organ, tissue, or cell and
Developmental Stage is a developmental stage of a particularAnatomy Element.
An example of this would be the following fact:

AGNS ED(AG, F loral Meristem, FDS3, P resent, False)
stating that expression of gene AG is normally present in floral meristem at
“flower developmental stage 3”.
Phenotypic abnormalities database (AGNS PD) contains data of the
form: AGNS PD(Genotype,Anatomy Element, Developmental Stage,Abnormality)

For instance, AGNS PD(clv1 − 1, F loral Meristem, FDS3, Enlarged) means
that the floral meristem at stage FDS3 is enlarged in mutant plants homozygous
for the clv1-1 allele.
Publications database (AGNS RD) contains the full list of publications
on experiments on the basis of which AGNS ED and AGNS PD have been
built. Each paper in AGNS RD is provided with a reference to the PubMed
[12] database and a description of growing conditions and ecotype of A. thaliana
that was used for control in each experiment.
Sequence database (AGNS SD) contains information on genes, their mutant
alleles, and transgenic constructions. The localization of mutation in nucleotide
sequences and transgene fused components are described in details, with refer-
ences to source papers.

3 Terminological Systems

As far as facts in AGNS ED and AGNS PD contained names for anatomical ele-
ments of the plant and their developmental stages, two separate taxonomies (con-
trolled vocabularies on plant anatomy, morphology, and developmental stages)
were built around the annotated data. A detailed intensional description of con-
cepts including qualitative and quantitative data was also provided, with refer-
ences to source papers. The standard hierarchy of concepts (via the “is a” and

From Published Expression and Phenotype Data to Structured Knowledge 103

“part of” relations) was implemented in each taxonomy. Besides, a separate ter-
minological system was built, which contained not only the names of anatomical
elements and stages, but also information about the development sequence of
the plant. In the following, we call this terminological system AGNS ontology.

3.1 AGNS Ontology

While taxonomies have been developed mainly for data annotation, the aim in
constructing the ontology was to apply it for algorithms of analysis of expres-
sion and phenotypic data. The benefits of using formal ontologies for processing
experimental data are recognized in bioinformatics [2, 4, 6]. In this section, we
describe the results of formalizing plant anatomy in development by example of
navigating in the AGNS database. We believe this use case to be rather simple,
yet illustrative for our work. We show that by having a concrete practical task to
be solved, the choice of formalization becomes well-founded and easier to evalu-
ate, than in some abstract case. In the following, we briefly explain the task of
navigation in a database via an ontology and the problem of formal representa-
tion of plant anatomy in development. Next, we introduce the formalization that
was used for building the Arabidopsis ontology and present a discussion of it.

We formulate the task of navigating the database via an ontology as consisting
of the following two subtasks:

- query the database in ontological terms (concepts);
- use relations between ontological concepts to broaden/narrow data extrac-

tion from the database.

A typical example of navigation in AGNS ED would be like this: if we are inter-
ested in the expression of a gene G in some organ X of the plant, then obviously
we would like to know its expression in all sub-organs of X . Or we would like to
restrict ourselves to only certain parts of X or certain developmental stages of
X . This implies that the ontology should contain the necessary relations between
anatomical elements and developmental stages. It turns out that in order to for-
mulate queries and manage extractions of data from the database, one needs to
query the ontology itself. In our case, two typical queries, to which the ontology
should provide answers are:

(Q1) X is an anatomical element, find all elements Y belonging to X;
(Q2) S is a developmental stage, find all stages earlier/later than S.

The main problem in formally describing a plant’s anatomy is connected with the
following general fact: if X and Y are two anatomical elements, then X belongs
to Y at developmental stage Si does not necessarily imply that X belongs to
Y at another stage Sk, i �= k. The number of organs in a plant may change
within development and moreover, an anatomical element may have different
direct containers (i.e. elements to which it directly belongs) at different stages.

Example 1. In this example we consider the development of a leaf primordium.
The leaf primordium has shoot apical meristem (SAM) as a direct container in
stages earlier than P1. Later its direct container is the shoot apex (Figure 1).

104 D. Ponomaryov et al.

Fig. 1. Change of direct container

Example 2. This is a more simple example; here we consider development of a
floral primordium. As the primordium develops, sepal, petal and stamen organs
arise in it (Figure 2).

Fig. 2. Change in the number of contained organs

From these examples one can see that the relation “belongs to” is temporal. With
respect to database navigation, it directly affects what expression data should
be extracted for a queried plant/organ/tissue developmental stage. Suppose that
this relation is represented statically. If we are interested in what genes show
expression in some organ X at a stage S, we would also like to know expression
in sub-organs or tissues of X at S. If X is floral primordium, then according to the
“belongs to” relation, we would get expression data on all anatomical elements
that belong to it. Even if we are interested in an early developmental stage, we
would get expression data for sepals, petals, stamens, etc. at all stages of their
development. This is an undesirable result, of course. Fortunately, Arabidopsis
development is well studied, “what-where-when” is known, and stages can be
considered as discrete. Eventually, the information we would like to be expressed
in the ontology are statements of the kind:
“Anatomical element X at stage SX exists in anatomical element Y at stage SY ” (I)

We only need to represent this concept by a combination of suitable binary
predicates due the implementation requirements we describe further. Before we
define a formal structure for representing statements of the form (I) some pre-
liminary remarks should be made. From a theoretical point of view we consider
formal ontology as a set of sentences in the language of the first-order logic. But
for practical purposes we will restrict ourselves to a decidable fragment of this
language and to formulas of a special kind, which, in particular, will be reflected
by the choice of the OWL language for implementation. In a formal ontology
we distinguish a signature that is a set of predicate symbols in our case and
axioms that restrict possible interpretations of these symbols. Throughout this
section we will use the term “binary predicate” and “relation” to denote the
same things.

From Published Expression and Phenotype Data to Structured Knowledge 105

The signature of the core of the AGNS ontology contains two unary and three
binary predicates:

Anatomy Element

Developmental Stage

Has Developmental Stage(Anatomy Element × Developmental Stage)

Before(Developmental Stage× Developmental Stage)

Occurs In(Developmental Stage × Developmental Stage)

(II)

For brevity in particular for writing the axioms of the ontology we will assume
that binary predicates are defined on Cartesian products of those sets, that are
defined by unary ones and are mentioned informally in the parenthesis.

Let us denote the statement (I) by predicate ExistsIn(X, SX , Y, SY), i.e. the
predicate is true, whenever statement (I) holds for X , SX , Y , SY . We define this
predicate by the following combination of binary predicates that were introduced
above:

ExistsIn(X,Sx, Y, SY) ←→ Has Developmental Stage(X, SX)
∧Has Developmental Stage(Y, SY) ∧ Occurs In(SX , SY)

(1)

The definition is illustrated in Figure 3.

Fig. 3. Representation of the main statement

One should notice that there are no direct relations between anatomical el-
ements. Instead, the relation Occurs In serves for inclusion of anatomical ele-
ments into each other.

The axioms that we include in the ontology and that restrict interpretation
of the predicates are:

∀x∃s(Anatomy Element(x) → Has Developmental Stage(x, s)) (2)

∀s¬(Occurs In(s, s) ∨ Before(s, s)) (3)

∀x, s1, s2¬(Has Developmental Stage(x, s1)∧
Has Developmental Stage(x, s2) ∧ Occurs In(s1, s2))

(4)

∀s1, s2¬(Before(s1, s2) ∧ Occurs In(s1, s2)) (5)

∀s1, s2, s3(Before(s1, s2) ∧ Before(s2, s3) → Before(s1, s3)) (6)

106 D. Ponomaryov et al.

∀s1, s2, s3(Occurs In(s1, s2) ∧ Occurs In(s2, s3) → Occurs In(s1, s3)) (7)

In our implementation the sentences 2-5 define constraints to be checked on
instantiation of the ontology with concrete facts from plant development. Sen-
tences 6 and 7 state that relations Before and Occurs In are transitive and
actually define rules to infer new facts. For clarity we would like to mention also
the following constraint:

∀x,s(Anatomy Element(x) ∧ Has Developmental Stage(x, s) →
¬∃y(Anatomy Element(y) ∧ Has Developmental Stage(y, s) ∧ ¬(x = y)))

It is true of the current facts contained in the AGNS ontology. However we did
not put it in the core to allow the same stages for particular anatomy elements,
which may be identified as different, but have similar developmental processes.
Trichomes on cauline leaves and trichomes on rosette leaves are examples of
such anatomical elements. By allowing this, of course, one should remember
that according to the definition of ExistsIn if for some x, y, and s

Has Developmental Stage(x, s) ∧ Has Developmental Stage(y, s)

holds and also

Has Developmental Stage(z, t) ∧ Occurs In(t, s)

is true for some z and t, then z (at stage t) exists both in x and y (at stage s).
For the task of navigating in the AGNS database and ease of implementation

we extend the signature of the ontology by additional binary predicates. First,
we define non-transitive relations Before Directly and Occurs In Directly as
“sub-relations” of the initial Before and Occurs In to support navigation by
levels:

∀s1, s2(Before Directly(s1, s2) ←→ (Before(s1, s2)∧
∧ ¬∃s(Before(s1, s) ∧ Before(s, s2) ∧ ¬(s = s1) ∧ ¬(s = s2))))

(8)

∀s, x, s1, s2¬(Has Developmental Stage(x, s1)∧
Has Developmental Stage(x, s2)∧
Before Directly(s, s1) ∧ Before Directly(s, s2))

(9)

∀s1, s2(Occurs In Directly(s1, s2) ←→ (Occurs In(s1, s2)∧
∧ ¬∃s(Occurs In(s1, s) ∧ Occurs In(s, s2) ∧ ¬(s = s1) ∧ ¬(s = s2))))

(10)

Indeed, if we used the transitive Before relation for processing query (Q2),
we would get all stages before/later the source stage simultaneously. A similar
thing would happen if we used Occurs In for unfolding an anatomical structure
by query (Q1). Typically, we wish to restrict the level of detail, when viewing
anatomical structure. A simple example would be if we want to see what tissues
an organ consists of, but do not care about the cellular level.

From Published Expression and Phenotype Data to Structured Knowledge 107

Next we add relations Occurs In Start and Occurs In End with the rule

∀s, s1, s2, s3(Occurs In Start(s, s1) ∧ Occurs In End(s, s3)∧
Before(s1, s2) ∧ Before(s2, s3) → Occurs In(s, s2))

(11)

to ease instantiation of our ontology. The reason for this was the prevailing
manual input of facts in the ontology, as it is much easier to select an interval
of developmental stages, than selecting stages one by one.

Finally we define relation Develops From via the relations introduced above
to represent development of one anatomy element into another:

∀X, Y, SX , SY (Has Developmental Stage(X, SX)∧
Has Developmental Stage(Y, SY) ∧ ¬(X = Y)∧
Before Directly(SX , SY) → Develops From(Y, X))

(12)

The core concepts defined by unary predicates in (II) together with relations
defined by the mentioned binary predicates and axioms (2)-(12) make up the
formal ontology, which we call ontology of morphogenesis of plants.

3.2 Discussion of the Ontology

Supported Queries. Let us get back to the queries (Q1) and (Q2) that were
presented in Section 3.1 as the initial points of our study. Considering the formal
structures introduced above the procedure of finding an answer to (Q2) should be
clear, however that for (Q1) needs to be explained in detail. First, the query itself
should be reformulated. We could already see that if X is an anatomy element,
it makes sense to ask of what elements it consists, but it is more correct to ask
of what elements X consists at a concrete stage SX . From this perspective the
procedure of unfolding anatomical structure of X at stage SX is the following.
If level-by-level unfolding is needed, then the first target set is

{ Ai | Anatomy Element(Ai) ∧ Has Developmental Stage(Ai, SAi)∧
∧Occurs In Directly(SAi , SX)) },

while the second is

{ Bj | Anatomy Element(Bj) ∧ Has Developmental Stage(Bj, SBj)∧
∧Occurs In Directly(SBj , SAi)) }

and so forth to the needed level of detail. We illustrate this also by Figure 4.
If the level of detail is not a matter of concern, then the target set is

{ A | Anatomy Element(A) ∧Has Developmental Stage(A, SA)∧
∧Occurs In(SA, SX) }

As a summary we provide the list of queries most relevant to the task of database
navigation that are supported by our ontology:

108 D. Ponomaryov et al.

Fig. 4. Unfolding anatomical structure of X at stage SX

◦ S is a developmental stage; find stages earlier/later than S;
◦ A is an anatomical element, S its developmental stage; find elements belong-

ing to A at S;
◦ A is an anatomical element, S its developmental stage; find elements con-

taining A at stage S;
◦ A is an anatomical element; find anatomical elements, from which it develops;
◦ A is an anatomical element; find anatomical elements developing from A;
◦ A and B are anatomical elements; find stages that A undergoes while being

a part of B;
◦ A and B are anatomical elements; find stages that A undergoes while having

B as its part;
◦ A and B are anatomical elements; is A a part of B at any developmental

stage of B (or A)? (i.e. does A happen to be a part of B at all?)

Instantiation of the Ontology. Other facts that help to evaluate the AGNS
ontology originate from the experience of its instantiation with real data
from arabidopsis development studies. Textual information about arabidopsis
anatomy and development was extracted from published papers and entered
into the ontology in the form defined by formal constructs from the previous
section. During this process we have encountered two main problems regarding
incompleteness of information, namely:

1) stages were not defined for all anatomy elements we would like to include in
the ontology;

2) development of lots of anatomy elements was described in the manner “X
has the following properties, when Y is at stage S” (e.g. “LDS2 leaf shows
meristematic divisions throughout the mesophyll” [5], but these descriptions
were given only for some stages of Y .

This has led to the need of creating ’artificial’ developmental stages for anatomy
elements. Let us illustrate this by the following example.

Example 3. Suppose we want to describe the development of tissue in organ X
of a plant. Let us assume that five stages of organ development are known, but
only two developmental stages for the tissue are distinguished: T1 for the first
stage of X and T2 for the next three stages of X. We can describe this fact by
the auxiliary Occurs In Start and Occurs In End relations in the ontology (as
shown in Figure 5).

From Published Expression and Phenotype Data to Structured Knowledge 109

Fig. 5. Development of tissue in an organ

Now suppose that we also wish to represent cell development in this process
and that cell development is described relative to organ X developmental stages
(Figure 6).

Fig. 6. Development of cells in an organ

The first decision on how to represent this in our formal model will probably
be to define cell developmental stages as occurring directly in the corresponding
organ developmental stages (via the Occurs In Directly relation). This will not
contradict the general understanding of plant structure in the sense that cells
are indeed part of organs. But this will lead to an incorrect unfolding of the
anatomical structure of X at its developmental stages starting from the second
one. Even if we define stages C2 , C3 and C4 as occurring directly in T2 (Figure 6),
this will lead to loss of information, as we have assumed that cell developmental
stages are described relative to organ developmental stages in this example.
That is why we need to introduce so called “artificial” stages for the tissue. In
particular, we split T2 into three stages and add stage T5 that was not present
before (Fig. 7).

Fig. 7. “Artificial” stages for tissue are created

Even though these stages may not be distinguished in reality, we need to
have them in the ontology to provide the correct unfolding of organ anatomy
structure.

110 D. Ponomaryov et al.

3.3 Implementation of the Ontology

In the implementation we were guided by two objectives: to have a widely sup-
ported expressive ontology language with full reasoning capabilities and to use
an ontology editor with rich import-export and visualization functions. This
resulted in the choice of the OWL language and the Protégé ontology editor
(http://protege.stanford.edu). The problem of representing rule-like axioms was
not considered as a significant one, because the number of such axioms in our
ontology is small. Thus, it is possible to rewrite them manually into the lan-
guage of the needed inference engine. In our case we used the Algernon engine
for Protégé. Sentences 2-5,8,9,10 were implemented as constraints, sentence 11
as a forward chaining rule, and 12 – as backward chaining rule in the Alger-
non language. Relations Before Directly and Occurs In Directly defined in
8,10 were represented by the subPropertyOf construct of OWL and transitivity
properties 6,7 – as the TransitiveProperty construct.

Another point to mention here is how we have considered the problem of
loops in development of anatomy elements. Loops occur in many situations, like
for example, continuous leaf formation in plant growth. As the ontology has
been constructed mostly by manual input, it would have made no sense to en-
ter manually the facts that each developmental stage of a leaf occurs in every
developmental stage of vegetative growth. To describe such situations we define
a special class Universal Stage in our ontology with the rule, which we present
here informally: “for any stages s and u, if u is an instance of Universal Stage
and u is an instance of some class C and s occurs in u, then s occurs in every
instance of class C”. For example, take C as the class of the vegetative develop-
mental stages of a shoot apex and assume that universal stage u belongs to C
and s is a leaf developmental stage. Then putting the statement that s occurs in
u in our ontology will generate facts that s occurs in every instance of C. One
can see that this rule is defined by the second-order logic formula

∀s, t, u, C(Universal Stage(u)∧ C(t) ∧ C(u) ∧ Occurs In(s, u) → Occurs In(s, t)),

which we can not implement, of course, in a first-order reasoner, when C is not
fixed. That is why we used the Protégé scripting environment and made a small
program that determined the list of classes C (in our notation) having universal
stage as an instance, and executed this rule for each class from the list.

In general, the problem of representing plant anatomy in development was
reduced to ordering and inclusion of developmental stages. The AGNS ontology
has a small core, yet with strong expressive capabilities. It became possible to
define the Develops From relation for anatomical elements not as a separate
one, but via the core concepts of the ontology. Information about Arabidopsis
development taken from publicly available articles was presented in a formal way.
Each developmental stage in the ontology was provided with textual description
with a reference to the source article. The implemented ontology is a deductive
database consisting of facts about plant development and inference rules. The
proposed formalization was developed in order to apply it for algorithms of
analysis of expression and phenotypic data, which are given in Section 4.

From Published Expression and Phenotype Data to Structured Knowledge 111

3.4 Comparison with Existing Formalizations

The Plant Ontology (PO) [9–11] information resource called simultaneously
controlled vocabulary and ontology has been developed for anatomy and de-
velopment of flowering plants. The arabidopsis ontology provided by PO is the
internationally recognized terminological system created by the collaborative
effort of specialists in biology and bioinformatics. Thanks to coordination of
knowledge on flowering plants, it became possible in particular, to unify key
terms regarding to anatomical elements and their developmental stages. We used
PO to verify that the names for anatomy elements and developmental stages in
our ontology do not contradict with the internationally accepted terms. At the
same time, we could not apply PO for the task of database navigation and data
analysis directly. As we could see above, for this task the temporal aspect of the
ExistsIn relation between anatomy elements needs to be taken into account.

Disregarding temporality of some key relations that appear in biomedical on-
tologies has been already mentioned in papers [1, 13, 14]. In our work, we avoided
using modalities, but this in turn has made us introduce a special signature of
ontology; it differs significantly from that of PO. In this sense, our work is closer
to the approach of Aitken, described in [1], where a detailed analysis of the cur-
rent research on formal representation for biological concepts, like species, sex,
and developmental stage is given. The author introduces an axiom for describing
the part-whole relation for a part-class and a whole-class at a concrete develop-
mental stage. This can be viewed as a formalism for representing statements like
(I) in Section 3.1, but only when stage SX is not taken into account.

The paper by Smith et al. [14] can be recommended as a reference one for
knowledge engineers working in bioinformatics. In this paper, the authors intro-
duce axiomatic semantics for most of the relations that are central for biomed-
ical ontologies. A temporal version is given not only for the key relations such
as “instance of”, “part of”, but also proposed for mereotopological ones [15].
However, it is not clear from the paper, if there exists a temporal axiomatiza-
tion for mereotopology. The considered relations can be used for describing plant
anatomy in development. However, when implemented in a straightforward way,
they may cause difficulties. In the case of the ExistsIn relation, if we fixed a
set of time granules (stages) of development of an organ, then we would have
to list all anatomy elements that are part of this organ for each time granule.
This is of course, an undesirable point in modeling. The more correct decision
(for representing plant development) is to describe all developmental stages that
occur at each of time granules, provided that each stage is sufficiently annotated.
We believe this modeling decision to be more natural, judging from how plant
development is actually described by experimenters.

3.5 Functions of Terminological Systems

With the development of the terminological systems, the AGNS database has
become the core of the information system allowing for annotating papers on
experiments on gene expression and phenotypic abnormalities of the Arabidopsis
plant, as well as for analyzing these experimental data.

112 D. Ponomaryov et al.

◦ The terminological systems are connected with data fields of the AGNS ED
and AGNS PD databases and allow for unambiguous choice of names for
anatomical elements and developmental stages when entering new data.

◦ The navigation in AGNS ED and AGNS PD is implemented via the termi-
nological systems.

◦ Each concept in the terminological systems is provided with a detailed tex-
tual description with a reference to the source article. The terminological
systems contain names for anatomical elements and developmental stages
that comply with the standard names approved by the Plant Ontology Con-
sortium (PO) [9]; thus they can be used for integration of AGNS with other
databases on plant genetics [8]. In comparison with PO, the terminological
systems of AGNS are more detailed and not only contain intensional de-
scription of every concept, but also include fine-grained concepts not present
in PO, which allow for a more detailed annotation of papers and a higher
’resolution’ for studying plant developmental processes. For instance, the
terminological systems of AGNS describe 58 anatomical elements in the ara-
bidopsis embryo compared to only 15 in PO.

The terminological systems of AGNS contain knowledge about the elements of
morphogenesis, their types and relationships between them – all in the form
needed for automated processing of the underlying experimental data. They are
used in conjunction with the AGNS ED and AGNS PD modules for describing
and integrating experimental data on gene expression and phenotypic abnor-
malities and are necessary for logical comparison of results of the both types of
experiments.

4 Input and Processing of Data in AGNS

The input of data obtained from annotation of scientific papers is made via
the input system implemented as a Java application. This system supports the
following features:

◦ annotation of papers and saving the extracted data in the AGNS database;
◦ interaction with the terminological systems: adding new concepts, editing

existing ones, and using them for input of data into the AGNS ED and
AGNS PD databases;

◦ syntactic analysis of the input data with respect to terminological systems.

The AGNS database is constantly updated with new data, which are obtained
from annotation of scientific papers. After a new paper is processed, the experi-
mental data from this paper soon become available in AGNS. At first, data are
put into an auxiliary database, then they are verified by an expert biologist and
transferred into the online database. In the current implementation, AGNS is
based on Berkley DB XML. The extensibility of the system is provided by using
reflexive and modeling technologies of Java in XML. This allows for maximal
flexibility of the basic components of the system, as well as their applicabil-
ity in a wide range of tasks. The access to AGNS is made via Web-interface,

From Published Expression and Phenotype Data to Structured Knowledge 113

which is implemented as a Java-applet. The interface visualizes terminological
systems of AGNS and provides a choice of queries to the database. The queries
are implemented in XQuery language and are optimized for execution in Web-
environments. The query execution results are represented in the form of tables.
The AGNS ED module supports the following queries:

◦ What is the expression of a gene X in the wild type of the plant? The
output is the summarized data from all the annotated papers describing
normal expression of gene X at developmental stages and domains of the
plant.

◦ Which genes show expression in an anatomical element X at a stage S? If X
or S is not specified, then the output is a list of genes with the corresponding
names for anatomical elements/develomental stages, at which expression is
present.

◦ What genes show coexpression with a gene X? The output is a list of genes
having the same expression patterns with X and the list of anatomical ele-
ments/developmental stages at which this takes place.

◦ Mutations or transgenes of which genes change expression of a gene X? What
are these changes and at what stages/in which anatomical elements do they
occur?

◦ Expression of which genes is changed in mutant/transgenic plants for a gene
X? What are these changes, at what stages/in which anatomical elements
do they occur? If the name for a mutation/transgene for X is not specified,
then all mutant and transgenic plants of the gene are considered. The user
may also specify an anatomical element and/or developmental stage as a
filter.

The following queries are supported by the AGNS PD module:

◦ In which anatomical elements and at what stages do mutations/transgenes of
a gene X cause phenotypic abnormalities, and what are these abnormalities?

◦ Mutations/transgenes of which genes cause the same abnormalities as for a
gene X? At what stages/in which anatomical elements do they occur?

◦ Mutations or transgenes of which genes lead to phenotypic abnormalities
of an anatomical element X? What are these abnormalities and at what
developmental stages do they occur?

4.1 Tools for Data Analysis

As soon as AGNS has accumulated a significant amount of experimental data on
plant genetics, it becomes possible to solve a number of important biological tasks
with the help of data analysis tools. Comparing data on normal development of
the plant, phenotypes of mutants, time and place of gene expression allows for
finding the developmental stage and anatomical element, in which a phenotypic
abnormality is predetermined. Moreover, it becomes possible to define the role
of particular genes in the development of the abnormality. For this purpose, the
AGNK (Arabidopsis GeneNet Knowledge Base) was developed, which comprises
algorithms for finding predetermination stages of abnormalities and discovering
relationships between abnormalities.

114 D. Ponomaryov et al.

Finding Predetermination Stages
The first algorithm is a data processing scenario for AGNS implemented in
the XSLT language. It uses information from the both modules AGNS ED and
AGNS PD for finding stages of predetermination of a given abnormality. The
scenario is executed in three steps:

Step 1. Defining regulatory processes in gene expression. In the AGNS
taxonomy all developmental stages are subdivided into several basic classes such
as: embryo development, seedling, axillary SAM development, leaf development,
flower development, and ovule development. At first, all stages preceding or-
gan development are selected from the taxonomy of developmental stages. For
these stages, all records in AGNS ED are extracted, which have the value of Ex-
press Level field equal to “switch on”, “switch off”, “increased”, or “decreased”.
These records correspond to regulatory processes connected with gene expres-
sion. All these records are temporarily saved and those with the value of Ex-
press Level not equal to “switch on” are marked with 1. The result is a collection
of tuples of the form:

〈Gene, Anatomy Element,Developmental Stage,Express Level, Marking〉.

Step 2. Filtering phenotypic data. For each gene selected at the first step
AGNS PD is queried for the list of all phenotypic abnormalities in plants carrying
mutations or transgenes of this gene. The tuples obtained at the first step for
transgenic plants of the queried gene get marked with 2. The resulting data are
temporarily saved as a collection of tuples of the form:

〈Gene, Allele, Anatomy Element,Developmental Stage,Abnormality,Marking〉.

Step 3. Merging data. The tables obtained at the steps 1 and 2 are processed
according to special rules defined by biologists. Based on the complex hierarchy
of anatomical elements, the pairs of organs (a list of comparable concepts) have
been defined, with respect to which the tuples in the both tables are compared.
If a tuple has the value of Anatomy Element equal to any of the organs in a
pair, then the tuple is saved in AGNK as the output of the processing scenario.

The AGNK data are visualized by a Java-applet in the Web-interface acces-
sible at http://wwwmgs.bionet.nsc.ru/agns/agnkapplet . Along with the output
information of the processing scenario, the interface provides access to termi-
nological systems of AGNS and to a database containing schematic pictures of
abnormalities (see Figure 8). Thus, AGNK allows for analysis and visual repre-
sentation of gene regulation of morphogenesis of the Arabidopsis plant.

Discovering Relationships between Abnormalities
The second algorithm developed for AGNK aims at discovering potential rela-
tionships between phenotypic abnormalities of Arabidopsis. It takes a description
of phenotypic abnormality in the form of the AGNS PD tuple as input and gen-
erates a graph of relations of this abnormality to other abnormalities of mutant
and transgenic phenotypes described in AGNS PD. Having analyzed papers on

From Published Expression and Phenotype Data to Structured Knowledge 115

Fig. 8. The AGNK interface. In the upper part: choice of queries by the name of
organ. The leftmost column: stages of normal plant development; in the middle: stages
of predetermination of abnormalities (marked with a tick); the column to the right: a
detailed description of the abnormality.

phenotypic effects of mutations in Arabidopsis, we came to the conclusion that
experimental results described in these papers can be represented by sets of
probabilistic implications of the two sorts:

◦ In allele/transgene A at growing conditions C abnormality Ab1 of strength
S was present in X percent of the observed cases;

◦ Y percent of plants with abnormality Ab1 also had abnormality Ab2.

The first statement is an implication between the conditions and the caused
abnormality, while the second one is an implication between abnormalities im-
plicitly stating that they are related to each other. The facts of the first sort
are always mentioned in papers, however that of the second sort are rather rare.
One of our aims was to establish connections between the results of different
experiments published in different papers and to reconstruct relations between
abnormalities on the basis of the integrated data of the AGNS database.

The algorithm operates on the data of the AGNS PD module, AGNS ontol-
ogy, and AGNS abnormality classifier. The classifier is a hierarchy of all types
of abnormalities that occur in the AGNS PD tuples. The names for abnormali-
ties are classified according to general characteristics such as “abnormal color”,
“abnormal form”, “not developed”, etc. For some of them, a more detailed

116 D. Ponomaryov et al.

classification is given, e.g., “abnormal size: increased size”, “abnormal size: de-
creased size”. We have determined six relations of interest between abnormalities;
below we give their informal, intuitive definition. Note that here we understand
abnormality as a pleotropic effect observed for a concrete anatomical element at
its concrete developmental stage.

“Same as”: two abnormalities are the same, if they represent the same pheno-
typic changes, but are named differently (e.g., in different research groups). By
phenotypic changes we mean here changes in morphology and development of
the plant.
“Alternative to”: we call two abnormalities of the same anatomical element
alternative to each other, if they represent possible ways of abnormal organ de-
velopment occurring in different percentages of cases. For example, in zll mutants
shoot apical meristem may be absent or very strongly reduced and not restored
at germination or developed into pin-like structure or terminated after initiation
of several leaves [7].
“Consequence of”: an abnormality is a consequence of another one, if it is the
result of development of this abnormality within time. For instance, the enlarged
shoot apical meristem causes an increased number of lateral organs.
“Blocked by”: an abnormality blocks another abnormality of another anato-
mical element, if the second one is not present, when the first abnormality is
observed.
“Constituent to”: we call abnormality constituent to another one, if its phe-
notypic change makes up the phenotypic change of the second abnormality. For
example, the increase of trichomes branching may be constituent to an increase
in leaf pubescence.
“Inverse to”: two abnormalities are inverse to each other, if they present op-
posite phenotypic changes, e.g., narrow or wide leaves.

In the following, we will give formal definitions for these relations, which will rep-
resent informal ones in a narrower, yet precise sense. For example, following the
informal definition of “alternative to”, one can conclude that those abnormalities
that are formally assumed to be the same, can well represent alternative abnor-
malities (independent events). However, in our formal definitions the same as
and alternative to abnormalities are disjoint sets. The formal definitions will be
inference rules for the above-mentioned relations. We suggest to consider the
inferred relations just as a view of the AGNS PD data at a higher level of ab-
straction we are going to use next for analyzing phenotypes. A statement that
one abnormality is a consequence of another abnormality is a very strong one
that needs a thorough justification and analysis, if not proved experimentally.
That is why it is important to understand that the algorithm can only suggest
potential relationships between abnormalities, which should then be evaluated
by an expert.

To explain the algorithm, we introduce a formal definition of abnormality,
which will correspond to the basic AGNS PD data structure. Consider the four
sets A, E, S, and T , where

From Published Expression and Phenotype Data to Structured Knowledge 117

- A is a set of identifiers for genotypes of the Arabidopsis plant;
- E is a partially ordered set of anatomical elements (cells, tissues, organs and

structural elements such as specially distinguished layers or zones; the whole
plant is also considered as anatomical element), with the order � defined as
follows: for any e1, e2 ∈ E we have e1 � e2 iff e2 develops from e1;

- S is a partially ordered set of developmental stages of anatomical elements
with the order > defined as follows: for any s1, s2 ∈ S we have s2 > s1 iff s1

is before s2 (in time);
- T is a set of types of phenotypic abnormalities.

Define the relation �⊆ E ×S ×E ×S with the property that for any e1, e2 ∈ E
and s1, s2 ∈ S we have 〈e1, s1, e2, s2〉 ∈� iff e1 at developmental stage s1 exists
in e2 at stage s2. Following the level of abstraction, at which abnormalities are
presented in AGNS PD, we define phenotypic abnormality as a 4-tuple: N =
〈G, e, s, t〉 with G ⊆ A, e ∈ E, s ∈ S, and t ∈ T .

AGNS PD consists precisely of the collection of such 4-tuples labeled by tex-
tual names (short descriptions of abnormalities extracted from papers). It fol-
lows immediately from our definition of abnormality that two different names
denote the same abnormality in AGNS PD, if they correspond to the same 4-
tuples. Note that this is not the only rule the algorithm uses to identify the same
abnormalities.

One can compare two abnormalities N1 = 〈G1, e1, s1, t1〉 and N2 = 〈G2, e2,
s2, t2〉 by considering all possible set-theoretical relations between the ground
sets G1, G2 and also the relations between the elements ei, si, ti, i = 1, 2. The
possible relations between ground sets we consider are: G1 = G2, G1∩G2 = ∅,
G1 ⊂ G2, G2 ⊂ G1, and finally G1 ∩ G2 �= ∅ with G1 ∪ G2 ⊃ Gi, i = 1, 2 .
The corresponding anatomical elements and stages can be equal, incomparable,
or connected by the relations �, >,� defined above. As abnormality types are
organized in the hierarchy, they can be equal, incomparable, or can belong to
the same parent.

We have defined 17 possible cases of difference between two abnormalities
N1 = 〈G1, e1, s1, t1〉 and N2 = 〈G2, e2, s2, t2〉 that make sense in our context.
For each case we have formulated rules for inferring relations between abnormal-
ities. On one hand, these rules are formal definitions we ascribe to the relations
between abnormalities given informally above. On the other hand, they define
the algorithm for identifying relationships between abnormalities. While formu-
lating these rules, we took into consideration several factors connected with the
underlying data of AGNS PD, namely:

- possible incompleteness of data (not every mutant/transgenic plant is present-
ly studied and not all experimental data available are present in the AGNS
database);

- errors by annotating papers (different abnormalities could be taken as being
the same by error and saved as one record in AGNS PD – we call this wrong
factorization);

118 D. Ponomaryov et al.

- probabilistic nature of the original data, as explained in the beginning of
this section;

- existence of redundant regulatory pathways in the plant (e.g., an abnormality
can be recovered at later developmental stages).

We are not able to give all the 17 rules in this paper, that is why we formulate
below only some of them for each of the relations between abnormalities. Each
rule is defined for a pair of tuples N1 = 〈G1, e1, s1, t1〉 and N2 = 〈G2, e2, s2, t2〉.
For convenience of reading, the condition of each rule is written in two (or more)
lines: in the first one a condition on the relations between the sets Gi, i = 1, 2
and elements ei, si, i = 1, 2 is specified; further lines contain additional conditions
and conclusion of the rule.

Rules for inferring SameAs and AlternativeTo relations
C1.1. G1 ∩ G2 �= ∅, e1 = e2, s1 = s2.
R.1.1.1. IF t1 = t2 THEN SameAs(N1, N2) ELSE AlternativeTo(N1, N2).
C1.2. G1 ∩ G2 = ∅, e1 = e2, s1 = s2.
R.1.2.1. IF for N1, N2 there EXISTS abnormality N3 such that SameAs(N1, N3)
AND SameAs(N2, N3) THEN SameAs(N1, N2).

In the cases below we split rules with disjunctive premises into several rules
for clarity. It is also necessary in one case to mention that one abnormality is
SameAs another one and that the common part of their ground sets has a non-
empty intersection with some set S. We denote this further for two arbitrary
abnormalities N1, N2 and a set S as SameAs(N1, N2)/S.

Rules for inferring ConstituentT o relation

C2.1. G1 = G2, 〈e1, s1, e2, s2〉 ∈�.
R2.1.1. IF t1 = t2 = “not developed”, THEN ConstituentT o(N1, N2).
R2.1.2. IF there DO NOT EXIST abnormalitiesN3, N4 such that AlternativeTo(
N1, N3) OR AlternativeTo(N2, N4) THEN ConstituentT o(N1, N2).
C2.2. G1 ⊂ G2, 〈e1, s1, e2, s2〉 ∈�.
R2.2.1. IF t1 = t2 = “not developed”, THEN ConstituentT o(N1, N2).
R2.1.2. IF (there is NO abnormality N3) such that SameAs(N2, N3)/(G2 \G1))
AND (there DOES NOT EXIST an alternative abnormality for N1) THEN
ConstituentT o(N1, N2).

+ two more rules not mentioned here.

Rules for ConsequenceOf and BlockedBy relations
C3.1. G1 = G2, e1 = e2, s2 > s1.
R.3.1.1. IF t1 = t2 THEN ConsequenceOf(N2, N1).
R.3.1.2. IF (t1 �= t2) AND (there are NO alternative abnormalities for N1, which
do not have consequents) AND (there is NO abnormality N3 = 〈G3, e3, s3, t3〉
such that ConsequenceOf(N2, N3) AND t2 = t3) THEN ConsequenceOf(N2, N1)

From Published Expression and Phenotype Data to Structured Knowledge 119

C3.2. G1 = G2, e1 � e2.
R3.2.1. IF (t1 =“not developed”) AND (t1 �= t2) THEN BlockedBy(N2, N1)
ELSE IF there are NO alternative abnormalities for N1 THEN ConsequenceOf(
N2, N1). + 8 more rules not mentioned here.

Rule for InverseTo relation
C4.1. e1 = e2, s1 = s2.
R.4.1.1. IF (t1 �= t2, but t1 and t2 have a common parent in the abnormality
type hierarchy) AND (there EXIST g1 ∈ G1 and g2 ∈ G2 such that g1 is a loss-
of-function gene mutation and g2 is a gain-of-function mutation (or vice-versa))
THEN InverseTo(N1, N2).

The rules above (+ 10 more not present here) define the algorithm for discov-
ering relationships between phenotypic abnormalities basing on the AGNS PD
data. On may call the relations above as complex view at these data. Indeed,
if we take the relations between abnormalities as Cartesian products of the cor-
responding ground sets of tuples, these sets can be considered as answers to
complex queries to AGNS PD database.

5 Conclusion

The AGNS database contains detailed annotations of published experiments on
arabidopsis gene activity and regulation at mRNA, protein, cell, tissue and or-
gan levels in development. The information system developed around AGNS
allows to systematically integrate and classify this heterogeneous and scattered
information. The system includes taxonomies of anatomical elements and their
development stages, as well as the ontology of anatomical structure in develop-
ment for Arabidopsis thaliana. Each terminological system provides a different
granularity at viewing experimental data in the AGNS database. The coarse-
grained taxonomies are used in annotation of papers and entering information
into the database. The fine-grained ontology is used for navigation in the AGNS
database, as well as in tools for data analysis. We have given an overview of
algorithms for finding predetermination stages of phenotypic abnormalities of
the plant and discovering relationships between abnormalities. When evaluated
on large data sets of AGNS, these algorithms can assist in identifying key points
of abnormal development, finding parallel regulatory pathways leading to abnor-
malities, and discovering specific functional modules in the plant. This will allow
for a better understanding of mechanisms of developmental processes and their
interactions and will be a step to reconstructing the underlying gene networks.
The data structure of AGNS together with the tools of data analysis allow for
retrieving complex data sets necessary for the investigation of various processes
of morphogenesis, from gene expression to functions of genes. We believe that
the approach, methodology, and tools developed for the model plant Arabidopsis
thaliana can be applied for studying phenotypes and gene expression in other
organisms.

120 D. Ponomaryov et al.

Acknowledgements

The authors thank Elliot M. Meyerowitz (California Institute of Technology,
Pasadena, USA) for his valuable pieces of advice and comments on this paper.
The work was supported in part by the DFG-Project COMO (GZ: 436 RUS
113/829/0-1), Russian Foundation for Basic Research (grants No. 08-04-01214-
a), Siberian Branch of the Russian Academy of Sciences (integration project No.
119), Programs of RAS 22(8),23(29), and the US National Science Foundation
(FIBR EF-0330786 Development Modelling and Bioinformatics).

References

1. Aitken, S.: Formalizing concepts of species, sex and development stage in anatom-
ical ontologies. Bioinformatics 21, 2773–2779 (2005)

2. Bard, J.B., Rhee, S.Y.: Ontologies in biology: design, applications and future chal-
lenges. Nat. Rev. Genet. 5, 213–222 (2004)

3. Berardini, T.Z., et al.: Functional annotation of the Arabidopsis genome using
controlled vocabularies. Plant Physiol. V. 135, 745–755 (2004)

4. Bodenreider, O., et al.: Biomedical ontologies. In: Altman, R.B., Dunker, A.K.,
Hunter, L., Jung, T.A., Klein, T.E. (eds.) Proceedings of Pacific Symposium on
Biocomputing, pp. 76–78. World Scientific, Singapore (2005)

5. Carland, F.M., McHale, N.A.: LOP1: a gene involved in auxin transport and vas-
cular patterning in Arabidopsis. Development 122(6), 1811–1819 (1996)

6. Karp, P.D.: An ontology for biological function based on molecular interactions.
Bioinformatics 16, 269–285 (2000)

7. Lynn, K., et al.: The PINHEAD/ZWILLE gene acts pleiotropically in Arabidopsis
development and has overlapping functions with the ARGONAUTE1 gene. Devel-
opment 126, 469–481 (1999)

8. Mironova, V.V., Poplavsky, A.S., Ponomaryov, D.K., Omelianchuk, N.A.: Ontol-
ogy of Arabidopsis Genenet Supplementary Database(AGNS): Cross references to
TAIR ontology. In: Proc. Bioinformatics of Genome Regulation and Structure, pp.
209–212 (2005)

9. Plant Ontology Consortium, http://www.plantontology.org
10. Vincent, P., et al.: The Plant Ontology Consortium and plant ontologies. Compar-

ative and Functional Genomics 3(2), 137–142 (2002)
11. Jaiswal, P., et al.: Plant ontology (PO): a controlled vocabulary of plant structures

and growth stages. Comparative and Functional Genomics 6(7-8), 388–397 (2006)
12. The PubMed database, http://www.ncbi.nlm.nih.gov/pubmed/
13. Smith, B., et al.: On the application of formal principles to life science data: a case

study in the gene ontology. In: Rahm, E. (ed.) Database Integration in the Life
Sciences, pp. 79–94. Springer, Heidelberg (2004)

14. Smith, B., et al.: Relations in biomedical ontologies. Genome Biology 6 (2005),
http://genomebiology.com/2005/6/5/R46

15. Smith, B.: Mereotopology: A theory of parts and boundaries. Data and Knowledge
Engineering 20, 287–303 (1996)

16. TAIR The Arabidopsis Information Resource, http://www.arabidopsis.org

How Can Ontologies Contribute to Software

Development?

Alexander S. Kleshchev

Institute for Automation & Control Processes
The Far-Eastern Branch of the Russian Academy of Sciences,

Radio str. 5, 690041 Vladivostok, Russia
kleschev@iacp.dvo.ru

http://www.iacp.dvo.ru/is/

Abstract. The aim of this article is to discuss some directions in soft-
ware development where using ontologies can lead to a considerable
progress. The basic concepts related to ontologies are considered. It is
shown that ontologies can be a basis for domain analysis and simulation
in software development. Ontologies can be used for interactive design
of objects such as dances, musical compositions, user interfaces, and so
on. Also using ontologies can lead to considerable progress in forming
knowledge bases, maintaining expert systems and developing optimizing
compilers controlled by knowledge bases.

Keywords: ontology, knowledge base, software development, analytics,
interactive designing, forming knowledge bases, maintaining expert sys-
tems, optimizing compiler controlled by a knowledge base.

1 Introduction

At the present time one of the intensively studied concepts in software devel-
opment is ontology [1]. There are a significant number of directions in software
development where ontologies are playing a prominent role. Creation of Web-
portals on the basis of ontologies and using ontologies for navigation in infor-
mation arrays [2] and for intellectualizing software agents [3] are among them.
However, the potential of ontologies is considerably wider. The aim of this ar-
ticle is to discuss some other directions in software development where using
ontologies can lead to considerable progress.

2 Basic Concepts

In this article information is considered as a collection of ideas, i.e., as a mean-
ingful concept.

A mapping of a finite set of terms t1, . . . , tm into the (infinite) set of all possible
values V will be called a verbal representation. In other words, a verbal repre-
sentation is a table consisting of two columns and m lines. The terms t1, . . . , tm

K.E. Wolff et al. (Eds.): KONT/KPP 2007, LNAI 6581, pp. 121–135, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

122 A.S. Kleshchev

are placed in the first column and their values from the set V are placed in the
second one. By this means a verbal representation is a formal language with the
elementary syntax.

Information is verbalizable if it can be transmitted adequately by a verbal
representation. This definition establishes a link between these meaningful and
formal concepts. The word “adequately” means that on transmission of infor-
mation by a verbal representation the recipient will obtain the same information
from the verbal representation that the sender coded.

Various questionnaires are examples of verbal representations used in day-
to-day life. An interpretation function for a signature of the predicate calculus
language is an example of a verbal representation used in mathematics. A rep-
resentation for a state of a computer process in terms of the program identifiers
and their values is an example of a verbal representation used in programming.
The last example shows that only verbalizable information can be processed by
present-day computers, and this processing can be performed only in a verbal
representation.

To connect the semantics with a verbal representation it is necessary to define
the semantics for values (elements of the set V) and for finite sets of terms
t1, . . . , tm. This semantics can be done as follows.

The set of all possible values V is considered as the union of magnitudes. A
magnitude is a set of values (a subset of the set V) closed under a finite set of
operations, functions and predicates determined for this magnitude. Algebraic
systems (and multi-sorted ones among them) are analogues for magnitudes in
mathematics. Data types are analogues of magnitudes in programming.

The semantics of a finite set of terms t1, . . . , tm can be unambiguously de-
fined by conceptualization, i.e., by the set of all verbal representations that are
meaningful and have the same set of terms t1, . . . , tm. In other words, a concep-
tualization is the subset of the set of all possible tables, all elements of which
possess this meaningful property (have meaning). Only those who know the
meaning of the terms t1, . . . , tm can decide whether or not a table possesses this
property, i.e., the semantics of a finite set of terms is implicitly defined by all
possible sensible applications of terms from this set.

An ontology (a terminological knowledge base) is the most precise specifica-
tion of a conceptualization, i.e., the ontology explicitly represents the meaningful
property “the table has meaning”. If a conceptualization is taken as an exten-
sional specification for a set of all sensible verbal representations with a fixed
set of terms, then an ontology is an intensional specification for this set of ver-
bal representations. It is an explicitly specified predicate which is true for all
elements of the conceptualization and false for all verbal representations not
belonging to the conceptualization. The ontology determines the semantics of
a finite set of terms explicitly but approximately (the predicate cannot always
have an explicit and exact representation). To be understandable for specialists,
an ontology is usually built in the form of a finite set of definitions for terms and
of ontological agreements. A definition of a term determines the denotation of
the notion designated by the term (the set of all possible values for this term)

How Can Ontologies Contribute to Software Development? 123

and ontological agreements determine connections among the values of different
terms in verbal representations. An ontology cannot be correct or incorrect. It
only specifies the meaning of a set of terms explicitly (and the meaning of terms,
as is well known, is not discussed). However, the ontology itself must be defined
in particular terms. They can be as follows: a chosen set of abstract terms (class,
example, part, whole, attribute, value, and so on), for which their meaning is
considered as known; a set of terms related to magnitudes (designations for con-
stants, operations, functions and predicates); or a set of mathematical terms
(which are unambiguously defined in mathematics by systems of axioms and
mathematical definitions).

Knowledge expressed in terms t1, . . . , tm always relates to a proper (infinite)
subset of the conceptualization, its elements possessing a meaningful property.
Knowledge about this subset is the most precise specification of this subset in
terms of the conceptualization (ontology) [4].

The ideas one way or the other related to a professional activity will be called
professional ones. In the set of all the professional ideas some subsets can be
recognized; they are called domains. Every professional idea belongs to one or
several domains. A complex domain can include ideas from simpler domains.

One of the most important characteristics of a domain is its terminology (the
set of terms used in the domain). A term is a word or phrase with a special
meaning in a domain. Any domain can be uniquely characterized by its ter-
minology. To understand professional ideas related to a domain is impossible
without understanding the meaning of its terminology.

Based on the foregoing, a domain terminology allow us to define the domain
conceptualization and ontology. The reality of a domain is the infinite set of
verbal representations for information about real world fragments in terms of
the domain that took place in the past, are taking place at present and will take
place in the future. The elements of this set will be called situations. By this
means the reality of a domain is the proper subset of its conceptualization (it is
possible to imagine fragments of the world that never took place in the past, do
not take place at present and will not take place in the future), all its elements
possessing the meaningful property indicated above. Knowledge of a domain is
knowledge about its reality [5].

3 Analytics

Development of every program (especially of an information system) begins with
analyzing information about the domain which is necessary to design the pro-
gram. Usually three groups of specialists deal with this activity called analytics.
They are: domain experts who possess the conceptualization and knowledge of
the domain and can describe applied tasks; designers of the information system
who need a comprehensible domain model and task specifications in terms of
the model; and analysts who are to obtain information from experts and meet
designers’ requirements.

124 A.S. Kleshchev

At present there are two approaches to analytics. One of them uses the con-
ceptual framework of applied mathematics and the other uses the conceptual
framework forming the basis of implementation languages.

Using the conceptual framework of applied mathematics analysts (applied
mathematicians) recognize objects from situations (the input data, output data
and intermediate values in applied tasks), designate them by variables they intro-
duce and associate mathematical objects (numbers, sets, functions predicates,
graphs, and so on) with them. Domain notions are associated with the same
variables. For each variable a range of its possible values is defined. In this case
domain knowledge is most often simulated by a system of mathematical rela-
tionships among these variables, and applied tasks are reduced to mathematical
tasks formulated in terms of these systems. There exist well known methods for
solving many mathematical tasks.

The object-oriented analysis [6] and knowledge engineering [7] are examples
of analysis methods within a conceptual framework forming the basis of imple-
mentation languages. In the first case a domain model is built as a set of classes,
objects and methods; in the second case, it is built as a set of rules. In both cases
the results of this analysis contain a description of methods for solving tasks of
the information system under development.

Ontologies can be used as the basis for the third approach to analytics called
here the ontological analysis. It uses the conceptual framework of the domain
being analyzed. A domain model is built as a domain ontology model and a
domain knowledge base, specifications of applied tasks being formulated in terms
of the ontology model. Development of methods for solving these tasks is a step
of this analysis. The goals of the ontological analysis for a domain are to find its
conceptualization, to build its ontology, and to form a knowledge base in terms
of this conceptualization.

The first step of the ontological analysis for a domain is searching for its
conceptualization. Experts working together with analysts should make a list
of terms to represent the reality as complete as necessary, and a representative
list of situation descriptions given in these terms. Next, analysts together with
experts try to represent verbally the situations from the list, and experts detect
whether these verbal representations adequately transmit information about sit-
uations. A list of values already used is put together. During this work the lists
of terms, values and situations can be supplemented. Analysts set the meanings
of terms and values used and principles of adequate representation of situations.
Part of this step is analysis of the value list. Every value should be assigned
to a magnitude. A list of all the magnitudes used is put together. If all the
situations from the list have been adequately represented as elements of the con-
ceptualization, the magnitudes have been detected, and the meanings of all the
terms and the principles of adequate representation of situations are clear to
analysts, then it is said that this step is successfully completed and the domain
conceptualization is recognized.

The second step of the ontological analysis is building an ontology for the
conceptualization recognized. To do this, analysts together with experts should

How Can Ontologies Contribute to Software Development? 125

build definitions for all terms of the conceptualization using terms related to
magnitudes and those from the conceptualization already defined in the ontol-
ogy. Error detection in the definitions can be performed based on the list of
verbal representations for situations obtained at the previous step. If the value
of a term in the verbal representation of a situation is beyond the denotation of
the appropriate notion defined in the ontology, then this definition is incorrect.
Finally, of special difficulty is the formulation of ontological agreements. Some
of them can be proposed by experts, but there is no hope that all the ontolog-
ical agreements can be obtained in this way. A more systematic way to obtain
them is to put together (with experts) a list of meaningless situations that are
represented verbally but do not belong to the conceptualization. An attempt
to discuss the reasons why these situations do not belong to the conceptualiza-
tion can lead to formulating additional ontological agreements. If it turns out
that such a situation contradicts the reality ontology, then either some ontolog-
ical agreements must be improved or additional ontological agreements must be
formulated.

The third step of the ontological analysis for the domain is specifying knowl-
edge to determine the domain reality as precisely as possible. Knowledge is spec-
ified in the same form as ontological agreements (in terms of the ontology). The
final part of this step is detecting errors in domain knowledge. Every situation in
the verbal representation should be consistent with the specified domain knowl-
edge. Then experts make a list of situations that belong to the conceptualization
but do not belong to reality. If there are such situations in the list that contra-
dict the specified domain knowledge, then the knowledge specification should be
improved. Formalization of the ontology and knowledge completes the building
of the domain model.

Comparison of these three approaches to analytics allows the following conclu-
sions to be made. The approach using the conceptual framework of applied math-
ematics is of limited utility since in many domains for which information systems
are developed there is no tradition to use applied mathematics. In this regard,
the object-oriented analysis, knowledge engineering and ontological analysis are
more general-purpose methods. The approach using the conceptual framework
forming the basis of implementation languages makes analysts perform part of
designers’ work and impose analysts’ design decisions on them; designers can-
not change these decisions without additional information about the domain.
Clearly, the more complex a domain is, the more difficult is its analysis within
this framework. Within the framework of the ontological analysis analysts are
involved in building a domain model only. Their work is cut down in comparison
with the previous case and so they can analyze more complex domains. In this
case designers perform the whole designing and their work grows. However, in
doing so they are not bound by other design decisions. Thus the areas of appli-
cation are preferably complex domains (usually related to scientific activity) in
which there are no traditions to apply mathematical methods. If ontology and
knowledge models are represented in mathematical terms, then it is possible to
perceive a certain similarity between the ontological analysis and the applied

126 A.S. Kleshchev

mathematics analysis (the results of them both are represented in mathematical
terms). The difference lies in the fact that in the case of the applied mathematics
analysis an attempt is made to simplify a domain notion system in such a way as
to build its mathematical model directly; in the case of the ontological analysis
a mathematical model of ontology is built on the basis of the domain notion sys-
tem (in the general case, without any simplifications) and then a mathematical
model of knowledge is formed [8].

To formalize the results of the ontological analysis an ontology representation
language is used. Developers of every such language have to answer the following
basic questions: in which terms are ontologies defined? (as noted above, these
terms should be clear to designers; they can be either terms of software engi-
neering when designers are specialists in this field or mathematical terms when
designers are assumed to have a mathematical background); what properties of
ontologies can be represented? (to answer this question it is necessary to know
what properties ontologies may have [9]); to what degree the complexity of on-
tology representation relates to the complexity of its content (for languages with
a fixed syntax there may be cases when simple ideas require cumbersome formal
representations). According to their purposes, ontology representation languages
can be divided into languages of tools (ontologies represented in these languages
are to be directly used in software designs) [10], and languages for investigating
ontologies (ontologies represented in such languages are intended for publica-
tion). The languages of the first group have some implementation restrictions
while the languages of the second group are free from them. The language of
applied logic is an example of languages for investigating ontologies [11]. This
language is extendable both syntactically and semantically. An ontology repre-
sented in it is defined in mathematical terms.

Since analysis (including the ontological analysis) of complex domains is a la-
borious and intellectually difficult kind of activity, it is desirable that its results
could be reused. An ontology is reusable if it can be used to develop different
information systems. An important class of reusable ontologies consists of real
ontologies that define meanings of terms used by specialists in their professional
activity. Publication of such ontologies makes results of the ontological analysis
for appropriate domains accessible to designers of information systems. An on-
tology of medical diagnostics for acute diseases [12], ontologies of physical [13]
and of organic [14] chemistry, an ontology of the X-ray fluorescence analysis
[15], an ontology of computer program transformations [16] and an ontology of
graphic user interface [17] are examples of real ontologies.

Metaontology is an ontology whose terms can be used to describe other on-
tologies. Generalizing this definition, we can speak of ontologies on various levels.
Of special interest are applied (not universal) metaontologies. Chemistry is an
example of a domain with a four-level applied metaontology. A wide domain is
such a domain for which ontologies of all its divisions can be described in terms
of the same applied metaontology of the domain, medical diagnostics being an
example of a wide domain. A class of domains is a collection of domains for
which their ontologies can be described in terms of the same applied ontology

How Can Ontologies Contribute to Software Development? 127

of this class. Detecting applied metaontologies allows us to reveal an inner sim-
ilarity among externally different domains and their divisions. Other definitions
for similarity of ontologies and relations among them are considered in [8].

The ontological analysis considered above is a process of building an ontology
using a finite subset of its conceptualization, i.e., a top-down process. Applied
metaontologies can be used as the basis of another process, the metaontological
analysis, i.e., of a process of building an ontology for a domain or its division
bottom-up using an applied metaontology (of a wide domain or a class of do-
mains). In such a manner ontologies for some divisions of chemistry and medicine
have been built.

4 Interactive Designing

Let us consider a problem of building target objects of a class, each of them
possessing a content and having a form. Suppose that there are two groups of
specialists. They are coders (specialists in the form) and experts (specialists in
the object content). Coders do not know the content every target object should
have but they know how to build target objects of the required form. Experts
know the content a target object should possess but they do not know how to
build target objects of the required form (or building such objects is sufficiently
laborious for them). During the life cycle the content of target objects can change.
It may also imply changes in their form. The traditional method of solving this
problem is as follows: experts explain to coders what content a target object to
be built should possess. After that coders build the target object. Every time
when the content of an already built target object changes, interaction between
experts and coders is resumed. It is clear that the more complex the content of a
target object is the more laborious and unreliable is this method. Development
of computer programs (as target objects) can be an example. Here two groups of
mediators are necessary, namely analysts and designers. Their aim is to provide
more or less reliable and effective transmission of information between experts
and coders.

Now consider a special case of this problem. Let us suppose that for every
target object of a class an information structure can be defined. It is called its
design (model) and meets the following requirements:

– designs of target objects are verbalizable information;
– terminology of their verbal representation is known to experts;
– an interactive program can be implemented that allows experts to build

designs of target objects in this verbal representation;
– a program can be implemented to transform verbal representations of designs

into target objects.

We will call this case a problem of interactive designing. It consists in automation
of building and modifying target objects of a given class by experts (without
coders). Designing can only be interactive if experts are not required to possess
skills in using any artificial languages and they need intellectual support for

128 A.S. Kleshchev

this process (so that the interactive mode considerably reduces laboriousness of
designing). Assuming this, to automatize the activity of experts it is necessary
to solve the following tasks:

– to work out an ontology and a knowledge base of designs, and an ontology
of the design activity that meets the second requirement from those listed
above;

– on the basis of these ontologies and the knowledge base, to develop an in-
teractive CAD-system for experts to form and modify the designs of target
objects;

– to develop a translator (compiler or interpreter) from the verbal representa-
tion of designs into target objects.

Although the problem of interactive designing has been successfully solved in
engineering, its solution in domains far from engineering is less common and is
based, as a rule, on intuition. So a few examples of interactive designing problems
are given below that can be solved (or have been successfully solved) on the basis
of ontologies.

Interactive editing of verbal representation controlled by ontologies is one of
the problems of interactive designing. The problem consists in developing such
interpreters of ontologies (metaontologies) that support experts in creating and
editing information resources of various generality levels (data bases, knowledge
bases, ontologies, and so on). At present such interpreters for personal computers
as well as those accessible via the Internet have been implemented [18].

The problem of interactive design of dances using computers is rather poorly
supported [19]. If we deal with modern solo dances, now a mirror and a video
camera are basic instruments of choreographers. In the mirror they see the dance
they design and perform, and using the video camera they record this perfor-
mance and transmit it to their students. Animated images for dances of a certain
style (computer cartoon films) are target objects in this problem, and choreog-
raphers are experts. For the implemented system of interactive design of the
FUNC style dances [20] an ontology of designs consists of two parts. They are:
a dance ontology with notions such as FUNC dance style, movement, pose, ki-
netic bar, and so on, and a human biomechanics ontology with terms of the
anatomy important for choreography. The knowledge base contains restrictions
of human biomechanics. The interactive CAD-system supports the graphic in-
terface with choreographers on the basis of these ontologies and of the ontology
of dance designing, of movements, and of poses of the whole body and its parts.
In this process extendable libraries of previously designed dances, movements
and poses can be also used. The result of designing is a dance design which can
be transformed into a computer cartoon film and visualized (the whole design
or its fragments) during designing as well as after its completion.

Similarly, the problem of interactive designing and analyzing musical com-
positions can be solved. In this case musical compositions presented in musical
notation are target objects (in the form of MIDI-files that can be played by
computer) and composers are experts. An ontology of musical composition de-
signs should contain definitions of such terms as musical forms, the plan of the

How Can Ontologies Contribute to Software Development? 129

composition and all of its parts, tonal plan, theme, variations, combination of
voices, terms of harmony, and so on. The first step towards creation of such an
ontology is made in [21]. The knowledge base should contain the description of
possible forms and their plans, restrictions on tonal plans, semantic structures
of themes, types of variations, possible harmonic interrelations, and so on. The
task of the CAD-system is to build designs of musical compositions, transform
them into the musical notation and play them by computer. The system of anal-
ysis should allow musicologists to perform analysis of musical compositions in
terms of the same ontology, i.e., disassemble them into such parts that they can
be assembled anew from these parts by inverse operations. Analysis of actual
musical compositions can be the basic way of forming the knowledge base for
such a CAD-system.

In designing user interfaces these latter are target objects. They are repre-
sented in the form of a computer program running together with an appropriate
applied program. There are several groups of experts in this case. They are:
experts of the domain; designers who design outward appearance of the inter-
face; specialists in ergonomics who design a dialog scenario; software engineers
who design the connection of the interface with the applied program; specialists
in interface usability who evaluate the usability of the resulting design. Each
of the listed groups has specific terminology defined by an appropriate ontol-
ogy, and specific knowledge represented in the knowledge base of the developed
CAD-system. The user interface is the part of an applied program (information
system) to be modified most often because of changes in user requirements and
operation conditions, and also because of modification of the applied program
itself [22].

Maintenance of an information system is its adaptation to changing conditions
of its operation. The more complex the information system, the more laborious
its maintenance. For a developing information system a crisis can come when
all the efforts of its developers are spent on its maintenance, and there are no
resources to develop it further (to expand its functionality). Information systems
for managing universities are examples of developing systems. For such systems
changes of operation conditions consist in the fact that current business-processes
can often be changed, new business-processes arise perpetually, and some old
ones are not to be performed any more. Moreover, document formats and data
models are changed often (especially in reforming the education system). At
the same time, the functionality of such systems is very complex. It includes
management of staff, training process, research, documents circulation, regular
and once-only undertakings, and so on, including inspections of dormitories [23].
The problem of maintenance for such information systems can be solved if each
individual system is developed as a particular system of interactive designing
and a design interpreter. The system of interactive designing supports creation,
development and maintenance of the information system design. This activity
is performed by experts whose terminology is defined by the ontology of the
system of interactive designing. The design interpreter supports operation of the
information system.

130 A.S. Kleshchev

5 Verbal Representation of Knowledge Bases

A knowledge base, like any information, can be represented verbally. This re-
quires a domain terminology that is specially intended for knowledge repre-
sentation such that verbal representation of the domain knowledge base using
this terminology represents this knowledge adequately. An ontology defining the
meaning of this terminology will be called a knowledge ontology, as distinct from
an ontology defining the meaning of terms for situation representation that will
be called a reality ontology. Ontological agreements of the knowledge ontology
will be called knowledge integrity restrictions, and those of the reality ontology
will be called situation integrity restrictions. In this case the domain ontology
consists of two ontologies. They are the reality ontology and the knowledge ontol-
ogy, connected by a special system of ontological agreements about the relation
between knowledge and reality [5]. The ontology of medical diagnostics is an
example of such an ontology [12].

The traditional way of forming knowledge bases is to get them from experts.
Now there are tools for editing knowledge bases intended for experts and con-
trolled by knowledge ontologies. We dealt with them in the previous section.
Another way is inductive formation of knowledge bases using empirical data. As
D. Michie noted [24], an inductively formed knowledge base can be useful only if
it is understandable for specialists of the appropriate domain. Under these con-
ditions not only these specialists can use this knowledge themselves, but they
will also trust the expert system using this knowledge base. They can check
conclusions of this system as well. In addition, any element of an inductively
formed knowledge base should provide an explanation understandable for any
domain specialist (how and wherefrom the empirical data has been obtained).
In the domains where knowledge is represented verbally it is clear for domain
specialists since the meaning of terms from the appropriate ontology is known to
them. In [25] methods are suggested for inductive formation of knowledge bases
in such domains. These methods are to solve the following task: using a training
set of verbally represented situations (of examples which are possible situations
and of counterexamples which are impossible situations), it is necessary to find a
verbally represented knowledge base which is (the most) correct (every example
is consistent with the knowledge base) and exact (every counterexample is not
consistent with the knowledge base) in relation to the training set. The basic
idea of these methods is using ontological agreements about the relation between
knowledge and reality in the domain ontology while solving this task.

Every system based on knowledge consists of two parts, namely, a shell and
a knowledge base. An expert system is a system based on knowledge where
the knowledge base has a high level of competence. The traditional approach
for implementing such systems (based on knowledge representation) is as fol-
lows: knowledge engineers choose or programmers implement a universal shell
that is an interpreter of a knowledge representation (for example, production
system); after that knowledge engineers and experts form (and then maintain)
a knowledge base in this knowledge representation. If the domain knowledge base

How Can Ontologies Contribute to Software Development? 131

is verbally represented, then another approach (based on a knowledge ontology
model) to expert system implementation is possible: knowledge engineers to-
gether with experts form a domain ontology including the knowledge ontology;
programmers develop a specialized shell that is an interpreter of the knowledge
ontology; experts form (and then maintain) a knowledge base with the knowl-
edge editor controlled by the knowledge ontology. Comparison of these two ap-
proaches shows that a demonstration prototype for a knowledge based system
can be developed considerably faster using universal shells within the framework
of the first approach, but development of an expert system with a knowledge
base to be maintained for a long time is possible only within the framework of
the second one.

If tasks which a knowledge based system should solve can be specified in
terms of a metaontology (of a wide domain or of a class of domains) and knowl-
edge bases (of domains or their divisions) have verbal representation, then this
metaontology can be used as the basis for a specialized shell. Its tuning to a
domain of the class or a division of the wide domain makes it a shell for this do-
main or division. Such a metashell should also contain a multilevel editor tuned
by ontologies. At present such a metashell has been implemented for medicine;
it can be tuned to its various divisions.

Usually for every knowledge based system its own ontology is worked out,
its terms being used to form knowledge bases of this system. As a result, there
are a lot of expert systems and knowledge bases for medical diagnostics, for
example, which are not compatible with one another. However, it was the reuse
of knowledge bases that was one of impetuses for distinguishing ontology as a
solo concept and for its further investigation. Reuse can be achieved, above all,
for knowledge bases formed in terms of real ontologies. These knowledge bases
prove to be independent of expert systems for which they are intended. In this
case, a specialized shell also becomes independent of these knowledge bases since
any knowledge base formed in these terms can be processed by this shell.

Formation and especially maintenance of knowledge bases by a single expert
or a group of experts is hardly possible in practice in the case of real expert
systems since this activity is time-consuming. This results in a certain crisis of
expert systems as a direction in artificial intelligence [26]. A possible way out
is the collective development and maintenance of knowledge bases independent
of specific expert systems. In general, this approach can be defined as collective
development and maintenance of information resources independent of programs
for their processing. One of the tools for supporting collective development of
information resources is the Multipurpose Knowledge Bank [27]. It is a Web-
system providing means of collective development of information resources of
various generality levels with the IDEA-editor controlled by metainformation
[18], and means of access to these resources for processing programs via the shell
of the Bank.

Specialized intellectual application program packages can also be developed
as systems based on verbal representation of knowledge. Universal intellectual
application program packages PRIZ [28] and SPORA [29], based on frames for

132 A.S. Kleshchev

knowledge representation, have not found widespread practical use. Specialized
application program packages are based on appropriate domain ontologies (for
example, on the ontology of physical chemistry [13]). They are intended for de-
ducing methods to solve tasks using specifications of these tasks in terms of
this ontology and knowledge base, for synthesizing programs using these meth-
ods, and for calculating the solution of these tasks using these programs and
input data.

Optimizing compilers controlled by knowledge bases are another application
of intellectual systems based on verbal representation of knowledge [30]. Many
existing optimizing compilers have a built-in set of applied transformations and
a strategy of their applications. This does not permit us to use such a compiler
for experiments on studying properties of certain transformations and strategies
for their applications. There have been no tools for prototyping such compilers.
An optimizing compiler controlled by knowledge bases has been implemented
and used for computer experiments on program optimization and transforma-
tion, to prototype optimizing compilers, and to develop means of active training
of students in program optimization and transformation [30]. As the theoretical
basis of such a compiler the ontology for transformation of different classes and
the ontology of flow analysis already available can be used. An optimizing com-
piler controlled by a knowledge base consists of a syntactically controlled parser
(or editor) of programs, of an interpreter of the verbal representation for the
projection of a source language into the universal representation of programs,
of an interpreter of the verbal representation for the application strategy for
transformations, of an interpreter of the verbal representation for flow analysis
methods, of an interpreter of the verbal representation for transformations, of
an interpreter of the verbal representation for the projection of the universal
representation of programs into a target language, and also of appropriate edi-
tors controlled by knowledge ontologies. The syntactically controlled parser (or
editor) is to tune such a compiler to different source programming languages.
The interpreter of the verbal representation for the projection of a source lan-
guage into the universal representation of programs is to transform the program
derivation tree into its universal representation. The interpreter of the verbal
representation for the application strategy of transformations is to tune the
compiler to a given strategy of application for transformation. The strategy de-
termines the order of application for flow analysis methods and transformations
from the knowledge base. The interpreter of the verbal representation for flow
analysis methods is to make the flow analysis determined by the strategy, i.e.,
for enriching the program in the universal representation with calculated values
of attributes. The interpreter of the verbal representation for transformations is
to perform transformations determined by the strategy in an enriched universal
representation. The interpreter of the projection of the universal representation
of programs into a target language is to tune the compiler to different target
languages. Finally, knowledge base editors are to form knowledge bases about
different languages, their projections into the universal representation, strategies

How Can Ontologies Contribute to Software Development? 133

of applications, flow analysis methods, sets of transformations, and projections
of the universal representation into different target languages.

6 Conclusions

The preceding allows us to conclude that ontologies can be another means in our
control over some kinds of complexity in software development. A new approach
to analyzing and formalizing information about complex domains is proposed
that is necessary for designing complex information systems. Ontologies have
led to progress in developing a number of systems for interactive designing of
non-technical objects. Using ontologies with verbalizable knowledge to work out
problem-oriented methods of inductive formation of knowledge in verbal rep-
resentation allows us to implement D. Michie’s idea that inductively formed
knowledge should be equally accessible to both domain specialists and expert
systems not only in content but in form as well. Knowledge based systems de-
veloped as specialized shells with reusable ontologies as their theoretical base in-
volve mechanisms to transmit maintenance of these systems from programmers
to domain experts and specialists. Ontologies have also allowed us to create a
transformation machine with a changeable set of transformations. Systematic
use of ontologies for software development is naturally complemented by means
of supporting collective development of knowledge bases and other information
resources.

Acknowledgements

The research was supported by the RFBR, the grant “Control of conceptual
metaontologies, ontologies, knowledge and data in intelligent software”, and the
Far Eastern Branch of the Russian Academy of Sciences, the grant “Development
of control systems of knowledge bases with multiple access”.

References

1. Uschold, M.: Knowledge Level Modeling: Concepts and Terminology. The Knowl-
edge Engineering Review 13(1), 5–29 (1998)

2. What is ontology? Frequently asked questions,
http://www.alphaworks.ibm.com/contentnr/semanticsfaqs

3. Wayner, P.: Free Agents. Byte 3, 105–114 (1995)
4. Kleshchev, A.S., Shalfeeva, E.A.: Classification of Ontology Properties. Ontologies

and their Classifications. Scientific and Technical Information Series 2. 9, 16–22
(2005) (in Russian)

5. Kleshchev, A.S., Artemjeva, I.L.: Mathematical Models of Domain Ontologies. Int.
J. Information Theories & Applications 14(1), 35–43 (2007)

6. Booch, G.: Object-Oriented Analysis and Design. Addison-Wesley Publishing Com-
pany, Reading (1994)

7. Waterman, D.A.: A Guide to Expert Systems. Addison-Wesley Publishing Com-
pany, Reading (1986)

134 A.S. Kleshchev

8. Kleshchev, A.S., Artemjeva, I.L.: A Mathematical Apparatus for Domain Ontology
Simulation. Logical Relationship Systems. Int. J. Information Theories & Applica-
tions 12(4), 343–351 (2005)

9. Shalfeeva, E.A.: Classification of Ontology Properties. Ontology Properties and
their Classification. Scientific and Technical Information SeriesM2. 11, 9–16 (2005)
(in Russian)

10. Corcho, O., Gómez-Pérez, A.: A Roadmap to Ontology Specification Languages,
http://www.cs.man.ac.uk/~ocorcho/documents/ekaw00_CorchoGomezPerez.pdf

11. Kleshchev, A.S., Artemjeva, I.L.: A Mathematical Apparatus for Domain Ontology
Simulation. An Extendable Language of Applied Logic. Int. J. Information Theories
& Applications 12(2), 149–157 (2005)

12. Kleshchev, A.S., Moskalenko, P.M., Chernyakhovskaya, M.Y.: An Ontology Model
for Medical Diagnostics. Scientific and Technical Information SeriesM2. P.1. 12,
1–7 (2005); P.2. 2, 19–30 (2006) (in Russian)

13. Artemjeva, I.L., Tsvetnikov, V.A.: An Ontology Fragment of Physical Chemistry
and its Model. Electronic Journal “Investigated in Russia” 3, 454-474 (2002) (in
Russian), http://zhurnal.ape.relarn.ru/articles/2002/042.pdf

14. Artemjeva, I.L., Vysotsky, V.I., Reshtanenko, N.V.: A Domain Ontology Model (by
the Example of Organic Chemistry). Scientific and Technical Information SeriesM2.
8, 19–27 (2005)

15. Artemjeva, I.L., Miroshnichenko, N.L.: An Ontology model for the X-Ray Fluores-
cence Analysis. Informatics and Control Systems 2, 78–88 (2005) (in Russian)

16. Knyazeva, M.A., Kupnevich, O.A.: An Ontology Model for Optimizing Sequential
Programs. Scientific and Technical Information SeriesM2. P. 1. 2, 17–21 (2005); p.
2. 4, 14–22 (in Russian)

17. Gribova, V.V., Tarasov, A.V.: An Ontology Model for Graphic User Interface.
Informatics and Control Systems 1, 80–90 (2005) (in Russian)

18. Kleshchev, A.S., Orlov, V.A.: Computer Knowledge Banks. A Universal Direction
in Solving the Problem of Editing Information. Information Technologies 5, 25–31
(2006) (in Russian)

19. Pertsovsky, S.L.: Building CAD-Systems for Modern Solo Dance. An Overview.
Technical Report, Institute for Automation & Control Processes, FEBRAS (2006)
(in Russian)

20. Pertsovsky, S.L., Varnina, A.S.: Development of the Intellectual CAD-System for
Modern Solo Dance Based on Ontologies. Bulletin of FEBRAS 3, 163–169 (2006)
(in Russian)

21. Kuzin-Alexinsky, A.S.: A Generator of Variations Using a Given Musical Theme.
Informatics and Control Systems 1, 107–116 (2004) (in Russian)

22. Kleshchev, A.S., Gribova, V.V.: From an Ontology-Oriented Approach Conception
to User Interface Development. Int. J. Information Theories & Applications 10(1),
87–93 (2003)

23. Kryukov, V.V., Shakhgelgyan, I.: Corporative Information Environment of a Uni-
versity. Dalnauka, Vladivostok (2007) (in Russian)

24. Michie, D.: Expert systems. Computer Journal 23(4), 369–376 (1980)
25. Kleshchev, A.S.: Tasks of inductive forming verbalizable knowledge in terms of on-

tologies. Scientific and Technical Information SeriesM2. 8, 8–18 (2003) (in Russian)
26. Artemjeva, I.L., Gavrilova, T.L., Gribova, V.V., et al.: The Multidiscipline Control

System for Information Resources of Various Generality Levels. Control Sciences 4,
64–68 (2006) (in Russian)

How Can Ontologies Contribute to Software Development? 135

27. Kleshchev, A.S., Orlov, V.A.: Computer Knowledge Banks. The Multipurpose
Knowledge Bank. Information Technologies 2, 2–8 (2006) (in Russian)

28. Tyugu, E.H.: Conceptual programming. Nauka, Moscow (1984) (in Russian)
29. Babaev, I.O., Novikov, F.A., Petrushina, T.I.: Descartes Language – the Source

Language of SPORA System. Applied Informatics, fasc. 1, 35–73 (1981) (in Rus-
sian)

30. Knyazeva, M.A., Kleshchev, A.S.: A Web-System for Computer Experiments in
the Field of Program Transformations. Int. J. Information Theories & Applica-
tions 13(4), 331–336 (2006)

A Comparison of Content-Based Tag Recommendations
in Folksonomy Systems

Jens Illig1, Andreas Hotho1, Robert Jäschke1,2, and Gerd Stumme1,2

1 Knowledge & Data Engineering Group, Department of Mathematics and Computer Science,
University of Kassel, Wilhelmshöher Allee 73, 34121 Kassel, Germany

http://www.kde.cs.uni-kassel.de/
2 Research Center L3S, Appelstraße 9a, 30167 Hannover, Germany

http://www.l3s.de/

Abstract. Recommendation algorithms and multi-class classifiers can support
users of social bookmarking systems in assigning tags to their bookmarks. Con-
tent based recommenders are the usual approach for facing the cold start prob-
lem, i. e., when a bookmark is uploaded for the first time and no information from
other users can be exploited. In this paper, we evaluate several recommendation
algorithms in a cold-start scenario on a large real-world dataset.

1 Introduction

Social bookmarking systems allow web surfers to store and manage their bookmarks on
a central server and not as usual within the browser. Thus, they allow their users to ac-
cess bookmarks simultaneously from different computers and to share them with other
users. The users have the possibility to assign freely chosen keywords, so-called tags
to each resource, which can be used to structure and retrieve the stored bookmarks. To
support the users in tagging, different types of recommendation algorithms are typically
utilized by bookmarking systems.

The recommendation of tags can also be considered as a set of classification prob-
lems, since we can consider each tag as the name of a class. The number of classes is
typically very high as folksonomy users are allowed to choose from as many different
tags as they like. Since they typically assign more than one tag to a resource, this is a
multi-label classification problem [25]. If the individual classifications are ranked by
their confidence values such that those classifications occur first the classifier is most
sure about, as we have done in this paper, the problem also has a ranking character.

There are two typical approaches to the recommendation problem: content-based
approaches and collaborative filtering approaches [3]. While the former rely solely on
the content of the documents, the latter take into account the behavior of similar users.
Social bookmarking systems are an ideal scenario for the collaborative filtering ap-
proach, as the similarity of users can be measured by comparing their tagging behavior.
Nevertheless, the so-called cold start problem also occurs in social bookmarking sys-
tems: When a resource is tagged for the first time by some user, no other user yields
any recommendation about which tags to use for that particular resource. Therefore,
content-based recommendations also have their use in social bookmarking systems.

K.E. Wolff et al. (Eds.): KONT/KPP 2007, LNAI 6581, pp. 136–149, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

A Comparison of Content-Based Tag Recommendations in Folksonomy Systems 137

In this paper, we study different content-based recommenders and compare them
on a real-world dataset – a crawl of the Delicious bookmarking system.1 The main
contribution is a comparison of state of the art tag recommenders, the adaptation of
classifiers to this problem and a demonstration that content based recommenders are
able to generalize and to make predictions for new web pages. The paper complements
our work on collaborative filtering approaches [14]. A more detailed discussion of its
findings can be found in the bachelor thesis [13] of Jens Illig.

The paper is organized as follows. In Section 2, we introduce folksonomies, the
underlying data structure of social bookmarking systems. In Section 3, we discuss re-
lated work. Section 4 defines the problem and describes the classifiers that we used.
Section 5 describes the data set that we used, and the preprocessing that we performed.
We discuss our findings in Section 6 and future work in Section 7.

2 Social Resource Sharing and Folksonomies

The central data structure of a social bookmarking system is a folksonomy. It consists
of the assignments of tags to resources by some users. The following definition, taken
from [12], formalizes this idea:2

Definition 1 (Folksonomy). A folksonomy is a tuple F := (U, T, R, Y) where

– U is a finite set of users,
– T is a finite set of tags,
– R is a finite set of resources, and
– Y ⊆ U×T×R is a ternary relation between users, tags, and resources. An element

(u, t, r) of Y is called a tag assignment (TAS) and represents the fact that user u
has assigned tag t to resource r.

The set of tags that user u has assigned to resource r is given by Tur := {t ∈ T |
(u, t, r) ∈ Y }. If Tur is non-empty, then we call the tuple (u, Tur, r) the post of user u
for resource r.

Note that the set T of tags may grow over time, as there are no pre-defined
keywords – the user is free to come up with arbitrary new tags. A resource is usually
labeled by multiple users and tags may be assigned multiple times to the same resource
by different users.

For content-based recommendations, we will abstract from the user dimension.
Therefore, we introduce the set of binary tag assignments (BTAS) as projection I of Y
on the tag and resource dimensions: I := {(t, r) ∈ T × R | ∃u ∈ U : (u, t, r) ∈ Y)}.
If Tr := {t ∈ T | (t, r) ∈ I} is non-empty, then we call the tuple (Tr, r) the bpost
for resource r. We use this projection, because our content based recommendation ap-
proach is based on global inter-user classifiers instead of individual classifiers for each
user and therefore outputs no user information. Individual classification for each user
would require very active users to gain enough data for classifier trainig.

1 http://delicious.com/
2 In [12], we have additionally introduced a user-specific sub-tag/super-tag relation, which we

will ignore for the purpose of this paper.

138 J. Illig et al.

3 Related Work

General overviews on the rather young area of folksonomy systems and their strengths
and weaknesses are given in [11,18,19]. In [20], Mika defines a model of semantic-
social networks for extracting lightweight ontologies from Delicious. Recently, work on
more specialized topics, such as structure mining on folksonomies – e. g., to visualize
trends [8] and patterns [23] in users’ tagging behavior – as well as ranking of folkson-
omy contents [12], analyzing the semiotic dynamics of the tagging vocabulary [5], or
the dynamics and semantics [10] have been presented.

The literature concerning the problem of tag recommendations in folksonomies is
still sparse. The existent approaches usually lie in the collaborative filtering and infor-
mation retrieval areas. In [21], [4], and [14], algorithms for tag recommendations are
devised based on content-based filtering techniques. Xu et al. [29] introduce a collabora-
tive tag suggestion approach based on the HITS algorithm [16]. A goodness measure for
tags, derived from collective user authorities, is iteratively adjusted by a reward-penalty
algorithm. Benz et al. [2] introduce a collaborative approach for bookmark classifica-
tion based on a combination of nearest-neighbor-classifiers. There, a keyword recom-
mender plays the role of a collaborative tag recommender, but it is just a component
of the overall algorithm, and therefore there is no information about its effectiveness
alone. Basile et al. [1] suggest an architecture for an intelligent recommender tag sys-
tem. In [9,28,27], the problem of tag-aware resource recommendations is investigated.
The standard tag recommenders, in practice, are services that provide the most-popular
tags used for a particular resource. This is usually done by means of tag clouds where
the most frequently used tags are depicted in a larger font or otherwise emphasized.

First work which utilized machine learning algorithms to predict tags based on the
content is reported in [25]. The reported results for four real world dataset are very
promising but limited to only two models, a new gaussian process and an SVM model.
Results for a vector space model and a poisson mixture model are reported in [26]. The
results are similar to those we report here for other machine learning methods.

Most recently, the ECML PKDD 2009 Discovery Challenge3 has addressed the prob-
lem of tag recommendations in folksonomies. Most of the proposed approaches rely on
a combination of good preprocessing, some external knowledge sources and a good
heuristic to choose the best set of tags.

4 Tag Recommendations as Text Classification Problem

4.1 Definition of the Problem

In [14], we have studied tag recommendations based on a collaborative filtering ap-
proach. But in a dynamic setting, such as our web bookmarking scenario, new web
pages show up frequently. When a new page is bookmarked for the first time, the only
information about it is its full text. Our aim is to learn tag recommendations that are
based on this information.

We formalize the problem as follows. Let F := (U, T, R, Y) be a folksonomy,
where the set R of resources consists of web pages. The web pages are modeled by the

3 http://www.kde.cs.uni-kassel.de/ws/dc09/

A Comparison of Content-Based Tag Recommendations in Folksonomy Systems 139

bag-of-words approach, i. e., a mapping vec: R → R
V , where V is the set of all4 words

occurring in at least one document, and where vec(r)v is the number of occurrences of
word v on web page r. We applied weighting of term frequencies by their inverse doc-
ument frequency (in that combination abbreviated as tf-idf) to that mapping.5

For the evaluation, we assume that the folksonomy F is split into a training and a test
set, i. e., into:6

Ftrain = (Utrain, Ttrain, Rtrain, Ytrain) and Ftest = (Utest, Ttest, Rtest, Ytest)

The problem of learning tag recommendations consists in finding, based on the infor-
mation in Ftrain and some n ∈ N, a function ϕn : R

V → Pn(T),7 such that, for all
resources r in Rtest, ϕn(vec(r)) is a good approximation for the tags of r. As usual, we
will measure the quality of the approximation with precision and recall, see Section 6.1.

4.2 Classifiers

In order to solve the problem of finding a concrete mapping ϕn, we applied different
machine learning algorithms which are suitable for the text classification task (cf. [24]).
In the experiments, we compared the following models: Support Vector Machines
(SVM), multinominal naı̈ve Bayes, Rocchio, k-Nearest-Neighbor (k-NN), and – as a
simple baseline – the most popular tags for the document. At the end, all models pro-
vide a function Φ̆¬t

t : R
V → R which returns, for �x ∈ R

V , a confidence value Φ̆¬t
t (�x)

describing how confident the model is in assigning tag t to a resource r ∈ R with
vec(r) = �x. The recommendation ϕn(r) then consists of those n tags t ∈ T having the
highest values Φ̆¬t

t (vec(r)).
The functions Φ̆¬t

t are either computed directly – this approach is called t-vs-¬t or
one-vs-all (abbreviated as 1vsAll) – or calculated from multiple confidence values of
pairwise tag comparisons Φ̆y

x where Φ̆y
x(vec(r)) is the confidence in the decision to

prefer tag x instead of tag y for resource r. The latter approach is called one-vs-one.
For all learning algorithms except k-Nearest-Neighbor where only one-vs-all has been
applied, we experimented both with one-vs-all and one-vs-one.

For one-vs-one, we evaluated two different variants for calculating a single confi-
dence function Φ̆¬t

t from all confidence functions {Φ̆y
x | x ∈ Ttrain ∧ y ∈ Ttrain ∧ x �=

y ∧ (x = t ∨ y = t)}. The first uses simple Boolean vote adding (abbreviated as
1vs1bool) and requires hard classifications for every tag-vs-tag pair to increase a vote
counter for the winning tag of the pair. A confidence threshold of zero has been used
to get this hard classification which is motivated by the fact that most of the tested
classifiers are directed to output confidence values with positive or negative values for
indicating preference of tag in favor of ¬tag respectively tag x in favor of tag y. A
confidence value exactly equal to zero leads to no vote for any of the two tags in the
one-vs-one pair.

4 In this paper, we did not apply stopword removal.
5 We also made the same classification experiments without such weighting but the best results

of every classifier family were achieved with tf-idf.
6 The specific splitting approach that we used for this paper is described in Section 5.2.
7 Pn(T) stands for the set of all subsets of T with exactly n elements.

140 J. Illig et al.

The other tested variant of defining Φ̆¬t
t uses confidence adding (abbreviated as

1vs1conf):
Φ̆¬t

t : R
V → R; �x 	→

∑

t′∈Ttrain\{t}
Φ̆t′

t (�x) − Φ̆t
t′(�x) (1)

All presented algorithms follow the same principle for computing the functions Φ̆¬t
t

in case of one-vs-all and the functions Φ̆y
x in the one-vs-one case: Let 0 and 1 stand

for ¬t and t, resp., in the first case, and for tag x and tag y, resp., in the second case.
Furthermore, let Vtrain = {vec(r) | r ∈ Rtrain} be the set of training feature vec-
tors and Φ0

1 : Vtrain → {0, 1} be a function represesenting some mapping of known
information – or decisions – about these training examples that is to be learned. Then
each machine learning algorithm finds a function Φ̆0

1 : R
V → R which maps to real

valued confidence values indicating how much more suitable decision 1 is in favor of
decision 0 for a feature vector in R

V regarding an internal model that is learned from
the training examples.

SVM. Support Vector Machines are classifiers that separate the feature hyperspace of
some dimension |V | into two subspaces divided by a |V | − 1 dimensional hyperplane.
Thereby SVMs also try to find a hyperplane position that provides a broad ‘safety’
space around the hyperplane instead of simply focussing on a small training error rate.

As used for example in [22], two parameters, C+ ∈ R and C− ∈ R define the relative
importance of consistency with positive and negative training examples against safety
space maximization. For the experiments with the SVM machine learning method, a
marginally modified implementation of the linear C-SVM algorithm from the library
libSVM [7] has been used that outputs its internal hyperplane distance as confidence
values instead of hard classifications. We experimented both with the default setting
C = C+ = C− = 1 and a second variant using

C− =
|{r ∈ Rtrain | Φ0

1(vec(r)) = 0}|
2 · |{r ∈ Rtrain | Φ0

1(vec(r)) = 1}| together with C+ = 2 · (C−)2

This asymmetric setting (which is marked as C = +/− in the evaluation section) is
motivated by the observation that a negative resource/tag example can either be a ‘real’
negative example (i. e., the tag indeed does not fit to the resource), or a ‘missed’ pos-
itive example (i. e., the tag semantically belongs to the resource, but has not yet been
assigned explicitly to it by any of the users of the system). Thus, the cost of misclassi-
fying a positive training example (C+) should be higher than the cost of misclassifying
a negative example. However, setting C+ too high in relation to C− may lead to a triv-
ial positive classifier. The above given settings of C− and C+ have been determined
on the basis of multiple small manually constructed two-dimensional test datasets. Ex-
periments have been conducted with and without scaling all document feature vectors
to an Euclidean length of one before training and classification (denoted by lnorm and
nolnorm, resp., in the evaluation section).

Multinomial Naı̈ve Bayes. This method applied to tag classification calculates a prob-
ability estimate P (t|r) for the observation of tag t given an observation of a resource r.

A Comparison of Content-Based Tag Recommendations in Folksonomy Systems 141

We calculated the log odds ratio of probabilities from a multinomial model with docu-
ment model based parameter estimation as described in [15], which leads to8

Φ̆¬t
t (vec(r)) = log

(
P (t|r)
P (¬t|r)

)
= log

(
∏

v∈r

(
P (v|t)

P (v|¬t)

)vec(r)v

· P (t)
P (¬t)

)
(2)

with P (v|t) =
∑

r′∈Rtrain

P (r′|t) · P (v|r′) . (3)

We estimated P (r′|t), P (v|r′) and P (t) as well as ¬t variants directly from the relative
TAS and term occurrence frequencies in the training corpus. To avoid P (v|t) = 0 as
a factor in the right term of Equation 2, a virtual post p� = {u�} × Ttrain × {r�} has
been added to the training dataset. r� is made up of one occurrence of every feature
known from the training dataset plus a virtual wildcard feature. During classification,
each new feature not known from the training dataset has been treated equally to the
wildcard feature.

Rocchio. This centroid based method builds class representation vectors that are com-
pared to resource representation vectors in order to find some similarity measure as the
confidence output value. As presented for example in [24], we calculated positive and
negative centroid vectors for the training classes 0 and 1 as follows

�c 1 =
1

|R1
train|

∑

rtrain∈R1
train

vec(rtrain) �c 0 =
1

|R0
train|

∑

rtrain∈R0
train

vec(rtrain)

With these centroids we define Φ̆ as follows

Φ̆0
1(vec(r)) = cos

(
�
(

β
�c 1

‖�c 1‖ − γ
�c 0

‖�c 0‖ , vec(r)
))

Classifier setups have been evaluated with β = 1 in combination with both γ = 0
and γ = 1. Additionally, we experimented with TAS weighted centroids, but yielded
slightly lower effectiveness. Furthermore, our experiments with Euclidean distance al-
ways led to effectiveness below the baseline.

k-NN. We have run the k-Nearest-Neighbor method considering the 30 nearest neigh-
bor documents and using a confidence calculation scheme taken from [24], that is

Φ̆0
1(vec(r)) =

∑

rtrain∈MostSimk

fsim (vec(r), vec(rtrain)) · Θ0
1(rtrain)

Θ0
1(rtrain) =

{
1 , if Φ0

1(vec(rtrain)) = 1
0 , otherwise

Here, MostSimk ⊆ Rtrain is the set of those training instances that are among the k
most similar instances compared by similarity measure sim : R

V × R
V → R to the

argument instance r which is to be classified. We used sim(x, y) = cos (�(x, y)). For
the similarity weighting function fsim, both fsim(x, y) = 1 and fsim(x, y) =∼ (x, y)

8 We use v ∈ r here for v ∈ {v′ | v′ ∈ V ∧ vec(r)v′ > 0}.

142 J. Illig et al.

have been evaluated. Additionally, we experimented with an alternative definition of
Θ0

1(rtrain) which also takes into account how many users assigned a tag to a resource
in the training set:

Θ¬t
t (rtrain) =

⎧
⎪⎨

⎪⎩

log (|{u ∈ Utrain | (u, t, rtrain) ∈ Ytrain}| + 2) , if Φ¬t
t = t,

− log (|TAS¬t
train(rtrain)|) , if Φ¬t

t = ¬t and |TAS¬t
train(rtrain)| ≥ 1

0, otherwise

where TAS¬t
train(rtrain) = {(u, t′) ∈ Utrain × (Ttrain \ {t}) | (u, t′, rtrain) ∈ Ytrain}.

The logarithm is used for damping and +2 is used to slightly linearize the logarithm in
order to weight positive neighbors strongly even with few TAS.

5 Evaluation Setting

The dataset used for the experiments is a crawl of the social bookmarking system De-
licious downloaded between 2005-07-27 and 2005-07-30 [12]. It consists of 75, 242
users, 533, 191 tags and 3, 158, 297 resources, related by in total 17, 362, 212 tag as-
signments. The full text of all 3, 158, 297 resources has also been downloaded in 2005.
Unfortunately, the protocol response headers of the resource downloads were lost. For
that reason it was at first unclear how many resources were error code pages and which
resources were correctly transferred resources. There was also no information about the
MIME type of the resources, the encoding, or the language in case of text resources.

5.1 Preprocessing

Based on MIME type detections of a magic byte sequence algorithm,9 all resources for
which the detected MIME type neither started with “text” nor contained the substring
“html” have been filtered out. In order to escape all character set problematics, the
document corpus has been restricted to 7 bit ASCII encoded documents.10 All pages
estimated being erroneous in terms of a non-HTTP 2xx response have been pruned.
Since the HTTP response status codes had not been captured during the download and
error pages usually contain customized explanations for human readers, we identified
such documents by an SVM trained by a set of 1, 271 successfully and 1, 000 unsuc-
cessfully re-crawled resources. A ten fold cross-validation of this classifier showed an
eleven point average precision of 0.96.

Primarily because of the tokenization problem with natural text of some languages,
but also with respect to the comparability of possible future stemming experiments
on the same dataset, only English text documents were evaluated. Language guessing
was done by making use of the n-gram method [6].11 Whenever documents contained
explicit information about their language, we doubled the score of that language.

9 We used the algorithm from the the “data and metadata getting” Java framework Aperture
(http://aperture.sourceforge.net/) in version 1.0.1-beta.

10 Detected by application of the jchardet (http://jchardet.sourceforge.net/) li-
brary, which is a Java port of the Mozilla universal charset detector [17].

11 Applied via the character based part of the ngramj library
(http://ngramj.sourceforge.net/).

A Comparison of Content-Based Tag Recommendations in Folksonomy Systems 143

100

101

102

103

104

105

106

100 101 102 103 104 105

nu
m

be
r

of
 ta

gs
 w

ith
 n

um
be

r
of

 B
T

A
S

number of BTAS

Fig. 1. Tag frequencies for all resources. The fact that the data points almost form a line hints
at the presence of a so-called power law distribution, which is typical for many human-driven
activities.

The pruning steps (pruning of error pages, non-text/html text, non-English docu-
ments and non-7-bit ASCII) reduced our initial folksonomy. We removed then all users
and all resources that were no longer related to a resource. We obtained in total 65, 177
users, 299, 305 tags, and 1, 113, 405 resources.

Figure 1 shows the frequency distribution of the tags. Each cross is representing one
tag. The right-most cross (which is located on the x-axis) says that there is exactly one
(= 100) tag that occurs in 35, 307 BTAS, while the left-most cross (which is located
on the y-axis) says that there are 158, 183 different tags that occur in only one BTAS
each. Since such rare tags are very difficult to predict, and since we had a variety of
algorithms and parameter settings that we wanted to evaluate, we had to reduce the data
further. Hence, we restricted the set of tags to the 15 most popular tags, in order to
reduce the complexity of the learning problem.12 The remaining folksonomy F consists
of 65, 177 users, 15 tags, and 1, 113, 405 resources. Users and resources that are not
related to any of the 15 most frequent tags have not been deleted, as they were used as
negative training data.

The remaining preprocessing steps generate the vector space representationvec: R →
R

V of the full text of the web pages. For (X)HTML documents, a parser has been used
that passes through all non-markup as long as it is located inside of one of the HTML-
tags head or body and outside of all the HTML-tags embed, object, style,
applet, and script. The parser has been configured to filter out documents con-
taining the frameset HTML-tag.

Two types of document features have been extracted from text documents during
the build of bag-of-words feature vector representations. The first type of features is

12 Faced with the limitation of our computing machinery (an Opteron PC with 8× 2 GHz and 32
GB main memory), we had to decide whether to include more different algorithms, or to run a
more extensive comparison of fewer algorithms. We decided to go for the former.

144 J. Illig et al.

tokenized text with terms and character sequences. All tokens were changed to low-
ercase before frequency counting. With respect to the other feature type, occurrences
of the HTML-tags img, a, code, p, object, applet, embed, form,
cite, dfn, q, samp have been counted separately as features. We did not apply
stopword removal.

Then the vector space representation of the documents has been built, as described
in Section 4.1.

5.2 Training and Test Datasets

We follow the typical evaluation setting for supervised learning tasks by splitting the
available data, i. e., the folksonomy F that resulted from the preprocessing as described
above, into a training and a test data set. The split is based on the date of the posts.
All posts between 2003-10-01 and 2004-08-26 have been used for the training dataset
Ftrain, resulting in 4, 236 users,

For the set of test documents, we considered all 10, 602 documents that occurred
in posts between 2004-08-27 and the end of 2004-09-05. From these, we removed all
2, 417 documents which also occurred in posts from the training set. By removing all
documents that are in both the training and the test dataset, we avoid the problem of
evaluating our approach on already seen data, which would bias the evaluation. All
TAS after 2004-08-27 (including those after 2004-09-05) referring to the remaining
8, 185 test documents have been used to find a testset of BTAS. (By not limiting to
posts before 2004-09-05, we extend the set of BTAS and can thus use the maximal
available information for the evaluation.) From the remaining documents, we removed
all documents that were not tagged by any of the 15 most frequent tags. As an additional
attempt to reduce the problem of suitable recommended tags that have not been assigned
in our dataset, we limited the set to only those documents with at least ten TAS in
the whole dataset. Again we removed unconnected users. The resulting test set Ftest

contains 40, 632 users,15 tags, and 1, 926 resources.

6 Experiments

6.1 Evaluation Settings

We evaluated all the recommenders on the test dataset Ftest. Since all recommendations
were non-personalised, we removed the user dimension of Ftest – i. e., we considered
the set Itest ⊆ Ttest × Rtest of BTAS only.

For evaluating a recommender ϕ for each resource r in Rtest and i between 1 and 5,
we computed a recommendation ϕi(r), recommending between one and five tags. For
each of these combinations, precision and recall were computed:

precision(ϕi, r) =
|ϕi(r) ∩ Tr|

|ϕi(r)| recall(ϕi, r) =
|ϕi(r) ∩ Tr|

|Tr|

A Comparison of Content-Based Tag Recommendations in Folksonomy Systems 145

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

pr
ec

is
io

n

recall

mostPopularTags
SVM, lnorm, 1vs1bool, C=1

30-NN, simW, tasW
NB, log-odd, nolnorm, 1vsAll

Rocchio, cos, nodyn, -, 1vs1conf

Fig. 2. Precision and recall of the best recommenders of different classifier types, averaged over
all test documents that have at least 10 TAS in the whole dataset. All use tf-idf values.

For each recommender and for each i = 1, . . . , 5, we averaged precision and recall over
all resources in Rtest:

precision(ϕi) =
1

|Rtest|
∑

r∈Rtest

precision(ϕi, r)

recall(ϕi) =
1

|Rtest|
∑

r∈Rtest

recall(ϕi, r)

6.2 Comparison of the Classifiers

All classifiers were evaluated with several parameter settings, which, due to space re-
strictions, cannot all be presented. For more details, see the bachelor thesis [13] of
Jens Illig.

An overall comparison of all approaches is shown in Figure 2. For the sake of read-
ability, we did not display all parameter settings, but only one or two of those that
performed best for each classifier type. In the diagram, one can see that the SVM with
one-vs-one learning is clearly more effective than the other classifiers. One-vs-one is
also the best choice for the Rocchio method. Thereby, a confidence adding variant with-
out TAS weighted centroids turned out to be most effective. However, our experiments
showed that the worst cosine-based Rocchio classifier is only about 0.04 precision score
points less effective at similar recall levels. Most clearly, those variants with γ = 0

146 J. Illig et al.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

pr
ec

is
io

n

recall

lnorm, C=1, 1vs1conf
lnorm, C=1, 1vs1bool

lnorm, C=1, 1vsAll
lnorm, C=+/-, 1vs1conf
lnorm, C=+/-, 1vs1bool

lnorm, C=+/-, 1vsAll
nolnorm, C=+/-, 1vs1bool

Fig. 3. Tf-idf precision and recall for different parameter settings of the SVM, averaged over all
test documents not occuring in the training set that have at least 10 TAS in the whole dataset

were the least effective among them. Another well functioning classifier is log-odds
ratio multinomial Naı̈ve Bayes. For that classifier type, length normalization has turned
out to be counterproductive for tag recommendation. 30-NN is clearly less effective.
The best 30-NN variants use our TAS weighting scheme, which seems to increase pre-
cision by ca. 0.04. Similarity weighting also slightly increased precision. As expected,
simple most popular tag recommendation is less effective than almost all content based
methods – only the highly ineffective Rocchio methods with Euclidean distance (not
displayed in Figure 2) are worse.

As the SVM performs best we present results of it comparing different parameter
settings. Figure 3 shows the results for the most interesting settings of the SVM. The
five recommendations ϕ1, . . . , ϕ5 of each setting are plotted together in one curve. The
left-most node of each curve represents the one-element-recommendation ϕ1, while
the right-most node represents the five-element-recommendation ϕ5. As one can see,
all curves are monotonically decreasing. This shows that recall is growing for all rec-
ommenders with an increasing number of recommendations while precision is falling.

The figure shows that the best settings for the SVM are those with C = 1 parame-
terization. A possible explanation is that our dynamically calculated parameterization
(called “C + /−” Figure 3) with its higher C values tends to overfit. This is supported
by our observation that in another evaluation that is based solely on repeatedly posted
documents, these classifiers show higher effectiveness than the corresponding C = 1
variants. With the better working C = 1 SVM configuration, Figure 3 also shows that
the Boolean adding one-vs-one variant is most effective at higher recall levels, while,

A Comparison of Content-Based Tag Recommendations in Folksonomy Systems 147

with confidence adding, the first item can be recommended more precisely. This might
be explained by real-valued confidence values of the confidence adding classifier variant
where, in contrast, Boolean adding uses only integer vote counts as confidence values,
which, as we observed, often leads to many tag suggestions with equal confidence out-
put so that these cannot be ordered any further. Without length-normalization, SVM
effectiveness is in most cases lower, especially for one-vs-all classifiers. The best non
length-normalized variant is Boolean adding one-vs-one with “C +/−”, but it only has
around 0.02 more precision than the C = 1 variant at similar recall levels.

7 Conclusion and Outlook

In this paper, we evaluated the effectiveness of multiple text classification methods and
variants applied to a scenario that is compatible with the common text classification
evaluation practice of disjoint training and test scenarios but still represents a realistic
and pure cold start tag recommender evaluation scenario. Thereby, we identified a prob-
lem in the open world characteristic of the dataset and developed an evaluation scheme
that addresses it.

Some algorithms have been slightly modified in various ways to make use of tag
assignment frequencies by multiple users. Improvements by these extensions have been
detected for the case of a TAS weighted 30-Nearest-Neighbors algorithm. Nevertheless,
we found that a one-vs-one SVM variant on length normalized document feature vectors
is the most effective of all evaluated classifiers. We could show that folksonomy tag
assignments can be learned by application of machine learning techniques to address
the cold start problem of collaborative recommender systems.

In the future, our experiments can be extended to other classifier algorithms, like, for
example, boosting, decision trees, and rule based learners. Also transductive approaches
seem promising in terms of the open world problem. Other possible extensions include
stemming, term space reduction, different feature reweighting methods, and classifica-
tion of documents in multiple languages.

Another open task is to evaluate and compare the effectiveness of content based and
collaborative approaches (on a test set of already posted resources). The next step is then
to develop combined approaches that rely on both the high effectiveness of collaborative
methods on documents with known tag assignments and the strengths of content based
approaches to overcome the cold start problem.

Acknowledgement. Part of this research was funded by the European Commission in
the projects Nepomuk (FP6–027705) and TAGora (FP6–IST5–34721).

References

1. Basile, P., Gendarmi, D., Lanubile, F., Semeraro, G.: Recommending smart tags in a social
bookmarking system. In: Bridging the Gap between Semantic Web and Web 2.0 (SemNet
2007), pp. 22–29 (2007)

2. Benz, D., Tso, K., Schmidt-Thieme, L.: Automatic bookmark classification: A collaborative
approach. In: Proceedings of the Second Workshop on Innovations in Web Infrastructure
(IWI 2006), Edinburgh, Scotland (2006)

148 J. Illig et al.

3. Burke, R.: Hybrid recommender systems, survey and experiments. User Modeling and User
Adapted Interaction 12(4), 331–370 (2002)

4. Byde, A., Wan, H., Cayzer, S.: Personalized tag recommendations via tagging and content-
based similarity metrics. In: Proceedings of the International Conference on Weblogs and
Social Media, Boulder, Colorado, USA (March 2007)

5. Cattuto, C., Loreto, V., Pietronero, L.: Collaborative tagging and semiotic dynamics (May
2006), http://arxiv.org/abs/cs/0605015

6. Cavnar, W.B., Trenkle, J.M.: N-gram-based text categorization. In: Proceedings of SDAIR
1994, 3rd Annual Symposium on Document Analysis and Information Retrieval, Las Vegas,
US, pp. 161–175 (1994)

7. Chang, C.-C., Lin, C.-J.: LIBSVM: a library for support vector machines (2001), Software
available at http://www.csie.ntu.edu.tw/˜cjlin/libsvm

8. Dubinko, M., Kumar, R., Magnani, J., Novak, J., Raghavan, P., Tomkins, A.: Visualizing tags
over time. In: Proc. of the 15th International WWW Conference, Edinburgh, Scotland (2006)

9. Firan, C.S., Nejdl, W., Paiu, R.: The benefit of using tag-based profiles. In: 5th Latin Ameri-
can Web Congress, Santiago de Chile, 31 October - 2 November (2007)

10. Halpin, H., Robu, V., Shepard, H.: The dynamics and semantics of collaborative tagging.
In: Proceedings of the 1st Semantic Authoring and Annotation Workshop (SAAW 2006),
Atlanta, Georgia, USA (2006)

11. Hammond, T., Hannay, T., Lund, B., Scott, J.: Social Bookmarking Tools (I): A General
Review. D-Lib Magazine 11(4) (April 2005)

12. Hotho, A., Jäschke, R., Schmitz, C., Stumme, G.: Information Retrieval in Folksonomies:
Search and Ranking. In: Sure, Y., Domingue, J. (eds.) ESWC 2006. LNCS, vol. 4011, pp.
411–426. Springer, Heidelberg (2006)

13. Illig, J.: Machine learnability analysis of textclassifications in a social bookmarking folkson-
omy. Bachelor thesis. University of Kassel, Kassel (2008)

14. Jäschke, R., Marinho, L., Hotho, A., Schmidt-Thieme, L., Stumme, G.: Tag recommenda-
tions in social bookmarking systems. AI Communications 21(4), 231–247 (2008)

15. Kim, S., Rim, H., Yook, D., Lim, H.: Effective methods for improving naive bayes text
classifiers (2002)

16. Kleinberg, J.M.: Authoritative sources in a hyperlinked environment. Journal of the
ACM 46(5), 604–632 (1999)

17. Li, S., Momoi, K.: A composite approach to language/encoding detection. In: 19th Interna-
tional Unicode Conference, San Jose, California, USA (2001)

18. Lund, B., Hammond, T., Flack, M., Hannay, T.: Social Bookmarking Tools (II): A Case Study
- Connotea. D-Lib Magazine 11(4) (April 2005)

19. Mathes, A.: Folksonomies – Cooperative Classification and Communication Through
Shared Metadata (December 2004), http://www.adammathes.com/academic/
computer-mediated-communication/folksonomies.html

20. Mika, P.: Ontologies Are Us: A Unified Model of Social Networks and Semantics. In: Gil, Y.,
Motta, E., Benjamins, V.R., Musen, M.A. (eds.) ISWC 2005. LNCS, vol. 3729, pp. 522–536.
Springer, Heidelberg (2005)

21. Mishne, G.: Autotag: a collaborative approach to automated tag assignment for weblog posts.
In: WWW 2006: Proceedings of the 15th International Conference on World Wide Web, pp.
953–954. ACM Press, New York (2006)

22. Morik, K., Brockhausen, P., Joachims, T.: Combining statistical learning with a knowledge-
based approach - a case study in intensive care monitoring. In: Bratko, I., Dzeroski, S. (eds.)
Proceedings of the 16th International Conference on Machine Learning (ICML 1999), Bled,
Slovenia, June 27-30, pp. 268–277. Morgan-Kaufman Publishers, San Francisco (1999)

A Comparison of Content-Based Tag Recommendations in Folksonomy Systems 149

23. Schmitz, C., Hotho, A., Jäschke, R., Stumme, G.: Mining association rules in folksonomies.
In: Batagelj, V., Bock, H.-H., Ferligoj, A., Žiberna, A. (eds.) Data Science and Classifica-
tion: Proc. of the 10th IFCS Conf., Studies in Classification, Data Analysis, and Knowledge
Organization, pp. 261–270. Springer, Heidelberg (2006)

24. Sebastiani, F.: Machine learning in automated text categorization. ACM Computing Sur-
veys 34(1), 1–47 (2002)

25. Song, Y., Zhang, L., Lee Giles, C.: A sparse gaussian processes classification framework for
fast tag suggestions. In: CIKM 2008: Proceeding of the 17th ACM Conference on Informa-
tion and Knowledge Mining, pp. 93–102. ACM, New York (2008)

26. Song, Y., Zhuang, Z., Li, H., Zhao, Q., Li, J., Lee, W.-C., Lee Giles, C.: Real-time automatic
tag recommendation. In: SIGIR 2008: Proceedings of the 31st Annual International ACM
SIGIR Conference on Research and Development in Information Retrieval, pp. 515–522.
ACM, New York (2008)

27. Tso-Sutter, K., Marinho, L.B., Schmidt-Thieme, L.: Tag-aware recommender systems by fu-
sion of collaborative filtering algorithms. In: Proceedings of 23rd Annual ACM Symposium
on Applied Computing (SAC 2008), Edinburgh, Scotland (2007)

28. Xu, Y., Zhang, L., Liu, W.: Cubic analysis of social bookmarking for personalized recom-
mendation. In: Zhou, X., Li, J., Shen, H.T., Kitsuregawa, M., Zhang, Y. (eds.) APWeb 2006.
LNCS, vol. 3841, pp. 733–738. Springer, Heidelberg (2006)

29. Xu, Z., Fu, Y., Mao, J., Su, D.: Towards the semantic web: Collaborative tag suggestions.
In: Proceedings of the Collaborative Web Tagging Workshop at the WWW 2006, Edinburgh,
Scotland (2006)

Data Weeding Techniques Applied to Roget’s Thesaurus

Uta Priss and L. John Old

Edinburgh Napier University, School of Computing
www.upriss.org.uk, j.old@napier.ac.uk

Abstract. It can be difficult to automatically generate “nice” graphical represen-
tations for concept lattices from lexical databases, such as Roget’s Thesaurus,
because the data sources tend to be large and complex. This paper discusses a va-
riety of “data weeding” techniques that can be applied in order to reduce the size
of a concept lattice, first in general, and then with respect to Roget’s Thesaurus.
The aim is that resulting lattices should display neither too much, nor too little
information, independently of which search terms have been entered by a user.

1 Introduction

Large and complex concept lattices provide a challenge for Formal Concept Analysis
(FCA) because they can be difficult to display and navigate by users. Lattices that are
automatically derived from lexical databases, such as Roget’s Thesaurus, tend to be
large and complex. What is needed is some purpose-driven manner of size reduction and
selection of subsets of the data. Decisions about which data to select resemble a form
of filtering analogous to “weeding” in a garden, because whether a plant is considered
useful or a “weed” does not usually depend on structures of the plant itself but solely
on whether it is desired in a location. Thus we define “data weeding” techniques as
techniques that select data from a given set based on the specific needs and purpose of
an application.

A variety of existing Formal Concept Analysis methods can be called data weeding
techniques. These techniques, for example, select subsets of the data or reduce the visual
complexity of the concept lattice. The choice of the technique usually relies on the type
of application. This paper provides an overview of data weeding techniques in general,
and then analyses their applicability to Roget’s Thesaurus. The goal for this research is
to automatically generate lattices from Roget’s Thesaurus in an on-line interface1 in a
manner that adjusts the data weeding techniques for each request.

Data weeding techniques for FCA can be categorised into four types as shown in
Table 1. The first type, visual reduction techniques, are techniques that change how
the data is displayed without changing the mathematical structure of the underlying
concept lattices. The second type, faceting and plain scaling, are techniques which lead
to a division of the original concept lattices into smaller lattices without information
loss. The division should be meaningful with respect to the content of the lattice. For
example, if the attributes can be naturally subdivided into a set of partitions, then a
separate lattice can be drawn for each partition of the data. In FCA, this is called “plain”

1 http://www.roget.org

K.E. Wolff et al. (Eds.): KONT/KPP 2007, LNAI 6581, pp. 150–163, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Data Weeding Techniques Applied to Roget’s Thesaurus 151

scaling (Ganter & Wille, 1999) for single-valued contexts. The third type, pruning and
restricting, consists of techniques which reduce concept lattices by removal of objects,
attributes or concepts usually based on statistics. The fourth type, decomposition and
general scaling, decomposes a lattice and at the same time reduces complexity, for
example, by aggregating objects or attributes. The third and fourth types usually cause
some loss of information because of summarisation, abstraction or reduction.

Table 1. Four types of data weeding techniques

Type of reduction Effect on lattice Loss of information
Visual reduction Lattice structure unchanged None
Faceting and plain scaling Lattice is divided None
Pruning and restricting Some concepts are removed Possible
Decomposition and general scaling Lattice is divided Possible

The following four sections provide an overview of the four types of data weed-
ing techniques. Section 6 discusses the applicability of these techniques to a lexical
database of Roget’s Thesaurus.

2 Visual Reduction Techniques

The first set of data weeding techniques are visual reduction techniques, which change
how the data is displayed without modifying the underlying structure. Many FCA tech-
niques for visual reduction have been described in the literature:

Clarifying and reducing (Ganter & Wille, 1999) result in omitting labels (and the
corresponding objects and attributes) without changing the lattice structure. A clarified
lattice has at most one object and at most one attribute attached to each concept in
the lattice diagram. In the example at the top of Fig. 1, the concept furthest to the
left has two objects (“daffodil” and “sunflower”) and the concept furthest to the right
has two attributes (“purple”) and (“dark red”). In the clarified version, “sunflower” and
“purple” are removed. If the clarification is achieved using FCA software, then usually
the object/attribute that is listed first in the formal context is retained. This choice may
not be optimal with respect to the application.

Reducing will further remove all objects that are not at join-irreducible concepts
and all attributes that are not at meet-irreducible concepts. This means that in the lattice
diagram objects are only attached to nodes that have exactly one edge coming from
below and attributes are only at nodes that have exactly one edge from above (Fig. 1).
Again, reduction may not be meaningful in all applications. In some applications where
the data consists of exemplars and features, the remaining attributes, after reduction, can
be considered characteristic, defining features and the remaining objects prototypical
examples of the data because of their location at meet- or join-irreducible concepts.

The display of labels and nodes in the diagram can be modified by using lists, counts
and colours. While it is possible in a manually drawn lattice diagram to carefully place
each label in a position where it does not overlap with anything else, the automatic
placement of labels in a non-overlapping manner is a major challenge for FCA soft-
ware. Thus, visual reduction strategies for the display of labels are beneficial, both for

152 U. Priss and L.J. Old

hollyhock

ReducingClarifying

yellow red

dark red

tulip
sunflower

coloured

daffodil orange poppy
purple

hollyhock

rose

yellow red

dark red

tulip

coloured

daffodil orange poppy

hollyhock

rose

yellow red

dark red

tulip

daffodil

Fig. 1. Visual reduction techniques: clarifying and reducing

the algorithms used by the software and for the users who will be provided with dia-
grams that are easier to read. Different FCA software tools use different strategies for
visual reduction. The FcaStone2 software, for example, provides an option to draw the
concept nodes as boxes which contain lists of objects and attributes truncated to 30
characters. In ToscanaJ3, objects and attributes can be displayed as a count (showing
the number of objects and attributes belonging to a concept instead of their names) or
as a scrollable list. These methods reduce the physical space that is occupied by the
labels in the display. There are different methods for how the objects and attributes of
each concept are counted: either as absolute counts or as relative frequencies; either
containing the full extents and intents; or only counting the objects/attributes that are
directly attached to a concept in the diagram. The nodes in ToscanaJ can be coloured
based on a count of the objects. In the ConExp software4, a similar effect is achieved
by varying the size of the nodes instead of using colours as in ToscanaJ. ConExp uses
colours also to show whether a node has objects or attributes directly attached. This
feature is especially useful if the display of the labels is turned off.

Some FCA applications do not use lattice diagrams at all, but instead use the lattice
structure only for internal algorithms or use textual displays. An example is the Credo5

software. Credo is a meta search engine that calculates a concept lattice for the results
of a Yahoo query. The lattice is not displayed graphically but instead as an expandable
tree hierarchy. Any lattice can be displayed as a tree by creating multiple copies of any
node that has more than one upper neighbour as shown in Fig 2. The first display in
Credo consists of the top node of the lattice and its immediate lower neighbours, which

2 http://fcastone.sourceforge.net
3 http://toscanaj.sourceforge.net
4 http://conexp.sourceforge.net
5 http://credo.fub.it

Data Weeding Techniques Applied to Roget’s Thesaurus 153

dark red, purple:

yellow red

dark red

tulip
sunflower

coloured

daffodil orange poppy
purple

hollyhock

rose

coloured
yellow:

red:

daffodil, sunflower
tulip

tulip
poppy

hollyhock

rose

rose

dark red, purple:

orange:

dark red, purple: rose

orange:

orange:

Fig. 2. Representing a lattice as a tree hierarchy

poppy
sunflower
daffodil

yellow

dark red
purple

hollyhock

rose

coloured

red

tulip

orange

Fig. 3. Fish-eye visualisation

are displayed as a bulleted list that is slightly indented compared to the top node. If
a user clicks on any of the nodes, the immediate neighbours underneath this node are
displayed as a further indented list (but only up to three levels deep). Clicking on the
top node will collapse the expanded sublist. Credo’s display is similar to tree displays
used for directory listings of folders and files on a computer. Most users will be familiar
with such displays. The drawback for these approaches is that the full lattice structure
is not immediately visible. Only the relationship between a node and its immediate
neighbours is presented.

Fish-eye and zoom are graph visualisation techniques that are used in many graph-
ical displays. Fish-eye displays (Furnas, 1981) enlarge a focal point of a display while
gradually reducing the rest of the display (as in Fig. 3). The idea is that users can move
the enlarged focal area across a display similar to using a magnifying glass. The focal
area can be read in detail while the non-focal area provides structure without detail. The
use of fish-eye views for concept lattices was first suggested by Godin et al. (1989) and
implemented by Carpineto & Romano (1995). The notion of zooming is used with dif-
ferent meanings with respect to concept lattices. In FCA software, “zooming” usually
means to enlarge the display. If the lattice is larger than the display window, only parts
of the lattice will be visible after zooming in. Thus, this is similar to fish-eye displays
except that the non-focal parts are omitted instead of reduced. The notion of “zooming”
is also used in a different meaning for the navigation between scales as discussed in the
next section.

Moving displays are the final visual reduction technique mentioned in this section.
Moving the nodes in a lattice diagram can significantly change the visual complexity of
the diagram. From some “angles” a lattice may have a much more complicated display
(i.e., more edge crossings, less symmetry) than from other angles. Many FCA tools let

154 U. Priss and L.J. Old

users move individual nodes of the lattice. Some FCA software allows for lattices to
be rotated. Other FCA software lets users move parts of a lattice (ideals or filters) at
the same time, which helps in the detection of symmetries and other structures in the
lattice. (More details and comparisons of FCA software can be found in Tilley (2004)
and Priss (2008a)).

3 Faceting and Plain Scaling

Apart from visual reduction techniques that modify the display of the lattices, but not
their internal structures, there are data weeding techniques that do change the lattice
structures. Faceting and plain scaling are techniques which subdivide the set of at-
tributes into smaller sets. The lattice of such a smaller set is traditionally called a “scale”
(Ganter & Wille, 1999). Different scales can be combined in nested lattice diagrams and
can be interactively explored in Toscana systems (Vogt & Wille, 1995). In this section,
only scaling of “single-valued contexts” is considered. Priss (2008b) argues that the
idea of “plain scaling” as described in FCA occurs in several other disciplines under
other names. In particular, plain scaling is very similar to the idea of “faceting” in li-
brary and information science. For both scales and facets it is usually required that
the subdivisions are carefully selected (usually manually) and meaningful. Meaningful
subdivisions will group attributes based on their types, shared features, and so on. For
example, one scale could contain size attributes while another contains colour attributes.
Each scale then arranges the objects based on its particular aspect or viewpoint.

As mentioned above, the notion of “zooming” is used to describe the navigation from
an ”outer scale” into an “inner scale” in a nested lattice diagram in Toscana systems
(Vogt & Wille, 1995). Roth et al. (2008) modify this notion of “zoom” by applying
local criteria to the calculation of inner scales instead of a global algorithm. In Stumme’s
(1996) approach to “local scaling” some concepts are expanded with inner scales, while
others are not.

Historically, faceted systems in library science have been less popular with end users
because it can be difficult to use such systems in a paper-based environment. To some
degree facets or scales are only really useful if they are presented via a software inter-
face which lets users explore the relationships interactively. This is because it is im-
possible to display all of the facets simultaneously for all but the smallest data sets.
As a rule of thumb, three levels of nesting (or three scales) is the maximum that can
be shown simultaneously. Thus, the information contained in a formal context and its
scales is best explored interactively by starting with a few scales, deciding how to nest
them, and then navigating from one scale to the other.

Besides the Toscana systems, as described by Vogt & Wille (1995), there have been
recent software developments in the library and information science community which
are potentially interesting for FCA because of the similarity between scales and facets.
This has been discussed in detail by Priss (2008b). Such software often presents differ-
ent scales side by side instead of nested. The effect of user selections on one scale is
instantly applied to the other scales by the software. It would be interesting to conduct
a user study comparing different techniques of representing scales. This could lead to
new developments in FCA software.

Data Weeding Techniques Applied to Roget’s Thesaurus 155

4 Pruning and Restriction

Data weeding techniques of pruning reduce a lattice in a manner that is usually based
on statistical measures. The effect is a removal of concepts usually from the bottom of
the lattice. In many cases the lattice structure is changed significantly. Some forms of
pruning result in ordered sets which are not lattices.

Kuznetsov (2007) defines a notion of “stability” of a formal concept based on his
earlier work on stability in similarity operations (Kuznetsov, 1990). Roughly, the sta-
bility index of a concept C is based on counting the number of those subsets of the
extent of C whose intent equals the intent of C, divided by some number related to the
size of the extent. The idea behind this is to determine how many objects in the extent
are necessary and sufficient to creating the concept. This is because a concept can also
have many objects that are shared with many other concepts and are not defining for
this particular concept. The ConExp software (mentioned above) implements a similar
but slightly different notion of “stability” which, according to ConExp’s user guide, cal-
culates for each concept the minimal number of objects needed to be removed so that
the intent of this concept disappears from the concept lattice.

Pruning is then the process of removal of “less stable” concepts based on any of
the stability notions. All concepts that are less stable than a user-defined threshold are
removed. Roth et al. (2008) use a slight variant of Kuznetsov’s definition of stability
for their pruning, in combination with their notions of nesting and zooming. As men-
tioned above, Roth et al.’s notion of “zooming” is slightly different from Vogt & Wille’s
(1995). They divide the set of attributes based on preferences and use attributes that are
considered more important in outer scales. The inner scales are then “pruned” indi-
vidually, using local instead of global criteria. Belohlavek & Sklenar (2005) propose
a different method of pruning based on attribute dependency formulas, which uses an
expert-specified hierarchy on the set of attributes.

Last but not least, an iceberg lattice (Stumme et al., 2002) is an order filter consisting
of the top most concepts of a concept lattice. Only those concepts are included whose
concepts have a “support” that is higher than a threshold. These concepts are called
“frequent”. The support is calculated as the number of objects of the concept divided
by the total number of objects in the formal context. The notion of iceberg lattices was
developed in the framework of data mining and is based on what is called “frequent
itemsets” in data mining terminology. A variation of this approach is to also include the
immediate lower neighbours of the frequent concepts, which may result in an ordered
set that is not an order filter.

Old (2003) describes the notion of restricting concept lattices, with respect to neigh-
bourhood lattices. Neighbourhood lattices were first described by Rudolf Wille in an
unpublished manuscript and first published by Sedelow & Sedelow (1993) in the con-
text of lexical databases. The operation which underlies the selection of elements in
a neighbourhood has been called the “plus operator” (Priss & Old, 2004) as opposed
to the “prime operator” used in concept formation. This is because the prime operator
applied to a set of objects selects all attributes which are shared among all objects in
the set, whereas the plus operator selects all attributes that belong to at least one of the
objects in the set. For a large formal context A, the plus operator can be used to derive
a smaller “neighbourhood context” B as follows: a “n-m-neighbourhood” starts with

156 U. Priss and L.J. Old

an object from A and has the plus operator applied (2n − 2)-times to obtain the set of
objects of B and (2m − 1)-times to obtain the set of attributes of B. This context B
represents the neighbourhood of the object that was used at the start of the operation.
Because the plus operator is not a closure operator, a few iterations of the operator can
result in a context B whose size is fast approaching the size of A. Therefore Old (2003)
experiments with “restricted” neighbourhood lattices which modify the plus operator
by selecting objects (attributes) which have at least two (three, etc) attributes (objects)
instead of at least one.

5 Decomposition and General Scaling

Ganter & Wille (1999) describe numerous methods for deriving parts and decompo-
sitions of concept lattices. The methods that are used in actual applications and that
are implemented in FCA software are usually only the simplest examples of such con-
structions. For example, a horizontal decomposition of a lattice is a decomposition into
components whose horizontal sum (Ganter & Wille, 1999) is the original lattice. A
horizontal decomposition of a lattice refers to the components that a lattice falls into
after removing the top and bottom concept. If a plus operator is applied until the sets
do not change any further, it yields a horizontal decomposition of the original lattice
(Priss & Old, 2006). Horizontal decompositions have been used in software analysis
(Snelting, 2005) and other applications. A form of decomposition is also the Semantic
Mirrors method. This method was invented by Dyvik (2004) and translated into FCA
terminology by Priss & Old (2005). The Semantic Mirrors method is similar to a form
of repeated applications of decomposition.

In contrast to plain scaling, in general scaling the scales are combined using a “com-
position operator”. This appears to be mostly of theoretical interest. We are not aware of
any software implementations of scaling techniques other than plain scaling. Plain scal-
ing is often applied to many-valued contexts, which are transformed into single-valued
contexts via the scales. This does imply loss of information.

6 Data Weeding Techniques for Roget’s Thesaurus

Before discussing which of the data weeding techniques described above are rele-
vant for Roget’s Thesaurus, it shall be explained why Roget’s Thesaurus is of interest.
Roget’s Thesaurus (1911, 1962) is a semantic dictionary that is organised by concepts,
rather than words, into a classification tree. The explicit structure of the book consists
of three main parts: the top level of the hierarchy represented by the tabular Synopsis
of Categories; the Sense Index which continues the hierarchy down to the lowest level;
and the Word Index which lists the words in alphabetic order along with their senses
ordered by part-of-speech. The senses are represented in the Word Index as references
to locations in the Sense Index.

The Sense Index lists the 1,000 or so categories representing the notions found at the
most detailed level of the Synopsis. Categories generally occur in pairs as opposed no-
tions, or antonyms. Each category is subdivided into paragraphs which contain groups
of words at the lowest level. The words in each group at the lowest level are considered

Data Weeding Techniques Applied to Roget’s Thesaurus 157

“synonyms” with respect to the thesaurus structure. Each group of synonyms denotes
a “sense”. A particular occurrence of a word is also called an “entry” of the thesaurus.
The notation for senses used in this paper (e.g. 227:1:1) consists of the category number
(227), followed by the paragraph number (1) and the synonym group number (1).

Roget’s Thesaurus has been studied or used for the automatic classification of text,
automatic indexing, natural language processing, word sense disambiguation, seman-
tic classification, computer-based reasoning, content analysis, discourse analysis, auto-
matic translation, and a range of other applications by many different researchers (cf.
Old (2003 and 2004) and Priss & Old (2009) for more details). The reason why the
Thesaurus has been used in such applications is that it contains an implicit conceptual
structure based on the polysemy and synonymy relationships between the word entries
and their senses. However, although the explicit structure of Roget’s Thesaurus is ev-
ident to any reader, the implicit, hidden, or “inner structure” (Sedelow, 1988) is not.
FCA can be a useful tool in exploring this inner structure because the relationship be-
tween words and senses for the Thesaurus is a very large formal context. Each “entry”
corresponds to a cross in this context. Since the formal context of Roget’s Thesaurus
has about 113,000 objects, 71,000 attributes and 200,000 crosses, some data weeding
technique is required in order to extract smaller-sized lattices.

Neighbourhood lattices, as described in the previous section, have been used for the
exploration of Roget’s Thesaurus since Sedelow & Sedelow (1993). Fig. 4 shows a 2-1
neighbourhood for the word “think” (i.e., the plus operator has been applied twice to
retrieve the objects and once to retrieve the attributes). Neighbourhood lattices can be of
very different sizes. We have calculated the sizes of all 2-1 and 2-2 neighbourhoods of
common words in Roget’s Thesaurus (using Roget (1962)). The neighbourhoods range
from single-concept lattices (for words such as “amoeba”) to a lattice with 118 concepts
(713 concepts) for the word “cut” in the case of 2-1 neighbourhoods (2-2 neighbour-
hoods, respectively). Lattices with less than 5 concepts are not very interesting whereas
lattices with more than 35-40 concepts tend to be too large to be visualised. Therefore,
different words require different types of neighbourhoods in Roget’s Thesaurus. About
100 words (mostly verbs of Anglo-Saxon origin) have 2-1 neighbourhood lattices with
more than 35 concepts. These could be benefit from using data weeding techniques.

The on-line interface at www.roget.org lets a user explore Roget’s Thesaurus by
entering a word and then viewing a neighbourhood lattice of that word. The lattices are
generated in run-time. The remainder of this section investigates which data weeding
techniques are appropriate for automatically adjusting the size of the lattices. Visual
reduction techniques depend on the display software that is used because they do not
affect the structure of the lattices. The on-line interface uses the “concept as boxes”
display feature of FcaStone6 in order to avoid overlapping labels. Scaling and faceting
often depend on manual subdivision of the set of attributes, which is not applicable in this
case. Thus, the techniques that are of interest are pruning, restriction and decomposition.

Figs. 5 and 6 show a pruned lattice and an iceberg lattice, respectively, for the
example from Fig. 4. Unfortunately, pruning and iceberg lattices appear not to be ap-
propriate data weeding techniques for Roget’s Thesaurus. This is because neighbour-
hood lattices are always of a particular structure. Neighbourhood lattices of type 2-1

6 http://fcastone.sourceforge.net

158 U. Priss and L.J. Old

Fig. 4. A neighbourhood lattice from Roget’s Thesaurus for the word “think”

always have the original word attached to the bottom node. They normally contain
many more objects than attributes (because the plus operator has been applied twice
to retrieve the objects). Most of the objects that were added in the last step in a 2-1
neighbourhood lattice are attached to the nodes adjacent to the top node because their
distinguishing attributes are not yet part of the neighbourhood context. Dually, most
of the attributes in a 2-2 neighbourhood lattice will be attached to nodes that are ad-
jacent to the bottom node. Clearly, the most interesting objects in Fig. 4 are “expect”,
“mind”, “consider”, “fancy”, and “thought, notion, ...” because they share more than
one sense with “think”. But these objects are exactly the ones that are pruned away in
Figs. 5 and 6. Because of the particular structure of neighbourhood lattices, pruning and
iceberg lattices are not appropriate. Pruning and iceberg lattices are based on the rela-
tive sizes of the extents, but for neighbourhood lattices these sizes are distorted by the
algorithm.

In a similar fashion, the Semantic Mirrors method (see above) is not of interest for
these kinds of lattices because this method essentially looks for symmetries between
the objects and attributes. This works well for neighbourhood lattices that are derived
from bilingual data (the objects are words from one language, while the attributes are
words from a second language). But it does not yield interesting results for Roget’s The-
saurus because the structures among words are quite different from the structures among
senses. The Semantic Mirrors method applied to the lattice in Fig. 4 would result in a de-
composition of the lattice into single-concept lattices. On the other hand, other forms of
decomposition might be of interest. A horizontal decomposition separates the concept
with the sense 477:7:1 in Fig. 4 from the rest of the lattice. If horizontal decomposition
results in more than one component, this can (but does not have to) indicate that a word

Data Weeding Techniques Applied to Roget’s Thesaurus 159

Fig. 5. A pruned lattice showing he most stable concepts (using ConExp) of Fig. 4

is a homograph (Old, 2006), i.e. that the word has two completely unrelated senses. In
this case, sense 477:7:1 is a polysemous sense of “think”, but not a homograph.

The most promising data weeding technique for neighbourhood lattices of Roget’s
Thesaurus appears to be restriction (Old, 2003). Fig. 7 shows the restricted lattice of
Fig. 4. This lattice maintains the main structures from Fig. 4, but all objects that do
not share at least two senses with “think” have been removed. Different degrees of
restriction are possible: only keeping words (or senses) that have at least 3 senses (or
words), and so on. Incidentally, in retrospect Priss & Old (2009) discovered that the
restriction algorithm is very similar to techniques developed for Roget’s Thesaurus by
the Cambridge Language Research Unit in the 1950s.

The goal for the on-line interface at www.roget.org is to generate neighbourhood
lattices that are of appropriate sizes and calculated sufficiently fast. A simple strategy
could be to use the number of crosses in the context as a rule of thumb for predicting
the size of the neighbourhood lattices (for example, if the context has more than 100
crosses, then use restriction). Another simple strategy would be to apply restriction if
the smaller of the sets of objects and attributes is larger than 20 and the larger one is
larger than 80. These strategies have been tried and found to yield reasonably good
results for Roget’s Thesaurus.

160 U. Priss and L.J. Old

Fig. 6. An iceberg lattice for the lattice in Fig. 4

A third, more precise strategy is to calculate the sizes of all neighbourhood lattices
(2-1, 2-2 neighbourhoods and restriction) in an off-line mode and to store the results in
a database table. Calculating the number of concepts can be slow for large lattices, but
because they need to be calculated only once that is not a problem. When a user enters
a word into the interface, the size of its neighbourhood lattice can be looked up and
be used to select a type of neighbourhood with an appropriate size. Only about 6000
words in Roget (1962) have 2-2 neighbourhood lattices with more than 20 concepts.
For about 500 of these words, the 2-1 neighbourhood lattice also has more than 20 con-
cepts. When applying restriction, only about 60 words are left which have more than
30 concepts in their neighbourhood lattices. For the word “cut” which has the largest
concept neighbourhood of all words in the Thesaurus, a 2-1 neighbourhood needs to be
restricted to objects and attributes that have at least 3 crosses in the context in order to
reduce the size of the lattice to 38 concepts. This is a size that can still be graphically
represented. At the other extreme, considering lattices that might be too small, accord-
ing to Priss & Old (2006) there are about 20,000 words for which the lattice never has
more than one concept for any type of neighbourhood. But these words include archaic,
foreign and specialist words and phrases, which are unlikely to be entered by users in
the on-line interface.

Data Weeding Techniques Applied to Roget’s Thesaurus 161

Fig. 7. A restricted neighbourhood lattice

7 Conclusion

In summary, data weeding techniques select data from a given set based on the specific
needs and purpose of an application. Visual reduction techniques do not change the
lattice structure and are mostly a feature of the software interface that is used to draw
and display the lattices. Scales and facets rely on meaningful subdivisions of the set of
attributes that are often manually derived and not ideally suited for automatically gen-
erated lattices. Although pruning is very useful in other applications (for example for
clustering), it appears to prune away the wrong concepts with respect to neighbourhood
lattices. Some forms of decompositions might be applicable to neighbourhood lattices,
but this needs to be investigated further. Experimentation has shown that restriction
is useful for neighbourhood lattices because it maintains most of the structure of the
lattices while removing objects and attributes.

In general, data weeding techniques appear to be very much dependent on the type of
application. There may not be a single type of technique that is suitable for all kinds of
lattices. An interesting topic for further research would be to determine whether it might
be possible to develop some guidelines that predict which data weeding techniques are
appropriate for which types of lattices.

References

1. Belohlavek, R., Sklenar, V.: Formal Concept Analysis Constrained by Attribute-Dependency
Formulas. In: Ganter, B., Godin, R. (eds.) ICFCA 2005. LNCS (LNAI), vol. 3403, pp. 176–
191. Springer, Heidelberg (2005)

162 U. Priss and L.J. Old

2. Carpineto, C., Romano, G.: Ulysses: a lattice-based multiple interaction strategy retrieval in-
terface. In: Blumenthal, B., Gornostaev, J., Unger, C. (eds.) EWHCI 1995. LNCS, vol. 1015,
pp. 91–104. Springer, Heidelberg (1995)

3. Dyvik, H.: Translations as semantic mirrors: from parallel corpus to wordnet. Language and
Computers 49(1), 311–326 (2004)

4. Furnas, G.W.: The FISHEYE View: A New Look at Structured Files. Bell Laboratories Tech-
nical Memorandum (1981)

5. Ganter, B., Wille, R.: Formal Concept Analysis. Mathematical Foundations. Springer,
Heidelberg (1999)

6. Godin, R., Gecsei, J., Pichet, C.: Design of browsing interface for information retrieval. In:
Belkin, N.J., van Rijsbergen, C.J. (eds.) Proc. SIGIR 1989, pp. 32–39 (1989)

7. Kuznetsov, S.O.: Stability as an estimate of hypotheses based on similarity operation (in
Russian). Nauchno-Tekhnicheskaya Informatsiya (NTI) 2, N12, 21–29 (1990)

8. Kuznetsov, S.O.: On Stability of a Formal Concept. Annals of Mathematics and Artificial
Intelligence 49, 101–115 (2007)

9. Old, L.J.: The Semantic Structure of Roget’s. A Whole-Language Thesaurus. PhD Disserta-
tion. Indiana University (2003)

10. Old, L.J.: Unlocking the Semantics of Roget’s Thesaurus. In: Eklund, P. (ed.) ICFCA 2004.
LNCS (LNAI), vol. 2961, pp. 244–251. Springer, Heidelberg (2004)

11. Old, L.J.: Homograph Disambiguation using Formal Concept Analysis. In: Missaoui, R.,
Schmidt, J. (eds.) Formal Concept Analysis. LNCS (LNAI), vol. 3874, pp. 221–232.
Springer, Heidelberg (2006)

12. Priss, U., Old, L.J.: Modelling Lexical Databases with Formal Concept Analysis. Journal of
Universal Computer Science 10(8), 967–984 (2004)

13. Priss, U., Old, L.J.: Conceptual Exploration of Semantic Mirrors. In: Ganter, B., Godin, R.
(eds.) ICFCA 2005. LNCS (LNAI), vol. 3403, pp. 21–32. Springer, Heidelberg (2005)

14. Priss, U., Old, L.J.: An application of relation algebra to lexical databases. In: Schaerfe, H.,
Hitzler, P., Ohrstrom, P. (eds.) ICCS 2006. LNCS (LNAI), vol. 4068, pp. 388–400. Springer,
Heidelberg (2006)

15. Priss, U.: FCA Software Interoperability. In: Belohlavek, K. (ed.) Proceedings of the Sixth
International Conference on Concept Lattices and Their Applications (CLA 2008), pp. 133–
144 (2008a)

16. Priss, U.: Facet-like Structures in Computer Science. Axiomathes 14, 243–255 (2008b)
17. Priss, U., Old, L.J.: Revisiting the Potentialities of a Mechanical Thesaurus. In: Ferré, S.,

Rudolph, S. (eds.) ICFCA 2009. LNCS, vol. 5548, pp. 284–298. Springer, Heidelberg (2009)
18. Roget, P.M.: Roget’s International Thesaurus, 3rd edn. Thomas Crowell, New York (1962)
19. Roget, P.M.: Roget’s Thesaurus (1911), Available from the Project Gutenberg

http://promo.net/pg
20. Roth, C., Obiedkov, S., Kourie, D.G.: On succinct representation of knowledge community

taxonomies with formal concept analysis. International Journal of Foundations of Computer
Science (IJFCS) 19(2), 383–404 (2008)

21. Sedelow Jr., W.A.: Computer-based planning technology: an overview of inner structure
analysis. In: Sixth Annual Conference on New Technology and Higher Education: Acqui-
sition, Integration, and Utilization (1988)

22. Sedelow, S., Sedelow, W.: The Concept “concept”. In: Proceedings of the Fifth International
Conference on Computing and Information, Sudbury, Ontario, Canada, pp. 339–343 (1993)

23. Snelting, G.: Concept Lattices in Software Analysis. In: Ganter, B., Stumme, G., Wille, R.
(eds.) FCA 2005. LNCS (LNAI), vol. 3626, pp. 272–287. Springer, Heidelberg (2005)

Data Weeding Techniques Applied to Roget’s Thesaurus 163

24. Stumme, G.: Local Scaling in Conceptual Data Systems. In: Eklund, P., Mann, G.A., Ellis,
G. (eds.) ICCS 1996. LNCS, vol. 1115, pp. 308–320. Springer, Heidelberg (1996)

25. Stumme, G., Taouil, R., Bastide, Y., Pasquier, N., Lakhal, L.: Computing Iceberg Concept
Lattices with Titanic. J. on Knowledge and Data Engineering 42(2), 189–222 (2002)

26. Tilley, T.: Tool Support for FCA. In: Eklund, P. (ed.) ICFCA 2004. LNCS (LNAI), vol. 2961,
pp. 104–111. Springer, Heidelberg (2004)

27. Vogt, F., Wille, R.: TOSCANA - a graphical tool for analyzing and exploring data. In: Tamas-
sia, R., Tollis, I.G. (eds.) GD 1994. LNCS, vol. 894, pp. 226–233. Springer, Heidelberg
(1995)

Virtual Catalog: The Ontology-Based

Technology for Information Retrieval�

Dmitry E. Palchunov

Institute of Mathematics SB RAS,
Novosibirsk State University

Novosibirsk, Russia
palch@math.nsc.ru

Abstract. This paper is devoted to information retrieval and fine search
organization on the Internet. The presented approach is based on model-
theoretical formalization of a subject domain ontology.

The formal measures of information retrieval effectiveness are studied.
The central problem of our consideration is the problem of pertinence of
information retrieval. To contribute to the solution of this problem, we
present an approach which is called the Virtual Catalog. This approach
is a synthesis of search engines and Internet catalogs.

The development of the Virtual Catalog is based on subject domain
ontologies. Ontologies are formalized in model-theoretical terms. We de-
velop methods of ontology representation as a network of sentences of
first-order predicate logic. We use three types of ontology to solve the
problem of pertinence of information retrieval: ontology of the subject
domain which is relevant to the desired information; ontology of the
Internet which describes various types of Internet resources; and on-
tology of user needs and types of information search tasks. With the
help of the subject domain ontology, we specify the user’s field of inter-
est. The user needs ontology helps us to specify what kind of information
the user wants. The Internet ontology gives the possibility to determine
the desired type of Internet resource. Our approach is applied to develop
Virtual Catalogs for two fields: mathematics and information security.
We present technologies for constructing ontologies for these fields and
technologies for fine search organization on the Internet.

1 Introduction

It is obvious, that a huge volume of information is presented on the Internet.
This information concerns all kinds of human activity — all fields of science and
technology, all branches of industry and business, rest, sport, culture, art, etc. It
is possible to say with confidence that, on an overwhelming number of questions,
the answers which are already known by mankind can be found in documents
presented on the Internet.
� Supported by RFBR grant N 05-01-04003-NNIO-a (DFG project COMO, GZ: 436

RUS 113/829/0-1) and by the Federal Agency for Science and Innovations of the
Russian Federation, the State contract N P-1008.

K.E. Wolff et al. (Eds.): KONT/KPP 2007, LNAI 6581, pp. 164–183, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Virtual Catalog: The Ontology-Based Technology for Information Retrieval 165

Nevertheless, till now, the Internet may be more likely to be named a hiding
place of treasures than a universal problem solver. The problem is that, though
a full and exhaustive answer to a given question is contained in the Internet,
it is not clear how we can extract this answer. Especially, it concerns the spe-
cific information which is presented by a small number of Internet resources, for
example, scientific and technical information. In spite of the fact that, now, uni-
versal search systems as well as specialized search systems have been successfully
developed, this problem does not lose acuteness.

In the paper, an approach to the search for scientific and technical information,
based on the development of metasearch systems of a special kind — Virtual
Catalog — is presented. Now, Virtual Catalogs on mathematics and information
security are developed. The purpose of the Virtual Catalog is to extract from
the Internet any information concerning the given subject domain, which is
necessary to the user. To achieve efficiency in the information search, we pay
special attention to the set of tools which our search system gives to the user,
such that he could formulate his information needs precisely and completely.
The elaboration of the toolkit for the formalization of the search query is the
most important point of our research.

The development of the Virtual Catalog is based on the model-theoretical
approach to the formalization of ontologies. In the paper, the basic concepts and
results of model-theoretical formalization of ontologies are stated. In particular,
the question of the possibility of representation of ontological information by
various kinds of glossary is studied.

Methods of automation of the construction of ontologies, based on the extrac-
tion of ontological knowledge from natural language texts, are developed for the
realization of Virtual Catalogs.

2 Information Retrieval on the Internet

2.1 Measures of Efficiency of Information Retrieval

To determine the quality of information retrieval, to compare the results of the
work of various search engines and to carry out of the testing of the search system
developed by us, we need formal measures of quality of information retrieval.

As the formal description of information retrieval, we start with three com-
ponents of this process. The first component is the user who intends to obtain
some information. The second component is the formalized query for the search
engine. The third component is the answer to this query: the list of results of
the search engine.

By pertinence of information retrieval, we mean a function with two
arguments: the first argument of this function is the information need of the
user, which has been formalized in the query; the second argument is the or-
dered list of Internet resources which the search engine has given out in reply
to this query. For simplicity and convenience, we suppose that this function
possesses values in the interval [0, 1]. If the list of results is more relevant to

166 D.E. Palchunov

the information need of the user, then the value of the function is greater. Full
success is 1; absence of any success is 0.

Note that, by our definition of pertinence (unlike another, also widely used,
definition of this notion), the value of pertinence does not directly depend on how
interesting the obtained information is to the user. For example, if the user tries
to find one kind of information (and makes a formal query), and the engine gives
him absolutely another kind of information then, by our definition, pertinence
will be equal to 0 irrespective of whether the other information is interesting to
the user or not.

Pertinence of information retrieval depends on two conditions: how precisely
the formal query, created by the user, agrees with the information need which
he wished to formalize, as well as how well the results of the search engine agree
with the formal query.

Thus, pertinence may be decomposed into the sum (or, in our case — into
the product) of two components, which we call adequacy and relevance.

By adequacy of information retrieval, we mean a function with two argu-
ments of which the first argument is the information need of the user, which
has been formalized in the query, and the second argument is the formal query.
The function possesses values in the interval [0, 1]. It represents how well the
formal query meets the information need which the user tried to formulate: full
coincidence is 1; absence of coincidence is 0.

By relevance of information retrieval, we mean a function with two argu-
ments: the first argument of this function is the formal query and the second
argument is the ordered list of Internet resources which the search engine gives
out in reply to this query. It shows how well the list of results conforms to the
formal query. The function possesses values in the interval [0, 1].

For simplicity, we suppose that pertinence is equal to adequacy multiplied
by relevance. Or, more precisely, adequacy is equal to pertinence divided by
relevance — from our point of view, pertinence and relevance are more primary
parameters than adequacy.

At the present time, the most developed measure of information retrieval is
relevance. Modern search engines attain a high value of this parameter.

The numerical score of relevance depends on three measures — precision,
recall and ranking. Ranking is the correctness of the order in which the list
of results of information retrieval is presented. Precision is the fraction of a
search output that is relevant to a formal query. So, precision is equal to the
number of documents which are relevant to a formal query, retrieved by a search
engine, divided by the total number of documents retrieved. Recall is the ability
of a search engine to obtain all or most of the relevant documents presented on
the Internet. Recall is equal to the number of relevant documents retrieved by
a search engine, divided by the total number of existing relevant documents on
the Internet, which should have been retrieved.

The main aim of the methods of information retrieval developed by us is high
pertinence. To achieve high pertinence, we should achieve both high adequacy
and high relevance.

Virtual Catalog: The Ontology-Based Technology for Information Retrieval 167

In turn, to attain high adequacy, we should give to the user a good set of tools
for creating a formal query. These tools should possess the following important
qualities:

1. Great expressive force: the ability to represent various information needs.
2. Clarity for the user. The sense of the created formal query should be com-

pletely clear to the user and should not allow ambiguities.
3. The creation of the formal query should not take too much time.
4. The use of tools for the creation of the formal query should not demand

special training or education.

The specified requirements, at first sight, are very strong and, to some extent, in-
consistent. However, their full or even sufficient satisfaction will give to ordinary
users of the Internet really flexible and effective tools of information retrieval.

Consider these requirements in more detail. For most modern search engines,
such as Google, AltaVista, Yahoo, Lycos, AllTheWeb, etc., the usual search
tool is a combination of words. Some search engines use advanced features such
as Boolean searching or date ranges. Such tools for creating a formal query,
obviously, do not satisfy requirement 1, but do satisfy requirement 2 and, at first
sight, requirements 3 and 4. However, the search for specific and rare information
by means of the simple input of a sequence of a few words requires a lot of time:
the user should test many variants of queries. Therefore, condition 3 is not
satisfied. Moreover, a successful result of a search for rare information requires
the user to have experience and search skills. So, condition 4 is not satisfied
either.

Strictly speaking, for such simple kinds of formal query, the measure of perti-
nence has no sense, because the same sequence (containing three to five words)
may be inputted by users having absolutely different information needs. There-
fore, only relevance is sensible for almost all search engines. As it was mentioned
above, most search engines successfully achieve good relevance.

Other types of information systems, which give users links to various elec-
tronic documents, are Internet catalogs, universal or specialized. The interface
of an Internet catalog certainly meets requirements 2–4. An evident defect of
catalogs is the small amount of resources presented by them, compared with the
total number of resources on the Internet, and the absence of the newest, fresh
information.

As regards item 1 of the requirements — the ability to represent various
information needs — catalogs solve this problem in a rather one-sided man-
ner. Each catalog represents just one kind of search task. For example, “to
find software with certain properties” (www.download.com, www.tocows.com),
or “to find a simple explanation of a notion which is unknown to the user”
(www.wikipedia.org), etc. Thus, Internet catalogs enable quick and exact spec-
ification of the search problem, but from a very narrow spectrum. Internet
catalogs attain high pertinence — each catalog for a narrow class of search
tasks.

168 D.E. Palchunov

2.2 The Search for Scientific and Technical Information on the
Internet

For scientific investigations, it is necessary to improve the possibilities of ob-
taining new scientific and technical information. This problem is most critical
for those areas where there is a permanent inflow of new information, and thus
information quickly becomes outdated: for example, in the field of information
security. Now, the most pervasive source of new scientific and technical informa-
tion is the Internet.

For today, there are various specialized search systems representing scientific
and technical Internet resources. For example, Scirus has more than 250 million
indexed pages. This system is universal and has a very important feature: in
“Advanced search” it enables the user to specify the kind of resource. Besides
this, it is possible to narrow the subject domain for the desired information.
Scirus is very developed and, in a certain sense, is a prototype of the Virtual
Catalog developed by us.

There are many other scientific search systems and catalogs: universal —
Google Scholar, SciNet, ScienceDirect, Science Research Portal, Windows Live
Academic, CiteSeer, InfoTrieve, Scientopica, HighWire Press, etc., and special-
ized — Zentralblatt MATH, MathSearch, EULER, ChemIndustry, Medline and
so forth.

The main weakness of practically all such search systems is that the search
query is a small sequence of keywords. By means of these keywords, it is necessary
to specify precisely the subject domain in which the search is being carrying out.
For an inexperienced user, it is very complicated to specify a narrow subject
domain.

Such systems work well in situations when the user knows approximately
what document or Internet resource he wishes to find: for example, a known
article, book, conference or organization, by the incomplete data which he has.
The situation is much worse when the user has another problem: to find new,
absolutely unknown information in the given narrow field of science.

For almost all modern search systems, the following takes place:
– In the formulation of the search query, the set of keywords is central.
– There is no precise description which search problems the system can solve

effectively.
– Systems solve different search tasks with different degrees of efficiency. Dif-

ferent systems have different sets of such “successful” and “unsuccessful” tasks.
Thus, despite the presence of plenty of specialized search systems, till now, the
problem of searching for scientific and technical information is far from the final
solution.

3 Mathematical Basis: Model-Theoretical Approach to
the Formalization of Ontologies

Our approach to information retrieval on the Internet is based on the use of sub-
ject domain ontologies [7–9, 14, 26]. In our search system — Virtual Catalog — we

Virtual Catalog: The Ontology-Based Technology for Information Retrieval 169

use ontologies for two aims: first, for tools of formulating the search query, which
should possess great expressive force and should be able to express various infor-
mation needs of the user; second, for the achievement of a relevant reply to the
formalized query. Note that, if the search query is more expressive and compli-
cated, then it is more difficult to attain the relevance of the reply to this query.

To solve these problems, we use a hierarchy of ontologies of subject domains,
an ontology of types of Internet resources and an ontology of types of search
problems.

3.1 Logical Means of Ontology Representation

To automate the development and use of ontologies, it is necessary to have
completely formalized means for the representation of ontologies.

Now, the most developed approach to the representation, extraction and au-
tomatic processing of knowledge is the project Semantic Web of the WWW
consortium [5, 9, 12]. This project is closely connected with knowledge represen-
tation based on ontologies. Within the framework of this project, the language
of ontology representation OWL — “Web Ontology Language” [13], has been
developed. In turn, the language OWL is based on Description Logic [1].

At the moment, as a logical means for the representation of ontologies, the
greatest attention of experts is attracted by Description Logic. Description Logic
has advantages over other formal means of description and modelling of subject
domains. On the one hand, it gives a rich and expressive language for the rep-
resentation of various information. This language is more expressive than, for
example, Prolog. On the other hand, Description Logic is decidable and, more-
over, has effective provers — for instance, RACER (Renamed Abox and Concept
Expression Reasoner) [10, 11]. Now, Description Logic is the most widespread
means of mathematical representation of knowledge for the development of on-
tologies and their further use.

Within the framework of Semantic Web, the language OWL has been intro-
duced. The development of ontologies in OWL is supported by the program
system Protégé. Now, there are a number of other tools for the development and
representation of ontologies. These are OilEd, Ontolingua, OntoEdit, WebOnto,
OntoSaurus, ODE, etc. All of them are based on various logical means.

What should be the requirements of logical means for the representation of
knowledge about subject domains? As the basic requirements, we would mention
the following:

– decidability — the existence of algorithms to check the provability and
equivalence of formulas and the consistency of finite sets of formulas;

– efficiency of resolving algorithms;
– presence of already developed provers (programs for automatic proving,

which carry out logical derivations).

Thus, at the moment, there are many logical means for knowledge representation.
However, for the use of these logical means, it does not matter whether the
represented knowledge about the subject domain is ontological or not. With

170 D.E. Palchunov

identical success, using these formalisms, it is possible to represent subject do-
main ontology as well as arbitrary knowledge about the subject domain.

In the elaboration of logical means for the representation of ontologies, in most
cases, attention is not paid to the logical analysis of the ontological knowledge
about subject domains. Logical methods of extraction of ontological knowledge
from natural language texts and their further structurization are poorly devel-
oped. However, natural language texts contain a huge amount of ontological
information on almost all subject domains. The problem is how this information
may be extracted and how to structure the information then. To solve this prob-
lem, we develop a model-theoretical approach to the formalization of subject
domain ontologies [20–25].

3.2 Model-Theoretical Approach to the Formalization of Ontologies

In this section, we present the model-theoretical approach to the formalization
of ontologies, which is the mathematical basis of our investigation.

In the elaboration of the first version of the Virtual Catalog, the most impor-
tant aspects for us are two kinds of ontological information:

1. Proximity between key concepts.
2. Definition of the sense of key concepts via other key concepts.

Using the structure of proximity between key concepts, we determine how much
documents belong to the given subject domain. With the help of the structure
of proximity, we automatically generate a query, the reply to which should be
relevant to the given subject domain.

Definitions of key concepts are necessary, first, for the explanation of the sense
of headings of the Virtual Catalog for the user. Secondly, the presence of exact
definitions of key concepts allows us to extract such ontological lexical relations
as the synonymy of concepts, the relation “is a kind of”, and the relation “concept
A is necessary for definition of concept B” and so on. These relations are used in
our system for increasing the relevance of the automatically generated answer.

To give a formal definition of the structure of proximity between terms, we
introduce the notion of a formal semantic network. We investigate the possibility
of representation of arbitrary knowledge about the subject domain by a formal
semantic network.

We formalize definitions of key concepts of a subject domain by means of the
notion of a formal glossary.

Definitions and denotations on model theory are most important for the sub-
sequent text [4, 6].

By signature we call the tuple σ =< P1, . . . , Pn, f1, . . . , fk, c1, . . . , cm >, where
P1, . . . , Pn are symbols of predicates, f1, . . . , fk are symbols of functions and
c1, . . . , cm are symbols of constants. By FV (ϕ) we denote the set of all free
variables of formula ϕ. S(σ) denotes the set of all sentences of the signature σ.
The signature of a formula ϕ, that is, the set of all signature symbols appearing
in ϕ, is denoted by σ(ϕ). σ(Γ) denotes the signature of the set of formulas Γ .

We write Γ � ψ if the formula ψ is deducible from the set of formulas Γ in
the first-order predicate calculus. We denote ϕ ≡ ψ and say that formulas ϕ and

Virtual Catalog: The Ontology-Based Technology for Information Retrieval 171

ψ are equivalent if ϕ � ψ and ψ � ϕ. A deductively closed set of sentences T is
called a theory: if T � ψ implies ψ ∈ T. If, for a set of sentences Γ ⊆ S(σ), we
have T = {ψ ∈ S(σ)|Γ � ψ}, we say that Γ is a set of axioms of theory T. The
set Th(Γ) = {ψ ∈ S(σ(Γ))|Γ � ψ} is called a theory axiomatizable by the set of
sentences Γ . In particular, Th(ϕ) = Th({ϕ}) is a theory axiomatizable by the
sentence ϕ. Symbol ⊂ denotes strict inclusion: for sets A and B we have A ⊂ B
if A ⊆ B and A �= B.

Further, we state the basic ideas of the model-theoretical formalization of
ontologies, developed by us [20–25].

For our approach, what information on a subject domain is contained in its
ontology is most important. The basic content of subject domain ontology is
the definition of the sense of key concepts of this subject domain. It means, in
particular, that the information presented in the ontology should be valid in any
instance of the described subject domain.

To determine what information on a subject domain should be contained in
its ontology, we apply R. Carnap’s approach to the classification of truth of
sentences [2, 3]. R. Carnap considered three types of truth of sentences: logical
truth, analytic truth and synthetic truth. A sentence is logical if the truth value
of this statement depends only on its logical form. The sentence (ϕ ∨ ¬ϕ) is
logically true, and the sentence (ϕ&¬ϕ) is logically false. A sentence is analytic
if its truth value depends only on the sense of concepts which are used in it.
The sentence “a bachelor has not a wife” is analytically true, and “the dog is a
bird” is analytically false. A sentence is synthetic if its truth value is determined
by the conditions of the real world. The sentence “the Earth is a planet of
the solar system” is synthetically true while the sentence “the Earth is flat” is
synthetically false.

The content of a subject domain ontology is the definition of the sense of
key concepts. Therefore, an ontology should contain only sentences which are
analytic in the context of the given subject domain.

Notice that, from the point of view of our approach, a subject domain ontol-
ogy contains only knowledge about the sense of concepts, in terms of which we
speak about the given subject domain. Unlike ontology, the theory of the subject
domain contains all the information about this subject domain. From our point
of view, the distinction between subject domain ontology and the theory of this
subject domain is identical with the distinction between analytic and synthetic
sentences.

Thus, subject domain ontology should contain the set of key concepts of the
subject domain and analytic sentences defining the sense of key concepts.

Definition 1. The pair O =< A, σ >, where σ is the set of key concepts of a
subject domain SD, and A is a set of analytic sentences describing the sense of
these key concepts, is called a formal ontology of the subject domain SD. The
set T of all sentences which are true in the subject domain SD, is called the
theory of the subject domain SD.

Note that σ ⊆ σ(A), but σ = σ(A) is not necessarily true. This means that the
set of analytic sentences A can contain signature symbols which are not symbols

172 D.E. Palchunov

of key concepts of the subject domain. In the description of the sense of key
concepts, it is possible to use sentences containing concepts which are not key
concepts of the given subject domain.

Generally speaking, for a formal ontology O =< A, σ >, the set A is not a
theory, that is, A is not deductively closed.

Definition 2. Let the pair < A, σ > be a formal ontology of a subject domain
SD and let σ0 = σ(A). The set Ta = {ϕ ∈ S(σ0)|A � ϕ} is called the analytical
theory of the subject domain SD.

For the representation of knowledge contained in natural language texts, the
notion of a linguistic network (see [27, 28] and [19, 20]) is effectively used. The
linguistic network is a graph with vertices of two kinds: phrases of natural lan-
guage and key concepts (words or word combinations). An edge of the graph
connects two vertices if one of them is a phrase and the other is a key concept
which is used in this phrase.

The linguistic network deals with concepts and sentences of natural language.
For logical formalization of knowledge, it is necessary to pass from phrases and
concepts of natural language to sentences of predicate logic and their signature.
The formalization of the linguistic network is the formal syntactic network.

Definition 3. Let σ be a signature and Γ ⊆ S(σ). The triple < Γ, σ, R > is
called a formal syntactic network if R ⊆ Γ ×σ and for any ϕ ∈ Γ and p ∈ σ
the following holds:

(ϕ, p) ∈ R ⇔ p ∈ σ(ϕ).

The weakness of the formal syntactic network is that signature symbols can
appear in a sentence not only essentially, but also just formally. For example,
signature symbols of a sentence ψ are included in the sentence ϕ&(ψ ∨ ¬ψ)
inessentially. To solve this problem, we introduce the notion of the formal se-
mantic network.

Definition 4. A formal syntactic network < Γ, σ, R > is called a formal se-
mantic network if for any ϕ ∈ Γ and p ∈ σ the statement (ϕ, p) ∈ R implies
that p ∈ σ(ψ) for any sentence ψ ≡ ϕ.

There is a natural question — whether arbitrary information can be represented
by means of a formal semantic network? Can an arbitrary set of sentences of
predicate logic be represented by a formal semantic network?

Denote by [ϕ]≡ the set of all sentences (of some fixed signature) equivalent to
the sentence ϕ.

Theorem 1. For any set of sentences Γ ⊆ S(σ) there exists a formal semantic
network < Γ0, σ, R > such, that {[ϕ]≡|ϕ ∈ Γ} = {[ϕ]≡|ϕ ∈ Γ0}.
Theorem 1 implies that each set of sentences can be represented by a formal
semantic network up to the equivalence of formulas. In particular, we can cor-
rectly represent any first-order theory by means of a formal semantic network.

Virtual Catalog: The Ontology-Based Technology for Information Retrieval 173

Corollary 1. Let T be a theory of a signature σ. There is a formal semantic
network < Γ, σ, R > which represents T , i.e.,

{[ϕ]≡|ϕ ∈ T } = {[ϕ]≡|ϕ ∈ Γ}.
Definition 5. Let T be a theory, σ = σ(T), Γ ⊆ S(σ) and Γ be a set of axioms
of T , i.e., T = {ψ ∈ S(σ)|Γ � ψ}. Γ is called the canonical set of axioms of
theory T if

a) for any sentences ϕ ∈ Γ and ψ if ϕ ≡ ψ then σ(ϕ) ⊆ σ(ψ);
b) for any ϕ ∈ Γ and any sentences ψ and ξ if ϕ ≡ ψ&ξ then σ(ψ) �⊂ σ(ϕ)

or σ(ξ) �⊂ σ(ϕ).

Item (a) of Definition 5 means that each axiom belonging to the set Γ contains
only those signature symbols which are used in this axiom essentially, and the
signature of each axiom does not contain unnecessary garbage. Item (b) of Defi-
nition 5 demands the minimality of a set of concepts (signature symbols) of each
axiom. It says that there are no sentences ϕ ∈ Γ , ψ and ξ such that ϕ ≡ ψ&ξ,
σ(ψ) ⊂ σ(ϕ) and σ(ξ) ⊂ σ(ϕ). Otherwise, in the set of axioms Γ instead of ϕ
we should include sentences ψ and ξ each of which contains a smaller number of
signature symbols than ϕ.

Theorem 2. Any theory has a canonical set of axioms.

Corollary 2. For any theory, there is the greatest canonical set of axioms with
respect to inclusion.

Question 1. Is there a minimal canonical set of axioms for each theory with
respect to inclusion?

This question has a positive answer for a special case which is very important
in practice.

Corollary 3. Every finitely axiomatizable theory has a minimal canonical set
of axioms with respect to inclusion.

Proposition 1. There exists a theory which has no set of axioms Γ such that
the set {[ϕ]≡|ϕ ∈ Γ} is least with respect to inclusion.

In this connection, there is a similar question for finitely axiomatizable theories.

Question 2. Is it true that each finitely axiomatizable theory has a canonical
set of axioms Γ such that the set {[ϕ]≡|ϕ ∈ Γ} is least with respect to inclusion?
Is it true that each finitely axiomatizable theory has a canonical set of axioms
Γ which is minimal with respect to inclusion, such that the set {[ϕ]≡|ϕ ∈ Γ} is
least with respect to inclusion?

As we mentioned above, the main goal of ontology is the description of the
sense of key terms of a subject domain. The most simple and widespread kind
of definition of key terms is a glossary. A glossary is a sequence of definitions of
some concepts which are, as a rule, key terms of a particular area of knowledge.

174 D.E. Palchunov

For the automation of the elaboration and use of glossaries, it is necessary to
formalize the information contained in a glossary. We develop such formalization
by means of first-order predicate logic.

Definition 6. Let σ be a signature. The sequence of sentences ϕ1, . . . , ϕn ∈
S(σ) is called a formal glossary (defining concepts from σ), if:

a) σ(ϕ1) ⊂ σ(ϕ1&ϕ2) ⊂ . . . ⊂ σ(ϕ1& . . .&ϕn) = σ;
b) Th(ϕ1& . . .&ϕk) = Th(ϕ1& . . .&ϕn)∩S(σ(ϕ1& . . .&ϕk)) for every k ≤ n,

i.e., the addition of each new sentence ϕk conservatively extends the previous set
of sentences.

In each step of the glossary (that is, after each definition), some new sets of
concepts (or, in the most simple case, one concept) is defined. New concepts
are defined by means of the concepts defined earlier. The definition of these new
concepts in the given step should be final and on further steps of the glossary this
definition should not be changed. A concept defined once should not be redefined
further. Otherwise, the whole of the glossary would be one huge definition of all
key concepts, that is, concepts would be defined in only one step. Therefore, the
conservatism of each step of a glossary is necessary.

As we have noted above, in the simplest case, in each step of the glossary,
exactly one new concept is defined. Such definitions of a glossary may be explicit
or implicit.

Definition 7. We say that a formal glossary ϕ1, . . . , ϕn explicitly defines
concepts from σ if there are formulas ψ1, . . . , ψn such that for every k < n one
of the following conditions holds:

ϕk+1 = ∀x(P (x) ↔ ψk+1(x)),

ϕk+1 = ∀x∀y((f(x) = y) ↔ ψk+1(x, y)),

ϕk+1 = ∀y((c = y) ↔ ψk+1(y)),

where P, f, c ∈ σ\σ(ϕ1& . . .&ϕk), x is a tuple of variables and σ(ψk+1) ⊆
σ(ϕ1& . . .&ϕk).

These three kinds of explicit definitions are definitions of signature predicate,
function and constant.

Question 3. Can the sense of key concepts always be represented by an explicit
glossary — a sequence of explicit definitions?

Notice that, in the case of an explicit glossary, each new definition contains
exactly one new signature symbol.

Definition 8. We say that a formal glossary ϕ1, . . . , ϕn represents a set of sen-
tences Γ if Th(Γ) = Th(ϕ1& . . .&ϕn).

Remark 1. There exists a formal glossary which represents a set of sentences
S if and only if theory Th(S) is finitely axiomatizable.

Virtual Catalog: The Ontology-Based Technology for Information Retrieval 175

Question 4. Can each finitely axiomatizable theory be represented by an explicit
glossary?

Remark 2. For any set of sentences Γof a finite signature σ there exists a
conservative sequence of sets of sentences Γ1, . . . , Γn such that Th(Γ1∪. . .∪Γn) =
Th(Γ), σ(Γ1) ⊂ σ(Γ1 ∪ Γ2) ⊂ . . . ⊂ σ(Γ1 ∪ . . . ∪ Γn) and for any k < n the set
σ(Γ1 ∪ . . .∪Γk+1)\σ(Γ1 ∪ . . .∪Γk) contains exactly one symbol, and also the set
σ(Γ1) contains exactly one symbol.

Remark 2 shows that, by means of a conservative sequence of infinite sets of
sentences, we can always represent definitions of key concepts so that in each
step exactly one new concept would be defined. Definitions of real glossaries
contain only a finite number of sentences. Therefore, there is a question —
whether it is always possible to organize a glossary so that concepts would be
defined one by one? For real glossaries written in natural language, we have just
this situation. The question is — whether it is always possible, for any definitions
of key concepts?

Question 5. a) If the set of sentences Γ is finite, is it possible in Remark 2
to find a sequence of sets of sentences Γ1, . . . , Γn such that all theories Th(Γk)
would be finitely axiomatizable?

b) Is it true that for any sentence ϕ there exists a formal glossary ϕ1, . . . , ϕn

such that Th(ϕ) = Th(ϕ1& . . .&ϕn) and for each k < n the set

σ(ϕ1& . . .&ϕk+1)\σ(ϕ1& . . .&ϕk)

would contain exactly one signature symbol, and also the set σ(ϕ1) would contain
exactly one symbol?

Theorem 3. There is a signature σ = {s1, s2} and a sentence ϕ defining con-
cepts from σ, for which there exists no formal glossary ϕ1, ϕ2 representing {ϕ}
such that ∅ �= σ(ϕ1) ⊂ σ(ϕ2).

The negative answer to Question 5 follows from Theorem 3.

Corollary 4. In the general case, definitions of concepts cannot be represented
in the form of a glossary defining concepts one by one.

Corollary 5. In the general case, the sense of concepts cannot be represented
in the form of an explicit glossary. In particular, it is not true that each finitely
axiomatizable theory can be represented by an explicit glossary.

Corollary 5 gives a negative answer to Questions 3 and 4.
Proof of Theorem 3. To prove the theorem, we consider the theory of Boolean

algebras with distinguished ideals [15–18]. We show that the answers to Ques-
tions 3–5 are negative even for a definition of two concepts presented by unary
predicate and binary predicate in the context of the theory of Boolean algebras
with distinguished ideals.

Consider the signature σ = {≤, I} consisting of a symbol of binary predicate
≤ and a symbol of unary predicate I.

176 D.E. Palchunov

Lemma 1. There exists a sentence ϕ of first-order predicate logic of the sig-
nature σ, stating that each model on which this sentence is true satisfies the
following conditions:

1. this model is a Boolean algebra naturally ordered by the relation ≤;
2. this Boolean algebra is atomic;
3. the unary predicate I distinguishes an ideal of this Boolean algebra;
4. each atom of the Boolean algebra belongs to the ideal I;
5. the unit of the Boolean algebra does not belong to the ideal I.

Let us consider the sentence ϕ introduced in Lemma 1.

Lemma 2. Each model of the sentence ϕ is an infinite atomic Boolean algebra.

Lemma 3. For any model of the sentence ϕ, both predicate I and its comple-
ment contain an infinite number of elements.

Remark 3. The theory of the class of infinite atomic Boolean algebras is not
finitely axiomatizable.

Denote σ1 = {≤} and σ2 = {I}.
Corollary 6. The theory Th(ϕ) ∩ S(σ1) is not finitely axiomatizable.

Remark 4. The theory of the class K of models of the signature {I} consisting
of one unary predicate, in which both the predicate and its complement contain
an infinite number of elements, is not finitely axiomatizable.

Corollary 7. The theory Th(ϕ) ∩ S(σ2) is not finitely axiomatizable.

Proposition 2. For the sentence ϕ there is no formal glossary ϕ1, ϕ2 repre-
senting {ϕ}, such that ∅ �= σ(ϕ1) ⊂ σ(ϕ2).

Theorem 3 follows from Proposition 2.
Thus, in this section, we introduced a natural internal structure on sentences

of first-order predicate logic — the formal semantic network. This internal struc-
ture can be used, in particular, for metrics of proximity between key concepts
which are formally presented as signature symbols. The metrics of proximity
between key concepts are based on the length of the shortest way between two
vertices of a formal semantic network: if the length is larger, then the proximity
of two given concepts is less.

With the help of such a measure of proximity, we determine concepts associ-
ated with a given concept. In particular, by the name of a subject domain, we
determine concepts which are most typical for this subject domain.

By means of model theory, we formalized the notion of a glossary and investi-
gated the possibility of representation of the sense of key concepts by an explicit
glossary.

The developed mathematical tools enable us to make a formal representation
of ontological knowledge, which is a basis of the achievement of relevance of
information retrieval by the Virtual Catalog.

Virtual Catalog: The Ontology-Based Technology for Information Retrieval 177

4 Practical Realization. The Virtual Catalog

4.1 Description of the Virtual Catalog

Remember the requirements for search systems, which we have formulated above,
in Section 2.1.

1. Great expressive force: the ability to represent various information needs.
2. Clarity for the user. The sense of a created formal query should be com-

pletely clear to the user and should not allow ambiguities.
3. The creation of a formal query should not take too much time.
4. The use of tools for the creation of a formal query should not demand

special training or education.

These requirements underlie the metasearch system developed by us — the Vir-
tual Catalog.

As we mentioned above, the first item of these requirements is in certain
contradiction with the remainder, especially with items 3 and 4. Nevertheless,
this contradiction is solvable. Fast and clear specification of search tasks can be
achieved if we decompose the search task into a composition of subtasks. For
this purpose, it is necessary to introduce dimensions of a search task.

We distinguish three dimensions of a search task:

– the subject domain in which the information is searched;
– the kind of desired Internet resource;
– the kind of search problem.

Thus, a search task, which the user should specify, is represented in the form of
a triple of values. Its components are the subject domain, the kind of Internet
resource and the kind of search problem.

With each dimension of the search task, we connect an ontology. For the
realization of an information search, we need three kinds of ontology: subject
domain ontology, ontology of the Internet and ontology of search tasks.

Accordingly, the interface of the Virtual Catalog consists of three parts:

1. Catalog of subject domains.
2. Catalog of kinds of Internet resources.
3. Catalog of search tasks.

The catalog of subject domains is similar to the interface of a usual Internet
catalog. There is a structure of headings and subheadings, having several levels of
nesting. The Virtual Catalog is intended for information searching in some fields
of science — in mathematics, chemistry, patent branches and so on. Therefore,
the names of the headings correspond to subfields in this field of science — for
example, to areas of mathematics.

There are two essential differences between the catalog of subject domains
and usual Internet catalogs.

First, the hierarchy of headings is not a tree. A heading can be a direct
subheading of several headings, instead of one, as it is usually accepted.

178 D.E. Palchunov

Secondly, the user can choose a heading from any level of hierarchy of nesting
and start the search. The reply will contain documents corresponding to the
specified heading of the given level of the hierarchy of nesting.

Such an approach to organize the structure of headings eliminates two prob-
lems. On the one hand, it is not necessary for developers of the system of head-
ings to take trouble over the question of with what heading the given subheading
should be connected; often it is not so obvious. On the other hand, we get rid of
one of the widespread inconveniences of interfaces of program systems, arranged
in the form of a tree. In such interfaces, to find the desired final heading, the
user sometimes needs to scan several subtrees of headings, which may contain
the given final heading.

Unlike a usual Internet catalog, the Virtual Catalog does not contain any
information about concrete Internet resources. It works as a metasearch system.
By the triple choice made by the user — subject domain, kind of Internet resource
and kind of search task — the Virtual Catalog generates a query to one or several
search systems (depending on the user’s query) and receives a reply from these
search systems. Further, this reply is processed and given out to the user.

The main idea of the Virtual Catalog is to automate routine work which the
user carries out each time to find the desired information by means of search
engines, such as Google, Yahoo and AltaVista. Such automation reduces the time
expenses of the user and improves the quality of the found Internet resources.
Not every Internet user is experienced in work with search systems. The Virtual
Catalog creates such a query to the search engine, which only a very qualified
user can make, having spent plenty of time and many attempts.

For the successful realization of the Virtual Catalog, it is necessary for us:

– to develop a classification of the search tasks which are represented as a
composition of three components;

– to develop methods of generating formal queries for each search task.

Thus, to develop convenient and effective tools of information retrieval, we should
solve the following problems:

1. Description of the components which determine the search task.
2. Classification of search tasks.
3. Classification of types of users by search tasks.
4. Clustering of search problems; division of the problems into classes.
5. Development of schemes of specification of search problems of the given

user.

To determine components which specify the search problem, that is, to decom-
pose the search problem into subproblems, we use the methodology of the speech
act theory [19, 20].

The development of the Virtual Catalog enables us to satisfy all the require-
ments of the search system formulated in this section. Thus, high efficiency of
the information search will be achieved.

The adequacy of the formal query is achieved by means of tools of formulation
of the search query and by clarity of these means for the user. The relevance

Virtual Catalog: The Ontology-Based Technology for Information Retrieval 179

of working of the formal query is achieved by the use of three ontologies corre-
sponding to the components of the formal query — ontology of subject domain,
ontology of Internet resources and ontology of search tasks. As a result, we have
high pertinence of information retrieval by the Virtual Catalog.

4.2 Automation of the Development of Subject Domain Ontologies

In the third paragraph, we have stated mathematical methods of representa-
tion of ontological knowledge on the given subject domain. In this section, we
state practical technologies of the creation of ontologies, which we use for the
development of the Virtual Catalog.

As we have mentioned above, for the realization of the Virtual Catalog, we
need three kinds of ontology — subject domain ontology, ontology of types of
Internet resources and ontology of search tasks. In the first version of the Virtual
Catalog, the main attention is given to the hierarchy of ontologies of subject
domains.

There are two cardinal ways of obtaining essential knowledge about a subject
domain, which may be presented in the form of an ontology of this subject domain:

– extraction of ontological knowledge from experts in the subject domain;
– extraction of ontological knowledge from natural language texts describing

this subject domain.

The weakness of the first method is high cost and the need of plenty of time.
Using such a method for the development of high-quality ontologies, the partic-
ipation of high class experts on this subject domain is necessary. An attempt
for a completely manual development of ontologies would be rather expensive.
Therefore, we use the second method; we take ontological information on the
subject domain from natural language texts.

There is an opportunity to use the work on defining the sense of key concepts,
which has already been done. We can use encyclopaedic dictionaries related to
the given area of knowledge. A collective of leading experts in the given area, as a
rule, takes part in the elaboration of such dictionaries. Therefore, the information
contained in such texts is canonical for specialists in the given area.

In this case, the problem consists of extracting ontological knowledge from
encyclopaedic dictionaries. First, it is necessary to convert the text of the dic-
tionary to a structured form (for example, to an XML document). Secondly, it
is necessary to extract ontological information from the structured text.

To solve these problems, we need automation of the extraction of ontologi-
cal information from natural language texts. For the elaboration of the Virtual
Catalog, we have a special project devoted to the development of software for
parsing natural language texts.

4.3 Elaboration of Virtual Catalogs for Mathematics and
Information Security

Now, we develop Virtual Catalogs for two areas — mathematics and information
security. Also, we start to elaborate a Virtual Catalog for the patent branch.

180 D.E. Palchunov

The purpose of the Virtual Catalog is to solve any problem concerning a search
for scientific and technical information in the given area — mathematics or
information security. The development of the Virtual Catalog for mathematics
is connected with the project MathTree, “The Treelike Catalog of Mathematical
Internet Resources” (www.mathtree.ru).

The Virtual Catalog is a metasearch system which processes the formal query
of the user and generates queries to search engines — universal, such as Google
and Yandex, and also to specialized search engines. As a result, the user receives
a reply which is pertinent to his formal query.

As we already mentioned, the search problem which the user should formalize
is represented in the form of a three-dimensional vector. The first component is
a field of a subject domain. The second component is a type of Internet resource.
The third component is a type of search task.

Now we have realized the first two components — the field of the subject
domain and the type of Internet resource. In the future, the type of search
problem will also be realized.

The specification of a field of a subject domain is organized in the form of a
catalog: there is a rubricator with several levels of nesting — up to five levels.
This catalog has two features.

First, the user can choose a heading from any level of nesting, instead of
necessarily the final one. For example, the user can choose “Algebra and logic”,
“Algebra” or “Group theory”. Then the search will be executed throughout the
entire specified field of science.

Secondly, headings are structured by the relation “is a kind of” (heading–
subheading); however, this relation is not a tree. A heading of any level of nesting
can be a direct subheading of one heading as well as of several headings.

Such a system of headings in fields of science, used in the Virtual Catalog,
differs from almost all search systems on scientific and technical information.

At the present time, the following kinds of Internet resources are implemented:
“articles”, “electronic editions”, “sites of magazines”, “electronic libraries”, “sci-
entific communities”, “scientific schools”, “conferences”, “organizations”, “dis-
sertational councils”, “forums” and “personal pages”.

The user can add a few keywords to the formal query generated by the system;
however, it is not necessary. The keywords added by the user will be included
in the query to the search engine together with heuristics which are generated
by the Virtual Catalog. The adding of keywords gives to an experienced user
an opportunity, first, to make the query more exact and, second, to carry out
customizing and fine-tuning of the system for the user and his vision of the
subject domain and types of Internet resources. If the result obtained by adding
new keywords is good for the user, it may be kept, and further it will be used
automatically.

Elaboration: the expansion and specification of the list of types of Internet re-
sources is a research problem which we investigate. In the future, we are going
to use an essentially more detailed set of types of Internet resources, which will
be presented in the form of a catalog with headings and subheadings.

Virtual Catalog: The Ontology-Based Technology for Information Retrieval 181

For relevant processing of the formal query specified by the user, in the Virtual
Catalog the function for the generation of heuristics is implemented. It is a binary
function; the first argument is the chosen heading of the catalog, and the second
argument is a type of Internet resource. By the given pair of arguments, the
Virtual Catalog generates the heuristics set. On the base of this set, the Virtual
Catalog creates the query to the search engines.

For high relevance of information retrieval, the selection of proper heuristics
sets is very important. For this purpose, the experimental machine for selecting
heuristics is developed.

The interface of the Virtual Catalog allows working with it at two levels: as
a user and as an expert-developer. An expert has special means of selecting
heuristics and comparing their efficiency, and means of updating and changing
the heuristics set for each pair - a heading of a subject domain and a type
of Internet resource. As a result of the work of experts, there is a constant
increase of relevance of processing search queries by the Virtual Catalog. In
the next paper we will consider the procedure of generating heuristics sets in
details.

Thus, because of the representation of a formal query as a three-dimensional
vector, great adequacy of the formal query is achieved. Due to the heuristics
selection, we have good relevance of processing the formal query. As a result, we
attain high pertinence of the Virtual Catalog.

5 Conclusion

At the present time, searching for various information contained on the Inter-
net is an art. Different people have different search skills and abilities, and each
expert in information retrieval has his own tricks (corresponding to the set of
search problems usually solved by him). The purpose of our research is, first,
to transform this art into technology; secondly, this technology should be au-
tomated; and, thirdly, it is necessary to determine classes of search tasks and
relate search technologies to these classes.

To solve these problems, we developed the Virtual Catalog — the metasearch
system intended for the retrieval of scientific and technical information on the
Internet.

The elaboration of the Virtual Catalog is based on the formal representation
of subject domain ontologies in the language of model theory. In the paper, the
basic notions and results of the model-theoretical approach to the formalization
of ontologies are presented.

In the Virtual Catalog, the use of subject domain ontologies, ontologies of
Internet resources and ontologies of search problems gives an opportunity to
formulate the informational need of the user more precisely and completely.
The module of generating heuristics sets provides relevance of processing the
formalized query. As a result, the Virtual Catalog achieves high pertinence of
information retrieval.

182 D.E. Palchunov

References

1. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F.
(eds.): The Description Logic Handbook: Theory, Implementation, and Applica-
tions. Cambridge University Press, Cambridge (2003)

2. Carnap, R.: Meaning and Necessity: A Study in Semantics and Modal Logic. The
University of Chicago Press, Chicago (1947)

3. Carnap, R.: Philosophical Foundations of Physics. Basic Books, New York (1968)
4. Chang, C.C., Keisler, H.J.: Model Theory. North-Holland Publishing Company,

New York (1973)
5. Daconta, M.C., Obrst, L.J., Smith, K.T.: The Semantic Web. In: A Guide to the

Future of XML, Web Services, and Knowledge Management, Wiley Technology
Publishing, Indianapolis (2006)

6. Ershov, Y.L., Palutin, E.A.: Mathematical Logic. Walter de Gruyter, Berlin (1989)
7. Fensel, D.: Ontologies: A Silver Bullet for Knowledge Management and Electronic

Commerce, 2nd edn. Springer, Berlin (2003)
8. Gangemi, A., Pisanelli, D.M., Steve, G.: An overview on the ONIONS project: Ap-

plying ontologies to the integration of medical terminologies. Data and Knowledge
Engineering 31(2), 183–220 (1999)

9. Gómez-Pérez, A., Fernandez-Lopez, M., Corcho, O.: Ontological Engineering with
Examples from the Areas of Knowledge Management, e-Commerce and the Se-
mantic Web. Springer, London (2004)

10. Haarslev, V., Möller, R.: RACER System Description. In: Goré, R.P., Leitsch, A.,
Nipkow, T. (eds.) IJCAR 2001. LNCS (LNAI), vol. 2083, pp. 701–705. Springer,
Heidelberg (2001)

11. Haarslev, V., Möller, R.: RACER: An OWL Reasoning Agent for the Semantic
Web. In: Proceedings of the International Workshop on Applications, Products and
Services of Web-based Support Systems, in Conjunction with the 2003 IEEE/WIC
International Conference on Web Intelligence, Halifax, Canada, pp. 91–95 (2003)

12. Maedche, A.: Ontology Learning for the Semantic Web. The Kluwer International
Series in Engineering and Computer Science, vol. 665 (2003)

13. McGuinness, D.L., van Harmelen, F.: OWL Web Ontology Language Overview.
Recommendation, World Wide Web Consortium (2004),
http://www.w3.org/TR/owl-features/

14. Mizoguchi, R.: Ontological Engineering: Foundation of the Next Generation Knowl-
edge Processing. In: Zhong, N., Yao, Y., Ohsuga, S., Liu, J. (eds.) WI 2001. LNCS
(LNAI), vol. 2198, pp. 44–57. Springer, Heidelberg (2001)

15. Palchunov, D.E.: Countably-categorical Boolean algebras with distinguished ideals.
Studia Logica XLVI(2), 121–135 (1987)

16. Palchunov, D.E.: Finitely axiomatizable Boolean algebras with distinguished ide-
als. Algebra and Logic 26(4), 252–266 (1987)

17. Palchunov, D.E.: Direct summands of Boolean algebras with distinguished ideals.
Algebra and Logic 31(5), 295–316 (1992)

18. Palchunov, D.E.: The Lindenbaum-Tarski algebra for Boolean algebras with dis-
tinguished ideals. Algebra and Logic 34(1), 50–65 (1995)

19. Palchunov, D.E.: Algebraische Beschreibung der Bedeutung von Äußerungen der
natürlichen Sprache. In: Zelger, J., Maier, M. (Hrsg.) GABEK. Verarbeitung und
Darstellung von Wissen, pp. 310–326. STUDIENVerlag, Innsbruck (1999)

20. Palchunov, D.E.: On a logical analysis of GABEK. In: Buber, R., Zelger, J. (Hrsg.)
GABEK II. Zur Qualitativen Forschung. On Qualitative Research, pp. 185–203.
STUDIENVerlag, Innsbruck (2000)

Virtual Catalog: The Ontology-Based Technology for Information Retrieval 183

21. Palchunov, D.E.: Modelling of thinking and formalization of reflection I: Model
theoretical formalization of ontology and reflection. Philosophy of Science 31(4),
86–114 (2006) (in Russian)

22. Palchunov, D.E.: GABEK for Ontology Generation. In: Herdina, P., Oberpran-
tacher, A., Zelger, J. (eds.) Lernen und Entwicklung in Organisationen. Learning
and Development in Organizations, Beitrage zur Wissensverarbeitung, 2nd edn.,
Berlin, Wien (LIT), pp. 90–109 (2007)

23. Palchunov, D.E., Sidorova, E.S.: The Virtual Catalog. In: Proc. All-Russia Confer-
ence ”Knowledge–Ontology–Theory”, Novosibirsk, pp. 166–175 (2007) (in Russian)

24. Palchunov, D.E.: Solution of the problem of information retrieval, based on ontolo-
gies. Business Informatics (1), 3–13 (2008) (in Russian)

25. Palchunov, D.E.: Definability of sentences in the language of Boolean algebras
with distinguished ideals. Vestnik NSU. Mathematics, Mechanics, Informatics 8(2),
92–105 (2008) (in Russian)

26. Staab, S., Studer, R. (eds.): Handbook on Ontologies. Springer, Heidelberg (2004)
27. Zelger, J.: GABEK, a new method for qualitative evaluation of interviews and

model construction with PC-support. In: Stuhler, E., Suilleabhain, M.O. (eds.)
Enchanging Human Capacity to Solve Ecological and Socio-Economic Problems,
pp. 128–172. Rainer Hampp Verlag, Munchen (1993)

28. Zelger, J.: Zur Geschichte von GABEK. In: Buber, R., Zelger, J. (Hrsg.) GABEK II.
Zur Qualitativen Forschung. On Qualitative Research, pp. 13–20. STUDIENVerlag,
Innsbruck (2000)

Ontology Development for Domains with

Complicated Structures

Irina L. Artemieva

Institute for Automation & Control Processes
The Far-Eastern Branch of the Russian Academy of Sciences,

Radio str. 5, 690041 Vladivostok, Russia
artemeva@iacp.dvo.ru

http://www.iacp.dvo.ru/is/

Abstract. The importance of ontology is generally recognized today:
as the base for specification and development of software, shared in-
formation access, knowledge portal development, user interfaces of soft-
ware and information editors. However, existing ontology descriptions
and their development methods do not embrace complicatedly structured
domains: domains with different but similar subdomain ontologies, sub-
domains with different but similar sub-subdomain ontologies and so on.
This paper contains a description of the class of complicatedly structured
domains and provides examples. The definition of multilevel ontologies
for such domains is described; the method of their development is pre-
sented. The differences between this new method and already existing
methods for ontology creation are analyzed. The properties of intelli-
gent systems for complicatedly structured domains based on multilevel
ontologies are considered.

Keywords: Domains with complicated structures, multilevel ontologies,
methodologies for multilevel ontology development.

1 Introduction

At present using ontologies as bases for specification and development of software
[1], shared information access, information search, information merging interac-
tion, knowledge portal development [2,3,4], user interfaces of software [5] and
information editors [6,7] is considered to be important. Many studies are aimed
at developing exact formal knowledge catalogues that can be used by intelligent
systems. Many works consider the ontology as a formal explicit description of
concepts (often called classes) of a domain, properties (sometimes called slots)
of each concept. The description assigns various features and attributes of a con-
cept, and restrictions on properties (sometimes called facets) [8,9]. The ontol-
ogy defines terms used for description and representation of domain knowledge.
The ontology together with a set of individual instances of classes constitutes a
knowledge base.

K.E. Wolff et al. (Eds.): KONT/KPP 2007, LNAI 6581, pp. 184–202, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Ontology Development for Domains with Complicated Structures 185

By now, different methodologies for making ontologies [10,11,12] for the above
applications have been developed. In many methodologies the ontology devel-
opment includes (1) definition of classes in the ontology; (2) arrangement of
classes in a taxonomic hierarchy (subclass – superclass); (3) definition of slots
and description of allowed values for these slots; (4) filling in the values for slots
for instances [13]. These methodologies were used to develop different ontologies
(e.g. http://musing.deri.at/ontologies/v0.3/ and http://www.daml.org/
ontologies/) to be used by program systems of the above classes.

However, some problems exists. The above definitions of ontologies do not em-
brace complicatedly structured domains, i.e. domains with different but similar
[15] subdomain ontologies, subdomains with different but similar sub- subdomain
ontologies and so on. Top-level and upper-level ontologies [14] contain definitions
of high-level abstraction concepts, which make it difficult to use them to model
domains. It is often that the level, understood as an ontology level, is a charac-
teristic of a concept of an ontology and defines the level of a class in the class
hierarchy. Ontologies as concept systems that describe domain knowledge can be
useful to develop systems for knowledge storage but such ontologies lack concepts
that can be used to define input data and results of applied task solutions except
for tasks of structuring, editing and searching for information. Also, there are
no methods for using ontologies to develop program systems that solve applied
tasks except for tasks of structuring, editing and searching for information.

The aim of this article is describing the class of domains with complicated
structures, components of their ontologies and the method of developing them.
The differences between this new method and already existing methods for on-
tology creation are analyzed.

2 Domain Class Definition

Domains with complicated structures have the following characteristics:

– they have sections that are described in different but similar [15] concept
systems;

– sections have subsections that are described in different but similar concept
systems;

– any subsection can have subsections with the above characteristic.

Sections (and subsections) of domains with complicated structures are also do-
mains with their own kinds of activity and sets of applied tasks; some applied
tasks from different sections may be similar. Concepts of ontologies and knowl-
edge of different sections can be used to solve applied tasks in domains with
complicated structures.

Chemistry is an example of a domain with a complicated structure. The
examples of its sections are physical chemistry, organic chemistry and analyt-
ical chemistry. Physical chemistry deals with physicochemical processes [16].
These processes are described in terms of characteristics of substances and re-
actions that take part in the processes. Organic chemistry adds terms relating to

186 I.L. Artemieva

structural properties of substances [17,18]. Analytical chemistry studies pro-
cesses of influence on substances with various kinds of radiation [19]. Chemi-
cal thermodynamics and chemical kinetics are examples of sections of physical
chemistry; sections of analytical chemistry depend on analysis techniques (for
example, X-ray fluorescence analysis).

Another example of a domain with a complicated structure is the program
transformations domain. It studies the processes of changing programs as a re-
sult of applying different transformations [20]. Transformations of structural
programs and transformations of parallel programs are examples of the sections.
Transformations are described in terms of properties of languages of these pro-
grams.

Diagnosing, designing, planning, etc. are examples of tasks solved in domains
with complicated structures. Terms that describe characteristics of substances
used in an experiment, reactions that occur over its course, its chemical process
conditions [21] are necessary for specifying an applied task of planning a chemical
experiment. These terms differ from terms used to describe characteristics of
substances and reactions that are traditionally stored in chemistry databases.

Some problems arise when intelligent systems for domains with complicated
structures are designed. The first problem is integration of knowledge from var-
ious sections and subsections within the framework of one knowledge base. A
means of such integration is ontology that must take into account that concept
systems (ontologies of sections and subsections) used in different sections and
subsections differ. The second problem is a way of integration of concept sys-
tems (ontologies). A means of such integration can be ontology of higher level
of generality.

3 Defining Level of Generality of Ontologies

Let us define a concept “level of generality of ontologies” [22]. Ontologies are
used to verbally represent information. Verbal representation of information is
a mapping of a finite set of terms into a set of possible values of terms. Verbal
representation of information has level 0. Ontology with the system of knowl-
edge that specifies a particular set of verbal representations of information has
level 1. At level 1 ontology terms have no values. Setting values to ontology
terms make the verbal representation of the particular information have level 0.

Ontology without knowledge system has level 2. When different knowledge
is added, different specifications of verbal representations of information are
received.

Ontology in terms of which ontology of level i can be specified has level i+1.
All ontologies of levels more than 2 are metaontologies.

Let us explain the difference between level 1 and level 2. Ontology defines
a set of terms used to verbally represent information, a set of possible values
of each term, and relations between terms (ontological constraints). Ontology
is the result of agreement among people who use the same information in their

Ontology Development for Domains with Complicated Structures 187

discourse; therefore ontology is obviously the result of agreement among these
people on what verbal representations in the domain have meaning. Let us use
the term “conceptualization” for a set of all verbal representations of informa-
tion that have meaning. Knowledge imposes additional constraints on a set of
verbal representations and picks a subset out of conceptualization. Thus, level 2
specifies conceptualization, level 1 specifies its subset, where knowledge defines
characteristics of this subset.

Ontology of the next level specifies a larger set of verbal representations of
information as compared with ontology of the previous level. Transition from
level i to level i − 1 restricts this set and defines its subset. Transition from
ontology of level i− 1 to ontology of level i is considering ontology of level i− 1
as verbalized information.

Let us consider domains as examples of verbalized information. Knowledge is
represented verbally if it is specified as an array of pairs consisting of a term
and its value. Terms included into the ontology of knowledge is used to verbally
represent knowledge [23]. If verbalized information is a knowledge base of a
domain, then its representation has level 0. If this is the case, level 1 is ontology
of knowledge consisting of definitions of terms with their sets of values and
knowledge consistency constraints as well. Level 2 specifies sets of ontologies of
knowledge.

Let us consider the example when information is a description of a state of
affairs of the domain [23]. In respect of physical chemistry, level 0 represents the
information of a certain physicochemical process that took place at a certain
period of time and under certain external conditions. To describe the process
one may use the terms with the following values: “process steps”, “chemical
substances at each process step”, “chemical reactions at each process step”, etc.
The terms used for describing level 0 for the domain form the ontology of reality.
Level 1 specifies the reality model of the given domain and describes all possible
chemical processes the information about which can be represented in terms of
the ontology; the representation of the information about each chemical process
is not inconsistent with the ontological constraints and domain knowledge. The
domain knowledge describes laws for going of chemical reactions, formation laws
for substance from chemical elements, etc. Level 2 specifies the conceptualization
of reality that is an idea about reality that the domain specialist has. This level
defines concepts for this reality description.

Regarding X-ray fluorescence analysis, a section of analytical chemistry,
level 0 represents the information about a certain physical process that took place
at a certain period of time and under certain external conditions. To describe
the process one may use the terms with the following values: “analytes”, “sam-
ple qualitative composition”, “percentage of an analyte in a sample” [19]. The
domain knowledge describes laws of physical processes during high-frequency
electromagnetic radiation directed at a sample, values of characteristic radiation
of analytes, etc.

The domain knowledge defines characteristics of its reality as sets of states
of affairs that can take place in it. If the domain knowledge can be verbally

188 I.L. Artemieva

represented, then the ontology of level 2 contains sets of terms for their rep-
resentation. This ontology is a pair of two ontologies (reality and knowledge)
and relations between them (additional ontological constraints). If the domain
knowledge cannot be verbally represented (e.g. physics), then the ontology of
level 2 coincides with the ontology of reality. In this case, the ontology of
level 3 specifies a set of ontologies of reality.

There are domains where only part of knowledge is verbally represented.
In this case, the ontology of knowledge contains terms that can represent this
knowledge. This is characteristic of physical chemistry: knowledge about various
properties of chemical elements (atomic weight, atomic number, etc.), physico-
chemical characteristics of substances (density, formula, etc.), reaction properties
(e.g. catalyst) and so on is verbally represented in it. Laws of physical processes
cannot be represented verbally.

4 Properties of Multilevel Ontologies for Domains with
Complicated Structures

For a domain with a complicated structure, the level with the maximum number
n is an ontology of the domain (Fig. 1). The level contains the terms with the help
of which the ontology of the next level is defined. The transition to the next level
means specifying ontology terms and ontological constraints of the next level [22].
If all the domain knowledge and ontological constraints of all the levels can be
represented verbally, then the ontology of level n defines properties of all sets of
terms of all ontologies of lower levels. The simplified ontology of medical diag-
nosis has this property [23,24].

Fig. 1. An ontology construction for a domain with a complicated structure

Ontology Development for Domains with Complicated Structures 189

The ontology of level n − 1 consists of modules. Each module defines the
ontology of a certain section of the domain. The ontology of level n − 2 also
consists of modules. Each module defines the ontology of a subsection. All the
ontologies of level lower than n are modular. The domain knowledge base is also
modular. Each module of knowledge consists of knowledge of a subsection.

5 Method of Developing Ontology for Domain with
Complicated Structure

Let us describe the method for developing a multilevel ontology of a domain
with a complicated structure.

The development starts with defining verbalized information about the do-
main reality and terms for its verbal representation [1]. The domain expert par-
ticipates in this work. The knowledge engineer and the expert make a list of
terms used for representing reality, record meanings of terms and values, princi-
ples of representing states of affairs with their help. A set of all possible meanings
is defined for each term (denotation of the term). Ontological agreements spec-
ifying constraints for a set of meanings of terms are formed (domain state of
affairs consistency constraints).

A set of applied tasks of a discourse is analyzed in order to define what infor-
mation about the reality is to be verbally represented. Terms used for specifying
input data and their results and terms used for representing values of interme-
diate data are defined. Ontological agreements specifying relations between all
these terms are also defined. A set of tasks of the discourse unambiguously de-
fines the domain. Thus, the ontology of the reality contains terms that are used
in applied tasks to specify input data and results of solutions, intermediate data,
and relations between terms of the three groups. Then, the knowledge system,
probably defining the reality of the domain more accurately, is to be designed.

Developing the ontology of level 2 starts with answering the question whether
the domain knowledge can be represented verbally. If the answer is in the nega-
tive (i.e. the knowledge cannot be represented verbally), the knowledge system
is developed in the same form as the system of ontological constraints (in terms
of the ontology of the reality). If the answer is in the affirmative (i.e. the knowl-
edge can be represented verbally), a list of terms for representing the domain
knowledge is made with the help of an expert, definitions of these terms are devel-
oped, knowledge consistency constraints and interrelations between the reality
and knowledge are formulated. This list of terms for representing the domain
knowledge and the set of knowledge consistency constraints form the ontology
of this domain knowledge. If only part of knowledge can be represented verbally,
a list of terms for representing only this part is made. The system of knowledge
consists of two components: a set of assertions in terms of the ontology of reality
and mapping of a set of terms for representing knowledge into a set of values.
The ontology of the reality, the domain knowledge ontology, and interrelations
between the reality and knowledge form the ontology of level 2 for the domain.

190 I.L. Artemieva

The ontology of level 3 (and all the following levels) can be developed if the
ontologies of level 2 (and all the previous levels) of several sections of the domain
are developed since this ontology specifies a set of ontologies of level 2. This
step starts with answering whether the ontologies of level 2 can be represented
verbally. If the answer is in the negative, developing stops. If the answer is in the
affirmative, a list of terms for its representing is made, definitions of these terms
are developed, consistency constraints for the ontology of level 2 are formulated.
The task of this level and the following ones is searching for “regularities” in
the ontology of the previous level. To do it, terms with some similar sense are
grouped into one set, a name for each set is defined, the common sense of terms
from a set is defined for each set, and relations among these sets are described.
Also, ontological constraints with some similar sense are grouped into one set,
the common sense of constraints of a set is formulated for each set, and relations
among these sets are defined.

6 Structure of Multilevel Ontology of Chemistry

When describing a multilevel ontology of chemistry, I assume that ontologies
of level 2 have been designed (you can find all of them at http://www.iacp.
dvo.ru/is/). The structure of the reality and the structure of the knowledge of
chemistry sections were analyzed. As it is mentioned above, developing ontologies
of level 3 and other following levels requires search for “regularities” in ontologies.
Let us exemplify the method of developing the ontology of level 3.

Terms (names of chemical element properties) can be specified in the ontol-
ogy of knowledge of physical chemistry. Each such term means the function the
argument of which is a chemical element, and the result of which is a value of
the property, i.e. the denotation is a mapping the range of definition of which
is a set of chemical elements and the range of values is owned by each property.
The same terms can be found both in the ontology of organic chemistry and
in ontologies of other sections. Apart from terms that define names of proper-
ties of elements, there are also terms that are names of properties of chemical
compounds, reactions, radicals, etc.

The analysis of the mentioned ontologies shows that there are other sets of
terms that share some common properties. Such terms are terms that make it
possible to identify compositions of chemical elements or chemical substances.
Each such term is the function the argument of which is a chemical element
or substance, and the result of which is a set of components of an element or
substance. There are also terms that define various properties of an element in
the composition of a substance, a substance as a reactant, etc.

For the above examples, the ontology of level 3 contains the following terms:
(i) “own properties of elements” (a set of functions the range of definition of
which is a set of chemical elements and the range of values depends on the term
that assigns a name of a property); (ii) “own properties of substances” (a set of
functions the range of definition of which is a set of chemical substances and the
range of values depends on the term that assigns a name of a property);

Ontology Development for Domains with Complicated Structures 191

(iii) “components of substance” (a set of functions the range of definition of
which is a set of chemical substances and the range of values depends on the type
of a component; it can be, for example, a set of chemical elements or functional
groups); (iv) “reactants” (a set of functions the range of definition of which
is a set of chemical reactions and the range of values depends on the way of
considering a reaction; it can be, for example, a set of chemical substances), etc.

Transition to the next level (4) takes place in the following way: if in the
ontology of level 3 there are terms that share a common property, a term that
means a set of terms to which they will belong can be introduced. Terms of the
ontology of higher level assign names of more common sets of concepts. For the
considered example, such terms can be a term “own properties of objects” (a set
of functions the range of definition of which is a set of objects of some type and
the range of values depends on the term that assigns a name of a property). In
this case, there also appear terms that mean auxiliary concepts. In the considered
example there is an auxiliary term “types of objects” that means a set of names
of types of objects (terms “chemical elements’, ”chemical substances”, etc. can
be its values).

Transition to the ontology of a higher level makes it possible to describe more
common properties of a domain. Transition from the ontology of a higher level
to the ontology of a lower level takes place through assigning terms owned by
sets specified by terms of the ontology of a higher level.

Thus, the four-level ontology of chemistry has a structure as shown on Fig. 2.
The ontology of level 4 is a chemistry metaontology. The ontology of level 3 is a
set of metaontologies of sections, i.e. it is an array of the modules corresponding
to the sections. Terms of the metaontology of a section are representatives of
sets of terms of the metaontology of chemistry. The ontology of level 2 for each
section is a set of ontologies of subsections – modules of the ontology of level 2.
Each module of the ontology of level 2 contains the definition of linked sets of
terms. The ontology of level 1 for each section is a set of knowledge of subsections
- modules of the ontology of level 1.

For example, in the ontology of level 2 for physical chemistry [16] (Fig. 3) there
are the following modules: “Properties of elements”, “Properties of substances”,
“Properties of reactions”, “Introduction to thermodynamics”, “Thermodynam-
ics. Chemical properties”, “Thermodynamics. Physical properties”, “Thermody-
namics. Relation between physical properties and chemical properties”,
“Chemical kinetics”. The first three modules define terms that describe prop-
erties of objects of a corresponding type. The module “Introduction to thermo-
dynamics” defines terms used to describe general properties of thermodynamic
systems and their components. Conditions of a thermodynamic system can
change during a physicochemical process. Conditions of a process are assigned at
discrete moments of observation. “Thermodynamics. Chemical properties” de-
fines terms used to describe chemical changes of a substance during a process
without taking into account phase changes. “Thermodynamics. Physical proper-
ties” define terms used to describe phase changes of a substance during a process
without taking into account chemical changes. “Thermodynamics. Relation

192 I.L. Artemieva

Fig. 2. The structure of the four-level ontology of chemistry

Fig. 3. The modules of the ontology of level 2 for physical chemistry

between physical properties and chemical properties” defines terms used to de-
scribe physicochemical processes. Finally, “Chemical kinetics” defines terms use
to describe the dynamics of processes.

Ontology Development for Domains with Complicated Structures 193

The ontology of level 2 for organic chemistry contains 26 modules [17]. It
uses terms of the ontology of physical chemistry. This ontology defines terms for
describing structural properties of compounds, molecular configuration, mecha-
nisms of reactions, etc.

7 A Fragment of the Ontology of Level 4

Let us consider a fragment of the ontology of level 4 for chemistry represented by
an applied logic language [24, 26] to exemplify the usage of a top-level ontology
in the domain.

1. sort T ypes of objects : {}N \ ∅
The term Types of objects designates a non-empty set of names of object
types for chemistry.

2. (Type : Types of objects)sort T ype : {}(R ∪ I ∪ N ∪ L)
Each type of objects is a set of objects. Each object can be named, repre-
sented with a number, can be a logical value.

3. sort T ypes of related objects : Types of objects → {}Types of objects
The term Types of related objects designates a function assotiating an
object type with a non-empty set of names of object types.
If Types of related objects(t) = t′ and t′ is the set consisting of the elements
t′1 and t′2 then the objects belonging to set t′1 or to set t′2 can be related to
the objects with type t.

4. Set of objects ≡ {(Type : Types of objects)j(Type)}
This auxiliary term designates a set of objects of all types.

5. Own properties of objects ≡ (λ(Type : Types of objects)
(λ(Area of possible values : ({}V alue sets ∪ {}V alue corteges))
(j(Type) → Area of possible values))
The term Own properties of objects designates a function associating an
object type with a function set. The argument of each function from the set
is a value set or a cortege set and the result is a function set.
If Own properties of objects(t) is a set consisting of function f1 and f1(m)
is a set consisting of function f2 then the argument of function f2 is an
object with type t and the result is an element belonging to set m.

6. Properties of related objects ≡ (λ(Type1 : Types of objects)
(Type2 : Types of related objects(Type1))
(λ(Area of possible values : {}(V alue sets ∪ {}V alue corteges))
(Object that has Type1 → j(Type1), Object that has Type2 →
Related objects(Type1, T ype2)(Object that has type 1)) →
Area of possible values))
The term Properties of related objects designates a function associating
two object types with a function set. The argument of each function from
the set is a value set or a cortege set and the result is a function set. If
Properties of related objects(t1, t2) is a set consisting of function f1 and
f1(m) is a set consisting of function f2 then the arguments of function f2
are an object with type t1 and its component that is an object with type t2.
The result of function f2 is an element belonging to set m.

194 I.L. Artemieva

7. sort Number of process steps : I(0,∞)
The term Number of process steps designates a number of steps included
in a physical and chemical process. This term value is a positive integer.

8. sort T ypes of process objects : {}Types of objects \ ∅
The term Types of process objects designates a non-empty set of object
types that are considered as components of a physical and chemical process.

9. Process components ≡ (λ(Type : Type of process objects)
(I[1, Number of process steps] → {}{(v : Set of objects)Object type(v) =
Type} \ ∅)
The term Process components designates a function associating an object
type with a function set. If Types of process objects(t) is a set consisting
of function f1 then the argument of function f1 is the number of a process
step. The result of function f1 is a set of components of the process. The
result is a non-empty subset of objects of type t.

10. Properties of process components ≡ (λ(Type : Types of process objects)
(λ(Area of possible values : {}(V alue sets ∪ {}V alue corteges))
(Step number → I[1, Number of process steps], P rocess component →
Process components(Type)(Step number)) → Area of possible values))
The term Properties of process components designates a function associ-
ating an object type with a function set. The argument of each function
from the set is a value set or a cortege set and the result is a function set. If
Properties of process(t) is a set consisting of function f1 and f1(m) is a
set consisting of function f2 then the arguments of function f2 are the index
of a process step and a component of this step, that is an object of type t.
The result of function f2 is an element belonging to set m.

8 Using the Ontology of Fourth Level

Let us now consider the example of using the ontology of level 4 when defining
the ontology of level 3 for X-ray fluorescence analysis [19]. First, let us define
the values of the parameters of ontology of level 4 (a set of terms of ontology of
level 3).

1. Types of objects ≡ {Shells of chemical element atoms,
Radiation transition of orbital electrons, Chemical elements,
Energy levels}
Object types examples for X-ray fluorescence analysis are
Shells of chemical element atoms, Radiation transition of orbital
electrons, Chemical elements and Energy levels.

2. Types of related objects ≡
(λ(Type : {Shells of chemical element atoms,
Radiation transition of orbital electrons, Chemical elements,
Energy levels})
(If Type = Chemical elements
then {Radiation transition of orbital electrons, Energy levels}),
(If Type �= Chemical elements then ∅}

Ontology Development for Domains with Complicated Structures 195

Objects of Chemical elements type are exclusively related to objects of
Radiation transition of orbital electrons and Energy levels types while
objects of other types are not related. To define the result of function Types
of related objects for any object types, conditional expressions are used.

3. Types of process objects ≡ {Chemical elements, Radiant energies}
Chemical elements and radiant energies are considered for every physical
and chemical processes.

Now let us define examples of ontological constraints that are part of ontology
of level 3.

1. Shells of chemical element atoms ⊂ {}N \ ∅
The term Shells of chemical element atoms designates a non-empty set of
names.

2. Energy levels ⊂ {}N \ ∅
The term Energy levels designates a non-empty set of names.

3. Chemical elements ⊂ {}N \ ∅
The term Chemical elements designates a non-empty set of names.

4. Radiation transition of orbital electrons ⊂ {}N \ ∅
The term Radiation transition of orbital electrons is a non-empty set of
names.

Then let us define examples of terms that are part of ontology of level 3 and are
names of functions.

1. Own properties of shells ≡
Own properties of objects(Shells of chemical element atoms)
The term Own properties of shells designates a function set which is the
result of function Own properties of objects applied to argument
Shells of chemical element atoms.

2. Own properties of radiation transitions ≡
Own properties of objects(Radiation transition of orbital electrons)
The term Own properties of radiation transitions designates a function
set which is the result of function Own properties of objects applied to
argument Radiation transition of orbital electrons.

3. Properties of radiation transition of orbital electrons of elements ≡
Properties of related objects(Chemical elements,
Radiation transition of orbital electrons)
The term Properties of radiation transition of orbital electrons of
elements designates a function set which is the result of function
Properties of related objects applied to arguments
Chemical elements and Radiation transition of orbital electron.

4. Properties of energy level for an element ≡
Properties of related objects(Chemical elements,
Energy levels)
The term Properties of energy level for an element designates a function
set which is the result of function Properties of related objects applied to
arguments Chemical elements and Energy levels.

196 I.L. Artemieva

5. Properties of elements of a sample ≡
Properties of process components(Chemical elements)
The term Properties of elements of a sample designates a function set
which is the result of function Properties of process components applied
to argument Chemical elements.

Finally, let us define examples of terms that are part of ontology of level 2.

1. sort Binding energy of electrons on an energy level for an element :
Properties of energy levels for an element(R(0,∞))
The term Binding energy of electrons on an energy level for an element
designates a function being an element of the function set defined through
Properties of energy levels for an element(R(0,∞)). The first argument
of the function belongs to object set Chemical elements and the second one
belongs to object set Energy levels. The result of the function is a positive
real number.

2. sort Characteristic radiation frequency : Properties of radiation
transition of orbital electrons of elements(R(0,∞))
The term Characteristic radiation frequency designates a function whose
the first argument belongs to object set Chemical elements and the second
one belongs to object set Radiation transition of orbital electrons. The
result of the function is a positive real number.

3. sort Wave − length of characteristic radiation : Properties of radiation
transition of orbital electrons of elements(R(0,∞))
The term Wave − length of characteristic radiation designates a function
with its first argument belonging to object set Chemical elements and sec-
ond belonging to object set Radiation transition of orbital electrons. The
result of the function is a positive real number.

4. sort Energy of characteristic radiation : Properties of radiation
transition of orbital electrons of elements(R(0,∞))
The term Energy of characteristic radiation designates a function whose
the first argument of the function belongs to object set Chemical elements
and the second one belongs to object set Radiation transition
of orbital electrons. The result of the function is a positive real number.

9 Distinguishing Features of This Ontology Development
Method

Let us consider distinguishing features of the proposed ontology development
method for domains with complicated structures.

All other ontology development methodologies propose that development
should begin from the analysis of the scope and purpose of an ontology.
If it is used to work with domain knowledge, the verbalized information is
this knowledge. Then it can be assumed that the ontology of level 2 contains

Ontology Development for Domains with Complicated Structures 197

nothing but terms of the ontology of knowledge. In this case, the tasks to be
solved are tasks of a search for information in the knowledge, task of filling in
databases, also with the help of data mining methods. The ontology of level 3
describes structures of different knowledge ontologies (different sections of one
domain or different domains). The ontologies of all the following levels describe
structures of knowledge metaontologies.

If an ontology is used to create databases containing domain information,
the ontology of level 2 contains nothing but terms of the ontology of data. The
ontology of level 3 describes structures of different data ontologies (different
sections of one domain or different domains). The ontologies of all the following
levels describe structures of data metaontologies.

If an ontology is used to create a knowledge-based system to solve applied
tasks different from problems of structuring, editing and searching for informa-
tion, the ontology of level 2 contains terms of the two ontologies and ontological
constraints include a group of constraints that assign the interrelations between
the knowledge and the reality. The division of the ontology into two parts re-
mains on all the following levels.

Reusing data, knowledge and programs is one of the purposes of ontologies.
A knowledge-based system can be reused if it is known what applied tasks are
to be solved. Achieving this purpose requires the development of an ontology of
tasks that determines input and output parameters of a task, relations between
these parameters and terms of a domain ontology.

If only an ontology of level 2 is developed, an ontology of tasks contains
specified terms of a domain for assigning names of input and output parameters
of a task.

Transition to the metaontology (ontology of level 3 and higher) inputs names
of sets of terms. Then an ontology of tasks uses names of sets to assign input and
output parameters of a task. Consequently, problem-solving methods developed
in terms of metaontologies will be more general as compared to those developed
in terms of the ontology of level 2.

A class to which a given object can belong to is one of characteristics of do-
main objects. For example, in the domain of chemistry there are different classes
of chemical elements (e.g., metals, nonmetals, etc.), chemical substances, reac-
tions, etc. Besides, in this domain there are different classifying principles for
chemical substances (e.g., classes according to functional group, classes accord-
ing to a type of carbon skeleton). There are also hierarchies of classes and each
method of classification can have its own hierarchies. The information about
relations between classes is represented on level 2 in the ontology of knowledge.
Level 3 can have a term with the meaning “classifying principle for chemical
substances”. To solve a task such property as class can also be used. But it,
for example, already characterizes an element of a set of substances that is a
reactant and is described in the ontology by a term with the stated meaning.
Description of a hierarchy of classes in accordance with one classifying principle
in the ontology narrows the ontology application area.

198 I.L. Artemieva

10 Intelligent Systems for Domains with Complicated
Structures

An intelligent system for a domain with complicated structures [27] must be
able to store the ontology and knowledge of each section and subsection and,
when solving applied tasks, to ensure the usage of those informational compo-
nents that are necessary in this case, i.e. to permit the integration of knowl-
edge and ontologies of different levels within the framework of one information
resource. Such integration can be provided by the ontology with several
level.

Editors of ontologies of different levels and knowledge editors ensure the de-
velopment of the information content; creation and editing of a module of the
ontology of level i are managed by the ontology of level i+1, knowledge editing
is managed by the correspondent ontology of level 1.

Different nonstandard quantities whose structures are described in terms of
their own specific ontologies are a distinctive feature of ontologies considered in
the paper. Such quantity for organic chemistry can be exemplified by a structural
formula. If it is required to input information about the value of nonstandard
quantity, one can use a special editor that “knows” the structure of representa-
tion of the value of this quantity and uses the value assignment way accepted
in the domain (e.g., for a structural formula one can use graphic editor). A spe-
cial editor call is controlled by the ontology of level 1. Elements of nonstandard
quantity can be used to generate knowledge base and assign source data of tasks
solved by the system.

The development of the domain leads to changes in the composition of non-
standard quantities that are supported by the subsystem of work with such
quantities (Fig. 4) that allows to assign the name of a new quantity and asso-
ciate the special editor.

The consequence of changing ontologies of different levels is changes in a set
of classes of tasks solved by the intelligent system which requires mechanisms of
development of not only information components but also program ones of the
system, i.e. subsystems for solving tasks.

RDBMS stores modules of ontologies of all levels and modules of knowledge.
Each term is associated with its table. The knowledge base structure is cor-
respondent to the ontology structure. Each term described in the ontology is
associated with a table in the knowledge base. The knowledge base scheme to
represent knowledge is automatically defined by assigning terms and connections
between them in the ontology.

An ontology used to create intelligent systems intended not only for storage
of, search for and editing of ontologies and knowledge but also for solving other
tasks of a domain is supposed to define a system of concepts which assigns
source data of such tasks and represents solutions. The system of concepts for
chemistry defines different properties of physicochemical processes for different
steps of those processes.

Ontology Development for Domains with Complicated Structures 199

F
ig

.
4
.
T

h
e

co
m

p
o
n
en

ts
o
f
a
n

ex
te

n
d
a
b
le

in
te

ll
ig

en
t

sy
st

em
fo

r
a

d
o
m

a
in

w
it
h

co
m

p
li
ca

te
d

st
ru

ct
u
re

200 I.L. Artemieva

Ontology model terms are used to describe problem-solving methods. The
higher an ontology level is, the more general is the method. The method de-
scription is used to develop a system for solving tasks of a correspondent class
– the program component of the intelligent system for chemistry.

Although all main classes of applications are defined during the analysis of a
domain and development of its multilevel ontology, further development of the
ontology can lead to the increase in classes of tasks or more effective problem-
solving methods that are particular cases of the existing tasks. This requires a
subsystem of support of library of problem-solving methods that can allow to
add another subsystem and ensure its usage by specialists.

Thus, users of an intelligent system for a domain with a complicated structure
include:

– programmers adding subsystems to work with nonstandard quantities and
subprograms to perform new classes of applications;

– knowledge engineers adding ontologies of different levels using a special editor
of multilevel ontology controlled by an ontology of a domain with compli-
cated structure;

– experts adding knowledge of new sections of a domain;
– specialists using information and program components to perform applica-

tions.

So, a programmer is the user of a maintenance system, a knowledge engineer is
the user of an ontology editor, a domain expert is the user of knowledge editor.
They could create the components of an intelligent system used by a domain
specialist to solve applied tasks.

11 Conclusion

The described method for developing multilevel ontologies was tested by creating
the multilevel ontology of chemistry and its sections [16,19] and of optimizing
programs [20]. The developed ontologies were used to create knowledge-based
systems for sections of chemistry. At present, the multilevel model of chemistry
is used to create the web-based intelligent system [21] for chemistry whose in-
formation content will include ontologies and knowledge of these sections and
the software content will allow chemists to solve the tasks of these sections. This
method has been tested when teaching knowledge-based system development
methods to the students of the Far Eastern National University about the ten
years.

Acknowledgments. This paper was made according to the program “The fun-
damental problems of computer sciences and information technologies” of funda-
mental scientific research of the Presidium of the Russian Academy of Sciences,
the project ”Intellectual systems based on multilevel models of domains”.

Ontology Development for Domains with Complicated Structures 201

References

1. Kleshchev, A.S.: Using Ontologies for Software Development. In: Russian Conf.
Knowledge-Ontologies-Theories, vol. 1, pp. 122–129. Institute of Mathematics,
Novosibirsk (2007) (in Russian)

2. Jasper, R., Uschold, M.: A Framework for Understanding and Classifying Ontology
Applications,
http://www.informatik.uni-trier.de/ ley/db/indices/a-tree/u/

Uschold:Michael.html

3. Staab, S., Maedche, A.: Knowledge Portals: Ontologies at Work. AI Maga-
zine 22(2), 63–75 (2001)

4. Zhdanova, A.V.: The People’s Portal: Ontology Management on Community Por-
tals, http://www.ee.surrey.ac.uk/Personal/A.Zhdanova/publications.htm

5. Kleshchev, A.S., Gribova, V.V.: From an Ontology-oriented Approach to User In-
terface Development. Int J. Information Theory & Applications 10(1), 87–93 (2003)

6. Denny, M.: Ontology Building: a Survey of Editing Tools,
http://www.xml.com/pub/a/2004/07/14/onto.html

7. Kleshchev, A.S., Orlov, V.A.: Computer Knowledge Bank. A Universal Direction
in Solving the Problem of Editing Information. Information Technologies. 5, 25–31
(2006) (in Russian)

8. http://www.alphaworks.ibm.com/contentnr/semanticsfaqs

9. http://www.w3.org/TR/webont-req/

10. Corcho, O., Fernandez-Lopez, M., Gomez-Perez, A.: Methodologies, Tools and Lan-
guages for Building Ontologies. Where is their Meeting Point? Data & Knowledge
Engineering 46, 41–64 (2003)

11. Cristani, M., Cuel, R.: A Survey on Ontology Creation Methodologies. Int. J. on
Semantic Web & Information Systems 1(2), 48–68 (2005)

12. Jones, D., Bench-Capon, T., Visser, P.: Methodologies for Ontology Development,
http://www.iet.com/Projects/RKF/SME/methodologies-for-ontology-

development.pdf

13. Noy, N., McGuinness, D.L.: Ontology Development 101: A Guide to Creating
Your First Ontology. Stanford Knowledge Systems Laboratory Technical Report
KSL-01-05 and Stanford Medical Informatics Technical Report SMI-2001- 0880
(March 2001),
http://protege.stanford.edu/publications/ontology development/

ontology101.html

14. Guarino, N., Carrata, M., Giaretta, P.: An Ontology of Meta-level Categories. In:
4th Int. Conf. Principles of Knowledge Representation and Reasoning, pp. 270–280.
Morgan Kaufman, San Mateo (1994)

15. Kleshchev, A.S., Artemjeva, I.L.: An analysis of some relations among domain
ontologies. Int. Journal on Inf. Theories and Appl. 12(1), 85–93 (2005)

16. Artemieva, I.L., Tsvetnikov, V.A.: A Fragment of the Ontology of Physical Chem-
istry and its Model. Investigated in Russia [Electronic resource]: Multysubject
Scientific J. 5, 454–474 (2002) (in Russian),
http://zhurnal.ape.relarn.ru/articles/2002/042.pdf

17. Artemieva, I.L., Vysotsky, V.I., Reshtanenko, N.V.: A Model for the Ontology of
Organic Chemistry. Scientific & Technical Information 8, 19–27 (2005) (in Russian)

18. Artemieva, I.L., Vysotsky, V.I., Reshtanenko, N.V.: Description of Structural For-
mula of Organic Compounds in the Model for the Ontology of Organic Chemistry.
Scientific & Technical Information 2, 11–19 (2006) (in Russian)

202 I.L. Artemieva

19. Artemieva, I.L., Miroshnichenko, N.L.: A Model for the Ontology of X-ray Fluores-
cence Analysis. Informatic & Management Systems 2, 78–88 (2005) (in Russian)

20. Artemjeva, I.L., Knyazeva, M.A., Kupnevich, O.A.: Processing of Knowledge about
Optimization of Classical Optimizing Transformations. Int. J. Information Theories
and Applications. 10(2), 126–131 (2003)

21. Artemieva, I.L., Reshtanenko, N.V.: Specialized Computer Knowledge Bank for
Organic Chemistry and its Development Based on the Ontology. Artificial Intelli-
gence, Ukraine 4, 95–106 (2006) (in Russian)

22. Artemieva, I.L.: Multilevel Ontologies for Domains with Complicated Structures.
In: XIII-th Int. Conf. Knowledge-Dialog-Solution, vol. 2, pp. 403–410. FOI ITHEA,
Bulgaria (2007)

23. Kleshchev, A.S., Artemjeva, I.L.: Mathematical Models of Domain Ontologies. Int.
J. Inf. Theories and Appl. 14(1), 35–43 (2007)

24. Kleshchev, A.S., Artemjeva, I.L.: A Mathematical Apparatus for Domain Ontology
Simulation. An Extendable Language of Applied Logic. Int. J. Inf. Theories and
Appl. 12(2), 149–157 (2005)

25. Kleshchev, A.S., Artemjeva, I.L.: A Mathematical Apparatus for Ontology Simu-
lation. Specialized Extensions of the Extendable Language of Applied Logic. Int.
J. Inf. Theories and Appl. 12(3), 265–271 (2005)

26. Kleshchev, A.S., Artemjeva, I.L.: A Mathematical Apparatus for Domain Ontology
Simulation. Logical Relationship Systems. Int. J. Inf. Theories and Appl. 12(4),
343–351 (2005)

27. Artemieva, I.L.: Intellectual Systems for Domains with Complicated Structures.
Scientific and Technical Journal of the Saint-Petersburg Technical University 2,
5–15 (2008) (in Russian)

Technology of Ontology Building for Knowledge

Portals on Humanities�

Yury Zagorulko and Olesya Borovikova

A.P. Ershov Institute of Informatics Systems
Siberian Branch of the Russian Academy of Sciences
6, Acad. Lavrentjev ave., 630090, Novosibirsk, Russia

{zagor,olesya}@iis.nsk.su

Abstract. The paper presents a technology of ontology building for
specialized Internet portals providing content-based access to scientific
knowledge and information resources related to humanities. The informa-
tion basis for such portals is formed by ontologies, which allows heteroge-
neous data and knowledge to be presented in a unified manner ensuring
their relatedness. Based on the ontology, internal storages of the portal
data are constructed and management of its information content, as well
as navigation and search, are organized. To meet the portal objectives,
the ontology should be well-structured and adequately present its prob-
lem and subject domains. Therefore the portal ontology is divided into
the domain-independent ontologies and subject domain ontology. The
technology of ontology building includes the methods of ontology build-
ing, the ontology description language and ontology editor. The methods
of ontology building are defined by its structure and supported by the
facilities of the ontology editor. The ontology description language and
ontology editor are selected and designed in such a way that they are easy
to understand and use for experts in humanities. The ontology editor is
also designed taking into account its use in the distributed development
of ontologies.

Keywords: Knowledge portal, ontology, content-based access, technol-
ogy of ontology building, ontology editor.

1 Introduction

Recently, a great amount of scientific knowledge and information resources re-
lating to humanities has been accumulated in the Internet. However, the access
to and the use of these knowledge and resources is rather complicated as they
are disembodied and ill-structured, or distributed over various Internet sites,
electronic libraries and archives. At the same time, researchers need an efficient
access to scientific papers and other information resources containing descrip-
tions of methods and approaches developed in the framework of the field of
science interesting to them.
� The authors are grateful to the Russian Foundation for the Humanities (grant 07-

04-12149) for financial support of this work.

K.E. Wolff et al. (Eds.): KONT/KPP 2007, LNAI 6581, pp. 203–216, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

204 Y. Zagorulko and O. Borovikova

To meet the need described above, we have suggested a conception and ar-
chitecture of specialized Internet portals – knowledge portals [1] intended to
provide systematization and integration of knowledge and information resources
related to a given field of science, as well as content-based access to them from
any Internet spot. In addition, according to the conception, the knowledge por-
tal should not only provide the access to its own information resources, but
also support effective navigation through relevant Internet resources previously
remarked (indexed).

In addition to support flexible and consistent representation of some field
of science (using special entities like persons, organizations, events, methods,
objects and results of researches etc.), as well as content-based access to inte-
grated knowledge and information resources, an important requirement to the
knowledge portal is the possibility of its declarative adjustability to any area of
knowledge both at the development and operation stage. This possibility allows
us to track up the dynamics of appearance of new knowledge and information
resources related to the topics of portal and in that way to secure maintenance
of its topicality and utility.

The requirements described above were satisfied owing to the fact that ontol-
ogy was chosen as a conceptual basis and an information model of the knowledge
portal. Thus, the problem of ontology development for the scientific knowledge
portal is rather actual. The paper describes our experience in designing and
using such an ontology.

2 Requirements to Knowledge Portal Ontology

Above all we have to clarify what we mean by “ontology”. We use the concept
of “ontology” in the sense as it is used in computer science and artificial intelli-
gence. Basing on the definitions presented in [2–5], we can say that an ontology
is an explicit specification (model) of some part of the world as applied to a
specific area of interests. In the context of this paper, an ontology will present a
description of a certain branch of humanities and research activity related to it.

Let us consider the main requirements to the portal ontology.
The ontology should not only provide a formal presentation of concepts of the

subject domain of the portal, but also support all necessary functionality, i.e. it
should afford a basis for effective representation of diverse information related
to the portal topic and provide a convenient content-based access to it. Besides,
the ontology should provide integration of relevant information resources into
information space of the knowledge portal and convenient navigation through it.

To support an effective representation of the subject domain knowledge, the
ontology should provide a description of concepts with a complex structure
and diverse semantic relations between them. An important requirement to
the portal ontology is the possibility to order subject domain concepts in a
“generic-specific” hierarchy and to support inheritance of properties through
this hierarchy.

Since the ontology should provide the content-based declarative adjustment of
the portal on a given area of knowledge and support its functionality, it should

Technology of Ontology Building for Knowledge Portals on Humanities 205

be designed in such a way that it could be used for automatic generation of
the following components: the portal data base scheme (the logical structure of
DB and data integrity constraints), forms for data base filling (with informa-
tion objects being instances of the ontology concept), the scheme of navigation
through the portal information space (along with the ontology relations), and
query forms (using the ontology relations and concepts).

To make the knowledge portal easily adjustable to any area of knowledge, we
should define the ontology structures that are independent of the subject domain
of the portal.

Moreover, the ontology should have certain properties, such as extensibility
and integrability with an existing ontology.

3 Structure of Knowledge Portal Ontology

3.1 Definition of Portal Ontology

An ontology satisfying the requirements described above can be represented by
following structure:

O = 〈C, A, RC , T, D, RA, F 〉, (1)

where
C is a set of classes describing the concepts of a certain problem or subject

domain;
A is a set of attributes describing the properties of concepts and relations;
RC = {rC |rC ⊆ C × C} is a set of relations defined on classes (concepts);
T is a set of standard types of attribute values (string, integer, real, date);
D is a set of domains (the sets of values of a standard type string);
RA = RAT ∪ RAD, where RAT ⊆ A × T is a relation that links attributes

with the data types of their admissible values, RAD ⊆ A × D is a relation that
defines a discrete set of values (a domain) for each attribute;

F is a set of constraints on the values of attributes of concepts and relations.
From the informal point of view the portal ontology serves for representing

concepts that are required for the description of both research activity and sci-
entific knowledge in whole and specific areas of knowledge in particular.

3.2 Structuring of Knowledge Portal Ontology

To meet the portal objectives, the ontology should be well-structured and ade-
quately present its problem and subject domains. Therefore the portal ontology
is divided into domain-independent (basic) ontologies and the subject domain
ontology.

The basic ontologies are the ontology of research activity and the ontology of
scientific knowledge (see Figure 1) that are independent from the subject domain
of the portal.

The ontology of research activity is based on the ontology suggested in [6].
Practically, it is a top-level ontology that includes the basic classes of concepts

206 Y. Zagorulko and O. Borovikova

related to the research activity management such as Person (Researcher), Or-
ganization, Event, Activity, Publication. These classes are used when describ-
ing the participants of research activity, scientific events, research programs and
projects, various types of publications and the materials represented in a printed
or electronic format (such as monographs, articles, reports, proceedings of con-
ferences, periodicals, photo and video data, etc.). This ontology includes a class
Information resource that serves for description of relevant information resources
presented in the Internet.

Fig. 1. The basic ontologies of a knowledge portal

The ontology of scientific knowledge is virtually a meta-ontology. It states
the main structures that are used for building the lower-level ontologies, i.e. the
subject domain ontologies describing some specific areas of knowledge or fields
of science. In particular, this ontology contains the meta-concepts that specify
the structures for the description of concepts of a specific subject domain, such
as Subfield of science, Research method, Subject or Object of research, Scientific
result. Using these meta-concepts, we can describe fields and subfields significant
for a given science, determine a classification of methods and objects of research,
and describe the results of research activity.

The concepts of the ontology of scientific knowledge are interconnected with
each other and with the concepts of the ontology of research activity by associa-
tive relations, the main of which are the following:

– “Scientific field” – links events, publications, organizations, persons or infor-
mation resources with subfields of science;

– “Describes” – links a publication with a scientific result, method or object
of research;

Technology of Ontology Building for Knowledge Portals on Humanities 207

– “Uses” – links a research method with activity, person or organization;
– “Investigates” – attaches some activity to the object of research;
– “Result of” – serves for linking scientific results with research activity;
– “Resource” – links information resources with any concept of the ontology;
– “Member of” – links a person with the organization where he works.

Note that the last relation has three additional attributes “appointment”, “date
of hiring” and “date of dismissal” that allow us to specify the position and
working period for a person.

These associative relations have been chosen taking into account not only
completeness of presentation of the problem and subject domain of the portal,
but also convenience of navigation through the portal information space and of
content-based search.

The subject domain ontology of the knowledge portal describes some field
of science. It is built for organizing an effective access to information resources
related to a certain research area, so it should meet the requirements described
in section 1.

The concepts of the subject domain ontology are at the same time realizations
of meta-concepts of the ontology of scientific knowledge and can be ordered in
the “generic-specific” hierarchy.

As a rule the ontology of a concrete subject domain includes four basic hierar-
chies: Subfield of science, Research method, Object of research, Scientific result.

4 Technology of Ontology Building

The technology of ontology building includes the ontology description language,
ontology editor that supports ontology constructing, and methods of ontology
building.

The ontology description language and ontology editor were selected and de-
signed in such a way that they are easy to understand and use for experts in
humanities. In particular, to conform to these requirements, we refused to use
such popular means as the ontology representation language OWL [7] and edi-
tor Protege [8] (at the same time we provided the possibility of translation the
developed ontology to OWL representation).

Besides, the ontology editor was also designed taking into account its use in
the distributed development of ontologies.

4.1 Ontology Description Language

The knowledge representation language of Semp-TAO system [9], a tried-and-
true one, was taken as a basis of the ontology description language.

The classes of concepts in this language are described as follows:

class Name_of_Class (Class_Parent);
Description_of_Attributtes;

constraints
Description_of_Constraints;

end;

208 Y. Zagorulko and O. Borovikova

Below we give an example of simplified descriptions of the class Person and its
successor – the class Reseacher :

class Person;
Family_Name: string;
Name: string;
Patronymic_Name: string;
Sex: Sex;
Date_of_birth: date;
Date_of_death: date;

constraints
Date_of_birth < Date_of_death;

end;

class Reseacher (Person);
Academic_Degree: Academic_Degree;
Academic_Sstatus: Academic_Sstatus;
E-mail: string;
Office_Phone: string;

end;

The description of a relation looks like:

relation Name_of_Relation (Name_of_Argument1: Class1;
Name_of_Argument2: Class2);

Mathematical_Properties_of_Relation;
Description_of_Attributtes;

constraints
Description_of_Constraints;

end;

Relations can have mathematical properties, such as transitivity, symmetry or
reflexivity.

Let us give an example of the relation “Work in”

relation Work_in (who: Person; where: Organization);
Appointment: Appointment;
Date_of hiring: date;
Date_of_dismissal: date;

constraints
Date_of_hiring > Date_of_Birth + 18;
Date_of_dismissal > Date_of_hiring;

end;

Domains are described in the following way:

Domain Name_of_Domain = Set_of_String_Values;

Technology of Ontology Building for Knowledge Portals on Humanities 209

Let us give examples of descriptions of some domains:

Domain Sex = {mail, female};
Domain Position = {Director, Head_of_Laboratory, Researcher,

Senior_Researcher, Junior_Researcher, Laboratory_Assistant};

4.2 Ontology Editor

The ontology editor is intended for ontology building by means of the language
described in section 4.1. It includes graphical interface that simplifies the devel-
opment of ontology and facilities that ensure its correctness.

The ontology editor is implemented as a Web-application accessible to au-
thorized users. To make possible a distributed development of ontologies, the
ontology editor has a procedure for granting privileges to experts of different
levels.

Using the ontology editor, an expert can create, modify and delete any ele-
ments of the ontology: classes of concepts, relations, and domains.

When a class is created, it takes its name, a set of attributes that define
various properties of concepts, as well as constraints on the attributes values.
A parent of the class under creation can be selected from the set of already
created classes. Thereby this class inherits from the parent class not only all its
attributes, but also its relations, whereas the parent class gets linked to a new
class by “subclass” (“is-a”) relation.

For each attribute of the class, its name and status (mandatory or not), the
range of values (type or domain), and the number of possible values (one or a
set) are defined.

The domain is described by its name and the set of elementary (string) values.
For each value from the domain, an expert can define the language (Russian or
English).

The ontology classes can be linked by directed binary relations. The peculiar-
ity of these relations is their (relations’) ability to have their own attributes that
specify the nature of the link between the relation’s arguments.

To make the presentation of information more convenient for a user of the
portal, the possibility of adjustment of knowledge and data visualization is pro-
vided. For this purpose, the templates of visualization are created for objects of
each class of the ontology and for references to these objects.

A template of visualization for a class of objects contains all its attributes
and all relations associated with it. By default, its attributes and relations are
depicted in the same order as defined in the ontology, but the user can change
this order.

A template of visualization for a reference to a class object can include both
the attributes of this class and the attributes of classes that are linked with it
by relations and attributes of these relations. The values of attributes included
in this template are used for building a text representation of a hyperlink to a
class object.

210 Y. Zagorulko and O. Borovikova

4.3 Features of Methodology of Ontology Building for a Knowledge
Portal

The methodology of ontology building for a knowledge portal has much in com-
mon with other well-known methodologies that use core ontologies, for example
Cyc [10] or SENSUS methodologies [11], but it has its own features. On the one
hand, this methodology is wholly defined by the ontology structure defined in
part 3, and on the other hand it is supported and at the same time restricted
by the ontology editor facilities.

The subject domain ontology building is founded on usage of the basic classes
(meta-concepts), defined in the ontology of scientific knowledge, as the root
classes of such hierarchies as the hierarchy of subfields of science, hierarchy of
research methods, hierarchy of objects of research, and hierarchy of scientific
results.

When building a subject domain, new classes are defined as descendants of
the basic classes. These classes are automatically inserted into the corresponding
hierarchies by means of the inheritance relation. Let us remind that inheritance
is implemented in such a way that the derived class inherits all attributes and
relations from the parent class. Besides, this new class can have its own properties
represented, as usual, by means of attributes and constraints and by binary
relations linking this class with other classes.

Note that the specific character of the subject domain may need introduction
of new classes which will not be descendants of the five basic classes described
above. Extension of the ontology of research activity may also be required. This
can be done by either introduction of new classes that are descendants of the
basic classes of this ontology or definition of new classes independent of the
basic ones.

Formal descriptions of concepts and relations so defined determine structures
for representing real objects existing in some subject domain and provide their
interconnections.

When the knowledge portal is already in service, new knowledge on its sub-
ject domain can be found or gaps and inaccuracies in the presented knowledge
can be revealed. Undoubtedly this situation requires evolving and correcting
the ontology. However, when the ontology is edited, it is necessary to maintain
consistency of the portal knowledge system and exclude loss of information [12].

Modification of the ontology can consist in extension or rebuilding of its sys-
tem of concepts, as well as addition, deletion or renaming of concepts, relations
and/or attributes.

First, let us consider the cases concerned with extension of the system of
concepts (conceptual framework).

In the simplest case, this extension consists in addition of a new attribute to
some concept. Here we must take into account that the same attribute can belong
to one of the concepts being a descendant of the editing concept. Therefore
we have to look through all such descendants and if necessary to rename the
corresponding attributes.

Technology of Ontology Building for Knowledge Portals on Humanities 211

Addition of a new concept to a lower level of the concept hierarchy does not
take any efforts for maintaining consistency of the portal’s knowledge system,
as in this case the new concept will simply inherit all attributes and relations of
the higher level concepts.

When adding a concept which will become a root concept for one of the con-
cept hierarchies, it is necessary to consider the attributes and relations of all
concepts in this hierarchy. It is possible that we’ll need to remove a part of
attributes and relations from these concepts to the new concept. We should per-
form this action also taking into account the possibility of appearance (creation)
of new branches of the hierarchy springing from the new concept.

Insertion of a new concept into the hierarchy between two “old” concepts also
requires some methodological efforts. To avoid duplication and possible conflicts
of names, it is necessary to select carefully the attributes and relations for the
new concept from the lower level concepts.

When deleting a “leaf” concept, i.e. a concept situated at the lowest level of
the hierarchy, to avoid loss of knowledge and data, it is necessary to consider the
possibility of transferring its attributes and relations to some concept from the
higher level of the hierarchy. We should realize that if there exist information
objects created on the basis of the deleting concept then, to avoid loss of data, it
is necessary to “attach” them to the parent of the deleting concept. But it can
appear that such “attachment” is not enough for maintenance of all information
on these objects if the attributes and relations of the deleting concept were not
previously transferred to the higher level (parent) concept.

If the deleting concept is not a “leaf” concept, before its deletion we should
consider the possibility of transferring its attributes and relations to one of its
descendants. Analogously to the case with a “leaf” concept, the corresponding
information objects should be “attached“ to the parent concept and modified in
accordance with its structure.

Deletion of “root” concepts of the knowledge portal ontology being in service
or at the stage of its content creation is not recommended because of possible
loss of information.

When deleting attributes from concepts, we also should take into account
possible loss of information. A particular case of deletion of an attribute is its
moving to the higher level or lower level concept. As a result of this moving,
the attribute can become more general or more specific. In the former case
information is not lost because in any case the moving attribute will be inherited
by the modifying concept. In the latter case loss of information is possible,
therefore we have to take measures for information recovery.

Sometimes moving of a concept within a hierarchy is required. In this case we
should take into account that the sets of attributes and relations inherited by
a concept are changed. Possibly, we’ll have to manually restore some attributes
and relations lost after this moving.

Moving subtrees from one branch of the hierarchy to another is a rather
interesting case of evolution of the ontology. Virtually, this case is recursively

212 Y. Zagorulko and O. Borovikova

reduced to the aforesaid. For the most part it is enough to “put in order” the
root concept of the moving subtree, and the rest concepts of this subtree will be
corrected automatically.

5 Content-Based Access to Portal Content

By introduction of formal descriptions of the subject domain concepts in the form
of classes of objects and relations between them, the portal ontology defines
structures for presentation of real data (objects) and relations between them.
The portal data themselves are presented as a set of linked information objects.

Each information object (IO) corresponds to a certain class of ontology (it is
an instance of this class) and presents a description of a certain object of the
subject domain. There may be connections between information objects whose
semantics is defined by relations between the corresponding classes of ontology.

Description of information resources is an important component of the in-
formation content of a portal. According to the definition of the ontology of
research activity from section 3.2, each resource corresponds to such a con-
cept of the ontology as Information resource, and its description includes an
instance of this concept and a set of instances of relations that links it with the
instances of other concepts of the ontology. The set of attributes and relations
of Information resource is based on Dublin Core standard [13] and includes the
following units: Title of the resource, Address in the Internet (URL), Subject
of the resource, Resource type, Language, etc. Each resource can be linked by
relations with persons, organizations, events, subfields of sciences etc.

Information content of a portal is produced (formed) by the expert with the
help of a data editor that allows one to create, modify and delete information
objects and relations between them. Operation of the data editor is based on the
portal ontology. When a new information object is created, first of all, the expert
selects the corresponding class of the ontology. Then, based on descriptions of
this class and its relations, an input form for the corresponding information
object is automatically generated. This form includes fields for input of the values
of the object attributes and its relations with other objects already existing in
the content of the portal.

Thus, the information content of the portal includes both general knowledge
(presented in the ontology) and knowledge on concrete objects of the subject
domain and their connections (presented by information objects and relations
between them).

Navigation through the portal information space is realized in accordance
with the content of its ontology. A navigation engine provides transition from
the concepts of the ontology to their instances (lists of information objects) and
then transition along ontological links (relations) from one information object
to another.

Since the search is also based on the ontology, the user can formulate his
query in terms of the portal subject domain. The basic elements of the query
are concepts and relations of the ontology, as well as constraints on the required
data.

Technology of Ontology Building for Knowledge Portals on Humanities 213

Retrieval queries are formed by means of a special graphic interface driven
by the portal ontology. When a user selects a class of the sought-for information
objects, a retrieval form is generated where the user can define constraints on
values of both the attributes of the sought-for object and objects connected with
it by associative relations.

For example, the query “Find Gumilev’s publications on the ethnic history in
the period from 1962 to 1989” formally looks as follows:

Class "Publication"
Attribute "Date of publication": (>=1962)&(<=1989)
Relation "Author":

Class "Researcher"
Attribute "Name" = "Gumilev"

Relation "Scientific field":
Class "Subfield of science"

Attribute "Name of subfield" = "Ethnic history".

6 Building an Ontology for Knowledge Portal on
Archeology and Ethnography

The technology described in the previous section was used for building an ontol-
ogy for a knowledge portal on archeology and ethnography. The system classi-
fication of archeological science proposed in [14] and developed today served as
the basis for building the ontology of archeology and ethnography. The concepts
of the system classification are used for building the classes of the ontology and
the domains of their attributes and for creation of instances of these classes.

The ontology of archeology and ethnography includes four basic hierarchies:
sub-fields of science, research methods, objects of research, scientific results
(Fig. 2).

These hierarchies are founded on the following classes of concepts built on the
basic concepts of the ontology of scientific knowledge:

Subfield of archeology and ethnography. This class is a root class in the hierar-
chy of scientific fields in archeology and ethnography. For example, subfields of
archeology are General archeology, Field archeology, and Ethnic history.
Research method in archeology and ethnography. This class serves for description
of research methods that are applied in archeology and ethnography. Such “tra-
ditional” subclasses as Approach, Principle, Technology, Archeological methodol-
ogy, as well as a group of methods that came into archeology from other sciences
(Biological method, Physical method and Chemical method), were defined as the
descendants of this class.
Object of research in archeology and ethnography. This class is a root of the hier-
archy of objects of research in archeology. It has such properties as description of
an object, date of discovery, accuracy of dating, etc. This class has two subclasses
Material object and Immaterial object. Material object is divided into subclasses
Archeological culture, Historical Person, Ethnos. Successors of the class Imma-
terial object are Artifact, Complex, Monument.

214 Y. Zagorulko and O. Borovikova

Fig. 2. A fragment of the ontology of archeology and ethnography

Scientific result in archeology and ethnography. This class serves for description of
the results of research activity in archeology and ethnography such as discoveries,
new laws, theories, historical facts, etc. The properties of this class are presented
by such attributes as description of the result, date of obtaining and type of
the result. The class includes the following subclasses: Archeological hypothesis,
Archeological fact, Scientific achievement, Scientific discovery.

In addition to the above listed classes built on the basis of meta-concepts of
the ontology of scientific knowledge, the classes Archeological period and Place
were inserted in the ontology. The class Archeological period is specific for a
historical science. It serves for dating of objects of research. Archeological periods
constitute a hierarchy of nesting and historical sequence and are described by
the time domain. The class Place serves for pointing to the location of an object
of research or an organization, as well as for gridding (fixing) the subfields of
science.

All hierarchies described above are interconnected with each other and with
the classes of the ontology of research activity by means of associative relations.
One part of these relations is inherited from the basic ontologies, the other part
of them contains specific relations of a given subject domain.

So, the hierarchy of methods of research is connected with the hierarchy of
objects of research by means of the relation “Uses” and the hierarchy of scientific
results, that serves for typification and description of the results of research
activity, is connected with activity by means of the relation “Result of”.

The hierarchy of scientific results is connected with publications where scien-
tific results are described by means of the relation “Describes”. The objects of

Technology of Ontology Building for Knowledge Portals on Humanities 215

research are interconnected with each other by means of the relation “Similar
to” that defines the degree of similarity of objects and by means of the rela-
tion “Materially validated” that connects an immaterial archeological object of
research with a material object of research that validates its existence.

Connection between the hierarchy of scientific fields and the methods of re-
search in use is provided by means of the relation “Uses” and the objects of
research are connected with scientific fields by the relation “Study”. A chrono-
logical and geographical location of a scientific field can be defined by means of
the relations “Dated” and “Localized”.

Note that a complete ontology of the portal on archeology and ethnography
includes the ontology of archeology and ethnography and the ontology of research
activity described in section 3.2.

7 Conclusion

The paper presents a technology of ontology building for knowledge portals
related to humanities. This technology includes the methodology of ontology
building, the ontology description language, and ontology editor that supports
ontology construction. A specific feature of the methodology of ontology building
is the usage of the basic ontologies defined in part 3.2 as the basis for constructing
an ontology for a knowledge portal.

The technology was used in the development of an ontology for a knowledge
portal that provides semantic access to systematized knowledge and information
resources related to archeology and ethnography (the Russian version of this
portal is available at http://www.sati.archaeology.nsc.ru/classarch2/).
At present this technology is used for building an ontology for a knowledge
portal on computational linguistics.

References

1. Zagorulko, Y., Borovikova, O., Bulgakov, S., Sidorova, E.: Ontology-based ap-
proach to development of adjustable knowledge internet portal for support of re-
search activity. Bull. of NCC. Ser.: Comput. Sci. (23), 45–56 (2005)

2. Gruber, T.R.: Toward Principles for the Design of Ontologies Used for Knowl-
edge Sharing. International Journal of Human-Computer Studies 43(5-6), 907–928
(1995)

3. Guariano, N., Giaretta, P.: Ontologies and Knowledge Bases. Towards a Termino-
logical Clarification. In: Towards Very Large Knowledge Bases: Knowledge Building
and Knowledge Sharing, pp. 25–32. IOS Press, Amsterdam (1995)

4. Ushold, M., Gruninger, M.: Ontologies: Principles, Methods and Applications.
Knowledge Engineering Review 11(2), 93–155 (1996)

5. Ushold, M., King, M.: Towards a Methodology for Building Ontologies. In: Pro-
ceedings of the IJCAI Workshop on Basic Ontological Issues in Knowledge Sharing,
Montreal, Quebec, Canada, August 1995, pp. 6.1–6.10. AAAI Press, Menlo Park
(1995)

216 Y. Zagorulko and O. Borovikova

6. Benjamins, V.R., Fensel, D.: Community is Knowledge! in (KA)2. In: Gaines, B.R.,
Musen, M.A. (eds.) Proceedings of the 11th Banff Knowledge Acquisition for
Knowledge-based Systems Workshop, KAW 1998, Banff, Canada, April 1998,
SRDG Publications, Department of Computer Science, University of Calgary,
Calgary (1998), http://ksi.cpsc.ucalgary.ca/KAW/KAW98/benjamins1/

7. OWL Web Ontology Language Guide (2004), http://www.w3.org/TR/owl-guide/
8. Protege, http://protege.stanford.edu/
9. Zagorulko Yury, A., Popov Ivan, G., Kostov Yury, V.: Subdefinite Data Types

and Constraints in Knowledge Representation Language. In: Joint Bulletin of the
Novosibirsk Computing Center and Institute of Informatics Systems. Computer
Science, vol. 16, pp. 153–170. NCC Publisher, Novosibirsk (2001)

10. Lenat, D.B., Guha, R.V.: Building large knowledge-based systems. Addison Wesley,
Reading (1990)

11. Swartout, B., Ramesh, P., Knight, K., Russ, T.: Toward Distributed Use of Large-
Scale Ontologies. In: Proceedings of Symposium on Ontological Engineering of
AAAI, Stanford, California, pp. 138–148 (March 1997)

12. Stojanovic, L., Motik, B.: Ontology evolution within ontology editors. In: Pro-
ceedings of the OntoWeb-SIG3 Workshop at the 13th International Conference
on Knowledge Engineering and Knowledge Management (EKAW), pp. 53–62
(September 2002)

13. Using Dublin Core, http://dublincore.org/documents/usageguide/
14. Kholushkin, Y.P., Grazhdannikov, E.D.: Systemic classification of archaeological

science (Elementary introduction in science of science), Novosibirsk (2000) (in
Russian)

Methods and Technologies of Digital Historical

Factography

Alexander Marchuk

A.P. Ershov Institute of Informatics System, SB RAS
mag@iis.nsk.su

Abstract. In this research work a special model is proposed for fixation
and structuring of historical facts. The model is based on factographic
principles of collection of formally specified data and information. The
structuring model includes several classes of instances such as: persons,
organizing systems, geographic systems, documents and some other. In-
stances are connected by simple or complex relations. Proposed approach
is oriented to processes, upcoming in time and space, it allows to cre-
ate databases, which do not become obsolete and do not depend upon
time, place and position of perceiving person. Factographic approach
can be used in a set of such applications as: building of digital archives,
museums, historical encyclopedia and directories. Same ideas can be ef-
ficiently implemented in small systems for office work organizing. New
possibilities in use of a structured field of facts for analytics and knowl-
edge extraction are under investigation. Specific features of the proposed
approach are: the main concept stems from the Semantic Web, a new
ontology of non-specific entities is proposed, strong orientation on dis-
tributed databases, use of the idea of information space of documents.
This approach was partially implemented in applied projects of A.P.
Ershov Institute of Informatics Systems.

1 Introduction

The data collected and accumulated to accomplish a specific task are most ex-
pensive in modern information industry. The problem is that a great number
of sources are badly compatible and informational units describing the same
phenomena are widely duplicated. To take an example, as users of a variety of
services and Internet portals we are authorized in different data bases with our
personal information, however any information system to come next would offer
to enter a similar set of data. Personal data are said to be private, the legislation
limits distribution of personal information. That is true, but the same thing con-
cerns the data which are not covered by limitations and in fact are public and
free for distribution. These include the data on companies, geographic objects,
and open documents. It is quite evident that the data located in one reliable
source would be much more interesting, relevant, and valuable. We treat it as
the problem of common information field.

Some achievements aimed at constructing a common information field have
been made. UDDI [1] system allows registry of information services, RSS is used

K.E. Wolff et al. (Eds.): KONT/KPP 2007, LNAI 6581, pp. 217–231, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

218 A. Marchuk

to unify a news flow, Dublin Core [2] is used to describe a broader range of
information resources, MARC, CIMI [3] standards are used for special purposes
of such recourses, etc. The problem is due to the lack of a holistic approach to
manifold data structuring which would allow a person or a computer agent seek
for a reliable information required and use it in a particular task.

Another aspect of a number of problems approached in the present research
is the accuracy of data arrangement. In a number of cases the available database
schemas appear to have been developed without any principles, except for the
principles concerning normalization and some other evident aspects. The most
common mistake of database programmers is that they see only a current state
of a problem. For example, a database of a company staff may include only
a current stuff and a date of admission. And how about former employees?
Otherwise the database could have a historical reference. Such modification could
be quite easily fulfilled just by entering a dismissal date. In fact, it is not that
easy. A number of new problems may appear preventing the database from
being historical. Suppose, an employee used to hold more than one position, or
some femal employees changed their surnames after marriage; everything may
change from passport data, telephone numbers, addresses, academic degrees to
a company structure and name.

The approach proposed is referred to a factographic or fact-based approach. It
should be noted that it is based on recording facts and not on deletion or editing.
Our aim is to formulate the principles of manifold data structuring, with all
the facts previously recorded being true irrelative to time, geography and other
factors of their reproduction. The fact base can be changed only by adding new
information units (statements). To bring a simple example, it is incorrect to
specify the age of a person as a number of years, though it is correct to indicate
a date of birth. The aim formulated is ideal. Currently, in implementations there
are tools to change and to delete information fields and links.

This approach is more natural for a historical profile as it fixes the facts re-
ferring to a long period of time and often to a vast geographic distribution. The
basic structuring principles and techniques have been developed by database for-
mation and maintenance at the Programming Department of Novosibirsk State
University with a very high dynamic performance and annual rotation of stu-
dents from one category to another. The present task is referred to systems for
office work organizing and its aspects have revealed key problems of the fac-
tographic approach. The approach has lately been developed in a number of
historical projects, although it is of current importance to correlate the histori-
cal material with the present day facts (office work organizing) as tomorrow the
present events will be a historical fact.

Returning to considerations of information privacy, the approach proposed
makes the problem more urgent. In fact, having and processing a full data set
on different aspects of persons of a particular social group care is to be taken
not to let this amount of information units fall into criminals’ hands. To illus-
trate, the following private information can be published: date of birth, place
of employment, address, communication address, affiliation to other persons,

Methods and Technologies of Digital Historical Factography 219

activities attended, programs of these activities, colleagues’ names and their
telephone numbers to contact and to obtain some additional information, etc.
And I do assure you that a similar information on public figures can be obtained
in open sources, the data brought together being a potential hazard. That is
why our group prefers to consider the past and, alas, the people passed away.

Another concern of the approach considered in the present research is to
develop distributed systems. In fact, a host of information resources are de-
veloped and supported by independent teams having their own objectives and
preferences. As a rule, they wish to manage their results at their own discre-
tion without following any external processes. The most evident result in this
case is a self-contained development with its essential drawbacks: first, profes-
sional implementation solutions are not always used; second, the information
collection does not enlarge a common information field; third, after the project
is expired the information resource may result in failure. Our approach allows
solving the three problems stated without changing the autonomous status of
work. The approach offers a number of methods and techniques that could be
used independently and professionally and developed due to further changes in
basic programming systems. The approach allows dividing the information field
into private and public information; it has both mechanisms to expand database
schemas to take account of a specific local objective and tools to adjust a basic
solution to the application domain and users’ preferences. If the project is com-
pleted, the database developed can be involved in a single-source data depository
and keep on forming a common information field.

2 Common Information Field

At present there are a number of approaches to fix history-oriented facts. These
are databases, World Wide Web, systems describing information resources based
on metainformation, and digital libraries. A new direction in information tech-
nology such as Semantic Web (SW) has recently been developed [4].

The drawbacks of relational databases used for fact fixation can be referred
to a centralized storage and processing, difficulties in maintenance and mod-
ernization inconveniences to work with specifications and dictionaries. WWW
technology is not generally aimed at formal approaches to data structuring, it
is supposed to use information, to do the search and navigate. Substantial im-
provements have been made in structuring systems based on metainformation
and electronic libraries. The shortcoming of the approach is a ‘shallow’ structur-
ing mostly used for greater amounts of homogeneous information and usually not
producing databases of manifold elements. In contrast to the approaches men-
tioned SW technique allows formalizing essential knowledge of data implication
and using this knowledge to develop information systems of new generation as
well as it allows developing distributed systems based on a full-scale database. At
the same time the data field can easily be used to make both WWW-interfaces
and requests from computer agents.

Semantic Web has been developed as a basic approach for a wide range of
factographic systems. It is conditioned by the fact that the approach can use

220 A. Marchuk

disconnected or loosely connected information sources. Besides, the formalisms
existing in SW and the adjusted standards are appropriate to the objectives of
a distributed field of manifold information. Working with the data specified by
OWL [5] tools, a logical conclusion is likely to be made for a number of important
cases and other artificial intelligence technologies can be applied. Programming
use is being currently studied in bottlenecks, fuzzy logic, semantics and data
clustering.

The approach proposed implies models in which entities of the outer world
are attributed to information units and relation between the entities are real-
ized by both a direct reference and a composite construction of a specific type.
Specification of such models realized as the ontology makes it possible to de-
velop universal processing software, to use specification to make the data more
accessible, to realize multilingual information systems, to analyze whether the
data are full and correct. Being ‘in the centre’ of SW technique RDF [6] uses
the basic concept of semantic network of single statements and groups of state-
ments. Statements are united in a single graph by combining equally identified
information units (items). This allows uniting RDF models stored in different
locations resulting in a naturally distributed information field.

Consider the look-and-feel of a distributed information field. In details the
information field can be viewed as a set of RDF documents logically associated
with each other by a common identification of objects and relations being equally
treated. The term ‘publication’ is used to describe the document attributed to
a fixed URL and ‘seen’ from the Internet. Possible details are associated with
the limited visibility for different categories of users and an indirect access to a
document. The latter means that a relational database in a database application
may have a particular interface transforming a database or its part in a required
RDF document. The documents published are opposed to the unpublished ones,
i.e. the access is authorized only for ‘friends’.

Thus, any Internet agent may have an equal access to common published data
and a local access to personal documents. From the amount of regularly built
documents any agent can form a database as a semantic net, or in some cases
as a system of relational tables. The use of such database may result from the
functions of the agent collecting the database. As a result, a common scheme
of information system organization with proper information content based on a
common information field has been made.

A common field of facts will be useful only if the problem of ‘understanding’
is solved, i.e. if any document with common data uses data structuring relevant
to the one used by a specific agent (specific information system). Yet this is not
enough. All the objects of different databases denoting equal entities should also
be united under merging databases. We refer the first objective to the ontology
compatibility, and the second one to the problem of identification.

In its ‘rough’ version the common information field constitutes a number of
RDF documents structured according to the unified ontology and identification
is made by basic RDF tools through equal entity identifiers. In its ‘gentle‘ ver-
sion the data from downloaded documents are restructured according to different

Methods and Technologies of Digital Historical Factography 221

ontologies and the problem of identification is solved by a certain algorithm ap-
proach. It is to be noted that if the information is not complete the identification
algorithm may not give any good result in a number of cases. In fact a world-wide
practice of persons’ identification requires a full name of a person, his place and
date of birth, the latter being often omitted in databases. It should be remem-
bered that a name could be spelt in different languages and be changed, etc.

To sum up, a ‘gentle‘ approach providing data compatibility can be more
practical. Our approach aimed at ontology compatibility requires that different
documents of the common information field should use only extended ontologies
called basic ontologies. Quite appropriate would be the ontology on libraries
of reused components for specialized programming complexes. If these libraries
are great in number and not connected to each other their use would be quite
constrained. Yet if the libraries make a hierarchy of a layered extension, the
extensions being independent (orthogonal) can be used by special programming
complexes to fulfill their own objectives.

We solve the problem of identification in the following way. Steps are taken to
do the identification on the earliest stages of a particular data domain develop-
ment, for example, on the stage of primary data input, and a manual data input
in particular. It can be provided by ‘total’ databases of standard entities such
as persons, companies, cities, and etc. Although in real situations when data are
written by independent processes algorithmic solutions and the corresponding
tools are necessary for the systems of editing and manipulation.

The question is whether an entire model (database) should be developed in
each processing server. Is it possible to distribute both data and data processing?
There are likely to be some approaches to this task but in general it is not
covered either mathematically or technically and is not to be discussed in the
present study.

3 Basic Ontology

The key focus of the approach is ontology of non-specific (basic) entities. The
term ‘non-specific’ is used in contrast to ‘specific’ entities. In fact, any infor-
mation system has its own object and specificity. In addition to specific entities
such as account numbers, transactions and account balances it is often necessary
for the ontology to have such classes of entities as persons, companies, locations,
communication addresses, i.e. the entities resulted from the worldwide culture
and modern civilization deprived of a specific character and well understood by
system developers and users.

Unfortunately, such ontology of non-specific entities has not yet been devel-
oped as a universal standard or a recommendation, although it is being traced
in many standards like (DC, FOAF [7], CIMI). According to a number of re-
quirements we have found and developed the basic ontology which is currently
being used in a number of projects.

Basic ontology has been developed [8] within a long-term research work with
real projects. And it should be emphasized that it has not yet been finished.

222 A. Marchuk

Incoming changes always demand that the data accumulated should be regularly
transformed, although the methods of abstract programming based on explicit
data specification allow maintaining most of program codes and interfaces under
such changes.

To develop ontologies, basic ontology in particular, a number of principles
have been defined.

1. Description of real-world facts. When developing a common informa-
tion field it is reasonable to follow a factographic approach to the world model
construction. It means that real entities are to be the object of fixation in a
database and the information of such entities is to be objective and independent
of a particular data domain these facts are used for. For example, if we develop
a historical database, describing a person we are interested in facts like his date
of birth, academic background, place of employment and address. We would not
fix such subjective factors as evaluation of his success, popularity and authority.
These factors may come out in a particular outlook on historical processes fixed
by a particular information system that, as it has been mentioned above, can
make a wide use of facts of the common information field.
2. ER model as the base of ontological construction. The conventional
Entity-Relationship model is natural and effective for this approach. In fact, de-
scribing entities and entity attributes we construct a field of independent infor-
mation units. Describing relations between the entities we construct a coherent
database with one object being able to ‘reach’ another, which corresponds to
the universe arrangement. If the database falls into independent parts it means
that data are incomplete or badly structured.
3. Detailed description balancing, and minimization of national and cultural
differences. It is impossible and unreasonable to describe the world in every de-
tail. Therefore a detailed description should be limited to a certain range. The
same is relevant to a set of entities and relations. Detailed description is also
limited by a capability to equally understand the input data and to distinguish
between different groups of developers and users. For example, in historical ret-
rospective view types of management structures may be quite different from
country to country as well as in one country. Executive positions, territorial ad-
ministrative division, documents, relatives etc., may also have different names
and would not be understood and processed when analyzing data on different
time periods and countries.
4. Special realization of attributed relations. One of the most common
mistakes made by ontology and database scheme developers is that they ignore
possible attributes for a particular relation. In ontologies developed by OWL
tools wrong solutions are made when a direct reference is used as a relation by
defining object attributes. For example, the relation ‘work’ between a person
and a company is often treated as an object attribute. This is wrong. A person
establishes relations with a company at a particular moment of time and can
break them off at a different moment, so that the relation ‘work’ may include
some other attributes such as his position, look Figure 1.

Methods and Technologies of Digital Historical Factography 223

Fig. 1.

5. Direct fixation of context information. People are used to communicating
in a particular context. For example, ‘Putin said. . . ’. It is quite evident that the
statement is attributed to a particular person among tens of thousands of Putins,
to a recent event, and beyond it there is likely to be a particular activity, place
and some other context attributes. In a great number of cases a certain context
is available in formal data specifications making it difficult to group the data
obtained from different implicit contexts. Context information is often used to
group information units, e.g. lists of persons working or living in the same place,
role grouping (teachers-students, doctors-patients, employees grouped according
to staff organization hierarchy of a particular company, etc.).

The analysis shows that grouping and hierarchy relations are not effective for
data structuring and can make data access quite sophisticated. Grouping is a
secondary tool and it should be applied to data features and relations written
in a database.
6. Reducibility of basic ontology to the system of simple relational
tables. According to this principle an ontology is to be constructed in such a
way that data structuring and storage medium should comprise both RDF doc-
uments and simple relational tables and they should be in good agreement with
each other from the realization standpoint. The principle is of great importance
since it makes constructed RDF data compatible with the existing relational
data and allows use of relational database applications as a medium to sup-
port semantic net models. Such compatibility seems to be quite natural: each
class of entities is associated with a table where entity identifier is a primary
key; attributes (DatatypeProperty) change into typed columns and direct refer-
ences (ObjectProperty) become foreign key columns. When constructing a basic

224 A. Marchuk

ontology such compatibility makes a set of solutions substantially limited. First,
to define an entity type multiplicity has to be neglected and ontology requires
compulsory entity typification. Second, DatatypeProperty and ObjectProperty
attributes are not inherited. Third, ontology does not use ‘complex’ RDF con-
structions like blank nodes, containers, lists, reification. Fourth, multiple values
are not to be used in columns of relational tables. One can do so only if he chooses
‘correct’ relations and controls directed arrows in the attributes associated with
different entities.

Four classes of entities have been defined for the basic ontology under view:
persons, organizing systems, documents, and geographic systems. The basic en-
tities are associated with a number of relations schematically shown in Figure 2.

Fig. 2.

Organizing system is viewed as a (temporary) community of people aimed
at achieving particular results. This category includes companies and teams,
associations of people and companies. Geographic systems imply cities, coun-
tries, and other places of activity. Documents involve a wide set of exhaustive
media (books, papers, files, pictures, etc.) representing a fixed information con-
tent. Ontology defines the following relations between the stated entities. People
are described only by family relations, persons and organizing systems may be
related by a ‘participant’. ‘Education’ has also been defined as an important re-
lation. It has become a tradition to show the education background in Curricula
Vitae. Other classes of documents and entities are related by reflection, i.e. such
entity is depicted or mentioned in document content. Besides, if a person is an
author of a document he is related to ‘authorship’. Geographic systems represent
a place for a particular point in a database and they are marked as ‘location’.

Methods and Technologies of Digital Historical Factography 225

Among other classes of entities belonging to basic ontology there are collec-
tions and archives. A variety of unary and binary (complex) relations such as
allied organizations, titles, ranks and rewards, communication addresses etc., are
shown in the Figure 3. As an example we show how to write an e-mail address
for a person.

Fig. 3.

It is quite clear that an e-mail address is attached to a person without limiting
the number of addresses and ‘closing’ an expired address. The latter can easily
be done by adding <to-date>YYYY-MM-DD</to-date> showing a completion
time of ‘e-mail’ relation.

In basic ontology a wide use is made of subclasses to indicate specific cases and
some subclasses are marked as abstract (by tools alternative to OWL formalism).
It should be noted that using mechanisms of classes for a complex relation the
term Thing defined for OWL root class does not seem to correspond to the
term ‘relation’. For example, ‘participant’, ‘location’ and some other relations
are complex and cannot be identified as ‘thing’. In our ontology a root class is
abstract and be identified as ‘entity’. For classes of basic entities corresponding
to the term ‘thing’ we use a sys-obj-system object class. This abstract class is
inherited by persons, organizing systems, etc.

Quite innovative for basic ontology are the terms ‘dating’ and ‘naming’. First,
dating. In root classes time limit is directly defined as a basic attribute of sys-
tem objects and relations through from-date and to-date (DatatypeProperty)
indicating time stamps for start and finish time of entities and relations. In fact,
this appears insufficient. Working with data it is often difficult to indicate exact
values of these attributes. In contrast, expressions like ‘the entity (relation) has
started to a certain date’ or ‘the entity has not (or has already) finished, could
as well be used. An approximate date could sometimes be indicated which is not
the same as indicating an exact date.

Some solutions of the stated problems can be found in unary dating relation.
To indicate the entity a certain date having a qualifier and exact definition is
defined by separate dating. Qualifiers can be marked as before-date, from-date,
in-date, to-date, after-date, i.e. one of five meanings of marking a time axis
containing an interval for a specific case. For example, Figure 4 shows that we
mark a time point ‘2006’, which is accurate within a year, as a finish time of the
entity having da298345 qualifier.

Now we consider ‘naming’. System objects have a standard attribute ‘name’
denoting a name of an object. As in the case described above it is yet insufficient.
As a result, a unary relation ‘naming’ indicating that a synonym can be used

226 A. Marchuk

Fig. 4.

as a name of a system object. Besides, we now have an opportunity to make
multiple indication of an object and naming can be attributed, e.g. it is possible
to show the time limit within a particular name has existed.

4 Data Input and Editing, Information Visualization

The systems based on formal specifications are very effective for advanced data
abstraction. A programmer does not think in terms of persons or cities, but
he does so in terms of mathematical models associated with the real world by
means of ontology that he also considers as a mathematical object. Such level of
abstraction is often difficult to follow but it is possible and necessary for basic
operations: visualization, editing, search, and navigation. The programming tools
obtained are getting universal, and to use them one can easily specify ontology
and some other specifications. The system developed can ‘talk’ to users in terms
of a specified knowledge domain and ‘speak’ any language relevant to users.

Let’s consider RDF as a mathematical object and some of the tasks a user
seeks to solve.

RDF model is an oriented graph whose nodes represent entities (treated as
subjects in standard terminology) and string constants. Arcs represent ‘entity-
entity’ and ‘entity-constant’ relations. When necessary we outline some other
properties of the model – typification, identification, compatibility with formal
specifications (ontology). Let item be a typed entity of the model. If we focus
on a particular item we can see its canonical presentation, Figure 5.

Note that we mainly focus on typed models, i.e. the models with defined entity
classes, properties (DatatypeProperty, ObjectProperty) and their possible use.
We also focus on ontologies with cardinality of output arcs equal to one. The
basic ontology described in the previous section possesses the stated properties.

As it can be seen, focusing on a particular item specifies a subgraph neigh-
boring to this object. It is clear that item attributes together with the item
neighborhood give information essential for its characterization. Let such sub-
graph be an information portrait of an item (entity). For example, under the
basic ontology, if we focus on a particular person we may obtain information on
his age, relatives, academic background, job, address, participation in different
activities, communication addresses, etc. Sometimes it would be useful to ‘look’
at more than one arc in the object neighborhood.

If the model uses metrics, such as weighted total of arcs between graph nodes,
the task of information portrait construction would be just to mark a ball of

Methods and Technologies of Digital Historical Factography 227

Fig. 5.

a particular diameter in a graph with its centre in the item of a target object.
Such geometrical subtask is not the only interesting organization. If we specify
two nodes (items) we can develop a certain neighborhood of points whose total
distance to focuses would not be more than a given value, i.e. we can build
an ellipsoid. The construction is quite effective as it allows formation of the
information portrait of an item with respect to the item like ‘What kind of object
is it and how is it associated to me?’. There are some other ways to specify a
subgraph based not only on metrics and arc weight ratios but matching specified
note weights. It is not difficult to construct a shell for N-specified points and
interpret it as developed subject. Such constructions can be effective both to
extract information contents, to make references (history) and to organize key
and object search.

RDF net structures have some peculiarities. It concerns information visual-
ization, search and editing. And all the three processes can be mixed within the
same operation. Let’s start working with search, formulate a search request of
any form. A search request may provide candidate items corresponding to re-
quest criteria. If a request is too complex and information field is not sufficient
there may be a number of candidates. The next step is to visualize a range of
candidate items in such a way that a user could find the one required. Visu-
alization of item lists is usually based on visualization of a separate item; the
problem is how detailed a portrait could be. After the searched item is specified
a user may be interested in its detailed information portrait. From the peculiar-
ities of RDF modeling it becomes clear that the information portrait consists
of a number of attribute values and neighboring items. A number of attribute
values can be easily realized as sets of pairs like ‘attribute name-attribute value’
and represented in a conventional form as a data table. Sets of associated items
can be visualized by the afore-mentioned tools.

Difficulties may appear during editing when an operator should constantly
solve two tasks both being at least unusual to this operator in the context of
editing. The first task is to search and to identify information units and the
second is to associate one object with another by simple and complex relations.
Why are these procedures so unusual and difficult for the operator? In fact, while
inputting and editing data the most stable and usual constructions for input and
editing are entities for single objects and a table for multiple objects. For a visual

228 A. Marchuk

interface these are either form fields or table rows. Reference editing is usually
not provided. Thus, the problem is how to specify naming of a particular item
with another item of the database. Let’s consider a task for ‘direct’ references;
in a graph model it corresponds to arcs coming from one item to other items.
For example, (ObjectProperty) location is to be associated with a particular
reference by means of visual interface. What should the input reference interface
look like? And the interface is likely to be ‘inside’ the location not to contaminate
the portrait of the edited item. There are a few solutions applied in different
systems.

The easiest way is to change a set of candidate items into a visual interface
element like ListBox or ComboBox. Despite the fact that this method appears
to be most familiar to a user, there are a few drawbacks limiting its application.
First, if a user does not input additional information, a list of candidates to be
associated could be too large, which makes this method unpractical. In this case
ComboBox is more preferable as it allows input of search information. Second,
the item to be associated may not be found in a database. In this case a referenced
item requires a special initiation form. Third, to define what item of the list is
searched for one should study candidate details, which is also unusual for editing.

Another method is to apply a search interface to a particular edited location,
and directly to the edited box. In this case, first comes a form to formulate
a search request and then the already mentioned list of items to choose from;
there is also a ‘button’ to build a new item, if the search fails. A new item is
built according to the existing context and the information in search request.
Such universal solution may be quite sophisticated, if a type of the attached
item is different. In this case the type is specified by a user, a search request
form is generated and only then we can obtain a list of candidates. One of the
advantages of this method is its universality and relative compatibility with
standard realization schemes of Web interfaces and window applications.

The third method implies using drag and drop technologies to build direct
references between items. Using this method we can find and generate any asso-
ciated item by an independent interface, then ‘drag’ and ‘drop’ it to any box or
directly to the current item. The advantage of this method is use of basic con-
cepts of structuring models: there are entities (items) and relations, and editing
implies search and input of items, editing their attributes and associations. Al-
though, a user may not sometimes be familiar with a model of data editing and
should have a special knowledge of the ontology used.

The text box model could be more natural to a user. For example, the field
‘address’ would allow some text with minimal elements of formal syntax, say,
Novosibirsk City. The system could understand this phrase with dictionaries
of terms and abbreviations and find a proper item in a database to be used
as a reference, and if it failed it could enter a new element to be referenced.
It is evident that identification may be alternative, but a user may always be
warned and given an option to choose. This scheme requires a highly developed
database with basic categories of entities, indication of a currently edited context
and convention systems regulating use of function words and abbreviations, or a

Methods and Technologies of Digital Historical Factography 229

highly developed analysis system for natural language texts based on algorithms
of artificial intelligence. Besides, the scheme is not universal. For example, if
searching involves documents (pictures, etc), it would hardly be based on a
document name. Verbal identification of some activities and organizations may
sometimes be difficult.

The above-mentioned peculiarities of editing as applied to semantic nets allow
to conclude that there are no suitable models for a user to do search and editing.
To obtain the same result alternative methods may be taken account of.

Figure 6 screenshot shows an editor, designed for work with RDF models.

Fig. 6.

Quite often the problem is not the absence of information, but its excess.
For example, in a database a certain person may have thousands of pictures
and other documents he is referred to, hundreds of documents written by him,
tens of conferences he attended, etc. Such integrated information portrait makes
it difficult for a user to find the required information and relations between
information units. Thus, if a user wants to find a telephone number of a person, he
might find it quite difficult, when a previously mentioned list of items referenced
to his request is badly organized.

In fact, consideration is taken of visibility restriction which is specified stat-
ically in a particular interface setup, and dynamically for the work with a par-
ticular object. We have tried two approaches to solve this problem. The first
approach is to define sets of classes and features which are currently not being
considered. These sets are specified by groups called subjects. For example, the
subject ‘documents’ includes several classes of documents and a number of rela-
tions and features associated with these documents. These include authorship,
reflection, and publication. Data interface includes setup lists of subjects, and
the subjects to be browsed and edited as well as those, which are not used, can
be marked.

230 A. Marchuk

Another method deals with information value of items. This factor is quite
subjective and makes it possible to sort item lists according to a certain value,
to keep the most valuable information in the information portrait.

5 Conclusion

An approach to build electronic archives has been formulated. The aim of this
approach is to generate electronic images of archiving units, to build and to
use databases of conventional entities (persons, companies, geographical points,
events), to ‘bind’ archiving units to database elements, to build the information
system allowing navigation and search in a database.

Historical information systems have been studied and developed by the In-
stitute of Informatics Systems of the Siberian Branch of the Russian Academy
of Sciences for 10 years. In particular, the electronic archives of A.P.Ershov’s
documents have been developed and used for several years. As a result of re-
search, the basic principles of building historical factographic systems have been
formulated: the system should reflect facts of the real world; in this respect
formal systems defining the nomenclature of reflection objects and basic data
features through specifications have been employed; distributed information sys-
tems should be developed; databases should be context-independent; a wide use
should be made of international standards; Web-clients (browsers) are to be sys-
tem interfaces for people, and Web-services should make system interfaces for
program agents.

Fig. 7.

Methods and Technologies of Digital Historical Factography 231

The most significant recent project was the Photographic Database of the
Siberian Branch http://soran1957.ru first launched by the 50th anniversary
of the Siberian Branch of the Russian Academy of Sciences. The database now
contains about 13.000 photographic documents, comprises the period since 1957,
and includes information on 4.000 persons, 2.000 organizations and events, and
all the members of the Russian Academy of Sciences since its foundation.

At Figure 7 a screenshot of the public interface of Photographic Database is
shown. The database is a software-hardware complex that comprises scanning
and other types of processing photographic documents, guarantees information
security in case of an unauthorized access, represents effective tools for edit-
ing, operational and public interfaces. Public interface of the database was first
launched in 2007 and within the first three months it had about 20.000 web
visitors who browsed over 600.000 pages.

The Institute of Informatics Systems, SB RAS will keep on working at the
Photographic Database improving the technology, supplying it with new data
and detailed description of documents, and making it more accurate. On its plat-
form a number of new corporate and private databases comprising fact bases,
documents, photos, video and audio documents, descriptions of people, organi-
zations, events, and projects, will be developed.

References

1. Online community for the Universal Description, Discovery, and Integration OASIS
Standard, http://uddi.xml.org

2. The Dublin Core Metadata Initiative, http://dublincore.org/
3. The CIMI Profile. Release 1.0H. A Z39.50 Profile for Cultural Heritage Information,

http://www.cimi.org/public_docs/HarmonizedProfile/HarmonProfile1.htm

4. Tim, B.-L., James, H., Ora, L.: The Semantic Web. Scientific American 284(5),
34–43 (2001)

5. Web Ontology Language (OWL), http://www.w3.org/2004/OWL
6. Resource Description Framework (RDF), http://www.w3.org/RDF
7. FOAF, http://www.foaf-project.org/
8. Marchuk, A.G.: Distributed digital archives, libraries and databases. Preprint 122,

A.P. Ershov Institute of Informatics Systems, pages 25. SB RAS, Novosibirsk (2004)
(in Russian)

K.E. Wolff et al. (Eds.): KONT/KPP 2007, LNAI 6581, pp. 232–242, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Establishment of Taxonomic Relationships in
Linguistic Ontologies

Natalia Loukachevitch

Research Computing Center of Moscow State University
Leninskie Gory 1/4,

119899, Moscow, Russia
louk@mail.cir.ru

Abstract. The paper describes typical problems arising in the course of
establishment of taxonomic relationships in ontological resources. The situations
in that the taxonomic relationships get mixed with relationships of other types
are very diversified. In the paper we will discuss the ways for revealing the
mistaken taxonomic relationships. Our consideration is based on the experience
of development of large linguistic ontologies such as the RuThes Thesaurus and
the Ontology on natural sciences and technologies.

Keywords: Taxonomic relations, ontology, linguistic ontology.

1 Introduction

In various computer resources and applications, such as ontologies, artificial
intelligence systems, object-oriented programming, information retrieval thesauri and
many others, the relationships between the classes and subclasses of concepts are the
key ones. Such relationships are usually considered to be hierarchical (partial order
relations), transitive and having inheritance: attributes and relations of a higher-level
concept are inherited to a lower-level concept.

The relationships between classes and subclasses of concepts may be called
differently depending on an application domain: taxonomic relationship, broader term
or narrower term relationship (in information-retrieval thesauri), isa relation (in
artificial intelligence), hyponymy and hyperonymy (in lexical resources). Further in
this paper we will refer to this relationship as the “taxonomic relationship”.

Defining the taxonomic relationships developers of resources can use, explicitly or
non-explicitly, the classical diagnostic language expressions. For example, if concept
X is a specialization of concept Y, then it may be said that “X is a Y”, “X and other
Y”, “X is a kind of Y” [1]. Word or term definitions in dictionaries also look like
similar diagnostic expressions: “X is a Y that…”.

However, in ontological terms the same expressions of a natural language may
correspond to significantly different relationships between the entities of the
external world, including those possessing quite other properties [2]. Therefore
methodological guidelines on development of conceptual resources recommend
additional checks before establishment of taxonomic relationships.

 Establishment of Taxonomic Relationships in Linguistic Ontologies 233

The most known recommendation concerning establishment of the taxonomic
relationships between classes (concepts) A and B is to check the following condition:

If class A is a subclass of class B, then each instance of class A is also an
instance of B [3, 4].

However, the situations in that the taxonomic relationships get mixed with
relationships of other types are much more diversified and in development of
ontologies and other conceptual resources such problems should be taken into account.

These problems are most essential for the developers of conceptual resources for
natural language processing and information retrieval applications. In such
applications the resources should, on the one hand, take into account the existing
conceptual system of a language (group of languages) – this is reflected in special
term “linguistic ontologies” [5]. On the other hand, conceptual relationships should be
established on the basis of the conceptual, ontological analysis and not only utilizing
the language diagnostic expressions.

At the same time it should be stressed that it is rather difficult to separate
completely the ontologies created for other computer applications from the natural
language. The ontological units often have language or mnemonic names, thus,
additionally “provoking” the application of ambiguous language tests. Thus, Y. Wilks
[6] asserts that the symbols in representation languages are fundamentally based on
the natural language, that a representation language is a means of human
communication with the inherent dynamics, polysemy and possibility of extended
interpretation.

In any case developers of conceptual resources in various fields and for various
computer applications may get into such a “trap” of language expressions. That is
why it is important to describe the problematic cases of defining the taxonomic
relationships and likely ways to reveal such deficiencies at the time of establishment.
In addition, relying upon transitivity of the taxonomic relationships such local
deficiency may turn into a serious distortion in the course of multi-step logical
inferences.

The paper describes the types of problematic cases of the taxonomic relationships
using as examples descriptions from the linguistic ontologies Thesaurus of Russian
Language RuThes [7] and Ontology in Natural Sciences and Technologies ONST [8].

2 Criteria for Verification of Taxonomic Relationships

The criteria for verification of correct description of taxonomic relationships are
connected with verification of the transitivity and inheritance properties.

The following rule is based on verification of transitivity of the taxonomic
relationship: both the higher-level concept and lower level concept should relate to
the same top-level concept such as action, property, object, etc.

So the standards and methodological guidelines on development of the information
retrieval thesauri recommend application of this principle for description of the
hierarchical relationships in thesauri [4, 9].

234 N. Loukachevitch

For example, in our practical work we faced such a situation: at defining of the
taxonomic relationships in thesaurus RuThes the following chain of relationships was
established:

RIVER – isa – WATER BODY – isa – WATER OBJECT – isa –
 – WATER – isa – SUBSTANCE,

as a result of which it was found that all particular rivers belong to the top-level
concept SUBSTANCE, which is not correct.

In this chain the most problematic is the relationship WATER OBJECT – isa –
WATER, the substitution of which for some other type of relationship will resolve the
problem (see section 5).

The second type of criteria for verification of the taxonomic relationships is
connected with verification of the inheritance property.

This verification may be conducted relative to a particular pair of concepts.
For example, in dictionaries the raisin is defined as dried grape [10]. Does it

follows from this definition that the taxonomic relationship between the concepts
RAISIN and GRAPE could be established? In terms of properties inheritance the
answer should be “No”, because raisin does not possess many properties of grapes as
fruits of some plant: it does not grow, ripe, it is not gathered. But, for example, in
linguistic ontology WordNet 2.1 [11] fruit is described as a hypernym for dried fruit.

The inheritance property may be verified also on the basis of formal properties of
concepts.

Thus, for analysis of correctness of the taxonomic relationships N. Guarino and C.
Welty [12] suggest verification of the inheritance property to subconcepts based on
such a formal property as “criteria of identity”.

The idea of the criteria of identity of some concept is to define what does it mean
when two entities representing the examples of one and the same concept are the
same; how can the entity change maintaining herewith its identity; what properties are
essential for maintaining its identity, etc. One can speak about sufficient conditions of
identity, i.e. what conditions are used to determine the identity, and about the
necessary conditions of identity, i.e. what does it mean when two entities are
identical.

For example, two human persons should be identified as one and the same person
if they were in one and the same place at one and the same time. Therefore, the
condition of identity of human persons is the physical coincidence of their location by
place and time.

If the assumed generic and specific concepts have different conditions of identity,
it means that no taxonomic relationship may be established between them [12].

Further on we will discuss the particular types of incorrect description of the
taxonomic relationships and show which criteria may be helpful to avoid such
mistakes.

3 Confusion of Types and Roles

One of the most common problems in the description of the taxonomic relationships
is confusion of types and roles within one hierarchy.

 Establishment of Taxonomic Relationships in Linguistic Ontologies 235

For example, the “type-type” relationships (birch is a tree) and the “type-role”
relationships (apple is food) may be equally expressed by all diagnostic tests applied
for defining the taxonomic relationships. The difference is that a birch remains a tree
at any moment of its existence, while an apple may be used as food, may be used for
other purposes, may be not used at all.

The most common mistake in the description of the subject field is location of role
concepts as higher-level concepts over the type concepts. For example, as an
employer may be a person or an organization, one can decide that concept
EMPLOYER may be represented as a higher-level concept, while concepts PERSON
and ORGANIZATION are represented as lower-level concepts [15] (fig. 1). However
such representation describes the properties of entities not accurately, because not
every person is an employer.

In many cases the analysis of role-type relationships may reveal violation of the
basic principle of the taxonomic relationships on belonging of all examples of a lower
level concept to a class of the higher level concepts (see Introduction) as it happens at
incorrect defining of the relationship PERSON – isa – EMPLOYER . For the
functioning of a logic inference mechanism such inaccuracy leads to the situation
when for each instance of a concept PERSON a system will make a conclusion that
this is an instance of the concept EMPLOYER, which is not correct in general.

Fig. 1. Confusion of type and role concepts in the same hierarchy

In other cases the problem is not so obvious. For example, at defining of the
relationship APPLE – FOOD the developer of an ontology may take into account the
specific features of the modeled subject field in which all or the greater part of apples
may be considered as food.

In subsequent sections we will consider how role concepts are defined, how to
describe knowledge about main roles of a concept remaining within the framework of
simple knowledge representation models and do not violate the principles of
establishing the taxonomic relationships.

3.1 Defining Roles

Sowa [14] defines the role as follows: “Subtypes of the entity are of two kinds:
natural types and role types, which are subtypes of natural types in some particular
pattern of relationships. PERSON, for example, is a natural type, while TEACHER is

EMPLOYER

PERSON ORGANIZATION

236 N. Loukachevitch

a subtype of PERSON in the role of teaching”. Sowa proposes a simple test to decide
whether a concept is a role: r is a role type if something can only be identified as type
r only considering some other entity, action or state.

N. Guarino and C. Welty replace the condition formulated by Sowa for the
condition of the so-called external ontological dependence:

Concept C1 is called externally dependent of concept C2 if for all examples of
C1 there should be example C2 that is not a part or material of example C1
[10].

For example, son is externally dependent of parents because sons exist only within a
family in relation to their parents. On the other hand, car is not externally dependent
of an engine because it requires the existence of an engine that is a part of a car.
Therefore, this condition specifies the definition of roles given by Sowa.

In addition, one more condition is introduced that, together with the condition of
external dependence, provides better definition of the “role” concept.

Concept C is semantically rigid if any example of concept C
remains example of C during the whole time of its existence.

For example, an animal can cease to be a pup, but it is still a dog that is why dog and
animal are semantically rigid, while a pup is not a rigid entity.

A concept is called a role if it is externally dependent
 and is not semantically rigid [10].

3.2 Causes of Type-Role Confusion

Thus placement of roles as higher-level concepts for types is not subject to the most
known principle of describing the taxonomic relationships and can arouse serious
distortion in logical inferences. However this problem remains serious because it is
“provoked” by many text sources.

For instance, the following fragment (http://www.giord.ru/0705211117391.php -
translation from Russian):

the most widely used preservation substances are as follows: table salt, ethyl
alcohol, acetic, sulfurous, sorbic and benzole acids and some their salts.

may seem a good source of information for the description of kinds of preservation
substances: table salt, ethyl alcohol, etc.

A definition of an electrolyte:

Electrolyte is the second-order conductor: the substance possessing ion
conductivity. The electrolytes include:
- melts of salts, oxides or hydroxides;
- solutions of salts, acids or bases in polar solvents;
and also solid electrolytes.

may seem a sufficient ground, for instance, for defining the relationship that chemical
salt is a kind of an electrolyte.

 Establishment of Taxonomic Relationships in Linguistic Ontologies 237

However, in such cases it should be remembered that preservation substance and
electrolyte are roles of substances – an amount of substance becomes a preservation
agent or electrolyte only in certain conditions. But a table salt and salt as a chemical
compound are types of substances.

Defining the taxonomic relationship from a type to a role we communicate to a
system the incorrect knowledge that any substance referred to the class of salts at any
moment of its existence in any situation is an electrolyte, which is not so.

3.3 Description of Roles in Thesaurus RuThes and Ontology ONST

So, the question arises whether it is possible to describe the information received from
the above fragments without too much complicating the model of knowledge
representation? In Thesaurus RuThes and Ontology ONST we usually try to apply
several methods.

First, if we assume that in our subject field most examples of a concept usually
play a certain role, then we establish the taxonomic relationship but provide it with
mark V, which means “possible by default”.

Thus, for instance, we can establish such relationship between the concepts
SORBIC ACID and PRESERVATION SUBSTANCE, if we assume that this is the main
application of sorbic acid in our subject field (for example, food processing industry)
and a probability to meet in the texts the sorbic acid in other applications, say, in
organic synthesis, in our field is low:

SORBIC ACID
isa V PRESERVATION SUBSTANCE

However, it is not recommended to establish such a relationship between the concepts
TABLE SALT and PRESERVATION SUBSTANCE because the main application of
table salt is quite different. Even if we would establish such a relationship (for
example, we could introduce one more mark for non-basic roles), then it should be
taken into consideration that an automatic system can not determine from the context
if it is possible to use this relationship or not.

Thus, in some cases we place the role concepts as higher-level concepts for type
concepts, giving, however, such relationship a special mark. For each type one such
relationship at maximum can be described indicating a default role for the type.

Using the description of the concept ELECTROLYTE we can demonstrate one
more possibility for describing the relationships between the roles and types in the
Thesaurus RuThes and Ontology ONST.

We try to introduce an additional concept for the situation when salt is in the role
of electrolyte. If this situation is essential for the given domain, then our attempt is
usually supported by the language of a subject field – for such a concept there is
always one or more commonly used language expressions. And in our case such
expression as electrolyte salt exists and is actively used.

Therefore, we can introduce concept ELECTROLYTE SALT and establish the
following relationships:

ELECTROLYTE SALT
isa CHEMICAL SALT
isa ELECTROLYTE

238 N. Loukachevitch

In this way we correctly reflect the knowledge we received from the read definition.
If we apply such an approach to relationships between the concepts EMPLOYER,

PERSON and ORGANIZATION, we will have to introduce two additional concepts,
such as for employer as a natural person PERSONAL EMPLOYER and for an
employer as a legal entity – CORPORATE EMPLOYER (fig.2).

EMPLOYERPERSON ORGANIZATION

PERSONAL EMPLOYER CORPORATE EMPLOYER

Fig. 2. Description of relationships between concepts EMPLOYER, PERSON, ORGANIZATION

PERSONAL EMPLOYER
isa EMPLOYER
isa PERSON

CORPORATE EMPLOYER
isa EMPLOYER
isa ORGANIZATION

As introduction of additional concepts may complicate significantly the description of
concepts in a resource, such a method is applied only if such additional concepts are
really found in the subject field as is in the case with the concept ELECTROLYTE
SALT. It’s worth mentioning that the introduced additional concepts PERSONAL
EMPLOYER and CORPORATE EMPLOYER also have real usage in the law domain
because the law regulates differently the relationships of different types of employers
with employees.

4 Confusion of Taxonomic and Instance-Class Relationships

The contemporary ontological modeling [3, 12, 15] distinguishes quite clearly the
relationships of instantiation (instance-class relations) from the taxonomic
relationships. Instantiation relationships link individual entities, for instance, such as a
particular city – Moscow and classes of entities, such as CITY. Unlike the taxonomic
relationships the relationship instance-class is not a transitive relationship.

Many guidebooks state that instances are the most concrete conceptual units
represented in a database. Thus, the work [5] provides such an example: if we have to
describe only the selected combinations of wine and food, then we will be interested
only in concrete material bottles of wine, thus, such terms as Sterling Vineyards

 Establishment of Taxonomic Relationships in Linguistic Ontologies 239

Merlot will be the most concrete applicable conceptual units. Consequently, Sterling
Vineyards Merlot will be an instance in a knowledge base and the instantiation
relationship should be established between this wine and a class of wines.

The complexity that leads to confusion of these two kinds of relationships consists
in the fact that the instantiation relationship may be met at any hierarchical level of a
conceptual system and not only at the lowest levels.

Thus, the concept SPANIEL is linked by the taxonomic relationship with the
concept DOG and by the instantiation relationship with the concept DOG BREED; the
concept SCHOOL TEACHER is linked by the taxonomic relationship with the concept
EDUCATIONAL WORKER and by the instantiation relationship with the concept
PROFESSION. In such cases it is not always easy to distinguish such relationships.

For distinguishing between the taxonomic and the instantiation relationships we
may use the principle of identity (see section 2) asserting that a generic concept and a
specific concept should have the same identity criteria.

If we analyze the identity criterion, for instance, for the concepts SPANIEL and
DOG BREED, we will see that the identity criteria for spaniels and animal breeds are
different. The dog breeds are identified with their position in a certain dog
classification. On the other hand, the instances of spaniels may, in the simplest cases,
be identified via location of their bodies in space/time – two spaniels are different if
they locate in one and the same time in different places. Therefore the concept DOG
BREED cannot be a generic concept for the concept SPANIEL. A spaniel is not a
subclass of dog breeds, but an instance.

Likewise a particular teacher is identified by its physical location, while
professions – by some set of characteristics: an educational level, work experience,
necessary skills. Hence, the concept SCHOOL TEACHER is an instance of the
concept PROFESSION, but not a subclass.

5 Confusion of Taxonomic Relationships and Part-Whole
Relationships

The example of an erroneous chain of relationships given in section 2:

RIVER – isa – WATER BODY – isa – WATER OBJECT – isa –
WATER – isa – SUBSTANCE,

also corresponds to one of the most widespread types of problems arising at the
description of the taxonomic relationships.

The essence of the problem consists in the fact that some entity has an essential
part that takes a great share of the volume in this entity and then it seems that it is
possible to transfer the taxonomic relationships of this part to the whole entity.

This mistake is not revealed by diagnostic language tests. Thus, expressions “river
is water”, “river and other water” sound quite good.

In addition, a mistake may be “provoked” by definitions in dictionaries: “River is a
large area of water that flows towards the sea” [10]. So, from such a definition we can
make a conclusion that a river is water.

240 N. Loukachevitch

The Water Code of the Russian Federation (RF Federal Law No. 167-FZ of
16.11.1995) provides the following definition of the concept WATER OBJECT:

Water object is concentration of water on the land surface repeating its relief or
inside the earth that is characterized by borders, volume and features of a water
regime (Article 1).

From such a definition it can be concluded that a water object is water.
In such cases the comparison of the top-level concepts corresponding to supposed

specific and generic concepts may be helpful – in case of an erroneous relation such
top-level concepts may be different and this fact contradicts to properties of
taxonomic relationships.

In addition, an incorrect relationship is revealed by the identity analysis of the
specific and generic concept: destruction of a river does not result in destruction of
water – water simply runs to some other place.

Therefore, the more accurate description of relationships between concepts RIVER
and WATER may be as follows:

RIVER
part RIVER WATER

RIVER WATER
isa WATER
whole RIVER

One more example of the same problem is the relationship between the concepts
COMPANY and a GROUP OF PEOPLE [12].

6 Confusion of Taxonomic and Origin Relationships

One more kind of confusion of relationships that was already mentioned in section 2
concerns the incorrect description of the origin relationship as the taxonomic
relationship as for concepts RAISIN and GRAPE. Similar to the previous cases such a
mistake is often based on dictionary definitions. Thus, in WordNet2.1 amber is
defined as “a hard yellowish to brownish translucent fossil resin; used for jewelry”.
But it is not correct to describe that concept AMBER is a specific kind of the concept
RESIN, amber originates from resin.

Such a mistake may be identified by the analysis of properties and relationships of
the specific and generic concepts. A specific concept obtained as a result of confusion
with the origin relationship does not inherit many properties and relationships of the
generic concept and does not inherit likewise relations to top-level concepts (see
Section 2).

7 Taxonomic Relationships and Clustering of Word Senses

Many developers of ontological resources for natural language processing as well as
developers of ontologies for other applications face the problem of polysemy of
words (lexical polysemy).

 Establishment of Taxonomic Relationships in Linguistic Ontologies 241

In the first case the developers understand that introduction of additional senses in
a computational vocabulary will create an additional burden for the processing system
to choose among different senses [16].

Developers of conceptual resources for non-linguistic applications face the
polysemy problem in the course of domain analysis when it is necessary to reveal the
required conceptual system of the domain. And this procedure may become very
difficult due to lexical polysemy, for example, in such cases when the senses of a term
are related closely to each other.

For instance, in Russian in trading domain there are two senses of the word
“prodavec”:

 1. somebody who is employed to assist and sell goods to customers in a retail
store (corresponds to English salesclerk)
 2. somebody who is selling: a person, store, or company that offers something
for sale.(corresponds to English seller.1)

Such senses (both ones sell something) seem so close that there is a desire to cluster
these two senses to one conceptual unit.

So, the too detailed set of senses of words is often mentioned as one of the serious
causes complicating utilization of WordNet [11]. Many authors studied different
automatic methods to cluster the most related senses of WordNet [17].

At the same time it should be noted that the combination of even close related
senses leads to a situation when a respective conceptual unit will have two and more
generic concepts. And such taxonomic relationships may be relevant to one textual
context and non-relevant to some other, e.g. prodavec in the first sense may have such
higher-level concept as TRADE WORKER, which will be incorrectly to apply to the
usage of prodavec as selling company.

Therefore, if the described relationships are to be used for logical inference, it will
be necessary to define, first of all, whether this relationship is applicable to a given
context. This means that the problem of selection of a sense of an ambiguous word
will be simply moved to other stages of text processing. Besides the main principle of
the taxonomic relationships description is violated.

For close-related senses distinguished by the taxonomic relationships it will be
more appropriate to introduce two separate conceptual units and to establish
relationships between them [18].

8 Conclusion

We described the typical problems faced in the course of establishing the taxonomic
relationships in ontological resources. We have demonstrated that the linguistic tests
and definitions from dictionaries and encyclopedia should be applied with great
caution.

Establishing the taxonomic relationships developers should use a set of formal
criteria.

Implementation of a real applied task may urge to violate the described formal
criteria. But it is important that such violation of criteria was a conscious choice and
developers of resources have to know about consequences of their decisions.

242 N. Loukachevitch

References

1. Cruse, D.: Lexical Semantics. University Press, Cambridge (1986)
2. Guarino, N.: Some Ontological Principles for Designing Upper Level Lexical Resources.

In: Proceedings of First International Conference on Language Resources and Evaluation,
Granada, Spain (1998)

3. Noy, N.F., McGuinness, D.: Ontology Development 101: A Guide to Creating Your First
Ontology. Technical Report KSL-01-05, Stanford Knowledge Systems Laboratory (2001)

4. Z39.19 – Guidelines for the Construction, Format and Management of Monolingual
Thesauri. NISO (1993)

5. Gomez-Perez, A., Fernandez-Lopez, M., Corcho, O.: OntoWeb. Technical Roadmap.
D.1.1.2. IST project IST-2000-29243 (2001), http://www.aifb.uni-karlsruhe.
de/WBS/ysu/publications/OntoWeb_Del_1-1-2.pdf

6. Nirenburg, S., Wilks, Y.: What’s in a symbol: Ontology, representation, and language. J.
of Experimental and Theoretical Artificial Intelligence 13(1), 9–23 (2001)

7. Loukachevitch, N., Dobrov, B.V.: Development and Use of Thesaurus of Russian Language
RuThes. In: Proceedings of Workshop on WordNet Structures and Standardisation, and
How These Affect WordNet Applications and Evaluation, Gran Canaria, Spain, pp. 65–70
(2002)

8. Dobrov, B., Loukachevitch, N.: Development of Linguistic Ontology on Natural Sciences
and Technology. In: Proceedings of Linguistic Resources and Evaluation Conference
(2006)

9. Will, L.: Thesaurus consultancy. In: Roe, S.K., Thomas, A.R. (eds.) The Thesaurus:
Review, Renaissance and Revision. Haworth, New York (2004)

10. Macmillan English Dictionary for Advanced Learners. Publishing Plc, Blumsbury (2002)
11. Miller, G.: Nouns in WordNet. In: Fellbaum, C. (ed.) WordNet – An Electronic Lexical

Database, pp. 23–47. The MIT Press, Cambridge (1998)
12. Guarino, N., Welty, C.: Evaluating ontological decisions with ONTOCLEAN.

Communications of the ACM 45(2), 61–65 (2002)
13. Steinmann, F.: The representation of roles in object-oriented and conceptual modeling.

Data and Knowledge engineering 35(1), 83–106 (2000)
14. Sowa, J.: Using a Lexicon of Canonical Graphs in a semantic interpreter. In: Evens, M.

(ed.) Relational Models of Lexicon, pp. 113–137. University press, Cambridge (1988)
15. Cyc Ontology Guide: Introduction,

http://www.cyc.com/cyc-2-1/intro-public.html
16. Nirenburg, S., Raskin, V.: Ontological Semantics. MIT Press, Cambridge (2004)
17. Gonzalo, J., Chugur, I., Verdejo, F.: Sense clustering for information retrieval: evidence

from Semcor and the EWN Interlingual Index. In: Proceedings of the ACL Workshop on
Word Senses and Multilinguality (2000)

18. Gonzalo, J.: Sense Proximity versus Sense Relations. In: Proceedings of International
Wordnet Conference, pp. 5–6 (2004)

Problems in Constructing an Empirical Theory

of Data Mining

Nikolay G. Zagoruiko

Sobolev Institute of Mathematics of the Siberian Branch
of the Russian Academy of Sciences,

pr. Koptyug 4, Novosibirsk, 630090, Russia
zag@math.nsc.ru

Abstract. The paper describes the structure of empirical theories and
analyzes the nature of problems inherent in data mining. A formal de-
scription an empirical theory of data mining is given. A general approach
to the construction of data mining methods based on the function of
rival similarity (FRiS-function) is presented. Application of this func-
tion allows the construction of a new class of data mining methods and
strengthens empirical theory.

Keywords: Empirical theories, data mining, discovery of regularities,
function of rival similarity, potential refutability.

1 Introduction

The main distinctive property of systems which possess intelligence is their skill
of correct prediction. Such prediction becomes possible only if, in a stream of
events, it is possible to find natural connections between observable situations.
Consequently we have a system of approximately true knowledge of the world
around, surrounding by which are certain empirical hypotheses or theories [1–3].
The word “empirical” means that such theories and hypotheses can be proved to
be true or not only by results of supervision over events in the real world. The-
ories should be constructed concerning Dimitri Mendeleyev’s criterion that the
purpose of science is truth and benefit. The truth of the empirical theory consists
to a large extent of confirmation of laws resulting from abundant supervision.
The benefit of the theory consists of available proved recommendations.

2 What Is an Empirical Theory?

In formal representation the empirical theory or the empirical hypothesis, h, can
be represented as: h =< W, O, V, T >. Here the symbol W is a set of objects or
the phenomena relevant for the theory h. For example, “all material bodies” or
“all methods of pattern recognition”.

The symbol O is the instruction denotes the set of instructions describing
the intended supervisions concerned with the considered theory, and V denotes

K.E. Wolff et al. (Eds.): KONT/KPP 2007, LNAI 6581, pp. 243–255, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

244 N.G. Zagoruiko

the language in which the results of the supervisions should be formulated. The
instruction should answer the question: is the given supervision performed ac-
cording to this instruction or not? Any such supervision should suppose the
description of results in the form of the protocol prv in the dictionary of lan-
guage V .

Symbol T designates a “test” algorithm which works with any protocol in
language V and has one of two values: T (prv) = 1 if the protocol is to be coor-
dinated with a hypothesis h, or T (prv) = 0, otherwise. For isomorphic protocols
(the protocols with identical empirical contents), algorithm T yields identical
values.

The empirical sense of the theory h is defined by the following agreement:
world W is that for which, if we observe accordance with O, we shall never
receive a protocol prv on which the test algorithm will assign value T (prv) = 0.

Empirical theories describe potentially refutable hypotheses about the device
of the studied world. If h is not denied by the protocol prv it is accepted that
the theory h will agree with the given supervision, and the protocol prv confirms
the theory. The theory h can never be proved once and for all, but it can be
denied by just one experiment.

The empirical theories concerning objects and the phenomena of some applied
areas, can describe natural connections between different subsets of their char-
acteristics. So, developed theory H of a complex empirical system can include in
the structure some empirical theories of type h. For example, in the field of data
mining (DM) it is possible to formulate the theory h for methods of decision a
tasks of each type of: the theory hs for methods of automatic classification, the
theory hx for methods of a feature selection, etc. Alongside these, it is possible
to construct theory H for describing some general properties of DM methods
for tasks of a any type. The term “an empirical hypothesis” we shall to use for
theories of a solving tasks of one type, and the term “the empirical theory” - for
theory describing the general properties of methods a solving any DM tasks.

Apart from the empirical contents of theories and hypotheses it is possible to
note other properties, such as potential refutability Q, degree of confirmation P ,
depth of explanation E, simplicity S and beauty B of the formulation [1]. The
regularities is a empirical hypothesis h, accompanied by its characteristics:

R =< h, Q, P, E, S, B > .

Development of the theory is connected with strengthening hypotheses, with
improvement of these characteristics. The most important is the potential
refutability Q. Improvement Q is connected with transition, for example, from
incontestable and empty statements of the type “In this world all is possible”
to the very risky, but not denied yet , statement “Force is equal to the weight
increased by acceleration”. The more imagined protocols can deny a hypothesis,
the greater the value of Q and the more for practice it is useful . Our trust
to a hypothesis also grows with increase in quantity P of the confirming ex-
periments. Answers to questions of how and why give a deeper explanation of

Problems in Constructing an Empirical Theory of Data Mining 245

E hypotheses. In the history a science there are many examples showing utility
simple (S) and beautiful (B) of formulations of hypotheses.

From the above it is clear that for construction of the empirical theory of
some applied areas it is necessary to define the objects W of this area, what
their properties O means and to write it in language V . It is also necessary
to describe algorithm T by means of which we shall define what is possible
or impossible in this area. We shall try to apply this approach to a domain
which is connected with data mining, i.e. with methods of automatic discovery
of empirical regularities and their use for predictions.

3 State-of-the-Art DM Problem

The problem of discovering empirical regularities is central to Artificial Intel-
ligence. The mathematical methods used for discovering empirical regularities
(knowledge) is named as Intellectual Data Analysis or Data Mining. These meth-
ods are included as objects W in our study also. Among DM tasks, which are
included in the classification [1], the following are the most popular:

1. A task of type S: creation of classification structure of the set of M objects.
Using algorithms of classification the set of M is divided on k classes (clusters) by
similarity of characteristics of objects. . Received classifications can have single-
level or multilevel hierarchical structure. Borders between classes can have a
simple linearly form or figures of any complexity.

The empirical hypothesis, which connect with methods of automatic classifi-
cation hs can be so: hs =< W, O, V, T >, where

W – all possible methods w1, w2, . . . , wj , . . . , wJ of partition of M on k
clusters S1, S2, . . . , Sk. Parametr k can be in the limits from kmin up to kmax;

O – ways of estimating and recording in language V characteristics of received
variants of splitting. Among characteristics of clustering are such “geometrical”
characteristics as a measure of similarity of objects in one cluster, remote clusters
from each other, etc. It is also necessary to pay attention to “inductive” prop-
erties of received classification: if one knows some properties of cluster objects
then it is possible to define other properties of these objects. This requirement
is usual for algorithms of so-called “natural” classification [4, 5];

T – the test algorithm which receives the protocol prv estimates the quality
F described in the protocol of classification and returns the decision 1 if quality
exceeds set threshold F ∗, and 0 in other cases.

Such a hypothesis allows us to divide all possible methods of clustering on
admissible (W+) and inadmissible (W−). It is possible to arrange algorithm T
so that it compared protocols prv and gave out 1 to only one of them, the best
algorithm of classification. Potential refutability Q such a hypothesis hg, that
a certain algorithm wj is better than others, is proportional to the quantity of
algorithms-competitors. The degree of confirmation P this hypothesis above if
the more tests was won with algorithm wj . Characteristic E will above if expla-
nation how algorithm wj works is more deep. It will be useful if the algorithm
can be described simply.

246 N.G. Zagoruiko

The contents of all other tasks of DM and corresponding hypotheses about
methods for their decision can be described similarly.We shall be limited to the
description the contents of tasks of different types.
2. A task of type X: formation of system X of the informative description
of objects of set M preliminarily divided on k of classes. The system of N
primary attributes is set by experts. At the decision of this task a method of
“filtering” from N attributes produces the most informative subset from n < N
attributes. With the method of “selection” N primary attributes will be trans-
formed to a more informative system from n secondary attributes [6].

For an estimation of the informativeness of attributes a criteria of two kinds
are used: indirect and wrapping. The indirect estimation includes an entropy of
density of patterns in separate parts of space of attributes, complexity of struc-
ture of logic decision rules, distance between patterns, divided by the sum of
their dispersions (Fisher’s criterion), etc. It is considered that direct methods
(One-Leave-Out (OLO), Cross-Validation (CV), etc.) are more time-consuming
but also more reliable criteria of informativeness. The percentage correctly rec-
ognized test objects withdrawn from the training sample is accepted as expected
reliability of the future recognition of the real control sample.
3. A task of type D: there is a set of training objects in which each of M objects
is carried to one of k classes, and decision rule D for reliability recognition of a
new objects are under construction. As in the previous case, indirect and direct
methods of an estimation of quality of the constructed decision functions are
used.
4. A task of type Z: filling of blanks (the analysis of incomplete data or
“inserting”) and detection of errors in data tables (cleaning of data) [1]. Natural
connections found between different parts of the table of data are used for a
prediction of the most plausible value of the missed or distorted element. The
expected error in filling a blank is estimated by a direct method – by criterion of
a minimum of mistakes of a prediction of known elements of the table. A task of
this type is also, if necessary, applied to the detection of deviations from norm
(in particular, fraud detection). Thus it is necessary to generate the description
of the object or process “in norm” and to learn the program to find out in good
time deviations from norm.
5. A task of type P: forecasting of dynamic processes. According to this task,
describing observable dynamics of development of process, it is necessary to find
natural connections of the past with the future and then to predict characteris-
tics of process during the set future moments of time. During the learning the
criterion of quality in the form a minimum of mistakes of forecasting in the
retrospective analysis is applied.
6. A task of type A: detection of associations. It is necessary to find steady
connections between the values of one subset of characteristics X1 and the other
subset of characteristics X2. Then, from known values X1 it is possible to pre-
dict values of characteristics X2. Here again an expected mistake of the future
decisions is usually evidenced by the results of the retrospective analysis.

Problems in Constructing an Empirical Theory of Data Mining 247

Apart from these tasks of the basic types, there are tasks of the combined
type: for example, a task of taxonomy with a simultaneous choice of the most
informative subspace of attributes (a task of type SX). Or, even more complex,
the challenge of simultaneous construction of classification, a choice of attributes
and constructions of a decision rule (a task of type SDX). The situation
becomes complicated if data are described by polytypic attributes. Many real
tasks are statistically misused: the quantity of attributes happens to be the same
as, and can even exceed, the quantity of objects

The great variety and complexity of DM tasks and their high urgency have
meant that for the last thirty to forty years. Many algorithms have been devel-
oped for the decision of each of them. Attempts to constructing the ontology
of DM tasks and methods [7] has shown the lack of a uniform approach to the
decision of not only the combined tasks but each separate task.

4 Reference Points for Further Development

What should guide us in the search for a uniform approach to the performance of
different DM tasks? We note that all DM methods to some extent simulate the
human ability to systematize the world around, to form classifications, to choose
the most important characteristics of classes, to define the belonging of new
objects to this or that class. It is clear, we must proceed by way of rapproche-
ment with formal models which have properties like the human mechanism of
orientation in the world around. On which features of this mechanism we should
concentrate?

1. The natural mechanism is based on a universal approach allowing us easily
to combine results of decisions concerning different tasks in a uniform consistent
chain of decisions. So, reasonable natural classifications (a task of type S) are
based on the use of a small number of characteristics (a task of type X) from
which it is easy and quite possible to recognize an object belonging to the class
(a task of type D).

From here, the requirement arises for a coordination of methods concerning
different tasks. It is necessary to note, that the requirement for a coordination
of results can be met by some of the existing methods. If the combined tasks
are solved by means of a uniform approach, for example, the algebraic approach
[8] or logic trees [9], results will be coordinated among themselves. But it is
impossible to suppose that, for example, the classes received by a the method
k-means were recognized by means of logic decision rules (trees) in which planes
are used, perpendicular to axes of coordinates.

2.If laws of distribution of classes are known, it is possible to provide compat-
ibility, applying the methods which focus on these types of distribution. Unfor-
tunately, little is known about the character of distributions, but human solve
such tasks. The same relates to such features of real tasks as the character of
dependencies between attributes and the ratio between quantity of objects and
attributes. The human mechanism is prepared for all these displays of the real
world. The requirement for of DM methods to be invariance to a kind of law

248 N.G. Zagoruiko

of distribution, the character of dependencies between attributes and statistical
conditionality of a task, is a natural corollary.

3. Clearly, that at simplification of a task (for example, distributions are nor-
mal, the quantity of attributes is not enough, a lot of training objects), methods
should give decision which is nearer to optimum. From this the requirement for
potential optimality of DM methods follows.

4. It is well-known that DM results strongly depend on whether training set
is representative and whether objects are independent. But, unfortunately, we
cannot know all the objects of a class are represented in the training sample and
whether it is sufficiently full. The only thing which is necessary, is to copy from
the human mechanism its constant readiness to adapt models of classes with the
occurrence of new objects. The person includes a new object in a class if the pres-
ence a this object will be maximal compatible with the model of the given class.

5. All methods of data analysis use this or that measure of affinity or similarity.
Human abilities to estimate remote similarity or to find thin distinctions differ
very greatly in terms of efficiency. The closer the formal measure of similarity
gets to simulating these abilities, the more successfully DM algorithms DM
will work. Research into different measures of similarity has led us to a conclusion
about the expediency of using a measure which we have named the Function of
Rival Similarity or FRiS-function. This function, it seems to us, nicely simulates
the human mechanism of estimating similarity. On the basis of FRiS-function it
is possible to construct effective algorithms of the decision of all primary tasks of
pattern recognition [10–12]. These algorithms meet all the listed requirements.
They possess properties of compatibility and harmony, potential optimality and
invariance in proportion with the number of objects M and numbers of attributes
N, character of distributions and kinds of dependencies between attributes. We
will explain that is means a FRiS-function.

5 Function of Rival Similarity

Let’s try to formulate the main properties which the function of similarity F
should possess.

1. Dozens of various measures of similarity [13] are described in the literature.
As a rule, in these measures similarity of control object z to standards has a
absolute category and depends on distances to these standards only. But it is
easy to demonstrate that the human perception of similarity has a relative na-
ture. To answer questions like “Is it similar or not?” one should know the answer
to the question “In comparison with what?”. Function F should therefore mea-
sure relative value of similarity depending on the peculiarities of a competitive
environment.

Some existing algorithms of recognition operate according to this principle.
For example, under the “k nearest neighbours” (kNN) recognition rule,a new
object z is classified as an object of the i-th pattern Si if the distance rz,i to this
pattern is not only small but is less than the distances rz,j to any other rival
patterns Sj .

Problems in Constructing an Empirical Theory of Data Mining 249

2. A person can estimate a measure of similarity not only in the scale of order
(“it is more similar to Si than to Sj”), but also give a value of similarity in the
absolute scale. So function Fz,i|j of similarity of object z to the standard of i-th
pattern Si could range from −1 to 1 and should amount to extreme values in
two cases: 1 if object z coincides with standard Si, and −1 if object z coincides
with the standard of pattern-competitor Sj . In the case of identical similarity of
the object to both standards, function Fz,i/j = 0.

The Function of Rival Similarity possesses these properties

Fz,i|j = (rz,j − rz,i)/(rz,j + rz,i).

FRiS-function has been useful in constructing a methods for the decision of
recognition tasks of all types.

6 Construction the Decision Rule (Algorithm
FRiS-Stolp)

The process of training the data set before recognition with use of the FRiS-
function consists of choosing a subset of a subset of samples (whose elements
are called stolps), which will be used for recognition of control objects. The
algorithm for choosing a stolps should be independent of the type of probability
distributions of the patterns. The decision it finds out should be adaptable for
any situation. In case of unimodal distributions, stolps should settle down in
the centers of gravity of patterns. If distributions are polymodal and patterns
linearly not divisible, stolps should stand in the centers of local compactness.
While distributions get more complex the number of stolps k should increase.

Algorithm FRiS-Stolp possesses these properties. It is intended to select the
minimal number of stolps which protect all training samples from incorrect recog-
nition. The algorithm is in detail described in [14]. Here we shall briefly describe
the basic idea of this algorithm in case of two patterns Si and Sj .

All objects of training sample of the pattern Si by turns play a role of a
stolp. From other objects of this pattern two distances are measured: up to
this stolp (ri) and up to the nearest object of any other pattern (rj). On these
distances the measure of similarity F of object with the stolp is calculated. If
F is greater than the threshold value of similarity F ∗ it is considered, that this
object is protected by the stolp. The object which in a role of a stolp protects
the greatest quantity of objects of the pattern Si is defined. It becomes the first
stolp of this pattern.For objects which remained not protected, this procedure
repeats. Then the same competition is spent among objects of all other patterns.
The list of stolps for all patterns as a result turns out. The decision rule using
these stolps for recognition of control object z consists in the following. Distances
rz,i and rz,j from z up to the two nearest stolps belonging to different patterns
are estimated. This object is classified as an object of pattern Si, if the value of
similarity Fz,i|j to its stolp is maximum.

250 N.G. Zagoruiko

7 Selection of Informative Attributes (Algorithm
FRiS-GRAD)

Before describing an algorithm for the choice of informative attributes, we shall
consider methods for an estimation of informativeness.

If distributions of patterns are unknown, the informativeness of attributes
is usually estimated by the method OLO or CV. We assert that the average
value of FRiS-function is a more accurate estimation of informativeness. If, for
example, objects of two patterns are presented by two linearly-divided classes of
objects, the quantity of correctly-recognized objects (here 100%) doesn’t depend
on the distance between groups. But the average value of the function of rival
similarity (Fs) depends on how close these pairwise disjoint classes are to the
dividing border.

This hypothesis was checked by the following experiment with initial data
consisting of 200 objects of two patterns (each consisting of 100 objects) in a
100-dimensional vector space over the real numbers. Attributes were generated
so that they possessed different informativeness. As a result about 30 attributes
appeared to some extent informative, and other attributes were generated by
the random-number generator and were obviously not informative. In addition,
the given tables were distorted by noise of different intensity (from 0.05 up to
0.3). For the training set, 35 objects of each pattern had been selected; for the
control set, the other 130 objects had been chosen. At each noise level by means
of algorithm AdDel [15] the two best n-dimension subsystems of attributes (n
from 1 up to 22) got out – one on a minimum of errors of recognition of training
sample by method OLO (criterion U) – and the second on the maximal value of
the average value of FRiS-function. Each of the two subsystems was estimated by
two sizes: the share of correctly-recognized objects of training sample by method
OLO and the share of correctly-recognized control objects. Results are presented
in Fig. 1. Here, thin lines show the reliability of the recognition of the training
sample, and thick lines the reliability of the recognition of the control sample. It
is obvious that criterion Fs allows us to estimate the informativeness of attributes
more objectively. Reliability of the recognition of the training sample predicts
reliability of recognition of the control sample more precisely. Criterion U gives
the overestimated level of quality of attributes and conjures illusions which do
not prove to be true in the control sample.

To solve the problem of the selection a subset of most informative attributes
from a large initial set, we can use an arbitrary directional searching algorithm,
e.g., the AdDel algorithm [15] or GRAD algorithm [16]. These algorithms auto-
matically determine both the content and the best quantity of characteristics.
Here, we notice that these algorithms involve a new criteria of informativeness
based on the use FRiS-functions.

8 Construction of Classifications (Algorithm FRiS-Tax)

At the decision of a task of type S, automatic classification of objects in the form
of a hierarchy of classes, or the list of classes of one hierarchical level, can be

Problems in Constructing an Empirical Theory of Data Mining 251

Fig. 1. Results of training and recognition by criteria U and Fs at different levels of
noise. Thin lines – the training; thick lines – the control.

done by means of the algorithm FRiS-Tax [14]. Its work consists of two stages. At
the first stage the algorithm FRiS-Cluster selects the objects which are centers
of local clots of objects. Such objects become standards (stolps) of clusters. At
the second stage, by means of algorithm FRiS-Class, there is a procedure of
integration of clusters in classes (taxons) by association of some further clusters
in one class. It allows us to create classes of any form, not necessarily linearly-
divisible.

If we find the average value of the function of rival similarity Fs of all objects
with stolps of clusters of this size, we can characterize the quality of cluster-
ing. It has been shown that at change of cluster quantity k local maximums of
function Fs = f(k) take place at such values k, which experts consider as the
most preferable. It allows automation of a choice of the best quantity of
clusters k.

Fig. 2. Comparison of the quality of three algorithms of classification

252 N.G. Zagoruiko

Comparison of algorithm FRiS-Tax was done with other algorithms operating
the concept of the center of cluster – with algorithm k-means [17, 18] and Forel
[1]. Results have shown that it exceeds them in the quality of received decisions
(see Fig. 2).

9 Application of FRiS-Function to the Decision of Other
DM tasks

The use of FRiS-function allows to us to realize easily algorithms for the de-
cision of tasks of combined type [14]. So, the task of type DS – simultaneous
construction of classification (S) and a decision rule (D) – is solved directly dur-
ing taxonomy method FRiS-Tax: taxons are described by standards (stolps) of
clusters through which the recognition of new objects is conducted. We realize
algorithms of type DX (construction of a decision rule in the most informative
subspace of attributes) and SX (taxonomy in the most informative subspace).
The last case actually coincides with a complex algorithm of combined type
SDX. Thus attributes get out by means of algorithm FRiS-GRAD [16], and the
taxonomy in every subspace is done by algorithm FRiS-Tax which in passing
gives out decision rules in the form of system of stolps.

Our experience shows, that FRiS-function can serve as a useful element of DM
algorithms intended for the decision of tasks a various types, including filling gaps
(a task of type Z), forecasting (a task of type P) and search of associations (a
task of type A).

10 Strengthening of the Empirical DM Theory

The empirical theory describing the general properties of modern data mining
methods can be presented thus: H1 =< W1, O1, V1, T1 >, where

W1 – set of all possible methods of the decision of DM tasks of basic and
combined types.

O1 – the list of characteristics for each method.
The concrete DM methods can differ from each other in the following charac-

teristics:

– types of tasks on which the method is focused,
– requirements for statistical conditionality of data,
– orientation to kinds of laws of distribution,
– types of measuring scales with which the method works,
– the metrics of space of attributes,
– criterion of success of the decision of a task,
– presence of positive experience of application of a method,
– presence of the accompanying information (explanations, instructions), etc.

V1 – language for recording values of measured this characteristics of methods.
T1 – test algorithm which divides methods into admissible and inadmissible

with respect to the values of this characteristics.

Problems in Constructing an Empirical Theory of Data Mining 253

Research on the functions of rival similarity described above shows the suit-
ability of the uniform approach to the decision of different tasks that provides
compatibility of methods at the decision of tasks of the combined type. Applica-
tion of FRiS-function for an estimation of quality of offered variants of decisions
also produces increased reliability of accepted decisions. These results allow us
to extend the list of characteristics which the admissible DM method should
possess, and to make changes to test algorithm T which increase its filtering
properties.

Available strengthening of general empirical DM theory is shown in the follow-
ing. Theory H2 differs from H1 in the list of characteristics where the following
items are added:(see section 4):

– a coordination of results at the decision of tasks of the combined type,
– invariance – a method for one sort of law of distribution,
– invariance – a method for statistical conditionality (to a ratio of number of
objects and attributes),
– a harmony of a method,
– a potential optimality of a method.

To the list of values should also be added the criterion of success of the decision
of a task and the indirect criterion based on FRiS-function.

If the test algorithm of theory H2 demands from a DM algorithms the presence
of all these properties, it will consider unacceptable those methods which demand
knowledge of the type of distributions, distributions, which are critical to the
ratio of the number of objects and attributes, and those methods which do not
possess properties of a potential optimality and a harmony.

It is possible that the test algorithm will estimate not all additional char-
acteristics of a method, but some part only with regard to the strengthening
of theory H1 to theory H2. For example, it will not demand from a method of
invariancy laws of distribution, or suppose the use of a traditional method for an
estimation of informativeness by the number of errors of recognition of objects
of a training sample in cross-validation mode. Such variants of theories will take
up an intermediate position between theories H1 and H2.

Potential refutability Q2 offered theory H2 it is essential more strong of Q1

modern data mining theory. Further strengthening of these theory characteristics
with respect to confirmation P2 and explanation E2 will be continued to yield a
high efficiency of the new approach.

11 Conclusion

Knowledge of modern DM methods allows us to systematize them in the form
of ontology and to show the basic structural elements of one version of future
empirical DM theory.

Continuation of researches is required into methods of inductive conclusion,
specification the characteristics of DM methods, development a ways of mea-
suring their values and development of variants of test algorithms which would
allow us to choose the admissible methods applicable to a specific target.

254 N.G. Zagoruiko

For development of existing DM methods the function of rival similarities
(FRiS-function) can be used as a universal basis for algorithms solving all basic
and combined DM tasks with any degree of statistical conditionality and to
any character of distribution of analyzed objects in space of attributes. These
facts provide the basis for strengthening potential refutability Q of the existing
empirical DM theory.

Acknowledgments. Work has been executed with the support of the Russian
Federal Property Fund (grants 05-01-00241 and 08-01-00040). The author ex-
presses sincere gratitude to K.F.Samochvalov, who has been greatly influential
in developing research on methods of empirical prediction, and to I.A. Borisova,
O.A. Kutnenko and V.V. Dyubanov for active discussion of the problem pre-
sented here and for execution of numerous machine experiments.

References

1. Zagoruiko, N.G.: Applied Methods of Data and Knowledge Analysis. Institute of
Mathematics SD RAS, Novosibirsk (1999) (in Russian)

2. Samochvalov, K.F.: On Theory of Empirical Predictions. Computer Systems 55,
3–35 (1973) (in Russian)

3. Zagoruiko, N.G., Samochvalov, K.F., Sviridenko, D.I.: Logic of Empirical Re-
searches. Novosibirsk State University, Novosibirsk (1978) (in Russian)

4. Vityaev, E.E.: Algorithm of Natural Classification. Computer Systems 99, 44–50
(1983) (in Russian)

5. Borisova, I., Zagoruiko, N.: Princips of natural classification. In: 7-th International
Conference on Pattern Recognition and Image Analysis: New Information Tech-
nologies (PRIA-7-2004), pp. 28–31. St. Petersburg (2004)

6. Ivakhnenko, A.G.: Polynomial theory of complex systems. IEEE Transactions on
Systems, Man and Cybernetics. SMC 1(1), 364–378 (1971)

7. Zagoruiko, N.G., Gulyaevsky, S.E., Kovalerchuk, B.Y.: Ontology of Subject Do-
main “Data Mining”. Pattern Recognition and Image Analysis 17, 349–356 (2007)

8. Zhuravlev, J.I.: Selected scientific works. URSS, Moscow (1988)

9. Lbov, G.S., Startceva, Y.G.: Logic decision Function and problems of Statistical
Stability of Decisions. Institute of Mathematics SD RAS, Novosibirsk (1999) (in
Russian)

10. Zagoruiko, N.G., Borisova, I.A., Dyubanov, V.V., Kutnenko, O.A.: Methods of
Recognition Based on the Function of Rival Similarity. Pattern Recognition and
Image Analysis 18, 1–6 (2008)

11. Borisova, I.A., Zagoruiko, N.G., Kutnenko, O.A.: The Criterion of Informativeness
and Suitability Subset of Attributes Based on Function of Similarity. Zavodskaja
Laboratoruja 74, 68–75 (2008) (in Russian)

12. Zagoruiko, N., Borisova, I., Dyubanov, V., Kutnenko, O.: Function of Rival Simi-
larity in Pattern Recognition. In: 8th International Conference on Pattern Recog-
nition and Image Analysis: New Information Technologies (PRIA-8-2007), vol. 2,
pp. 63–66. The Russian Federation, Yoshkar (2007)

13. Voronin, J.A.: Beginning of Theory of Similarity. Computer Centre SD RAS,
Novosibirsk (1989) (in Russian)

Problems in Constructing an Empirical Theory of Data Mining 255

14. Borisova, I.A., Dyubanov, V.V., Zagorujko, N.G., Kutnenko, O.A.: Use of FRiS-
function for taxonomy, attributes selection and decision rules construction. In:
Wolff, K.E., et al. (eds.) KONT/KPP 2007. LNCS (LNAI), vol. 6581, pp. 256–270.
Springer, Heidelberg (2011)

15. Zagoruiko, N.G., Kutnenko, O.A.: Recognition Methods Based on the AdDel
Algorithm. Pattern Recognition and Image Analysis 14, 198–204 (2004)

16. Zagoruiko, N.G., Kutnenko, O.A., Ptitsyn, A.A.: Algorithm GRAD for selection
a informative genetic features. In: International Moscow Conference on Computa-
tional Molecular Biology, Moscow, Russia, pp. 8–9 (2005)

17. Schlesinger, M.I.: On spontaneous dividing of patterns. In: Reading Automation
and Pattern Recognition, pp. 46–61. Naukova Dumka, Kiev. (1965) (in Russian)

18. MacQueen, J.: Some methods for classification and analysis of multivariate obser-
vations. In: 5th Berkley Symposium on Mathematical Statistic and Probability,
vol. 1, pp. 281–297. University of California Press (1967)

Use of the FRiS-Function for Taxonomy,

Attribute Selection and Decision Rule
Construction

Irina A. Borisova, Vladimir V. Dyubanov,
Olga A. Kutnenko, and Nikolay G. Zagoruiko

Institute of Mathematics of the Siberian Branch of the Russian Academy of Sciences,
pr. Koptyug 4, Novosibirsk, 630090, Russia

biamia@mail.ru, vladimir.dyubanov@mail.com,

{zag,olga}@math.nsc.ru

Abstract. The task of simultaneous taxonomy (task S), decision rule
construction (task D) and most informative attributes selection (task
X) is the combined-type task SDX. We offer a way to solve this type of
task with a function of rival similarity (FRiS-function). As a result the
set of analyzed objects is divided into K classes (clusters) in the selected
subspace of informative attributes according to principles of natural clas-
sification. Every cluster is described by a necessary and sufficient set of
typical representatives (stolps), which provide maximal similarity of all
objects of the training dataset with the nearest stolps. In this paper ad-
vantages of the criterion based on the FRiS-function for solving SDX
task and other combined-type problems in data mining are shown.

Keywords: Pattern recognition, function of rival similarity, clustering,
taxonomy, selection of standards, attributes selection, informativeness
and suitability of attributes.

1 Introduction

The problems of data mining DM are often formulated starting with an extensive
dataset A where M objects are described by N attributes. We are interested
in finding out any laws and regularities hidden in this dataset to answer such
questions as: What is the structure of these data? Are there compact groups
of objects (clusters)? If so, which attributes should be used to distinguish one
group from another? How do we classify new objects?

A number of DM methods and algorithms are developed to answer these
questions. Groups of objects similar to each other (result of task S) are formed
by algorithms of clustering or taxonomy. For this purpose it is necessary to
know informative attributes (result of task X) and a type of a decision rule
which will be used for further recognition of the built classes. The informative
subset of attributes (result of task X) can be found with the greedy search, if
classification (result of task S) and type of decision rule are chosen. If the system
of classes (result of task S) and the set of attributes (result of task X) are fixed,

K.E. Wolff et al. (Eds.): KONT/KPP 2007, LNAI 6581, pp. 256–270, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Use of FRiS-Function for Taxonomy, Attribute Selection 257

one can construct a decision rule (task D) to classify new objects. There are
many different algorithms which would accomplish this.

There are situations when it is necessary to find not only one of elements S,
D or X, but two of them: to construct a classification (task S) and a decision
rule (task D) in a given attribute space; to build a decision rule (task D) and to
select attributes (task X) for a given classification; to select attributes (task X)
and to construct a classification (task S) for an established type of a decision
rule. In that way, three tasks of combined types SD, DX and SX are formulated.

If the results none of these three tasks (S, D and X) are known, it is necessary
to solve a major task of combined type SDX – forming the classification (task
S) in the most informative subspace of attributes (task X) with simultaneous
construction of decision rule (task D) [1].

This paper presents algorithms to solve these combined type tasks. The meth-
ods for their decision are based on the use of the function of rival similarity
(FRiS-function) which simulates human abilities to estimate similarity between
objects or phenomena. This function was successful in solving DM problems in
cases where classical statistical methods can’t be applied; for example, in tasks
where the number of analyzed objects M is less than the number of describ-
ing attributes N , where prior information about probability distributions and
dependences between attributes is absent.

Let’s begin with the description of the FRiS-function.

2 Definition of the Function of Rival Similarity

In many DM problems the concept of “similarity” or “affinity” is used [2]. Every
decision rule for recognition of a new object is based on a measure of the “sim-
ilarity” of the object to a pattern. In taxonomy, objects are united in groups
of similar objects. But formal measures of “similarity” cannot be defined cor-
rectly without consideration of the context. So, Moscow and Washington will
appear “relatives”, if one compares the distance between them with Moscow’s
distance to the sun, but “far” if two cities within one state are considered to
be similar. Taking the context into account implies consideration of the com-
petitive situation in some measures of similarity. So, in case of two patterns by
the nearest-neighbor rule the decision that object z belongs to some pattern is
accepted, when the distance r1(z) from z to this pattern is not just “small”, but
when it is less than the distance r2(z) to the competing pattern. In this case
as a distance from an object to a pattern we use the distance from the object
to its nearest neighbor from this pattern. Thus, to estimate the similarity of
the object z to a pattern, it is necessary to know not only the distance r1(z)
to this pattern, but also the distance r2(z) to the nearest competitor, and to
compare these distances in an ordered scale. To measure the rival similarity in
the absolute scale we use the normalized value:

F (z) = (r2(z) − r1(z))/(r2(z) + r1(z)).

We call it the Function of Rival Similarity or FRiS-function.

258 I.A. Borisova et al.

Function F seems to be well coordinated with the mechanisms of the percep-
tion of similarity and distinction which humans use, comparing a certain object
with two other objects. The value characterizes the similarity of object z with
pattern A1 in competition with pattern A2. F ranges from −1 to 1. F = 1 if
object z coincides with an object of A1, and −1 if object z coincides with an
object of pattern-competitor A2. In the case of identical similarity of the object
to both patterns (r1(z) = r2(z)), function F = 0, and that defines the border
between patterns.

First we will give a formal definition of the function of rival similarity which
is used when we are dealing with labeled datasets (divided into classes).

Let dataset A consists of M objects, for every object values of N described
attributes are given. Some metric ρ is setted which allows defining a distance
between any two objects of the dataset. Moreover each object is related to one of
K patterns, i. e. A =

⋃
i=1,...,K Ai, where Ai is a subset of samples of pattern i.

Every pattern i is described by the set of ki typical representatives (stolps)
Si = {si1 , si2 , . . . , siki

}, which is used for the calculation of the distance r from an
object z to this pattern: r(z, Ai) = r(z, Si) = minj=1,...,ki ρ(z, sij) as a distance
from z to the nearest stolp of the pattern. The set of all sets of stolps of the K
patterns S = {S1, . . . , SK}, can be treated as a brief description of the dataset A.

With respect to the set S of all K sets of stolps we now introduce for any
object a the value F (a, S) of the FRiS-function: let i∗ be the pattern of a,
i. e. a ∈ Ai∗ ; let r1(a, S) := r(a, Si∗) is a distance to the “own” pattern and
r2(a, S) = mini=1,...,K,i�=i∗ r(a, Si) is a distance to a nearest competitor, then
the FRiS-function for the object a is calculated by the formula:

F (a, S) = (r2(a, S) − r1(a, S))/(r2(a, S) + r1(a, S)). (1)

We use the following average value of the FRiS-function:

F (S) =
1
M

∑

a∈A

F (a, S) (2)

to describe the quality of the set S: The greater F (S) is, the better the dataset A
is described.

For a new unlabeled object z a nearest pattern i∗ is considered as its “own”
pattern, so r1(z, S) = r(z, Si∗) = mini=1,...,K r(z, Si).

When we work with an unlabeled dataset A which objects are not divided
into patterns (classes), the definition of rival similarity is changed.

Let all objects of set A belong to one pattern. After a set of stolps of this
pattern S = {s1, s2, . . . , sk} is fixed, for each object a ∈ A it is possible to
find distance r1(a, S) (from the object to the nearest stolp from set S). But the
absence of a class-competitor does not allow to calculate distance r2 (from the
object to the nearest stolp of a competing class). Because of this, at the first
stage a virtual class-competitor is defined. The nearest (virtual) stolp of this
class is placed on the fixed distance r′2 from each object of the analyzed dataset.
Here r′2 is chosen to be equal to half of the minimal distance between two objects.

Use of FRiS-Function for Taxonomy, Attribute Selection 259

Thus, in a classification-construction (taxonomy) task we use some modification
of the FRiS-function, which for object a ∈ A looks like:

F ′(a, S) = (r′2 − r1(a, S))/(r′2 + r1(a, S)).

Later in the text this modification will be called the reduced FRiS-function
(rFRiS). Knowing values F ′(a, S) for all M objects of set A, it is possible to
calculate the average value of the reduced FRiS-function:

F ′(S) =
1
M

∑

a∈A

F ′(a, S). (3)

The value F ′(S) achieves the maximum if stolps from the set S are located in
the centers of local accumulations of objects. We used the value of the average
reduced function of rival similarity as an indicator to search centers of local
accumulations for solving problems connected with the grouping of objects.

After the rival similarity for cases of labeled and unlabeled data has been
defined, we will pass directly to the description of how FRiS-functions can be
used for the decision of various DM problems.

3 Use of the FRiS-Function for Selecting Stolps of Classes

In our algorithm the process of building decision rules consists in selection of
set of typical representatives (set of stolps), which will be used for recognition
of new objects [3]. The algorithm of selecting stolps should be independent of
the types of the probability distributions of the patterns. The decision it finds
out should be adaptable to any situation. In the case of unimodal distributions,
the stolps should settle down in the centers of gravity of the patterns. If the
distributions are polymodal and the patterns are not linearly divisible, the stolps
should stand in the centers of local accumulation of samples. While distributions
get more complex the number of stolps should increase.

Algorithm FRiS-Stolp possesses such properties. It is intended to select
the minimal number of stolp which protect all training samples from incorrect
classification during cross-validation.

If a dataset A with M objects is partitioned into K classes, A =
⋃

i=1,...,K Ai,
we solve at first the recognition task “the first pattern against all others”, where
the set of samples of the first pattern is A1 = {a1, . . . , aK1} and the set of
samples of the united pattern is B1 =

⋃
i=2,...,K Ai = {b1, . . . , bM−K1}.

1. First object a1 of A1 is tested as a single stolp of the first pattern. For
each objects aj ∈ A1 we calculate the distance r1 from aj to the stolp a1 and
the distance r2 from aj to the nearest object of the rival pattern B1. Based on
these distances the FRiS-function F (aj , {{a1}, B1}) for the object aj is calcu-
lated with the formula (1). The sum of the FRiS-functions over all aj ∈ A1:
Q1(a1) =

∑
aj∈A1

F (aj , {{a1}, B1}) characterizes the protective abilities of the
object a1 as a stolp.

260 I.A. Borisova et al.

2. For each objects bj ∈ B1, the distance r2 from bj to the stolp a1 and the
distance r1 from bj to the nearest object of the B1 are calculated. Based on
these distances the FRiS-function F (bj , {B1\{bj}, {a1}}) for the object bj is cal-
culated with the formula (1). The sum of the FRiS-functions over all bj ∈ B1:
Q2(a1) =

∑
bj∈B1

F (bj , {B1\{bj}, {a1}}) characterizes the tolerance of the ob-
ject a1 to the objects of the rival pattern. Value Q(a1) = (Q1(a1) + Q2(a1))/M
is used as a measure of efficiency of the object a1 as a single stolp of the first
pattern.

3. Steps 1-2 are repeated for each object ai of the first patter, i = 2, . . . , M1,
considering as a single stolp of this pattern, one after the other. We find out
object ai∗ with the maximum value Q(ai∗) and it is declared to be the first
stolp s11 of the first cluster C11 of the first pattern. Objects with values of the
FRiS-function, exceeding some threshold F ∗ ≥ 0 belong to this cluster, i. e.
C11 = {aj ∈ A1 : F (aj , {{ai∗}, B1}) > F ∗}.

4. All objects of the first cluster are excluded from the list of samples of
the first pattern. For the other objects of the first pattern the next stolp is
constructed using the steps 1-3. The process lasts until all objects of the first
pattern are included in clusters. As a result we obtain k1 stolps of the first
pattern.

5. All objects A1 of the first pattern are restored.
6. Steps 1-5 are repeated for each task “pattern i against all other patterns”,

i = 2, . . . , K .
After the completion of all these procedures, the average value of the rival

similarity F̃s of all (M − k) objects of the training dataset not selected as stolps
is calculated:

F̃s =
1

M − k

∑

a∈A,a/∈S

F (a, S), (4)

where k =
∑

i=1,...,K ki is the number of stolps of dataset A. This value can be
used as a measure of the quality of training.

The process of recognition of control objects is very simple. A new object z
is classified as an object of a pattern with a stolp of minimal distances r1 to z.

We must remember the importance of parameter F ∗, mentioned earlier. For
small values of threshold F ∗ (for example, at F ∗ = 0) the number of stolps is
small. The minimum number of stolps is equal to the number of patterns K (one
standard for the pattern). We are usually satisfied with the simplest variant of
the decision rule construction. But care is needed when the average measure of
similarity of objects to the stolps is not high.

Increasing F ∗ leads to an increase in the number of stolps k, which settle down
in the centers of local compactness of the distribution. It allows the restoration of
the model of distribution more precisely, to find the subclasses which make up the
class. Stolps are typical representatives of each subclass. With increasing k the
average value of similarity F̃s of objects of the training dataset with standards
calculated by (4) grows.

If, however, threshold F ∗ is equal 1 the number of stolps aspires to match
the number of objects M . To warn the algorithm of this extreme measure we

Use of FRiS-Function for Taxonomy, Attribute Selection 261

define the penalty function G = (M − k)/(M − K). So, quality of training Qs

we will estimate: Qs = F̃s × G. Changing parameter F ∗, it is possible to find
a compromise between the simplicity of a decision rule and the accuracy of the
description of the model of distributions.

4 FRiS-Function as Criterion for the Choice of an
Informative Subset of Attributes in Problem DX

The combined type task DX (recognition with a simultaneous informative at-
tribute selection) has been used in the field of pattern recognition for a long time.
Statistically well-grounded methods, however, are developed only for a class of
“good” tasks. If they are used in tasks where the number of objects is insignificant
and less than the number of describing attributes, the unequivocal answer to the
question of how effective selected subsystems will appear at recognition of con-
trol dataset does not exist. With an increasing number of describing attributes
(for a fixed number of objects of the dataset), the probability of occurrence of
pseudo-dependencies between some of these attributes and the target attribute
increases. As a result, irrelevant attributes can be selected as informative ones
[4]. This can lead to serious mistakes in the recognition of a control sample.
Our researches have shown that criterion F , based on the FRiS-function is more
effective in such situations than the following existing analogues.

In the majority of existing methods, the rate U of objects of training dataset
correctly recognized by the KNN rule, estimated by the method One-Leave-Out,
is used as a feature subsystem quality.

Another criterion which presumably allows a good choice of informative sub-
systems of attributes is based on Fisher’s idea to estimate informativeness through
the ratio where the distance between sample means of patterns is divided by the
sum of their variances:

Q = |μ1 − μ2|/(σ1 + σ2).

The coordinates of the center of gravity of the pattern objects are used as the
estimated value of a sample mean of a pattern. An average square of the distances
from the objects of a pattern to its center of gravity is used as a variance.

The next considered measure of informativeness is interesting for us because
of the use of distances from each object a of the training dataset to the nearest
“one’s own” pattern r1(a) and the nearest “competitor” pattern r2(a) in it. So
it could act like the function of rival similarity and give results that are not
bad. This method of calculation is described in the family of algorithms entitled
RELIEF [5]. There are various forms of this method. The direct criterion of
attributes informativeness W , used in our researches, looks as follows:

W =
1
M

∑

a∈A

r2(a) − r1(a)
rmax − rmin

.

With this criterion, as well as with FRiS-functions, the difference between dis-
tances to the nearest competitor and to the nearest “one’s own” patterns is

262 I.A. Borisova et al.

calculated, and for normalization the difference between maximal distance rmax

of objects of the dataset in the analyzed feature subspace and the corresponding
minimal distance rmin is used.

The simplest informativeness criterion Fs, based on the FRiS-function is cal-
culated by formula (2) on the assumption that all objects of the training dataset,
besides the one for which the value of FRiS-function is calculated, are the stolps
of the corresponding patterns.

These four criteria – ratio of correctly-recognized objects of the training
dataset (U), average value of function of rival similarity (Fs), Fisher’s crite-
rion (Q) and RELIEF criterion (W) – were compared in the following modeling
experiment.

Initial data consisted of 200 objects of two patterns (100 objects of each pat-
tern) in a 100-dimensional space. Attributes were generated so that they pos-
sessed different informativeness. As a result, about 30 attributes appeared to be
to some extent informative, and other attributes were generated by the random-
number generator and were obviously not informative. For training, 35 objects of
each pattern casually got out. On the control, the 130 other objects were recog-
nized. At each task of the algorithm AdDel [6] the best n-dimensional subsystems
of attributes (n from 1 to 22) got out. The share of correctly-recognized control
objects for every subsystem was calculated. Results are presented in Fig. 1.

Fig. 1. Reliability of recognition of control dataset in various subsystems of the infor-
mative attributes selected by one of four criteria: share of misrecognized objects (U),
function of rival similarity (Fs), Fisher’s criterion (Q) and criterion from algorithm
RELIEF (W)

5 FRiS-Function in a Taxonomy Task

In this task we deal with a situation where there are no class labels for the
training dataset A. Clearly, in this case we should use the reduced function of
rival similarity, as defined in section 2. We are reminded that in this modification
the virtual pattern-competitor is settled on the fixed distance equal r′2 to all
objects of the dataset.

Use of FRiS-Function for Taxonomy, Attribute Selection 263

On the basis of FRiS-functions we developed an algorithm of taxonomy FRiS-
Tax [7] to simulate the work of a human expert constructing classification. This
algorithm consists of two stages. At the first stage, named FRiS-Cluster, the
centers of local accumulation of objects are found. Each of them is considered
as the stolp of the corresponding cluster. All objects of the dataset are naturally
distributed between clusters. An object a is grouped into that cluster whose
stolp is the nearest one. The obtained grouping can be considered as a final
result, if the expert accepts its quality. Otherwise the results of clustering pass
to the second stage of the algorithm, named FRiS-Class. At this stage runs the
procedure of forming taxons, which have a more complex structure. Clusters,
satisfying certain conditions, are considered to belong to one class. It allows the
creation of taxons which have free forms, and cannot be linearly distinguished.

5.1 Clustering (Stage FRiS-Cluster)

The described algorithm defines the number of clusters automatically. A user sets
only the maximal number of clusters kmax. The algorithm searches for decisions
of a task for all numbers of clusters k = 1, 2, . . . , kmax consistently, to choose
from them the most successful decision. If a dataset A of M objects without
labels is given as input, it acts as follows:

1. k = 1. A randomly-chosen object a is appointed as a stolp, and under this
condition the average reduced FRiS-function F ′({a}) over the dataset A is cal-
culated with formula (3).
2. Step 1 is repeated for all M objects of A. Every object is consequently ap-
pointed as a stolp. As the first stolp s1 the object that has maximal value
F ′({s1}) is picked out. This stolp is considered as typical representative of clus-
ter C11 = A. The clustering quality for k = 1 is Fc(1) = F ′({s1}).
3. k = 2. After the first stolp s1, we take a randomly-chosen object a, different
from s1, as a candidat for a second stolp. Then for the set of two stolps {a, s1}
the average reduced FRiS-function F ′({a, s1}) is calculated with formula (3).
4. Step 3 is repeated for all objects of the dataset A which are different from s1.
As the second stolp s2 the object, which in pair with s1 provides the maximal
value of the average reduced function of rival similarity F ′({s2, s1}), is picked
out.
5. After the detection of two stolps, the dataset A is partitioned into clusters
C21 and C22, by the following rule. An object a is grouped into that cluster with
a stolp of minimal distance r1 to a . So C21 = {a ∈ A : ρ(a, s1) ≤ ρ(a, s2)},
C22 = A\C21. Stolp s1 provides maximal average similarity for the objects
of the cluster C11, but for the descrypting of the cluster C21 in competition
with the cluster C22 some other object from the cluster C21 can be best accord-
ing to the average FRiS-function. To find the final position for the stolps we
carry out the following procedure.
6. A randomly chosen object a1 ∈ C21 is appointed to be a stolp of this cluster,
and the average FRiS-function F ({a1, s2}) is calculated with the formula (2).

264 I.A. Borisova et al.

7. Step 6 is repeated for all objects of C21. The object s21 which provides the
maximal value of the average FRiS-function F ({s21, s2}) is picked out as a new
stolp of C21.
8. A new stolp of the cluster C22 is determined by repeating steps 6-7 for all
objects of the cluster C22 and an object s22, that provided maximal value of the
function F ({s21, s22}) is selected. In Steps 6-8 we use the FRiS-function that
imitates the process of a competition between real stolps instead of the reduced
FRiS-function. The clustering quality for k = 2 clusters is Fc(2) = F ({s21, s22}).
9. For the further increasing the list of stolps we use the stolps s1 and s2 selected
with the reduced FRiS-function. As in Steps 3-4 all objects of the dataset are
checked one by one for the role of the third stolp. For each variant the average
reduced function of rival similarity is calculated and the object s3, for which
this value F ({s1, s2, s3}) is maximal, is fixed as the next stolp. All objects of A
are redistributed among the three clusters C31, C32 and C33. C3i = {a ∈ A :
ρ(a, si) ≤ ρ(a, sj), j = 1, . . . , 3, j �= i}, i = 1, . . . , 3. Then redefinition of stolps
positions is done taking into account rival situation, as described in Steps 6-8,
and the quality of clustering Fc(3) is calculated.
10. The process proceeds until clustering for all numbers of clusters
k = 1, 2, . . . , kmax has been obtained. During the process the preliminary list
of stolps {s1, s2, . . . , sk−1} is used for finding the next stolp sk, and for deter-
mining final grouping {Ck1, Ck2, . . . , Ckk} and estimation of its quality Fc(k).
We emphasize that passing from reduced to usual FRiS-function, as well as re-
installing stolps, should be realized only for the detection of final positions of k
stolps.

It is obvious that if all objects of dataset A are used as stolps (dataset is
described by M stolps), the clustering quality Fc(M) reaches the maximal value
equal to 1. On the way to this global extremum, however, there are local ones.
Our experiments have shown that local maxima occurs for such numbers of
clusters that human experts regard regards as “reasonable” in the sense that
objects which are grouped into different clusters by the expert, are also grouped
into different clusters by our algorithm.

5.2 Construction of Classification (Stage FRiS-Class)

Often classes formed by experts have a complex structure that can’t be de-
scribed accurately by a single objects (stolp) for a single class. Therefore we
have introduced the stage FRiS-Class in the algorithm FRiS-Tax. On this stage
a procedure for the association of several clusters in one class is realized. It is
started for the most successful variants of clustering, got out on the first stage.

The basic idea underlying this stage of the algorithm consists of the following.
If the clustering stage is successful, clusters composed of different classes are
separated from each other by zones with a lowered density of objects, and near
the borders of clusters comprising one class such downturns of density are not
presented. The objects of the dataset are distributed there in a regular way. If
we have clustering {C1, . . . , Ck} the formalized algorithm for checking object
distributions near borders of clusters looks as follows:

Use of FRiS-Function for Taxonomy, Attribute Selection 265

1. For any two different clusters Ci and Cj the objects which are located in
a zone of competition between these clusters are close to the border among the
two clusters. An object a ∈ Ci is considered to be in the zone of competition for
clusters Ci and Cj , if the following conditions are satisfied:

– Two nearest to the object a stolps are the stolps si and sj of clusters Ci and
Cj ;

– The value of similarity F (a, {{si}, {sj}} of this object with cluster Ci in
competition with Cj is less than some threshold F ∗ > 0;

– The distance from a to the stolp si is less than the distance between stolps
si and sj . This condition is necessary in cases when a considerable distance
to the stolp can mean the remoteness of the object from all stolps.

Those pairs of clusters whose zones of competition are not empty are considered
as candidates for uniting.
2. In clusters Ci and Cj we select two objects a ∈ Ci and b ∈ Cj from the zone of
competition of these clusters, such that the distance between a and b is minimal.
3. For the object a its nearest neighbour a′ from the cluster Ci and the object b
its nearest neighbour b′ from the cluster Cj are found.
4. Clusters Ci and Cj are united into a single class, if the values of ρ(a, b),
ρ(a, a′) and ρ(b, b′) differ from each other only slightly. For example, the following
condition can be checked:

ρ(a, a′) < αρ(b, b′)&ρ(b, b′) < αρ(a, a′)&ρ(a, b) < α(ρ(a, a′) + ρ(b, b′))/2, α > 1

After termination of the second stage the quality of classification is recalculated.
But now, contrary to the first stage when every cluster was described by a single
stolp, more complex structures – the classes described by a set of stolps are
considered.

5.3 Choice of an Optimum Number of Taxons

Let’s remember that before starting the algorithm the user sets a range in which
the number of clusters k varies. After the termination of the first stage we have
one variant of clustering for every number of clusters k from the range with
the calculated clustering quality Fc(k). At the second stage of the algorithm
we already work only with those variants of clustering which appeared locally-
maximal, i. e. Fc(k − 1) < Fc(k))&(Fc(k + 1) < Fc(k).

After the second stage coincident variants of classification, and variants which,
as a result of uniting, form a single class, are eliminated. But even after that
there can be some variants of taxonomy from which we have to choose the best
one. Our experiments have shown that we have a few variants of taxonomy which
have an insignificant difference between numbers of clusters, and the best one is
that taxonomy which provides the maximal average value of the FRiS-function.
In case of a big difference between numbers of clusters in different variants
this approach cannot be used. Such “ambiguity”, however, will correspond with
the following observation. Depending on the level of detail demanded, several

266 I.A. Borisova et al.

variants of taxonomy with different numbers of classes can be constructed by
a human, too. For example, in a military structure taxon-regiments and taxon-
battalions can be allocated, and to tell whether one of these variants is better
than another is impossible until the purpose for which the taxonomy is created
is strictly fixed.

In Fig. 2 four test examples are shown for which it was possible to determine
the optimum number of clusters and classes by the algorithm FRiS-Tax.

Fig. 2. Examples of the tasks successfully solved by the algorithm FRiS-Tax

6 FRiS-Function in Problem SX as a Criterion for
Natural Classifications

The algorithm described above solves a problem of clustering construction in
a fixed space of attributes. If, for the description of the same objects another
feature subset is used, the results of clustering can change. So it is clear that
the process S of clustering is directly connected with the process X of attribute
selection. There are some questions to be answered: When should the problem
of combined type SX be solved instead of problem S? Which properties of clas-
sification should be provided by the selection of the attribute subsystem?

We can search for the answers to these questions by analyzing specific pro-
perties of so-called “natural” classifications [8]. Such classifications were created
by outstanding scientists of the past and have been used successfully until now.
As examples of natural classifications, Mendeleev’s classification table, Linne’s
biological classification, Darwin’s species classification and Fedorov’s classifica-
tion of crystals stand out. These classifications have a number of interesting
properties: [9]

– as a rule, natural classifications have hierarchical structures – they have
classes, subclasses and so on;

– division of classes into subclasses is based on a small number of attributes;

Use of FRiS-Function for Taxonomy, Attribute Selection 267

– at each level of the hierarchy of classification every cluster in the subspace
of these attributes should satisfy the “geometrical” requirements usually
formulated in many algorithms of clustering analysis – high similarity of
objects into one class and big differences between objects from different
classes.

There is one more important feature: natural classifications possess high induc-
tive ability. It means that a few (“essential”) attributes, on which classification
is made, allows the prediction of some other (“latent”) properties of objects of
the given class. A classical example of inductive ability of classification is classi-
fication of chemical elements by their nuclear weight in Mendeleev’s table, where
one attribute predicts many physical and chemical properties of those elements.

Thus, a classification possessing the property of “naturalness”, on the one
hand should satisfy geometrical criteria, controlling quality of grouping, and, on
the other hand, should possess inductive ability and predictive force. We assert
that the inductive ability of natural classifications is the most important prop-
erty. Therefore, natural classifications is a very desirable result for the process of
structuring information. The average value of the FRiS-function, calculated by
formula (2), can be used as a criterion which simultaneously allows us to trace
geometrical “compactness” of taxons in space of essential attributes, and to es-
timate predictive ability of taxonomy for the attributes which are not essential.

7 FRiS-Function in the Problem SDX

After several algorithms based on FRiS-functions have been constructed for sim-
pler combined-type problems, we can pass directly to the problem SDX, the
most complex problem of data mining – the problem of information structuring
and ordering. One interpretation of this task is data compression into a form
suitable for further analysis and usage by humans. It means the compressed
dataset should consist of a small number of groups of objects (S), described in
a small informative subspace of initial attributes (X). This description should
contain a system of simple decision rules (D), according to which each new an-
alyzed object can be classified. The reduced description of the dataset should
also contain a system of simple rules to predict values of the attributes, which
have not entered into an informative subset. In other words, these rules allow the
restoration of values of all attributes by values of informative attributes; they
also allow the restoration of the general characteristics of the class of a given
object.

Let’s consider a variant of this problem when each group of objects is described
by typical representatives (stolps), and as predicted values of attributes of a new
object their values for the stolp nearest to this object in the space of informative
characteristics are used. For an estimation of reliability of such forecasts we use
the function of rival similarity.

Let A be the initial set of objects, and Y be the initial set of attributes. For
some set of stolps S ⊆ A and some set of informative attributes X ⊆ Y we define

268 I.A. Borisova et al.

the quality QF (S, X) of the description of the initial set 〈A, Y 〉 by the selected
dataset 〈S, X〉 in the following way:

QF (S, X) =
∑

a∈A

FY (a, s∗a), where s∗a = argmin
s∈S

ρX(a, s).

Here FY is a function of rival similarity in space Y , ρX is the distance in the
subspace X , s∗a is a stolp of S which is nearest to the object a.

The problem consists in finding such a pair 〈S, X〉 which will provide a max-
imum value of QF . To obtain approximate solutions to this challenge we divide
it into two simpler tasks and consider a problem of two-level optimization:

QF (SX , X) =
∑

a∈A

FY (a, s∗a) → max
X⊆Y

, where s∗a = arg min
s∈SX

ρX(a, s),

SX = arg max
S⊆A,|S|≤m∗

∑

a∈A

FX(a, s∗a), where s∗a = argmin
s∈S

ρX(a, s).

Here m∗ is the maximum number of stolps in S. The set of stolps SX in the
fixed subspace of attributes X is found by the algorithm of taxonomy FRiS-Tax,
which builds a set of stolps providing the maximal of the average value of the
function of rival similarity on the dataset. For finding an informative subsystem
X∗ = arg maxX⊆Y QF (SX , X), one of the existing procedures of feature selection
can be used.

Elaboration of this idea allows us to get solutions to the task SDX which has
a hierarchical structure presented in the form of a tree T [15]. Each division of
the parent nodes of this tree corresponds to some subset of objects clustering in
a special informative subspace of features. Each leaf node of this tree is a low-
level class in the created classification. The stolps for all low-level classes are
defined in the united space of attributes X used at all levels of the classification
on the tree T . During the recognition of some new object a by the tree T the
corresponding node (class) is found step-by-step by moving from the root node
to the leaf nodes, and the function of rival similarity of this object with a stolp
of this class (T (a)) in the full space of attributes Y is calculated. The optimized
criterion for the quality of the construction of a tree in this case is:

Q̃F (T) =
∑

a∈A

FY (a, T (a)).

The approximate solution for this problem is found through transition to a series
of tasks. Each simple task in this case corresponds to dividing one leaf node in
a tree that provides maximal increase of the global quality Q̃F .

Algorithm FRiS-SDX has been applied to the analysis of the following real
task in order to construct a solution to the hierarchical SDX problem. The
spectral characteristics of samples of various minerals have been measured. Each
spectrum was represented by a 1024-dimensional vector. Spectra of 160 samples

Use of FRiS-Function for Taxonomy, Attribute Selection 269

from a training dataset were divided by experts into seven groups on the basis of
their chemical structure. Efficiency of the algorithm was estimated through the
analysis of the value of uniformity which taxons received from the perspective
of the chemical structure of the objects which were in them. We didn’t use our
knowledge of the chemical structure of samples during the work of the algorithm
FRiS-SDX, except for an estimation of the success of the results.

The algorithm divided each parent node of this tree into two classes, described
by two stolps. Informative subset for clustering should not contain more than
six attributes (i. e., spectral strips) from 1024. The tree received as a result of
the work of the algorithm with these restrictions, is represented in Fig. 3. It has
consistently separated four classes of chemical substances from each other, and
put three in one class. More detailed analysis has shown that the samples which
have been put into one class have practically identical chemical structure. The
traces of manganese and cobalt are so negligible that their spectral portraits are
indistinguishable.

Fig. 3. The structural tree constructed by the algorithm FRiS-SDX

8 Conclusion

The universal approach to the solution of data mining problems of basic and com-
bined types, based on the use of the function of rival similarity (FRiS-functions)
is described. On this basis it is possible to build effective algorithms, invariant
to the ratio of the number of objects to the number of attributes in the dataset
and to the type of the probability distribution of the samples. The solution to
the main task of the combined-type SDX of the simultaneous construction of
classification (task S) of observable objects, building decision rule (task D) and
selection of informative subset of attributes (task X) is shown.

Acknowledgments. This work has been done with the support of the Russian
Federal Property Fund (grants 05-01-00241 and 08-01-00040).

270 I.A. Borisova et al.

References

1. Zagoruiko, N.G.: Pattern Recognition methods and their using. Soviet Radio,
Moskow (1972) (in Russian)

2. Voronin, J.A.: Beginning of Theory of Similarity. Computer Centre SD RAS,
Novosibirsk (1989) (in Russian)

3. Zagoruiko, N.G., Borisova, I.A., Dyubanov, V.V., Kutnenko, O.A.: Methods of
Recognition Based on the Function of Rival Similarity. Pattern Recognition and
Image Analysis 18, 1–6 (2008)

4. Borisova, I.A., Zagoruiko, N.G., Kutnenko, O.A.: The Criterion of Informativeness
and Suitability Subset of Attributes Based on Function of Similarity. Zavodskaja
Laboratorija 74, 68–75 (2008) (in Russian)

5. Kira, K., Rendell, L.: The Feature Selection Problem: Traditional Methods and
a New Algorithm. In: 10th National Conference Artificial Intelligence (AAAI 1992),
pp. 129–134 (1992)

6. Zagoruiko, N.G.: Applied Methods of Data and Knowledge Analysis. In: Institute
of Mathematics SD RAS, Novosibirsk (1999) (in Russian)

7. Borisova, I.A.: Clustering algorithm FRiS-Tax. Scientific bulletin of NGTU 3, 3–12
(2007) (in Russian)

8. Vityaev, E.E.: Algorithm of Natural Classification. Computer Systems 99, 44–50
(1983) (in Russian)

9. Zagoruiko, N.G., Borisova, I.A.: Principles of natural classification. Pattern Recog-
nition and Image Analysis 15, 27–29 (2005)

Similarity Determination for Clustering Textual

Documents

Vladimir Barakhnin, Vera Nekhaeva, and Anatolii Fedotov

Institute of Computational Technologies SB RAS, Novosibirsk State University
Lavrentyeva 6, 630090 Novosibirsk, Russia

bar@ict.nsc.ru, nekhaeva@ngs.ru, fedotov@sbras.ru

http://www.ict.nsc.ru

Abstract. The problem of computerized selection of textual documents
on scientific subjects is treated with new improved methods; that could
be of interest for an individual researcher or a research team. Attributes
of a bibliographical description (authors, keywords, abstract) are pro-
posed to be used as scales for the measure determination. The values of
weight coefficients in the formula for calculating the similarity measure
are determined by the assumed a posteriorireliability of the respective
scale data.

Three classical document clusterization methods have been analysed
in order to find the ones potentially feasible for the solution of the for-
mulated problem: clusterization by finding cliques in the full matrix of
documents similarity, clusterization by Rocchio method and the method
based on the so-called greedy algorithm as well as the new method sug-
gested by N.Zagoruiko based on employing the function of rival similarity
(the so-called FRiS-function). Testing showed that the FRiS algorithm
proved to be the most efficient one for this problem although the greedy
algorithm also yields acceptable results.

Keywords: similarity, clusterization of textual documents.

1 Introduction

Millions scientific papers are published in the world annually. It is impossible
even to browse superficially the publications in narrow fields of science. This
accounts for the universal popularity of electronic editions providing information
about new publications in particular:

– databases of Abstracting Journals;
– “Current Contents” databases;
– specialized online databases like Zentralblatt MATH.

In addition, each researcher over the years of his professional activity accumu-
lates a card index containing the description of papers, books, etc. of interest
to him. In this case, the main selection criterion is the personal interests of the
researcher. Nowadays, such card indexes are usually in an electronic form. This

K.E. Wolff et al. (Eds.): KONT/KPP 2007, LNAI 6581, pp. 271–279, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

272 V. Barakhnin, V. Nekhaeva, and A. Fedotov

makes it possible to create integrated card indexes by pooling the resources of
scientists working in collaboration.

Therefore, the problem arises of computerizing the process of selecting publi-
cations from electronic databases of interest to a particular researcher or a group
of scientists working in collaboration. In order to find the paper he needs, the re-
searcher browses either abstracting journals or their electronic analogues. Since
there are sufficiently efficient algorithms for the search of a particular electronic
publication, the topical issue today for information retrieval is finding a suitable
class of documents with similar content on the basis of a given document.

This work contributes to the solution of the problem of computerizing the
process of selecting publications from bibliographic databases, which may be of
interest for a specific researcher or a group of researchers working in collabora-
tion. To this end, at the first stage of our work, algorithms for measuring the
similarity between two documents of an electronic database, and algorithms of
clustering documents in this base are studied. It is suggested that attributes of
the bibliographic description in the entry of documents should be used as scales
for measuring the similarity.

Under clustering we, according to [1], understand the grouping of a set of
documents from an electronic database into classes, such that elements falling
under the same class are characterized by a higher similarity than elements
falling under different classes (in our case, the description of documents under
clustering is based on the attributes of the relevant bibliographic entry). Each
cluster thereat is usually described by means of one or several identifiers called
a profile or a centroid. The cluster profile can be represented as some formal
object located in the center of the cluster or any representative object capable
of characterizing the other objects of this cluster (further we will focus on the
methods of defining centroids in more detail). Making use of the centroid concept
one may look for similar documents by comparing retrieval requests first with
the profiles of clusters and then checking the entries inside the clusters with very
similar profiles.

2 Similarity Determination for a Set of Documents

As has already been mentioned, as scales for measuring the similarity between
two documents, attributes of the bibliographical description of these documents
will be used. Let us make a list of key elements of a bibliographic description of
documents entered in a card index:

– authors;
– title;
– journal or publishers’ name;
– year of issue;
– volume, issue, pages (for publications in periodicals);
– abstract.
– classifier codes;
– keywords.

Similarity Determination for Clustering Textual Documents 273

Below, an algorithm for measuring the similarity of a new document with the
documents from the available set (i.e. personal bibliographic base) is presented.
The quantitative characteristics of the similarity is determined for the set of
documents D as follows:

m : D × D → [0, 1], (1)

therewith the function m in the case of complete similarity assumes the value 1,
and, on the contrary, it is equal to 0. The similarity is calculated by the formula
of the following form

m(d1, d2) =
∑

αimi(d1, d2), (2)

where i is the running number of an item (attribute) of the given bibliographic
description, αi designates weighting coefficients whereas

∑
αi = 1 (see, for in-

stance, [2]), mi(d1, d2) is the similarity with respect to i-th item (in other words,
with respect to the i-th scale). Since in the described situation practically all
the scales are nominal, the similarity with respect to the i-th scale is obtained in
the following way: if the values of i-th attributes of the documents coincide, the
degree of proximity mi(d1, d2) is 1, otherwise it is 0. Therewith it must be taken
into account that the attribute values can be aggregated. Then mi = ni1/ni0,
where ni0 = max{ni0(d1), ni0(d2)}, and ni0(dj) is the total number of items con-
stituting the value of the i-th attribute of the document dj , with ni1 denoting
the number of coinciding items.

Note that the above-presented algorithm for measuring the similarity may lay
the foundation of some expert system with certain condition-action rules. Thus,
the value of the weighting coefficients αi in formula (2) can be determined by
the assumed a posteriori validity of data of the respective scale. For example,
complete (or even “almost complete”) coincidence of the value of the attribute
“authors” of the document d1 and document d2 has higher weight in the case
when the number of values of this attribute in the document d1 is sufficiently
great (as compared to the case when the document d1 has only one author). In
this situation we can increase the value of the respective weighting coefficient in
formula (2) with simultaneous proportional reduction in the other coefficients.

3 Methods for Documents Clustering

The main problem of documents clustering consists in finding a grouping of the
documents, such that the elements of every group are so similar to each other
that in some cases their individual features could be neglected. In particular
search in a systematized file is much easier than in a non-systematized one be-
cause groups of documents whose profiles bear no similarity with the retrieval
request are not included in the in-depth retrieval process. Under document clus-
tering it is important to attain a reasonable compromise between the cluster size
avoiding both the generation of numerous very small clusters (which impairs the
effectiveness of clustering as identification of sets of similar documents) and a
small number of very large classes (which will reduce the search precision).

274 V. Barakhnin, V. Nekhaeva, and A. Fedotov

It is conventional to distinguish between some tasks of classification: cluster
generation based on the data (properties and characteristics) about the classified
objects; objects assigning to the generated clusters or clusters in the process of
generation; retrieval of information required for the identification and description
of document classes. The generations of classes in itself is usually based on the
comparison of document vectors, at the same time a class is defined as a set of
all the objects with sufficiently high values of the similarity coefficient. Defining
the characteristics of a class is equivalent to the generation of a profile; the
assignment of objects to class depends on the degree of similarity between the
classifiers of the objects and the profiles of classes.

In our present work we study clustering methods, for which the comparison
criteria used are only pre-specified items of a bibliographic description not allow-
ing for individual retrieval options for those documents or consumers’ opinion
about their feasibility.

As potentially useful for the solution of the problem formulated three classical
clustering methods have been analyzed: clustering by finding complete subgraphs
in the full matrix of documents’ similarity [1], clustering by Rocchio method [1],
and the method based on the so-called greedy algorithm [3] as well as a new
algorithm based on the use of FRiS functions [4]. Let us dwell briefly on the
essence of the above-listed algorithms.

The process of finding maximal complete subgraphs is based on the construc-
tion of the full matrix of similarity, by means of which each pair of documents
(d1, d2) is matched with a similarity coefficient S(d1, d2). Usually a threshold
value is selected and the similarity matrix is reduced to the binary form by
substituting all the similarity coefficients such that S(d1, d2) ≥ by a unity and
all the rest — by zero. Then the sought classes are obtained as the maximal
complete subgraphs of the graph described by the binary form of the similarity
matrix.

In the Rocchio algorithm, the construction of the similarity matrix is replaced
by the check of the space density for some documents (the space density for the
document di is defined as number of documents dj such that S(di, dj) ≥ , where
a threshold value is selected). Only those documents are treated as the possible
centers of the clusters that by calculation results proved to be located in dense
space areas. The clustered document is assigned to the class, the similarity with
the centroid of which proved to be the highest.

On using the greedy algorithm a row (or a column since the matrix is sym-
metric) is found in the similarity matrix where the sum of the components will
be maximum. The document corresponding to this row is declared as the cen-
ter of the first cluster and incorporate in it all the documents whose similarity
coefficients exceed or equal some pre-specified threshold value. Then all the doc-
uments incorporated in the cluster are removed by eliminating the respective
rows and columns from the matrix, reiterating the process several times until all
the documents have been clustered.

In the clustering method based on FRiS functions on determining the sim-
ilarity between two documents a rival situation is considered: decision about

Similarity Determination for Clustering Textual Documents 275

document d assignment to the first cluster is made not when the distance r1 to
this cluster is “small” but when it is smaller than the distance r2 to the rival
cluster. In order to calculate the degree of the rival similarity measured on the
absolute scale, a standardized value F12 = (r2 − r1)/(r2 + r1) is used, called
a FRiS function (Function of Rival Similarity). Obviously, at the first stage of
clustering when there are no rival clusters as yet, one has to deal with a certain
modification (reduction) of the FRiS-function using a virtual rival cluster. Here
the essence of applying this algorithm is that on using a reduced FRiS-function,
centers of local “clots” [“bunches”] of document distribution are chosen as the
centroids which is followed by the generation of linearly separable clusters.

4 Choice of the Optimal Algorithm

The practical purpose of applying the analyzed algorithms was to computer-
ize the process of selecting publications from electronic databases that could
be of interest for a particular researcher or a group of researchers working in
collaboration.

The algorithms were tested on the electronic database of the “Siberian math-
ematical journal” containing bibliographic descriptions of the journal articles
published from 2000 to 2005. To the articles in the said database in addition to
the standard attributes (title, author, publication year etc.) the respective codes
are assigned from the Mathematics Subject Classification (MSC-2000). This fact
enabled us to subdivide the entire work into two stages:

1. Finding the optimal clustering algorithm. The earlier defined construction is
used as a measure in the document space, the comparison, however, is performed
on the basis of a single attribute, i.e. — classifier codes. Since the coincidence of
those codes for a group of documents is an objective criterion of the coinciding
subjects of those documents, this measure may be considered ideal.
2. Specifying the measure (i.e. obtain the weighting coefficient for each attribute
in formula (2)) that after the base clustering yields the result approaching that
using the measure determined in Item 1.

The comparison of the three classical algorithms showed that the determination
of clusters as maximal complete subgraphs obtained from the similarity matrix
proved to be practically inapplicable to the solution of the formulated problem
since it tends to generate numerous very small groups. The results obtained by
the Rocchio algorithm proved somewhat better: since in this method clustering of
selected documents is performed, rather large classes can be obtained. However,
the calculation of the space density left the major part of the documents out of
all the clusters.

A much more satisfying result was obtained by means of the greedy algorithm.
Its use yielded a cluster array where each cluster contains on the average 6-10
entries (for comparison: the total number of articles in the database is about
700). Thereat despite the necessity of constructing a similarity matrix, time
consumption was about the same as for those required by the Rocchio algorithm

276 V. Barakhnin, V. Nekhaeva, and A. Fedotov

(the reasons for that are described above in a greater detail). Therefore, the
greedy algorithm has several advantages over the method of complete subgraphs
and the Rocchio algorithm:

1. We do not have to face the problem of too few too large clusters.
2. We do not have to face the problem of too many small clusters.
3. No documents can be left out of all the clusters.
4. We do not have to face the problem of obtaining the document profiles, i.e.
centers around which clusters are formed.

Fig. 1. Greedy algorithm

Fig. 2. FriS-algorithm

Then FRiS-algorithm and greedy algorithm were compared. It turned out that
FRiS-algorithm gives better clustering accuracy. Below, the results of clustering
the databases of “Siberian mathematical journal” are presented obtained by
means of greedy algorithm and FRiS-algorithm.

Histograms (Fig. 1 and Fig. 2) show the composition of the obtained clusters.
Along the horizontal line, the conventional numbers of clusters are mapped (cor-
responding to particular sections of the classifier MSC-2000), the vertical axis
shows the number of documents in a cluster. As a criterion for the validity test

Similarity Determination for Clustering Textual Documents 277

of inclusion a publication in the cluster, its MSC-2000 classifier code was used.
If the classifier codes of the cluster centroid were included in the classifier codes
of this entry, we assumed that the entry was correctly included in the cluster.

As can easily be seen, the size of “noise” (shown in the upper part of the
columns) in the clusters under clustering by FRiS-algorithm is considerably lower
than for the case of the greedy algorithm. Moreover, clustering is more uniform,
and the percentage of one-element clusters is significantly lower.

Among comparative disadvantages of the FRiS-algorithm we should name
the necessity of manual specification of clusters number in clustering and a lit-
tle higher computational complexity — O(kN2) (where k is the user-specified
number of clusters) as compared with O(N2) of the greedy algorithm. However,
on clustering large bases such increase in complexity will no longer be so im-
portant, furthermore to create a system computerizing the process of scientific
publications selection, databases should be clustered only once. Therefore, FRiS-
algorithm was recognized as the optimal algorithm for solving the problem of
clustering databases of scientific publications.

5 Looking for the Optimum Method for Specifying the
Similarity in the Set of Documents

In order to specify the measure in the set of document we used formula (2) where
the following attributes of the bibliographic descriptions were used as scales:

– authors;
– key words;
– abstract.

Since the comparison of abstracts in an explicit form (i.e. as text lines) is obvi-
ously useless, the problem of singling terms out of the general texts of abstracts
was solved as a separate subproblem. At present, a special web-application is
accessible generating at a query an xml-document with a list of mathemati-
cal terms included in this query (as a source of terms, thesaurus [5] is used,
based on the “Mathematic encyclopedia”). Since in the Russian language nouns
and adjectives change their form when they are declined, the calculation of the
occurrence in the text of phrasal terms from a pre-specified set is a nontriv-
ial problem. The algorithm of the WEB-application is based on the use of two
indexes containing triads: “text number” — “position in the text” — “word
number in the lexical dictionary” and “term number” — “word position in the
term” — “word number in the lexical dictionary”. Thereat while the first index
occurs in practically every information retrieval system, the introduction of the
second index that allows the user to enhance drastically the algorithm efficiency
is quite original. The term index is located in the data storage [repository] of
the WEB-application together with their list and is supplemented as this list is
extended (changed).

278 V. Barakhnin, V. Nekhaeva, and A. Fedotov

Therefore, after the integration of this application into the document-clustring
program the user will be able to compare abstracts like other compound at-
tributes. In addition, on specifying the measure, it was taken into consideration
that the values of the weighting coefficients in formula (2) are determined by the
assumed a posteriori validity of data of the respective scale and in some cases
one of the coefficients can be increased with the proportional decrease in the
others.

In order to obtain the weighting coefficient for each attribute, clustering of
samples was performed from databases of the “Siberian mathematical journal”.
We considered samples of varying capacity, and as the truth criterion the result
of clustering was used which had been obtained using the measure based on
MSC-2000 codes.

As shown by the experiment, the greatest similarity with the clustering result
based on classifiers codes was attained by introducing the following condition-
action rules:

1. If each of the documents d1 and d2 has more than two authors and at least
2/3 of their authors coincide, the respective weighting coefficient of the attribute
“authors” was assumed to be equal to unity.

2. If each of the documents d1 and d2 contains more than three key words
and at least 3/4 of those words coincide, the corresponding weighting coefficient
of the attribute “key words” was assumed to be equal to unity.

3. If each of the documents d1 and d2 contains more than four terms from
the abstract thesaurus and at least 3/5 of these terms coincide, the weighting
coefficient of the attribute “abstract” was assumed to be equal to unity.

Otherwise we assume the coefficient of the attribute “authors” equal 0.2, and of
the attributes “key words” and “abstract” it is assumed to be 0.4.

Interestingly, these rules proved to be optimal both for the greedy algorithm
and the FRiS-algorithm.

6 Conclusion

A method for the determination of the documents similarity was developed and
tested based on comparing the attributes of bibliographic descriptions of the
documents.

A study was also performed for various algorithms for documents clustering
in order to identify the optimum algorithm for grouping the array of database
records with the information about scientific publications into clusters containing
articles devoted to similar subjects. The algorithms were tested on the database
of the “Siberian mathematical journal” containing bibliographic descriptions
of articles published from 2000 to 2005. The testing showed that the FRiS-
algorithm is optimum for this task although the greedy algorithm yields fairly
acceptable results too.

Similarity Determination for Clustering Textual Documents 279

References

1. Salton, G.: Dynamic information and library processing. Prentice-Hall, Inc., Upper
Saddle River (1975)

2. Voronin, Y.A.: Elements of Similarity Theory. Nauka, Novosibirsk (1991) (in
Russian)

3. Cormen, T., Rivest, R., Leiserson, C.: Introduction to Algorithms. Massachusetts
Institute of Technology (1990)

4. Zagoruiko, N.G., Borisova, I.A., Dyubanov, V.V., Kutnenko, O.A.: Methods of
recognition based on the function of rival similarity. Pattern Recognition and Image
Analysis 18(1), 1–6 (2008)

5. Barakhnin, V.B., Nekhaeva, V.A.: A technology for creation of object domain
thesaurus using encyclopedic subject index. Computational Technolgies 12(Special
issue), 3–9 (2007) (in Russian)

On the Problem of Prediction

Evgenii Vityaev1,2 and Stanislav Smerdov2

1 Sobolev Institute of Mathematics, Russian Academy of Sciences,
Koptyug prospect 4, Novosibirsk, 630090, Russia

2 Novosibirsk State University
evgenii.vityaev@math.nsc.ru

http://www.math.nsc.ru/AP/ScientificDiscovery

Abstract. Weconsiderpredictionsprovidedby Inductive-Statistical (I-S)
inference. It was noted by Hempel that I-S inference is statistically am-
biguous. To avoid this problem Hempel introduced the Requirement of
Maximal Specificity (RMS). We define the formal notion of RMS in
terms of probabilistic logic, and maximally specific rules (MS-rules), i. e.
rules satisfying RMS. Then we prove that any set of MS-rules draws no
contradictions in I-S inference, therefore predictions based on MS-rules
avoid statistical ambiguity. I-S inference may be used for predictions in
knowledge bases or expert systems. In the last we need to calculate the
probabilistic estimations for predictions. Though one may use existing
probabilistic logics or “quantitative deductions” to obtain these estima-
tions, instead we define a semantic probabilistic inference and prove that
it approximates logical inference in some sense. We also developed a
program system ‘Discovery’ which realizes this inference and was suc-
cessfully applied to the solution of many practical tasks.

Keywords: scientific discovery, probability and logic synthesis, proba-
bilistic logic programming, machine learning.

1 Introduction

1.1 The Statistical Ambiguity Problem

One of the major results of the Philosophy of Science is the so-called Covering
Law Model, which was introduced by Hempel in the early sixties in his famous
article ‘Aspects of Scientific Explanation’ (see Hempel [1], [2], and Salmon [3]
for a historical overview). The basic idea of this covering law model is that a fact
is explained by subsumption under the so-called covering law, i.e. the task of an
explanation is to show that a fact can be considered as an instantiation of a law.
In the covering law model two types of explanation are distinguished: Deductive-
Nomological explanations (D-N explanations) and Inductive-Statistical explana-
tions (I-S explanations). In D-N explanations the laws are deterministic, whereas
in I-S explanations the laws are statistical. Right from the beginning it was clear
to Hempel that two I-S explanations can yield contradictory conclusions. He
called this phenomenon the statistical ambiguity of I-S explanations [1], [2]. Let
us consider the following example of the statistical ambiguity.

K.E. Wolff et al. (Eds.): KONT/KPP 2007, LNAI 6581, pp. 280–296, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

On the Problem of Prediction 281

Suppose that we have the following statements about Jane Jones. ‘Almost all
cases of streptococcus infection clear up quickly after the administration of peni-
cillin’(L1). ‘Almost no cases of penicillin resistant streptococcus infection clear
up quickly after the administration of penicillin’(L2). ‘Jane Jones had strepto-
coccus infection’(C1). ‘Jane Jones received treatment with penicillin’(C2). ‘Jane
Jones had a penicillin resistant streptococcus infection’(C3). From these state-
ments it is possible to construct two contradictory arguments, one explaining
why Jane Jones recovered quickly (E), and the other one, explaining its nega-
tion why Jane Jones did not recover quickly (¬E).

Argument1 Argument2
L1

C1, C2
E

[r]

L2
C2, C3
¬E

[r]

The premises of both arguments are consistent with each other, they could all be
true. However, their conclusions contradict each other, making these arguments
rival ones.

Hempel hoped to solve this problem by forcing all statistical laws in an argu-
ment to be maximally specific. That is, they should contain all relevant informa-
tion with respect to the domain in question. In our example, then, premise C3
of the second argument invalidates the first argument, since the law L1 is not
maximally specific with respect to all information about Jane Jones (presented
treatment is intuitively clear, but not formal, because we don’t have a precise
definition of specificity yet – it will appear in the following sections). So, we can
only explain ¬E, but not E.

1.2 Inductive-Statistical Inference

Hempel proposed the formalization of the statistical inference as Inductive-
Statistical Inference (I-S inference) and the property of maximally specific
statistical laws as the Requirement of Maximal Specificity (RMS). The Inductive-
Statistical Inference has the form:

L1, . . . , Lm

C1, . . . , Cn

G
[r]

It satisfies the following conditions:

– L1,. . . ,Lm, C1,. . . ,Cn � G;
– L1,. . . ,Lm, C1,. . . ,Cn are consistent;
– L1,. . . ,Lm � G; C1,. . . ,Cn � G;
– L1,. . . ,Lm are composed of statistical quantified formulas.
– C1,. . . ,Cn are quantifier-free;
– RMS: All laws L1,. . . ,Lm are maximally specific.

282 E. Vityaev and S. Smerdov

In Hempel’s [1], [2] the RMS is defined as follows. An I-S argument of the form:

p(G; F)
F (a)
G(a)

[r]

is an acceptable I-S explanation with respect to a “knowledge state” K, if the
following Requirement of Maximal Specificity is satisfied. For any class H for
which the corresponding two sentences are contained in K

∀x(H(x) ⇒ F (x)), (1)
H(a),

there exists a statistical law p(G;H) = r’ in K such that r = r’. The basic idea of
RMS is that if F and H both contain the object a , and H is a subset of F, then
H provides more specific information about the object a than F, and therefore
the law p(G;H) should be preferred over the law p(G; F).

1.3 The Requirement of Maximal Specificity in Default Logic

Nowadays the same problems arise in non-monotonic logic and especially in
default logic. Hempel’s RMS produces also non-monotonic effects in inductive
statistical reasoning. The streptococcus infection example is non-monotonic in
the following sense. It was observed that the conflict between argument 1 and the
argument 2 depends on the knowledge state K. If K contains only the information
that John is infected, then RMS determines that argument 1 is the best (or the
most specific) explanation: since no additional information (such as C3) is given,
so L1 is maximally specific according to K. In that case, K implies the conclusion
that John will recover quickly. However, if K is expanded with the premise C3, i.e.
the information that John had a penicillin resistant streptococcus infection, then
RMS determines that argument 2 explains that John will not recover quickly.
Hence, the conclusion that John will recover quickly is not preserved under
expansion of K.

Yao-Hua Tan [4] showed that there is a remarkable resemblance between two
research traditions: default logic and inductive-statistical explanations. Both re-
search traditions have the same research objective; to develop formalisms for
reasoning with incomplete information. In both research traditions the crucial
problem that had to be dealt with is the problem of Specificity, i.e. when two ar-
guments conflict with each other the most specific argument has to be preferred
to the less specific argument. This criterion of specificity, that was proposed in
AI research, is very similar to the criterion of maximal specificity suggested by
Hempel in the early sixties.

Let us formulate the Requirement of Maximal Specificity (RMS*) in default
logic. Essentially, default logic is an ordinary first-order predicate logic extended
with extra inference rules that are called default rules. The logical form of a
default rule is:

(α(x) : β1(x), . . . , βn(x)/ω(x))

On the Problem of Prediction 283

The subformulas α(x), βi(x), and ω(x) are predicate logical formulas with free
variable x. The subformula α(x) is called the prerequisite, βi(x) are the justifica-
tions and ω(x) is the consequent of the default rule. The intuitive interpretation
of a default rule follows: if the prerequisite α(x) is valid, and all justifications
βi(x) are consistent with the available information (i.e. ¬βi(x) is not derivable
from the available information), then one can assume that the consequent ω(x)
is valid.

A set of formulas E is an extension of the default theory Δ = 〈W;D〉, D – the
set of default rules, W – a set of predicate logical formulas, if E is the smallest set
such as: W ⊆ E; E = Th(E); for each default rule (α(x):β1(x),. . . ,βn(x)/ω(x))
∈ D, and each term t: if α(t) ∈ E, and ¬β1(t),. . . ,¬βn(t) /∈ E, then ω(t) ∈ E.

RMS*: If a default theory has multiple conflicting extensions, then the exten-
sion is preferred which is generated by the most specific defaults [4].

The default rule with the ‘most specific’ prerequisite is preferred in case of
conflicts. Let A(x) and B(x) be the prerequisites of the default rules D1 and D2.
The prerequisite A(x) is more specific than B(x) if the set that the predicate A
refers to is a subset of the set that B refers to, i.e. if the sentence ∀x(A(x) ⇒
B(x)) is valid. It is obvious that this criterion can be considered as the analogue
of RMS in default logic.

1.4 The Solution of the Statistical Ambiguity Problem

From the previous consideration we see that the statistical ambiguity problem
raises in AI in different forms, but it isn’t solved hitherto. We will once again
state the problem:

– is it possible to define the RMS in such a way that it solves the statistical
ambiguity problem?

– can we define the RMS in such a way that the set of sentences satisfying the
RMS will be consistent?

This problem is very important, because it means the consistency of predictions.
The predictions nowadays are produced by different AI systems. In this paper
we present our solution of this problem. We define the set of Maximally Specific
Rules (MSR) and the Requirement of Maximal Specificity (RMS) and prove that
sentences from MSR satisfy RMS and that the set MSR is consistent.

1.5 Probabilistic Approximation of Empirical Theories

Let us consider the task of the empirical theory discovery in the presence of noise
provided for example the propensity interpretation of probability by Karl Popper.

Let L be the first-order logic with signature 	 = 〈P1, ..., Pm〉, m > 0, where
P1, ..., Pm are predicate symbols of arity n1,..., nm, and fixed tuples of variables
attached to each predicate symbol (so every predicate appears only with its own
variables — this situation is quite similar to propositional classical logic). An
empirical system [5] is taken to mean a finite model M = 〈B,W〉 of the signature
	, where B is the basic set of the empirical system, and W = 〈P1,...,Pm〉 is the

284 E. Vityaev and S. Smerdov

tuple of predicates of the signature 	 defined on B. Let Th(M) be the set of all
rules, which are true on the empirical system M and having the form:

C = (A1&...&Ak ⇒ A0), k ≥ 0 (2)

where A0, A1, ..., Ak are literals.
In the next section we define the notion of law and the set of all laws L

and prove that L � Th(M). Hence, we can solve the task of empirical theory
discovery by discovering all laws from the set L. In section 5 we prove that L ⊂
MSR and in section 7 we prove that MSR is consistent. Therefore MSR � Th(M)
and MSR provides a probabilistic approximation of the empirical theory Th(M).
See the review of Jon Williamson [6] for other approaches.

1.6 Approximation of Logical Inference by Semantic Probabilistic
Inference

So far we considered I-S-inferences using one rule for the inference. In general,
I-S-inference uses many rules for the inference in knowledge bases and expert
systems. This inference is based on the logical inference rules. The probability
estimations of the inference results are obtained by the probabilistic logics or so
called “quantitative deductions” [10], [11]. These estimations not always produce
satisfactory results.

We replace the logical inference by the special semantic probabilistic inference,
which produces all rules of the sets L, MSR, and also approximates the logical
inference. We prove (Theorem 7) that estimations produced by the semantic
probabilistic inference are no less (or even greater) than estimations produced
by the probabilistic logics based on the logical inference.

2 Laws

Proposition 1. The rule C = (A1&...&Ak ⇒ A0) logically follows from any
rule of the form:

(B1&...&Bh ⇒ A0) � (A1&...&Ak ⇒ A0), (3)
{B1, ..., Bh} ⊂ {A1, ..., Ak}, 0 ≤ h < k

Definition 1. By a subrule of the rule C = (A1&...&Ak ⇒ A0) we mean any
logically stronger rule of the form (3).

Corollary 1. If a subrule of the rule C is true on M, then the rule C is also
true on M.

Definition 2. By a law on M, we mean any rule C of the form (2) that satisfies
the following conditions [7], [8]:

(1) C is true on M;
(2) the premise of the rule is not always false on M;
(3) none of its subrules is true on M.

Let L be the set of all laws on M.

Theorem 1. [7]. L � Th(M).

On the Problem of Prediction 285

3 The Probability of Events and Sentences

Let us generalize the notion of law into the probabilistic case. For this purpose we
introduce the probability on the model M. For the sake of simplicity we define
the probability in the most simple case (follow the paper [9]). More general
definitions of probability function μ are considered in [9]. Further considerations
don’t depend on the selected probability definition and, for example, true for
definition 10 below.

We introduce the probability μ as a discrete function on B (B should be
countable), μ: B → [0,1] such that

∑

a∈B

μ(a) = 1, and μ(a) �= 0, a ∈ B; μ(D) =
∑

b∈D

μ(b), D ⊆ B (4)

We define the probability μ on the product Bn as a probability function
μn(a1, ..., an) = μ(a1) × ... × μ(an).

Let us define the interpretation of the language L on the empirical system M
= 〈B,W〉 as mapping I: 	 → W, which associates with every signature symbol
Pj ∈ 	, j = 1,...,m, the predicate Pj from W of the same arity. Let X = {x1,
x2, x3, ... } be the set of all variables of the language L. By the validation ν is
meant the function ν: X → B, mapping variables into the set of objects B.

Let us define the probability for the sentences of the language L. Let U() be
the set of all atomic formulas of the language L; �() is the set of all sentences
of the language L, obtained by closure of the set U() with respect to standard
Boolean operations &,∨,¬. By the ϕ̂, ϕ ∈ �() we define the formula, where the
predicate symbols of 	 are substituted by the predicates of W via interpretation
I and by the νϕ̂ we define the formula, where variables of the formula ϕ̂ are
substituted by the objects of A via the validation ν. In particular, νP̂j(x

j
1,...,x

j
nj

)εj

= Pj(a1,...,aj)εj, ν(xj
1) = a1 ,. . . , ν(xj

nj
) = aj. Let us define the probability η of

the sentences of �(). If x1,. . . ,xn are all variables of the sentence ϕ ∈ �(),
then

η(ϕ) = μn({(a1, . . . , an) | νϕ̂ is true on M, ν(x1)=a1, . . . , ν(xn)=an}) (5)

4 The Probabilistic Laws on M

Let us revise the concept of the law on M in terms of probability. We do it in
such a way that the concept of the law on M would be a particular case of this
definition. A law on M is a true rule such that all its subrules are false on M or,
in other words, a law is such a true rule that cannot be made simpler or logically
stronger without losing its truth. This property of the law “not to be simplified”
allows stating the law not only in terms of truth but also in terms of probability.

For the rule C = (A1& ...&Ak ⇒ A0) we define the conditional probability as
η(C) = η(A0/A1& ...&Ak) = η(A0&A1& ...&Ak)/η(A1& ...&Ak).

Theorem 2. [7]. For any rule C = (A1&...&Ak ⇒ A0), the following two con-
ditions are equivalent:

286 E. Vityaev and S. Smerdov

1. a rule C is a law on M, that is, it satisfies properties (1–3) of Definition 2;
2. (a) η(C) = 1;

(b) η(A1&...&Ak) > 0;
(c) the conditional probability η(C) of the rule C is strictly greater than the
conditional probability of each of its subrules.

This theorem gives us the equivalent definition of the law on M.

Definition 3. By a probabilistic law on M with conditional probability 1 is
meant the rule C = (A1&...&Ak ⇒ A0) of the form (2) satisfying the following
conditions:
1. η(C) = 1, η(A1&...&Ak) > 0;
2. conditional probability of the rule η(C) is strictly greater than the conditional

probability of each of its subrules.

The next corollary follows from Theorem 2.

Corollary 2. A rule is a probabilistic law on M with conditional probability 1
iff it is a law on M.

Let us consider items 1 and 2 of Theorem 2 from the standpoint of the ‘not to
be simplified’ law:
– A law is such a true on M rule that cannot be simplified or made logically

stronger without loss of truth.
– Any logically stronger subrule of a rule has has a conditional probability

smaller than 1, so the rule cannot be simplified without loosing the value 1
of the conditional probability.

A more general definition of a law follows:

Definition 4. A law is such a rule of the form (2) based on truth values, con-
ditional probability or other evaluations of the sentences, which cannot be made
logically stronger without reducing their values.

Therefore, we can define the probabilistic law for the more general case by omit-
ting the condition η(C) = 1 from the point (1) of Definition 3.

Definition 5. By a probabilistic law on M we mean such a rule C = (A1&...&
Ak ⇒ A0) of the form (2), the conditional probability of which is defined and
strictly greater than the conditional probability of each of its subrules. In par-
ticular, the conditional probability η(C) of the rule C is strictly greater than the
probability η(A0), which is the probability of the subrule (⇒ A0).

Let us denote by LP the set of all probabilistic laws. It follows from Theorem 2
and Definition 5 that the set LP includes the set L.

Corollary 3. L ⊆ LP.

Definition 6. By a Strongest Probabilistic Law (SPL-rule) on M, we designate
such a probabilistic law C = (A1& ...&Ak ⇒ A0), which is not a subrule of any
other probabilistic law.

We define as SPL the set of all SPL-rules.

Proposition 2. L ⊆ SPL ⊆ LP.

On the Problem of Prediction 287

5 Semantic Probabilistic Inference

Let us define the Semantic Probabilistic inference (SP-inference) of the sets of
laws L and probabilistic laws LP .

Definition 7. [7], [8], [16]. By a Semantic Probabilistic inference of some SPL-
rule C we mean a sequence C1, C2, . . . , Cn = C ∈ LP , denoted by C1 � C2 �
· · · � Cn, such that:

Ci = (Ai
1& . . .&Ai

ki
⇒ G), i = 1, 2, . . . n, n > 0, (6)

the rules Ci are subrules of the rules Ci+1,

η(Ci+1) > η(Ci), i = 1, 2, . . . , n − 1,

and this sequence is maximal, i.e., there is no C ′ ∈ LP such that η(C ′) > η(C)
and C is a subrule of C ′.

Unlike probabilistic logics [10], [11] the probability of the sentences is strictly
increase in the process of SP-inference.

Proposition 3. Any probabilistic law from LP belongs to some SP-inference.
For any SPL-rule there is some SP-inference of that rule.

Corollary 4. For any law from L there is some SP-inference of that law.

Let us consider the set of all SP-inferences of the sentence G. This set constitutes
the Semantic Probabilistic Inference lattice (SPI-lattice) of this sentence.

Definition 8. By a maximally specific rule MS(G) of a sentence G we mean a
SPL-rule of the SPI-lattice of the sentence G, which has the maximum value of
conditional probability among all other SPL-rules of the SPI-lattice.

We define as MSR the set of all maximally specific rules.

Proposition 4. L ⊆ MSR ⊆ SPL ⊆ LP

6 Probabilistic Maximally Specific Laws

Now we define the Requirement of Maximal Specificity (RMS). We will suppose
that the class H of objects in (1) is defined by some sentence H ∈ �() of
the language L. In this case the RMS says that p(G;H) = p(G;F) = r for this
sentence. In terms of probability η it means that η(G/H) = η(G/F) = r for any
H ∈ �() satisfying (1).

Definition 9. The Requirement of Maximal Specificity (RMS):
if we add any sentence H ∈ �() to the premise of the rule (F ⇒ G), η(G/F) =
r, such that F(a)&H(a) for some object a, then for the new rule (F&H ⇒ G)
we have η(G/F&H) = η(G/F) = r.

288 E. Vityaev and S. Smerdov

In other words, the requirement RMS means that there is no other sentence H in
�() that increases (or decreases, see lemma 1 below) the conditional probability
η(G/F) = r by adding it to the premise.

Lemma 1. [8]. If the sentence H ∈ �() decreases the probability η(G/F&H)
< η(G/F) then the sentence ¬H increases it: η(G/F&¬H) > η(G/F).

Lemma 2. [8]. For any rule C = (B1&...&Bt ⇒ A0), η(B1&...&Bt) > 0, of the
form (2) there is a probabilistic law C’ = (A1&...&Ak ⇒ A0) on M which is a
subrule of the rule C and η(C’) ≥ η(C).

Theorem 3. [8]. Any MS(G) rule satisfies the RMS requirement.

Corollary 5. [8]. Any law on M satisfies the RMS requirement.

7 The Solution of the Statistical Ambiguity Problem

Theorem 4. [8]. The I-S inference is consistent for any theory Th ⊆ MSR in
the following sense: it is impossible to obtain a contradiction (ambiguity) in
I-S inference using only rules from Th, i. e. there are no (A ⇒ G) ∈ Th and
(B ⇒ ¬G) ∈ Th such that η (A&B) > 0.

Let us illustrate this theorem by the example of Jane Jones. We can define the
maximally specific rules MS(E), MS(¬E) for the sentences E, ¬E as follows:

L̂1 : ‘Almost all cases of streptococcus infection, that are not resistant to strep-
tococcus infection, clear up quickly after the administration of penicillin’;

L2 : ‘Almost no cases of penicillin resistant streptococcus infection clear up
quickly after the administration of penicillin’.

The rule L̂1 has a greater value of conditional probability than the rule L1;
hence, it is a MS(E) rule for the sentence E. These two rules can’t be fulfilled
on the same data.

So, we can predict without contradictions, if we use the set MSR as statistical
laws in I-S inference.

8 Probabilistic Herbrand Models

In the following, we perform all considerations in the frame of logical program-
ming with functional symbols, substitutions, and the countable set of variables.
For that purpose we extend our language and redefine some definitions. Next
sections 8-12 are updated and translated version of the paper [16].

Consider a first order language L with equality of the finite signature Ω =
〈P1, P2, ..., Pn1 , f1, f2, ..., fn2 , c1, c2, ..., cn3〉. Let U denotes a set of all ground
terms (without free variables), X – a countable set of variables, T – a set of
terms, FL – a set of formulas, F – a set of formulas without quantifiers, S – a set

On the Problem of Prediction 289

of sentences (formulas without free variables), � = F∩S – the set of all ground
sentences of the signature, BL – the set of all ground atoms of the signature Ω.

A mapping θ: X → T is called a substitution. Denote by Θ the set of all
substitutions. The substitution θ(x) = x is called identical. Substitutions are
naturally extended to arbitrarily expressions. Thus, substitutions for the term
t = f(t1,...,tn) and atom A = P(t1,...,tn) are equal to θt = f(θt1,...,θtn), θA =
P(θt1,...,θtn) respectively. A rule θA ← θA1,...,θAn is a variant of the rule A ←
A1,. . . ,An if θ is a permutation of the set X.

Following [9], let us define a probability μ on a subset F’ ⊆ F, F’ �= ∅ of
sentences closed with respect to logical operations & ,v,¬ and term substitutions.

Definition 10. A mapping μ: F’ → [0,1] is called a probability provided that
the following conditions are satisfied:

1) if � φ, then μ(φ) = 1;
2) if � ¬(φ&ψ), then μ(φ ∨ ψ) = μ(φ) + μ(ψ);

Definition 11. A pair M = 〈U, μ〉, where μ is a probability on �, is called a
probabilistic Herbrand model of signature Ω.

Definition 12. A pair M = 〈U, μ〉, where I : BL → {0, 1}, is called a Herbrand
model of signature Ω.

Let there be given a certain class G ⊆ 2BL of Herbrand models (a set of possible
worlds) and a probability μ on F. For every ϕ ∈F let G(φ) = {M |M ∈ G, M |=
φ}, where |= denotes the satisfaction, and let D= {G(φ) | φ ∈ F}.
Definition 13. A class G of Herbrand models is said to be coordinated with the
probability μ on the set of formulas F’, and a probabilistic Herbrand model M =
〈U, μ〉 is said to be a probabilistic model of the class G if μ(φ) = 0 follows from
G(φ) = ∅, φ ∈ F .

We will consider two cases: F ′ = F and F ′ = �. In the first case, the probability
expands on sentences with free variables as μ(ϕ) = inf

θ∈ΘG
{μ(ϕθ)}, where ΘG is

the set of all substitutions of variables by ground terms.

9 Logical Programs

Let PR denotes a set of all rules A ← A1, ..., Ak, k ≥ 0 of the signature Ω,
where A, A1, ..., Ak are atoms of the signature Ω. If atom A is absent, then the
rule ← A1, ..., Ak (k � 0) is called a goal (request). In requests we will write ’&’
between atoms instead of ’,’. If k = 0, then the rule A ← is called a fact. A logic
program Pr is a finite collection of rules.

Let fix a selection rule R, which selects one of the atoms from a request. Let
N = ← A1&...&Ai&...&Ak, k ≥ 1 be a request, where the rule R selects the
atom Ai, and a rule C = A ← B1, ..., Bm be a variant of some rule of the program

290 E. Vityaev and S. Smerdov

Pr, where all the variables are different from those of the request. Let θ be the
most general unification of the atoms Ai, A (Aiθ = Aθ). Then the requests

← (A1&...&Ai−1&B1&...&Bm&Ai+1&...&Ak)θ, ifm ≥ 1 (7)
← (A1&...&Ai&...&Ak)θ,ifm = 0

are called inferred from the request N by the rule C = A ← B1, ..., Bm with the
help of the substitution θ and the selection rule R. It is seen from the definition,
that the atom Ai is not removed from the request after the unification with a
certain program fact. Such atoms will be underlined. Suppose, that the rule R
does not select the underlined atoms for the next inference steps.

The set of all possible requests of the signature Ω with the given relation of
inference is called a calculation space of the program Pr and the selection rule R.
A maximal sequence of requests N = N0, N1, N2, ... together with the sequence
of rules C0, C1, C2, ... and unification’s θ0, θ1, θ2, ... such, that requests Ni+1 are
inferred from the requests Ni by means of the rules Ci, substitutions θi and the
selection rule R, i = 1,2,... is called a SLDF-inference (Linear resolution with
Selection rule for Definite clauses and underlined Facts) of the goal N in the
calculation space. A SLDF-inference is a maximal path in the calculation space,
starting with N. A SLDF-inference ending by a request with all atoms underlined
is called successful. A finite inference, which is not successful, is called dead
ended. A set of all SLDF-inferences starting with the goal N can be presented
in the form of a tree (a prefix tree of SLDF-inferences). This tree is called the
SLDF-tree of the request N calculations. The SLDF-tree containing a successful
SLDF-inference is called a successful SLDF-tree.

10 Estimations of the Probability and Conditional
Probability of Requests

Let M = 〈U, μ〉 be a probabilistic Herbrand model. Consider a successful SLDF-
inference N = N0, N1, ..., Nk of the request N in a calculation space of the
program Pr obtained by means of the sequence of rules C0, C1, ..., Ck−1, unifica-
tion’s θ0, θ1, ..., θk−1, θ � θ0θ1...θk−1 and the selection rule R (here we suppose
that any Ni and Nj have no common variables – this modification can be easily
performed by choosing the appropriate variants of rules C0, . . . , Ck−1).

It is not difficult to show that the sequence of requests Nθ, N1θ, ..., Nkθ = Nk

is also a successful SLDF-inference of the request Nθ by means of the same
sequence of rules C0θ, C1θ, ..., Ck−1θ, identical unifications and the selection rule
R.

The probability of a rule C = A ← B1, ..., Bm (m ≥ 1) is defined and equal
to

μ(C) = μ(A|B1&...&Bm) = μ(A&B1&...&Bm)/μ(B1&...&Bm)

iff μ(B1&...&Bm) �= 0 and it is undefined otherwise. Represent facts A ← by
the rules A ← true. Then μ(C) = μ(A|true) = μ(A). Suppose that μ(C) means
that the probability is defined. Denote by PR0 ⊆ PR the set of all rules, for
which conditional probability μ is defined; Pr0 � PR0 ∩ Pr.

On the Problem of Prediction 291

Definition 14. A rule C is true on a Herbrand model N ∈ 2BL (N |= C) iff it
is true on N under any state (for any mapping ρ: X → U).

Definition 15. A program Pr is true on a Herbrand model N (N |= Pr) iff each
rule of the program is true on N.

Definition 16. A program Pr is true on a class G of models iff ∀N ∈ G, N |=
Pr.

We will write C∈F ′ for the rule C � A←B1&...&Bm, as soon as A, B1, ..., Bm ∈
F ′.

Proposition 5. If C ∈ Pr∩F ′, C = A ← B1, ..., Bm, μ(B1&...&Bm) > 0, then

μ(¬(B1&...&Bm) ∨ A) = 1 ⇔ μ(C) = 1.

Corollary 6. If the program Pr is true on the class of Herbrand models G, which
is coordinated with the probability μ on the set of formulas F’, then μ(C) = 1,
C ∈ Pr∩F ′, if it is defined.

Denote the conjunction of all non-underlined atoms of the request Ni by N∧
i .

If all atoms are underlined (as in the request Nk), then N∧
k = true. Denote the

conjunction of all underlined atoms of the request Ni by NiF
∧. Then, NiF

∧ is
a conjunction of all facts used in the SLDF-inference of the request Nθ.

Consider the inference of the requests (7) from the request

Nθ = ← (A1&...&Ai&...&Ak)θ, k ≥ 1

by means of the rule C = A ← B1, ..., Bm. Let us estimate the probabili-
ties μ(Nθ∧), μ(Nθ∧|NkF∧) assuming, that only probabilities μ(N1θ

∧), μ(Aiθ),
μ(Bθ) and p = μ(Aθ|Bθ∧) are known, where B stands for the conjunction
B1 ∧ · · · ∧ Bm.

Lemma 3. [16]. If μ(N1θ
∧) > 0 and μ(Bθ) > 0, then:

1) μ(Nθ∧) ≤ μ(¬Bθ∧) + min{μ(N1θ
∧), μ(Aθ&Bθ∧)};

2) μ(Nθ∧) ≥ μ(N1θ
∧) − (1 − p)μ(Bθ∧);

3) μ(Nθ∧|N1θ
∧) ≤ p/μ(Nθ∧|Bθ∧);

4) μ(Nθ∧|N1θ
∧) ≥ 1 − (1 − p)/μ(Nθ∧|Bθ∧).

Corollary 7. [16]. If μ(N1θ
∧) > 0, μ(Bθ) > 0 and p = 1, then:

1) μ(N1θ
∧) ≤ μ(Nθ∧) ≤ min{1, μ(¬Bθ∧) + μ(N1θ

∧)};
2) μ(Nθ∧|N1θ

∧) = 1.

Corollary 8. [16]. If μ(N1θ
∧) > 0 and the rule is the fact (A ← true)θ, μ(Bθ) =

1, then:
1) μ(Nθ∧) ≤ min{μ(N1θ

∧), μ(Aθ)};
2) μ(Nθ∧) ≥ μ(N1θ

∧) + μ(Aθ) − 1;
3) μ(Nθ∧|N1θ

∧) ≤ μ(Aθ)/μ(N1θ
∧);

4) μ(Nθ∧|N1θ
∧) ≥ 1 − (1 − μ(Aθ))/μ(N1θ

∧).

292 E. Vityaev and S. Smerdov

Corollary 9. [16]. If μ(Bθ) > 0, then:
1) μ(Nθ∧&Bθ∧) ≤ min{μ(N1θ

∧), μ(Aθ&Bθ∧)};
2) μ(Nθ∧&Bθ∧) ≥ μ(N1θ

∧) − (1 − p)μ(Bθ∧).

Consider the SLDF-inference Nθ, N1θ, ..., Nk of the request Nθ by means of se-
quence of rules Ciθ = (Ai ← Bi

1, ..., B
i
ki

)θ, i = 0, ..., k−1 and empty unifications.
Denote Biθ = (Bi

1&...&Bi
ki

)θ, pi = μ(Ciθ).

Theorem 5. [16]. If μ(Biθ) > 0, i = 0, ..., k − 1, then under the previous con-
ditions

μ(Nθ∧&A0θ&...&Ak−1θ) ≥ 1 −
k−1∑

i=0

(1 − pi)μ(Biθ)

Corollary 10. [16]. If μ(Biθ) > 0, i = 0, ..., k − 1, then under the previous
conditions

μ(Nθ∧) ≥ 1 −
k−1∑

i=0

(1 − pi)μ(Biθ).

For every successful SLDF-inference Nθ = N0θ, N1θ, ..., Nk−1θ, Nk, there exists
a SLDF

′
-inference Nθ = N ′

0θ, N
′
1θ, ..., N

′
iθ, , ..., N

′
k−1, N

′
k = Nk, where facts are

used in the last turn and the rules Cjθ with kj ≥ 1; j = 1, ..., i − 1 are applied
before facts. Then the request N ′

iθ has the form ← A′
1, ..., A

′
s, and the request

Nk - the form ← A′
1, ..., A

′
s. Such a SLDF

′
-inference is called normalized.

Theorem 6. [16]. If μ(Bjθ) > 0, j = 0,1, ..., i-1, and μ(NkF∧) > 0, then for a
successful SLDF-inference as defined earlier

μ(Nθ∧|NkF∧) ≥ 1 −
i−1∑

j=0

(1 − pj)μ(Bjθ)/μ(NkF∧),

where pj – conditional probabilities, Bjθ – conditions of the rules Cj , j =
1, ..., i− 1.

Let us define the probability estimations ν(N), η(N) of the calculation space
requests for the program Pr and selection rule R. Consider the SLDF-tree of
some request N in the calculation space. If the SLDF-tree is not successful, then
estimations ν and η are not defined. For the successful SLDF-tree consider a set
{SLDF ′

i}i∈I , I �= ∅ of all successful normalized SLDF-inferences of the requests
{Nθi}i∈I .

Determine the estimations {νi}i∈I , which are equal to the right-hand side of
the inequality of Corollary 10, for the probabilities μ(Nθi∧) ≥ νi (∀i ∈ I) of
the requests {Nθi}i∈I obtained by corresponding inferences. Determine also the
estimates {ηi}i∈I , which are equal to the right-hand side of the inequality of
the theorem for the conditional probabilities μ(Nθi∧|N i

kiF
∧) ≥ ηi(∀i ∈ I) of the

requests {Nθi}i∈I . Define ν(N) = sup
i∈I

{νi}, η(N) = sup
i∈I

{ηi}.

On the Problem of Prediction 293

The SLDF-inference of the request N, where the estimation η(N) is reached,
is called a prediction of the request N. The value η(N) is called the estimation of
the request N prediction. If the prediction is not defined, then the estimation of
the prediction η(N) is not defined.

Define the relation � - “to be more common” on the set PR. Denote the set of
all substitutions, which are not rearrangements, by Θt (the identical substitution
belongs to Θt).

Definition 17. The relation C ′ � C, C = A ← B1, ..., Bm, C ′ = A′ ← B′
1, ...,

B′
m′, m, m′ ≥ 0 takes place, iff there exists a substitution θ ∈ Θ such, that

A′θ = A, {B′
1θ, ..., B

′
m′θ} ⊆ {B1, ..., Bm} and either θ ∈ Θt is not an identical

substitution or m′ < m.

11 Inductive Synthesis of Probabilistic Logic Programs

A full set of facts for the class of models G represents a collection of sets F (N) =
{A ← | N |= A for any state of the atom A}, N ∈ G. Any finite collection D of
finite subsets D(N) ⊂ F(N) is called data. A probabilistic Herbrand model M =
〈U, μ〉, which is in accordance with the class of models G, is called a probabilistic
Herbrand model of data D.

In what way should the rules C = A ← B1, ..., Bm, m ≥ 1 be used for
predictions? If, at a certain substitution, θ ∈ Θ the conjunction (B1&...&Bm)θ is
true on a certain model N, which was chosen randomly from G in accordance with
the measure μ, i.e. {B1θ, ..., Bmθ} ⊆ F (N), then the conclusion Aθ is true on
N with the probability μ(Aθ|(B1&...&Bm)θ) ≥ μ(A|B1&...&Bm) = μ(C). Thus,
the probability μ(C) for rules with variables gives a lower bound for prediction
probabilities of the atom Aθ. Note that only one model N, chosen arbitrarily
from G, and the corresponding data D(N) should be used for predictions.

Definition 18. The relation C ′ � C � (C′ � C)&(μ(C′) < μ(C)) is called the
probabilistic inference relation.

Definition 19. A rule C ∈ PR0, such that ∀C ′ ∈ PR0(C′ � C ⇒ C′ � C), is
called a probabilistic regularity (P-rule).

Let PR(M) denote the set of all P-rules, and P(M) ⊂ PR(M) – the set of all
P-rules, where the premise contains at least one atom.

Definition 20. A set of rules PR(M, N) = P (M) ∪ D(N), where D(N) ∈
D, and N is a certain model chosen arbitrarily from G in accordance with the
measure μ, is called a probabilistic logic program synthesized inductively by data
D(N) and the probabilistic model of data M .

12 Predictions Based on Semantic Probabilistic Inference

Definition 21. [16]. A maximal sequence of rules C1 � C2 � ..., where C1, C2,
... ∈ P (M), Ci = Ai ← Bi

1, ..., B
i
ki

, i = 1, 2, ... such that an atom A is unified

294 E. Vityaev and S. Smerdov

with all atoms A1, A2,... is called a semantic probabilistic inference (P-inference)
of the atom A of the signature Ω. If such a sequence for the atom A does not
exist, then the P-inference is empty. Each P-inference produces a sequence of
substitutions θ1, θ2, ... from the definition of the relation � . A substitution
θ = θ1θ2... is called a semantic probabilistic inference result (calculation). The
final rule of the finite P-inference is called a resulting rule.

Definition 22. [16]. By a P-prediction of some atom A of the signature Ω by
the program PR(M, N) = P (M)∪D(N) we mean such a P-inference C1 � C2 �
... Ci � ... , C1, C2, ..., Ci, ... ∈ P(M) of the goal A, where:

1. There exists a rule Ci = Ai ← Bi
1,...,B

i
li

and a substitution θ such that
{Bi

1θ,...,Bi
li
θ} ⊆ D(N); Aθ = Aiθ; μ(Aiθ) < μ(Ci);

2. A maximum of conditional probability is reached on the rule Ci among all
rules, satisfying condition 1, of all P-inferences of the goal A;

3. If there is no P-inference of the goal A or there is no required substitution,
then a P-prediction is not defined;

4. A substitution θp = θ1θ2...θi−1θ, where θ1,θ2,...,θi−1 are the substitutions
of the P-inference C1 � C2 � ... � Ci , is called the P-prediction result. The
value ηp(A) = μ(Ci) is called the P-prediction value. If a P-prediction is not
defined, then the value ηp(A) is not defined.

Proposition 6. Rules satisfying point 2 are not comparable with respect to the
relation �.

Though for the sake of simplicity the following statements (Lemmas 4–5, Corol-
lary 11 and Theorem 7) are given in the frame of finite signature with no func-
tional symbols (predicate and constant symbols are allowed) which is standard in
probabilistic logic programming [12], a broader case of signature with functional
symbols is also investigated (see [18]).

Lemma 4. A P-prediction is defined iff there is at least one rule C ∈ P (M)
satisfying point 1 of Definition 22.

Lemma 5. Let rule C ∈ PR0 satisfy point 1 of Definition 22 and has at least
one atom in the premise, then either C is a P-rule (C ∈ P (M)) or there exists
a rule C′ ∈ P (M) such that C′ � C, μ(C′) ≥ μ(C) and C ′ satisfying point 1 of
Definition 22.

Corollary 11. A P-prediction is defined iff there is a rule C ∈ PR0 with at
least one atom in the premise that satisfies point 1 of Definition 22.

Let Pr be the logical program with facts belonging to the facts D(N) of the
program PR(M, N) = P (M) ∪ D(N).

Theorem 7. [16]. If atom A is predicted by the program Pr with estimation
η(A) > μ(Aθ), for any θ ∈ ΘG, then it is P-predicted by the program PR(M, N)
with P-prediction value ηp(A) ≥ η(A).

On the Problem of Prediction 295

13 The Relational Data Mining and Program System
‘Discovery’

Based on the semantic probabilistic inference the Relational Data Mining (RDM)
approach to the intensive area of applications – Knowledge Discovery in Data
Bases and Data Mining (KDD&DM) – was developed in [7], [8], [13], [14], [15],
[17]. The program system ‘Discovery’, which utilizes this approach, has been
implemented. This system realizes the SP-inference and can discover the sets of
laws L, LP and the sets SPL, MSR. So, we may discover the full (in the sense of
Theorem 1 and Propositions 2,4) and consistent (in the sense of Theorem 4) sets
of rules. In [7], [17] we argue that using RDM we may cognise the object domain.
The system ‘Discovery’ has been successfully applied to solve many practical
tasks: as a cancer diagnostic systems, time series forecasting, psychophysics,
bioinformatics, and many others (see www-site Scientific Discovery [19].

Acknowledgments

The work is partially supported by the Council for Grants (under RF President)
and State Aid of Leading Scientific Schools (grant NSh-3606.2010.1); Russian
Science Foundation grant 08-07-00272a and Integration projects of the Siberian
Division of the Russian Academy of science 47,111,119.

References

1. Hempel, C.G.: Aspects of Scientific Explanation. In: Hempel, C.G. (ed.) Aspects
of Scientific Explanation and other Essays in the Philosophy of Science. The Free
Press, New York (1965)

2. Hempel, C.G.: Maximal Specificity and Lawlikeness in Probabilistic Explanation.
Philosophy of Science 35, 116–133 (1968)

3. Salmon, W.C.: Four Decades of Scientific Explanation. University of Minnesota
Press, Minneapolis (1990)

4. Tan, Y.H.: Is default logic a reinvention of inductive-statistical reasoning? Syn-
these 110, 357–379 (1997)

5. Krantz, D.H., Luce, R.D., Suppes, P., Tversky, A.:Foundations of measurement,
vol. 1, 2, 3, p. 577 (1971) p. 493 (1986) p. 356 (1990); Acad. press, New York

6. Williamson, J.: Probability logic. In: Gabbay, D., Johnson, R., Ohlbach, H.J.,
Woods, J. (eds.) Handbook of the Logic of Inference and Argument: The Turn
Toward the Practical. Studies in Logic and Practical Reasoning, vol. 1, pp. 397–
424. Elsevier, Amsterdam

7. Vityaev, E.E., Kovalerchuk, B.Y.: Empirical Theories Discovery based on the Mea-
surement Theory. Mind and Machine 14(4), 551–573 (2004)

8. Vityaev, E.E.: The logic of prediction. In: Proceedings of the 9th Asian Logic
Conference Mathematical Logic in Asia, Novosibirsk, Russia, August 16–19, 2005,
pp. 263–276. World Scientific, Singapore (2006)

9. Halpern, J.Y.: An analysis of first-order logic of probability. In: Artificial Intelli-
gence, vol. 46, pp. 311–350 (1990)

296 E. Vityaev and S. Smerdov

10. Nilsson, N.J.: Probability logic. Artif. Intell. 28(1), 71–87 (1986)
11. Ng, R.T., Subrahmanian, V.S.: Probabilistic reasoning in Logic Programming. In:

Proc. 5th Symposium on Methodologies for Intelligent Systems, pp. 9–16. North-
Holland, Knoxville (1990)

12. Ng, R.T., Subrahmanian, V.S.: Probabilistic Logic Programming. Information and
Computation 101(2), 150–201 (1993)

13. Kovalerchuk, B.Y., Vityaev, E.E.: Data Mining in finance: Advances in Relational
and Hybrid Methods, p. 308. Kluwer Academic Publishers, Dordrecht (2000)

14. Kovalerchuk, B.Y., Vityaev, E.E., Ruiz, J.F.: Consistent and Complete Data and
”Expert” Mining in Medicine. In: Medical Data Mining and Knowledge Discovery,
pp. 238–280. Springer, Heidelberg (2001)

15. Vityaev, E.E., Kovalerchuk, B.Y.: Data Mining For Financial Applications. In:
Maimon, O., Rokach, L. (eds.) Data Mining and Knowledge Discovery Handbook:
A Complete Guide for Practitioners and Researchers, pp. 1203–1224. Springer,
Heidelberg (2005)

16. Vityaev, E.E.: Semantic approach to knowledge base creating. Semantic proba-
bilistic inference of the best for prediction PROLOG-programs by a probability
model of data Logic and Semantic Programming, Novosibirsk. Computational Sys-
tems 146, 19–49 (1992) (in Russian)

17. Vityaev, E.E.: Knowledge inductive inference. Computational cognition. Cognitive
process modelling, p. 293. Novosibirsk State University Press, Novosibirsk (2006)
(in Russian)

18. Smerdov, S.O., Vityaev, E.E.: Probability, logic & learning synthesis: formalizing
prediction concept. Siberian Electronic Mathemetical Reports 9, 340–365 (2009)

19. Scientific Discovery, http://www.math.nsc.ru/AP/ScientificDiscovery

K.E. Wolff et al. (Eds.): KONT/KPP 2007, LNAI 6581, pp. 297–313, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Visual Data Mining and Discovery in Multivariate Data
Using Monotone n-D Structure

Boris Kovalerchuk1 and Alexander Balinsky2

1 Department of Computer Science, Central Washington University, 400 E. University Way,
Ellensburg, WA 98926-7520, USA

2 Cardiff School of Mathematics, Cardiff University, Senghennydd Road,
Cardiff, CF24 4AG, UK

Abstract. Visual data mining (VDM) is an emerging research area of Data
Mining and Visual Analytics gaining a deep visual understanding of data. A
border between patterns can be recognizable visually, but its analytical form
can be quite complex and difficult to discover. VDM methods have shown
benefits in many areas, but these methods often fail in visualizing highly
overlapped multidimensional data and data with little variability. We address
this problem by combining visual techniques with the theory of monotone
Boolean functions and data monotonization. The major novelty is in visual
presentation of structural relations between n-dimensional objects instead of
traditional attempts to visualize each attribute value of n-dimensional objects.
The method relies on n-D monotone structural relations between vectors.
Experiments with real data show advantages of this approach to uncover a
visual border between malignant and benign classes.

Keywords: Data Mining, Visualization, Structural relations, Monotonicity,
Multidimensional data, Chain.

1 Introduction

Visual data mining is an emerging research area of Data Mining and Visual Analytics
[Thomas et al., 2005] to gain a deep visual understanding of data. The purpose of this
paper is to develop a technique for visualizing and discovering patterns and relations
from multidimensional binary data using the technique of monotone Boolean
functions.

Visualizing the border between patterns is one of especially important aspects of
visual data mining. In many situations, a user can easily catch a border visually, but
its analytical form can be quite complex and difficult to discover. The simple borders
of patterns that are visually far away from each other, match our intuitive concept of
the pattern and increase confidence in the robustness of data mining results as
discovered patterns.

Deep visual understanding is a goal of visual data mining [Beilken, Spenke, 1999].
Known visualization techniques such as parallel coordinates have been successfully
used in visual data mining, but for highly overlapped multidimensional data, the

298 B. Kovalerchuk and A. Balinsky

resulting visualization often is unsatisfactory with a high-level occlusion. This
problem is especially challenging in medical applications tracked with binary
symptoms and complex dynamic optimization problems.

VDM is an especially challenging task when data richness should be preserved
without excessive aggregation [Keim e al., 2002]. Another challenge is a lack of
natural 3-D space and time dimensions in many tasks [Groth, 1998] that requires the
visualization of abstract features.

Quite often visual representations suffer from subjectivity, poor scalability,
inabilities to perceive more than 6-8 dimensions, and the slow interactive examination
of complex data [Last, Kandel, 1999; Keim et al., 2002].

Glyph or iconic visualization is an attempt to encode multidimensional data using
parameters such as the shape, color, transparency, and orientation of 2-D or 3-D
objects (2-D icons, cubes, or more complex “Lego-type” 3-D objects) [Ebert et al,
1996; Post, van Walsum et al., 1995; Ribarsky et al., 1994]. Glyphs can visualize nine
attributes (three positions x, y, and z; three size dimensions; color; opacity; and
shape). Texture can add more dimensions. Shapes of the glyphs are studied in [Shaw,
et al., 1999], where it was concluded that with large super-ellipses, about 22 separate
shapes can be distinguished on the average.

An overview of multivariate glyphs is presented in [Ward, 2002]. Glyph methods
commonly use data dimensions as positional attributes (x,y,z) to place glyphs, which
often result in occlusion.

Other glyph methods place glyphs using implicit or explicit structure within the
data set. In this paper, we show that the placement based on the use of the data
structure is a promising approach to visualize a border between patterns for
multidimensional data. We call this the GPDS approach (Glyph Placement on a Data
Structure). In this approach, some attributes are implicitly encoded in the data
structure while others are explicitly encoded in the glyph/icon. Thus, if the structure
carries ten attributes and a glyph/icon carries nine attributes, nineteen attributes are
encoded.

We use simple 2-D icons as bars of different colors. Adding texture, motion and
other icon characteristics can increase dimensions of data visualized. Collapsing of
the bar to a single pixel is another way to make GPDS approach more scalable.

Alternative techniques such as generalized spiral and pixel bar chart are developed
in [Keim et al., 2002]. These techniques work with large data sets without
overlapping, but only with a few attributes (≤6). Other visualization methods, known
as Scatter, Splat, Map, Tree, and Evidence Visualizer, that are implemented in
MineSet (Silicon Graphics), permit up to eight dimensions to be shown on the same
plot by using color, size, and animation of different objects [Last, Kandel, 1999].

The parallel coordinate technique [Inselberg, Dimsdale, 1990] can work with ten
or more attributes, but suffers from record overlap and thus is limited to tasks with
well-distinguished cluster records. In parallel coordinates, each vertical axis
corresponds to a data attribute (xi) and a line connecting points on each parallel
coordinate corresponds to a record.

Parallel coordinates visualize explicitly every attribute xi of an n-dimensional
vector (x1,x2,…,xn) in 2-D and place the vector using all attributes xi, but each
attribute is placed on its own parallel coordinate independently of placing other

 VDM and Discovery in Multivariate Data Using Monotone n-D Structure 299

attributes of this vector and other vectors. This is one of the major reasons of
occlusion and overlap of visualized data. The GPDS approach constructs a data
structure and can place objects using attribute relations.

A typical example of current research in high-dimensional Visual Analytics is the
work of Wilkinson et al. [2006], which uses the 2-D distributions of pairwise
orthogonal projections of the multidimensional Euclidean space. 2-D projections may
not discover real n-D patterns and glyphs often lead to occlusion.

We attempt to show only relevant structural relations between n-D vectors in 2-D
or 3-D, not actual n-D vectors. A more extensive representation of related work is
presented in [Peng et al., 2004; Mackinlay, 1997; de Oliveira, Levkowitz, 2003; Yang
et al., 2007].

The proposed method to represent n-D data in 2-D or 3-D is based on the following
principles of visual representations, learning, and discovery.

Principle 1: Represent complexity, not abstract multiplicity. The visual system was
developed evolutionary to deal efficiently with dynamics of complex concrete objects
in 3-D world. This ability does not imply the same efficiency to deal with multiple
abstract multidimensional objects.

Principle 2: Represent concrete complexity in low dimensions. The human visual
system has unique abilities to understand concrete complex information received via
visual channels in low dimensions (2-D and 3-D). Therefore, it is desirable to
transform the n-D data to concrete 2-D or 3-D entities.

Principle 3: Represent individual attributes of n-D data in 2-D/3-D only if necessary.
This will help to minimize occlusion and loss of information. The parallel coordinates
method that represents all attributes of n-D data suffers from occlusion.

Principle 4: Represent structural relations between n-D data in 2-D or 3-D that have
a clear meaning for the analyst. Such an attempt can avoid occlusion and loss of
information.

Principle 5: A human can capture structural relations such as order (hierarchy,
generalization) and monotonicity in n-D. Therefore, these relations are first
candidates to be a base for n-D data representation in 2-D and 3-D.

Principle 6: If n-D data have no recorded natural hierarchy and n-D monotonicity,
modify data representation, learn, discover, and build these structures in a new
representation with clear meaning for the analyst.

This paper is organized as follows. Section 2 contains definitions and mathematical

statements. Section 3 describes the proposed visual representation of the n-D Boolean
space in 2-D. Section 4 describes a learning process and section 5 presents results of a
computational experiment.

The paper concludes with summary of the results and an outline of the further
research.

300 B. Kovalerchuk and A. Balinsky

2 Chains and Similarity Distances between Chains

We denote the set of all n-D binary vectors En := {0,1}n (n-D binary cube), which is a
partially ordered set that forms a lattice with the greatest element (1,1,…,1) and the
smallest element (0,0,…,0) for the relation ≤ on vectors a=(a1,…,an) ∈ En and
b=(b1,…,bn) ∈ En, I={1,2,…,n},

a ≤ b ∀ i∈I ai ≤ bi

Only some vectors in En are ordered in this way.

Consider a pair (M, ≤), where M is a set of elements and “≤” is a partial order
relation on M.

Definition. A subset C ⊆ M is called a chain if any two elements g, h of C are
comparable, i.e., satisfy linearity property, g ≤ h or h ≤ g [Birkhoff,1995; Grätzer,
1971].

In our case M=En with the partial order defined above.

Definition. Let a, b, c, and d be n-D Boolean vectors then a triple <a,{b,c},d> is
called a square (see Fig. 1a) if a<b<d, a<c<d, b≠c, and |a|+1=|b|=|c|=|d|-1, where | . |

is the Hamming norm,
1

n

i
i

x
=

=∑x , that is the number of 1s in the vector.

Vectors b and c are incomparable relative to ≥ which is denoted as b||c [Grätzer,
1971]. The concept of square for En was introduced in [Hansel, 1966] in slightly
different terms. Below we introduce the concepts of adjacent and S-adjacent squares.

Definition. Squares S1 = <a1,{b1,c1},d1> and S2 = <a2,{b2,c2},d2> are called adjacent
iff |{b1,c1} ∩ {b2,c2}| = 1. See Fig. 1b where c1 = b2.

Definition. Chains C1 and C2 are S-adjacent where S:= <a,{b,c},d> is a square, if
one of them contains three elements a, b and d of the square S and the other one
contains the forth element c of S.

 C1 and C2 are called adjacent if there is a square S such that they are S-adjacent.

In Table 1 chains 00H and 01H are adjacent, because these chains are S1-adjacent,
that is they contain square S1 = <a1,{b1,c1},d1> = <(000),{(001), (010)},(011)>.
Similarly, chains 00H and 10H are also adjacent, because they contain another square
S2 = < a2,{b2,c2},d2> = <(001), {(011), (101)}, (111) >.

In the same way in Table 2, chains 000H and 100H are adjacent with
S=<(0011),{(0111), (1011)},(1111)>, and in Table 3 chains 0000H and 1000H are
adjacent with S=<(00111),{(01111), (10111)},(11111)>.

Definition. A set of chains {Q} in En is called a partitioning set of chains (or P-set of
chains) if {Q} partitions En, i.e., chains in {Q} do not overlap and cover En
completely.

 VDM and Discovery in Multivariate Data Using Monotone n-D Structure 301

The partitioning property is important for visual data mining of multidimensional
data because it helps to avoid occlusion of n-D Boolean data, visualized in 2-D or 3-D
as we show below in our design of the visual representation in section 3.

Fig. 1. Examples of a Boolean square (a) and adjacent squares (b)

Fig. 1 illustrates a square and a pair of adjacent squares. Below we define Hansel
chains [Hansel, 1966, Kovalerchuk et al., 1996] in En, which is a special type of P-set
of chains with multiple useful properties. These properties of Hansel chains have been
used to identify the minimal number of tests/questions needed to restore any
monotone Boolean function [Hansel, 1966].

Hansel chains for En are defined recursively from chains in En-1. Therefore, we start
from defining Hansel chains in E1.

Definition. The single Hansel chain in E1={0,1} is defined as H:={0,1}, hence the set
of Hansel chains in E1 is the partition with a single class {H}.

These vectors are ordered by their Hamming norms, |1|> |0|.

Definition. The set of Hansel chains in E2 consists of the two chains 1H:={10} and
0H:={00,01,11}. These chains partition E2. We will extend this notation later.

Note that the set of chains U={{01},{00,10,11}} is also a partitioning set of
chains, but U is not the set of Hansel chains in E2.

Definition. The set of Hansel chains {C} in E3 consists of chains presented in Table
1. These chains also do not overlap and cover E3 completely.

Table 1. The Hansel chains in E3

Chain Norm 0 Norm 1 Norm 2 Norm 3
1 00H 000 001 011 111
2 10H 100 101
3 01H 010 110

The general recursive process of defining a set of Hansel chains in En+1 from a set

of Hansel chains in En is as follows [Hansel, 1966; Kovalerchuk et al., 1996].
The main steps of the recursive process are:

(1) producing two intermediate chains in En+1 from each Hansel chain in En, and
(2) modifying these intermediate chains to produce Hansel chains in En+1.

d2 d1

a1

b1 c1= c2

a2

 b2
S1 S2

a=(0001)

c=(0101) b=(0011)

d=(0111)

302 B. Kovalerchuk and A. Balinsky

To get the first intermediate chain, each element of a chain from En is expanded by
adding a leading zero, and to get the second intermediate chain each element of the
same chain from En is expanded by adding a leading one.

In particular, having a single chain H={0,1} in E1 we get intermediate chains in E2,

0H’={00, 01} and 1H’={10, 11} with two Boolean vectors each. Then the growth-cut
process is applied to produce final Hansel chains in E2: 0H={00,01,11} and 1H={10}
with three elements and one element, respectively. The growth-cut process cuts the
largest element of 1H’ that is (11) and grows 0H’ by adding (11) as a new top element
to 0H’ to get 0H={00,01,11}.

For building Hansel chains in E3 from 0H={00,01,11} in E2 we get first 00H’=
{000,001,011}. Next, we produce a chain 10H’ with leading 1 from H, 10H’=
{100,101,111}.

The growth-cut step cuts the greatest element from 10H’ and grows 00H’ by
adding the greatest element to 00H. This produces chains 00H={000,001,011,111}
and 10H={100,101} with 4 and 2 elements, respectively.

We have shown how chain 0H={00,01,11} produces chains in E3. Similarly, chain
1H={10} that consists of a single element produces first two preliminary chains in E3:
01H’={010} and 11H’={110} that also consist of single elements. Then the growth-
cut process produces the final chains 01H={010,110} and 11H={} which is empty
and deleted.

The application of these steps in E3 produces the set of Hansel chains in E4 (see
Table 2), and from these we get a set of Hansel chains in E5 (see Table 3). All Hansel
chains of the recursively constructed sets of Hansel chains for higher n are produced
in the same way.

Table 2. The set of Hansel chains in E4

Chain Norm 0 Norm 1 Norm 2 Norm 3 Norm 4
1 000H 0000 0001 0011 0111 1111
2 100H 1000 1001 1011
3 010H 0100 0101 1101
4 110H 1100
5 001H 0010 0110 1110
6 101H 1010

Table 3. The set of Hansel chains in E5

Chain Norm 0 Norm 1 Norm 2 Norm 3 Norm 4 Norm 5
1 0000H 00000 00001 00011 00111 01111 11111
2 1000H 10000 10001 10011 10111
3 0100H 01000 01001 01011 11011
4 1100H 11000 11001
5 0010H 00100 00101 01101 11101
6 1010H 10100 10101
7 0110H 01100 11100
8 0001H 00010 00110 01110 11110
9 1001H 10010 10110
10 0101H 01010 11010

Empty chains 1110H and 11010 are omitted in Table 3.

 VDM and Discovery in Multivariate Data Using Monotone n-D Structure 303

Statement 1. In any Hansel chain C in En constructed above recursively with elements
hi, C={ hi | i=1:k}, the labelling of the elements can be chosen in such a way that the
one-step property |hi+1|=| hi| +1 is satisfied.

Proof. We prove by induction that for each integer n≥1 the one-step-property of each
Hansel chain in the set of Hansel chains in En holds. It is obvious that this holds for
n=1. Let n≥1. We now assume the induction hypothesis that the one-step-property of
each Hansel chain in the set of Hansel chains in En holds and prove this statement for
n+1. Let C:={h1,…, hk}, k≥1, be a Hansel chain in En+1. We use from the recursive
construction that C is either of the form (0) C={0f1,…, 0fk-1, 1fk-1} where {f1,…, fk-1}
is a Hansel chain in En or (1) C={1g1,…,1gk-1, 1gk} where {g1,…, gk+1} is a Hansel
chain in En. In either case we get from the one-step-property of the Hansel chains in
En that C has the one-step-property.

Statement 2. If chains C1 and C2 are S1-adjacent in such a way that square
S1=<a1,{b1,c1}, d1> contains elements a1, b1, d1 in chain C1 and element c1 in chain C2
and square S2=<a2,{b2,c2},d2> contains elements a2, b2, d2 in C2 and c1=b2 (see Fig.
1b), then |a1-a2|=|b1-c1|=|b1-b2|=|d1-d2|=2.

Proof. According to the definition of square Si, |ai|=|ci|-1=|bi|-1, i=1,2, therefore |ai-
ci|=|ai-bi|=1. Also c1=b2, thus |c1|=|b2| and |a1|=|a2|. Thus, |a1|=|a2|=|c1|-1. Also a1≠a2
because a1 and a2 belong to different chains. Vector a1 alters c1 in one attribute and
vector a2 alters c1 it in another attribute. Say, c1i=1 and c1j=1, then a1i=0, and a2j=0.
Thus, the distance between a1 and a2 is 2, |a1-a2|=2. Similarly, d1 and d2 alter c1 in two
positions, thus, |d1-d2|=2.

Statement 3. For all x, y such that x≠y and |x|=|y| the distance |x-y|≥2 and x and y
exist such that |x-y|=2.

This means that if two Boolean vectors differ but have equal norms, then the
minimal Hamming distance between these vectors is equal to 2.

Proof. If this distance would be equal to 1, |x-y|=1, then it will be only one i such that
xi≠yi, say xi=0 and yi=1. This will imply that |x|<|y| which contradicts the condition
that |x|=|y|.

Statements 2 and 3 help us to clarify and define the distance between Hansel chains
using the distance between their elements. Say, we can measure the distance between
two Hansel chains as a Hamming distance between their closest elements. Statement 2
tells us that there are elements of adjacent chains with the distance equal to 2 and
statement 3 tells us that the distance between elements of different chains cannot be
less than 2. Thus, the adjacent Hansel chains C1 and C2 are closest Hansel chains in
this measure of the distance between Hansel chains.

Theorem. If C is a Hansel chain in En (n ≥ 1) with k ≥ 2 elements, then 0C and 1C (as
constructed above) are adjacent Hansel chains in En+1 and

∀ h1 ∈ 0C ∀ h2 ∈ 1C (|h1|=|h2| ⇒ |h1-h2|=2). (1)

304 B. Kovalerchuk and A. Balinsky

In other words, the distance between vectors of the same norm in Hansel chains 0C
and 1C is the constant 2 and this is the smallest distance for different Hansel chains.
This is a reason to locate 0C and 1C next to each other in the visualization process.

Proof. Let C={g1,g2, …,gk} be a Hansel chain in En (n ≥ 1) and k ≥ 2. By the one-step-
property we assume that |gi –gi-1|=1 for 2 ≤ i ≤ k.

Then 0C={0g1,0g2, …, 0gk-1,0gk,1gk} and 1C={1g1,1g2,…,1gk-1}, and for the square
S:=<0gk-1,{0gk,1gk-1},1gk> the Hansel chains 0C and 1C are S-adjacent. This is
illustrated below with the square S shown in grey.

chain norm
|g1|

norm
|g1|+1

norm
|g1|+2

 norm
|g1|+i-1

 norm
|g1|+k-2

norm
|g1|+k-1

norm
|g1|+k

0C 0g1 0g2 0g3 … 0gi … 0gk-1 0gk 1gk
1C 1g1 1g2 … 1gi-1 … 1gk-2 1gk-1
 C g1 g2 g3 gi gk-1 gk

Let h1 ∈ 0C and h2 ∈ 1C and |h1|=|h2|, then there exists i such that 2 ≤ i ≤ k and

h1=0gi and h2=1gi-1, hence |h1-h2| = |0gi –1gi-1|=1+1=2, since |gi –gi-1|=1 by the one-
step-property of C.

This theorem is illustrated in Tables 4-6 with actual distances computed for E3-E5.

Statement 4. The distance between n-D Boolean vectors a={aj} and b={bj} with equal
norms, |a|=|b|, is an even number.

Proof. If r is the number of bits j where aj=1 and bj=0, then there should be r other bits
where aj=0 and bj=1 to have |a|=|b|. In this case the total number of bits where a and b
differ is 2r, which is their Hamming distance, |a-b|=2r.

Statement 5. If C1 and C2 are S1-adjacent Hansel chains, and C2 and C3 are S2-adjacent
Hansel chains such that

S1=<a,{b,c},d>, a,b,d∈C1, S2=<e,{c,f},g>, c,e,g ∈C2 , f ∈C3

then |b|=|f| and the Hamming distance |b-f| is equal to 2, or 4.

Proof. The properties |b|=|c|, |c|=|f|, |b-c|=2, and |c-f|=2 of squares S1 and S2 are
derived from the definition of the square. Thus, |b|=|f|. Next, the Hamming distance as
every distance satisfies a triangle inequality: |b-f| ≤|b-c|+|c-f|=2+2=4. The distance |b-
f| cannot be the odd number 3 (see Statement 3).

Now we investigate the following conjecture:

Constant Distance Conjecture: For all Hansel chains C1, C2 in En there exists a
constant c, such that |h1–h2|=c for all h1 ∈ C1 and h2 ∈ C2 with equal norms, |h1|=|h2|.

We explore for which n this Conjecture is true.
It is true for n=1, 2, 3, and 4. See Tables 4 and 5 for n=3 and n=4. This means that we
can build a very consistent visual representation of Hansel chains for these n.

 VDM and Discovery in Multivariate Data Using Monotone n-D Structure 305

Table 6 shows that is not true for n=5, that provides counterexamples for n=5. In
Table 4 notation 22 means two distances, e.g., for chains 00H and 10H, the first 2 is
the distance between (001) and (100), and the second 2 is the distance between (011)
and (101) from chains 00H and 10H, respectively.

In Table 6, notation 2242 indicates 4 distances for 4 elements of chains 2 and 5,
where the distances between vectors (10011) and (01101) is equal to 4 and the
distances between vectors (10001) and (00101) is equal to 2. This provides a
counterexample.

Table 4. Distances between Hansel chain elements with equal norms in E3

Chain 1 Chain 00H 2 Chain 10H 3 Chain 01H
1 Chain 00H 0 22 22
2 Chain 10H 0 22
3 Chain 01H 0

Definition. Let
1 2

1 2 1 2| | | |
(,) () /HCD H H m

=
= −∑ h h

h h ,

where h1 and h2 are elements of chains H1 and H2, respectively, with the same
Hamming norm |h1|=|h2|, and m is the number of such pairs of elements. DHC is called
the averaged Hamming chain similarity measure.

Table 7 presents this measure for E5.

Table 5. Distances between all Hansel chain elements with the same norm in E4

Chain 1 2 3 4 5 6
1 0 222 222 4 222 2
2 0 2 2 4 2
3 0 2 2 2
4 0 2 2
5 0 2
6 0

Table 6. Distances between all Hansel chain elements with the same norm in E5

Chain 1 2 3 4 5 6 7 8 9 10
1 0 2222 2222 44 2222 42 44 2222 22 24
2 0 2222 22 2242 42 44 2422 22 24
3 0 22 2222 42 22 2422 24 22
4 0 44 22 22 44 24 22
5 0 22 22 22 44 44
6 0 22 24 22 22
7 0 22 22 22
8 0 22 22
9 0 22
10 0

306 B. Kovalerchuk and A. Balinsky

Table 7. Averaged Hamming chain similarity measure DHC between Hansel chains in E5

Chain 1 2 3 4 5 6 7 8 9 10
1 0 2 2 4 2 3 4 2 2 3
2 0 2 2 2.5 3 4 2.5 2 3
3 0 2 2 3 2 2.5 3 2
4 0 4 3 2 4 3 2
5 0 2 2 2 4 4
6 0 2 3 2 2
7 0 2 2 2
8 0 2 2
9 0 2
10 0

3 Representing and Drawing of n-D Boolean Space in 2-D

Below we describe a structure to allocate Boolean vectors in 2-D. Boolean vectors are
represented in the 2-D plane, such that their position in the plane grows with its
Boolean norm.

Each vector will be first placed in accordance with its norm (level) and then drawn
as a colored bar: white for the 0 class, black for the 1 class. Fig. 2 depicts the
hierarchy of levels of Boolean vectors in E10, which is 11 levels from 0 to 10, where
level 0 contains a single vector (0000000000) and level 10 contains a single vector
(1111111111). Several vectors are shown in Fig. 2 as small bars.

The vectors on the third row cannot be identified from this figure without
additional assumptions, but we can tell for sure that it has eight “1”s, because of its
location on the third line that contains all vectors with norm 8. To specify it more we
can link each vertical position (column) with a specific vector. Assume that Boolean
vectors with the same norm are ordered as decimal numbers, where the leftmost
column presents the largest decimal vector for the given norm, (1111111100), and the
rightmost position is used for vector (0011111111) in the third row. Each level in Fig.
2 is called a disk and the entire visualization is called the multiple disk form (MDF).
In 2-D disks are just rectangles, but in 3-D each level is an actual disk (see Fig. 2b).

(a) (b)

Fig. 2. (a) 2-D Multiple Disk Form (MDF) representation of 10-dimensional Boolean space
without occlusion. (b) A 3-D version of MDF with grouping Hansel chains.

 VDM and Discovery in Multivariate Data Using Monotone n-D Structure 307

There is no occlusion of vectors in MDF. This is the fundamental advantage of the
MDF representation in comparison with methods reviewed in section 1. In Fig. 2, all
1024 10-D Boolean vectors are completely visible and their attributes are represented
implicitly but unambiguously.

The advantage of this procedure is to allow the user to compare several binary
datasets or Boolean functions at a time side-by-side. This representation uses a
distance between vectors as decimal numbers, DN(n(a),n(b)) = |n(a)-n(b)|, where n(a)
and n(b) are decimal numbers representing vectors a and b.

The disadvantage of such MDF implementation, called process P0, is that distance
DN may not be relevant to the application domain. Thus, the task is to locate vectors
in MDF in a way that will capture relations or structure that are relevant to the
domain. The Hamming distance DH captures relevant relations in many domains. A
partial order relation ≤ between vectors a ≤ b ∀ai ≤ bi is one that represents some
ordinal structure of the attribute space. The following statement shows the link
between DH and this partial order.

Statement 6. If DH(a,b)=1, then a<b or b<a. If a<b and DH(a,b)=k, then a chain exist
such that there are k-1 elements between a and b on this chain.

Below we describe a process of allocation and relocation of vectors in MDF based
on Hansel chains that differs from process P0 described above.

Algorithm
This new algorithm uses the statements and the theorem from section 2 and has the
following major steps:

(1) Putting the largest chain C into the center of the MDF,

(2) Ordering other chains relative to their closeness to C in the averaged Hamming
chain similarity measure, DHC(U, C) defined in section 2,

(3) Ordering chains with equal similarity measure DHC to C relative to the location
of the borders between patterns on these chains.

(4) Locating chains in MDF in accordance with their order obtained in (2) and (3),
that is the closest chains are located next to the largest chain first and all other chains
are located next according their order. If two chains have the same distance DHC to the
largest chain then the chain that has a border closer to the largest chain is located first.

Tables 8-11 show chains for E1-E5 located using this algorithm without step (3).

Table 8. Horizontal drawing of Hansel chains in E1

Chain Norm 0 Norm 1
H 0 1

Table 9. Horizontal drawing of Hansel chains in E2

Chain Norm 0 Norm 1 Norm 2
0H 00 01 11
1H 10

308 B. Kovalerchuk and A. Balinsky

Table 10. Horizontal drawing of Hansel chains in E3

Chain Norm 0 Norm 1 Norm 2 Norm 3
01H 010 110
00H 000 001 011 111
10H 100 101

Table 11. Horizontal drawing of Hansel chains in E4 in accordance with chain distances

Chain Norm 0 Norm 1 Norm 2 Norm 3 Norm 4
101H 1010
010H 0100 0101 1101
000H 0000 0001 0011 0111 1111
100H 1000 1001 1011
001H 0010 0110 1110
110H 1100

Table 12. Horizontal drawing of Hansel chains in E5 in accordance with chain distances

Chain C Distance
DHC(C,0000H)

Norm
0

Norm
1

Norm
2

Norm
3

Norm
4

Norm
5

0110H 4 01100 11100
0101H 3 01010 11010
1001H 2 10010 10110
0001H 2 00010 00110 01110 11110
0100H 2 01000 01001 01011 11011
0000H 0 00000 00001 00011 00111 01111 11111
1000H 2 10000 10001 10011 10111
0010H 2 00100 00101 01101 11101
1010H 3 10100 10101
1100H 4 11000 11001

Fig. 3. MDF in E10 with Hansel chains applied to cancer data: white bars represent benign
tumor cases, black bars represent cancer tumor cases

Tables 9-12 can be converted to the visual form as shown in Fig. 3 for E10. It is the
MDF from Fig. 2a rotated with chains of 10-D vectors from a cancer diagnostics
application. In Fig. 3, the white bars show benign tumor cases, the black bars cancer
tumor cases.

 VDM and Discovery in Multivariate Data Using Monotone n-D Structure 309

In the previous consideration [Kovalerchuk, Delizi, 2005] any relocation of chains
in MDF was allowed. This means that Boolean vectors from different chains that are
not similar can be located next to each other. That method does not control and
prevents such occurrences. The vicinity of some Boolean vector a may contain both
vectors that are similar to a (being on the same chain) and be dissimilar being on the
other chains. In other words, it captures relations (similarity and monotonicity)
between elements along the chains, but does not ensure similarity for Boolean vectors
from different chains.

The new algorithm imposed limitations to ensure that chains that are located next
to each other are close in the averaged Hamming chain similarity measure DHC. We
call this requirement the Local Similarity Principle (LSP).

4 Learning Process by Monotone Extension

Learning algorithms in data mining and machine learning include: (1) discovering a
regularity R using training and testing data for specific classes, (2) generalizing R to
new cases, and (3) applying R to classify these new cases. A complete generalization
will classify all cases, that is all vectors in an n-D space.

Often learning algorithms do not separate (1)-(3), but only produce a border
between classes as a hyperplane or another discriminating surface in an n-D space as
a generalization of R. The lack of explicitly formulated regularity R is a flaw of such
algorithms because it can lead to overgeneralization. In this section, we describe a
process of learning monotone regularities R (in an n-D Boolean space) that are
explicitly defined.

Definition. A Boolean function f: En → E={0,1} is called a monotone Boolean
function if

 ∀ x≥y ⇒ f(x)≥ f(y) (2)

We call a monotone Boolean function also a monotone regularity, if the Boolean
function is used to describe some regularity in given data.

Discovering monotone regularity

At first, we discover monotonicity on training data Tr by testing property (2) on all
pairs of training data (vectors x, y with known R values.) The computational process
can be shortened by using Hansel chains.

If monotonicity of R is confirmed on Tr, then it is tested with vectors of a set Tt
disjoint from Tr. If this test is also successful, then we generalize R. This means that
we consider R as a monotone Boolean function for all elements of En. Then we apply
the generalized R as a monotone Boolean function to new cases by using monotone
extension that holds for monotone functions

 (x≥a & R(a)=1) ⇒ R(x) =1; (a≥y & R(a)=0) ⇒ R(y)=0; (3)

here a is a vector from training data with known class R(a), e.g., benign or malignant,
and x is a new vector with unknown R(x).

310 B. Kovalerchuk and A. Balinsky

We do this extension using Hansel chains. If a belongs to a chain C and R(a)=1,
then for all x>a on this chain we assign R(x)=1. Similarly, if a>x and R(a)=0, then
we assign R(x)=0 for all x below a on that chain.

Classes and borders between classes

Let R: En → E be a monotone Boolean function.
Definition. Class 1 is the set of x∈En such that R(x)=1 and Class 0 is the set of x∈En
such that R(x)=0.

Definition. Let C be a chain in En, X be a subset of C. If there exists an element x∈X
with R(x)=1, then the minimal element in X ∩ Class 1 is denoted by xmin1,C and is
called the lower one in X for R. If there exists an element x∈X with R(x)=0, then the
maximal element in X ∩ Class 0 is denoted by xmax0,C and is called the upper zero in
X for R.

If X=C, then xmax0,C is the upper zero and xmin1,C is the lower one of the chain C for
R. In the case of X=C, xmax0,C < xmin1,C since R is monotone. If C has the one-step-
property, then | xmax0,C - xmin1,C|=1, that is xmin1,C is the next element on the chain C after
xmax0,C. These two elements form the R-border between Class 0 and Class 1 on chain
C, denoted by (xmax0,C , xmin1,C).

Let X be a subset of training data Tr on the chain C, X ⊆ Tr ∩ C, such that it contains
x and y elements, R(x)=1 and R(y)=0.

Definition. A Hansel chain C is called a 0-1-Hansel chain, if an element x with
R(x)=0 and an element y with R(y)=1 exist on C.

Definition. The R-border on a set of 0-1-Hansel chains {C}0-1 in En is the set of the
R-borders of all 0-1 Hansel chains C.

Definition. The width of the border (xmax0,C , xmin1,C) on chain C for a subset X of C is
the Hamming distance

|xmax0,C - xmin1,C|.

The width is always = 1, if the monotone Boolean function R is fully defined, and the
chain C has the one-step-property, and X=C.

In practice often a Boolean function R is known only partially, that is only for
elements of the training data Tr, Tr ⊂ En. Thus it is possible that |xmax0,C - xmin1,C| >1 for
some chains. A wider border between classes indicates a better separation of classes
in training data Tr.

The monotone extension of R beyond the training data using (3) may decrease the
width of the border and may produce a fully defined Boolean function in En.

5 Computational Experiment

We conducted several computational experiments that show a wide variety of borders
between classes. The width and clarity of this border depends on the data and visual
data mining procedures used.

 VDM and Discovery in Multivariate Data Using Monotone n-D Structure 311

Different ways of locating Boolean vectors on MDF form produce very different
results relative to the shape of the border between classes (see Fig. 4). They range
from no border visible (Fig. 4a) to a very clear border (Fig. 4d). Experiments with real
breast cancer data show advantages of the proposed approach to uncover a visual
border between benign and malignant cases in breast cancer. To be able to see a large
number of attributes a user can use zooming or scrolling MDF.

(a) procedure P1 (b) procedure P2

(c) procedure P3 (d) procedure P4

Fig. 4. Different visual border representations of vectors of two classes in MDF for the same
simple monotone Boolean function

Fig. 3 in section 3 shows analysis of multivariate monotonicity of breast cancer
cases that is almost perfect with four exclusions that are shown in red.

6 Conclusion and Future Work

Visual data mining had shown benefits in many areas. However, classical VDM
methods do not address the specific needs for processing data that are highly
overlapped in the visual space. This paper proposed a structural VDM approach and
demonstrated its effectiveness in a medical application. To use this approach for
Boolean vectors of a high dimensionality n we visualize only a part of the data
structure that is actually needed for this.

We exploit monotonicity properties to build the complete visual border between
two classes. This is an advantage relative to many traditional machine learning and
data mining methods. The proposed method allows discovering the border between
classes for a monotonized set of diagnostic features. In mathematical terms, this task
is equivalent to the task known in discrete mathematics as restoration of a monotone
Boolean function. The main idea of this process is based on decomposition of the
binary cube En into Hansel chains that partition En without an overlap of chains.

It is proven a theorem that all elements with equal norms of adjacent Hansel chains
0C and 1C in En+1 constructed from a single Hansel chain C in En have the same
Hamming distance. It is also shown that for other adjacent Hansel chains this constant
distance property holds in E2-E4, but it fails in E5.

312 B. Kovalerchuk and A. Balinsky

As a future research, it will be interesting to explore if another partitioning set of
chains exists in En that satisfy the constant distance hypothesis for E5 and for greater n.

Using the results of the mentioned theorem and associated statements we proposed
an algorithm to locate Hansel chains on the Multiple Disk Form for visual data
mining. The advantage of this algorithm is that it preserves similarity and
monotonicity of n-D data visualized in 2-D or 3-D.

Multiple non-monotone data can be monotonized and then the monotonized data
can be visualized by using the proposed technique. Future studies in monotonization
include the decomposition of non-monotone Boolean functions and attributes into a
combination of monotone Boolean functions. This study will require discovering
limits of local monotonicity in data.

By further developing these procedures for non-monotone Boolean data and k-
valued data structures, this approach can be used in a variety of applications including
tasks, where data are dynamically changed or updated and the visual border between
patterns also dynamically changes.

Acknowledgement

The authors are grateful to Karl Erich Wolff for multiple valuable comments and
suggestions.

References

1. Beilken, C., Spenke, M.: Visual interactive data mining with InfoZoom -the Medical Data
Set. In: The 3rd European Conference on Principles and Practice of Knowledge Discovery
in Databases, PKDD (1999)

2. Birkhoff, G.: Lattice theory. AMS (1995)
3. Card, S.K., Mackinlay, J.: The structure of the information visualization design space. In:

Proc. IEEE Symposium on Information Visualization, 92–99 (1997)
4. Ebert, D., Shaw, C., Zwa, A., Miller, E., Roberts, D.: Two-handed interactive stereoscopic

visualization. In: IEEE Visualization 1996 Conference, pp. 205–210 (1996)
5. Hansel, G.: Sur le nombre des fonctions Booléennes monotones de n variables. C.R. Acad.

Sci. Paris 262(20), 1088–1090 (1966)
6. Grätzer, G.: Lattice theory: first concepts and distributive lattices. W. H. Freeman and Co.,

New York (1971)
7. Groth, D., Robertson, E.: Architectural support for database visualization. In: Workshop

on New Paradigms in Information Visualization and Manipulation, pp. 53–55 (1998)
8. Inselberg, A., Dimsdale, B.: Parallel coordinates: A tool for visualizing multidimensional

Geometry. In: Proceedings of IEEE Visualization 1990, pp. 360–375. IEEE Computer
Society Press, Los Alamitos (1990)

9. Keim, D., Ming, C.H., Dayal, U., Meichun, H.: Pixel bar charts: a visualization technique
for very large multiattributes data sets. Information Visualization 1(1), 20–34 (2002)

10. Kovalerchuk, B., Triantaphyllou, E., Despande, A., Vityaev, E.: Interactive Learning of
Monotone Boolean Functions. Information Sciences 94(1-4), 87–118 (1996)

11. Kovalerchuk, B., Vityaev, E., Ruiz, J.: Consistent and complete data and “expert” mining
in medicine. In: Cios, K. (ed.) Medical Data Mining and Knowledge Discovery, pp. 238–
280. Springer, Heidelberg (2001)

 VDM and Discovery in Multivariate Data Using Monotone n-D Structure 313

12. Kovalerchuk, B., Delizy, F.: Visual Data Mining using Monotone Boolean Functions. In:
Kovalerchuk, B., Schwing, J. (eds.) Visual and Spatial Analysis, pp. 387–406. Springer,
Heidelberg (2005)

13. Last, M., Kandel, A.: Automated perceptions in data mining, invited paper. In: IEEE
International Fuzzy Systems Conference Proc. Part I, Seoul, Korea, pp. 190–197 (1999)

14. de Oliveira, M., Levkowitz, H.: From Visual Data Exploration to Visual Data Mining: A
Survey. IEEE Trans. On Visualization and Computer Graphics 9(3), 378–394 (2003)

15. Peng, W., Ward, M., Rundensteiner, E.: Clutter Reduction in Multi-Dimensional Data
Visualization Using Dimension Reordering. In: Proc. IEEE Information Visualization, pp.
89–96 (2004)

16. Post, F., van Walsum, T., Post, F., Silver, D.: Iconic techniques for feature visualization.
In: Proceedings Visualization 1995, pp. 288–295 (1995)

17. Ribarsky, W., Ayers, E., Eble, J., Mukherja, S.: Glyphmaker: creating customized
visualizations of complex data. IEEE Computer 27(7), 57–64 (1994)

18. Shaw, C., Hall, J., Blahut, C., Ebert, D., Roberts, A.: Using shape to visualize multivariate
data. In: CIKM 1999 Workshop on New Paradigms in Information Visualization and
Manipulation, pp. 17–20. ACM, New York (1999)

19. Thomas, J., Cook, K. (eds.): Illuminating the Path: The Research and Development,
Agenda for Visual Analytics. National Visualization and Analytics Center (2005),
http://nvac.pnl.gov/agenda.stm

20. Ward, M.: A taxonomy of glyph placement strategies for multidimensional data
visualization. Information Visualization 1, 194–210 (2002)

21. Wilkinson, L., Anand, A., Grossman, R.: High-Dimensional Visual Analytics: Interactive
Exploration Guided by Pairwise Views of Point Distributions. IEEE Transactions on
Visualization and Computer Graphics 12(6), 1363–1372 (2006)

22. Di, Y., Rundensteiner, E., Ward, M.: Analysis Guided Visual Exploration of Multivariate
Data. In: Proceedings of the IEEE Symposium on Visual Analytics, pp. 83–90 (2007)

Construction of an Event Tree on the Basis of

Expert Knowledge and Time Series�

Gennady Lbov and Vladimir Berikov

Sobolev Institute of Mathematics,
Koptyug prosp. 4, 630090 Novosibirsk, Russia

{lbov,berikov}@math.nsc.ru
http://www.math.nsc.ru

Abstract. In this paper, we suggest an algorithm for event tree con-
struction on the basis of an analysis of expert knowledge and multivari-
ate time series. For the construction, we use the algorithm for dynamic
objects recognition based on decision trees and the Bayesian pruning
criterion.

Keywords: event tree, expert knowledge, decision tree, time series
analysis.

1 Introduction

For the analysis of potentially dangerous events (technological catastrophes, ex-
treme phenomena of nature etc) often models are used which have the form of
event tree (also known as fault tree or error tree). Event trees (ET) allow to
graphically represent the hierarchy of consecutively occurring stochastic events
which cause certain undesirable event. On the basis of ET analysis, a forecast
of undesirable events can be made, as well as measures for their prevention
elaborated.

Usually an ET is designed by experts on the basis of their experience and
other a priori information on the given event and on similar events. Often, the
experts may use statistical information describing the object under investigation
and similar objects, and this information can also be used for the construction
of an event tree.

We assume that the problem in question has the following specific features:

– the features describing objects can be either binary, nominal or quantitative.
Thus, we have a multidimensional series composed of a set of binary, symbolic,
and numerical sequences;

– the probability distribution of the multidimensional random process is un-
known. The decision function for the prediction is based on limited statistical
material. Since the sample size is small and the space of states has high dimen-
sionality, the derivation of statistically stable solutions becomes a problem;
� This work was supported by the Russian Foundation for Basic Research, projects

08-07-00136a, 10-01-00113a.

K.E. Wolff et al. (Eds.): KONT/KPP 2007, LNAI 6581, pp. 314–320, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Construction of an Event Tree 315

– it can occur that some of the features are unmeasured at some moments.
Thus, in the time series missing values may occur.

We suggest an algorithm for event tree design (or construction of some of its
parts, for which it is necessary to analyze statistical data) by means of the anal-
ysis of multidimensional time series describing the dynamic properties of the
object. As it is known, decision trees (DT) have a number of positive charac-
teristics: form a simple hierarchical model of object, possess high generalization
power in case of small sample size, give a possibility to work with both quanti-
tative and qualitative features, with data of low quality (having missing values
etc). Thus the implementation of DTs in event tree generation looks promising.

2 Event Tree and Decision Tree

The root of ET (fig. 1) corresponds to the so called top undesirable event (TUE).
The nodes of the first layer of ET correspond to some events, they precede the
TUE and they are able to cause it. These events can be connected by gates
AND, OR. Besides that, the probabilities with which the specified events cause
TUE are given. Similarly, each node (event) of the first layer of the tree can be
matched to nodes (events) of the second layer etc. The leaves of the tree denote
the events that are impossible to decompose due to the absence of information
or other reasons.

It is required to find a dependency model of some feature Y from features
X . Such a model can be represented in the form of a decision tree [1,2]. The
decision tree (DT) consists of nodes and branches connecting the nodes. Each
node corresponds to a certain feature and the branch corresponds to a range of
values. When precisely two branches grow out from an internal node (the tree of
such type is called a dichotomous tree), each of these branches corresponds to a
true or false statement concerning the given feature. The value Y is ascribed for
each terminal node of a tree (“leaf”). In case of a pattern recognition problem

Fig. 1. Event tree. � - events; ♦ - leaves;
⊕

- gate “OR”;
⊗

- gate “AND”.

316 G. Lbov and V. Berikov

this value is a certain class (pattern). For any observation x, using DT, we can
find the predicted value Y : the value YS ascribed to S-th leaf will be the forecast
for x.

3 Multidimensional Time Series and Decision Trees

Let random features X(t) = (X1(t),. . . , Xn(t)), whose values vary with time, be
used to describe a certain object. We denote the set of possible values of Xj by
Dj . The following types of features can be distinguished:

– binary feature: Dj= {0,1};
– nominal feature: Dj={u1

j , . . . , u
lj

j }, where {u1
j , . . . , u

lj

j } is a set of symbols
(names);

– quantitative feature: Dj ⊆ R, where R is a set of real numbers.

The binary and nominal features are also referred to as qualitative features.
Let features be measured at the consecutive moments of time t1, . . . , tµ,

For definiteness we will assume that measurements are carried out through equal
intervals of time. We will designate through xj(tµ) = Xj(tµ) the value of feature
Xj at the moment of time tµ. Thus, we have a n-dimensional heterogeneous time
series xj(tµ), j = 1, . . . , n, μ = 1, 2,

Let us choose one predicted feature Xj0 , 1 � j0 � n. We designate, for
convenience, this feature through Y . Let us consider the moment of time tµ, and
also a set of previous moments of time tµ−1, tµ−2, . . . , tµ−l , where l is a given
size (“deep of history”), 1 � l < μ.

We suppose that the conditional distribution of Y (tµ), when all previous val-
ues X(t) are given, depends only on the values of the series in l previous moments
of time.

Besides, we suppose that this dependence is the same for any value μ. The as-
sumption means that the statistical properties of series determining dependence
are stationary.

For any moment of time tµ it is possible to form a series vµ = (Xj(tµ−i)),
i = 1, . . . , l, j = 1, . . . , n, representing the time series in l previous moments of
time. We will call a series vµ the background of length l for the moment tµ.

It is required to construct a model of dependence of feature Y from its back-
ground for any moment of time. The model allows to predict the value of feature
Y at a future moment of time from the historical values of features for the l last
moments. In other words, the given model, using background, represents a deci-
sion function for forecasting. In analogy to a usual pattern recognition problem,
we will call a problem of the given type a problem of recognition of a dynamic
object. The analyzed object can change its class in the run of time.

We will represent a decision function for forecasting time series on its back-
ground as a decision tree. This decision tree differs from usual tree in its nodes,
each of them corresponds to a feature Xj in some i-th moment of past time.
For convenience, we will designate these features, with a glance to background,
through X i

j . Thus, X i
j means feature Xj in i-th previous moment of time (con-

cerning a present situation).

Construction of an Event Tree 317

Let there be a set of measurements of features X = (X1, . . . , Xn) at the
moments of time t1, . . . , tN and value l is also given. Thus, we have a multivariate
heterogeneous time series of length N . We generate the set of all histories of
length l for the moments of time tl+1, . . . , tN : A = vµ, μ = l + 1, . . . , N .

For any given decision tree for forecasting by background (DTFB), it is pos-
sible to define its quality: we will designate through Ŷ (tµ) the predicted value
of Y received with the help of the tree by the background vµ. The criterion of
quality will be

Q =
1

N − l

N∑

µ=l+1

h(μ),

where h(μ) = L(Ŷ (tµ), Y (tµ)), L(a, b) be the loss function determining losses if
class a is predicted then b is the true class. Thus, Q is the estimate of the risk
function.

The initial problem of constructing the DTFB is divided into simpler pattern
recognition problems. We will present series vµ as the table vµ = (Xj(tµ−i), i =
1, . . . , l, j = 1, . . . , n containing l rows and n columns. Then, the initial infor-
mation for forecasting is the set of tables vµ, together with the values of pre-
dicted feature Y specified for each table Y (tµ), μ = l + 1, . . . , N . It is possi-
ble to present the set A = vl+1, . . . , vN as a 3-dimensional table of dimension
l×n×(N− l) to which the vector (yl+1, . . . , yN) corresponds. However, available
methods of recognition based on DT use 2-dimensional tables as input informa-
tion. Below we suggest an alternative way to use the given methods for the
analysis of 3-dimensional data tables. Consider l tables Xj(tµ−i), Y (tµ), where
j ∈ {1, 2, . . . , n}, μ ∈ {l + 1, l + 2, . . . , N}, i ∈ {1, 2, . . . , l}. Thus, we have l hor-
izontal cuts of a 3-dimensional data table. For each cut (2-dimensional table),
the decision tree minimizing Q is constructed (see [5] for details). As a result, we
receive a set of trees T1, T2, . . . , Tl. We will denote the best of these trees (with
minimal Q) as T ∗.

4 From Decision Trees to Event Trees

Let feature Y correspond to the occurrence of some undesirable event: Y =1, if
this event occurs, Y =0 otherwise. Thus, the number of predicted classes equals
two. Consider a loss function with the following properties: L(0, 0) = L(1, 1) = 0;
L(1, 0) << L(0, 1) (the error in classifying an undesirable event as an ordinary
event costs much more than the error in classifying an ordinary event as an
undesirable event).

In T ∗, all features are measured for the same moment of time in the past.
This tree is then used for the formation of the first layer of an ET. Consider the
following algorithm:

1. Find all statements in paths from root node of T ∗ to the leaves that corre-
spond to undesirable events;

2. Use these statements as nodes (events) in the current level of ET (see an
example on fig. 2). The conjunctions of statements are connected with TUE by

318 G. Lbov and V. Berikov

yes

yes

no

no

1
2

X <100

Y=1

Y=0Y=1

 1
1

X <60
 1

1
X <60

 2
1

X <100

≥1
1

X 60

 Y=1

Fig. 2. Construction of an event tree on the basis of a decision tree

means of AND gates, and different paths are connected with TUE by means of
OR gates. Choose non-terminal nodes of ET;

3. For each non-terminal event Em of the current level of ET form a new
feature Zm: Zm = 1, if this event takes place, Zm = 0 otherwise, where m =
1, . . . , M , M is the number of non-terminal nodes;

4. For each m construct a sub-tree for the prediction of Zm on the basis of its
background;

5. Use the statements of the obtained DTFB as nodes (events) for the next
level of ET;

6. Repeat steps 3-5 until no non-terminal nodes left.

The constructed ET may be corrected and complemented by an expert. The
probabilities of events in ET are evaluated as frequencies of corresponding ob-
servations in time series.

5 Bayesian Criteria for Decision Tree Pruning

Often the pruning methods based on the division of learning samples into two
parts are used for decision tree design. The first part is used to grow a deci-
sion tree which is probably overtrained and has a large number of leaves. The
second part is used to prune this decision tree with the purpose to improve its
recognition performance. The pruning methods are described, for example, in [3].

By numbering the leaves of a tree, we can reduce the problem to one feature X .
The values of this feature (“cells”) are coded by numbers 1, . . . , m, . . . , M , where
M is the number of leaves. Let p

(q)
m be the probability of the joint event “X =

m, Y = q”. Denote the a priori probability of the i-th class as p(i). It is evident

Construction of an Event Tree 319

that
∑
q

p(q) = 1,
∑
m

p
(q)
m = p(q), q = 1, 2. Let N be the pruning sample size, n

(q)
m

be the frequency with which the observations of the q-th class fall into the m-th
cell. Denote s = (n(1)

1 , . . . , n
(2)
M). Let us consider the family of distribution models

with a set of parameters Θp = {θ}, where θ = (p(1)
1 , . . . , p

(2)
M), m = 1, . . . , M . The

random vector of frequencies s corresponds to a multynomial distribution with
parameter vector θ. In applied problems of recognition the vector θ is usually
unknown. We use the Bayesian approach: suppose that the random vector Θ
has a known a priori distribution p(θ). In the given work the case of uniform
density p(θ) = const is considered. This assumption is appropriate, then a priori
vagueness in choice of model takes place. Let Y = f(m) be a decision function
mapping each leaf to some class. In [4], the following theorem was proven:

Theorem 1. A posteriori mathematical expectation of the risk for a decision
function f and given a priori probabilities of classes equals

Rf,s =
∑

m

∑

q

p(q)L(f(m), q)
n

(q)
m + 1

n(q) + M
,

where n(q) is the number of examples of q-th class in pruning sample.

The value Rf,s will be called the Bayesian estimate of risk for the decision
function f , sample s and known priors. This value can be used as a criterion of
quality for different variants of a pruned tree. The following greedy algorithm of
pruning is applied.

1. For each node of the initial tree compute the Bayesian estimate of risk for
the tree in which this node is pruned.

2. Choose the variant of pruning with the smallest estimate of risk.
3. Repeat steps 1,2 for the selected variant until the estimate of risk stops

improving.

6 Experiments

To test the suggested algorithm, the following numerical experiment was done.
Two random Boolean and one random numerical sequences were generated in-
dependently. The length of the sequences equals 1000. It was set that for the
defined combination of previous values of these sequences the undesirable event
should take place (with probability 0,75), but in all other cases this event did not
take place. Thus, the Boolean sequence denoting the presence or absence of the
undesirable event was formed (the frequency of this event was about 0,09). To
study the behavior of the algorithm in situations when some of the features val-
ues are unknown, it was additionally assumed that 5% of the learning sequences
have missing values (the places of missing values were taken at random). The
sequences were analyzed with the suggested algorithm.

The recursive algorithm (“R-method” [6]) was used for tree growing. For qual-
ity estimation, 10-fold cross-validation technique was applied. As a result, the
test sequence having 100 situations describing undesirable events was recognized

320 G. Lbov and V. Berikov

with one error. Cross-validation risk estimate was 0,086. In the same time, the
standard method of pruning based on empirical error criterion gave an estimate
of risk which was 7% larger.

In the next experiment, the applied problem of low water-level prediction of
the river Ob (in the Altai region of Russia) was analyzed. The data set included
per-month measurements of temperature, precipitation and water expenditures
from 1922 to 2000. There were 7 extreme low-water situations in winter months
during this period. This sequence was analyzed with the suggested algorithm.
Firstly the whole sequence was taken for the analysis; the risk estimate showed
an unacceptable value (for quality estimation, one-hold-out method was used).
Hypothetically it can be explained by the global rise in temperature on the
Earth in last decades. For checking this hypothesis, two rows were formed from
the data set: for the first years of observing, and for the last 25 years. After
that, the results became more reasonable: 0,14 error rate for extreme situations
(i.e. only one low water-level situation was erroneously predicted from seven
situations) and 0,26 for ordinary events.

7 Summary

In the given work we suggest an algorithm for event tree design by means of
the analysis of expert knowledge and multivariate time series describing the
dynamic properties of an object. The algorithm uses the Bayesian criterion for
decision tree pruning, and can be used for the analysis of extreme events in
the conditions of high a priori uncertainty about them. In this case an expert
can contribute additional statistical information concerning the object under
investigation. This information is then used for the formation of event trees by
means of decision trees. The experiments with the artificial and real data sets
confirm the usefulness of the algorithm.

References

1. Breiman, L., Friedman, J., Olshen, R., Stone, C.: Classification and Regression
Trees. Wadsworth Int. Group, Belmont (1984)

2. Berikov, V.B., Lbov, G.S.: Analysis of statistical data with use of decisions trees,
http://www.math.nsc.ru/AP/datamine/eng/decisiontree.htm

3. Esposito, F., Malerba, D., Semerato, G.: A comparative analysis of methods for
pruning decision trees. IEEE Trans. Pattern Anal. And Machine Intelligence 19(5),
476–491 (1997)

4. Berikov, V.B.: A Priori Estimates of Recognition Accuracy for a Small Training
Sample Size. Computational Mathematics and Mathematical Physics 43(9), 1377–
1386 (2003)

5. Lbov, G.S., Berikov, V.B.: Recognition of a Dynamic Object and Prediction of
Quantitative Characteristics in the Class of Logical Functions. Pattern Recognition
and Image Analysis 7(4), 407–413 (1997)

6. Lbov, G.S., Berikov, V.B.: Recursive Method of Formation of the Recognition
Decision Rule in the Class of Logical Functions. Pattern Recognition and Image
Analysis 3(4), 428–431 (1993)

Author Index

Artemieva, Irina L. 184

Balinsky, Alexander 297
Barakhnin, Vladimir 271
Berikov, Vladimir 314
Borisova, Irina A. 256
Borovikova, Olesya 203

Dyubanov, Vladimir V. 256

Fedotov, Anatolii 271

Ganter, Bernhard 26
Garanina, Natalia O. 48

Hotho, Andreas 136
Huber, René 79

Illig, Jens 136

Jäschke, Robert 136

Kinne, Raimund 79
Kleshchev, Alexander S. 121
Kolchanov, Nikolay 101
Kovalerchuk, Boris 297
Kutnenko, Olga A. 256
Kuznetsov, Sergei O. 35

Lbov, Gennady 314
Loukachevitch, Natalia 232

Marchuk, Alexander 217
Mironova, Victoria 101
Mjolsness, Eric 101

Nekhaeva, Vera 271

Old, L. John 150
Omelianchuk, Nadezhda 101

Palchunov, Dmitry E. 164
Podkolodny, Nikolay 101
Ponomaryov, Denis 101
Priss, Uta 150

Shilov, Nikolay V. 48
Smerdov, Stanislav 280
Stumme, Gerd 136

Vityaev, Evgenii 280

Wille, Rudolf 1
Wolff, Karl Erich 59, 79
Wollbold, Johannes 79

Zagoruiko, Nikolay G. 243, 256
Zagorulko, Yury 203
Zalevsky, Eugene 101

	Cover
	Lecture Notes in Artificial Intelligence 6581
	Knowledge Processingand Data Analysis
	ISBN 9783642221392
	Preface
	KONT 2007 Organization
	KPP 2007 Organization
	Table of Contents
	Part I: Applications of Conceptual Structures
	Conceptual Knowledge Processing: Theory and Practice
	Conceptual Knowledge Processing
	Theory
	Practice
	Exploring
	Searching
	Recognizing
	Identification
	Investigating
	Analyzing
	Making Aware
	Deciding
	Improving
	Restructuring
	Memorizing
	Informing

	Summary
	References

	Non-symmetric Indiscernibility
	Indiscernibility
	Functional Dependencies and Indiscernibility
	Linguistic Variables
	Decision Making
	The Lattice of Rough Set Approximations
	Conclusion
	References

	Computing Graph-Based Lattices from Smallest Projections
	Introduction
	Pattern Structures on Sets of Graphs
	Analyzing Graph Datasets Using Lattice-Based Approaches
	A Top-Down Algorithm
	Top-Down and Bottom-Up Algorithms

	Conclusions
	References

	Combined Logics of Knowledge, Time, and Actions for Reasoning about Multi-agent Systems
	Introduction
	Elements of Modal Logic
	Combining Knowledge, Actions and Time
	Propositional Logic for Epistemic Agents
	Branching Temporal Logic with Actions
	Combined Logics of Knowledge, Actions, and Time

	Model Checking Problem for Combined Logics
	References

	Applications of Temporal Conceptual Semantic Systems
	Introduction
	Example: A Moving High Pressure Zone
	Basic Conceptual Notions
	The Scales of Our Example

	Conceptual Semantic Systems
	Main Ideas
	Definition of a Conceptual Semantic System
	Object Representation by Tuples of Semantic Concepts
	Views, Selections, and Traces
	Precise and Distributed Tuples

	Temporal Conceptual Semantic Systems
	States
	Life Space and Life Track
	Transitions
	The Life Space Digraph
	Particles and Waves in Temporal Conceptual Semantic Systems

	An Application of TCSS: The Behavior of a Distillation Column
	The Data of the Distillation Column
	Visualization of a Life Track in a Nested Line Diagram

	Conclusions and Future Research
	References

	Conceptual Representation of Gene Expression Processes
	Introduction
	Gene Expression Processes in Arthritic Patients
	Temporal Concept Analysis

	Data of Gene Expression Processes and Its Conceptual Representation
	Organization of the Data
	Conceptual Visualization of Data
	Conceptual Scaling
	Conceptual Time Systems with Actual Objects and a Time Relation (CTSOT)
	Conceptual Time Systems for Six Arthritic Patients

	Results
	Two Destructive Proteins and Their Antagonist
	Transcriptional Regulation of TGFB1 Effects

	Discussion
	References

	From Published Expression and Phenotype Data to Structured Knowledge: The Arabidopsis Gene Net Supplementary Database and Its Applications
	Introduction
	The Structure of the AGNS Data
	Terminological Systems
	AGNS Ontology
	Discussion of the Ontology
	Implementation of the Ontology
	Comparison with Existing Formalizations
	Functions of Terminological Systems

	Input and Processing of Data in AGNS
	Tools for Data Analysis

	Conclusion
	References

	Part II: Concept-Based Software
	How Can Ontologies Contribute to Software Development?
	Introduction
	Basic Concepts
	Analytics
	Interactive Designing
	Verbal Representation of Knowledge Bases
	Conclusions
	References

	A Comparison of Content-Based Tag Recommendations in Folksonomy Systems
	Introduction
	Social Resource Sharing and Folksonomies
	Related Work
	Tag Recommendations as Text Classification Problem
	Definition of the Problem
	Classifiers

	Evaluation Setting
	Preprocessing
	Training and Test Datasets

	Experiments
	Evaluation Settings
	Comparison of the Classifiers

	Conclusion and Outlook
	References

	Data Weeding Techniques Applied to Roget’s Thesaurus
	Introduction
	Visual Reduction Techniques
	Faceting and Plain Scaling
	Pruning and Restriction
	Decomposition and General Scaling
	Data Weeding Techniques for Roget's Thesaurus
	Conclusion
	References

	Part III: Ontologies as Conceptual Structures
	Virtual Catalog: The Ontology-Based Technology for Information Retrieval
	Introduction
	Information Retrieval on the Internet
	Measures of Efficiency of Information Retrieval
	The Search for Scientific and Technical Information on the Internet

	Mathematical Basis: Model-Theoretical Approach to the Formalization of Ontologies
	Logical Means of Ontology Representation
	Model-Theoretical Approach to the Formalization of Ontologies

	Practical Realization. The Virtual Catalog
	Description of the Virtual Catalog
	Automation of the Development of Subject Domain Ontologies
	Elaboration of Virtual Catalogs for Mathematics and Information Security

	Conclusion
	References

	Ontology Development for Domains with Complicated Structures
	Introduction
	Domain Class Definition
	Defining Level of Generality of Ontologies
	Properties of Multilevel Ontologies for Domains with Complicated Structures
	Method of Developing Ontology for Domain with Complicated Structure
	Structure of Multilevel Ontology of Chemistry
	A Fragment of the Ontology of Level 4
	Using the Ontology of Fourth Level
	Distinguishing Features of This Ontology Development Method
	Intelligent Systems for Domains with Complicated Structures
	Conclusion
	References

	Technology of Ontology Building for Knowledge Portals on Humanities
	Introduction
	Requirements to Knowledge Portal Ontology
	Structure of Knowledge Portal Ontology
	Definition of Portal Ontology
	Structuring of Knowledge Portal Ontology

	Technology of Ontology Building
	Ontology Description Language
	Ontology Editor
	Features of Methodology of Ontology Building for a Knowledge Portal

	Content-Based Access to Portal Content
	Building an Ontology for Knowledge Portal on Archeology and Ethnography
	Conclusion
	References

	Methods and Technologies of Digital Historical Factography
	Introduction
	Common Information Field
	Basic Ontology
	Data Input and Editing, Information Visualization
	Conclusion
	References

	Establishment of Taxonomic Relationships in Linguistic Ontologies
	Introduction
	Criteria for Verification of Taxonomic Relationships
	Confusion of Types and Roles
	Defining Roles
	Causes of Type-Role Confusion
	Description of Roles in Thesaurus RuThes and Ontology ONST

	Confusion of Taxonomic and Instance-Class Relationships
	Confusion of Taxonomic Relationships and Part-Whole Relationships
	Confusion of Taxonomic and Origin Relationships
	Taxonomic Relationships and Clustering of Word Senses
	Conclusion
	References

	Part IV: Data Analysis
	Problems in Constructing an Empirical Theory of Data Mining
	Introduction
	What Is an Empirical Theory?
	State-of-the-Art DM Problem
	Reference Points for Further Development
	Function of Rival Similarity
	Construction the Decision Rule (Algorithm FRiS-Stolp)
	Selection of Informative Attributes (Algorithm FRiS-GRAD)
	Construction of Classifications (Algorithm FRiS-Tax)
	Application of FRiS-Function to the Decision of Other DM tasks
	Strengthening of the Empirical DM Theory
	Conclusion
	References

	Use of the FRiS-Function for Taxonomy, Attribute Selection and Decision Rule Construction
	Introduction
	Definition of the Function of Rival Similarity
	Use of the FRiS-Function for Selecting Stolps of Classes
	FRiS-Function as Criterion for the Choice of an Informative Subset of Attributes in Problem DX
	FRiS-Function in a Taxonomy Task
	Clustering (Stage FRiS-Cluster)
	Construction of Classification (Stage FRiS-Class)
	Choice of an Optimum Number of Taxons

	FRiS-Function in Problem SX as a Criterion for Natural Classifications
	FRiS-Function in the Problem SDX
	Conclusion
	References

	Similarity Determination for Clustering Textual Documents
	Introduction
	Similarity Determination for a Set of Documents
	Methods for Documents Clustering
	Choice of the Optimal Algorithm
	Looking for the Optimum Method for Specifying the Similarity in the Set of Documents
	Conclusion
	References

	On the Problem of Prediction
	Introduction
	The Statistical Ambiguity Problem
	Inductive-Statistical Inference
	The Requirement of Maximal Specificity in Default Logic
	The Solution of the Statistical Ambiguity Problem
	Probabilistic Approximation of Empirical Theories
	Approximation of Logical Inference by Semantic Probabilistic Inference

	Laws
	The Probability of Events and Sentences
	The Probabilistic Laws on M
	Semantic Probabilistic Inference
	Probabilistic Maximally Specific Laws
	The Solution of the Statistical Ambiguity Problem
	Probabilistic Herbrand Models
	Logical Programs
	Estimations of the Probability and Conditional Probability of Requests
	Inductive Synthesis of Probabilistic Logic Programs
	Predictions Based on Semantic Probabilistic Inference
	The Relational Data Mining and Program System ‘Discovery’
	References

	Visual Data Mining and Discovery in Multivariate Data Using Monotone n-D Structure
	Introduction
	Chains and Similarity Distances between Chains
	Representing and Drawing of n-D Boolean Space in 2-D
	Learning Process by Monotone Extension
	Computational Experiment
	Conclusion and Future Work
	References

	Construction of an Event Tree on the Basis of Expert Knowledge and Time Series
	Introduction
	Event Tree and Decision Tree
	Multidimensional Time Series and Decision Trees
	From Decision Trees to Event Trees
	Bayesian Criteria for Decision Tree Pruning
	Experiments
	Summary
	References

	Author Index

